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ABSTRACT
Line of Sight (LoS) blockages are a common occurrence in densely
deployed cellular networks, as is the case with 5G. This leads to
a significant deterioration in the signal quality on the user side.
Modeling LoS blockages is crucial for simulations to obtain reliable
results, but also challenging since LoS might appear and disappear
occasionally because how often an LoS happens depends on the
environment and the user speed. To capture LoS blockages in a
realistic manner for a particular scenario in a given environment,
we propose to model blockages geometrically by considering all
static and mobile objects in the environment such as buildings,
cars, busses and humans, including self-blockages from the user.
This enables a better evaluation of the metrics of interest, such as
handover rate. In dense network deployments, users make frequent
handovers, which deteriorates their experience and reduces the
network capacity. Also, operators should strive to provide fairness
in resource allocation to all users as well as to guarantee a minimum
Quality of Service (QoS). Thus, handover decisions should be consid-
ered jointly with resource allocation. To that end, in this paper, we
formulate an optimization problem that provides proportional fair
resource allocation, while simultaneously reducing the handover
rate, and providing a minimum data rate for all users at all times. It
is an integer non-linear program, which is NP-hard. We relax it to
a linear problem, which allows us to find a near-optimal user-to-BS
assignment and resource proportion for every user quickly. We
compare the result from our optimal and relaxed approaches with
other two benchmarks showing that it outperforms them consider-
ably in terms of fairness, handover rate reduction and users’ rate
satisfaction. Moreover, our relaxed approach performs within above
90% of the optimum and reduces the handover rate up to 40%.

CCS CONCEPTS
• Networks→ Network simulations.
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1 INTRODUCTION
5G networks aim at providing high data rates and enhanced user
experience [10]. Many users are mobile and enjoy network services
while traveling. Thus, the impact of mobility should be studied to
ensure that these users are satisfied. To evaluate the performance
of the existing and new approaches, system-level simulations that
represent reliably different scenarios and sites are required.

3GPP proposes channel models for macro and micro Base Station
(BS) that consider path loss, shadowing and the existence of Line
of Sight (LoS) among others [1]. The availability of LoS is usually
modelled using a probabilistic distance-based model (proposed in
3GPP), which states that the closer the user is to the BS, the more
likely the user is to have an LoS connection. This is a realistic
assumption, however, it is not clear how often LoS availabilitymight
change. Moreover, due to the probabilistic nature of this blockage
model, the LoS can be constantly switching from being available to
not (e.g., the distance at which LoS probability is 50%). This, in turn,
results in frequent handovers that are caused by poor modeling and
not by a challenging simulation scenario. Furthermore, the update
periodicity of LoS flag depends on the site environment itself, how
crowded the area is currently and the user speed.

Therefore, we propose to model every object and users in the
environment as 3D bodies and consider them as possible blockages.
Then, we determine if there is an LoS connection between a user and
a BS by checking if any of the objects blocks the LoS. This allows
us to model transient blockages such as a human or a car passing
by as well as long-term blockages that are caused by buildings or
static humans in a crowded area. Geometric blockage modeling
generates close-to-reality LoS availability information for system-
level simulations as opposed to probabilistic distance-based model
from 3GPP. The handover algorithm and its parameters can also
be selected based on the environment and site crowding to keep
handover rates within reasonable limits.

https://doi.org/ 10.1145/3551661.3561355
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Mobile users experience frequent handovers that are often un-
necessary because initially the handover algorithm was developed
by 3GPP for macro cells with large coverage [17]. In dense deploy-
ments, a user might be located in the coverage of multiple cells
with high (and most importantly similar) Reference Signal Received
Power (RSRP) values. In this case, the traditional handover algo-
rithm forces the user to switch from one BS to another reacting to
channel fluctuations. Every handover introduces a delay called Han-
dover Interruption Time (HIT) during which a user cannot receive
or transmit data. Moreover, a handover increases signaling between
the user, the serving and target BS, as well as in the core network
(when a downlink path switch in the core is required during a
handover). Furthermore, a handover increases energy consumption
and wastes signaling resources. However, handovers cannot totally
be avoided. They provide smooth connectivity for mobile users and
also in case a user experiences an LoS blockage. Hence, the goal is
to perform only the necessary handovers that contribute to user’s
satisfaction.

Also, the cellular operator has to satisfy users’ minimum re-
quired rate for a particular service and be fair in allocating its
resources, so that certain users are not penalized by receiving very
little resources. Resource allocation and handover management are
challenging, mainly due to the limited network resources and the
dynamic nature of channel characteristics [15]. The resources at
every BS are limited, and, for example, connecting most users in
the network to the BS with the best RSRP (most likely the macro
BS) will not lead to satisfying results. This can happen with the
3GPP handover algorithm in an crowded outdoor area such as a
city center. Therefore, it is of paramount importance to allocate
resources fairly in data rates and make handover decisions while at
the same time guaranteeing a minimum data rate for every user. As
a result, the following questions related to 5Gmobility management
arise:

• How to assign users to BSs and when to perform a handover,
and how to allocate resources in a proportional fair way?

• How does this approach perform compared to the 3GPP
standard in terms of different metrics of interest?

• How to model LoS blockages in a realistic manner?
To answer these questions, we propose to jointly solve the prob-

lem of user assignment and resource allocation that provides pro-
portional fairness in data rates by solving an optimization problem.
Moreover, the handover rate should be limited to perform only the
necessary handovers that improve user experience. So, we restrict
the number of handovers per slot and consider the handover over-
head in the objective to penalize handovers since they decrease
the user rate and introduce latency. Furthermore, we provide a
guarantee that user rates are satisfied since it is one of the most
important metrics for the user.

Specifically, our main contributions are:
• We formulate an optimization problem that jointly optimizes
the mobility management and provides proportional fairness
while guaranteeing a minimum data rate to all users. We
show that the problem is NP-hard and relaxing it we obtain
a solution that is near-optimal.

• We propose a realistic way to model LoS blockages for a
particular environment by modeling all users and objects in

the network in 3D, and then we determine geometrically if
LoS is available for every user and BS.

• We evaluate our algorithm for various user types (pedestri-
ans, cars and busses) and show that it is capable of making
resource allocation and handover decisions for users with
different speeds and channel conditions, while satisfying
their required data rates.

The remainder of this paper is organized as follows. In Section 2,
we introduce our geometric blockage model. The optimization prob-
lem is presented in Section 3. Section 4 introduces our proposed
resource allocation and handover management algorithm, while
Section 5 explains two algorithms that we use as benchmarks. Some
performance evaluation results are provided in Section 6. In Sec-
tion 7, we discuss some related work. Finally, Section 8 concludes
the paper.

2 BLOCKAGE MODELING
In this section, we first describe the 3GPP blockage model. This is
followed by the proposed geometric blockage model.

2.1 3GPP Blockage Model
In 3GPP [1], for an urban micro BS, the LoS probability depends on
the distance between the user and the BS, 𝑑 . If the user is located
closer than 18 m to the BS, then the probability is set to 1, otherwise
it is calculated as 𝑃𝐿𝑜𝑆 = 18

𝑑
+𝑒 (−

𝑑
36 ) (1−

18
𝑑
) . For an urban macro site,

the LoS probability is modeled similarly, however, it is, obviously,
larger since macro BSs use lower frequencies that are less likely to
be blocked than the signals of micro BSs such as mmWaves. The
exact formula can be found in [1]. When modeling the channel, a
random number for every user and a BS is drawn from a Normal
distribution. If the computed LoS probability using 𝑑 is larger than
the randomly drawn number, then the user is assumed to have an
LoS link with this BS. The LoS probabilities between a user and
every BS are periodically updated. However, 3GPP does not provide
any guidelines on how to select a suitable period between two LoS
events.

2.2 Proposed Geometric Blockage Model
Any user or object in our scenario can cause a blockage of LoS,
including the self-blockage when the user body blocks its own
LoS connection to a BS. We model various objects such as humans,
buildings, cars, buses that are present in our environment as 3D
bodies; specifically, humans as cylinders, similarly to [5], while
buildings, cars and busses as rectangular cuboids. Depending on
the positions of the user, BS and other objects in the environment,
any of them might be blocking the LoS between the user and the
BS. To conclude, if there is an LoS between the user and the BS, we
check three conditions and obtain the following blockage flag:

𝐹𝑏𝑙𝑜𝑐𝑘𝑒𝑑 =

𝐹𝑜𝑏 𝑗−𝑐𝑙𝑜𝑠𝑒 ∧ 𝐹𝑜𝑏 𝑗−𝑖𝑛−𝑏𝑒𝑡𝑤𝑒𝑒𝑛 ∧ 𝐹𝑏𝑠−𝑎𝑏𝑜𝑣𝑒−𝑏𝑜𝑟𝑑𝑒𝑟 =
(𝑑𝑈𝐸−𝐵𝑆 ≥ 𝑑𝑈𝐸−𝑂𝑏 𝑗 ) ∧ (𝜃𝐵 ≤ 𝜑𝐵) ∧ (𝛾𝐵 ≤ 𝛽𝐵),

(1)

where 𝑑𝑈𝐸−𝐵𝑆 is the horizontal distance between the user and the
BS, 𝑑𝑈𝐸−𝑂𝑏 𝑗 is the horizontal distance between the user and the
potentially blocking object as shown in Fig. 1. These Euclidean dis-
tances are calculated from user position (𝑥𝑈𝐸 , 𝑦𝑈𝐸 ), object position
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Figure 1: Top view on the positions of the user, BS and
the object.

Figure 2: Side view: the user has an LoS with the BS in
green, while no-LoS with the BS in red.

Figure 3: Experimentally computed LoS probabilities for macro
and micro BS with 3GPP and geometric blockage models.

Figure 4: Handover rate per user type with probabilistic
and geometric blockage models.

(𝑥𝑂𝑏 𝑗 , 𝑦𝑂𝑏 𝑗 ), and BS position (𝑥𝐵𝑆 , 𝑦𝐵𝑆 ) as:

𝑑𝑈𝐸−𝐵𝑆 =

√︃
(𝑥𝑈𝐸 − 𝑥𝐵𝑆 )2 + (𝑦𝑈𝐸 − 𝑦𝐵𝑆 )2,

𝑑𝑈𝐸−𝑂𝑏 𝑗 =
√︃
(𝑥𝑈𝐸 − 𝑥𝑂𝑏 𝑗 )2 + (𝑦𝑈𝐸 − 𝑦𝑂𝑏 𝑗 )2 .

(2)

The first condition 𝐹𝑜𝑏 𝑗−𝑐𝑙𝑜𝑠𝑒 in Eq. (1) checks if a potentially block-
ing object is located closer to the user than the BS. If not, this object
cannot be blocking the LoS. The second condition 𝐹𝑜𝑏 𝑗−𝑖𝑛−𝑏𝑒𝑡𝑤𝑒𝑒𝑛
looks into the angles 𝜃𝐵 and 𝜑𝐵 (shown in Fig. 1) to infer if the
object is located on the LoS line between the user and the BS. If
it is fulfilled, the third condition 𝐹𝑏𝑠−𝑎𝑏𝑜𝑣𝑒−𝑏𝑜𝑟𝑑𝑒𝑟 checks whether
the object height is enough to block the LoS line in the 𝑧-axis by
comparing 𝛽𝐵 and 𝛾𝐵 (Fig. 2). If so, the flag 𝐹𝑏𝑙𝑜𝑐𝑘𝑒𝑑 is set to True,
otherwise to False. The radius of the object is denoted as 𝑟𝑜𝑏 𝑗 , as
also shown in Fig. 1. The angle 𝜃𝐵 is calculated from the geometry
of the problem as follows:

𝜑𝐵 = 2 · arctan
(

𝑟𝑜𝑏 𝑗

𝑑𝑈𝐸−𝑂𝑏 𝑗

)
. (3)

We define an auxiliary angle 𝛼𝐵 , as shown in Fig. 1, and derive
𝜃𝐵 also using geometry as

𝜃𝐵 = 𝛼𝐵 + 𝜑𝐵/2. (4)

To derive 𝛼𝐵 , we use the scalar product of the vectors UE − Obj
and UE − BS, which are the vectors between these points, i.e.,

UE − Obj =
(
𝑥𝑂𝑏 𝑗 − 𝑥𝑈𝐸
𝑦𝑂𝑏 𝑗 − 𝑦𝑈𝐸

)
=

(
𝑥𝑈𝐸−𝑂𝑏 𝑗
𝑦𝑈𝐸−𝑂𝑏 𝑗

)
, (5)

UE − BS =

(
𝑥𝐵𝑆 − 𝑥𝑈𝐸
𝑦𝐵𝑆 − 𝑦𝑈𝐸

)
=

(
𝑥𝑈𝐸−𝐵𝑆
𝑦𝑈𝐸−𝐵𝑆

)
, (6)

where Eq. (5) and Eq. (6) are used to calculate the relative distance
between the user and the BS. Now, 𝛼𝐵 is computed using the scalar
product of both vectors:

𝛼𝐵 = arccos
(
𝑥𝑈𝐸−𝑂𝑏 𝑗 · 𝑥𝑈𝐸−𝐵𝑆 + 𝑦𝑈𝐸−𝑂𝑏 𝑗 · 𝑦𝑈𝐸−𝐵𝑆

𝑑𝑈𝐸−𝑂𝑏 𝑗 · 𝑑𝑈𝐸−𝐵𝑆

)
. (7)

The angles 𝛽𝐵 and 𝛾𝐵 are computed as follows:

𝛽𝐵 = arctan
(

ℎ𝑂𝑏 𝑗 − ℎ𝑈𝐸
𝑑𝑈𝐸−𝑂𝑏 𝑗 − 𝑟𝑂𝑏 𝑗

)
, (8)

𝛾𝐵 = arctan
(
ℎ𝐵𝑆 − ℎ𝑈𝐸
𝑑𝑈𝐸−𝐵𝑆

)
, (9)

which are used to evaluate the third condition in Eq. (1). If any
of the conditions is not fulfilled, then there is an LoS connection
between the user and the BS.

Fig. 3 shows the probability of having an LoS with 3GPP model
(for macro and micro BS) and with the proposed geometric blockage
model (for a user to any BS) at different distances between the user
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and the BS. For the geometric model, the probabilities are computed
experimentally, while for 3GPP as explained in Section 2.1. One can
see that the general trend of both models is similar, namely, that
the larger the distance, the more likely there is no LoS. Different
from 3GPP, with the geometric model not only the distance, but
also the user position and the environment around it impacts the
probability of having an LoS. The values of LoS probabilities in
Fig. 3 cannot be compared directly because the probability with the
probabilistic 3GPP model is separate for macro and micro BS, while
with the geometric model, the probabilities are computed for the
whole scenario with both BS types.

Fig. 4 shows the handover rate per user with the 3GPP handover
algorithm for 3GPP blockage model and the proposed geometric
model for two user types: pedestrians and cars. With the proba-
bilistic model, the handover rate of pedestrian users is higher than
of cars, which is unrealistic. On the contrary, with the geomet-
ric blockage model, cars make significantly more handovers than
pedestrians. This motivates blockage modeling with 3D shapes.

3 PROBLEM FORMULATION
In this work, we jointly assign users to BSs and allocate resources in
proportionally fair manner, as well as aim at reducing the handover
rate by keeping it under a certain limit. We take into account the
handover overhead in the objective, which is denoted by 𝜂𝑢,𝑏′,𝑏 .
The sets U and B are the set of all users and BSs in the network,
respectively, while 𝑁𝑢 and 𝑁𝑏 are the total number of users and BSs,
respectively. We denote by 𝑅𝑢,𝑏 the per-block rate of user u from BS
b and assume that it is the same across all Physical Resource Blocks
(PRBs) for one user. The per-block rate 𝑅𝑢,𝑏 depends on Signal
to Interference and Noise Ratio (SINR) and the bandwidth of one
PRB (the bandwidth of micro BSs is larger than of macro because
of mmWaves). We calculate 𝑅𝑢,𝑏 using the Shannon’s formula, as
in [12]. Moreover, we guarantee a minimum required data rate 𝑟𝑢
for every user 𝑢. There are two decision variables 𝑧𝑢,𝑏 and 𝑘𝑢,𝑏 in
the optimization problem. The decision variable 𝑧𝑢,𝑏 is a binary
variable that states whether the user u is connected to the BS b or
not. If user u is served by BS b, 𝑧𝑢,𝑏 = 1; else 𝑧𝑢,𝑏 = 0. Another
decision variable is 𝑘𝑢,𝑏 ,∀𝑢 ∈ 𝑈 ,∀𝑏 ∈ 𝐵, which is integer and
states the number of PRBs that the BS b allocates to user u. The
optimization formulation is:

max
𝑧𝑢,𝑏 ,𝑘𝑢,𝑏

𝑁𝑢∑︁
𝑢∈U

𝑁𝑏∑︁
𝑏∈B

𝑧𝑢,𝑏 log(𝑅𝑢,𝑏𝑘𝑢,𝑏 (1 − 𝜂𝑢,𝑏′,𝑏 )) (10)

s.t.
𝑁𝑏∑︁
𝑏∈B

𝑅𝑢,𝑏𝑧𝑢,𝑏𝑘𝑢,𝑏 ≥ 𝑟𝑢 , ∀𝑢 ∈ U, (11)

𝑁𝑢∑︁
𝑢∈U

𝑁𝑏∑︁
𝑏∈B

(𝑧′
𝑢,𝑏
𝑧𝑢,𝑏 ) ≥ 𝑁𝑢 − 𝑁𝐻𝑂 , (12)

𝑁𝑏∑︁
𝑏∈B

𝑧𝑢,𝑏 = 1, ∀𝑢 ∈ U, (13)

𝑁𝑢∑︁
𝑢∈U

𝑧𝑢,𝑏𝑘𝑢,𝑏 ≤ 𝐾𝑃𝑅𝐵𝑏 , ∀𝑏 ∈ B, (14)

𝑧𝑢,𝑏 ∈ {0, 1}, ∀𝑢 ∈ U, ∀𝑏 ∈ B, (15)

𝑘𝑢,𝑏 ∈ {0, 𝐾𝑃𝑅𝐵𝑏 }, ∀𝑢 ∈ U, ∀𝑏 ∈ B. (16)
The value of 𝑘𝑢,𝑏 matters only when 𝑧𝑢,𝑏 = 1, since otherwise the
corresponding objective term in Eq. (10) is 0. The objective is to pro-
vide proportional fairness, hence the logarithm is under the sums.
The handover overhead is considered in Eq. (10) by multiplying
user rate with handover efficiency (1−𝜂𝑢,𝑏′,𝑏 ) since during HIT the
user cannot be served. The first constraint (Eq. (11)) ensures that a
minimum required rate 𝑟𝑢 for user 𝑢 is provided. Constraint (12)
limits the number of handovers per slot in the network1. We allow
only 𝑁𝐻𝑂 users to make a handover by forcing 𝑁𝑢 − 𝑁𝐻𝑂 users
per slot to stay connected to the same BSs as in the previous slot.
Constraint (13) states that each user must be served by exactly one
BS. Constraint (14) expresses the fact that every BS has a limited
number of PRBs. Note that micro BSs have more PRBs, and each
PRB has a larger bandwidth compared to a micro BS.

To account for the data rate reduction during a handover due to
a HIT, we consider the handover overhead 𝜂𝑢,𝑏′,𝑏 in the objective
(Eq. (10)), which can be expressed in terms of the current allocation
𝑧𝑢,𝑏 and the previous allocation 𝑧′

𝑢,𝑏
as

𝜂𝑢,𝑏′,𝑏 = (1 − 𝑧𝑢,𝑏 · 𝑧′
𝑢,𝑏

) · 𝑇𝐻𝐼𝑇
𝑇𝑠𝑙𝑜𝑡

, (17)

where 𝑇𝐻𝐼𝑇 is the interruption time expressed in ms due to a han-
dover and 𝑇𝑠𝑙𝑜𝑡 (also in ms) is the slot duration. Note that we need
to take 𝜂𝑢,𝑏′,𝑏 into account only when 𝑧𝑢,𝑏 = 1, because whenever
𝑧𝑢,𝑏 = 0 the corresponding term in Eq. (10) is 0. In the first slot, we
assume that the handover overhead is 0 since the previous alloca-
tion is not available. Note that 𝑧′

𝑢,𝑏
is fixed at the current slot, and

it is not a decision variable.
This is an integer nonlinear program since both decision vari-

ables are integer, the objective and some of the constraints are
non-linear. Moreover, the optimal allocation at the current slot
depends on the previous allocation because of the handover over-
head in Eq. (10). This is an NP-hard problem [18], and the solution
via solvers can be obtained within reasonable time only for input
set sizes which are not too large. Already for a relatively small
network scenario, it is quite computationally intensive to obtain a
solution with a solver (Gurobi). Therefore, in this paper, we relax
the requirement for the decision variables to obtain only integer
or binary values to real numbers from the corresponding intervals.
We do this to get a well-performing solution quickly, which is very
important when it comes to practical implementation.

4 RELAXED SOLUTION
In this section, we explain how we relax the optimization problem
from Section 3 and obtain convex2 upper bounds for the objective
and non-linear constraints.

4.1 Relaxation of integer variables
Both decision variables are integer, hence, they need to be relaxed
to take continuous values, so that we can apply an off-the-shelf
software for linear problem solving. The decision variables then
become as

𝑧𝑢,𝑏 ∈ [0, 1], 𝑘𝑢,𝑏 ∈ [0, 𝐾𝑃𝑅𝐵𝑏 ], ∀𝑢 ∈ U, ∀𝑏 ∈ B. (18)
1The slot is the unit of resource allocation in modern cellular networks.
2In fact, using these transformations, the terms become linear in our case.
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After obtaining a solution to the relaxed problem, the continuous
values of the decision variables are rounded to the closest integer.
To convert 𝑧𝑢,𝑏 to an integer value, the largest 𝑧𝑢,𝑏 for every user
𝑢 is set to one, while other values are set to 0. To round 𝑘𝑢,𝑏 , we
first allocate to every user

⌈
𝑘𝑢,𝑏

⌉
resources, then we allocate the

remaining PRBs of every BS to its connected users one by one
starting with the user with the largest decimal part of 𝑘𝑢,𝑏 as long
as there are unused resources left at the BS.

4.2 Transformation of the objective function
We split the objective into three terms, substitute the expression for
𝜂𝑢,𝑏′,𝑏 from Eq. (17), and denote the overhead value due to handover
as 𝐵 =

𝑇𝐻𝐼𝑇

𝑇𝑠𝑙𝑜𝑡
, obtaining

𝑁𝑢∑︁
𝑢∈U

𝑁𝑏∑︁
𝑏∈B

𝑧𝑢,𝑏

(
log𝑅𝑢,𝑏 + log𝑘𝑢,𝑏 + log(1 − 𝐵 + 𝐵𝑧′

𝑢,𝑏
𝑧𝑢,𝑏 )

)
.

(19)
The first term 𝑧𝑢,𝑏 log𝑅𝑢,𝑏 is linear in 𝑧𝑢,𝑏 . By checking the Hes-
sian matrices [4], we infer that the second term 𝑓2 (𝑧𝑢,𝑏 , 𝑘𝑢,𝑏 ) =

𝑧𝑢,𝑏 log𝑘𝑢,𝑏 is non-convex and non-concave, while the third term
𝑓3 (𝑧𝑢,𝑏 ) = 𝑧𝑢,𝑏 log(1 − 𝐵 + 𝐵𝑧′

𝑢,𝑏
𝑧𝑢,𝑏 ) is convex.

To linearize the second term 𝑓2 (𝑧𝑢,𝑏 , 𝑘𝑢,𝑏 ), we first perform a
change in variables: 𝑓2 (𝑧𝑢,𝑏 , 𝑘𝑢,𝑏 ) = 𝑧𝑢,𝑏 log𝑘𝑢,𝑏 = 𝑧𝑢,𝑏𝑝𝑢,𝑏 , where
𝑘𝑢,𝑏 = 𝑒𝑝𝑢,𝑏 . To avoid log(0), we replace log𝑘𝑢,𝑏 with log(𝑘𝑢,𝑏 + 1),
which does not impact the final solution. Then we apply an ap-
proach for bilinear functions to obtain an upper bound of a product
of two variables 𝑧 and 𝑝 [8] as

𝑉1 = 𝑧
𝑙𝑝 + 𝑝𝑙𝑧 − 𝑧𝑙𝑝𝑙 , and 𝑉2 = 𝑧𝑢𝑝 + 𝑝𝑢𝑧 − 𝑧𝑢𝑝𝑢 , (20)

where the corner values of both variables are 𝑧𝑙 = 0, 𝑧𝑢 = 1, 𝑝𝑙 = 0,
𝑝𝑢 = log(𝐾𝑃𝑅𝐵𝑏 + 1) (since 𝑘𝑙 = 0, 𝑘𝑢 = 𝐾𝑃𝑅𝐵𝑏 ), and 𝑉1 and 𝑉2 are
the overestimators of the product. The convex overestimator of the
product 𝑧𝑝 is𝑚𝑎𝑥 (𝑉1,𝑉2). The relaxed second term then becomes
log(𝑘𝑢,𝑏 + 1) + (𝑧𝑢,𝑏 − 1) log(𝐾𝑃𝑅𝐵𝑏 + 1).

The term ℎ(𝑘𝑢,𝑏 ) = log(𝑘𝑢,𝑏 + 1) is concave in 𝑘𝑢,𝑏 , and we
can relax it further, so we apply an approach for univariate func-
tions [8] for concave functions. The linear overestimator of the
term is computed as ℎ̂ = ℎ(𝑘𝑙 ) + ℎ (𝑘𝑢 )−ℎ (𝑘𝑙 )

𝑘𝑢−𝑘𝑙 (𝑘 − 𝑘𝑙 ). Then we ob-

tain that log(𝑘𝑢,𝑏 + 1) = log(𝐾𝑃𝑅𝐵𝑏
+1)

𝐾𝑃𝑅𝐵𝑏

𝑘𝑢,𝑏 . Finally, 𝑓2 (𝑧𝑢,𝑏 , 𝑘𝑢,𝑏 ) =
log(𝐾𝑃𝑅𝐵𝑏

+1)
𝐾𝑃𝑅𝐵𝑏

𝑘𝑢,𝑏 + (𝑧𝑢,𝑏 −1) log(𝐾𝑃𝑅𝐵𝑏 +1), which is linear in both
𝑧𝑢,𝑏 and 𝑘𝑢,𝑏 .

To linearize the third term 𝑓3 (𝑧𝑢,𝑏 ), we apply again an approach
from [8] for univariate concave functions, where the overestimator
is built using the corner values of 𝑧𝑢,𝑏 (0 and 1) and the value of
𝑓3 (𝑧𝑢,𝑏 ) at these points. Then, we obtain a linear overestimator
𝑓3,𝑙𝑏 (𝑧𝑢,𝑏 ) = 𝑧𝑢,𝑏 log(1 − 𝐵 + 𝐵𝑧′

𝑢,𝑏
).

Finally, the linear overestimator for the whole objective function
from Eq. (10) becomes

max
𝑧𝑢,𝑏 ,𝑘𝑢,𝑏

𝑁𝑢∑︁
𝑢∈U

𝑁𝑏∑︁
𝑏∈B

(
𝑧𝑢,𝑏 log(𝑅𝑢,𝑏 ) +

log(𝐾𝑃𝑅𝐵𝑏 + 1)
𝐾𝑃𝑅𝐵,𝑏

𝑘𝑢,𝑏

+(𝑧𝑢,𝑏 − 1) log(𝐾𝑃𝑅𝐵𝑏 + 1) + 𝑧𝑢,𝑏 log(1 − 𝐵 + 𝐵𝑧′
𝑢,𝑏

)
)
,

(21)

which is a linear function in both decision variables.

4.3 Transformation of constraints
Similarly, we obtain the upper bound estimators for constraints in
Eqs. (11) and (14). By applying the bilinear function approach [8],
the constraints (11) and (14) become

𝑁𝑏∑︁
𝑏∈B

𝑅𝑢,𝑏 (𝑘𝑢,𝑏 + 𝐾𝑃𝑅𝐵𝑏𝑧𝑢,𝑏 − 𝐾𝑃𝑅𝐵𝑏 ) ≥ 𝑟𝑢 , ∀𝑢 ∈ U, (22)

𝑁𝑢∑︁
𝑢∈U

(𝑘𝑢,𝑏 + 𝐾𝑃𝑅𝐵𝑏𝑧𝑢,𝑏 − 𝐾𝑃𝑅𝐵𝑏 ) ≤ 𝐾𝑃𝑅𝐵𝑏 , ∀𝑏 ∈ B. (23)

The relaxed problem formulation consists of the relaxed objective
and constraints expressed through Eqs. (21), (22), (12), (13), (23),
(18). We convert the initial non-linear integer problem to a linear
one with continuous variables, which can be solved quickly with a
solver for linear programs.

5 BENCHMARK MODELS
In this section, we describe two benchmark models against which
we are going to compare the performance of our approach.

5.1 3GPP-based Handover
Currently, the Make-Before-Break (MBB) 3GPP handover algo-
rithm [2], which terminates the connection with the serving BS only
after establishing the connection to the target BS during handover,
to reduce HIT, is used in mobile networks. The user periodically
measures the channel and sends the measurement report to its
serving BS, which contains the signal strength of the serving and
neighboring cells. The BS applies Layer-3 filtering and averages
RSRP or SINR values over 200 ms [2]. Based on these measurements,
the serving BS selects the target BS that should be prepared for a
handover. The target BS is selected using an A3 event, which is trig-
gered when a neighboring BS becomes better than the serving BS
by a certain margin (e.g., 3 dB) and during a certain period of time
(e.g., during 320 ms). The handover and Radio Link Failure (RLF)
rates greatly depend on these parameters.

5.2 Adaptive handover parameter benchmark
The authors in [6] adjust handover parameters, like the handover
margin (in dB) and Time-to-Trigger (TTT) (in ms), based on the
user velocity. They propose to use two thresholds to split users in
different groups based on their speed. When the calculated user
velocity is bellow 10 km/h, then they set handover margin and TTT
to 6 dB and 512 ms accordingly. If the user velocity is in the range
between 10 and 45 km/h, then they set the handover parameters to
4 dB and 128 ms. Finally, in case user velocity is above the second
threshold of 45 km/h, they select small handover parameters (2 dB
and 32 ms) to speed up the handover process and avoid delayed
handovers that might result in an RLF.

6 PERFORMANCE EVALUATION
First, we describe the simulation setup. Then, we present results
for a smaller network, which is followed by results for a network
with a larger number of entities.
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Figure 5: LoS and no-LoS duration with probabilistic 3GPP and geometric blockage models (large scenario).

Figure 6: The value of objective function from Eq. (10) for various handover algorithms: 1-Prob-3GPP, 2-Prob-Benchmark,
3-Prob-Relaxed, 4-Prob-Optimal, 5-Geo-3GPP, 6-Geo-Benchmark, 7-Geo-Relaxed, 8-Geo-Optimal (small scenario).

Table 1: Simulation Parameters [1], [2]

Parameter Value

Carrier frequency (macro) 2.5 GHz
Carrier frequency (micro) 28 GHz
Line of sight update periodicity (3GPP) 1000 ms
Channel measurement periodicity 10 ms
HIT (assuming MBB) 14.5 ms

6.1 Simulation Setup
We consider a two-tier network with urban channel models for
macro and micro cells, from 3GPP 5G Release 14 [1]. We model
the path loss and shadowing for LoS and no-LoS, as in [1]. We
consider the two scenarios: (i) 5 BSs (one macro and four micro)
and 10 users; (ii) 15 BSs (3 macro and 12 micro BS) and 45 users.
We refer to the first case as small scenario and to the second as
large scenario3. Madrid Grid mobility model is used to generate
the mobility traces [11] for pedestrian users, bikes, buses and cars
that have different velocities, as well as the positions of buildings
that might block the LoS. We extend this model with the geometric

3We refer to this scenario as large to distinguish it from the small scenario with no
intention of implying how many users comprise a large network.

blockage modeling and we evaluate the performance of our han-
dover approach for various mobility patterns and user speeds. The
other simulation parameters are depicted in Table 1. The frequency
reuse factor is 1 for scenario (i) and 3 for scenario (ii). We run the
simulation over 1000 s.

Our approach is centralized, where an agent runs at a controller
and then handover and resource allocation decisions are signaled to
all BSs in the network.We compare our relaxed approach against the
optimal one, which is obtained using the Gurobi solver. Additionally,
we use two other benchmark models, as explained in Section 5; the
3GPP handover [2] and the baseline that adaptively sets handover
parameters based on user velocity [6]. To find the solution to the
optimal and relaxed problems, we set the handover overhead to 0.9.
During simulations, the user does not receive any resources during
HIT and RLF for all evaluated algorithms. Moreover, to ensure that
the number of handovers is constrained at every time slot, and
the signalling resources are not exceeded, we set 𝑁𝐻𝑂 so that up
to 20% of the users can make a handover at every time slot, i.e.,
𝑁𝐻𝑂 = 0.2𝑁𝑢 . In the following box plots, the median is denoted as
a horizontal orange line and the mean as a green triangle.

6.2 Evaluation of Blockage Duration
We compare the duration of LoS or no-LoS presence with 3GPP-
based and the proposed geometric blockage models. LoS and no-
LoS duration with 3GPP is 2.6× and 1.8× lower, accordingly, which
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Figure 7: Handover rate (small scenario). Figure 8: Ping-pong handover rate (small scenario).

Figure 9: Percentage of users with satisfying data rates.
Figure 10: Handover rate for handover count limit 𝑁𝐻𝑂
(first value in %) and handover overhead 𝐵 (second
value).

leads to more LoS to no-LoS switches and vise versa, which, in turn,
causes more handovers as shown in the following. The proposed
geometric blockage modeling leads to a more scenario-dependent,
and thus, realistic, blockage duration with a larger mean, min and
max values, as shown in Fig. 5. Moreover, the LoS duration depends
on the user speed, namely, faster users switch from LoS to no-LoS
and vice versa more often because they pass more objects by. As
a result, the LoS and no-LoS duration has a significantly longer
range. In the following subsections, we run the handover algorithms
with the 3GPP probabilistic (denoted as Prob. from now on) and
our geometric blockage (denoted as Geo. from now on) models to
evaluate the impact of the blockage modeling on handover and
ping-pong handover rates. Note that if the user makes a handover
from the new cell to the old one within three seconds, this handover
is classified as ping-pong.

6.3 Small Scenario
In this scenario, there are eight pedestrian users, two cars and a bus.
Pedestrian users might get on the bus at one of the bus stops with a
certain probability according to the traces of Madrid Grid mobility
model. We evaluate the performance of 3GPP, the benchmark [6]
handover algorithms, as well as the optimal and relaxed solutions.

The relaxed approach provides an upper bound to the optimal
one and obtains the mean objective of 269 for both Prob. and Geo for

the small scenario. After solving the relaxed problem, the decision
variables are converted back to integer to be able to make user
assignment and resource allocation decisions. Fig. 6 shows the
objective values for various handover algorithms and two blockage
models. The optimal (with objective mean of 170 for Prob. and
166 Geo. blockage models) and the relaxed with decision variables
converted to integer (with objective mean of 158 for both) solution
significantly outperform the 3GPP (with mean of 70 and −6.5) and
the benchmark (with mean of 68 and −6.5) approaches. Moreover,
the performance of the relaxed approach is within 93 − 96% of the
optimal for Prob. and Geo., which is a significant advantage our
approach offers.

Fig. 7 and Fig. 8 show the handover and ping-pong rates. The
optimal algorithm reduces the handover rate by 40− 50% compared
to both benchmarks (for Prob. and Geo.). For the probabilistic block-
age model, the relaxed solution achieves the same handover rate as
the optimal, while, for the geometric one, it reduces the handover
rate by 13% compared to the baselines. Both the optimal and the re-
laxed algorithms reduce the ping-pong handover rates significantly,
namely, by and 14% and 67%. Interestingly, the relaxed approach
reduces the ping-pong handover rate more than the optimal one.
With the geometric blockage model, users make significantly fewer
handovers because the LoS presence does not switch as often as
with 3GPP, and the ping-pong handover rate is very close to 0.
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Figure 11: The value of objective function from Eq. (10) for various handover algorithms: 1-Prob-3GPP, 2-Prob-Benchmark,
3-Prob-Relaxed, 4-Geo-3GPP, 5-Geo-Benchmark, 6-Geo-Relaxed (large scenario).

Figure 12: Handover rate (large scenario). Figure 13: Percentage of users with satisfying
data rates.

Another advantage that our approach offers is that we guarantee
a minimum required rate per user, which was set to be 4− 10 Mbps,
depending on the user. The percentage of users with satisfying
data rates is shown in Fig. 9. With 3GPP and the benchmark, just
≈ 20− 25% of all users are satisfied, while the proposed optimal and
relaxed approaches provide a user satisfaction rate of 100% for both
blockage modeling approaches. Thus, additionally to providing
proportional fairness, the proposed approach manages to satisfy
users’ demands and reduce the handover rate.

6.4 Large Scenario
In the larger scenario, there are more users and more BS. The users
are divided into 30 pedestrians, 15 cars including public transport in
the form of two buses. We compare the same algorithms as for the
small scenario except for the optimal solution since it is computa-
tionally very expensive to solve an integer non-linear program for
a large scenario. The results and the trend is similar to the ones for
the small scenario. Fig. 11 shows the value of the objective, where
the relaxed proportionally fair approach increases the objective
compared to 3GPP baseline from −130 to 732 and from −204 to 742
for each blockage model. Fig. 12 presents the handover rate that
is reduced by the relaxed approach by 36% for both probabilistic
and geometric blockage models. One can also notice how much the
handover rates are affected by blockage modeling. Namely, with
the probabilistic model the values are 0.39 with 3GPP and 0.25 with
the proposed relaxed approach, while the handover rate is 0.061

and 0.039 with the geometric blockage modeling. This stresses the
importance of the appropriate blockage modeling. Fig. 13 shows the
percentage of satisfied users, where the relaxed algorithm increases
the number of satisfied users by over 40%.

6.5 Impact of handover overhead
Next, we evaluate the impact of handover overhead and the maxi-
mum number of users that can handover in a slot on the handover
rate for the large scenario. We limit the handover rate by consider-
ing the handover overhead in the objective and constraining the
number of users that can make a handover per slot to avoid unnec-
essary handovers. As shown in Fig. 10, the handover rate reduces
the larger the handover overhead is and the fewer users are allowed
to make handovers by 20− 60%. This permits the operator to adjust
handover rates based on available resources and amount of users.

7 RELATEDWORK
First, we describe some related works from blockage modeling, and
then we present works related to mobility management.

7.1 Blockage Modeling
The authors in [19] propose a system for indoor THz communi-
cation, where they model common blockages such as walls and
humans as 3D shapes. They also assume that a human body has a
shape of cylinder and the centers of the cylinders (humans) are dis-
tributed according to a homogeneous Poisson Point Process (PPP).



Proportionally Fair Resource Allocation Considering Geometric Blockage Modeling for Improved Mobility Management in 5GQ2SWinet ’22, October 24–28, 2022, Montreal, QC, Canada

PPP-based blockage model is restrictive since in PPP, due to its
distribution, it is impossible to have two persons next to each. In re-
ality, users often move in groups or closely to each other, especially
in crowded places. Modeling blockages that come from humans
and walls allows one to determine whether there is an LoS between
the user and the access point or not.

In another work [5], which is the closest blockage modeling
work to ours, the authors model human blockages as cylinders in
an indoor mmWave network. They model their access points to
have a limited field of view. They place blockage bodies uniformly in
the indoor area assuming zero or three blockages per squared meter.
Differently, we model all components/obstacles of the environment
and the network as 3D geometric figures because the users and
buildings location depends on the cite features and user mobility
patterns. Our model also considers transient blockages from other
users on the user of interest. Such blockages increase ping-pong
handover rate and should be considered in the simulation scenario.
This allows us to study the impact of other users in the network and
their trajectories on the user of interest. This way of modeling is,
of course, more computationally expensive compared to the 3GPP
distance-based probabilistic model because we need to check if any
of the objects or users blocks the LoS.

7.2 Handover Management
Various approaches that reduce the handover rate have already
been proposed [3], [6], [7], [13], [9]. The authors in [3] and in [14]
propose to tune handover margin and TTT based on user speed
and measured channel. The authors in [6] also adjust handover
parameters based on user speed, as well as cell load and perform
load balancing between neighboring cells. However, mapping user
speeds to handover parameters is challenging since handovers also
depend on the environment and the other users in the network.
Handovers in dense scenarios are not only caused by mobility,
but also by LoS blockages and load balancing decisions. Therefore,
other parameters should be considered to decide if a handover
should be triggered and to which target cell. Furthermore, some
works like [20], [17] have already used artificial intelligence for
handover management using measured RSRP values as an input.
However, with artificial intelligence, it is not always clear why a
model made a certain decision and if its performance will be stable
with a new data distribution. Hence, we formulate an optimization
problem to perform user to BSs assignment, fair resource allocation
and handover decisions jointly considering measured RSRP values
received from all users, available resources at BSs and guaranteeing
the minimum required rate. In [16] the authors also formulate
an optimization problem with the same decision variables as we
do, to perform load balancing in heterogeneous indoor networks.
However, they do not consider the handover overhead, nor do they
provide a minimum rate guarantee to the users.

8 CONCLUSION
In this paper, we consider the problem of jointly assigning the users
to BSs and allocating resources from BSs to the assigned users
while providing proportional fairness and guaranteeing a mini-
mum data rate to all users at all times. To model reliably the signal
blockages, we use a geometric blockage approach. We formulate an

optimization problem, and propose a near-optimal solution which
outperforms other benchmark models. We show that our approach
reduces the handover rate and increases user satisfaction with the
service. In the future, we plan to extend our approach so that it
captures dual connectivity as well. Also, we plan to consider the
general case of 𝛼-fairness.
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