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Abstract— Modern vehicles are changing rapidly. Years ago,
cars were still differentiated from each other by mechanical
features such as horsepower. Nowadays, there are nearly 100
electronic control units (ECUs) and millions of lines of codes
embedded in a vehicle. In the automotive industry, software
is starting to have more value than hardware. Thus, the
concept of software-defined vehicles (SDVs) is rising. Tradi-
tional electrical and electronic (E/E) architectures show their
limitations with predefined implementations, layout and distri-
bution, as well as insufficient computational power for future
extensions. Instead, powerful automotive central computing
platforms with flexible software solutions are being developed.
With the development of hypervisor technology, applications
with different safety criticality can be deployed on different
virtual machines (VMs) of the same physical hardware. The
resource allocation problem, which refers to mapping software
to hardware, is becoming more complicated with the increasing
number of automotive applications. Existing approaches for
resource allocation problems mainly focus on distributed E/E
architectures. In this paper, we aim to address the gap of solving
resource allocation problems in the central computing platform
of SDVs, where the dynamical VM creation and constrained
application deployment shall be considered simultaneously. We
propose an Integer Linear Programming (ILP) based approach
by formulating the problem as an optimization problem with the
minimum number of VMs as the goal and utilizing well-known
solvers to find the solution automatically. Moreover, we evaluate
the performance of state-of-the-art solvers for the proposed
approach.

I. INTRODUCTION

Driven by the complexity of autonomous driving and its
rapid development cycle, the focus of the automotive industry
is shifting more and more toward software development.
Where automotive architectures were previously determined
by a predefined number of electronic control units (ECUs)
with fixed feature sets, changes in autonomous driving algo-
rithms and constant updates are paving the way for software-
driven architectures on powerful and flexible hardware plat-
forms. Instead of complex upgrades to a vehicle that could
only be performed at a local dealership, software-defined
vehicles (SDV) can be seamlessly updated and upgraded over
the air [1], [2].

Centralized electrical and electronic (E/E) architectures
with high-performance computers are therefore becoming
the trend [3]. They provide flexibility, scalability, compat-
ibility, and upgradeability for SDVs. Vehicles are complex
systems consisting of applications with mixed-criticality.
The ISO 26262 standard defines requirements for freedom
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Fig. 1: Structure of the central computing platform. The
central platform is separated into different VMs by the
hypervisor, providing execution environments for mixed-
critical applications.

from interference among applications with different safety
levels [4]. Concepts such as hypervisors are introduced in
order to fulfill these requirements in multi-core systems [5].
Fig. 1 shows the structure of a high performance central
computational platform inside a centralized E/E architecture.
The central computing platform is divided into separate
environments by using virtualization technology, which en-
ables applications with mixed-criticality levels to run on the
same physical hardware. In general, the characteristics of
SDVs can be described as follows: first, software becomes
centralized by employing a high-performance computer; sec-
ond, software and hardware are decoupled, enabling flexible
deployment; third, hardware is divided by the hypervisor,
ensuring the safety requirements of vehicles [6], [7], [8],
[9], [10].

Given these complex requirements and more flexible hard-
ware platforms, the question of optimal resource allocation
has to be addressed. The goal is to find an optimal allocation
of a fixed amount of resources to activities while minimizing
the allocation cost [11]. In current automotive engineering,
resource allocation, specifically mapping applications onto
hardware, is a manual process that requires a large amount of
experience. However, given shorter update cycles and an in-
creasing number of applications, it will become more critical
and soon unmanageable. In addition, the inter-dependence
of applications and their requirements introduces even more
challenges. Many approaches exist in the literature [12], [13],
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Fig. 2: Proposed method of solving resource allocation prob-
lems. Related information and requirements are formulated
as an ILP model, which will be sent to the solver. The
solver will then search for the (optimum) mapping decisions
accordingly. The solution details are presented in Fig. 3.

[14] for finding automotive resource allocation solutions
for distributed E/E architecture, where the ECUs have a
fixed number and unchangeable properties. However, in
SDVs with a flexible central computing platform, the virtual
machines (VMs) shall be allocated on demand dynamically.
In this paper, we address the problem of resource allocation
for SDVs with the objective goal of minimizing the number
of VMs under various constraints. Our proposal of automated
solving is illustrated in Fig. 2. We take inspiration from
the bin-packing problem, in which items of different sizes
must be packed into a minimum number of containers [15]
and utilize Integer Linear Programming (ILP) formulations.
Our work in this paper includes: (i) collecting constraints
for resource allocation problems in the SDVs, (ii) proposing
an ILP model to formalize the problem, (iii) comparing the
performance of solvers in solving the proposed ILP model.

This paper is structured as follows: Section II introduces
related works about resource allocation in the automotive
and similar domains. Section III and IV discuss related
constraints and introduce the proposed ILP formulation. The
experimental setup and benchmarking results are presented
in Section V, VI. Finally, a conclusion is given in Section
VII.

II. RELATED WORK

Our research draws on different literature directions.
Firstly, we will discuss the related method in automotive
resource allocation problems, in which applications are as-
signed to different hosts according to various constraints.
Secondly, we will introduce related literature on bin pack-
ing in cloud computing, which helps dynamically allocate
resources to VMs.

Mehiaoui-Hamitou et al. [16] presented a mixed-integer
linear programming (MILP) based approach to solving the
automotive deployment and scheduling problem regarding
energy efficiency. They considered constraints including
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Fig. 3: Partial illustration of the optimal solution from one of
the generated resource allocation problems. Cores and mem-
ory are allocated to each safety or non-safety VM (dark/light
blue squares). Safety and non-safety applications (dark/light
blue circles) are allocated accordingly to VMs. The green,
orange and blue lines with arrows represent respectively the
dependency, conflict, and redundancy relationships among
applications.

timing and utilization values to map tasks on ECUs and
considered power consumption for computation and commu-
nication as the cost function to enable shutdown of an ECU
if no tasks are needed in a specific driving situation. Zhang
et al. [12] provided MILP and Genetic algorithm (GA) based
methods to map software components on ECUs. This paper
exploits legacy architectures and the AUTomotive Open
System ARchitecture (AUTOSAR) standard to reduce the
design space and optimize the computation time. They de-
fined their mapping constraints as: dedicated/exclusive map-
ping (certain software components must/cannot be assigned
to specific ECUs), component separation/clustering (certain
software components must/cannot run on the same ECU).
Voss et al. [13] discussed a joint problem of scheduling
and deployment for mixed-criticality multicore architectures
considering core numbers and safety levels of tasks. They
formulated the problem as a satisfiability problem utilizing
SMT solvers. Maticu et al. [14] discussed the mapping of
applications with mixed-criticality to AUTOSAR distributed
multicore architectures with consideration of AUTOSAR
constraints (e.g., elements of the same software component
must be assigned on the same ECU), schedulability, and safe
criticality (e.g., runnables with different safety level cannot
be mapped together). A simulated annealing-based meta-
heuristic optimization approach was proposed. Pohlmann et
al. [17] proposed a model-driven approach for specifying
allocation problems and finding feasible allocations. They
developed a domain-specific language (DSL) and defined
allocation constraint types in distributed E/E architecture as



TABLE I: Summary of Notations

Symbol Meaning

A Set of applications
Asafe Set of safety-critical applications. Asafe ⊂ A
Ansafe Set of non-safety-critical applications. Ansafe ⊂ A
Aa

dep Set of dependent applications of a ∈ A, Aa
dep ⊂ A

Aa
conf Set of conflict applications of a ∈ A, Aa

conf ⊂ A
V Set of available VMs
R Integer value expressing the total amount of available

resources as quantitative numbers, e.g., number of CPU
cores, number of GPUs, size of memory.

a, a′ Application a, a′ ∈ A
v VM v ∈ V
dv Binary variable depicting if VM v is allocated with any

resource and ready for use.
ra Integer value representing application a’s consumption of

quantitative resources, e.g., number of CPU cores, number
of GPUs, size of memory.

rv Integer variable representing amount of allocated re-
sources in VM v, e.g., number of CPU cores, number
of GPUs, size of memory.

sa Binary variable representing safety criticality of applica-
tion a. If a ∈ Asafe, then sa = 1. If a ∈ Ansafe, then
sa = 0.

sv Binary variable representing safety criticality of VM v.
sv = 1 means v is safety-critical. sv = 0 means v is
non-safety-critical.

xa→v Binary variables depicting if applications a is mapped on
VM v

follows: col/separate-location (two components have to be
allocated to the same or different ECUs), required location (a
component has to be allocated to a specific ECU), required
resource (e.g., memory, task-scheduling). Then, they trans-
formed the DSL to an ILP representation to find feasible
solutions.

The literature mentioned above provides us with diverse
aspects of solving the automotive resource allocation prob-
lem considering different requirements with/without opti-
mization goals. However, the work discussed so far mainly
focused on distributed E/E architecture, where ECUs have
fixed numbers and sizes. On the other hand, SDVs have
more dynamic environments, where VMs need to be allo-
cated according to the application requirements. Therefore,
we further investigated the bin packing problem in cloud
computing. The bin packing problem can be described as
assigning multiple items to the minimum number of bins.
Fatima et al. [18] formulated the VM placement problem as
a variable-sized bin packing problem (VSBPP), where bins
have different capacities and costs. Kaaouache et al. [19]
adapted their hybrid GA method of the bin packing problem
to solve VM placement in the cloud.

In this paper, we consider the resource allocation problem
in the context of SDVs, where central computing platforms
and VMs are employed. We set the optimization goal similar
to the bin packing problem to minimize the VM numbers.

III. PROBLEM DESCRIPTION

The resource allocation in this paper contains two steps.
Firstly, VMs with sufficient resources must be installed in

the central computing platform. Then, applications should be
mapped onto VMs under the consideration of constraints. We
aim to find the minimal number of required VMs. We primar-
ily consider the constraints in the following four directions
for automotive application deployment: resource availability,
freedom from interference, redundancy, and dependency.

Resource availability restricts the possibilities of arbitrary
resource assignment in the automotive domain. In the context
of a software-defined vehicle, the hardware resources in a
vehicle are mainly core, memory, and storage, which are
essential for executing an application. Besides, a predefined
amount of resources are required to execute an application.
As illustrated in Fig. 1, more than one application can
be deployed inside a virtual machine. Therefore, resource
allocation to each virtual machine is the first task to be
addressed.

Freedom from interference (FFI) is a constraint defined
in ISO 26262 [4]. It is defined as there being no cascading
failures between two or more elements that could lead to a
violation of safety requirements. An element can be a system
or part of the system, including hardware and software.
Cascading failures mean that the failure of one element of
an item leads to the failure of one or more elements of the
same item. In the context of SDVs, we primarily consider the
failure of software. According to the ISO standard, the ve-
hicular software can be classified into different safety levels:
QM for non-safety-critical applications, such as infotainment
systems, ASIL A, B, C and D for safety-critical applications,
such as object detection. Based on these observations, we
define FFI constraints that allow only one virtual machine to
install applications with the same level of safety and require
the same level of safety to be present in that virtual machine.
For the ease of describing and demonstrating the proposed
approach, we simplify the safety properties as safety-critical
and non-safety-critical. However, the extension to consider
complete safety levels is discussed in the following sections.

Redundancy is essential when designing safety-critical
systems. The goal is to equip a system with multiple com-
ponents or subsystems that perform the same function so
that if one of them fails unexpectedly, its redundant devices
can take over immediately and ensure that the entire system
can still safely perform its assigned tasks. For example, an
autonomous driving system is a safety-critical system. The
constraint defined in redundancy is to equip a replica for each
safety-critical application, which runs in a different virtual
machine.

Dependency constraints describe the relationship between
interdependencies and conflicts of applications. If appli-
cations have dependencies on each other, they should be
assigned to the same virtual machine. Conversely, if two
applications have conflicts, they should be placed in different
virtual machines.

IV. ILP MODEL FORMULATION

We formulate the hardware-software resource allocation
problem as an ILP model. In this work, we focus our efforts
on the four essential constraints mentioned above, which



can cover most cases. At the same time, new constraint
types as well as optimization goals (e.g., minimize the
number of allocated cores) can easily be integrated into this
optimization model if they can fulfill the ILP criteria. The
related notations are defined in Table I. We formulate the
resource allocation in SDVs as follows:

minimize:
∑
v∈V

dv (1)

subject to:
∑
v∈V

rv ≤ R (2)

0 ≤ rv ≤ Rdv,∀v ∈ V (3)∑
a∈A

raxa→v ≤ rv,∀v ∈ V (4)∑
v∈V

xa→v = 1 + sa,∀a ∈ A (5)

xa→v + sv ≤ 1,∀a ∈ Ansafe, v ∈ V (6)
xa→v − sv ≤ 0,∀a ∈ Asafe, v ∈ V (7)
xa→v = xa′→v,∀a ∈ A, a′ ∈ Aa

dep, v ∈ V (8)

xa→v + xa′→v ≤ 1,∀a ∈ A, a′ ∈ Aa
conf, v ∈ V

(9)
We consider A, Asafe, Ansafe, Aa

dep, Aa
conf, ra, sa as input

information from applications, R as the size of known
hardware, and V as the set of maximum available VMs.
The number of elements in V is limited by the hardware
resources and capabilities of hypervisors, e.g., if one single
core cannot be split into different VMs, this implies that the
number of VMs is smaller than the number of cores. The
VM v is allocated with resources and can host applications
when dv equals 1. Decision variables of solvers are dv , rv ,
sv , xa→v .

In our ILP model, (1) guarantees that a minimum number
of VMs are used. (2) restricts that the total resources of all
VMs should not exceed the capability of physical hardware
resources. (3) implies that only when the specific VM is
used (dv > 0), resources can be allocated to it (rv > 0). (4)
describes that each VM should provide enough resources for
all applications assigned to it. Following the logic of (2), (3),
(4), heterogeneous resources have to be expressed separately.
(5) relates to the redundancy constraint. Non-safety-critical
applications should be assigned only once, while safety-
critical applications should have a replica in a different
VM. (6) and (7) guarantee FFI. VMs should have the same
safety properties as allocated applications. It also implies
that applications with different safety levels cannot be placed
in the same VM. Both of the expressions utilize linear
classifiers to guarantee a valid design space. Additional linear
decision boundaries can be added to extend the formulation
with complete ASIL levels. (8) and (9) introduce dependency
constraints. If application a is dependent on a′, a should
be assigned to the VM, where a′ runs. If application a has
conflicts with a′, they need to be put into different VMs.

V. EXPERIMENTAL SETUP

The formulated ILP problem is implemented within a
Python environment and the feasible solution and its optimal

solution are solved using five state-of-the-art solvers. We
compared the performance of different solvers with respect
to the calculation time for our problem formulation. To
remove ambiguity, the solving process is represented as
finding a feasible solution that satisfies the constraints but
does not consider any objective function. The optimization
process is above the solving process and finds a globally
optimal solution in terms of a predefined objective function
by obeying constraints. Based on the yearly ILP benchmark
competition [20], we selected the following solvers for our
evaluation. We summarize the characteristics of each solver
based on the following criteria: whether the solver is open
source, which programming problem is supported, and which
programming languages are supported.

IBM ILOG CPLEX Optimization Studio (CPLEX) 20.1.0 is
a commercial optimizer developed by IBM for solving linear,
mixed-integer, and quadratic programming [21]. It supports
various algorithms for solving linear programming problems,
such as primal/dual variants of simplex or barrier interior
point methods. CPLEX provides several programming inter-
faces: C/C++, Java, and Python. In the experiments we used
the Python API DOcplex for object-oriented modeling and
mathematical programming.

Cardinal Optimizer (COPT) 4.0.2 is a commercial math-
ematical optimization solver that aims at solving large-scale
optimization problems. It provides a high-performance solver
for LP, MIP, SOCP, convex QP, and convex QCP [22]. It
offers the following programming interfaces: C/C++, Java,
and Python. In our experiments, we utilized the Python API
to evaluate its performance.

Gurobi 9.5.0 is a commercial mathematical programming
solver that is designed from the ground up to exploit modern
architectures and multi-core processors, using the most ad-
vanced implementations of the latest algorithms such as LP,
MILP et.at. [23]. It provides many different interfaces and is
easy to be deployed in the workflow.

MOSEK 9.3.14 is a commercial optimization software
solving linear, quadratic, semidefinite, and mixed integer
problems. We utilized Fusion API to build our model in
an expressive manner using mainstream programming lan-
guages [24].

SCIP (Solving Constraint Integer Programs) 8.0.0 is a
non-commercial solver [25], and works as a general frame-
work based on branching for constraint integer and mixed-
integer programming using branch-cut-and-price. It can be
used to solve the convex and nonconvex MILP/MINLP
problem by utilizing polyhedral outer approximations and
a spatial branch and bound technique. This solver uses
the LP relaxation and cutting planes to enable a strong
dual bound while utilizing the constraint programming to
handle arbitrary constraints. We used the extendable Python
interface PySCIPOpt [26] in the experiment for evaluating
the performance.

We took ADLINK’s in-vehicle platform [27] as hardware
reference and defined a target platform with 80 cores and
768 GB RAM. Our pre-experiments showed that defining
problems with varying application resource usage had a



minor impact on the calculation time of solvers. Thus, to
simplify the problem definition, we defined each application
to be deployed as requiring 5% of one single-core and
50 MB RAM. The other properties of applications were
generated randomly. Generated applications were either de-
fined as safety-critical or non-safety-critical. In addition, each
of them was randomly dependent or/and in conflict with
other applications. The generated problems had different
application numbers varying from 100 to 800 increased by
100. We generated three random application sets for each
problem. All generated problems and application sets were
independent of each other. In addition, the properties and
relationships of applications were guaranteed to be valid
and solvable. We conducted both solving and optimization
analyses with the same problems generated. Moreover, we
performed infeasibility analysis using the same sets of appli-
cations by swapping their dependence and conflict properties.
The input of solvers contained core numbers, RAM size
of the hardware platform, core/memory consumption, safety
criticality, and interdependence/conflicts of applications. The
solvers shall calculate: (1) how many cores and memories
should be assigned to each VM; (2) what is the safety
property of VMs; (3) which application should be assigned
to which VM; (4) optimize the number of VMs that can
host all the applications with pre-defined constraints. The
size of decision variables was defined as [VM count · (4 +
application count)]. Since there were only 80 cores in the
whole hardware platform and the FFI requirement shall be
fulfilled, the maximal number of available VMs was limited
to 80. The complexity of each problem instance, including
the number of decision variables, constraints, and minimal
solutions fulfilling the requirements, is presented in Table II.
Documented values are average values deriving from three
randomly generated application sets of respective problems.
The column ”VMs” shows the minimal number of VMs,
which is the objective value in our optimization. The minimal
number of used cores for each problem is also listed to show
the usage of the central computing platform. Fig. 3 illustrates
the optimal solution from one of the generated problems
with 100 applications. Fig. 3 illustrates the optimal solution
from one of the generated problems with 100 applications.
We visualized the assignment of 20 applications and their
relationships in detail and presented the allocation of cores
and memory in VMs.

VI. EXPERIMENTAL RESULTS

The experiments were performed on an Intel i7-7600U
CPU with 2.80 GHz and two cores (four threads),
16 GB RAM, running Windows 10 Enterprise 21H1. Solvers
were executed with their default configurations. A time
limitation of 200 seconds was defined for each calculation.
We conducted the measurements in three steps. Firstly, we
measured the calculation time of solvers for finding feasible
solutions. Then, we investigated their performance in finding
the optimum solution. Furthermore, we recorded their ability
to prove infeasibility. We compared the calculation time
for solving, optimization, infeasibility proven activities, and

TABLE II: Complexity of generated problems. The numbers
of variables are fixed values decided by the number of
applications and available VMs. The numbers of constraints,
minimal VMs, and cores are given as average values deriving
from randomly generated application sets of each problem.

Scenario Definition Minimal Solutions
Apps Variables Constraints VMs Cores

100 8320 142982.00 15.33 18.33
200 16320 549988.67 19.67 27.67
300 24320 1228755.33 20.00 36.33
400 32320 2154322.00 21.33 47.67
500 40320 3381382.00 20.00 48.22
600 48320 4826095.00 22.00 57.33
700 56320 6566009.67 23.67 72.00
800 64320 8578082.00 24.33 74.67

analyzed the effect of application number scaling on the
calculation time.

A. Quantitative comparison on the solving performance

Table III records the average time to find a feasible
solution t and its sample standard deviation σ for three
randomly generated test sets with a different number of
apps. The data from the tables show that the tested solvers
are almost always able to find feasible solutions within the
specified time. We set the highest time limit to be 200
seconds in our experiments. In terms of the shortest solution
time, we can observe that Gurobi has the shortest solution
time for all sizes of problems. COPT, CPLEX, and SCIP
closely follow it. However, MOSEK takes a longer time to
compute the solution. It was unable to complete the task
in the 800 applications test scenarios. From the solution
robustness point of view, we can learn that all solvers have
relatively small standard deviations. They perform stable
when solving different random sets with the same number
of applications. In terms of the growing trend of searching
feasible solution time, we find that the more applications, the
longer the solver takes to solve. The standard deviation of the
solving time also increases with the number of applications.

B. Quantitative comparison on the optimization performance

Table IV presents the optimization performance of each
solver. In this table, t represents the average optimization
time for three random test sets for a different number of ap-
plication scenarios. σ describes the sample standard deviation
of the optimization time. n records the average number of
feasible solutions found by the solver during the optimization
process before finding the optimal solution. As mentioned
earlier, the Gurobi solver has once again received a positive
performance, outperforming several other solvers, followed
by CPLEX. In the experiments, both solvers returned the
optimal state within the specified time limit and obtained
the same optimal objective value. The objective value in our
scenario represents the minimum number of virtual machines
required to achieve the app resource allocation. We use these
optimal objective function values obtained from Guorbi as



TABLE III: Comparison of performance for finding feasible solutions in problems with 80 VMs. The column Apps lists the
number of applications in each problem. t represents the average solving time of three random sets in each problem in [s].
σ shows the sample standard deviation of solving time in [s].

CPLEX COPT Gurobi MOSEK SCIP
Apps t ± σ t ± σ t ± σ t ± σ t ± σ

100 0.48±0.08 0.75±0.09 0.33±0.05 0.79±0.09 0.98±0.06
200 2.05±0.02 1.64±0.08 1.49±0.04 4.35±0.48 3.56±0.49
300 6.33±0.20 4.26±0.13 4.52±0.06 13.54±0.53 9.71±0.22
400 14.95±0.53 9.88±0.69 9.63±0.11 30.66±0.74 20.78±0.96
500 30.68±0.28 18.68±0.37 18.00±0.06 59.61±1.06 37.23±0.13
600 55.34±0.97 32.14±0.48 28.60±0.27 101.21±0.80 64.65±1.60
700 86.72±1.44 54.24±1.68 43.06±0.47 162.40±3.88 103.76±1.51
800 143.48±6.61 82.61±5.01 60.15±1.69 - ± - 162.88±2.59

TABLE IV: Comparison of performance for calculating the optimum solution in problems with 80 VMs. The column Apps
and Obj list the number of applications and the average objective value of random sets in each problem. t represents the
average optimization time of three random sets for each problem in [s]. σ shows the sample standard deviation of optimization
time in [s]. n represents the average number of discovered sub-optimal solutions during the optimization.

CPLEX COPTc Gurobi MOSEK SCIP
state=optimala state=feasibleb state=optimala state=feasibleb state=feasibleb

Apps t ± σ n t n t ± σ n t ± σ n t ± σ n

100 0.54±0.03 3.00 ≤ 1 ≤ 4 0.37±0.02 2.00 1.10±0.29 3.00 1.09± 0.18 1.67
200 2.08±0.19 2.00 ≤ 2 ≤ 3 1.55±0.03 1.33 4.24±0.08 1.00 3.91± 0.08 1.00
300 6.32±0.17 2.00 ≤ 5 ≤ 7 4.76±0.31 1.00 13.49±0.32 1.00 9.64± 0.19 1.00
400 14.51±0.73 2.67 ≤13 ≤10 12.32±2.09 1.67 31.19±1.16 1.67 20.24± 0.74 1.00
500 30.81±1.09 2.00 ≤19 ≤ 8 17.70±3.08 1.33 60.57±1.87 1.00 36.88± 0.31 1.33
600 55.94±1.13 2.33 ≤42 ≤10 29.92±0.80 1.33 103.80±2.41 1.67 64.36± 0.43 1.00
700 95.06±1.18 2.00 ≤60 ≤ 6 46.03±3.47 2.33 171.32±9.21 1.67 112.85±15.65 1.33
800 150.73±0.39 2.33 ≤84 ≤ 5 61.08±1.29 1.33 - ± - - 163.36± 0.41 1.00

a CPLEX and Gurobi were able to determine the optimal solution and return the status optimal within pre-set time limit.
b COPT, MOSEK and SCIP were not able to determine the optimality of solutions within the pre-set time limit of 200

seconds. However, they were able to find the expected solution. Therefore, we measured their calculation time of finding
the ground truth solutions from other solvers regardless of the optimality determination.

c All measurements of COPT listed in this table are approximate values. Due to the limitation of its interface, we were
unable to log the exact time of finding the expected solutions and solution counts.

TABLE V: Comparison of performance for proving infeasibility in problems with 80 VMs. The column Apps lists the
number of applications in each problem. t represents the average calculation time of three random sets in each problem in
[s]. σ shows the sample standard deviation of calculation time in [s].

CPLEX COPT Gurobi MOSEK SCIP
Apps t ± σ t ± σ t ± σ t ± σ t ± σ

100 0.38±0.11 0.23±0.01 0.36±0.03 0.54±0.06 0.49±0.03
200 1.91±0.03 1.02±0.02 1.00±0.09 5.96±0.01 2.00±0.09
300 7.02±0.42 3.09±0.12 2.64±0.09 23.18±0.93 5.14±0.13
400 21.03±0.35 6.63±0.09 6.29±0.47 59.89±3.21 9.72±0.25
500 42.49±0.82 11.95±0.21 11.43±0.17 120.60±2.84 16.57±0.67
600 85.03±1.47 18.97±0.34 18.05±1.24 - ± - 25.85±0.67
700 145.16±5.52 28.22±0.09 28.75±0.39 - ± - 38.62±0.81
800 - ± - 40.57±0.44 40.31±0.88 - ± - 54.12±0.18

well as CPLEX as the ground truth for our experiments.
Unlike CPLEX and Guorbi, through our investigations, we
find that the other solvers cannot autonomously conclude
whether the feasible solution found is optimal within a
specified time (200 seconds). Thus, they can only return a
feasible state. We then experimentally found that although a
status of feasible is returned, the found solutions contain the
optimal solution. To evaluate each solver more fairly, we used
a semi-automatic approach for all solvers except CPLEX

and Gurobi. We manually configured the stop criteria for
MOSEK and SCIP by limiting the number of found feasible
solutions and measured their computation time. The excep-
tion is COPT, which does not provide an interface to limit
the number of solutions. Instead, we reduced the maximum
optimization time to approximate the number of solutions.
Regardless of the judging criteria, COPT, MOSEK, and SCIP
find the expected solutions in a reasonably small number of
solution iterations. Their optimization performance is similar
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Fig. 4: Comparison the computational time with respect to the searching for a feasible solution, optimal solution, and
detecting an infeasible solution on different solvers. Time limit was set to 200 seconds.

to their solving behavior, where MOSEK is slower than
the others and cannot find a feasible solution within 200
seconds in the case of 800 apps. The standard deviation of
the searching of optimization time is usually more significant
than the standard deviation for searching a feasible solution.

C. Quantitative comparison on the performance of proving
infeasibility

Table V shows the calculation time of each solver for
proving the problems infeasible. t represents the average
calculation time of three random sets in each problem.
σ describes the sample standard deviation of calculation
time. We can observe that Gurobi and COPT require the
shortest calculation time to prove the infeasibility. SCIP
and CPLEX can finish most of the problems within 200
seconds. However, MOSEK can not draw any conclusions
in problems with more than 600 applications in a limited
time. With a grown number of applications, their calculation
time increased as well. Regarding the standard deviation of
calculation time, the values are kept in a relatively small
range, which implies the solvers have stable behavior of
proving the infeasibility of randomly generated applications.

D. Qualitative comparison on different solvers

In Fig. 4, we visualize the trends in the average solution
and optimization times of solvers for problems of different
sizes. By experimenting with different numbers of applica-
tions, we can observe that the computation time of all solvers
increases exponentially with the number of applications.
Besides, the search time for the optimal solution is slightly
longer than the search time for the feasible solution, as
expected. This is because the feasible solution is the one
that covers the optimal solution. In terms of time growth
trend, the trend is similar. From the perspective of solver
performance for solvable problems, Gurobi outperforms in
both solving and optimizing in all scenarios. COPT, CPLEX,
and SCIP follow closely. For insolvable problems, Gurobi
and COPT show the best performance. Among all solvers,
Gurobi, COPT, SCIP requires a shorter time to prove an
infeasible problem than to search in a solvable problem.

However, in CPLEX and MOSEK, the calculation time of
infeasibility analysis is longer than the solving time.

VII. CONCLUSION

In this paper, we presented an ILP formulation to address
the resource allocation problem in SDVs. In such problems,
the minimal numbers of VMs should be determined and be
allocated with essential resources to host applications with
various constraints. We proved the feasibility of the proposed
method by utilizing solvers to solve and optimize predefined
problems with a reality-based hardware platform and random
application sets. Furthermore, we evaluated the abilities of
CPLEX, COPT, Gurobi, MOSEK, and SCIP regarding the
proposed formulation and analyzed their performance with
a scaling number of applications. We found that the solving
and optimization time increased exponentially with growing
application numbers. Despite performance differences, all
solvers can be utilized to solve the resource allocation prob-
lem in SDVs automatically. For searching of the optimum
solutions with minimal numbers of VMs, both Gurobi and
CPLEX are able to automatically find an optimal solution
within the given time limits. COPT, MOSEK and SCIP can
be integrated into a semi-automated procedure, where human
integrators can decide the optimality of solutions or where
suboptimal solutions are acceptable.

As a future work, we plan to investigate different formu-
lation strategies, e.g., SMT, and compare with the proposed
ILP formulation. Besides, other constraints and aspects such
as scheduling ability should also be included to extend
the proposed strategy. In addition, heuristic methods will
be taken into consideration with a hope of decreasing the
solving complexity.
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