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Abstract 

In the last decade, Genome-wide Association Studies (GWAS) have brought the field of 

statistical genetics in the big data era and discovered thousands of genetic variants associated 

with various traits and diseases. While they tremendously helped understanding the genetic 

architecture of complex traits and to generate new hypothesis of disease etiologies, all those 

variants still explain only a small proportion of the estimated genetic heritability. 

The presence of genetic interactions or epistasis is one of the mechanisms that could explain 

this “missing heritability”. However, because of challenges linked to the combinatorial nature 

of epistasis, there are up to date very few reported examples of epistasis in human traits. This 

absence of data, combined with a theoretical controversy on the partition of the genetic variance 

in additive and non-additive variance have led to high skepticism toward epistasis in human 

genetics.  

Fortunately, improving computational resources start allowing genome-wide interactions 

associations studies (GWIAS) with the promise of bringing experimental evidence for the 

presence and nature of genetic interactions in human traits. In this thesis, we report the first 

hypothesis free GWIAS for coronary artery disease (CAD) and thereby show the feasibility of 

such studies using to a two-step analysis strategy. This approach successfully identified 17  

interacting SNP-pairs located in the SLC22A3-LPAL2-LPA gene cluster and in the CDKN2A-

CDKN2B region, which are both previously identified CAD risk loci.  

To complement the hypothesis free approach, we conducted two epistasis scans using a-priori 

biological filters; one targeting regulatory SNPs and a second focusing on SNPs with previous 

evidence of interactions. The two approaches were however unable to detect any significant 

interactions, highlighting the difficulty to generate meaningful a-priori filters and thus the 

advantages of hypothesis-free methods. 

In addition, we report two methodological advances tackling current challenges in epistasis 

studies. Firstly, we developed the epilogitpower R package which allows to compute the power 

or necessary sample size in GWIAS. Secondly, we established a method to disentangle epistasis 

signals from haplotype effects and which allowed us to discover interactions involving 

rs140570886, a rare variant at the LPA locus previously associated with CAD.  
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In conclusion, we developed computational methods that help making epistasis studies easier 

to conduct and more robust. Applying these methods on two samples of CAD patients, we 

brought some of the first evidence regarding the presence and genetic architecture of epistasis 

in a complex human disease.
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Zusammenfassung 

In den letzten 10 Jahren haben genomweite Assoziationsstudien (Genome-wide Association 

Studies, GWAS) die Statistische Genetik in die big data Ära gebracht und dabei Tausende von 

genetischen Varianten entdeckt, die mit verschiedensten Eigenschaften und Krankheiten 

assoziieren. Obwohl dies enorm zum Verständnis der genetischen Grundlagen von komplexen 

Eigenschaften beigetragen hat und auch neue Hypothesen zu Krankheitetiologien 

hervorgebracht hat, erklären all dieser Varianten doch nur einen kleinen Teil der geschätzten 

genetischen Vererbung. 

 

Genetische Interaktionen, auch Epistase genannt, stellen einen Mechanismus dar, der diese 

„fehlende Vererbung“ (missing heritability) erklären könnte. Aufgrund der in der 

kombinatorischen Natur von Epistasiseffekten begründeten Herausforderungen gibt es bislang 

nur wenige belegte Beispiele für Epistasis beim Menschen. Dieses Fehlen von Daten verbunden 

mit der theoretischen Kontroverse bzgl. der Aufteilung der genetischen Varianz in additiv und 

nicht-additiv hat zu einer starken Skepsis gegenüber Epistase im Bereich der Humangenetik 

geführt. 

 

Glücklicherweise erlauben besser werdende Computerressourcen inzwischen genomweite 

Interaktions-Assoziationsstudien (GWIAS) und verheißen experimentelle Evidenz für 

Vorhandensein und Grundlagen der genetischen Interaktionen in menschlichen Eigenschaften. 

In dieser Arbeit berichten wir über die erste hypothesenfreie GWIAS in einer großen Stichprobe 

bei Koronararterienerkrankung (coronary artery disease, CAD) und beweisen damit die 

Durchführbarkeit solcher Studien mittels eines zweistufigen Analysestrategie. Dieser Ansatz 

identifizierte 17 interagierende SNP-Paare, die im SLC22A3-LPAL2-LPA Gen-Cluster und der 

CDKN2A-CDKN2B Region lokalisiert sind. Beide Bereiche waren bereits als CAD-Risiko-

Loci identifiziert worden. 

 

Um den hypothesenfreien Ansatz zu komplementieren haben wir zwei Epistase-Scans mit 

Einsatz von a priori-Filtern durchgeführt. Der eine zielt auf regulatorische SNPs, der andere 

auf SNPs mit früherer Evidenz für Interaktionen. Leider konnten beide Ansätze keine 

signifikanten Interaktionen finden. Dies unterstreicht die Schwierigkeit wirksame a priori-

Filter zu finden und damit die Vorteile hypothesenfreier Methoden. 
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Darüber hinaus beschreiben wir zwei methodische Weiterentwicklungen, die aktuelle 

Herausforderungen bei Epistase-Studien adressieren. Zum einen haben wir das R-Paket 

epilogitpower entwickelt, das es erlaubt Trennschärfe bzw. benötigte Gruppengröße für 

GWIAS zu berechnen. Zweitens haben wir eine Methode etabliert, mit der Epistase- von 

Haplotyp-Effekten unterschieden werden können. Dadurch konnten wir Interaktionen mit 

rs140570886, einer schon früher mit CAD assoziierten, seltenen Variation im LPA-Lokus, 

entdecken. 

 

Zusammenfassend haben wir Rechenmethoden entwickelt, mit Hilfe derer Epistase-Studien 

einfacher und robuster durchgeführt werden können. Mit ihrer Anwendung auf zwei CAD-

Patientengruppen fanden wir erste Belege für Existenz und genetische Grundlagen von Epistase 

in komplexen humanen Krankheiten. 
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1 Introduction 

1.1 Genetic epidemiology and association studies 

Since Plato already, humans and philosophers have been trying to disentangle the influence of 

nature and nurture, of what is innate and what is acquired during life. While the mechanisms 

underlying the effect of the innate characteristics and their transmission remained hidden for 

centuries, the DNA discovery by Watson, Crick, and Franklin in 1953 finally enabled scientists 

to tackle this question with modern technologies. Providing a mechanistic explanation and a 

physical basis to Mendel’s law, the discovery of DNA would open the way for the development 

of genetic epidemiology.  

 

Epidemiologists who were before trying to understand the relation between readily measurable 

biological characteristics, such as height, weight, scull dimensions, etc., and traits of interests, 

such as diseases or cognitive abilities, could thereafter create a new scientific discipline 

associating genetic differences among people with biological traits and diseases. Morton, one 

of the founders of genetic epidemiology defines this new discipline as: “a science that deals 

with the etiology and control of disease in groups of relatives and with inherited causes of 

disease in populations” (Morton, 1982). With the development of the DNA sequencing method 

by Sanger, genetic epidemiologist met their first success in establishing direct causation 

between mutations in single genes and Mendelian diseases such as the causal mutation of CFTR 

causing cystic fibrosis (Kerem et al., 1989; Riordan et al., 1989; Rommens et al., 1989).  

1.1.1 Single-Nucleotide Polymorphisms and Genome-wide Association 

Analysis 

1.1.1.1 Single Nucleotide Polymorphisms (SNPs) 

The genomic DNA molecules, organized in 22 autosomal and 2 sex-specific chromosomes in 

humans, are long double-stranded chains of nucleotides, or bases. Each strand of DNA is made 

of a repetition of 4 different nucleotides Adenine (A), Thymine (T), Guanine (G), and Cytosine 

(C) which can bind to another nucleotide on the opposite strand to form a double helix structure. 

Because of their different chemical properties, an Adenine always binds to a Thymine and a 

Guanine always binds to a Cytosine. The alternation of these 4 types of bases along the DNA 

follows a 3-codon code which can be deciphered by messenger RNAs during translation and 

encodes the assembly instruction for all proteins of the organism.  
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Single Nuclear Polymorphisms (SNPs) are variable positions in the genome at which a change 

in base-pair happens in a certain percentage of individuals in a population (Figure 1). Most of 

the time, an Adenine (A) is exchanged for a Guanine (G) or a Cytosine (C) is changed for a 

Thymine (T). Since the beginning of the 21st  century, increasing attention has been paid to 

SNPs to capture genetic diversity between individuals. Indeed, as stated by Wang and 

colleagues who conducted one of the first screening for such polymorphisms, “This genetic 

diversity is of interest because it explains the basis of heritable variation in disease 

susceptibility, as well as harbors a record of human migrations” (D. G. Wang et al., 1998).  

 

 
Figure 1: Single Nuclear Polymorphisms 

“Single nucleotide polymorphisms (SNPs) are small sequence differences within genes where the DNA 
sequences of many individuals vary by a single base; not all SNPs result in structural protein changes. 
For example, some people may have a chromosome with an A at a particular site where others have a 
chromosome with a G”. Figure and legend from reproduced from (Camp & Trujillo, 2014) with the 
permission of Elsevier Inc.  
 

Today, the largest reference panels contain up to 40 million SNPs covering the whole genome 

(J. Huang et al., 2015). A large part of the genome, around 98% in mammals, formerly called 

junk-DNA, does not code for proteins (Shabalina & Spiridonov, 2004). The important role of 

these non-coding regions has been the focus of extensive research in the last decades which 

revealed that 80% percent of the genome has a biochemical function (Dunham et al., 2012). 
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Non-coding DNA regions have two main functional roles. Firstly, they can code for non-

translated RNA transcripts which are involved in multiple functions such as transcription 

regulation, alternative splicing, or alternative splicing (Shabalina & Spiridonov, 2004). 

Secondly, these non-coding DNA sequences can form motives that are recognized by enhancers 

and transcription factors (TF) to regulate gene expression, or form topologically associating 

domains (TAD) which can change the 3D conformation of chromatin. (Spielmann & Mundlos, 

2016). Depending on the location of the SNPs in the genome, these base substitutions can 

therefore perform their action by changing the sequence of amino acids of a protein or by 

changing the properties of a non-coding regulatory sequence.  

 

1.1.1.2 GWAS and linkage disequilibrium 

Before the wide availability of SNP data using microarrays, or more-recently next-generation 

sequencing (NGS), genetic associations were mostly investigated using linkage analysis. In this 

technique, disease-causing genes were identified by their co-inheritance, and therefore close 

genetic distance, with genetic markers of known chromosomal location and the phenotype of 

interest. Such approaches could identify genes responsible for Mendelian diseases (Visscher, 

Brown, McCarthy, & Yang, 2012) but were not successful in complex disorders as they could 

only scan small portions of the genome (the loci close to a known genetic marker).  

 

The first successes in identifying genetic bases of complex disorders came with the advent of 

SNP-based Genome-Wide Association Analysis (GWAS). In a GWAS, the association of a 

large number of single SNPs with the phenotype is tested in a univariate manner. In an analogy 

to the linkage analysis, each of these SNPs can be used as a genetic marker, to test if a region 

of the genome is associated with the phenotype of interest, because of linkage disequilibrium 

(LD).  

 

LD is defined as the non-random association of alleles at different loci. According to the 

principle of chromosome linkage, two loci situated on the same chromosomes should be 

inherited jointly and therefore in LD. However, recombination events can happen, which 

exchange two fragments of DNA between sister chromatids and therefore “unlink” two alleles. 

Generation after generation, the occurrence of recombination keeps fragmenting the blocks of 

jointly associated loci (or LD-blocks) to produce a more fine-grained LD structure (Figure 2). 

Given that the LD blocks become smaller, the rate of LD decreases with the number of 

generations and ultimately, after an infinite number of generations, all loci would reach linkage 
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equilibrium. However, in the present population of humans, LD persists and can be used 

efficiently for gene mapping. The association of one “target SNP” therefore indicates that this 

particular SNP is causally associated with the phenotype of interest or that another SNPs, in LD 

with the tag-SNP is. Theoretically, the presence of one SNP in each LD-block would allow to 

potentially discover associations anywhere in the genome. In practice, several factors such as 

the high number of SNPs needed to properly cover all LD-block of the genome, the rare 

frequencies of tag-SNP and causal SNP, or the presence of population stratification greatly 

complicates the tasks. Most of these challenges are shared with the interaction association 

studies and will be discussed in more detail later in this chapter.  

 

 
Figure 2: Linkage and Linkage Disequilibrium 

“Within a family, linkage occurs when two genetic markers (points on a chromosome) remain linked on 
a chromosome rather than being broken apart by recombination events during meiosis, shown as red 
lines. In a population, contiguous stretches of founder chromosomes from the initial generation are 
sequentially reduced in size by recombination events. Over time, a pair of markers or points on a 
chromosome in the population move from linkage disequilibrium to linkage equilibrium, as 
recombination events eventually occur between every possible point on the chromosome.” Figure and 
legend from (Bush & Moore, 2012). 
 

1.1.2 The “common disease – common variant” hypothesis and the missing 

heritability 

With the failure of linkage analysis to identify genetic loci associated with non-Mendelian 

disorders and the first GWAS results for complex disorders, a new hypothesis emerged 

concerning the genetic basis of common, complex disorders. Namely, it started to appear that 
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common diseases are associated with genetic variants which have high minor allele frequency 

(MAF) and relatively low-risk contribution. As a consequence of the high MAF of these 

variants, as compared to the frequency of the variants or mutation causing Mendelian diseases, 

their genetic effect must be small. Indeed, if they are highly frequent and had a strong effect, 

then the common disease would be much more frequent than they actually are. Nonetheless, 

common disorders were shown to be heritable to some extent by family studies, suggesting that 

multiple variants act together to modulate the disease risk (Bush & Moore, 2012). Accordingly, 

the “common disease – common variant” (CDCV) hypothesis “argues that genetic variations 

with appreciable frequency in the population at large, but relatively low ‘penetrance’ (or the 

probability that a carrier of the relevant variants will express the disease), are the major 

contributors to genetic susceptibility to common diseases” (Schork, Murray, Frazer, & Topol, 

2009). 

 

 
Figure 3: Common Disease – Common variant hypothesis 

“Disease associations are often conceptualized in two dimensions: allele frequency and effect size. 
Highly penetrant alleles for Mendelian disorders are extremely rare with large effect sizes (upper left), 
while most GWAS findings are associations of common SNPs with small effect sizes (lower right). The 
bulk of discovered genetic associations lies on the diagonal denoted by the dashed lines”. Figure and 
legend from (Bush & Moore, 2012) 
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More than a decade of GWAS studies have now brought overwhelming evidence in favor of 

the CDCV hypothesis and discovered more than 10’000 strong associations between variants 

and complex traits. More precisely it showed that complex traits are highly polygenic but also 

that there is a high degree of pleiotropy, meaning that causal variants are shared between 

complex traits (Visscher et al., 2017).  

 

With ever-decreasing genotyping costs and therefore increasing sample sizes, more and more 

variants, with lower MAF and lower effect sizes keep being discovered every day. 

Consequently, the proportion of the estimated heritability of complex traits which can be 

explained by the cumulative action of the discovered variants keeps rising. However, the 

proportion of the heritability explained by all discovered variants, ℎSNP
2 , still represents only a 

fraction of the estimate of pedigree heritability, h2ped,  for most complex traits. For example, in 

the case of height, a trait that has been shown to be very heritable with an estimated heritability 

of near 80%, the ca. 700 discovered variants by 2014 could only explain ca. 20% of h2ped. These 

discrepancies led to the formulation of the concept of “missing heritability”.  

 

Multiple factors have been suggested to contribute to this “missing heritability”. Among them, 

are rare variants with possibly larger effects, structural variants poorly captured by existing 

arrays or inadequate accounting for shared environment between relatives in the pedigree 

estimates (Manolio et al., 2009). Alternatively, or additionally, it has been suggested that 

interactions between genes (epistasis) could contribute to the genetic architecture of complex 

diseases and to the missing heritability.  
 

Indeed, biological pathways and mechanisms are made of interactions between biomolecules. 

It is therefore expected that interactions between genes contribute to the genetic variance of 

complex traits. In agreement with this hypothesis, large-scale experiments have shown that 

gene interactions play a crucial role in genotype-phenotype relationships in yeast (Costanzo et 

al., 2016; Kuzmin et al., 2018) for example. Experimental evidence of epistasis is not only 

provided in unicellular organisms but also in invertebrate animal models (see (Mackay, 2014) 

for a review). For example, epistasis has been shown to be involved in odor-guided behavior in 

drosophila (Anholt et al., 2003), a highly complex and important biological system.  
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1.2 Epistasis in complex human diseases 

The role of epistasis in complex human traits has been very debated in the last decades. 

Although the important role of epistasis in unicellular and pluricellular animal models has been 

demonstrated, part of the human genetics community strongly believes that all genetic 

contribution to the phenotypic variance in humans is of additive nature (Hill, Goddard, & 

Visscher, 2008). Partly because of theoretical results regarding genetic variance partitioning 

(Mackay & Moore, 2014), and partly because only few studies could convincingly demonstrate 

epistasis in human traits, such as cardiovascular disease (Zeng et al., 2022) or Alzheimer’s 

disease (Combarros, Cortina-Borja, Smith, & Lehmann, 2009) for example.  

 

The difficulty to demonstrate epistasis in human disorders can most likely be explained by two 

factors. Firstly, the term epistasis is commonly used with two slightly different definitions, 

related to a biological concept or to a statistical concept. Although these definitions are often 

used interchangeably, and although statistical epistasis is used to investigate biological 

epistasis, these two concepts are not equivalent. Secondly, the search for statistical epistasis at 

the genome-wide levels faces several critical computational and statistical challenges which 

have not been fully solved yet.  

1.2.1 Two definitions of epistasis 

Although the term epistasis refers broadly to genetic interactions, there has been over the years 

several different definitions of epistasis, leading to some confusion among geneticists. 

1.2.1.1 Biological Epistasis 

Bateson introduced the word epistasis in 1907 with a definition of what we nowadays could 

call biological epistasis. It is defined as a masking effect whereby the effect of a variant or allele 

at one locus depends on a variant at another locus. This corresponds to the more restricted 

definition of “compositional epistasis“ as coined by Phillips in an attempt to disambiguate the 

meaning of the word epistasis (Phillips, 2008). The presence of compositional epistasis does 

imply that the two alleles, or their transcribed forms (proteins or non-coding RNAs), interact at 

the molecular level, in what Phillips would call „functional epistasis“. Extending this definition 

to accommodate higher-order interactions, between three or more loci, led to the definition of 

epistasis prevailing in modern system biology. These interactions between molecules in the 

same pathways, or between pathways, at the level of individual organisms are what Genome-

wide interactions analyses (GWIAs) try to discover, as they can bring new insights into the 

etiology of the disease as well as generate new therapeutical candidates.  
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1.2.1.2 Statistical epistasis  

Contrary to animal models, where biological epistasis can de directly investigated with the help 

simple dihybrid cross, for example, it cannot be directly assessed at scale in humans. In human 

genetics, epistasis needs to be investigated in observational studies using statistical models. In 

Fisher’s original definition, statistical epistasis is the phenotypic variance that cannot be 

explained by the additive or dominant component of the genotypic variance (Sackton & Hartl, 

2016). In modern statistical genetics, statistical epistasis is often defined as the deviation from 

an additive linear model where two or more alleles predict a phenotypic outcome (Cordell, 

2009).  While this definition of statistical epistasis seems to be a good mathematical translation 

of biological epistasis, these two definitions are not equivalent. Indeed, as pointed out by 

Cheverud and Routman, “statistical epistasis is a population phenomenon depending on allele 

frequencies present in a specific population whereas physiological epistasis is a genotypic 

phenomenon, independent of allele frequencies at the loci in question.” (Cheverud & Routman, 

1995). This leads to the fact that there can be biological epistasis in absence of statistical 

epistasis and vice-versa (J. H. Moore & Williams, 2005). Even though one needs to be cautious 

when interpreting statistical epistasis findings in regard to their biological implication, 

statistical methods remain the only solution to investigate the presence of genetic interaction at 

the scale of the whole genome in human populations and disorders.  

 

1.2.2 Challenges in detecting statistical epistasis 

Most of the challenges in investigating statistical epistasis at the genome-wide levels are 

common with GWAS analysis but their effect is amplified in GWIAs. Among these challenges, 

we find the relation between MAF and power, the role of LD, the high number of statistical 

tests performed, and population stratification.  

1.2.2.1 Linkage Disequilibrium 

LD, defined as the non-random association of alleles at different loci due to population history 

(as described in 1.1.1.2), has several implications on GWAS and GWIAs. 

 

 Firstly, different sub-population histories lead to different LD structures. Indeed, we can 

observe for example that in African-descent populations, LD regions are smaller than in 

European-descent or Asiatic-descent populations, because African-descent populations are 

older and more recombinations accumulated. In a sample with individuals from potentially 
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different ancestry, these different population genetic substructures could possibly confound 

associations and need to be accounted for. 

 

Secondly, LD implies some degree of collinearity between SNPs. This has two particular 

implications for statistical testing. 

 

 On the one hand, it induces dependencies between the interactions hypothesis tests. Because 

of these dependencies, multiple testing correction using Bonferroni, which is typically used in 

GWAS and on which the canonical genome-wide significant threshold of  5×10-8 has been 

derived, tends to be over-conservative and lead to increase rates of type II error (Van Steen & 

Moore, 2019). As suggested by Van Steen and Moore, False Discovery Rate (FDR) control 

methods such as the one proposed by Benjamini and Yukutelli should be able to account for 

dependencies between tests. However, these methods seem to not work properly in the case of 

GWIAs with large-scale data and highly complex correlations between test (Van Steen & 

Moore, 2019).  

On the other hand, dependencies between variants might also give rise to harmful 

multicollinearity in regression models, leading to over-estimation of the standard regression of 

regression parameter and therefore to deflation of the statistical significance (Van Steen & 

Molenberghs, 2012).  

 

Together, the two previous arguments suggest that SNPs should be LD-pruned for GWIAs to 

remove collinearities. However, the whole principle of GWAS and GWIAs relies on the fact 

that the SNPs used in the analysis perform the role of tag or marker for untested variants in their 

LD block because of their correlation. While the amount of shared signal decreases linearly 

with the LD for a variant with respect to its tag-SNP in a GWAS, it decreases quadratically for 

the interaction term between two tagged variants with respect to their two tag-SNPs in an 

epistasis analysis. Consequently, stronger LD pruning, leading to a sparser “tag-SNP grid” 

might lead to missing interactions between untested variants. This counter-balances the 

previous arguments suggesting that strong LD pruning is needed in GWIAs. For these reasons, 

LD and LD-pruning remain important parameters in GWIAs for which there is currently no 

consensus concerning the best practices.  
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1.2.2.2 Population stratification:  

Common genetic background among certain individuals in a sample can lead to confounding 

associations between genetic markers and a trait of interest. Indeed, if variant A is more 

common in individuals with a certain common ancestry, and that, because of causal genetic 

variant B or environmental risk factors the trait studied is also more common in this sub-

population, we will observe a spurious association with variant A. The impact of population 

structure, or stratification, on epistasis studies, does not seems to have been particularly well 

studied but Gusavera and colleagues suggest that it would be even more pronounced than in 

GWAS (Gusareva & Van Steen, 2014). They also point out that population structure might 

decrease the power of finding genetic interactions.  

 

In GWAS, population structure is most of the time dealt with by including Principal 

Components (PC) of the genetic variance as covariates in regression models. These PCs are 

usually computed on the whole study sample and capture the largest proportion of the genetic 

variance, which is typically due to different population descent (Bush & Moore, 2012). By 

extension, this method has also been widely used in GWIAs when using regression models as 

methods.  
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Figure 4: Principal Component of genetic variance 

Principal Component Analysis (PCA) of the genetic variance of 3000 European individuals reproduces 
very closely the geographical map of Europe, thereby suggesting that PCA captures well the population 
structure. Figure adapted from (Novembre et al., 2008) with the permission of Springer Nature. 
 

1.2.2.3 Minor Allele Frequencies: 

The frequency of the rarest allele at a particular locus is called the minor allele frequency (MAF) 

and has profound implications regarding the power to detect an association at this locus. Indeed, 

very logically, the rarer this allele is, the rarer is also the disease manifestation, and therefore 

the number of cases in a population if the variant is causal. The power to detect rare variants is 

therefore low. Moreover, the potentially low resulting number of minor allele homozygous 

individuals violates the large sample assumption of the linear models and can lead to erroneous 

test results. In particular, it has been reported that the Wald test, commonly used to assess the 

statistical significance of the marginal effect or interaction effect of SNPs, behaves aberrantly 

for rare variants. It would report highly non-significant p-values if a “causal variant with high 

penetrance is present at low frequency in the cases and nearly absent from the controls“ (Xing, 

Lin, Wooding, & Xing, 2012).  
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Importantly, there is a double penalty to include these rare variants in GWAS or GWIAs; not 

only have these variants a very low chance to be significantly associated if they are causal, but 

they also reduce the power to detect more frequent variance because they increase the number 

of tests and concomitantly the multiple correction burden.  

 

These problems are even more exacerbated in GWIAs as compared to GWAS because the 

frequency of multi-loci minor-allele homozygous combinations is the product of the frequency 

of minor-allele homozygous at each locus. Namely if one considers SNP A and SNP B, both 

with a MAF of 0.1, the minor-allele homozygous frequencies for both SNP A and SNP B (so 

a/a and b/b genotypes) are 0.01. However, the frequency of individuals who are minor allele 

homozygous at the locus A and B (a/a;b/b) is 0.0001. Therefore, it is important to define 

appropriate MAF thresholds, as function of the sample size, expected effect size, and genetic 

transmission model, by doing proper power calculation (as discussed more in detail in Section 

2.3.2).  

 

1.2.2.4 High number of pairwise combinations 

One of the biggest challenges in studying epistasis is the combinatorial nature of genetic 

interactions which leads to an extremely high number of statistical tests to perform and 

consequently to a high multiple testing correction burden and low statistical power. In addition, 

the technical requirement needed to achieve enough computational power for epistasis study 

were not common in research institutes for a long time. However, in the last years, advances in 

computational methods and hardware have made it possible to consider conducting epistasis 

studies at the level of the whole genome. 

 

Genome-wide interaction studies can be performed using two different approaches to take care 

of the problem arising from the high number of SNP pairs. In the “hypothesis-free” approach, 

researchers aim to exhaustively test the whole interaction space for associations. This most of 

the time requires a two-step strategy where a first testing step is used to reduce the search space 

for a second more fine-grained testing step. Such approaches also most often rely on fast testing 

algorithms and parallelized computation or computation on graphical processing units (GPUs). 

Their main advantage is to not rely on any prior biological knowledge and therefore allow to 

find genetic interactions between genes or pathways that might not have already been associated 

with the disorder. They potentially represent high hopes for the development of new insights 

into the disease and innovative therapies. However, these studies are still confronted with a 
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high multiple testing correction burden and typically will only have a high power to detect 

interacting SNP pairs with a moderate to strong effect size and a relatively high MAF in big 

samples. In Section 3, we  will present one of the first attempts to run a hypothesis-free genome-

wide epistasis screening for Coronary Artery Diseases (CAD) using a two-step strategy.  

 

On the other side of this trade-off between novelty potential and test number, filtering methods 

have been developed to reduce the search space using prior knowledge. While allowing to 

detect smaller effects in smaller samples, they are dependent on present knowledge about 

biological interactions or the etiology of the disease. There exist two different classes of 

“filtering” approaches. The first one proposes to consider variants whose marginal effects are 

associated with the disease. The second one is to consider SNPs related to genes showing 

putative functional interaction by, e.g., being involved in the same pathways or biological 

processes. 

 

Marginal effect filtering relies on the idea that variants whose marginal effects have been 

associated with the disease are also more likely to be involved in interactions affecting this 

disease. Either because the apparent additive effect is actually resulting from an underlying true 

epistatic effect, or simply because they play a role in pathways that are involved in the disease’s 

etiology. This filtering technique was used in, for example, the attached publication (Zeng et 

al., 2022) described in chapter 5.  

 

Functional variant filtering is based on the observation that most of the variants discovered by 

GWAS studies are located in non-coding DNA regions and are thus likely to regulate gene 

expression, one can limit the epistasis search space to such regulatory variants. Another 

approach is to consider genes that are likely to biologically interact at different levels of cell 

processes.  

 

The former idea can be implemented by scrutinizing publicly available eQTL databases to find 

regulatory variants. Additionally, newly developed deep learning models can predict with high 

accuracy which variants are likely to influence gene expression (Zhou et al., 2018).  

 

The latter idea is based on the assumption that genes involved in the same pathways, or 

implicated in the same biological processes are likely to influence each other’s effect. This has 

indeed been confirmed by a huge effort to characterize the full network of interaction between 
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the 6000 genes of the yeast (Kuzmin et al., 2018). Practical implementation of this method 

requires cross-checking of different databases, such as Gene-Ontology, gene-gene interactions, 

and protein-protein interactions databases. While doing this manually would be a daunting task, 

there exist softwares, such as Biofilter from Bush and colleagues, which were precisely 

developed to infer plausible interaction from various knowledge sources and can generate a list 

of SNPs to test in interactions studies (Bush, Dudek, & Ritchie, 2008).  

 

In the absence of better characterization of the genetic architecture of complex traits, for 

example about whether or not the genes involved in epistatic interactions also have a marginal 

effect, it is impossible to predict which of the filtering strategies will yield the more biologically 

and clinically interesting results, or if they complement each other. Researchers might therefore 

have to try several of them and assess which one yields the most interesting results for their 

disease and context of interest.  

 

1.2.2.5 Statistical Power  

Frequentist statistical methods, such as the one used in linear or logistic regression models in 

GWAS and GWIAs, rely on hypothesis testing. It typically implies the computation of a test 

statistic whose distribution is known and typically centered at zero in the case where the 

variable of interest has no effect on the outcome (Figure 5 A). This is referred to as the Null 

hypothesis. The actual value of the test statistic under the alternative hypothesis, which is the 

value computed in the observed sample, can be compared to its distribution under the null 

hypothesis. This gives information about how unlikely such a test statistic is under the null 

hypothesis. The percentile of this null distribution which corresponds to the observed test 

statistic is called the p-value and can be interpreted as the likelihood to observe such an extreme 

finding if there was no effect (i.e., if the null hypothesis was true). A small p-value represents 

low statistical evidence for the null hypothesis, and this hypothesis is typically rejected (and 

the effect considered present) if the p-value is lower than 5%. For a given effect in the 

population, the distribution of the test statistic under the alternative hypothesis also has a known 

distribution, which is shifted towards its true value in the population (Figure 5 B). The concept 

of power is closely linked to the separation between these two distributions. Indeed, a true 

observed effect, distributed according to the alternative distribution, is statistically significant 

at a threshold α if it does not lie within the 1– α a percentile of the null distribution. The further 

away the two distributions, the bigger the area of the alternative distribution which does not fall 

in this region (statistically significant), and the higher the power. The power, therefore, 
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corresponds to the area under the alternative distribution (which is 1) minus its overlap with the 

last α percent of the null distribution (called β) (Figure 5 B). The β region represents cases when 

the alternative hypothesis was true, but the null hypothesis cannot be rejected. These cases are 

called false negatives. On the contrary, a true null effect which is in the extreme α percent of 

the null distribution could be falsely considered significant. 

 
Figure 5: Statistical Power - The Null and the Alternative hypothesis 

“(a) Observations are assumed to be from the null distribution (𝐻0) with mean 𝜇0. We reject 𝐻0 for 
values larger than 𝑥∗with an error rate (red area). (b) The alternative hypothesis (𝐻𝐴) is the competing 
scenario with a different mean 𝜇𝐴. Values sampled from 𝐻𝐴 smaller than 𝑥∗do not trigger rejection of 
𝐻0 and occur at a rate . Power (sensitivity) is 1 –  (blue area). (c) Relationship of inference errors to 
𝑥∗.” Figure and legend from (Krzywinski & Altman, 2013) with the permission of Springer Nature. 
 

 We, therefore, see that there is a trade-off between the false positive and false negative rate 

which is influenced by the threshold . A larger  threshold will decrease the rate of false-

negative but increase the rate of false positive (Figure 6).  

 

 
Figure 6: Statistical Power - Power vs false positives trade-off 

“Decreasing specificity increases power. 𝐻0 and 𝐻𝐴 are assumed normal with  = 1. (a) Lowering 
specificity decreases the 𝐻0 rejection cutoff 𝑥∗, capturing a greater fraction of 𝐻𝐴 beyond 𝑥∗, and 
increases the power from 0.64 to 0.80. (b) The relationship between specificity and power as a function 
of 𝑥∗.” The open circles correspond to the scenarios in a. Figure and legend from (Krzywinski & Altman, 
2013) with the permission of Springer Nature. 
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It appears from Figure 7 that the more separated the two distributions are, i.e., the stronger the 

observed effect is, the higher the power. Importantly, for the same separation, the narrower the 

two distribution, the higher the power as well. The width of the two distributions is proportional 

to the standard error of the mean (SEM). Because the SEM is computed as 

√𝑛
  it appears that 

higher sample sizes lead to a smaller SEM and therefore to a greater separation of the 

distribution and concomitantly to a higher power. In summary, the power of a study is 

influenced both by the strength of the effect and by the sample size (Figure 7).  

 

 
Figure 7: Statistical Power – Sample-size vs power relation 

“𝐻0 and 𝐻𝐴 are assumed normal with  = 1. (a) Increasing n decreases the spread of the distribution of 
sample averages in proportion to 1

√𝑛
. Shown are scenarios at n = 1, 3 and 7 for d = 1 and  = 0.05. Right, 

power as a function of n at four different a values for d = 1. The circles correspond to the three scenarios. 
(b) Power increases with d, making it easier to detect larger effects. The distributions show effect sizes 
d = 1, 1.5 and 2 for n = 3 and  = 0.05. Right, power as a function of d at four different a values for 
n=3.” Figures and legend from (Krzywinski & Altman, 2013) with the permission of Springer Nature. 
 

The issue of power is fundamental in hypothesis testing and has profound implications for the 

search for statistical epistasis. Indeed, the power of a study informs about what would be the 

chances of detecting an effect of a certain strength in the study dataset if that effect did actually 

exist. If the effect size or sample size are too low, statistical hypothesis testing could lead to the 

conclusion that an effect is not present although it actually is. Knowledge about the power of a 

study is needed to be able to interpret properly its results. For example, if an epistasis study had 

a 95% to detect even a very weak effect and that the GWIAs yielded no significant results, one 

could conclude with high confidence that epistatic interactions do not play a role in this trait. 

On the contrary, when a GWIAs has 60% power to detect a strong effect, it is erroneous to use 

failure to find any effect as an argument against epistasis in this trait. Indeed, interactions with 
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a small effect size had nearly zero chance to be detected, if they were present. In addition, 

different modes of genetic inheritance, such as recessive inheritance, which have been most of 

the time ignored to the benefit of additive models, might substantially lower the power to detect 

interactions and should be taken in account (see Section 2.3.4) 

 

Power calculations in GWIAs are indispensable because the very high number of tests makes 

them very likely to be underpowered. Indeed, even the biggest publicly available genetic data 

sets, such as the UKBB, can only reliably detect moderate to strong effects between SNPs with 

moderate to high MAFs (see Section 2.3.2). Unfortunately, whereas a wide variety of tools are 

available to compute power in GWAS, specific tools to compute the power to detect genetic 

interaction effects are, to my best knowledge, missing. In Section 2, we present an R package, 

epilogitpower, aiming at providing fast and well-documented power computation for epistasis 

studies.  

 

1.2.2.6 Haplotype effect and rare-variant tagging: 

As introduced earlier, association studies rely on the principle that not all genetic variants need 

to be tested for association, but rather a certain number of “tag-SNPs” are used to assess the 

association of all variants in high LD with them. The causal variant can then be any variant in 

LD with the tag variant.  

 

Along the same lines, a particular combination of tag-SNPs present on the same chromosome 

between which an interaction has been detected (cis-epistasis) can actually identify a particular 

haplotype that is driving the association signal. Whereas it has been shown that linkage between 

variants involved in interactions can be favored by evolutionary mechanisms (Lappalainen, 

Montgomery, Nica, & Dermitzakis, 2011), and therefore represent genuine interaction signal 

of interest, it is also possible that the haplotype contains a single causal variant associated with 

the disease.  

 

As an example, in 2014 Hemani and colleagues reported having identified “501 significant 

pairwise interactions between common SNPs influencing the expression of 238 genes“ (Hemani 

et al., 2014). After the publication of this article, Wood and colleagues could actually show that 

most of the interaction signals could actually be explained by a single third variant present in 

sequencing data but absent from the first analysis (Wood et al., 2014).  
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This highlights the need to control for possible confounding by haplotype effect in interaction 

studies. One particular way to proceed is to assess the significance of the interaction term when 

conditioning on any other SNP in LD with the tag-SNPs. This strategy is able to identify 

additional variants tagged by the interactions or might lead to the discovery of different or 

higher order interactions (as exemplified in Section 5 and in (Zeng et al., 2022)). However, this 

method can only take into account variants for which data is available; that is variants which 

were genotyped or imputed and passed the quality control steps (QC). Even if the interaction 

passes this conditional testing strategy with success, one cannot exclude that a rarer variant for 

example, which would not be part of any imputation panel, or whose very low MAF lead to 

exclusion during QC, be tagged by the association. Such an association signal tagging a rare 

variant could also be replicated with success in an independent dataset if the same haplotype 

structure is provided there as well.  

 

In conclusion, even when controlling for it, cis-epistasis pairs could always be due to the 

haplotype tagging and not to a genuine interaction effect. Functional validation of the 

interaction partners and elucidation of the interaction mechanism at the molecular level can 

however bring more credibility to these interactions.
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2  Epilogitpower: Power computation for epistasis studies 

under different genetic models using a logistic regression 

framework 

2.1  Introduction 

Low-power studies which were not able to detect true epistatic pairs or produce high rates of 

false positives, which then failed replication, led to a high degree of skepticism towards 

epistasis in human diseases. Accurate, off-the-shelf, and easy-to-use power calculation 

methods, directly available for researchers are therefore needed to ensure adequate power in 

epistasis studies and provide data-driven insights into the role of epistasis in human genetics. 

 

In this chapter, we present the R package epilogitpower, which aims at providing easy power 

calculation for epistasis studies based on logistic regression. Although a wide range of statistical 

models have been developed for epistasis studies (see (Niel, Sinoquet, Dina, & Rocheleau, 

2015) for a review), we decided to focus on logistic regression for multiple reasons: Firstly, 

logistic models have been used for decades in GWAS and are widely accepted and understood 

in the statistical genetics community. Secondly, we could take advantage of well-studied 

statistical theories of generalized linear models to efficiently compute the power. Despite 

logistic models being very popular, there is to our knowledge no available tool to compute the 

power of interaction terms in these models, let alone any tool providing genetics-oriented 

documentation for these computations. The major focus of epilogitpower is therefore to offer 

user-friendly power computation with different possible sets of user input that are well-defined 

and understood in the genetic community. Our package also allows to specify different genetic 

models, namely additive, dominant, recessive, and heterozygous for each SNP. Indeed, 

previous research has shown that different modes of heritability have important consequences 

on power the achieved in GWAS (C. M. Moore, Jacobson, & Fingerlin, 2020). Finally, we 

provide functions to help predict the plausible range of effect sizes for a given epistasis pair 

given the marginal effect of the individual SNPs and epidemiological data. This information 

can be used both to help power computation or to prioritize putative epistasis pairs.  
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2.2 Materials and Methods 

2.2.1 Case-control-status dependent genotype frequencies 

The different genotypes frequencies in the cases, P(G|D+), and the controls group , P(G|D–), 

can be computed using Bayes’ rule in the following manner: 

 

1) From Bayes’ rule: 

 Pr(G|D) = Pr(D|G)⋅Pr(G)

Pr(D)
, where Pr(D) is the prevalence of the disease and Pr(G) the frequency 

of the genotype in the whole population which can be computed from the SNPs MAF under the 

HWE assumption. We, therefore, need to compute the penetrances of the different 

genotypes; Pr(D|G) to find the stratified genotypes frequencies Pr(G|D). 

 

2) The genotype penetrances can be easily estimated if one knows the genotypic risk ratios, 

GRRs. As per the definition of GRRs,  𝐺𝑅𝑅 =
Pr(D|G)

Pr(D|𝐺𝑟𝑒𝑓)
, where Pr(D|𝐺𝑟𝑒𝑓) is the penetrance 

of the reference genotype which can be estimated in the following manner:  

Pr(D) =  Pr(D|𝐺𝑟𝑒𝑓) ⋅ Pr(𝐺𝑟𝑒𝑓)+. . . +Pr(D|𝐺𝑎𝑎𝑏𝑏) ⋅ Pr(𝐺𝑎𝑎𝑏𝑏) => 
Pr(D)

Pr (𝐷|𝐺𝑟𝑒𝑓)
= Pr(𝐺𝑟𝑒𝑓) ⋅

Pr(D|𝐺𝑎𝑎𝑏𝑏)⋅Pr(𝐺𝑎𝑎𝑏𝑏)

Pr (𝐷|𝐺𝑟𝑒𝑓)
 , recognizing that  Pr(D|𝐺𝑎𝑎𝑏𝑏)

Pr(D|𝐺𝑟𝑒𝑓)
= 𝐺𝑅𝑅𝑎𝑎𝑏𝑏, 

we obtain Pr(D)

Pr (𝐷|𝐺𝑟𝑒𝑓)
= Pr(𝐺𝑟𝑒𝑓) + ⋯ + 𝐺𝑅𝑅𝑎𝑎𝑏𝑏 ⋅ 𝑃𝑟(𝐺𝑎𝑎𝑏𝑏) => 

 Pr (𝐷|𝐺𝑟𝑒𝑓) =
P(D)

Pr(𝐺𝑟𝑒𝑓)+⋯ +𝐺𝑅𝑅𝑎𝑎𝑏𝑏⋅Pr(𝐺𝑎𝑎𝑏𝑏)
  

 

2.2) The genotypic risk ratios are not quantities that are typically known or easy to estimate for 

any given disease without individual-level genotype data. Odds ratios (OR), on the contrary, 

are available from the summary data of any GWAS. Under the assumption of a given reference 

genotype penetrance, P0 , one can compute the GRR from the ORs using the following relation: 

𝐺𝑅𝑅 =
𝑂𝑅

(1 − 𝑃0) + 𝑃0 ⋅ 𝑂𝑅
 

We therefore also provide a function to simulate data and compute power using the ORs and 

the reference genotype penetrance as input. In this case, the prevalence of the disease is then  

computed using the other variables with 

 Pr(D) =  Pr(D|𝐺𝑟𝑒𝑓) ⋅ Pr(𝐺𝑟𝑒𝑓)+. . . +Pr(D|𝐺𝑎𝑎𝑏𝑏) ⋅ Pr(𝐺𝑎𝑎𝑏𝑏) 

⋅  
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2.2.2 Monte Carlo Simulation 

When the frequencies of the different genotypes for the cases and control groups under the 

alternative hypothesis are known, simulated datasets can be obtained by sampling the desired 

number of cases and controls from the stratified genotypes probabilities. This simulated dataset 

can then be used to fit a logistic regression model. The sampling and subsequent logistic model 

fitting are repeated a given number of times to generate the distribution of the p-values under 

the alternative hypothesis. The power is computed as the fraction of these p-values smaller than 

the  threshold. 

 

2.2.3 Power computation using distributions of the coefficients under the null 

and alternative hypothesis 

Given a logistic regression model of the form 𝑃(𝑦) =
𝑒𝜃0+𝜃𝑋

1+𝑒𝜃0+𝜃𝑋 the Wald-test Statistic for each 

of the coefficients , computed as, ( 𝜃̂𝑖−𝜃0𝑖)2

𝑉𝑎𝑟(𝜃̂𝑖)
 follows the following distributions: 

• Under the null hypothesis 𝐻0 that 𝜃𝑖 = 0: a central χ2 distribution with 1 degree of 

freedom 

• Under the alternative hypothesis 𝐻1  that 𝜃𝑖 ≠ 0: a non-central χ2 distribution with 1 

degree of freedom and non-centrality parameter γ equal to the expectation of the Wald 

test under the alternative hypothesis (Gudicha, Schmittmann, & Vermunt, 2017; Wald, 

1942). 

Knowing these two distributions, the power can be computed as: 1−β = Pr(χ2(1,γ)> χ
2(1) 

where α is the significance threshold. 
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2.3 Results 

2.3.1 Fast power computation 

This package makes use of data simulations to perform the power computations. The easiest 

way to compute power is indeed to perform Monte Carlo simulations by repeatedly simulating 

a dataset with the desired properties (see Methods), fitting the logistic model of which one 

wants to assess the power and compute the fraction of time in which the diverse coefficients of 

the model are significant at the desired threshold. This naïve approach can, however, be very 

slow, especially for large sample sizes which are typically needed in GWIAs. To circumvent 

this caveat, we provide an alternative power computation method (referred to as the χ2method 

hereafter) which relies on the statistical distribution of the test statistic for the interaction term. 

These statistical properties allow us to compute the power in a very cheap way, as we only need 

to fit a single logistic model using the simulated data to find the expected value of the Wald 

Test statistic for each of the coefficients under the alternative hypothesis.  

 

These two methods are asymptotically equivalent and they do yield almost identical results with 

the large sample sizes that are typically of interest for GWIAS. As expected, we observed that 

the difference between the two computations method decreases both when increasing the 

number of simulations and the number of samples (Figure 8A). Indeed, it is expected that an 

increased number of simulations leads to a better precision of the MC simulations, whereas the 

χ2 method becomes more accurate with larger sample sizes because the statistical properties 

used are asymptotically true. But even with a hundred simulations in a small sample size of 

5000 cases and 5000 controls, the difference between the two methods is negligible (Figure 8 

left). On the contrary, the computation time difference for different sample sizes and numbers 

of simulations are big, and growing exponentially with the number of simulations (Figure 8 

right). 
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Figure 8: Fast power calculation 

Left: Power for the interaction term in the logistic model in function of the threshold on the log10 scale 
and the sample size as computed using respectively 10 (left), 100 (middle), or 1000 (right) simulations. 
The continuous line represents the power computed using Monte Carlo simulations and the dotted line 
using the χ2 method. The power was computed assuming a 1:1 case-control ratio, MAFs of 0.1 for both 
SNPs, marginal ORs of respectively 1.1 and 0.9 for SNP1 and SNP2, an interaction OR of 1.25, and a 
penetrance of 0.1 for the reference genotype. 
Right: Computation time in minutes, displayed on the log10 scale, in function of the number of 
simulations for a sample size of 10’000 using the Monte Carlo simulations (in red) or the χ2 method (in 
turquoise). The power was computed assuming a 1:1 case-control ratio. 
 

2.3.2 Sample size calculation 

Sample size calculations should be performed before starting any genetic studies. It allows to 

compute the minimal sample size to detect an effect of a certain strength with a certain 

probability if the effect truly exists. For this example, we consider conducting a GWIA on some 

disease. We want to estimate the number of cases and controls that one needs to measure in 

order to detect an interaction with a certain effect size. In order to use the power computation 

function of the epilogitpower package we need to specify the following parameters which 

impact the power : 

• Minor allele frequency (MAF) of the two interacting SNPs: a lower MAF reduces the 

power. For this example, we set both MAFs to 0.1, a usual threshold in GWAS. 

• The additive Odds ratio (OR) of the SNPs forming the putative epistatic pairs. In this 

example, we hypothesize that epistasis happens between SNPs that do not have a 

marginal effect and set their OR to 1. 
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• The OR of the interaction. This is a measure of the effect size of the interaction. 

Interactions with larger OR are easier to detect. In this case, we estimate the interaction 

OR to be 1.15, a value in the range of the additive ORs commonly observed in GWAS. 

• The penetrance of the reference genotype. This quantity can be easily approximated if 

one has access to the raw genetic data. If not, in the case of a complex disorder, with 

small effect sizes for individual loci and relatively rare SNPs, the prevalence of the 

disease in the population might be a good estimate of the penetrance of the reference 

genotype (as this genotype is over-represented and therefore weights more in the general 

population prevalence). In this example, we will assume the penetrance of the reference 

genotype to be 0.1 

• The  threshold. This is the p-value threshold corrected for multiple testing. The most 

common correction procedure is the Bonferroni correction, computed as the desired  

threshold divided by the number of tests. For this study, we will assume 2 million LD 

independent variants leading to 2×1012 tests. 

 

Figure 9 shows the power to detect the interaction in function of the number of cases for 

different numbers of controls. We observe that a power of 80% can be achieved with about 

125’000 cases and between 500’000 to 1 million controls. Alternatively, a similar power can 

be achieved with 275’000 cases and 200’000 controls, in the case where control recruitment is 

as difficult as cases recruitment. In comparison, the sample size needed to achieve 80% power 

in a GWAS with the same settings (MAF 0.1, OR=1,15,  threshold=1×10-8, additive genetic 

model) is ca 80’000 with a case-control ratio of 1/5 or ca 40’000 with a case-control ratio of 1 

(as computed with the genpwr R package (C. M. Moore et al., 2020)).  
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Figure 9: Sample-size computation 
Power for the interaction term in the logistic model in function of the number of cases for different 
numbers of controls. The power was computed assuming a Bonferroni correction for pairwise testing of 
2 million SNPs, MAFs of 0.1 for both SNPs, marginal ORs of 1 (no effect) for both SNPs, an interaction 
OR of 1.15, and a penetrance of 0.1 for the reference genotype. 
 

The parameters used in this example are typically the parameters that are available in the 

literature from previous studies and are well understood among researchers. Epilogitpower also 

accepts a different set of input for the cases where they would be more readily available. In 

particular, the user can specify Genotypes Relative Risks (GRRs) instead of ORs, along with 

the general disease prevalence instead of the penetrance of the reference genotype (see Methods 

for details). The code to perform such analysis using the epilogitpower package is entirely 

provided in the vignette of the package.  

 

2.3.3 Post-hoc power computation 

As a counterpart of computing the power of an epistasis study before performing it, one can 

also assess the power of a study after its completion to help interpreting the results. For example, 

if we find in the literature the study from the previous paragraph was performed with 20’000 

cases and 20’000 controls, we can compute a-posteriori the power to detect epistatic pairs with 

different effect sizes for a certain MAF. Given that the study did not find any significant pairs, 

Figure 10 would help us conclude that there might indeed truly not be any interaction with an 

OR of 1.6 or higher and a MAF of 0.3 or higher, as the power to detect it was 80%. On the other 

hand, one should be very careful to conclude the absence of epistasis with an OR smaller than 

1.5, as the power to detect it was lower than 50%.  
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Figure 10: A-posteriori power computation 

Power for the interaction term in the logistic model in function of the interaction OR in a sample of 
20’000 cases and 20’000 controls. The power was computed assuming a Bonferroni correction for 
pairwise testing of 2 million SNPs, MAFs of 0.1 for both SNPs, marginal ORs of 1 (no effect) for both 
SNPs, an interaction OR of 1.15, and a penetrance of 0.1 for the reference genotype. 
 

2.3.4 Effects of genetic models on power computation 

All regression-based genetic association studies require the encoding of the genetic risk carried 

at a single locus into a unique number in a process called genetic encoding. At any locus, given 

reference allele, A, and alternate or risk allele a, all encodings assume that the AA (homozygous 

referent) genotype incurs no risk increase or decrease (i.e. sets the baseline) and the aa 

(homozygous alternate) genotype bears full risk. Depending on the underlying genetics, the 

heterozygous can present a risk anywhere between 0% and 100%. 0% corresponds to the well-

known recessive model of inheritance, where two copies of the risk allele are needed for the 

phenotype to appear. On the other hand, 100% corresponds to the dominant model of 

inheritance where one copy of the risk allele is sufficient for the phenotype. Another commonly 

used model, the additive or dosage model, supposes that the risk increases linearly with the 

number of risk alleles, yielding a 50% risk for the heterozygous. A fourth model, less commonly 

used but also possible, is the heterozygous model where the risk is null for both homozygous 

while being 100% for the heterozygous. 

A priori, it is impossible to know which of these 4 models is true for any given SNP in the 

genome. This is why GWAS were originally performed using all encodings. Over the years the 

tendency shifted to using only the additive encoding. It is beyond the scope of this package to 

discuss the advantages or disadvantages of this trend. However, for a given MAF in a sample 

of individuals, the number of minor allele homozygous (bearing full genetic risk in the recessive 

model) is lower than the number of major allele homozygous (bearing full risk in the dominant 

model) for example. The power to detect interaction, or a marginal effect, for a pair of 

recessively acting SNPs is smaller than for a pair of dominant SNPs with the same interaction 
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OR and sample size. Until now, all examples in this chapter used the default “dosage-dosage” 

encoding, for a dosage encoding of both SNPs 1 and 2. However, all functions of this package 

have an “encoding” argument to specify which encoding to use for the two SNPs of the pair, if 

it was different from the default one. This argument should be specified accordingly to the 

information available on the two SNPs.  

 

Figure 11:  Effects of genetic models on power computation 

Power for the interaction term in the logistic model in function of the alpha threshold for different 
genetic model encoding. The power was computed assuming a sample size of 10’000 cases and 10’000 
controls, MAFs of 0.3 for both SNPs, marginal ORs of 1 (no effect) for both SNPs, an interaction OR 
of 1.25, and a penetrance of 0.3 for the reference genotype. 
 
Figure 11 shows the substantial power differences resulting from different genetic encodings. 

As expected, when both SNPs are following a recessive model the power drops greatly 

compared to other models. Taking into account the possible genetic models of both SNPs is 

therefore of extreme importance when planning a GWIAS or interpreting results. It is also 

important to pay attention to the genetic encoding used in the studies providing information that 

is used for the power calculation, for example, the GWAS summary statistic for the marginal 

ORs of the two SNPs. The reported ORs are associated with the particular genetic encoding 

used in this study. Using the same OR but with a different genetic model encoding in the power 

calculation will result in erroneous power calculation as in Figure 11. 

  

2.3.5 Predicting plausible interaction effect sizes 

Using the set of equations developed to compute the genotypes frequencies of cases and 

controls (see Methods), along with information about the two SNPs and their marginal additive 
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effect, we can compute a range of possible effect sizes for their interaction. More precisely, we 

can find out which range of interaction effect sizes would be compatible with the observed 

disease prevalence and marginal effects if we know the MAF and additive ORs of the two 

SNPs, the penetrance of the reference genotype, and with the strong assumption of a monogenic 

model. In Figure 12, we hypothesized the following parameters; MAF of both SNPs=0.2, 

significant marginal effect in the GWAS with respective ORs of 1.2 and 1.5, and penetrance of 

the reference genotype of 0.2 for a fairly common disease. Figure 12 shows the disease 

prevalence in function of the putative interaction OR. If we, for example, had the supplementary 

information that the general prevalence of the disease is between 24% and 26%, this would 

only be compatible with an interaction OR between ca 0.9 and 1.5 Additionally, any ORs 

between the lower and upper default bound of 0.5 and 2 are compatible with a prevalence 

between the lower and upper default bound of 0 and 1. 

 

 

Figure 12: Plausible interaction ORs 

Prevalence of the disease predicted in function of the OR of the interaction. The computation was 
performed assuming the following parameters: MAF of both SNPs=0.2, significant marginal effect in 
the GWAS with respective ORs of 1.2 and 1.5 for SNP1 and SNP2, and penetrance of the reference 
genotype=0.2. 
 

Computing the possible range of effect size of interaction in this manner could have two usages. 

First, it can be used to get an approximation of the interaction effect size to compute the power 

to detect an epistatic interaction between the two SNPs. Secondly, we can imagine using this 

possible effect size computation as a filter in Genome-Wide Interaction Association Studies. 

One could use the data available from a previous GWAS about the MAF and marginal effect 

size of the SNPs along with the observed disease prevalence to compute the possible effect size 

of each interaction. We would then have a ranking of the SNPs whose interactions have the 

potential to have meaningful effect size, and threshold it to generate a list of interactions to test. 
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2.4 Discussion 

We provide and describe a new R package that provides straight-forward power computation 

for epistatic interactions in a GWIAS setting. This package can be used both to compute the 

sample size needed for a new study and to compute the power of a published a-posteriori.  

 

Lack of power is a critical problem in epistasis studies (Ritchie & Van Steen, 2018). Apart from 

the absence, up to now, of power-computation tools for interaction terms in logistic regression 

in the genetic context, this is certainly due to the very high sample sizes needed for epistasis 

studies. Our results show indeed that much bigger sample sizes are needed for epistasis studies 

as compared to univariate GWAS in the same settings. Whereas this should not come as a 

surprise, the extent of this difference was maybe underestimated. It is important to note that this 

difference will only get bigger when we start investigating interactions between rarer variants, 

which will increasingly become the case with the advances in sequencing techniques (Bomba, 

Walter, & Soranzo, 2017). In this context, we hope that the epilogitpower will help researchers 

to set their epistasis studies within the range of desired statistical power.  

 

The main functions of the package can take two different sets of commonly available genetic 

information, in an attempt to make power computation as easy as possible for researchers and 

foster its use in future studies design. Depending on the availability of prior knowledge, users 

can use either GRRs or ORs, two quantities that are often mixed up but are only close to equal 

for rare diseases (prevalence < 10%) (J. Zhang & Yu, 1998). Genotypic Risk Ratios (GRR) can 

be used in combination with the prevalence of the disease to compute power. Whereas the 

prevalence is typically known for most diseases, GRRs might not be. This is because GRRs 

cannot be computed in case-control studies (Ranganathan, Aggarwal, & Pramesh, 2015) such 

as the GWAS which generated most of the knowledge on genetic association in the last decade. 

On the other hand, Odds Ratios (OR) are readily available from any GWAS summary statistics. 

Unfortunately, the penetrance of the disease for the reference genotype (J. Zhang & Yu, 1998) 

is then needed to compute the power using ORs, and this quantity might not be as easily 

available as the prevalence. 

 

Previous studies have already shown that genetic model miss-specification could greatly wrong 

the power calculation in the case of GWAS (C. M. Moore et al., 2020). We show in the present 

chapter that this is also the case for epistasis. Epistasis studies are even more impacted by the 

miss-specification of the genetic model, as it can happen on both of the SNPs in the pair. Our 
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package, therefore, allows to specify the genetic model for each of the SNPs independently. As 

it is not possible to know a priori which genetic model is true for any given SNP when 

performing a GWIAS, one solution is to calculate an upper and lower bound of the power using 

the different possible genetic models. 

 

Epilogitpower also provides a function to compute the range of plausible interaction effect sizes 

given the marginal effect size of the two SNPs, the penetrance of the reference genotype, and 

the prevalence of the disease. A major limitation of this function is however that it needs a very 

precise estimate of the prevalence and reference genotype penetrance to give meaningful 

information on the plausible effect size of the interaction. Indeed, in the example depicted in 

Figure 12, a prevalence of 23% indicates an OR of approximately 0.65, and therefore a 

protective effect of the minor alleles interaction whereas a prevalence of 27% indicates an OR 

of 2 and therefore a detrimental role of the minor allele interactions. We observe here that two 

prevalences which are possibly closer than the error margin of prevalence estimation lead to 

opposite conclusions on the effect of the interaction. We, therefore, emphasize that large sample 

size and precise estimation of the prevalence and penetrance of the reference genotype are 

needed for this estimation. The univariate model used for this computation is another strong 

limitation. Indeed, the range of plausible interaction ORs is calculated with the assumption that 

the prevalence of the disease is influenced solely by the marginal effect of the two SNPs and 

their interaction. 

 

In conclusion, we provide the first R package to perform power computation for genetic 

interaction in the logistic regression framework. This package along with the demonstration of 

its usage presented in the companion vignette should facilitate power computation in epistasis 

studies and thereby increase the reproducibility of future studies and the trust of the community 

in epistasis research.
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3 Genome-Wide Interaction Association Study for CAD 

3.1 Introduction 

For the analysis presented in this chapter, we aimed at conducting a well-powered and robustly 

designed hypothesis-free and genome-wide interaction association study. The debate about the 

involvement or not of epistatic interaction in human complex traits has predominantly involved 

theoretical and mathematical arguments, but very few actual data from interaction association 

analysis. We believe that experimental data from multiple genome-wide interaction study could 

help bringing practical and maybe decisive evidence to the debate. 

 

 Our goal here was therefore first to demonstrate that such a study using one of the largest 

genetic datasets available for multiple diseases, namely the UKBB, is computationally feasible 

without having to reduce the search space with an a-priori filter. Indeed, a hypothesis-free 

method has several advantages over the filter-based one. Firstly, it can allow discovering 

interactions between genes that were not previously associated with the disease and therefore 

generate insights into new biological mechanisms underlying the disease. Secondly, the 

presence of patterns in that undirected search might be able to reveal some basic principles of 

epistasis in common traits, which in turn could help to target knowledge-based analysis more 

efficiently.  

 

For this study, we decided to concentrate on Coronary Artery Disease (CAD) because we both 

had high-quality and large discovery (UKBB) and replication datasets (10 CAD studies, see 

Section 5.2) at hand. Moreover, CAD presents the crucial advantage that its etiology and genetic 

basis are relatively well understood for a complex disorder, in comparison to psychiatric 

disorders for example. And we believe, that being able to relate the putative epistasis findings 

of this study to a well-understood genetic basis is key for the credibilisation and acceptance of 

the results by a genetic community that is generally skeptical about epistasis studies.  
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3.2 Methods 

3.2.1 QC and imputation 

3.2.1.1 UKBB dataset  

The UKBB imputed dataset containing 487’410 samples was downloaded from the UKBB 

portal. Around 50'000 of these samples were genotyped on the Applied Biosystems UK 

BiLEVE Axiom Array by Affymetrix while the rest was genotyped on the UK Biobank Axiom 

Array. Both of these arrays did assess genotype at roughly 800'000 markers and shared 95% of 

their variants (Bycroft et al., 2018).  According to the UKBB manuals, the pre-imputation QC 

was performed as described in (Bycroft et al., 2018). For this study, we considered only variants 

located on the 22 autosomal chromosomes.  

 

The genetic dataset was imputed separately using the HRC reference panel on one hand and a 

merged reference panel of the UK10K and 1000 Genomes phase 3 panels on the other hand. 

These imputations were then integrated together, with priority on the HRC panel for SNPs 

present in both imputations. Imputation was performed using Impute4 and the final dataset 

comprises 93,095,623 autosomal SNPs, short indels, and large structural variants in 487,442 

individuals (some of them had to be excluded in our analysis due to withdrawn consent, leading 

to a final number of 487410 samples in our analysis). 

 

After downloading this dataset from the UKBB server, we applied the following post-

imputation QC. Firstly, we kept individuals fulfilling the HARD criteria of CAD (see (Nelson 

et al., 2017) as cases and individual not fulfilling neither the SOFT nor the HARD CAD criteria 

as controls. Secondly, we removed related individuals up to the third degree. Starting with a list 

of pairs of individuals related up to the third degree, we first removed the control individuals in 

pairs containing both a control and a case individual. For the pairs containing two cases, we 

built a graph of the related people and removed as few individuals as possible to brake all edges 

of the graph. Furthermore, we removed all individuals with non-white European Ancestry (as 

provided in the UKBB phenotypes). While this reduces the applicability of the findings to a 

narrow population, some important risk factors for CAD , for example, LPA, are known to have 

different genetic risk factors in different ethnies (Enkhmaa, Anuurad, & Berglund, 2016). As 

this scan is more of a proof of concept for epistasis genome-wide scans than a direct search for 

clinically useful variants, it makes sense to reduce the variability at the cost of a narrower 

population target. We did not remove samples based on extreme Multi-Dimensional Scaling 
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(MDS) Components of the genetic variance like it is usually done in GWAS, as we observed a 

very homogenous MDS distribution with no outliers.  

 

 
Figure 13: Pairwise scatter plot of the first MDS components of the genetic variance in the QCed 

UKBB dataset 

The first MDS components of the genetic variance, as computed by the UKBB team, indicate if there is 
a strong population structure in the dataset. In this case, the plots are very homogenous and do not 
indicate such a population structure.  
 

The final analysis sample was made of 331’956 samples. Among them 314’728 controls and 

17’228 cases. With 178’731 women and 153’225 males, the two genders are almost equally 

represented. The proportion of males and females in controls is roughly the same, however, 

there are almost four times more men in the cases group. We also observe that cases are older 

than controls. This indicates that age and sex might be confounders in the genetic associations 

analysis and will need to be corrected for.  

 

sex pheno N mean age sd age 

Female case 3,757 62.03939 5.93796 

Female control 174,974 56.40647 7.896362 

Male case 13,471 61.6491 6.041801 

Male control 139,754 56.50197 8.132102 

Table 1: Demographics of the UKBB dataset used as discovery sample 

 

We then filtered the imputed variants according to the following criteria:  

 

• MAF: 0.05 or 0.25 for the recessive models (see Section 3.3.1) 

• Imputation Score as reported by IMPUTE4 higher than 80 %  

• Hardy-Weinberg Equilibrium (HWE) test p-value < 1×10-6 

• Missingness of the SNP across all samples < 0.2 
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After post-imputation QC the final genetic dataset was made of 6'722'728 variants with the 

MAF threshold of 0.05 and 294'674 variants at the MAF threshold of 0.25. 

 

3.2.2 Analysis Strategy 

In the light of the power analysis and the runtime predictions, it appeared feasible to run the 

genome-wide hypothesis-free interaction scan using a two-step strategy, a MAF threshold of 

0.05 for all genetic models except the recessive one, and an r2 LD pruning threshold of 0.5. The 

overall strategy is described in Figure 14 and goes as follows. I will first explain the strategy 

for the dominant, dosage, and heterozygous genetic encoding and then explain the differences 

for the recessive models.  

 

We start with the QCed dataset of 6'722'728 SNPs with a MAF threshold > 0.05. The SNPs 

were pruned with an r2 LD threshold of 0.5 and a sliding window of 10'000kb using Plink 

(Purcell et al., 2007). The resulting dataset consisted of 537'930 LD-independent SNPs. The 

genotype at each of these SNPs was then encoded in the four genetic models, dominant, additive 

(minor allele dosage), heterozygous, and recessive (see Section 2.3.2). 

 

3.2.2.1 Step 1: loose statistical filtering 

All pairwise combinations between all three genetic encodings of these SNPs were then tested 

using the CPU version of the  episcan R package (v0.01, Jiang & Pütz (2018) , https://CRAN.R-

project.org/package=episcan). The goal of this first step was to provide a fast statistical 

screening for interesting pairs. We, therefore, decided to use a loose significance threshold of 

1×10-10, instead of the suggestive threshold of 6.9×10-12 which would be computed as 1 divided 

by the number of LD-independent SNP pair combinations to account for the fact that causal 

variants might not be in full LD with any of the pruned SNPs. With this we hoped to capture 

these possibly pruned causal variants while still generating a number of putative epistatic pairs 

that can be handled in the second, more stringent, testing step.  

  

For all pairs which successfully passed this first screening step, we performed LD expansion to 

invert the LD pruning step performed before the episcan. In other words, we search for any 

SNPs in LD > 0.5 for each SNP of each of the selected pairs, which we will call tagged SNPs. 

For each of the selected pairs, we then list all combinations of their tagged SNPs and forward 
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them to the second, more rigorous statistical testing step, allowing the fine mapping of the 

causal signal inside the LD blocks. 

 

For example, the pair rs1:rs2 was selected in step 1. rs3 and rs4 are in LD with rs1 and rs5 in 

LD with rs2, the following pairs would be tested in step 2.  

 

rs1:rs2 

rs1:rs5 

rs3:rs2 

rs3:rs5 

rs4:rs2 

rs4:rs5 

 

With this pruning-testing-expanding strategy, we hope to effectively test all SNPs in the 

genome, while keeping a manageable number of tests.  

 

3.2.2.2 Step 2: Fine-mapping and validation of interaction using logistic regression 

For each of the SNP pairs forwarded to this second step and for each of the genotype encoding 

combinations, we ran the following logistic regression model with the case status as the 

outcome, the SNPs in the respective genetic encoding as predictors, and sex, age as well as the 

10 first MDS components of the genetic variance as covariates to account for population 

stratification: 

 

Case/control status ~ SNP1 + SNP2 + SNP1:SNP2 + sex + age + MDS1 + MDS2 + … + MDS10  

 

At this step, we applied the suggestive multiple testing correction thresholds of 6.9×10-12 (1/ 

number of LD independent SNP pair combinations). We could have applied a more stringent 

correction at this step. However, the threshold of 6.9×10-12 did not yield more than 100 pairs 

and the computational cost of replicating them was very low as compared to the one of the 

previous steps. We, therefore, decided to use this looser threshold to generate more candidates 

for replication, at the cost of the control of the type 1 error. But we argue that replication in an 

independent dataset provides in this case higher evidence for the epistatic pairs than stronger 

control of the type 1 error. For each of the original SNPs pairs from step 1, we selected the pairs 

with the lowest p-value in step 2 among the pairs that their LD expansion generated and 
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forwarded it to the replication step. If multiple genetic encoding combinations for this pair had 

passed the significance threshold, we replicated using the most significant one.  

 

3.2.2.3 Replication  

We replicated the significant pairs from step 2 using a fixed-effect inverse variance weighted 

meta-analysis of 10 independent CAD studies amounting to a total of 29’755 individuals. The 

QC and imputation of these 10 studies are discussed in more detail in (Zeng et al., 2022). These 

10 studies were however imputed on a different, smaller, imputation panel and therefore not all 

SNPs from our analysis were available for replication. The first step in the replication process 

was therefore to find which of the significant SNPs were absent from the replication dataset 

and to find their tag-SNPs, i.e., SNPs present in the replication and in LD with them. For each 

SNP to replicate which was absent in the replication we looked for all tag-SNP in LD > 0.5  

within a 10000kb window in the UKBB dataset using Plink. We then crossed this list with the 

list of SNPs present in the replication and chose the one with the higher LD as final tag. 

However, for  ca. 40% of the SNPs-pairs, we could not find any tag present in the replication, 

and could not replicate these pairs.  

 

For the replicable pairs, we used a fixed-effect inverse variance weighted meta-analysis using 

the metagen function from the meta package (v4.9-9, Balduzzi, Rücker, Schwarzer 

(2015),https://CRAN.R-project.org/package=meta). We used the following logistic model in 

the meta-analysis:  

Case/control status  ~ SNP1 + SNP2 + SNP1:SNP2 + sex + MDS1 + MDS2 + … + MDS10 

 

We considered an interaction replicated if the coefficient for the interaction term was of the 

same sign as in the discovery and significant at the nominal one-sided threshold of 0.05.  

 

3.2.2.4 Conditional Analysis  

To rule out haplotype effects or the tagging of a rarer causal variant, we ran a conditional 

analysis for all the replicated SNP pairs. The principle of the conditional analysis is to re-run 

the logistic model for the interaction term but including the additive effect of all neighboring 

SNP, one at a time. Practically for each conditioning SNP, we compute the likelihood-ratio test 

(LRT) for one model (null model) with the additive effect of the 2 interaction SNPs and the 

conditioning and one model with the interaction effect in addition (full model).  
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null model :  

CCS ~ SNP1 + SNP2 + SNPc + sex +age + MDS1 + MDS2 + … + MDS10 

full model :   

CCS ~ SNP1 + SNP2 + SNPc + SNP1:SNP2 + sex + age + MDS1 + MDS2 + … + MDS10  

 

Where CCS is the Case/Control status and SNPc the conditioning SNP.  

 

If the p-value from the LRT is significant at the nominal threshold of 0.05 we conclude that the 

more complex model with the interaction term is significantly better and that therefore the 

association signal is at least partly due to epistasis. If this is the case for all of the conditioning 

SNPs, the epistasis pair passes the conditional analysis and is considered a true epistasis signal. 

 

3.2.2.5 integration of recessive model results  

All steps from the fast episcan in step 1 until the fine-mapping step 2 were conducted in parallel 

for the recessive model using a MAF threshold of 0.25 for the SNPs having the recessive 

encoding (the other SNP in the pair encoded in another genetic model came from the dataset 

thresholded at MAF 0.05). The recessive pairs which passed the fine-mapping step were added 

to the list of results from the other models if no other pair (or the pair itself) in the same LD 

block had a lower p-value using a different genetic model combination. 

  



  3 GWIAS  

   38 

 
Figure 14: Schematic representation of the analysis step 

The dark blue boxes represent the data and the pale blue ellipses represent the analysis through which 
they go.  
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3.3 Results 

3.3.1 Power computation and Episcan validation 

3.3.1.1 Power computation 

Power is a critical parameter in GWIAs because it determines how one can interpret the findings 

of the study. Indeed, the power tells us what were the chances to find an effect of a certain 

strength given the sample size, and in the case of genetic studies, the minor allele frequency of 

the variants of interest. Given the extremely high number of tests that one has to correct for in 

GWIAs without an a priori filter, the likelihood to have very low power to detect reasonable 

effect is high. As developed in the introduction, this can critically undermine the credibility of 

epistasis in human disorders and should be avoided. We, therefore, decided to conduct a power 

analysis before the GWIAs using the epilogitpower package that we developed and introduced 

earlier (see Section 2).  

 

 
Figure 15: Power computation for the GWIAs in the UKBB dataset 

Power curves for different genetic models encoding (colors) in function of the  threshold for different 
combinations of SNPs MAFs and interactions effect sizes. We assume here for simplicity that both SNPs 
have the same MAFs. The power was computed with the Epilogitpower R package described in chapter 
2.  
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Figure 15 shows the results of the power computation in function of the MAF, and the OR of 

the interaction term which is a measure of the strength of the effect of the interaction on the 

disease risk. The vertical red line shows the multiple testing correction  threshold, computed 

as 1 divided by the number of SNPs passing QC at the corresponding MAF threshold. The plot 

shows clearly, that with this sample size the power to detect interactions when both SNPs have 

a MAF of 1% is null even with a high OR of 2, which is already very high for a genetic 

predisposition to complex disease. We, therefore, conclude that our sample size did not allow 

us to consider SNPs with a MAF of 0.1%. 

 

On the contrary, we report a power of 1 to detect interactions between SNPs with a MAF of 

5%, an OR of 2 and a dominant or additive mode of transmission. The power goes down to 

respectively 75% and ca. 90% for these two genetic models when the interaction OR is 1.75 

and to ca. 10 and 20% for an OR of 1.5. Although increasing the MAF threshold to 10% would 

allow us to have a very good power also with an OR of 1.5 we decided to conduct the analysis 

with a MAF of 5% for the following reason. A MAF of 10%  would provide higher power for 

relatively strong effect sizes but would not be able to increase power to interesting levels for 

OR in the range of 1.25. At the same time, it would prevent discovering any association for 

SNPs with a MAF between 5% and 10%. In this case, because we are using one of the largest 

datasets available to date for genetic CAD studies, we argue that the cost of reducing the search 

space outweights the gain of power offered by using a higher MAF threshold and chose a 

threshold of 5%. Indeed, one of the goals of this study is to generate novel mechanistic 

hypotheses for the etiology of CAD, and no other studies would be able to do it with a higher 

power. However, we need to keep in mind the actual power of the study with these settings 

when interpreting the results.  

 

This power computation also clearly shows that much higher sample sizes will be needed to 

provide high power GWIAs for effect sizes lower than 1.2 and for hetero-dominant and 

recessive transmission modes. 
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3.3.1.2 Episcan validation and limitations 

The first step of the analysis pipeline is a fast screen for SNP pairs showing evidence for 

epistasis using the episcan R package. This package implements the method published by Kam-

Thong and colleagues (Kam-Thong et al., 2011) to detect pairwise epistasis using the difference 

in correlation coefficient between two SNPs in the cases and control group:  

 

Δ𝜌 (𝑋(𝐴,𝐵), 𝑌) =  
1

𝑛1
 ∑ 𝑋𝑖

𝐴𝑋𝑖
𝐵 −  

1

𝑛0
𝑖:𝑦𝑖=1

 ∑ 𝑋𝑖
𝐴𝑋𝑖

𝐵

𝑖:𝑦𝑖=0

 

 

where, 𝑋𝑖
𝐴 and 𝑋𝑖

𝐵 are the scaled encoded genotypes at in the two interacting SNPs for in the 

cases (yi=1) and control (yi=0). 

 

 The idea behind this algorithm is that if two SNPs do not interact to increase the risk of disease, 

they should be uncorrelated in both groups because of the random segregation law, or equally 

correlated in both groups if they are in LD. However, if they interact to increase the risk of 

disease, one would expect that they are correlated in the cases group but not in the control 

group. These differences in correlation coefficient have been shown to be normally distributed 

(Gretton, Borgwardt, Rasch, Schölkopf, & Smola, 2007; Wellek & Ziegler, 2009) and Kam-

Thong and colleagues showed in 2011 that the p-value derived from them is a very close 

approximation of the p-value from a logistic regression testing the interaction of the two SNPs. 

The episcan algorithm, taking advantage of matrix algebra is however much faster than logistic 

model computation and offers the possibility to pre-screen epistasis pairs which then need to 

be validated using a logistic model with all important covariates.  

  

The original publication and subsequent study always used epiblaster on minor allele dosage. 

Here we want to compute interactions between SNPs encoded in the 4 genetic models (additive 

(minor allele dosage), dominant, recessive, and heterozygous). Some of these models typically 

lead to lower frequencies for the interaction term and we, therefore, decided to assess the 

reliability of episcan in this configuration. To do this, we ran the episcan algorithm for every 

combination of 1100 randomly sampled SNPs across the whole MAF range of the dataset. We 

ran it for each of the 10 unique genetic-model combinations possible. Very interestingly, 

observation of the resulting QQ-plots shows the expected uniform distribution (expected under 

the null hypothesis) in most of the model combinations (Figure 16). However, we also observe 

strong inflation for the combination of the recessive model with the dosage and heterozygous 
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models and with itself. These are indeed, the genetic model which produce the lower interaction 

term frequency. This suggests already that a higher MAF threshold should be used for these 

models to avoid spurious associations.  

 

 
Figure 16: QQ-plots from episcan analysis using 1100 random SNPs 

These QQ-plots represents the quantile of the observed p-value distribution when running the episcan 
using 1100 randomly sampled SNPs with a minimum MAF of 0.05 and encoded in the different genetic 
models plotted against the quantiles of the expected uniform distribution under the null hypothesis. Early 
deviation from the slope 1 line (solid black line) indicates p-value inflation in model combinations 
including the recessive genetic encoding.  
  
To further examine the hypothesis that low MAF combined with these 3 genetic models 

yielding lower frequency leads to inflated p-value we plotted the distribution of the p-values 

according to the smaller MAF of the pair, to the largest MAF of the pair, and to the product of 
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the two MAFs in the dominant-dominant model combination and in the recessive-recessive 

model combination.  

 

In the dominant-dominant combination, we do already observe a trend of p-value tending to be 

higher with smaller minimum MAF or smaller interaction terms (Figure 17). However, the trend 

seems to be superficial. This is indeed coherent with the absence of inflation observed on the 

QQplot in Figure 16.  

 

On the other hand, for the recessive-recessive model combination, we do observe a strong 

inflation of the p-value when the minimum MAF or product of the two MAF is below 5%. This 

is also coherent with the inflation of p-values observed on the QQplots in Figure 16.  

 

These two analyses show that episcan is producing reliable results for SNPs with a MAF of 5% 

in all pairwise combinations of the dosage, dominant, and heterozygous genetic models, 

confirming that we can use it as a first screening step in our analysis. However, it does produce 

inflated results when one of the SNPs is encoded in the recessive models. We, therefore, decided 

to rise the MAF threshold to 25% when using the recessive encoding. With this, we ensure that 

the frequency of the interaction term will be at least 6.25% in the recessive-recessive 

combination and 1.25% in the recessive-other encoding combination. 
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Figure 17: Episcan p-value distributions as a function of the MAF for the dominant-dominant and 

the recessive-recessive genetic encoding 

P-values are plotted against the MAF of the rarest SNP of the pair (left), the MAF of the most common 
SNP of the pair (center), and of the product of the two MAFs (right). The upper row shows the p-values 
for the most powerful genetic encoding (dominant-dominant) and the lower row for the least powerful 
genetic encoding (recessive-recessive). Note the different y-scales between the two rows of plots.   
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3.3.1.3 Determination of the best episcan computing strategy 

The SNPs QC at a MAF threshold of 0.05 filtered our dataset to 6'722'728 variants. This number 

of variants would already be high for a normal GWAS but is totally prohibitive in the case of a 

pairwise interaction study. For this reason, and to reduce collinearity between variants, we 

pruned all variants with an r2 threshold of 0.5 using plink to arrive at 537'930 LD-independent 

variants. The number of pairwise comparisons to be tested can therefore be computed as 

(537'930 * (537'930-1))/2 and amounts to 1.446841×1011. In terms of computational operations, 

the episcan algorithm will therefore have to compute 1.446841×1011 correlation coefficients 

between 314728 controls and 1.446841×1011 correlation coefficients between 17228 cases. 

Even with efficient matrix algebra this represents a very large number of computations and 

might take a very long time.  

 

A graphical processing unit (GPU) accelerated version of the episcan package was also 

developed in our group by Jiang and colleagues. This version takes advantage of the 

architecture of GPUs  and now available general purpose GPU (GPGPU) programming tools 

to run massively parallel computation of the correlation coefficients via matrix multiplication. 

This GPU implementation has the potential to substantially speed up the first statistical filtering 

step with episcan. Both CPU and GPU version are memory limited in the sense that the genetic 

data has to be loaded in memory for the computation. In case where the data exceeds the limit 

of the physical memory, the data has to be chunked into blocks of SNPs, which are treated one 

after another. In this respect the GPU version is at a disadvantage as memory available to a 

GPU is generally much smaller than RAM on an HPC machine. 

 

Depending on the architecture of the computational resources at hand and the sample size of 

the dataset the CPU or GPU version might be faster. For example, on our cluster, each node has 

2 GPUs with 4GB of RAM each. In the case of big datasets, the dataset will be chunked into 

numerous chunks because only part of it can fit into the GPU memory, and these chunks will 

be run sequentially thereby reducing the overall speed gain. On the other hand, each CPU node 

may have 40 parallel threads and between 256 and 758 GB of shared RAM (allowing an 

allocation of approx. 6–20 GB of RAM to every process) and could run 40 single-threaded 

episcan jobs in parallel. Even if each job is running slower than on a GPU, as many more can 

fit into the bigger available RAM, this might be quicker.  
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To choose the best computing strategy to run the genome-wide epistasis scan and estimate the 

total running time, we benchmarked the CPU and GPU versions of episcan in the following 

way. Using a simulated dataset we recorded the time needed for the computation of one SNP-

block of different sizes and with different sample sizes using the CPU and GPU version of 

episcan. Figure 18 shows that in small datasets, the time increases at a rate close to 1 with the 

number of SNPs combinations between blocks (which is expected without parallelization). 

However, the GPU version shows only a very limited increase in computation time with 

increasing block sizes. It appears that the GPU version of episcan becomes advantageous for 

block sizes higher than 10000 SNPs. The last row of Figure 18 shows missing values for all 

block size larger than 1000. This is because the GPU could not accommodate larger block sizes 

with the sample size of 50'000 samples.  

 

 
Figure 18: Computation time for one single SNP block of increasing size using the CPU or GPU 

version of episcan in four different sample sizes.  

 

Indeed, Figure 19 shows the GPU memory requirements as function of the block and sample 

sizes. The maximum block size of 10000 for a sample size of 50000 is due to the fact that the 

4GB RAM limit is reached. Moreover, in the case of the UKBB dataset, the memory limit will 

be reached with a block size of 1000 SNPs (red diamond on Figure 19).  
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Figure 19: GPU memory usage as function of the block size in increasing sample sizes 

The red diamond represents the UKBB dataset with ca 330‘000 individuals. For this dataset, there is no 
data for block sizes greater than 1000 because the GPU memory limit was reached with 1000 SNPs.  
 

We can summarize the findings as follows: 1) GPU offers speed gain for block-size greater than 

10'000 SNPs and 2) GPU is limited to block sizes smaller than 1000 SNPs for the UKBB 

dataset. It therefore appears that using single-threaded CPU episcan jobs which can be spawned 

in parallel to many CPU nodes will be the computationally fastest solution.  

 

After establishing that we would use the CPU version of episcan, we still needed to investigate 

the optimal block size and parallelization strategy on the different cluster nodes. Figure 20 

shows the evolution of computation time for different block size in different increasing sample 

size up to the UKBB sample size. We can appreciate that computation time increases almost 

linearly with the block size. This means that a when the block size doubles the computation 

time is multiplied approximately by 2 while 4 times more combinations have been computed. 

Larger block size would therefore speed up computations if unlimited ressources are available. 

However, Figure 21 shows that the required memory also increases almost linearly with the 

block size and quickly reaches several hundred GB for UKBB sample sizes. Given a particular 

HPC architecture, like the one that we were using, where each nodes has several cores (40 in 
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our case) but less than 1TB of RAM (500GB in our case), only few large-block-size jobs can 

be run in parallel. This will results in most of the cores not being used. On the other hand, jobs 

with smaller block-size use less RAM  and more of them can be run in parallel , thereby possibly 

speeding up the computation. Optimal computation time will therefore be reached by 

optimizing the block size with respect to one’s computational ressources.  

 

 
Figure 20: Computation time for single SNP block of different sizes in increasing sample size 

The purple line represents a dataset of similar size as the UKBB dataset used in the analysis.  
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Figure 21: CPU memory usage for single SNP block of different sizes in increasing sample size 

The purple line represents a dataset of similar size as the UKBB dataset used in the analysis.  
 
I therefore used the measured computation time and memory requirements for the different 

block sizes to estimate the total computation time for different numbers of SNPs (corresponding 

to different MAF thresholds)  using the following resources reasonably available on our cluster: 

4 nodes with 40 threads and 500 GB RAM each. We can see that indeed, smaller block sizes 

and therefore less resource-heavy jobs yield shorter total computation time (Figure 22), 

certainly because they can maximize resource allocation on the cluster. Based on this, I selected 

a block size of 1000 SNPs.  
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Figure 22: Estimated computation time in days as function of the block size for different total 

numbers of SNPs  

The bar plots shows the estimated computation time in days for different number of SNPs roughly 
corresponding to different the different MAF threshold of 0.1, 0.05, 0.01, and 0.001 respectively for 
three different block size. The upper panel represents the computation time if all SNPs are encoded only 
in the dosage model and the lower panel if all SNPs are encoded in the four different genetic models. 
Computation time was estimated based on the following hardware resources: 4 HPC nodes with 40 
threads and 500 GB RAM each. 
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Finally, using the selected block size I could estimate the overall computation time for different 

MAF thresholds (yielding different SNPs number) for the case when one genetic model is 

considered and the case when all combinations of the 4 genetic models are considered. Figure 

23 shows that a MAF threshold of 0.05 allows to run the epistasis scan with all genetic models 

in roughly 3 months. Lowering the MAF threshold to 0.01 increases the run time prohibitively 

to almost one year. 
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Figure 23: Estimation of the overall computation time in days for the chosen block size of 1000 

SNPs for different total numbers of SNPs 

The bar plot shows the estimated computation time in days for different number of SNPs roughly 
corresponding to different the different MAF threshold of 0.1, 0.05, 0.01, and 0.001 respectively for 
three different block sizes. Computation time was estimated based on the following hardware resources: 
4 HPC nodes with 40 threads and 500 GB RAM each. The final estimated computation time for the 
chosen MAF threshold of 0.05 is roughly 3 months wall-clock time.  
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3.4 Results 

3.4.1  Step 1: Episcan 

We ran the first statistical screening step using the episcan R package on a QCed UKBB dataset 

with 314’728 controls and 17’228 cases. The pairwise combinations of the 537’930 SNP 

encoded in the dosage, dominant and recessive models amounted to a total of 1.446841×1012 

epistasis pairs to be computed.  

 

We report that 1’210’213 genetic-models-specific pairs passed the threshold of 1×10-6, which 

we set as the minimum threshold for writing the pair’s detail to disk for storage reasons. We 

computed a Quantile-Quantile Plot (QQplot) using all these pairs to assess whether inflation in 

p-value could be observed. The QQ-plot does not show any signs of such inflation (Figure 24), 

with the quantile-quantile distribution following the slope 1 line until a very low p-value 

threshold (notice that the x and y axis do not start a 1 but at 1×10-6). On the contrary, we start 

to see observe p-values rising above the line from the loose statistical threshold of 1×10-10 

(vertical blue line) which we used for this first step. This argues that the signal retained with 

this threshold is likely to be true.  
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Figure 24: Quantile-Quantile plot for all pairs with a p-value < 1×10-6 in the episcan run  

This QQ-plot shows the distribution of the observed p-value on the y-axis compared to the distribution 
of expected p-values under the null hypothesis (uniform distribution) on the x-axis. The black line 
represents a line of slope 1. The blue vertical line represents the loose statistical threshold of 1×10-10 and 
the red line represents the suggestive threshold of 6.9×10-12. Both distributions start at 1×10-6 because 
lower p-values were not recorded because of storage reasons.  
 

To get a better overview of the episcan results, we adapted the traditional Manhattan plot from 

GWAS studies to plot the epistasis results using a 3D scatter plot of the results (Figure 25). It 

strikingly appears that one association signal showing the characteristic "skyscraper" shape is 

much higher than any others. This signal between rs4708870 and rs575905913 is a cis-epistasis 

signal located on chromosome 6 between the LPAL2 and LPA genes. We observe a second 

very high association signal, between rs10757275-rs7857345 also in cis. These SNPs are both 

annotated to the CDKN2B-AS1 gene on chromosome 9. These two signals are composed of 

several epistasis pairs apparently in LD with each other with increasing levels of significance 

and therefore show good evidence for a true signal. In addition, these 3 loci are known risk 

factors for cardiovascular disease and we show in chapter 5.3.3 that interactions at the LPA 

locus are associated with CAD, thereby strengthening the claim that the episcan yielded 

plausible results.  
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Figure 25: 3D Manhattan-like plot of the first filtering step using episcan 

The x and y axis represent the interacting SNPs on the first and second chromosomes respectively. The 
z-axis and color represent the p-value of their interaction. Each SNP pair is represented only in the model 
combination which yielded the best p-value. 
 

Generally, it appears that most of the signal above the threshold of 1×10-10 shows the common 

"towering" structure and are not singletons, as can be appreciated from the z-axis-truncated 3D 

Manhattan plot (Figure 26). 

Together, with the QQ-plot, these results advocate that the episcan did pick real association 

signals and was not confounded even if it cannot consider any covariates.  
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Figure 26: Truncated 3D Manhattan-like plot of the first filtering step using episcan 

The x and y axes represent the interacting SNPs on the first and second chromosomes, respectively. The 
z-axis and color represent the p-value of their interaction. The plot was truncated on the z-axis at 1×10-

14 to allow better visualization of the pairs with p-values in the range between 1×10-8 and 1×10-14, which 
comprises all pairs except for the two “highest towers”. Each SNP pair is represented only in the model 
combination which yielded the best p-value. 
 

In total, we report 192 epistasis pairs that did pass the relaxed threshold of 1×10-10 and will be 

forwarded to the next validation and fine-mapping step. Among them, 104 cis-epistasis pairs 

and 88 trans pairs. In comparison to the suggestive threshold of 6×10-12 or a more relaxed 

arbitrary threshold of 1×10-8, it appears that the chosen threshold of 1×10-10 yields a manageable 

number of hypotheses to test while allowing for possible significance decrease due to imperfect 

LD between tags and causal variants (Figure 27). 
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Figure 27: Summary of the significant results in the first filtering step using episcan 

This barplot summarises the number of cis (red) and trans (blue) epistasis pairs at different significance 
threshold corresponding to, respectively and in ascending order, Bonferonni correction (0.05/number of 
LD independent pairs), suggestive threshold (1/number of LD independent pairs), relaxed threshold to 
capture incomplete LD between tags and causal variants, more relaxed threshold.  
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3.4.2 Step 2: Fine mapping and validation using logistic regression 

In order to fine-map and validate the 192 epistasis pairs from step 1, we first searched for all 

tag-SNPs in LD with the SNPs forming the selected pairs (referred to hereafter as "step 1-

pairs"). We did this search in the exact inverse way as compared to the LD pruning, using an r2 

threshold of 0.5 within a 10'000kb distance. For each of the step 1-pairs, we then listed all 

combinations of their tagged, resulting in 36'913 pairs SNP (referred to as step 2-pairs here-

after). The number of interaction pairs per step 1-pair follows a broad distribution as shown in 

Figure 28. We can see on this histogram that most of the step-1 pairs generated less than 1000 

pairs to test. If we zoom in on the range 0–1000 (Figure 28) we can see that in fact most of the 

step 1-pairs generate less than 50 pairs.  

 

 
Figure 28: Number of “step 2-pairs” per “step 1-pair” 

This histogram shows the distribution of the number of pairs created by the LD-expansion (see Section 
3.2.2.2) of each of the significant pairs in the first step using episcan. The left panel shows a zoom-in 
on the range 0 to 1000.  
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We then tested each of the 36'913 tag pairs using a logistic regression model with the case status 

as outcome, the SNPs in the respective genetic encoding as the predictor, and sex, age as well 

as the 10 first MDS components of the genetic variance as covariates. At this stage, we decided 

to use the suggestive threshold of 6.9×10-12 computed as 1/number of LD independent SNP pair 

combinations which entered step 1. We wanted here to apply a more stringent threshold than at 

the first step, as the variants used in this fine-mapping should now be the causal variants or at 

least the best tag variant to the causal ones. We decided to use this suggestive threshold instead 

of the usual Bonferroni threshold (in this case 3.5×10-13) because it yielded substantially more 

trans-epistasis pairs which we could try to replicate (Figure 29). Indeed, trans pairs are less 

likely to be tagging rarer variants or haplotypes and are therefore of great interest. The 

replication step being computationally very cheap compared to the whole two-step association 

testing, we decided to use the suggestive threshold and try replicating the 79 pairs significant 

at this threshold.  

 

 
Figure 29: Summary of the significant results in the fine-mapping step using logistic regression 

This barplot summarizes the number of cis (red) and trans (blue) epistasis pairs at different significance 
thresholds corresponding to, respectively and in ascending order, Bonferroni correction (0.05/number 
of LD independent pairs), suggestive threshold (1/number of LD independent pairs), relaxed threshold 
to capture incomplete LD between tags and causal variants, more relaxed threshold.  
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3.4.3 Episcan and fine-mapping for recessive models 

We repeated the episcan and fine-mapping step for all combinations of SNPs for models 

containing at least one recessive encoding (i.e., for the models recessive-recessive, recessive-

dominant, recessive-dosage, and recessive-heterozygous). For the recessive encoding, we did 

consider only SNPs with a MAF > 0.25 as we showed that under this threshold the episcan 

results were not reliable in this encoding. The Quantile-Quantile plot for these models indeed 

does not show any signs of inflation, on the contrary, there seems to be a p-value deflation 

(Figure 30). This is certainly because the power to detect association when one SNP is encoded 

in the recessive model is lower than for others. Raising the MAF threshold did avoid the 

aberrant behavior of the episcan algorithm but did not increase the power sufficiently. We, 

therefore, decided to keep these results but acknowledge that the power of this study in these 

models' space is low.  

 

 
Figure 30: Quantile-Quantile plot for all pairs with a p-value < 1×10-6 in the episcan run with the 

recessive genetic models  

This QQ-plot shows the distribution of the observed p-value on the y-axis compared to the distribution 
of expected p-values under the null hypothesis (uniform distribution) on the x-axis. The black line 
represents a line of slope 1. The blue vertical line represents the loose statistical threshold of 1×10-10 and 
the red line represents the suggestive threshold of 6.9×10-12. Both distributions start at 1×10-6 because 
higher p-values were not recorded because of storage reasons.  
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Figure 31: Summary of the significant results for the recessive models 

Number of significant SNPs at the suggestive threshold of 6.9×10-12 in the first (episcan) and second 
(fine-mapping) step for the recessive models. 
 

We report 37 pairs that passed the episcan at the threshold of 1×10-10 (Figure 31 left). Among 

them, are 7 cis and 30 trans pairs. Interestingly, there are many more significant trans pairs than 

cis pairs in this case, whereas it was the contrary with the remaining model conditions (Figure 

27). We do not have a very good hypothesis as to why this is the case, but these associations 

could be due to some hidden confounders. Indeed, only 3 of the 30 trans-pairs reached 

significance in the second step (Figure 31 right) when using a logistic model correction for 

known confounders, as compared to 3 out of 7 for the cis pairs. Out of these 6 pairs, 3 had not 

been identified or had a lower p-value in the other model’s combinations. Therefore, the 

recessive model’s combinations brought only 3 new pairs which were not discovered using the 

other models. 

 

3.4.4 Replication  

Taking the results of non-recessive and recessive model combinations, we report a total of 82 

SNP-pairs, 65 cis, and 17 trans, to be replicated in the replication dataset made of 10 CAD 

studies. We ran the replication as a fixed effect inverse-variance weighted meta-analysis of the 

10 studies, and considered a pair replicated if the interaction coefficient was of the same sign 

as in the discovery sample, and its p-value significant at the nominal threshold of 0.05 (Figure 

32). Unfortunately, 32 of the pairs were impossible to replicate because neither the two SNPs 

nor any of their LD-tags (down to r2=0.5) were present in the replication dataset.  

 

Among the pairs that succeeded replication, were 36 cis-pairs, and only one trans-pair. 

Replication was impossible due to missing data for 7 of the 17 trans pairs and the other 9 failed 
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replication. Among pairs which could technically be replicated, the replication rate is therefore 

very high in the cis-pairs and very low in the trans pairs. The replicated trans-pair between 

rs3895825 and rs4947818 is extremely unlikely to tag a rare variant or haplotype as the two 

SNPs are located on different chromosomes and belongs to our final list of epistasis (Table 2).  

 

 
Figure 32: Replication of the significant pairs in a meta-analysis of 10 CAD studies 

This barplot shows the results of the replication of the 90 significant pairs after the fine-mapping in a 
replication dataset composed of 10 CAD studies. Some of the pairs were impossible to replicate in this 
dataset because there were no LD tags (LD < 0.5) available in the replication dataset which was imputed 
using a smaller imputation panel.  
 

3.4.5 Conditional analysis for cis-pairs 

The final step for the validation of the 36 cis-pairs which were replicated in the replication 

dataset is to make sure that they are not merely tagging a rare variant or haplotype. Indeed, the 

combination of the two SNPs could be just co-inherited with a causal rarer variant for example. 

We, therefore, ran the conditional analysis (as described in section 3.2.2.4) for every SNP in 

the pre-QC dataset (i.e., in every imputed SNP regardless of the MAF, imputation quality, or 

other QC criteria) within a ±200kb distance from the SNPs of the pair. Indeed, it is important 

to include as many SNPs as possible in this analysis because the tagged variant does not have 

to fulfill any particular QC criteria. We chose this space window because the risk of co-

inheritance decreases with the distance and 200kb yielded a manageable number of tests to run.  
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We report that 22 SNPs pairs did survive this conditional analysis (Table 2) and are therefore 

independent of any additive single variant effect, in the limit of the SNPs which were available 

to us for this analysis. 
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SNP1 SNP2 Chr1 Chr2 MAF1 MAF2  Gene1 Gene2 Model1 Model2 Pval step1 coef. 

step2 

Pval step2 coef. 

repl. 

Pval repl Indep. 

LPA 

Indep 6q26–

q27  

Indep 

CDKN2A/B  

rs9632884 rs581876 9 9 0.48 0.39 het dom CDKN2B-AS1 CDKN2B-AS1 4.30E-12 0.38 1.80E-28 0.362 4.60E-10 - - YES 

rs11751605 rs1084651 6 6 0.17 0.17 dom dom LPA Intergenic (LPA) 3.20E-20 -0.38 1.30E-24 -0.322 1.80E-06 YES NO - 

rs2661839 rs2872819 6 6 0.35 0.31 dos dos SLC22A3 Intergenic (LPA) 7.00E-16 -0.19 2.00E-24 -0.116 3.10E-04 YES YES - 

rs7742018 rs4252051 6 6 0.49 0.16 dos dos Intergenic (LPA) Intergenic (PLG) 9.80E-14 -0.23 2.00E-24 -0.094 1.40E-02 YES YES - 

rs12210186 rs1084651 6 6 0.19 0.17 dom dom LPA Intergenic (LPA) 8.30E-18 -0.37 8.90E-24 -0.318 1.60E-06 YES YES - 

rs13211753 rs9457931 6 6 0.07 0.06 dom dom SLC22A2 LPAL2 1.90E-31 0.54 1.30E-23 0.559 2.30E-08 YES YES - 

rs2457571 rs2314851 6 6 0.47 0.48 dos dos SLC22A3 PLG 1.40E-14 -0.16 2.10E-22 -0.057 4.10E-02 YES YES - 

rs7857118 rs62555370 9 9 0.49 0.13 het dom Intergenic (CDKN2B-AS1) CDKN2B-AS1 3.90E-14 0.39 5.90E-22 0.432 3.90E-09 - - YES 

rs3125056 rs13198987 6 6 0.14 0.17 dos dom intergenic (SLC22A1) LPA 5.90E-15 -0.32 6.30E-21 -0.31 6.60E-07 YES YES - 

rs12660365 rs13211753 6 6 0.15 0.07 dom dos SLC22A3 SLC22A2 4.30E-14 0.38 8.80E-19 0.191 1.60E-02 YES YES - 

rs3106162 rs9364559 6 6 0.40 0.20 het het LPAL2 LPA 2.50E-11 -0.33 3.40E-18 -0.325 3.50E-06 YES NO - 

rs9457931 rs662421 6 6 0.06 0.48 dom dos LPAL2 SLC22A2 7.70E-14 -0.3 4.90E-18 -0.152 1.40E-02 YES YES - 

rs4708870 rs2619268 6 6 0.06 0.23 dom dos LPAL2 SLC22A2 1.50E-17 0.33 5.80E-18 0.347 4.70E-06 YES YES - 

rs4708870 rs79570361 6 6 0.06 0.08 dom dom LPAL2 PLG 1.00E-35 0.46 1.20E-17 0.403 9.80E-05 NO YES - 

rs1397168 rs56393506 6 6 0.14 0.17 dom het SLC22A3 intergenic (LPA) 8.30E-12 -0.33 1.60E-17 -0.249 3.90E-04 YES NO - 

rs1998045 rs512077 6 6 0.16 0.15 dom dos intergenic (LPA) SLC22A3 2.50E-13 0.27 3.40E-16 0.282 9.30E-07 YES YES - 

rs1937475 rs1652507 6 6 0.32 0.17 dom dos ENSG00000224371 LPA 9.50E-12 -0.26 8.80E-16 -0.1 7.80E-02 YES YES - 

rs3731239 rs3814960 9 9 0.37 0.38 het dom CDKN2A CDKN2A 1.10E-14 -0.27 1.90E-15 -0.327 2.10E-06 - - YES 

rs5117 rs429358 19 19 0.24 0.16 het dos APOC1 APOE 4.30E-12 0.29 3.70E-15 0.251 1.90E-03 - - - 

rs4708870 rs2315065 6 6 0.06 0.10 dos dos LPAL2 Intergenic (PLG) 7.70E-12 -0.39 9.60E-13 -0.308 4.50E-03 YES YES - 

rs3895825 rs4947818 13 7 0.21 0.20 dos het ENSG00000284196 ENSG00000228627 3.70E-11 0.21 2.70E-12 0.102 5.90E-02 - - - 

rs4708870 rs1084651 6 6 0.06 0.17 dom dom LPAL2 Intergenic (LPA) 1.60E-17 0.37 3.30E-12 0.401 1.80E-05 NO 
 

- 

 
Table 2: Summary of the final epistastic SNP-pairs 
This table shows summary results for the 22 cis-pairs which successfully passed the conditional analysis, and whose interaction doesn’t tag rare variants or haplotypes. Each of the SNPs 
was annotated to the nearest gene. The indep.LPA column indicates whether the interactions were also independent of the complex pattern of 3 interacting variants previously reported 
at the LPA locus. The indep 6q26–q27 columns indicate whether the interactions are also independent of the marginal effect of 3 SNPs and one haplotype previously reported in the 
SLC22A3-LPAL2-LPA gene cluster. The indep CDKN2A/B columns indicate whether the interactions are also independent of the marginal effect of 2 SNPs previously reported at the 
CDKN2A/B locus. “–“ indicates that the interacting pairs are located on another chromosome and were therefore not tested for independence towards this signal.  
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3.4.6 Conditional analysis for the LPA locus 

Because a substantial part of these pairs is located in the vicinity of the LPA regions (the LPA, 

LPAL2, PLG, and SLCA22 family are all located one after another on chromosome 6) and we 

previously have reported a complex pattern of epistasis at the LPA locus involving three SNPs 

(see Section 5.3.3 and (Zeng et al., 2022)), we wanted to assess whether the signals found here 

were independent. To do so, we conducted the same kind of conditional analysis described 

above for the 17 cis-pairs located on chromosome 6, but conditioning on the three SNPs 

rs140570886, rs1652507, rs9458001, and all their 2- and 3-way interactions. We report that 

only 2 pairs, namely rs4708870: rs79570361 (annotated to LPAL2 and PLG respectively) and 

rs4708870: rs1084651 (annotated to LPAL2 and LPA respectively) did not pass this conditional 

analysis at the nominal threshold of 0.05. All others did (Table 3) and therefore represent, at 

least partially, independent signals from the previously described epistasis signal at the LPA 

locus.  
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snp1 snp2 pval_LRT 

rs11751605 rs1084651 1.03E-11 

rs2661839 rs2872819 2.71E-15 

rs7742018 rs4252051 1.51E-12 

rs12210186 rs1084651 1.38E-10 

rs13211753 rs9457931 0.0061 

rs2457571 rs2314851 1.08E-14 

rs3125056 rs13198987 4.72E-12 

rs12660365 rs13211753 0.0159 

rs3106162 rs9364559 6.00E-14 

rs9457931 rs662421 0.0124 

rs4708870 rs2619268 0.0420 

rs4708870 rs79570361 0.0906 

rs1397168 rs56393506 7.36E-09 

rs1998045 rs512077 8.78E-05 

rs1937475 rs1652507 1.86E-06 

rs4708870 rs2315065 2.41E-07 

rs4708870 rs1084651 0.09330 

Table 3: Results of the conditional analysis on the three previously published interacting LPA 

SNPs 

The p-value was computed using a likelihood ratio test between a null model with the marginal effect 
of SNP1 and SNP2 as well as the marginal effect of rs140570886 , rs1652507, rs9458001, and all their 
2- and 3-way interactions and a full model including the SNP1:SNP2 interaction as well. A significant 
p-value indicates that the SNP1:SNP2 interactions provided new information on the phenotype that was 
not carried by the 3 other SNPs and their interaction.  
 

3.4.7 Conditional analysis for the SLC22A3-LPAL2-LPA gene cluster 

Previous associations with CAD have been reported for a 4 SNP haplotype and for 3 single 

SNPs (rs3088442, rs3798220, and rs10455872) in the SLC22A3-LPAL2-LPA gene cluster We 

therefore also ran two conditioning analyses, one on these 3 SNPs and one on this haplotype 

for all of the cis-pairs located on the chromosome 6. Three of them, rs11751605:rs1084651, 

rs3106162:rs9364559, and rs1397168:rs56393506 showed dependence on the 3 previously 

reported SNPs and were not significant after conditioning on them (Table 4). 

 

snp1 snp2 P-value LRT 3 SNPs P-value LRT haplotype 
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rs11751605 rs1084651 0.0965 8.14E-19 

rs2661839 rs2872819 4.64E-07 2.75E-17 

rs7742018 rs4252051 2.22E-09 5.08E-13 

rs12210186 rs1084651 0.0327 1.26E-21 

rs13211753 rs9457931 0.0002 8.51E-15 

rs2457571 rs2314851 9.03E-06 4.63E-16 

rs3125056 rs13198987 0.0369 6.23E-15 

rs12660365 rs13211753 0.0058 5.67E-11 

rs3106162 rs9364559 0.6927 0.1461 

rs9457931 rs662421 0.0308 1.75E-10 

rs4708870 rs2619268 0.0070 1.47E-10 

rs4708870 rs79570361 0.0002 1.67E-11 

rs1397168 rs56393506 0.1383 3.16E-07 

rs1998045 rs512077 3.07E-06 9.80E-11 

rs1937475 rs1652507 1.99E-06 6.64E-17 

rs4708870 rs2315065 1.68E-07 1.92E-12 

rs4708870 rs1084651 1.67E-05 3.98E-15 

Table 4: Results of the conditional analysis on the three previously associated SNPs and one 

haplotype at the SLC22A3-LPAL2-LPA gene cluster 

The p-value was computed using a likelihood ratio test between a null model with the marginal effect 
of SNP1 and SNP2 as well as the marginal effect of either rs3088442,rs3798220, and  rs10455872 or 
the four SNPs haplotype rs2048327- rs3127599- rs7767084-rs10755578 and a full model containing the 
SNP1:SNP2 interaction in addition. A significant p-value indicates that the SNP1:SNP2 interactions 
provided new information on the phenotype that was not carried by the 3 other SNPs or haplotypes.  

3.4.8 Conditional analysis for the CDKN2A-CDKN2B region 

Previous associations with CAD have been reported for 2 SNPs in the CDKN2A-CDKN2B 

region where three of our top hit pairs are located. We therefore also ran a conditioning analysis 

on these 2 SNPs for the three cis-pairs located on chromosome 9. All their interaction terms 

remained significant when conditioning on the 2 previously reported SNPs, and these 

interactions are therefore independent of the previously reported signal (Table 5). 
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snp1 snp2 pval_LRT 

rs9632884 rs581876 0.002123201 

rs7857118 rs62555370 0.014112126 

rs3731239 rs3814960 1.16E-05 

Table 5: Results of the conditional analysis on 2 previously associated at the CDKN2A/B locus 

The p-value was computed using a likelihood ratio test between a null model with the marginal effect 
of SNP1 and SNP2 as well as the marginal effect of rs1333049 and rs4977574 and a full model 
containing the SNP1:SNP2 interaction in addition. A significant p-value indicates that the SNP1:SNP2 
interactions provided new information on the phenotype that was not carried by the 2 other SNPs. 
 

 

Finally, after all these conditional analyses we report 17 interacting SNP pairs (Table 3), 

which are independent of any single locus association and present the strongest argument that 

statistical epistasis testing can bring for biological epistasis. All these pairs except 5 are cis-

pairs located on chromosome 6 with both SNPs associated (by position) to the following 4 loci: 

LPA, LPAL2, PLG, and the SLC22A family (A1, A2, A3). The three cis-pairs on chromosome 

9 are respectively annotated to CDKN2B-AS1 (both SNPs) and CDKN2A (both SNPs). One 

more cis pair is located on chrosome 19 between the APO1C and APOE loci. The only trans 

pair is unfortunately located between two lncRNAs without known names or functions.  

 

3.4.9 Characterization of the significant epistasis pairs 

To better understand the biological basis of the epistatic pairs that we report through the search 

for statistical epistasis we attempted to further characterize the type of epistasis represented. 

Indeed, a significant interaction term in the logistic model is the sign of a deviation of the 

additivity of the two alleles on the log-linear scale and can be caused by different types of 

epistasis. For each pair, we, therefore, compared the marginal effects of the two SNPs with the 

effect of the interaction to classify the interaction between antagonist/synergist and 

negative/positive epistasis (Table 6). Antagonist interactions arise when the effect of the 

interaction is opposite as compared to the marginal effects, and synergist interactions are the 

opposite. Epistasis interactions are classified as negative if the carriers of the minor alleles at 

the two loci have higher disease risk as would be expected from the sum of the marginal effect 

of the two alleles and as positive if they have a lower risk.  
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SNP1 SNP2 OR 1 P-val1 OR 2 P-val2 OR int Pval Int Epi.factor antagonist/synergistic positive/negative 

rs9632884 rs581876 -0.186 4.08E-12 -0.34 3.91E-49 0.38 1.75E-28 -0.49 antagonist negative 

rs2661839 rs2872819 0.206 6.22E-34 0.08 8.53E-05 -0.19 1.99E-24 -1.11 antagonist positive 

rs7742018 rs4252051 0.092 1.19E-11 0.33 3.54E-31 -0.23 2.03E-24 -0.41 antagonist positive 

rs12210186 rs1084651 0.268 1.98E-35 0.12 1.43E-06 -0.37 8.87E-24 -0.72 antagonist positive 

rs13211753 rs9457931 -0.049 0.063 0.01 0.857 0.54 1.32E-23 -0.09 NA negative 

rs2457571 rs2314851 0.134 1.34E-11 0.20 5.38E-25 -0.16 2.06E-22 -0.85 antagonist positive 

rs7857118 rs62555370 -0.093 4.35E-07 -0.38 8.77E-36 0.39 5.89E-22 -0.24 antagonist negative 

rs3125056 rs13198987 0.236 1.21E-29 0.08 9.36E-05 -0.32 6.33E-21 -0.75 antagonist positive 

rs12660365 rs13211753 0.004 0.834 -0.05 0.085 0.38 8.79E-19 0.01 NA negative 

rs9457931 rs662421 0.489 4.12E-31 0.04 0.002 -0.30 4.88E-18 -1.62 antagonist positive 

rs4708870 rs2619268 -0.004 0.898 -0.02 0.269 0.33 5.76E-18 -0.01 NA negative 

rs1998045 rs512077 -0.004 0.848 -0.02 0.403 0.27 3.44E-16 -0.02 NA negative 

rs1937475 rs1652507 0.099 2.25E-07 0.15 2.03E-09 -0.26 8.76E-16 -0.38 antagonist positive 

rs3731239 rs3814960 0.111 2.40E-05 0.15 8.18E-11 -0.27 1.92E-15 -0.42 antagonist positive 

rs5117 rs429358 -0.210 7.31E-15 0.05 2.34E-02 0.29 3.72E-15 -0.71 antagonist negative 

rs4708870 rs2315065 0.259 3.08E-24 0.34 6.72E-73 -0.39 9.65E-13 -0.66 antagonist positive 

rs3895825 rs4947818 -0.059 5.86E-04 -0.12 3.01E-08 0.21 2.74E-12 -0.29 antagonist negative 

Table 6: Characterisation of  the significant epistasis pair 

This table shows the marginal effects (log Odds Ratios) of the two SNPs and their p-value along with their interaction effect of these p-value for each of the 17 significant cis-
pairs. The epistatis factor can be computed as OR1/OR_int or OR2/OR_int respectively and indicates whether the epistasis is considered antagonist or synergic. A positive 
epistasis factor indicates  synergic epistasis and a negative epistasis factor indicates antagonist epistasis. This factor was not computed for pairs whose SNPs both do not have 
significant marginal effect.  The positive/negative column indicates whether the effect of the interaction is more positive or negative (with respect to the fitness) than would be 
expected from the sum of the two alleles. The effect sizes are reports as log(Odds Ratio) with respect to the minor allele. A negative log (Odds Ratio) shows protective effect 
(positive effect) of the minor allele and a positive log(Odds Ratio) a higher disease risk (negative effect). 
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 Each of the two SNPs can have a marginal protective or deleterious effect or no effect and all 

interactions have a significant effect (this is what we looked for). There are therefore 10 possible 

situations as described in Table 7 which can be further classified as negative/positive and 

synergetic/antagonist. We report that 13 of the 17 interactions we found involve SNPs which 

both have significant (p < 0.05) marginal effects. All of them show a sign change between the 

two marginal effects and the interaction effect and are therefore antagonists. Nine are positive 

epistasis interactions and four are negative. In addition, we report 4 interactions between 

variants that do not have a significant marginal effect. All these pairs are classified as negative 

epistasis as the effect of the interaction is deleterious (OR > 1). Finally, one pair involves one 

variant with marginal effect and one without, with a deleterious interaction.  

 

SNP1 SNP2  interaction N antagonist/synergistic positive/negative 

NULL NULL protective 0 NA positive 

NULL NULL deleterious 4 NA negative 

NULL protective deleterious  0 antagonist negative 

NULL deleterious deleterious 0 synergistic negative 

NULL protective protective 0 synergistic positive 

NULL deleterious protective 0 synergistic positive 

protective protective  deleterious  4 antagnoist negative 

deleterious deleterious protective  9 antagonist positive 

deleterious deleterious deleterious  0 synergistic negative  

protective protective protective 0 synergistic positive 

Table 7: Summary of the different types of epistasis pairs detected 

This table summarizes the 10 possible combinations of protective/deleterious or absent marginal effect 
of the two SNPs with the protective/deleterious effect of their interaction. The N column reports how 
many interactions of this type were present among the 17 final interactions that we report. The 
antagonist/synergic column indicates whether the interaction effect contributes to disease risk in the 
same “direction” as the main effects of the two SNPs. The positive/negative column indicates whether 
the effect of the interaction is more positive or negative (with respect to the fitness) than would be 
expected from the sum of the two alleles.  
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3.5 Discussion 

In this study, we performed the first, to our knowledge, genome-wide SNP-SNP interaction 

study for coronary artery diseases. We report 22 SNP pairs whose interactions are significantly 

associated with CAD in the UKBB dataset and replicated in a meta-analysis of 10 independent 

CAD studies. These 22 pairs were moreover subjected to conditional analysis on every variant 

in the non-QCed UKBB dataset, one of the imputed datasets with the largest number of SNPs 

up to date, to ensure that none of the rarer SNPs included in this dataset could explain alone the 

interaction effect. From these 22 pairs, 17 were independent of any single marginal effect locus 

in their direct vicinity. With this, we argue to these 17 SNP pairs represent the strongest level 

of statistical evidence for epistasis available at this time.  

 

The maybe more important contribution of this study is to show that such a genome-wide 

hypothesis-free epistasis study is possible using an exhaustive enumeration of all possible SNP 

pairs. Indeed, most of the interaction association studies, all traits together, were conducted 

using some sort of a-priori SNP selection. And most of the few truly genome-wide interactions 

studies were conducted almost a decade ago using sample sizes smaller than 10’000 

(Combarros et al., 2009; Gyenesei, Moody, Semple, Haley, & Wei, 2012; Y. Liu et al., 2011; 

H. Wang et al., 2020). Showing that the two-stages approach that we propose allows to conduct 

an exhaustive search in a reasonable time using computational resources nowadays common, 

is therefore important to incite researchers to undertake more of these studies. Very 

interestingly, another GWIAs using a very similar two-stage approach on a big dataset of 

445’221 people, yet with a different algorithm for the first screening, was published earlier this 

year and uncovered new genetic loci for lung cancer (R. Zhang et al., 2022). This strengthens 

the evidence that two-stages approaches are promising methods for such epistasis scans.  

Very interestingly all of the SNPs involved in the 17 epistasis top hits (and annotated to a known 

gene) are annotated to a total of 10 genes (LPAL2, PLG, SLC22A1, SLC22A2, SCL22A3, 

LPA, CDKN2B-AS1, CDKN2A, APO1C, and APOE), which are all known risk factors for 

CAD. 
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3.5.1 Interactions in the 6q26–q27 region 

 In particular, the SLC22A3-LPAL2-LPA gene cluster has been associated with cardiovascular 

disease in a study by Trégouët and colleagues (Trégouët et al., 2009). In this study, they show 

that one haplotype derived by the genotype at the four SNPs rs2048327 in the SLC22A3 gene, 

rs3127599 in the LPAL2 gene, and rs7767084 and rs10755578 in the LPA gene is associated 

with elevated risks of CAD. They moreover show that this haplotype is exerting its effect on 

CAD risk by elevating the levels of Lp(a), the apolipoprotein-a encoded in the LPA gene. As 

Trégouët and colleagues say it is uncertain “whether the detected haplotype effects are the 

reflection of interactions between SNPs at the haplotypic level or whether they are tagging 

ungenotyped functional variants.“ Pursuing the latter hypothesis, two studies suggested that the 

apparent haplotype effect could be explained by single causal variants, rs3088442 for Wang (L. 

Wang et al., 2016) and colleagues and rs3798220 and rs10455872 for Koch and colleagues 

(Koch et al., 2013). We, therefore, tried to condition all the interactions on these 3 SNPs to 

check whether they are independent signals. It appeared that for three of the pairs that we report, 

the significance of their interaction term is lost when conditioning on these 3 SNPs. For all 

other pairs, the conditioning did not decrease the statistical significance of the interaction terms 

under the nominal threshold. We, therefore, argue that these 17 interactions are at least partially 

independent of this haplotype effect.  

 

In a previous interaction association study with an a-priori statistical filter that we published 

recently (Zeng et al., 2022) and which we describe in Section 5, we reported another complex 

interaction pattern between 3 SNPs at the LPA locus associated as well with CAD and Lp(a) 

levels. In the original 23 SNP-pairs that passed the region-based conditional analysis, only two 

were indeed not independent of this 3-SNPs interaction at the LPA locus. This 3 SNP-

interaction pattern was also subjected to a similar region-based conditional analysis in the 

original study ( see Section 5.3.3) and a dependence on the four variants describing the 

haplotype reported by Tregouet or the three possible causal variants reported by Wang and 

Koch was not detected. This suggests that our 17 interacting SNP pairs, as well as the 3 

interacting LPA SNPs and the haplotype and variants reported by other studies might all 

represent different signals in the 6q26–q27 region. 

 

 However, more advanced analyses are needed to understand if and how many distinct genetic 

interactions are happening or if marginal effects of rare variants are at play. This is a very 

difficult task with the micro-array data currently at hand because there are a lot of “blind” spots, 
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namely ungenotyped variants in this area. Moreover, most of the published variants of interest 

might only be tags for causal variants that were not genotyped, absent from the imputation 

panel, or excluded in the QC or in the pruning. This makes the task of comparing results from 

these different studies (which underwent different QC and SNP pruning procedures) and 

estimating the number of independent signals very hard. Resolving the actual genetic basis of 

these association signals would certainly require deep sequencing of this candidate region. Only 

in this way can the whole complexity be modeled using all the variants in these loci. Our 

previous results on the LPA region showed that three-way interaction might also be responsible 

for part of the association signal, and we, therefore, suggest that further analysis should also 

look at higher-order interactions in this key region.  

 

Indeed, a better understanding of these maybe complex genetic interactions is of great clinical 

interest for the treatment of CAD and risk prevention. The Lp(a) concentration is a routinely 

used measurement that is taken into account by clinicians to infer the risk of CAD (Kronenberg, 

2019) and individuals with abnormally high Lp(a) levels can have up to 2.5 times higher risk 

to develop CAD (Kamstrup, Tybjærg-hansen, Steffensen, & Nordestgaard, 2009). 

Consequently, pharmacological control of Lp(a) levels is currently being thought as a promising 

therapy for CAD (Tsimikas et al., 2020). In this context, a better understanding of the genetic 

basis and molecular mechanisms governing the Lp(a) levels and its association with CAD could 

pave the way for the development of new therapeutical and diagnostic tools.  

 

In addition to this three gene locus, we also report interactions between SNPs annotated to 

LPA2, SLC22A2, SLC22A3, and SNPs associated to PLG, another gene in this chromosomal 

region. This, therefore, suggests, that the PLG gene should also be included in the more detailed 

analysis of this region.  

3.5.2 Interactions at the CDKN2A-CDKN2B region 

The three of the 22 hits pairs that are located on chromosome 9 are all in the CDKN2A-

CDKN2B region which has been previously associated with CAD. Indeed, two pairs are 

between SNPs associated with the CDNK2B antisense RNA 1 which was shown to be 

associated with CAD in multiple GWAS and candidate SNPs studies (McPherson et al., 2007; 

Nilesh et al., 2007). CDNK2B-AS1 is thought to influence the risk of CAD by modifying 

endothelial cell migration and the transit of monocytes through these endothelial cells (Cho et 

al., 2019). The third interaction takes place between two SNPs annotated to CDKN2A, which 

is located right next to the CDNK2B-AS1 gene. Two SNPs, rs1333049 and rs4977574 have 
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been reported in several studies to mediate the association of CDNK2B-AS1 with CAD in 

different population (K. Huang et al., 2019; Tibaut, Naji, & Petrovič, 2022; Yuan et al., 2020). 

To assess whether the interactions signal that we report here are independent of those marginal 

single-locus effects, we tried to condition the three interactions on the effect of these two SNPs 

in the logistic regression model. We report that the three interaction terms passed the 

conditional analysis and represent independent signals from the already known variants. As for 

the interactions on chromosome 6 however, we cannot exclude that other non-accessible 

variants might be responsible for the interaction signal or the signal represented by the 

previously published SNPs or that there are more complex patterns of interaction at play at this 

locus.  

 

3.5.3 Interactions at other loci 

In addition to the multiple interactions on chromosome 6 and 9 we report one cis-interacting 

pair on chromosome 19 and a single trans-epistasis pair between chromosomes 13 and 7.  

 

The two interacting SNPs on chromosome 19 are respectively annotated to APO1C and APOE. 

The APOE gene has 3 different alleles which produce 3 isoforms of the Apolipoprotein E (apo 

E). ApoE2 has been associated with hyperlipoproteinemia and ApoE4 with atherosclerosis 

(Mahley, 2016). The APOC1 locus is located right next to the APOE locus on chromosome 19 

and encode the apolipoprotein C1, an apolipoprotein involved in lipid transport. Very 

interestingly, ApoC1 inhibits the ApoE mediated binding of lipoproteins on their receptor 

(Fuior & Gafencu, 2019). The deleterious interaction that we report between these two loci 

could therefore be indicative of a perturbation of this molecular mechanism leading to increased 

plasma lipid levels. Further validation of this hypothesis could be attempted in vitro and 

potentially bring more understanding of the precise role of ApoC1 which is currently still 

underexplored. 

 

The two SNPs involved in the only significant trans-pair are unfortunately annotated to two 

unknown lncRNA. At this stage it is therefore impossible to make any hypothesis about their 

possible association with CAD or their putative function.  
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3.5.4 Validation of cis-epistasis pairs 

In an often cited article, Fish and colleagues claimed that most of the reported associations 

between cis-epistatic interactions and gene expression were statistical artifacts (Fish, Capra, & 

Bush, 2016). They reported that most of the interaction could be explained more parsimoniously 

by confounders (such as population structure) or by highly complex LD patterns with other 

causal variants. To avoid producing such artifacts we paid special attention to their and others’ 

recommendation. Concerning the confounding due to cryptic population structure, we firstly 

conducted our analysis on a dataset formed only of individuals with European white ancestry. 

While this greatly limits the generalizability of our findings, this limits the possibility of 

confounding through population stratification. We believe that this is especially needed, as the 

frequencies of some lead genetic markers for CAD have been shown to be different between 

populations (Enkhmaa et al., 2016). In addition, following one of the suggested methods in 

(Gusareva & Van Steen, 2014) we included the first ten MDS components of the genetic 

variance in our fine-mapping and validation logistic regression model to account for any 

remaining large-scale genetic structure in the population. Finally, we included age and sex as 

covariates in our models, as these are two important risk factors for CAD. It is worth noting 

that there is debate about the potential negative effect of the inclusion of non-confounding 

covariates in logistic models (Xing & Xing, 2010). We, therefore, refrained to include more 

covariates.  

 

In order to answer Fish’s second concern about cis-epistasis, we conducted several large 

conditional analyses to make sure that the interactions that we report are not tagging other 

additively causal variants or haplotypes. As further proof that this step is indeed needed, 14 of 

the 36 replicated cis-pairs lost their statistical significance when conditioned on all the variants 

within a ±200kb region. For three other regions for which association with either single effect 

locus, interactions, or haplotype had been previously reported, we decided to conduct a more 

complex conditional analysis by conditioning on the joint signal of these known loci. By doing 

this, we discovered that 5 more of our SNP-SNP interactions were actually not independent 

from these known signals. We therefore cannot stress enough the importance of validating cis-

epistasis pair by ruling out that they tag known additive effects. We however have to 

acknowledge that this proof of the independence of the interaction signal is only as good as the 

data allows. Indeed, one would need to conduct such analysis for every base pair in the region 

to ensure that no rare or untyped variant is at the origin of the signal. Hopefully, the advent of 

NGS might allow these kinds of analyses in the near future.  
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3.5.5 Implications for the Genetic Architecture of Epistasis in Common 

Diseases 

Very interestingly, although we conducted a hypothesis-free and exhaustive search for epistasis 

we do report only interactions between loci which had been previously associated with CAD in 

single-locus associations analysis. This result could support several different hypotheses about 

the genetic architecture of common diseases but also has practical implications for future 

epistasis studies in CAD and maybe other diseases.  

 

If, indeed, epistatic interactions arise only between SNPs which also have a marginal effect 

associated with the disease, then epistasis scans based on previous evidence from GWAS 

should be more powerful than hypothesis-free GWIAs. This would, in addition, be the case 

independently of whether these marginal effects are indeed truly stand-alone effects of the 

variant or if the apparent additive effect is due to some kind of non-additive and perhaps actually 

epistatic variance. In contradiction with this argument, a previous study of this kind, which 

investigated interactions between SNPs in the direct vicinity of all known CAD GWAS hits 

(Zeng et al., 2022) and which we present in Section 5, did not find the SNPs pairs that we found 

here. This study had however a much smaller sample size and, correspondingly, lower power. 

We suggest that conducting this marginal-effect-based filtered study on the UKBB dataset 

could certainly help draw stronger conclusion on this apparent discrepancy. 

 

Although these results seem to speak in favor of the fact that genetic interactions would arise 

only or principally between genes that are associated with the disease in an additive way, we 

should refrain from making a too strong conclusion. Indeed, we should remember that also our 

study had quite low power to detect interaction effects with an effect size smaller than 1.2. 

Therefore, our results would be totally compatible with small-to-medium effect interactions 

happening between genes that are not associated with CAD with their marginal effect and which 

we did not have the power to discover here.  

 

In addition, we noticed that although the interactions happened between genes that had been 

previously associated with the disease, they did not happen between the exact genetic variants 

which had been associated. This could be due to differences in the SNPs available in the 

different datasets as well as QC and imputation procedures. Alternatively, different SNPs, with 

possibly different biological consequences, in the same gene could have different modes of 

action. For example, a variant in the protein-coding region of a gene might have an effect on 
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the disease on its own by changing the structure of the protein, whereas the interaction of two 

other variants located in the promoter and enhancer of this same gene could impact the 

expression of the protein. We hypothesize that a better mapping of the exact causal variants 

with the advent of bigger imputation panels and next-generation sequencing as well as a better 

understanding and prediction ability for the functional consequences of single nucleotide 

substitutions will help provide part of the answer to this question in the next future.  

 

It is striking that all of the final interaction pairs that we report, except one, are situated on the 

same chromosome (cis-epistasis). Indeed, only one pair situated on different chromosomes 

(trans-pairs) did replicate in our replication dataset. It could therefore be tempting to conclude 

that epistasis happens preferentially between SNPs on the same chromosome. As most of the 

SNPs in the genome are in non-coding regions and therefore exert their effect by modulating 

gene expression via their interaction with transcription factors, enhancers, and other players of 

the transcription machinery, two SNPs located on the same chromosome are possibly more 

likely to modulate these processes by their interaction. However, a recent large-scale study 

aiming at investigating the properties of epistatic interactions across more than 200 diseases 

reported that the overwhelming majority of epistasis was located in trans (Chatelain et al., 

2021). In the light of this finding, it is possible that we found predominantly cis-epistasis in this 

particular study because of the genetic architecture of CAD. Indeed, several of the strongest 

risk factors for CAD, such as the LPA, LPAL2, and SLC22A3 genes happen to be located on 

the same chromosome, namely the sixth.  

 

The multiple definitions of epistasis (see Section 1.2.1) cover different kinds of interaction 

which will appear as deviation from the additivity in the logistic model. In particular, one can 

distinguish between antagonist and synergist epistasis as well as between negative and positive 

epistasis. Some studies have reported only positive epistasis while some other have reported 

only negative epistasis or both and it is therefore unclear if one type is more important than the 

others. These different types of epistasis have also been proposed to be driven by different 

evolutionary forces and underlain by different molecular mechanisms (de Visser, Cooper, & 

Elena, 2011). In order to further characterize the 17 significant interactions that we report , we 

looked at the combinations formed by the two marginal effect of their SNPs (no marginal effect, 

protective, deleterious) and the effect of the interaction. Very interestingly, out of the 10 

possible combinations, all pairs fall within three categories.  
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More precisely, in 13 pairs the two marginal effects are significant but the interaction has the 

opposite effect. These interactions belong to the antagonist class. This result is aligned with the 

findings of Chatelain and colleagues (Chatelain et al., 2021) who described a very strong over-

representation of antagonist epistasis in their UKBB atlas of epistasis. Mouse studies have also 

shown antagonist interaction to be dominant in interaction networks influencing bone and body 

composition (Tyler, Donahue, Churchill, & Carter, 2016). In antagonist epistasis, the 

interaction effect tends to counter-balance the marginal effects. Such interactions tend to 

stabilize the phenotypes towards the mean and reduce extreme phenotypes.  

 

Among these 13 antagonist pairs, 9 are examples of positive epistasis where the effect of the 

interaction is beneficial even if the marginal effects are deleterious. From a mechanistic point 

of view, the two SNPs could have opposite but detrimental effects on the same biological 

molecule, for example, a protein or enzyme. In this example, SNP1 would increase the protein 

function with a deleterious effect in a neutral genetic background. SNP2 would decrease the 

function of this same protein, also with a deleterious effect in a neutral background. However, 

when present together, they compensate each other leading to the appropriate protein function 

and therefore having a positive effect. Rauscher and colleagues have recently discovered an 

example of such positive epistasis impacting the function of CFTR in human. In their study, 

they show a synonymous SNP which can alter translation speed, thereby increasing domain-

domain interaction time and rescuing the impaired protein function caused by another missense 

mutation causing SNP (Rauscher et al., 2021). Similar mechanisms could also be happening 

between different proteins of the same pathway, by up-regulating one step of the pathway and 

down-regulating the second one. 

 

The other 4 antagonist pairs are classified as negative epistasis, as the marginal effect of each 

SNP is protective against CAD but their interaction is detrimental. Although we could not find 

well-documented examples of molecular mechanisms of such interactions, negative epistasis 

has been proposed to be associated with genetic robustness but also with evolvability (de Visser 

et al., 2011) and to be required to explain the origin and maintenance of sexual reproduction 

under the mutational deterministic hypothesis (Azevedo, Lohaus, Srinivasan, Dang, & Burch, 

2006). 

 

The third category of epistasis represented in this study, by 4 pairs out of the 17 significant 

ones, shows no significant marginal effect of the two SNPs but a detrimental effect of their 
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interaction. While this is also an example of negative epistasis, it seems to imply different 

mechanistic underpinnings. These two SNPs only have a detrimental effect when present 

together in the genome. Such kind of interactions could actually indicate a variation of what is 

called compound heterozygosity (CH). CH is defined as the presence of two different mutant 

alleles at a particular locus, each one on one of the two homologous chromosomes. Generalized 

CH, is a relaxed form of CH in which the genetic variants are not necessarily coding, rare, and 

deleterious and is likely involved in a wide range of human polygenic traits (Zhong et al., 2017). 

The epistasis described above could be explained by two different single nucleotide 

substitutions in the same gene located each one on one chromosome, and which jointly have a 

deleterious effect but not separately. Mechanistically, each of the two SNPs could lead to a 

protein loss of function. (via a different mechanism), which can be compensated when one copy 

of the gene is functional. 

In an even more generalized form of CH, the two SNPs could be in two different genes involved 

in a same pathway and located on the same chromosome. Some level of robustness or 

redundancy in the pathway may allow for one mutation and only when the two mutated alleles 

are present , each on a different exemplar of the chromosome, is the pathway finally affected. 

Such mechanism could be at play in the SNPs pairs of this category. Indeed, they are all 

annotated to the LPAL2, PLG genes, and SLC22A1/2/3 gene family which have all been 

associated with Lp(a) levels (Ronald et al., 2011; L. Wang et al., 2016) and therefore influence 

the same pathway in the context of CAD. 

Very interestingly, Penman and colleagues have reported that such epistatic interactions happen 

between mutations in the alpha and beta globulin (which assemble together to form the 

hemoglobulin) to create compound thalassemic genotypes which are associated with 

thalassemia risk and malaria protection (Penman, Pybus, Weatherall, & Gupta, 2009).  

 

These types of interactions would be compatible with two different mutated alleles being on a 

single chromosome or on two homologous chromosomes. Indeed, in the absence of phased 

data, we cannot know if the interacting minor alleles are present on the same or different 

chromosomes.  

 

In conclusion, we found that three types of epistasis interactions were over-represented in the 

statistically significant epistatic pairs that we report. These three types of interactions seem to 

indicate the presence of different types of epistasis possibly underlain by different molecular 
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mechanisms and evolutionary driving forces. Deeper functional and molecular characterization 

of the involved variants would be needed to test these hypotheses.  

 

3.5.6 Limitations 

Despite our effort to use robust methods, we need to acknowledge several technical limitations 

that need to be kept in mind when interpreting the results.  

 

Firstly, despite being one of the first genome-wide interaction association studies using one of 

the new “modern” genetic datasets with several hundred thousand individuals and therefore 

having substantially more power than most of such previous studies, the power of our study 

was not optimal for all effect sizes. Interestingly, for an effect size such as the one of the 17 

significant pairs, which approximately lie in the range between exp(0.2)=1.22 and exp(0.4)=1.4  

our power was close to 25% for a SNPs with MAF of 5% and close to 100% for SNPs with a 

MAF of 1%. However, our power was close to null for OR lower than 1.15. Generally, if we 

can conclude that our study brings evidence towards the fact that there are no epistatic 

interactions with OR greater than 2 or smaller than 0.5 between SNPs more frequent than 5%, 

as we did not find any and had a power of 100% in this regime, we can say very little about the 

presence or absence of interaction with lower effect or MAFs. 

 

One methodological point that contributed to decreasing the power of the present study is the 

probably sub-optimal multiple testing correction method that we used. Indeed, we used 

thresholds based on Bonferroni correction computed on the number of combinations between 

LD-independent SNPs that we were testing. We relaxed these thresholds in the case of the 

episcan in the hope of capturing causal SNP pairs in moderate LD with the tag pairs included 

in the analysis. And we also used a relaxed version of this correction in the validation-fine-

mapping step (that we call suggestive threshold, computed as 1/number of tests) to somewhat 

counterbalance the over-conservative nature of Bonferroni correction in this setup. Indeed, 

although the SNPs were LD-pruned to an r2 threshold of 0.5, some collinearities remain 

between them. The number of effective tests was, therefore, smaller than adjusted for in the 

Bonferroni correction. Moreover, we computed the Bonferroni correction on the number of LD-

independent SNPs entering the first step of our analysis. A better correction should take into 

account the two-step nature of our analysis strategy. Although different multiple testing 

correction strategies have been proposed that could be better suited for two-step interaction 

association analysis, we do believe that their properties have still not been validated enough 
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and decided to use the well-established Bonferroni correction. In the future, we should, 

however, consider alternatives that might offer gain in power and more importantly in specific 

power, or the probability to discover causal pairs but no others.  

 

Replication in an independent dataset is a crucial step to validate the results of genetic 

interaction studies. Unfortunately, we were unable to attempt validation of 32 pairs, among 

them 7 trans-pairs, because they were not present in our replication dataset and did not have 

any good proxy in this dataset either. This is a strong limitation of our study, as these pairs are 

potentially true epistatic signals but will certainly never be validated. Indeed, finding replication 

data is often a long and complicated process, and will probably not be attempted to validate 

these SNPs. The separate imputation with a new imputation panel and subsequent merging of 

the genetic data of 10 different studies is also a very effort- and time-consuming process which 

we could not undertake.  

 

Finally, as already mentioned previously, data availability for rarer and ultimately all variants 

in the vicinity of the interacting pairs is crucial to rule out tagging of single locus additive 

effects. In this study, we did this conditional analysis as rigorously as possible, by including all 

SNPs available, also the ones which would fail QC. We moreover, ran special analyses with 

the variants located in the vicinity of the interacting SNPs which had been previously reported 

to be associated with CAD. However, we ultimately cannot exclude that some of the effects of 

these interactions are better explained by another variant to which we did not have access.  
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4 Prior knowledge filtered interaction study  

4.1 Introduction  

In parallel to the hypothesis-free genome-wide interaction study, we also conducted several 

"knowledge-based" approaches in which prior biological knowledge is used to filter the SNPs 

before the association testing to reduce the search space.  

 

In this study in particular we used two different approaches relying on different sources of 

knowledge. The first approach aimed a testing only SNPs that have a regulatory function, or in 

other words which influence the transcription of some gene. Such approaches have already been 

used in GWAS for example (Arloth et al., 2020), restricting the search space to variants that 

were associated with predicted chromatin features using DeepSea (Zhou & Troyanskaya, 2015). 

Taking advantage of the progress of deep learning models the authors of Deepsea recently 

released a new tool called ExPecto which can directly predict if a SNP is likely to influence the 

expression of any genes (Zhou et al., 2018). Our idea was therefore to restrict the search space 

to any combination of two SNPs that are predicted by ExPecto to influence the expression of at 

least one gene.  

 

In the second approach, we wanted to restrict the search space to SNPs that are associated with 

genes for which there is molecular evidence of interactions. This would include for example 

genes that are involved in the same biological process or pathways but also genes whose 

proteins have been shown to interact in protein-protein interaction databases. To generate this 

list of SNPs we make use of the Biofilter software developed by the Ritchie lab (Bush et al., 

2008), which scrutinize several sources of information to produce a list of candidates SNPs 

pairs that are likely to interact given this biological knowledge.  
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4.2 Regulatory SNPs filter  

4.2.1 Methods 

This "filter-based" analysis is a companion study to the genome-wide interactions scan 

presented in Section 3. It was conducted with the same dataset, using the same QC and the same 

methodology. The only difference is that the search space was narrowed down before step 1 

using one of the filters that we present in this chapter.  

 

4.2.1.1 definition of different regulatory SNPs filters 

The available ExPecto framework allows to predict the effect of DNA sequence, and hence 

SNPs, on the expression of any genes in multiple tissues. In addition to the trained deep learning 

model allowing to predict the effect of new sequences, the authors made available a list of all 

single nucleotide substitutions within 1kb to the representative TSS of a gene and all 1000 

Genomes variants that passed a minimum predicted effect threshold (>0.3 log fold-change in 

any tissue). We, therefore, decided to use this list of SNPs to filter the SNPs before running 

episcan.  

 

Because it appeared that the overlap between this list and our discovery dataset (in its QCed 

but not-pruned version) was extremely low, we used the trained ExPecto deep learning model 

to predict the gene expression effect of all the 6'388'394 bi-allelic QCed SNPs of our dataset. 

 

As a sensitivity test for these filters, we generated for both approaches the following filters: 

 

• A cardiac filter: with SNPs which had a predicted effect in cardiac tissues 

• A random filter: with SNPs which had a predicted effect in randomly selected non-

cardiac tissues but not in cardiac tissues.  

• An all-tissue filter: with SNPs which had a predicted either in cardiac or in randomly 

selected non-cardiac tissues.  

 

In addition, using the SNPs list created by predicting de novo on our dataset we also designed 

the following filter:  

• A cardiac-only filter: with SNPs which had a different predicted effect in the cardiac 

tissues as compared to the other tissues. For this filter, I computed the mean of the 

predicted effect in the cardiac and non-cardiac tissues. I then tested for their difference 
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using a t-test. SNPs whose effect was significantly different in cardiac tissues after 

Bonferroni correction with a means difference greater than 0.1 were kept in this filter.  

 

The list of cardiac tissues was as follows: 

 

Artery Aorta, Heart Atrial Appendage, Right Atrium, Aortic Smooth Muscle Cell, Cardiac 

Ventricle Fibroblast, Endometrial Microvascular Endothelial Cell, Heart, Regular Cardiac 

Myocyte, Smooth Muscle Cell of The Pulmonary Artery, Thoracic Aorta Endothelial Cell, Vein 

Endothelial Cell, Artery Coronary, Heart Left Ventricle, Aorta, Left Ventricle, Cardiac Atrium 

Fibroblast, Endothelial Cell of Coronary Artery, Fibroblast of the Aortic Adventitia, Pulmonary 

Artery Endothelial Cell, Smooth Muscle Cell of The Coronary Artery. 

 

4.2.1.2 Testing the filters using the data generated in the hypothesis-free episcan 

To be able to compare these different filters without having to run a full epistasis analysis for 

each of them, we wanted to make use of the results computed for the genome-wide interaction 

analysis described in Section 3. More precisely we aimed at skipping the first statistical filtering 

step with episcan by looking up the episcan p-value for the pairs selected in our filters. 

However, the episcan step in Section 3 was performed on the LD-pruned dataset. The SNPs 

selected in the filter here were therefore possibly not directly included in the episcan as they 

might have been pruned. We, therefore, used plink to identify all LD-tags (at a threshold of 0.5 

and with a window of 500 kb) of all SNPs included in each of the filters. For each combination 

of SNPs within the filter, we then looked up if any combination of their respective LD tags was 

present in the genome-wide episcan step and recorded their p-value.  

 

4.2.1.3 Testing the original ExPecto Cardiac filter by running a new scan  

To confirm the inexact results obtained by the method explained above, which is plagued by 

incomplete LD between SNPs in the filter and their tags present in the genome-wide episcan 

results, we ran the association analysis for the original ExPecto cardiac filter from scratch. We 

used the exact same methodology for step 1, step 2, and replication as described in Section 3 

for the genome-wide scan, with the difference that the dataset was limited to the pairs between 

the SNPs from this filter. 



  4 Prior knowledge-based approaches 

   85 

4.2.2 Results 

As the first step in this epistasis study between predicted regulatory SNPs, we aimed to identify 

SNPs with a gene regulatory function using the ExPecto framework (Zhou et al., 2018). The 

ExPecto framework uses a deep learning model which can predict changes in gene expression 

caused by changes in a DNA sequence. It is, therefore, able to predict the effect on gene 

expression of the two alleles of a SNP. The easier approach to identifying regulatory SNPs for 

our filter is to make use of a list of regulatory SNPs published with the ExPecto framework. 

This list was generated by the authors of ExPecto by predicting gene expression for all SNPs 

in the vicinity of a gene and all SNPs for the 1000 Genome Project. However, unfortunately, 

our dataset was imputed using the HRC + UKBiobank imputation panel and had very little 

overlap with this list. Indeed, only 5877 SNPs with a regulatory effect were present in our 

dataset. If we were considering only SNPs for which the regulatory effect was present in a list 

of cardiac tissues (see Methods) this number dropped to 2510 (Figure 33). The filters derived 

from this list are referred to hereafter as the “original” filters. Although this number of SNPs 

would allow for high power in the study, it would greatly impair our ability to detect new 

biology. Indeed, there would not even be one SNP per gene in the genome.  

 

 
Figure 33: Number of SNPs in the different filters created with the ExPecto model 

The barplot shows the number of SNPs included in each of the filters that we generated using the 
ExPecto Results. The „original“ filters were composed using pre-computed SNPs effect on gene 
expression published by the ExPecto team using a log fold-change threshold of 0.3. The other filters 
were computed by using the trained ExPecto model to predict the effect on gene expression of every 
SNP in our UKBB dataset. The color represents the two different thresholds applied on the log fold-
change of gene expression when creating the filters.  
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We, therefore, decided to use the trained ExPecto deep learning model to predict ab initio the 

effect of each of the SNPs in our dataset. Very disappointingly, this approach yielded very few 

SNPs with a predicted effect on gene expression. Indeed, setting the threshold at 0.3 of the log 

fold change (as was done originally in the list the ExPecto team generated) yielded 1074 SNPs 

with an effect in any tissue and 444 with an effect in cardiac tissues (Figure 33). Lowering the 

threshold to 0.1 increased the number of SNPs to 11'678 and 5689 in all tissues and cardiac 

tissues, respectively. 

 

Using these two lists of predicted regulatory SNPs, we also generated filters with SNPs having 

an effect in a list of randomly selected non-cardiac tissues, as a sensitivity test. Indeed, one 

would expect these filters to produce worse results than the cardiac one, if the filtering is 

meaningful. We finally generated a last filter with SNPs whose effect on cardiac tissues was 

significantly different in cardiac tissues as compared to non-cardiac tissues, as identified with 

t-tests. This filter contained  3012 SNPs (Figure 33).  

 

4.2.2.1 Testing the filters using the data generated in the hypothesis-free episcan 

The first aim of this analysis was to identify which of the generated filters had the best potential 

to discover interacting pairs. Because running a full analysis, with the first episcan step and the 

fine mapping on each of the filters would have been too time-consuming, we decided to use the 

results computed in the genome-wide episcan step (Section 3) for a first estimation. Basically, 

we used the LD structure to identify tag pairs in the genome-wide episcan results for each of 

the pairs generated by the filter. Looking at the p-value distribution of these tag pairs for each 

of the filters, however, unfortunately, reveals that none of the filters shows enrichment in low 

p-values (Figure 34). On the contrary, except for the two filters that we generated by re-

predicting the SNPs effect and using the low threshold of 0.1 (“cardiac 0.1” and “random 0.1”) 

the number of pairs on the plot is very low. This means that their LD-tags had a p-value higher 

than 1×10-6 which was therefore not even recorded during the genome-wide episcan. Even for 

the “cardiac 0.1” and “random 0.1”, we do observe very few SNPs with p-value lower than 

1×10-7, and none lower than 6.13×10-8 (1/(5711*5710)/2) or 4.58×10-8 (1/(6602*6601)/2)  

which would be the suggestive significance threshold for these two filters respectively.  
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Figure 34: P-value distribution for the SNPs pairs in the different ExPecto filters as estimated 

based on LD from the genome-wide association scan.  

 

There are two competing explanations for these results, which have different consequences for 

our approach. The first one is that there are indeed no strong interactions between any of the 

SNPs in the filter. Either because epistasis does not happen preferentially between SNPs with 

a regulatory role, or because the ExPecto framework was not able to reliably predict these 

functions for our dataset.  

The second one is that there were no good LD tags for most of the SNPs in the filter and that 

the incomplete LD with the LD tags was not strong enough to allow for the interactions to reach 

significant p-values. If this is true, there might still be true epistatic signals between these pairs, 

and they would be picked up by running the full analysis as described in section 4.2.1.3.  

 



  4 Prior knowledge-based approaches 

   88 

To distinguish between these two explanations we decided to run the complete analysis, with a 

full episcan run and validation through logistic regression, on one of the filters. We chose the 

"cardiac original" filter, although it was one of the filters with the worse p-values (Figure 34). 

Our reasoning goes as follows: None of the filters yielded p-values that would be significant at 

their respective suggestive threshold and all did poorly. We hypothesized that this is because 

of poor LD with the tag-pairs from the genome-wide scan and therefore believe that the results 

in Figure 34 are not indicative of the actual potential of the filter. We, thus, choose the filter 

which we expect to have the highest biological validity, and we argue that this is the "cardiac 

original" one. Indeed, it is specific for cardiac tissues and uses predictions made on the dataset 

for which the ExPecto model has been trained. On the other hand, the very few SNPs reaching 

the selection threshold in the "cardiac" filter, made by predicting expression on our dataset led 

us to think that the ExPecto model has poor generalizability on did not make accurate 

predictions on our dataset (see discussion).  

 

4.2.2.2 Testing the original Cardiac filter by running a new scan  

We ran the fast filtering step using episcan on the 3148795 SNPs pair between the 2510 SNPs 

included in the "original cardiac" ExPecto filter. Although we do not have to account for 

incomplete LD this time, as the SNPs entering the episcan step are the exact SNPs included in 

the filter and not LD proxy, we still used a relaxed threshold of 1×10-6 instead of the suggestive 

threshold of 1.58×10-8 to account for the fact that we cannot include covariates in the episcan 

algorithm and the fact that p-values derived from the episcan are still an approximation of p-

value obtained in the logistic regression. Also, there would have been no significant results to 

forward to the validation step with this threshold. On the contrary, we report 7 SNPs pairs that 

pass the relaxed threshold. Unfortunately, the distribution of episcan p-values does not show 

any enrichment in low p-values (Figure 35). Moreover, there is no overlap between the list of 

significant pairs at this step and the SNPs identified by the LD-tagging method described in the 

previous paragraph and shown in Figure 34. These pairs with predicted low p-values in the LD-

based estimation did not even reach the threshold of 1×10-2 in this episcan run. This shows that 

indeed, the LD-based estimation of the episcan p-value is not reliable.  
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Figure 35: P-value distribution from the episcan run with the original cardiac filter 

The original cardiac filter was built using a list of SNPs leading to a predicted log gene expression 
change greater than 0.3 for at least one gene in at least one cardiac tissue.  
 

We then used the logistic regression model described in 3.2.2.2 to validate the selected pairs 

from the episcan step. Unfortunately, none of them did reach the suggestive threshold of 

1.58×10-8 (Table 8). However, as there were only 7 of them we decided to try to replicate them 

anyways in the replication dataset. The replication was possible only for 3 of the 7 pairs as no 

LD proxy was found for the others in the replication dataset. And every one of these 3 pairs 

failed replication with p-values higher than 0.3 and even opposite effects for two of them (Table 

8).  

 

SNP1 SNP2 model 

SNP1 

model 

SNP2 

P-value 

episcan 

P-value 

log.reg. 

Coef. 

log 

reg. 

Coef. 

repl. 

P-

value 

repl. 

15:78556580 rs764097820 dom rec 6.00E-07 2.41E-06 0.013 NA NA 

rs192386882 rs34472985 dos het 7.24E-07 1.57E-07 -0.011 NA NA 

rs3211714 rs71460609 het dos 9.70E-07 1.38E-06 -0.008 NA NA 

rs7164139 rs3734208 dos rec 8.51E-07 1.83E-07 0.010 -0.056 0.391 

rs6503807 rs3750524 dom rec 5.50E-07 2.21E-07 -0.014 NA NA 

rs4782899 rs3755724 dos rec 1.28E-08 1.72E-07 0.009 0.053 0.418 

rs6741762 rs9782 dos dom 9.93E-07 5.72E-07 -0.010 0.054 0.511 

Table 8: Summary results for the 9 SNP-pairs which passed the episcan filtering step 

The “Coef log.reg” and “Coef repl” columns respectively correspond to the log Odds for the interaction 
term in the validation step using logistic regression and in the replication. Opposite signs indicating 
opposite effect in these two models are considered a criteria to fail replication.  
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4.3 Biofilter SNPs filter  

4.3.1 Methods 

This "filter-based" analysis is a companion study to the genome-wide interactions scan 

presented in Section 3. It was conducted with the same dataset, using the same QC and the same 

methodology. The only difference is that the search space was narrowed down before step 1 

using the filter that we present in this chapter.  

4.3.1.1 definition of the Biofilter SNPs filter 

We used the Biofilter software (Bush et al., 2008) to generate a list of SNP pairs to test based 

on evidence of their interaction at different biological levels. The Biofilter software brings 

together different sources of biological knowledge to predict possible SNPs interaction. More 

precisely, it integrates information about gene and protein interactions (BioGRID, MINT, and 

PharmGKB database), and information about biological pathways (Gene Ontology, KEGG, 

Reactome, Netpath) and other sources of information to predict possible interactions.  

 

In this case, we fed the list of all SNPs after QC into biofilter and asked it to produce a list of 

pairs of genomic regions containing any of these SNPs which had evidence for interactions. 

Internally, the SNP’s positions are mapped to known regions, genes, proteins, and other 

biological entities, and the whole database is scrutinized for interaction at the level of these 

entities. Biofilter then translates this list of putative biologically interacting entities back to 

genomic regions using annotations databases. Practically, we requested biofilter to output the 

3000 pairs of regions with the highest level of evidence for interaction for each of the pairwise 

chromosome combinations. This threshold was set to allow a good coverage of the whole 

genome but still be computationally tractable and offer enough power. We then pruned each of 

these regions separately with an LD r2 threshold of 0.5. For each suggested pair of genetic 

regions, we then listed all pairwise combinations of LD-pruned SNPs in the two regions. 

 

4.3.1.2 Testing the Biofilter filter by running a new scan  

We ran the episcan algorithm for all of the SNPs pairs in the Biofilter filter, in all combinations 

between the dominant, dosage, and heterozygous genetic models. Based on the realization that 

very few pairs were discovered specifically using combination including the recessive model 

and to save computation time we decided to not include the recessive dosage which needs a 

higher MAF threshold (see Section 3.3.1.2). 
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The analysis including the first episcan step and subsequent logistic regression, replication, and 

conditional analysis step was conducted as described for the genome-wide scan (see Section 

3.2). 

4.3.2 Results 

We used the Biofilter software to integrate many available databases spanning different levels 

of biological entities and generate a list of SNPs pairs that are likely to interact. We generated 

a list of 84’353 pairs of regions to test. After region-wise LD pruning of each region and 

pairwise combination of LD-independent SNPs in every two regions of each pair, we obtained 

a list of 84'431'814 pairs to test. For each of these pairs, all combinations of genetic encoding, 

with the exception of the recessive one, were tested. For the first epistasis step, we used a 

relaxed threshold of 1.18×10-6 (computed as (1/number of LD independent SNP pairs) * 100) 

instead of the suggestive threshold of (1.18×10-8) to account for incomplete LD between the 

SNPs included in the analysis and the possibly causal pruned SNPs that they might tag. Overall, 

the episcan results do not show a strong enrichment towards low p-value (Figure 36), similarly 

to what was observed using the ExPecto-based filter even if more than 500 pairs reach the 

relaxed threshold. More precisely, we report 521 SNPs pairs that passed this threshold and were 

forwarded to the validation step using logistic regression.  
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Figure 36: P-value distribution from the episcan run with the Biofilter-based filter 

The overall shape of the distribution is shown on the violon plot on the left whereas the plot on the right 
displays the individual p-values.The blue line represents the relaxed threhsold of 1.18e-6 and the red 
line the suggestive threshold of 1.18e-8. 
 

From all the LD-expanded pairs resulting from these 521 pairs, only 154 , with a large majority 

of trans-pairs, were significant at the suggestive threshold of 1.18×10-8 in the logistic regression 

and were forwarded to replication. Unfortunately, none of the trans-pairs did actually pass the 

replication, 88 of them failed and 29 were impossible to replicate due to missing proxies in the 

replication dataset. Out of the 37 cis-pairs, 19 did replicate and where forwarded to the 

conditional analysis, which they all failed. Indeed, for each of them there was at least one SNP 

in their vicinity which made their interaction effect drop below nominal significance when 

added to the model. In the end, we must report that this analysis based on the Biofilter 

framework to generate putative interacting SNPs did not reveal any significant and true epistasis 

pairs.  
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Figure 37: Replication of the significant pairs of the Biofilter-based analysis in a meta-analysis of 

10 CAD studies 

This barplot shows the results of the replication of the 154 significant pairs after the fine-mapping in a 
replication dataset composed of 10 CAD studies. Some of the pairs were impossible to replicate in this 
dataset because there were no LD tags (LD < 0.5) available in the replication dataset which was imputed 
using a smaller imputation panel.  
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4.4 Discussion 

In this chapter, we presented two different filtering approaches to reduce the search space using 

different kinds of prior biological knowledge. Using such filters allows to mitigate the 

computation time and multiple testing burden problem created by the sheer number of SNPs 

combination to test in the human genome.  

4.4.1 Regulatory SNPs filter 

The first approach was aiming at screening for epistasis between SNPs with a predicted 

marginal effect on gene expression. Disappointingly this filter did not allow to detect any 

significant interactions in the fine-mapping and validation step. Looking at the distribution of 

the p-values at this step also indicates that there is absolutely no enrichment in low or close-to-

significant p-values among the SNPs in this filter.  

 

There could be two main explanations for these results. Firstly, while the authors of the ExPecto 

package published a very large list of 2‘443‘754 SNPs with a predicted in any kind of tissues, 

only 5877 of these SNPs, were present in our dataset. This could indicate that very few 

regulatory SNPs were indeed included in the imputation panels used on our dataset. 

Alternatively, most of the SNPs in our dataset might not have been included in the analysis 

done by the ExPecto authors but could still have a regulatory effect. Following this hypothesis 

we predicted the effect on gene expression for all the SNPs in our dataset using the pre-trained 

expecto model. But here as well, we found that very few of our SNPs had a predicted effect on 

gene expression. This could of course indicate that there is indeed an absence of regulatory 

SNPs in our imputation panel. Alternatively, the ExPecto model might not generalize well on 

our dataset.  

 

The second possible explanation is that epistatic interactions might not happen between 

regulatory SNPs in CAD in particular or more generally. This hypothesis finds some support in 

the results of the hypothesis-free interaction association analysis that we conducted and which 

reported that a majority of the interactions happened between variants situated in coding regions 

(see Section 3.4.5) and not in the intergenic regions which are supposed to play a major 

regulatory role. In opposition to these results, Chatelain and colleagues report that the vast 

majority of epistasis interactions found in different diseases involve SNPs situated in intergenic 

regions. Whether this apparent discrepancy reflects different genetic architecture between CAD 
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and other diseases or some possible differences between the two studies and their limitations 

remains unclear.  

 

ExPecto is not the only tool that can be used to produce a list of regulatory SNPs. Indeed, big 

eQTLs databases such as GTEX or ENCODE could be scrutinized to produce a list of SNPs 

that affect gene expression. Conducting the same analysis as reported here using a filter based 

on these databases, whose results might generalize better than complex deep learning models, 

could potentially help determine if there is indeed no epistasis interaction between regulatory 

variants in CAD or if the methods and filter used in our analysis were suboptimal.  

 

4.4.2 Biofilter SNPs filter 

This second approach was aiming at screening for interactions between SNPs which are likely 

to interact based on prior biological knowledge at different biological levels, but agnostically 

to the disease’s genetic architecture. While the first step of the analysis yielded more than 500 

pairs of interest and a fair share of them were still significant in the logistic regression step, in 

the end we do not report any significant results.  

 

Firstly, 88 trans pairs representing the majority of the 154 significant pairs after the second step 

did fail the replication. Whereas this number seems very big, a closer look at these pairs 

revealed that actually arose from the LD-expansion of only 10 of the 521 significant episcan 

pairs. They were therefore actually likely to represent only 10 different signals, which could 

not be replicated. There could be two reasons, for this failure of replication. Either these pairs 

do not have any significant effect in the replication dataset, or they have an opposite effect. It 

turns out, that none of them reached significance in the replication, although most of the effect 

size were in the same direction. We hypothesized that this low replication rate could by 

explained by the fact that the SNPs involved in these pairs might have had bad, or worse than 

average, proxy in the replication data. However, for 85 pairs over the 88, no proxy was needed 

as the original SNPs were present in the replication. We can therefore exclude that the 

replication failure was due to poor LD-tags. 

 

Secondly, the 19 replicated cis-pairs did all fail the conditional analysis. Here as well, a closer 

look at these pairs reveals that both of their SNPs all came from the same genomic region near 

the CDKN2A gene. Actually, all of these 19 pairs involved the same SNP:  rs3731239. And for 

all of these pairs, the decrease in the significance of the interaction term was the strongest when 
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conditioned on the same SNP, namely rs4007642. rs4007642 is a known risk factor for CAD 

and for abdominal aortic aneurysm (J. Z. Liu, Erlich, & Pickrell, 2017; Singh, Field, Bown, 

Jones, & Golledge, 2021). Very interestingly, we found this same SNP to interact with 

rs3814960 (also located at the CDKN2A locus) in the hypothesis-free analysis that we 

conducted on the same data (see Section 3.4). And this interaction was independent of any 

testable variant located at this locus, including rs4007642.  

 

This represents one more example of complex patterns of epistasis interactions and marginal 

effects at risk loci for CAD, similar to the situation which we describe at the LPA locus (see 

Section 5.3.3). It also underlines one more time, the importance of the conditional analysis to 

disentangle epistasis and the tagging of marginal effect to fine-map genuine interactions.  

 

These results would tend to demonstrate the superiority of the hypothesis-free approach as 

compared to filtering approach. Indeed, because the hypothesis-free approach is unconstrained 

it was able to successfully find the true interaction signal at the CDKN2A locus. On the other 

hand, although previous biological knowledge apparently pointed towards this region, as it was 

included in the filter, the filter-based approach failed to identify the right pair because it was 

too constrained. This was arguably due to our implementation of the filter, and one could 

imagine using Biofilter to define regions of interest, and then based on those generate a filter in 

a different way that could encompass larger regions, or define regions around them using more 

biological knowledge. However, this clearly demonstrates that the filter-based approaches are 

extremely sensitive to the precise filter definition and implementation. And given our limited 

knowledge of epistasis mechanisms, it is very difficult to make prior hypotheses on how to 

generate a good filter.  

 

Moreover, the results from the hypothesis-free interaction analysis (see Section 3) tend to 

suggest that interactions might happen preferentially between known risk factors of CAD. The 

two filters which we tested here are both agnostic to the genetic basis or etiology CAD, which 

could explain why they were unsuccessful. Whether this is trait-dependent or a general principle 

of epistasis is unknown. We can therefore not exclude that these two filters could perform better 

on other traits or diseases.  



  5 Cis-epistasis at the LPA locus 

   97 

5 Cis-epistasis at the LPA locus and risk of cardiovascular 

diseases  

5.1  Introduction 

In this chapter, we present a filter-based interaction association study conducted on 56 GWAS 

CAD loci identified at the time of the study. The analysis presented in this chapter was 

conducted before the analysis discussed in Sections 3 and 4 but complements the set of different 

GWIAS approaches together with the hypothesis-free one and biological knowledge filter ones. 

Indeed, we use another popular filtering strategy which relies on the assumption that genetic 

variants involved in epistatic interaction are likely to have an additive effect as well. 

Importantly, we use here a broader version of this hypothesis as we included all SNPs in a 

±300kb range from the GWAS hits. The actual assumption here is therefore that interactions 

happen between SNPs that are positionally, and therefore likely functionally, related to variants 

that have a marginal effect.  

 

From a methodological point of view, this study was the predecessor of the two-step strategy 

presented in Section 3, with the difference that the fast statistical filtering step was conducted 

using GLIDE, an algorithm that approximates linear regression models, and not with episcan.  

 

In this chapter, we will focus not focus on the first part of the epistasis scan, namely the actual 

identification of lead pairs, but on their validation and conditional analysis. Indeed, the first was 

conducted by colleagues and can be read in the open access manuscript that we published. I 

want to focus here on the part of the analysis that I carried out myself and that illustrate the 

difficulty to entangle epistasis signal for the tagging of rare variants and some methodology 

that we designed to tackle this important question. The whole analysis was published in 

Cardiovascular Research in 2022, (Zeng et al., 2022) and this chapter is therefore an adaptation 

of this open access manuscript that I drafted.  
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5.2 Methods 

An overview of the two-step strategy for the identification of epistasis pairs using a meta-

analysis of 10 CAD studies is depicted in Figure 38. Details about the cohorts and methods are 

described in (Zeng et al., 2022). 

 

 
Figure 38: Scheme of the two-stage statistical interaction scanning procedure 

“Step 1 aimed at the fast identification of potential significant interaction terms using the GLIDE GPU 
computation tool. For each pair of LD-independent SNPs in the susceptibility regions (n = 8068 SNPs), 
we fitted a linear model with the additive and interaction effect of the two SNPs in each of the 10 CAD 
studies separately. The 10 p-values were then meta-analyzed. A loose and arbitrary defined significance 
level (p < 1×10–8) was applied with the assumption that if there exists true epistasis between two lead 
SNPs, loose signals should be detectable between the SNPs within the corresponding LD block. Step 2 
aimed at validating the results of the first step using a logistic regression model including the first 10 
multi-dimensional scaling (MDS) components of the genetic relationship matrix to correct for 
population structure. Step 2 also allowed the fine-mapping of candidate SNP pairs by screening for the 
strongest signal among all the SNPs within the LD blocks forwarded from step 1. In this second step, 
we applied a stringent significance threshold of 4.6×10−9, calculated as a Bonferroni correction 
(0.05/(nSNP_indep × (nSNP_indep − 1)/2) = 4.6178×10−9) on the number of LD-independent SNPs resulting 
from step 1 (nSNP_indep = 4654).”. Figure and Legend from (Zeng et al., 2022) 
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5.3 Results 

5.3.1 Initial discovery of epistatic pair  

The two-step epistasis scan conducted on 8068 LD-independent SNPs located at a ±500kb 

distance from one of the 56 GWAS hits yielded 4 significant SNPs pairs at the threshold of 

4.618×10-9 in the fine-mapping step. Subsequent replication in the UKBB dataset was 

successful for two SNP pairs and the most significant one was prioritized for further analysis. 

This cis-epistasis pair was located on chromosome 6 between two SNPs annotated to the LPA 

gene, rs1800769, and rs9458001. Interestingly the interaction term between these two SNPs 

was also associated with the circulating LPA levels in the KORA F3/F4 dataset and one of the 

10 CAD studies used for the discovery (the LURIC study). Finally, the interaction between the 

two SNPs was also found to be associated with LPA gene expression in liver tissue in the 

STARNET study. Altogether, these results provided strong evidence that the interaction 

between rs1800769 and rs9458001 was associated with CAD and even provided a mechanism 

of action, namely the up-regulation of circulating LPA levels.  

5.3.2 Effect of rs140570886 at the LPA locus 

However, during the review process, one reviewer argued that the interaction effect could be 

more parsimoniously explained by the additive effect of one rare variant at the LPA locus, 

rs140570886. Although we had conducted a conditional analysis (as described in section 

3.2.2.4), we had missed rs140570886 because we conducted this analysis on the QCed dataset 

from which it was excluded because of a MAF of 0.015. When conditioning on this rarer 

variant, the significance of the rs1800769:rs9458001 interaction term dropped drastically from 

p = 8.95×10-14 to p = 0.022, thereby confirming that it might not independent of the effect of 

rs140570886. 

We next confirmed that rs140570886 was associated with CAD in an additive way in our 

dataset (OR = 1.98, p = 1.14×10-21) and also with the LPA levels in the KORA studies (=1.54, 

p = 9.52×10-82).  
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5.3.3 Complex interactions pattern at the LPA locus between rs140570886, 

rs1800769, and rs9458001 

Although some of the effects that we originally attributed to the rs1800769:rs9458001 

interaction seemed to be due to the additive effect of rs140570886, the still nominally 

significant p-value for the interaction term when conditioned on rs140570886 (p=0.022) 

suggested that a weak epistasis signal could be present in addition. We, therefore, set out to 

investigate more in detail the interplay of these 3 SNPs at the LPA locus, and to more generally 

develop a strategy to untangle epistasis from the effect of additive variants in its neighborhood  

 

In a first step, we started building nested logistic models of increasing complexity and assessed 

the gain in model fit using the likelihood ratio test (Table 9). To increase the power of this 

analysis, we conducted it on the discovery (10 CAD studies) and replication dataset (UKBB) 

jointly. We started with the most parsimonious model containing the additive effect of 

rs140570886 only. Adding the marginal effect of rs9458001 and rs1652507 (rs1652507 is a 

proxy for rs1800769 (r2=0.965) available in the UKBB dataset) did significantly increase model 

fit (P=5.1×10-8). Given that neither rs1800769 nor rs9458001were associated with CAD in their 

marginal effect (p=0.59, odds ratio (OR) = 0.99 for rs1800769[T]; p = 0.08, OR = 1.04 for 

rs9458001[A]) this already suggested that some non-additive effect might be at play. 

Surprisingly, the interaction between rs9458001 and rs1652507 to this previous model did not 

increase model fit significantly. However, adding all three-way interactions between the 3 SNPs 

did significantly increase model fit (p=0.004) and yielded the best model of our model-building 

strategy. The addition of marginal and epistasis effect of a fourth SNPs, which decreased the p-

value of the rs9458001:rs1652507 interaction in the original conditional analysis, did not 

improve model fit further.  
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Model  Residuals. 

Df 

Residuals 

Deviance  

Df Devianc

e  

P-value P-value 

LRT 

model 2 

1) CAD ~ covariates  342046 222021     NA 

2) CAD ~ rs140570886 + 

covariates 

342045 221804 1 217.04 4×10-49 NA 

3) CAD ~ rs140570886 + 

rs9458005 + rs1652507 + 

covariates 

342043 221770 2 33.57 5.1×10-08 5.1×10-08 

4) CAD ~ rs140570886 + 

rs9458005 * rs1652507 +  

covariates 

342042 221768 1 2.32 0.13 7.9×10-08 

5) CAD ~ rs140570886 * 

rs9458005 * rs1652507 +  

covariates 

342039 221755 3 13.42 0.004 6.5×10-09 

6) CAD ~ rs140570886 * 

rs9458005 * rs1652507 

+rs3798220+   covariates 

342038 221753 1 1.93 0.16 8.2×10-09 

7) CAD ~ rs140570886 * 

rs9458005 * rs1652507 * 

rs3798220+   covariates 

342031 221746 7 6.22 0.51 8.2×10-09 

Table 9: ANOVA table reporting likelihood ratio test results for nested models in the model 

selection procedure at the LPA locus 

“The table displays the result of a series of successive likelihood ratio tests between a nested model of 
increasing complexity performed on the merged dataset including the 10 CAD studies and the UK 
Biobank dataset. The first and second columns report the Residual Deviance and degrees of freedom of 
each row’s model. The ‘Df’ and ‘Deviance’ columns respectively report the difference in degrees of 
freedom and deviance between each row’s model and the model from the previous row. The ‘p-value’ 
column reports the P-value of the likelihood ratio test between each row’s model and the previous one. 
The ‘p-value LRT model 2’ column reports the p-value of the likelihood ratio test between each model 
and the model containing only the additive effect of rs140570886. The * operator denotes factor 
crossing: a*b is interpreted as a + b + a × b and a*b*c as a + b + c + a × b + a × c + b × c. The 10 multi-
dimensional scaling components of the genetic variance and the study were included as covariates in 
every model.” Table and legend reproduced from (Zeng et al., 2022). 
 

In order to further examine the seemingly complex pattern of interaction between rs140570886, 

rs9458001, and rs1652507 we evaluated the strength and significance of every coefficient in 

the winning model using a type III Sum of Squares ANOVA (Table 10).  

  



  5 Cis-epistasis at the LPA locus 

   102 

 

 

Variable Estimate Std. Error P-value 

rs140570886 0.08 0.14 0.55 

rs9458001 – 0.02 0.01 0.07 

rs1652507 -0.07 0.01 3.75E-08 

rs140570886:rs9458001 0.29 0.13 0.02 

rs140570886:rs1652507 0.25 0.12 0.04 

rs9458001:rs1652507 0.00 0.03 0.92 

rs140570886:rs9458001:rs1652507 -0.13 0.11 0.23 

Table 10: Summary statistics for the rs140570886, rs1652507 and rs9458001 and their interactions  

in the final 3-way interaction model 

Table and legend reproduced from (Zeng et al., 2022). 
 

Interestingly, the additive effect of rs140570886, which was thought to carry all of the 

association signal after the conditional analysis, is not significant anymore when conditioned 

on the 2 other SNPs and all 2 and 3 ways interactions. On the contrary, the most significant 

effect is now carried out by rs1652507. The two interactions of rs140570886 with rs1652507 

and rs9458001 respectively are also significant and display the biggest effect size of all 

variables.  

 

To get a less statistical and more biological view of the data, we identified in every individual 

the 3-SNP-haplotypes defined by these three variants and computed the effect size associated 

with each of the eight haplotypes. It appears in Figure 39, which represents the effect size of 

each haplotype, that all haplotypes containing the T allele at rs140570886 have similar ORs as 

the most common one. Interestingly, substituting the rs140570886 T allele for the C increases 

the CAD risk in presence of the rs1652507 C allele (blue vs red lines) but tends to decrease it 

in presence of the rs1652507 T allele. This is the correlate of the significant interaction term 

between rs140570886 and rs1652507 in Table 10. Similarly, substituting the T allele at 

rs140570886 for the C decreases the risk of CAD in presence of the rs9458001 A but not in the 

presence of the G allele (difference between blue square and blue triangle). This is coherent 

with the significant interaction between rs140570886 and rs9458001 in Table 10. The increase 

in CAD risk when substituting the rs9458001 G allele for the A allele in the rs140570886 T 

background (difference between red square and red triangle) is also likely to contribute to this 

significant interaction term.  
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Figure 39: Relative effect of the rs140570886-rs1652507-rs9458001 3-SNP haplotypes on CAD risk 

“Relative odds ratio (OR; with reference to the most frequent TTG haplotypes) for the eight possible 3-
SNP haplotypes on CAD risk. The red and blue colors represent the base at the rs1652507 SNP, the 
square and triangle shapes represent the base at the rs9458001 SNP and the position on the x-axis 
represents the base at the rs140570886 SNP. Together they indicate the eight possible 3-SNP haplotypes. 
The putative haplotypes were computed using the happasoc R package on a merged dataset of the 10 
CAD studies (N = 29 755). Error bars represent the standard error of the log OR.” Figure and legend 
reproduced from (Zeng et al., 2022). 
 

Taken together, these results show that the significant interaction terms in the model that best 

fit the data are reflecting the different effects of the two alleles at rs140570886 in different 

genetic backgrounds defined by the two other SNPs. As this is one of the definitions of epistasis, 

we conclude that there is indeed complex epistatic interactions between these three SNPs that 

modulate the risk of CAD.  

 

Although the previous results provide abundant evidence for epistatic interactions at the LPA 

locus, one could still argue that the 3-SNP-combinations defining the 8 haplotypes described in 

Figure 39 could actually just tag one more, rarer or ungenotyped causal variant. To formally 

test this hypothesis, we ran a last analysis to compare models based on haplotypes and models 
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based on interactions. Namely, we used the Akaike Information Criterion (AIC) to compare 

non-nested models including either the 3 SNPs encoded in the dosage model, 3-SNPs 

haplotypes or interactions, or both. Table 11 shows that the lowest AIC is achieved when 

including the marginal effect of the SNPs and the interactions in the model. Furthermore, 

adding the haplotype to this model does not increase model fit (p=0.262), as tested using the 

likelihood ratio between these nested models. This analysis, therefore, brings one more piece 

of evidence for a complex pattern of epistatic interactions between rs140570886, rs1652507, 

and rs9458001 at the LPA locus.  

 

Model Model 

name 

AIC Comparison 

M_SNPs 

Comparison 

M_interact 

no genetics M_null 222063.0 NA NA 

haplotypes M_haplo 221813.6 NA NA 

SNPs M_SNPs 221818.3 NA NA 

SNPs + interactions M_interact 221810.6 0.0034 NA 

haplotypes + SNPs +  

interactions 

M_full 221814.4 0.0268 0.262 

Table 11: Model selection using AIC and Likelihood ratio test confirms epistatic interactions at 

the LPA locus 

“This table displays the Akaike Information Criterion (AIC) and results of likelihood ratio test for nested 
models of increasing complexity performed on the merged dataset including the 10 CAD studies and 
the UK Biobank dataset. The “Comparison M_SNPs” and “Comparison M_interact” columns 
respectively report the p-values of the likelihood ratio tests with the M_SNPs and M_interact models as 
null model. The 10 multidimensional scaling components of the genetic variance and were included as 
covariates in every model. NA=non-applicable.” Table and legend reproduced from (Zeng et al., 2022). 
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5.4 Discussion 

In this study, we conducted an interaction association analysis for CAD based on variants 

previously associated in two GWAS and reported four SNP pairs whose interactions were 

significantly associated with the disease. Further investigation on the most significant 

association between rs1800769 and rs9458001 both located at the LPA locus on chromosome 

6 led to the discovery of a complex interaction pattern between these two SNPs and a rare 

variant rs140570886.  

 

The small number of interactions discovered in this study shows once again the difficulty of 

detecting epistasis in complex traits. Several reasons could explain this low number of results. 

Firstly, it is possible that epistasis does not happen between genes that are associated with CAD 

in an additive manner, which was the major assumption of this filter-based approach. Secondly, 

although already pulling together data from 10 different studies, the power of this study to 

detect epistasis with low to moderate effect size might have been very low. The fact that our 

hypothesis-free genome-wide association study using the much bigger UKBB dataset (see 

Section 3) discovered 15 interacting pairs located in the LPAL2-SLC22A2/3-LPA gene cluster, 

which was included in this analysis because it falls within the ±300 kb distance of one of the 

GWAS 56 GWAS hits, tends to confirm the hypothesis of a lack of power. Indeed, ad-hoc 

power computation using the epilogitpower package (which had not been developed at the time 

when this study was planned) indicates a power of ca. 10% to detect effect sizes of OR 2 

between SNPs with a MAF of 5% in this study. This highlight one more time, the extremely 

big sample size needed to detect epistatic interactions and the need to estimate them properly 

while planning a GWIAS.  

 

This study also demonstrates the importance of conditional analysis to disentangle epistasis 

effects from the tagging of a haplotype or rare variant. Moreover, it proposes a method to 

determine the independence of epistasis signal from neighboring marginally associated variants 

and to resolve complex cases of interactions that could be mistaken with marginal effects. We 

show that by building models of increasing complexity including the main effect of the 

interaction SNPs and the variants supposedly tagged by their interaction first, followed by their 

interactions one by one, one can actually resolve the actual nature of the association. By 

computing ORs for each of the eight haplotypes produced by the combination of these 3 SNPs, 

we moreover demonstrate that our statistical method indeed identified changes in the effect of 
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allele substitution at one locus depending on the genotype at other loci, which is one of the 

definitions of biological epistasis.  

 

Finally, taken together these results provide new insights into the genetic architecture of the 

LPA locus, one important risk locus for CAD, and a potential target for new drug development 

(Tsimikas et al., 2020). 
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6 Conclusion and Outlook 

In this thesis, we aimed at tackling some of the challenges linked to the identification of 

epistasis using statistical genetics and providing methodological advances to overcome them. 

Moreover, using four complementary approaches based on different hypotheses regarding the 

architecture of genetic interactions, we aimed at uncovering the basic principles governing 

epistasis in CAD and discovering interactions modulating the risk to develop the disease.  

6.1 Power computation 

We developed the epilogitpower package which implements fast power computation for 

GWIAs. Using this package, we could show that very big sample sizes are needed to achieve 

sufficient power in the settings that are commonly used in epistasis studies and raised awareness 

that smaller datasets will result in underpowered studies. We hope that the availability of this 

user-friendly and well-documented R package, will allow other researchers to conduct power 

calculations when planning interaction association studies and help interpret the results of these 

studies. We also show how we used this package to make informed decisions about  QC criteria 

such as the MAF in our hypothesis-free epistasis scan.  

6.2 Haplotype effect and rare-variant tagging 

Haplotype or rare variants tagging was a known pitfall of interaction association studies (Fish 

et al., 2016). In this thesis, we developed a simple conditional analysis method allowing to rule 

out this confounding. We advocate that this should become a step in its own right in any 

GWIAS, as we report that half of the initially significant interactions in the hypothesis-free 

GWIAS and all of them in the Biofilter-based approach were merely tagging rare associated 

variants. Moreover, our results seem to indicate that epistasis happens preferentially at locus 

which are associated to CAD with additive effects. This presence of additive effects in the 

vicinity of the putative interacting pairs makes it even more important to conduct such 

conditional analysis. We moreover show that the dependence of the interaction coefficient on 

a rare variant might be indicative of more complex interaction pattern and propose a method to 

resolve this complicated case. Applying this method, we report a complex pattern of epistasis 

at the LPA locus, an important risk factor for CAD.  
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6.3 Hypothesis-free interaction association study 

Exhaustive association testing of all possible SNP pairs in the genome has been a prohibitively 

heavy computational task until now (Niel et al., 2015). In this thesis, we show that this is 

actually feasible using a two-step strategy with a fast statistical filter. We also show that 

adapting the testing strategy as well as its software implementation to the available hardware 

resources can result in substantial computation time gain, which can make the difference 

between the feasibility of the study and its impossibility.  

 

Using this hypothesis-free approach we could uncover 17 new interacting pairs associated with 

CAD, and potentially more pairs that still need to be replicated. Due to our limited 

understanding of the genetic architecture of epistasis in complex diseases, we argue that the 

hypothesis-free approach represents the most promising method to detect novel gene 

interactions. Indeed, we show that the two filter-based methods could not identify any of 17 

pairs that the hypothesis-free scan could. More dramatically, they could not identify any 

significant independent SNP interactions. Based on the fact that all of the 17 pairs that we 

identified are located within CAD risk loci, we hypothesize that a filter based on the regions 

surrounding known CAD risk loci might be more successful than the regulatory and Biofilter-

based filter which we tried here. Indeed, a filter of this kind allowed us to discover a complex 

interaction pattern at the LPA locus with a much smaller dataset than the one used for the other 

filters. We, therefore, think that conducting an interaction search in the vicinity of the now 321 

know risk loci for CAD (Chen & Schunkert, 2021) in a large sample size might discover new 

epistatic interactions for CAD.  

 

6.4 Principle of epistasis in CAD 

Assessing the presence of epistasis using the significance of the interaction term in a logistic 

model allows to discover different types of interactions, which might be underpinned by 

different biological mechanisms but lead to the same deviation in additivity in the logistic 

model (de Visser et al., 2011). Very interestingly, of all the possible combinations of the 

marginal effects of the interacting SNPs and interaction effect, we actually report that only three 

of them were represented. Namely, we found antagonist-positive and antagonist-negative 

epistasis between SNPs that have a marginal deleterious or protective effect but an opposite 

interaction effect. In addition, we also found negative epistasis between SNPs that do not have 

a marginal effect but whose interaction is deleterious. Moreover, all these interactions happened 
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between SNPs located in known CAD risk loci and located on the same chromosome (cis-

epistasis). Further hypothesis-free GWIAS will be needed to investigate whether these results 

represent fundamental disease-agnostic principles of the genetic architecture of epistasis or if 

they differ between traits.  

 

6.5 Outlook 

With always improving computational hardware and increasing sample sizes, well-powered 

genome-wide epistasis studies will certainly become more and more frequent. Their result 

should help confirm or inform the hypothesis that we draw here about the different types of 

epistasis and possible common genetic principles for genetic interactions across diseases. 

Increasing sample sizes will also allow to look for epistasis between rarer variants and possibly 

discover more interactions, which together might contribute substantially to the genetic 

variance of traits and help personalized risk prediction. 

 

Continuous improvement in the functional characterization and effect prediction for SNPs 

(Cheng et al., 2019; Wagih et al., 2018; Yazar & Özbek, 2021) for example along with the 

democratization of NGS data should moreover allow researchers to increase the resolution of 

their analysis and detect more fine-grained and complex patterns of interaction and additive 

effect as well as strengthen our understanding of the molecular basis of interactions and their 

contribution to disease pathophysiology.  
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