
Technische Universität München

TUM School of Computation, Information and Technology

Deep Learning Methods for
Simulation of Liquids

Lukas Prantl

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen

Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Stephan Günnemann

Prüfer*innen der Dissertation: 1. Prof. Dr.-Ing. Nils Thuerey

2. Prof. Dr. Jan Bender

Die Dissertation wurde am 10.10.2022 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am

04.04.2023 angenommen.

For peace

Abstract

Liquids, or fluids in general, play a significant role in science and engineering. We also encounter

them in everyday life, like in movies or computer games, where they are conspicuous for their chaotic

and complex physical behavior. An efficient and accurate simulation remains a major scientific chal-

lenge and is part of ongoing research. This thesis proposes new approaches to liquid reconstruction

using deep learning. We focus on the complex behavior of gas-liquid interfaces, which comprise a

large part of classical liquid scenes. The goal of our methods are fast and easily controllable fluid

approximations for computer graphics.

We target a reduced representation of spatio-temporal surface data in the first part of the work. This

reduced representation gives the possibility of generating interactive fluid data in a short amount of

time. The capacities of our method are determined by a selected set of precomputed data which is

interpolated by a deep learning-based approach, allowing for the generation of unseen data within

the selected parameter space. Our work shows that the usage of neural networks is essential in this

process. The underlying algorithm for interpolating the data is linear, but by extending it with neural

networks, the highly nonlinear behavior from the liquids can be approximated appropriately. The

final method allows for generating the desired surface quickly. To demonstrate the effectiveness of

our method, we have implemented a mobile application based on our method that allows real-time

interactions with complex liquid effects.

A limitation of our first method is the lack of generalization to data outside the chosen parameter

space. Therefore, in our second work we aim at a method with better generalizability. For this, we

target a super-resolution technique for particle-based 3D sequences. The motivation here is that

high-resolution simulations are generally very costly to generate due to the high time complexity of

conventional solvers. Therefore, we want to enhance rapidly generatable low-resolution simulations

v

ABSTRACT

using a neural network to approximate a high-resolution variant. Neural networks can be evaluated

in linear time O(n) and are thus not affected as much by dimensionality. For this purpose, we

present a generative model for point clouds that provides temporally coherent results. We use a

new temporal loss function that considers the higher temporal derivatives of the point positions.

We combine these techniques with a truncation approach to flexibly adjust the amount of generated

particles and show the generalizability of our approach by inferring large deforming point sets from

different test sets. The truncation approach, combined with the ability to evaluate the model only

for local subsets of the input, allows us to adaptively apply supersampling only to the surface.

In summary, our two methods permit temporally coherent and fast reconstruction of liquid behavior.

The focus on liquids inspired us to develop efficient adaptive methods, but they can also be easily

extended to flows in general. The results of our methods show that deep learning-based methods

are promising, and we hope they are an inspiration for future work.

vi

Zusammenfassung

Flüssigkeiten, oder im Allgemeinen Strömungen, spielen eine große Rolle in der Wissenschaft und

im Ingenieurwesen. Sie begegnen uns aber auch in unserem alltäglichen Leben, wie in Filmen

oder Computerspielen, wo sie durch ein chaotisches und komplexes physikalisches Verhalten auf-

fallen. Eine effiziente und akkurate Simulation stellt die Wissenschaft weiterhin vor eine große

Herausforderung und ist Teil von aktuellen Studien. Diese Thesis präsentiert neue Deep Learning-

basierte Ansätze zur Rekonstruktion von Flüssigkeiten. Wir fokussieren uns dabei auf das kom-

plexe Verhalten der Schnittstelle zwischen Luft und Flüssigkeit, die einen Großteil von klassischen

Flüssigkeitsszenen ausmacht. Das Ziel unserer Methoden sind schnelle und leicht kontrollierbare

Flüssigkeitapproximationen für die Computergrafik.

Im ersten Teil der Arbeit zielen wir auf eine reduzierte Repräsentation von räumlich-zeitlichen

Oberflächendaten ab. Der Vorteil dieser reduzierten Repräsentation ist, dass man unter geringem

Zeitaufwand interaktive Strömungsdaten generieren kann. Die Kapazitäten unserer Methode wer-

den dabei von einer gewählten Menge an vorberechneten Daten bestimmt. Die Auswahl der Flüs-

sigkeitsdaten wird durch einen Deep Learning-basierten Ansatz interpoliert, wodurch innerhalb des

gewählten Parameterraumes beliebig viele neue Daten generiert werden können. Wie wir in un-

serer Arbeit zeigen, ist die Verwendung von neuronalen Netzwerken dabei essentiell. Der zugrun-

deliegende Algorithmus für die Interpolation der Daten ist linear. Erst durch die Erweiterung mit

neuronalen Netzwerken kann das stark nichtlineare Verhalten von den Fluiden richtig approximiert

werden. Die finale Methode erlaubt es uns schnell eine gewünschte Oberfläche zu generieren. De-

mentsprechend haben wir auf Basis unserer Methode eine mobile Applikation implementiert, die

Echtzeitinteraktionen mit komplexen Flüssigkeitseffekten ermöglicht.

vii

ZUSAMMENFASSUNG

Eine Limitierung unser ersten Methode ist die fehlende Generalisierung auf Daten außerhalb des

gewählten Parameterraumes. Deshalb zielen wir in unserer zweiten Arbeit auf eine Methode

mit besserer Generalisierbarkeit ab. Dafür arbeiten wir mit einer Super-Resolution-Technik für

partikel-basierte 3D Sequenzen. Die Motivation dabei ist, dass durch die hohe Zeitkomplexität von

herkömmlichen Solvern hochauflösende Simulationen generell sehr kostenaufwendig zu gener-

ieren sind. Deshalb wollen wir schnell generierbare, niedrig-aufgelöste Simulationen anhand eines

neuronalen Netzwerks aufwerten und die hochauflösende Variante damit approximieren. Neu-

ronale Netzwerke lassen sich in linearer Zeit O(n) auswerten und werden somit nicht so stark von

der Daten-Dimensionalität beeinflusst. Wir präsentieren dafür ein generatives Modell für Punkt-

wolken, welches zeitlich kohärente Ergebnisse liefert. Für die zeitliche Kohärenz schlagen wir eine

neue temporale Verlustfunktion vor, die die höheren zeitlichen Ableitungen der Punktpositionen

berücksichtigt. Wir kombinieren diese Techniken mit einer dynamischen Maskierung zur flexiblen

Anpassung der Größe der generierten Punktdaten und zeigen die Flexibiltät unseres Ansatzes mit

der Inferenz von großen, deformierenden Punktmengen aus verschiedenen Testszenarien. Die

Maskierung in Kombination mit der Möglichkeit, das Modell nur für lokale Teilbereiche des Inputs

auszuwerten, erlaubt das Supersampling zudem adaptiv nur auf die Oberfläche anzuwenden.

Zusammengefasst ermöglichen unsere beiden Methoden eine zeitlich kohärente und schnelle Rekon-

struktion von Flüssigkeiten. Der Fokus auf Flüssigkeiten inspirierte uns dabei zu effizienten und

adaptiven Methoden, die aber auch leicht für Strömungen im Allgemeinen angepasst werden kön-

nen. Die Ergebnisse unserer Methoden zeigen, dass Deep Learning-basierte Methoden vielver-

sprechend sind und wir hoffen, dass sie eine Inspiration für zukünftige Arbeiten sind.

viii

Acknowledgments

I sincerely thank everyone who has supported me in my doctoral studies. The support has made the

journey a wonderful time and helped me through harder times. First and foremost, I would like to

express my deepest gratitude to my supervisor Prof. Nils Thuerey, who inspired me to choose the

path I did and supported me actively. He helped me with his advice throughout my journey, from my

bachelor thesis all the way to this doctoral thesis. He gave me freedom in my decisions and made

me feel I was being taken seriously. He was patient at times when the research did not go as hoped

and helped me in every possible way when the time was running out before a deadline. Finally,

I would like to thank him for the regular meetings. Such a high time commitment to supervision

cannot be taken for granted. Among other things, this was reflected in his high level of interest and

understanding of my research.

A big thanks also go to Prof. Jan Bender, who supported me with his knowledge during my research.

His advice in the field of particle-based fluid simulations deemed very beneficial. In particular, I

would like to thank him and Prof. Stephan Günnemann for taking over the part of my defense

committee. Besides Prof. Jan Bender, I am also grateful to the other co-authors who gave me advice

and active help. First of all, Benjamin Ummenhofer, followed by Boris Bonev, Nuttapong Chentanez,

Stefan Jeschke, Prof. Vladlen Koltun, and Tassilo Kugelstadt. I enjoyed the collaboration very much

and found it very enriching.

I am also very grateful for my colleagues in the department who made the time during the doctoral

studies very enjoyable and were a great moral support. First, I want to thank Björn and Stephan

for proofreading my thesis, which helped me immensely. Special thanks also go to my office-mates,

Steffen and Patrick, as well as to Marie-Lena, Mathias, Michael, Alex, Philipp, You, Rachel, and

Kiwon, who provided an excellent start to my doctoral studies. I also had the pleasure of working

ix

ACKNOWLEDGMENTS

with Georg, Erik, Nilam, Stephan, Kevin, Behdad, Christian, Sebastian, Liwei, Brener, Benjamin,

Robin, Shuvayan, Rene, and Wei, as well as Prof. Rüdiger Westermann, Prof. Matthias Niessner,

Prof. Angela Dai, Justus, Andreas, Dejan, Manuel, Christoph, Fatemeh, Josef, and Ludwic. I enjoyed

the time together and the discussions during lunch breaks and countless coffee breaks. A special

thanks also goes to Susanne, who was very great support and always spread positive vibes. The

same goes for Sebastian through his support as administrator. You have all made my time at the

university unforgettable.

Last but not least, I would, of course, like to thank my family and friends. First and foremost,

my partner Elisa, was my most considerable mental support, especially when things didn’t go as

planned. I would also like to thank my parents, Ursula and Günther, and my brother Martin. They

have always supported me without ifs and buts in everything I have done, and without them, I

would not be where I am today. Lastly, I want to mention my friends, who provided the needed

balance to my studies during my free time. Thank you very much.

x

Contents

Abstract v

Zusammenfassung vii

Acknowledgments ix

1 Introduction 1

1.1 Contributions . 3

1.2 List of Publications . 4

1.3 Outline . 5

2 Fundamentals and Related Work 7

2.1 Fluid Simulation . 8

2.1.1 Adaptation of Fluid Solvers . 10

2.2 Deep Learning for Fluids . 11

2.2.1 Deep Neural Networks . 12

2.2.2 Convolutional Layers . 12

2.2.3 Temporal Learning . 13

2.3 Transformations and Deformations . 14

3 Generation of Liquids 15

3.1 Reduced Representations of Liquids . 16

3.2 Enhancing Fluid Simulations . 19

4 Summary of Papers 21

A Generating Liquid Simulations with Deformation-aware Neural Networks 21

B Tranquil Clouds: Neural Networks for Learning Temporally Coherent Features in

Point Clouds . 22

xi

CONTENTS

5 Conclusion 23

5.1 Outlook . 23

5.2 Conclusion . 27

Bibliography 29

Published Version of Paper A 41

Published Version of Paper B 63

xii

1
Introduction

Figure 1.1.: Results based on a deep learning-based fluid simulation. The number of particles is about 150k.

Water, and liquids in general, are ubiquitous in our world. The simulation of liquids is widely

applicable and is of great relevance in our everyday life. Be it for engineering applications, the

simulation of weather and climate, or predicting the evolution and impact of liquids in natural

phenomena, e.g., tsunamis and floods. A visually appealing and interactive implementation of

liquid behavior also plays a significant role in computer graphics. There it is used to generate

special effects in movies or games.

1

1. INTRODUCTION

(a) Smoke plume1. (b) Ink drops in water2.

Figure 1.2.: Comparison between smoke and ink in water.

Liquids are subject to the physics of fluids, which includes gas and smoke, but also astrophysical

phenomena. Comparing a cloud of smoke (Figure 1.2a) with a drop of ink in a pool of water

(Figure 1.2b), the similarity of behavior is clearly visible. In practice, however, liquids are usually

simulated in combination with air, creating a phase boundary between water and the air medium

(Figure 1.1). Gas simulations, in contrast, are mostly single-phase simulations, where the domain is

filled with one single fluid medium, such as air. The phase boundary makes liquids a callous class of

physics problems because the constantly changing boundary conditions at the liquid-gas interface

result in a complex range of surface motions and configurations. In computer graphics we are

particularly interested in surface behavior, as it plays a significant visual role due to striking optical

effects, such as reflections and refractions. On the other hand, surface behavior is also crucial for

the liquid interaction with solid bodies, e.g., ships on the sea or breaking waves. This observation

incentivizes us to address liquid simulations with an increased focus on the surface to optimize the

efficiency of our methods. To achieve that, we developed adaptive approaches, which can also be

adapted for general fluid simulations or even for another class of materials, e.g., mucus or similar

elastoplastic substances.

1Photo by Jeremy Bishop on Unsplash.
2Photo by mystraysoul on Pixabay.

2

1.1. CONTRIBUTIONS

From a numerical perspective, solving the underlying differential equation of the fluid behavior

is highly complex. An accurate and at the same time fast solution to fluid simulations is still an

open research problem [Wu+18; AHA12; Kos+22; NB16]. Most modern approaches provide robust

and elaborate solutions but require us to formulate trade-offs between accuracy and speed. In

addition, the minimum resource requirements for liquid simulations are still relatively high, limiting

their use in practice. For example, due to the restricted resource availability, there are hardly any

physics-based fluid simulations in interactive applications, such as computer games. The necessity

of fast solutions forces game developers to replace liquid simulations with rough approximations

with low accuracy and high limitations. Even in generating special effects for movies, where there

is less need for resource-efficient methods, a fast, scalable, and robust approach for prototyping and

testing is beneficial. Due to this, the focus of more recent approaches is based on new advances in

deep learning to efficiently approximate parts of the complex behavior of fluids and thus optimize

accuracy and speed even further.

1.1. Contributions

In this thesis, we present different methods for approximating liquid behavior. We examine at the

problem from a computer graphics point of view and focus mainly on an unconditionally stable,

fast, interactive, and visually compelling reconstruction. Conventional numerical solutions typically

require a trade-off between accuracy and speed. To alleviate this problem, we build on recent

advances in deep learning. The idea is to replace complex and time-consuming steps with a learnable

non-linear function that approximates the process. The properties of deep neural networks used

in this process allow the approximation of complex non-linear dynamics exhibited by fluids. Our

methods are based on geometric deep learning approaches, where we consider the liquid as a spatio-

temporal volume that needs to be reconstructed. In addition, we focus on surface behavior, as it

mainly determines the visual appearance; the internal dynamics usually play only a minor role.

The prioritization of surface reconstruction simplifies the problem without compromising the visual

quality of the results. As we will show, the presented methods can outperform conventional methods

in terms of stability, accuracy, and speed. In addition, our methods bring a form of controllability that

directs the fluid’s behavior. We will discuss the presented methods in more detail in the following

paragraphs.

3

1. INTRODUCTION

Generating Liquid Simulations with Deformation-aware Neural Networks [PBT19] This

work presents a novel approach to capturing parameterized spaces of liquid behavior based on

space-time deformations. We represent a single 3D input surface sequence as a four-dimensional

signed-distance function (SDF). We deform the surfaces in space and time with learned deformations

to generate new unseen fluid data. To calculate and represent these deformations efficiently, we take

a two-stage approach: First, we span the sides of the original parameter region with pre-computed

deformations based on optical flow and infer a suitable weighting function. In the second step,

we synthesize a dense deformation field for refinement. As both the parameter weighting problem

and the deformation synthesis are highly non-linear, we demonstrate that neural networks are a

particularly suitable solver for robustly finding solutions.

Tranquil Clouds: Neural Networks for Learning Temporally Coherent Features in Point
Clouds [Pra+20] In the second paper, we consider general spatio-temporal volume generation.

Unlike the first work of this thesis, we do not consider implicit data in the form of grids but an

explicit, particle-based representation. Given a sequence of point clouds, our method allows the

generation of a temporally coherent, higher-resolution point cloud. Thereby, details learned in

training are generated based on the spatio-temporal dynamics of the input and previously gener-

ated frames. To further reduce the computational task, the method limits the details’ generation

only to the volume’s surface. Besides liquids, the geometric-based approach allows various possible

applications involving spatio-temporal point clouds, as we will show in our paper.

1.2. List of Publications

Our two works accompanying the thesis have been published as full papers at the peer-reviewed

International Conference on Learning Representations (ICLR):

• Lukas Prantl, Boris Bonev, and Nils Thuerey. “Generating Liquid Simulations with Deformation-

aware Neural Networks”. In: International Conference on Learning Representations. Feb. 20,

2019

• Lukas Prantl, Nils Thuerey, Nuttapong Chentanez, and Stefan Jeschke. “Tranquil Clouds:

Neural Networks for Learning Temporally Coherent Features in Point Clouds”. In: Interna-

tional Conference on Learning Representations. Mar. 11, 2020

4

1.3. OUTLINE

1.3. Outline

The thesis is divided as follows. Chapter 2 deals with relevant background information and related

work that plays a role in our methods. It intends to give a general overview of the current state of

deep learning and fluid simulations and shows where our work is positioned in it. In Chapter 3, on

the other hand, we discuss the methods we have presented. We briefly discuss our approaches and

put them in a shared context. In Chapter 4, we list the publications again as an overview. Finally,

we discuss the results in Chapter 5 and a potential outlook for future work based on the proposed

methods.

5

2
Fundamentals and Related Work

The behavior of fluids relevant to computer graphics can be defined by the incompressible Navier-

Stokes equations:

∂ u⃗
∂ t
+ u⃗ · ∇u⃗+

1
ρ
∇p = g⃗ + ν∆u⃗ (2.1)

∇ · u⃗= 0 (2.2)

where u⃗ corresponds to the velocity of the fluid, ρ is the density, p the pressure, ν the kinematic

viscosity, and g⃗ stands for external forces such as gravity. We can divide the equation into two

essential parts, the momentum equation (Eq. 2.1) and the incompressibility condition (Eq. 2.2).

The momentum equation describes how the fluid accelerates under the effect of different external

forces g⃗. Decisive for the forces acting on the fluid is the direct effect of the external forces mg⃗,

with m corresponding to the mass. In addition, the fluid parts induce internal forces themselves. A

part of them consists of forces caused by the pressure gradient ∇p. Areas with high pressure push

into areas with low pressure. Apart from that, there are forces caused by viscosity ν∆u⃗. We can

interpret viscosity as an internal frictional force of the fluid. For instance, fluids with high viscosity,

such as honey or tar, tend to have a higher resistance to deformation. In practice, viscosity is usually

ignored for fluids with negligible small viscosity, such as water. The second part of the equation is

the incompressibility condition (Eq. 2.2). Incompressibility refers to the conservation of the volume

of fluids. It is essential to know that fluids do change their volume in reality. However, the changes in

volume are very tiny and have almost no effect on how fluids move at a macroscopic level, especially

for liquids. Since the calculation of compressible fluids is also very expensive and complex, we

7

2. FUNDAMENTALS AND RELATED WORK

impose the simplifying assumption that fluids are incompressible in most cases. Incompressibility

is obtained by conditioning the velocity field to be divergence-free, attained by the pressure. To

derive the desired pressure value, we relate the incompressibility condition with the pressure from

the momentum equation:

∇ ·
1
ρ
∇p = −∇ · (u⃗ · ∇u⃗+ g⃗). (2.3)

Here the viscosity was already omitted for simplification. For a more detailed derivation and expla-

nation of the Navier-Stokes equation for fluid simulations, we refer to Bridson [Bri15].

2.1. Fluid Simulation

Numerical computation of fluid-based dynamics is a long and extensively treated topic in re-

search [HER55; Wil06]. The first important step in a numerical simulation is the data’s dis-

cretization and representation. For this, we roughly distinguish between Lagrangian and Eulerian

viewpoints. Lagrangian methods correspond to particle systems, which represent the fluid data

explicitly in the form of moving particles. In contrast, the Eulerian viewpoint uses a spatially fixed

grid, where the fluid properties are stored in the particular cells through which the fluid flows.

Both representations have certain advantages and disadvantages, with none dominating the current

literature or practical applications.

The basic method for solving Lagrangian-based methods stems from astrophysics [GM77] and is

known as Smoothed Particle Hydrodynamics (SPH). Many additional works have proposed improve-

ments of the SPH method in terms of accuracy and performance [BT07; SP09; MM13; BK16;

Hu+19; AHA12]. The particle-based approach has the advantage that it conserves the mass of the

fluid by design and limits valuable computation time to the location of the fluid. Apart from that,

there is usually less dissipation, as in the Eulerian viewpoint, since the advection does not require

interpolated values. However, unlike Eulerian approaches, unconditional robustness is challeng-

ing to implement. This is caused by the explicit advection of particles, whereas for grids we can

work with implicit advection schemes [Sta99; SC91]. In addition, grid representations are spatially

regularly defined, while particle-based representations are sparse and irregular. For instance, inter-

polated values and derivatives at positions between the particles are more challenging to obtain than

for implicit representations. Similar to SPH simulations, there has been great progress in Eulerian

simulations [FM96]. Current methods rely, for example, on multi-grid methods for fast computa-

tion [BL11; MST10; CM11]. To counteract the dissipation problems, grid-based methods have also

been combined with a Lagrangian scheme. These hybrid approaches were first mentioned in Harlow

8

2.1. FLUID SIMULATION

et al. [HW65] and are referred to as Particle-in-Cell (PIC) methods. They were improved later on

by Brackbill and Ruppel [BR86], by a method called Fluid-Implicit-Particle (FLIP). PIC/FLIP-based

approaches still dominate state-of-the-art results today [Jia+15; Cor+14; Fer+16; Sat+18], along-

side advanced SPH simulations. Another special line of work is based on shallow water equations

[Vre94], established in computer graphics [Woj+17] or particular areas like tsunami simulations

[Gis08]. Unlike the previously discussed solvers, they are only approximate methods limited to sur-

face simulation on a two-dimensional heightfield. The approach is usually limited to solving wave

equations which are highly parallelizable, allowing the fast simulation of large-scale fluids. Shallow

water solvers are related to our approaches in prioritizing surface behavior for higher efficiency.

However, our methods can still catch fluid-internal behavior and be applied in three dimensions,

while shallow water simulations are limited to heightfields.

Regardless of the different approaches and viewpoints, most numerical methods solve the Navier-

Stokes equation with a simplification through operator splitting. The equation is divided into three

parts, advection, external forces, and projection, which are solved separately for each time step of a

sequence in the following order:

Advection
∂ q
∂ t
+ u⃗ · ∇q = 0 (2.4)

Here, the advection generally describes the transport of quantities q based on the fluid’s velocity

field. In the case of particle-based methods, this corresponds to a simple integration step of the

particles based on the respective velocity. In grid-based approaches, on the other hand, a semi-

Lagrangian advection [SC91; Sta99] is usually used. The quantity transported can be any feature

of the fluid, but the advection of the velocity q = u⃗ itself is crucial for further steps.

External Forces
∂ u⃗
∂ t
= g⃗ (2.5)

After the advection step, the effects of external forces are included, which usually corresponds to

an integration step of the velocity with gravity.

Projection
∂ u⃗
∂ t
+

1
ρ
∇p = 0 s.t. ∇ · u⃗ (2.6)

9

2. FUNDAMENTALS AND RELATED WORK

Finally, the resulting velocity field is made divergence-free by adjusting the internal pressure forces

to satisfy the incompressibility condition. This step is usually called a projection in the literature.

It requires solving a global linear system of equations, which is generally very resource intensive.

The result is a divergence-free velocity field that can be used for the advection step in the next time

step, where the process restarts. Solving the pressure equation is usually the most expensive and

complex step in solving the fluid equation. Many methods, therefore, start here when it comes to

optimizing the speed of the solver.

2.1.1. Adaptation of Fluid Solvers

Figure 2.1.: Three liquid surfaces after 60 time steps
differing only by ±ε in initial conditions. Even this ini-
tially minimal difference can lead to large differences
in surface position.

Modern numerical methods are very generi-

cally applicable and define a high standard re-

garding various properties in fluid simulations,

whether for accuracy or for speed. However,

numerical solvers quickly reach their limits in

real-world computer graphics applications. Due

to the curse of dimensionality, high-resolution

simulations become very expensive in compu-

tation time, despite high-performance solvers.

Another problem is the chaotic, strongly non-

linear behavior of fluids. A small change in the

initial conditions can significantly affect later behavior. An example can be seen in Figure 2.1. The

significant time requirement and prediction difficulty make flow simulation very hard to handle,

especially when designing fluid scenes, such as special effects in movies. The goal is to attain a high-

quality fluid simulation with behavior that matches the envisioned concept. The fluid complexity

makes it hard to find the correct initial parameters right away, and the high-quality requirements

result in a very long simulation time, making multiple iterations expensive. An obvious solution is

to generate a low-resolution, quickly computable simulation, which can be iterated on faster until

the result corresponds to the desired outcome. Subsequently, the desired high-resolution variant

can be generated based on the determined parameters. However, the simulation’s resolution can

influence the outcome, complicating the approach in practice. Better solutions are post-processing

methods, which subsequently enhance fluid simulations. Thereby, the resolution, and thus the nec-

essary time, of the basic simulation can be reduced. The post-processing method is then applied

to the base simulation to retain the original rough shape and approximate the behavior of a high-

10

2.2. DEEP LEARNING FOR FLUIDS

resolution variety. For example, in Kim et al. [Kim+08], adaptive turbulence is added based on

wavelets. In Chu & Thuerey [CT17], on the other hand, machine learning is used, replacing low-

resolution fluid patches with matching high-resolution variants. Another approach is to control the

flow behavior by formulating an inverse problem. The fluid behavior is modified, e.g., by induced

external forces, so that a set of specific constraints are respected. This approach also applies to

reconstructing fluid behavior from sparse and noisy data. Besides linear solvers [EUT19], more and

more methods based on differentiable physics are used for this purpose [HKT20; Um+20; SF18].

The approach in our first work is also centered around an inverse problem, while our second work

can be seen as part of the post-processing methods.

Especially in this application-oriented area, deep learning methods clearly stand out. Deep learning-

based solvers achieve comparable performance as state-of-the-art numerical solvers while at the

same time outperforming traditional solvers by orders of magnitude in terms of runtime. However,

deep learning and classical methods should not be considered complementary. As already shown in

the field of differentiable physics, the combination of classical numerical methods and deep learning

is very promising. The benefits of using domain knowledge were also shown in recent publications

[Wan+20; Cai+22; Pra+22a].

2.2. Deep Learning for Fluids

The idea of using deep learning is to speed up fluid behavior computation by using the processed

data’s statistics. In contrast to many classic simulators that use sophisticated and handcrafted model

equations to describe the motion of fluids [Pop00; Tez+96], deep learning-based methods belong

to the class of data-driven solvers, which learn representations entirely from observations. Meth-

ods based on reduced representation like Dunteman [Dun89], Treuille et al. [TLP06], De Witt et

al. [DLF12], Raveendran et al. [Rav+14], and Thuerey [Thu16] follow a similar objective. The

same is true for machine learning methods like Chu & Thuerey [CT17] and Ladicky et al. [Lad+15].

However, the rise of deep learning methods has impacted application scenarios beyond the fluid

simulation domain. The flexibility and power of deep learning methods have quickly surpassed

conventional machine learning methods and dominate the current research landscape.

11

2. FUNDAMENTALS AND RELATED WORK

+

w0

w1

X

X
+

b

σ

{

Input

Hidden Layer

Output

Figure 2.2.: Illustration of a deep neural network. The detail on the left shows the setup of a single neuron,
with w{0,1} and b being the trainable weights multiplied or added to the inputs, respectively. σ is the non-
linear activation function applied at the end. The right shows a neural network with multiple layers consisting
of neurons (blue circles). The empty circles represent the input layer.

2.2.1. Deep Neural Networks

Deep learning [HS06; HOT06] has experienced a real boom in recent years due to the development

of backpropagation [RHW86b] and access to an increasing amount of computational resources. The

basis for neural learning is the so-called neuron (Figure 2.2). The neuron represents a simple linear

function whose output can be transformed by a non-linear activation function σ. The parameters of

the neuron, w∗ and b, are trained with gradient descent such that the neuron’s output corresponds

to the desired output. Several neurons can be used in parallel, organized as a layer, to solve simple

problems. For more complex, non-linear problems, multiple fully-connected layers can be stacked

sequentially. However, the training of models with multiple layers is challenging. Backpropagation

proposed an efficient way to update the parameters of several successive layers, the basis of deep

learning. We briefly discuss fundamental advances in deep learning in the following, which are

relevant to our methods. For a more general and detailed introduction to deep learning, we refer

to Nielsen [Nie15].

2.2.2. Convolutional Layers

Neural networks based on fully-connected layers are very generic and robust. However, for spatially

dependent problems, they are often replaced by convolution layers [Fuk79]. Convolution layers are

characterized by their translation invariance and a spatial inductive bias in the form of a spatial

kernel. That means, unlike fully-connected layers, the convolution is limited to the local reference

12

2.2. DEEP LEARNING FOR FLUIDS

frame of a data point and its surrounding neighbors. The efficiency of these layers has led to them

quickly becoming a standard tool in deep learning. Especially in the field of fluids, this develop-

ment plays an essential role since the data is primarily spatio-temporal. Fully-convolutional neural

networks (CNNs) are used, for example, in the seminal works of Tompson et al. [Tom+17], Um et

al. [Um+20], Kochkov et al. [Koc+21], and Yang et al. [YYX16]. Based on the success of CNNs,

methods emerged that could apply the concept of convolution not only to structured data, such as

images but also to unstructured data, such as point clouds or SPH simulations. Prominent work

in that regard are PointNet [Qi+17a] and PointNet++ [Qi+17b]. Many following works applied

PointNet++ to solve different tasks on point clouds [Gue+18], including PU-Net [Yu+18; Yin+18],

on which our second method [Pra+20] is based. At a similar time, graph neural networks (GNNs)

were introduced [Bat+16; Li+19; San+20] to handle graph-structured data. GNNs are used in

many state-of-the-art fluid prediction methods [Li+19; San+20; Pfa+20; BWW22]. Even though

PointNet++ and GNNs consider spatial neighborhood relations, they generally do not use kernel

functions like convolutions. Using a kernel can be seen as a spatial-based bias, which allows for

more efficient models since the neural network does not have to learn the spatial relationships

first [SF18; Wan+18; Fey+18]. For example, the efficiency of convolution-based methods for un-

structured data has been shown in Ummenhofer et al. [Umm+20], which implements a trainable

continuous convolution operator resulting in SPH simulations with compact networks. Transformer

models [Vas+17; Zha+21] can also be interpreted as a special kind of convolution. They adopt

the self-attention mechanism by differentially weighting the significance of the input data. Similar

to convolution, spatial or temporal dependencies are accumulated in a weighted manner, but the

weighting is data dependent and normalized.

2.2.3. Temporal Learning

Convolutional layers cover the spatial aspect of fluid data well. For physical data, however, tempo-

ral evolution also plays an important role. A relatively obvious application are again convolutions,

which are also used in the time dimension [Lea+16; Hew+20; Wan+19; BKK18]. We take inspira-

tion from this principle in our first method, which uses 4D spatio-temporal convolution. Another line

of work is based on recurrent neural networks (RNNs) [RHW86a; Sch93], from which long-short

term memory (LSTM) modules [Gra12] have been developed. LSTMs use a particular structure

to generate and store an internal representation. They have been successfully used for fluid sim-

ulation prediction [WBT19] and are widely used but have recently been surpassed by transformer

models [Vas+17]. These sequence-based methods are compelling but are sometimes expensive and

laborious to use and train. In physics-based simulations, temporal coherence through temporal loss

13

2. FUNDAMENTALS AND RELATED WORK

functions has become more popular. A common approach is to process a data sequence and evaluate

the results concerning temporal coherence without keeping an internal temporal state as in LSTMs.

For example, our second method uses position, velocity, and acceleration deviations to the refer-

ence solution. Other methods like tempoGAN [Xie+18] or TecoGAN [Chu+18b] use a perceptual,

adversarial loss to ensure temporal coherence.

2.3. Transformations and Deformations

Even though the physical laws are crucial for learning fluid dynamics, we also have to consider

the geometric aspect of the data. In particular, our methods primarily address a geometric-based

solution to the problem. From this perspective, fluid data are sequences of volumes represented as

grids or particles, depending on the representation. Regardless of the data-generating process and

the underlying physical rules, our work aims to generate liquid volumes that are part of the distri-

bution of reference volumes based on ground-truth simulations. This geometric perspective opens

up many other aspects and approaches that can be helpful for an efficient solution. Thus, the idea

of our first method [PBT19] is based on considering fluid simulations as spatio-temporal volumes.

With the help of spatio-temporal interpolation between given fluid volumes, new ones can be gen-

erated dynamically and quickly. We implement the interpolation by a partial deformation between

fluid volumes. The deformation describes an advection with a vector field generated with an optical

flow solver [Thu16]. The idea is based on methods for optical flow inference and image correspon-

dences [BVS16; Dos+15; RB17; Ilg+17]. However, we learn deformations and their weighting in

an unsupervised manner without detailed ground truth data. Thus, our method shares similarities

with spatial transformer networks (STNs) [Jad+15], and unsupervised approaches for optical flow

[MHR18].

For the second method [Pra+20], we are also guided by a geometric-based method, super-

resolution. Super-resolution refers to a set of methods that attempt to generate high-resolution

data from low-resolution data. This approach is ubiquitous in image or movie data but also

plays an increasingly important role in geometric data processing. Single image super-resolution

was targeted in several works [Led+16; SSH17], some of which employed stochastic formula-

tions [GGY18]. Video upsampling with recurrent approaches was proposed in [SVB18], which was

extended by follow-up works that considered CNN-based temporal coherence [Chu+18a; Pér+18].

Upsampling of 3D smoke volumes over time was likewise targeted in Chu & Thuerey [CT17] and

in Xie et al. [Xie+18]. The work by Yu et al. [Yu+18] is one of the first to use deep learning for

super-resolution for Lagrangian data similar to ours.

14

3
Generation of Liquids

Air / Vacuum

Liquid

Surface

Obstacle

Figure 3.1.: Illustration of a classic liquid
setup with a free surface.

This chapter overviews the proposed methods and puts

them in a shared context. Their common goal is to learn

liquid behavior based on given initial conditions. Let us

assume a Navier-Stokes boundary value problem with a

liquid-gas interface Ω (Figure 3.1), which depends on the

initial conditions c. We treat the fluid dynamics as a single

space-time volume Ω(c) ⊆ R4. Our goal is to implement

a learnable model G(c) to capture and approximate the

space of volumes for a given set of initial conditions c ∈ C ,

generated with an accurate numerical solver.

We deliberately want to focus on the surface behavior and

pay less attention to the fluid-internal behavior as the vol-

umetric dynamics have little effect on the visual percep-

tion of the fluid [UHT17]. The simplification positively impacts the temporal performance and gen-

eralizability of the problem without much loss of quality. Accordingly, we designed our methods to

be adaptive so they can be explicitly applied to the surface. Since the surface is only a fraction of the

domain, this can drastically reduce the runtime and memory requirements. Moreover, it simplifies

the learning task since less critical dynamics do not need to be learned. We individually discretize

all the functions and operators for our methods because we use different representations for both

approaches. In the first method, we consider the problem from the Eulerian viewpoint, while a

Lagrangian viewpoint was chosen in the second paper. Both representations have advantages and

15

3. GENERATION OF LIQUIDS

disadvantages and are widely used. Given the presented problem formulation, we addressed mainly

the following points:

• Learning reduced representations of liquid spaces.

• Generation of fast, controllable approximations of liquid behavior.

• Adaptive, temporally-coherent enhancement of liquids with small-scale details.

3.1. Reduced Representations of Liquids

D
ro

p
Po

si
tio

n
X

Drop Size

(a) Initial conditions. (b) Input data at t = 30.

Figure 3.2.: The left image (a) illustrates an example of initial conditions for a two-dimensional parameter
space setup. It consists of a set of two-dimensional liquid simulations, in which we vary the position of the
liquid drop along x as α1 and its size as α2. We highlighted possible key simulations in red. The right half (b)
shows the data used for training at t = 30. Note the significant variance in positions of small-scale features
such as the thin sheets.

In our first work [PBT19], we focus on learning a reduced representation of a set of fluid volumes

Ω(c). The goal is to use it to quickly and efficiently approximate the dynamics of Ω(c). The set is

defined over a chosen region of input conditions C . In practice, C could contain any simulation pa-

rameters, e.g., initial positions or physical parameters such as viscosity. In the example of Figure 3.2,

C consists of the varying position and scale of the drop falling into the basin. The full dynamics of

the data are entirely dependent on C .

16

3.1. REDUCED REPRESENTATIONS OF LIQUIDS

We discretize the data in the form of four-dimensional signed-distance function (SDF) grids:

Φc ∈ RNx×Ny×Nz×Nt ,

with N{x ,y,z,t} being the dimension of the grid. SDFs are used for an implicit representation of

the data. The cells of an SDF grid contain signed scalars indicating the minimum distance to the

surface. The value zero defines the surface, while negative values stand for the fluid volume and

positive for the space around the fluid. In addition, we map the selected condition factors c ∈ C onto

a linear, normalized Nc-dimensional vector α ∈ [0, 1]Nc , where Nc is the dimension of parameter

space. The goal is to generate a reduced representation of the discretized simulation set Φα, with

the normalized key factors α as conditions. Thus, the proposed generative network G has the task

of learning a mapping from the linear parameter space α to an approximation of the nonlinear fluid

behavior Φα:

G(α)≈ Φα. (3.1)

Φ0 ψ1

Φ1 ψα

u

α ⋅ u

#

#

Figure 3.3.: Illustration of the deformation-based in-
terpolation between two surfaces Φ0 and Φ1. In the
top row, the advection u is applied without weighting,
resulting in the approximation ψ1. In the bottom row,
the vector field is weighted by a factor α ≈ 0.5 gener-
ating an interpolation between both surfaces.

To achieve this, we work with a deformation-

based interpolation between predefined key

simulations. The key simulations are a sub-

set of the reference simulations based on delib-

erately chosen parameters. Usually, the selec-

tion of parameters consists of the extreme cases,

i.e., where alpha values contain either 0 or 1.

For example, in Figure 3.2, the scenes where

the droplet is either smallest/biggest, combined

with where the position is leftmost/rightmost,

could be considered key simulations. We can

then generate new unseen surfaces by interpo-

lating the surfaces of this pre-computed subset.

The interpolation is based on an improved version of the work by Thuerey et al. [Thu16]. The basic

idea is to generate a vector field u between two predefined surfaces, Φ0 and Φ1, similar to optical

flow. Using this vector field, we can deform the initial surface Φ0 into an approximation ψ1 of the

other by advection A : A(Φ0, u) = ψ1 ≈ Φ1. By weighting the advection, intermediate states can

be obtained A(Φ0,α · u) = ψα ≈ Φα, corresponding to the desired interpolation (Figure 3.3). We

directly use α as the interpolation factor, which is possible because it has been explicitly normal-

ized for this purpose. Using this deformation-based method based on a simple advection, we can

17

3. GENERATION OF LIQUIDS

Figure 3.4.: Sample results of our method running on a smartphone in real-time.

interpolate between a few key simulations and thus approximate unseen intermediate states very

quickly. Apart from that, the approach requires only one initial reference surface to reconstruct the

entire parameter space because all the deformation vector fields can be pre-computed. As the initial

surface for inference we typically use the zero point of our parameter space, i.e., ψ0 = Φα0
, with

α0 = (0,0, . . . , 0). The used advection can take different forms, such as a stable semi-Lagrangian

advection [SC91] used primarily on fluid simulations. In our case, we use a more advanced method

that combines semi-Lagrangian advection with a forward advection. For more details, we refer to

the paper [PBT19].

The deformation-based interpolation is a reasonable basis for a reduced representation. However,

the approach is linear, and since fluid behavior can be strongly nonlinear, it cannot capture fluid

behavior appropriately. Therefore, we extend the method with neural networks. Specifically, we use

two fully-convolutional networks; the first network learns the mapping between initial conditions

and the parameter space to Gp(α) = β . The second network corrects the deformation field used for

the final advection Gd(u,α) = v, allowing for the required non-linearity. The final result is computed

as G(α) =A(ψ0,β · v).

Our method reduces the space of surfaces to one initial surface, some pre-computed deformations,

and two small models. The compressed representation results in a small memory footprint and

fast inference. We show that the method is executable in real-time, even on devices with reduced

computational power, such as smartphones (Figure 3.4). In addition, the method allows for the

possibility to approximate intermediate states in a controlled and fast fashion based on a few key

simulations. This is especially interesting for rapid prototyping, where parameters must be tuned

for the desired result, especially when the parameters have a non-linear influence. Our method

maps the considered linear space of the parameters to the non-linear space of the liquid behavior,

providing a simple way to interact with it. Finally, these advances are not limited to liquid data but

could also be used for other volumetric data.

18

3.2. ENHANCING FLUID SIMULATIONS

λc Λc
Figure 3.5.: Illustration of a low-res. fluid surface λc and the corresponding high-res. counterpart Λc .

3.2. Enhancing Fluid Simulations

Our second paper aims to enhance an existing simulation by generating appropriate spatio-temporal

details. The approach achieves that by generating a super-resolution output, approximating a high-

resolution simulation Λc . The super-resolution is conditioned on a low-resolution simulation λc

generated with the same initial conditions c as the high-resolution reference. Both references are

discretizations of Ωc . An example of a corresponding low- and high-resolution surface can be found

in Figure 3.5. Similar to the first method, we generate unseen fluid data by transforming a pre-

calculated simulation to quickly generate a controllable water simulation. The difference, however,

is that no constant, predefined simulation is used as input but rather a low-resolution simulation that

can be generated quickly. This gives the advantage that the method generalizes and extrapolates

much better and is not limited to a reduced parameter space. Apart from that, we discretize the

data with particles, a standard representation for liquids.

An inherent difficulty of point-based data is their lack of order, which makes operations such as

convolutions, which are easy to perform for Eulerian data, more complicated. This comes with

the challenge of generating temporally coherent data. Several powerful approaches for point-based

neural networks have been proposed [Qi+17a; Her+18; Qi+17b; HTY18], and we leverage a similar

neural network architecture in conjunction with the permutation-invariant Earth Mover’s Distance

(EMD) to propose the formulation of a loss for temporal coherence. In addition, several works

have recognized the importance of training point networks for localized patches. In this way, we

avoid having the network rely on a full view of the whole data set for inherently local tasks, such as

normal estimation [Gue+18], and super-resolution [Yu+18]. This patch-based approach also makes

it possible to flexibly process inputs of any size. Due to this, our method allows adaptive super-

sampling of the input, limited to the surface, to maximize efficiency. In conjunction, the network

dynamically determines the degree of upsampling. As a result, the resolution of the generated data

is controlled as needed, optimizing the cost-to-quality ratio. A general challenge here is to deal with

varying input sizes and, for super-resolution tasks, also varying output sizes.

19

3. GENERATION OF LIQUIDS

a) b)

Figure 3.7.: Our algorithm upsamples an input point cloud (a) in a temporally coherent manner. Three
exemplary outputs in (b).

L

+ v ·∆t

fs(x)

X t-1
X
t X t+1

- v ·∆t

X Y

X

Y

k

n ~

NN LS

trunc

pad pad

Y
~

n ~

r k

b)a)

fs(x) fs(x)

Figure 3.6.: Siamese network setup for temporal loss
calculation. t denotes the time; L stands for the loss
calculation used for the training.

For upsampling, we use a generative neural net-

work based on PointNet++ [Qi+17b], a preva-

lent network architecture for unstructured data:

fs(λc)≈ Λc .

λc is the low-resolution input consisting of par-

ticle positions X and velocities V . We train the

model with an EMD loss, which calculates the

difference between the generated output and

the reference. Besides the spatial distance, we

evaluate differences in velocity and acceleration

to learn the temporal dynamics. Therefore, we

run the model three times during one training

step with time-shifted frames (Figure 3.6). We can then compute the required data from the three

generated frames using finite differences. This parallel execution of a model is also called a Siamese

setup in the literature [BC93]. Our final method works mainly with geometric data, i.e., the position

and velocity of the individual particles. Thus, the method is very generic and can be easily applied

to other problems. As an example, Figure 3.7 shows the upsampling of a human-based mesh, where

the network used for this purpose was trained with fluid data.

20

4
Summary of Papers

A. Generating Liquid Simulations with Deformation-aware Neural
Networks

Abstract of Paper We propose a novel approach for deformation-aware neural networks that

learn the weighting and synthesis of dense volumetric deformation fields. Our method specifically

targets the space-time representation of physical surfaces from liquid simulations. Liquids exhibit

highly complex, non-linear behavior under changing simulation conditions such as different initial

conditions. Our algorithm captures these complex phenomena in two stages: a first neural network

computes a weighting function for a set of pre-computed deformations, while a second network

directly generates a deformation field for refining the surface. Key for successful training runs in

this setting is a suitable loss function that encodes the effect of the deformations, and a robust

calculation of the corresponding gradients. To demonstrate the effectiveness of our approach, we

showcase our method with several complex examples of flowing liquids with topology changes.

Our representation makes it possible to rapidly generate the desired implicit surfaces. We have

implemented a mobile application to demonstrate that real-time interactions with complex liquid

effects are possible with our approach.

Author Contributions The first author contributed a great deal to the idea, implementation, and

some studies presented in this work. Boris Bonev assisted in implementing the neural network. Nils

Thuerey took over a part of the evaluations. The paper was written in equal parts by all authors.

Copyright © 2019 The Author(s). Reprinted as provided by OpenReview.net with permission

from Boris Bonev and Nils Thuerey.

21

4. SUMMARY OF PAPERS

B. Tranquil Clouds: Neural Networks for Learning Temporally
Coherent Features in Point Clouds

Abstract of Paper Point clouds, as a form of Lagrangian representation, allow for powerful and

flexible applications in a large number of computational disciplines. We propose a novel deep-

learning method to learn stable and temporally coherent feature spaces for points clouds that change

over time. We identify a set of inherent problems with these approaches: without knowledge of the

time dimension, the inferred solutions can exhibit strong flickering, and easy solutions to suppress

this flickering can result in undesirable local minima that manifest themselves as halo structures.

We propose a novel temporal loss function that takes into account higher time derivatives of the

point positions, and encourages mingling, i.e., to prevent the aforementioned halos. We combine

these techniques in a super-resolution method with a truncation approach to flexibly adapt the size

of the generated positions. We show that our method works for large, deforming point sets from

different sources to demonstrate the flexibility of our approach.

Author Contributions The first author is responsible for the overall idea, implementation as well

as all studies presented in this work. The paper was composed by the first author under consider-

ation of feedback as well as minor revisions by Nuttapong Chentanez, Stefan Jeschke, and Nils

Thuerey.

Copyright © 2020 The Author(s). Reprinted as provided by OpenReview.net with permission

from Nuttapong Chentanez, Stefan Jeschke, and Nils Thuerey.

22

5
Conclusion

This thesis discussed new deep learning methods for liquids in computer graphics. We looked at the

differences in liquids’ properties compared to other fluids or physical phenomena. Assuming the

context of how we perceive liquids in practice, we concluded that the surface plays a decisive role.

Based on this finding, we looked at ways to enhance liquid behavior using deep learning methods.

We demonstrated the power of neural networks and how they can be used efficiently to outperform

conventional methods. This is reflected in the results, which allow real-time interactions with phys-

ical effects that are orders of magnitude slower to compute with traditional solvers [PBT19]. In

addition, our second work showed how to maximize efficiency and generalizability using an adap-

tive, geometric-oriented approach. The presented temporal loss allows the learning of temporal

dynamics and provides temporal coherence.

5.1. Outlook

During the development of our methods, we encountered several limitations that can be an inspi-

ration for future work. We roughly divide the main findings into three parts:

Generalizability Generalizability plays a significant role in deep learning-based methods and ma-

chine learning in general. It refers to the performance of the method in the context of unseen test

scenarios, i.e., the ability to extract properties inherent in a data generation process from a training

data set. In the context of physical simulations, that is usually a method that can identify, extract,

23

5. CONCLUSION

and learn the underlying physical laws. The goal is to ensure that the method is bias-free and does

not overfit to specific scenarios. Usually, this is achieved by making the training data set indepen-

dent and identically distributed (i.i.d.), with high variance for a better generalization. However,

the complexity and diversity of big data sets, including fluid simulations, in the form of countless

degrees of freedom usually make the data set’s composition difficult. The similarity to the true dis-

tribution of the data is challenging to quantify, making it almost impossible to generate data sets

that are uniformly distributed and without bias. To counteract the resulting distribution drift in our

methods, we generate, select, and augment fluid data based on expert knowledge and heuristics,

similar to those used in AutoAugment or ImageNet. For example, we ensure that the data’s velocity

distribution is relatively uniform. This way, we were able to reduce potential biases and to generate

overall better results, but the approach is far from optimal. The manual data selection process is

very time consuming and requires many iterations of regenerating whole data sets. This could be

improved by more sophisticated methods like Goel et al. [Goe+20], which build on learned data

augmentation, while methods such as JTT [Liu+21] and BT-Adapt [Sch+20] resample the data set

dynamically. Other methods learn an unsupervised representation of the data approximating the

real prior [Hig+16]. We refer to the paper by Wiles et al. [Wil+21] for a detailed assessment. Apart

from a data-centered perspective, we can think of other options, like reducing the model’s degrees of

freedom using cleverly chosen inductive biases. This can reduce the problem’s dimensionality and

increase the model’s efficiency by filtering unimportant parts. In our second work, we thus achieve

increased generalization by applying the problem to local patches. We thereby eliminate information

about the global context, which plays little role in our geometric-based approach, and significantly

reduce the complexity and variance of the data. As a result, our method generalizes much better.

Based on that, it would be interesting to test more advanced inductive biases in future work. For

example, continuous convolution is used in Ummenhofer et al. [Umm+20], which includes an ad-

ditional spatial bias, unlike our PointNet++ solution. In methods like Wang et al. [WWY20], Villar

et al. [Vil+21], Prantl et al. [Pra+22a] and Sattoras et al. [SHW21], on the other hand, symmetry

properties of the data are exploited.

Safety and Robustness In contrast to generalizability, robustness and safety represent the

model’s resilience to outliers and noisy data. The study of these properties addresses what happens

when the method is pushed to its limits [Pas+18]. A significant drawback of current deep learning

methods is the lack of understanding of what is being learned, and the uncertainty of the model is

not easy to evaluate. This plays a significant role when a guarantee for the reliability of the results

of the method is needed. This limitation is currently an obstacle to applying deep learning methods

in engineering [SD20], for autonomous vehicle control [MDK19] or other safety-critical areas like

24

5.1. OUTLOOK

GT CConv ASCC

Figure 5.1.: The figure was taken from Prantl et al. [Pra+22a] and shows a comparison of two deep learning-
based fluid solvers. The method based on CConvs visibly dampens gravitational acceleration, unlike the one
with ASCCs, which is much closer to ground truth (GT) due to the correct conservation of momentum.

healthcare [AP21; CWG20]. The prerequisite is mostly safety and robustness with a provable guar-

antee. Current research shows that many state-of-the-art methods can be easily deceived [Pap+16;

PMG16]. Therefore, the trend is currently moving more and more toward robust algorithms. In

physics-based simulations, especially in engineering, the guaranteed adherence to error tolerances

and unconditional stability plays a significant role. The general impression is that neural networks

are difficult to control due to their complexity. This uncertainty makes deep learning methods

unattractive for many engineering applications. In our methods, the focus is more on speed and

visual appearance and less on the physical accuracy of the results. This prioritization is based on

their relevance in computer graphics. Nevertheless, we use inductive biases to limit the scope of

action of the neural networks, reducing the potential for error. Taking the idea further, we could

construct the bias in such a way that it can guarantee a certain behavior. This was shown, for

example, in the paper Prantl et al. [Pra+22a], which shows that we can preserve linear momentum

with deep learning by exploiting the symmetrical properties of physics. The presented method is

based on continuous convolutions (CConv) [Umm+20] with special anti-symmetric layers (ASCC).

Figure 5.1 shows the positive effect of conservation of momentum on the prediction of SPH sim-

ulations. Bayesian Neural Networks (BNNs) [LV01; KG17] follow a different concept. Unlike

conventional NNs, trained BNNs do not produce a parameter point estimate but instead learn a

distribution over the parameter space. The mean value corresponds to the forecast, while the

variance quantifies the certainty of the prediction. The provided certainty can deliver much better

insight into how trustworthy the result from the network is. BNNs have recently been used for the

regression of physical problems [Lin+22; LMR19]. However, the provided uncertainty is only an

approximation and can be erroneous.

25

5. CONCLUSION

Source Ground-truth MAE GAN Wavelet

Figure 5.2.: The figure was taken from Prantl et al. [Pra+22b] and compares different loss functions for a
multi-modal generative setup. The high-frequency part of the ground truth is randomly chosen and thus not
reconstructible from the source. MAE generates very smooth results, while more advanced methods like GAN
and a frequency-based wavelet loss successfully reconstruct the high-frequency features.

Similarity Metrics for Fluids Another challenge we encountered in our work was a proper quan-

titative evaluation of fluid simulations. It is challenging to validate spatio-temporal data based on

its fluid-likeness and compare it to a reference distribution. For the most part, standard distance

metrics, such as mean squared error (MSE) or similar, ignore critical physical properties. Physics-

based loss values are difficult to interpret due to the nonlinearity and complexity of fluid behavior.

Finally, there is also the problem that minor errors add up for long sequences, often making a direct

comparison with a reference difficult due to the chaotic nature of fluids. Common practice is to

use perceptual methods [Sal+16; Heu+17; KUT20]. One proposed tool is the generative adversar-

ial network (GAN) [Goo+14]. GANs learn to generate new data with the same distribution as the

training set. This means that the model is not trained to minimize the distance to a specific data

point but rather to fit the generated results to the training distribution. The range of applicability

of GANs is vast, especially for inverse generative tasks like super-resolution [Xie+18; Chu+18b].

In practice, however, they are challenging to use and interpret [Sri+17]. Mode collapse and the

difficulty of reliably evaluating the performance of GANs make it difficult to properly exploit their

potential. Another significant advancement regarding generative tasks was achieved by diffusion

models [Soh+15; HJA20; DN21]. They are based on a Markov chain of diffusion steps which slowly

add random noise to the input data and learn to revert the diffusion process. As a result, the final

model can synthesize high-quality images based on input noise, even outperforming GANs. GANs

and diffusion models are essential when solving multi-modal problems. However, our particular

case, the generation of liquids, differs partly from perceptual tasks, such as the up-sampling of

images. While in the case of images information is sometimes completely missing and has to be

invented, liquids are subject to physical rules that strongly limit the solution space. The question

is whether one can achieve similar performance as with GANs, with a more straightforward, de-

terministic loss function. The paper Prantl et al. [Pra+22b] tackles that problem. The proposed

loss function is based on wavelets. The idea is to avoid the low-pass filter behavior of conventional

distance functions like mean absolute error (MAE) or MSE by considering the different frequency

ranges separately. The low-pass filter effect is illustrated in Figure 5.2. A MAE loss, as we have

26

5.2. CONCLUSION

also used in this thesis, generates results that are not part of the ground-truth distribution. GANs

and the presented wavelet-based loss, on the other hand, are able to reconstruct most of the high-

frequency behavior. Further evaluations in the paper show that advanced loss functions can keep

up with GANs. Another possibility for a more analytical approach is to formulate an optimal trans-

port problem. We can quantify the difference between two fluid sequences by the strength of the

correction parameters necessary to transform one sequence into the other. One possibility would be

to use optical flow [Thu16], or the earth-movers distance (EMD), similar to what we have already

done in our methods. A more advanced approach would be to use differentiable physics as in Um

et al. [Um+20]. The advantage over conventional distance functions is the inclusion of volumetric

and geometric properties, in addition to the underlying physics.

5.2. Conclusion

From the discussion in the outlook, we can see that combining deep learning with classical numer-

ical methods is crucial for success. Using domain knowledge in the form of physically inductive

biases improves generalization. Additionally, it gives better insight and control over the behavior of

the neural network. Improving the transparency of the learning task counteracts the uncertainty in-

herent in the myth that associates neural networks with black boxes. Based on that, neural networks

are a system that offers no insight and whose behavior cannot be understood. This is a controver-

sial concern, as it precludes deep learning from being used in areas where deterministic, accurate

behavior is prioritized. However, we believe deep learning as a technique is just not yet sufficiently

explored. As shown in the outlook section, we can see that there are still many unanswered ques-

tions to be addressed, promising an exciting future for research in deep learning for liquids. In

our opinion, future work will resolve the uncertainties, and deep learning methods for liquids will

become more established accordingly.

27

Bibliography

[AHA12] S. Adami, X. Y. Hu, and N. A. Adams. “A generalized wall boundary condition for

smoothed particle hydrodynamics”. In: Journal of Computational Physics 231.21

(Aug. 30, 2012), pp. 7057–7075. ISSN: 0021-9991. DOI: 10.1016/j.jcp.2012.05.

005.

[AP21] Kyriakos D. Apostolidis and George A. Papakostas. “A Survey on Adversarial Deep

Learning Robustness in Medical Image Analysis”. In: Electronics 10.17 (2021). ISSN:

2079-9292. DOI: 10.3390/electronics10172132.

[Bat+16] Peter Battaglia et al. “Interaction networks for learning about objects, relations and

physics”. In: Advances in Neural Information Processing Systems. 2016, pp. 4502–4510.

[BC93] Pierre Baldi and Yves Chauvin. “Neural networks for fingerprint recognition”. In: neu-

ral computation 5.3 (1993), pp. 402–418.

[BK16] Jan Bender and Dan Koschier. “Divergence-free SPH for incompressible and viscous

fluids”. In: IEEE Transactions on Visualization and Computer Graphics 23.3 (2016),

pp. 1193–1206.

[BKK18] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling”. In: arXiv preprint

arXiv:1803.01271 (2018).

[BL11] Achi Brandt and Oren E Livne. Multigrid Techniques: 1984 Guide with Applications to

Fluid Dynamics, Revised Edition. SIAM, 2011.

29

https://doi.org/10.1016/j.jcp.2012.05.005
https://doi.org/10.1016/j.jcp.2012.05.005
https://doi.org/10.3390/electronics10172132

BIBLIOGRAPHY

[BR86] Jeremiah U Brackbill and Hans M Ruppel. “FLIP: A method for adaptively zoned,

particle-in-cell calculations of fluid flows in two dimensions”. In: Journal of Computa-

tional physics 65.2 (1986), pp. 314–343.

[Bri15] Robert Bridson. Fluid simulation for computer graphics. AK Peters/CRC Press, 2015.

[BT07] Markus Becker and Matthias Teschner. “Weakly compressible SPH for free surface

flows”. In: Proc. of symposium on Computer animation. SCA ’07. Eurographics Associ-

ation, 2007, pp. 209–217.

[BVS16] Christian Bailer, Kiran Varanasi, and Didier Stricker. “CNN-based Patch Matching for

Optical Flow with Thresholded Hinge Loss”. In: arXiv: 1607.08064 (2016).

[BWW22] Johannes Brandstetter, Daniel E. Worrall, and Max Welling. “Message Passing Neural

PDE Solvers”. In: International Conference on Learning Representations. 2022.

[Cai+22] Shengze Cai et al. “Physics-informed neural networks (PINNs) for fluid mechanics: A

review”. In: Acta Mechanica Sinica (2022), pp. 1–12.

[Chu+18a] Mengyu Chu et al. “Temporally Coherent GANs for Video Super-Resolution (Teco-

GAN)”. In: CoRR abs/1811.09393 (2018).

[Chu+18b] Mengyu Chu et al. “Temporally coherent gans for video super-resolution (tecogan)”.

In: arXiv preprint arXiv:1811.09393 1.2 (2018), p. 3.

[CM11] Nuttapong Chentanez and Matthias Müller. “A multigrid fluid pressure solver han-

dling separating solid boundary conditions”. In: Proceedings of the 2011 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation. 2011, pp. 83–90.

[Cor+14] Jens Cornelis et al. “IISPH-FLIP for incompressible fluids”. In: Computer Graphics Fo-

rum. Vol. 33. 2. Wiley Online Library. 2014, pp. 255–262.

[CT17] Mengyu Chu and Nils Thuerey. “Data-driven synthesis of smoke flows with CNN-based

feature descriptors”. In: ACM Transactions on Graphics 36.4 (July 20, 2017), 69:1–

69:14. ISSN: 0730-0301. DOI: 10.1145/3072959.3073643.

[CWG20] Daniel C. Castro, Ian Walker, and Ben Glocker. “Causality matters in medical imaging”.

In: Nature Communications 11.1 (July 2020). DOI: 10.1038/s41467-020-17478-w.

[DLF12] Tyler De Witt, Christian Lessig, and Eugene Fiume. “Fluid simulation using laplacian

eigenfunctions”. In: ACM Transactions on Graphics (TOG) 31.1 (2012), pp. 1–11.

[DN21] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat gans on image syn-

thesis”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 8780–

8794.

30

https://doi.org/10.1145/3072959.3073643
https://doi.org/10.1038/s41467-020-17478-w

BIBLIOGRAPHY

[Dos+15] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with convolutional net-

works”. In: International Conference on Computer Vision (ICCV). IEEE. 2015, pp. 2758–

2766.

[Dun89] George H Dunteman. Principal components analysis. 69. Sage, 1989.

[EUT19] Marie-Lena Eckert, Kiwon Um, and Nils Thuerey. “ScalarFlow: A Large-Scale Volu-

metric Data Set of Real-World Scalar Transport Flows for Computer Animation and

Machine Learning”. In: ACM Trans. Graph. 38.6 (Nov. 2019). ISSN: 0730-0301. DOI:

10.1145/3355089.3356545.

[Fer+16] Florian Ferstl et al. “Narrow band FLIP for liquid simulations”. In: Computer Graphics

Forum. Vol. 35. 2. Wiley Online Library. 2016, pp. 225–232.

[Fey+18] Matthias Fey et al. “Splinecnn: Fast geometric deep learning with continuous b-spline

kernels”. In: Proceedings of the IEEE conference on computer vision and pattern recogni-

tion. 2018, pp. 869–877.

[FM96] Nick Foster and Dimitri Metaxas. “Realistic Animation of Liquids”. In: Graphical Models

and Image Processing 58.5 (1996), pp. 471–483. ISSN: 1077-3169. DOI: https://doi.

org/10.1006/gmip.1996.0039.

[Fuk79] Kunihiko Fukushima. “Neural network model for a mechanism of pattern recogni-

tion unaffected by shift in position-Neocognitron”. In: IEICE Technical Report, A 62.10

(1979), pp. 658–665.

[GGY18] Weifeng Ge, Bingchen Gong, and Yizhou Yu. “Image Super-resolution via Deterministic-

stochastic Synthesis and Local Statistical Rectification”. In: ACM Trans. Graph. 37.6

(Dec. 2018), 260:1–260:14. ISSN: 0730-0301. DOI: 10.1145/3272127.3275060.

[Gis08] Galen R Gisler. “Tsunami simulations”. In: Annu. Rev. Fluid Mech. 40 (2008), pp. 71–

90.

[GM77] Robert A Gingold and Joseph J Monaghan. “Smoothed Particle Hydrodynamics: The-

ory and Application to Non-Spherical Stars”. In: Monthly Notices of the Royal Astro-

nomical Society 181.3 (1977).

[Goe+20] Karan Goel et al. “Model patching: Closing the subgroup performance gap with data

augmentation”. In: arXiv preprint arXiv:2008.06775 (2020).

[Goo+14] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Informa-

tion Processing Systems. Vol. 27. Curran Associates, Inc., 2014.

[Gra12] Alex Graves. “Long short-term memory”. In: Supervised sequence labelling with recur-

rent neural networks (2012), pp. 37–45.

31

https://doi.org/10.1145/3355089.3356545
https://doi.org/https://doi.org/10.1006/gmip.1996.0039
https://doi.org/https://doi.org/10.1006/gmip.1996.0039
https://doi.org/10.1145/3272127.3275060

BIBLIOGRAPHY

[Gue+18] Paul Guerrero et al. “PCPNet Learning Local Shape Properties from Raw Point Clouds”.

In: Computer Graphics Forum 37.2 (2018), pp. 75–85. ISSN: 1467-8659. DOI: 10.

1111/cgf.13343.

[Her+18] Pedro Hermosilla et al. “Monte Carlo convolution for learning on non-uniformly sam-

pled point clouds”. In: ACM Transactions on Graphics 37.6 (Dec. 4, 2018), 235:1–

235:12. ISSN: 0730-0301. DOI: 10.1145/3272127.3275110.

[HER55] F.H. Harlow, M. Evans, and R.D. Richtmyer. A Machine Calculation Method for Hydro-

dynamic Problems. LAMS (Los Alamos Scientific Laboratory). Los Alamos Scientific

Laboratory of the University of California, 1955.

[Heu+17] Martin Heusel et al. “Gans trained by a two time-scale update rule converge to a local

nash equilibrium”. In: Advances in neural information processing systems 30 (2017).

[Hew+20] Pradeep Hewage et al. “Temporal convolutional neural (TCN) network for an effective

weather forecasting using time-series data from the local weather station”. In: Soft

Computing 24.21 (2020), pp. 16453–16482.

[Hig+16] Irina Higgins et al. “beta-vae: Learning basic visual concepts with a constrained vari-

ational framework”. In: (2016).

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic models”.

In: Advances in Neural Information Processing Systems 33 (2020), pp. 6840–6851.

[HKT20] Philipp Holl, Vladlen Koltun, and Nils Thuerey. “Learning to control pdes with differ-

entiable physics”. In: arXiv preprint arXiv:2001.07457 (2020).

[HOT06] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for

deep belief nets”. In: Neural computation 18.7 (2006), pp. 1527–1554.

[HS06] Geoffrey E Hinton and Ruslan R Salakhutdinov. “Reducing the dimensionality of data

with neural networks”. In: science 313.5786 (2006), pp. 504–507.

[HTY18] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. “Pointwise Convolutional Neural

Networks”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2018, pp. 984–993.

[Hu+19] Yuanming Hu et al. “Difftaichi: Differentiable programming for physical simulation”.

In: arXiv preprint arXiv:1910.00935 (2019).

[HW65] Francis Harlow and Eddie Welch. “Numerical Calculation of Time-dependent Viscous

Incompressible Flow of Fluid with Free Surface”. In: Physics of Fluids 8.12 (1965),

pp. 2182–2189.

32

https://doi.org/10.1111/cgf.13343
https://doi.org/10.1111/cgf.13343
https://doi.org/10.1145/3272127.3275110

BIBLIOGRAPHY

[Ilg+17] Eddy Ilg et al. “FlowNet 2.0: Evolution of Optical Flow Estimation With Deep Net-

works”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2017, pp. 2462–2470.

[Jad+15] Max Jaderberg et al. “Spatial Transformer Networks”. In: Advances in Neural Informa-

tion Processing Systems. Vol. 28. Curran Associates, Inc., 2015.

[Jia+15] Chenfanfu Jiang et al. “The Affine Particle-In-Cell Method”. In: TOG 34.4 (July 2015),

51:1–51:10.

[KG17] Alex Kendall and Yarin Gal. “What uncertainties do we need in bayesian deep learning

for computer vision?” In: Advances in neural information processing systems 30 (2017).

[Kim+08] Theodore Kim et al. “Wavelet Turbulence for Fluid Simulation”. In: TOG 27 (3) (2008),

50:1–6.

[Koc+21] Dmitrii Kochkov et al. “Machine learning–accelerated computational fluid dynamics”.

In: Proceedings of the National Academy of Sciences 118.21 (2021).

[Kos+22] Dan Koschier et al. “A Survey on SPH Methods in Computer Graphics”. In: Computer

Graphics Forum 41.2 (2022), pp. 737–760. ISSN: 1467-8659. DOI: 10.1111/cgf.

14508.

[KUT20] Georg Kohl, Kiwon Um, and Nils Thuerey. “Learning Similarity Metrics for Numerical

Simulations”. In: Proceedings of the 37th International Conference on Machine Learning.

Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning

Research. PMLR, July 2020, pp. 5349–5360.

[Lad+15] L’ubor Ladický et al. “Data-driven fluid simulations using regression forests”. In: ACM

Transactions on Graphics 34.6 (Oct. 26, 2015), 199:1–199:9. ISSN: 0730-0301. DOI:

10.1145/2816795.2818129.

[Lea+16] Colin Lea et al. “Temporal convolutional networks: A unified approach to action seg-

mentation”. In: European conference on computer vision. Springer. 2016, pp. 47–54.

[Led+16] Christian Ledig et al. “Photo-Realistic Single Image Super-Resolution Using a Gener-

ative Adversarial Network.” In: CoRR abs/1609.04802 (2016).

[Li+19] Yunzhu Li et al. “Learning Particle Dynamics for Manipulating Rigid Bodies, De-

formable Objects, and Fluids”. In: ICLR. 2019.

[Lin+22] Kevin Linka et al. “Bayesian Physics Informed Neural Networks for real-world nonlin-

ear dynamical systems”. In: Computer Methods in Applied Mechanics and Engineering

(2022), p. 115346. ISSN: 0045-7825. DOI: https://doi.org/10.1016/j.cma.

2022.115346.

33

https://doi.org/10.1111/cgf.14508
https://doi.org/10.1111/cgf.14508
https://doi.org/10.1145/2816795.2818129
https://doi.org/https://doi.org/10.1016/j.cma.2022.115346
https://doi.org/https://doi.org/10.1016/j.cma.2022.115346

BIBLIOGRAPHY

[Liu+21] Evan Z Liu et al. “Just train twice: Improving group robustness without training

group information”. In: International Conference on Machine Learning. PMLR. 2021,

pp. 6781–6792.

[LMR19] Tyler LaBonte, Carianne Martinez, and Scott A Roberts. “We know where we don’t

know: 3d bayesian cnns for credible geometric uncertainty”. In: arXiv preprint

arXiv:1910.10793 (2019).

[LV01] Jouko Lampinen and Aki Vehtari. “Bayesian approach for neural networks—review

and case studies”. In: Neural networks 14.3 (2001), pp. 257–274.

[MDK19] Xiaobai Ma, Katherine Rose Driggs-Campbell, and Mykel J. Kochenderfer. “Improved

Robustness and Safety for Autonomous Vehicle Control with Adversarial Reinforce-

ment Learning”. In: CoRR abs/1903.03642 (2019). arXiv: 1903.03642.

[MHR18] Simon Meister, Junhwa Hur, and Stefan Roth. “UnFlow: Unsupervised Learning of

Optical Flow With a Bidirectional Census Loss”. In: Proceedings of the AAAI Conference

on Artificial Intelligence 32.1 (Apr. 27, 2018). Number: 1. ISSN: 2374-3468. DOI: 10.

1609/aaai.v32i1.12276.

[MM13] Miles Macklin and Matthias Müller. “Position based fluids”. In: TOG 32.4 (2013),

p. 104.

[MST10] Aleka McAdams, Eftychios Sifakis, and Joseph Teran. “A Parallel Multigrid Poisson

Solver for Fluids Simulation on Large Grids.” In: Symposium on Computer Animation.

2010, pp. 65–73.

[NB16] Michael B Nielsen and Robert Bridson. “Spatially adaptive FLIP fluid simulations in

bifrost”. In: ACM SIGGRAPH 2016 Talks. 2016, pp. 1–2.

[Nie15] Michael A Nielsen. Neural networks and deep learning. Vol. 25. Determination press

San Francisco, CA, USA, 2015.

[Pap+16] Nicolas Papernot et al. “The limitations of deep learning in adversarial settings”.

In: 2016 IEEE European symposium on security and privacy (EuroS&P). IEEE. 2016,

pp. 372–387.

[Pas+18] Magdalini Paschali et al. “Generalizability vs. Robustness: Adversarial Examples for

Medical Imaging”. In: CoRR abs/1804.00504 (2018). arXiv: 1804.00504.

[PBT19] Lukas Prantl, Boris Bonev, and Nils Thuerey. “Generating Liquid Simulations with

Deformation-aware Neural Networks”. In: International Conference on Learning Rep-

resentations. Feb. 20, 2019.

34

https://arxiv.org/abs/1903.03642
https://doi.org/10.1609/aaai.v32i1.12276
https://doi.org/10.1609/aaai.v32i1.12276
https://arxiv.org/abs/1804.00504

BIBLIOGRAPHY

[Pér+18] E. Pérez-Pellitero et al. “Photorealistic Video Super Resolution”. In: Workshop PIRM at

ECCV (2018).

[Pfa+20] Tobias Pfaff et al. “Learning mesh-based simulation with graph networks”. In: arXiv

preprint arXiv:2010.03409 (2020).

[PMG16] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. “Transferability in machine

learning: from phenomena to black-box attacks using adversarial samples”. In: arXiv

preprint arXiv:1605.07277 (2016).

[Pop00] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[Pra+20] Lukas Prantl et al. “Tranquil Clouds: Neural Networks for Learning Temporally Coher-

ent Features in Point Clouds”. In: International Conference on Learning Representa-

tions. Mar. 11, 2020.

[Pra+22a] Lukas Prantl et al. “Guaranteed Conservation of Momentum for Learning Particle-

based Fluid Dynamics”. In: (May 26, 2022).

[Pra+22b] Lukas Prantl et al. Wavelet-based Loss for High-frequency Interface Dynamics. 2022. DOI:

10.48550/ARXIV.2209.02316.

[Qi+17a] C.R. Qi et al. “PointNet: Deep learning on point sets for 3D classification and segmenta-

tion”. In: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2017. Vol. 2017-January. 2017, pp. 77–85. ISBN: 978-1-5386-0457-1.

DOI: 10.1109/CVPR.2017.16.

[Qi+17b] Charles Ruizhongtai Qi et al. “Pointnet++: Deep hierarchical feature learning on point

sets in a metric space”. In: Advances in neural information processing systems 30 (2017).

[Rav+14] Karthik Raveendran et al. “Blending liquids”. In: ACM Transactions on Graphics 33.4

(July 27, 2014), 137:1–137:10. ISSN: 0730-0301. DOI: 10.1145/2601097.2601126.

[RB17] Anurag Ranjan and Michael J. Black. “Optical Flow Estimation Using a Spatial Pyramid

Network”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2017, pp. 4161–4170.

[RHW86a] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representa-

tions by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[RHW86b] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning represen-

tations by back-propagating errors”. In: Nature 323.6088 (Oct. 1, 1986), pp. 533–536.

ISSN: 1476-4687. DOI: 10.1038/323533a0.

35

https://doi.org/10.48550/ARXIV.2209.02316
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1145/2601097.2601126
https://doi.org/10.1038/323533a0

BIBLIOGRAPHY

[Sal+16] Tim Salimans et al. “Improved techniques for training gans”. In: Advances in neural

information processing systems 29 (2016).

[San+20] Alvaro Sanchez-Gonzalez et al. “Learning to simulate complex physics with graph

networks”. In: ICML. 2020.

[Sat+18] Takahiro Sato et al. “Extended narrow band FLIP for liquid simulations”. In: Computer

Graphics Forum. Vol. 37. 2. Wiley Online Library. 2018, pp. 169–177.

[SC91] Andrew Staniforth and Jean Côté. “Semi-Lagrangian integration schemes for atmo-

spheric models—A review”. In: Monthly weather review 119.9 (1991), pp. 2206–2223.

[Sch+20] Steffen Schneider et al. “Improving robustness against common corruptions by covari-

ate shift adaptation”. In: Advances in Neural Information Processing Systems 33 (2020),

pp. 11539–11551.

[Sch93] Jürgen Schmidhuber. “Habilitation thesis: System modeling and optimization”. In:

Page 150 ff demonstrates credit assignment across the equivalent of 1,200 layers in an

unfolded RNN (1993).

[SD20] Matteo Sangiorgio and Fabio Dercole. “Robustness of LSTM neural networks for multi-

step forecasting of chaotic time series”. In: Chaos, Solitons & Fractals 139 (2020),

p. 110045.

[SF18] Connor Schenck and Dieter Fox. “SPNets: Differentiable Fluid Dynamics for Deep Neu-

ral Networks”. In: Conference on Robot Learning. 2018.

[SHW21] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equivariant Graph

Neural Networks”. In: Proceedings of the 38th International Conference on Machine

Learning. International Conference on Machine Learning. ISSN: 2640-3498. PMLR,

July 1, 2021, pp. 9323–9332.

[Soh+15] Jascha Sohl-Dickstein et al. “Deep unsupervised learning using nonequilibrium

thermodynamics”. In: International Conference on Machine Learning. PMLR. 2015,

pp. 2256–2265.

[SP09] Barbara Solenthaler and Renato Pajarola. “Predictive-corrective incompressible SPH”.

In: TOG 28.3 (2009), p. 40.

[Sri+17] Akash Srivastava et al. “Veegan: Reducing mode collapse in gans using implicit vari-

ational learning”. In: Advances in neural information processing systems 30 (2017).

36

BIBLIOGRAPHY

[SSH17] M. S. M. Sajjadi, B. Schölkopf, and M. Hirsch. “EnhanceNet: Single Image Super-

Resolution Through Automated Texture Synthesis”. In: IEEE International Conference

on Computer Vision (ICCV). Oct. 2017, pp. 4501–4510. DOI: 10.1109/ICCV.2017.

481.

[Sta99] Jos Stam. “Stable fluids”. In: Proceedings of the 26th annual conference on Computer

graphics and interactive techniques. 1999, pp. 121–128.

[SVB18] Mehdi S. M. Sajjadi, Raviteja Vemulapalli, and Matthew Brown. “Frame-Recurrent

Video Super-Resolution”. In: CVPR. 2018.

[Tez+96] T Tezduyar et al. “Flow simulation and high performance computing”. In: Computa-

tional Mechanics 18.6 (1996), pp. 397–412.

[Thu16] Nils Thuerey. “Interpolations of Smoke and Liquid Simulations”. In: ACM Transactions

on Graphics 36.1 (Sept. 9, 2016), 3:1–3:16. ISSN: 0730-0301. DOI: 10.1145/2956233.

[TLP06] Adrien Treuille, Andrew Lewis, and Zoran Popović. “Model reduction for real-time

fluids”. In: ACM Transactions on Graphics (TOG) 25.3 (2006), pp. 826–834.

[Tom+17] Jonathan Tompson et al. “Accelerating Eulerian Fluid Simulation With Convolutional

Networks”. In: Proceedings of the 34th International Conference on Machine Learning.

International Conference on Machine Learning. ISSN: 2640-3498. PMLR, July 17,

2017, pp. 3424–3433.

[UHT17] Kiwon Um, Xiangyu Hu, and Nils Thuerey. “Perceptual Evaluation of Liquid Simula-

tion Methods”. In: TOG 36(4).143 (2017).

[Um+20] Kiwon Um et al. “Solver-in-the-Loop: Learning from Differentiable Physics to Inter-

act with Iterative PDE-Solvers”. In: Advances in Neural Information Processing Systems

(2020).

[Umm+20] Benjamin Ummenhofer et al. “Lagrangian Fluid Simulation with Continuous Convo-

lutions”. In: International Conference on Learning Representations. Mar. 11, 2020.

[Vas+17] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information

processing systems 30 (2017).

[Vil+21] Soledad Villar et al. “Scalars are universal: Equivariant machine learning, structured

like classical physics”. In: Advances in Neural Information Processing Systems. Vol. 34.

Curran Associates, Inc., 2021, pp. 28848–28863.

[Vre94] Cornelis Boudewijn Vreugdenhil. Numerical methods for shallow-water flow. Vol. 13.

Springer Science & Business Media, 1994.

37

https://doi.org/10.1109/ICCV.2017.481
https://doi.org/10.1109/ICCV.2017.481
https://doi.org/10.1145/2956233

BIBLIOGRAPHY

[Wan+18] Shenlong Wang et al. “Deep parametric continuous convolutional neural networks”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018,

pp. 2589–2597.

[Wan+19] Renzhuo Wan et al. “Multivariate temporal convolutional network: A deep neural

networks approach for multivariate time series forecasting”. In: Electronics 8.8 (2019),

p. 876.

[Wan+20] Rui Wang et al. “Towards Physics-informed Deep Learning for Turbulent Flow Predic-

tion”. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. KDD ’20. New York, NY, USA: Association for Computing

Machinery, Aug. 23, 2020, pp. 1457–1466. ISBN: 978-1-4503-7998-4. DOI: 10.1145/

3394486.3403198.

[WBT19] Steffen Wiewel, Moritz Becher, and Nils Thuerey. “Latent space physics: Towards

learning the temporal evolution of fluid flow”. In: Computer graphics forum. Vol. 38.

2. Wiley Online Library. 2019, pp. 71–82.

[Wil+21] Olivia Wiles et al. “A fine-grained analysis on distribution shift”. In: arXiv preprint

arXiv:2110.11328 (2021).

[Wil06] David C Wilcox. Turbulence Modeling for CFD. 3rd. DCW industries, 2006.

[Woj+17] Chris Wojtan et al. “Large-scale interactive water simulation with directional waves”.

In: ACM SIGGRAPH 2017 Real Time Live! 2017, pp. 19–19.

[Wu+18] Kui Wu et al. “Fast Fluid Simulations with Sparse Volumes on the GPU”. In: Computer

Graphics Forum (Proceedings of EUROGRAPHICS 2018) 37.2 (2018), pp. 157–167. DOI:

10.1111/cgf.13350.

[WWY20] Rui Wang, Robin Walters, and Rose Yu. “Incorporating symmetry into deep dynamics

models for improved generalization”. In: arXiv preprint arXiv:2002.03061 (2020).

[Xie+18] You Xie et al. “tempoGAN: a temporally coherent, volumetric GAN for super-resolution

fluid flow”. In: ACM Transactions on Graphics 37.4 (July 30, 2018), 95:1–95:15. ISSN:

0730-0301. DOI: 10.1145/3197517.3201304.

[Yin+18] Kangxue Yin et al. “P2P-NET: bidirectional point displacement net for shape trans-

form”. In: ACM Transactions on Graphics 37.4 (July 30, 2018), 152:1–152:13. ISSN:

0730-0301. DOI: 10.1145/3197517.3201288.

[Yu+18] Lequan Yu et al. “PU-Net: Point Cloud Upsampling Network”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 2790–2799.

38

https://doi.org/10.1145/3394486.3403198
https://doi.org/10.1145/3394486.3403198
https://doi.org/10.1111/cgf.13350
https://doi.org/10.1145/3197517.3201304
https://doi.org/10.1145/3197517.3201288

BIBLIOGRAPHY

[YYX16] Cheng Yang, Xubo Yang, and Xiangyun Xiao. “Data-driven projection method in fluid

simulation”. In: Computer Animation and Virtual Worlds 27.3-4 (2016), pp. 415–424.

[Zha+21] Hengshuang Zhao et al. “Point transformer”. In: Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision. 2021, pp. 16259–16268.

39

Published as a conference paper at ICLR 2019

GENERATING LIQUID SIMULATIONS WITH
DEFORMATION-AWARE NEURAL NETWORKS

Lukas Prantl, Boris Bonev & Nils Thuerey
Department of Computer Science
Technical University of Munich
Boltzmannstr. 3, 85748 Garching, Germany
{lukas.prantl,boris.bonev,nils.thuerey}@tum.de

ABSTRACT

We propose a novel approach for deformation-aware neural networks that learn
the weighting and synthesis of dense volumetric deformation fields. Our method
specifically targets the space-time representation of physical surfaces from liquid
simulations. Liquids exhibit highly complex, non-linear behavior under chang-
ing simulation conditions such as different initial conditions. Our algorithm cap-
tures these complex phenomena in two stages: a first neural network computes a
weighting function for a set of pre-computed deformations, while a second net-
work directly generates a deformation field for refining the surface. Key for suc-
cessful training runs in this setting is a suitable loss function that encodes the ef-
fect of the deformations, and a robust calculation of the corresponding gradients.
To demonstrate the effectiveness of our approach, we showcase our method with
several complex examples of flowing liquids with topology changes. Our repre-
sentation makes it possible to rapidly generate the desired implicit surfaces. We
have implemented a mobile application to demonstrate that real-time interactions
with complex liquid effects are possible with our approach.

1 INTRODUCTION

Learning physical functions is an area of growing interest within the research community, with
applications ranging from physical priors for computer vision problems Kyriazis & Argyros (2013),
over robotic control Schenck & Fox (2017), to fast approximations for numerical solvers Tompson
et al. (2017). While the underlying model equations for many physics problems are known, finding
solutions is often prohibitively expensive for phenomena on human scales. At the same time, the
availability of model equations allows for the creation of reliable ground truth data for training, if
enough computational resources can be allocated.

Water, and liquids in general, are ubiquitous in our world. At the same time, they represent an
especially tough class of physics problems, as the constantly changing boundary conditions at the
liquid-gas interface result in a complex space of surface motions and configurations. In this work
we present a novel approach to capture parametrized spaces of liquid behavior that is based on
space-time deformations. We represent a single 3D input surface over time as a four-dimensional
signed-distance function (SDF), which we deform in both space and time with learned deformations
to recover the desired physical behavior. To calculate and represent these deformations efficiently,
we take a two-stage approach: First, we span the sides of the original parameter region with pre-
computed deformations, and infer a suitable weighting function. In a second step, we synthesize a
dense deformation field for refinement. As both the parameter weighting problem and the deforma-
tion synthesis are highly non-linear problems, we demonstrate that neural networks are a particularly
suitable solver to robustly find solutions.

We will demonstrate that it is possible to incorporate the non-linear effects of weighted deforma-
tions into the loss functions of neural networks. In particular, we put emphasis on incorporating
the influence of deformation alignment into the loss gradients. This alignment step is necessary to
ensure the correct application of multiple consecutive deformations fields. The second stage of our

1

Published as a conference paper at ICLR 2019

algorithm is a generative model for deformation fields, for which we rely on a known parametriza-
tion of the inputs. Thus, in contrast to other generative models which learn to represent unknown
parametrization of data sets Radford et al. (2016), our models are trained with a known range and
dimensionality to parameter range, which serves as input.

Once trained, the models can be evaluated very efficiently to synthesize new implicit surface con-
figurations. To demonstrate its performance, we have implemented a proof-of-concept version for
mobile devices, and a demo app is available for Android devices in the Google Play store. Our
approach generates liquid animations several orders of magnitude faster than a traditional simulator,
and achieves effective speed up factors of more than 2000, as we will outline in Sec. 5. The central
contributions of our work are:

• A novel deformation-aware neural network approach to very efficiently represent large
collections of space-time surfaces with complex behavior.

• We show how to compute suitable loss gradient approximations for the sub-problems of
parameter and deformation inference.

• In addition we showcase the high performance of our approach with a mobile device im-
plementation that generates liquid simulations interactively.

2 RELATED WORK

Capturing physical behavior with learning has a long history in the field of learning. Early exam-
ples targeted minimization problems to determine physical trajectories or contact forces Bhat et al.
(2002); Brubaker et al. (2009), or plausible physics for interacting objects Kyriazis & Argyros (2013;
2014). Since initial experiments with physically-based animation and neural networks Grzeszczuk
et al. (1998), a variety of new deep learning based works have been proposed to learn physical
models from videos Battaglia et al. (2016); Chang et al. (2016); Watters et al. (2017). Others have
targeted this goal in specific settings such as robotic interactions Finn et al. (2016), sliding and
colliding objects Wu et al. (2015; 2016), billiard Fragkiadaki et al. (2015), or trajectories in height
fields Ehrhardt et al. (2017). The prediction of forces to infer image-space motions has likewise been
targeted Mottaghi et al. (2016a;b), while other researchers demonstrated that the stability of stacked
objects can be determined from single images Lerer et al. (2016); Li et al. (2016). In addition, the
unsupervised inference of physical functions poses interesting problems Stewart & Ermon (2017).
While these methods have achieved impressive results, an important difference to our method is that
we omit the projection to images. I.e., we directly work with three-dimensional data sets over time.

In the context of robotic control, physics play a particularly important role, and learning object
properties from poking motions Agrawal et al. (2016), or interactions with liquids Schenck & Fox
(2017) were targeted in previous work. Learning physical principles was also demonstrated for au-
tomated experiments with reinforcement learning Denil et al. (2016). Recently, first works have also
addressed replacing numerical solvers with trained models for more generic PDEs Farimani et al.
(2017); Long et al. (2017). In our work we target a more narrow case: that of surfaces deform-
ing based on physical principles. However, thanks to this narrow scope and our specialized loss
functions we can generate very complex physical effects in 3D plus time.

Our method can be seen as a generative approach representing samples from a chaotic process.
In this context, the learned latent-space representation of regular generative models Masci et al.
(2011); Rezende et al. (2014); Goodfellow et al. (2014); Radford et al. (2016); Isola et al. (2017) is
replaced by the chosen parametrization of a numerical solver. Our model shares the goal to learn
flow physics based on examples with other methods Ladicky et al. (2015); Tompson et al. (2017);
Chu & Thuerey (2017), but in contrast to these we focus on 4D volumes of physics data, instead
of localized windows at single instances of time. Alternative methods have been proposed to work
with 4D simulation data Raveendran et al. (2014); Thuerey (2017), however, without being able
to capture larger spaces of physical behavior. Due to its focus on deformations, our work also
shares similarities with methods for optical flow inference and image correspondences Bailer et al.
(2016); Dosovitskiy et al. (2015); Ranjan & Black (2016); Ilg et al. (2016). A difference to these
approaches is that we learn deformations and their weighting in an unsupervised manner, without
explicit ground truth data. Thus, our method shares similarities with spatial transformer networks
(STNs) Jaderberg et al. (2015), and unsupervised approaches for optical flow Meister et al. (2017).

2

Published as a conference paper at ICLR 2019

However, instead of aligning two data sets, our method aims for representing larger, parametrized
spaces of deformations.

3 LEARNING DEFORMATIONS

We first explain our formulation of the simulation parameter space, which replaces the latent space
of other generative models such as autoencoders Masci et al. (2011), GANs Radford et al. (2016), or
auto-regressive models Van Oord et al. (2016). Given a Navier-Stokes boundary value problem with
a liquid-gas interface, we treat the interface over time as a single space-time surface. We work with
a set of these space-time surfaces, defined over a chosen region of the N-dimensional simulation
parameters α. We assume the parameters to be normalized, i.e. α ∈ [0, 1]

N . In practice, α could
contain any set of parameters of the simulation, e.g. initial positions, or even physical parameters
such as viscosity. We choose implicit functions φ(α) ∈ R4 → R to represent specific instances,
such that Γ(α) =

{
x ∈ R4;φ(α,x) = 0

}
is the space of surfaces parametrized by α that our

generative model should capture. In the following, φ and ψ will denote four-dimensional signed
distance functions. We will typically abbreviate φ(α) with φα to indicate that φα represents a set of
constant reference surfaces. While we will later on discretize all functions and operators on regular
Cartesian grids, we will first show the continuous formulation in the following.

a) b) c)

Figure 1: Three liquid surfaces after 60
time steps differing only by ±ε in ini-
tial conditions. Even this initially very
small difference can lead to large differ-
ences in surface position, e.g., the sheet
in b) strongly curving downward.

Deforming Implicit Surfaces Representing the whole
set φα is very challenging. Due to bifurcations and dis-
cretization artifacts φα represents a process that exhibits
noisy and chaotic behavior, an example for which can
be found in Fig. 1. Despite the complex changes in the
data, our goal is to find a manageable and reduced rep-
resentation. Thus, we generate an approximation of φα
by deforming a single initial surface in space and time.
We apply space-time deformations u : R4 → R4 to the
initial surface ψ0(x). As a single deformation is limited
in terms of its representative power to produce different
shapes, we make use of N sequential, pre-computed de-
formations, thus ui with i ∈ [1 · · ·N], each of which is
scaled by a scalar weight parameter βi, whose values are
normally between 0 and 1. This gives us the freedom to
choose how much of ui to apply. The initial surface de-
formed by, e.g., u1 is given by ψ0(x− β1u1).

The sequence of deformed surfaces by sequentially applying all pre-computed ui is given by
ψi(x,β) = ψi−1(x − βiui). It is crucial to align such sequences of Eulerian deformations with
each other. Here we employ the alignment from previous work Thuerey (2017), which we briefly
summarize in the following, as it influences the gradient calculation below. Each deformation i relies
on a certain spatial configuration for the input surface from deformation i− 1. Thus, when applying
ui−1 with a weight βi−1 < 1, we have to align ui correspondingly. Given the combined deformation
vsum(x,α) =

∑N
i=1 βiu

∗
i (x), with intermediate deformation fields u∗i−1(x) = ui−1(x − u∗i (x)),

we compute an inversely weighted offset field as vinv(x,α) = −∑N
i=1(1 − βi)u

∗
i (x). This

offset field is used to align the accumulated deformations to compute the final deformation as
vfin(x + vinv(x,β),β) = vsum(x,β). vfin now represents all weighted deformations βiui merged
into a single vector field. Intuitively, this process moves all deformation vectors to the right location
for the initial surface ψ0, such that they can be weighted and accumulated.

To achieve the goal of representing the full set of target implicit surfaces φα our goal is to com-
pute two functions: the first one aims for an optimal weighting for each of the deformations in the
sequence, i.e. β, while the second function computes a final refinement deformation w after the
weighted sequence has been applied. We will employ two neural networks to approximate the two
functions, which we will denote as fp, and fd below. Both functions depend only on the simulation
parameters space α, i.e., fp(α) = β, and fd(α) = w.

Splitting the problem into fp and fd is important, as each of the pre-computed deformations
weighted by fp only covers a single trajectory in the space of deformed surfaces. In the follow-

3

Published as a conference paper at ICLR 2019

Initial surface

Pre-comp. deformations

Chosen point

Parameter network Apply weighted
deformations

Deformation
network

Apply
deformation Slice & Display

↵
�

 0

ui

 ̃ w final
Initialization

Figure 2: This illustration gives an overview of our algorithm. It works in two stages, a weighting
and refinement stage, each of which employs a neural network to infer a weighting function and a
dense deformation field, respectively.

ing, we employ an optical flow solve from previous work to pre-compute deformations between the
inputs Thuerey (2017), which deform the input for the extrema of each original parameter dimen-
sion αi. E.g., for a two-dimensional parameter space this yields two deformations along the sides
of the unit cube. This first step robustly covers rough, large scale deformations. As a second step,
we employ fd, which is realized as a generative CNN, to infer a deformation for refining the solu-
tion. Below we will explain the resulting equations for training. The full equations for applying the
deformations, and a full derivation of our loss functions can be found in the supplemental materials.
To shorten the notation, we introduce the helper function D(xi,α), which yields a deformed set of
coordinates in R4 depending on α that incorporates the deformation sequence weighted by fp(α),
and a refinement deformation from fd(α).

We express the overall goal in terms of minimizing the L2 distance between the deformed and the
target implicit surfaces for all possible values in the parameter space α, using β and w as degrees
of freedom:

argmin
β,w

L,L =

∫
‖ψ0(D(xi,α))− φα‖22 dα . (1)

Our work addresses the problem of how to compute weighting of the deformations and on synthe-
sizing the refinement field. The main difficulty lies in the non-linearity of the deformations, which
is why we propose a novel method to robustly approximate both functions with NNs: fp will be
represented by the parameter network to compute β, and we make use of a deformation network
that to generate w. We employ relatively simple neural networks for both functions. Key for training
them is encoding the effect of deformations in the loss functions to make the training process aware
of their influence. Hence, we will focus on describing the loss functions for both networks and the
corresponding discretized gradients in the following.

Learning Deformation Weights For training the NNs we propose the following objective func-
tion, which measures the similarity of a known reference surface φα and the corresponding, ap-
proximated result ψ0(x,α) for a parameter value α. We introduce the numerical equivalent of the
continuous L2 loss from Eq. (1) as

L =
1

2

∑

i

(ψ0(D(xi,α))− φα(xi))
2

∆xi , (2)

which approximates the spatial integral via the sum over all sample points i with corresponding
evaluation positions xi ∈ R4, where ∆xi = ‖xi − xi−1‖ is constant in our case. This corresponds
to a regular grid structure, where the loss is accumulated per cell. The central challenge here is
to compute reliable gradients for D, which encapsulates a series of highly non-linear deformation
steps. We first focus on inferring β, with w = 0.

The gradient of Eq. (2) with respect to one component of the deformation parameters βj is then
given by

d
dβj

L =
∑

i

(
− ∂

∂βj
vfin(xi + vinv(xi,β),β) · ∇ψ0(xi − vfin(xi,β))

)
(ψ0(xi,β)− φα(xi)) ,

(3)
where the first term on the sum over i in parentheses represents the gradient of the deformed initial
surface. Here we compute the derivative of the full deformation as ∂

∂βj
vfin(xi + vinv(xi,β),β) =

u∗i (xi). The offset by vinv on the left hand side indicates that we perform a forward-advection step
for this term. Details of this step, and for the full derivation of the gradient are given in Appendix B.1.

4

Published as a conference paper at ICLR 2019

Initial surface Reference surface+ Parameter network

After parameter network + Deformation network Reference surface

 0 �

� w

�↵

�↵

Figure 3: An example of our parameter learning approach. F.l.t.r.: the initial undeformed surface, the
surface deformed by the weighting from the trained parameter network, and the reference surface
only. The reference surface is shown again in the middle in light brown for comparison. The
weighted deformations especially match the left liquid arm well, while there are not enough degrees
of freedom in the pre-computed deformations to independently raise the surface on the right side.

A trained NN with this loss functions yields an instance of fp, with which we can infer adjusted
deformation weights fp(α) = β.

Learning to Generate Deformations Based on β, we apply the deformation sequence ui. The
goal of our second network, the deformation network fd, is to compute the refinement deformation
w. In contrast to the pre-computed ui, fd(α) = w now directly depends on α, and can thus capture
the interior of the parameter space. Given the initial surface ψ0 deformed by the set of βiui, which
we will denote as ψ̃ below, the refinement deformation is applied with a final deformation step as
ψ(x) = ψ̃ (x−w(x, α)).

In order to compute the gradient of the deformation loss, we introduce the indicator function χj(x)
for a single deformation vector wj of w. We found it useful to use a fine discretization for the
implicit surfaces, such as ψ, and lower resolutions for w. Hence, each discrete entry wj can act on
multiple cells of ψ, which we enumerate with the help of χj . Now the derivative of Eq. (1) for a
fixed β with respect to a single deformation vector wj of w is given by

d
dwj

L = −
∑

i

χj(xi)∇ψ̃(xi −w(xi,α))
(
ψ̃(xi,α)− φα(xi)

)
. (4)

The full derivation of this gradient is given in Appendix B.2. Our approach for deformation learning
can be regarded as an extension of STNs Jaderberg et al. (2015) for dense, weighted fields, and
semi-Lagrangian advection methods. The parameter network corresponds to an STN which learns
to combine and weight known deformation fields. The deformation network, on the other hand,
resembles the thin plate spline STNs, where a network generates an offset for each cell center,
which is then used to sample a deformed image or grid. Note that in our case, this sampling process
corresponds to the semi-Lagrangian advection of a fluid simulation.

Training Details For fp we use a simple structure with two fully connected layers, while fd like-
wise contains two fully connected layers, followed by two or more four-dimensonal de-convolution
layers. All layers use ReLU activation functions. Details can be found in App. B, Fig. 12.

In practice, we also found that a small amount of weight decay andL2 regularization of the generated
deformations can help to ensure smoothness. Thus, the loss function of the deformation network,
with regularization parameters γ1 and γ2 is

Lt = L+ γ1||θ||2 + γ2||w||2 , (5)
where θ denotes the network weights. In addition, regular SDFs can lead to overly large loss values
far away from the surface due to linearly increasing distances. Thus, we apply the tanh() function
to the SDF values, in order to put more emphasis on the surface region.

Special care is required for boundary conditions, i.e, the sides of our domain. Assuming constant
values outside of the discretized domain, i.e. ∂ψ(x)/∂n = 0 for all x at the domain sides leads
to vanishing gradients ∇ψ(x) = 0 in App. B, Eq. (4). We found this causes artificial minima and
maxima in the loss function impeding the training process. Hence, we extrapolate the SDF values
with ∂ψ(x)/∂n = ±1 in order to retrieve non zero gradients at the domain sides.

To train both networks we use stochastic gradient descent with an ADAM optimizer and a learning
rate of 10−3. Training is performed separately for both networks, with typically 1000 steps for fd,

5

Published as a conference paper at ICLR 2019

0

0.025

0.05

0.075

0.1

Liquid 2D Flat Drop Stairs

Initial + Parameters + Deformation

0

0.25

0.5

0.75

1

Liquid 2D Flat Drop Stairs

Initial + Parameters + Deformation

Loss (absolute) Loss (normalized)

Initial +Parameters +Deformation

Liquid 2D 0.0876 0.0521 0.0234

Flat 0.0403 - 0.0121

Drop 0.0431 0.024 0.0096

Stairs 0.0953 0.0537 0.0299

Loss (numeric)

�1

Figure 4: Ablation study for our method. We evaluated the average loss for a test data set of the
different data sets discussed in the text. Left: numeric values, again as a graph (center), and a graph
of the loss values normalized w.r.t. initial surface loss on the right. Our method achieves very
significant and consistent reductions across the very different data sets.

Initial surface Reference surface+ Parameter network

After parameter network + Deformation network Reference surface

 0 �

� w

�↵

�↵

Figure 5: An example of our deformation learning approach. F. l. t. r.: the result after applying
weighted deformations, and with an additional deformation from a trained deformation network.
Both show the reference surface in light brown in the background, which is shown again for com-
parison on the right. The inferred deformation manages to reconstruct large parts of the two central
arms which can not be recovered by any weighting of the pre-computed deformations (left).

and another ca. 9000 steps for fd. Full parameters can be found in App. B, Table 2. As training data
we generate sets of implicit surfaces from liquid simulations with the FLIP method Bridson (2015).
For our 2D inputs, we use single time steps, while our 4D data concatenates 3D surfaces over time to
assemble a space-time surface. Working in conjunction, our two networks capture highly complex
behavior of the fluid space-time surface φα over the whole parameter domain. We will evaluate the
influence of the networks in isolation and combination in the following.

4 EVALUATION

In order to evaluate our method, we first use a two-dimensional parameter space with two dimen-
sional implicit surfaces from a liquid simulation. An overview of the space of 2156 training samples
of size 1002 can be found in the supplemental materials. For our training and synthesis runs, we
typically downsample the SDF data, and use a correspondingly smaller resolution for the output of
the deformation network, see Appendix C.2, Table 2. The effect of our trained networks in terms of
loss reductions is shown on the left side of Fig. 4 under Liquid 2D. As baseline we show the loss
for the undeformed surface w.r.t. the test data samples. For this 2D data set, employing the trained
parameter network reduces the loss to 59.4% of the initial value. Fig. 3 shows the surface of an
exemplary result. Although our result does not exactly match the target due to the constraints of the
pre-computed deformations, the learned deformation weights lead to a clear improvement in terms
of approximating the target.

The inferred deformation of our deformation network further reduces the surface loss to 26.6% of its
initial value, as shown in Fig. 4. This is equivalent to a reduction to 44.8% compared the result after
applying the weighted deformations. Note that the graphs in this figure correspond to an ablation
study: starting with the loss for the undeformed surface, over using only the parameter network, to
deformations for a flat surface, to our full algorithm. An example surface for these two-dimensional
cases can be found in Fig. 5. This figure compares the surface after applying weighted and in-
ferred deformations, i.e. our full method (right), with a surface deformed by only by deformations
weighted by the parameter network (left). The NN deformation manages to reconstruct the two arm
in the center of the surface, which the pre-computed deformations fail to capture. It is also apparent

6

Published as a conference paper at ICLR 2019

Figure 6: Eight examples of the learned deformations for a flat initial surface. For each pair the
reference surfaces are depicted in yellow and the deformed results in blue. The trained model learns
to recover a significant portion of the large-scale surface motion over the whole parameters space.

drop_res070000_025000_066666:
frames 2,10,25

a) b) c)

Figure 7: Each pair shows the reference surface in transparent brown, and in purple on the left the
deformed surface after applying the precomputed deformations. These surfaces often significantly
deviate from the brown target, i.e. the visible purple regions indicates misalignments. In cyan on
the right, our final surfaces based on the inferred deformation field. These deformed surface match
the target surface closely, and even recover thin features such as the central peak in (c).

that despite the improvement, this surface does not reach the tip of the arms. This is caused by regu-
larization over the varying set of target surfaces, leading to an averaged solution for the deformation.
Additional examples for this two dimensional setup can be found in the supplemental video.

4D Surface Data Next we consider complete space-time data sets in four dimensions. with a
three dimensional parameter space α. The three parameter dimensions are x- and y-coordinates of
the initial drop position, as well as its size. We use a total of 1764 reference SDFs with an initial
resolution of 1004, which are down-sampled to a resolution of 404. To illustrate the capabilities of
the deformation network, we start with a completely flat initial surface as ψ0, and train the defor-
mation network to recover the targets. As no pre-computed deformations are used for this case, we
do not train a parameter network. The flat initial surface represents an especially tough case, as the
network can not rely on any small scale details in the reference to match with the features of the
targets. Despite this difficulty, the surface loss is reduced to 30% of the initial loss purely based on
the deformation network. A set of visual examples can be seen in Fig. 6. Due to the reduced reso-
lution of the inferred deformation w.r.t. the SDF surface, not all small scale features of the targets
are matched. However, the NN manages to reconstruct impact location and size very well across the
full parameter space. Additional 2D and 4D results can be found in the supplemental materials.

Once we introduce a regular initial surface for ψ0, in this case the zero parameter configuration with
the drop in one corner of the domain with the largest size, our networks perform even better than
for the 2D data discussed above. The weighted deformations lead to a loss reduction to 55.6% of
the initial value, and the learned deformation reduce the loss further to 22.2% of the baseline loss
(Fig. 4). An example is shown in Fig. 7. In contrast to the flat surface test, the network deformation
can now shift and warp parts of ψ0, such as the rim of the splash of Fig. 7 to match the targets.

5 ADDITIONAL RESULTS WITH IMPLICIT SURFACES IN 4D

Our method yields highly reduced representations which can be used to very efficiently synthe-
size simulation results. To demonstrate the representational capabilities and the performance of our
method, we have integrated the evaluation pipeline for our trained networks into an Android appli-
cation. As our method yields an implicit surface as 4D array, visualizing the resulting animation
is very efficient. We render slices of 3D data as implicit surfaces, and the availability of a full

7

Published as a conference paper at ICLR 2019

a) b)

Figure 8: a) Liquid drop data set example: several 3D surfaces of a single simulation data point in
φα. b) An example splash generated by our method, visualized interactively.

3D representations makes it possible to add curvature-based shading and secondary particle effects
on the fly. In this context, please also consider the supplemental materials, which contain these
sequences in motion. They are available at: https://ge.in.tum.de/publications/
2017-prantl-defonn/.

Performance One of the setup available in this app is the liquid drop setup with 3D parameter
space described above. With this setup a user can release drops of liquid at varying positions and
of varying size. An example reference and generated result can be found in Fig. 8. For this liquid
drop setup, evaluating the network takes 69ms on average, and assembling the final deformation
field another 21.5ms. We use double buffering, and hence both tasks are evaluated in a background
thread. Rendering the implicit surface takes an average of 21ms, with an average frame rate of 50
fps. The original simulation for the drop setup of Fig. 8 took 530 seconds on average with a parallel
implementation to generate a single 4D surface data point.Assuming a best-case slowdown of only
4x for the mobile device, it would require more than 32 minutes to run the original simulation there.
Our app generates and renders a full liquid animation in less than one second in total. Thus, our
algorithm generates the result roughly 2000 times faster than the regular simulation. Our approach
also represents the space of more than 1700 input simulations, i.e., more than 17GB, with less than
30MB of storage.

Stairs A next setup, shown in Fig. 9, captures a continuous flow around a set of obstacles. Liquid
is generated in one corner of the simulation domain, and then flows in a U-shaped path around a wall,
down several steps. In the interactive visualization, green arrows highlight in- and outflow regions.
The three dimensional parametrization of this setup captures a range of positions for the wall and
two steps leading to very different flow behaviors for the liquid. In this case the data set consists of
1331 SDFs, and our app uses an output resolution of 504. The corresponding loss measurements can
be found in the right graphs of Fig. 4. As with the two previously discussed data sets, our approach
leads to very significant reductions of the surface loss across the full parameter space, with a final
residual loss of 31.3% after applying the learned deformation. Due to larger size of the implicit
surfaces and the inferred deformation field, the performance reduces to a frame rate of 30 fps on
average, which, however, still allows for responsive user interactions.

Discussion Our approach in its current form has several limitations that are worth mentioning.
E.g., we assume that the space of target surfaces have a certain degree of similarity, such that a single
surface can be selected as initial surface ψ0. In addition, our method currently does not make use of
the fact that the inputs are generated by a physical process. E.g., it would be highly interesting for
future work to incorporate additional constraints such as conservation laws, as currently our results
can deviate from an exact conservation of physical properties. E.g., due to its approximating nature
our method can lead to parts of the volume disappearing and appearing over time. Additionally, the
L2 based loss can lead to rather smooth results, here approaches such as GANs could potentially
improve the results.

6 CONCLUSIONS

We have presented a novel method to generate space-time surfaces with deformation-aware neural
networks. In particular, we have demonstrated the successful inference of weighting sequences of
aligned deformations, and the generation of dense deformation fields across a range of varied inputs.
Our method exhibits significant improvements in terms surface reconstruction accuracy across the
full parameter range. In this way, our networks can capture spaces of complex surface behavior, and

8

Published as a conference paper at ICLR 2019

b)a)

Figure 9: a) Three example configurations from our stairs data set. b) The interactive version of the
stair setup shown in the demo app. Notice how the flow around the central wall obstacle changes.
As the wall is shifted right, the flow increases corresonpondingly.

allow for real-time interactions with physics effects that are orders of magnitudes slower to compute
with traditional solvers.

Beyond liquid surfaces, our deformation networks could also find application for other types of
surface data, such as those from object collections or potentially also moving characters. Likewise,
it could be interesting to extend our method in order to infer deformations for input sets without an
existing parametrization.

REFERENCES

Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by poking:
Experiential learning of intuitive physics. In Advances in Neural Information Processing Systems, pp. 5074–
5082, 2016.

Christian Bailer, Kiran Varanasi, and Didier Stricker. Cnn-based patch matching for optical flow with thresh-
olded hinge loss. arXiv preprint: 1607.08064, 2016.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for learning
about objects, relations and physics. In Advances in Neural Information Processing Systems, pp. 4502–4510,
2016.

Kiran S Bhat, Steven M Seitz, Jovan Popović, and Pradeep K Khosla. Computing the physical parameters of
rigid-body motion from video. In European Conference on Computer Vision, pp. 551–565. Springer, 2002.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0387310738.

Robert Bridson. Fluid Simulation for Computer Graphics. CRC Press, 2015.

Marcus A Brubaker, Leonid Sigal, and David J Fleet. Estimating contact dynamics. In Computer Vision, 2009
IEEE 12th International Conference on, pp. 2389–2396. IEEE, 2009.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional object-based
approach to learning physical dynamics. arXiv:1612.00341, 2016.

Mengyu Chu and Nils Thuerey. Data-driven synthesis of smoke flows with CNN-based feature descriptors.
ACM Trans. Graph., 36(4)(69), 2017.

Misha Denil, Pulkit Agrawal, Tejas D Kulkarni, Tom Erez, Peter Battaglia, and Nando de Freitas. Learning to
perform physics experiments via deep reinforcement learning. arXiv preprint arXiv:1611.01843, 2016.

Alexey Dosovitskiy, Philipp Fischery, Eddy Ilg, Caner Hazirbas, Vladimir Golkov, Patrick van der Smagt,
Daniel Cremers, Thomas Brox, et al. Flownet: Learning optical flow with convolutional networks. In
International Conference on Computer Vision (ICCV), pp. 2758–2766. IEEE, 2015.

Sebastien Ehrhardt, Aron Monszpart, Niloy J Mitra, and Andrea Vedaldi. Learning a physical long-term pre-
dictor. arXiv:1703.00247, 2017.

Amir Barati Farimani, Joseph Gomes, and Vijay S Pande. Deep learning the physics of transport phenomena.
arXiv:1709.02432, 2017.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through
video prediction. In Advances in neural information processing systems, pp. 64–72, 2016.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual predictive models
of physics for playing billiards. arXiv preprint arXiv:1511.07404, 2015.

9

Published as a conference paper at ICLR 2019

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information process-
ing systems, pp. 2672–2680, 2014.

Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neuroanimator: Fast neural network emulation
and control of physics-based models. In Proceedings of the 25th annual conference on Computer graphics
and interactive techniques, pp. 9–20. ACM, 1998.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox. Flownet
2.0: Evolution of optical flow estimation with deep networks. arXiv preprint: 1612.01925, 2016.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. CVPR, 2017.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Advances in
neural information processing systems, pp. 2017–2025, 2015.

Nikolaos Kyriazis and Antonis Argyros. Physically plausible 3d scene tracking: The single actor hypothesis.
In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp. 9–16. IEEE, 2013.

Nikolaos Kyriazis and Antonis Argyros. Scalable 3d tracking of multiple interacting objects. In Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 3430–3437. IEEE, 2014.

Lubor Ladicky, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. Data-driven fluid
simulations using regression forests. ACM Trans. Graph., 34(6):199, 2015.

Michael Lentine, Mridul Aanjaneya, and Ronald Fedkiw. Mass and momentum conservation for fluid simula-
tion. In Symposium on Computer Animation, pp. 91–100. ACM, 2011.

Adam Lerer, Sam Gross, and Rob Fergus. Learning physical intuition of block towers by example. In Interna-
tional Conference on Machine Learning, pp. 430–438, 2016.

Wenbin Li, Seyedmajid Azimi, Ales Leonardis, and Mario Fritz. To fall or not to fall: A visual approach to
physical stability prediction. arXiv preprint arXiv:1604.00066, 2016.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. arXiv:1710.09668,
2017.

Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convolutional auto-encoders for
hierarchical feature extraction. Artificial Neural Networks and Machine Learning–ICANN 2011, pp. 52–59,
2011.

Simon Meister, Junhwa Hur, and Stefan Roth. Unflow: Unsupervised learning of optical flow with a bidirec-
tional census loss. arXiv preprint arXiv:1711.07837, 2017.

Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi. Newtonian scene under-
standing: Unfolding the dynamics of objects in static images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3521–3529, 2016a.

Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta, and Ali Farhadi. ”what happens if...” learning to
predict the effect of forces in images. In European Conference on Computer Vision, pp. 269–285. Springer,
2016b.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. Proc. ICLR, 2016.

Anurag Ranjan and Michael J. Black. Optical flow estimation using a spatial pyramid network. CoRR,
abs/1611.00850, 2016. URL http://arxiv.org/abs/1611.00850.

Karthik Raveendran, Nils Thuerey, Chris Wojtan, and Greg Turk. Blending Liquids. ACM Trans. Graph., 33
(4):10, August 2014.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In Proc. ICML, Vol. 32, pp. II–1278–II–1286, 2014.

Connor Schenck and Dieter Fox. Reasoning about liquids via closed-loop simulation. arXiv:1703.01656, 2017.

Russell Stewart and Stefano Ermon. Label-free supervision of neural networks with physics and domain knowl-
edge. In AAAI, pp. 2576–2582, 2017.

10

Published as a conference paper at ICLR 2019

Nils Thuerey. Interpolations of Smoke and Liquid Simulations. ACM Trans. Graph., 36(1):15, July 2017.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian fluid sim-
ulation with convolutional networks. In International Conference on Machine Learning, pp. 3424–3433,
2017.

Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In International
Conference on Machine Learning, pp. 1747–1756, 2016.

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea Tacchetti.
Visual interaction networks: Learning a physics simulator from video. In Advances in Neural Information
Processing Systems, pp. 4542–4550, 2017.

Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenenbaum. Galileo: Perceiving physical
object properties by integrating a physics engine with deep learning. In Advances in neural information
processing systems, pp. 127–135, 2015.

Jiajun Wu, Joseph J Lim, Hongyi Zhang, Joshua B Tenenbaum, and William T Freeman. Physics 101: Learning
physical object properties from unlabeled videos. In BMVC, volume 2:6, pp. 7, 2016.

11

Published as a conference paper at ICLR 2019

Appendix: Generating Liquid Simulations with
Deformation-aware Neural Networks

This supplemental document will first detail the necessary steps to align multiple, weighted defor-
mation fields. Afterwards, we will derive the gradients presented in the paper for the parameter and
deformation networks, and then present additional results.

A DEFORMATION ALIGNMENT

As before, φα denotes the reference signed distance functions (SDFs) of our input parameter space,
while ψ denotes instances of a single input surface, typically deformed by our algorithm. We will
denote the single initial surface without any deformations applied with ψ0. Here, we typically use
the zero point of our parameter space, i.e., ψ0 = φα0

, with α0 = 0. Hence, we aim for deforming
ψ0 such that it matches all instances of φα as closely as possible.

For the pre-computed, end-point deformations, it is our goal to only use a single deformation for
each dimension of the parameter space α. Thus u1 will correspond to α1 and be weighted by β1,
and we can apply β1u1 to compute a deformation for an intermediate point along this dimension.
Given the sequence of pre-computed deformations {u1,u2, . . . ,uN} and a point in parameter space
{β1, . . . , βN} a straight-forward approach is to apply each deformation sequentially

ψ1(x,β) = ψ0(x− β1u1)

ψ2(x,β) = ψ1(x− β2u2)

...
ψN (x,β) = ψN−1(x− βNuN). (6)

However, there are two disadvantages to this approach. The main problem is that the deformations
ui are only meaningful if applied with βi = 1.

Thus, if a previous deformation wasn’t applied fully with a weight of 1, each subsequent deformation
will lead to an accumulation of deformation errors. The second disadvantage of this simple method

Setup

Previous work for β1 = 0.5, β2 = 1

Improved alignment for β1 = 0.5, β2 = 1

u1 u2

β1u1 β2u2

Reference solution
β1 = 0.5, β2 = 1

Aligned result (ours)v V

Solutions

Undesirable shape

Figure 10: Illustration of our deformation alignment procedure.

12

Published as a conference paper at ICLR 2019

is the fact that many advection steps have to be applied in order to arrive at the final deformed
SDF. This also affects performance as each advection step introduces additional computations, and
scattered memory accesses. This is best illustrated with the an example, shown in Fig. 10. In row
1) the first two figures in red show two pre-computed end-point deformations (red arrows). The first
one (u1) moves a drop to the right, while u2 changes its size once it has reached its final position.
Images with deformations show the source in dark blue, and the deformed surface in light blue. In
this example, the two deformations should be combined such that the horizontal position and the
drop size can be independently controlled by changing β1 and β2. E.g., on the top right, a correct
solution for β1 = 0.5, β2 = 1 is shown. Row 2) of Fig. 10 shows how these deformations are
applied in previous work: The second deformation acts on wrong parts of the surface, as the drop
has not reached its left-most position for β1 = 0.5. The undesirable result in this case is a partially
deformed drop, shown again in the middle row on the right.

We present an alternative approach which aligns the deformation fields to the final position of the
deformation sequence. Then, all aligned deformation fields can simply be accumulated by addition,
and applied to the input in a single step. To do this, we introduce the intermediate deformation fields:

u∗N (x) = uN (x),

u∗N−1(x) = uN−1(x− u∗N (x)),

u∗N−2(x) = uN−2(x− u∗N (x)− u∗N−1(x)),

...
u∗1(x) = u1(x− u∗N (x)− u∗N−1(x) . . .− u∗2(x)). (7)

Each u∗i is moved by all subsequent deformations u∗j , j ∈ [i + 1 · · ·N], such that it acts on the
correct target position under the assumption that βi = 1 (we will address the case of βi 6= 1
below). The Eulerian representation we are using means that advection steps look backward to
gather data, which in our context means that we start with the last deformation uN to align previous
deformations. Using the aligned deformation fields u∗ we can include β and assemble the weighted
intermediate fields

vsum(x,β) =
N∑

i=1

βiu
∗
i (x) (8)

and an inversely weighted correction field

vinv(x,β) = −
N∑

i=1

(1− βi)u∗i (x). (9)

The first deformation field vsum represents the weighted sum of all aligned deformations, weighted
with the correct amount of deformation specified by the deformation weights βi. The second defor-
mation vinv intuitively represents the offset of the deformation field vsum from its destination caused
by the β weights. Therefore, we correct the position of vsum by this offset with the help of an
additional forward-advection step calculated as:

vfin(x + vinv(x,β),β) = vsum(x,β), (10)

This gives us the final deformation field vfin(x,β). It is important to note that the deformation vsum
for a position x is assembled at a location x′ that is not known a-priori. It has to be transported to x
with the help of vinv, as illustrated in Fig. 11.
This correction is not a regular advection step, as the deformation is being ’pushed’ from x +
vinv(x,β) to x. In order to solve this advection equation we use an inverse semi-Lagrangian step,
inspired by algorithms such as the one by Lentine et al. Lentine et al. (2011), pushing values forward
with linear interpolation. As multiple values can end up in a single location, we normalize their
contribution. Afterwards, we perform several iterations of a ”fill-in” step to make sure all cells in
the target deformation grid receive a contribution (we simply extend and average deformation values
from all initialized cells into uninitialized regions).

The deformed SDF is then calculated with a regular advection step applying the final, aligned defor-
mation with

ψ(x,β) = ψ0(x− vfin(x,β)). (11)

13

Published as a conference paper at ICLR 2019

(a)

x′

x

vsum(x′)

vinv(x′)

(b)

x′

x
vfinal(x)

Figure 11: This figure illustrates the forward advection process: Both deformation vsum and the
correction vinv are initially located at x′ in (a). vinv is applied to yield the correct deformation at
location x, as shown in (b).

Based on our correction step from Eq. (10) this method now respects the case of partially applied
deformations. As the deformations u∗(x) are already aligned and don’t depend on β, we can pre-
compute them. To retrieve the final result it is now sufficient to sum up all deformations in vsum and
vinv, then apply one forward-advection step to compute vfin, and finally deform the input SDF by
applying semi-Lagrangian advection. While our method is identical with alignment from previous
work Thuerey (2017) for βi = 1, it is important for practical deformations with weights βi 6= 1.

Our method is illustrated in row 3) of Fig. 10. In the bottom left we see the deformation field
vsum from previous work. It is also the starting point of our improved alignment, but never applied
directly. Our method corrects vsum by transforming it into vfin, bottom center, which acts on the
correct spatial locations. In this example, it means that the expanding velocities from u2 are shifted
left to correctly expand the drop based on its initial position. Our method successfully computes the
intended result, as shown in the bottom right image.

This algorithm for aligning deformations will be our starting point for learning the weights β. After
applying the weighted deformations, we adjust the resulting surface we an additional deformation
field generated by a trained model. In the following, we will derive gradients for learning the weight-
ing as well as the refinement deformation.

B LEARNING DEFORMATIONS

As outlined in the main document, we aim for minimizing the L2 loss between the final deformed
surface and the set of reference surfaces φα, i.e.:

L =
1

2

∑

i

(ψ0(D(xi,α))− φα(xi))
2
, (12)

where D(xi,α) denotes the joint application of all weighted and generated deformation fields.

B.1 LEARNING DEFORMATION WEIGHTING

We will first focus on the parameter network to infer the weighting of the pre-computed deformation
fields based on the input parameters α. Thus, the NN has the goal to compute β(α) ∈ RN =
(β1(α), . . . , βN (α)) in order to minimize Eq. (12). The application of the deformations weighted
by β includes our alignment step from Sec. A, and hence the neural networks needs to be aware of
its influence. To train the parameter network, we need to specify gradients of Eq. (12) with respect
to the network weights θi. With the chain rule we obtain d

dθlij
L = dβ

dθlij

dL
dβ . Since the derivative

of the network output βi with respect to a specific network weight θlij is easily calculated with
backpropagation Bishop (2006), it is sufficient for us to specify the second term. The gradient of
Eq. (12) with respect to the deformation parameter βi is given by

d
dβi

L =
∑

j

d
dβi

ψ(xj ,β) [ψ(xj ,β)− φα(xj)] , (13)

14

Published as a conference paper at ICLR 2019

where we have inserted Eq. (11). While the second term in the sum is easily computed, we need to
calculate the first term by differentiating Eq. (11) with respect to βi, which yields

d
dβi

ψ(x,β) = − d
dβi

vfin(x,β) · ∇ψ0(x− vfin(x,β)). (14)

As the gradient of ψ0 is straight forward to compute, d
dβi

vfin(x,β) is crucial in order to compute
a reliable derivative. It is important to note that even for the case of small corrections vinv(x,β),
Eq. (10) cannot be handled as another backward-advection step such as vfin(x,β) = vsum(x −
vinv(x,β),β). While it might be tempting to assume that differentiating this advection equation
will produce reasonable outcomes, it can lead to noticeable errors in the gradient. These in turn
quickly lead to diverging results in the learning process, due to the non-linearity of the problem.

The correct way of deriving the change in vfin(x,β) is by taking the total derivative of vsum(x,β) =
vfin(x + vinv(x,β),β) with respect to βi:

d
dβi

vsum(x,β)

=
∂

∂βi
vfin(x + vinv(x,β),β) + JV (x + vinv(x,β),β)

∂

∂βi
vinv(x,β), (15)

where, JV (x + vinv(x,β),β) denotes the Jacobian of vfin with respect to x, evaluated at x +
vinv(x,β). Rearranging Eq. (15) and inserting vsum and vinv yields

∂

∂βi
vfin(x + vinv(x,β),β) (16)

=
d

dβi
vsum(x,β)− JV (x + vinv(x,β),β)

∂

∂βi
vinv(x,β)

=
d

dβi

N∑

i=1

βiu
∗
i (x) + JV (x + vinv(x,β),β)

∂

∂βi

N∑

i=1

(1− βi)u∗i (x)

= [1− JV (x + vinv(x,β),β)]u∗i (x). (17)

We note that the Jacobian in the equation above has small entries due to the smooth nature of the
deformations vfin. Thus, compared to the unit matrix it is small in magnitude. Note that this rela-
tionship is not yet visible in Eq. (15). We have verified in experiments that JV does not improve the
gradient significantly, and we thus set this Jacobian to zero, arriving at

∂

∂βi
vfin(x + vinv(x,β),β) ≈ u∗i (x), (18)

where the u∗ are the deformation fields aligned for the target configuration from Eq. (7). We use
Eq. (18) to estimate the change in the final deformation fields for changes of the i-th deformation
parameter. We see that this equation has the same structure as Eq. (10). On the left-hand side, we
have ∂

∂βi
vfin, evaluated at x + vinv(x,β), whereas u∗i on the right-hand side is evaluated at x. To

calculate d
dβi

vfin(x,β) then, we can use the same forward-advection algorithm, which is applied to
the correction in Eq. (10). With this, we have all the necessary components to assemble the gradient
from Eq. (13) for training the parameter network with back-propagation.

B.2 LEARNING TO GENERATE DEFORMATIONS

Our efforts so far have been centered around producing a good approximation of φα, with a set
of given end-point deformations {u0, . . . ,un}. The performance of this method is therefore in-
herently constrained by the amount of variation we can produce with the deformation inputs. To
allow for more variation, we propose to generate an additional space-time deformation field w(α),
that changes with the simulation parameters α. Once again, we model this function with a neural
network, effectively giving the network more expressive capabilities to directly influence the final
deformed surface.

For this network we choose a structure with a set of four-dimensional deconvolution layers that
generate a dense space-time deformation field. We apply the trained deformation with an additional

15

Published as a conference paper at ICLR 2019

4

16

32

2592

34

24

16

44

54 104

reshape

8 8

↵ � ↵
inin out

out

Parameter network: Deformation network:

w

Figure 12: Overview of our two neural networks. While the parameter network (left) is simple,
consisting of two fully connected layers, its cost functions allows it to learn how to apply multiple
long-range, non-linear deformation fields. The deformation network (right), which makes use of
several de-convolutional layers, instead learns to generate dense deformation fields to refine the
final surface.

advection step after applying the deformations weighted by the parameter network:

ψ̃(x) = ψ0 (x− vfin(x,β(α))) , (19)

ψ(x) = ψ̃ (x−w(x,α)) . (20)

Thus, the deformation network only has to learn to refine the surface ψ̃ after applying the weighted
deformations, in order to accommodate the nonlinear behavior of φα.

As input, we supply the deformation network with the simulation parameters α = (αi, . . . , αN) as a
vector. The output of the network are four-component vectors, with the resolutionRx×Ry×Rz×Rt.
Note that in general the SDF resolution and the deformation resolution do not need to be identical.
Given a fixed SDF resolution, we can use a smaller resolution for the deformation, which reduces the
number of weights and computations required for training. Thus in practice, each four-dimensional
vector of the deformation acts on a region of the SDF, for which we assume the deformation to be
constant. Therefore, we write the deformation field as

w(x,α) =
∑

j

ξj(x) wj(α), (21)

where ξj(x) is the indicator function of the j-th region on which the four-dimensional deformation
vector wj(α) acts. This vector is the j-th output of the deformation network.

For training, we need to calculate the gradient of the loss-function Eq. (12) with respect to the
network weights. Just like in the previous section, it is sufficient to specify the gradient with respect
to the network outputs wi(α). Deriving Eq. (12) yields

d
dwi

L

=
∑

j

d
dwi

ψ(x) (ψ(x)− φα(x))

=
∑

j

d
dwi

ψ̃ (x−w(x,α)) (ψ(x)− φα(x))

=−
∑

j

Xi(xj)∇ψ̃(xj −w(xj ,α)) (ψ(xj ,α)− φα(xj)) . (22)

Thus, we can calculate the derivative by summation over the region that is affected by the network
output wi. The gradient term is first calculated by evaluating a finite difference stencil on ψ̃(xj) and
then advecting it with the corresponding deformation vector w(xj ,α). The other terms in Eq. (22)
are readily available. Alg. 1 summarizes our algorithm for training the deformation network. In
particular, it is important to deform the input SDF gradients with the inferred deformation field, in
order to calculate the loss gradients in the correct spatial location for backpropagation.

16

Published as a conference paper at ICLR 2019

ALGORITHM 1: Training the deformation network
Data: training samples from φα

Result: trained deformation network weights Θ

for each training sample {α̃, φ̃} do
evaluate neural network to compute β(α̃)

load reference SDF φ̃, initial SDF ψ0

calculate vfin(xi, β(α̃))

ψ̃ = advect ψ0 with vfin

calculate ∇ψ̃
evaluate neural network to compute wi(α̃)
assemble w(xi) from wi(α̃,Θ) according to Eq. (21)
advect ψ̃ with w
advect ∇ψ̃ with w
for each wi do

calculate the gradient d
dwi

L according to Eq. (22)
end
backpropagate d

dwi
Lt from Eq. (5) to adjust Θ

end

Initial Conditions

Pa
ra

m
et

er
 D

im
en

si
on

 1
: D

ro
p

Po
si

tio
n

X

Parameter Dimension 2: Drop Size

Input Data at t=30

Figure 13: The left image illustrates the initial conditions of our two dimensional parameter space
setup. It consists of a set of two-dimensional liquid simulations, which vary the position of the liquid
drop along x as α1, and its size as α2. The right half shows the data used for training at t = 30.
Note the significant amount of variance in positions of small scale features such as the thin sheets.
Both images show only a subset of the whole data.

C ADDITIONAL EVALUATION

C.1 2D DATA SET

In the following, we explain additional details of the evaluation examples. For the two dimensional
data set, we use the SDFs extracted from 2D simulations of a drop falling into a basin. As simulation
parameters we choose α1 to be the size of the drop, and α2 to be its initial x-position, as shown in
Fig. 13. From this simulation we extract a single frame at t = 30, which gives us a two-dimensional
parameter-space α = (α1, α2), where each instance of α has a corresponding two-dimensional
SDF. In order to train the networks described in section 3, we sample the parameter domain with a
regular 44 × 49 grid, which gives us 2156 training samples, of which we used 100 as a validation
set.

Fig. 14 shows the validation loss and the training loss over the iterations both for parameter learning
and for deformation learning. We observe that in both cases the learning process reduces the loss,
and finally converges to a stable solution. This value is lower in the case of deformation training,
which can be easily explained with the increased expressive capabilities of the deformation network.

17

Published as a conference paper at ICLR 2019

0 10000 20000 30000 40000
Training Iterations

0

1

2

3

4

5
Lo

ss
validation loss
training loss

(a) Parameter Learning

0 10000 20000 30000 40000
Training Iterations

0

1

2

3

4

5

Lo
ss

validation loss
training loss

(b) Deformation learning

Figure 14: Loss during training both for parameter learning and deformation learning. In yellow we
show the loss for the current sample, while the dark line displays the loss evaluated on the validation
set.

0 10000 20000 30000
Training Iterations

0

1

2

3

4

5

Lo
ss naive gradient

corrected gradient

Figure 15: Training with different gradient approximations: validation loss with a simplified advec-
tion (red), and the correct gradient from forward advection (green). The simplified version does not
converge.

We verified that the solution converged by continuing training for another 36000 steps, during which
the change of the solution was negligible.

As mentioned above, it might seem attractive to use a simpler approximation for the forward advec-
tion in Eq. (13), i.e., using a simpler, regular advection step. However, due to the strong non-linearity
of our setting, this prevents the network from converging, as shown in Fig. 15.

The effect of our deformation network approach is illustrated in Fig. 5. This figure compares our full
method (on the right) with several other algorithms. A different, but popular approach for non-linear
dimensionality reduction, which can be considered as an alternative to our method, is to construct a
reduced basis with PCA. Using the mean surface with four eigenvectors yields a similar reduction
to our method in terms of memory footprint. We additionally re-project the different reference
surfaces into the reduced basis to improve the reconstruction quality of the PCA version. However,
despite this the result is a very smooth surface that fails to capture any details of the behavior of the
parameter space, as can be seen in the left column of Fig. 5.

The next column of this figure (in pink) shows the surfaces obtained with the learned deformation
weights with our parameter network (Fig. 12 top), but without an additional deformation network.
As this case is based on end-point deformations, it cannot adapt to larger changes of surface structure
in the middle of the domain. In contrast, using our full pipeline with the deformation network yields
surfaces that adapt to the varying behavior in the interior of the parameter space, as shown on the
right side of Fig. 5. However, it is also apparent that the deformations generated by our approach
do not capture every detail of the references. The solution we retrieve is regularized by the varying
reference surfaces in small neighborhoods of α, and the networks learns an averaged behavior from
the inputs.

18

Published as a conference paper at ICLR 2019

NN, End-point defo. only With NN deformationReference only

debug note: frames 7, 19, 31

PCA reconstructionPrevious work [Thuerey’16]

Figure 16: Different example surfaces from the 2D parameter space of Fig. 13. From left to right:
surfaces reconstructed with PCA (purple), weighted deformations using a trained parameter network
(pink), the reference surfaces (brown), and on the far right the output of our full method with a
deformation network (teal). Note that none of the other methods is able to reconstruct both arms of
liquid in the first row, as well as the left sheet in the bottom row. The reference surfaces are shown
in light brown in the background for each version.

C.2 4D DATA SETS

Below we give additional details for our results for the 4D data sets and experiments presented in
the main document.

Liquid Drop As our first 4D test case, we chose a drop of liquid falling into a basin. As our
simulation parameters we chose the x- and y-coordinates of the initial drop position, as well as
the size of the drop. We typically assume that the z-axis points upwards. To generate the training
data, we sample the parameter space on a regular grid, and run simulations, each with a spatial
resolution of 1003 to generate a total of 1764 reference SDFs. Here, ψ0 contains a 4D SDF of a
large drop falling into the upper right corner of the basin. In Fig. 17 we show additional examples
how the introduction of the deformation network helps to represent the target surface across the full
parameter range.

The advantages of our approach also become apparent when comparing our method with a direct
interpolation of SDF data-sets, i.e., without any deformation. Our algorithms requires a single full-
resolution SDF, three half resolution deformations, and the neural network weights (ca. 53.5k).
While a single 404 SDF requires ca. 2.5m scalar values, all deformations and network weights
require ca. 2m scalars in total. Thus our representation encodes the full behavior with less storage
than two full SDFs. To illustrate this point, we show the result of a direct SDF interpolation in
Fig. 18. Here we sample the parameter space with 8 SDFs in total (at all corners of the 3D parameter
space). Hence, this version requires more than 4x the storage our approach requires. Despite the
additional memory, the direct interpolations of SDFs lead to very obvious, and undesirable artifacts.
The results shown on the right side of Fig. 18 neither represent the initial drop in (a), nor the resulting
splash in (b). Rather, the SDF interpolation leads to strong ghosting artifacts, and an overall loss of
detail. Instead of the single drop and splash that our method produces, it leads to four smoothed,
and repeated copies. Both the PCA example above, and this direct SDF interpolation illustrate the
usefulness of representing the target surface in terms of a learned deformation.

For the falling drop setup, our video also contains an additional example with a larger number of
14 pre-computed deformations. This illustrates the gains in quality that can be achieved via a larger
number of deformation fields. However, in this case the parameter and deformation network only
lead to negligible changes in the solution due to the closely matching surface from the pre-computed
deformations.

Stairs Our second test setup illustrates a different parameter space that captures a variety of obsta-
cle boundary conditions parametrized with α. Our first two simulation parameters are the heights of

19

Published as a conference paper at ICLR 2019

Figure 17: Additional examples of the influence of the deformation network for three different time
steps (t = 1, 4, 8 from top to bottom). Each pair shows the reference surface in transparent brown,
and in purple on the left the deformed surface after applying the precomputed deformations. These
surfaces often significantly deviate from the brown target, i.e. the visible purple regions indicates
misalignments. In cyan on the right, our final surfaces based on the inferred deformation field. These
deformed surface often match the target surface much more closely.

Our approach Direct SDF Interpolation

a) b) a) b)

Figure 18: Two frames generated with our approach (left) and with a direct SDF interpolation using
a similar amount of overall memory (right). The latter looses the inital drop shape (a), and removes
all splash detail (b). In addition, the direct SDF interpolation leads to strong ghosting artifacts with
four repeated patterns.

two stair-like steps, while the third parameter is controlling the position of a middle divider obstacle,
as illustrated in Fig. 19. The liquid flows in a U-shaped manner around the divider, down the steps.
For this setup, we use a higher overall resolution for both space-time SDFs, as well as for the output
of the deformation network. Performance details can be found in Table 1.

Fig. 20 depicts still frames captured from our mobile application for this setup. With this setup
the user can adjust stair heights and wall width dynamically, while deformations are computed in
the background. While this setup has more temporal coherence in its motion than the drop setup,
the changing obstacle boundary conditions lead to strongly differing streams over the steps of the
obstacle geometry. E.g., changing the position of the divider changes the flow from a narrow, fast
stream to a slow, broad front.

Table 1: Performance and setup details of our 4D data sets in the Android app measured on a
Samsung S8 device. The ”defo. align” step contains alignment and rescaling of the deformations.

SDF res. Defo. res. NN eval. Defo. align Rendering

Drop 404 204 69ms 21.5ms 21ms
Staris 504 254 410ms 70ms 35ms

20

Published as a conference paper at ICLR 2019

Table 2: Overview of our 2D and 4D simulation and machine learning setups. Timings were mea-
sured on a Xeon E5-1630 with 3.7GHz. Res, SDF and Defo denote resolutions for simulation, train-
ing, and the NN deformation, respectively; Sim and Train denote simulation and training runtimes.
sp, sd, γ1, γ2 denote training steps for parameters, training steps for deformation, and regularization
parameters, respectively.

Setup Res. SDF Defo. Sim. Train sp sd

2D setup, Fig. 13 1002 1002 252 - 186s 40k 10k
Drop, Fig. 8 1003 · 100 404 104 8.8m 22m 12k 2k
Stairs, Fig. 20 1103 · 110 504 154 9.7m 186m 9k 1k

Parameter 1 - raise corner Parameter 2 - lower platform Parameter 3 - wall width

Figure 19: The geometric setup of the three deformations of our stairs setup from 20 are illustrated
in this figure.

Figure 20: These screens illustrate our stairs setup running in our mobile application. From left to
right, the middle divider is pulled back, leading to an increased flow over the step in the back. In the
right-most image, the left corner starts to move up, leading to a new stream of liquid pouring down
into the outflow region in the right corner of the simulation domain.

21

Published as a conference paper at ICLR 2020

TRANQUIL CLOUDS: NEURAL NETWORKS FOR
LEARNING TEMPORALLY COHERENT FEATURES IN
POINT CLOUDS

Lukas Prantl
Department of Computer Science
Technical University of Munich
Munich, Germany

Nuttapong Chentanez
NVIDIA
Bangkok, Thailand

Stefan Jeschke
NVIDIA
Vienna, Austria

Nils Thuerey
Department of Computer Science
Technical University of Munich
Munich, Germany

ABSTRACT

Point clouds, as a form of Lagrangian representation, allow for powerful and
flexible applications in a large number of computational disciplines. We propose a
novel deep-learning method to learn stable and temporally coherent feature spaces
for points clouds that change over time. We identify a set of inherent problems
with these approaches: without knowledge of the time dimension, the inferred
solutions can exhibit strong flickering, and easy solutions to suppress this flickering
can result in undesirable local minima that manifest themselves as halo structures.
We propose a novel temporal loss function that takes into account higher time
derivatives of the point positions, and encourages mingling, i.e., to prevent the
aforementioned halos. We combine these techniques in a super-resolution method
with a truncation approach to flexibly adapt the size of the generated positions. We
show that our method works for large, deforming point sets from different sources
to demonstrate the flexibility of our approach.

1 INTRODUCTION

Deep learning methods have proven themselves as powerful computational tools in many disciplines,
and within it a topic of strongly growing interest is deep learning for point-based data sets. These
Lagrangian representations are challenging for learning methods due to their unordered nature, but
are highly useful in a variety of settings from geometry processing and 3D scanning to physical
simulations, and since the seminal work of Qi Charles et al. (2017), a range of powerful inference
tasks can be achieved based on point sets. Despite their success, interestingly, no works so far have
taken into account time. Our world, and the objects within it, naturally move and change over time,
and as such it is crucial for flexible point-based inference to take the time dimension into account. In
this context, we propose a method to learn temporally stable representations for point-based data sets,
and demonstrate its usefulness in the context of super-resolution.

An inherent difficulty of point-based data is their lack of ordering, which makes operations such as
convolutions, which are easy to perform for Eulerian data, unexpectedly difficult. Several powerful
approaches for point-based convolutions have been proposed (Qi et al., 2017; Hermosilla et al.,
2018; Hua et al., 2018), and we leverage similar neural network architectures in conjunction with
the permutation-invariant Earth Mover’s Distance (EMD) to propose a first formulation of a loss for
temporal coherence.

1

Published as a conference paper at ICLR 2020

In addition, several works have recognized the importance of training point networks for localized
patches, in order to avoid having the network to rely on a full view of the whole data-set for tasks that
are inherently local, such as normal estimation (Qi Charles et al., 2017), and super-resolution (Yu
et al., 2018a). This also makes it possible to flexibly process inputs of any size without being
limited by memory requirements. Later on we will demonstrate the importance of such a patch-based
approach with sets of changing cardinality in our setting. A general challenge here is to deal with
varying input sizes, and for super-resolution tasks, also varying output sizes. Thus, in summary we
target an extremely challenging learning problem: we are facing permutation-invariant inputs and
targets of varying size, that dynamically move and deform over time. In order to enable deep learning
approaches in this context, we make the following key contributions: Permutation invariant loss terms
for temporally coherent point set generation; A Siamese training setup and generator architecture for
point-based super-resolution with neural networks; Enabling improved output variance by allowing
for dynamic adjustments of the output size; The identification of a specialized form of mode collapse
for temporal point networks, together with a loss term to remove them. We demonstrate that these
contributions together make it possible to infer stable solutions for dynamically moving point clouds
with millions of points.

a) b)

Figure 1: Our algorithm upsamples an input point cloud (a) in
a temporally coherent manner. Three exemplary outputs are
shown in yellow in (b).

More formally, we show that our learn-
ing approach can be used for generating
a point set with an increased resolution
from a given set of input points. The gen-
erated points should provide an improved
discretization of the underlying ground
truth shape represented by the initial set
of points. For the increase, we will target a
factor of two to three per spatial dimension.
Thus, the network has the task to estimate
the underlying shape, and to generate suit-
able sampling positions as output. This is generally difficult due to the lack of connectivity and
ordering, and in our case, positions that move over time in combination with a changing number of
input points. Hence it is crucial that the network is able to establish a temporally stable latent space
representation. Although we assume that we know correspondences over time, i.e., we know which
point at time t moved to a new location at time t+ ∆t, the points can arbitrarily change their relative
position and density over the course of their movement, leading to a substantially more difficult
inference problem than for the static case.

2 RELATED WORK

Deep learning with static point sets was first targeted in PointNet (Qi Charles et al., 2017) via
order-invariant networks, while PointNet++ (Qi et al., 2017) extended this concept to generate
features for localized groups similar to a convolution operation for grid-based data. This concept
can be hierarchically applied to the generated groups, in order to extract increasingly abstract and
global features. Afterwards, the extracted features can be interpolated back to the original point
cloud. The goal to define point convolutions has been explored and extended in several works. The
MCNN approach (Hermosilla et al., 2018) phrased convolution in terms of a Monte Carlo integration.
PointCNN (Hua et al., 2018) defined a pointwise convolution operator using nearest neighbors,
while extension-restriction operators for mapping between a point cloud function and a volumetric
function were used in Atzmon et al. (2018). The PU-Net (Yu et al., 2018a) proposed a network for
upsampling point clouds, and proposed a similar hierarchical network structure of PointNets along
the lines of PointNet++ to define convolutions. Being closer to our goals, we employ this approach
for convolutional operations in our networks below. We do not employ the edge-aware variant of the
PU-Net (Yu et al., 2018b) here, to keep it as simple and general as possible as we focus on temporal
changes in our work.

Permutation invariance is a central topic for point data, and was likewise targeted in other works
(Ravanbakhsh et al., 2016; Zaheer et al., 2017). The Deep Kd-network (Klokov and Lempitsky,
2017) defined a hierarchical convolution on point clouds via kd-trees. PointProNets (Roveri et al.,
2018) employed deep learning to generate dense sets of points from sparse and noisy input points
for 3D reconstruction applications. PCPNet (Guerrero et al., 2018), as another multi-scale variant of

2

Published as a conference paper at ICLR 2020

PointNet, has demonstrated high accuracy for estimating local shape properties such as normal or
curvature. P2PNet (Yin et al., 2018) used a bidirectional network and extends PointNet++ to learn a
transformation between two point clouds with the same cardinality.

Recently, the area of point-based learning has seen a huge rise in interest. One focus here are 3D
segmentation problems, where numerous improvements were proposed, e.g., by SPLATNet (Su et al.,
2018), SGPN (Wang et al., 2018a), SpiderCNN (Xu et al., 2018), PointConv (Wu et al., 2018), SO-
NEt(Li et al., 2018a) and 3DRNN (Ye et al., 2018). Other networks such as Flex Convolution (Groh
et al., 2018), the SuperPoint Graph (Landrieu and Simonovsky, 2018), and the fully convolutional
network (Rethage et al., 2018) focused on large scale segmentation. Additional areas of interest
are shape classification (Wang et al., 2018b; Lei et al., 2018; Zhang and Rabbat, 2018; Skouson,
2018) and object detection (Simon et al., 2018; Zhou and Tuzel, 2018), and hand pose tracking (Ge
et al., 2018). Other works have targeted rotation and translation invariant inference (Thomas et al.,
2018), and point cloud autoencoders (Yang et al., 2018; Deng et al., 2018). A few works have also
targeted generative models based on points, e.g., for point cloud generation (Sun et al., 2018), and
with adversarial approaches (Li et al., 2018b). It is worth noting here that despite the huge interest,
the works above do not take into account temporally changing data, which is the focus of our work.
A notable exception is an approach for scene flow (Liu et al., 2018), in order to estimate 3D motion
directly on the basis of point clouds. This work is largely orthogonal to ours, as it does not target
generative point-based models.

3 METHODOLOGY

We assume an input point cloud X = {x1, x2, ..., xk} of size k ∈ [1, kmax]. It consists of points
xi ∈ Rd, where d includes 3 spatial coordinates and optionally additional features. Our goal is to let
the network fs(X) infer a function Ỹ which approximates a desired super-resolution output point
cloud Y = {y1, y2, ..., yn} of size n ∈ [1, nmax] with yi ∈ R3, i.e. fs(X) = Ỹ ≈ Y . For now we
assume that the number of output points n is defined by multiplying k with a user-defined upsampling
factor r, i.e. n = rk. Figure 2a) illustrates the data flow in our super-resolution network schematically.
We treat the upsampling problem as a local one, i.e., we assume that the inference problem can be
solved based on a spatially constrained neighborhood. This allows us to work with individual patches
extracted from input point clouds. At the same time, it makes it possible to upsample adaptively, for
example, by limiting the inference to relevant areas, such as complex surface structures. For the patch
extraction we use a fixed spatial radius and normalize point coordinates within each patch to lie in
the range of [−1, 1].

Our first building block is a measure for how well two point clouds represent the same object or scene
by formulating an adequate spatial loss function. Following Achlioptas et al. (2017), we base our
spatial loss LS on the Earth Mover’s Distance (EMD), which solves an assignment problem to obtain
a differentiable bijective mapping φ : ỹ → y. With φ we can minimize differences in position for
arbitrary orderings of the points clouds via:

LS = min
φ:ỹ→y

∑

ỹi∈Ỹ
‖ỹi − φ(ỹi)‖22 (1)

3.1 TEMPORAL COHERENCE

L

+ v ·∆t

fs(x)

X t-1
X
t X t+1

- v ·∆t

X Y

X

Y

k

n ~

NN LS

trunc

pad pad

Y
~

n ~

r k

b)a)

fs(x) fs(x)

Figure 2: a) Schematic overview of fs(X). Black ar-
rows represent scalar data. Point data is depicted as
colored arrows with the color indicating data cardinality
(brown=k, red = kmax, green = nmax, blue = n, and
purple = ñ). b) Siamese network setup for temporal loss
calculation.

When not taking temporal coherence explicitly
into account, the highly nonlinear and ill-posed
nature of the super-resolution problem can cause
strong variations in the output even for very sub-
tle changes in the input. This results in sig-
nificant temporal artifacts that manifest them-
selves as flickering. In order to stabilize the
output while at the same time keeping the net-
work structure as small and simple as possible,
we propose the following training setup. Given
a sequence of high resolution point clouds Y t,
with t indicating time, we can compute a veloc-
ity V t = {vt1, vt2, ..., vtk}, where vti ∈ R3. For

3

Published as a conference paper at ICLR 2020

this we use a finite difference (yt+1
i − yti), where we assume, without loss of generality, ∆t = 1, i.e.

the time step is normalized to one. For training, the low resolution inputs X can now be generated
from Y via down-sampling by a factor of r, which yields a subset of points with velocities. Details of
our data generation process will be given below.

To train a temporally coherent network with the Y t sequences, we employ a Siamese setup shown in
Figure 2b. We evaluate the network several times (3 times in practice) with the same set of weights,
and moving inputs, in order to enforce the output to behave consistently. In this way we avoid
recurrent architectures that would have to process the high resolution outputs multiple times. In
addition, we can compute temporal derivatives from the input points, and use them to control the
behavior of the generated output.

Under the assumption of slowly moving inputs, which theoretically could be ensured for training,
a straightforward way to enforce temporal coherence would be to minimize the movement of the
generated positions over consecutive time steps in terms of an L2 norm:

L2V =
n∑

i=1

‖ỹt+1
i − ỹti‖22. (2)

While this reduces flickering, it does not constrain the change of velocities, i.e., the acceleration. This
results in a high frequency jittering of the generated point positions. The jitter can be reduced by also
including the previous state at time step t− 1 to constrain the acceleration in terms of its L2 norm:

L2A =
n∑

i=1

‖ỹt+1
i − 2ỹti + ỹt−1i ‖22 (3)

However, a central problem of a direct temporal constraint via Equations (2) and (3) is that it
consistently leads to a highly undesirable clustering of generated points around the center point.
This is caused by the fact that the training procedure as described so far is unbalanced, as it only
encourages minimizing changes. The network cannot learn to reconstruct realistic, larger motions
in this way, but rather can trivially minimize the loss by contracting all outputs to a single point.
For this reason, we instead use the estimated velocity of the ground truth point cloud sequence with
a forward difference in time, to provide the network with a reference. By using the EMD-based
mapping φ established for the spatial loss in Equation (1), we can formulate the temporal constraint
in a permutation invariant manner as

LEV =
n∑

i=1

‖
(
ỹt+1
i − ỹti)− (φ(ỹt+1

i)− φ(ỹti)
)
‖22. (4)

Intuitively, this means the generated outputs should mimic the motion of the closest ground truth
points. As detailed for the L2-based approaches above, it makes sense to also take the ground truth
acceleration into account to minimize rapid changes of velocity over time. We can likewise formulate
this in a permutation invariant way w.r.t. ground truth points via:

LEA =
n∑

i=1

‖
(
ỹt+1
i − 2ỹti + ỹt−1i)− (φ(ỹt+1

i)− 2φ(ỹti) + φ(ỹt−1i)
)
‖22. (5)

We found that a combination of LEV and LEA together with the spatial loss LS from Eq. 1 provides
the best results, as we will demonstrate below. First, we will introduce the additional loss terms of
our algorithm.

3.2 VARIABLE POINT CLOUD SIZES

Existing network architectures are typically designed for processing a fixed amount of input and
output points. However, in many cases, and especially for a localized inference of super-resolution,
the number of input and output points varies significantly. While we can safely assume that no
patch exceeds the maximal number of inputs kmax (this can be ensured by working on a subset),
it can easily happen that a certain spatial region has fewer points. Simply including more distant
points could guarantee that we have a full set of samples, but this would mean the network has
to be invariant to scaling, and to produce features at different spatial scales. Instead, we train our

4

Published as a conference paper at ICLR 2020

file:///Users/thuerey/LRZ Sync+Share/NeuralParticles/2019_01...

1 of 1 18/01/2019, 18.40

Sheet2

Page 1

3 51 99 14
7

19
5

24
3

29
1

33
9

38
7

43
5

48
3

53
1

57
9

62
7

67
5

72
3

77
1

81
9

86
7

91
5

96
3

10
11

10
59

11
07

0

50

100

150

200

250

Ref Particle Cnt Frequency

1 31 61 917 13 19 25 37 43 49 55 67 73 79 85 97 10
3

10
9

11
5

12
1

12
7

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Src Particle Cnt Frequency

Sheet2

Page 1

9 63 11
7

17
1

22
5

27
9

33
3

38
7

44
1

49
5

54
9

60
3

65
7

71
1

76
5

81
9

87
3

92
7

98
1

10
35

10
89

11
43

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ref Particle Cnt Frequency

1 31 61 917 13 19 25 37 43 49 55 67 73 79 85 97 10
3

10
9

11
5

12
1

12
7

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Src Particle Cnt Frequency

Sheet2

Page 1

3 51 99 14
7

19
5

24
3

29
1

33
9

38
7

43
5

48
3

53
1

57
9

62
7

67
5

72
3

77
1

81
9

86
7

91
5

96
3

10
11

10
59

11
07

0

50

100

150

200

250

Ref Particle Cnt Frequency

1 31 61 917 13 19 25 37 43 49 55 67 73 79 85 97 10
3

10
9

11
5

12
1

12
7

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Src Particle Cnt Frequency

a) c)b) d)

Input count Ground truth target count Network output countInput count

G
ro

un
d

tru
th

 ta
rg

et
 c

ou
nt

Figure 3: An illustration of the relationship between input and output size. (a,b,d) show histograms of point set
sizes for: (a,b) the input set; (c) the ground truth target sets; and (d) the network output, i.e. r times larger than
the input. The latter deviates from the ground truth in (c), but follows its overall structure. This is confirmed in
(b), which shows a heat map visualization of input vs. ground truth output size. The diagonal structure of the
peak confirms the approximately linear relationship. file:///Users/thuerey/LRZ Sync+Share/NeuralParticles/2019_01...

1 of 1 22/01/2019, 11.28

file:///Users/thuerey/LRZ Sync+Share/NeuralParticles/2019_01...

1 of 1 22/01/2019, 11.28

file:///Users/thuerey/LRZ Sync+Share/NeuralParticles/2019_01...

1 of 1 22/01/2019, 11.30

file:///Users/thuerey/LRZ Sync+Share/NeuralParticles/2019_01...

1 of 1 22/01/2019, 11.30

a) Fixed output size b) Variable output size

Figure 4: The effect of our variable output handling for exemplary patches. In red the ground truth target, in blue
the inferred solution. Left (a) with fixed output size, and on the right (b) with the proposed support for variable
output sizes. The latter approximates the shape of the red ground truth points significantly better. (a) leads to
rather uniform shapes that, e.g., cover empty space above the ground truth in both examples.

network for a fixed spatial size, and ensure that it can process varying numbers of inputs. For inputs
with fewer than kmax points, we pad the input vector to have a fixed size. Here, we ensure that
the padding values are not misinterpreted by the network as being point data. Therefore, we pad
X with p ∈ {−2}d, which represents a value outside the regular patch coordinate range [−1, 1]:
X̄ = {x1, x2, ..., xk, p, p, ..., p︸ ︷︷ ︸

kmax−k

}. The first convolutional layer in our network now filters out the

padded entries using the following mask: Min = {mi∈[0,k]} = {1, 1, ..., 1︸ ︷︷ ︸
k

, 0, 0, .., 0︸ ︷︷ ︸
kmax−k

}. The entries

of p allow us to compute the mask on the fly throughout the whole network, without having to pass
through k. For an input of size k, our network has the task to generate ñ = rk points. As the size of
the network output is constant with rkmax, the outputs are likewise masked with Mout to truncate
it to length ñ for all loss calculations, e.g., the EMD mappings. Thus, as shown in Figure 2a, ñ is
used to truncate the point cloud Ȳ = {ȳ1, ȳ2, ..., ȳnmax

} via a mask Mout to form the final output
Ỹ = {ȳi|i ∈ [1, ñ]}.
Note that in Sec. 3.1, we have for simplicity assumed that n = rk, however, in practice the number
of ground truth points n varies. As such, ñ only provides an approximation of the true number of
target points in the ground truth data. While the approximation is accurate for planar surfaces and
volumes, it is less accurate in the presence of detailed surface structures that are smaller than the
spatial frequency of the low-resolution data.

We have analyzed the effect of this approximation in Fig. 3. The histograms show that the strongly
varying output counts are an important factor in practice, and Fig. 4 additionally shows the improve-
ment in terms of target shape that results from incorporating variable output sizes. In general, ñ
provides a good approximation for our data sets. However, as there is a chance to infer an improved
estimate of the correct output size based on the input points, we have experimented with training a
second network to predict ñ in conjunction with a differentiable output masking. While this could be
an interesting feature for future applications, we have not found it to significantly improve results. As
such, the evaluations and results below will use the analytic calculation, i.e., ñ = rk.

3.3 PREVENTING HALO ARTIFACTS

For each input point the network generates r output points, which can be seen as individual groups
g: ψ(g) = {Ỹi|i ∈ [rg + 1, (r + 1)g]}. These groups of size r in the output are strongly related to
the input points they originate from. Networks that focus on maintaining temporal coherence for the
dynamically changing output tend to slide into local minima where r output points are attached as a

5

Published as a conference paper at ICLR 2020

a) b) c) d)
[previous work] L2 Loss Velocity Only Velocity + Acceleration

Figure 5: Ablation study for our temporal loss formulation. Black points indicate targets, while green points
are generated (both shown as time average). a) Result from previous work; b) With L2V loss; c) the proposed
velocity loss LEV ; d) our full loss formulation with LEV + LEA. While (a) has difficulties approximating the
target shape and the flickering output is visible as blurred positions, the additional loss terms (esp. in (c) and (d))
provide stable results that closely approximate the targets. Note that (b) leads to an undesirably static motion
near the bottom of the patch. As the input points here are moving the output should mimic this motion, like (c,d).

fixed structure to the input point location. This manifests itself as visible static halo-like structures
that move along with the input. Although temporal coherence is good in this case, these cluster-like
structures lead to gaps and suboptimal point distributions in the output, particularly over time. These
structures can be seen as a form of temporal mode collapse that can be observed in other areas of
deep learning, such as GANs. To counteract this effect, we introduce an additional mingling loss term
to prevent the formation of clusters by pushing the individual points of a group apart:

LM =
1

d ñr e

d ñr e∑

i

|ψ(i)|
∑

ỹg∈ψ(i)
‖
∑
ψ(i)
|ψ(i)| − ỹg‖2

(6)

Figure 6: Left, a result without the mingling loss from Eq. 6,
right with (a single point group highlighted in orange). The
former has many repeated copies of a single pattern, which
the mingling loss manages to distribute as can be seen in the
right picture.

Note that in contrast to previously used re-
pulsion losses (Yu et al., 2018a), LM en-
courages points to globally mix rather than
just locally repelling each other. While a
repulsion term can lead to a deterioration
of the generated outputs, our formulation
preserves spatial structure and temporal co-
herence while leading to well distributed
points, as is illustrated in Fig. 6.

In combination with the spatial and temporal terms from above, this leads to our final loss function
Lfinal = LS + γLEV + µLEA + νLM , with weighting terms γ, µ, ν.

4 EVALUATION AND RESULTS

We train our network in a fully supervised manner with simulated data. To illustrate the effect of
our temporal loss functions, we employ it in conjunction with established network architectures
from previous work (Qi Charles et al., 2017; Yu et al., 2018a). Details of the data generation and
network architectures are given in the appendix. We first discuss our data generation and training
setup, then illustrate the effects of the different terms of our loss function, before showing results for
more complex 3D data sets. As our results focus on temporal coherence, which is best seen in motion,
we refer readers to the supplemental materials at https://ge.in.tum.de/publications/
2020-iclr-prantl/ in order to fully evaluate the resulting quality.

Ablation Study We evaluate the effectiveness of our loss formulation with a two dimensional
ablation study. An exemplary patch of this study is shown in Fig. 5. In order to compare our method
to previous work, we have trained a previously proposed method for point-cloud super-resolution, the
PU-Net (Yu et al., 2018a) which internally uses a PointNet++ (Qi et al., 2017), with our data set, the
only difference being that we use zero-padding here. This architecture will be used in the following
comparisons with previous work. Fig. 5a) shows a result generated with this network. As this figure
contains an average of multiple frames to indicate temporal stability, the blurred regions, esp. visible
on the right side of Fig. 5a), indicate erroneous motions in the output. For this network the difficulties
of temporally changing data and varying output sizes additionally lead to a suboptimal approximation

6

Published as a conference paper at ICLR 2020

LS LN LM L2V L2A LEV LEA

2D Previous work 0.0784 0.329 5.499 0.1 0.402 0.107 0.214
2D With L2V 0.044 0.00114 2.197 1.1e-05 4.2e-05 0.00197 0.00276
2D Only LEV 0.0453 0.00114 2.713 2.6e-05 6.0e-06 6.15e-04 5.27e-04
2D Full 0.0487 0.00116 3.0307 2.1e-05 1.0e-06 6.52e-04 1.46e-04
3D Previous work 0.0948 0.494 10.558 0.325 1.299 0.19 0.365
3D Full 0.0346 0.00406 3.848 8.04e-04 2.0e-06 0.00179 7.09e-04

Table 1: Quantitative results for the different terms of our loss functions, first for our 2D ablation study and then
for our 3D versions. The first three columns contain spatial, the next four temporal metrics. LN = ‖ñ− n‖22 is
given as a measure of accuracy in terms of the size of the generated outputs (it is not part of the training).

a)

la
te

nt
sp

ac
e

time →

b)
am

pl
itu

de

frequency

c)

am
pl

itu
de

frequency

Figure 7: Illustrations of the latent spaces learned by our networks. (a) shows averaged latent space values for
100 random patch sequences of our 2D data set. The green curve shows our method with temporal coherence
loss, while the pink curve was generated without it. The same data is shown in frequency space in (b), where the
red curve represents the frequency of the data with temporal loss, and the blue curve the frequency of the data
without. This graph highlights the reduced amount of high frequency changes in the latent space with temporal
loss, esp. in frequency space, where the red curve almost entirely lies below the blue one. (c) contains frequency
information for the latent space content of the same 100 patch sequences, but in a random order. In this case,
the blue and red curve both contain significant amounts of high-frequencies. I.e., our method reliably identifies
strongly changing inputs.

of the target points, that is also visible in terms of an increased LS loss in Table 1. While Fig. 5b)
significantly reduces motions, and leads to an improved shape as well as LS loss, its motions are
overly constrained. E.g., at the bottom of the shown patch, the generated points should follow the
black input points, but in (b) the generated points stay in place. In addition, the lack of permutation
invariance leads to an undesirable clustering of generated points in the patch center. Both problems
are removed with LEV in Fig. 5c), which still contains small scale jittering motions, unfortunately.
These are removed by LEA in Fig. 5d), which shows the result of our full algorithm. The success of
our approach for dynamic output sizes is also shown in the LN column of Table 1, which contains an
L2 error w.r.t. ground truth size of the outputs.

Temporally Coherent Features A central goal of our work is to enable the learning of features that
remain stable over time. To shed light on how our approach influences the established latent space,
we analyze its content for different inputs. The latent space in our case consists of a 256-dimensional
vector that contains the features extracted by the first set of layers of our network. Fig. 7 contains
a qualitative example for 100 randomly selected patch sequences from our test data set, where we
collect input data by following the trajectory of each patch center for 50 time steps to extract coherent
data sets. Fig. 7a) shows the averaged latent space content over time for these sequences. While
the model trained with temporal coherence (green curve) is also visually smoother, the difference
becomes clearer when considering temporal frequencies. We measure averaged frequencies of the
latent space dimensions over time, as shown in Fig. 7b,c). We quantify the differences by calculating
the integral of the frequency spectrum f̃ , weighted by the frequency x to emphasize high frequencies,
i.e,
∫
x
x · f̃(x)dx. Hence, small values are preferred. As shown in Fig. 7b), the version trained without

our loss formulations contains significantly more high frequency content. This is also reflected in the
weighted integrals, which are 36.56 for the method without temporal loss, and 16.98 for the method
with temporal loss. To verify that our temporal model actually establishes a stable temporal latent
space instead of ignoring temporal information altogether, we evaluate the temporal frequencies
for the same 100 inputs as above, but with a randomized order over time. In this case, our model
correctly identifies the incoherent inputs, and yields similarly high frequencies as the regular model
with 28.44 and 35.24, respectively. More details in Appendix C.

7

Published as a conference paper at ICLR 2020

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5a)

1s
td

er
iv

at
iv

e

time
0 20 40 60 80 100

0.4

0.2

0.0

0.2

0.4
b)

2n
d

de
riv

at
iv

e

time
0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10c)

1s
td

er
.p

os
.e

rr
or

time
0 20 40 60 80 100

0.02

0.04

0.06

0.08

0.10
d)

2n
d

de
r.

po
s.

er
ro

r

time

Figure 8: Evaluation of the temporal stability for generated point clouds, in red with our temporal loss formulation,
in blue without. Graph (a) shows the temporal change of the point density (1st derivative), while (b) shows the
2nd derivative. In (c) and (d) the error of the 1st and 2nd derivatives of the positions w.r.t. ground-truth reference
points is shown.

In addition, we evaluated the changes of generated outputs over time w.r.t. ground truth motion. For
this we mapped the generated point clouds Ỹ t = {ỹt1, ỹt2, ..., ỹtñ} for 100 frames to evenly and dense
sampled ground-truth points on the original mesh Y t = {yt1, yt2, ..., ytn} (the moving man shown in
Fig. 1). This gives us a dense correlation between the data and the generated point clouds. For the
mapping we used an assignment based on nearest neighbors: γ : ỹ → y. Using γ we divide Ỹ t into n
subsets Ŷi = {ỹj |γ(ỹj) = yi} which correlate with the corresponding ground-truth points. For each
subset we can now compute the mean position 1

|Ŷ
i
|
∑
ŷ∈Ŷi

ŷ and the sample density |Ŷi| measured by
the number of points assigned to a ground-truth sample position. The temporal change of these values
are of particular interest. The change of the mean positions should correspond to the ground-truth
changes, while the change of the density should be one. We have evaluated the error of the first and
second derivative of positions, as well as the first and second derivative of density (see Fig. 8 and
Table 2). As can be seen from the plots, our method leads to clear improvements for all measured
quantities. The individual spikes that are visible for both versions in the position errors (c,d) most
likely correspond to sudden changes of the input motions for which our networks undershoots by
producing a smooth version of the motion.

w/o with
Velocity 0.043 0.024
Acceleration 0.078 0.043

w/o with
Variance of 1st Derivative 0.016 0.00013
Variance of 2nd Derivative 0.038 0.00017

Table 2: Measurements averaged over 100 frames for a version of our network without temporal loss (“w/o”)
and with our full temporal loss formulation (“with”). The left table shows the results for the error evaluation of
the velocity and the acceleration, whereas in the right table one can see the variance of the density derivatives.

3D Results Our patch-based approach currently relies on a decomposition of the input volumes into
patches over time, as outlined in Appendix A. As all of the following results involve temporal data,
full sequences are provided in the accompanying video. We apply our method to several complex
3D models to illustrate its performance. Fig. 9 shows the input as well as several frames generated
with our method for an animation of a spider. Our method produces an even and temporally stable
reconstruction of the object. In comparison, Fig. 9b) shows the output from the previous work
architecture (Yu et al., 2018a). It exhibits uneven point distributions and outliers, e.g., above the legs
of the spider, in addition to uneven motions.

A second example for a moving human figure is shown in Fig. 1. In both examples, our network covers
the target shape much more evenly despite using much fewer points, as shown in Table 3. Thanks
to the flexible output size of our network, it can adapt to sparsely covered regions by generating
correspondingly fewer outputs. The previous work architecture, with its fixed output size, needs to
concentrate the fixed number of output points within the target shape, leading to an unnecessarily large
point count. In order to demonstrate the flexibility of our method, we also apply it to a volumetric
moving point cloud obtained from a liquid simulation. Thanks to the patch-based evaluation of our
network, it is agnostic to the overall size of the input volume. In this way, it can be used to generate
coherent sets with millions of points. These examples also highlight our method’s capabilities for
generalization. While the 3D model was only trained on data from physics simulations, as outlined
above, it learns stable features that can be flexibly applied to volumetric as well as to surface-based
data. The metrics in Table 1 show that for both 2D and 3D cases, our method leads to significantly
improved quality, visible in lower loss values for spatial as well as temporal terms.

8

Published as a conference paper at ICLR 2020

a) b) c)

Figure 9: Our method applied to an animation of a moving spider. (a) Input point cloud, (b) three frames of our
method, (c) a detail from previous work (top) and our method (bottom). Note that our method at the bottom
preserves the shape with fewer outliers, and leads to a more even distribution of points, despite generating fewer
points in total (see Table 3).

Input points P.W., output points P.W., factor Ours, output points Ours, factor
Spider 7,900 3,063,704 387.81 251,146 31.79
Moving person 10,243 5,224,536 510.06 367,385 35.87
Liquid 513,247 - - 6,430,984 12.53

Table 3: Point counts for the 3D examples of our video. Input counts together with output counts for previous
work (P.W.) and our proposed network are shown. Factor columns contain increase in point set size from in- to
output. As previous work cannot handle flexible output counts, a fixed number of points is generated per patch,
leading to a huge number of redundant points. However, our network flexibly adapts the output size and leads to
a significantly smaller number of generated points that cover the object or volume more evenly.

Another interesting field of application for our algorithm are physical simulations. Complex simula-
tions such as fluids, often employ particle-based representations. On the one hand, the volume data
is much larger than surface-based data, which additionally motivates our dynamic output. On the
other hand, time stability plays a very important role for physical phenomena. Our method produces
detailed outputs for liquids, as can be seen in our supplemental video.

Convergence graphs for the different versions are shown in Fig. 12 of the supplemental material.
These graphs show that our method not only successfully leads to very low errors in terms of temporal
coherence, but also improves spatial accuracy. The final values of LS for the 2D case are below 0.05
for our algorithm, compared to almost 0.08 for previous work. For 3D, our approach yields 0.04 on
average, in contrast to ca. 0.1 for previous work.

5 CONCLUSION

We have proposed a first method to infer temporally coherent features for point clouds. This is
made possible by a novel loss function for temporal coherence in combination with enabling flexible
truncation of the results. In addition we have shown that it is crucial to prevent static patterns as
easy-to-reach local minima for the network, which we avoid with the proposed a mingling loss term.
Our super-resolution results above demonstrate that our approach takes an important first step towards
flexible deep learning methods for dynamic point clouds.

Looking ahead, our method could also be flexibly combined with other network architectures or could
be adopted for other applications. Specifically, a combination with PSGN (Fan et al., 2016) could
be used to generate point clouds from image sequences instead of single images. Other conceivable
applications could employ methods like Dahnert et al. (2019) with our approach for generating
animated meshes. Due to the growing popularity and ubiquity of scanning devices it will, e.g., be
interesting to investigate classification tasks of 3D scans over time as future work. Apart from that,
physical phenomena such as elastic bodies and fluids (Li et al., 2019) can likewise be represented in a
Lagrangian manner, and pose interesting challenges and complex spatio-temporal changes.

ACKNOWLEDGMENTS

This work is supported by grant TH 2034/1-1 of the Deutsche Forschungsgemeinschaft (DFG).

9

Published as a conference paper at ICLR 2020

REFERENCES

R Qi Charles, Hao Su, Mo Kaichun, and Leonidas Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. pages 77–85, 07 2017. doi: 10.1109/CVPR.2017.16.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in Neural Information Processing Systems,
pages 5099–5108. Curran Associates, Inc., 2017.

Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski. Monte
carlo convolution for learning on non-uniformly sampled point clouds. ACM Trans. Graph., 37(6):
235:1–235:12, December 2018. doi: 10.1145/3272127.3275110.

Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Pointwise convolutional neural networks. In
Computer Vision and Pattern Recognition (CVPR), 2018.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-net: Point cloud
upsampling network. In CVPR, 2018a.

Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural networks by extension
operators. ACM Trans. Graph., 37(4):71:1–71:12, July 2018. doi: 10.1145/3197517.3201301.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Ec-net: an edge-aware
point set consolidation network. In European Conference on Computer Vision, pages 398–414.
Springer, 2018b.

Siamak Ravanbakhsh, Jeff G. Schneider, and Barnabás Póczos. Deep learning with sets and point
clouds. CoRR, abs/1611.04500, 2016.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan R. Salakhutdinov,
and Alexander J. Smola. Deep sets. In Advances in Neural Information Processing Systems, pages
3394–3404, 2017.

Roman Klokov and Victor S. Lempitsky. Escape from cells: Deep kd-networks for the recognition of
3d point cloud models. In IEEE International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, pages 863–872, 2017. doi: 10.1109/ICCV.2017.99.

Riccardo Roveri, A. Cengiz Öztireli, Ioana Pandele, and Markus Gross. Pointpronets: Consolidation
of point clouds with convolutional neural networks. Computer Graphics Forum, 37(2):87–99,
2018. doi: 10.1111/cgf.13344.

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. PCPNet: Learning local
shape properties from raw point clouds. Computer Graphics Forum, 37(2):75–85, 2018. doi:
10.1111/cgf.13343.

Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang. P2p-net: Bidirectional point dis-
placement net for shape transform. ACM Trans. Graph., 37(4):152:1–152:13, July 2018. doi:
10.1145/3197517.3201288.

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang,
and Jan Kautz. Splatnet: Sparse lattice networks for point cloud processing. In CVPR, pages
2530–2539. IEEE Computer Society, 2018.

Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neumann. Sgpn: Similarity group proposal
network for 3d point cloud instance segmentation. pages 2569–2578, 06 2018a. doi: 10.1109/
CVPR.2018.00272.

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. Spidercnn: Deep learning on point
sets with parameterized convolutional filters. In ECCV (8), volume 11212 of Lecture Notes in
Computer Science, pages 90–105. Springer, 2018.

Wenxuan Wu, Zhongang Qi, and Fuxin Li. Pointconv: Deep convolutional networks on 3d point
clouds. CoRR, abs/1811.07246, 2018.

10

Published as a conference paper at ICLR 2020

Jiaxin Li, Ben M. Chen, and Gim Hee Lee. So-net: Self-organizing network for point cloud analysis.
In CVPR, 2018a.

Xiaoqing Ye, Jiamao Li, Hexiao Huang, Liang Du, and Xiaolin Zhang. 3d recurrent neural networks
with context fusion for point cloud semantic segmentation. In ECCV, 2018.

F. Groh, P. Wieschollek, and H. P. A. Lensch. Flex-convolution (million-scale point-cloud learning
beyond grid-worlds). In Computer Vision - ACCV 2018 - 14th Asian Conference on Computer
Vision, December 2018.

Loïc Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation with super-
point graphs. In CVPR, 2018.

Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, and Federico Tombari. Fully-
convolutional point networks for large-scale point clouds. In Computer Vision – ECCV 2018, pages
625–640. Springer International Publishing, 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon.
Dynamic graph cnn for learning on point clouds. CoRR, abs/1801.07829, 2018b.

Huan Lei, Naveed Akhtar, and Ajmal Mian. Spherical convolutional neural network for 3d point
clouds. CoRR, abs/1805.07872, 2018.

Yingxue Zhang and Michael G. Rabbat. A graph-cnn for 3d point cloud classification. 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6279–6283,
2018.

Mark B. Skouson. Ursa: A neural network for unordered point clouds using constellations. CoRR,
abs/1808.04848, 2018.

Martin Simon, Stefan Milz, Karl Amende, and Horst-Michael Groß. Complex-yolo: Real-time 3d
object detection on point clouds. CoRR, abs/1803.06199, 2018.

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
In CVPR, 2018.

Liuhao Ge, Yujun Cai, Junwu Weng, and Junsong Yuan. Hand pointnet: 3d hand pose estimation
using point sets. In CVPR, 2018.

Nathaniel Thomas, Tess Smidt, Steven M. Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point
clouds. CoRR, abs/1802.08219, 2018.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via deep
grid deformation. In CVPR, 2018.

Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppfnet: Global context aware local features for
robust 3d point matching. In CVPR, pages 195–205. IEEE Computer Society, 2018.

Yongbin Sun, Yue Wang, Ziwei Liu, Joshua E. Siegel, and Sanjay E. Sarma. Pointgrow: Autoregres-
sively learned point cloud generation with self-attention. CoRR, abs/1810.05591, 2018.

Chun-Liang Li, Manzil Zaheer, Yonghui Zhang, Barnabás Póczos, and Ruslan Salakhutdinov. Point
cloud gan. CoRR, abs/1810.05795, 2018b.

Xingyu Liu, Charles Ruizhongtai Qi, and Leonidas J. Guibas. Learning scene flow in 3d point clouds.
CoRR, abs/1806.01411, 2018.

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas. Representation
learning and adversarial generation of 3d point clouds. CoRR, abs/1707.02392, 2017.

Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3d object
reconstruction from a single image. CoRR, abs/1612.00603, 2016. URL http://arxiv.org/
abs/1612.00603.

11

Published as a conference paper at ICLR 2020

Manuel Dahnert, Angela Dai, Leonidas Guibas, and Matthias Nießner. Joint embedding of 3d scan
and cad objects. In ICCV 2019, 2019.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In ICLR, 2019.

Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner.
Implicit incompressible sph. IEEE Transactions on Visualization and Computer Graphics, 20(3):
426–435, 2014.

12

Published as a conference paper at ICLR 2020

Tranquil Clouds: Neural Networks for Learning Temporally Co-
herent Features in Point Clouds, Supplemental Material

A TRAINING AND EVALUATION MODALITIES

Data Generation We employ a physical simulation to generate our input and output pairs for
training. This has the advantage that it leads to a large variety of complex motions, and gives full
control of the generation process. More specifically, we employ the IISPH (Ihmsen et al., 2014)
algorithm, a form of Lagrangian fluid simulator that efficiently generates incompressible liquid
volumes. These simulations also have the advantage that they inherently control the density of the
point sampling thanks to their volume conserving properties. In order to generate input pairs for
training, we randomly sample regions near the surface and extract points with a given radius around a
central point. This represents the high-resolution target. To compute the low-resolution input, we
downsample the points with a Poisson-disk sampling to compute a point set with the desired larger
spacing. In order to prevent aliasing from features below the coarse resolution, we perform a pass of
surface fairing and smoothing before downsampling. Due to the large number of patches that can be
extracted from these simulations, we did not find it necessary to additionally augment the generated
data sets. Examples of the low- and high-resolution pairs are shown in the supplemental material.

Below we will demonstrate that models trained with this data can be flexibly applied to moving
surface data as well as new liquid configurations. The surface data is generated from animated
triangle meshes that were resampled with bicubic interpolation in order to match a chosen average
per-point area. This pattern was generated once and then propagated over time with the animation.
When applying our method to new liquid simulations, we do not perform any downsampling, but
rather use all points of a low-resolution simulation directly, as a volumetric re-sampling over time is
typically error prone, and gives incoherent low resolution inputs.

Given a moving point cloud, we decompose it into temporally coherent patches in the following
manner: We start by sampling points via a Poisson-disk sampling in a narrow band around the surface,
e.g., based on a signed distance function computed from the input cloud. These points will persist as
patch centers over time, unless they move too close to others, or too far away from the surface, which
triggers their deletion. In addition, we perform several iterations for every new frame to sample new
patches for points in the input cloud that are outside all existing patches. Note that this resampling of
patches over time happens instantaneously in our implementation. While a temporal fading could
easily be added, we have opted for employing transitions without fading, in order to show as much of
the patch content as possible.

Network Architecture and Training Our architecture heavily relies on a form of hierarchical
point-based convolutions. I.e., the network extracts features for a subset of the points and their nearest
neighbors. For the point convolution, we first select a given number of group centers that are evenly
distributed points from a given input cloud. For each group center, we then search for a certain
number of points within a chosen radius (a fraction of the [-1,1] range). This motivates our choice
for a coordinate far outside the regular range for the padded points from Sec. 3.2. They are too far
away from all groups by construction, so they are filtered out without any additional overhead. In
this way, both feature extraction and grouping operations work flexibly with the varying input sizes.
Each group is then processed by a PointNet-like sub-structure (Qi Charles et al., 2017), yielding one
feature vector per group.

The result is a set of feature vectors and the associated group position, which can be interpreted
as a new point cloud to repeatedly apply a point convolution. In this way, the network extracts
increasingly abstract and global features. The last set of features is then interpolated back to the
original points of the input. Afterwards a sub-pixel convolution layer is used to scale up the point
cloud extended with features and finally the final position vectors are generated with the help of two
additional shared, fully-connected layers. While we keep the core network architecture unmodified to
allow for comparisons with previous work, an important distinction of our approach is the input and
output masking, as described in Sec. 3.2.

Our point data was generated with a mean point spacing, i.e., Poisson disk radius, of 0.5 units. For the
2D tests, an upscaling factor of r = 9 was used. For this purpose, patches with a diameter of 5 were
extracted from the low-resolution data and patches with a diameter of 15 from the high-resolution

13

Published as a conference paper at ICLR 2020

data. We used the thresholds kmax = 100 and nmax = 900. For the loss, we used γ = 10, µ = 10,
and ν = 0.001. The network was trained with 5 epochs for a data set with 185k pairs, and a batch
size of 16, the learning rate was 0.001 with a decay of 0.003. For the 3D results below, the scaling
factor r was set to 8. The diameter of the patches was 6 for the low-resolution data and 12 for the
high-resolution data, with kmax = 1280 and nmax = 10240. The loss parameters were γ = µ = 5,
with ν = 0.001. Learning rate and decay were the same for training, but instead we used 10 epochs
with 54k patches in 3D, and a batch size of 4.

B NETWORK ARCHITECTURE DETAILS

The input feature vector is processed in the first part of our network, which consists of four
point convolutions. We use (ng, rg, [l1, ..., ld]) to represent a level with ng groups of radius rg
and [l1, ..., ld] the d fully-connected layers with the width li(i = 1, ..., d). The parameters we
use are (kmax, 0.25, [32, 32, 64]), (kmax/2, 0.5, [64, 64, 128]), (kmax/4, 0.6, [128, 128, 256]) and
(kmax/8, 0.7, [256, 256, 512]). We then use interpolation layers to distribute the features of each
convolution level among the input points. In this step, we reduce the output of each convolution layer
with one shared, fully-connected layer per level, to a size of 64 and then distribute the features to all
points of the input point cloud depending on their position. This extends the points of our original
point cloud with 256 features. Fig. 11 shows a visual overview of the data flow in our network.

Afterwards, we process the data in r separate branches consisting of two shared, fully interconnected
layers with 256 and 128 nodes. The output is then processed with two shared fully-connected layers
of 64 and 3 nodes. Finally, we add our resulting data to the input positions that have been repeated r
times. This provides an additional skip connection which leads to slightly more stable results. All
convolution layers and fully interconnected layers use a tanh() activation function.

For the input feature vector, we make use of additional data fields in conjunction with the point
positions. Our network also accepts additional features such as velocity, density and pressure of the
SPH simulations used for data generation. For inputs from other sources, those values could be easily
computed with suitable SPH interpolation kernels. In practice, we use position, velocity and pressure
fields. Whereas the first two are important (as mentioned in Sec. 3.1), the pressure fields turned out to
have negligible influence.

C FREQUENCY EVALUATION OF LATENT SPACE

In this section we give details for the frequency evaluation of Sec. 4. In order to measure the stability
of the latent space against temporal changes, we evaluated the latent space of our network with and
without temporal loss, once for 100 ordered patch sequences and once for 100 un-ordered ones. The
central latent space of our network consists of the features generated by the point-convolution layers
in the first part of the network and is 256 dimensional (see Fig. 11). To obtain information about its
general behavior, we average the latent space components over all 100 patch sequences, subtract the
mean, and normalize the resulting vector w.r.t. maximum value for each data set. The result is a time
sequence of scalar values representing the mean deviations of the latent space. The Fourier transform
of these vectors f̃ , are shown in Fig. 7, and were used to compute the weighted frequency content∫
x
x · f̃(x)dx. Here, large values indicate strong temporal changes of the latent space dimensions.

The resulting values are given in the main document, and highlight the stability of the latent space
learned by our method.

D TRAINING DATA AND GRAPHS

Two examples with ground truth points and down-sampled input versions are shown in Fig. 10.

Additionally, Fig. 12 shows loss graphs for the different versions shown in the main text: 2D previous
work, our full algorithm in 2D, as well as both cases for 3D. The mingling loss LM is only shown as
reference for the previous work versions, but indicates the strong halo-like patterns forming for the
architectures based on previous work.

14

Published as a conference paper at ICLR 2020

a)

b)

Figure 10: Examples from our synthetic data generation process. In both sections (a) and (b) a high resolution
reference frame is shown in purple, and in green the down-sampled low resolution frames generated from it. The
training data is generated by sampled patches from these volumes.

15

Published as a conference paper at ICLR 2020

pointNet

MLP

interpolate

kmax points
(pos, vel, dens, press)

interpolate interpolate interpolate

64 64 64 64
kmax times

input 256 features
2
5
6

1
2
8×

128

2
5
6

1
2
8×

128

2
5
6

1
2
8×

128

2
5
6

1
2
8×

128

r branches

n max times

PointNet PointNet PointNet

MLP MLP MLP

kmax
2)(kmax

4)(kmax
8)(

kmax
16)(

kmax
4)(kmax

2)(kmax
8)(, 64)(

 , 64 , 128 , 256

, 512

, 64, 64, 64

6
4 3× output

input position

+

kmax
16

}
kmax

128

Figure 11: An overview of our network architecture. The first row shows the hierarchical point convolutions,
while the bottom rows illustrate the processing of extracted features until the final output point coordinates are
generated.

2D Ours

Sheet2

Page 1

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.2

0.4

0.6

0.8

1

1.2

Full Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Spatial Loss

Sheet2

Page 2

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.005

0.01

0.015

0.02

0.025

Temporal Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.5

1

1.5

2

2.5

3

3.5

4

Mingle Loss

Sheet2

Page 1

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.2

0.4

0.6

0.8

1

1.2

Full Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Spatial Loss

Sheet2

Page 2

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.005

0.01

0.015

0.02

0.025

Temporal Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.5

1

1.5

2

2.5

3

3.5

4

Mingle Loss

Sheet2

Page 1

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Full Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.02

0.04

0.06

0.08

0.1

0.12

Spatial Loss

2 24 46 68 90 11
2

13
4

15
6

17
8

20
0

22
2

24
4

26
6

28
8

31
0

33
2

35
4

37
6

39
8

42
0

44
2

46
4

48
6

50
8

53
0

55
2

57
4

0

1

2

3

4

5

6

7

Mingle Loss

Sheet2

Page 1

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Full Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.02

0.04

0.06

0.08

0.1

0.12

Spatial Loss

2 24 46 68 90 11
2

13
4

15
6

17
8

20
0

22
2

24
4

26
6

28
8

31
0

33
2

35
4

37
6

39
8

42
0

44
2

46
4

48
6

50
8

53
0

55
2

57
4

0

1

2

3

4

5

6

7

Mingle Loss

2D Previous

Sheet2

Page 1

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.5

1

1.5

2

2.5

3

3.5

4

Full Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.05

0.1

0.15

0.2

0.25

Spatial Loss

Sheet2

Page 1

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.5

1

1.5

2

2.5

3

3.5

4

Full Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.05

0.1

0.15

0.2

0.25

Spatial Loss

3D Ours

Sheet2

Page 2

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Temporal Loss

2 24 46 68 90 11
2

13
4

15
6

17
8

20
0

22
2

24
4

26
6

28
8

31
0

33
2

35
4

37
6

39
8

42
0

44
2

46
4

48
6

50
8

53
0

55
2

57
4

0

1

2

3

4

5

6

Mingle Loss

Sheet2

Page 2

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Temporal Loss

2 24 46 68 90 11
2

13
4

15
6

17
8

20
0

22
2

24
4

26
6

28
8

31
0

33
2

35
4

37
6

39
8

42
0

44
2

46
4

48
6

50
8

53
0

55
2

57
4

0

1

2

3

4

5

6

Mingle Loss

3D Previous

Sheet2

Page 1

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Full Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Spatial Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

5

10

15

20

25

30

Mingle Loss

Sheet2

Page 1

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Full Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Spatial Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

5

10

15

20

25

30

Mingle Loss

Sheet2

Page 1

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Full Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Spatial Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

5

10

15

20

25

30

Mingle LossCombined Loss ℒS ℒM

Sheet2

Page 1

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Full Loss

2 26 50 74 98 12
2

14
6

17
0

19
4

21
8

24
2

26
6

29
0

31
4

33
8

36
2

38
6

41
0

43
4

45
8

48
2

50
6

53
0

55
4

57
8

0

0.02

0.04

0.06

0.08

0.1

0.12

Spatial Loss

2 24 46 68 90 11
2

13
4

15
6

17
8

20
0

22
2

24
4

26
6

28
8

31
0

33
2

35
4

37
6

39
8

42
0

44
2

46
4

48
6

50
8

53
0

55
2

57
4

0

1

2

3

4

5

6

7

Mingle Loss

Combined Loss ℒS ℒM ℒEV + ℒEA

Combined Loss ℒS ℒM ℒEV + ℒEA

Combined Loss ℒS ℒM

Figure 12: Convergence plots for the training runs of our different 2D and 3D versions. The combined loss only
illustrates convergence behavior for each method separately, as weights and terms differ across the four variants.
LM for previous work is not minimized, and only given for reference.

16

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Contributions
	List of Publications
	Outline

	Fundamentals and Related Work
	Fluid Simulation
	Adaptation of Fluid Solvers

	Deep Learning for Fluids
	Deep Neural Networks
	Convolutional Layers
	Temporal Learning

	Transformations and Deformations

	Generation of Liquids
	Reduced Representations of Liquids
	Enhancing Fluid Simulations

	Summary of Papers
	Generating Liquid Simulations with Deformation-aware Neural Networks
	Tranquil Clouds: Neural Networks for Learning Temporally Coherent Features in Point Clouds

	Conclusion
	Outlook
	Conclusion

	Bibliography
	Published Version of Paper A
	Published Version of Paper B

