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Abstract

An information-rich digital model for pipe systems is valu-
able for facility management and maintenance. Pipe sys-
tems in existing facilities can be captured for example
using laser scanning equipment or cameras, providing
point clouds or images. While these two data sources
can provide diverse information, it is not straightforward
to register one with the other. In this paper, we propose a
novel approach to automatically create and enrich geomet-
ric models for pipe systems by co-registering laser-scanned
point clouds and photos. Data from two separate sources
are collected to test our method. Subsequently, a pho-
togrammetric point cloud is reconstructed to establish a
mapping between all 2D images and the laser-scanned 3D
point cloud. State-of-the-art computer vision methods are
applied to enrich the raw 2D and 3D datasets. Finally, we
use the mapping to merge the processed datasets into one
combined, information-rich model.

Introduction

The research presented in this paper is about creating and
enriching 3D models for pipe systems using laser-scanned
point clouds and photos. By creating, we refer to the pro-
cess of creating the geometric digital representations of
pipes from captured data, including laser-scanned point
cloud and photos. By enriching, we refer to adding use-
ful information such as the fluid type and flow direction
for pipes to the geometric model to get an information-
rich 3D model. Information-rich digital representations of
physical assets receive growing attention in Architecture,
Engineering, Construction (AEC), and Facilities Manage-
ment (FM) sectors as they can provide substantial value to
all stakeholders.

Holistic digital methods such as Building Information
Modeling (BIM) promise considerable improvements for
efficiency and transparency, helping profitability and sus-
tainability goals (Borrmann et al. 2018). This is especially
true for the operating phase, where recently the term of the
Digital Twin has been adopted (Brilakis et al. 2019), based
on the concept previously applied in the manufacturing in-
dustry (Kritzinger et al. 2018). Initially slow adaptation of
digital methods in the sectors of AEC and FM is picking
up speed in the industry (Talebi 2014, Pérn et al. 2017).
As most building stock is already existing, the creation of
useful digital models of existing structures is essential for
the successful implementation of digital methods (Volk
et al. 2014).

Depending on the use case, the geometric representation
is an important but non-essential part of a digital model;

however, in the built environment, it poses a significant
contribution as planning and FM activities are heavily
dependent on geometric information (Wetzel & Thabet
2015, Pirn et al. 2017). To initiate a suitable basis for
the implementation of digital methods for existing struc-
tures, capturing the current as-is status of the building and
transferring it into a suitable digital representation is a key
requirement.

Driven by leaps in the development of hardware and soft-
ware solutions, research has seen a variety of new attempts
to automate this process and inspired industry-ready soft-
ware applications (Son et al. 2015). In academia, the field
of Scan-to-BIM has become an extensive field of research
(Son et al. 2015, Adan et al. 2018), recently also coined as
Digital Twinning (Lu & Brilakis 2019).

Most of these research efforts focus on the clear definition
and technical improvement of single processing steps, with
mostly one method or data source at its core. In this paper,
we showcase a pipeline that covers the majority of steps
necessary for an end-to-end solution, from raw industry-
standard input data of two different types to a useful seman-
tically rich 3D representation. As the core component, we
present a method to co-register separately recorded laser-
scanned point clouds and photos. This allows us to merge
complementary information that we detect in the datasets
independently using state-of-the-art computer vision al-
gorithms to leverage the full combined potential of the
captured data.

Background

In order to create a sensible digital representation of exist-
ing structures in the built environment, current conditions
need to be captured first; subsequently, models need to be
reconstructed. Esfahani et al. (2019) present work to sup-
port the decision-making process with regard to the choice
of capturing equipment and further processing options. On
the basis of raw capture data, the manual reconstruction
of useful digital models is possible but time-consuming
and error-prone (Fumarola & Poelman 2011, Hullo et al.
2015).

The processing steps towards a useful model can be di-
vided into two categories: 1) Point cloud processing and
enrichment and 2) model reconstruction. In the first step,
it makes sense to distinguish individual objects in the
point cloud or distinguish between object classes. For
domain-specific applications, this has been achieved using
manually selected, geometric features in the point cloud.
Yokoyama et al. (2013) use principle component analysis
(PCA) for detecting pole-like objects, Lu & Brilakis (2019)



detect bridge cross sections after intelligent slicing, the
authors of S3DIS (Armeni et al. 2016) use a ‘peak-gap-
peak’pattern for separation of rooms, Czerniawski et al.
(2016) detect pipe spools point clouds based on local cur-
vature. Data-driven methods such as the artificial neural
network architectures PointNet (Qi et al. 2017) and KP-
Conv (Thomas et al. 2019) are more domain-independent,
given the availability of suitable training data. The lat-
ter has shown convincing results for indoor environments
(S3DIS (Armeni et al. 2016)), urban scenes (Paris-Lille-
3D (Roynard et al. 2018)) and railway tunnels (Soildn et al.
2020).

Specifically for the AEC domain, with Scan2BIM-Net,
Perez-perez et al. (2021) introduce an approach that is
based on a combination of network architectures for se-
mantic segmentation leading to robust results for the pre-
sented indoor dataset. Agapaki & Brilakis (2020) show-
case a solution for the use case of industrial scenes that
puts emphasis on minimized manual effort for training
data annotation.

To bring the single steps together to a full toolchain that
is suitable to solve the problem of Scan-to-BIM, recent
works aim at combining previously established methods.
For Scan-to-BIM for historic buildings, Andriasyan et al.
(2020) introduce an end-to-end workflow from input point
cloud to a BIM model that exists of precisely meshed ob-
jects. Croce et al. (2021) present a similar, semi-automatic
approach that uses a random forest classifier to segment
the point cloud into distinct structural element classes. Ina
method closely related to our approach, Wang et al. (2022)
use a corresponding point cloud reconstructed from depth
images (RGB-D) to enrich the laser scanning point cloud
with semantics detected in 2D. Furthermore, in Wang et al.
(2022) the enriched point cloud is further processed to au-
tomatically remodel the mechanical, electrical and plumb-
ing structures (MEP) from a set of regular shaped and
irregular shaped objects, with the method separately intro-
duced in Wang et al. (2021).

Research methodology

Our proposed approach of creating and enriching a 3D
digital model of pipes consists of two main steps:

¢ Geometric reconstruction
¢ Information enrichment

Throughout the approach, two different types of raw data,
photos and point clouds, are processed by various algo-
rithms to extract diverse information. Furthermore, the
proposed co-registration method is applied to locate pho-
tos in the point cloud and thus enable to map the infor-
mation extracted from 2D image to 3D space. The whole
process is illustrated in Figure 1 and introduced in detail
in the following section.

Photos taken by the Terrestrial laser scanning (TLS) equip-
ment are combined with the independently gathered cam-
era photos in a photogrammetric co-registration step to
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Figure 1: The proposed process of creating and enriching 3D
models of pipes, through separate steps of co-registration,
enrichment and reconstruction

establish the spatial link between the datasets. Both the
photos and point cloud are processed using computer vi-
sion algorithms to enrich the raw data with specific in-
formation individually. The enriched laser-scanned point
cloud is used as the input for the geometric reconstruction
of the pipe model. Finally, the information parsed from the
photos is reprojected to the reconstructed 3D model using
the mapping established through the initial co-registration
step.

In the following subsections, the implemented steps of the
proposed method are introduced in more detail.

Geometric reconstruction

The most precise source of geometric information in this
workflow is the laser-scanned point cloud as captured by
TLS. Hence we use it as the basis for our 3D model recon-
struction. To narrow down the problem space and allow
for detailed reconstruction, we first enrich the raw point
cloud to be able to filter and split it.

3D enrichment by semantic segmentation

In this step, the input laser scanning point cloud is seg-
mented by KPConv, more specifically the KP-FCNN ar-
chitecture, a well-performing 3D deep learning architec-
ture on large-scale point cloud segmentation. As shown
in Table 1, KPConv (Thomas et al. 2019) is one of the
best-performing neural networks for point cloud segmen-
tation on the S3DIS dataset (Armeni et al. 2016), a widely
used benchmark dataset for large-scale indoor environ-
ment point clouds. We trained our model on a manually
labeled dataset of an industrial facility collected in a re-
lated study (Noichl et al. 2021) and made the inference on
our collected dataset. The inference segmentation result
of KPConv is used as input to the following steps.

3D enrichment by instance segmentation

The result of semantic segmentation is the full point cloud
with predicted class labels. All points belonging to one
category have the same label, regardless of whether they
belong to the same instances. In our case of creating a digi-



Table 1: Performance comparison among di erent 3D deep
learning architectures on selected categories of S3DIS (Armeni

et al. 2016) dataset: *Qi et al. (2016), TLandrieu & Simonovsky
(2018), *Huang et al. (2018), 5Li et al. (2018), IThomas et al.
(2019), ! Zhao et al. (2021)

model mloU ceiling floor window door

PointNet47.6 880  69.3 887 475
SPG" 621 899 764 951 553
RSNet! 565 928 925 786 516
Pointenn®65.4 948 758 973 584
KPConv67.1 936 831 924  66.1

PointTr.! 704 943 84.7 97.5 66.1

tal twin of pipes, segmentation only to semantic level is not
sufficient for the further steps necessary for reconstructing
pipe instances. Therefore, the semantic segmentation re-
sult needs to be further segmented to be able to identify
separate instances.

In our approach, we assume that one pipe instance can be a
represented by one cylinder or several cylinders connected
with elbows, as long as fluid can flow through these parts.
Based on the assumption that one pipe instance is contin-
uous and not intersected with other pipes, different pipes
can be segmented by clustering the point cloud. We use
the region growing algorithm (Rabbani et al. 2006) in the
Point Cloud Library (Rusu & Cousins 2011) that merges
the points that are close enough in terms of distance and
local smoothness to a point cluster. The output of this step
is the point clusters of point instances, which means points
that belong to one cluster representing one corresponding
pipe instance.

3D reconstruction

In this step, based on the assumption that one pipe instance
consists of one or multiple cylinders connected with el-
bows, we fit cylinders to the instance clusters by applying
M-Estimator Sample Consensus (Torr & Zisserman 2000),
a variant of Random Sample Consensus (RANSAC) (Fis-
chler & Bolles 1981). This allows us to extract the pa-
rameters of cylinders in each instance cluster, which here
include the cylinder axis and the radius. We further use as
the radius as the nominal diameter of the pipe 1. The fit-
ting process works here directly if one pipe instance can be
represented by a single cylinder. However, for those pipe
runs that contain elbows, the elbow parts cannot be repre-
sented by cylinders directly. First, the radius of the elbow
connecting the straight pipes is calculated as r = 1% 1
(Parisher & Rhea 2011). Then, the according fillet start
and end points are calculated in 3D. The resulting path is
used to sweep a circle with the previously identified radius
I and create a 3D model of the pipe using the Python
scripting functionality of the open source application of

FreeCADL. Thus, we have created a geometric 3D model
of pipes, which contains the fitted (cylindrical part) and
estimated (elbow part) surfaces of pipes, as well as the
corresponding segmented point cloud instances the recon-
struction is based on.

Information enrichment

In this step, we enrich the geometric reconstruction of the
pipe system by adding semantic information. This infor-
mation can be extracted from images, using the standard-
ized labels on pipes that are used to indicate the fluid type
and flow direction. However, co-registering laser scanning
point cloud and RGB photos is not straightforward. We
use our own method to bring the two data types together
as follows.

Photogrammetric co-registration

The information enrichment starts with the reconstruction
of the photogrammetric point cloud. Information like la-
bels on pipes cannot be recognised in point clouds, but
in images. Accordingly, images are a great source for
adding this type of semantic information to the geometric
pipe twin. In order to map information extracted from 2D
images to the 3D point cloud, we propose to create a pho-
togrammetric point cloud based on the images collected in
the same area as the laser scanning point cloud.

In the reconstruction process, the extrinsic and intrinsic
camera parameter matrices are estimated. In our approach,
we apply COLMAP (Schonberger et al. 2016, Schonberger
& Frahm 2016), an open-source Structure-from-Motion
(SfM) and Multi-View Stereo (MVS) software to recon-
struct photogrammetric point clouds. The terrestrial laser
scanner Leica RTC360 was used to capture the laser scan-
ning point cloud along with RGB images to colorize the
points. The input of SfM is a set of overlapping images
taken from different viewpoints by the laser scanner and
camera. SfM starts from feature detection through fea-
ture matching and then reconstructs the scene in 3D space,
including the reconstructed intrinsic and extrinsic camera
parameters of all images. The estimated camera poses,
including the position and orientation of each acquired
image in the reconstructed sparse photogrammetric point
cloud and the according reconstructed dense point cloud
are illustrated in Figure 2. The output after this step is
the computed extrinsic and intrinsic camera parameters of
the cameras of the laser scanner and the digital single-lens
reflex (DSLR) camera we used to capture the pipes.
Subsequently, we map the images taken by the DSLR cam-
era to the laser scanning point cloud. We use [ to denote
the DSLR camera image set and [; to denote the whole
laser scanner image set that are used to reconstruct the
photogrammetric point cloud. For an image in camera im-
age set Oj P 0o, 0L, and O}, denote the corresponding
camera extrinsic and intrinsic parameter matrices. These
parameters are computed by SfM from the previous step
and are in the coordinate of photogrammetric point cloud.
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