
1 INTRODUCTION 
 
Advances in sensor technology and data processing 
algorithms enable the implementation of digital meth-
ods in various fields in the domain of Architecture, 
Engineering, and Construction (AEC). Significant 
examples include progress monitoring during con-
struction and digitization of built structures in the op-
erations phase or before deconstruction, amongst oth-
ers. This is made possible by lowering the effort 
required to capture the actual conditions of the built 
environment and transfer them to a raw but processa-
ble digital representation. Terrestrial Laser Scanning 
(TLS), for example, allows for capturing millions of 
points per second with an accuracy in the range of 
millimeters (Wunderlich et al. 2013). To control the 
process and ensure efficiency and sufficient data 
quality at the same time, acquisition activities need to 
be thoroughly planned and prepared.  

Traditionally, this approach is based on the sur-
veyor’s knowledge, aiming to fulfill all requirements 
regarding density, and coverage but also efficiency in 
execution time and therefore cost. To enable the im-
plementation of a Digital Twin (Boje et al. 2020), es-
pecially in frequently changing industrial scenes 
(Hellmuth, Wehner, and Giannakidis 2020; 
Shellshear, Berlin, and Carlson 2015), this process 

should be as precise and robust as possible, when data 
capture is not a one-shot measure but a recurring part 
of the process. 

The finished acquisition plan is executed either by 
professional staff using the specified equipment or 
ideally using sensor-equipped robots that can localize 
themselves and navigate within the actual scene 
(Prieto et al. 2017). The acquired data can be pro-
cessed for a wide range of potential use cases. In the 
domain of AEC, these use cases most commonly 
emerge in the context of Building Information Mod-
eling (BIM) (Borrmann et al. 2018). These include 
the field of Scan-to-BIM, which aims to recreate a us-
able digital model from the captured data directly, and 
the field of Scan-vs-BIM, where a prior existent 
model is compared to the acquired information to val-
idate or update the model (Bosché et al. 2015). 

In any case, the quality of the captured point cloud 
is critical for the success of all further processing 
steps. While it is difficult to make general statements 
about point cloud quality (Alexiou and Ebrahimi 
2018), specific aspects such as density overlap con-
tribute to robust point cloud quality (Song, Shen, and 
Tang 2014). To enable successful application, we 
support the initial requirements of a sensible scan 
plan by automating the process in pre-existing, com-
plex 3D scenes. 
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ABSTRACT: Scan planning describes the process of choosing equipment and locations for reality capture with 
laser scanners. By contrast to the traditional, expert-based method usually conducted in the field, automated 
approaches aim to solve this task exclusively with pre-existing data in the form of plans or 3D models of the 
scene. Existing approaches for automation are mostly either limited to 2D or based on simulations of laser 
scans, which oversimplifies respectively complicates the process to the degree that makes them inapplicable 
for practitioners. We aim to solve both problems by basing our solution on a 3D representation of the target 
scene and a deterministic approach. Thus, the workflow remains computationally feasible while the complexity 
of real-world scenes is sufficiently represented. We present a literature review on related research and technical 
guidelines for scan planning to define realistic requirements for scan planning, including point density, field of 
view, and depth of field limitations. To develop valuable strategies, we create a static set of candidate locations 
on a grid in the scene. We then perform visibility and coverage analysis and evaluate each candidate’s fitness 
for the overall strategy based on its contribution to our pre-defined scan requirements. Finally, selected locations 
are combined to form an optimized strategy to fulfill these requirements following two versions. We apply two 
basic methods for candidate selection and investigate their implications in a descriptive experiment.  



2 BACKGROUND 

Preparation of scan execution helps to ensure suc-
cessful and efficient capture resulting in high-quality 
point cloud data. In this context, a variety of aspects 
need to be considered; in the following, the most rel-
evant ones are introduced in the context of the current 
state of the art. 

2.1 Point clouds in AEC 

Point clouds allow accurate and detailed capture of 
the current conditions of facilities in the built envi-
ronment with decreasing cost and lowering effort. In 
the context of BIM, there is a multitude of possible 
applications (Volk, Stengel, and Schultmann 2014; 
Wang and Kim 2019), spanning the entire lifecycle of 
buildings from the observation of excavation works 
(Su, Hashash, and Liu 2006) and automated construc-
tion progress monitoring (Braun et al. 2020) to decon-
struction planning (Volk et al. 2018). In general, ap-
plications of point clouds in AEC can be classified 
based on whether a suitable model exists. If there is 
no suitable model, approaches that aim to create a 
model from the captured point cloud alone are called 
Scan-to-BIM (Son, Kim, and Turkan 2015). Ap-
proaches that update, enrich, or replace the model 
partly based on the captured point cloud range under 
Scan-vs-BIM - either come with specific challenges 
and opportunities (Bosché et al. 2015). 

2.1 Point cloud acquisition 

Point cloud-specific attributes vary largely de-
pending on the chosen acquisition method. Well-
known acquisition methods include camera-based 
and laser-based systems; the choice should be made 
in consideration of use case-specific requirements 
and implications (Esfahani et al. 2021). Our focus 
lies on indoor applications in the industrial domain, 
for which point density and high accuracy are more 
important than acquisition speed (IFF 2018), which 
makes Terrestrial Laser Scanning (TLS) the method 
of choice (Hullo et al. 2015). 

2.2 Point cloud characteristics and 
requirements 

In this paper, we investigate the Viewpoint Plan-
ning problem for the application of TLS. This sensor 
equipment is stationary, ground-based, usually on a 
tripod or similar. Modern equipment's potential field 
of view (FOV) usually spans 360° horizontally; ver-
tical FOV depends on the manufacturer and model 
(Aryan, Bosché, and Tang 2021). Furthermore, the 
coverable area is restricted by the depth of field 
(DOF) defined by the minimum and maximum dis-
tances between sensor and surface per equipment 
specification. 

Furthermore, TLS acquisition potential is inher-
ently limited to the line of sight between sensor and 

captured surface, given within its FOV and DOF, as 
depicted in Figure 1. Any pre-existing knowledge 
about the 3D geometry of the scene in question, in the 
form of a 3D model or similar, can therefore be lev-
eraged directly to derive suitable acquisition strate-
gies. 

Point clouds can be generally characterized as 
large, unstructured datasets. If suitable equipment is 
chosen and necessary precision assured, the core 
property to be measured out of a point cloud is point 
density. Point density can be determined in terms of 
points per area as nominal pulse density (NPD, 
pts/m2) or point-to-point distance with nominal pulse 
spacing (NPS, m) (Heidemann 2018). The relation-
ship between the two can be considered as 
 

𝑁𝑃𝑆 = √
1

𝑁𝑃𝐷
 .               (1) 

 
Based on these metrics of point density, for further 
processing, concerned institutions aim to provide 
technical requirements to satisfy the needs of specific 
applications. For use in the context of BIM, the U.S. 
General Services Administration issued a report stat-
ing minimum point density (in this referred to as res-
olution and artifact size) for varying Levels of Detail 
and Areas of Interest (U.S. General Services 
Administration 2009). Specifically for industrial ap-
plications, Fraunhofer Institute for Factory Operation 
and Automation more recently presented guidelines 
for Laser Scanning in industrial facilities (IFF 2018); 
towards the acquired point clouds itself, the technical 
requirements are limited to object-dependent point 
density minima along with several equipment-spe-
cific maximum values for acquisition distances, pre-
sented in ready-to-use tables derived from point den-
sity calculations. 

(Rashdi et al. 2022) present an extensive review of 
technologies and methods applicable in the context of 
BIM; specific applications for infrastructure have, for 
example, been collected in (Rashidi et al. 2020). In a 
more specific approach, (Rebolj et al. 2017) 

Figure 1: Field of View (FOV) and Depth of Field (DOF) 

of a Terrestrial Laser Scanner (TLS), with characteristic oc-

clusions, from (Aryan, Bosché, and Tang 2021) 



investigated point clouds regarding their suitability 
for Scan-to-BIM applications. In this, orthogonal pro-
jections are used to evaluate surface coverage; a min-
imum of 0.5 on a rasterized grid is assumed to be the 
required coverage (Rebolj et al. 2017). 

2.3 Scan planning 

To assure data quality and repeatability and allow 
reasoning about required effort and thus cost-effi-
ciency, a suitable choice of sensor equipment and 
placement needs to be considered in the context of 
any acquisition activity. In the context of AEC, this 
challenge is referred to with Scan Planning (Frías et 
al. 2019), Planning for Scanning (Aryan, Bosché, and 
Tang 2021), or the Viewpoint Planning problem (Jia 
and Lichti 2018). In general, the underlying problem 
has been referred to as (TLS) Viewpoint Planning 
(Wujanz and Neitzel 2016) or as View Planning 
(Scott, Roth, and Rivest 2003) and has, for example, 
been approached as an Art Gallery Problem (Kröller 
et al. 2012), classically in 2D. 

All methods for automating decision-making for 
scan planning can be distinguished in non-model-
based and model-based approaches (Scott, Roth, and 
Rivest 2003). On a high level, the most noticeable as-
pects lie in the determination of visibility relation-
ships, the analysis of the covered parts, and the actual 
selection of suitable viewpoints. For the domain of 
AEC, (Aryan, Bosché, and Tang 2021) present an ex-
tensive overview of proposed solutions. In the follow-
ing, we present selected examples along with im-
portant aspects; an overview is collected in Table 1.  

2.3.1 Non-model-based scan planning 
In non-model-based approaches, scan planning is 

performed without a-priori knowledge of the scene. 
An initial viewpoint is selected, and the following 
viewpoint is determined based on the content of the 
FOV of the initial viewpoint, following the so-called 
next-best-view (NBV) method, which often appears 
in the context of robotics and simultaneous 

localization and mapping (SLAM) (Aryan, Bosché, 
and Tang 2021). This means information on the un-
derlying scene grows with every viewpoint. The ini-
tially achieved coverage has been evaluated and used 
for NBV determination in different ways: (Achakir, 
El Fkihi, and Mouaddib 2021) use 2D point cloud 
projection to generate a visibility polygon, identify 
and classify gaps to create NBV candidates and fi-
nally select a suitable one. In 3D (Kawashima et al. 
2014), classify occupied voxels to prioritize pipes in 
the scene, (Prieto et al. 2017) investigate a robotic 
perspective room by room and use multiple classes 
for voxel classification in their approach.  

 

2.3.2 Model-based scan planning 
In the case that reliable a-priori information on the 

scene is available, model-based approaches can be 
applied. Hence the knowledge on the scene is static 
rather than growing dynamically. Scene representa-
tions vary from sections or plan views with walls or 
other object segments (Jia and Lichti 2019), (Frías et 
al. 2019) derive sections from a 3D model, (Wujanz 
and Neitzel 2016) investigate a single mesh object, 
(Kabir Biswas, Bosché, and Sun 2015) derive mesh 
instances from a 3D CAD model. 

Viewpoint candidates are distributed using grid-
based (Jia and Lichti 2019), line-based (Wujanz and 
Neitzel 2016), or triangulation methods (Frías et al. 
2019) to then investigate visibility relationships be-
tween candidates and scene deterministically by ray 
casting or using laser scan simulation. (Jia and Lichti 
2019) additionally use a hierarchical approach to re-
fine the candidate grid locally, as initially presented 
in (Jia and Lichti 2018). Finally, suitable viewpoint 
candidates are selected to form a strategy that is able 
to fulfill the overall scan requirements. Solutions for 
this range from straightforward methods like combi-
natorial planning (Wujanz and Neitzel 2016) the 
Greedy algorithm (Jia and Lichti 2019), to more ad-
vanced methods of optimization (Jia and Lichti 
2017). Technical aspects like station 

Publication 
Dimen-
sion 

Scene 
Visibility 

Approach 

(Kawashima et al. 2014) 3D Dynamic, voxel Measurement Next-Best View (NBV) 

(Prieto et al. 2017) 3D Dynamic, voxel Measurement NBV 

(Wujanz and Neitzel 2016) 3D Static, mesh instance Simulation Combinatorial planning 
(Kabir Biswas, Bosché, 
and Sun 2015) 

3D 
Static, mesh in-
stances 

Simulation 
Integer programming 

(Jia and Lichti 2019) 2D Static, wall segments 
Deterministic 
 

(weighted) greedy algo-
rithm 

(Achakir, El Fkihi, and 
Mouaddib 2021) 

2D 
Dynamic, visibility 
polygon 

Measured point 
cloud, projected 
to 2D 

NBV 

(Frías et al. 2019) 2D 
Static, object seg-
ments 

Deterministic, 
ray casting 

Backtracking algorithm 

Table 1: Selected characteristics of existing approaches of scan-planning in literature 



interconnectivity (Sanhudo et al. 2020) and overlap 
(Wujanz and Neitzel 2016) are advanced aspects and 
are out of scope for this investigation. 

What is still missing is a robust approach for scan 
planning in a 3D environment that allows taking oc-
clusions and local point cloud quality into account. 
Existing approaches are either based on simulation, 
therefore computationally expensive and subject to 
randomness or handle the scene in discretized formats 
such as voxels that prohibit local quality investiga-
tions. 

3 METHOD 

To investigate the poten-
tial of model-based scan 
planning in a 3D environ-
ment, we assume a static 
environment with strict 
limitations. This allows us 
to perform a deterministic 
evaluation of visibility and 
coverage. The selection of 
candidates to form a suita-
ble strategy is then an op-
timization problem that 
we solve with variations 
of a simple heuristic. The 
chosen method comprises 
several steps, as depicted in Figure 2. In the follow-
ing, each step of the method is introduced to lay the 
foundation for our implementation and experiment. 

 

3.1 Data Input 

The investigated scene is represented by a triangu-
lated mesh derived from a 3D CAD model; suffi-
ciently high mesh resolution and evenly sized faces 
need to be ensured to achieve useful results. Cur-
rently, this requirement is assessed qualitatively only; 
resolution needs to allow a sensible depiction of oc-
clusions. 

Viewpoint candidates are generated on a grid in 
the horizontal XY-plane with even, rectangular-
shaped faces, in which the vertices’ coordinates are 
then considered as potential sensor locations or 
‘viewpoints’. Candidates that are outside the area of 
interest, unsafe to access for scanning personnel, or 
lie within object geometries are removed. This step 
can be automated, for example, using a navigation 
mesh (Hale and Youngblood 2009) or similar based 
on the model scene geometry. 

3.2 Visibility Analysis 

The main shortcoming of laser scanning-based ac-
quisition is its restriction to visible surfaces, in other 

words, the inability to cover surfaces caused by line-
of-sight occlusion. Therefore, in the first step, visibil-
ity analysis is performed based on the two 3D inputs 
using ray casting. To neither rely on likelihood nor 
lose potentially visible faces due to point spacing, in-
stead of following fixed angular resolutions, the di-
rection vectors for ray casting are computed as all po-
tential directions between each viewpoint candidate 
and each face in the model in a ‘reverse’ ray cast ap-
proach. This approach is highly computationally ex-
pensive and bears significant potential for optimiza-
tion but allows uncompromised results for this initial 
implementation. In the next step, ray casting is per-
formed for all potential direction vectors per view-
point, returning the first mesh face intersected for 
each ray. As an effect of the ‘reverse’ ray cast ap-
proach, all rays intersect with at least one face. The 
results are collected in a complete visibility table 
(Scott, Roth, and Rivest 2003), comprising bilateral 
visibility relationships amongst all viewpoint candi-
dates and faces of the scene. 

3.3 Coverage Analysis 

Not all visible faces are fit for acquisition. In the 
next step, visibilities are further evaluated and filtered 
in this regard. Limitations that are considered in this 
step include the equipment-specific DOF and FOV 
(see Figure 1). Besides those fundamental re-
strictions, scan quality largely relies on local point 
densities. 

Given that a sufficient resolution is ensured in the 
triangulated mesh, the edge length of faces is very 
small in comparison to their distance from the laser 
scanner. Thus, we can make use of the small-angle 
approximation. Applying the relationship between 
NPD and NPS (see equation 1), we can calculate a 
close approximation of the theoretical local point den-
sity (LPD, pts/m2) per visible face using equations 2 
- 4: 

 

𝐿𝑃𝑆90 = 𝑆𝑃𝑆 × 𝑑            (2) 

 

𝐿𝑃𝑆𝛼 =
𝐿𝑃𝑆90

sin 𝛼
               (3) 

 

𝐿𝑃𝐷 =
1

𝐿𝑃𝑆90
×

1

𝐿𝑃𝑆𝛼
           (4) 

 
Variables beyond the previously introduced: 
 

𝑆𝑃𝑆  specific point spacing 
𝑑   scanning distance 
𝐿𝑃𝑆  local point spacing 
𝛼   local incidence angle 

 
LPD thus depends on scanning distance, local inci-
dence angle, and the equipment-specific scanning res-
olution or specific point spacing. 

Figure 2: Scan planning 

method overview from data 

input to final scan plan 



Finally, the result of the coverage analysis step is 
the above introduced local point cloud density that is 
then used to filter the covered faces according to the 
predefined requirements. The full visibility table is 
thus reduced to faces with qualified coverage. 

3.4 Candidate Selection 

To generate a decision basis for viewpoint candi-
date selection, the value of each viewpoint in the can-
didate set introduced in section 3.1 is determined in 
terms of its individual corresponding qualified cover-
age from the visibility table. Using this value, we ap-
ply a greedy and a weighted greedy algorithm to se-
lect a set of candidate points that fulfills our 
requirements in terms of overall model coverage as 
presented in (Jia and Lichti 2018). In contrast to (Jia 
and Lichti 2018) we do not use a Boolean score table 
but include the actual area of the mesh faces. For an 
unchanged input, the presented greedy approaches 
will always return the same results and can therefore 
be referred to as deterministic. 

The steps required for the viewpoint selection for 
both approaches are depicted in Figure 3. Starting 
from the qualified coverage table, the individual 
value of each viewpoint candidate is first calculated. 
For the standard greedy approach, this is a straight-
forward sum, for the weighted greedy approach, this 
value is first reduced per face depending on the fre-
quency of hits on each face and then summed up per 
viewpoint candidate. The candidate with the highest 
value is then chosen as a viewpoint for the acquisition 

strategy. If the achieved coverage exceeds the re-
quired coverage, the strategy is complete; if not, the 
process is repeated iteratively until the coverage goal 
is met. Before reinitiating, the visibility table is up-
dated: All faces covered by the selected viewpoint are 

discarded; the viewpoint values, therefore, need to be 
recalculated, along with the weights per face if appli-
cable. For a comprehensive explanation of the pro-
cess, we refer to (Jia and Lichti 2018). 

As coverage of 100% of all mesh faces in a 3D 
scene is hardly achievable in practice, especially as in 
our approach, candidate placement and requirements 
are fixed from the beginning, the maximum achieva-
ble coverage is defined as the area covered by all 
viewpoint candidates combined, with 100% coverage 
we refer to this reference value in the experiment. 

4 EXPERIMENT AND RESULTS 

To evaluate the presented method, we test it on a 
compact example. Our implementation is based on 
Python, and some of its standard libraries, ray casting 
for visibility analysis makes use of the Open3D li-
brary (Zhou, Park, and Koltun 2018). The setup of the 
framework and selected results are introduced in the 
following. 

4.1 Experiment setup 

Our experiment is conducted in a synthetic environ-
ment, created as a 3D CAD model using Autodesk In-
ventor, and exported as an ASCII OBJ file. For the 
baseline experiment, we create a triangulated OBJ 
mesh; the model is depicted in Figure X. The maxi-
mum edge length is set to 0.2m to ensure sufficient 
resolution. The viewpoint candidate grid is generated 
as a rectangular mesh and purged manually, as de-
scribed in section 3.1. This setup leads to a total of 
1’513 eligible viewpoint candidates and a 3D model 
of the scene comprising 66’676 faces with a mean 
area of 0.007m2 and a total of 461m2. 

4.2 Requirements configuration 

The experiment is based on assumptions regarding 
values for the considered limitations, both for equip-
ment restrictions and requirements for coverage. The 

Figure 3: Greedy viewpoint selection, dashed line indi-

cates extra steps for weighted greedy approach 

Figure 4: Experiment setup (a) triangulated mesh 

model (b) with candidate grid overlay, blue 

(b) (a) 



specific parameters and values designated for the 
baseline experiment are collected in Table 2. 

Table 2: Experiment setup parameters 

Parameter 

type 

Parameter Value 

Equipment DOFmin 1.5m 

Equipment DOFmax 50m 

Equipment Resolution / Point spacing 

(at 10m) 

10mm 

Equipment FOVvertical 150° (30-180°) 

Equipment FOVhorizontal 360° 

Coverage Min. incidence angle 15° 

Coverage Min. local density 45’000pts/m2 

Coverage Relative coverage goal 80% 

 

4.3 Visibility and Coverage Analysis 

The maximum achievable coverage of the scene is 
limited by our initial choice of viewpoint candidates; 
of the total surface area of the model (461m2), 246m2 
(53.4%) are visible and can theoretically be covered 

with the defined set of viewpoint candidates. Each 
candidate’s theoretical coverage is subsequently fur-
ther reduced according to the defined coverage pa-
rameters. All parameters in use are collected in Table 
2. For the full set of candidates, this changes the area 
slightly further to 243m2 (98.6% of the visible area). 

Depending on the individual viewpoints’ location in 
the scene, both the theoretical and valid coverage 
changes- and the reduction of the area from visibility 
to coverage is significant. Figure 5 depicts the color-
coded visibility and coverage area per viewpoint can-
didate before and after this step in comparison. 

4.4 Scan Planning results 

Following the greedy algorithm, viewpoints are 
then selected consecutively as per their individual 
coverage until the required overall coverage of 80% 
is achieved. For the presented set of parameters, the 
weighted greedy approach requires seven viewpoints, 
the standard greedy solution reaches the goal with 
five viewpoints, and the final scan planning results 
are depicted in Figure 6. 

To expand on this, we investigate the discrepancy 
of results for the greedy algorithm with and without 

weighting for the full spectrum of possible coverage 
goals, the result with regard to achieved coverage and 
required viewpoints is collected in Figure 6. It is ob-
vious that the standard greedy approach outperforms 
the weighted version up to a certain degree; If 100% 
coverage is required, the weighted approach requires 
less viewpoints, which is in line with the findings 

(a) (b) 

(c) 

Figure 5: Visibility and coverage results 

(a) initial visibility area and (b) coverage area. Total area per 

viewpoint color-coded, first best viewpoint marked (c) com-

parison of area distribution visibility and coverage 

Figure 6: Scan planning experiment results (a) standard 

greedy (b) weighted greedy approach (c) coverage achieved 

and required number of viewpoints for standard and 

weighted greedy approach 

(a) (b) 

(c) 



presented in (Jia and Lichti 2019), where 100% cov-
erage are assumed as a fixed requirement, albeit in a 
different setup with limited complexity. As intro-
duced in the context of visibility and coverage, we 
find that 100% is not a sensible requirement for cov-
erage in a complex 3D environment.  

5 CONCLUSION AND OUTLOOK 

Conclusion 
 
This paper presents a method for model-based 

scan planning that works in 3D and is fully determin-
istic. In comparison to other approaches, the complete 
information of visibility and coverage between the 
scene and viewpoint candidates is calculated without 
randomness by taking into account scene-specific oc-
clusions and local point densities by making use of 
sensible approximations for calculation and a triangu-
lated mesh instead of a voxel-based scene representa-
tion. Our approach is comparably lightweight; results 
are fully reproducible. The case study shows a com-
parison of two basic, well-known approaches for 
viewpoint selection and offers insights into under 
which circumstances one can outperform the other. 

 
Limitations 

 
The approach is, however, clearly limited in some 

aspects. For one, the static choice of viewpoint candi-
dates, in the beginning, limits the overall potential of 
coverage- a poor or insufficient selection of candi-
dates will lead to objectively poor results that cannot 
be identified as such. The viewpoint selection using a 
greedy best-first selection is straightforward and pop-
ular but will not produce globally optimal solutions. 

 
Outlook, next steps 

 
To extend the presented approach, we will extend 

our experiments to real-world examples, furthermore, 
other methods of strategy forming will be investi-
gated. The viewpoint candidate grid will ideally be 
created automatically based on the underlying 3D 
model and a set of given restrictions and require-
ments. Object-specific point cloud requirements can 
be included by adding semantic-specific require-
ments and including semantics in the geometric pro-
cessing. We will further investigate the applicability 
of the presented approach to meshes of other sources, 
for example resulting from initial, rough captures us-
ing mobile sensors. 
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