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Abstract— Driving through complex urban environments is
a challenging task for autonomous vehicles (AVs), as they must
safely reach their mission goal, and react properly to traffic
participants while obeying traffic rules. Deep reinforcement
learning (DRL) is a promising method to generate driving
policies for AVs because it can explore complex environments
and learn suitable reactions. In this work, we present a
DRL algorithm for AVs to handle intersection scenarios while
considering traffic rules. Furthermore, we enhance the safety
of our DRL algorithm’s decisions by introducing a safety
checker based on a responsibility-sensitive safety (RSS) model.
Evaluations show that our DRL algorithm outperforms the
baseline method by driving safely to reach the mission goal
while obeying the traffic rules at an intersection.

I. INTRODUCTION

Safely driving through unsignalized intersections in urban
areas is challenging for autonomous vehicles (AVs). To
provide safe driving policies, AVs must interact with
surrounding traffic participants and handle uncertainties such
as noisy sensor data and inaccurate motion predictions, all
while obeying traffic rules. In recent years, numerous studies
have focused on applying deep reinforcement learning (DRL)
in the decision-making tasks of AVs since it has successfully
demonstrated superhuman-level performance in the fields of
robotics and video games [1]. DRL facilitates learning of
optimal long-term policies solving complex driving tasks,
such as the handling of intersections, roundabouts, or
lane changes on highways. Examples are presented by the
authors of [2]-[5], who argue that DRL agents behave less
conservatively compared to rule-based methods because of
their negotiation and interaction capabilities.

In this work, we focus on applying DRL to learn
driving policies for unsignalized intersections. In some
countries, such as Germany, drivers must follow the
right-before-left rule at intersections without traffic signs
or traffic lights. For example, the ego vehicle must give
way to the vehicles approaching from the right since they
have higher priority (see Fig. 1). The DRL algorithm
needs to safely drive through the intersection without
harming other road users, while following the traffic rules.
To train the DRL agent, a simulation environment is
required that can provide high-fidelity vehicle dynamics
for the ego vehicle, while simulating other vehicles that
can comply with the right-before-left rule. Our goal is
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Fig. 1. The figure shows an intersection without traffic signs and traffic
signals. The ego vehicle (blue car) intends to drive through the intersection.
The yellow vehicles have priority over the ego vehicle, whereas the ego
vehicle has the right of way over the green vehicle.
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to address the aforementioned challenges to advance the
safe and rule-compliant DRL algorithm toward real-world
applications.

A. Related Work

1) Simulator: Several simulators have been designed
specifically to develop autonomous driving systems and train
DRL agents, as reviewed in [1]. Among them, ~’Simulation
of Urban MObility” (SUMO) [6] and “Car Learning to
Act” (CARLA) [7] are representative examples that have
active developer teams and communities. By utilizing the
traffic-management and intersection model of SUMO, users
are able to apply traffic rules when defining the behavior
of simulated road users. However, SUMO does not support
the simulation of road user’s physical model. In comparison,
CARLA can simulate vehicles using a high-fidelity vehicle
dynamics model.

2) Traffic rules for DRL: For autonomous driving tasks,
traffic rules have been considered mostly to design reward
functions for DRL agents. In highway scenarios, negative
rewards are assigned if the DRL agent deviates from the
center of its lane [8], [9]. Compared to highway scenarios,
unsignalized intersections in urban environments are more
challenging to the incorporation of traffic rules during DRL
agent training. Some works assume that the ego vehicle
always has the lowest priority [10], [11]. However, this
simple assumption may cause issues such as overcautious
driving behavior or deadlock situations. In [12], the DRL
agent implicitly learns the right-of-way rule by interacting
with other vehicles that comply with the traffic rules in the



simulation environment. However, no explicit information
about the road priority is represented in the state space for
the agent. The deployment of the DRL agent is constrained
to the same priority setup as that in which it was trained.

Instead of making simple assumptions, another way to
consider traffic rules is to explicitly incorporate information
into the state space or reward function of the DRL agent. In
[13], stop lines and yield lines are represented in the state
space using a grid map with different colors. The positions
of other vehicles and their priority levels are also embedded
within the state space. [14] uses the priority information
in both the state space and reward function. The DRL
agent is penalized when it does not wait for the vehicles
in the prioritized lanes. In addition, whether other vehicles
have right of way over the DRL agent is modeled into the
state space. However, the priority definitions and violation
conditions are not discussed. Moreover, the impact of the
traffic rule rewards on the DRL agent is not investigated.

3) Safety for DRL: Because the DRL agent is employed
in a safety-critical system, it should learn driving policies
that both comply with traffic rules and ensure safety. Several
techniques have been proposed to improve the safety of DRL
agent decisions in autonomous driving tasks. One promising
direction is to utilize a safety model checker to check the
action space and only provide safe actions during the DRL
agent’s training. In [15] and [16], prior knowledge and
constraints are used for the DRL agent to maintain a safe
distance and avoid lane changes that result in close distances
to other vehicles. In [17], authors apply set-based predictions
in a safety layer to remove the unsafe action candidates.
[18] introduces a safety DRL method that utilizes system
dynamics and recursive feasibility techniques to construct a
supervision module that guarantees safety during learning.
In [19], the authors apply regret theory to predict human
drivers’ lane-change decisions and use these predictions as
safety constraints in the DRL training process. Instead of
influencing the training process, another type of approach
combines traditional methods with DRL. In [20], the vehicle
is first trained with DRL to learn the driving policy in a static
environment without other vehicles. Afterwards, an artificial
potential field is employed to avoid collision with other
vehicles. [21] proposes a hybrid method that combines the
approximate partially observable Markov decision process
with DRL to enhance safety.

B. Contributions

Driving safely and obeying traffic rules are fundamental
requirements for applying the DRL algorithm in the real
world. In this work, we propose a safe and rule-aware DRL
approach for high-level decision making in an intersection
scenario for autonomous driving. First, we establish a
CARLA and SUMO co-simulation environment that can
provide high-fidelity vehicle dynamics for the ego vehicle
while simulating other vehicles that can comply with traffic
rules, such as the right-before-left rule at intersections.
Furthermore, we introduce a traffic rule monitor that checks
the priority of the DRL-based ego vehicle according to the

right-before-left rule. In addition to this, we apply a safety

checker based on the responsibility-sensitive safety (RSS)

model [22]. The safety checker verifies the status of the ego

vehicle and provides a fallback safe action for the DRL agent

in unsafe situations during the training and inference phases.
Our contributions are summarized below.

o We introduce a traffic rule monitor for detecting the
compliance of the DRL agent with traffic rules.

e We apply an RSS-based safety checker to guarantee
safety during the training and inference phases.

o« We evaluate different approaches for combining the
traffic rule monitor and the safety checker to achieve
safe and rule-compliant intersection driving with the
DRL approach.

The rest of this paper is structured as follows: The
preliminary of the DRL is provided in Sec. II. Sec. III
introduces the proposed DRL framework, including the
CARLA and SUMO co-simulation, traffic rule monitor, and
RSS-based safety checker. The simulation environment and
setup are explained in Sec. IV. The evaluation results are
provided in Sec. V. Finally, Sec. VI draws conclusions and
discusses future work.

II. PRELIMINARY

Decision making with reinforcement learning can be
modeled as a Markov decision process defined by the tuple
(S,A,T, R,~), where S is the state space, A is the action
space, 1T is a state transition model that describes the
transition probability from one state to another, R is a reward
model, and v € [0,1) is a discount factor for calculating
the cumulative expected reward. Following the transition
model 7', the environment transitions to a new state s’ € S
with a probability T (s,a,s’) = Pr(s | s’,a), and a reward
r = R(s,a) is assigned to the agent. The goal of the agent
is to find the policy 7 : S — A that maximizes accumulated
expected rewards by determining which action a € A should
be taken for a given state s € S.

The model-free reinforcement learning algorithm
Q-learning [23], represents the policy m by a state-action
value function @Q(s,a) where the optimal Q-function
Q* (s, a) satisfies the Bellman equation:

Q*(s.0) = R(s,a) +7 3 T (s,a,5') max Q" (s, a) . (1)
In DRL, the state-action value function is represented by
a neural network with the weights 6 [24]. An approximate
solution for (1) can be obtained by minimizing the following
loss function:

L) =Ey |:(T + ’}/H}IE}XQ (s',a’;0) — Q(s,a; 0))2] )

ITII. SAFE AND TRAFFIC RULE-AWARE DEEP
REINFORCEMENT LEARNING

In this section, we first briefly describe our safe and
traffic rule-aware DRL framework. Then, we introduce the
applied simulation environment. Following this, we explain
our traffic rule monitor that checks for compliance with the
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Fig. 2. Safe and rule-aware framework for DRL decision-making module of the autonomous vehicle.

right-of-way rule and discuss its integration into the state
space and reward model of the DRL agent. Subsequently, we
discuss the safety checker’s design based on the RSS model.
Finally, we explain the model of the DRL agent, including
its state, action, and reward model.

A. Framework

In this study, we propose a DRL framework to make
high-level decisions for AVs to handle intersections in urban
environments (see Fig. 2). The task of the DRL agent
is to safely drive the ego vehicle across intersections in
compliance with the right-before-left rule. To train the DRL
agent, we create an intersection scenario using both CARLA
and SUMO simulators. At each time step, the state of the ego
vehicle is updated by CARLA, while the state of other road
users is updated by SUMO. The environment is synchronized
between both simulators and provides the current state to the
traffic rule monitor and safety checker.

The DRL agent should understand its priority over other
vehicles and obey the right-before-left rule at intersections.
Therefore, we introduce a traffic rule monitor to provide
the priority information (p.ioriy containing the priority
relationship between the ego vehicle and other vehicles. The
traffic rule monitor further checks whether the ego vehicle
violates this rule. The priority information ¢y iorizy and the
result of monitoring the traffic rule violation @,;iation are
further incorporated into the state space Seziend,: and the
reward function for the training of the DRL agent.

The safety checker verifies whether the current state is
safe according to the RSS model. Given the agent’s action
Gqgent, the safety checker returns a tuple (Qunsafe; @safe)s
where @ynsqfe 1 a Boolean value to indicate whether the
current state is unsafe and a,qf. is a safe fallback action. If
the DRL agent doesn’t choose a brake action in an unsafe
situation, the safety checker interferes with the DRL agent’s
decision and provides a safe fallback action af. as the final
action @ finq . Finally, the control module converts the final
action afpq; to the control signal u for controlling the throttle
or brake actuators in the AV. The reward function with traffic
rule violation and unsafe information is used to guide the
training of the DRL agent.

Fig. 3. A scenario in the CARLA simulator (left) and SUMO simulator
(right). The states of the ego vehicle (blue car) and other road users are
synchronized between CARLA and SUMO.

B. CARLA and SUMO Co-simulation

To train the DRL agent, we require a realistic environment
for testability and integration into real-world applications.
We apply SUMO to control road users so that they can
comply with the right-of-way rule at the intersections.
However, SUMO neither supports simulation of the vehicle’s
physical model nor includes sensor models. Therefore, we
apply CARLA to simulate the environment and the ego
vehicle with its physical behavior model. As shown in Fig. 3,
both CARLA and SUMO can interact with each other by
synchronizing the states of the ego vehicle and the other
road users.

C. Traffic Rule Monitor

The traffic rule monitor checks if other vehicles have
priority at an intersection according to the right-of-way rule,
and evaluates if the ego vehicle violates this rule. In the
following, we explain this evaluation in more detail.

In order to determine if the ego vehicle violates the
right-of-way rule, we first need to find the vehicles driving on
higher prioritized lanes with respect to the ego’s current lane.
We only consider intersections where the priority-relation
between lanes does not change over time, i.e., intersections
where no traffic lights are present. Thus, we obtain the
priority-relation between lanes from a high-definition map.
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Fig. 4. Example of the ego vehicle violating the traffic rule in a
right-before-left intersection.

For each intersection, we define a conflict area C' to be
the area enclosed by the stop lines (see. Fig. 4). In order to
determine if the ego vehicle violates the priority rule, we only
consider vehicles that satisfy the following priority condition:

dci
Ppriority,i = {ch,i < Dm} \ {’ < Ta} ) (3)

7

where d.; is the Euclidean distance of vehicle i to the
conflict area and v; is its velocity. In this work, we define
the arriving time threshold as 7, = 3 s and the monitoring
range as D,, = 30 m.

The traffic rule monitor returns @y;oiation = Lrue if the
ego vehicle has a geometrical overlap with the conflict area
and if there is at least one vehicle 7, for which the condition
Ppriority,i = 1rue holds.

D. Safety Checker

The objective of the safety checker is to identify unsafe
situations @ynsafe and provide a proper reaction asqfe
to ensure safety while guiding the DRL agent to learn
how to behave properly in such situations. We integrate
the open-source C++ library for RSS [25] within the
safety checker in our DRL framework. The RSS model
formalizes safe driving by defining a set of logical rules and
mathematical formulas such as safe distance to other vehicles
(see [22] for more details). Using these formalizations, the
RSS model can identify dangerous situations, which we
denote as Ygangerous- The states of surrounding objects
and the ego vehicle are extracted based on the simulation
environment. As shown in Fig. 5, the extracted world model
is the input for the RSS model to identify whether the
situation is dangerous, i.€., Y dangerous = True.

The action selection module is applied to decide whether
to interfere with the agent’s decision. In cases where the
situation is safe according to the RSS model (@ gangerous =
False), or the DRL agent chooses a brake action a ;. When
Pdangerous = 1rue, the action selection module forwards
the DRL agent’s action without any interference, such that
Gsafe = Qagent> and the checking result @ypsafe is set to
False. Otherwise, if the agent does not choose a braking
action in a dangerous situation ¢ gangerous = 1rue, the action
selection module in the safety checker sets @ynsqafe = True

world model
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Fig. 5. The functional architecture of the safety checker based on the RSS
model.

and overwrites the agent’s action with the braking action
Gsafe = Qprake- As a result, the safety checker provides the
identified unsafe situation @ysqfe to the reward function and
the action a4, to the DRL agent.

E. DRL Model

1) State Space: The state representation of the DRL
agent is a feature list containing information about the ego
vehicle and other road users. We include the five vehicles
with the closest Euclidean distance to the conflict area
of the intersection. The state representation with priority
information at time step t is defined as Scgtendr =
[Segm Swveh,1; Sveh,2s Sveh,3; Sveh,4, 5veh,5]' The state of the
ego vehicle is defined as Scgo = [Vegos Agoals deongiict], Which
includes the ego vehicle’s velocity veg,, distance to the goal
dgoal, and distance to the conflict area dconflict-

The state of the other vehicles syen,i =
[Vi, de,i, Ppriority,i] includes the velocity of the vehicle v;,
distance to the conflict area d.. ;, and the priority information
Opriority,i- We add a negative sign to d.; when a vehicle is
driving away from the center of the intersection along its
reference driving path. The priority information @,,iority,s
is set to True if a vehicle ¢ has a higher priority than the
ego vehicle.

2) Action Space: The task of the DRL agent is to
make high-level decisions in order to drive the AV through
the intersection. Therefore, we apply high-level decisions
represented by three discrete actions a@grive, @cautiouss and
Gbrake- The action a4, indicates that the ego vehicle should
drive with maximal velocity vego = 5 m/s. The action
Geautions cOmmands the ego vehicle to drive with velocity
Vego = 1 m/s. When aprage is chosen, the ego vehicle should
decelerate until veyo = 0 m/s. In our DRL framework, we
apply a control module to convert the high-level decisions
from the DRL agent to actuator control signals. These control
signals include the percentage of throttle and brake applied in



the simulated ego vehicle in the co-simulation environment.
3) Reward Model: We define the total reward for the DRL
agent in an episode as follows:

R= Rcollision + Runsafe + Re}ﬁciency + Rrule~ (4)

The training of each episode ends if a collision is detected,
the maximum allowed episode length is reached (time-out),
or the ego vehicle reaches the goal.

R oitision 18 the collision penalty. If the ego vehicle
collides with another vehicle, a penalty is assigned based
on the ego’s velocity:

Rcollision = _2vego — 5. (5)

Reficiency 15 used to encourage the ego vehicle to finish
each episode as quickly as possible. Therefore, a negative
reward Reficiency = —0.1 is given for each time step in a
training episode.

R,y1e is the reward for compliance with the right-of-way
rule based on the checking result @yioiati0n, from the
traffic rule monitor. For comparison purposes, we design
two methods for rewarding the rule awareness of the
DRL agent. The first method is a sparse rule violation
reward R,yje.; = —5, which is only assigned once in
an episode when the ego vehicle violates the right-of-way
rule given Yyioation = Lrue. The second method is a dense
rule-compliance reward R,.,;e, 0, Which encourages the ego
vehicle to wait for other vehicles with a higher priority. For
each time step when @,;01ation = False, i.e., the ego vehicle
waits behind the stop line to give way to vehicles with higher
priority, it receives the positive reward R,.¢,co = 0.1. In this
case, the efficiency reward is reset t0 Refficiency = 0, i.€., no
penalty regarding efficiency is assigned when the ego vehicle
complies with the traffic rule.

Rynsafe represents a penalty assigned at each time step
Runsafe = —0.1 if the ego vehicle is in an unsafe situation
identified by the safety checker given @ynsqfe = True.

IV. IMPLEMENTATION
A. Simulation Environment

We implement the CARLA and SUMO co-simulation
environment and the training pipeline on a computer with an
Intel Xeon E5-2640 v4 processor running at 2.40 GHz and
a Nvidia GeForce RTX 2080 Ti graphics processing unit.
To investigate the effect of our DRL approach, we opted to
use a double deep-Q network (DQN) [26] and prioritized
experience replay [27] as the basis of the DRL agent. The
policy network of the DRL agent is implemented using the
PyTorch library [28]. The network structure and parameters
are listed in Tab. L.

B. Simulation Setup

We train our DRL agent on an unsignalized four-way
intersection. The other vehicles in the scenario comply with
the right-before-left rule. At the beginning of the training
phase, a random number of vehicles between one and ten
are assigned to drive on one of the intersection lanes with
different driving tasks: turning left, turning right, or going

TABLE I
HYPER-PARAMETERS OF THE DEEP-Q NETWORK.

Parameter  Value Description

« 2e 4 Learning rate for Adam optimizer
By, 5000 Buffer size of the replay buffer

B, 64 Batched samples from replay buffer
[l1,12,13] [64,64,32]  Hidden layer size

€decay 0.998 Epsilon decay

€final 0.01 Epsilon final value

o 0.99 Discount factor

T le 3 Soft target network update rate

At 0.1s Time step

straight. At the beginning of each training episode, the ego
vehicle is placed at its start position.

V. EVALUATION

We evaluate our DRL framework with two experiments.
In the first experiment, we design three different agents to
evaluate the effect of the traffic rule monitor on the DRL
agent. The second experiment investigates the advantage of
further incorporating the safety checker into the DRL training
pipeline. To train the DRL agents, we establish 60 s as the
maximum allowed episode length. The metrics listed below
are used to compare the performance of the DRL agents.

e Success rate: The average number of successful
episodes. An episode is a success if the DRL agent
reaches the goal within the maximum allowed episode
length without collision.

o Collision rate: The average number of collisions. A
collision is counted if the DRL agent collides with
another vehicle.

« Infraction rate: The average number of infractions. An
infraction occurs when the DRL agent violates the
right-of-way rule, as checked by the traffic rule monitor
within an episode.

A. Evaluation of the Traffic Rule Monitor

1) Experimental design: The goal of this experiment is to
show the effect of our traffic rule monitor on the DRL agent.
Therefore, we set up three DRL agents: a baseline DQN, and
two DRL agents using our traffic rule monitor: RuleViDQN
and RuleCoDQN.

DQN represents a standard DQN agent that implicitly
explores and learns the right-of-way rule by interacting with
other vehicles. Therefore, the DQN is trained only with the
collision and efficiency rewards. Because this is the main
configuration applied in previous works (e.g., [11], [12]),
we consider the DQN as the baseline approach.

RuleViDQN denotes a violation-aware DQN combined
with our traffic rule monitor. Compared to the standard
DQN, the RuleViDQN has an additional reward R,;c ;. The
reward R,.,c . 1S a sparse reward that is only provided once
in an episode when the DRL agent violates the right-of-way
rule.
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agent adherence to the right-of-way rule, RuleCoDQN takes more episodes to learn but then significantly outperforms both DQN and RuleVIDQN.

As suggested in [2], the sparse reward can be improved
upon using dense reward by explicitly providing feedback
for each time step. Therefore, we set up another DRL agent
using our traffic rule monitor: RuleCoDQN, a rule-compliant
DQN. In contrast to RuleViDQN, the RuleCoDQN has a
dense reward R,,je 0. RuleCoDQN receives this positive
reward R,y o at each time step when the DRL agent
adheres to the right-of-way rule.

2) Training performance: We calculate the moving
average of success and infraction rates with a fixed subset
size of 200 episodes and present each 200th average point
in Fig. 6. At the start of the training, we can observe that
the agents do not comply with the traffic rule but still often
reach the goal. As the training progresses, the agents reduce
the number of collisions by learning conservative driving
policies. However, this also results in an initial decrease in
the success rate since the maximum allowed episode length
is reached frequently.

After 20,000 episodes of training, the standard DQN
reaches the goal with around 90% success and 30%
infractions. The high infraction rate reflects that the DRL
agent cannot implicitly learn the traffic rule solely by
exploring the world with other vehicles.

RuleVIDQN has a similar moving average of success
and infraction rates to the standard DQN, which indicates
that the sparse reward does not guide the RuleViDQN to
learn to obey the traffic rule. RuleViDQN fails to learn the
rule because of the low number of episodes containing rule
violation rewards.

The positive effect of encouraging the rule compliance on
the RuleCoDQN can be seen from the green curves of the

TABLE 11
EVALUATION RESULTS OF RULE-AWARE DRL AGENTS.

DRL Agent Success Rate  Collision Rate  Infraction Rate
DQN 88.6% 10.9% 33.3%
RuleViDQN 93.3% 6.7% 26.5%
RuleCoDQN 97.1% 2.9% 9.6%

success and infraction rates in Fig. 6. After 6,000 episodes,
the RuleCoDQN starts to comprehend the traffic rule and
learns to obey it to obtain higher rewards. The success rate
also drops after 6,000 episodes because the RuleCoDQN
starts to explore the benefit of obeying the traffic rule guided
by the positive reward I2,.y¢,co. However, it waits too long
to explore this benefit, which causes frequent time-outs and
reduces the success rate. The increase in the success rate
after 14,000 episodes reveals that the RuleCoDQN complies
with the rule while reaching the goal.

3) Running performance: Tab. II shows the success
rate, collision rate, and infraction rate for the three agents
during an evaluation with 2,000 episodes after training.
The RuleCoDQN outperforms both the standard DQN and
RuleViDQN, with the highest success rate of 97.1%, lowest
collision rate of 2.9%, and lowest infraction rate of 9.6%.
The evaluation results are similar to the training results,
indicating that no overfitting occurred during training.

B. Evaluation of the Safety Checker

1) Experimental design: The safety checker provides two
results: unsafe situation @,nsqfe and safe action a,qp.. We
design the following three variants of the DRL agent to
compare their training performance. All three DRL variants
are based on the RuleCoDQN, because it outperformed DQN
and RuleViDQN in the previous experiment.

SafeReDQN uses the safety reward Rynsqfe provided
by the safety checker. It receives a penalty for each step
when the ego is in an unsafe situation. SafeAcDQN uses
the safe action provided by the safety checker instead of
the original action, which may lead to an unsafe situation.
SafeReAcDQN utilizes both the safety reward R;sqfe and
the safe action during training. The goal is to guide the agent
to identify unsafe situations and know how to react to them.

2) Training performance: Fig. 7 shows the training results
in the same way as previously. The success and infraction
rates of SafeReDQN do not improve during training, which
indicates that the combination of the safety reward R ,sqfe
and the rule-compliance reward R,,e ., cannot guide the
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Success and infraction rates of the three agents combined with the traffic rule monitor and safety checker during the training. SafeReAcDQN

outperforms the other two agents with the best success rate and the lowest infraction rate at the end of training.

SafeReDQN properly. A conflict between these reward
combinations occurs in the situation shown in Fig. 4, where
the ego vehicle has crossed the stop line. In this situation,
SafeReDQN would drive the ego vehicle further to avoid
accumulating the penalty Ryysqfe = —0.1 at each time step,
instead of waiting for the other vehicle, which is more likely
to cause a collision. Without other methods of guidance,
SafeReDQN cannot learn how to react correctly in such a
situation, resulting in more collisions and rule infractions.
Compared to SafeReDQN, both SafeAcDQN and
SafeReAcDQN are protected with safe action a,qf., which
prevents it from driving into an unsafe situation. The
learning curves of SafeAcDQN and SafeReAcDQN converge
faster than those of the other DRL agents. Moreover,
SafeReAcDQN achieves the best success rate and the lowest
infraction rate with smaller standard deviations compared to
the other agents at the end of training (see Fig. 7); thus, the
combination of the safety reward R ,ysqfc and the safe action
Gsqfe Provides the best guidance for training the DRL agent.
3) Running performance: We evaluate all trained agents
over 2,000 episodes and summarize the results in Tab. III.
Both SafeAcDQN and SafeReAcDQN benefit from the safe
action and do not cause any collisions in the evaluation.
Meanwhile, they drive more conservatively than the agents
without safe action, with time-out rates of 3.6% and
1.4%, respectively. In summary, SafeReAcDQN performs
best at reaching the mission goal successfully within the
maximum allowed episode length, with the highest success
rate of 98.6% and the lowest infraction rate of 2.6%. This
result shows that SafeReAcDQN benefits the most from
incorporating both a safety reward R,,sqf. and a safe action

TABLE III
EVALUATION RESULTS OF SAFE AND RULE-AWARE DRL AGENTS.

DRL Agent Success Rate  Collision Rate  Infraction Rate
SafeReDQN 88.2% 11.7% 28.2%
SafeAcDQN 96.4% 0% 4.5%
SafeReAcDQN 98.6 % 0% 2.6%

asqfe from the safety checker. We provide a supplementary
video' of the evaluated scenarios.

Finally, to provide a more intuitive comparison of the
effect of traffic rule monitor and safety checker, we show the
training performance of the baseline DQN and the best agents
from both evaluations, RuleCoDQN and SafeReAcDQN, in
Fig. 8.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we present a safe and rule-aware DRL
framework for autonomous driving at urban intersections. A
co-simulation training environment combining CARLA and
SUMO is applied to provide a realistic dynamic simulation
of the ego vehicle and traffic participants complying with
traffic rules. We investigate different ways to incorporate rule
awareness into the DRL agent using our traffic rule monitor.
Our experiments show that the DRL agent achieves better
rule-compliance results using a dense reward than a sparse
reward. Finally, we improve upon the rule-compliant agent
by applying an RSS-based safety checker to ensure the safety
of the DRL agent’s driving policy. The evaluations show that
the DRL agent with a safety reward and safe action guidance
achieves the best performance with no collisions.

Future work includes the application of our approach to
more scenarios, like different intersections, roundabouts, and
highway merges. We also plan to include more traffic rules in
the traffic rule monitor. Furthermore, we want to investigate
the applicability of our approach in a multi-agent planning
setup.
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