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Abstract— Safely driving through various occlusion scenarios
in urban environments, such as bus stops or crosswalks,
is challenging for autonomous vehicles (AVs). Improving
the ability to handle more occlusion scenarios in urban
environments is paramount when using AVs as shuttle buses.
An AV could experience deadlock situations in very heavy
occlusion scenarios with the worst-case assumption that
potential occluded road users could suddenly emerge using
maximal allowed velocity. In this study, we address this
issue with a partially observable Markov decision process
(POMDP)-based behavior planner to improve the occlusion
scenario coverage. We extend a phantom vehicle concept to
include pedestrians to represent potential road users in risky
occlusion areas. The appearance probability of phantom objects
along with their future movement is inferred using map
information and road topology. Finally, context-aware phantom
road users are incorporated within a POMDP formulation,
which is solved online by constructing a Monte Carlo tree
with reachable state analysis. Various evaluation results indicate
that the ego vehicle shows comfortable driving behavior,
aiming to avoid unnecessary braking and acceleration when
driving through challenging occlusion scenarios in urban areas,
including crosswalks, bus stops, and intersections. Moreover,
it does not lead to deadlock situations in heavily occluded
scenarios.

I. INTRODUCTION

For autonomous vehicles (AVs), a decision-making
module plays a decisive role in enabling safe and socially
acceptable driving in all traffic scenarios. This role is
analogous to the brain of a human driver. The challenges
of safe decision making include observing traffic rules and
reasonably interacting with other traffic participants. Further,
the uncertainties of perceived traffic information, such as
noise in sensor measurements, uncertain motion predictions,
and occluded objects in complex urban areas, need to be
considered. Although some state-of-the-art AVs work well
under sound conditions, handling these problems remains
nontrivial.

Recent works have addressed the aforementioned
challenges in decision making, focusing on occlusion due
to static and dynamic obstacles in intersections. However,
existing online behavior planning algorithms do not perform
well in urban traffic scenarios where pedestrians are present,
such as serving bus stops or approaching crosswalks
(see Fig. 1b). These scenarios are challenging because a
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(b) Occluded road section and crosswalk.

Fig. 1: Two typical driving scenarios in an urban area with
occlusions due to static obstacles (houses and parked cars)
and dynamic obstacles (moving vehicle and truck).

decision-making system must consider traffic participants
in the observable region and reason about the potential
road users and their movement in invisible areas based on
context information.

When human drivers pass through these occluded urban
areas (Fig. 1), they usually slow down and reason how likely
it is that a road user will appear according to the amount
of occlusion in the scenario. For example, in an occluded
crosswalk shown in Fig. 1b, it is very likely to see pedestrians
emerging and crossing the road. In this case, human drivers
approach carefully until they have sufficient visibility. A
similar driving behavior is also expected when leaving an
occluded bus stop or facing an intersection with occluded
oncoming lanes. To attain human-like driving behavior, a
sophisticated planning algorithm should incorporate context
information and road topology to estimate the probability
of the appearance of road users and their possible future
interaction with the ego vehicle.



In this work, we extend a partially observable Markov
decision process (POMDP)-based behavior planner by
combining context-aware phantom road users to handle
multiple occlusion scenarios in an urban environment. First,
we identify risky occlusion areas along the ego navigation
path based on map information. These areas can be
intersections, bus stops, and crosswalks. Based on identified
occlusion areas, we further generate potential hidden road
users and infer their movements, such as vehicles in driving
lanes or pedestrians at crosswalks whose intention is to cross
the road. We then introduce the probability of phantom road
users appearing outside of the occluded area. The appearance
probability consists of an area-specific part that considers
map information and a dynamic part that captures the change
in the ego vehicle field of view (FoV) in future time
steps. Finally, we combine the context-aware phantom road
users with a probabilistic POMDP to plan safe maneuvers
considering the risk due to phantom objects.

In summary, the contributions of this study are as follows:

« the extension of the phantom road user concept to
include pedestrians to improve the occlusion scenario
coverage of a POMDP-based decision-making system,

« a context-based appearance probability method which
easily incorporates context information and road
topology in a POMDP to plan deadlock-free and
comfortable driving behavior in the presence of heavy
occlusions,

o the evaluation of the algorithm for handling multiple
complex occlusion scenarios, including occluded
crosswalks, bus stops (marginally studied but important
for autonomous shuttle buses), and intersections in
urban environments.

The rest of this paper is structured as follows. The related
work on occlusion-aware behavior planning approaches is
discussed in Section II. In Section III, the concept of this
work is described in detail. The POMDP implementation
is presented in Section IV. Evaluation results are shown in
Section V. Finally, in Section VI conclusions are drawn and
the direction of future work is discussed.

II. RELATED WORK

The purpose of occlusion-aware behavior planning
is to make the ego vehicle drive efficiently without
overcautiousness while reacting safely if a road user
suddenly appears from an occluded area. Recently, several
techniques have been proposed to address sensor limitations
and occlusions.

Some researchers performed reachability-based analysis
with worst-case assumptions to consider the risks due to
potential traffic participants in occluded areas. The general
idea is to use a set of states to represent all possible
configurations that a vehicle could reach. [1] computed
the longitudinal speed profile for an AV with path-velocity
decomposition. Occluded vehicles were incorporated as
dynamic constraints generated with worst-case scenarios by
modeling virtual vehicles with infinite length and maximum
speed. Similarly, [2] performed reachability analysis to

analyze the safety of passing through a potential conflict area
with occluded vehicles. The occurrence probability was used
as a threshold. If it was sufficiently low, the uncomfortable
emergency stop was also acceptable. [3] applied a set of
particles to represent potential configurations of occluded
vehicles in a region of interest and analyzed the collision risk
with a predicted visibility range in future time steps. Then
the predicted visibility risk was combined with a cost-based
planner to plan the acceleration for the AV. Reachability
analysis can prove safety but also results in conservative
driving behavior in some special cases with very limited
visibility [1]. In this case, carefully advancing into a conflict
zone is necessary to gather more information instead of
freezing.

Contrary to worst-case assumptions, learning-based
methods focus on automatically learning complex driving
strategies from data without hand-coded rules. Reference [4]
applied a deep Q-network (DQN) to learn the policy in an
unsignaled intersection with static occlusion. The state space
was described as an occupancy grid map to separate drivable
regions and obstacles. [5] focused on safe reinforcement
learning using a model-checker to identify safe actions
from the action space. Potential incoming road users were
modeled via additional state variables. [6] handled occluded
intersections using a risk-aware DQN, which incorporated
risk evaluation within the reward function instead of only
considering collisions. A vehicle with maximum allowed
velocity was assumed if the intersection was occluded.
These approaches give ideas for applying learning-based
methods to generate driving behaviors. However, an approach
providing both safe and robust driving behavior in the
presence of unseen scenarios or corner cases when observed
data varies slightly from training data still needs to be further
investigated.

Another planning category focused on probabilistic
models, which integrate uncertainty due to visibility
limitation in the POMDP model. Previous works in this
area can be classified into two groups depending on
whether the policies are solved offline or online. The offline
approaches calculate the approximated optimal policies
over the entire state space for an arbitrary initial belief.
[7] combined a rule-based autonomous emergency braking
system with POMDP to obtain less conservative driving
behavior for a pedestrian collision system under sensor
occlusion. In [8], static occlusion in a crosswalk and at
a simple T-junction was considered in an offline POMDP.
A scene decomposition method was introduced by treating
each road user independently to improve the scalability
of the POMDP with multiple road users. However, the
authors did not consider occlusions due to dynamic moving
objects. In addition, a state space model encompassing
road users, map geometries, and traffic rules must be
solved before using POMDP online, which makes the
POMDP model more difficult to solve and restricts its
application to a highly dynamic urban environment. By
contrast, online POMDP solves the problem online by
constructing belief trees with a reachable set of states



TABLE I: Comparison of existing occlusion-aware planning
methods with the proposed approach.
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for the current belief within a limited time horizon. In
[9] and [10], phantom vehicles were placed on the edge
of invisible areas at unsignalized intersections and treated
as real vehicles in the planning phase. [11] considered
traffic density and modeled the occurrence probability for
phantom vehicles. The abovementioned approaches can
handle occluded scenarios arising from static and dynamic
objects but are limited to unsignalized intersections.

The state-of-the-art solutions showed the progress of
the decision-making system under visibility limitations.
However, sophisticated occlusion scenarios, such as bus
stops and crosswalks where lots of vulnerable road users
could suddenly emerge, are less discussed but important for
autonomous shuttle buses (see comparison listed in TABLE
I). In this work, we extend the POMDP-based behavior
planner by introducing context-based appearance probability
for phantom vehicles and pedestrians to handle multiple
complex occluded scenarios.

III. OCCLUSION-AWARE ONLINE PLANNING

This study focuses on the high-level longitudinal
behavior decision-making system for the AV. By using
the path-velocity decomposition concept [12], the action
generated from the POMDP planner is applied to control an
ego vehicle along a planned driving path in the longitudinal
direction. This section first introduces the general theory of
POMDP. Then, the extended observation model of POMDP
to generate context-aware phantom road users is described.
Finally, the combination of probabilistic appearance of
phantom road users within the POMDP transition model is
explained.

A. POMDP Preliminaries

A POMDP is a probabilistic method that models the
sequential decision process of a system (often denoted as
agent) under uncertain conditions. A POMDP is defined by
the tuple (S,A4,0,T,Z,R,y) where S, A, O represent the state,
action, and observation spaces, respectively. The transition

model T is a conditional probability function T (s,a,s’) =
P(s' | s,a) modeling the probability of a system transition
from the state s € S to the state s’ € S when action a € A is
executed. Similarly, the observation model Z is a conditional
probability function Z(0,a,s') = P(o | s’, a) describing the
probability of receiving observation o € O after taking action
a € A and transitioning to state s’ € S. The reward R (s, a)
is the immediate reward generated by performing the action
a € A from the state s € S. Finally, a factor y € [0, 1) discounts
future rewards [13].

In a partially observable environment, the agent has only
partial knowledge of the system state. Hence, a belief state
b(s) is maintained to reflect its internal knowledge of the
system and estimates the true state. The policy @ : B — A is
a mapping from a belief b € B to an action a € A. Therefore,
the solution to a POMDP problem is an optimal policy 7*
that maximizes the expectation of accumulated reward over
time:

n* =argmaxE | Y YR (s;,7w(by)) | bo, 7| . (1)
d =0

B. State Space

The state space contains an ego vehicle, surrounding traffic
participants, and phantom objects, which includes vehicles
and pedestrians. However, road context information is not
modeled in the state space since it does not change and
can be accessed during the planning cycle. The ego state
includes the Cartesian position (x, y), orientation 6, velocity
v, and planned ego route r, which is obtained either from
map geometry or from the path planner after setting a driving
destination. It is defined as Sego = [Xego, Vegos Oegor Vegos reg(,]T.
The state of other considered objects s; is also described
in the same manner. The intention of other objects r; is
the partially observable variable that can only be inferred
from observation. The state s € S can be denoted as a joint
state vector: S = [seg(,,sl,sz,...,sN]T, where s, is the state
of ego vehicle. The states s; with i € {1,2,... N} represent
the dynamic objects. These can be either surrounding traffic
participants or phantom objects placed in the occluded region
of interest.

C. Action Space

The design goal of the action space is to use as
few actions as possible to represent a wide variety
of behaviors, such as slowing down, stopping in front
of a crosswalk, and accelerating to drive through
a junction. To achieve that, we apply a discrete
set of acceleration values to represent the maneuvers
A = {+1.5m/s>,0 m/s*,—1.5 m/s*}: acceleration, keep
velocity, deceleration, respectively.

D. Observation Space

Similarly, the observation space o € O is a combination
of each observation including the ego vehicle, surrounding
traffic participants, and phantom objects, which can be
denoted as follows: O = [oeg(,,ol,oz,...,oN]T, with 0.4, =
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[xegg,yego,Gego,vego,rega]T being the observation of ego
vehicle and o; = [x;,y;,6;,vi,ri]’ with i € {1,2,... N}
representing the observation of all traffic participants and
phantom objects.

E. Observation Model

The observation model is the representation of the
uncertain sensor measurements. It describes the partial view
of the ego vehicle in the state space. The observation
model Z (0,a,s") = P(o | s',a) is modeled as the conditional
probability:

N
Z(0,a,5') =P (0|5 a) =P (0ego | Spg0:aego) HP (0i | s},ai) .

i=1
2)
Thus, the observation of the ego vehicle and other agents
can be treated individually.

FE. Observation Model of Real Objects

The observation of the ego 0., can be generated directly
from measurements. For other real traffic participants, their
position, orientation, and speed can also be observed directly.
Their intentions are inferred and updated by the ego vehicle’s
prediction module whenever new measurements are received.

G. Extended Observation Model of Phantom Objects

Phantom objects are defined as objects that cannot
be observed. We extend the observation model for the
generation of phantom road users (see Fig. 2). Since
phantom objects can suddenly emerge and lead to
potentially dangerous situations, their possible occurrence
from the unobservable area needs to be inferred. Based

on map information, we generate phantom vehicles with
corresponding coordinates, speeds, and potential intentions
regarding which lane to take for the occluded intersections
(see Fig. 3a). As shown in Fig. 3d, phantom pedestrians,
whose goal is to cross the road, are generated in occluded
crosswalk areas, bus stops etc.

1) Generation of phantom road users: The first step is
to calculate observable areas based on static and dynamic
obstacle information obtained from the perception module.
The observable area is first initialized with the maximum
range of the perception system. Then, the static and dynamic
obstacles limit this observable area represented by a polygon.
Next, we search for potential risk areas in the map along
the upcoming navigation path of the ego vehicle from the
occlusion catalog, which contains risk occlusion scenarios
that need to be handled. For example, in a structured
intersection without a traffic light, we choose occluded
lanes with higher priority than ours. Moreover, we consider
unobservable areas on or near crosswalks and bus stops,
where pedestrians have a higher appearance probability.
After selecting the occluded risk areas, the phantom traffic
participants are placed on each edge of the FoV. The lengths
of the phantom objects are defined to be infinite, which
enables us to represent a set of reachable states using only
one configuration of phantom objects. Their potential paths
also need to be determined. All following lanes for phantom
vehicles in the intersection are extracted from the map as
candidate paths. For the phantom pedestrians, pseudo priority
walking paths are generated. The walking paths consist of
waypoints starting at the occlusion edge and point to the
other side of the road.

2) Context-based appearance probability: The next
question that needs to be addressed is the probability of a
phantom object entering the observable area. Assuming that
the phantom object always appears at each planning cycle
would cause the ego vehicle to drive overcautiously. In some
cases, this assumption could even block the ego vehicle and
lead to a “freezing state” without any further movement. Our
idea is to incorporate context information into the appearance
probability:

P, (d,u) = min ((Pop(d) + Proy (1)), 1). 3)

The min operator is employed to guarantee an appearance
probability P, (d,u) < 1. The context-based appearance
probability P, (d,u) consists of two parts. The first part
P.ny(d) represents the environmental context (see Eq. 4). We
define K,,, as an initial environmental probability to reflect
the phenomenon that the appearance of road users depends
on where the occlusion occurs. For example, the probability
of pedestrians appearing at crosswalks is greater than that
on ordinary roads. Similarly, pedestrians are more likely to
appear around bus stops and school areas. If the occluded
area is far away from a crosswalk, the appearance probability
is small. Hence, a distance threshold Dy is introduced. The
distance d from the start point of the phantom object to this
risky region is included in a discount factor, which means
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that the area-specific appearance probability is no longer
considered beyond a certain distance threshold D;.

Popy (d) = max < (Ke,,vl)“‘i) , o> . 4)

D;

The second part of the probability Pr,y (1) describes the
probability of phantom objects’ appearance due to a change
in the FoV. The FoV can change during forward simulation
in each time step. If the FoV is enlarged, the chance that the
ego vehicle observes a phantom object previously hidden
by obstacles increases. Inspired by [11], we assume that
phantom vehicles and pedestrians are normally distributed
in the occluded lane or hypothesis path. We define L as
the length within which we expect to observe exactly one
phantom object. With the increase in the FoV of u meters,
the probability for at least one phantom object to appear is 7.
In case the FoV decreases or remains constant, no additional
probability of observing phantoms is assigned.

0 ,foru<=0
Ppov(u): % ,foru>0Au<L (®)]
1 , foru>=L.

Based on the defined appearance probability P, (d,u), we
can sample whether a phantom road user comes out of the
occlusion area.

H. Extended Transition Model

The system’s stochastic dynamics are determined by
the transition model 7 (s,a,s’). According to Bayes’s rule,
the transition model can be described by the probabilistic
transition in Eq. 6, which means the transition model for
each agent can be calculated individually.

N

T (s,a,s') =P(s' | s,a) =P (Sig | Segoraego) [ [P (57 | sivai) -
i=1

(6)

1) Ego vehicle: A point mass dynamic model is applied.
Since the ego vehicle’s mission path is known, the transition
of the ego vehicle is determined in Frenet coordinates [14]
by applying a distance progress [ along the mission path:

4 1 At 0 ! 1AL
vV =10 1 0 vI|i+| A |a (D)
r 0 0 1 r 0

The new ego state sy,

by the transforming [I',v/,]" from Frenet coordinates.

2) Other objects: The state transition model for other
objects is also referred to as the prediction model in
the literature. The prediction model estimates other traffic
participants’ intentions and future states based on dynamics
and context information. Through the interface with the
prediction module, we can obtain the prediction and
uncertainty of the next state given the current state and
the intention of other objects. Thus, sophisticated prediction
models can be used for different road users. Since this is not
the focus of this study, we apply a simple constant velocity
model to update the state of other objects along their path.

3) Phantom objects: When updating the state transition of
phantom objects over time step Az, we first sample according
to the context-based appearance probability P, (d,u). If the
sample result is zero, the phantom object is placed at the
updated edge of the FoV, as shown in Figs. 3b and 3e.
Otherwise, when the sample result is one, its position /] is

in Cartesian coordinates is obtained



moved forward using a constant velocity model: /] = I; +
Vmax - Af (see Figs. 3c and 3f), with vy, being the maximum
velocity allowed in the driving lane. For the pedestrian, we
choose vmax = 1.25 m/s to represent a normal walking speed.
Once the phantom object is outside of the occluded area, it
will only move forward along the path within a planning
cycle.

1. Reward Model

The reward function is a crucial factor in designing the ego
vehicle’s behavior which satisfies several objectives, such as
safety, efficiency, and comfort. We encode these objectives
mathematically within the reward function R (s, a):

R= Rcollision,real + Rcr)llixion,phantom + Rspeed + Rcomfort~ (8)

A number of simulations were performed in order to
find suitable weights for the reward function. Safety can be
modeled by assigning a large negative reward R ojsision_real =
—100000 if the ego vehicle collides with other road users.
We assign a different penalty in the case of a collision with
a phantom ObjeCt Rc()llision,phanl()m = —10000.

Speed reward is used to encourage the ego vehicle to drive
according to the desired velocity v esireq On the driving lane
as far as possible while not exceeding it:

if Vyesired 2 Vo

—200 - (Vgesired — Vo)
speed = { ( desired O) 9

—2000 - |Vgesired — Vo|, otherwise.
Comfort is considered by penalizing the changing
accelerations: Reomforr = —300-a?.

IV. IMPLEMENTATION

Urban traffic is a partially observable and highly
dynamic environment. Therefore, the applied POMDP
solving algorithm should be able to handle large continuous
state spaces and provide at least near-optimal solutions in
real-time. This study applies the TAPIR toolkit [15] to solve
the previously described POMDP model.

A. Online Belief Tree Construction

TAPIR builds a belief tree and searches for sequential
actions that maximize the accumulation of reward. The
fundamental strategy for constructing a belief tree and
improving the policy is to sample the episodes. To sample a
new episode, TAPIR begins by sampling a set of unweighted
particle states from an initial belief by, which approximate
the environment’s initial state. A belief tree 7 is built from
this belief state by sampling further episodes representing
a set of historical sampled belief, action, reward, and
observation tuples. As a result, TAPIR only considers
reachable states from the current belief, which constrains
the search space dramatically and is capable of delivering a
near-optimal policy for a given search time.

TABLE II: Parameters applied in evaluation.

Parameter Value Parameter Value
Planning Frequency 2 Hz Planning Horizon 10 s
Discount Factor y 0.95 Maximal Tree Depth 10
Scenario A: Vpedesrrianl 1.5 m/s VpedestrianZ 1.0 m/s
Scenario B: Vpegesirian1 0.8 m/s

Scenario C: Vi ek 5.0 m/s | Viehicle 6.0 m/s

B. Varying Planning Time Steps

To reduce the total number of planning steps
and to consider more accurate predictions closer to

the current observation, we use a search strategy
with  varying time steps. The time steps are
defined as  follows:  [Af...Af3,Aty...At7,Atg, Ag] =

[0.5 5...0.5 5,1.0 5...1.0 5,2.0 5,2.0 s].
C. Tunnel Effect Avoidance

At each step, the collision status between the ego vehicle
and other objects needs to be detected. However, if the time
step is too large or if the relative speed is too high, the two
objects may miss each other, resulting in a possible collision
not being detected. Therefore, inspired by [16], we use the
linearity assumption between each step to detect whether
two moving objects cross each other. For phantom objects,
the collision is detected by checking whether line segments
intersect.

V. EVALUATION

In this section, we evaluate our approach in a proprietary
simulator under various challenging occlusion scenarios,
including crosswalks, bus stops, and intersections. Additional
scenarios are presented in the supplementary video'. To
eliminate the influence of other road users’ intelligent
behavior in the evaluation, we control them via predefined
behaviors that do not consider collision avoidance. The
velocity of all road users in the evaluation is chosen to
compare different planning behaviors. The parameters are
listed in TABLE II.

We compare our approach’s performance against two other
strategies. Our generic occlusion-aware POMDP behavior
planner is denoted as GO-POMDP. V2X-POMDP represents
a ground truth planner, which has access to all available
environmental information. Finally, we set up a POMDP
planner (WO-POMDP) with the worst-case assumption that
phantom objects will always appear from occluded areas
with maximal allowed velocity. The worst-case assumption
has been widely applied in other studies [1], [9]. Thus, we
treated it as a baseline approach for comparison against our
approach.

A. Occlusion in Crosswalk

The first scenario (see Fig. 4) is a crosswalk that is
partially occluded by a parked vehicle. Two pedestrians in
the occluded area will cross the road when the ego vehicle

Video: https://github.com/GitChizhang/GO~POMDP
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Fig. 5: Planned velocity and acceleration profiles for
crosswalk scenario with two occluded pedestrians.

approaches near the crosswalk. The result in Fig. 5 shows
that V2X-POMDP adjusts its velocity when approaching the
crosswalk because it fully observes the pedestrians. We can
also see that V2X-POMDP behaves aggressively as it starts
to accelerate as soon as the pedestrians leave the conflict
area, i.e., walk toward the other lane of the road. Similarly,
GO-POMDP reduces its velocity to approach the crosswalk
carefully due to occlusion awareness. Because of limited
sight in the crossing area, the ego vehicle moves forward
at a very low speed. After the pedestrians appear, it first
maintains its speed since it still has sufficient safe distance
to the pedestrians. At time ¢ = 20 s, the ego vehicle comes to
a halt and lets the pedestrians pass first. The yellow and green
lines of GO-POMDP in Fig. 5 indicate that the ego vehicle
is waiting for pedestrians to leave the road completely.
This is because the moving pedestrians may block the view
of the ego vehicle to observe pedestrians coming from
the other direction, which has been considered as a risk
in GO-POMDP. WO-POMDP has similar driving behavior
when approaching the crosswalk. However, due to the limited
visibility, the ego vehicle will not continue to drive under the
worst-case assumption that 100% of pedestrians will appear
from the occluded area. This “freezing state” has also been
reported in the previous study [1].
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Fig. 6: Ego vehicle is leaving the bus stop while a pedestrian
is about to cross the road in front of a bus.
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Fig. 7: Planned velocity and acceleration profiles for bus stop
scenario with an occluded pedestrian.

B. Occlusion in Bus Stop

The second occluded scenario (Fig. 6) is at a bus stop.
While the ego vehicle is about to leave the bus stop, a
passenger wants to cross the road in front of the bus after
exiting it. This is also a challenging scenario as the ego
vehicle can’t detect this pedestrian before it appears on the
ego path. The results in Fig. 7 show that V2X-POMDP
drives faster than the other two planners through the bus
stop since it has full knowledge of the occluded road user.
GO-POMDP performs very well in terms of avoiding a
collision with the pedestrian. After the pedestrian leaves
the high-risk area, GO-POMDP continues to drive with a
low velocity to increase the visibility while driving through
this area. In contrast, WO-POMDP once again leads to a
deadlock situation due to overcautiousness.

C. Occlusion in Unsignalized Intersection

Finally, we demonstrate our approach at an unsignalized
intersection with a left-turn maneuver under dynamic
occlusion (see Fig. 8). A moving truck arrives at the
intersection before the ego vehicle and prevents the ego
vehicle from observing another vehicle that has priority.
Fig. 9 shows that V2X-POMDP waits for the vehicle on
the prioritized lane after the moving truck has crossed the
intersection. It can also be seen that GO-POMDP performed
nearly as well as V2X-POMDP. From ¢ = 10 to 13 s, it slows
down and performs creeping behavior to observe whether
there is a vehicle on the priority lane occluded by the truck.
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Fig. 8: Left turn in an unsignalized intersection scenario with
dynamic occlusion due to a moving truck.
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Fig. 9: Planned velocity and acceleration profiles for
unsignalized intersection scenario.

Once the other vehicle appears and has left the conflict area,
GO-POMDP accelerates slightly and enters the intersection
after having sufficient visible area. WO-POMDP behaves
more cautiously than our approach.

VI. CONCLUSION AND FUTURE WORK

In this study, we improve the occlusion scenario coverage
with a POMDP-based behavior planner for driving in
urban environments under occlusions. Our approach handles
various occlusion situations due to static or dynamic
obstacles for different occluded road users. Our main
contribution is to combine the uncertainty consideration
of POMDP and context-aware phantom object modeling
with appearance probability, which enables the effective
use of map information. Evaluation results show that the
ego vehicle can safely drive through challenging occlusion
scenarios, such as crosswalks, bus stops, and intersections.
The ego vehicle performs comfortable driving behavior under
occlusions, i.e., creep forward into the conflict area to
increase visibility with the knowledge that other road users
could suddenly emerge. Owing to the effective modeling of
the context-based appearance probability, our approach does
not cause deadlocks as the worst-case assumption approach
would in heavy occlusion situations. In the future, we plan to
evaluate our approach using more simulations and real-world

experiments. Furthermore, in some scenarios, the visibility of
other road users is also limited. In such cases they may not
yield even though the ego vehicle has a higher priority. We
will extend our approach to predict the visibility changes
of other potential road users and consider their potential
interaction with the ego vehicle. In addition, we plan to
design automatic corner cases generation to find optimal
weights for the reward function.
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