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Abstract

For many years liquid-liquid interfaces (LLIs) - particularly between an aqueous and an organic
solvent - have been identified as environments for important processes in biology and catalysis.
Despite considerable advances in both computing power and modeling techniques in recent years,
explicit quantum mechanical simulations of such solvated systems on the required length- and time-
scales remain oftentimes out of reach. Coarse-graining the liquid environment of these systems
into a continuum with less degrees of freedom whilst preserving its physical properties is therefore
a necessity. In liquids consisting of neutral yet highly polar molecules like water, the dielectric
response represented by the dielectric permittivity tensor represents a crucial modeling ingredient
in every such coarse-graining approach.

In this work the dielectric behaviour at the LLI between water and 1,2-dichloro-ethane is investi-
gated in immediate vicinity of the phase transition. Common polarization fluctuation approaches
are adapted by discretizing the dielectric problem into a kernel convolution with the dipole-dipole in-
teraction tensor on a regular grid. The presented method allows the black box calculation of the full
local dielectric permittivity tensor for arbitrary system geometries and gives a quantitative explana-
tion under which circumstances the plate capacitor picture is a valid approximation. It is found that
an anisotropic treatment is imperative if a slab model shows lateral structure, a finding that besides
LLIs might be of interest in many solid-liquid interfaces for example in electro-catalysis. Further
investigations of molecular orientation towards the LLI as well as comparing electric fields and the
dipole moment in molecular coordinate systems gives insight where the molecular liquids deviate
from ideal Maxwellian dielectrics. It furthermore suggests a path towards improving the accuracy
of implicit solvent approaches by delta-learning these deviations.
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Chapter 1

Introduction

For many years the relevance of liquid-liquid interfaces (LLIs) - particularly between an aqueous
and an organic solvent - has been recognized in fundamental scientific questions and technological
applications. In catalysis and microbiology, many processes require a thorough understanding of
water interfacing larger individual molecules as well as other liquids or soft matter. In biology,
solvation of complex organic molecules like amino acids in aqueous environments greatly impacts
their form and function, often mediated by the presence of ions. Here, the interplay of solvent
and solute is key to understanding the functionality of biological membranes, proteins as well as a
myriad of other processes that form the foundation of carbon based life on the planet [1–11].

LLIs are equally prominent in catalytic processes like photo-catalytic water splitting for hydrogen
production in a post-fossil energy economy [12, 13]. Recent progress in the field of liquid-liquid
electrochemistry has sparked interest in single-entity catalysis at the interface between two immis-
cible electrolyte solutions (ITIES). Typically forming an interface between H2O and a polar organic
solvent like 1,2-dicholorethane (DCE), ITIES are promising environments for catalysis of the oxygen
reduction and hydrogen evolution reactions (ORR and HER) [14]. In situ deposited nanoparticles
of paladium and platinum were successfully used as HER catalysts at ITIES [15], but also experi-
ments with cheaper and more abundant transition-metal nanoparticles show promising results [16].
Since spontaneous adsorption of various nanoparticles at ITIES can be manipulated through exter-
nal potential control [14, 17, 18] or variation of the aqueous phase pH [14, 19], these environments
could potentially be very interesting for large scale industrial applications.

Even though only providing a background environment - the individual solvent molecule is of little
interest after all - large volumes of liquid on both sides of the interface need to be accounted for in
the analysis of the aforementioned systems. Treating this environment explicitly, greatly increases
complexity and computational cost in atomistic computer models which limits the possible length-
and time-scales of simulation. It is therefore desirable to coarse-grain structure and dynamical
response of explicit liquids into a simplified continuum representation which greatly reduces its
number of degrees of freedom. The embedded atomistic protein or catalytic complex of interest
can then be coupled to the surrounding coarse-grained continuum liquid, typically via a mean-field
response parametrized by a susceptibility function [20, 21]. Particularly for liquids consisting of
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neutral yet highly polar molecules like water or DCE, the dielectric response represented by the
dielectric susceptibility χ is an indispensable model ingredient in any coarse-graining approach.
Historically defined in the context of Maxwell theory in matter, χ defines the relation between the
polarization and the Maxwell field, which is a superposition of the fields created by external or "free"
charge able to move independently and the smoothed out internal charges making up the dielectric
[22]. It is a long-standing experimental fact that χ of bulk liquids constitutes an intrinsic material
property that is independent of the shape of the dielectric [23]. However, while the Maxwell field
constitutes a useful theoretical quantity, it is not directly accessible experimentally, especially in the
sub-nanometer range towards interfaces. In molecular liquids, the interplay between short-range
repulsive forces that establish local order and long-range attractive forces forming cohesion and
stability is a long-standing concept [24]. Particularly for liquids with high molecular polarity, this
can lead to the formation of strong inter-molecular bonding networks, like the hydrogen bonding
network in water [25, 26]. Confinement or the introduction of interfaces breaks the bulk symmetry
of these networks. In the immediate vicinity of such an interface this results in a generally non-linear,
non-local and anisotropic change of several thermodynamic properties including density, viscosity,
and dielectric response [27–34]. This change in dielectric behaviour enters the interpretation of
phenomena like interfacial ion distribution [35, 36] or solvation free energy [35, 37–39].

Traditional experimental methods to measure ε of interfacial water relied on broadband dielectric
spectroscopy of naturally occuring systems like nanoporous crystals [40] or zeolite powders [41]
and were not able to experimentally resolve deviations from bulk behaviour with sub-nanometer
precision. However, due to recent advances in scanning probe microscopy [42–44] Fumagalli et al.
[29] were able to measure ε for H2O in immediate vicinity of two-dimensional boron nitride films.
They reported a dielectric dead layer of ε ≈ 2 and a huge 100 nm wide transitional region in which
ε retracted to its bulk value of ε = 81. This was rationalized later by Deissenbeck et al. [45] using
an equivalent circuit picture of a series of plate capacitors. Since the capacitance of a plate capac-
itor is proportional to ε and capacitances are inversely summed in a serial circuit, the dead layer ε
would dominate far into the bulk. In such a circuit model, a local ε can be calculated individually for
every plate capacitor. A variety of successful approaches to calculate these plate capacitor ε based
on polarization fluctuations have been developed in cartesian, cylindrical or spherical coordinates
[46–49] as well as periodic slab systems [50] in the framework of linear response theory [24]. Since
these polarization fluctuations have proven notoriously slow to converge, especially in polar liquids
[39, 51–74] alternative approaches to calculate ε focus on measuring capacitance at constant po-
tential [45], replace polarization with potential fluctuations [39, 75–78] or perform simulations at
constant displacement field [53, 79–81]. Additionally, there exist multiple non-local approaches to
calculate an interfacial dielectric constant in the liquid phase [82–84]. While all these approaches
vary regarding their treatment of the molecular ensemble, all assume a separation of the dielectric
response parallel and perpendicular to the interface, effectively using the substitution picture of two
decoupled sets of in-series plate capacitors. The off-diagonal elements of the full 3x3 dielectric
tensor ε, often referred to as cross-terms, are set to zero. A comprehensive and general formalism
how to coarse-grain molecular granularity below the nanoscale into a truly anisotropic continuum
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dielectric tensor beyond this approximation has not been developed to the best of knowledge. For
this reason, this work explores alternative approaches towards this goal.

In chapter 2 and 3 dielectric theory, the LLI concept as well as technical and simulation details
are introduced and benchmarks are calculated for later comparison. Chapter 4 adapts common
polarization fluctuation approaches by discretizing the dielectric problem into a kernel convolution
with the dipole-dipole interaction tensor on a regular grid. While the issue of slow convergence
remains, the presented method allows the black box calculation of the full local dielectric tensor
for arbitrary geometries and gives a quantitative explanation under which circumstances the plate
capacitor picture is a valid approximation. It is found that an anisotropic treatment is imperative
if a slab model shows lateral structure, a finding that besides LLIs might be of interest in many
solid-liquid interfaces for example in electro-catalysis. Chapter 5 explores the interfacial orientation
of molecules towards the LLI. In chapter 6 the molecular coordinate system is employed to explore
the relationship between intra- and extra-molecular charges in a one molecule reference system
without the detour via a dielectric constant. While no direct path towards a cheaper calculation
of the ε tensor was discovered, the findings of chapters 5 and 6 could be used to improve the
accuracy of implicit solvent approaches by delta-learning in the future. Finally, chapter 7 explores
the possibilities of reaction field models to calculate local dielectric constants and its chances as
well as its limitations are discussed.
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Chapter 2

Theoretical Background

The theoretical background and methodology relevant in this work is presented in this chapter.
After a brief primer on units and notation, Molecular Dynamics simulation are introduced as the
means to create the atomistic trajectories for coarse-graining in this work. The dielectric constant
ε and dielectric susceptibility χ are then introduced in their traditional context of classical Maxwell
electrostatics and subsequently in the linear response framework of statistical mechanics. Finally,
a selection of common methods to calculate the dielectric constant in various geometries are pre-
sented and derived.

2.1 Units and notation

Regarding units and notation the following conventions are employed in this text. Throughout this
work the Gaussian cgs unit system is employed which implies 4πε0 = 1. Vectors and tensors are
indicated by using bold letters. For the sake of clarity, Einstein summation is employed in formulas
involving tensors, specifically the permittivity and dipole-dipole interaction tensor. Vector indices in
Einstein summation are always indicated with a subscript and exclusively start at i ascending. The
indices marking a quantity for two different instances of a molecule or atom start at a ascending. If
both these i and a indices are present, the latter is written as a superscript. The partial derivative
of a function f(x) is written as

∂f(x)

∂x
= ∂xf(x) (2.1)
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The three dimensional divergence, rotation and gradient operators are expressed using the ∇-
operator

∇ =

∂x∂y
∂z

 (2.2)

If ∇ is treated like a three dimensional vector, divergence and rotation of a vector A can then be
written via the scalar- and cross product, ∇ · A, ∇ × A, while the gradient of a scalar field φ is
obtained from the multiplication ∇φ. The convolution between two functions f and g is written as
f ∗ g.

2.2 Molecular Dynamics

The trajectories for the dielectric analysis performed in this work were obtained via classical Molec-
ular Dynamics (MD). Classical MD is a computational method for numerically solving Newton’s
equations of motion for a system of interacting particles or atoms, in the present case molecular
liquids. Interaction potentials between particles are evaluated employing force fields, which define
the interatomic energy as a function of particle positions, while the forces on each particle can be
derived as the gradient of this energy function with respect to the spatial coordinates [85]. Costly
evaluations of electronic or quantum mechanical interactions are parametrized into the atomic force
field expression, greatly driving down computational cost. Naturally, accuracy and predictability of a
force field model heavily depend on its parametrization, which is typically performed against exper-
imental data or more accurate quantum chemical calculations. Transfer of a force field to different
models as well as combinations of different force fields in simulations has to be performed with
caution and needs to be carefully evaluated.

2.2.1 Force fields

In literature, the spectrum of different force fields is as wide as the the spectrum of systems to
simulate. In recent years the rise of machine learning in computational chemistry has greatly con-
tributed to the popularity of novel non-analytic neural-network-based frameworks over classical an-
alytic force fields in biological and soft matter systems [86–88]. Still, these classical force fields have
proven their capability to provide insights for aqueuous and organic liquids [89–91], soft matter [92]
and complex biological [93–95] systems at atomistic resolution for comparatively low computational
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cost. The inter-atomic energy term in many classical force fields typically distinguishes between
covalent and non-covalent interaction terms.

U tot = U c + Unc (2.3)

Non-covalent interactions aggregate all interaction terms between atoms that are not covalently
bonded and correspond to inter-molecular interactions in molecular liquids, namely the electrostatic
and van-der-Waals interaction as well as the short-range Pauli repulsion [96]. The electrostatic
interaction is described by the pair-wise Coulomb potential between permanent charges introduced
later in equation (2.21) of section 2.3. While its parametric form is well known, provided atomic
charges are adequately fitted, its inverse proportionality to distance r prohibits the introduction of a
cutoff without introducing large numerical errors. Typical methods to account for the long-range tail
of the Coulomb interaction are presented in section 2.5.

The strong short-range Pauli repulsion is a quantum-mechanical phenomenon arising from overlap
of the atomic outer electron shells and is mainly responsible for the short-range structure that is
characteristic for the liquid state [24]. For relatively small r, this interaction can be approximated by
an exponential function or an inverse power law, typically with powers between 9 and 15 [24].

At larger separations, the dominant contribution to the potential stems from the multi-polar dis-
persion interactions between the instantaneous electric moments on one atom, created by sponta-
neous fluctuations in the electronic charge distribution, and moments induced in the other [24]. This
is typically referred to as the van-der-Waals interaction. All terms in this multipole series are attrac-
tive, where the leading dipole-dipole term, typically referred to as the London dispersion interaction
[97], varies as r−6.

Combining van-der-Waals and Pauli repulsion ∝ r−12 produces the popular 12-6 Lennard-Jones
potential [98]

uLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

(2.4)

which involves two parameter: The collision diameter σ representing the distance uLJ(σ) = 0 where
the interaction between two particles is zero and the depth ε of the potential minimum of uLJ.
Originally proposed to describe the cohesive energy of crystals of noble gases, its use in MD
simulations of liquid argon proved to have unexpectedly good experimental agreement [99]. The
use of pair potentials like (2.4) in calculations for the liquid state involves the neglect of many-body
forces, which is hard to argue for and in the case of [99] was due to a fortitous cancellation of errors
as argued in [100]. This is no generally valid assumption, particularly for more complex molecular
liquids, but irrespective of the detailed assumptions made, the main features of the potential are
always the same: a soft repulsion, a deep attractive well and a long-range oscillatory or asymptotic
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tail [24] - properties that (2.4) possesses. Even though there is no evidence that a 12-6 Lennard-
Jones performs better than other possible choices [101] it is widely used, including for the force
fields employed in this work. Together with the pair-wise Coulomb interaction, the total non-covalent
energy of a N -particle simulation can be written as

Unc =

N∑
a

N∑
b<a

{
4εab

[(
σab
rab

)12

−
(
σab
rab

)6
]

+
qaqb
rab

}
(2.5)

The covalent interaction potential accounts for covalent bonds between atoms with a specific hy-
bridization state and its dependence on the relative arrangement of the involved atoms, regularly
expanded in low order many-body terms such as bond lengths, angles, dihedrals, and out-of-plane
deformations. In many pair-wise force-field models like the ones used for trajectory generation in
this work, the functional form of Uc in (2.3) can be further grouped as

U c = U1−2 + U1−3 + U1−4 + . . . (2.6)

In (2.6), the superscripts denote the interaction over one, two, three or four covalent bonds respec-
tively. These interaction terms correspond to bonded (spanning two atoms or one covalent bond),
angular (spanning three atoms or two covalent bonds) and dihedral (spanning four atoms or three
covalent bonds) interactions. In principle higher terms can be added, but for the force fields con-
sidered in this work, the highest order covalent term for H2O is the angular term U1−3 and in DCE
the dihedral term U1−4. Due to the relative rigidity of covalent bonds, covalently bonded atoms are
not expected to deviate significantly from their reference distance. Many traditional force fields like
TIP4P [102] thus employ rigid Uc potential terms, or use Hooke’s law style harmonic expressions for
bonded interactions like for example the widely used OPLS force field for hydrocarbons [89]. In the
case of water it has been shown [103] that bond flexibility improves the agreement of the dielectric
constant with experiment compared to rigid bond potentials.

2.2.2 Time propagation

In order to propagate particle ensembles forward in time, Newton’s equations of motion need to
be integrated from the particle positions and forces determined by the employed force field. While
many integration algorithms exist, the Velocity-Verlet algorithm is often chosen for its speed, low
memory requirements, good short-term energy conservation, little long-term energy drift, time-
reversibility, and conservation of phase-space volume [85].

In Verlet-like integration schemes, the position of a particle at a point in time r(t) that is subject to a
force f(t) can be approximated via the two symmetric Taylor series
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r(t+ ∆t) = r(t) + v(t)∆t+
f(t)

2m
∆t2 +

∆t3

3!
∂3
t r +O(∆t4)

r(t−∆t) = r(t)− v(t)∆t+
f(t)

2m
∆t2 − ∆t3

3!
∂3
t r +O(∆t4) (2.7)

Here, m represents a particle’s mass, v(t) its velocity at time t, and O(∆t4) all expansion terms of
fourth order or higher. If the first and second equation of (2.7) are added, all terms involving uneven
powers of ∆t cancel out

r(t+ ∆t) + r(t−∆t) = 2r(t) +
f(t)

m
∆t2 +O(∆t4) (2.8)

which can be rearranged to

r(t+ ∆t) ≈ 2r(t)− r(t−∆t) +
f(t)

m
∆t2 (2.9)

The Verlet algorithm in (2.9) thus provides an appoximation of the new position of a particle at time
r(t + ∆t) from forces and positions at the earlier timesteps t − ∆t and t with an error of order
∆t4. Equation (2.9) does not include an explicit velocity calculation, since its terms cancel out in
summing both series in (2.7). While v(t) can in principle be evaluated by calculating the numerical
derivative ∂tr in an extra step, this leads to comparatively high numerical errors for v on the order
of ∆t2. Alternatively, the calculation of v can explicitly be included in (2.9)

r(t+ ∆t) = r(t) + v(t)∆t+
f(t)

2m
∆t2

v(t+ ∆t) = v(t) +
f(t+ ∆t)− f(t)

2m
∆t (2.10)

This is the velocity Verlet integration method, which through including the velocity calculation directly
into the integration scheme by leap-frogging v and x calculations in time, is equivalent in accuracy
to (2.9) without introducing an extra velocity calculation [85]. A half-stepped version of (2.10) is
implemented in the LAMMPS simulation package [104], which is exclusively used for trajectory
creation in this work.

Alternative integrators include higher order algorithms like the predictor-corrector method [85],
where the Taylor series in (2.7) is truncated at higher orders. These provide superior short term
energy conservation and thus allow for larger timesteps. However, the additional derivative evalu-
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ations also drive computational cost up and the integration schemes often are not time-reversible
and phase-space conserving [85], making them less robust for long-term sampling.

2.2.3 Open systems

The integration of Newton’s equations of motion as presented above corresponds to the micro-
canonical (NVE) ensemble where particle number and system volume are kept constant over the
course of the trajectory. Depending on the application however, other control variables are more
favorable. The linear-response formalism presented in section 2.6 however assumes trajectories
simulated in the canonical (NVT) ensemble and many experimental setups use temperature T or
pressure P instead of total energy and volume as their control variables. Simulations in NVT or the
isothermal-isobaric (NPT) ensemble are realized with the help of thermostats.

The idea behind a constant temperature simulation is to couple the simulation system to a ther-
mostat which can be thought of as an infinitely large heat bath with a fixed temperature [105].
Simulation system and bath are coupled in a way that heat but no particles can be exchanged.
This coupling can be realized by stochastic collisions between particles of bath and system or by
incorporating the bath degrees of freedom deterministically into the system Hamiltonian. The for-
mer approach can be implemented by a random collision model mimicking the influence of the heat
bath - this is done by the Langevin thermostat [106] - or even by implicitly including its Brown-
ian motion via an extension to the equations of motion as done in an Andersen thermostat [106].
Thermostatting by deterministically incorporating the bath degrees of freedom in the system Hamil-
tonian is achieved by adding a set of dynamic variables associated with the bath that are coupled
to the simulation system’s particle velocities. This is done in a Nose-Hoover thermostat [107, 108].
Langevin, Andersen, and Nose-Hoover type thermostats are all capable of simulating systems with
canonical probability distribution and valid energy values, however time dependent parameters are
reproduced more accurately with Nose-Hoover thermostats [105]. If the introduced dynamic vari-
ables of the Nose-Hoover thermostat are coupled to the simulation domain dimensions instead, it
can be used for barostatting in constant pressure simulations.

The LAMMPS implementation [109] employs the equations of motion as formulated in [110], which
combine the hydrostatic equations of Martyna et al. [111] with the strain energy proposed by
Parinello and Rahman [112]. Its time integration schemes closely follow [113].

In cases where it is advantageous to regard the electric potential of a system as a thermodynamic
control variable, potentiostats originally devised by Bonnet et al. [114] or the thermopotentiostat
developed by Deißenbeck et al. [45] can be useful.
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2.3 Maxwell electrostatics

For classical systems, the interaction of charge is described by Maxwell’s theory of electromag-
netism which can be derived from four basic equations defining the relation between electric and
magnetic fields in vacuum. In differential form these equations read [22]

∇ ·E = 4πρ (2.11)

∇ ·B = 0 (2.12)

∇×E = −1

c

∂B

∂t
(2.13)

∇×B =
1

c

(
4πJ +

∂E

∂t

)
(2.14)

where E and B represent the electric and magnetic fields in three dimensional space, ρ the charge
distribution, J the current density and c the speed of light. In the absence of magnetic forces and if
electric fields are assumed to be time-independent, Maxwell’s four equations reduce by two to the
electrostatic case governing the interaction between permanent charges and dipoles:

∇ ·E = 4πρ (2.15)

∇×E = 0 (2.16)

Here E is a rotation-free - and hence a conservative - force field. It can be expressed by a scalar
electrostatic potential φ

E = −∇φ (2.17)

The electrostatic potential of a continuous charge distribution is given by

φ(r) =

∫
ρ(r′)

|r− r′|dr
′ (2.18)

where the integral spans all space. The electrostatic field is obtained by inserting (2.18) into (2.17)

E(r) =

∫
ρ(r′)

r− r′

|r− r′|3dr
′ (2.19)
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Since above equation is linear with respect to charge, the charge distribution ρ and thus the integral
can be split up arbitrarily without changing the resulting field observed at point r. This principle of
superposition is another consequence of E being a gradient field.

In the case of a set of point charges qa at positions ra the continuous charge distribution ρ can be
written using Dirac’s delta function:

ρ(r) =
∑
a

qaδ(r− ra) (2.20)

The integral in (2.18) then reduces to a sum and the electrostatic potential reads

φ(r) =

∫ ∑
a

qaδ(r− ra)

|r− r′| dr′ =
∑
a

qa
|r− ra|

(2.21)

This sum of all point charges can also be interpreted as a multi-center, zero-order Taylor expansion
of ρ. An equally valid but in many cases more convenient representation can be obtained by reduc-
ing the number of expansion centers while simultaneously increasing the Taylor expansion order.
This means that instead of summing all charges individually, one could only sum over all molecules
but include higher orders of the ρ expansion to obtain φ of a molecular liquid. This approach to pat-
terned charge distributions introduced by Lorentz [115] and further developed by Rosenfeld, Mazur
and de Groot [23, 116–118] can be used to translate from a microscopic description of individual
charges in vacuum to a macroscopic continuum description of matter. The subsequent derivation
follows the notation in [119].

Starting for example with a liquid of N molecules with M atoms each. Every of these atom carries a
partial charge qnm and is located at rnm where n ∈ N , referring to the molecular index and m ∈M ,
referring to the atomic index in the molecule. Then the total charge distribution is given by

ρ(r) =
∑
n

∑
m(n)

qnmδ(r− rnm) (2.22)

Here m(n) runs over all partial charges inside molecule n. Inserting equation (2.22) into (2.19) and
shifting the integration variable r′ to r′ + rnm − rn yields the expression

E(r) =

∫ ∑
n

∑
m(n)

qnmδ(r′ − rnm)
(r− r′)− (rnm − rn)

|(r− r′)− (rnm − rn)|3dr
′ (2.23)

for the electric field. Here rn represents the center of molecule n. The choice of this center is
not unique but in a molecular liquid both the molecular center of mass or charge pose natural
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candidates. Expanding above expression in a Taylor series in r′ around the molecular centers rn

yields

E(r) =

∫ ∑
n

∑
m(n)

qnmδ(r′ − rn)

[
r− r′

|r− r′|3 + (rnm − rn) · ∇′ r− r′

|r− r′|3

= +
1

2
(rnm − rn)(rnm − rn)T : ∇′∇′ r− r′

|r− r′|3 + . . .

]
dr′ (2.24)

Here∇′ represents the gradient with respect to r′ and∇′(r−r′) = −∇(r−r′). Also (rnm−rn)(rnm−
rn)T defines an outer product. Through integration by parts of all gradient terms and requiring the
electric field to approach zero at infinite distances from the charge positions, equation (2.24) can
be rearranged to

E(r) =

∫
r− r′

|r− r′|3

∑
n

∑
m(n)

qnmδ(r′ − rn) +∇′
∑
n

∑
m(n)

qnmδ(r′ − rn)(rnm − rn)

+
1

2
∇′∇′ :

∑
n

∑
m(n)

qnmδ(r′ − rn)(rnm − rn)(rnm − rn)T + . . .

 dr′ (2.25)

The summands in equation (2.25) can be expressed in terms of the molecular multipole moments
of order l ∈ 1, 2, 3, ..., which are defined in analogy to the mechanical moments as

pln =
1

l!

∑
m(n)

qnm(rnm − rn)l (2.26)

In this sense, p0n is associated with the net charge, p1n with the charge dipole, and p2n with the
charge quadrupole of molecule n. The product represented by the l-exponent has to be understood
as an outer product in this notation, making the molecular multipoles pln tensors of rank l. The
choice of origin for the lowest rank non-vanishing multipole moment, which in the case of neutral
molecules is the dipole (l=1), is independent of the choice of origin, while all higher order multipoles
are not [22]. Grouping all molecular multipoles pln by their order l introduces the macroscopic
multipole densities

Ql(r) =
∑
n

plnδ(r− rn) (2.27)
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The electric field E in equation (2.25) can then be expressed as

E(r) =

∫
r− r′

|r− r′|3
[
Q0(r′)−∇′ ·Q1(r′) +∇′∇′ : Q2(r′)− . . .

]
dr′ (2.28)

By substituting the analogy [22]

4πδ(r− r′) = ∇ · r− r′

|r− r′|3 = −∇′ · r− r′

|r− r′|3 (2.29)

in (2.28) for all but the Q0-term, all terms containing Ql with l > 0 can be "pulled out" of the integral:

E(r) =

∫
r− r′

|r− r′|3 Q0(r′)dr′ − 4π
[
∇ ·Q1(r′) +∇∇ : Q2(r′)− . . .

]
(2.30)

In (2.29) and (2.30), δ represents Dirac’s delta function.

Returning to the example of the charge distribution of a molecular liquid that gets expanded around
its molecular centers, the first term in (2.30) associated with the monopole term Q0 would corre-
spond to the distribution of net molecular charge in the system of interest while the field due to all
higher order terms are summarized as the total polarization response Ptot:

Ptot = Q1(r′)−∇′ ·Q2(r′) + . . . (2.31)

The field associated with the monopole term or the free charge distribution

D(r) =

∫
r− r′

|r− r′|3 Q0(r′)dr′ (2.32)

is commonly referred to as the displacement vector D in classical electrostatics since if subject to
constant D, Q0 is constantly displaced. Because the functional form of (2.32) equals (2.23) for
E in vacuum, the scalar Q0 is often also referred to as the "free" charge in a system. Since the
higher moments summarized in Ptot do not carry net charge, they are not constantly displaced if
subjected to a field. They are therefore referred to as the "bound" charge of the system [23].
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Substituting (2.31) and (2.32) in equation (2.30) yields the constitutive relation of classical electro-
statics

E = D− 4πPtot (2.33)

Assuming the intramolecular length-scales |rnm − rn| to be small compared to the distance of the
multipole expansion centers from the point of observation |r − rn|, a truncation of higher orders
after the leading order - for a dielectric of neutral molecules, this is the dipole moment - can be
sufficient. This truncation generally is not applicable for the polarization response arbitrarily close
to real interfaces. At some point, the assumption of intramolecular length-scales being negligibly
small breaks down and the atomistic granularity of a real medium starts to show. The terminology
of "free" and "bound" charge thus loses its meaning.

It has been shown by sum-frequency vibrational spectroscopy studies for a variety of charged and
uncharged water/lipid, water/air and water/quartz interfaces [120–122], as well as molecular dynam-
ics simulations of water interfacing diamond [27, 46, 119], that quadrupole and octupole moments
can have an influence on the orientational polarization response of interfacial water. For the sake of
simplicity and while keeping this in mind, the total polarization is nevertheless assumed to be equal
to the dipole density in the following, Ptot = P = Q1. Higher orders can be re-introduced when
necessary. We furthermore focus on orientational polarization and neglect molecular polarizability.

Due to changes in position and orientation of the molecular constituents making up a macroscopic
medium at finite temperatures, the electric field in matter E = Em in (2.33) is strongly varying and
anisotropic at the atomistic level. In order to smoothen out this field and move from a vacuum
description of individual molecules to the picture of a homogeneous continuum, this microscopic
field needs to be averaged out over a "physically small" volume Ω. This volume needs to be small
compared to its distance to the point of observation but still large enough to contain a sufficient
number of molecules [123]. The sum of the field due to external charge contributions E0 as well as
the smoothed out microscopic field 〈Em〉Ω due to atomistic charge contributions

E = E0 + 〈Em〉Ω (2.34)

defines the Maxwell field E. The exact shape and form of Ω remains an open question of debate
[39] and finding the connection between Em and E is the objective of essentially all mean-field
theories of dielectrics [23, 39].

Using the definitions for P, E and D, analogues to the vacuum electrostatic Maxwell equations
(2.15) and (2.16) can be formulated:
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∇ ·D = 4πQ0 = 4πρfree (2.35)

∇×E = 0 (2.36)

From (2.35) and (2.36), the following boundary conditions at dielectric interfaces can be derived
[22]:

E‖,1 = E‖,2 (2.37)

D⊥,1 = D⊥,2 + 4πσfree (2.38)

with the subscript ‖ and ⊥ denoting the field components parallel and normal to the interface and
σfree the surface charge density at the interface. For interfaces lacking free charge carriers, this
term is omitted. So while the components parallel to an interface are continuous for E, just like in
vacuum, the normal components are not. In matter, the normal components of D are continuous.

For a pure dielectric, i.e. in the absence of free charges,(2.35) states that D is a divergence-free, or
transverse vector field. The Maxwell field E in (2.36) on the other hand is curl-free or longitudinal.
These two fields can thus be seen as the transverse and longitudinal projections of the polarization
vector field in the Helmholtz-decomposition (c.f. appendix B) of P [39, 52, 124]:

4πP = D−E (2.39)

It has been shown that the two polarization projections in (2.39) exhibit very different properties
and statistics dependent on their corresponding dynamic structure factors [39, 125, 126]. The or-
thogonality of the longitudinal and transverse projections of P furthermore implies that only the
longitudinal polarization can couple to an external electric field E0 since this is by definition a longi-
tudinal field as equation (2.35) shows.

The electrostatic relations (2.35) and (2.36) were historically formulated by Maxwell and Kelvin start-
ing from the macroscopic assumption of continuously homogeneous matter. By imagining virtual
cavities in which test charges for measuring the electric field were inserted, the above electrostatic
Maxwell equations can be derived from the vacuum Maxwell equations (2.15) and (2.16) and the
constitutive relation (2.33) [22]. The reason that in many cases this continuum picture yields the
same results as the multi-center multipole expansion ansatz of Lorentz above, which takes the
granularity of the medium into account, relies on the fact that effects on molecular length-scales
between 1 - 1000 Å oftentimes may be neglected on typical macroscopic distances of meters to
millimeters. In this case the atomistic length-scales can be considered infinitesimally small, a vol-
ume of 1000 Å

3
may be regarded as a point and all operations of differential calculus are applicable
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in good approximation [23]. For both approaches the difficulty lies in passing between a microscopic
description in terms of individual particles to a macroscopic continuum.

2.4 Dielectric susceptibility and permittivity

In order to establish a relation between the polarization P and the Maxwell field E the dielectric
susceptibility χ is introduced. In the most general sense, this relation can be written as the non-
local after-effect function [24]

P(r, t) =

∫
dr′
∫ t

−∞
χ(r, r′, t, t′)E(r′, t′)dt (2.40)

If we limit ourselves to isotropic bulk materials, translational invariance is implied which means the
above equation takes the form

P(r) =

∫
dr′
∫ t

−∞
χ(r− r′, t− t′)E(r′, t′)dt (2.41)

with the frequency ω, the k-space vector k and the Fourier transform definitions

P̃(k, ω) =

∫
exp(ikr)dr

∫ ∞
−∞

exp(iωt)P(r, t)dt (2.42)

Ẽ(k, ω) =

∫
exp(ikr)dr

∫ ∞
−∞

exp(iωt)E(r, t)dt (2.43)

χ̃(k, ω) =

∫
exp(ikr)dr

∫ ∞
0

exp(iωt)χ(r, t)dt (2.44)

The reciprocal k-space vectors k are defined as linear combinations of integer multiples of the
unit lattice vectors eki

= 2π/Li, i ∈ {x, y, z}, where L represents the length of the simulation box.
Inserting the Fourier transform expressions above, equation (2.41) transforms to

P̃(k, ω) = χ̃(k, ω) · Ẽ(k, ω) (2.45)
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using the convolution theorem [127]. Here, Ẽ and P̃ represent full transforms in time, while χ̃ only
represents a half-transform [124].

A similar Fourier space relation between the displacement field D and the Maxwell field E in form
of the dielectric permittivity ε can also be introduced:

D̃(k, ω) = ε̃(k, ω) · Ẽ(k, ω) (2.46)

Electrostatic permittivity and susceptibility are trivially linked by the relation

χ̃(k, ω) =
1

4π
(ε̃(k, ω)− 1) (2.47)

For isotropic bulk liquids like water or DCE, it is considered an experimental fact that χ is an inten-
sive material property, which means that measurements of χ for a given material are independent
of sample size and shape [124]. This implies that their dependence on molecular orientations can
only be short-ranged on macroscopic experimental length-scales [128]. However, χ denotes the
response function to the internal and continuous Maxwell field E, a quantity that as shown above,
is not concisely defined microscopically if the separation into free and bound charge becomes am-
biguous. Additionally, the Maxwell field is also not accessible experimentally. The measurable
quantity is not the field itself, but rather the voltage defined as the line integral V =

∫
E · dl [39].

Traditionally the dielectric constant is measured by comparing the voltage drop in a capacitor with
and without an inserted dielectric. Furthermore, as shown in appendix C, the application of linear
response theory using the Maxwell field E is questionable because it technically does not qualify
as an external field to the system. For these reasons, the dielectric response in (2.45) is more often
formulated with respect to an external electric field E0 in terms of a quasi-susceptibility χ0

P̃i(k, ω) = χ̃0
ij(k, ω) · Ẽ0

j (k, ω) (2.48)

The reason χ0 is represented as a tensor in (2.48) is to underscore the fact that the dielectric
response to E0 is anisotropic, even for isotropic media with scalar χ. In order to obtain a relationship
between χ and χ0, a relationship between E and E0 is needed. For moderate fields, this relation is
given by [22, 23]

Ẽi(r, ω) = Ẽ0
i (r, ω) + T̃ dd

ij (k, ω)P̃j(k, ω) (2.49)



2.4 Dielectric susceptibility and permittivity 19

In the static limit of ω → 0, it can be shown [22, 128] that the propagator T̃dd is given by

T̃ dd
ij (k, ω) ≈ T̃ dd

ij (k) = 4πkikj (2.50)

Here, kikj is to be understood as an outer product. It can be shown that the frequency dependence
of T̃dd in above equation is neglectable if the retardation in time is constantly omitted [128, 129].

In real-space this takes the form

T dd
ij (r) = ∇i∇j

1

r

=


3x2−r2
r5

3xy
r5

3xz
r5

3xy
r5

3y2−r2
r5

3yz
r5

3xz
r5

3yz
r5

3z2−r2
r5

 , r =
√
x2 + y2 + z2 (2.51)

The propagating 3x3 tensor Tdd is also called the dipole-dipole interaction tensor because it defines
the potential energy between two oriented dipoles µa and µb

uab = µai T
dd
ij (rab)µbj (2.52)

Contrary to the intrinsic material property χ, the quasi-susceptibility χ0 is neither local nor isotropic,
even for an isotropic medium like liquid water. This follows from the intrinsity of χ and the generally
non-isotropic and non-local relation between E and E0 in equation (2.49).

Inserting equation (2.49) into (2.45), letting ω → 0 and making the locality assumption χl(r) =

δ(r− r′)χ0(r′) the response relation between E0 and P in real space can be expressed as

Pi(r) = χlij(r)E0
j (r) = χlij(r)

[
E0
j (r) +

∫
T dd
jk (r− r′)Pk(r

′)dr′
]

(2.53)

In gaussian units, both χl and the analogous to (2.46) derived property εl are unitless.

The dipole-dipole interaction tensor has a singularity at zero, which also introduces a singularity
in the integral of (2.53). This singularity can be removed by splitting off the integration of a small
sphere around the origin |r− r′| < ρ and treating it separately:

∫
T dd
ij (r− r′)Pj(r

′)dr′ =

∫
|r−r′|<ρ

T dd
ij (r− r′)Pj(r

′)dr′ +

∫
|r−r′|>ρ

T dd
ij (r− r′)Pj(r

′)dr′ (2.54)
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It can be shown [22, 23, 130] that for ρ→ 0

lim
ρ→0

∫
|r−r′|<ρ

T dd
ij (r− r′)Pj(r

′)dr′ = −δij
4π

3
Pj(r) (2.55)

Above, all off-diagonal contributions vanish due to the lateral symmetry of Tdd. Inserted into equa-
tion (2.53) this gives for the relation between polarization and external field

Pi(r) = χlij(r)E0
j (r) = χlij(r)

[
E0
j (r) + lim

ρ→0

∫
|r−r′|>ρ

T dd
jk (r− r′)Pk(r)dr′ − 4π

3
δjkPk(r)

]
(2.56)

2.5 Long-range treatment of the the Coulomb interaction

In atomistic simulations of real systems the sheer number of charged particles imposes the need
for efficient techniques to calculate the long-range Coulomb interaction. As a pairwise interaction
between charged particles, the Coulomb interaction as defined by the potential (2.21) scales pro-
portional with the square of the number of charged particles N in a simulation. Even with the rise in
available computing power, this remains an issue as even simulations of small biological or catalytic
systems can easily contain beyond O(105) interacting charged particles.

The seemingly most reasonable approach of truncating the interaction at a certain distance is only
an option if the pairwise interaction potential decays faster than the inverse of the distance cubed.
This can be demonstrated by separating pairwise interactions into short- and long-range contribu-
tions at a cutoff distance rc. This cutoff radius is chosen such that below rc, pairwise interactions
are explicitly represented by a sum, while above the cutoff radius the remaining cumulative interac-
tions are sufficiently approximated by a continuous integral. The potential energy U tot of a particle
in an infinite, three dimensional molecular liquid for r > rc can be expressed as [85]

U tot =
∑
a<b

uc(rab) +
Nρ

2

∫ ∞
rc

dr u(r)4πr2 (2.57)

with the number density ρ. The truncated short-range potential uc is equal to u for r < rc and zero
otherwise. Equation (2.57) shows that the tail integral of a potential u(r) in three dimensions

U tail =
Nρ

2

∫ ∞
rc

dru(r)4πr2 (2.58)

diverges unless the interaction potential u(r) decays faster than r−3. Comparing that to the r−1-
like decay of the Coulomb potential in equation (2.21), it becomes apparent that truncating the
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Coulomb potential would lead to divergence of above integral and thus would introduce serious
errors. A discussion of these artifacts can be found in [131]. In the following two sections, two
techniques to handle long-range Coulomb interactions for polar liquids, the Ewald summation and
reaction fields, are presented. Further methods include fast multipole methods [132–135] and
particle-mesh-techniques [136–138].

2.5.1 Ewald summation

Originally formulated by Kornfeld [139], the Ewald summation treats the long-range interaction using
a periodic lattice approach [57–59]. Infinite extension of the simulation box is achieved by repeating
the primary simulation cell on an infinite periodic lattice. The Coulomb interaction can then be
calculated by two rapidly converging sums in reciprocal and real space with a defined cutoff error
[140, 141]. This has the advantage of reducing the O(N2) scaling of an explicit pairwise Coulomb
interaction calculation to O(N log(N)) [85].

For the derivation, assume a cuboid simulation cell with boxlength vector L = (Lx, Ly, Lz), volume
V box = L3 and periodic boundary conditions. The cell shall contain N charged particles while the
total charge of the system is considered to be zero. The Coulomb potential experienced by one
particle a due to all other N-1 particles in the primary cell as well as all Nm particles in the primary
cell’s periodically repeated images can then be written as

φE(ra) =

N−1∑
b6=a

qb
r

+

N∑
b

∞∑
m6=0

qb
|rab + mL| (2.59)

The integer vector m = (mx,my,mz) serves as an index for each image cell on the 3D lattice. The
sum over m runs over all permutations of this tuple and the condition m 6= 0 expresses that the
primary simulation cell with index (0, 0, 0) is not included. It is already accounted for in the first sum
of (2.59). The periodicity in L of the setup’s infinite lattice suggests the definition of reciprocal lattice
vectors k = 2π/L ·m for use in Fourier space.

The sum in above equation is poorly and only conditionally convergent when performed in real
space alone. Instead, (2.59) can be rearranged and split into two faster converging sums with a
controllable cutoff error, one in real space terminated at a distance rc and one in Fourier space
terminated at a distance kc. Very briefly, this separation can be achieved by introducing Gaussian
distributions of opposite charge around, and equal in magnitude to each point charge [85]. In this
way no additional charge gets introduced into the system but the calculated electrostatic potential
is smooth and rapidly decreasing with distance in both in real- and k-space. The nearest image
convention used in the derivation requires rc ≤ L/2 to be met.

The width of these Gaussians, the Ewald screening parameter η, does not affect the calculated
potential. It does however influence speed of convergence in both sums which is why an optimal
choice of η is crucial with regard to computational efficiency when implementing the algorithm [85].
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Expressions for the error sensitivity of the Ewald summation with respect to rc, kc and η have been
formulated in [140] and [141].

The Ewald potential (2.59) can be written as [85]

φE(ra) = φE1(ra) + φE2(ra) + φE3 (2.60)

with the k-space contribution to the potential φE1 solved in non-local Fourier space, the local con-
tribution φE2 solved in real-space and a self-interaction term φE3 stemming from not counting the
interaction of a particle with itself in the primary simulation cell. The k-space contribution is given
by

φE1(ra) =
4π

V box

∑
k6=0

N∑
b

qb
k2

exp

(
− k2

4η2

)
exp(−ikr)

=
8π

V box

∑
k>0

N∑
b

qb
k2

exp

(
− k2

4η2

)
cos(kr) , k < kc (2.61)

The real-space contribution by

φE2(ra) =
N∑
b

qb
rab

erfc(ηrab) , r < rc (2.62)

and the self-interaction contribution by

φE3 =
2qaη√
π

(2.63)

From φE the corresponding electrostatic field in Ewald geometry EE = −∇φE can be calculated.
Its k-space contribution amounts to

EE1(ra) =
8π

V box

∑
k>0

N∑
n

qb
k2

exp

(
− k2

4η2

)
sin(kr)k̂ , k < kc (2.64)
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while its real-space share is given by

EE2(ra) =
N∑
b

qb√
π

(
2η

r2
exp

(
−η2r2

)
+

√
π

r3
erfc(ηr)

)
r̂ , r < rc (2.65)

The vectors r̂ and k̂ represent the unit vectors in r and k direction. Since φE3 in (2.63) lacks spatial
dependence and therefore its gradient is zero, the total Ewald field

EE = EE1 + EE2 (2.66)

has no self-interaction contribution.

As shown in [142], the dipole-dipole interaction tensor in Ewald geometry is obtained by first cal-
culating the Ewald Coulomb potential φE,µ created by periodic arrays of boxes that contain dipoles
instead of point charges. This is achieved by making the formal substitution qb → µb∇ in (2.60).
An expression for the dipole-dipole interaction tensor TE in Ewald geometry which is equivalent to
Tdd in (2.51) can be obtained by comparing the potential energy of a dipole µa subject to φE,µ

ua = −µaiEE,µi = −µai (−∂jφE,µ) =
∑
b

µai T
E
ij µ

b
j (2.67)

As its counterpart Tdd, TE is a symmetric 3x3 tensor.

Analog to the Ewald potential, TE can be separated into the three separate contributions [48, 142]

TEij = TE1
ij + TE2

ij + TE3
ij (2.68)

Following the name convention introduced with (2.60), the k-space contribution is given by

TE1
ij = − 8π

V box

∑
k>0

exp

(
− k2

4η2

)
cos (kr)

kikj
k2

, k < kc (2.69)

where k = |k| =
√
k2
x + k2

y + k2
z and kikj represents the outer product like in (2.50). The real-space

contribution amounts to



24 Theoretical Background

TE2
ij =

[
erfc (ηr) +

2√
π

(
ηr +

2

3
η3r3

)
exp

(
−η2r2

)]
T dd
ij = ρ(r)T dd

ij , r < rc (2.70)

with the general dipole-dipole interaction tensor Tdd of (2.51). The real-space Ewald contribu-
tion TE2 differs only in the radial factor ρ(r) from Tdd for all its nine elements. Recalling r =√
x2 + y2 + z2, one can see that ρ is an even function in cartesian coordinates, thus preserving the

odd symmetry of Tdd in TE2. Apart from symmetry, TE2 also inherits the singularity of Tdd at the
origin.

To conclude, the Gaussian shielding term for compensation of the self-interaction only has an on-
diagonal contribution and is given by

TE3
ij = TE3

ii δij =
4π

3

((
η√
π

)3

exp
(
−η2r2

))
, r < rc (2.71)

Note, that contrary to the point-charge Ewald field EE in (2.66), the Ewald dipole field and conse-
quently TE, has a non-zero self-interaction contribution.

2.5.2 Reaction fields

Instead of a lattice summation over periodic images of the primary simulation cell, long-range elec-
trostatics can also be treated using a cavity model. Only inside this cavity electrostatic interactions
are modeled explicitly. The outside is coarse-grained into a continuum dielectric to which the inside
charge distribution is coupled via an implicit mean-field response in the form of a reaction field.
This has the advantage that only particles inside the primary simulation cell - the cavity - need to
be modeled explicitly and the introduction of a cutoff for the Coulomb interaction is avoided.

The total electric field Ein inside such a setup can be partitioned into the contributions [23]

Ein = Ec + Eρ + ER (2.72)

Here the cavity field Ec denotes the field that would be present in an empty cavity without the
dielectric charge distribution inside it. This includes external fields as well as fields arising due
to maintaining the electrostatic boundary conditions (2.37) and (2.38) at the cavity interface. If a
charge distribution is now introduced inside the cavity, it creates the additional field contribution
Eρ. This induces a non-zero polarization density P(r) in the dielectric which in turn again polar-
izes the surrounding continuum according to εout, resulting in a reaction field ER inside the cavity.
The reaction field can therefore be thought of as the mean-field response to the charge distribution
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inside the cavity. Even though this representation might not produce physically correct fields out-
side the cavity, it aims at reproducing the dielectric response in the domain of interest inside the
cavity. Ideally, this parametrization is independent of the charge distribution inside the cavity and
parametrizes the response of the dielectric surrounding the cavity exclusively into the shape of the
cavity and the dielectric constant of the surrounding continuum. Dependent on the cavity shape
and the nature of the surrounding dielectric, the reaction field can in principle take arbitrary form.
Provided ER is known, it can be accounted for in the system Hamiltonian like any other potential
contribution. If ER is proportional to the total dipole of the cavity M

ERi = fijMj (2.73)

the interaction between inside and outside polarization can even be incorporated in the pairwise
dipole-dipole interaction tensor via the reaction field tensor f . The energy of a dipole µa at position
ra inside the cavity is given by

ua = −µai (Eci + Eρi + ERi ) = −µai (T dd
ij

∑
b

µbj + ERi ) (2.74)

If 2.73 holds, above equation can be written as

ua = −µai

[∑
b

Tijµ
b
j + fijMj

]
= −µai

[∑
b

(Tijµ
b
j + fijµ

b
j)

]
= −

∑
b

µai (Tij + fij)µ
b
j (2.75)

The entire mean-field interaction between cavity and surrounding dielectric can thus be handled by
adding the diagonal tensor f to Tdd, which is valid inside the cavity:

TR
ij (rab) =

T dd
ij (rab) + δijfij a, b in cavity

0 otherwise
(2.76)

For spherical or spheroidal cavities embedded in a scalar dielectric, it can be shown [23] that ER

fulfills the proportionality condition (2.73) An important example is a spherical cavity with radius rc
embedded in an isotropic dielectric with permittivity εout. The reaction field tensor f in this case
reduces to the scalar

f =
1

r3
c

2(εout − 1)

2εout + 1
(2.77)
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This expression first derived by Bell [143] in the treatment of electrolyte solutions holds for an
arbitrary charge distribution inside the cavity.

2.6 The relation of the dielectric susceptibility to time-correlation func-
tions

The relation between polarization and external electric field can be examined in the framework of
linear response theory where a weak coupling between the response of a system to an external
perturbing field is described by time-correlation functions characteristic of the equilibrated system
in absence of the perturbation [24, 144]. The microscopic polarization density in an ensemble of N
dipoles can be written as

P(r) =
N∑
n

µnδ(r− rn) (2.78)

If an ensemble in microstate Γ is perturbed by a constant and weak external field E0, the Hamilto-
nian of this system can be written as

H ′(Γ) = H(Γ) +

∫
P(Γ, r)E0dr = H(Γ) +

∫
V

P(Γ,n)E0dV +

∫
∂V

P(Γ,n)E0dn

= H(Γ) + M(Γ)E0 +

∫
∂V

P(Γ, r)E0dn (2.79)

where H(Γ) represents the Hamiltonian of the unperturbed system in microstate Γ and M the total
dipole moment of the system. In order to avoid an explicit treatment of the surface integral in (2.79),
it is typically ignored and introduced at a later stage in form of a reaction field contribution [47, 49,
50, 119]. In the following this is indicated by substituting the external field E0 for the cavity field
Ec, where these surface terms are already included. Phenomenologically it can be thought of as
the field inside the simulation box when the external field E0 is applied but the dielectric filling is
removed. As such it can still be considered an external field to P(r) to the bulk polarization inside
the simulation box. Equation (2.79) then reads

H ′(Γ) = H(Γ) + M(Γ)Ec (2.80)
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The average polarization density due to the cavity field Ec can then be expressed as the difference
in polarization with field and without

∆Pi(r) = 〈Pi(r)〉Ecj − 〈Pi(r)〉 (2.81)

where 〈.〉Ec and 〈.〉 represent canonical averages for the system with and without external field
applied. The average local polarization density for a system perturbed by a constant external field
Ec is given by

〈Pi(r)〉Ecj =

∫
Pi(r) exp (−βH ′) dNΓ∫

exp (−βH ′) dNΓ
=

∫
Pi(r) exp

[
−β
(
H −Mj(Γ)Ecj

)]
dNΓ∫

exp
[
−β
(
H −Mj(Γ)Ecj

)]
dNΓ

(2.82)

If the perturbing field is weak, 〈P〉Ecc can be approximated by a first order Taylor series in Ec around
the unperturbed equilibrium average:

〈Pi(r)〉Ecj = 〈Pi(r)〉+
∂〈Pi(r)〉
∂Ecj

∣∣∣∣
Ecj=0

Ecj

= 〈Pi(r)〉+ β [〈Pi(r)Mj〉 − 〈Pi(r)〉〈Mj〉]Ecj (2.83)

Inserting equation (2.83) into (2.81) then gives for the dielectric response of a system to a perturbing
field Ec

∆Pi(r, E
c
j ) = β [〈Pi(r)Mj〉 − 〈Pi(r)〉〈Mj〉]Ecj = hij(r)Ecj (2.84)

Integrating equation (2.84) over the entire simulation box on both sides of the equation, gives the
following expression for the change in total dipole moment

∆Mi(E
c
j ) = ∆Mi = 〈Mi〉Ecj − 〈Mi〉 = HijE

c
j (2.85)
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with

Hij =

∫
V
hijdV = β [〈MiMj〉 − 〈Mi〉〈Mj〉] (2.86)

A more rigorous derivation of the linear response ansatz, from which the static dielectric constant
emerges as a special case, is presented in appendix C for a bulk dielectric and constant external
field. As is shown, the linear response ansatz implies that a perturbation of a certain wavevector
can only induce a response in the system with the same wavevector. It follows that for the calcu-
lation of the static dielectric constant, the consideration of static external fields is sufficient [24]. It
furthermore shows that linear response theory using the Maxwell field E is not technically applica-
ble because it does not represent an external field but one whose value depends on the state of
the material [128]. This is why the contributions appearing in the fluctuation terms (2.84) and (2.86)
are formulated with respect to the cavity field Ec and not the Maxwell field E.

In order to derive fluctuation formulas to calculate the dielectric constant from (2.84), an expression
for Ec in the respective system geometry needs to be derived from continuum electrostatics. In the
following three sections this is described first for polar bulk systems using the reaction field, then
for confined systems and finally periodic systems in slab geometry. All of these methods follow the
same ansatz. First, the relation between an applied external constant field E0 to the cavity field Ec

needs to be established. In a second step, the response of the dielectric to the cavity field needs
to be formulated using Maxwell electrostatics. The resulting expression ∆P(r,Ec) is then equated
to formula (2.84). After eliminating Ec on both sides of the resulting equation, one has obtained a
relationship between the local dielectric constant and the fluctuation term in (2.84).

2.6.1 Calculation of the bulk dielectric constant

Neumann [49] derived a general expression for the dielectric constant for simulations employing pe-
riodic boundary conditions in the linear response framework. This combined the Clausius-Mossotti
(CM) equation known to be applicable in spherical cutoff geometry [145, 146] and the Kirkwood-
Fröhlich (KF) equation known to hold in a reaction field [147–150] or lattice summation setup [51,
57, 142]. The formalism is sketched in the following.

Equation (2.56) connects an isotropic bulk system’s polarization response to an external field Ec(r)

via

Pi(r) = λ

[
Eci (r) +

∫
dr′T dd

ij (r− r′)Pj(r
′)

]
(2.87)
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where the singularity in the integral is removed and incorporated in

λ =
3

4π

ε− 1

ε+ 2
(2.88)

Due to the convolution integral, (2.87) is best treated in Fourier space where it can be rearranged
to

P̃i(k) = λ
[
δij − λT̃ dd

ij (k)
]−1

Ẽcj (k) = λΛ−1
ij (k)Ẽcj (k) (2.89)

where Λ−1 should be interpreted as the inverse of the 3x3 matrix

Λij(k) = δij − λT̃ dd
ij (k) (2.90)

Since we are interested in the static dielectric constant, the perturbing field Ec(k) = Ec(0) is
assumed to be constant. Furthermore we are looking for the bulk dielectric constant and hence the
polarization response of the entire system P(k) = P(0) is completely delocalized. Equation (2.89)
hence reduces to

P̃i(0) = λ
[
δij − λT̃ dd

ij (0)
]−1

Ẽ0
j (0) (2.91)

In order to solve for λ and hence the dielectric constant, Ec(0) and P(0) need to be specified. The
Fourier transform of a constant external field Ẽc(0) is given by

Ẽc(0) =

∫
V

Ecdr = VEc (2.92)

with V representing the system volume.

An expression for the P̃ is derived in the framework of linear response theory. According to (2.84),
the polarization due to a perturbation in the form of an applied external electric field Ec reads in
Fourier space

P̃i(k) =

∫
h̃ij(k)Ẽcj (k− k′) exp(−ikr)dk′ (2.93)
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For k = 0 and constant Ec this can be written as

P̃i(0) = HijE
c
j (2.94)

Inserting (2.92) and (2.94) in (2.91) and eliminating Ec allows one to establish a relation between
λ and the dipole moment fluctuations H if the zero-mode Fourier transform of the dipole-dipole
interaction tensor T̃dd(0) is known:

λ =
1

V

[
δij − λT̃ dd

ij (0)
]
Hij (2.95)

All elements of Tdd vanish due to symmetry of the integral

T̃ dd
ij (0) =

∫
T dd
ij (r)dr = 0 (2.96)

assuming the singularity of the dipole-dipole interaction tensor is already taken care of. By inserting
this in (2.95) one arrives at the familiar CM relation for the dielectric constant that is known to be
valid for simulations with vacuum boundary conditions [49]:

λ =
Hii

V
ε− 1

ε+ 2
=

4π

3

H̄

V
(2.97)

In the second line of above equation Hii can be substituted with the mean over all three dimensions
H̄ = 1/3

∑
iHii due to the assumed isotropicity of the medium.

However, this approach so far only considers explicit dipole-dipole interactions from within the des-
ignated cavity or simulation cell and the influence of a cavity-surrounding medium is not considered.
Remember the surface integral in (2.79) is assumed zero. This is equivalent to vacuum boundary
conditions which can be an inadequate assumption for the simulated system, even for a bulk liquid.
Common lattice summation methods like the Ewald summation imply conducting boundary condi-
tions at infinity [48] and a reaction field model of a cavity embedded in a dielectric εout would require
εout 6= 1 at the boundary. Neumann accounted for this by assuming a spherical cavity embedded
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in a dielectric εout and using TR instead of Tdd in (2.95). The general fluctuation formula for the
cavity dielectric constant εin in this geometry is given by

εin − 1

εin + 2
=

4π

3

H̄

V

[
1− εin − 1

εin + 2

2(εout − 1)

2εout + 1

]
(2.98)

The KF formula for the important special case of conducting boundary conditions is obtained by
letting εout →∞ in (2.98)

εin = 1 + 4π
H̄

V
(2.99)

One might ask why (2.99) is equally valid for calculating the bulk dielectric constant for cubic boxes
simulated using Ewald summation. After all, a spherical cavity is assumed in above derivation.
The reason for this lies in the truncation of the k-space sum at radius kc in lattice summation
techniques, which in real space is nothing else than a large sphere filled with repetitions of the
primary simulation cell. As such it can be interpreted as a large cavity in reaction field geometry if
the boundary conditions are handled right. This is also true for non-cubic but rectangular simulation
cells, due to the scaling of k with the boxlength.

2.6.2 Local dielectric constant calculation

A plethora of different fluctuation formulas for confined and interfacial system geometries has been
derived. Fluctuation formulas to calculate the static dielectric constant for polar fluids confined
in cylinders, slab systems and spheres with varying boundary conditions have been derived by
Ballenegger et al. [46, 47] and are frequently employed [27, 33, 74, 119, 151–155].

In most of these simulation setups the dielectric properties do not change along two coordinate axes
while varying over the third in the chosen coordinate system. The general 3x3 dielectric tensor then
reduces to

ε =

ε‖ 0 0

0 ε‖ 0

0 0 ε⊥

 (2.100)

All off-diagonal elements are zero and ε‖ and ε⊥ are decoupled.

A fluctuation formula for the local dielectric constant for periodic slab systems was derived by Stern
and Feller [50] using an infinite lattice sum geometry like the one underlying the Ewald summation
described in section 2.5.1. The derivation of this Stern-Feller (SF) fluctuation formula is outlined in
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this section. Let the radius of a sphere S enclosing these periodic repetitions be N ·L where N is an
integer and L the length of the primary cell. The origin is chosen at an arbitrary point in the primary
cell. Furthermore N is chosen to be sufficiently large for the sphere to be a valid approximation.
The slab geometry of the primary cell is periodic in the xy-plane and varies along the z-dimension.
This translates to a stack of infinitesimally thin, uniformly polarized discs that make up S. Each of
these discs is uniformly polarized by a polarization density P(z), has a radius

√
N2L2 − z2 and a

thickness of dz. The electric field at the origin due to one of these discs with a distance z 6= 0 from
the origin is then given by [50]

ξi(z) = Edisc
i (0) =

∫ √N2L2−z2

0
dρ

∫ 2π

0
dθρT dd

ij (ρ, θ, z)Pj(z)dz

=
π

N3L3

(
N2L2 − z2

)
[3δizPz(z)− Pi(z)] dz , i ∈ {x, y, z} (2.101)

with Tdd being the dipole-dipole interaction tensor of equation (2.51) and δij being the Dirac delta
function. Due to the singularity of Tdd at the origin, the case z = 0 is not considered in above
equation. Its contribution is added later. Above equation is then integrated over all discs which
gives in the limit of large N [50]

E
P(z 6=0)
i (0) = lim

N→∞

∫ NL

−NL
ξi(z)dz =

4π

V

[
δizMz −

1

3
Mi

]
(2.102)

where V and M are the volume and the dipole moment of the primary cell. Analogously to the
argumentation leading to formula (2.56), the contribution of the singularity is given by

E
P(z=0)
i (0) = −4πδizPz(z = 0) (2.103)

for the uniformly polarized disc at the origin. Due to the lateral symmetry of Tdd over the disc,
this is the only contribution from the disc at z = 0. Combining equations (2.102) and (2.103) and
recalling that the choice of origin was an arbitrary point within the primary cell, the total cavity field
for a polarized system in the described periodic slab geometry is given by

EP
i (z) = 4π

(
δiz

[
Mz

V
Pz(z)

]
− Mi

3V

)
(2.104)
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Due to the use of Tdd so far, this assumes vacuum boundary conditions. However, a periodic lattice
summation implies conducting boundary conditions [48]. By substituting TR for Tdd in (2.101), and
taking the limit εout →∞ the additional reaction field ER for the spherical cavity (2.77)

ERi = lim
εout→∞

1

r3
c

2(εout − 1)

2εout + 1
Mi =

4π

3

Mi

V
(2.105)

gets added to (2.104), which results in

EP
i (z) = 4π

(
δiz
Mz

V
Pz(z)

)
(2.106)

Inserting (2.104) in (2.53) and substituting P with the polarization fluctuation matrix h from (2.84)
one obtains

hijE
c
j = χlij(z)

[
Ecj + EP

j

]
= χlij(z)

[
Ecj + 4π

(
δjz

Hjz

V
hjz(z)

)
Ecj

]
(2.107)

With hl‖ = hxx + hyy and h⊥ = hzz as well as analog notation for εl and H one obtains the slab-
parallel fluctuation formula for the dielectric constant

εl‖(z) = 1 + 4πh‖(z) (2.108)

Its slab-normal counterpart is given by

εl⊥(z) = 1 + 4πh⊥(z)

[
1 +

(
4π
H⊥
V
− h⊥(z)

)]−1

(2.109)

Even though equation (2.109) is correct, it is very sensitive to changes in h⊥ and therefore subject
to slow convergence as shown in [50]. This can be circumvented by instead calculating the inverse
dielectric constant. Rearranging (2.109) then yields

(εl⊥(z))−1 = 1− 4π
h⊥(z)

(1 + 4πH⊥/V )
(2.110)
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Another approach to calculate εl⊥ is to calculate the local capacitances C l of a series of plate
capacitors. C l is given by the derivative

C l =
∂〈σl〉
∂〈φl〉 =

1

d
εl⊥ (2.111)

where σl represents the local charge density and φ the local electrostatic potential in a slab. The
slab thickness is represented by d. Since the change of σl with φl can be calculated from simple
averages, this method is computationally more economic than a calculation of εl⊥ via second-order
polarization fluctuations. Using a thermo-potentiostat like the one by Deissenbeck et al. [45] further
reduces the error since the potential can be assumed constant over the entire simulation box.
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Chapter 3

Methods and Benchmarks

In this chapter simulation protocols for bulk and interfacial DCE or H2O trajectories, as well as the
creation and definition of the LLI are presented. Secondly, the fluctuation formulas derived in chap-
ter 2 are applied to the generated trajectories. The dielectric constants for the H2O and DCE bulk
systems are calculated as a benchmark reference and the convergence of the total dipole fluctua-
tions is examined. Subsequently, the local dielectric constant of the interfacial H2O - DCE system is
investigated. The parallel and perpendicular components of the dielectric constant are calculated,
their convergence is tested and the applicability of the slab-model to this system is examined. Fur-
thermore, numerical instabilities and conceptual limitations of a Maxwellian permittivity in atomistic
vicinity of the interface are highlighted and discussed.

3.1 Simulation protocols

In this section the simulation and equilibration protocols for all trajectories used in this work are
presented. Each was generated via classical MD, however all concepts presented in the following
are equally applicable to any other type of canonical trajectory simulating bulk and interfaces of
molecular liquids. Simulations of liquid water and DCE were carried out both in bulk and interface
simulations. For clarity, each trajectory is referred to by its all-caps acronym in the rest of this work.

The force fields selected for trajectory generation in this work are SPC/Fw [156] for water and a
reparametrized OPLS flavour force field [157] for DCE. These force fields were selected due to
their improved experimental agreement regarding the dielectric constant [103, 157]. Both employ
harmonic bond, angle and, in the case of DCE, dihedral terms to simulate intra-molecular covalent
bonding. Non-covalent interactions are modeled according to (2.5), using a superposition of the
12-6 Lennard-Jones potential and pair-wise electrostatic interactions between atomic partial point-
charges. Bond breaking is forbidden in both cases. As proposed for these force fields [157–
159], Lorentz-Berthelot combination rules [115] were employed to evaluate inter-species Lennard-
Jones parameters for H2O and DCE atoms in interfacial simulations. Long-range electrostatics were
simulated via Ewald summation as presented in section 2.5.1. As proposed by Liu et al. [154, 157]
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a common cutoff distance of 10 Å for Lennard-Jones and short-range Ewald interaction was used
and the truncation error for the Ewald sums was set to 10−6 kcal

mol in all simulations. Furthermore,
rectangular simulation boxes and periodic boundary conditions were employed in all cases. All
trajectories were simulated in the NVT ensemble with a timestep of 1 fs and simulations were
carried out using the LAMMPS simulation package [109].

Bulk The H2OBULK and DCEBULK trajectories simulate bulk liquids consisting of 356 molecules
of H2O and 64 molecules of 1,2-dichloroethane (DCE), respectively. Both are thermostated at
298.15 K via a Nose-Hoover thermostat that is configured to match the target temperature every
100 timesteps. The length of each simulation is 30 ns and a snapshot is taken every 1 ps, totaling
30000 snapshots per trajectory. Pre-simulation, both trajectories are equilibrated subsequently in
the NVT, NPT, NVE, and again the NVT ensemble for 2 ns each. The final NVT equilibration step
is performed as a buffer before production. Past equilibration, the cubic simulation box had a side
length of 22.18 Å in the case of H2OBULK and 20.79 Å in the case of DCEBULK.

Interface The interfacial trajectory DCEH2OINT consists of 356 H2O and 252 DCE molecules
simulated at 298.15 K. The H2O and DCE phases are periodic in the xy-plane, the phase transition
occurs along the z-direction. Thermostatting and equilibration was performed analogous to the
bulk counterparts H2OBULK and DCEBULK. The simulation lasted 45 ns and a snapshot was
taken every 1 ps, totaling 45000 snapshots. Past equilibration, the brick shaped simulation box had
a sidelength of 22.41 Å in x- and y-direction and 91.69 Å in z-direction. This corresponds to a H2O
phase that spans roughly 22 Å and a DCE phase that spans roughly 60 Å in z-direction, even though
the precise extents of each phase may vary over time. The use of periodic boundary conditions
creates a lower and an upper interface between H2O and DCE. This terminology refers to each
interface’s average z-coordinate. In order to utilize both the upper and the lower LLI, a copy of the
entire trajectory was rotated by 180 degrees around the y-axis, essentially inverting upper and lower
LLI. Both the original and flipped instance of the trajectory were furthermore periodically shifted
along the z-axis to place the average z-coordinate of the LLI closest to the origin at z = 0. This
results in the DCE phase occupying the z-axis negative halfspace and the H2O phase occupying
the z-axis positive half-space, separated by the lower LLI in the original instance and the upper
LLI in its flipped copy. Assuming both the DCE and H2O phase are sufficiently large to reach bulk
behaviour, hence the upper and lower LLI are decorrelated, the effective length of the trajectory
can be doubled for interface analysis. The effective sampling rate of the present 45 ns trajectory is
therefore equivalent to a 90 ns trajectory where only one LLI is used.

3.2 Dipole clusterings

Coarse-graining from atomistic to dipole trajectories is performed by representing a group of atoms
with net zero charge in the atomistic trajectory by their dipole moment calculated according to
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(2.26). The two types of clusterings used in this work are portrayed in figure 3.1. Molecular cluster-
ing, where all atoms of a molecule form a dipole, was employed for coase-graining both H2O and
DCE phases. In the case of DCE, the additional 2xCCl clustering was used where each carbon-
chlorine leg and its adjacent hydrogen atoms of a DCE molecule are clustered into two individual
dipoles. Intensive investigations via diffraction methods and spectroscopy show that liquid DCE at
room temperature occurs in two different main conformations [157, 160].

Figure 3.1 – Molecular and 2xCCl clustering for trans and gauche DCE (left and middle) and molecular
clustering for H2O (right). The molecularly clustered trans DCE conformer assumes a molecular dihedral
angle of "around 180◦", the chlorine atoms lie on opposite sides of the DCE carbon-carbon axis. For gauche
DCE the dihedral angle lies between 30◦ and 90◦, which means the chlorine atoms lie on the same side of
the carbon-carbon axis. The molecular dipole of trans DCE is thus significantly smaller than gauche DCE.

For the leftmost trans DCE conformer in figure 3.1 with a molecular dihedral angle ≈ 180◦, the chlo-
rine atoms lie on opposite sides of the DCE carbon-carbon axis. In the gauche conformer portrayed
in the middle, with a dihedral angle between 30 and 90 degrees, the chlorine atoms lie on the same
side of the carbon-carbon axis. As a result, a molecular clustering for the two dominant DCE con-
formers thus exhibits two very different average dipole magnitudes as the two chloromethyl groups
of the DCE molecules either cancel or support each other’s contribution to the dipole moment. This
is visualized by the blue distribution in figure 3.2. For a 2xCCl clustered DCE phase these two
peaks collapse as shown by the orange distribution in 3.2 since the length of a carbon-chlorine leg
stays rigid in comparison. Comparing the 2xCCl to the molecular clustering in DCE thus provides
a possibility to test the influence of dipole rigidity on dielectric properties of the coarse-grained tra-
jectory. A comparison of the orange and green distributions in 3.2 furthermore reveals that dipoles
in 2xCCl clustered DCE and molecular clustered H2O are quite similar in magnitude. The 2xCCl
dipoles are significantly less variable however, since they are dominated by the relative position of
C and Cl in the chloromethyl groups.

In both molecular and 2xCCl clustering, the cluster center of mass was chosen as the space point
of the dipole vector. Since all clusters are neutral and the dipole thus represents the leading order
in the multipole expansion, the choice of the space point should not matter. Choosing the center of
charge for example would be an equally valid alternative.
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Figure 3.2 – Distribution of the dipole magnitude of DCE in molecular (blue) and 2xCCl clustering (orange) as
well as H2O in molecular clustering (green).The magnitude of the molecular DCE dipole changes significantly
between trans and gauche conformation. For 2xCCl clustered DCE, the distribution of group diples is narrow
since the length of a carbon-chlorine bond stays constant in comparison. The 2xCCl clustered DCE dipole
and the H2O molecular dipole are similar in magnitude, 2xCCl is significantly more rigid however.

3.3 Instantaneous interface calculation

In order to statistically sample the region of a phase transition between two immiscible liquids like
H2O and DCE, an interface is needed as a point of reference.

The topology of a solid-liquid or solid-solid interface is naturally defined by the rigid surface of
the solid and changes comparatively little over the course of a trajectory. However, an interface
between two immiscible molecular liquids like H2O and DCE at ambient temperatures lacks this
point of reference. It changes with time as capillary waves smooth out the interfacial structure [31,
161] and dissociating droplets can lead to interface fragmentation.

A rigid mathematical surface derived from density averages like the Gibbs dividing interface [106]
looses relevant information as it does not accommodate for such roughness of the interface. To
address that issue, we follow a procedure proposed by Willard and Chandler [162] for a liquid-vapor
interface and employed by Liu et al. [154] for a DCE-H2O LLI to capture said instantaneous fluctu-
ations. This procedure coarse-grains the discrete instantaneous density of any i th cluster center at
position ri at time t: ρ(r, t) =

∑
δ(r−ri(t)) into a continuous density by convoluting ρ with a normal-

ized Gaussian and subsequently mapping it onto a regular grid. Following [154, 162], the half-width
of the Gaussian kernel is chosen to be 2.5 Å which is approximately the molecular diameter of water
and as such constitutes the smallest independently moving entity in the simulation. Additionally, this
parameter is comparable to the empirical parameter used to truncate the capillary wave spectrum
in capillary wave theory [163–166] as pointed out in [154]. Resolving a LLI in atomistic trajectories
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beyond this resolution is meaningless, particularly since this work focuses on molecular polarization
at the interface. Analogous to [154], the instantaneous interface is chosen by the "10-90" criterion
[31, 167] which constitutes the iso-surface between the H2O and DCE phase where water density
has decreased by 90% compared to its bulk value and is frequently employed to determine the
interface position between non-solid phases [168–170]. This iso-surface is extracted employing the
Marching-Cubes algorithm [171], an efficient 3D iso-surface construction technique that computes
a triangulated mesh iso-surface from regularly spaced density values.

Droplets / Residues

Lower instantaneous interface

Upper instantaneous interface

Figure 3.3 – The instantaneous DCE-H2O LLI is chosen by the "10-90" criterion which constitutes the iso-
surface between the H2O and DCE phase where water density has decreased by 90% compared to its
bulk value. The two largest sets of connected vertices are selected as the lower and upper triangulated
instantaneous LLI, depending on their average z-coordinate vertex value. Vertices distinct from these two
largest connected submanifolds are discarded. They can stem from single molecules or small droplets of
one phase inside the other as well as numerical noise.

From the potentially total iso-surface obtained via the Marching Cubes algorithm, the two largest
sets of connected vertices are selected as the lower and upper instantaneous interface, depending
on their average z-coordinate vertex value. Vertices distinct from these two largest connected
submanifolds are discarded. These smaller droplets and residues can stem from single molecules
or small droplets of one phase inside the other and the degree of fragmentation is furthermore
dependent on the width of the chosen Gaussian kernel. The lower instantaneous interfaces in red
and the upper instantaneous interface in blue are depicted for a snapshot of a H2O - DCE interface
simulation in figure 3.3.
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In figure 3.4 the probability distribution of the disconnected manifolds per iso-surface in each snap-
shot is shown on the left. Distribution peak and minimum coincide at a number of two disconnected
manifolds. For higher counts of disconnected manifolds the distribution decays rapidly and no snap-
shot contains more than six disconnected manifolds. This confirms that a distinct upper and lower
LLI can be identified in each snapshot and droplet formation is the exception. Discarding the smaller
manifolds in our description as well as the choice of parameters for LLI creation are therefore con-
sidered to be valid. On the right the distribution of vertices per disconnected manifold exhibits two
clearly distinct regimes. The higher regime resembling a Gaussian distribution is centered around
900 vertices per manifold and represents the large connected sheets of upper and lower LLI. The
lower regime exhibits two peaks approaching zero vertices per manifold on its left and 100 on its
right. The peak closer to zero most likely represents residues of the density iso-surface due to ther-
mal fluctuations while the peak around 100 vertices per manifold is more likely to be associated with
opposite phase molecules. The distinct peak furthermore suggests that only individual molecules
of the opposite species penetrate the phase boundary.

Figure 3.4 – Left side: Probability distribution of the disconnected manifolds per iso-surface in each snap-
shot. The distribution peak and minimum coincide at a number of two disconnected manifolds, for higher
counts the distribution decays rapidly. This confirms that a distinct upper and lower LLI can be identified
in each snapshot and droplet formation is the exception. Right side: Distribution of vertices per discon-
nected manifold, where two regimes are visible. The Gaussian distribution centered around 900 vertices per
manifold represents the large connected sheets of upper and lower LLI.

The distance of a point in space to the instantaneous interface is obtained by projecting the cluster
center onto the triangulated LLI along the z-axis and is independent of the laboratory frame of
the simulation. This approach significantly reduces the dimensionality of the problem because it
decouples a cluster’s interfacial distance in z-direction from its exact 3D location with respect to
the interface. The long range dynamic behavior of two so obtained instantaneous interfaces with
respect to the upper and lower water phase boundaries, if not correlated, allows the calculation
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of the dielectric response via ensemble averages only dependent on instantaneous LLI distance.
As shown in the following section, the dielectric profiles with respect to the instantaneous interface
differ significantly from the results obtained with respect to a rigid interface and captures significantly
more detail. It should be noted however, that the reduction of the instantaneous interface to a 1D
profile in z-direction also omits lateral cross correlation effects in the electrostatics which can not
be cleanly separated from the influence of capillary smoothing.

Figure 3.5 – Distribution of the angle between the triangulated LLI’s normal vectors and the z-axis. A mean
value of 2.01 degrees and a median value of 0.98 degrees of this distribution indicate that the deviation from
the xy-plane, which would be a zero angle against the z-axis, is small.

The distribution of the angle α of the triangulated instantaneous LLI normal vectors against the
z-axis is portrayed in figure 3.5. With a mean value of 2.01 degrees and a median value of 0.98
degrees this distribution indicates that the deviation from the xy-plane, which would be a zero angle
against the z-axis, is small. The approximation of a slab-system that is infinitely extended in xy-
direction is valid using the instantaneous LLI as reference. In addition to the LLI described above,
a planar interface only dependent on the average density in each snapshot is used for comparison
in this work. It is similar to the thermodynamically defined Gibbs dividing interface [31] and placed
at the average z-position of all vertices of the instantaneous LLI in each snapshot. If derived from
an instantaneous LLI created via the "10-90" criterion with respect to the water phase as described
above, the plane is located where the water density has declined by 90% on average in each
snapshot. It is referred to as the Gibbs LLI in the following.

In figure 3.6 the slab-averaged molecular number density profiles in z-direction are shown with
respect to the Gibbs LLI in blue and the instantaneous LLI in orange. In both cases the total
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number density is indicated by a solid, the DCE density by a dashed and the H2O density by a
dotted line.

Figure 3.6 – Comparison of the slab-averaged molecular number density profiles in z-direction is shown with
respect to the Gibbs LLI in blue and the instantaneous LLI in orange. The total number density is indicated
by a solid, the DCE density by a dashed and the H2O density by a dotted line.

Compared to the Gibbs LLI density profile, the instantaneous LLI density profile has significantly
more structure. Here, solvation shell formation can be observed in both the DCE phase on the left
and the H2O phase on the right. These structural deviations from the bulk liquid phase densities are
observed in many computer simulations [27, 28, 31, 33, 84, 119] of solid/liquid interfaces as well as
in ion hydration [172–174] and are attributed to the mutual alteration of van-der-Waals interactions
by the other phase. In the present example, the first two solvation shells up to an interfacial distance
of ~10 Å away from the LLI are most prominent after which the oscillations decay rapidly and the
density approaches the respective bulk values. Between the peaks of the first solvation shell in H2O
and DCE, a depletion zone where the number density is at its global minimum can is observed. In
case of the Gibbs LLI slab system, the transition between the DCE and H2O bulk phase is sigmoid
as the instantaneous LLI structure gets entirely smoothed out.
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3.4 Fluctuation formula benchmarks for the bulk permittivity

In the following we use the KF equation (2.99) derived in 2.6.1 to compute the scalar dielectric
constant for the bulk trajectories of water and DCE:

ε = 1 +
4π

3V

∑
i

Hii = 1 +
4π

V
H̄ (3.1)

To recall, the derivation of this formula first requires equating two expressions for the change in
polarization density ∆P under application of an external electric field. The first expression for the
polarization density ∆P is derived using continuous Maxwell electrostatics as described in section
2.6.1. It is equivalent to the polarization build-up in the dielectric of a charged plate capacitor, a
picture that becomes very intuitive if one remembers that ∆P is enclosed by conducting boundary
conditions as a response to an external electric field. Its statistical mechanics counterpart is derived
in the linear response formalism as described in 2.6 and sets ∆P in relation to Hii. The applied
electric field assumed in both expressions is subsequently eliminated on both sides of the equation
which yields an expression for the permittivity only in terms of the equilibrium dipole fluctuations Hii

and is independent of the field applied.

Above equation furthermore implies a scalar dielectric constant expected for isotropic bulk liquids
like H2O and DCE. This assumes all non-diagonal elements of the total dipole fluctuationsHij , i 6= j

to be zero and the on-diagonal elements Hii to be equal if sufficiently converged. The bulk per-
mittivity benchmarks were calculated using the H2OBULK trajectory in the case of H2O and the
DCEBULK trajectory in the case of DCE. The coarse-graining from atomistic to dipole trajectories
was achieved by molecular clustering in both cases. In the case of DCE an additional 2xCCl clus-
tering was performed in order to test the sensitivity of the bulk dielectric constant to the clustering
type.

From these dipole trajectories the diagonal elements of the total dipole moment fluctuation tensor,
Hii and subsequently the dielectric constant was calculated using equation (3.1). The values for
Hii, H̄ and ε are presented in table 3.7:

Hxx Hyy Hzz H̄ ε εref

H2O molecular 117.80 118.47 115.76 117.34 77.87 78.1 [156]
DCE molecular 12.35 12.57 12.87 12.60 10.87 10.78 [175]
DCE 2xCCl 12.35 12.57 12.87 12.60 10.87 10.78 [175]

Figure 3.7 – Bulk dielectric constants for H2O and DCE.

A comparison of the last two columns shows that the calculated bulk permittivities ε are in good
agreement with the values for the bulk dielectric constant εref reported in literature for both SPC/Fw
[156] and DCE [157] at the given temperature.
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Table 3.7 furthermore shows that the values for Hii and subsequently ε are identical for both the
molecular and 2xCCl clustering performed on the DCE trajectory. This is expected in the case of
neutral clusters like the ones performed for DCE because the choice of the expansion centers has
no influence on the leading order expansion term - which is the dipole for neutral clusters. The
total dipole moment of the simulation cell in each snapshot thus stays the same and the different
clusterings represent just two different ways to sum up this total dipole moment in each configu-
ration. Furthermore, the Hii values in x- y- and z-direction are identical within ± 1% of H̄ for all
dipole trajectories. This is expected because both H2O and DCE are isotropic liquids and as such
the dielectric permittivity, which parametrizes the response of a medium to an applied electric field,
should be scalar. No preferred direction hence exists.

In figure 3.8, the convergence of Hii is portrayed for the dipole trajectories considered. Here, the
blue lines represent averages for H̄ and the grey lines the directional Hii over an averaging time
T ave. The blue channel in both plots indicates a ± 1%, the orange channel a ± 3% window around
the maximal averaging time Tmax of 30 ns.

(a) DCE, 2xCCl clustering. (b) H2O, molecular clustering.

Figure 3.8 – Relative convergence of the dipole fluctuation matrix H and the average over its trace, H̄, for
DCEBULK (left) and H2OBULK (right) bulk simulation boxes for H2O and DCE. For DCEBULK a confident
convergence of H̄ into the ± 1% channel is achieved after roughly 10 ns, the time needed to converge the
same expressions for H2OBULK is achieved after 20 ns.

It is visible that for both the H2O and DCE case, the fluctuation terms are subject to a slow conver-
gence of several nanoseconds. While in the case of DCEBULK a confident convergence of H̄ into
the ± 1% channel is achieved after roughly 10 ns, the time needed to converge the same expres-
sions for H2OBULK is achieved after 20 ns, even though the number of H2O molecules is almost
six-fold the number of DCE molecules. Figure 3.8 also shows that the individual components Hii

still visibly fluctuate outside this channel. The slow convergence of the Hii can be attributed to their
quadratic nature since they represent time-correlation functions of second order. This observation
is well understood and documented in literature [39, 51–74]. In order to account for the already
considerable cost of simulating a 30 ns trajectory, the ± 3% confidence intervals for Hii and ± 1%
confidence intervals for H̄ were considered sufficient.
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3.5 Fluctuation formula benchmarks for the interfacial permittivity

In contrast to the isotropic bulk systems treated above, the dielectric response of less symmetric
systems is anisotropic. The permittivity can then no longer be expressed as a scalar ε but needs
to be treated as a space dependent 3x3 tensor ε in the most general case. In the case of the
DCEH2OINT interfacial system, each phase is still infinitely expanded in the xy-plane. However,
translational invariance is broken in z-direction. This implies that, in contrast to the bulk systems,
translational invariance of ε can no longer be assumed over the entire simulation box because the
H2O and DCE phases’ structure changes anisotropically towards the phase transition region.

To recall from section 2.6.2, the local permittivity tensor εl of such a slab-like system simulated in
Ewald geometry takes the form

εl =


εl‖ 0 0

0 εl‖ 0

0 0 εl⊥

 (3.2)

with the interface-parallel component εl‖ given in (2.108) by

εl‖(z) = 1 + 4πh‖(z) (3.3)

and the interface-perpendicular component εl⊥ given in (2.110) by

(εl⊥)−1 = 1− 4π
h⊥(z)

(1 + 4πH⊥/V )
(3.4)

As mentioned in section 2.6.2, the reason for the inverse in (3.4) is numerical stability. It jumps
the eye that equation (3.3) is functionally identical to the bulk formula (3.1) if the fluctuation term
for the polarization density h‖ is substituted for the fluctuation term of the total dipole moment H.
This is intuitively understood if the periodic slab system is viewed as a plate capacitor enclosing a
multi-layered dielectric stacked in z-direction. As shown by Neumann and Steinhauser [49], the use
of the Ewald lattice summation imposes conducting boundary conditions at infinity. A conducting
surface is equivalent to having a dielectric boundary with an infinite dielectric ε = ∞. A constant
external field E0

‖ applied in x-direction is thus equivalent to charging the yz-plane at x = ±∞. These
boundary conditions are the same in both the bulk and the slab system. For the slab system, the
charge on the capacitor plates at infinity would vary to fulfill Maxwell boundary conditions but the
dielectric phase boundaries along the z-axis of the stacked dielectric slabs are never crossed by the
field lines of E0

‖ . Both the bulk and slab system thus see the same boundary conditions for parallel
fields.
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This is not the case for a field E0
⊥ applied along the z-axis over the stacked dielectric layers. Here,

the field lines do cross the boundaries between slabs while the bulk system still only sees its pair of
conducting boundary conditions at z = ±∞. The fluctuation formulas for the slab and bulk system
hence deviate functionally from one another.

If (3.3) and (3.4) are applied to a bulk trajectory like H2OBULK or DCEBULK with only one slab
spanning the entire simulation box, they both collapse to the CM bulk fluctuation formula (3.1). If
all off-diagonal elements of the permittivity tensor εl are zero, the fluctuation formulas for εl‖ and ε⊥
are furthermore completely decoupled.

Figure 3.9 – Components of the polarization fluctuation matrix h as calculated from the DCEH2OINT trajec-
tory, molecularly clustered. The H2O phase occupies the positive half-space and the DCE phase occupies
the negative half-space. In line with the observations made in figure 3.8, the results in the water phase are
noisier. A clear phase transition separating the phases is additionally visible in windowed averages of h‖ but
not in h⊥. All cross-contributions hij are negligible.

All nine components of the polarization fluctuation matrix h as calculated from the DCEH2OINT
trajectory, molecularly clustered, are plotted in figure 3.9 with respect to interface distance. As
discussed in section 3.3, the H2O phase occupies the positive half-space while the DCE phase
occupies the negative half-space. Each h component is portrayed with respect to instantaneous
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LLI distance, represented by the blue line, and the average Gibbs LLI distance represented by the
orange line. The fluctuation term for one specific z-distance is calculated from all molecules whose
center of mass lies within a slab that is bounded by two z-shifted copies of the LLI. In both cases, this
shift defining the the slab-thickness was chosen to be 0.23 Å . The slab volume of the instantaneous
LLI is fluctuating over the course of the trajectory. The average slab volume over the entire trajectory
is used for V in (3.3) and (3.4) in this case. The volume normalization in the polarization fluctuation
terms h is performed using the instantaneous slab volume. As shown in figure 3.5, the deviations
of the instantaneous LLI from a mathematical plane are rather small. The plate capacitor model
thus remains a good approximation for the slab system, both with instantaneous and Gibbs LLI
reference. From 3.9 various important observations can be made. The diagonal elements of h

parallel to the interface, h‖, equilibrate to distinct values at bulk distances, visibly separating the H2O
and DCE phase. As expected, these values are identical for both the Gibbs and instantaneous LLI
reference. Towards the interface, both these parallel components of h exhibit multiple peaks in the
blue line, that mainly follow the structure of the density solvation shells but are disproportionately
more pronounced in the H2O phase. The curves for both hxx and hyy are also comparable in
value as the symmetry of the slab system suggests. Interestingly, the orange Gibbs LLI profiles
for hxx and hyy also peak in the water phase at a distance of ~3.5 Å , even though these peaks
do not show in the density profiles of figure 3.6. This suggests that the preferential orientation
of molecular dipoles at the interface is not fully reflected in the number density profile, even in the
Gibbs LLI reference system with its sinusoidal transition between constant bulk number densities. A
notable change in value of h⊥ = hzz separating the bulk phases of H2O and DCE is not observed,
apart from fluctuations over the phase transition, which are significantly more pronounced in the
instantaneous than the Gibbs LLI reference system. Compared to its parallel counterparts, the
overall absolute values of h⊥ are also significantly smaller.

Figure 3.10 – Sixth order Butterworth lowpass filter with cutoff frequency at 1/2.5 Å
−1

to reduce noise in ε.
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While the average value of h⊥ deep in the DCE phase is similar to its parallel equivalent h‖, the
values at bulk water distances is smaller by roughly a factor of five. The overall signal-to-noise ratio
is also significantly worse in comparison, particularly in the H2O phase. Figure 3.9 further shows
that the off-diagonal cross terms hij are small compared to the on-diagonal elements. They never
exhibit values greater than 5% of their on-diagonal counterparts in the same slab. This further
supports the use of the plate capacitor fluctuation formulas (2.108) and (2.109) which assume all
off-diagonal tensor elements to be zero due to symmetry reasons.

With h, εl‖ and εl⊥ can be calculated according to the SF fluctuation formulas (3.3) and (3.4). The
results for εl‖ are shown in blue on the left axis, while number densities are plotted in grey on the
right axis for reference. The horizontal red lines left and right of the origin mark the values measured
for the dielectric constant of the bulk systems presented in table 3.7. The canonical average εl‖ =

(εlxx + εlyy)/2 is taken in order to improve statistics. This is valid due to the translational invariance
in the xy-plane of the assumed slab model. A 6th order Butterworth lowpass filter as portrayed
in figure 3.10 is additionally applied to the calculated permittivities and plotted in orange. The
cutoff frequency is chosen at 1/2.5 Å

−1
since this corresponds to the extents of the H2O molecule,

the smallest cluster present in the simulation. Variations in ε on submolecular lengthscales are
assumed to have no influence on the orientational polarization response of the medium. Higher
frequencies are thus attributed to noise and suppressed. In order to prevent phase distortion in the
filtered signal, the lowpass filter is combined with a forward-backward filter.

Figure 3.11 – εl‖ profile calculated using equation (3.3) for DCEH2OINT, molecularly clustered, in the in-
stantaneous LLI reference system. The pure signal is portrayed in blue and with a Butterworth lowpass filter
applied in orange. The first solvation shell is the most pronounced in both the DCE phase on the left with a
peak of εl‖ = 22 and the H2O phase on the right with a peak of εl‖ = 140. Between the first solvation shells of
the both phases, a depletion region where εl‖ ≈ 5 forms the global minimum of the dielectric response.

The profiles for εl‖ follow h‖ since the two quantities are trivially linked by (3.3). Results in the
instantaneous LLI reference system are portrayed in figure 3.11. The permittivity profile in this case
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follows the number density profile with visible peaks towards the interface. The first solvation shell
is the most pronounced in both the DCE phase on the left with a peak of εl‖ = 22 and the H2O
phase on the right with a peak of εl‖ = 140. After that the amplitude of oscillations decays rapidly
further away from the interface and the value of εl‖ approaches the scalar εbulk in both phases.
Oscillations in εl‖ with minor amplitude prevail further into bulk than fluctuations in the molecular
number densities. Between the first solvation shells of the both phases, a depletion region where
εl‖ ≈ 5 forms the global minimum of the dielectric response. This can be mostly attributed to a lack of
orientable molecules in this region. Similar depletion regions have been observed in simulations of
diamond interfacing water [119] and other solid/liquid interfaces [74, 151, 155] and recently reported
experimentally by Fumagalli et al. for water in immediate vicinity of two-dimensional boron nitride
films [29].

Figure 3.12 – εl‖ profile calculated using equation (3.3) for DCEH2OINT, molecularly clustered, in the Gibbs
LLI reference system. The pure signal is portrayed in blue and with a Butterworth lowpass filter applied in
orange. Even though all density oscillations are averaged out, the dielectric constant exhibits a clear peak
with a maximum value of εl‖ = 96 at 3.5 Å away from the interface before retracting to minor oscillations
around the H2O bulk value of εbulk = 78.1. Similar peaks in the DCE phase are not observed.

The corresponding results in the Gibbs LLI reference system are portrayed in figure 3.12, the raw
profile as calculated by the SF equation (3.3) again represented by the blue line and with the
lowpass filter applied in orange. Even though all density oscillations are averaged out as is visible
in the sinusoidal density profile portrayed in grey on the right axis, the dielectric constant exhibits a
clear peak with a maximum value of εl‖ = 96 at 3.5 Å away from the interface before retracting to
minor oscillations around the H2O bulk value of εbulk = 78.1. This clearly visualizes the difference
in character of h, and consequently ε, as a second order correlation function compared to the
zero-order density profile. Similar peaks in the DCE phase are not observed.

For both LLI reference systems, εl‖ is always positive and greater than one. This means the polar-
ization response is never greater than the D field created by the free charge carriers of the system.
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It is thus compatible with the classical framework of Maxwellian electrostatics in matter. In both 3.11
and 3.12, fluctuations of εl‖ around the bulk value are visible far into the H2O phase, an effect that
is a consequence of the locality assumption for εl as for example shown by Schaaf et al. [84] in the
case of spherically confined water. Other reasons might include artifacts due to deviations from the
perfect capacitor model due to interfacial irregularities or ripples which might result in perturbations
of electric field lines.

Figure 3.13 – εl⊥ profile calculated using equation (3.4) for DCEH2OINT, molecularly clustered, in the in-
stantaneous LLI reference system. The pure signal is portrayed in blue and with a Butterworth lowpass filter
applied in orange. (εl⊥)−1 turns negative with its minimum located roughly at the peak of the first solvation
shell in both phases. This negative correlation between the polarization P and the applied field E0 implies
that P has an amplifying effect if E0 is applied, breaking energy conservation.

The inverse perpendicular component of the SF permittivity tensor (εl⊥)−1 can be calculated from
hzz according to (3.4). Its profile is portrayed in figure 3.13 for the instantaneous LLI reference
system and in figure 3.14 for the Gibbs LLI reference system. Inspecting the (εl⊥)−1 profile for the
instantaneous LLI, a clear qualitative difference to εl‖ is visible. Most prominent, (εl⊥)−1 turns nega-
tive with its minimum located roughly at the peak of the first solvation shell in both phases. In both
DCE and H2O (εl⊥)−1 bottoms at roughly -0.5. This negative correlation between the polarization
P and the applied field E0 implies that P has an amplifying effect if E0 is applied. In the absence
of free charge, this would break the conservation of energy in classical electrostatics. In order to
reach the positive reference bulk values indicated in red as well as its global maximum of 0.9 oppo-
site the global density minimum, (εl⊥)−1 also exhibits multiple zero-crossings. This implies infinite
permittivity εl⊥ =∞, which in the present slab model correspond to tinfoil conducting sheets at the
zero-crossings of (εl⊥)−1. Applying a constant field E0 from one direction would lead to a changing
sign in the polarization profile. This would only be possible if the tinfoil sheets would carry free
charge carriers. Even though the examined DCEH2OINT trajectory exclusively consists of neutral
DCE and H2O molecules, additional free charge would have to be introduced to accommodate for
the non-Maxwellian behaviour of a granular dielectric.
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Figure 3.14 – εl⊥ profile calculated using equation (3.4) for DCEH2OINT, molecularly clustered, in the Gibbs
LLI reference system. The pure signal is portrayed in blue and with a Butterworth lowpass filter applied in
orange. The profile is qualitatively identical compared to the instantaneous LLI reference system, albeit with
more smeared out peaks.

A qualitatively identical assessment can be made for the (εl⊥)−1 profile for the Gibbs LLI reference
system portrayed in figure 3.14, albeit with more smeared out peaks. Zero-crossings and negative
εl⊥ are still observed. The smaller amplitude of the oscillations highlights the considerable lower
signal-to-noise ratio of εl⊥ compared to εl‖. The numerical noise even exceeds the difference be-
tween bulk permittivities. The perpendicular component of the permittivity tensor is thus harder to
converge and the predicted polarization response deviates from a Maxwellian dielectric in case of
adjacent granular liquid phases. Its apparent unphysicality does not mean however that the calcu-
lated local εl⊥ can not be used to quantify the polarization response to an external field. It needs
to be acknowledged however, that additional couplings to E0 take place in granular dielectrics that
can not be represented by a local proportionality constant εl between P and E0. In the interfacial
region, these contributions don’t average out due to symmetry breaking which leads to coupled
energy reservoirs not accounted for in a Maxwellian dielectric. At the core of the breakdown of the
Maxwellian picture lies that at the small interfacial distances of several Angstrom, the separation
into free and bound charge is no longer valid because intra-molecular distance can no longer be
assumed to be sufficiently small compared to the distance between cluster center and observer.
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Chapter 4

Folding the Polarization with the
Dipole-Dipole Interaction Tensor

While approaches presented in the previous two chapters for calculating a local dielectric constant
have been proven very successful and have been frequently employed in confined liquid systems,
they nevertheless only apply to very specific system geometries. The derivation of these formulas
is specific to each setup and the complexity of the derivation is determined by the analytical solution
to the corresponding electrostatic problem. All of them rely on the decoupling of the dielectric tensor
into parallel and perpendicular components, effectively solving a dielectric plate capacitor problem
for various sets of coordinates. Among other assumptions, like the Ewald geometry dictating con-
ducting boundary conditions, off-diagonal elements of the dielectric tensor are a priori assumed to
be zero. In this chapter an alternative approach is presented, which solves the general electrostatic
problem based on polarization fluctuations and gives access to a full, spatially resolved dielectric
tensor for arbitrary geometries. This approach based on discretizing the dipole-dipole interaction
tensor and subsequently turning the basic relation of electrostatics into a kernel-convolution prob-
lem is presented in the following. All formulas are derived for systems in Ewald geometry but the
presented approach is transferable to any kind of pair-wise Coulomb potential.

4.1 Formalism

As was shown in section 2.4, a system’s linear polarization response ∆P to an external perturbation
in form of a static cavity field Ec can be established via a local dielectric susceptibility function χl(r)

via

∆Pi(r, E
c
j ) = χlij(r)

[
Ecj +

∫
V
dr′Tjk(r− r′)∆Pk(r

′, Ecj )

]
(4.1)



54 Folding the Polarization with the Dipole-Dipole Interaction Tensor

Both χl and the dipole-dipole interaction tensor T represent 3x3 tensors while ∆P and Ec comprise
3-dimensional vectors. In addition to the above electrostatic relationship, linear response theory
provides the expression (2.84) for the excess polarization ∆P in terms of the polarization fluctuation
matrix h:

∆Pi(r, E
c
j ) = β [〈Pi(r)Mj〉 − 〈Pi(r)〉〈Mj〉]Ecj = hij(r)Ecj (4.2)

Inserting (4.2) in (4.1) yields

hij(r)Ecj = χlij(r)

[
Ecj +

∫
V
dr′Tjk(r− r′)hkj(r

′)Ecj

]
hij(r) = χlij(r)

[
1 +

∫
V
dr′Tjk(r− r′)hkj(r

′)

]
(4.3)

The electric field in above equation cancels out due to the linearity of the sum under the convolution
integral and the fact that the external field Ec is identical in both (4.2) and (4.3).

Due to the spatial dependence of χl, equation (4.3) contains both a point-wise multiplication and
a convolution in r. A transformation to Fourier space in order to exploit the convolution theorem
hence does not provide the desired simplification because the convolution under the integral would
merely shift to a convolution with χl. The ansatz of Neumann [48, 49] used to calculate the bulk
dielectric constant in (2.95) is not applicable to solve (4.3) for χl. In order to circumvent this issue,
an attempt is made to directly solve the convolution integral in (4.3) by viewing it as a kernel-
convolution problem.

Besides the ensemble average, the calculation of the polarization density fluctuations h require
a spatial averaging over finite domains in space. If without loss of generality these domains are
chosen to be regularly spaced 3-dimensional voxels, the integral I in (4.3) can be discretized and
reads

I(r) =

∫
V
dr′Tjk(r− r′)hkj(r

′) =
∑

(m′,n′,p′)

∫ x+n

x−n

∫ y+m

y−m

∫ z+p

z−p

Tjk(r− r′)hkj(r
′)dx′dy′dz′ (4.4)

The indices (m,n, p) represent the voxel indices in each dimension. Each voxel is defined such that
its volume is given by
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V vox[m,n, p] = [xn −∆x, xn + ∆x]× [ym −∆y, ym + ∆y]× [zp −∆z, zp + ∆z]

= [x−n , x
+
n ]× [y−m, y

+
m]× [z−p , z

+
p ] (4.5)

where the discretized spatial vector r̂ = r[n,m, p] constitutes the voxel center and ∆i defines the
voxel half-length. The polarization fluctuation term h(r′) = h[m′, n′, p′] is constant over V vox as it
represents the volume the polarization is spatially averaged over. It can hence be pulled out of the
integral allowing for the integration over the dipole-dipole interaction tensor T. Then (4.4) takes the
form

I[m,n, p] =
∑

(m′,n′,p′)

∫ x+n

x−n

∫ y+m

y−m

∫ z+p

z−p

Tjk(r− r′)dx′dy′dz′ hkj [m,n, p]

=
∑

(m′,n′,p′)

T̂jk[n− n′,m−m′, p− p′]hkj [m,n, p]

= (T̂jk ∗ hkj)[n,m, p] (4.6)

Using this result, (4.3) can be written in the discretized form

hij [n,m, p] = χlij [n,m, p]
(

1 + (T̂jk ∗ hkj)[n,m, p]
)

(4.7)

which can be solved for χ via

χlij [n,m, p] = hij [n,m, p]
(

1 + (T̂jk ∗ hkj)[n,m, p]
)−1

(4.8)

Since χ and ε are trivially linked this also provides a discretized fluctuation formula for the local
permittivity εl,

εlij [n,m, p] = 1 + 4πhij [n,m, p]
(

1 + (T̂jk ∗ hkj)[n,m, p]
)−1

(4.9)

The continuous convolution T and h in (4.1) is replaced by a discrete convolution of T̂ and h in
(4.8) and (4.9). If regularly spaced voxels are chosen as the spatial averaging volume for h, this
discrete convolution can be efficiently solved via Fast Fourier Transform (FFT) [176]. The piecewise
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integrated dipole-dipole interaction tensor T̂ is furthermore independent of h and only indirectly
coupled to the simulation performed through the functional form of the long-range Coulomb inter-
action. As an example, in Ewald geometry T̂ depends on the size of the simulation box and the
Ewald screening parameter employed but it is independent of temperature, number of particles or
the phase composition in simulations containing interfaces. To view it as a pretrained kernel that is
convoluted with the simulation-specific polarization fluctuation matrix h is thus a good comparison.

In order to use (4.9) in an actual integration, the MxNxP tensors h and T̂ need to be known.
Analogously to the slabwise binning employed in previous chapters, the polarization fluctuation
matrix h can be calculated binned in the desired resolution. Naturally a trade-off between numerical
accuracy and spatial resolution remains, depending on system size and length of the trajectory
used.

The elements of the discretized dipole-dipole interaction tensor integral T̂ are derived in the next
chapter for the Ewald dipole-dipole interaction tensor TE. While the approach is in no way limited to
this choice of T, it is presented here since all trajectories are simulated using Ewald summation for
long-range electrostatics. It furthermore should be noted that while a regular grid is advantageous
because the discrete convolution can be solved via FFT, this approach is not limited by different
spatial averaging volumes for h.

4.2 Projection of the Ewald dipole-dipole interaction tensor onto a
regular grid

As shown in section 2.5.1, the dipole-dipole interaction tensor in Ewald geometry can be separated
into the three separate contributions

TE
ij = TE1

ij + TE2
ij + TE3

ij (4.10)

where TE1 represents the k-space contribution, TE2 the real-space contribution and TE3 the self-
interaction that needs to be subtracted [48, 142]. The individual contributions are truncated at the
cutoff radii kc for TE1 in reciprocal space as well as rc for TE2 and TE3 in real space. In order to
comply with the nearest image convention of the Ewald sum, the condition rc ≤ L/2 needs to be
met [140].

Following the name convention introduced in chapter 2, the k-space contribution is given by

TE1
ij = − 8π

V box

∑
k>0

exp

(
− k2

4η2

)
cos (kr)

kikj
k2

, k < kc (4.11)
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where the reciprocal vectors k are defined as linear combinations of integer multiples of the unit
lattice vectors eki

= 2π/Li, i ∈ {x, y, z}, η represents the Ewald screening parameter and V box the
volume of the simulation box.

The real space contribution is given by

TE2
ij =

[
erfc (ηr) +

2√
π

(
ηr +

2

3
η3r3

)
exp

(
−η2r2

)]
T dd
ij = ρ(r)T dd

ij , r < rc (4.12)

where Tdd represents the general 3x3 dipole-dipole interaction tensor introduced in equation (2.51).
The real-space Ewald contribution TE2 differs only in the radial factor ρ(r) from Tdd for all nine
elements of TE2. Recalling r =

√
x2 + y2 + z2, one can see that ρ is an even function in cartesian

coordinates, thus preserving the odd symmetry of Tdd in TE2. Apart from symmetry, TE2 also
inherits the singularity of Tdd at the origin.

The Gaussian shielding term for compensation of the self-interaction only has an on-diagonal con-
tribution and is given by

TE3
ij = TE3

ii δij =
4π

3

((
η√
π

)3

exp
(
−η2r2

))
, r < rc (4.13)

In order to calculate the elements T̂[m,n, p] for the Ewald dipole-dipole interaction tensor its three
contributions in (4.10) need to be integrated over the voxel volume V vox[m,n, p]. Technically, the
cutoff radius rc may lead to discontinuities in the real-space integrands TE2 and TE3 for certain
voxels. We will ignore this cutoff when formulating these integrals here and will return to their
treatment in the following section.

The voxel integral over the k-space term TE1 has the solution

T̂E1
ij [m,n, p] =

∫ x+n

x−n

∫ y+m

y−m

∫ z+p

z−p

TE1
ij (r)dr

= − 8π

V box

∑
|k|>0

exp

(
− k2

4η2

)
kikj
k2

∫ x+n

x−n

∫ y+m

y−m

∫ z+p

z−p

cos (kr) dr

= − 64π

V box

∑
|k|>0

exp

(
− k2

4η2

)
kikj
k2

cos (kr̂)
∏

l∈{x,y,z}

∆lsinc(kl∆l) (4.14)
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The k-summands differ from the summands of TE1 only in the product over the sinc functions

sinc(kl∆l) =
sin(kl∆l)

kl∆l
(4.15)

where the value at the singularity kl∆l = 0 is defined as

lim
kl→0

sin(kl∆l)

kl∆l
= 1 , ∆l 6= 0 (4.16)

While individual components kl of the k-space vector can be zero, we require a finite voxel size,
∆l > 0 always. This means that sinc is well defined and continuous as used in (4.14).

The roots of the sinc function are located at kl∆l = nπ, n ∈ Z. This is only achieved for ∆l = Ll/2,
meaning in voxels spanning the entire simulation box in l-direction. This implicates that for such a
voxel, the contribution to the sum (4.14) is zero for all k-vectors with kl 6= 0. As a consequence,
if a single voxel spans the entire box, the k-space contribution (4.14) is zero since k = (0, 0, 0) is
explicitly excluded. In a simulation setup, this situation would occur in a completely translationally
invariant periodic bulk system like H2OBULK or DCEBULK.

The voxel integral over the self-interaction term TE3 is calculated similarly straightforward and has
the analytic solution

T̂E3
ii [m,n, p] =

∫ x+n

x−n

∫ y+m

y−m

∫ z+p

z−p

TE3
ij (r)dr

=
π

6

∏
l∈{x,y,z}

(erf(η(x̂l + ∆l))− erf(η((x̂l −∆l))) (4.17)

where erf denotes the error function.

Contrary to T̂E1 and T̂E3 the calculation of the voxel integral over the real-space Ewald contribution
T̂E2 requires additional diligence due to its singularity at the origin. The integration of (4.12) over
the origin voxel V 0 = V [0, 0, 0] needs to be treated individually. If we split off the integration over a
sphere V ε with radius ε < min{∆x,∆y,∆z} around the origin, we can write
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T̂E2
ij [0, 0, 0] =

∫ ∆x

−∆x

∫ ∆y

−∆y

∫ ∆z

−∆z

ρ(r)T dd
ij (r)dr

=

∫
V ε
ρ(r)T dd

ij (r)dr +

∫
V 0\V ε

ρ(r)T dd
ij (r)dr

=
4π

3

∫
V ε
ρ(r)δij(r)dr +

∫
V 0\V ε

ρ(r)T dd
ij (r)dr

=
4π

3
ρ(0) +

∫
V 0\V ε

ρ(r)T dd
ij (r)dr

=
4π

3
+

∫
V 0\V ε

ρ(r)T dd
ij (r)dr (4.18)

where in the second line the definition of Tdd (2.51) and the identity (2.29) was used while δ is to
be understood as a Dirac delta function. Since ρ(0) = 1, the contribution of the singularity to T̂E2

ij is
the same in Ewald and non-Ewald geometry and amounts to [23, 49, 130]

lim
ε→0

∫
V ε
TE2
ij dr =

4π

3
δij (4.19)

Once the singularity is excluded, integrating TE2 over a spherical volume centered around the
origin evaluates to zero due to the symmetry of Tdd. The radius ε chosen in (4.18) therefore does
not matter as long as it lies completely within the origin voxel V 0.

The integral of Tdd over V 0/V ε is not automatically zero, even for homogeneous media. The reason
that it evaluates to zero in the calculation of the bulk dielectric constant via the KF formula (2.99)
even in rectangular simulation boxes using lattice summation techniques [47–49] is the use of the k-
space cutoff kc. In real-space, this geometry setup is equivalent to a large sphere filled by repeating
primary simulation cells. Therefore ε can be chosen equal to this radius and the remainder integral
vanishes.

For all other voxels, T̂E2 is well defined. However, the integral over the tensor elements must be
computed numerically since there exists no analytical solution to the best of knowledge.

4.2.1 Grid geometry and classification of voxels

Depending on the continuity of the integrand and singularities in a voxel, different integration meth-
ods may apply. This classification is illustrated in figure 4.1 for cubic voxels sliced at z = 0. Here,
four distinct voxel types can be identified.

The real-space integrands TE2 and TE3 are both truncated at r = rc, hence their contribution to
TE[m,n, p] may vary. For the voxels marked blue in figure 4.1 that lie entirely within the sphere of rc,
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Figure 4.1 – Integration over TE for cubic voxels sliced at z = 0. The real-space integrands TE2 and TE3

are both truncated at r = rc while TE1 has no cutoff in real space. If the entire voxel [m,n, p] lies within the
sphere of rc, both (4.12) and (4.13) contribute fully to T̂E[m,n, p] (blue). If the entire voxel lies outside rc,
they do not contribute at all (grey). Partially contributing voxels are sampled using Monte-Carlo integration
(orange). TE2 has a singularity at the origin which is why the origin voxel needs to be treated separately.

the real-space integrands (4.12) and (4.13) are sufficiently smooth over the entire voxel integration
volume because they are not truncated. If the entire voxel [m,n, p] lies within the sphere of rc,
both (4.12) and (4.13) contribute fully to T̂E[m,n, p]. For these voxels marked blue in figure 4.1
the integrand is sufficiently smooth over the entire integration volume of the voxel. In this case, the
analytical result (4.14) is used for T̂E3 and (4.12) is numerically integrated to obtain T̂E2. Another
possibility is for the entire voxel to lie outside the cutoff sphere as indicated by the grey voxels
in (4.1). Both T̂E2 and T̂E3 evaluate to zero in this case. In a third possibility branded orange,
the sphere cuts through the voxel. This leads to either a rather complex integration volume of the
sphere cutting through the voxel or discontinuous real-space integrands. The former drastically
complicates the search for an analytic solution while the latter makes the numerical integration
unstable due to the lack of continuous derivatives. In order to circumvent these problems, these
voxels are integrated over using Monte-Carlo integration

∫
V
f(r)dr =

V

N

N∑
n

f(rn) (4.20)

for N random points rn inside the integration volume. Evaluating whether a voxel lies completely
inside, partially inside or completely outside the sphere can be very efficiently calculated as shown
in appendix F. Note that for T̂E1[m,n, p] these distinctions are not necessary because the k-space
contribution to the Ewald summation is only truncated in reciprocal space. Since (4.11) additionally
has no singularities, the analytic solution (4.14) can be used for all voxels. The final voxel type
concerns only T̂E2[0, 0, 0] because it contains the singularity at the origin inherited from Tdd. It is
treated by splitting up the integral according to (4.18). This method requires that the singularity is
located at the center of the voxel, which is why the number of voxels along each dimension is chosen
to be always odd. Additionally, the voxel needs to be chosen in such a way that it completely lies
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within the real-space cutoff sphere. This is not a limit to the applicability of this method to certain
geometries but rather defines a minimal initial resolution of the convolution kernel T̂E. Multiple
individual voxels can of course be recombined together if h for the system of interest is constant for
such a recombined subdomain. On another note, this method is not limited to cubic voxels but is
applicable to any orthorhombic voxel shape.

This method hence provides a general fluctuation formula for the full permittivity tensor of arbitrary
dielectric systems as long as they are simulated in a rectangular geometry, which does not cause
any practical limitations. The results presented here are valid for toroidal boundary conditions in
Ewald geometry, but equation (4.9) can also be used for different setups if T̂E is adapted accord-
ingly. In figure 4.2 surface cuts at x =2.04 Å for all nine elements of T̂E are portrayed in 0.22 Å
resolution. The cuts reflect the persymmetry of its integrand, the dipole-dipole interaction tensor
TE. The on-diagonal elements are unique, while all off-diagonal elements are symmtetric to the
diagonal.

4.3 Bulk and slab geometry as special cases

The fluctuation formula for εl in equation (4.9) represents the general case of the local dielectric
response to an external electric field in Ewald geometry. Consequently, the KF fluctuation formula
for the bulk permittivity (2.99) as well as the SF parallel (2.108) and perpendicular (2.109) fluctuation
formulas for a periodic slab-like system should turn up as special cases of (4.9). This is derived and
tested on the H2OBULK and a DCEH2OINT trajectories also used for the benchmark permittivity
calculations in section 3.4 and 3.5. In accordance with the trajectories, rectangular simulation boxes
and periodic boundary conditions are assumed in the following.

4.3.1 Derivation of bulk formula

The dielectric properties of the bulk simulation box introduced in section 3.4 are described by a
scalar, spatially independent permittivity. The system’s polarization response caused by an external
electric field is constant and isotropic over the entire box and it follows from (4.1) and (4.2) that
h[n,m, p] = h can be assumed constant as well. Hence instead of using a regularly spaced grid,
the entire simulation box can be represented by only a single voxel with a half-length of ∆l = Ll/2,
l ∈ {x, y, z}. The scalar permittivity furthermore does not allow for cross-coupling between P and
E0 which implies that all off-diagonal tensor elements of h are zero. Equation (4.9) then takes the
form
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Figure 4.2 – Surface cuts at x =2.04 Å for all tensor elements of T̂E with 0.22 Å resolution. The cuts reflect
the persymmetry of TE. The on-diagonal elements are unique, while all off-diagonal elements are symmetric
to the diagonal.

εii[0, 0, 0] = ε = 1 + 4πhii

(
1 + (T̂ii ∗ hii)

)−1

= 1 + 4πhii

(
1 + hii

∫
V

(TE1
ii + TE2

ii + TE3
ii )dr

)−1

= 1 + 4πhii

(
1 + hii

(
−4π

3
+

∫
V
TE3
ii dr

))−1

(4.21)

As explained in the previous section, all elements of the k-space contribution T̂E1 vanish as a
consequence of (4.14) if the voxel spans the entire box. Since the real space cufoff-radius of the
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Ewald summation rc fulfills rc ≤ L/2, the integral over this voxel T̂E2 reduces to an integral over a
sphere with radius rc. The only contribution to T̂E2 thus stems from the singularity at the origin, all
other contributions vanish due to the angular symmetry of Tdd.

It follows that if T̂E3 is sufficiently approximated by the solution for V → R3

T̂E3
ii = lim

V→R3

∫
V
TE3
ii dr =

4π

3
(4.22)

it cancels the real-space contribution in the denominator integral of (4.21) and the KF formula (2.99)
for a periodic system with conducting boundary conditions

ε ≈ 1 + 4πhii = 1 +
4π

V
Hii = 1 +

4π

V
H̄ (4.23)

is recovered. It should be noted that no assumptions regarding the boundary conditions at infinity
have been made. Rather, the equivalence to the fluctuation formula in reaction field geometry with
conducting boundary conditions at infinity is a direct consequence of the functional form of the
Ewald dipole-dipole interaction tensor. The present derivation of this result conveniently avoids the
rather complex electrostatic substitution pictures used in the original derivation by Neumann and
Steinhauser [48] and the concept is easily transferrable to other system geometries than Ewald.
The H2OBULK reference simulation, which employs an Ewald screening parameter η = 0.3659 and
a cutoff radius rc = 9 Å, T̂E3

ii evaluates to 4/3π within the simulation’s set accuracy a = 10−6 for the
Ewald summation.

4.3.2 Derivation of slab formulas

Consistent with the reference DCEH2OINT interface simulation, we assume a periodic slab sys-
tem that is stacked in z-direction and translationally invariant in the xy-plane. For such a system,
equation (4.9) reduces to

εij [0, 0, p] = εij [p] = 1 + 4πhij [p]
(

1 + (T̂jk ∗ hkj)[p]
)−1

(4.24)

In order to compare this result to the SF fluctuation formulas (2.108) and (2.109), T̂ = T̂E has to
be summed over in xy-direction.

Its elements in this projection are portrayed in figure 4.3. Here, off-diagonal elements T̂ cross =

T̂ij , i 6= j and the on-diagonal elements parallel to the slabs T̂|| = T̂xx = T̂yy are presented on the
left. The slab normal components T̂⊥ = T̂zz are presented on the right.



64 Folding the Polarization with the Dipole-Dipole Interaction Tensor

Figure 4.3 – Slabwise T̂ summed over in xy-direction. Off-diagonal elements T̂ cross = T̂ij , i 6= j and the
on-diagonal elements parallel to the slabs T̂|| = T̂xx = T̂yy (both left) evaluate to zero over the entire box.
The only non-zero contribution is T̂⊥ (right). The integral over the origin voxel returns T̂⊥[0] = 4π and yields
a value of T̂⊥[p] ≈ 4π∆z/Lz in every other voxel.

The first thing that comes to eye in the left plot is that all cross-terms T̂ cross as well as the T̂|| are
zero over the entire box. The k-space contribution T̂E1

|| evaluates to zero because the voxels span
the entire box in xy-direction. The sinc function in (4.14) hits a root for ∆l = Ll/2, l ∈ {x, y, z}.
All contributions in the k-space sum are therefore zero, except for k-vectors k = (0, 0, kz) because
sinc(0) = 1. These terms however are zero nonetheless for T̂ cross and T̂|| because of the term
kikj
k2

in (4.14) and the only non-zero T̂E1 contribution is T̂⊥ = T̂zz. The off-diagonal elements
of T̂E2 in a slab with homogeneous h are zero due to the uneven symmetry of Tdd, while T̂E3

lacks non-zero off-diagonal components. All T̂ cross evaluate to zero in a homogeneously polarized
slab. The independence of parallel and perpendicular components in slab geometry is thus a direct
consequence of the functional form of TE and does not need to be introduced due to macroscopic
symmetry reasons. This separation gets passed on into the formulas for calculating the χl and εl

tensors as shown below. It legitimizes the use of a series of plate capacitors as a substitution picture
in slab geometry with perfectly homogeneous lateral polarization. If valid, εl can be calculated via
the capacity of a plate capacitor (2.111) which only requires the average change in charge with
potential. Since both of these are first-order quantities, this is much cheaper than calculating εl

via slower converging second-order polarization fluctuations. Conversely, the T̂ cross behaviour also
quantifies that the serial plate capacitor surrogate model breaks down if the polarization fluctuation
term exhibits lateral structure within a slab. The T̂ cross can then no longer be assumed to be zero
and the dielectric response becomes truly anisotropic. There is strong theoretical [177–180] and
experimental [181–183] evidence that water forms ice-like structures particularly in the first solvation
shells at solid-liquid interfaces. Also, the presence of ions as well as crystal or amorphous structure
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of the solid interface might seed lateral structure in polarization fluctuation terms, particularly in
immediate vicinity of the interface. Considering this, the presented method by discrete convolution
(DC) might provide a more accurate way of coarse-graining the dielectric behaviour of the liquid
phase in such systems.

The diagonal real-space components T̂E2
|| and T̂E3

|| both form Gaussians with opposite signs that
cancel each other out. Hereby, the value of the T̂E2 singularity at the origin is compensated by the
remainder integral in the origin voxel. This keeps T̂E2

|| a smooth Gaussian-like function that mirrors
the Gaussian of T̂E3

|| . The convolution in (4.24) thus evaluates to zero for the slab-parallel elements
of the permittivity tensor εl|| = εlxx = εlyy and the parallel fluctuation formula reads

εl|| = 1 + 4πh|| (4.25)

This is precisely the SF fluctuation formula (2.108) for parallel slab-like systems. Naturally, the
results for the parallel dielectric constant should be identical whether they are calculated by this
formula derived from system symmetry or by directly using the projected dipole-dipole interaction
kernel and formula (4.24). As shown in a εl‖ comparison for DCEH2OINT in the instantaneous
LLI reference system in figure 4.4, this is the case to very good agreement. Apart from negligible
numerical errors, the DC εl|| result in orange is identical to reference εl|| calculated with the SF
formula (2.108) - note that the blue line is hidden underneath the orange line.

The perpendicuar projections of the Ewald voxel integrals T̂⊥ do not evaluate to zero as can be seen
from the right hand plot in figure 4.3. While the integral over the origin voxel returns T̂⊥[0] = −4π it
yields a value of T̂⊥[p] ≈ 4π∆z/Lz in every other voxel. Over the entire box, the origin and all other
voxels compensate each other within the limits of numerical errors. This constant shift compared
to the parallel components can be attributed to the T̂E1

⊥ that are non-zero for slab-like voxels in
z-direction. Note that T̂E is also not a smooth function over the origin, the zero voxel remainder
integral thus does not compensate the singularity.

Since all cross-terms are zero, inserting T̂⊥ into the convolution yields

εl⊥[p] = 1 + 4πh⊥[p]
(

1 + (T̂⊥ ∗ h⊥)[p]
)−1

= 1 + 4πh⊥[p]

(
1− 4πh⊥[0] +

4π

Lz

∑
p

h⊥[p]

)−1

(4.26)

Rearranged for (εl⊥)−1 this is

(εl⊥)−1 = 1− 4π
h⊥(z)

(1 + 4πH⊥/V )
(4.27)
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Figure 4.4 – Comparison of εl|| profile calculated by discrete convolution (DC) (orange) to reference εl||
profile calculated with the SF formula (2.108) (blue, hidden underneath orange) for DCEH2OINT in the in-
stantaneous LLI reference system. Both profiles coincide apart from negligible numerical errors. The DC
profile even reproduces the statistical noise of h due to the linearity of the convolution operation. No artificial
introduction of boundary conditions is necessary since this information is already incorporated in T̂E.

which is the same as the SF fluctuation formula for the inverse local permittivity (2.109). Figure 4.5
shows a comparison of the inverse local permittivity (εl⊥)−1 calculated using the DC method and
its SF reference. Analogously to the parallel case in figure 4.4, both methods yield identical results
within the margin of errors - note again that the blue line is hidden underneath the orange line.

Both results for εl|| and (εl⊥)−1 reproduce their reference for conducting boundary conditions, even
though no explicit assumptions regarding the boundary conditions were made in the discrete con-
volution approach. Consistent with the bulk result, summing up both the parallel (4.25) and and
perpendicular (4.27) ε elements over all slabs returns the bulk formula (4.23). This is a conse-
quence of all elements of T̂E evaluating to zero if this sum is performed. Both DC profiles even
reproduce the statistical noise of h due to the linearity of the convolution operation.

All possible frequency filters like the lowpass filter portrayed in figure 3.10 used for smoothing out
noisy intra-molecular frequencies in chapter 3.5 can be used as well. Using it in the DC formalism
is computationally even more efficient since the filter can directly be multiplied with the T̂ - kernel
prior to convolution.
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Figure 4.5 – Comparison of (εl⊥)−1 profile calculated by discrete convolution (DC) (orange) to reference
(εl⊥)−1 profile calculated with the SF formula (2.108) (blue, hidden underneath orange) for DCEH2OINT in
the instantaneous LLI reference system. Both profiles coincide apart from negligible numerical errors. The
DC profile even reproduces the statistical noise of h due to the linearity of the convolution operation. No
artificial introduction of boundary conditions is necessary since this information is already incorporated in
T̂E.
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Chapter 5

Distance-dependent molecular
orientation at the Water-Dichloroethane
interface

In this chapter the molecular structure of both the H2O and DCE phase at the LLI is investigated.
The structure is assessed in form of bivariate distributions of two independent angles per molecule
against the instantaneous LLI reference of the H2ODCEINT trajectory. In section 5.1, the choice
of these angles is discussed. In sections 5.2 and 5.3, the resulting distributions are presented and
analyzed with respect to distance from the liquid-liquid interface. This chapter mainly reproduces
and interprets results obtained by Zhu Liu in his doctoral thesis [184].

5.1 Formalism

In order to perform the statistical binning necessary to obtain insights into the molecular orienta-
tional distribution at the interface, the orientations of individual molecules need to be comparable.
This requires a molecular coordinate system, which can be spanned by defining two orthonormal
vectors m̂ and p̂ for both types of molecules as visualized in figure 5.1.

In the case of water, the primary orientational vector p̂ is chosen to align with the molecular dipole
µ. The secondary vector m̂ = p̂ × l̂ is perpendicular to the plane spanned by p̂ and the vector
l̂ connecting both hydrogen atoms. For a planar molecule like water, µ lies within the molecular
plane, which makes m̂ the molecular plane surface normal. The three coordinate vectors p̂, m̂,
and p̂× m̂ thus span a right-handed orthonormal coordinate system.

In the case of DCE, the molecular dipole µ is not a stable coordinate vector because molecular
torsion has significant influence on its magnitude. Anchoring the molecular coordinate system at
the dipole vector would thus greatly increase numerical errors because even thermal fluctuations in
bondlengths could change the orientation of µ.
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Figure 5.1 – Molecular coordinate systems for H2O (left) and DCE (right). For H2O the primary orientational
vector p̂ is chosen to align with the molecular dipole µ. The secondary vector m̂ = p̂×l̂ is perpendicular to the
plane spanned by p̂ and the vector l̂ connecting both hydrogen atoms. For DCE the vector p̂ = m̂× (ĉ1− ĉ2)
is chosen instead of the dipole, since µ changes with DCE conformation. The C-C axis constitutes the
second coordinate vector m̂ for DCE.

Compared to water, DCE has two dominant conformers as can be seen in the distribution of the
dihedral angle for the DCE phase as presented in figure 5.2 where the conformer probability is
plotted against the dihedral angle on the left axis. In the conformer definition we follow [157], where
DCE molecules with dihedral angles between 30 degrees and 90 degrees are defined as gauche,
while a molecule with dihedral angle between 150 degrees and 210 degrees is declared trans. In
the gauche case, the two carbon-chloride (C-Cl) bonds of the chloromethyl groups of DCE have
parallel components when projected onto each other while in the trans case the orientation of the
C-Cl bonds is almost anti-parallel. The limiting angles for each conformer are indicated by black
dashed lines in figure 5.2. It is furthermore visible that the weight of the perfect cis conformer with
a dihedral angle around zero is negligible in the probability distribution. The recorded trans/gauche
ratio is consistent with first principle calculations [185, 186].

Comparing the dipole magnitudes of the gauche and trans conformers on the right axis of figure
5.2, it becomes visible, that the magnitude of the molecular dipole moment |µ| = µ is negatively cor-
related with the dihedral angle of DCE. While the C-Cl orientation in the gauche case is constructive
and the DCE molecule thus has an overall greater dipole than the individual chloromethyl groups,
their nearly anti-parallel orientation with respect to the molecular center of mass, which represents
an idealized inversion center in the trans case, results in an almost zero-magnitude dipole of trans
DCE molecules.

On a side note, figure 5.2 additionally shows that there are slightly more gauche conformers for the
interfacial DCE - the blue line - as compared to the bulk reference simulation indicated in orange.
This is in agreement with the observation that the DCE phase forms solvation shells and thus gets
"polarized" when in contact with an also polarized water phase. This difference in figure 5.2 is
observable but small as the influence of the interface diminishes at distances of ~8 Å into the bulk
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Figure 5.2 – DCE conformer distribution (left axis) and average magnitude of the DCE molecular dipole
(right axis) plotted against dihedral angle. The limiting angles for trans and gauche conformer are indicated
by black dashed lines.

compared to over 60 Å of the total phase. A spatially resolved profile of the interface/bulk ratios for
number densities of gauche and trans DCE is examined later in this chapter.

Since µ is not a stable coordinate vector in case of DCE the vector

p̂ = m̂× (ĉ1 − ĉ2) (5.1)

is chosen as a substitute, as shown on the right side of figure 5.1. Here ĉ1 and ĉ2 are defined as the
normal vectors of the two planes that the C-Cl bonds span with the C-C axis of the DCE molecule.
The choice of this vector as the primary molecular coordinate vector for DCE has two advantages.
First, it is perpendicular to the C-C axis, which constitutes the second coordinate vector m̂ for the
DCE molecule. p̂, m̂ and p̂× m̂ thus form an orthonormal coordinate system. Second, choosing p̂

instead of µ̂ as coordinate vector avoids the following numerical stability issues.

In figure 5.3, the distributions for three possible primary DCE coordinate vectors are portrayed, all
calculated for the DCEBULK trajectory. On the bottom x-axis, the distribution for |p| = |m×(c1−c2)|
from (5.1) is displayed in orange and |p†| = |m × (c1 + c2)| in blue. The distribution of µ in grey is
depicted on the top x-axis. All three distributions exhibit two dominant peaks.
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However, the lower-magnitude peak of both the grey and blue distribution is very close to zero. This
means that a significant portion of DCE molecules has µ and p† vectors with close to zero magni-
tude. If chosen as molecular coordinate vectors, even small intramolecular atomic displacements
are significant in comparison. Such displacements are always present at finite temperature and
as a consequence would render the orientation of the coordinate system very unstable. Addition-
ally, the normalization required for coordinate vectors would mean dividing by very small numbers,
which would introduce further numerical errors. In the distribution of p on the other hand, the low-
magnitude peak is shifted comfortably far away from the origin at |p̂| = 4.4 Å and the weight of the
distribution at zero magnitude is negligible. Above instabilities are thus avoided if p̂ is chosen over
µ̂ or p̂† as the primary DCE coordinate vector.

Figure 5.3 – Bottom axis: Distribution of |p†| = |m × (c1 + c2)| (blue) and |p†| = |m × (c1 − c2)| (orange).
Top axis: Distribution of |µ| (grey). Grey and blue distributions both have a dominant peak very close to
zero magnitude. This introduces instabilities since even small thermal displacements of cluster atoms can
change the orientation of such a coordinate vector. Additionally, the normalization required for coordinate
vectors would mean dividing by very small numbers, which would introduce further numerical errors. The
orange distribution for |p| does not share this problem, since its low-magnitude peak is shifted comfortably far
from the origin at |p̂| = 4.4 Å and its weight at zero magnitude is negligible. For this reason p̂ = m̂× (ĉ1− ĉ2)
is chosen as the primary coordinate vector for DCE.

In figure 5.4, the relation between the molecular dipole µ and the primary and secondary DCE
coordinate vectors p̂ and m̂ is visualized. Here, γ denotes the angle between µ and p̂ and α

the angle between µ and m̂. Both angles, γ on the left and α on the right, are plotted against
the molecular dihedral angle of DCE. The magnitude of the dipole µ increases gradually with the
dihedral angle as indicated by the colorbars. Naturally, the gauche conformer within the light blue
region exhibits a higher µ than the trans conformer in the orange region. For DCE in gauche
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conformation, µ is perpendicular to both p̂ and m̂ on average. The angular spread does not exceed
90± 10◦, hence µ can be thought of as aligned with the third molecular coordinate vector p̂× m̂ in
good approximation. For DCE in trans conformation on the other hand, the spread in α and γ rises
steeply. Both γ and α exhibit huge spreads in angle for small dipole magnitudes µ, which again
illustrates why the dipole disqualifies as a molecular coordinate vector for DCE. The increasing
instability of γ towards a perfect cis conformation which has a dihedral angle of 0◦ adds to that
even though this influence is minor due to the negligible weight of dihedral angles below 10◦ in the
distribution of figure 5.2.

(a) Correlation between dihedral angle and γ. (b) Correlation between dihedral angle and α.

Figure 5.4 – For DCE in gauche conformation, µ is perpendicular to both p̂ and m̂ on average. The angular
spread does not exceed 90 ± 10◦, hence µ can be thought of as aligned with the third molecular coordinate
vector p̂ × m̂ in good approximation. For trans DCE γ and α exhibit huge spreads in angle for small dipole
magnitudes µ, which again illustrates why the dipole disqualifies as a molecular coordinate vector for DCE.

To summarize, the presented choices of p̂ and m̂ for H2O and DCE introduce a right handed,
orthonormal coordinate system per molecule type. Both of these coordinate systems are robust
with regard to molecular torsion and bond bending which are present during finite temperature MD
simulations with non-rigid bonds and angles.

In order to quantify the molecular structure of the interface at the origin, the joint bivariate distri-
bution Hz(cos θ, φ) is calculated slabwise with respect to z-distance to the interface. Here, θ and φ
represent the azimuthal and polar angle the LLI normal vector n takes on in the molecular coordi-
nate systems introduced in figure 5.1. The angle θ is therefore given by the angle between p̂ and n̂

and φ represents the angle between the vector m̂ and the projection

n⊥ = n− n · p̂
|n| p̂ (5.2)

A schematic representation of this is portrayed in figure 5.5.
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Figure 5.5 – The presented choices of p̂ and m̂ for H2O and DCE introduce a right handed, orthonormal
coordinate system per molecule type. θ and φ represent the azimuthal and polar angle the LLI normal vector
n takes on in these molecular coordinate systems. The interfacial distance of a molecule is defined as the
distance between the molecular center of mass and the corresponding projected point of reference on the
liquid-liquid interface. Said point of reference is defined as the projection of the center-of-mass onto the
triangulated continuous surface along the z-direction. The LLI normal vector applicable for each molecule
is defined as the surface normal vector at the point of reference. cos θ is chosen instead of θ in the joint
bivariate slab distribution Hz(cos θ, φ) in order to ensure a constant bin volume over all angles.

As described above, the interfacial distance of a molecule is defined as the distance between
the molecular center of mass and the corresponding projected point of reference on the liquid-
liquid interface. Said point of reference is defined as the projection of the center-of-mass onto the
triangulated continuous surface along the z-direction. The LLI normal vector applicable for each
molecule is defined as the surface normal vector at the point of reference.

The reason cos θ is chosen instead of θ to form the joint bivariate slab distribution Hz(cos θ, φ) is to
ensure a constant bin volume over all angles. The infinitesimal surface element for an integration
over the unit sphere in spherical coordinates is given by dV = sin θ. Performing a binning in evenly
spaced intervals of θ and φ thus gives a different weight to individual bins that needs to be corrected.
Performing the transformation θ → cos θ removes the θ-dependence in the integration over the unit
sphere:

∫ 2π

0
dφ

∫ π

0
dθ sin θ =

∫ 2π

0
dφ

∫ 1

−1
d cos θ (5.3)
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The joint bivariate distribution Hz(cos θ, φ) therefore has the same bin volume for all bins (cos θ :

cos θ+ ∆ cos θ, φ : φ+ ∆φ). While Hz(cos θ, φ) maps the orientational profile at the LLI, a molecule’s
lateral position parallel to the interface is lost in this representation.

Due to the molecular C2v symmetry of H2O and DCE, the coordinate vector m̂ is only defined up
to a change in sign. Molecules can therefore always be oriented in such a way that φ is restricted
to the interval [0,90]. The approximation of ideal symmetry is valid since the timescale and energy
separation between vibrations on the one hand and translation, rotation as well as, in the case of
DCE, torsion on the other hand is sufficiently large at the DCEH2OINT LLI interface [187, 188].

5.2 Orientational binnings for H2O

In figure 5.6, the H2O joint bivariate distributions Hz(cos θ, φ) obtained from the DCEH2OINT tra-
jectory in the instantaneous LLI reference system for nine different slabs with increasing interfacial
distance are displayed. Following the convention introduced in section 3.3, the DCE phase occupies
the negative half-space and H2O occupies the positive halfspace.

For each slab a thickness of one nanometer was chosen. In the top row, the slab boundaries are
indicated by vertical blue lines. Each slab’s relative number density profile 〈ρ〉/〈ρbulk〉 compared
to bulk is represented by a blue dot. For the reference bulk density the slab confined between
10nm - 11nm interfacial distance is selected. While the first two solvation shells with peaks in slab
[2nm, 3nm] and [6nm, 7nm] are clearly visible, 〈ρ〉/〈ρbulk〉 converges to one for larger distances
from the instantaneous interface. This is in accordance with the observations made in chapter 3.
It is furthermore evident, that the signal-to-noise ratio decreases in slabs with low number density,
which can be attributed to worse statistics.

The joint bivariate distributions are performed with a resolution of 50x50 pixels over (φ, cos θ) :7→
[0, 90] × [−1, 1] and the bin counts in each of the nine Hz(cos θ, φ) in figure 5.6 are normed to the
average bin count of the reference bulk slab 〈H[10,11]〉cosθ,φ. These relative bin count values are
colorgraded low to high as indicated by the horizontal colorbar in each Hz(cos θ, φ). The extrema
of this ratio are naturally correlated with each slab’s number density profile represented by the blue
dots in the top row of figure 5.6.

Besides the slab average, distinct orientational preferences of the water molecules with respect to
the instantaneous interface can be deduced from the Hz(cos θ, φ). Directly at the interface, in slab
H[0,1], a single peak in the distribution at around φ ≈ 80◦ and cos θ ≈ −0.5 (or θ ≈ 120◦) is visible.
Comparing this with the molecular coordinate system portrayed in figure 5.1, a value of θ ≈ 120◦

corresponds to a water molecule with its dipole p pointing towards the interface at a 30◦ angle. A
value of φ ≈ 80◦ on the other hand indicates an almost parallel orientation of the molecular plane
normal m̂ and the interface normal projection n⊥. This results in a molecular position of the water
molecule, where one H-leg is tilted in an acute angle towards the interface, leaving the second one
dangling.
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Figure 5.6 – H2O joint bivariate distributions Hz(cos θ, φ) obtained from the DCEH2OINT trajectory in the
instantaneous LLI reference system for nine different slabs with increasing interfacial distance. Slab bound-
aries (vertical blue lines) and relative number density profile 〈ρ〉/〈ρbulk〉 compared to bulk (blue dots) are
shown on top. Hz(cos θ, φ) are normed to the average bin count of the reference bulk slab 〈H[10,11]〉cosθ,φ.

Over a transition phase visible in H[1,2], this preferred positioning shifts to a second dominant ori-
entation characterized by the peak appearing in the joint distribution H[2,3]. This peak is located
around φ ≈ 10◦ and cos θ ≈ 0◦ and appears in the slab containing the top of the first density solva-
tion shell. The peak is slightly narrower along the cos θ- than the φ-axis, which gives it an ellipsoid
shape with the minor semi-axis oriented parallel to the cos θ-axis. A higher number density than
bulk is not observed for φ > 40◦ and | cos θ| > 0.65. A comparison with the molecular coordinate
system in figure 5.6 shows that the peak value for cos θ around the origin corresponds to a parallel
orientation of the molecular dipole p̂ to the interface. The acute angle φ ≈ 10◦ indicates a slight tilt
of the molecular plane, which means that one H-leg is slightly closer to the interface than the other.

This peak is somewhat broader than its counterpart appearing in the two slabs closest to the inter-
face and remains a dominant, even broader, feature in H[3,4]. Here in slab [3, 4], a third preferred
orientation appears at cos θ ≈ 0.5 and φ ≈ 80◦. This position roughly corresponds to mirroring the
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first peak at the axis cos θ = 0. Again comparing the cos θ ≈ 0.5, which corresponds to an angle of
θ ≈ 60◦ with the molecular coordinate system in figure 5.1, one sees that it represents a dipole ori-
entation, which is tilted by 60◦ against n̂ and is pointing away from the interface. In contrast to slab
[1, 2], the peaks in slab [3, 4] are not separated anymore, mainly due to a broadening of peaks in φ.
One explanation for this broadening with increasing distance from the interface could be a lessen-
ing influence of the DCE phase due to shielding. In slab [4, 5] and [5, 6], the preferred orientation
of the H2O molecules retracts to their peak first appearing in H[1,2] at φ ≈ 80◦ and cos θ ≈ −0.5.
This periodic behaviour also coincides with the first oscillation of solvation shell formation as can
be seen comparing 〈ρ〉/〈ρbulk〉 in the top row of figure 5.6. The molecular orientation towards the
liquid-liquid interface becomes increasingly random in the second solvation shell for z > 7Å which is
also reflected in the density fluctuations. Above findings are in line with orientational maps reported
in literature [189, 190].

Figure 5.7 – Combined gauche and trans DCE joint bivariate distributions Hz(cos θ, φ) obtained from the
DCEH2OINT trajectory in the instantaneous LLI reference system for nine different slabs with increasing
interfacial distance. Slab boundaries (vertical blue lines) and relative number density profile 〈ρ〉/〈ρbulk〉 (blue
dots) compared to bulk (dashed line) are shown on top. Hz(cos θ, φ) are normed to the average bin count of
the reference bulk slab 〈H[−18,16.5]〉cosθ,φ.

5.3 Orientational binnings for DCE

Analogously to the previous section, the joint bivariate distributions Hz(cos θ, φ) including both
gauche and trans DCE in nine slabs with increasing interface distance are shown in figure 5.7.
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Same as for H2O, the resolution of the distributions Hz(φ, cos θ) for the DCE phase was set to
50x50 pixels over (φ, cos θ) :7→ [0, 90] × [−1, 1]. Due to the larger size of the DCE molecules com-
pared to H2O , an increased slab thickness of 1.5nm was chosen to improve statistics. As in figure
5.6, in the top row slab boundaries are indicated by vertical blue lines while each slab’s relative
number density 〈ρ〉/〈ρbulk〉 is depicted by a blue dot. To calculate the reference bulk density, the
slab [-18,-16.5] was chosen. This is suffiently far away from the interface to be considered bulk as
is easily visible from figure 5.8.

Even more pronounced than in the case of water, the first and second solvation shell with peaks in
slab [-1.5, -3.0] and [-6, 7.5] are visible in 〈ρ〉/〈ρbulk〉. Comparing figures 5.6 and 5.7, one can see
that the relative density fluctuations are considerably larger in DCE than H2O and stretch further
into the bulk. Examining these distributions Hz, one can see that the interface has an ordering
effect on the DCE molecules in the vicinity of the LLI. This effect is less pronounced compared
to the water phase and is fading faster with interfacial distance. Nevertheless, the distribution
for slab H[0,1.5] exhibits a distinct maximum around φ ≈ 85◦ and a minimum around φ ≈ 10◦. This
preference persists until minimum and maximum reverse in slab [-3.0, -4.5]. The two anti-symmetric
poles oscillate with distance from the LLI. This oscillation is correlated with the density fluctuations
portrayed in the top row of figure 5.7, albeit differs in frequency.

Since the DCE molecular coordinate system is dependent on the conformational state of the DCE
molecule, calculating the joint bivariate distributions Hz(cos θ, φ) separately for trans and gauche
DCE could provide further insight. This is underlined further by the comparison of the 〈ρ〉/〈ρbulk〉
profiles for both conformers and all DCE. This is portrayed in figure 5.8.

Figure 5.8 – 〈ρ〉/〈ρbulk〉 profile for gauche (blue), trans (orange) and all (dotted grey) DCE molecules. The
relative oscillations in density are significantly more pronounced for gauche than for trans DCE. This effect
is most prevalent around the first peak for interfacial distances up to 4 Å.

While peaks occur roughly at identical distances from the LLI, it is apparent that the relative oscilla-
tions in density are significantly more pronounced for gauche than for trans DCE. This effect is most
prevalent around the first peak for interfacial distances up to 4 Å. Here, gauche DCE reaches 195%
bulk density compared to 140% bulk density in trans. This is expected since more gauche DCE
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is generated at the interface due to electrostatic stabilization in response to an to an electrostatic
potential imposed by the H2O phase.

(a) Trans conformation. (b) Gauche conformation.

Figure 5.9 – Separate trans (left) and gauche (right) DCE joint bivariate distributions Hz(cos θ, φ) with iden-
tical slab thickness and pixel resolution as in figure 5.7. The interfacial slab distribution H[0,−1.5] indicates a
preferred orientation for polar angles φ > 70◦ for both conformers.

The Hz(cos θ, φ) with identical slab thickness and pixel resolution as in figure 5.7 are compared side
by side in figure 5.9 for the four slabs closest to the interface. The Hz for trans DCE are portrayed
in figure 5.9a and for gauche DCE in figure 5.9b. The relative density fluctuations portrayed in the
top row of figures 5.9b and 5.9a support the observations made in figure 5.8. 〈ρ〉/〈ρbulk〉 of gauche
DCE oscillates considerably stronger than trans DCE in the first solvation shell. The relative density
of gauche DCE is larger by a factor of 1.1 than its bulk value in the interfacial slab [0,-1.5] and even
increases to a factor of 1.57 in the following slab [-1.5, 3.0]. The same factors for trans DCE are
considerably lower with 0.78 in [0, -1.5] and 1.24 in [-1.5, -3.0]. The interfacial slab distribution
H[0,−1.5] indicates a preferred orientation for polar angles φ > 70◦ for both conformers. In the case
of trans DCE, this takes the form of a spheroidal peak around φ ≈ 85◦. In the case of gauche DCE
this preference is best described by a spheroidal probability sink around φ ≈ 15◦ and cos θ ≈ 0.
Comparing this to the correlation between molecular dipole µ and the molecular coordinate vectors
p̂ and m̂ in figure 5.4, one can deduce an anti-parallel alignment of molecular dipole and LLI surface
normals within the interfacial layer of the organic DCE phase. This preference persists in slab [-1.5,
-3.0] for gauche DCE as can be seen in figure 5.9b. In figure 5.9a, structure is almost entirely lost
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for the same slab. In both cases, noticeable features in orientational structure decay faster than
fluctuations in density in the organic phase compared to water. From figure 5.9 it can furthermore
be concluded, that the gauche conformer is dominant for interfacial ordering in the DCE phase.
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Chapter 6

Electric Field and Polarization in
Proximity to Cluster Centers

In this chapter, the relation between the field and molecular polarity is investigated directly with-
out prior coarse-graining into a dielectric mean-field response. Figure 6.1 shows the distribution
of the angle θ between the cluster dipole µ and the electric field E0 created by all charges not
belonging to the cluster as felt at the cluster center. All three distributions exhibit a clear maximum,
indicating a preferred angular orientation between the field and dipole vectors. The sharpest peak
at 12.06 degrees with a distribution mean angle of 15.33 degrees is visible for the distribution of θ
in H2OBULK, molecularly clustered. The broadest peak at 49.14 degrees and the corresponding
mean at 54.20 degrees for the distribution of θ is obtained for the DCEBULK trajectory with 2xCCl
dipole clustering. Both resemble a Maxwell-Boltzmann distribution.

(a) H2O molecular dipole clustering (b) DCE molecular dipole clustering (c) DCE 2xCCl dipole clustering

Figure 6.1 – Distribution of the angle θ between the cluster dipole µ and the electric field E0 created by
all charges not belonging to the cluster as felt at the cluster center in H2OBULK and DCEBULK. All three
distributions exhibit a clear maximum, indicating a preferred angular orientation between the field and dipole
vectors. Contrary to the the molecularly clustered H2O and 2xCCl clustered DCE, the θ distribution in this
case has a pronounced tail towards higher angles. This effect can likely be attributed to superpositions of
two different distributions arising due to the gauche and trans molecular configurations of DCE.

The distribution for molecularly clustered DCE in DCEBULK shows a peak at 24.66 degrees and
a distribution mean angle of 47.66 degrees. Contrary to the the molecularly clustered H2O and
2xCCl clustered DCE, the θ distribution in this case has a pronounced tail towards higher angles.
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This effect can likely be attributed to superpositions of two different distributions arising due to the
gauche and trans molecular configurations of DCE.

Naturally, a clear phase transition is visible in the angle and potential profiles for DCEH2OINT
portrayed in figure 6.2. Interestingly the correlation with the solvation shell profile is significantly
smaller compared to the permittivity profiles calculated in previous chapters. The change in po-
larization response between bulk and interface of the liquid phases is therefore most likely due to
dipole orientation with the molecular fields mostly staying constant. Particularly since the permittiv-
ity is supposed to be a material property, comparing polarization and its electrostatic response on
a molecular level might offer a path towards a mapping between bulk and interface for the dielectric
constant.

(a) 〈θ〉 profile over interface. (b) 〈θ〉 at cluster center profile over interface.

Figure 6.2 – Profiles of 〈θ〉 (left) and electrostatic potential 〈φ〉 at the molecular center of mass (right) for
DCEH2OINT, molecularly clustered. The correlation with the solvation shell profile is significantly smaller
compared to the permittivity profiles calculated in previous chapters.

The significant dependence of the θ distribution on the clustering method of the same DCEBULK
trajectory in figure 6.1 elucidates a key problem of only looking at the cluster centers. The cluster
centers are the centers of mass and as such neither evenly distributed nor independent of the
clustering type. After all the center of mass depends on the relative distribution of mass in the
cluster and a 2xCCl clustered DCE molecule thus has different observation points than molecularly
clustered DCE. Grouping a different set of atoms into a cluster furthermore alters which charge
belongs to each cluster and thus gets ignored in E0. Examining the mean-field response to the
molecular dipole only at the cluster centers thus falls short, the entire vicinity of each molecule
should be analyzed instead.

Similar observations are made for the µ vs. E average angle profile portrayed in figure 6.2a. No
correlation with the solvation shell profile exhibited by the density is visible. The same is true for the
average electrostatic potential profile measured at the dipole centers and excluding intra-domain
contributions, as portrayed in figure 6.2b.
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6.1 Formalism

The formalism to obtain volumetrically resolved averages for the electric field in vicinity of a molecule
depending on its orientation is presented in the following. In all cases, a molecular clustering is
chosen in order to guarantee independent movement of the cluster centers.

In an initial step, the electric field of all present charges is measured at a number of ghost atoms
at each recorded snapshot of the original trajectory post simulation. These ghost atoms serve as
pure measurement points, carry no charge and don’t interact in any way with the actual particles of
the simulation. Their position in the simulation box is randomly chosen in every snapshot in order
to avoid any a priori spatial sampling preference in case the arrangement of molecules making up
the simulation is locally correlated over snapshots in the laboratory frame. This might for example
occur for the last solvation shell of water molecules in front of an interface. Especially for solid-
water interfaces for example there is substantial evidence that in the immediate vicinity of the phase
boundary, H2O behaves more like ice than a liquid [25, 26, 54].

Introducing a large number of ghost atoms for sampling fields might seem like a very costly oper-
ation because in order to adequately sample the simulation box volume, a large number of these
ghost-atoms needs to be added in comparison to the particles making up the simulation - es-
pecially if the O(N log(N)) scaling of the Ewald summation required to calculate the long-range
electrostatic field contribution is considered. However, the interaction between ghost atoms can be
excluded from pairwise calculations since interaction between ghost atoms is of no interest. The
cost of the field calculation thus scales linear with the number of ghost atoms added. Additionally,
a field calculation including ghost atoms only is performed at every snapshot and not every sim-
ulation timestep, resulting in a comparatively low computational cost of this ghost atom approach
compared to the entire cost of running a MD simulation.

In a second step, every ghost atom is assigned to the cluster of the atom closest to it. Compared
to a standard 3D Voronoi tesselation [191] with the cluster centers as generators, this has the
advantage that the topology of the cluster type is taken into consideration. Furthermore the atomic
clustering approach has the benefit of keeping the space division cluster agnostic. This is because
it is performed with respect only to the particles that are actually present in the simulation and not
introduced as part of a clustering step afterwards. The cluster ID as well as the connecting vector
between ghost atom and cluster center is saved. Besides providing field measurements off cluster-
center, this approach also samples the average space occupied by a single cluster thus providing
a cavity definition without a priori assumptions. This corresponds to a spatial understanding of
the actual cavity because the assignment to a cluster depends on the euclidian distance. It is in
theory possible to use other definitions, but this choice has the advantage of clearly separating
"outside" and "inside" charge. Only charge belonging to the cluster is ever present in the cavity.
This approach also fits the intuitive assumption that a continuous medium should fill up the space it
occupies completely.

Subsequently in a third step, the field contributions of charges belonging to the assigned closest
cluster are subtracted at each ghost atom. In order to transform the trajectory from the laboratory
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frame into a cluster-centric coordinate system, all clusters are oriented onto each other with the
cluster center shifted to the origin. Similar to chapter 5, this requires the definition of a primary
coordinate vector p̂ and a secondary coordinate vector m̂ orthogonal to it. This defines the right-
hand orthonormal coordinate system (p̂, p̂× m̂, m̂) for each individual cluster.

For the transformation (x̂, ŷ, ẑ) 7→ (p̂, p̂ × m̂, m̂) from the laboratory frame to the cluster-centric
coordinate system, all ghost atoms, as well as the corresponding potential-and electric fields, are
rotated analogous to their assigned cluster center.

The matrix to reorient an individual cluster can be split in two rotations and is given by

Rn = Rxij(φn)Rzji(θn) (6.1)

The rotation matrix Rz rotates vector m̂ onto the z-axis: (p̂′′, m̂′′) 7→ (p̂′, ẑ) and is given by

Rzij = δij + vij + vijvij
1

1 + cos(θ)
= δij + vij + vijvij

1

1 + m̂z
(6.2)

Here, θ constitutes the angle between m̂ and the z-axis and v the skew-symmetric cross product
matrix

v =

 0 −vz vy

vz 0 −vx
−vy vx 0

 (6.3)

with v = m̂× ẑ. The matrix Rz then performs the rotation (p̂′, m̂′) 7→ (x̂, ẑ) around the z-axis by the
angle φ between p̂′ and the x-axis and is given by

Rzij =

cos(φ) −sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

 (6.4)

In a final step, the average potential and electric fields as well as the cavity expression are mapped
onto a regular grid via 3D binning. In case of the cavity, a subsequent normalization is performed by
assuming that the number of hits is maximal in immediate vicinity of the atomic positions because
of the repulsive nature of the employed Lennard-Jones and Coulomb pair-potential (2.5) which
prevents atoms from falling into each other. The probability of these voxels belonging exclusively
to the cluster made up by these atoms is assumed to be one and all other values are normed
accordingly. This results in a continuous cavity density, where a value of one means this area in
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space is definitely part of the cavity while a value of zero means that it is definitely not. The field and
potential averages are simple geometric averages and only normalized by the number of timesteps.

6.2 Bulk Water in the cluster-centric coordinate system

All cavity as well as potential and electric field calculations in this section were performed on the
trajectory H2OBULK, molecularly clustered. The choice of cluster-centric coordinate vectors is
portrayed in figure 6.3.

The orientation is chosen in a way that the normalized dipole vector p̂ points in x-direction and an
additional cluster-specific orientation vector m̂ points in positive z-direction. Analog to chapter 5, the
primary coordinate vector p̂ is chosen to coincide with the direction of the molecular dipole, while the
secondary coordinate vector m̂ is calculated via the cross product between p̂ and the connecting
vector l̂ between both hydrogen atoms. Consequently, m̂ is perpendicular to the molecular plane.
The cluster rotation is performed such that p̂ aligns with x̂ and m̂ with ẑ as shown on the right side
of figure 6.3. Here the Rz rotation is shown in blue and the Rx rotation is red. The origin is set to
the cluster center which is the center of mass.

Figure 6.3 – Molecular coordinate system for H2O. The primary coordinate vector p̂ gets oriented along the
x-axis while the secondary coordinate vector m̂ is oriented along the z-axis. The cluster center (molecular
center of mass) gets shifted to the origin.

In each snapshot, 8000 ghost atoms where randomly introduced as measuring points over the box.
A representation of the sampled cavity is portrayed in figure 6.4. The plots from left to right corre-
spond to cuts along the coordinate planes for x, y, and z equal to zero. The cut z=0, represented
by the right hand plot in figure 6.4, coincides with the H2O molecular plane. For reference, the av-
erage charge density is projected onto each surface in black. Despite the point charges employed
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in the SPC/Fw water model, the projection resembles an extended charge density due to intra-
molecular movements occuring because SPC/Fw uses harmonic bonds and angles. Furthermore,
two contour lines, one solid at 0.2ρ and one dashed at 0.8ρ are marked in each plot.

Figure 6.4 – Cavity density for H2O for cuts along the coordinate planes. Plots from left to right correspond
to cuts along the coordinate planes for x, y, and z equal to zero. The average charge density is projected
onto each surface in black. Two contour lines, one solid at 0.2ρ and one dashed at 0.8ρ are marked in each
plot. As expected, the shape of the cavity mainly follows the topology of a broad "ball-and-stick-model" of the
planar water molecule. Examining the distance between the 0.8ρ and 0.2ρ contour lines indicates that the
cavity probability ρ declines fairly homogeneously in all directions.

The shape of the cavity mainly follows the topology of a broad "ball-and-stick-model" of the planar
water molecule. This is expected if one considers the radially repulsive nature of the Lennard-Jones
and Coulombic interaction potential terms. It should however be noted, that the cavity interface
seems to be more diffuse around the hydrogens than at the oxygen, possibly due to stronger vi-
brational displacement of the lighter H-nuclei. Examining the distance between the 0.8ρ and 0.2ρ

contour lines indicates that the cavity probability ρ declines fairly homogeneously in all directions.
The only notable exceptions are located behind the oxygen atom in the xz-plane portrayed in the
middle plot and the flanks of the hydrogens visible in the xy-plane rightmost plot of figure 6.4. In
these areas the decline from 0.8ρ to 0.2ρ is slightly steeper which reflects the repulsive nature of the
SPC/Fw Lennard-Jones potential. The cavity density is furthermore axially symmetric with respect
to the x-axis, i.e. the dipole, as well as the molecular plane. These symmetries are implied if one
recalls the definition of the orientational vector m̂ = p̂ × l̂. Since both hydrogens are identical, the
sign of l̂ and hence m̂ is interchangeable.

The average Coulomb potential field within a H2O molecule’s cavity imposed by all other H2O
molecules in the simulation is presented in figure 6.5. Identical to figure 6.4, the cuts presented
refer to the coordinate planes for x, y, and z equal zero and the projected mean charge as well as
the cavity 0.8ρ and 0.2ρ contour lines are included for orientation. Beyond the 0.2ρ contour line, the
average potential is blurred since the numerical errors deteriorate due to bad numerical sampling.
As for the cavity, the potential field is also axially symmetric with respect to the x-axis as well as the
molecular plane, thus following cluster symmetry.
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Figure 6.5 – Potential field due to all extra-molecular charges inside the cavity for cuts along the coordinate
planes. Plots from left to right correspond to cuts along the coordinate planes for x, y, and z equal zero. The
average charge density is projected onto each surface in black. Two contour lines, one solid at 0.2ρ and one
dashed at 0.8ρ are marked in each plot. The largest magnitude potentials are not observed at the charge
locations but further out in the cavity.

The center contour plot reveals a potential sink bending around the oxygen to the left side of the
cavity. The left hand plot furthermore shows two distinct lobes at around z = ±1.9 Å on the y-axis.
In the x>0 half space, the hydrogen atoms are each opposed by two lobe-like potential sources.
The potential observed at the cluster center of figure 6.5 at the origin is consistent with the potential
observed in figure 6.2b of φ = 0.03, as expected. Interestingly, the largest magnitude potentials are
not observed at the charge locations but further out in the cavity as the xy-projection on the right of
figure 6.5 illustrates.

The corresponding average E-field components for the cuts along the coordinate planes are por-
trayed in figure 6.6. In contrast to the average potential in figure 6.5 and cavity probability in figure
6.4, not all components of the electrical vector field are axially symmetric over the xy- and the
xz-plane but are rather changing sign on opposite sides of these mirroring planes. This can be
explained by recalling that the electric field is a gradient field of the potential E = −∇φ. The change
in sign arises therefore through the change of sign of the partial derivatives in the nabla operator at
the origin. If this change in sign is considered, the planar molecular symmetry is no longer violated.
Another observation is that the x-component of E is positive throughout at the origin and Ey and
Ez are both negligible in comparison.

If the observation is extended further out into the cavity it becomes apparent that both Ey and Ez
have non-zero contributions, especially around the location of the oxygen and hydrogen atoms of
the H2O molecule. While typically an order of magnitude smaller than Ex, these contributions can
not be neglected. Ey for example reaches magnitudes comparable to Ex around the lobes of the
hydrogen atoms. This also confirms that only considering the relation between polarization and
electric field at the cluster center is clearly not enough since the charged atoms of the molecule will
interact with E. Regarding the potential, the strongest fields by magnitude are observed not at the
charge, i.e. the atom centers but rather further out in the cavity. While this might be less relevant in
a point-charge force field model like SPC/Fw, the significance rises if electrons are included in the
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Figure 6.6 – E0 field due to all extra-molecular charges inside the cavity for cuts along the coordinate planes.
Plots from left to right correspond to cuts along the coordinate planes for x, y, and z equal zero. The average
charge density is projected onto each surface in black. Two contour lines, one solid at 0.2ρ and one dashed
at 0.8ρ are marked in each plot. The x-component of E is positive throughout at the origin and Ey and Ez
are both negligible in comparison.

calculations. Furthermore, all three components of E show non-constant patterns over the extent
of the cavity.

A 3D rendering of charge densities, cavity and potential is portrayed in figure 6.7. The position of
the oxygen atom is depicted in solid red while the position of the hydrogen atoms is depicted in solid
blue. Even though H2OBULK employs a point-charge force-field, the average positions show as
densities since the water molecules are simulated with harmonic bonds and angles. On a final note
it should be mentioned that the cavity surface chosen is not really important. Due to the uniqueness
of the Poisson equation, results can not differ if the potential is known on a closed surface around
the cluster and this surface is chosen sufficiently large to prevent charge exiting or entering.
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Figure 6.7 – 3D rendering of charge densities, cavity and potential. Even though H2OBULK employs a
point-charge force-field, the average positions show as densities since the water molecules are simulated
with harmonic bonds and angles.

6.3 Bulk DCE in the cluster-centric coordinate system

All cluster-centric field and potential averages in this section were calculated from the trajectory
DCEBULK, molecularly clustered. As before, the choice of coordinate vectors follows the conven-
tion introduced in chapter 5 for the interfacial molecular binning and is portrayed on the left side
of figure 6.8. The secondary cluster-coordinate vector m̂ is aligned with the C-C axis of the DCE
molecule and the primary coordinate vector is given by p̂ = m̂× (ĉ1 − ĉ2) where the ĉ∗ denote the
normals to the two planes spanned by the C-C axis and the two C-Cl bonds of the chloromethyl
groups of DCE. Analog to H2O, the origin is set to the cluster center, which is the center of charge.

As depicted on the right side of figure 6.8 and analog to the H2O case, each individual cluster as
well as the corresponding potential and electric fields are rotated in order to align m̂ with the z-
axis and p̂ with the y-axis. Due to the varying dihedral angle distribution in DCE, all averages are
calculated separately in gauche and trans conformation.

Since DCE lacks the planar symmetry of H2O, the sign of m̂ is not interchangeable for DCE if all
atoms are supposed to be rotated onto each other. The chosen convention here is for m̂ = ẑ to
point from the C-Cl bond with the chlorine atom in the positive x > 0 half-space to the C-Cl bond
with the chlorine atom in the negative x < 0 half-space.

A 3D representation of cavity, as well as iso-densities of the average charge positions for both for
both gauche and trans is shown in figure 6.9. Here, negative carbon and chlorine charge densities
are depicted in red while positive charge densities due to hydrogens are colored blue. Due to inter-
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Figure 6.8 – Molecular coordinate system for DCE. The primary coordinate vector p̂ gets oriented along the
x-axis while the secondary coordinate vector m̂ is oriented along the z-axis. The cluster center (molecular
center of mass) gets shifted to the origin.

molecular vibrations occurring because of the harmonic pair-wise potentials for bond and angle
interactions employed in the DCEBULK force-field, the average charge should again be regarded
as a density distribution even if point charges are used in the simulation. In both figures 6.17a and
6.17b, the carbon atoms fall onto each other in this projection, the C-C axis represents the out of
plane normal at the center red dot. The average dihedral angles for gauche and trans match the
DCEBULK dihedral angle distribution in figure 5.2. The charge distribution in this rendering also
confirms that the DCE dipole nicely aligns with the y-axis in both conformers. Furthermore it also
visualizes why the trans DCE dipole is small compared to the gauche DCE dipole.

Analog to figure 6.5, the average potential φ in the cavity of a gauche DCE molecule imposed by
all other DCE molecules of the simulation is portrayed in figure 6.10. From left to right, cuts of φ
at x = 0, y = 0, and z = 0 are shown, and the cavity contour lines at 0.8ρ and 0.2ρ as well as
projections of the average charge density are included. Outside the 0.2ρ contour, the potential is
again blurred out due to bad sampling and thus high numerical errors. The rightmost cut at z = 0

aligns with the position of the observer in the 3D plot of figure 6.17a. Both the x = 0 and the z = 0

projection indicate two potential tubes of opposing sign running parallel to the C-C axis. One along
the H-backbone of the gauche DCE in the y > 0 half-space and the other enclosing the Cl-legs in
the y < 0 half-space.

Cuts of the same potential φ for trans DCE are plotted in figure 6.11. Again, the plots represent,
from left to right, cuts of φ at x = 0, y = 0, and z = 0 are shown and the rightmost cut aligns with
the position of the observer in figure 6.17b. The most notable difference to the gauche DCE case in
figure 6.17a is that the continuous tubes of opposing sign along C-C are absent in 6.11. They are
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(a) gauche DCE (b) trans DCE

Figure 6.9 – 3D representation of cavity, as well as iso-densities of the average charge positions for both
gauche (left) and trans (right) DCE. Since DCE lacks the planar symmetry of H2O, the sign of m̂ is not
interchangeable if all atoms are supposed to be rotated onto each other. The chosen convention is for m̂ = ẑ
to point from the C-Cl bond with the chlorine atom in the positive x > 0 half-space to the C-Cl bond with the
chlorine atom in the negative x < 0 half-space.

replaced by crossing domains of equal potential, following the orientation of C-Cl bonds as most
prominently visible in the center y = 0 projection.

Compared to the cavity potential in H2O shown in figure 6.5, the maximal values of φ for both
gauche and trans DCE are roughly one order of magnitude smaller. This greater potential field
experienced by a water molecule in liquid water compared to DCE can be attributed to the higher
density in water as compared to DCE and thus closer proximity of charges in the former case.

In figures 6.12 and 6.13, the electric field E inside the cavity imposed by all other participating DCE
molecules of the simulation are portrayed component-wise for gauche DCE and trans DCE. Here,
the same plane cuts used above for the potential constitute the rows while the components of E

run over the columns. Analog to the potential plots, this means that in both figures 6.12 and 6.13
the third row aligns with the position of the observer in figure 6.9.

The most prominent feature of E for gauche DCE in figure 6.12 is that the Ey component is roughly
two to three times greater in magnitude than Ex and Ez over all surface cuts. Furthermore, it is also
positive over the entire cavity for all plane cuts, particularly at the origin. As for H2O the average
angle at the origin can be calculated by comparing E at the origin voxel to the molecular dipole
oriented along the y-axis. With an electric field of E(0, 0, 0) = (0.4, 15.6, 0.7) · 103 e2/Å

3
and an

average molecular dipole of µ = (0, 0.70, 0) eÅ, this means an angle of 5.18◦ between E and µ.
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Figure 6.10 – gauche DCE potential field due to all extra-molecular charges inside the cavity for cuts along
the coordinate planes x = 0, y = 0, and z = 0 from left to right. The average charge density is projected onto
each surface in black. Two contour lines, one solid at 0.2ρ and one dashed at 0.8ρ are marked in each plot.

Figure 6.11 – trans DCE potential field due to all extra-molecular charges inside the cavity for cuts along the
coordinate planes x = 0, y = 0, and z = 0 from left to right. The average charge density is projected onto
each surface in black. Two contour lines, one solid at 0.2ρ and one dashed at 0.8ρ are marked in each plot.

The Ey component of the electric field for DCE in trans only keeps positive over the entire cavity for
the y=0 plane in the center plot of figure 6.13. The average electric field vector at the origin is given
by E(0, 0, 0) = (0.4, 2.7, 1.5) · 103 e2/Å

3
, and stands at an angle of 31.3◦ with the average dipole

vector µ = (0, 0.04, 0) eÅ. Compared to the field magnitude Egauche = 15.7 · 103 e2/Å
3

in gauche,
the magnitude of the electric field in trans formation Etrans = 3.2 · 103 e2/Å

3
is smaller by roughly a

factor of five.
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Figure 6.12 – gauche DCE E0 field due to all extra-molecular charges inside the cavity for cuts along the
coordinate planes x = 0, y = 0, and z = 0 from left to right. The average charge density is projected onto
each surface in black. Two contour lines, one solid at 0.2ρ and one dashed at 0.8ρ are marked in each plot.
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Figure 6.13 – trans DCE E0 field due to all extra-molecular charges inside the cavity for cuts along the
coordinate planes x = 0, y = 0, and z = 0 from left to right. The average charge density is projected onto
each surface in black. Two contour lines, one solid at 0.2ρ and one dashed at 0.8ρ are marked in each plot.
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6.4 Interfacial field and potential in the cluster-centric coordinate sys-
tem

After calculating the cavity as well as average potential and electric fields in the cluster-centric co-
ordinate system for H2OBULK and DCEBULK, the change of these quantities towards the instanta-
neous LLI of DCEH2OINT is examined in this section. The trajectory was molecularly clustered and
the molecular center of mass was chosen as the cluster origin. As above, the choice of coordinate
vectors and rotation matrices is illustrated in figure 6.3 for H2O and figure 6.8 for DCE.

In order to quantify the influence of the interface, the cavity field and the cavity potential in the first
solvation shell are compared to bulk regimes for both H2O and DCE as depicted in figure 6.14.
The distinction between "bulk" and "interface" is made via the number density. Here, the dotted
line represents the number density ρH2O of H2O , the dashed line the number density ρDCE of DCE
and the solid line the total number density ρtot against the instantaneous distance to the interface.
Following the usual convention, the instantaneous LLI is located at x = 0 while the DCE phase
occupies the negative half-space and the H2O phase the positive half-space. In figure 6.14 four
different regimes are highlighted. In orange, regime "2" for instantaneous distances [-4.05 Å,0.56
Å] corresponds to the first solvation shell of DCE while "1" for instantaneous distances [-20 Å,16 Å]
represents the regime to calculate the bulk baseline. The first solvation shell regime in the water
phase in blue spans instantaneous distances [0.56 Å,4.55 Å] and the corresponding bulk baseline
is located at distances [10 Å,14 Å]. The interfacial boundary was chosen at x=0.56 Å and not at
x = 0 Å in order to confine the first solvation shells by the minima of ρtot.

Figure 6.14 – Borders of the bulk regimes "1" (DCE) and "4" (H2O) to first interfacial regimes of the first
solvation shell "2" (DCE) and "3" (H2O).

The ghost atoms necessary for the potential and E-field measurements over the trajectory were
distributed with respect to the instantaneous interface in order to guarantee optimal sampling. The
ghost atoms for the DCE bulk regime "1" were distributed at interfacial distances [-25 Å, -12 Å] and
the ghost atoms for the H2O bulk regime "4" at interfacial distances [7 Å, 17 Å]. The ghost atoms
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for the interfacial regimes "2" and "3" were distributed in [-10 Å, 10 Å] distance to the interface.
The distance buffer of the ghost atoms over the selection regimes for the molecular centers "1"-
"4" guarantees that the entire cavity is appropriately sampled. The size of this buffer should not
be smaller than the maximal distance from cluster center to cavity boundary for each molecule.
Comparing the cavity borders for both H2O and DCE in the previous sections, this criterion is
fulfilled.

6.4.1 Interfacial H2O

The influence of the instantaneous interface on cavity probability and cavity potential is first exam-
ined for water. Figure 6.15 shows the cavity probability ratio between interface and bulk regimes
ρ3/ρ4 for the surface cuts x, y, and z equal to zero from left to right. As above for the bulk trajec-
tories, the average charge distribution is projected on to the plane for better orientation. Additional
contour lines, solid for 0.2ρ and dashed for 0.8ρ, are plotted for "3" in red and and "4" in blue.

Figure 6.15 – Cavity probability ratio between H2O interface and H2O bulk regimes ρ3/ρ4 for the surface
cuts x, y, and z equal to zero from left to right. Cavity probabilities ρ > 0.2 are roughly identical for both
the interface and the bulk regime. While small deviations of the 0.2ρ contour are visible in the middle and
rightmost projection, notable deviations only occur further out as signaled by the yellow corona representing
a ratio of two or above.

Figure 6.15 reveals that cavity probabilities ρ > 0.2 are roughly identical for both the interface
and the bulk regime. The shape of the cavity is roughly identical in bulk and at the interface as the
green areas indicating a ratio of roughly one suggest. While small deviations of the 0.2ρ contour are
visible in the middle and rightmost projection, notable deviations only occur further out as signaled
by the yellow corona representing a ratio of two or above. The drawn out yellow corona with a
value lower than 1 shows that the interfacial ρ3 declines faster than the bulk benchmark ρ4 which is
to be expected when averaging over the first solvation shell. The space available to an individual
H2O molecule within the first solvation shell of regime "3" is higher on average compared to the
volume available in the bulk regime "4". While immediately at the interface, this relation reverses,
the number of H2O molecules there is small. In an average over the first solvation shell, hence the
high-density low-volume H2O molecules dominate. However, compared to the total magnitude of
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the bulk density, these deviations are comparatively small which is why no stronger changes in the
average cavity probability density between bulk and interface are observed. The strong fluctuations
in the yellow corona stem from numerical instabilities due to small value division.

Figure 6.16 – Surface cuts through the potential fields φ3 at the H2O interface and φ4 in H2O bulk in the style
of figure 6.5. The ratio φ3/φ4 plotted in the third row reveals an average potential slightly lower in regime "3"
compared to regime "4".

In figure 6.16 the surface cuts through the potential fields φ3 at the interface and φ4 in bulk are
portrayed in the style of figure 6.5 from the previous section. Here the first row represents the
surface cuts for the bulk reference regime "3" while the second row represents the cuts for the
interfacial regime "4". A visual comparison between the two regimes reveals an average potential
slightly lower in regime "3" compared to regime "4". This is confirmed in the ratio φ3/φ4 plotted
in the third row of figure 6.16. In all three surface cuts, the interfacial cavity potential is lowered
compared to the bulk benchmark. This is observed over the entire cavity and seems to be relatively
homogeneous. The bands of white in the third row correspond to values where φ4 < 5 meÅ as can
be seen by comparing it to the first row. These values are excluded because the small values in the
denominator lead to an exploding numerical error that would clutter the image. A direct depiction
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of the interfacial E-field is rather confusing since E is a vector field which is why it is not portrayed
here.

6.4.2 Interfacial DCE

The same comparison of cavity probability and cavity potential at the interface versus the bulk can
be performed in the DCE phase. As in the bulk case, the two DCE conformers gauche and trans
are treated separately and discriminated via the dihedral angle according to figure 5.2. The ratio
of cavity probability ρ2/ρ1 for both DCE conformers is portrayed in figure 6.17. For both gauche
DCE on the left and trans DCE on the right, the 0.2ρ1 isosurface of the cavity probability in bulk is
represented in white. Another isosurface of the ratio 0.2ρ2/ρ1 is depicted in red. The most notable
observation to draw from figure 6.17 is that the red isosurface of the interface to bulk ratio lies
outside the white isosurface, indicating that the cavity is slightly more drawn out in bulk compared
to the interface. This qualitatively matches the observations made for water but the drop in the
interface to bulk ratio is smaller in comparison. Again, this matches the expectations due to the
number density fluctuations shown in figure 6.14 since the relative change in density in the first
solvation shell is higher in water compared to DCE. The skew in average cavity probability reflects
that property. A second observation is that in both conformers the distance between white and red
isosurface is fairly constant. The change in cavity shape, at least in an equally weighted average
that is performed here, is therefore not significant.

(a) gauche DCE (b) trans DCE

Figure 6.17 – Cavity probability for gauche and trans DCE. Bulk isosurface at 0.2ρ1 in white, corona at
0.2ρ2/ρ1. Red corona lies outside of white, reflecting the higher density in the first solvation shell (and thus
smaller volume).



6.4 Interfacial field and potential in the cluster-centric coordinate system 99

The surface cuts for the average cavity potential at x, y, and z equal to zero for gauche DCE are
portrayed in figure 6.18. Like in the corresponding plot for H2O the average cavity potential in the
DCE bulk regime φ1 is plotted in the first row, while the potential in the interfacial regime φ2 is plotted
in the second row. A visual comparison of these first two rows with each other and the their bulk
simulation counterpart in figure 6.10 shows no distinctive differences in the average cavity potential.

Figure 6.18 – Surface cuts through the potential fields for gauche DCE φ2 at the interface and φ1 in bulk.
Opposite to water, the average cavity potential at the interface is larger than the bulk reference almost over
the entire cavity. While the ratio (third row) on the chlorine side of the cavity is roughly homogeneous with
a value of 1.3, the opposite side of the cavity occupied by the hydrogen atoms returns ratios of 1.4-1.6.
Approaching the carbon axis from the hydrogen half of the cavity, the ratio even reaches values of two and
higher.

In the third row of 6.18, the ratio φ2/φ1 is plotted. Opposite to water, the average cavity potential at
the interface is larger than the bulk reference almost over the entire cavity. However, the interface to
bulk ratio is considerably less homogeneous over the cavity. While the ratio on the chlorine side of
the cavity is roughly homogeneous with a value of 1.3, the opposite side of the cavity occupied by
the hydrogen atoms returns ratios of 1.4-1.6. Approaching the carbon axis from the hydrogen half
of the cavity, the ratio even reaches values of two and higher. Doing the same from the chlorine half



100 Electric Field and Polarization in Proximity to Cluster Centers

of the cavity even shows ratios below one, indicating that the bulk reference cavity has a greater
magnitude than the interfacial cavity potential in these areas. A similar effect is observed between
the contours and the projection of the chlorine atoms in the middle xz-projection of the third row.
This might be due to the preferential orientation of the polar gauche DCE molecules at the LLI as
a response to the potential gradient created by the H2O phase located on the other side of the LLI.
Like for its H2O counterpart, values with φ1 < 5 meÅ in figure 6.18 are blanked out due to numerical
stability issues arising from division by small numbers.

Figure 6.19 – Surface cuts through the potential fields for trans DCE φ2 at the interface and φ1 in bulk. The
negative potential lobes around the chloride atom projections in the xz- and xy-plane are significantly more
outspread than in the same potential for DCEBULK, leading to a neutral region in the center as compared to
a distinctly positive one above. This suggests that even far into the bulk, at distances of 25 Å - 30 Å from the
interface, trans DCE sees the influence of the interface in the cavity potential.
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The corresponding surface cuts for the cavity potential of trans DCE are portrayed in figure 6.19.
Again, the bulk reference cavity potential φ1 is portrayed in the first row while its interfacial counter-
part φ2 is portrayed in the second row. Performing the same comparison between these two rows
and the trans DCE results of the bulk trajectory in figure 6.11, one can notice several differences in
the cavity potential. In surface cuts for the bulk trajectory above, the potential is entirely positive in
the yz-plane with a neutral region in the center that skews to the lower left. In contrast, the same
cuts in regimes "1" and "2" here exhibit a distinctively negative center region which is slightly more
prominent for φ1 in the first row. The second and third column here are more negative compared
to its bulk trajectory counterpart, too. The negative potential lobes around the chloride atom pro-
jections in the xz- and xy-plane are significantly more outspread than in the same potential for
DCEBULK, leading to a neutral region in the center as compared to a distinctly positive one above.
This suggests that even far into the bulk, at distances of 25 Å - 30 Å from the interface, trans DCE
sees the influence of the interface in the cavity potential. This behaviour can be interpreted as a
consequence of the breaking in molecular symmetry for µ 6= 0 in trans DCE. Fields imposed by the
presence of the /water LLI influence the presented averages in the molecular coordinate system
disproportionately more in trans DCE compared to gauche DCE.
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Chapter 7

Iterative Reaction Field Approach for
Permittivity Calculation

In an effort to circumvent complicated electrostatic calculations arising in less regular system ge-
ometries like slabs, spheres or cylinders, an attempt to use an iterative, local reaction field approach
was made that is presented in this chapter. Drawing from the fluctuation formula derivation for bulk
dielectric constants by Neumann [48] presented in section 2.6.1, an attempt was made to employ
local reaction fields in order to calculate a spatially resolved dielectric constant. This approach is
sketched in figure 7.1.

Figure 7.1 – Proposed formalism for iterative permittivity calcuation. Starting from a dipole trajectory (left),
a cavity occupying a subspace of the entire simulation box is inserted (middle). This cavity is assumed
to be embedded in the continuous dielectric εout (right). Only dipoles inside the cavity are treated explicitly
while the interaction with the surrounding εout is coarse grained into a continuum reaction field response. The
embedding dielectric εout gets then updated with this calculated εin in successive iterations until convergence.

Starting from a dipole trajectory, a cavity occupying a subspace of the entire simulation box is
inserted. In the proposed reaction field picture, this cavity is assumed to be embedded in the
continuous dielectric εout. Only dipoles inside the cavity are treated explicitly while the interaction
with the surrounding εout is coarse grained into a continuum reaction field response.

If such a fluctuation formula is obtained, it can be employed iteratively using cavities of different
shapes and orientations. The embedding dielectric εout gets then updated with this calculated εin
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in successive iterations until convergence. This would allow to map out arbitrary dielectric configu-
rations.

In search for suitable cavity geometries, oblate spheroidals were chosen for their flexibility. Through
tuning of the minor and major semi-axes, cavities similar to slabs or spheres can be mimicked.
Combined with cavity rotation and scaling this allows to adequately partition the dielectric to the
desired spatial resolution. For a slab-like interfacial geometry between a solid and a liquid, one
could for example choose a very short minor semi-axis normal to the interface and large major
semi-axes parallel to the interface, resulting in a lentil shaped cavity. This would guarantee a high
resolution with respect to interface distance while also exploiting the translational invariance in-
plane for better statistics. Inside the cavity, the dipole-dipole interaction is explicitly calculated,
analogous to the spherical cutoff case, and the interaction with the surrounding medium is coarse
grained into a continuum reaction field response.

7.1 Formalism

In order to verify whether this iterative reaction field approach presents a viable option to calculate
arbitrary dielectric profiles at all, its applicability to isotropic bulk systems is tested first.

As shown in section 2.6.1, the relation (2.95)

λ =
1

V

[
δij − λT̃ij(0)

]
Hij (7.1)

between an isotropic system’s bulk permittivity ε and its dipole moment fluctuations H can be es-
tablished, if the zero-mode Fourier transform of the dipole-dipole interaction tensor T̃(0) is known.
Here V represents the system volume and the parameter λ is given by

λ =
3

4π

ε− 1

ε+ 2
(7.2)

The reaction field ER for a cavity system with oblate spheroid geometry with major semi-axis a and
minor semi-axis b embedded in a medium with dielectric constant εout was first derived by Scholte
[192]. It is constant over the cavity and proportional to the cavity dipole moment M. It thus fulfills the
necessary conditions (2.73) for ER to be incorporated into the pair-wise dipole-dipole interaction
tensor

Tij(rab, ε
out) =

T dd
ij (rab) + δijfij(ε

out) a, b in cavity

0 otherwise
(7.3)
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Here Tdd represents the explicit dipole-dipole interaction tensor (2.51) and f the reaction field
tensor

f =

f‖ 0 0

0 f‖ 0

0 0 f⊥

 =


3
a2b

Aa(1−Aa)(εout−1)
εout+(1−εout)Aa 0 0

0 3
a2b

Aa(1−Aa)(εout−1)
εout+(1−εout)Aa 0

0 0 3
a2b

Ab(1−Ab)(εout−1)
εout+(1−εout)Ab

 (7.4)

If the center coincides with the origin and the minor semi-axis is oriented along the z-axis, the
integrals Aa and Ab are given by

Aa(a, b) =
a2b

2

∫ ∞
0

ds√
(s+ a2)4(s+ b2)

=
a2b

2

(
b

a2(b2 − a2)
− i · cosh−1( ba)

(a2 − b2)3/2

)
(7.5)

and

Ab(a, b) =
a2b

2

∫ ∞
0

ds√
(s+ a2)2(s+ b2)3

=
a2b

2

(
2

a2b− b3 −
2cos−1( ba)

(a2 − b2)3/2

)
(7.6)

These dimensionless integrals are independent of the volume of the spheroidal cavity and exhibit
the limiting behaviour

lim a→ b a→∞ b→ 0 b→ a

Aa 1/3 0 0 1/3
Ab 1/3 1 1 1/3

The reaction field tensor f is both constant over the cavity and independent of its volume. In the
limit of the oblate spheroid approaching a sphere, Aa = Ac = 1

3 and f is equal to expression (2.77).
A summary of the derivation of equations (7.4), (7.5), and (7.6) as presented in [23] can be found
in appendix D. It should be noted, that contrary to the spherical case, this expression only holds for
constantly polarized cavities and not arbitrary distributions of Pcav(r).

Substituting the zero-mode Fourier transform of (7.3) for T̃(0) in (7.1) and solving for λ returns the
fluctuation formula for the bulk dielectric constant εin in this system geometry. Parallel to the minor
semi-axis, this yields

εin − 1

εin + 2
=

4π

3

H⊥
V (1 + f⊥H⊥)

(7.7)
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and parallel to the major semi-axis

εin − 1

εin + 2
=

4π

3

H‖

V (1 + f‖H‖)
(7.8)

withH⊥ = Hzz andH‖ = Hxx = Hyy. Analog to the fluctuation formulas in slab geometry, symmetry
in the xy-plane can be exploited to improve statistics.

However, an oblate spheroid of permittivity εin embedded in a homogeneous dielectric εout does
not yet capture the desired system geometry portrayed in figure 7.1. Here, the spheroidal cavity is
embedded in a cubic simulation box with periodic boundary conditions and long-range electrostatics
are treated using the Ewald sum. Therefore, in order to translate the Ewald setup the trajectory was
simulated in into the reaction field image of our analysis, the Ewald dipole-dipole interaction tensor
would need to be mapped onto the reaction field dipole-dipole interaction tensor (7.3).

7.2 Sensitivity analysis of oblate spheroidal reaction field formula in
bulk water

In order to test the validity of the fluctuation formulas for oblate spheroidal cavities (7.7) and (7.8),
the sensitivity of the calculated εin towards cavity volume, eccentricity and orientation has to be
examined. The sensitivity tests are performed using the isotropic bulk water trajectory H2OBULK
described in section 3.1. To recall, this trajectory consists of 356 water molecules in a cubic simula-
tion box with periodic boundary conditions and is thermostated at 300 K. Long-range electrostatics
are treated using Ewald lattice summation which corresponds to tinfoil boundary conditions in re-
action field geometry and means that its bulk dielectric constant εbulk can be calculated using the
KF fluctuation formula (2.99).

Consequently, any εin calculated involving the fluctuation formulas derived above needs to be able
to reproduce εKF for the same trajectory. In order for an iterative reaction field approach to con-
verge, these fluctuation formulas should furthermore reproduce εbulk directly if the stationary con-
dition εout = εbulk is used in (7.7) and (7.8). Since H2OBULK represents a bulk simulation, shape,
volume and orientation of the cavity should not affect the result.

In order to test the sensitivity towards volume and eccentricity, (7.7) and (7.8) are applied to various
oblate spheroidal cavities all centered in the middle of H2OBULK at half the boxlength along each
coordinate axis. In all cases, the minor semi-axis b is oriented in z-direction and the major semi-axis
a lies in the xy-plane. From this geometry it follows that εin

⊥ = εin
zz and εin

‖ = εin
xx = εin

yy.
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The results for the sensitivity of εin towards volume and eccentricity are presented in figure 7.2.
Here, the volume V of the oblate spheroidal cavity is given by

V =
4π

3
a2b (7.9)

and it eccentricity ecc, which serves as a measure of shape and parametrizes the ratio between
minor and major semi-axis is given by

ecc =

√
1− b2

a2
(7.10)
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Figure 7.2 – Sensitivity of εin‖ (left) and εin⊥ (middle) towards volume and eccentricity of the oblate spheroidal
cavity. Both εin‖ and εin⊥ are massively sensitive towards even moderate changes in eccentricity and volume.
Additionally, the calculated dielectric constants εin‖ and εin⊥ differ for identical cavities in every case, even
though they should produce the same results for an isotropic liquid like bulk water.

From the left and center plot of figure 7.2 two main observations can be made. Firstly, both εin
‖ and

εin
⊥ are massively sensitive towards even moderate changes in eccentricity and volume. The dotted

lines in both the left and center plot of figure 7.2 correspond to the cavities portrayed on the right. In
the case of εin

⊥ no equality to εbulk is obtained in the probing range of 300 - 1200 Å
3

for volume and
0.1 - 0.6 for eccentricity. The two points satisfying εin

‖ = εbulk in the left plot have to be considered
as coincidences. Secondly, the calculated dielectric constants εin

‖ and εin
⊥ differ for identical cavities

in every case, even though they should produce the same results for an isotropic liquid like bulk
water.
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Regarding trends, one can see that both εin
‖ and εin

⊥ increase with cavity volume. Increasing eccen-
tricity has a dampening effect on εin

⊥ and a strengthening effect on εin
‖ until an eccentricity of 0.4.

For ecc = 0.5 this trend strongly reverses and εin
‖ turns negative. For a bulk dielectric constant in

the Maxwellian sense, this is an unphysical result.

Two potential reasons for this strong divergence of εout from its expected behaviour come to mind.
One possible source of error arises due to a lack of particle conservation. While the H2OBULK
trajectory is simulated in the canonical NVT ensemble and the total particle number N is constant
over the course of the trajectory, the same can not be said for the number of particles n inside
the spheroid cavity. The linear response formalism employed in the derivation of the fluctuation
formulas (7.8) and (7.7) however assumes a NVT ensemble and thus particle conservation. The
statistical averages calculated for the fluctuation matrix H therefore have a wrong, non-canonical
energy weighting when performed over local spheroidal cavities. Since the system - the spheroid
- is comparatively large compared to the bath formed by the rest of the simulation box, adapting
the linear response framework for a grand-canonical µVT ensemble is not a viable solution. The
influence of particle fluctuations in and out of the spheroid would therefore have a non-negligible
influence on the bath and a chemical potential in the classical sense could not be defined.

A second possible source of error are wrong electrostatics. The H2OBULK system is simulated in
a cubic box in Ewald geometry. Inserting an oblate spheroidal cavity into such a system deviates
from the assumed electrostatic setup of a dielectric spheroid with dielectric constant εin embedded
in an infinite dielectric εout.

Neither of these two possibilities can be ruled out by an isolated analysis of figure 7.3. Here, an
examination regarding the influence of cavity orientation on εin can offer valuable insights. The
influence of cavity orientation on εin

‖ and εin
⊥ calculated via (7.8) and (7.7) is portrayed in figure 7.3

for an oblate spheroidal cavity with a volume of 1000 Å
3

and an eccentricity of 0.3. This corresponds
to the green spheroid portrayed in the right plot of figure 7.2.

As illustrated on the right hand side, α represents the angle between the oblate spheroid’s minor
semi-axis and the z-axis. An angle of α = 0◦ thus corresponds to a spheroid with minor semi-axis
aligned in z-direction while an angle of α = 90◦ corresponds to a spheroid with major semi-axis
aligned in z-direction. Due to the symmetry of of the oblate spheroid, α is π-periodic.

As expected from the results in figure 7.2, εin
‖ and εin

⊥ do not coincide. A notable additional informa-
tion is however, that both permittivity values change with α. The parallel component εin

‖ decreases
as the cavity’s major semi-axis aligns with the z-axis, while εin

⊥ decreases.

Any quantitative analysis of the results obtained for εin
‖ and εin

⊥ in figures 7.2 and 7.3 is difficult
since the errors introduced via wrong statistical averaging and wrong electrostatics cannot easily
be dissected.

Nevertheless their dependence on cavity orientation allows to draw one important conclusion. Since
surface and volume of the rotated spheroid in figure 7.3 remain constant, so are the particle fluctu-
ations in and out of the spheroid. After all, the cavity is placed in an isotropic bulk water simulation.
So even if equation (7.8) and (7.7) are formulated around an n - dependent thermodynamic variable
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Figure 7.3 – Influence of cavity orientation on εin‖ (left) and εin⊥ (middle) for an oblate spheroidal cavity with a

volume of 1000 Å
3

and an eccentricity of 0.3 (right). Both permittivity values change with the angle between
the oblate spheroid’s minor semi-axis and the z-axis.

equivalent to a chemical potential µ in a sort of semi-grand canonical approach that accounts for
the comparatively small particle bath outside the cavity, the electrostatic error has an effect and
can not be neglected. Alternatively the µ equivalent would need to be a direction dependent ten-
sorial quantity. This would introduce an undesired level of complexity, require additional extensive
sampling of the energy distribution to calculate accurate averages and introduce further sources of
error due to non-linear coupling effects between the directions. For these reasons, the avenue of a
tensorial n-dependent thermodynamic variable was not pursued further, especially keeping in mind
that these problems already arise for an isotropic bulk liquid as simulated in H2OBULK.

Simply ignoring the Ewald geometry of the underlying trajectory is therefore not an option and an
adequate mapping between the Ewald geometry of the trajectory and the reaction field geometry
to calculate εin needs to be established.

7.3 Mapping of the reaction field dipole dipole interaction tensor to
the Ewald interaction potential of the simulation

In order to incorporate the Ewald simulation geometry of H2OBULK into the derivation of the fluctu-
ation formulas (7.8) and (7.7), a mapping from the Ewald dipole-dipole interaction tensor TE to the
reaction field dipole-dipole interaction tensor TR is required. This is necessary since all electrostat-
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ics that enter the derivation do so in the form of the zero-mode Fourier transform of the dipole-dipole
interaction tensor T̃(0) in (7.1):

λ =
1

V

[
δij − λT̃ij(0)

]
Hij (7.11)

To recall, in reaction field geometry only dipoles within the cavity interact explicitly while the interac-
tion with the outside is coarse-grained into the mean-field dielectric response determined by εout.
This is reflected in the formulation (7.3) of TR by two distinct contributions:

TRij (rab, ε
out) =

T dd
ij (rab) + δijfij(ε

out) a, b in cavity

0 otherwise
(7.12)

The first one Tdd accounts for the explicit interaction of two dipoles inside the cavity while the
second one aggregates all interaction between a dipole in the cavity and everything outside. In the
reaction field formalism, the latter is incorporated into TR via the reaction field tensor f .

The reason that this generally non-pairwise interaction with the environment can be incorporated
into a pairwise interaction tensor like TR lies in the linear dependence of the reaction field R on the
total dipole moment of the cavity M as shown in section 2.5.2.

In order to use the dipole-dipole interaction tensor TE as a substitute for TR in (7.11), the cavity-
cavity and a cavity-outside dipole interactions have to be split accordingly. The desired form of TE

would be written as

TERij (rab) =

TEij (rab) + δijgij a, b in cavity

0 otherwise
(7.13)

where analog to (7.12) the first summand treats the pairwise interaction of explicit dipoles in the
cavity while the second summand accounts for the interaction of an explicit dipole in the cavity with
the cavity surroundings.

Before turning to the calculation of T̃(0) required in (7.11), the pseudo reaction field tensor g in
(7.13) has to be specified. This tensor incorporates the interactions between a single dipole inside
the spheroid cavity and all other dipoles in the box that are outside the cavity.

As required for its counterpart f in (7.12), g needs to fulfill the crucial condition of being proportional
to the total dipole moment of the cavity. Whether or not this is an issue for the H2OBULK trajectory
will be tested numerically in the next chapter.
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The zero-mode Fourier transform of TER required in (7.11) is obtained by integrating (7.13) over
the cavity and can be split into two integrals:

T̃ERij (0) =

∫
Vsph

TERij dr +

∫
Vsph

gijdr = I in
ij + Iout

ij (7.14)

The first integral Iin has the solution

I in
‖ = I in

xx = I in
yy =

4π

3
P (η) + 8π

Vsph
Vbox

(7.15)

I in
⊥ = I in

zz =
4π

3
P (η)− 4a

√
2π3

(a+ b)
S(η) + 8π

Vsph
Vbox

(7.16)

I in
i6=j = 0 (7.17)

where a and b denote the lengths of the major and minor semi-axes of the spheroid and η the Ewald
screening parameter. A detailed derivation as well as analytic expressions for the functions P and
S can be found in appendix E.
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Figure 7.4 – Dependence of S and P on Ewald screening parameter η for a spheroid with major semi-axis
of a = 8 Å and minor semi-axis of b = 4 Å. Both functions increase monotonously with η returning zero for
η = 0 and plateauing at 1 for η ≈ 0.6.

In figure 7.4, both S(η) and P (η) are plotted against the Ewald convergence parameter η for a
spheroid with major semi-axis of a = 8 Å and minor semi-axis of b = 4 Å. Both functions increase
monotonously with η returning zero for η = 0 and plateauing at 1 for η ≈ 0.6.
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7.3.1 Examination of the pseudo reaction field tensor g in bulk water

In order to calculate the second integral Iout necessary for deriving permittivity fluctuation formulas
for H2OBULK, the pseudo reaction field tensor g needs to be specified.

Analog to f , g needs to serve as the proportionality constant between Eout - the field produced
inside the cavity by all dipoles outside - and the total dipole moment of the cavity M:

Eout
i = gijMj = giiMi (7.18)

This linear dependence is a prerequisite to obtain any sensible expression for g that can be used
to incorporate the interaction between cavity dipoles and outside polarization into Iout. Whether
this is a reasonable assumption is examined for H2OBULK and, as before, a 1000 Å

3
cavity with

an eccentricity of 0.3 and minor semi-axis oriented in z-direction. The total dipole moment of the
cavity M is plotted against Eout component-wise in figure 7.5. Here M constitutes the sum over
all individual dipoles in the cavity while Eout represents the average electric field due to all external
charges felt at these cavity dipoles.

Figure 7.5 – Total dipole moment of the cavity M (sum over all individual dipoles in the cavity) plotted against
Eout (average electric field due to all external charges) component-wise. The two quantities exhibit no linear
dependence.

This per-timestep comparison reveals no visible dependence between M and Eout, the two quanti-
ties appear to be entirely uncorrelated and condition (7.18) is not fulfilled.

Furthermore as illustrated in figure 7.6, the values for Eout measured at the dipole centers strongly
vary compared to the averages used in figure 7.5. A pseudo-reaction field tensor g that is constant
over the cavity and fulfills (7.18) does therefore not seem to be obtainable.

The present case serves as an example that the iterative use of the reaction field formalism by
Neumann [49] with the goal of calculating local permittivity profiles for trajectories simulated in
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Figure 7.6 – Variance σ of Eout measured at the dipole centers. σ is very large compared to the averages
used in figure 7.5. A pseudo-reaction field tensor g that is constant over the cavity and fulfills (7.18) does
therefore not seem to be obtainable.

Ewald geometry poses serious theoretical hurdles. It is not possible to separate the Ewald dipole-
dipole interaction tensor TE into cavity-inside and cavity-outside contributions analog to its reaction
field counterpart TR. A mapping between the electrostatic realities of the simulated trajectory
and the reaction field picture of a dielectric spheroid immersed in an infinite dielectric is hence
impossible.

One could in principle include higher orders of k in the analysis and acknowledge the not conserved
spheroid particle number throughout the derivation. However, these approaches would introduce
high degrees of complexity and require further assumption regarding the nature of the particle bath
for example. Since all these difficulties already appear for simple cases like bulk water, the iterative
reaction field approach was not pursued further.
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Chapter 8

Conclusion

Common strategies in coarse-graining the dielectric properties of interfacial polar liquids into a
continuum mean-field response traditionally assume decoupled interface-parallel and interface-
perpendicular elements in the permittivity response tensor. Among other assumptions, like the
Ewald geometry dictating conducting boundary conditions, off-diagonal elements of the dielectric
tensor are a priori assumed to be zero. This is identical to an equivalent circuit picture of a se-
ries of plate capacitor. While these approaches for calculating interfacial dielectric constants have
been proven very successful and have been frequently employed in interfacial liquid systems, they
nevertheless only apply to very specific system geometries.

In this work we derived an alternative approach based on discretizing the dipole-dipole interaction
tensor and subsequently turning the basic relation of electrostatics into a kernel-convolution prob-
lem. This allows us to solve the general electrostatic problem based on polarization fluctuations and
gives access to a full, spatially resolved dielectric tensor for arbitrary geometries. Furthermore, it
provides a straightforward black box formalism that makes it very transparent where approximations
enter the derivation. Traditional polarization fluctuation formulas for the local dielectric constant in
bulk and in slab geometry for a H2O / DCE LLI are derived as special cases in an Ewald simulation
setup.

Additionally, the molecular orientation in both the H2O and DCE phase against the interface were
investigated in vicinity of the LLI in form of bivariate distributions of two independent angles per
molecule against the instantaneous LLI. Our findings are in line with orientational maps reported in
literature [189, 190].

The relation between the field and molecular polarity was also investigated directly without prior
coarse-graining into a dielectric mean-field response. While a more efficient calculation of the
dielectric behaviour of liquids was not found, combining these molecular fields with LLI orientation
polarizations could open a path towards improving the accuracy of implicit solvent approaches by
delta-learning in the future.

Finally in an effort to circumvent complicated electrostatic calculations arising in less regular sys-
tem geometries like slabs, spheres or cylinders, an attempt to use an iterative, local reaction field
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approach was made. An analysis of bulk water trajectories however revealed that even for rela-
tively simple molecules like water, such an approach is futile and does not provide any advantages
compared to the kernel-convolution approach.



Appendix A

Oblate spheroidal coordinates

Ellipsoidal coordinates for ellipsoid of semiprincipal axes a,b,c, assuming (a > b > c):

x2

a2 + ξ
+

y2

b2 + ξ
+

z2

c2 + ξ
= 1, (ξ > −c2) (A.1)

x2

a2 + η
+

y2

b2 + η
+

z2

c2 + η
= 1, (−c2 > η > −b2) (A.2)

x2

a2 + ζ
+

y2

b2 + ζ
+

z2

c2 + ζ
= 1, (−b2 > η > −a2) (A.3)

The surfaces of ξ = const. are ellipsoids, η = const. hyperboloids of one sheet and ζ = const.

hyperboloids of 2 sheets. The relation to cartesian coordinates is given by

x = ±
[

(ξ + a2)(η + a2)(ζ + a2)

(b2 − a2)(c2 − a2)

]1/2

(A.4)

y = ±
[

(ξ + b2)(η + b2)(ζ + b2)

(a2 − b2)(c2 − b2)

]1/2

(A.5)

z = ±
[

(ξ + c2)(η + c2)(ζ + c2)

(b2 − c2)(a2 − c2)

]1/2

(A.6)

and

h1 =
1

2

[
(ξ − η)(ξ − ζ)

(ξ + a2)(ξ + b2)(ξ + c2)

]1/2

(A.7)

h2 =
1

2

[
(η − ξ)(η − ζ)

(η + a2)(η + b2)(η + c2)

]1/2

(A.8)

h3 =
1

2

[
(ζ − ξ)(ζ − η)

(ζ + a2)(ζ + b2)(ζ + c2)

]1/2

(A.9)
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and the infinitesimal volume is given by

dV = dxdydz = h1h2h3dξdηdζ (A.10)



Appendix B

Helmholtz theorem

Constituting a general mathematical theorem for sufficiently well behaved vector fields, the Helmholtz-
theorem states that any inhomogeneous vector field F can be split into its longitudinal and trans-
verse components [22]

F = −∇φ+∇×A = FL + FT (B.1)

where both these components are orthogonal

FL · FT = 0 (B.2)

The longitudinal part of this decomposition is given by

FL =
1

4π

∫
V

∇′ · F′
|r− r′|dV

′ − 1

4π

∮
∂V

n′ · F′

|r− r′|dS
′ (B.3)

with ∂V being the surface enclosing volume V and n the corresponding outward facing normal
vector. In case of the polarization field that becomes

4πPL = −
∫
V

∇′ ·P′
|r− r′|dV

′ −
∮
∂V

n′ · P′

|r− r′|dS
′ (B.4)

= −Ep −
∮
∂V

σ′P
|r− r′|dS

′ (B.5)
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with the electric field Ep = −∇ · φp due to all the charges in the dielectric and the surface charge
σP = n ·P. The matching electrostatic potential φp is given by:

φP =

∫
ρ′P
|r− r′|dV

′ (B.6)

with the charge distribution ρP = −∇ ·P.



Appendix C

Linear response theory in the canonical
ensemble

The following derivation closely follows chapter 7.6 in [24]. Assuming a spatially uniform system
is subjugated to an external space- and time-dependent field F weakly coupled to its conjugate
variable A, the linear response algorithm calculates the resulting change in an observable B, whose
mean value is assumed to be zero in the unperturbed system, i.e. in absence of the field.

The assumptions regarding A and B are quite general, they simply represent two functions depen-
dent on the microstate of the system. In a 3D system of particles this microstate would mean its
6N coordinates and momenta. A and B can even be the same as is the case for polarization and
electric field. The electric field E represents the derivative of the action with respect to the electric
polarization density P [105] and thus constitute a conjugate pair.

In this case, the hamiltonian of the system is

H = H0 +H′(t) (C.1)

with the unperturbed system represented by H0 and a perturbation hamiltonian

H′(t) = −
∫
A(r)F(r, t)dr (C.2)

Instead of a cartesian basis, the field F can also be expressed in a basis of plane waves. Since the
calculated response of the system is supposed to be linear, the perturbations of individual plane
wave components to the observable B are linearly independent. It is therefore sufficient to look at
a single plain wave perturbing field with fixed wavevector k and frequency ω

F(r, t) =
1

V
Fke

i(k·r−ωt) (C.3)
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which if inserted in equation C.2 results in a perturbing hamiltonian of

H′(t) = −Fke
−iωt

∫
A(r)eik·rdr = −Fke

−iωt ·Ak (C.4)

Since only a single plane wave is examined in this derivation, the wavevector indices k for F and
k are omitted in the following and reintroduced later. It is furthermore assumed the system was in
thermal equilibrium at t = −∞, which is assured by a factor exp(εt) with ε > 0. The perturbation
hamiltonian then takes the form

H′(t) = −A · F0e
−i(ω+iε)t (C.5)

Since one is interested in the time-integrated response of the system as a whole, the time-evolution
of shift in the phase-space probability density f [N ](t) = f [N ](rN ,pN ; t) caused by the perturbation
must be considered. The time evolution of f [N ] is governed by the Liouville equation [24]

f [N ](t)

∂t
= −iLf [N ](t) =

{
H, f [N ](t)

}
(C.6)

where {A,B} denotes the Poisson bracket:

{A,B} ≡
N∑
i=1

(
∂A

∂ri
· ∂B
∂pi
− ∂A

∂pi
· ∂B
∂ri

)
(C.7)

and N represents all degrees of freedom of the system. Substituting equations (C.1) and (C.5)
above equation can be written as

f [N ](t)

∂t
=

{
H0 +H′, f [N ](t)

}
=

{
H0 −AF(t), f [N ](t)

}
=

{
H0, f

[N ](t)
}
−
{
AF(t), f [N ](t)

}
=

{
H0, f

[N ](t)
}
−
{
A, f [N ](t)

}
F(t)

= −iL0f
[N ](t)−

{
A, f [N ](t)

}
F(t) (C.8)
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where L0 denotes the Liouville operator of the unperturbed system. Because we are only con-
cerned with a weak perturbation, the probability density can be written as

f [N ](t) = f
[N ]
0 + ∆f [N ](t) (C.9)

where f [N ]
0 = f [N ](−∞) represents the unperturbed system. Inserted into equation (C.8) this can

be linearized as

∆f [N ](t)

∂t
=

f [N ](t)

∂t
− f

[N ]
0 (t)

∂t

= −iL0∆f [N ](t)−
{
A, f [N ](t)

}
F(t)

= −iL0∆f [N ](t)−
{
A, f

[N ]
0 + ∆f [N ](t)

}
F(t)

= −iL0∆f [N ](t)−
{
A, f

[N ]
0

}
F(t)−

{
A,∆f [N ](t)

}
F(t)

= −iL0∆f [N ](t)−
{
A, f

[N ]
0

}
F(t) (C.10)

where the last summand is omitted because it represents a second order perturbation. The solution
to this differential equation is

∆f [N ](t) = −
∫ t

−∞
exp [−i(t− s)L0]

{
A, f

[N ]
0

}
F(s)ds

= β

∫ t

−∞
exp [−i(t− s)L0] Ȧf

[N ]
0 F(s)ds (C.11)

That this is the correct solution to equation (C.10) can be checked by differentiation of the first line of
(C.11) and the fact that the boundary condition f [N ]

0 = f [N ](−∞) is also fulfilled - or to be plugged in
a symbolic programming platform. The substitution of the Poisson bracket in the last line of (C.11)
is due to the following:

If we assume to be in a canonical ensemble (NVT), we have f [N ]
0 ∝ exp[−βH0] with β = (kbT )−1

and the Poisson equation in (C.10) takes the form
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{
A, f

[N ]
0

}
=

N∑
i=1

(
∂A

∂ri
· ∂f

[N ]
0

∂pi
− ∂A

∂pi
· ∂f

[N ]
0

∂ri

)

= β
N∑
i=1

(
∂A

∂ri
· ∂H0

∂pi
− ∂A

∂pi
· ∂H0

∂ri

)
f

[N ]
0

= −β(iL0A)f
[N ]
0 = −βȦf [N ]

0 (C.12)

In the last step we use that the time derivative of any function of the phase space variables
A(rN ,pN ) can be written as

∂A

∂t
= Ȧ =

N∑
i=1

(
∂A

∂ri
· ṙ− ∂A

∂pi
· ṗ
)

=

N∑
i=1

(
∂A

∂ri
· ∂H
∂pi
− ∂A

∂pi
· ∂H
∂ri

)
= iLA (C.13)

as a result of Hamilton’s equations [24].

With the help of (C.11), the mean change in variable B(rN ,pN ) due to the field perturbation F(t) in
the canonical ensemble can therefore be expressed as

〈∆B(t)〉 =

∫ ∫
drNdpNB(rN ,pN )∆f [N ](t)

= β

∫ t

−∞
F(s)ds

∫ ∫
drNdpNf

[N ]
0 B exp [−i(t− s)L0] Ȧ

= β

∫ t

−∞
F(s)ds

∫ ∫
drNdpNf

[N ]
0 Ȧ exp [i(t− s)L0]B

= β

∫ t

−∞
dsΦ(t− s)F(s) (C.14)

with the after-effect function ΦBA(t) defined as

ΦBA(t) = β〈B(t)Ȧ〉0 = −β〈Ḃ(t)A〉0 (C.15)

The thermal averages 〈.〉0 represent the unperturbed system, because unperturbed phase-space
density f0 and propagator exp(iL0t) are used under the integrals in equation (C.15).

Equation (C.14) means that the response of the system represented by the change in B due to a
perturbation is a superposition of delayed effects. The response to a unit δ-function force applied
at time t = 0 is consequently proportional to the after-effect function itself.
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Equation (C.14) represents the solution for a monochromatic field perturbation due to the limit intro-
duced in equation (C.3). If the field is spatially varying, equation (C.14) can trivially be generalized
to

〈∆B(r, t)〉 =

∫ t

−∞
ds

∫
dr′ΦBA(r− r′, t− s)F(r′, s) (C.16)

This convolution can be expressed as

〈∆Bk(t)〉 =

∫ t

−∞
dsΦBA(k, t− s)Fk(s) (C.17)

in terms of its Fourier components. In this case, the after-effect function is accordingly defined as

ΦBA(k, t) = − β
V
〈Ḃk(t)A−k〉 (C.18)

As a consequence of above equation, a perturbation of a certain wavevector can only induce a
response in the system with the same wavevector.

Assuming the external field F is of dampened plane wave nature as described in equation (C.5),
the response expression in equation (C.17) takes the form

〈∆Bk(t)〉 = β

∫ t

−∞
ΦBA(k, t− s) exp [−i(ω + iε)s] ds

= Fk exp [−i(ω + iε)t]

∫ t

−∞
ΦBA(k, t− s) exp [−i(ω + iε)(s− t)] ds

= Fk exp [−i(ω + iε)t]

∫ ∞
0

ΦBA(k, t) exp [i(ω + iε)t] dt (C.19)

If we take the limit ε → 0 - which would amount to pushing the time the system was in equilibrium
infinitely far into the past - this becomes

〈∆Bk(t)〉 = χBA(k, ω)Fk exp(−iωt) (C.20)

with the dynamic susceptibility
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χBA(k, ω) = χ′BA(k, ω) + iχ′′BA(k, ω)

= lim
ε→0+

∫ ∞
0

ΦBA(k, t) exp [i(ω + iε)t] dt (C.21)

The expression for ΦBA from equation (C.18) can be substituted in above equation and then partially
integrated:

χBA(k, ω) = lim
ε→0+

∫ ∞
0

ΦBA(k, t) exp [i(ω + iε)t] dt

= − β
V

lim
ε→0+

∫ ∞
0
〈Ḃk(t)A−k〉 exp [i(ω + iε)t] dt (C.22)

The time integral in above equation can be integrated by parts:

I =

∫ ∞
0
〈Ḃk(t)A−k〉 exp [i(ω + iε)t] dt

= [〈Bk(t)A−k〉 exp [i(ω + iε)t]]∞0 −
∫ ∞

0
〈Bk(t)A−k〉i(ω + iε) exp [i(ω + iε)t] dt

= −〈Bk(0)A−k〉 − i(ω + iε)

∫ ∞
0
〈Bk(t)A−k〉 exp [i(ω + iε)t] dt (C.23)

The expression for the dynamic susceptibility thus takes the form

χBA(k, ω) =
β

V
lim
ε→0+

[
〈Bk(0)A−k〉 − i(ω + iε)

∫ ∞
0
〈Bk(t)A−k〉 exp [i(ω + iε)t] dt

]
(C.24)

For the special case if A and B are the same variable and in the zero-frequency limit, the static
susceptibility χAA(k) can then be expressed as

χAA(k) =
β

V
〈Ak(0)A−k〉 (C.25)
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and the relation between the perturbing field and the shift in variable A is given by

〈∆Ak〉 =
β

V
〈AkA−k〉Fk (C.26)

If the electric field E is considered to be F and the polarization density P to be A in equations (C.26)
and (C.25), χ = χAA corresponds to the static dielectric susceptibility for a uniform dielectric. The
application of linear response theory using the Maxwell field E is not technically applicable however
because it does not constitute a true external field but one whose value depends on the state of the
material[124]. This is why the fields appearing in the fluctuation formulas of the following sections
always represent an external field E0.
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Appendix D

Derivation for the reaction field of
ellipsoidal cavities

The following derivation is a summary of the derivation performed in Boettcher [23].

D.1 Free Charge on conducting Elllipsoid

By introducing the abbreviation

Rs =
√

(s+ a2)(s+ b2)(s+ c2) (D.1)

The Laplace equation in 3D in the oblate spheroidal coordinates introduced in appendix A can be
written as

(η − ζ)Rξ
∂

∂ξ

(
Rξ
∂Φ

∂ξ

)
+ (ζ − ξ)Rη

∂

∂η

(
Rη

∂Φ

∂η

)
+ (ξ − η)Rζ

∂

∂ζ

(
Rζ

∂Φ

∂ζ

)
= 0 (D.2)

Any solution to D.2 must be constant on the surface of the ellipsoid and regular at infinity. D.2
therefore reduces to

∂

∂ξ

(
Rξ
∂Φ

∂ξ

)
= 0 (D.3)

where Rξ is of the form D.1. Integration leads to

Φ(ξ) = C1

∫ ∞
ξ

dξ

Rξ
(D.4)
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For large ξ, this expression approaches 2C1√
ξ

, which is regular for ξ →∞.

D.2 Conducting Ellipsoid in Parallel Field

Assume a uniform external electric field E0, which is directed along the x-axis. If a conducting
ellipsoid were to be placed in such a field (let’s assume without loss of generality, that its major axis
also coincides with the x-axis), E0 would induce a nonuniform charge distribution counteracting the
external field. According to A.3, the potential of this applied field can be written as

Φ0 = −E0x = −E0

[
(ξ + a2)(η + a2)(ζ = a2)

(b2 − a2)(c2 − a2)

] 1
2

(D.5)

in ellipsoidal coordinates. This primary potential is a product of three functions, each dependent on
one ellipsoidal variable:

Φ0 = C1F1(ξ)F2(η)F3(ζ), C1 = − E0√
(b2 − a2)(c2 − a2)

(D.6)

This is equivalent to a separation of variables and therefore independent of the directions of the
potential. This potential however lacks regularity at infinity. If the boundary conditions at a general
ellipsoidal surface are to be satisfied, the induced potential Φ1 must vary functionally over every
surface of the family ξ = const. in exactly the same way as Φ0. It must, however, differ in its
regularity at infinity. Therefore, the following functional form is assumed:

Φ1 = C2G1(ξ)F2(η)F3(ζ) (D.7)

with

F2(η) =
√
η + a2 and F3(ζ) =

√
ζ = a2 (D.8)

Substituting D.7 and D.8 into D.2 gives

Rξ
∂

∂ξ

(
Rξ
∂G1

∂ξ

)
−
(
b2 + c2

4
+
ξ

2

)
G1 = 0 (D.9)
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This is an ordinary differential equation of second order and therefore must have 2 independent
solutions. We already know one of them to be

F1(ξ) =
√
ξ + a2 (D.10)

From theory of differential equations it is known, that if y1 is a solution of

∂2y

∂2x
+ p(x)

∂y

∂x
+ q(x)y = 0 (D.11)

then an independent solution y2 is given by

y2 = y1

∫
e( −

∫
pdx)

y2
1

(D.12)

In our case, we have

p(ξ) =
1

Rξ

∂Rξ
∂ξ

=
∂

∂ξ
ln(Rξ) (D.13)

and therefore

G1(ξ) = F1

∫
dξ

F 2
1Rξ

(D.14)

The above equation is regular at infinity and therefore the potential due to the induced charge, Φ1

is therefore

Φ1 = Φ0
C2

C1

∫ ∞
ξ

dξ

(ξ + a2)Rξ
(D.15)

The constant C2 is obtained by the condition that on the conducting ellipsoid ξ = 0 the potential is
a constant Φs:

Φs = Φ0

[
1 +

C2

C1

∫ ∞
0

dξ

(ξ + a2)Rξ

]
(D.16)
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The potential at any external point is therefore given by

Φ1 = Φ0 +
Φs − Φ0∫∞

0
dξ

(ξ+a2)Rξ

C2

C1

∫ ∞
ξ

dξ

(ξ + a2)Rξ
(D.17)

This works analogously for an electric field parallel to one of the other two axes of the ellipsoid.

D.3 Dielectric Ellipsoid in Parallel Field

Based on sections D.1 and D.2 one can now calculate the perturbation of a uniform parallel field due
to a dielectric ellipsoid with static dielectric constant εin immersed in a dielectric εout. The applied
external electric field E0 is applied arbitrarily with respect to the reference system of the ellipsoid
and has the components E0x, E0y, E0z along the axes of the ellipsoid.
Consider first the component field E0x, the cases for the other directions derive analogously. Since
we are still assuming a conducting ellipsoid surface, the resulting potential must exhibit the same
general functional behavior like the potential in section D.2 and will differ from it only in the value of
the constant C2. Outside the ellipsoid, we therefore have

Φ+ = Φ0 + Φ+
1 = F1(ξ)F2(η)F3(ζ)

[
C1 + C2

∫ ∞
ξ

ds

(s+ a2)Rs

]
(D.18)

The interior of the ellipsoid corresponds to the range c2 ≤ ξ ≤ 0 if a ≥ b ≥ c. In this region Φ− must
vary with η and ζ as determined by the function F2(η)F3(ζ) in order to hold boundary conditions
over the entire ellipsoid surface and, since D.9 has only two independent solutions, the dependence
on ξ must be represented either by F3(ξ) or G1(ξ). The latter is degenerate at ξ = −c2, thus the
potential within the ellipsoid must have the functional form

Φ− = C3F1(ξ)F2(η)F3(ζ) (D.19)

The constants C2 and C3 are to be adjusted to satisfy the boundary conditions

Φ+(0) = Φ−(0) , εin

[
1

h1

∂Φ−

∂ξ

]
ξ=0

= εout

[
1

h1

∂Φ+

∂ξ

]
ξ=0

(D.20)
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This leads to

C3 = C1 + C2

∫ ∞
0

ds

(s+ a2)Rs
(D.21)

and

C2 =
abc

2

(εout − εin)

εout
C3 (D.22)

Since Φ0 = −E0x one thus finds for the interior potential (D.19) inside the ellipsoid

Φ− =
−E0xx

1 + abc
2εout (εin − εout)A1

=
−E0xx

1 + abc
2εout (εin − εout)A

, A =
abc

2
A1 =

abc

2

∫ ∞
0

ds

(s+ a2)Rs

(D.23)

which corresponds to a field of

E−x =
E0x

1 + 1
εout (εin − εout)A

=
εout

εout + (εin − εout)A
E0x (D.24)

The components E−y and E−z are obtained analogously. The perturbed field inside a dielectric
oblate spheroid, whose axes are defined as a = b > c, can therefore be written as

 Exy
−

Exy
−

E−z

 =


εout

εout+(εin−εout)Aab
εout

εout+(εin−εout)Aab
εout

εout+(εin−εout)Ac


 Eox

E0y

E0z

 (D.25)

with

Aab =
a2c

2

∫ ∞
0

ds√
(s+ a2)4(s+ c2)

(D.26)

and

Ac =
a2c

2

∫ ∞
0

ds√
(s+ a2)2(s+ c2)3

(D.27)
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The field inside the spheroid is therefore constant but its direction only aligns with the external field
if the latter is aligned with one of the axes of the spheroid. Otherwise its direction is tilted according
to the A-Integral.

D.4 Interpretation as Reaction Field

In case of an oblate spheroid with major semi-axis a and minor semi-axis c, the reaction field can be
calculated by assuming a homogenous polarization inside an ellipsoid cavity resulting in a dielectric
constant εin, immersed in a continuum dielectric εout.
The field of the total dipole moment m embedded in a continuum dielectric polarizes the surrounding
matter and results in an inhomogenous polarization which, in turn creates an reaction field that is
felt inside the cavity and is defined as

R = Fm (D.28)

This reaction field is strongly dependent on size and shape of the cavity. The polarization induced
by the electric field inside the cavity is according to electrostatics and equation D.25

Pin =
εin − 1

4π
Ein =

1

4π

(εin − 1)εout

εout + (εin − εout)A
E0 (D.29)

Hence the dipole moment of the spheroid amounts to

m =
4π

3
a2cPin =

a2c

3

εout(εin − 1)

εout + (εin − εout)A
E0 (D.30)

It is also possible to calculate this moment from αa, the polarizability of the ellipsoid along the a-
axis. We obtain the induced moment m by multiplying this polarizability with the total polarizing
field. This total field consists of the cavity field Ec, which would occur in the empty cavity, and the
reaction field R of the homogeneous dipole density P in, with total dipole moment m. Therefore with
formula (D.28):

m = αa(Ec + R) = αa(Ec + fam) (D.31)

Since m and Ec are in the same direction with a field along one of the axes, we get

fa =
1

αa
− Ec
m

(D.32)
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Using equation D.25 for Ec and equation D.30 for m one arrives at

Ec =
εout

εout + (1− εout)A
E0 (D.33)

m =
a2c

3

εout(εin − 1)

εout + (εin − εout)A
E0 (D.34)

The relation between induced polarization/dipole moment, polarizabilty and applied field is in gen-
eral given by

m = αE0 (D.35)

αa from equation D.32 for a dielectric spheroid in vacuum is therefore given by

αa =
a2c

3

εin − 1

1 + (εin − 1)A
(D.36)

Inserting equations D.34 and D.36 into equation D.32 one arrives at the following formulation for the
reaction field factor fa:

fa =
3

abc

1 + (εin − 1)A

εin − 1
− εoutE

εout + (1− εout)A

3(εout + (εin − εout)A)

a2cεout(εin − 1)E
(D.37)

=
3

a2c

A(1−A)(εout − 1)

εout + (1− εout)A
(D.38)

The derivation of fc is analoguous and the reaction field tensor according to equationeqn:RF for an
oblate spheroid takes the form

F =


3
a2c

Aa(1−Aa)(εout−1)
εout+(1−εout)Aa 0 0

0 3
a2c

Aa(1−Aa)(εout−1)
εout+(1−εout)Aa 0

0 0 3
a2c

Ac(1−Ac)(εout−1)
εout+(1−εout)Ac

 (D.39)
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Appendix E

Integration of TE over an oblate
spheroidal cavity

For a simulation in a box with volume Vbox, toroidal boundary conditions and an Ewald treatment of
long-range Coulombics, the effective dipole-dipole interaction tensor is given by [142]

TEij = TE1
ij + TE2

ij + TE3
ij (E.1)

with the k-space contribution

TE1
ij = −4π

V

∑
|k|6=0

exp

(
− k2

4η2

)
exp (−ikiri)

kikj
k2

(E.2)

= −8π

V

∑
|k|>0

exp

(
− k2

4η2

)
cos (kiri)

kikj
k2

, k < kc (E.3)

the real-space contribution

TE2
ij =

[
erfc (ηr) +

2√
π

(
ηr +

2

3
η3r3

)
exp

(
−η2r2

)]
T ddij = ρ(r)T ddij , r < rc (E.4)

and the gaussian shielding term for compensation of the self-interaction

TE3
ij = TE3

ii =
4π

3

((
η√
π

)3

exp
(
−η2r2

))
, r < rc (E.5)
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with the dipole-dipole interaction tensor Tdd defined in equation (2.51) and a convergence param-
eter η that has no physical meaning and only balances the individual errors of the contributions.

In order to obtain an expression for T̃(0) in Ewald geometry we need to integrate equation (E.1)
over the volume of the cavity chosen (oblate spheroid in our case). For this purpose we assume
the spheroid to be centered at the origin, its minor semi-axis oriented along the z-direction and the
major semi-axes lying in the xy-plane.

E.1 k-space contribution

TE1 = T̃E1(0) =

∫
Vcav

drTE1

= − 8π

Vbox

∑
|k|>0

exp

[
− k2

4η2

] ∫
Vcav

dr cos [k · r]
|k〉〈k|
k2

(E.6)

(E.7)

The interaction energy uDD = µiTijµj of a dipole µi oriented along the x-axis with all images of
another dipole µj is given by

〈µi|TE1x|µj〉 = − 8π

Vbox

∑
|k|>0

exp

[
− k2

4η2

] ∫
Vcav

dr cos [k · r]
µixkx〈k||µj〉

k2

= − 8π

Vbox

∑
|k|>0

exp

[
− k2

4η2

] ∫
Vcav

dr cos [k · r]
µixkx · ek

k
|µj〉 (E.8)

It is therefore reasonable to identify

TE1x = − 8π

Vbox

∑
|k|>0

exp

[
− k2

4η2

]
kx
k

∫
Vcav

dr cos [k · r] ek (E.9)

as the x-component of TE1. The expression cos [k · r] ek denotes a plane wave moving in di-
rection ek. The integral expression in formula (E.9) can therefore be more easily represented by
parametrizing the integral along the intersection of the plane cosine wave with the spheroid. In case
the spheroid is centered at the origin and its semi-axes align with the cartesian axes, the area of
intersection of a plane with this spheroid is given by [193]

Ainter =
πa2b

κt

(
1− κ2

κ2
t

)
(E.10)
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where κ denotes the distance of the plane to the origin and κt =
√
a2n2

x + a2n2
y + b2n2

z with ni

denoting the normal vector components of the plane. κt equals the point where the plane wave
front is tangential to the spheroid as can be easily seen by setting κ = κt in equation (E.10) (area
of intersection becomes zero). Using the above relation, (E.9) can then be written as

TE1x = − 8π

Vbox

∑
|k|>0

exp

[
− k2

4η2

]
kx
k

∫ κt

−κt
dκAinter cos [kκ]

= − 8π

Vbox

∑
|k|>0

exp

[
− k2

4η2

]
kx
k

πa2b

κt

∫ κt

−κt
dκ

(
1− κ2

κ2
t

)
cos [kκ]

= −32π2a2b

Vbox

∑
|k|>0

exp

[
− k2

4η2

]
kx
k

sin [kκt]− kκt cos [kκt]

k3κ3
t

= −24π
Vsph
Vbox

∑
|k|>0

exp

[
− k2

4η2

]
kx
k

sin
[
k̃
]
− k̃ cos

[
k̃
]

k̃3
(E.11)

In the last line we substituted the spheroidal volume of our cavity Vsph = 4π
3 a

2b and substituted kκt
with k̃ =

√
a2k2

x + a2k2
y + b2k2

z , basically denoting the k-vector, deformed according to the semi-
axes of the spheroid.

If we do the substitution

 kx

ky

kz

 7→
 akx

aky

bkz

 (E.12)

in the sum of equation (E.11) we arrive at

TE1x = −24π
Vsph
Vbox

∑
|k|>0

exp

[
−kBk

4η2

]
kx

a
√

kBk

sin [k]− k cos [k]

k3

= −24π
Vsph
Vbox

∑
|k|≥0

exp

[
−kBk

4η2

]
kx

a
√

kBk

sin [k]− k cos [k]

k3
+ 8π

Vsph
Vbox

(E.13)

with the deforming matrix

B =


1
a2

0 0

0 1
a2

0

0 0 1
b2

 (E.14)
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The last step in equation (E.13) can be performed, since the limit of the summand for k− > 0 equals
1/3. Switching to spherical coordinates this becomes

TE1x = −24π
Vsph
Vbox

∑
|k|≥0

exp

[
−k

2ξ2(θ)

4η2

]
sin [θ] cos [ϕ]

aξ(θ)

sin [k]− k cos [k]

k3
+ 8π

Vsph
Vbox

(E.15)

with

ξ2(θ) =
b2 sin2 [θ] + a2 cos2 [θ]

a2b2
(E.16)

The discrete sum in equation (E.15) can be transformed into a continuous integral by introducing
a k-space density for the space of deformed k-vectors we are summing over. For a rectangular
simulation box this density can be expressed as

ρ(k, θ, ϕ) =
1

Vstate
=

1
2πa
Lx
· 2πa
Ly
· 2πb
Lz

=
Vbox

8π3a2b
=

Vbox
6π2Vsph

(E.17)

Equation (E.15) expressed in a continuous integral then becomes

TE1x = − 4

π

∫ ∞
0

dk

∫ π

0
dθ

∫ 2π

0
dϕ exp

[
−k

2ξ2(θ)

4η2

]
sin2 [θ] cos [ϕ]

aξ(θ)

sin [k]− k cos [k]

k
+ 8π

Vsph
Vbox

= 8π
Vsph
Vbox

(E.18)

The integral in equation (E.18) is zero due to the periodicity in ϕ, stemming from the factor kx in the
original sum. The same argument holds for TE1y:

TE1x = TE1y = 8π
Vsph
Vbox

(E.19)

The only case with non-vanishing integral is the z-component
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TE1z = − 4

π

∫ ∞
0

dk

∫ π

0
dθ

∫ 2π

0
dϕ exp

[
−k

2ξ2(θ)

4η2

]
sin [θ] cos [θ]

bξ(θ)

sin [k]− k cos [k]

k
+ 8π

Vsph
Vbox

= −8
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∫ π
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dθ exp
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4η2

]
sin [θ] cos [θ]

ξ(θ)

sin [k]− k cos [k]
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+ 8π

Vsph
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= −4
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∫ π

0
dθ

sin [θ] cos [θ]

ξ(θ)
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−k

2ξ2(θ)

4η2
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k
+ 8π
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Vbox

= −4
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∫ π

0
dθ

sin [θ] cos [θ]

ξ(θ)

∫ ∞
−∞

dkG(k)F (k) + 8π
Vsph
Vbox

(E.20)

A multiplication in real space can be interpreted as a convolution in Fourier space. Therefore, by
using the definitions

F [f(x)] (k) =
1√
2π

∫ ∞
−∞

dxf(x) exp [−ikx] = F (k) (E.21)

F−1 [F (k)] (x) =
1√
2π

∫ ∞
−∞

dxf(x) exp [ikx] = f(x) (E.22)

and the convolution theorem

F (k) ·G(k) =
1√
2π

[f(r) ◦ g(r)] (k) (E.23)

the integral over k in (E.20) can be written as

∫ ∞
−∞

dkG(k)F (k) =

∫ ∞
−∞

dk
1√
2π

F [f(r) ◦ g(r)] (k)

=
1

2π

∫ ∞
−∞

dk

∫ ∞
−∞

dr exp [−ikr]

∫ ∞
−∞

dτf(τ)g(r − τ)

=
1

2
√

2π

∫ ∞
−∞

dk

∫ ∞
−∞

dr exp [−ikr]

∫ 1

−1
dτg(r − τ) (E.24)

since f(τ) is the rectangle function

F [F (k)] (τ) = f(τ)


√

π
2 for |τ | ≤ 1

0 otherwise
(E.25)
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Employing the displacement law

F [f(αt+ β)] =
1

α
exp [−iβω]F

(ω
α

)
(E.26)

with α = −1 and β = 1 for G(r − τ), (E.27) can be further simplified to

1

2
√

2π

∫ ∞
−∞

dk

∫ ∞
−∞

dr exp [−ikr]

∫ 1

−1
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1

2
√

2π
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dτ
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−∞
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1

2
√

2π

∫ 1

−1
dτG(τ)
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−∞

dr exp [iτr]
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−∞

dk exp [−ikr]

= π

∫ 1

−1
dτG(τ)

∫ ∞
−∞

dr exp [iτr] δ(r) = π

∫ 1

−1
dτG(τ) = π

∫ 1

−1
drG(r) (E.27)

Where G(r) is

G(r) = F

[
exp

[
−k

2ξ2(θ)

4η2

]]
(r) =

√
2

(
η

ξ(θ)

)
exp

[
− η

2r2

ξ2(θ)

]
(E.28)

Inserting that back into (E.20), the final expression for TE1z is given by

TE1z = −4
√

2π

b

∫ π

0
dθ

sin [θ] cos [θ]

ξ(θ)

∫ 1

−1
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)
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+ 8π

Vsph
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= −4
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2π
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−π
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exp
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Vsph
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= −8
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− η2a2b2r2

b2 + t2(a2 − b2)

]
+ 8π

Vsph
Vbox

= −4a
√

2π3

(a+ b)
S(η) + 8π

Vsph
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(E.29)

with S(η) given by

S(η) =
1√

π(a− b)
(√
π (a erf [ηb]− b erf [ηa]) + abη

(
Γ
[
0, η2b2

]
− Γ

[
0, η2a2

]))
(E.30)
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The expression S(η) is bounded by 1 and monotonically increasing for η− >∞.

E.2 Real-space contribution

The integral over the real-space contribution to the Ewald dipole-dipole interaction tensor is zero
due to the angular symmetry of the unmodified T-tensor Tdd (check formulas (2.51) and (4.12)):

TE2 = T̃E2(0) =

∫
Vcav

drTE2 = 0 (E.31)

and hence has no contribution to T̃E(0).

E.3 Self-interaction contribution

The integral over the shielding contribution has the analytical solution

TE3 = T̃E3(0) =

∫
Vcav

drTE31

=
4π

3

(
erf [ηb]− b√

a2 − b2
exp

[
−η2a2

]
erfi
[
η
√
a2 − b2

])
1

=
4π

3

(
erf [ηb]− 2b√

π(a2 − b2)
exp

[
−η2b2

]
Dawson

[
η
√
a2 − b2

])
1

=
4π

3
P (η)1 (E.32)

where erfi(x) denotes the imaginary error function and Dawson(x) Dawson’s integral. The second
formulation is preferrable to the first since it is numerically more stable for spheroidal cavities with
high eccentricities and large η. Same as S(η), P (η) is bounded to one and monotonically increasing
for η− >∞.

The overall components to the Ewald expression of T̃(0) can therefore be given as

T̃E‖(0) = TEx = TEy = TE‖ =
4π

3
P (η) + 8π

Vsph
Vbox

(E.33)

T̃E⊥(0) = TEz = TE⊥ =
4π

3
P (η)− 4a

√
2π3

(a+ b)
S(η) + 8π

Vsph
Vbox

(E.34)
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E.4 Limits of Slab Geometry

In the limit of an infinite major semi-axis, the spheroidal cavity is analogous to a slab geometry
where the thickness and orientation of the slabs is defined by the minor semi-axis of the spheroid.
The expressions for T̃E(0) in (E.33) and (E.34) then take the form

lim
x→∞

T̃E‖(0) =
4π

3
erf [ηb] + 8π

Vsph
Vbox

(E.35)

lim
x→∞

T̃E⊥(0) = 4π erf [ηb]

(
1

3
−
√
πa

a+ b

)
+ Γ

[
0, η2b2

]
+ 8π

Vsph
Vbox

(E.36)



Appendix F

Voxel selection algorithm

Figure F.1 – Classification whether a voxel lies completely inside (blue), partially inside (orange) and com-
pletely outside (grey) a sphere with radius rc. The sketch represents a surface cut at z = x3 = 0. It is
assumed that the center of the sphere lies within the center of one voxel. It is not coinciding with voxel
borders.

In order to calculate whether a 3D voxel defined by the volume

V = [x1 −∆1, x1 + ∆1]× [x2 −∆2, x2 + ∆2]× [x3 −∆3, x3 + ∆3] (F.1)
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lies completely inside, partially inside or completely outside a sphere with radius rc around the
origin can be evaluated by minimizing the in-voxel distance

rvox(u1, u2, u3) = (x1 + u1∆1)2 + (x2 + u2∆2)2 + (x3 + u3∆3)2 =

3∑
i=1

(xi + ui∆i)
2 (F.2)

subject to the inequality constraints

ui ≤ 1

ui ≥ −1 (F.3)

Here, we assume that the origin of the sphere lies in the center of a voxel - the central voxel - and
not on the intersection of corners, edges or faces. A 2D cut at z = x3 = 0 of this setup is sketched
in figure F.1.

Applying the method of Lagrange multipliers the augmented objective function

L =
3∑
i=1

[
(xi + ui∆i)

2 + λ1i(xi − 1)− λ2i(xi + 1)
]

(F.4)

can be formulated. Taking the partial derivatives

∂L

∂xi
= 2∆i(xi + ∆iui) + λ1i − λ2i

∂L

∂λ1i
= xi − 1

∂L

∂λ2i
= −xi − 1 (F.5)

returns three linear equations for three unknowns ui, λ1i, λ2i. Above linear system of equations
(LGS) is decoupled in every spatial coordinate and can thus be solved independently for every i.
Three cases are possible. The first one λ1i = λ2i assumes no constraint is active in this coordinate
and above LGS gives the solution ui = −xi/∆i. Since ui is constrained to a magnitude smaller or
equal to one by (F.3) and ∆i represents half the length of a voxel, this solution is only valid if xi = 0,
in which case ui = 0. The second case of either λ1i = 0 or λ2i = 0 being active returns either
ui = −1 or ui = 1, meaning the minimal in-voxel radius coincides with the voxel borders in this
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dimension. This means that in the present setup, the minimal in-voxel distance falls on the voxel
corners, except for the coordinate planes where either x, y, or z equals zero. A voxel is therefore
entirely inside the sphere, if all its corners are inside and entirely outside the sphere if all corners
are outside. If neither of these cases apply, the voxel is partially inside. In the special case of one or
two xi = 0 equaling zero, these dimensions need to be excluded from (F.2) (i.e. ui = 0) and the 3D
corners need to be projected onto the corresponding 2D or 1D equivalents for voxel classification.
The case where rc lies entirely within the central voxel, i.e. xi = 0 ∀i is ignored since in this case
the voxel resolution should simply be increased.

Finally, the third case leads to a plausible contradiction, meaning that not both constraints can
be active at the same time. This case is irrelevant for the voxel classification. Since the voxel
classification essentially comes down to a simple comparison of voxel corner distance to the radius
rc it can be very efficiently implemented.
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