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ABSTRACT: The high effort of operating and maintaining existing infrastructure facilities resulted in a large
stock of structurally deficient bridges in most industrialized countries. Today, the condition assessment of
bridges is conducted mostly manually. To relieve effort and costs, the digitization and automation of conven-
tional manual, labour-intensive methods is necessary. We interpret the ambiguously used term ”digital twin”
(DT) in this study as a semantic-geometric model of an existing asset (here, a bridge) that contains all informa-
tion required for assessing its current condition. This paper proposes an approach to automatically generate the
DT of existing bridges from point cloud data (PCD) and images captured from the structure. The PCD of the
bridge is semantically segmented by means of ML techniques, and a digital model is created using parametric
modeling. Subsequently, detected damages and data from existing bridge maintenance systems are linked to
the model to create a full DT. This paper reports the main results of the TwinGen research project: The digital
twinning process of bridges can be automated to a large extent, in order to efficiently support the maintenance
process of bridges.

1 INTRODUCTION

In the transportation infrastructure of industrialized
countries, there is a large stock of aging bridges that
requires maintenance. The recent ASCE’s report card
(ASCE 2021) shows that the number of deficient
bridges is increasing as the deterioration rate exceeds
the rate of repair, rehabilitation, and replacement. Fol-
lowing the structural provisions (AASHTO 2020), the
condition of existing bridges needs to be assessed at
regular intervals over the service life of the structure.
This condition assessment process generally results
in a rating system that provides a basis for decision-
making on the possible rehabilitation of the structure.
Despite the feasibility of the existing techniques for
assessing bridges, they are loosely and only partially
supported by digital methods.

In the architecture, engineering, construction and
operation (AECO) industry, building information
modeling (BIM) has revealed tremendous applica-
tions by representing the digital description of the
structure throughout its life cycle. As one of the most

promising recent developments, BIM is able to signif-
icantly improve the design and construction phase of
projects. To do so, a building information model con-
tains the geometry and corresponding semantic data
to support the design and construction activities (East-
man et al. 2011). In recent years, there have been con-
certed efforts to optimize and create BIM for the as-
designed and as-performed phases of the structures
(Zhu et al. 2010). However, the lack of comprehensive
and descriptive methods in the as-is phase is still tan-
gible (Technion 2015, Sacks et al. 2016, Sacks et al.
2018).

The “Digital Twin (DT)” concept, originating from
the manufacturing industry (Negri et al. 2017), is con-
cerned with a virtual model representing the digital
counterpart of an existing object or a system. In the
domain of digital construction, a DT can be defined
as a geometric-semantic model that provides a coher-
ent replica of the existing structure in its as-performed
or as-is phases. This descriptive model reflects the in-
teraction of humans with the structure and is updated
at specific intervals (Pan et al. 2019). For bridges,
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Figure 1: Workflow developed the TwinGen project to create dig-
ital twins.

these intervals can be longer as the physical features
of the assets change gradually (Mafipour et al. 2021).
The DT of an existing bridge is formed by a seman-
tically rich 3D model linked with information from
the inspection and condition assessment of the bridge.
This 3D model contains the geometric features as well
as semantics that correspond to the collected infor-
mation from the construction site. This information
can include cracks, possible areas of defect, and their
location on the body of the structure. This descrip-
tive data as well as construction documents such as
drawings and specifications can be interrelated with
their digital counterpart in the DT. Compared with
a conventional bridge management system, a DT is
highly flexible, up-to-date, accessible, and informa-
tion is made accessible for interpretation and analysis
by domain experts. The DT encompasses current de-
scriptive details of the existing structure and provides
a basis for the involving team members to collaborate
efficiently and make decisions more accurately.

Considering the application phase of a DT, it is gen-
erally created based on the data demonstrating the
current status of the structure. Laser scanning and
photogrammetry are two common methods that are
utilized for capturing the existing assets. The result-
ing point cloud data (PCD) from these techniques
shows the geometrical and topological conditions of
the structure. The PCD can be used for model re-
construction and spatially localizing crack regions
(Valença et al. 2017). Images, on the other hand, can
depict the defect areas on the body of the structure
and be used as a data source for the detection of the
various forms of deterioration. In comparison with
a visual inspection, these techniques can capture the
existing asset in a lower time with higher measure-
ment accuracy. Also, the labouring costs decrease as
they need a lower number of people for data collec-
tion (Zhu et al. 2010). In addition to this data, infor-

mation from existing conventional management sys-
tems, 2D-drawings and previous damage reports can
be taken into account. Despite the potential applica-
tions of DTs in the operation and maintenance phase
of bridges, they are not available yet for many existing
bridges. Also, the manual process of digital twinning
is error-prone, labor-intensive, and time-consuming.
To benefit from the advantages of DTs, the creation
process of these models need to be automated or at
least semi-automated.

This paper aims to propose an end-to-end approach
to automate the Digital Twinning process of exist-
ing bridges as developed in the TwinGen research
project (1). PCD and images captured from exist-
ing bridges are utilized as the main sources of data.
As the first step, the PCD is semantically segmented
to provide the point cloud of each bridge element
separately. For this purpose, three different meth-
ods including image-based, geometric, and heuristic
point cloud segmentation are proposed. Next, the seg-
mented elements from the point cloud are used for
creating a digital model by using parametric modeling
techniques. A prototypical parametric profile of the
bride elements is created and instantiated with ran-
dom values in reasonable ranges inspired by bridge
engineering knowledge. These profiles are then opti-
mized by a metaheuristic algorithm to be fitted into
the PCD. In the next part of the process, captured im-
ages from the body of bridges are used and a deep
learning model is trained to detect four common types
of damage in bridges. Finally, the technical informa-
tion of the structure including documents of the plan-
ning and building phase as well as the semi-structured
inspection data from the last decades are linked to the
model.

2 POINT CLOUD SEGMENTATION

The proposed Scan-to-Twin process of bridges can be
divided into two separate steps of semantic segmenta-
tion and parametric modeling. Semantic segmentation
is the process of assigning points in PCD to different
predefined object classes. Semantic segmentation of a
bridge PCD results in point clusters that represent the
bridge elements (e.g., wing wall, piers, etc.). In re-
cent years, there have been efforts for automating the
segmentation process of bridges. The proposed meth-
ods can be divided into image-based, point-based, and
heuristic segmentation. Lu et al. (2019) employed a
heuristic top-down approach to detect the bridge ele-
ments in the point cloud of concrete bridges. Hu et al.
(2021) elaborated a hybrid image-based-geometric
point cloud segmentation method to extract features
from images and train a multilayer perceptron (MLP).
Qin et al. (2021) applied a density-based heuristic
algorithm to detect elements in the point cloud of
bridges. As a geometric approach, Lee et al. (2021)
added contextual features of points to improve the ac-
curacy of PointNet (Qi et al. 2017) and deep graph-



convolutional neural network (DGCNN). Yan & Ha-
jjar (2021) introduced a heuristic algorithm based on
the existing connection rules in the the point cloud
of steel bridges for semantic segmentation. Xia et al.
(2022) defined a local descriptor to calculate the lo-
cal features of points for semantic segmentation of
bridges through a geometric method.

2.1 Image-based Point Cloud Semantic
Segmentation

The workflow for image-based point cloud segmen-
tation consists of four stages: neural network train-
ing, semantic image segmentation, 3D projection
and post-processing. For semantic image segmenta-
tion Mask R-CNN, a high-quality network capable
of predicting object classes and segmentation masks,
has been chosen. However, training data sets for
bridge components do currently not exist, therefore
a Mask R-CNN pre-trained on the Microsoft COCO
data set (Lin et al. 2014) has been used as a founda-
tion. To adapt the network for the underlying problem,
transfer learning is used to have the network predict
the three bridge components deck, abutment and rail-
ing. For this process, a small data set consisting of
roughly 600 hand-annotated images is used for train-
ing, with typical data augmentation operations aiding
in making the resulting classifier more robust.

For transferring the image masks to the 3D point
cloud, the intrinsic and extrinsic parameters describ-
ing camera position and projection parameters are re-
quired and must be collected during surveys alongside
image and point cloud data. Using these parameters,
the 2D classification masks and 3D point cloud data
can be projected into a common coordinate system
such that points overlapping with the masks can be
labelled accordingly (result shown in Figure 2). Fur-
thermore, this step also allows for the generation of
a depth map for each camera which is key for skip-
ping points occluded or non-visible points during the
labelling process. Problems arising from conflicting
labels are resolved through use of majority voting and
result in a robust semantic segmentation where bridge
deck, abutment and railing are labelled accordingly,
while background objects are being ignored.

Figure 2: Results of image-based point cloud segmentation: seg-
mented image (left), point cloud with projected labels (right).

Figure 3: Results of point-based point cloud segmentation: Pier
(green), grider (yellow), cap (purple) and deck (pink) are distin-
guished.

2.2 Point-based Point Cloud Semantic
Segmentation

Alternatively and complementary to image-based
classification, machine learning algorithms can be
used to segment the PCD through point-level process-
ing. To do so, the following approach, consisting of
three different parts, is proposed: 1) Preprocessing of
the point cloud data, 2) Classification of points, and
3) Consolidation of predictions.

A bridge is a linear structure, meaning that the main
expansion of the construction is horizontal in most
cases. In addition, most of the components are ori-
ented along the alignment of the transferred traffic
route. Building on this observation, the first prepro-
cessing step is to align the point cloud so that the long
axis of the bridge is parallel to the spatial x-axis. To
achieve this, principal component analysis (PCA) is
applied. PCA finds the vector with the largest variance
across the points, which corresponds to the x-axis of
the structure. Assuming that the z-axis of the point
cloud already matches the z-axis of the bridge, the
point cloud is then rotated around the z-axis so that
the variance vector and the spatial x-axis lie on top of
each other. For point clouds of compact bridges that
are not longer than wide, the minimum axis-oriented
bounding box is used for orientation. Next, the point
cloud is normalized to a unit cube. At the same time,
the point cloud is shifted so that the lowest point on
the far left lies at the origin of the three-dimensional
space.

The goal of the next step is to employ a PCD neural
network to classify the points into the classes girder,
bridge cap, deck and pier. In our study, we use of
PointNet (Qi et al. 2017) – a well-known point-cloud
classifier. To employ the neural network for point
classification, it must be trained once in advance. As
the number of available labelled data sets from real-
world bridges is insufficient for training, we create
synthetic point clouds and use them as training data.
They are generated by simulating virtual laser scans
(Winiwarter et al. 2022) on various parametrically
created 3D bridge models. Since PointNet requires a
fixed input vector size, a grid of voxels is placed in 3D
space. Within each voxel, a fixed number of points is
randomly sampled.

The predicted point labels as shown in Figure 3 are
projected onto the points that were not sampled by the
algorithm. This is done by searching for the nearest



Figure 4: Results of heuristic point cloud segmentation: Railing
(blue); Deck (yellow); Abutment (purple); pier (green); Noise
(dark green)

labeled point using K-nearest neighbors (KNN) in the
point cloud and transferring the class labels.

When training is finished using the synthetic point
clouds, the resulting trained network can be employed
on any number of real-world bridges.

2.3 Heuristic Point Cloud Semantic Segmentation

Alternatively, heuristic approaches can be applied for
PCD segmentation. Most of the existing elements in
bridges are either horizontal or vertical. Vertical ele-
ments such as piers and abutments have the role of
transferring live and dead loads of the structure to
the ground. These elements are generally placed with
some space along the length of the structure. Based on
these observations, a heuristic algorithm is proposed
following two assumptions: 1) the deck of the bridge
is almost horizontal and 2) no point exists over the
railings and sides of the bridge.

In the first step, the bridge is aligned with the x-axis
and histogram of density along the z-axis is calcu-
lated. Due to the existence of road surface and ground
two sharp peaks in the signal of flat bridges is ob-
served. The points over the last peak and under the
first peak are considered as railing and ground, re-
spectively. Next, the railing points are refined by cal-
culating the density of points along the y-axis and
extracting the first and last sharp peaks as railing in-
stances. To detect the points of the deck, all the re-
maining points (sub-structure) are projected onto the
yz plane. Next, the local density of points in a cir-
cle with a predefined radius is calculated. Due to the
horizontal alignment of the deck and the impact of
overlaying points after projection, the density of the
deck points is higher. This feature can thus be used
to segment the points of the deck. To this end, a fuzzy
c-means (FCM) algorithm is employed with two clus-
ters.

After clustering, the cluster with higher mean along
the z-axis is considered as the points of the deck. To
detect piers and abutments from the remaining points,
a region growing algorithms based on the connectiv-
ity of points is proposed. In this algorithm the near-
est neighbors of each point is calculated by a kd-tree
and KNN. Next, the relative distance of each point

to its neighbors is computed. Any neighboring point
that is located in a predefined radius with respect to
the query point is added to the same cluster. Applying
this algorithm to the remaining points (sub-structure)
results in clusters in which points satisfy the condi-
tions of connectivity. To detect the clusters of inter-
est, i.e. abutments and piers, out of all the clusters,
the AABB of each cluster is calculated and its height
is compared to the height of the sub-structure. The
clusters with a close height to the sub-structure are
finally extracted as piers and abutments. From these
clusters, the first and last clusters along the x-axis are
considered as abutments and other remaining clusters
as piers. Throughout this segmentation process, every
cluster that does not meet the predefined conditions is
identified as noise. Figure 4 shows the visual results
of applying the heuristic algorithm to the PCD of a
multi-span bridge. For this sample, a radius of 15 cm
for calculating the local density and 75 neighbors for
KNN were considered.

2.4 Comparison of segmentation methods

Image-based, point-based, and heuristic methods can
be used for semantic segmentation of bridges. Each
of these methods, however, comes with its own ad-
vantages and disadvantages.

Heuristic methods, in contrast to the two other
methods, are unsupervised and do not need an anno-
tated dataset for training. Nevertheless, their success
is diminished if the underlying assumptions are not
fulfilled, as most heuristic algorithms are tailor-made
to deal with specific scenarios, expect certain geo-
metrical properties and are not designed to deal with
background objects. This implies that these rules ex-
ploited by the heuristics could also be used to validate
existing PCD segments.

Image-based segmentation is based on deep learn-
ing on the image dataset of bridges. In this method,
the predicted labels of images are transferred to the
points of the corresponding PCD. Due to the availabil-
ity of images, providing large dataset is more straight
forward than laser scanning PCD. However, it re-
quires the corresponding images and camera param-
eters as well. Furthermore, a post-processing step is
necessary to project the image labels to the respec-
tive PCD. While it is quite efficient at dealing with
background objects, borders of the detected regions
may overlap, leading to slight fuzzyness, especially
for far-away objects. This makes a robust, but slightly
coarse segmentation method.

Point-based segmentation is also a deep learning
method that directly uses the PCD dataset of bridges
and predicts points label. This method has high ac-
curacy, is consistent and memory efficient. It is also
highly flexible and generic as it learns the pattern of
points in PCD. However, it requires a large dataset of
annotated point clouds for training, which is labori-
ous to obtain. In addition, the available deep learn-



Figure 5: Results of parametric modeling for a four-girder deck.

ing models are usually limited when processing large
point clouds. However, unlike the image-based ap-
proach, it requires pre-processing and expects the
PCD to contain the bridge without background ob-
jects.

3 MODEL FITTING

The semantically segmented point cloud produced by
the aforementioned methods is not yet sufficient for a
digital twin. Instead a high-quality model is required
providing solid volume geometry and consistent spa-
tial relationships. To achieve this, we developed the
approach of fitting predefined parametric prototype
models into parts of the segmented point cloud.

Parametric modeling is the process of creating a
model with the capability of changing shape when
dimensional parameters are updated. A parametric
model contains a finite number of parameters with
constraints that preserves the desired shape of the ob-
ject while being updated. Recently, there have been
efforts to automate the modeling process of bridges
(Qin et al. 2021, Lee et al. 2020, Lu et al. 2019).
The proposed methods, however, have been mostly
limited to primitive shapes. Bridges generally consist
of complicated elements such as deck and abutments
that cannot be simply defined by 3D primitive shapes.

To address this issue, a model-based approach is
proposed which is also capable of parametric model-
ing bridge elements. As the first step, the prototype of
the element of interest is created. Each profile is de-
fined by a set of parameters that determine the loca-
tion of vertices on a 2-D plane. To meet the require-
ments of a parametric model, geometric constraints
such as orthogonality, symmetry, and parallelism are
applied to the profile. As a result, a parametric profile
is obtained with a finite number of parameters which
is completely dependent on the input values. This pro-
file is to be capable of updating its shape when the
input values change. As the next step, the value of pa-
rameters in the dummy profile is adjusted so that the
profile can be fitted into the cloud. To this end, the
minimum distance of edges and vertices of the profile
to the PCD is minimized. Since these profiles are not
in the form of primitive shapes, their parameters can-
not be directly seen in the cost function of the prob-
lem. As a result, gradient-based algorithms that re-

quire the partial derivatives of the objective function
cannot simply solve the problem.

Particle swarm optimization (PSO) is a metaheuris-
tic and derivative-free algorithm (Kennedy and Eber-
hart 1995). In PSO, a swarm of particles is randomly
generated and distributed in the n dimensional space
of the problem. These particles are then updated based
on their best local and global locations. For cloud fit-
ting, every particle is a parametric profile and a swarm
is a set of parametric profiles. To instantiate the pro-
files, the value of parameters are randomly distributed
in the ranges inspired by bridge engineering knowl-
edge. Next, these values are adjusted by PSO to min-
imize the distance of profile to the PCD. Finally, the
best solution, i.e. the profile with the minimum dis-
tance to the points, is reported as the fitted model. The
parameters after cloud fitting represent an approxima-
tion of the values corresponding to the parameters of
the cloud. Figure 5 shows the results of cloud fitting
to the point cloud of a deck with four girders. To fit
this model, a dummy parametric profile compatible
with the point cloud is created. For a more precise es-
timation of parameters’ values, the PCD of the deck is
sliced along its length. Next, the parametric profile is
fitted into every slice of the cloud by PSO. Finally, the
average value of parameters after removing outliers is
used to create the 3D model of the deck.

4 DAMAGE SEGMENTATION

Machine learning-based semantic segmentation can
streamline the inspection process and provide detailed
information and consistency in the damage evalua-
tion. Many approaches were suggested for the seg-
mentation of concrete cracks as in (Chen and Lin
2021, Çelik and König 2022). Some few publications
deal with a wider range of damage types. In (Li et al.
2019), a fully convolutional network (FCN) is trained
on 2750 images of size 504 × 376 pixels to seg-
ment cracks, spalling, efflorescence, and holes. The
FCN yielded 84.53% mean intersection over union
(mIoU). In (Kim and Cho 2020), Mask R-CNN is
trained on a data set of 765 images with sizes rang-
ing from 600 × 600 to 2000 × 2000. The data set
encompasses cracks, spalling, efflorescence, and rein-
forcement exposure. Mask R-CNN achieved 87.24%
precision and 87.58% recall. Yet, in another publica-
tion (Miao et al. 2021), a U-Net-like network is pro-
posed for the segmentation of cracks, spalling, con-
crete crushing, reinforcement exposure, buckling and
fracture. The corresponding data sets consist of 2782
images of size 300 × 300 for crack and 3530 images
of size 300 × 300 for other damage types. A mIoU of
70.11% and 71.12% was achieved, respectively.

In the framework of this project, we conducted a
study on the recognition of damage to bridges. Firstly,
a concrete damage data set of 2642 images with im-
age size 1024 × 1024 was created. The damage im-
ages are from multiple concrete structures such as



Table 1: Prediction results by FPN (first columns) and
DeepLabv3+ (second columns) for four damage classes.

Class Precision Recall IoU

SPAL 79.83 72.72 88.80 87.45 72.50 65.85
CR 68.32 66.85 78.51 75.16 57.56 54.75
COR 81.08 72.35 80.71 78.57 67.92 60.43
HON 81.43 75.88 81.30 74.33 68.58 60.13
Mean 77.67 71.95 82.32 78.88 66.64 60.29

Figure 6: Segmentation results by FPN: a common damage
structure (left) and a complex damage structure (right).

parking ramps, walls, bridges, and pedestrian paths.
The labels of the data set include the damage classes
spalling (SPAL), crack (CR), corroded steel (COR),
and honeycomb (HON). The data set labels do not
reflect the exact granularity of the damage labels ac-
cording to the German DIN standard 1076 for bridge
inspection. The labelling according to the DIN stan-
dard requires expert knowledge, which is not afford-
able, as the labelling of images is time- and labour-
intensive. An alternative solution was the initial la-
belling of damage images by undergraduate students.
The labels were chosen such that students could dif-
ferentiate the corresponding damage visually.

Two state-of-the-art segmentation networks were
trained on the data set. These are Feature Pyramid
Network (Lin et al. 2017) and DeepLabv3+ (Chen
et al. 2018) with ImageNet-pre-trained EfficientNet-
B0 (Tan and Le 2019) weights in the encoder of each
segmentation network. The initial learning rate of the
networks was set to 10−4 with a reduction schedule
and an early stopping schedule for learning stagna-
tion. The batch size was 4, and the epoch size was
200 epochs. The dice loss was used as a loss function,
and the Adam algorithm was used for optimization.
The data set was split into a training set (80%) and
a validation set (20%). To augment the training set,
we applied rotation with 90◦, 180◦, and 270◦ on each
image.

The model results were evaluated with precision,
recall, and IoU for each damage class and the mean
values over all damage classes. In Table 1, it can
be seen that FPN gives constantly better results than
DeepLabv3+. Both models provide the highest results
for spalling and the lowest results for crack. Gener-
ally, honeycombs are slightly better segmented than
corroded steel. Based on the results on test images,
the following explanations regarding the results in Ta-
ble 1 can be made: a) Spalling can be segmented best
as it is of a relatively large area with a simpler form
than crack and corrosion (see the left image in Figure
6). b) Cracks are segmented with the lowest results,

as cracks are more intricately formed and take the
smallest area (data imbalance). c) Corroded steel ob-
jects can be small and have intricate forms that can be
challenging to recognize, especially if the corrosion
discolours the concrete (see the right image in Fig-
ure 6). d) The differentiation between honeycomb and
spalling is challenging, as both can merge seamlessly.
Well-labelled, more complex data and optimized data
pre-processing can improve the results. Further steps
will be the size measurement of damage instances and
the refinement of the labelling. The latter includes the
class refinement (e.g. not only corrosion but corroded
exposed reinforcement bar) and the damage degree
assessment according to DIN 1076.

5 DATA LINKING AND MODELLING

In order to create common information spaces for
legacy information as well as novel reality capturing
and interpretation data presented in earlier sections, a
comprehensive information model was devised. This
model incorporates available and relevant data neces-
sary to represent the existing bridge and its current
state accurately and can be considered as a DT.

To achieve object-level linking between the hetero-
geneous data obtained from the presented methods,
Linked Data approaches are used. They enable to link
elements of the geometry model to the corresponding
sections from the point cloud, and damage informa-
tion to defined segments of damage pictures.

As the DT represents the entire life span of the
bridge, the existing data set from the asset documen-
tation and inspection must be considered in addition
to the newly acquired data. The existing data con-
tain technical information about the asset, planning
and building phase documents, and semi-structured
inspection data from the last decades. Thus, it com-
plements the newly captured data with essential in-
formation.

To capture the wide range of heterogeneous, cross-
media information ranging from inspection data to
construction documents in interoperability formats, a
structured vocabulary is required. Several ontologies
have been proposed in the past that can be used to rep-
resent the 3D model and the segmented damage pic-
tures, including ifcOWL (Beetz et al. 2009) and the
Damage Topology Ontology (DOT) (Hamdan et al.
2019). However, as we want to include legacy bridge
and inspection documentation into the model, we de-
cided to convert the existing national data model for
bridge documentation into an ontology.

In Germany, the authoritative data model for in-
frastructure asset documentation is the Anweisung
Straßeninformationsbank, Teilsystem Bauwerksdaten
(ASB-ING) [engl.:Instruction for the Road Infor-
mation Database, Subsystem structural data] (Bun-
desministerium für Verkehr, Bau und Stadtentwick-
lung, Abteilung Straßenbau. 2013). It is an extensive
domain model with 120 classes, 80 datatype defini-



tions, and 500 properties, capturing information per-
taining to structure and inspection, including con-
dition assessments, damages, and maintenance mea-
sures. The data model is implemented in the national
German database application for bridge (inspection)
documentation Staßeninformationsbank – Bauwerke
(SIB-Bauwerke) [engl.: Roaddatabase – Structures]
(WPM-Ingenieure GmbH ).

Using the existing ASB-ING domain model, we
derived the ASB-ING Ontology (Göbels and Beetz
2021) that contains all the original model’s classes,
properties, relations, and constraints and represents
them using RDF(S) and OWL vocabularies. Based on
this ontology, we implemented an automatic conver-
sion process of the inspection datasets stored in SIB-
Bauwerke into the Linked Data format (a Resource
Description Format (RDF) graph) (Göbels 2021).

The graph of each inspection data set contains gen-
eral asset information, building element objects, and
recordings of all damages, measures, and condition
assessments since the bridge’s construction. Com-
pared to the original data structure of SIB-Bauwerke,
the key advantage of the graph representation is the
object-oriented structure, which allows appropriate,
precise linking to other resources. Concurrently, it is
still backward compatible with the mandatory ASB-
ING data model.

Nevertheless, the converted graph only reflects the
same depth of knowledge as the original data. There
are no links between damages and the affected ele-
ments, and it is challenging to track damage and el-
ement conditions properly. To improve the informa-
tion quality, the advantage of Linked Data becomes
essential. By querying and inferring the graph’s data,
missing links are generated, and by integrating exter-
nal ontologies, proper data traceability and damage
documentation are implemented.

We link the inspection data graph with the results
of the point cloud segmentation, model fitting and
damage segmentation, as well as, with the existing
2D plans and damage pictures 7. To include these
resources into the Linked Data model, we use the
ifcOWL Ontology to represent the geometry model
and the vocabularies of the ISO-standard Information
container for linked document delivery (ICDD) (ISO
2020) to reference the documents. The segmented
damage pictures can be added to the Linked Data
model by employing the DOT Ontology.

To automate the process of linking, we use a map-
ping between IFC (Bridge) and the ASB-ING On-
tology. Combined with location specifications of el-
ements and damages in each bridge data set, links be-
tween the geometry model elements and the inspec-
tion data objects are implemented.

The linking of these two resources already creates
significant benefits. The legacy tabular inspection data
are enriched with spatial representations, which im-
proves the inspection process, as the location of dam-
ages can be easily retrieved. On the other hand, the

geometry model is enhanced with material and type
specifications from the bridges’ documentation data.

In ongoing work, a prototypical application that
displays and processes the geometry model together
with the linked semantic information and documents
is developed. It will enable the execution of space-,
time-, and object-based queries and analyses.

Figure 7: Linked Data model of heterogeneous data sources.

6 CONCLUSION AND OUTLOOK

Bridges are critical structures and require regular
maintenance during their service life to allow secure
and long-term use. The conventional methods for data
collection, condition assessment, and management of
existing bridges are loosely and only partially sup-
ported by digital techniques and require a high man-
ual effort. As a result, the number of deficient bridges
that need essential attention increases. To relieve the
costs associated with bridge maintenance and oper-
ation, a digital twin (DT) of existing bridges can be
created. DTs are highly flexible and interpretable and
can provide all the information required to evaluate
the existing bridges.

This paper proposes algorithms and techniques to
facilitate the digital twinning process of bridges. Point
cloud data (PCD), images, and existing bridge docu-
mentation as the main data sources showing the cur-
rent conditions of existing bridges have been used.
The PCD is processed by image-based, geometric,
and heuristic semantic segmentation to obtain the
point cloud of each element in bridges. These clouds
are then fitted by particle swarm optimization (PCD)
to create the 3D model required for DTs. Captured
images from the body of the structure are also pro-
cessed by deep learning models to detect and recog-
nize the type of damage. Finally, the 3D model and
the captured damage pictures are linked to the exist-
ing inspection and construction data to provide a DT
model that is interpretable in regard to geometric and
semantic information. The paper results show that the
digital twinning process of existing bridges can be
automated to a large extent. These models can effi-
ciently support the maintenance process of the bridge



and reduce costs. However, the proposed algorithms
still need to be tested on more samples of bridges to
provide a robust tool for the automatic creation of DTs
for various bridge types.

We thank the German Federal Ministry for Digital
and Transport (BMDV) for their support in funding
the TwinGen research project.
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