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Abstract— Driving autonomous vehicles safely through a
complex urban environment remains a difficult task. The
sensor limitations, as well as the various occlusions in the
urban environment caused by static and dynamic objects,
make the decision-making task even more complex. To improve
the autonomous vehicle’s ability to handle various occlusion
driving scenarios, we propose a behavior planner with traffic
mirror awareness based on the partially observable Markov
decision process (POMDP). Our approach is based on the
concept of phantom road users, which allows us to reason
about the potentially occluded traffic participants and estimate
the appearance probability in risky areas based on contextual
information. A confidence modifier is introduced to either
increase or decrease the appearance probability by utilizing
the uncertain road users tracking results from available traffic
mirror detections. Furthermore, we present an active traffic
mirror perceiving method for encouraging the ego vehicle to
explore the environment and plan driving policies that support
perception. Finally, in the POMDP model, the detected real road
users and inferred phantom traffic participants are represented
in the state space. The driving policies are obtained by using
the anytime Monte Carlo tree search (MCTS) algorithm to
solve the POMDP model online. In various simulation scenarios
with static and dynamic obstacles in an urban environment,
the proposed approach is compared to the baseline approach.
Our planner successfully uses the uncertain objects tracking
information from traffic mirrors and provides safer and more
efficient driving policies.

I. INTRODUCTION

Autonomous driving in urban scenarios is difficult due to
its complex road topology, uncertain sensory information,
unknown intentions with other road users during the
interaction, and the limited field of view (FoV) caused
by static and dynamic obstacles. The decision-making
module of the autonomous vehicle should be able to infer
the risk posed by occlusion areas and provide safe and
efficient driving policies. In complex urban areas with
limited visibility, traffic mirrors are often placed by local
authorities to reduce the risk of traffic accidents. A traffic
mirror, also known as a security mirror or a road safety
mirror allows drivers and pedestrians to better understand
their surroundings and see around blind corners or other
obstructions. They can be helpful at intersections, roads or
parking areas where there are either natural or manufactured
obstructions (see Fig. 1). Traffic mirrors are beneficial
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(a) The ego vehicle intends to turn left at an occluded
intersection.

(b) The ego vehicle drives through a partially occluded road
section with a crosswalk.

Fig. 1: Two driving scenarios in an urban environment in the
presence of occlusions caused by buildings, parked cars or
moving trucks. Traffic mirrors are found at the corner of an
intersection (a) and on the other side of a road (b), and their
information is used to increase the FoV. Red areas indicate
the occluded area of the ego vehicle, whereas green areas
show observed regions of the traffic mirror.

for humans. Utilizing traffic mirror information within
autonomous vehicles could expand the FoV.

Some works have been proposed in recent years
to investigate the decision-making algorithms with
occlusion-awareness for autonomous vehicles. Reachability
analysis was used in some studies to assess the collision
risk posed by potentially occluded traffic participants in the
occluded regions [1]–[3]. Learning-based methods have also
been investigated to learn driving strategies for handling
occlusion scenarios rather than manually defining rules.
[4]–[6]. Recently, due to the increased computational power
and further development of solving libraries [7]–[9], the
partially observable Markov decision process (POMDP)
has become an emerging method for decision-making for



autonomous driving under uncertain intentions of traffic
participants [10]–[12]. Several POMDP planners with
occlusion awareness have also been proposed to consider
potentially occluded vehicles and pedestrians with increased
occlusion scenario coverage [13]–[19].

In addition to occlusion-aware decision-making and
motion planning methods, studies are focusing on improving
occlusion-awareness in the prediction module of the
autonomous vehicle. Formal set-based prediction is used to
predict a set of occupancies for both detected and occluded
road users [20], [21]. Reference [22] utilizes contextual
information to estimate the emergence probabilities of the
hidden pedestrians. Furthermore, some researchers have
proposed methods for perceiving traffic mirrors and tracking
dynamic objects based on detected traffic mirrors. Based on
camera images, either traditional computer vision methods
such as Gaussian filters [23] or convolutional neural network
(CNN)-based approaches [24], [25] are used to detect traffic
mirrors. The Kalman filter and optical flow are used for
tracking objects moving direction, i.e., whether objects
are approaching or receding from the observer [23], [25].
According to our research, no prior work investigates how
to incorporate perceived uncertain traffic mirror information
into the decision-making method for autonomous vehicles in
the presence of occlusions.

In previous studies [10]–[19], the ability of POMDP-based
behavior planners for autonomous driving is improved by
integrating more sources of uncertain information, such
as uncertain measurements, uncertain intentions of traffic
participants, and uncertain appearance of occluded road
users. In this study, we further expand an occlusion-aware
POMDP behavior planner [19] to handle occlusion scenarios
where uncertain information can be derived from traffic
mirrors. First, high-risk areas where road users are very
likely to appear such as intersections and bus stops are
identified from the high-definition (HD) map. Next, the status
of phantom road users is estimated, including the location,
orientation, and likelihood of appearing in high-risk regions.
Following that, a confidence modifier is modeled based on
the detected traffic mirror and its observed lane or areas
as well as the directions of tracked hidden road objects.
The confidence modifier is then integrated into the POMDP
observation model to increase or decrease the appearance
probability of phantom road users in high-risk areas based
on whether the tracked road users are close to or far away
from the ego vehicle. The appearance probability of phantom
road users is sampled for constructing the belief tree.

Furthermore, we present an active mirror perceiving
method to encourage the ego vehicle to actively explore
the environment and gain more information when the traffic
mirror is temporarily occluded by dynamic obstacles. This
method first searches the HD map for relevant traffic
mirrors based on the ego mission. For every relevant traffic
mirror, three-dimensional observability checks are performed
between the ego vehicle position and the position of the
relevant traffic mirror in the current and the future time steps
while constructing the belief tree. The result of the checking

is combined with the reward function to encourage the
ego vehicle to keep relevant traffic mirrors visible. Finally,
through the belief tree, the driving policies that maximize
accumulated rewards are obtained.

The main contributions of this study are:
• a concept for using perceived traffic mirrors and

uncertain objects tracking information as a confidence
modifier,

• the combination of the confidence modifier and a
phantom road user concept in a POMDP-based behavior
planning to enable the autonomous vehicles to benefit
from the uncertain traffic mirror information,

• an active mirror perceiving method combined with
POMDP behavior planning for encouraging the
autonomous vehicle to plan driving policies that
maintain traffic mirror observability.

The remainder of this study is structured as follows. In
Section II, the concept of this work is described in detail. In
Section III, evaluation results are provided. In Section IV,
conclusions and future work are presented.

II. TRAFFIC MIRROR-AWARE POMDP BEHAVIOR
PLANNER

This study focuses on designing a behavior planner
for an autonomous driving system to handle occlusion
driving scenarios in the urban environment by incorporating
uncertain tracking information from traffic mirrors. The
POMDP behavior planner generates longitudinal driving
policies in each planning cycle to control the ego vehicle
along a planned mission path.

This section first introduces the general theory of POMDP
and how to use the POMDP formulation to model a
driving scenario. Following that, we revisit the observation
model from our previous study [19], which consists of
observing real traffic road users as well as the context-based
appearance probability of potentially occluded road users
such as vehicles and pedestrians. Furthermore, we introduce
a confidence modifier that is based on the object detection
result from available detected traffic mirrors to influence
the appearance probability of hidden road users. Then, the
modification of context-based appearance probability with
a confidence modifier is explained in detail. Finally, with
a further definition of transition and reward model, the
POMDP is solved using the Monte Carlo tree search (MCTS)
method [8].

A. POMDP Preliminaries

A POMDP is a probabilistic method that models the
sequential decision process of a system (often denoted as
agent) under uncertain conditions. A POMDP is defined by
the tuple (S,A,O,T,Z,R,γ) where S, A, O represent the state,
action, and observation spaces, respectively. The transition
model T is a conditional probability function T (s,a,s′) =
P(s′ | s,a) modeling the probability of a system transition
from the state s ∈ S to the state s′ ∈ S when action a ∈ A is
executed. Similarly, the observation model Z is a conditional
probability function Z (o,a,s′) = P(o | s′, a) describing the
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Fig. 2: The process of traffic mirror-aware POMDP behavior planning.

probability of receiving observation o∈O after taking action
a ∈ A and transitioning to state s′ ∈ S. The reward R(s, a)
is the immediate reward generated by performing the action
a∈A from the state s∈ S. Finally, a factor γ ∈ [0,1) discounts
future rewards [26].

In a partially observable environment, the agent has only
partial knowledge of the system state. Hence, a belief state
b(s) is maintained to reflect its internal knowledge of the
system and estimates the true state. The policy π : B→ A is
a mapping from a belief b∈ B to an action a∈ A. Therefore,
the solution to a POMDP problem is an optimal policy π∗

that maximizes the expectation of accumulated reward over
time:

π
∗ = argmax

π
E

[
∞

∑
t=0

γ
tR(st ,π (bt)) | b0,π

]
. (1)

B. Environment Representation

1) State and observation space representation: As shown
in Fig. 2 A and B, the state space and observation space
in the urban driving environment are defined in the same
manner, containing the ego vehicle state, real and phantom
road users. Phantom objects represent potentially existing
vehicles and pedestrians in occluded areas. The ego vehicle
state contains its Cartesian position, orientation, velocity, and
mission route. Similarly, the state of real and phantom road
users includes information such as their location, direction,
and speed. Their intentions, such as driving routes or a set of
potential pedestrian navigation goals, are partially observable
variables that must be considered as internal beliefs and
inferred from observation and interaction history.

2) Action space: The presented approach is focused on
planning longitudinal driving policies on the collision-free
path regarding static obstacles. Possible driving behaviors
B = {acceleration,keep velocity,deceleration} of the ego
vehicle in longitudinal direction are represented by a set of
acceleration values: A =

{
+1.5 m/s2,0 m/s2,−1.5 m/s2

}
.

C. Observation Model for Real and Phantom Road Users

1) Observation of real road users: All the observable
variables in the observation space can be directly updated
from sensor measurements, including the position and
velocity as well as the orientation of the ego vehicle and other
real traffic participants. The noise of sensor measurements
can also be considered during the update of observation.
Unknown intentions are inferred by the autonomous vehicle’s
prediction module, which is updated each time after receiving
new measurements.

2) Observation of phantom road users: Phantom objects
are potentially occluded traffic participants in roads or areas
that cannot be observed directly. This section will briefly
recall the concept of phantom road users, including phantom
vehicles [16], [17], and phantom pedestrians [19].

Phantom road users can suddenly come out from occluded
areas and represent a collision risk with the ego vehicle. Their
appearance from unobservable regions must be justified and
factored into the planning process. To model the phantom
road users, two steps are taken: the creation of phantom
traffic participants and the estimation of their appearance
probability.

In the first step, unobservable areas are calculated
considering occlusions due to static and dynamic obstacles.
High-risk areas are further selected from unobservable areas
where road users are more likely to appear. Finally, for each
high-risk area, phantom road users are generated at the edge
of the ego vehicle’s FoV. As shown in Fig. 2 C, the state of
a phantom road user is similar to that of a real road user,
including position, velocity, orientation, and intentions.

In the second step, the appearance probability Pa (d,u) of
each phantom traffic participant is reasoned using Eq. 2. The
min operator is introduced to guarantee the boundary of the
appearance probability to be Pa (d,u)6 1.

Pa (d,u) = min((Penv(d)+PFoV (u)) , 1) . (2)

The appearance probability Pa (d,u) consists of two parts:
a location-relevant part Penv(d) and a dynamic part PFoV (u).



As shown in Eq. 3, Penv(d) describes the appearance
probability depending on the location of the occlusion area.
The distance d measures the distance between the location
of a phantom road user to the considered occlusion area.
The initial environmental probability Kenv and a distance
threshold Ds are applied to represent the situations that
pedestrians are more likely to appear near high-risk regions
such as crosswalks, bus stops than on roads.

Penv (d) = max
((

Kenv
Ds−d

Ds

)
, 0
)
. (3)

The probability PFoV (u) captures the change of appearance
probability with regards to the change of the FoV of the ego
vehicle in the future. With a wider FoV, the ego vehicle has a
better chance of spotting a previously unseen road user. The
unobservable area or lanes are assumed to have a normal
distribution of phantom traffic participants. As shown in Eq.
4, u is the change of the FoV in meters, and L defines the
length within which one phantom road user is expected to
be observed.

PFoV (u) =

 0 , for u≤ 0
u
L , for u > 0 and u < L
1 , for u≥ L.

(4)

D. Observation Model for Traffic Mirror

1) Confidence modifier for existing object probability:
The perception module of an AV system provides observation
of traffic mirrors as well as object tracking information.
Some research focuses on improving estimation and tracking
results based on camera data, whereas our primary focus is
on utilizing uncertain traffic mirror information for behavior
planning. Ideally, a perception system should be able to
observe the traffic mirror’s location and match it within the
map. Furthermore, it would provide perceived dynamic road
users with detailed information such as position, velocity,
directions etc. In this case, considering these tracked objects
in the behavior planning module is straightforward since we
can model the objects in the state space. However, tracking
and providing dynamic road users’ position, velocity, and
direction through traffic mirrors based solely on camera
images is difficult, because traffic mirrors are typically small
in size, and minor uncertainties in mirror position and
orientation have a large impact on the tracking result.

Instead of overloading the perception system to provide
this information, we propose a concept that will reduce
the difficulty of perceiving and tracking objects from traffic
mirrors, as illustrated in Fig. 2 D. The concept is comprised
of three steps. In the first step, the location of the traffic
mirror and all its observing lanes or risk areas, such
as crosswalks are stored in the HD map. The location
of the traffic mirror and its associated observing lanes
are then provided online to the perception and behavior
planning module in the second step. The relevant traffic
mirror regarding the ego vehicle’s navigation path and the
information of which lane it observes is identified. In the
next step, the perception module is responsible for estimating

whether objects move close to the ego vehicle or cross the
risk area based on the camera data. The detection result
is defined as the detection probability 0 6 Pm 6 1, which
denotes the confidence of an object that approaches the
observation area of the traffic mirror.

2) Modification of phantom object’s appearance
probability with traffic mirror observation: In this step,
we calculate a confidence modifier Pcm ∈ [−1,1] according
to the detected probability Pm using a hyperbolic tangent
function,

Pcm = tanh(5 · (Pm−0.5)). (5)

The confidence modifier Pcm is applied to enlarge or reduce
the context-based appearance probability Pa:

Pa modi f ied = max(0, min(1, Pa (d,u)+Pcm)) . (6)

With this extension, the information additionally provided
from the traffic mirror detection module can be taken into
account. If the detection probability is high, the confidence
modifier Pcm is close to 1. The modified appearance
probability Pa modi f ied can be increased up to 1. The opposite
occurs if the detection module does not detect any road
users in the hidden area. The confidence modifier calculated
by Eq. (5) is around −1, which will reduce the Pa modi f ied
to 0. Another benefit with this extension is that, as long
as the detection is very uncertain, Pm is around 0.5. The
confidence modifier Pcm results in 0, which does not influence
the context-based appearance probability Pa.

E. Transition Model
We apply a point mass dynamic model in Eq. 7 as the

motion model of the ego vehicle to update the new state
along with the mission path in Frenet coordinates [27], where
l′ denotes the new location of the ego vehicle along the
mission path r′ of the ego vehicle and v′ is the updated ego
velocity. l′

v′

r′

=

 1 ∆t 0
0 1 0
0 0 1

 l
v
r

+
 1

2 ∆t2

∆t
0

a. (7)

For the transition model of other real road users, we use
the motion predictions delivered from the prediction model
of the ego vehicle according to the corresponding time step.

The state transition of phantom objects depends on the
sampled result of the final appearance probability Pa modi f ied
after considering the traffic mirror detection. A sample is
drawn according to Pa modi f ied each time when the transition
of phantom objects is needed. When the sample result is zero,
the phantom road user does not appear from the occlusion
area. It is updated at the edge of the new FoV in the next
time step, as shown in Fig. 2 E case a. When the result is
one, indicating that the phantom object comes out from the
occluded region (see Fig. 2 E case b), a constant velocity
model is applied:

l′l = ll + vmax ·∆t, (8)



Algorithm 1: Traffic mirror observability check

Input : Current ego states sego, Next ego states s′ego,
Relevant traffic mirror list M, Object list S′

Output: Traffic mirror observation flag fo
1 foreach relevant traffic mirror mi ∈M do
2 bego← egoToMirrorPolygon (s′ego, mi)

foreach object sob ject ∈ object list S′ do
3 bi← buildBoundingBox (sob ject )
4 if isIntersecting (bego,bi) then
5 return FALSE
6 end if
7 end foreach
8 end foreach
9 return TRUE

where vmax represents the speed limit of the driving lane
according to the HD map. vmax = 1.25 m/s is applied to
represent the normal walking speed of pedestrians. The
phantom road user will only move forward along the path
within a planning cycle as long as it is outside of the
occlusion region.

F. Reward Function

The reward function of this study includes the objectives
safety, speed, comfort, and mirror observation:

R = Rcollision +Rspeed +Rcomfort +Robservation. (9)

We performed several simulations to determine weights for
the reward function.

1) Rewards regarding safety, speed, and comfort:
To consider safety, we assign a large negative reward
Rcollision real =−100000 when the ego vehicle has collisions
with other traffic participants. The collision with phantom
road users is penalized with a different negative reward
Rcollision phantom =−10000.

The ego vehicle is also encouraged to maintain the desired
velocity vdesired following its mission:

Rspeed =

{
−200 · (vdesired− v0) , if vdesired ≥ v0

−2000 · |vdesired− v0| , otherwise.
(10)

To obtain comfortable driving policies, changing
acceleration is penalized with Rcomfort =−300 ·a2.

2) Reward for active traffic mirror perceiving: We
introduce an active mirror perceiving method to encourage
the ego vehicle to keep observing the traffic mirror. The idea
is that the ego vehicle has access to the HD map and thus
knows the position of all relevant traffic mirrors along the ego
navigation path. Algo. 1 shows the process of traffic mirror
observability check. A polygon between the ego vehicle
and the traffic mirror (as shown in Fig. 2 A), is built for
every relevant traffic mirror when the ego vehicle approaches
it (line 1 to 2). Three-dimensional checks are performed
using the polygon and bounding boxes from all static and

Ego vehicle Moving truck Ego vehicle Moving truck

Traffic mirror Traffic mirror

(a) Mirror is unobservable at

      time step t0.


(b) Mirror is observable at

      time step t1.

Fig. 3: (a): Ego vehicle cannot observe the mirror, since the
mirror is occluded by the moving truck. (b): Ego vehicle is
able to observe the mirror.

dynamic objects (line 3 to 8). Finally, the checking result
fo indicates whether the traffic mirror is observable. Fig. 3
shows an example of the traffic mirror which is occluded by
a dynamic truck in the first time step and is observable by
the ego vehicle in the next time step. The check result fo is
considered in the active mirror perceiving reward Robservation:

Robservation =

{
−500 · vego, if fo = FALSE & vego > 5m/s,
0, otherwise.

(11)

G. Solving POMDP Model

We apply the TAPIR toolkit [8] to solve the POMDP
model. The TAPIR toolkit is implemented in C++ which
is capable of handling large continuous state spaces
in real-time. The POMDP model is solved online by
constructing a belief tree based on the Monte Carlo tree
search process. At the beginning, an initial state is sampled
as the root of a belief tree to represent the current state
of the environment. The belief tree τ is extended further
by sampling episodes containing belief, action, reward, and
observation. The optimal sequence of actions is searched
through the belief tree which maximizes the accumulated
rewards. As a result, the search space is limited to the
reachable states from the current belief space, allowing
TAPIR to provide near-optimal policy within a specified
search time online. In this study, we applied varying
time steps to utilize the better prediction quality closer to
the current observation while achieving a total planning
horizon of 10 seconds: [∆t0...∆t3,∆t4...∆t7,∆t8,∆t9] =
[0.5 s...0.5 s,1.0 s...1.0 s,2.0 s,2.0 s].

III. EVALUATION

In this section, we use a proprietary simulator to evaluate
our approach under various challenging occlusion scenarios
in the urban environment. Evaluation results are recorded
in video1. The goal of this research is to incorporate
traffic mirror data into the behavior planning module. Thus,
in the simulator, we set up a simple perception module
for observing simulated traffic mirrors, which provide
information about observed lanes as well as the probability
of oncoming objects on the observed lanes. The surrounding
road users are controlled based on predefined behaviors

1Video: https://github.com/GitChiZhang/GT-POMDP



TABLE I: Applied parameters in the simulation.

Parameter Value Parameter Value
Planning Frequency 2 Hz Planning Horizon 10 s
Discount Factor γ 0.95 Maximal Tree Depth 10
Scenario B: Vvehicle 6.5 m/s
Scenario D: Vpedestrian1 2.0 m/s Vpedestrian2 2.0 m/s
Scenario E: Vleading vehicle 5.0 m/s

in the simulation to have a fair comparison between
different planning approaches. The parameters applied in
the simulation are chosen to compare different planning
behaviors (see TABLE I).

Our generic occlusion- and traffic mirror-aware POMDP
behavior planner is denoted as GT-POMDP. We set up
another version of the planner (GTM-POMDP) that also
takes into account whether the ego vehicle can observe
the traffic mirror by including a reward for encouraging
traffic mirror observation. We contrast our approaches with
two other approaches. The GO-POMDP from our previous
study [19] is a POMDP-based behavior planner that can
handle intersections and crosswalks regarding potentially
occluded vehicles and pedestrians but cannot use the
information provided by the traffic mirror. We consider it
as a baseline method. As the ground truth, we established
another strategy, V2X-POMDP, which has access to all
environmental information, including all occluded traffic
participants.

A. Occlusion in Unsignalized Intersection

In scenario A shown in Fig. 4, the ego vehicle intends
to turn left in an unsignalized intersection occluded by a
building. A traffic mirror is placed at the street that point
to the occluded lanes. In scenario B, we additionally set
up a moving vehicle driving toward the intersection in
the occluded area to evaluate how the planners react to
vehicles that suddenly appear. Because there are no other
vehicles on the occluded lanes, V2X-POMDP accelerates and
drives through the intersection, as illustrated in Fig. 5. Our
GT-POMDP approach utilizes traffic mirror data to determine
whether or not a vehicle is in an oncoming lane. So, it

Ego vehicle

Traffic Mirror

Vehicle

Building

Fig. 4: Scenario A: The ego vehicle intends to turn left in
an empty unsignalized intersection with occlusion caused by
a building. Scenario B: Additionally, a dynamic vehicle is
approaching the intersection.
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Fig. 5: Comparison of planned driving strategies for handling
the occluded intersection (scenario A).
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Fig. 6: Comparison of planned driving strategies for handling
the occluded intersection with a dynamic vehicle (scenario
B).

maintains a relatively high speed through the intersection. In
contrast, GO-POMDP decelerates and creeps forward with
low speed to increase the FoV so that it can safely drive
through the intersection.

If there is a vehicle hidden in the occluded area that
approaches the intersection in scenario B, GT-POMDP in
Fig. 6 shows comparable performance to V2X-POMDP.
It slows down and waits for the vehicle that has higher
priority. After the other vehicle leaves the conflict area
at time t = 7.52 s, GT-POMDP enters the intersection at
t = 8.56 s and accelerates as long as the mirror provides
high confidence that no vehicles are in the blind spot.
GO-POMDP again drives slowly to increase the FoV when
handling the occluded scenario.
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Fig. 7: Scenario C: Ego vehicle driving through a crosswalk
with occlusion caused by a parked vehicle. Scenario D: Two
pedestrians intend to cross the road, but their views are
blocked.
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Fig. 8: Comparison of planned driving strategies for handling
the occluded crosswalk without pedestrians (scenario C).

0 5 10 15 20 25 30 t [s]
0

2

4

6

8

v
[m
/
s]

V2X-POMDP planner

0 5 10 15 20 25 30 t [s]
0

2

4

6

8

v
[m
/
s]

GT-POMDP planner

0 5 10 15 20 25 30 t [s]
0

2

4

6

8

v
[m
/
s]

GO-POMDP planner

�1.5

0.0

1.5

a
[m
/
s2

]

�1.5

0.0

1.5

a
[m
/
s2

]

�1.5

0.0

1.5

a
[m
/
s2

]

Planned velocity

Planned acceleration

Pedestrians enter conflict area

Pedestrians leave conflict area

Pedestrians leave crosswalk

Ego adjusts velocity

Ego in conflict area

Ego increases FoV

Fig. 9: Comparison of planned driving strategies for handling
the occluded crosswalk with crossing pedestrians (scenario
D).

B. Occlusion in Crosswalk

We present a crosswalk scenario in Fig. 7 to evaluate our
approach’s performance in the presence of an occluded risk
area where pedestrians may cross the street. Scenario C is
without pedestrians, whereas in scenario D, two pedestrians
will cross the street when the ego vehicle is near the

crosswalk.
It can be seen in Fig. 8 that GT-POMDP stops decelerating

at time t = 7.47 s and decides to cross the crosswalk due to
the awareness of the low appearance risk of pedestrians in
the occluded area. Without this knowledge provided by the
traffic mirror, GO-POMDP needs to behave more cautiously.

The result for scenario D shown in Fig. 9 shows a
similar reaction of GT-POMDP like V2X-POMDP. When
pedestrians cross the street, the ego vehicle has already
slowed down to a reasonable speed and let them cross first.
Compared to GO-POMDP, GT-POMDP drives through the
occluded intersection faster.

C. Occluded Traffic Mirror

Traffic Mirror

Leading vehicle Ego vehicleBuilding

Fig. 10: Scenario E: Ego vehicle is approaching a slow truck.
The traffic mirror is blocked by the truck.
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Fig. 11: Comparison of planned driving strategies for
handling the occluded intersection with occluded traffic
mirror (scenario E).

Finally, we set up a challenging scenario in Fig. 10 to
demonstrate the capability of our planner where a static
building occludes the intersection, and a moving truck in the
front of the ego vehicle limits more FoV of the ego vehicle.
Even the traffic mirror is occluded by the truck when the ego
vehicle approaches the occluded area.

The acceleration and velocity profiles are shown in Fig.
11. To keep observing the traffic mirror, the GTM-POMDP
starts to slow down at time t = 10.1 s and tries to keep
a large distance to the leading truck. The GTM-POMDP
has more time to observe the traffic mirror before entering
the conflict area of the intersection. The GT-PMODP is not
aware of the traffic mirror, resulting in a late slow down
before entering the intersection. Furthermore, GTM-POMDP
has a shorter period that is obstructed from viewing the traffic



mirror. GO-POMDP shows a more conservative driving style
compared to both GT-POMDP and GTM-POMDP.

IV. CONCLUSION AND FUTURE WORK

This study presented a traffic mirror-aware behavior
planner based on the POMDP model for handling urban
driving scenarios under visibility limitations. Our approach
generates phantom traffic participants in risky occluded areas
and reasons their appearance probability based on contextual
information and available uncertain traffic mirror detections.
The evaluations show that using traffic mirror detection
allows our planner to drive more safely and efficiently in
the presence of occlusions in intersections and crosswalks.
Because of the active traffic mirror perceiving method,
our planner can take into account the current and future
observability of the traffic mirror and drive slower to better
observe the traffic mirror and gain more information.

In the future, we would like to expand our concept by
utilizing a V2X module that provides measurements of
dynamic road users with uncertainty in unobservable areas.
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