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Abstract
Consider a random walk with a drift to the right on {0, . . . , k} where k is random and
geometrically distributed. We show that the tail P[T > t] of the length T of an excursion
from 0 decreases up to constants like t−� for some � > 0 but is not regularly varying. We
compute the oscillations of t� P[T > t] as t → ∞ explicitly.

Keywords Trapping phenomena · Tails of hitting times · Excursions of random walks · Tail
of the population size in a branching process in random environment

1 Introduction andMain Result

1.1 Introduction

In this paper, we study a simple object: the tail of the time a biased random walk spends
in a trap of random size. Our result is very explicit and may serve as a building block in
the study of trapping models. Trapping phenomena for biased walks have been investigated
intensively over the last decade, we refer to [4] for a survey. As a model for transport in an
inhomogeneous medium, one can study biased random walk on a supercritical percolation
cluster on Z

d for d ≥ 2. It turns out that for small values of the bias, the walk moves at a
positive linear speed, whereas for large values of the bias, the speed vanishes. The critical
value of the bias separating the two regimes is the value where the expectation of the time
spent in a trap changes from being finite to being infinite. This model goes back to [3] andwas
investigated in [7] and [22]. Finally, Alexander Fribergh and Alan Hammond proved a sharp
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transition for the positivity of the speed in [12]. Concerning limit laws for the distribution of
the walker, a central limit theorem for small bias was proved in [22]. The law of the walker
in the subballistic case was addressed by [12]: the authors find the polynomial order of the
distance of the walker to the origin. It is conjectured that it depends on the spatial direction
of the bias if there is a limit law for the distance of the walker to the origin.

Replacing the integer lattice with a tree yields a biased random walk on a supercritical
Galton–Watson tree. In this case, the phase transition for the bias is easier to understand and
was shown in [20]. It turns out that the distance of the walker to the origin does not satisfy a
limit law, but there are subsequences converging to certain infinitely divisible laws, see [5].
The crucial object is the time T spent in traps (averaged over the size of the trap): since the
tail of this random variable is not in the domain of attraction of a stable law, there is no limit
law for the time the walker needs to go at a certain distance of the origin. We refer to the
introduction of [5] for more explanations. If one randomizes the bias, the situation changes,
see [6] and [16]. For one-dimensional randomwalk in random environment, limit laws for the
distance of the walker to the origin have been proved in [17] under a non-lattice assumption.
If the non-lattice assumption is violated, one would expect convergence of subsequences as
for the aforementioned biased randomwalk on a Galton–Watson tree. The result of this paper
can be used to confirm this in the simple case of an environment which has either a drift to
the left or a reflection to the right, treated in [21] and [13].

As a toy model for the supercritical percolation cluster, one may consider a percolation
on a ladder graph, conditioned to survive. This model was introduced in [2] and further
investigated by [14, 15, 19]. Again, our result may be applied to show that there is no limit
law for the distance of the walker to the origin, as conjectured in [19].

There is awell-known connection between hitting times of a randomwalk (or randomwalk
in random environment) and the total population size in a branching process (or branching
process in random environment) with geometric offspring laws. For subcritical branching
processes in random environment (BPRE), a precise asymptotics for the tail of the total
population size under a non-lattice assumption was given in [1]. See also [10] for an upper
bound on the same tail without non-lattice assumption. Again, our result can serve as an
example that the precise asymptotics fails in the lattice case, at least in a particular case
of a degenerate environment. More precisely, consider a subcritical BPRE where in each
generation the law of the offspring is either geometric with expectation > 1 or the Dirac
measure at 0. Denote by T the total population size in this BPRE. Then, while the probability
P[T > t] satisfies, for positive constants c1 and c2 and a certain exponent �,

c1t
−� ≤ P[T > t] ≤ c2t

−�, (1.1)

it is not regularly varying. More precisely, we show that P[T > t]t� is asymptotically
equivalent to a nonconstant, multiplicatively periodic function, see (1.11). In our setup, with
T denoting the time spent in a trap of random size, (1.1) was proved in [19] and it was
conjectured that the tail is not regularly varying. This is confirmed by our result. Similar tail
asymptotics for various quantities are known in the context of branching processes, see for
instance [8, 9, 23].

1.2 Main Result

Let us now give precise definitions and state our main result, Theorem 1.1. Let β > 1 be a
fixed parameter. Let k ∈ N0 and consider discrete time random walk X on {0, . . . , k} with
edge weight C(l, l + 1) = βl along the edge {l, l + 1} and started in X0 = 0. That is, if
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Xn = l ∈ {1, . . . , k − 1} then it jumps to l + 1 with probability β/(1+ β) and to l − 1 with
probability 1/(1 + β). There is reflection at the boundaries: If Xn = 0, then it jumps to 1.
If Xn = k, then it jumps to k − 1. Of course, for k = 0, the random walk is trivial. Let Pk

denote the probabilities with respect to fixed k and let P denote the probabilities with respect
to a random geometrically distributed k with parameter 1 − α, that is,

P =
∞∑

k=0

(1 − α)αk Pk . (1.2)

Also let Ek and E be the corresponding expectations, respectively. Here α ∈ (0, 1) is a fixed
parameter. Let

T := inf
{
t > 0 : Xt = 0

}
if k ≥ 1 (1.3)

and T = 0 if k = 0, be the length of an excursion from 0. Let

�:= − log(α)

log(β)
. (1.4)

Our random walk X is a special case of a random walk in an irreducible electrical network,
see, e.g., [18, Chap. 19], on a finite graph (V , E) with edge weights C(e), e ∈ E . Denote
by C(x) the sum of C(e) for all edges incident to the vertex x ∈ V , and let C := ∑

x C(x).
The transition probabilities are given by p(x, y) = C({x, y})/C(x), x, y ∈ V . It is easy to
check that π(x):=C(x)/C defines the unique invariant measure. By [18, Theorem 17.52],
the expected time to return to x (when started in x) equals 1/π(x) = C/C(x).

We use this fact to compute, for fixed k the expectation of T :

Ek[T ] = 2

C(0, 1)

k−1∑

l=0

C(l, l + 1) = 2
k−1∑

l=0

βl = 2
βk − 1

β − 1
. (1.5)

Hence

E[T ] = (1 − α)

∞∑

k=1

αk 2
βk − 1

β − 1
=

{
2α

1−αβ
< ∞, if � > 1,

∞, if � ≤ 1.
(1.6)

A similar but more involved computation shows that

E
[
T 2] < ∞ if and only if � > 2. (1.7)

In order to describe the tail of T , we introduce the function g defined by

g(t):=β − 1

β

(1 − α)�(�)

log(β)

(
2β

(β − 1)2

)�
[
1 +

∞∑

�=1

c� cos

(
2π�

log(t)

log(β)
− d�

)]
(1.8)

with

c� = 2

∣∣∣�
(
� + 2π i �

log(β)

)∣∣∣
�(�)

and d� = arg

(
�

(
� + 2π i �

log(β)

))
. (1.9)

Here, � is Euler’s Gamma function and arg(a + bi) ∈ (−π/2, π/2) denotes the angle of
a + bi for a > 0 and b ∈ R. Note that the c� decrease quickly with � and hence the constant
and the � = 1 mode are dominant.

Note that g is a nonconstant multiplicatively periodic function, that is

g(βt) = g(t) for all t > 0. (1.10)

In particular, g is not slowly varying.

123



27 Page 4 of 20 N. Gantert, A. Klenke

Theorem 1.1 For g defined in (1.8), we have

lim
t→∞

t� P[T > t]
g

(
(β−1)2
2β t

) = 1 . (1.11)

1.3 Outline

The strategy of the proof is as follows: We first consider the event A where X reaches k
before returning to 0. On the complement of this event, T is very small and hence this case
can be neglected for the tail of T (Lemma 2.3). On the event A, we split the time T into three
parts:

(1) the time Tin needed to reach k,
(2) the time Texc spent in excursions from k to k that do not reach 0, and
(3) the length Tout of the last excursion from k to 0.

We will show that the contributions from (1) and (3) can be neglected (Lemmas 2.4 and 2.5).
Finally, we consider (2). The number of excursions is geometrically distributed and the length
of the single excursion has exponential moments.We infer that the tail of T is governed by the
number of excursions multiplied by their expected lengths (Proposition 2.17). The number
of excursions is geometrically distributed with a parameter that depends on k. We use a very
detailed analysis to determine the tail averaged over k.

2 Proofs

2.1 The Time to Get In and Out

Let
Tin:= inf

{
t > 0 : Xt = k

}
(2.1)

be the time it takes to hit the right end of the interval. Let

Tlast:= sup
{
t < T : Xt = k

}
(2.2)

be the last visit (if any) of the right end of the interval before returning to 0. Let

Tout:=T − Tlast (2.3)

denote the time it takes for this last excursion from k to hit 0. Finally, let

Texc:=Tlast − Tin, (2.4)

denote the time, the random walk spends in excursions from k before the last excursion from
k starts. The random times Texc, Tlast and Tout are well-defined on the event

A:={
Tin < T } (2.5)

In fact, on A, we have Tlast < ∞.

Lemma 2.1
Pk[A] = β − 1

β − β1−k
≥ β − 1

β
. (2.6)
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Proof Considering {0, . . . , k} as an electrical network with resistances R(l, l + 1) = β−l ,
we get the effective resistances Reff (0, 1) = 1 and

Reff (0, k) = 1 + β−1 + · · · + β−k+1 = 1 − β−k

1 − 1/β
.

Now (compare, e.g., [18, (19.9)])

Pk[A] = Reff (0, 1)

Reff (0, k)
= β − 1

β − β1−k
.

��
On Ac, until time T , X is a random walk conditioned to return to 0 before hitting k. Now

let U be such a random walk started in U0 = 0. Let TU := inf
{
t > 0 : Ut = 0

}
. Then

Pk
[
TU = t

] = Pk
[
T = t

∣∣ Ac] for all t . (2.7)

The transition probabilities of U can be computed via Doob’s h-transforms. Let hk(l) =
β−l − β−k be a harmonic (on {1, . . . , k − 1}) function for X with hk(k) = 0 and hk(0) > 0.
Then for l = 1, . . . , k − 1, we have

Pk
[
Ut+1 = l + 1

∣∣Ut = l
] = hk(l + 1)

hk(l)

β

1 + β
= 1

β + 1

(
1 − β − 1

βk−l − 1

)
. (2.8)

We compare U to the random walk Y̌ on Z with conductances β−l along the edge {l, l + 1}.
That is, Y̌ makes a jump to the right with probability 1/(1+β) and to the left with probability
β/(1+β). Also, let Y be the randomwalk onZwith conductances βl along the edge {l, l+1}.
That is, −Y has the same jump probabilities as Y̌ . Let

T Y := inf
{
t > 0 : Yt = 0

}
and T Y̌ := inf

{
t > 0 : Y̌t = 0

}
.

Clearly, if Y0 = Y̌0 = 0, then T Y and T Y̌ have the same distribution. By (2.8), we see that

TU is stochastically bounded by T Y̌ . More precisely, we have

Pk[TU > t] ≤ P
[
T Y̌ > t

∣∣ Y̌1 = 1
]
. (2.9)

Lemma 2.2 We have

E
[
T Y̌

∣∣ Y̌1 = 1
] = 2β

β − 1
, Var

[
T Y̌

∣∣ Y̌1 = 1
] = 4β(β + 1)

(β − 1)3
(2.10)

and

E
[
eλT Y̌ ∣∣ Y̌1 = 1

] = 1

2

(
β + 1 −

√
(β + 1)2 − 4βe2λ

)
for all λ < log

β + 1

2
√

β
. (2.11)

By symmetry, the statements also hold for Y instead of Y̌ conditioned on Y1 = −1.

Proof Define

τ := inf{t ≥ 1 : Y̌t = 1}.
Define the function ψ by

ψ(λ) = E
[
eλT Y̌ ∣∣ Y̌0 = 1

] = eλ E
[
eλT Y̌ ∣∣ Y̌1 = 1

]
.
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Decomposing according to the position of Y̌ at time 1 and using the strong Markov property
at time τ (in the fourth line) yields

ψ(λ) = eλ E
[
eλT Y̌

1{Y̌1=0}
∣∣ Y̌0 = 1

] + eλ E
[
eλT Y̌

1{Y̌1=2}
∣∣ Y̌0 = 1

]

= β

1 + β
e2λ + eλ E

[
eλ(T Y̌−τ)1{Y̌1=2}

∣∣ Y̌0 = 1
]
E

[
eλτ

∣∣ Y̌1 = 2
]

= β

1 + β
e2λ + 1

1 + β
eλ E

[
eλ(T Y̌−τ)

∣∣ Y̌1 = 2
]
E

[
eλτ

∣∣ Y̌1 = 2
]

= β

1 + β
e2λ + 1

1 + β
eλE

[
eλT Y̌ ∣∣ Y̌0 = 1

]
E

[
eλτ

∣∣ Y̌1 = 2
]

= β

1 + β
e2λ + 1

1 + β
ψ(λ)2.

This quadratic equation has two solutionswhich atλ = 0 take the values 1 andβ, respectively.
The relevant one takes the value 1 and is given in (2.11). Taking the derivatives at λ = 0
gives (2.10). ��
Lemma 2.3 There exists an ε > 0 such that

P[T > t | Ac] ≤ e−εt , t ≥ 1. (2.12)

Proof This is a direct consequence of (2.7), (2.9) and the existence of exponential moments
(Lemma 2.2). ��
Lemma 2.4 There exists an ε > 0 such that

P[Tin > t | A] ≤ e−εt , t ≥ 1. (2.13)

Proof By Lemma 2.1, it is enough to show

P[Tin > t] ≤ e−εt , t ≥ 1. (2.14)

Note that X and Y can be coupled such that Xt ≥ Yt for all t ≤ Tin. Hence

Pk[Tin > t] ≤ P[Yt < k |Y0 = 0].
Now Yt is a sum of t i.i.d. random variables and E[Yt ] = β−1

β+1 t > 0, hence by Cramér’s

theorem, there exists an ε > 0 such that P[Yt < k] ≤ e−εt for t β−1
β+1 ≥ 2k.

Hence

Pk[Tin > t] ≤ e−εt for t
β − 1

β + 1
≥ 2k.

Concluding, we have

P[Tin > t] ≤ e−εt + (1 − α)
∑

2k>t(β−1)/(β+1)

αk ≤ e−εt + αt(β−1)/2(β+1).

��
Lemma 2.5 There exists an ε > 0 such that

P[Tout > t | A] ≤ e−εt , t ≥ 1. (2.15)

Furthermore, for each k ∈ N,

Ek
[
Tout | A

] ≤ k
β + 1

β − 1
. (2.16)
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Proof Let V be a random walk on {0, . . . , k} with the same transition probabilities asU (see
(2.8)) but started at k. Define T V := inf{t > 0 : Vt = 0}.

Note that V can be coupled with Y̌ (started in Y̌0 = k) such that Vt ≤ Y̌t for t ≤ T V .
Arguing as in the proof of Lemma 2.4, we get an ε > 0 such that

P
[
Tout > t | A] = P

[
T V > t

] ≤ P
[
Y̌t > 0

] ≤ e−εt , t ≥ 1.

Let T Y̌
0 := inf{t > 0 : Y̌t = 0}. Note that Y̌ has a drift β−1

β+1 to the left. Hence, the average

time it takes to visit the point left of the starting point is β+1
β−1 . Now T Y̌

0 is the time it takes to
visit the kth point left of the staring point. Hence, again by stochastic domination,

Ek
[
Tout|A

] ≤ Ek

[
T Y̌
0

]
= k

β + 1

β − 1
.

��

2.2 The Time Spent in Excursions

Recall that T = Tin + Texc + Tout. We have dealt with Tin and Tout. Now we turn to the
time Texc the random walk X spends in excursions from k before it hits 0. These excursions
are pieces of the random walk conditioned not to hit 0. Let N denote the number of these
excursions if A occurs and N = 0 on Ac. Note that N is geometrically distributed with
respect to the conditional probability Pk[ · | A].

Our strategy is

• to compute the parameter of N (depending on k),
• to estimate expectation and exponential moments of the lengths of the excursions and
• to show that for the tail of T , it is good enough to replace the lengths of the excursions

by their expected value.

Hence, the tail of N rules the game, see Proposition 2.17.
Finally, we will compute the tail of N with an involved analysis using Mellin transforms.
Let X̄ be the random walk on {0, . . . , k} started in X̄0 = k. Let

T̄0:= inf
{
t > 0 : X̄t = 0

}

and

T̄k := inf
{
t > 0 : X̄t = k

}
.

Let

B:={T̄k < T̄0} = {X̄ returns tokbefore hitting0}.
Lemma 2.6 We have

Pk[B] = 1 − β − 1

βk − 1
.

Proof This is similar to the proof of Lemma 2.1. ��
Let X̌ be the random walk on {0, . . . , k} started at X̌0 = k and conditioned to return to k

before hitting 0. This means the transition probabilities of X̌ are given by Doob’s h-transform
with the harmonic function h0(l) = 1 − β−l . Explicitly, we have

Pk
[
X̌t+1 = l + 1

∣∣ X̌t = l
] = β

β + 1

h(l + 1)

h(l)
= β

β + 1

βl+1 − 1

βl+1 − β
>

β

β + 1
. (2.17)
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Let
T X̌
k := inf

{
t > 0 : X̌t = k

}
. (2.18)

Then

Pk
[
T X̌
k = t

] = Pk
[
T̄k = t

∣∣B
]
.

Let N , T (1), T (2), . . . be independent random variables with respect to Pk and such that
N is geometrically distributed with parameter Pk[Bc] = β−1

βk−1
and

Pk[T (i) = l] = Pk[T̄k = l |B], l ∈ N0, i = 1, 2, . . . .

Also let

T̃ :=
N∑

i=1

T (i). (2.19)

Lemma 2.7 We have

Pk
[
T̃ = t

] = Pk
[
Texc = t

∣∣ A
]
, t ∈ N0.

Proof This is a simple application of the strong Markov property. ��
Lemma 2.8

Ek[N ] ≤ Ek[N | A] = Pk[B]
Pk[Bc] = βk − β

β − 1
(2.20)

and (since N = 0 if k = 0)

E[N ] ≤ E[N | A] = (1 − α)

∞∑

k=1

αk Ek[N ] = α2β

1 − αβ
. (2.21)

Proof This is a direct computation. ��
While T̃ is the quantity we have to study, it is more convenient to get rid of the randomness

inherent in the lengths of the excursions and to replace them by their expected value. Hence,
as a substitute for T̃ , we introduce

T̂ :=N · Ek
[
T (1)]. (2.22)

In order to show that T̃ and T̂ are in fact close, we estimate the exponential moments of T (1)

and use Markov’s inequality. As a direct computation of the exponential moments is a bit
tricky, we make a little detour and use a comparison argument for branching processes. We
prepare for this comparison argument with some considerations on the convex ordering of
geometric distributions. Note that for the case � < 2, a simpler estimate based on variances
would be good enough for our purposes. In fact, the variances exist for any fixed k and give
estimates of order t−2 which is good enough compared with the leading order term t−� if
� < 2.

Lemma 2.9 We can define a family (Wr )r∈(0,1] of geometrically distributed random variables
with parameters r , such that

WrandWq − Wrare independent if 0 < q ≤ r ≤ 1.

We have

P[Wq − Wr = k] =
{
q

(
1 − q

r

)
(1 − q)k−1, if k = 1, 2, . . . ,

q
r (r − q), if k = 0.

(2.23)
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Proof Let (Un)n∈N0 be i.i.d. random variables uniformly distributed on [0, 1]. Let
Wr := inf{n : Un ≤ r}.

It is easy to check that the (Wr ) have the desired properties. ��
Lemma 2.10 Let 0 < q ≤ r ≤ 1 and let Wq and Wr be geometrically distributed with
parameters q and r, respectively. Let ϕ : R → [0,∞) be a convex function. Then

E [ϕ(Wr − E[Wr ])] ≤ E
[
ϕ(Wq − E[Wq ])

]
(2.24)

Proof ByLemma 2.9, wemay andwill assume thatWr andWq −Wr are independent. Hence

Wr − E[Wr ] = E
[
Wr − E[Wr ]

∣∣Wr
] = E

[
Wq − E[Wq ]

∣∣Wr
]
.

By Jensen’s inequality, we get

E
[
ϕ
(
Wr − E[Wr ]

)] = E
[
ϕ
(
E[Wq − E[Wq ]

∣∣Wr ]
)]

≤ E
[
E

[
ϕ(Wq − E[Wq ])

∣∣Wr
]]

= E
[
ϕ(Wq − E[Wq ])

]
.

(2.25)

��
Corollary 2.11 For λ ∈ R, κ ≥ 1 and 0 < q ≤ r ≤ 1, we have

E
[
eλ(Wr−E[Wr ])κWr

]
≤ E

[
eλ(Wq−E[Wq ])κWq

]
. (2.26)

Proof Let ϕ(x):=eλxκx . Since E[Wq ] ≥ E[Wr ], we get by Lemma 2.10

E
[
eλ(Wr−E[Wr ])κWr

]
= E [ϕ(Wr − E[Wr ])] κE[Wr ]

≤ E
[
ϕ(Wq − E[Wq ])

]
κE[Wq ]

= E
[
eλ(Wq−E[Wq ])κWq

]
.

��
Lemma 2.12 Let Z (1) and Z (2) be two Galton–Watson branching processes with generation
dependent offspring laws and Z (1)

0 = Z (2)
0 = 1. Let

Ž (i):=
∞∑

n=0

Z (i)
n , i = 1, 2,

be the total population sizes. The offspring law of Z (i) in generation n is assumed to be
geometric with parameter pi,n, i = 1, 2, n ∈ N0. We also assume that p1,n ≤ p2,n for all
n ∈ N0 and

E
[
(Ž (1))2

]
< ∞.

Then, we have

E
[
Ž (2)] ≤ E

[
Ž (1)] < ∞ and Var

[
Ž (2)] ≤ Var

[
Ž (1)] < ∞. (2.27)

For all λ ∈ R with E[eλŽ (1) ] < ∞, we have

E
[
exp

(
λ(Ž (2) − E[Ž (2)])

)]
≤ E

[
exp

(
λ(Ž (1) − E[Ž (1)])

)]
. (2.28)
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In particular, for λ ≥ 0,

E
[
exp

(
λŽ (2)

)]
≤ E

[
exp

(
λŽ (1)

)]
. (2.29)

Proof First assume that
p1,n = 1 for n ≥ n0for somen0. (2.30)

Hence Ž (i) = Z (i)
0 + · · · + Z (i)

n0 , i = 1, 2. For n0 = 1, the statement follows from the
expectation and variance formula for the geometric distribution. The induction step from
n0 − 1 to n0 is a simple application of Wald’s formula and the Blackwell-Girshick formula.
In order to get rid of assumption (2.30), take monotone limits.

For the exponential inequalities we proceed similarly. Consider first the case (2.30) and
n0 = 1. In this case the assertion is a direct consequence of Corollary 2.11. For the induction
step, we assume that the statement is true for n0 − 1 and we show it for n0. Define

κ(i):=E[exp(λ(Z (i)
2 + · · · + Z (i)

n0 − E[Z (i)
2 + · · · + Z (i)

n0 ])) ∣∣ Z (i)
1 = 1].

By the induction hypothesis, applied to the branching processes started at time 1 instead of
0, we have

1 ≤ κ(2) ≤ κ(1).

By decomposing according to the value of Z (i)
1 , we infer (again for the processes started at

time 0)

E
[
exp

(
λ

(
Ž (2) − E[Ž (2)]

))]
= E

[
exp

(
λ

(
Z (2)
1 + · · · + Z (2)

n0 − E[Z (2)
1 + · · · + Z (2)

n0 ]
))]

= E
[
exp

(
λ

(
Z (2)
1 − E[Z (2)

1 ]
))

(κ(2))Z
(2)
1

]

≤ E
[
exp

(
λ

(
Z (2)
1 − E[Z (2)

1 ]
))

(κ(1))Z
(2)
1

]

≤ E
[
exp

(
λ

(
Z (1)
1 − E[Z (1)

1 ]
))

(κ(1))Z
(1)
1

]

= E
[
exp

(
λ

(
Ž (1) − E[Ž (1)]

))]
,

(2.31)
where in the fourth line we used Corollary 2.11 and the assumption p1,1 ≤ p2,1. ��
Lemma 2.13 We have

2β

β − 1
− 2β(β + 1)

β − 1
k β−k ≤ Ek

[
T (1)] ≤ 2β

β − 1
for all k ≥ 2 (2.32)

and

Vark
[
T (1)] ≤ 4β(β + 1)

(β − 1)3
for all k ≥ 2. (2.33)

Furthermore, there is a δ > 0 such that

Ek
[
eλ(T (1)−Ek [T (1)])] ≤ 1 + 4β(β2 + 1)

(β − 1)3
λ2 for all λ ∈ [−δ, δ], k ≥ 2. (2.34)

Proof Let Y be the random walk on Z that jumps to the right with probability β/(1+β) and
to the left with probability 1/(1 + β) starting in k − 1. Let

T Y
l := inf

{
t > 0 : Yt = l

}
, l = 0, . . . , k.
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Recall T X̌
k from (2.18). By the basic connection between the occupation times of excursions

of random walks and Galton–Watson processes with geometric offspring distributions, we
see that 1

2 (T
Y
k + 1) has the same distribution as Ž (1) from Lemma 2.12 with p1,n ≡ β

β+1 .

Similarly, using (2.17), we see that 1
2T

X̌
k has the same distribution as Ž (2) with

p2,n = β

β + 1

βk−n+1 − 1

βk−n+1 − β
> p1,n, n = 0, . . . , k − 1.

By Lemmas 2.12 and 2.2, we infer

Ek
[
T (1)] = Ek

[
T X̌
k

] ≤ 1 + Ek
[
T Y
k

] = 2β

β − 1
(2.35)

and

Vark
[
T (1)] = Vark

[
T X̌
k

] ≤ Var
[
T Y
k

] = 4β(β + 1)

(β − 1)3
. (2.36)

On the other hand,

Ek
[
T (1)] = 1 + E

[
T Y
k

∣∣T Y
k < T Y

0

] ≥ 1 + E
[
T Y
k 1{T Y

k <T Y
0 }

]

= 1 + E
[
T Y
k

] − Pk
[
T Y
k > T Y

0

]
E

[
T Y
k

∣∣T Y
k > T Y

0

]
.

By Lemma 2.5, we get

E
[
T Y
0

∣∣T Y
k > T Y

0

] = Ek
[
Tout

∣∣ A
] ≤ β + 1

β − 1
k.

Using the Markov property and arguing as in Lemma 2.5, we get

E
[
T Y
k − T Y

0

∣∣T Y
k > T Y

0

] = β + 1

β − 1
k.

Summing up and using Lemma 2.6 to get Pk[T Y
k > T Y

0 ] = β−1
βk−1

, we have

Ek
[
T (1)] ≥ 2β

β − 1
− β − 1

βk − 1
k 2

β + 1

β − 1
.

Now we turn to the proof of (2.34). Again by Lemmas 2.12 and 2.2, we get for λ < log β+1
2
√

β

Ek
[
eλ(T (1)−Ek [T (1)])] ≤ E

[
eλ(T Y−E[T Y ])]

= F(λ):=1

2

(
β + 1 −

√
(β + 1)2 − 4βe2λ

)
· e−(2β/(β−1))λ.

(2.37)

The first and second derivatives at zero are

F ′(0) = 0 and F ′′(0) = 4β(β2 + 1)

(β − 1)3
.

Hence, by Taylor’s theorem, there exists a δ > 0 such that

F(λ) ≤ F(0) + F ′′(0)λ2 = 1 + 4β(β2 + 1)

(β − 1)3
λ2 for all λ ∈ [−δ, δ]. (2.38)

Combining (2.37) and (2.38) gives (2.34). ��
Recall T̃ and T̂ from (2.19) and (2.22), respectively. We now use the exponential moment

estimates on T (1) to get that T̃ and T̂ are close.
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Lemma 2.14 There is a constant c > 0, such that for all t > 0, we have

P
[|T̃ − T̂ | > t

] ≤ c t−2�. (2.39)

Proof By Markov’s inequality and Lemma 2.13, there are δ > 0 and C < ∞ such that for
λ ∈ [0, δ],

Pk
[|T̃ − T̂ | > t

∣∣N
] ≤ e−λt Ek

[
exp(λ|T̃ − T̂ |) ∣∣N]

= e−λt Ek
[
exp(λ|T (1) − Ek[T (1)]|)]N

≤ 2e−λt (1 + Cλ2)N

≤ 2e−λt eCλ2N .

(2.40)

We need to make a good choice for λ to make this inequality effective. Recall that N is
geometric with parameter rk := β−1

βk−1
under the conditional probability Pk[ · | A]. Define

λk :=
√

1

C
log

(
1 − rk/2

1 − rk

)
, k = 2, 3, . . . (2.41)

Then we have

Ek
[
eCλ2k N

∣∣ A
] = rk

1 − (1 − rk)eCλ2k

= rk
1 − (1 − rk/2)

= 2, k ≥ 2, (2.42)

and for l > k,
Ek

[
eCλ2l N

∣∣ A
] ≤ Ek

[
eCλ2k N

∣∣ A
] = 2. (2.43)

Note that β−1
βk−β

< 1
2 for all k ≥ 2. Hence (using the fact that log(1 + x) ≥ x/2 for

x ∈ [0, 1/2]),

λk =
√

1

C
log

(
1 + 1

2

β − 1

βk − β

)
≥

√
β − 1

4C
β−k/2 for all k ≥ 2. (2.44)

Let C ′:=
√

β−1
4C . Note that λk ↓ 0 and let k0 ∈ N be large enough such that λk < δ for all

k ≥ k0.
Then (using Lemma 2.18 with

√
β instead of β and hence 2� instead of � in the last step)

there is a constant C̃ < ∞ such that

P
[|T̃ − T̂ | > t

] ≤ 2(1 − α)

∞∑

k=1

αke−λk∨k0 t Ek

[
e
Cλ2k∨k0 N

∣∣ A
]

≤ 4e−λk0 t + 2(1 − α)

∞∑

k=k0+1

αke−λk t Ek

[
eCλ2k N

∣∣ A
]

≤ 4e−λk0 t + 4(1 − α)

∞∑

k=k0+1

αke−C ′β−k/2t

≤ 4e−λk0 t + C̃t−2�.

(2.45)

Since λk0 > 0 is a constant, the claim follows. ��
It is still a bit inconvenient to work with T̂ as the expectation of T (1) depends on k,

though only slightly. The next step is to replace Ek[T (1)] in the definition of T̂ by its limit
limk→∞ Ek[T (1)] = 2β

β−1 .
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Lemma 2.15 There is a constant c > 0, such that for all t > 0, we have

P

[∣∣∣∣T̂ − N
2β

β − 1

∣∣∣∣ > t

]
≤ e−c

√
t . (2.46)

Proof By Lemma 2.13, and by the fact that T̂ = 2N if k = 1, we know that
∣∣∣∣T̂ − N

2β

β − 1

∣∣∣∣ ≤ N
2β(β + 1)

β − 1
kβ−k for all k ≥ 1.

Hence for any k0 ∈ N,

P

[∣∣∣∣T̂ − N
2β

β − 1

∣∣∣∣ > t

]
≤

∞∑

k=1

(1 − α)αk Pk

[
N
2β(β + 1)

β − 1
kβ−k > t

]

≤ αk0+1 +
k0∑

k=1

(1 − α)αk
(
1 − β − 1

βk − 1

)tβkk−1 β−1
2β(β+1)

≤ αk0+1 + exp

(
− (β − 1)2

2β(β + 1)
k−1
0 t

)
.

Now choose k0 = √
t to get the result. ��

In order to see that the error terms are smaller than the main term, that is the tail of N , we
need a lower bound for the tail of N . Since we give a more detailed analysis later, here we
only make a very rough assertion.

Lemma 2.16 There exists a constant c > 0 such that

P[N > t] ≥ ct−� for all t ≥ 1.

Proof For t ∈ [1, β2], the statement holds with c = P[N > β2]. Now assume t ≥ β2 and
let c = β−1

β
(1 − α)e−2β2

. Let k ∈ N, k ≥ 2 be such that βk ≤ t ≤ βk+1. Then (recall

Lemma 2.1 and note that 1 − x ≥ e−2x for x ∈ [0, 1/2])
P[N > t] ≥ β − 1

β
P[N > t | A]

≥ β − 1

β
(1 − α)αk

(
1 − β − 1

βk − 1

)t

≥ β − 1

β
(1 − α) exp

(
−2

β − 1

βk − 1
βk+1

)
αk

≥ c αk ≥ c t−�.

��
We summarize the above discussion in the following proposition.

Proposition 2.17 We have

lim
t→∞

P
[
N >

β−1
2β t

]

P[T > t] = 1.

Proof By Lemma 2.15, the tails of 2β
β−1N and T̂ coincide in our scale, given by Lemma 2.16.

By Lemma 2.14, the tails of T̃ and T̂ coincide. Finally, by Lemmas 2.4, 2.5 and 2.7 the tails
of T and T̃ coincide. ��

123



27 Page 14 of 20 N. Gantert, A. Klenke

2.3 The Tail of a Geometric RandomVariable with Random Parameter

In order to compute the tail of N , it is convenient to replace the geometrically distributed
random variable with parameter β−1

βk−1
by an exponentially distributed random variable N ′

with parameter β−k . Note that we neglected the factor β − 1 and we will re-introduce it by
a scaling of t . The tail of N ′ is given by

P[N ′ > t] = f (t):=
∞∑

k=0

(1 − α)αk exp
( − β−k t

)
, t > 0. (2.47)

Lemma 2.18 There are constants 0 < C1 < C2 < ∞ such that

C1t
−� ≤ f (t) ≤ C2t

−� for all t > 1.

Proof Let k ∈ N0 be chosen such that βk−1 ≤ t < βk . Recall that � = − log(α)/ log(β).
Then

f (t) ≥ f (βk) ≥ (1 − α)αk e−1 = (1 − α)e−1(βk)−� ≥ (1 − α)e−1β−� t−�. (2.48)

Let

C2:=α−1
∞∑

k=−∞
(1 − α)αk exp

( − β−k).

Note that f is decreasing and hence for l ∈ Z and βl+1 > t ≥ βl , we have

f (t) ≤ f (βl) =
∞∑

k=0

(1 − α)αk exp
( − βl−k)

= αl
∞∑

k=−l

(1 − α)αk exp
( − β−k) ≤ C2α

l+1 ≤ C2 t
−�.

��
Lemma 2.19 We have

lim
t→∞

P[N > t]
f
(
(β − 1)t

) β

β − 1
= 1. (2.49)

Proof By Lemmas 2.16 and 2.18, all error terms of order o(t−�) can be neglected. We use
this first to show that the summands of f (t) with βk ≤ t2/3 are negligible:

(1 − α)
∑

k:βk≤t2/3

αk(1 − β−k)t ≤ (1 − α)
∑

k:βk≤t2/3

αk exp
(
−β−k t

)

≤ (1 − α)

∞∑

k=0

αk exp
(−t1/3

)

= exp
(−t1/3

)
.

(2.50)

For N note that

Pk[N > t] ≤ Pk[N > t | A] =
(
1 − β − 1

βk − 1

)t

≤ exp
(
−β−k(β − 1)t

)
. (2.51)
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We use this first to show as in (2.50) that the summands of P[N > t] with βk ≤ t2/3 are
negligible:

(1 − α)
∑

k:βk≤t2/3

αk Pk[N > t] ≤ exp
(−((β − 1)t)1/3

)
. (2.52)

Recall from Lemma 2.1 that Pk[A] = β−1
β−β1−k . Let ε > 0 and choose t large enough such

that Pk[A] ≤ (1 + ε)
β−1
β

for all k such that βk > t2/3. Then

P[N > t] ≤ (1 − α)
∑

k:βk>t2/3

αk Pk[N > t] + exp
(−((β − 1)t)1/3

)

≤ (1 + ε)
β − 1

β
(1 − α)

∑

k:βk>t2/3

αk Pk[N > t | A] + exp
(−((β − 1)t)1/3

)

≤ (1 + ε)
β − 1

β
(1 − α)

∞∑

k=0

αk exp
(
−β−k(β − 1)t

)
+ exp

(−((β − 1)t)1/3
)

= (1 + ε)
β − 1

β
f
(
(β − 1)t

) + exp
(−((β − 1)t)1/3

)
.

(2.53)
This shows

lim sup
t→∞

P[N > t]
f
(
(β − 1)t

) β

β − 1
≤ 1.

Now we come to the complementary estimate for the lim inf.
Note that log(1 − x) ≥ −x − x2 for x ∈ [0, 1/2]. For the summands of P[N > t] with

βk > t2/3, and for t ≥ β3, we have k ≥ 2 (thus β−1
βk−1

≤ 1
β+1 ≤ 1

2 ) and hence

log

(
1 − β − 1

βk − 1

)
≥ − β − 1

βk − 1
−

(
β − 1

βk − 1

)2

≥ −β − 1

βk
− β2−2k .

We infer for C = C(β) large enough and all t ≥ 2,

P[N > t] = P[N > t | A]P[A] ≥ P[N > t | A]β − 1

β

≥ β − 1

β
(1 − α)

∑

k:βk>t2/3

αk
(
1 − β − 1

βk − 1

)t

≥ β − 1

β
(1 − α)

∑

k:βk>t2/3

αk exp
(
−β−k(β − 1)t

)
exp

(
−β2−2k t

)

≥ β − 1

β
(1 − α)

∑

k:βk>t2/3

αk exp
(
−β−k(β − 1)t

)
exp

(−β2t−1/3)

≥ β − 1

β

(
1 − β2 t−1/3) (1 − α)

∑

k:βk>t2/3

αk exp
(
−β−k(β − 1)t

)

≥ β − 1

β

(
1 − β2 t−1/3) (

f
(
(β − 1)t

) − exp
(−((β − 1)t)1/3

))
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27 Page 16 of 20 N. Gantert, A. Klenke

≥ β − 1

β

(
1 − C t−1/3) f

(
(β − 1)t

)
.

��
Remark 2.20 Our comparison of the tails of N ′ and T in Lemma 2.19 and Proposition 2.17
allows to recover a result of Solomon [21] which we briefly sketch here.

Let ν:= 2β
(1−β)2

and let ψ be the Laplace transform of ν N ′, that is,

ψ(λ) = E
[
e−λ νN ′]

, λ ≥ 0.

Using f from (2.47) and partial integration, we get

ψ(λ) = 1 − νλ

∫ ∞

0
f (t)e−λνt dt = 1 − ν(1 − α)λ

∞∑

k=0

(αβ)k

1 + λνβk
. (2.54)

If αβ > 1, we get the asymptotics

α−�
(
1 − ψ

(
λβ−�

)) �→∞−→ ν(1 − α)λ

∞∑

k=−∞

(αβ)k

1 + λνβk
(2.55)

uniformly in λ ∈ [1, β]. Now let ϕ be the Laplace transform of T , that is ϕ(λ) = E[e−λT ],
λ ≥ 0. Using Lemma 2.19 and Proposition 2.17, if αβ > 1, it is easy to show that

lim
λ↓0

1 − ϕ(λ)

1 − ψ(λ)
= β − 1

β
. (2.56)

In fact, assume we have two probability measures μ1 and μ2 on [0,∞) and ξ ∈ (0,∞) such
that

lim
t→∞

μ1((t,∞))

μ2((t,∞))
= ξ. (2.57)

Denote by L1 and L2 the Laplace transforms of μ1 and μ2, respectively. Then

1 − L1(λ)

1 − L2(λ)
=

∫ ∞
0 μ1((t,∞))e−λt dt

∫ ∞
0 μ2((t,∞))e−λt dt

−→ ξ, as λ ↓ 0 (2.58)

if μ1 (and hence μ2) have infinite first moment, that is, if
∫ ∞

0
μ1((t,∞)) dt = ∞. (2.59)

Note that the expectation of N ′ is infinite if and only if αβ ≥ 1. Summing up, for αβ > 1,
we have

α−�
(
1 − ϕ

(
λβ−�

)) �→∞−→ ν(1 − α)
β − 1

β
λ

∞∑

k=−∞

(αβ)k

1 + λνβk
(2.60)

uniformly in λ ∈ [1, β]. A similar asymptotics was found already by Solomon [21, Lemma
(2.10)(ii)] for a model of random walk in a random environment on Z with a drift to the left
except for geometrically placed reflection points. His asymptotics is the same as ours except
for an obvious factor due to the fact that (i) Solomon’s “traps” have size at least one while
ours start at zero and (ii) our random walk has a positive chance to exit the trap without
reaching the bottom.

The usual Tauber theorems that would help to infer the tail behaviour of T from the
behaviour of its Laplace transform near zero assume regular variation of the tails (and the
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Laplace transforms) which is not the case here. Solomon’s proof uses asymptotic equivalence
of the Laplace transformψ to the Laplace transform ϕ he is interested in, just as we did above.
However, this is possible only in the case αβ > 1 which Solomon is mainly concerned with.
Our approach of comparing the tails of the approximating random variable N ′ instead of its
Laplace transform allows to deal also with the case αβ ≤ 1.

Now we come to determining the asymptotic behavior of f (t) as t → ∞. The following
proposition completes the proof of Theorem 1.1.

Let � denotes Euler’s � function. Recall that �(a − bi) = �(a + bi) for a, b ∈ R, where
the overline indicates the complex conjugate. Also let arg(a + bi) ∈ (−π/2, π/2) denote
the angle of a + bi for a > 0 and b ∈ R.

Proposition 2.21 For all γ > �, as t → ∞, we have

f (t) = (1 − α)�(�)

log(β)
t−�

⎡

⎣1 +
∑

�∈Z, ��=0

1

�(�)
�

(
� − 2π i �

log(β)

)
exp

(
2π i �

log(t)

log(β)

)⎤

⎦ + O(t−γ )

(2.61)
or equivalently

f (t) = (1 − α)�(�)

log(β)
t−�

[
1 +

∞∑

�=1

c� cos

(
2π�

log(t)

log(β)
− d�

)]
+ O(t−γ ) (2.62)

with

c� = 2

∣∣∣�
(
� + 2π i �

log(β)

)∣∣∣
�(�)

and d� = arg

(
�

(
� + 2π i �

log(β)

))
. (2.63)

Proof The proof of (2.61) uses Mellin transforms and follows the strategy outlined in [11,
Example 12]. We define the Mellin transform of f by

f ∗(z):=
∫ ∞

0
t z−1 f (t) dt, z ∈ C, �(z) ∈ (0, ρ). (2.64)

An explicit computation shows that the integral converges for z in the strip �(z) ∈ (0, ρ)

and equals

f ∗(z) = �(z)(1 − α)

1 − αβz
. (2.65)

That is, f ∗ is holomorphic for�(z) ∈ (0, ρ) and can be uniquely extended to a meromorphic
function inCwith poles in the nonpositive integers and in χ�:=�+2π i�/ log(β), see Fig. 1.
Let

∞∑

n=−∞
a�,n(z − χ�)

n

be the Laurent series of f ∗(z) around the singularity at χ�. Then

a�,−1 = − �(χ�)

log(β)
(1 − α). (2.66)

Fix an η ∈ (0, �). The inversion formula for Mellin transforms (see [11]) gives

f (t) = 1

2π i

∫ η+∞i

η−∞i
f ∗(z)t−z dz. (2.67)
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Fig. 1 Complex plane with the singularities of f ∗ and the integration path

Fix some γ > �. We can approximate the integral by the finite integrals

f (t) = 1

2π i

∫ η+R�i

η−R�i
f ∗(z)t−z dz (2.68)

where R� = (2�+ 1)π/ log(β). We compute this integral using residue calculus for the path
consisting of the four pieces [η − R�i, η + R�i], [η + R�i, γ + R�i], [γ + R�i, γ − R�i]
and [γ − R�i, η − R�i]. Note that the horizontal paths do not hit the poles and hence the
denominator of f ∗ is bounded away from 0 while the modulus of the � function decreases
very quickly with �. Thus these integrals can be neglected. The integral along the second
vertical piece can be estimated by

∣∣∣∣
∫ γ+R�i

γ−R�i
f ∗(z)t−z dz

∣∣∣∣ ≤ t−γ 1

αβγ − 1

∫ ∞

−∞
|�(γ + ir)| dr . (2.69)

Aswe integrate clockwise, f (t) isminus the sumof the residues in (χ�)�∈Z plus theO(t−γ )

term. According to (2.66) these residues are t−χ�a�,−1 = −t−χ��(χ�)
1−α
log(β)

. Concluding,
we get (2.61). ��

Note that while (2.61) is true for all values of γ , the constant in the term O(t−γ ) in (2.61)
is of order �(γ ), see (2.69) and thus increases quickly with γ .
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