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ABSTRACT: Building design requires considering multiple requirements and must fulfill diverse regulations.
Therefore, model analysis and simulations are fundamental parts of the design process to find the optimal
solution for a given problem. Important decisions are based on a building’s assessed final performance in the
early design phases. In particular, the analysis of pedestrian flow dynamics is paramount for public facilities
like train stations concerning occupants’ comfort and evacuation behavior. Currently, it requires multiple steps,
from preparing the BIM model to performing pedestrian flow analysis, including semi-automated, often manual
work that demands high computation times. Therefore, to improve the building design efficiency in terms of
time and pedestrian circulation, this paper proposes a framework applying Deep Learning methods. We propose
a real-time pedestrian evacuation prediction to replace time-consuming pedestrian dynamics simulations. More
precisely, a modular neural network architecture is designed, including a Convolutional Neural Network and a
Multilayer Perceptron, that takes floorplan images and building and simulation parameters as input and predicts
the crowd evacuation time for a given building model. As a result, a mean prediction accuracy of 15% could be
achieved.

1 INTRODUCTION

Experts from various interconnected domains form
a multidisciplinary design team in construction
projects. The resultant design of a building and its
performance is strongly influenced by multiple de-
sign decisions made by each discipline during the de-
sign process. In recent years, the Building Informa-
tion Modeling (BIM) methodology has become an
established and common tool that improves the col-
laborative work between the different disciplines in
the project and provides information throughout the
project beginning in the early phases (Borrmann et al.
2018).

The design process of a building consists of various
stages, where the building is developed from a rough
conceptual design to a complex model, including de-
tailed information about all individual components.
Especially in the early design phases, fundamental
decisions are taken that have a significant impact on
the final performance of the building (Knotten et al.
2015). Nevertheless, the required costs and efforts for
changes in the design are relatively low (Abualdenien
and Borrmann 2019).

By comparing the results of numerous simulations
and analyses, architects and engineers explore sev-
eral models and evaluate multiple design options re-
garding performance. Commonly, analysis and sim-

ulations include the structural system, embodied
and operational energy during a building’s life-cycle
(Abualdenien et al. 2020), and pedestrians’ evacu-
ation behavior and comfort inside a building. BIM
offers enormous information about different objects
in the model (i.e., walls, stairs, zones). For each in-
stance, a geometric representation and a set of proper-
ties are accessible (Abualdenien and Borrmann 2019).
Moreover, individual simulation information can be
added to the model, and, hence, a smooth workflow
between BIM-authoring tools and simulation soft-
ware can be provided.

To allow vendor-neutral data exchange, the open
standard Industry Foundation Classes (IFC) (Build-
ingSMART 2020) is widely supported by various ex-
isting authoring tools and simulation software and al-
lows an easy exchange of model data. So far, IFC BIM
models show a promising possibility to work as a ba-
sis for simulation software as many researchers have
confirmed (Mirahadi et al. 2019).

As the decision-making process highly influences
the project outcomes, the application of simulations
in that stage help estimate the building’s perfor-
mance (Abualdenien and Borrmann 2019). Espe-
cially, pedestrians’ walking routes are essential when
designing a building concerning emergency situa-
tions, for the pedestrians’ behavior is strongly de-
pendent on their environment (Low 2000). Specifi-



cally, the building’s shape significantly influences ef-
ficient crowd routing considering safety and comfort
(Hanisch et al. 2003). Thus, this paper aims to im-
prove the integration of pedestrian dynamics simula-
tions into the design phase, notably considering pub-
lic buildings such as train stations, where emergency
evacuation plays a vital role (Løvås 1994).

Typical results of pedestrian simulations can be
comfort evaluation, walking routes visualization and
insights about emergency situations. Nevertheless, in-
tegrating simulations into the workflow still consists
of multiple steps, beginning with the building models’
export from the BIM-authoring tool, converting and
importing them into the simulation software, running
the simulation, and postprocessing the final simula-
tion results. Moreover, the usage of agent-based sim-
ulation models is computationally expensive, leading
to long computation times, and is error-prone (An-
driamamonjy et al. 2018). This time-consuming pro-
cess may obstruct a full investigation of the design
space.

To overcome these restrictions, the framework pro-
posed in this paper employs Deep Learning (DL)
methods to allow real-time predictions of pedestri-
ans’ behavior and walking times. To avoid expensive
pedestrian dynamics simulations, especially Machine
Learning (ML) approaches can serve as supportive
tools or be used as complete replacements (Kim et al.
2019). Since BIM models include a massive set of
information, we use them directly as input for the
ML model and enable an immediate evaluation of
pedestrians’ behavior considering the interaction of
multiple design options. The proposed method pro-
viding real-time evaluation allows interactive explo-
ration of the solution space, thus enabling designers to
find well-performing solutions in a shorter time. Since
public buildings such as transport hubs must fulfill
various requirements concerning evacuation time, this
paper focuses on train stations.

The structure of this paper is as follows: Sec-
tion 2 provides background information and related
research. Section 3 introduces the concept of our ap-
proach step by step. In Section 4, details about the
implemented neural network are given, whereas Sec-
tion 5 presents the results. Finally, the last Section 6
summarizes the outcome and discusses future steps.

2 BACKGROUND AND RELATED WORK

2.1 Performance-based building design

The designing process of a building consists of many
different steps, which result in various decisions and
dependencies. Performance-based building design be-
comes a promising method to maximize the overall
building’s performance and reduce critical changes in
the final project phases (Mehrbod et al. 2020). The
accessibility of sufficient data and information is cru-
cial, as decisions from early design phases can sig-

nificantly impact the building’s later performance and
cost (Østergård et al. 2016). Especially BIM-based
approaches allow the usage of comprehensive digi-
tal models within the design process, which helps im-
prove the decision-making.

For the structural design of a building, A BIM-
based optimization evaluation approach was devel-
oped by Hamidavi et al. (2020). With this, especially
in the design phase, the coordination between archi-
tects and structural engineers is improved. Moreover,
the authors of Röck et al. (2018) propose considering
the building’s materials for the Life Cycle Assessment
and integrating parts into BIM. Hence, the potential
effects of the building’s materials become more com-
prehensible about their embodied energy.

2.2 Pedestrian dynamics analysis and simulation
models

When designing public buildings such as shopping
centers or train stations, especially emergency evac-
uation is essential (Løvås 1994). For efficient crowd
routing inside a building, pedestrian dynamics anal-
ysis plays a vital role in safety and comfort while
highly dependent on the building’s shape (Hanisch
et al. 2003). Research has shown that single pedes-
trians incline toward polygon-shaped walking routes,
where visibility stimulates pedestrians to walk on
straight paths for as long as possible. Moreover, while
certain areas may appear crowded, pedestrians accept
unknown detours and longer traveling times with or
without intention (Helbing et al. 2001).

Furthermore, neither direct communication nor ex-
plicit concepts but intuitive awareness rule a crowd’s
self-organizational behavior, notably for crowds with
unidirectional pedestrian flows (Helbing et al. 2005).
When single pedestrians encounter stationary groups,
they interpret them as obstacles and are prone to
change their walking paths. Moreover, individual per-
sons tend to adapt to the walking speed of other mov-
ing crowds within an overall crowded area (Yi et al.
2015).

The choice of the simulation model commonly de-
pends on the number of virtual pedestrians (agents),
where three main approaches were developed to
model pedestrian behavior. On the one hand, individ-
ual agents and their reactions are modeled by micro-
scopic approaches. On the other hand, macroscopic
models reflect aggregated person streams. In addi-
tion, mesoscopic approaches can handle following
individual agents and understanding group behavior
(Ijaz et al. 2015). Regarding the findings that only
rule-based methods may not necessarily lead to sat-
isfactory results (Yang et al. 2020), Helbing et al.
(2000) developed the more general (microscopic) so-
cial force model. In this approach, individual agents
move with a certain velocity while their repulsive in-
teraction forces consider obstacles and other agents.

When it comes to pedestrian crowds, the modeling



instead follows a flow mechanism not considering the
crowd’s environment and individual agent’s interplay,
unlike modeling individual pedestrians’ behavior. In
particular, the authors of Hughes (2002) present the
principle of continuum theory as the basis for crowd
representation. In addition, using navigation- or guid-
ance fields, the potential field model simulates mul-
tiple intentions of pedestrian crowds, introduced in
Yang et al. (2020). Moreover, from fluid dynamics the
aggregate dynamics, model is derived.

Although a common technique, strict cellular au-
tomata structuring leads to restrictions in represent-
ing reality, where obstacles or densities of pedestrian
crowds may not be wholly cell-filling and, hence, lack
accuracy (Biedermann et al. 2016). Hybrid models
work as an alternative, where specific regions and ar-
eas can be assigned to particular modeling approaches
representing individual behavior (Biedermann et al.
2021). Furthermore, the optimal steps model (OSM)
is not focusing on a rigid spatial grid or dense crowds
only. The OSM frees agents from a strict cell repre-
sentation using continuous space, whereas a discrete
stepwise movement is kept (Seitz and Köster 2012).

2.3 Train stations and crowd dynamics

In this research, we use train stations as an example of
a facility whose design has a significant impact on the
pedestrian flows, which has a major impact on the per-
formant and save operation of that facility. It will thus
serve as the subject of our investigations and as the ba-
sis for the proof-of-concept. Train station designs of-
ten vary concerning individual requirements. Usually,
train stations provide waiting areas for pedestrians,
where the uniform distribution of people over the re-
spective spaces can be observed (Helbing et al. 2001).
Besides, studies of crowd dynamics in train stations
highlight a notable influence of waiting pedestrians.
More precisely, inconveniently placed points of at-
traction and waiting pedestrians lead to an increase
of up to 20% of walking time for arriving passengers
leaving the platform area (Davidich et al. 2013).

As for the impact of different building elements on
crowded areas in train stations, Ma et al. (2013) ex-
amined separation modules such as fences and pil-
lars. Using pillars instead of other or no separation
modules for non-unidirectional movements, the au-
thors identified an increase in pedestrians’ flow rate.
Similarly, improvements in evacuation time could be
observed for exit areas when placing pillars close to
them (Frank and Dorso 2011).

2.4 Deep learning

Until now, the introduction of pedestrian behavior and
various simulation models implied their complexity.
As a result, performing pedestrian simulations for in-
credibly complex building designs can quickly yield

high computation time. To overcome this issue, the re-
search community more and more involves methods
of Artificial Intelligence (AI). Naming a specific cate-
gory of AI methods, predictive tools can replace time-
consuming computations with the support of ML ap-
proaches. In doing so, a surrogate function is found
and applied to the problem.

DL approaches became favored support, especially
for dealing with distinct data types and various prob-
lems. More specifically, multiple architectures of Ar-
tificial Neural Networks (ANNs or NNs) exist to deal
with different tasks and purposes. For instance, ob-
ject detection and segmentation in images and as well
as natural language processing attain different success
rates.

A well-known feedforward NN is the Multilayer
Perceptron (MLP), famous for solving various prob-
lems (Nielsen 2015). The MLP is arranged in multiple
(hidden) layers that contain any number of connected
computational nodes. These nodes store single values
that are processed in one direction. A suitable num-
ber of nodes and layers for solving a given task suf-
ficiently is essential for the resulting individual NN.
The goal of the NN is mapping a given input to the
desired output, also known as a classified label, train-
ing the network to customize the network to a particu-
lar problem. Commonly, applying a backpropagation
algorithm to the network makes its parameters opti-
mized and the accuracy improved (Nielsen 2015).

When it comes to matrix-like data such as im-
ages, Convolutional Neural Networks (CNNs) have
become an efficient way of achieving results. Again,
the CNN follows a feedforward architecture with
multiple layers. Typically, each layer carries out a set
of computations. In the first step, a kernel performs
the convolution operation for a given input matrix and
results in a feature map. Moreover, multiple feature
maps can be computed by different kernels in parallel
within the same layer returning a feature set, where a
kernel can be described as a filter (Goodfellow et al.
2016).

Following the convolution, each element of the fea-
ture map is processed by a nonlinear activation func-
tion, for instance, the rectified linear unit function.
Finally, down-sampling reduces the matrix dimen-
sions, commonly done by a pooling operation such
as maximum pooling. For all following layers, down-
sampling helps reduce the computational effort. Ad-
ditionally, for a given dataset, CNNs can detect and
filter out patterns (features) (Goodfellow et al. 2016).

The training of a neural network is a process with
various parameters and options. Although several op-
timization techniques help improve the training pro-
cess, a sufficient amount of data is essential. More-
over, underfitting can occur by providing too little
data. The same training data can often lead to over-
fitting since the network may adapt to the specifics of
the examples to a too large extent. An intentional in-
crease of uncertainty within the model can be applied



to reduce overfitting by using regularization methods
like the dropout. Thereby, the activated nodes are var-
ied almost randomly, leading to the prevention of co-
adaptions and, hence, to improved computations (Sri-
vastava et al. 2014).

Furthermore, a network’s training process can be
enhanced by batch normalization (Santurkar et al.
2018). Each layer’s inputs are normalized before
the actual activation of the following computational
nodes. Then again, deep dependencies between multi-
ple layers may be partially relieved, also known as de-
creasing the covariate shift. On the other hand, the in-
tegration of batch normalization helps reduce the ne-
cessity of regularization methods like dropout (Ioffe
and Szegedy 2015).

After training an NN architecture for a given task,
the gained knowledge can also be used for other pur-
poses. Moreover, a pre-trained network can be re-
trained for a different dataset or partially reused for
new tasks. This process is described as transfer learn-
ing and a standard procedure for improving network
results, especially when using CNNs (Ribani and
Marengoni 2019). Popular network architectures can
be found online, such as the VGG16 pre-trained on
the ImageNet dataset for classification problems (Si-
monyan and Zisserman 2014).

Giving some examples, the authors of Nishida and
Hotta (2018) used CNNs to detect and distinguish
cell particles from non-cell particles based on im-
age data. In building design, Geyer and Singaravel
(2018) developed a component-based model to es-
timate heating- and cooling energy within a build-
ing. In another approach, flow control, performance,
and optimization of fluid dynamics calculations were
improved using ML methods (Brunton et al. 2020).
Finally, the understanding of pedestrians’ walking
routes and densities in a given environment could be
predicted in (Clever et al. 2021).

3 METHODOLOGY

3.1 Hypothesis and aim

In this paper, the hypothesis is that real-time predic-
tions can replace time-consuming pedestrian dynam-
ics simulations with DL methods that relate the de-
sign information of a building model with individ-
ual simulation results. From here, two questions arise:
(1) what is a suitable representation of the geometric
and semantic design information? (2) Which aspects
of the simulation results shall be predicted? These
questions are essential for a suitable NN architecture,
where layers and parameters must carefully be con-
figured.

Contrary to Clever et al., 2021, in this paper we
focus on the evacuation times. Thus, we propose
a framework that automatically generates a training
dataset and predicts results directly from the BIM
model, considering specific simulation parameters.

Figure 1: Example of parametric model (Revit/Dynamo)

Table 1: Parameter values for generic train station variation
Abbreviation Meaning Variations
F No. of floors 2
T Distance of tracks 15, 25
W No. of tracks 2, 3, 4, 5
L Station length 150, 200, 250, 300
H Floor height 15, 25
E No. of escalators 1, 2, 3
P Agents per coach 5, 20, 50

Considering the work of Clever et al. (2021), the
generic train station models created by a parametric
model are reused for this paper. Instead of predicting
heatmaps or tracing maps, the present paper focuses
on predicting the respective evacuation times of a
given train station design. Moreover, the correspond-
ing IFC exports and pedestrian simulations are carried
out. In the scope of this paper, we use the pedestrian
dynamics simulator crowd:it (Accu:rate 2022), which
is based on the optimal steps model (OSM) (Seitz and
Köster 2012), for generating the training and valida-
tion data. With the available simulation results, post-
processing is applied, and the agents’ walking times
are extracted for each model variation. Together with
the train station models, the generated dataset is used
for training a neural network.

3.2 Parametric models

The available train station models by Clever et al.
(2021) were generated by a parametric model using
Autodesk Revit (Autodesk 2022) and Dynamo (Au-
todesk 2021). By varying parameters of the design’s
geometry according to Table 1, 450 different generic
train station models are considered for the dataset.
The parametric platform presented in Figure 1 has
three escalators at each end, four track lines, a row
of two columns, and an elevator in between.

3.3 Floorplan representation

As mentioned earlier, specific zones are marked in
the BIM models, necessary for the simulation. By as-
signing different colors to the different zones, a floor-
plan representation of the models is used as input for
the neural network, alongside a vector containing the
models’ metadata, as presented in Table 1. Concern-
ing the labeling, Figure 2 shows an example where
the pink color represents spawning zones, and white
spaces are walkable areas. The output of the simula-



Figure 2: Colored floorplan example

tions is plain numbers serving as the models’ overall
evacuation times. In the simulation results (used for
training and validation), each time step of each agent
is given, whereas the very last time step would be the
time needed to evacuate the building entirely.

4 NEURAL NETWORK ARCHITECTURE

As discussed in Section 2.4, multiple approaches exist
to design a neural network architecture depending on
the input and output data. This paper uses floorplan
images and metadata of the underlying parametric
building models as input information, while we pre-
dict a single value, i.e., the evacuation time, as output.
Hence, we assemble different sub-networks accord-
ing to the respective data structure to receive the final
network architecture. The modular architecture is pre-
sented in Figure 3. In the simulation results, all indi-
vidual time steps are saved for each agent, where the
very last step counts as the building’s evacuation time.
To avoid including incorrect results, e.g., by agents
got stuck, we omitted the last 5% of these time steps.

The metadata is structured as a vector of num-
bers containing various information about the build-
ing model. Thus, the metadata input will be processed
by an MLP (MLP-in), with three hidden layers.

For the floorplan images, we use the basic CNN de-
sign of the VGG16 according to (Simonyan and Zis-
serman 2014) where the input layer is created consid-
ering an image resolution of 256 * 256 pixels. More-
over, the dense layers and the final classification layer
of the VGG16 are excluded since no image classifica-
tion is desired.

Finally, a concatenation layer (concat) combines
the MLP-in and the CNN outputs to create a joined
input for the predictive part of the network. Again,
an MLP (MLP-out) is used to process the combined
input information of the metadata and the floorplan
images.

During network hyperparameter tuning, especially
the CNN base model offers three different modifica-
tions we considered for each training setup: (1) the
pre-trained weights of the VGG16 network are used
as given. In contrast, an update of the weights during
training is restricted. (2) The pre-trained weights of
the VGG16 are used, but an update of the weights
during training is possible. (3) The initial VGG16
weights are not explicitly defined and updated at each
training epoch if necessary. The setup cases are sum-
marized in Table 2.

Figure 3: Structure of the neural network architecture

Table 2: Neural network training setup cases
Training case Meaning for CNN
1 VGG16 pre-trained, no weight updates
2 VGG16 pre-trained, weight updates
3 VGG16 not pre-trained, weight updates

According to transfer learning, pre-trained weights
shall help improve the overall network training and,
thus, its efficiency.

5 NEURAL NETWORK RESULTS AND
EVALUATION

In a first step, we split the dataset into two subsets
of training and testing data. We created 450 differ-
ent train station models, including their respective
simulation results. We reserved 25% of the models
(∼120) for testing. Due to the different parameters
of the models, different resolutions for the respec-
tive floorplan images occur, which we adjusted to one
equal resolution by resizing. Additionally, we used
data augmentation for the training data, doubling the
number of projects to 660 while applying random ro-
tation and mirroring to the floorplan images.

Furthermore, 20% of the training data was used as
validation data in every epoch. Various training se-
tups lead to an optimal batch size of 16 and a total of
150 epochs to avoid overfitting, where the number of
hidden layers for the MLP-in and MLP-out are three
and four, respectively (see Figure 3). Due to a single
value prediction as to the network’s result, we used
the mean squared error (MSE) as the loss function to
compare the prediction with the ground truth during
training and validation. Moreover, we used the Adam
optimizer and a learning rate of 0.001.

Beginning with training case 1 (see Table 2), the
MSE of both training and validation data is shown in
Figure 4. The training loss went below an MSE of
1000 after 7 epochs and circle approx. 100 after ap-
prox. 20 epochs, while the validation loss needed ap-
prox. 20 epochs to go significantly below an MSE of
1000 and circle a loss of approx. 600.

A comparable difference between training and vali-
dation loss, as in Figure 4, occurred during all training
iterations. Moreover, one must consider that the MSE
implies squared error values. The evaluation of the
testing dataset was performed on the difference be-
tween prediction and ground truth, normalized with
respect to the ground truth. The mean of all differ-
ences yielded in 20%, while the ground truth’s min-
imum and maximum evacuation times are approx.
90s and 480s, respectively. Training time was approx.



Figure 4: Case 1 - training and validation loss

Figure 5: Case 2 - training and validation loss

6.5min, while the simulation time’s minimum and
maximum computation times are approx. 0.5min and
262.5min, respectively.

For training case 2, the training and validation loss
needed approx. 30 epochs for the MSE to go below
1000, as shown in Figure 5. For one thing, the valida-
tion loss is slightly lower than in case 1. Then again,
the training loss is higher than in case 1 while staying
lower than the validation loss. Compared with case 1,
the losses of case 2 need around 20 epochs more to
decrease to similar loss values. One possible reason
can be the update of the CNN’s weights in case 2,
where also the update of the MLPin and MLP-out are
considered. Concerning the testing dataset, a mean of
19% was achieved. In this regard, a slight difference
to case 1 exists. Moreover, training time is almost
double with approx. 12.5min.

Lastly, Figure 6 shows the MSE for training and
validation data of training case 3. Similar to case 2,
for both losses, it took approx. 30 epochs to de-
crease to an MSE below 1000. Both graphs are rea-
sonably comparable to case 2 concerning the loss val-
ues. However, the evaluation of the testing data yields
a mean of 15%, which is significantly better than for
cases 1 and 2. In addition, for case 3, Figure 7 shows
a histogram of the testing data evaluation. Altogether,
the accuracy of the prediction was 15% with a stan-
dard deviation of 8%. We noticed that the majority

Figure 6: Case 3 - training and validation loss

Figure 7: Case 3 – difference between prediction and ground
truth

Table 3: Summary of results
Training case Mean [%] Training time [min]
1 20 6.5
2 19 12.5
3 15 12.5

(i.e. 80% out of 120 test samples) produce less than
20% deviation in the evacuation time (in secs) from
the ground truth. As in case 2, training time is approx.
12.5min, thus, double the time as in case 1.

Overall, the comparison of the results shows dif-
ferences between the three training setup cases. Al-
though for case 1, the loss decreases faster than in
cases 2 and 3, the accuracy measured by the mean
values is best for case 3. Nevertheless, the final eval-
uation of a mean of 15% for case 3 depends on the
particular use case, meaning the necessary individual
accuracy for a given problem. Otherwise, for cases 2
and 3, the computation time of the network training is
highest. Again, the importance of the necessary time
training the network is to be assessed concerning a
given problem. A summary of the results can be found
in Table 3.



6 CONCLUSION AND FUTURE WORK

Conventional pedestrian simulations can easily lead
to high computation times and effort concerning com-
putational resources. Hence, a real-time prediction of
the evacuation time for a given building model would
improve the workflow significantly. In this paper, we
designed a modular NN, combining different NN ar-
chitectures for multiple input- and output data types,
providing a real-time prediction of the evacuation
time for a given train station geometry. The presented
approach considered different neural network archi-
tectures, such as the MLP for metadata of the BIM
model and the CNN for the corresponding floorplan
images. Moreover, we created a new primary network
architecture with an individual combination of sub-
networks, including the possible option of using pre-
trained weights for the CNN at training time.

The results of the approach allow the conclusion
that pre-trained weights of the CNN while prohibit-
ing their update during the entire network’s training
may be helpful when the training time of the network
shall be reduced. Otherwise, depending on the partic-
ular problem, the accuracy of the entire network based
on pre-trained weights for the CNN may not be suffi-
cient, whereas an overall trained network without pre-
trained weights shows better predictions.

Unlike the prediction of pedestrian trajectories in
public buildings (Lui et al. 2021), and evacuation
routes (Zhang et al. 2021), this paper presents the
implementation of an NN-based real-time prediction
of evacuation times. In the future, we aim to train
a model that can predict both the overall evacua-
tion time and the pedestrian trajectory. An immedi-
ate improvement of the presented work can be made
by training on more complex data (e.g., multiple
floors). In our case, a generic train station model may
be relatively similar, leading to misinterpretations of
changes in the building design.

We see the enormous advantage of including pre-
dictive tools in building design. Especially for ex-
ploring different building layouts in the early design
stages, real-time predictions can significantly help ex-
plore the solution space while considering various
performance criteria such as evacuation times. Con-
sequently, project time and computational effort will
be reduced while developing the optimal design solu-
tion that considers multiple factors and dependencies
can be fulfilled.
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