
Safe Reinforcement Learning for Urban Driving
using Invariably Safe Braking Sets

Hanna Krasowski∗,1, Yinqiang Zhang∗,2, and Matthias Althoff1

Abstract— Deep reinforcement learning (RL) has been widely
applied to motion planning problems of autonomous vehicles in
urban traffic. However, traditional deep RL algorithms cannot
ensure safe trajectories throughout training and deployment.
We propose a provably safe RL algorithm for urban au-
tonomous driving to address this. We add a novel safety layer to
the RL process to verify the safety of high-level actions before
they are performed. Our safety layer is based on invariably safe
braking sets to constrain actions for safe lane changing and
safe intersection crossing. We introduce a generalized discrete
high-level action space, which can represent all high-level in-
tersection driving maneuvers and various desired accelerations.
Finally, we conducted extensive experiments on the inD dataset
containing urban driving scenarios. Our analysis demonstrates
that the safe agent never causes a collision and that the safety
layer’s lane changing verification can even improve the goal-
reaching performance compared to the unsafe baseline agent.

I. INTRODUCTION

Motion planning in urban areas is challenging because
of different road geometries and frequent interactions with
traffic participants. A method suited explicitly for solving
such tasks is reinforcement learning (RL) [1], [2]. With deep
RL algorithms, vehicles can learn to control their motion
for different tasks, such as lane-keeping and changing [3],
[4], path tracking [5], [6], ramp merging [7], [8], navigating
through intersections [9]–[12], and emergency braking [13],
[14]. However, most deep RL approaches only focus on one
simplified driving sub-tasks. Moreover, learning a driving
policy with conventional deep RL is inherently unsafe. As
shown in Fig. 1, the stochastic exploration process possi-
bly guides the vehicle to unsafe states, where causing a
collision cannot be avoided anymore. Furthermore, frequent
visits to unsafe and meaningless states can decrease learning
efficiency. To mitigate this problem, the exploration of RL
agents can be directed or constrained. Lu et al. [15] designed
risk networks that can guide a safe policy optimization.
However, their approach cannot guarantee safety during
driving. Another method is using control barrier functions
[16], [17]; however, finding suitable control barrier functions
for complex tasks, for example, urban autonomous driving,
is not trivial.

To efficiently guarantee safety for an RL agent, we propose
a safe RL algorithm for autonomous driving in urban scenar-
ios, where safe actions are identified by a safety layer and

∗The first two authors have contributed equally to this work.
1Hanna Krasowski and Matthias Althoff are with the Department of

Informatics, Technical University of Munich, 85748 Garching, Germany,
{hanna.krasowski, althoff}@tum.de

2Yinqiang Zhang is with the Department of Computer Science, University
of Hong Kong, Hong Kong, China zyq507@connect.hku.hk

Collision
during trainingEnvironment

AgentReward rt

State st

Action at

Fig. 1. Conventional RL process including an example collision situation.

the action selection of the RL agent is constrained such that
only safe actions can be selected. Our work generalizes our
pre-study on highway driving [18] so that it is also applicable
in an urban setting. Notably, our contributions are as follows:

• By combining invariably safe braking sets and conflict
zones, we introduce a safety layer that can verify the
safety of junction crossing.

• We propose a generalized high-level action space to
solve various driving tasks in urban scenarios.

• We conducted extensive numerical experiments and an
ablation study to show the validity and efficiency of our
implementation.

The remainder of this paper is structured as follows: Sec-
tion II shows the related literature on RL algorithms for
autonomous driving and the safety guarantees of RL al-
gorithms. Section III describes the details of our proposed
algorithms, particularly the safety layer. Section IV records
the experimental settings, results of conducted experiments,
and an ablation study. Finally, we conclude in Section V.

II. RELATED WORK

RL research on motion planning for autonomous driving
mainly differs in tasks and action specifications. Usually
either high-level actions [19]–[21] or direct control inputs
[5], [9], [17], [22] are learned, which differ depending
on the regarded driving scenario. Furthermore, only some
researchers tried to incorporate safety measures. We review
current research on RL for autonomous driving and methods
for extending RL to safe RL.



A. Reinforcement Learning for Autonomous Driving

To solve various driving tasks in urban scenarios, the
action space should be appropriately designed. One RL
approach is applying learned actions directly to the ego
vehicle. With this end-to-end approach, the agent chooses
an action value from a continuous action space, such as a
speed set-point and steering angle [5], a velocity [22], an
acceleration [9], or a yaw rate [4]. For these continuous
action spaces, the agent often needs more training steps to
learn the optimal policy because of the infinite number of
action values that can be explored.

Other RL approaches use a discrete high-level action
space, where actions typically represent different maneuvers.
For instance, maneuvers [19], [23] are a commonly used
action representation for lane keeping and changing tasks.
A three-layer architecture for the lane-changing and left-
turning tasks was recently proposed by Qiao et al. [20].
The top-level policy chooses a maneuver. An optimal tra-
jectory is then created and tracked by a PID controller.
Isele et al. [21] proposed three discrete action spaces for
driving at intersections. They evaluated their approach on
simulated traffic and found that the action space with a
creep action (i.e., moving slowly) performs the best with
occlusions near the intersection area. Li et al. [12] proposed
a hierarchical framework with a high-level action space
consisting of reference speeds and low-level controllers for
intersection and round-about driving. Their evaluation shows
that their approach can achieve high completion rates but
causes more collisions than more conservative approaches.
Many maneuvers such as lane following, lane changing, and
intersection crossing have to be regarded in urban areas. A
discrete action space can be used to efficiently learn in such
a complex environment.

B. Provably Safe Reinforcement Learning

To guarantee safety, the agent’s exploration must be lim-
ited to the safe state space. For that, two approaches are most
relevant: advising the agent after the action selection with a
possibly adapted safe action or constraining actions to safe
actions before the agent can choose one [24]. For the first
approach, usually, a penalty is given in case a correction is
necessary [16], [17], [25], [26]. Saunders et al. [26] proposed
a trained human-like supervisor in their RL algorithm to
intervene in the agent’s behavior when it tends to go into
unsafe or risky states. Cheng et al. [16] presented an end-
to-end safe RL algorithm, where control barrier functions
restrict exploration and deployment. Similarly, Wang [17]
proposed control barrier functions to achieve end-to-end safe
RL for autonomous highway driving.

The second approach removes unsafe and meaningless
actions in advance [9], [18], [27]–[29]. Only actions that en-
tirely satisfy safety specifications are accessible to the agent.
For instance, the methods in [9], [28] ensure safe intersection
navigation by verifying safety with linear temporal logic and
differential dynamic logic. Additionally, Q-masking removes
meaningless and unsafe actions for Q-learning [23], [29].
For example, Mirchevska et al. [29] used the safe braking

Environment

Safety Layer

Agent

Fail-safe
Planner

Invariably Safe
Braking Sets

Conflict
Zones

State st
Reward rt

Safe action at

Current states of obstacles
Road network

Action mask

Fig. 2. Implementation overview of RL framework.

distance to decide, which actions are unsafe and need to be
masked out. Krasowski et al. [18] built on this work and
present a safety layer for highway driving, which generates
safe action masks for the proximal policy optimization (PPO)
algorithm [30]. They use set-based predictions [31] for the
other traffic participants to identify safe actions. In this work,
we build on the masking approach, which allows us to
ensure safety by identifying safe actions in advance of their
execution.

III. SAFE REINFORCEMENT LEARNING IN URBAN
ENVIRONMENTS

RL problems can be formulated as Markov decision pro-
cesses, which is illustrated in Fig. 1. Our safe RL framework
is extended by a safety layer (see Fig. 2). This safety layer
generates an action mask that indicates the safe actions and
removes unsafe and meaningless actions, e.g., actions that
would lead off-road or actions that violate safe distances to
other traffic participants. As a result, the agent can explore
only safe actions. We use PPO with action masking as our
learning approach and refer the interested reader to [18], [32]
for implementation and theoretical details. The observation
space, action space, and reward function employed in this
work are first introduced in the following parts. The safety
layer, which incorporates the concept of conflict zones [33]
and invariably safe sets [34], is then thoroughly explained.

A. Observation Representation

Our 40-dimensional continuous state space consists of
26 observations from CommonRoad-RL [35] and 14 new
intersection-related observations (see Table I). To define
the intersection-related observations, we need to specify the
intersection area, which is the area that is mutually acces-
sible to vehicles arriving at the intersection from different
entries. Furthermore, intersection-entering vehicles are those
for which the following hold:
• the position is at most the longitudinal distance
sintersection away from the intersection,

• the vehicle is not a lane-based surrounding vehicle [35],
i.e., not surrounding the ego vehicle on the ego vehicle’s
lane or on adjacent lanes in the same driving direction,

• the vehicle is driving toward the intersection.



Fig. 3. Visualization of intersection-related observations: Relative distances
s1int, s

2
int between the vehicle 1, 2 and the orange intersection, absolute ve-

locities v1int and v2int of vehicle 1, 2, and ego vehicle distances to intersection
snear

ego and sfar
ego. The driving directions are indicated by light gray arrows.

The intersection-related observations are illustrated in Fig. 3.
The first intersection-related observations are the absolute
velocities viint and relative distances siint to the intersection
for the intersection-entering vehicles i ∈ 1, ..., nintersection.
The observations are sorted based on the vehicles’ distances
to the intersection so that only the nintersection closest
vehicles are considered. If fewer vehicles are detected, we
set the relative distance and velocity to the predefined values
sintersection (here 50 m) and 0 m s−1, respectively. The re-
maining intersection-related observations are the longitudinal
distances along the reference lane between the ego vehicle
position and the intersection (cf. snear

ego and sfar
ego in Fig. 3).

B. Action Representation

Driving in urban traffic requires various maneuvers. We
used a two-level framework to represent this. The policy
chooses the maneuver on the higher level, and the sampling-
based motion planner from [36] concretizes the maneuver
to a drivable trajectory on the lower level. The high-level
action space consists of three action types. The first action
type alane indicates maneuvers restricted to the current and
adjacent lanes, i.e., change to left (alane = 0), or right

TABLE I
40-DIMENSIONAL CONTINUOUS STATE SPACE

Dim. Description

1-6 distance between ego vehicle and six lane-based surround-
ing traffic participants

7-12 velocity between ego vehicle and six lane-based surround-
ing traffic participants

13-14 velocity and acceleration of the ego vehicle
15-16 longitudinal distance and motion advance to goal area
17-18 lateral distance and motion advance to goal area
19-23 lateral distances from dynamically extrapolated ego vehicle

positions to goal
24 remaining time steps to reach the goal area
25 orientation of goal area
26 remaining time steps in scenario

27-28 longitudinal distances to intersection area (snearego , sfarego)
29-34 distance between intersection and six traffic participants

(siint for i = 1, ..., 6)
35-40 velocity between ego vehicle and six lane-based surround-

ing traffic participants (viint for i = 1, ..., 6)

Note that the upper 26 observations are implemented as in [35] and the
remaining 14 observations are derived in Sec. III-A.

lane (alane = 2), and keep driving in the current lane
(alane = 1). The second action type adir can take three values
and describes the driving directions at the next intersection,
for example, turn left, right, or go straight. Note that if there
is just one possible direction for driving, only adir = 0 is
used; if there are two possible driving directions, adir = 0
corresponds to the left-most action and adir = 1 to the other.
The third action type aacc represents the desired longitu-
dinal accelerations. Seven values can be selected: Aacc =
{0 m s−2,±1.0 m s−2,±2.0 m s−2,±4.0 m s−2}. All possi-
ble combinations of the three action types (alane×adir×aacc)
lead to the action set Aregular, which represent the regular
maneuvers possible at an at most four-legged intersection.
These 63 regular actions plus the fail-safe action lead to
a 64-dimensional discrete action space A. More complex
intersections can be represented by extending the possible
values for alane and adir.

C. Reward Function

We use sparse and dense components for the reward
function. The sparse components are:

rreach goal = 50 · 1reach goal,

rtime out = −10 · 1time out,

rcollision = −50 · 1collision,

rmask = −10 · 1mask,

where 1� denotes binary variables that evaluate to 1 if
the corresponding condition � is satisfied. Particularly, the
reward rmask is given when no regular action is verified as
safe and the fail-safe planner is activated. The dense reward
component guides the agent toward the goal at each time
step:

rgoal guiding =
−40 ·∆dtlat + 20 ·∆dtlon

dtotal
lon

, (1)

where ∆dtlat and ∆dtlon are the position differences toward
the goal in the longitudinal and lateral directions within a
curvilinear coordinate system (introduced in Sec. III-D) at
time step t compared to the previous time step. To reduce the
influence of different distances between the initial state and
the goal, we divide by the longitudinal distance dtotal

lon from
the initial position to the goal. The final reward function is:

r = rreach goal + rtime out

+ rcollision + rmask + rgoal guiding. (2)

D. Preliminaries and Assumptions for the Safety Layer

The road network consists of lanelets [37], which are
atomic, interconnected, and drivable road segments. We
condensate the road network into a set of lanes L. A lane
is defined as a set of longitudinally adjacent lanelets from
a lanelet that has no predecessor to a lanelet that has no
successor [38]. We assign unique identifiers to the lanes and
use Lk to specify the occupancy of the lane with the identifier
k. In addition, K is the set of identifiers of all lanes in the
scenario.



New verification
necessary?

Intersection
safety

Lane
safety

∩

= ∅ ?

Previous
fail-safe action

Agent selects
action

Execute
action

Yes

At
safe,i

At
safe,l

At
safe

No Yes

αat

t→ t+ 1

No

co
nt

in
ue

ex
ec

ut
in

g
pl

an
ne

d
tr

aj
ec

to
ry

Fig. 4. Safety verification flowchart. Orange blocks belong to the safety
layer and blue ones to the RL agent and environment.

We use a curvilinear coordinate system along the lanes
such that the ego vehicle’s state at each time step t is
xt = (s, d, v), where s is the longitudinal position along
the lane, d is the lateral position, and v is the velocity. The
function projs(xt) returns the longitudinal position for a
state xt. The function plan creates the set of ego vehicle
states {(xego,0, 0), ..., (xego,tp , tp), ..., (xego,tf , tf )} for all
time steps until the final time tf . The function uses the
sampling-based planner from [36] to generate the set of states
for action a = (alane, adir, aacc) until the planning horizon
tp and then attaches the fail-safe maneuver indicated by α
until the final time tf . The two types of fail-safe maneuvers
considered in this work are braking with maximum decel-
eration −amax until standstill (i.e., α = 1), or accelerating
with maximum acceleration amax until the ego vehicle fully
left the intersection and then braking until standstill with
maximum deceleration (i.e., α = 0). To adequately address
the computational demands of RL, we only consider on these
two fail-safe maneuvers. Our verification is based on the
assumptions that the absolute acceleration of all vehicles is
less or equal to the maximum acceleration amax. If traffic
participants cause accidents by not respecting traffic rules,
these collisions are considered to be not the fault of the ego
vehicle.

E. Safety Layer

The safety layer (see Fig. 4) identifies the safe discrete
action space At

safe when (a) the time step (tp − ∆t)/∆t
since the last verification cycle is reached, (b) the accessible
road network for the ego vehicle changed since the last time
step, or (c) a lane change finished. Note that we start the
verification at least one time step before the planning horizon

tp is reached to simulate that for real-world experiments
the verification calculations must be finished before the
planning horizon is reached. If a verification is necessary,
the trajectories for all regular actions Aregular are generated,
and we check if safety can be verified in the two relevant
safety dimensions: lane safety verification for distances to
the leading vehicle and lane-changing maneuvers results in
the safe action set At

safe,l and intersection safety verification
for crossing intersections results in the safe action set At

safe,i.
Thus, the set of safe actions at time step t is:

At
safe = At

safe,l ∩ At
safe,i . (3)

Subsequently, the RL agent selects an action from At
safe and

the previously calculated fail-safe action. When no action
from Aregular can be verified as safe, the fail-safe trajectory
attached to the previously chosen action is executed.

a) Identifying meaningful actions: To minimize the ver-
ification effort, first, we identify if the action is meaningful
with the predicate meaningful(at, at−1, xt) where at is the
action to verify, at−1 is the action of the previous time step,
and xt is the ego vehicle’s state. This predicate evaluates to
true if and only if for at, at−1 ∈ Aregular:
• the lane to change to exists for alane, and
• the driving direction of adir is permitted, and
• no lane change is currently conducted.

However, if the action verification determines that it is unsafe
to proceed with the lane change, it will be aborted and the
fail-safe plan will be executed instead.

b) Verifying safe actions: Only for meaningful maneu-
vers, trajectories for the desired accelerations are generated.
To verify the safety of a trajectory, we use a subset of the
invariably safe set St [34, Proposition 1] – the invariably
safe braking set St1 [34, Algorithm 1, line 10]:

St1 ←{(s, d, v)T ∈X | ∀sj ∈ Oj(t) : s ≤ sj−∆t
safe(v, bj)

∧ v ≤ vmax ∧ s ∈ Cbi,bj}, (4)

where X is the state space, Oj(t) is the predicted occupancy
for an obstacle bj , sj is its longitudinal position, ∆t

safe(v, bj)
is its safe distance to the ego vehicle, vmax is the speed
limit, and Cbi,bj is the part of the road network (e.g., a lane)
regarded for the invariably safe braking set calculation of
obstacles bi and bj . In a nutshell, driving in the invariably
safe braking set St1 guarantees safety for a vehicle in a lane
based on its current position and velocity, obstacle dynamics,
and safe distance constraints. We define StLk

as the invariably
safe braking set St1 of a lane k at time step t (Eq. (4) with
Cbi,bj = Lk).

The verification of lane safety is depicted in Algorithm 1.
For a given action a and ego vehicle state xego,0, the function
get current lane(a, xego,0) returns an identifier e, which
indicates the current lane of the ego vehicle and its driving
direction (cf. line 4). Then, the invariably safe braking set
for all vehicles in this lane in front of the ego vehicle is
calculated in line 5. If alane = 1, then the action is a
lane-keeping action. For these lane-keeping actions, we only
verify the safety of the planned trajectories with respect



40 50 60 70 80 90
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

V
el

oc
ity

(m
/s

)

St1 current lane
St1 current and target lane
Predicted occupancy
Predicted maximal velocity

Longitudinal Position (m)

Fig. 5. Safety verification in a lane. Top: scenario with green ego vehicle
and blue occupancy predictions for other vehicles; bottom: velocity and
position for the invariably safe region in green, predicted maximal velocities
and occupancies for traffic participants in blue, and ego state marked with
a star.

to the leading vehicles (cf. line 7). For other actions, the
function get target lane(a, xego,0) returns the identifier
for the target lane of the lane change and we verify the safety
with respect to all vehicles on the target lane and the leading
vehicles on the current lane (cf. line 9-10). The study [39]
describes a similar online verification for fail-safe planning
of autonomous vehicles. In contrast to their work, we only
considered two fail-safe maneuvers and limit the invariably
safe set to the invariably safe braking set. This increases the
efficiency of the implementation, which is necessary because
of the learning setting of our work. Fig. 5 visualizes the
invariably safe sets for an example lane safety situation.

For intersection safety, we verify the agent’s actions at
intersections such that the ego vehicle does not access an
intersection in case another traffic participant could occupy it.

Algorithm 1 laneSafety()
Input: StLk

∀k ∈ K, xego,0, at−1
Output: Safe lane actions At

safe,l

1: At
safe,l := ∅

2: for all a ∈ Aregular ∧ meaningful(a, at−1, xego,0) do
3: for all α ∈ {0, 1} do
4: e := get current lane(a, xego,0)
5: StLe,lead

:= {(s, d, v)T ∈ StLe
|s ≥ projs(xego,0)}

6: if alane = 1 then
7: At

safe,l ← {(a, α)|plan(a, α) ⊂ StLe,lead
}

8: else
9: c := get target lane(a, xego,0)

10: At
safe,l ← {(a, α)|plan(a, α) ⊂ StLe,lead

∧
plan(a, α) ⊂ StLc

}
11: end if
12: end for
13: end for
14: return At

safe,l

Algorithm 2 intersectionSafety()
Input: Aregular, si,start, si,end, O, X , L , xego,0, at−1
Output: Safe intersection actions At

safe,i

1: At
safe,i := ∅

2: for all a ∈ Aregular ∧ meaningful(a, at−1, xego,0) do
3: for all α ∈ {0, 1} do
4: CO := ∅
5: e := get current lane(a, xego,0)
6: for all o ∈ O do
7: Co := get accessible lanes(xo) ∩ Le

8: tcz := get t conflict(xo, Co)
9: CO ← {(s, t)|t ≥ tcz ∧ min

s
(Co) ≤ s ≤

max
s

(Co)}
10: end for
11: At

safe,i ← {(a, α)|plan(a, α) ∩ CO = ∅}
12: end for
13: end for
14: return At

safe,i

In contrast to other research on intersection safety [40], [41],
our approach can deal with arbitrary real-world drivers and
does not assume a cooperative setting. Algorithm 2 specifies
the verification process. For all actions a and fail-safe actions
α, we first identify the current lane e (cf. line 5). Then, we
calculate the conflict zones Co by intersecting the accessible
lanes of each surrounding vehicle o with the lane Le, which
corresponds to the regarded action (cf. line 7). For that, we
use the obstacle set O containing identifiers for all obstacles
within a circle around the ego vehicle’s center with radius
rint. The current state of an obstacle xo is obtained from the
matrix X = [x1, ..., xO] ∈ RN×O where N is the number
of state dimensions. The function get t conflict(xo, Co)
returns the last time step tcz before the surrounding obstacle
o could reach its conflict zone with the ego vehicle Co (cf.
line 8). The reaching time is when the surrounding obstacle’s
occupancy (predicted using the SPOT [31] tool) intersects
with the conflict zone Co. With the conflict zones Co and
the time step tcz , we generate a collision object CO that
describes the potential occupation of the conflict zones Co
for all surrounding obstacles o (cf. line 9). Finally, an action
is safe if its corresponding trajectory, which includes the fail-
safe trajectory, does not intersect with the collision object CO
(cf. line 11).

IV. EXPERIMENTS

We evaluated our implementation with recorded urban
traffic data. First, we exhaustively specify the experimental
setup. Then, we present the results, followed by an ablation
study, and discuss our findings.

A. Experimental Setup

The inD dataset [42] contains recorded traffic data from
four urban locations in Aachen, Germany. Particularly, two
locations are at four-legged intersections (abbreviated by
AAH 1 for Bendplatz and AAH 2 for Frankenburg) and



TABLE II
EXPERIMENTAL PARAMETERS

Parameter Value Parameter Value

amax 8 m s−2 tp 0.4 s

∆t 0.04 s rint 50 m

sintersection 50 m nintersection 6

another at a T-junction (AAH 3 for Heckstraße). In this
study, we excluded the data from the more complex T-
junction at Neuköllner Strasse because without considering
traffic signs and lights, the agent cannot reach the goal
when the safety layer is activated and it mostly stops at
an intersection. An open-source data converter1 was used
to convert the raw data was converted into CommonRoad
scenarios [43]. Pedestrians and bicyclists were excluded for
this study. Furthermore, we exactly detected the positions
and velocities of the vehicles from the scenario data and no
occlusions occured. To generate planning problems for the
RL agent, one vehicle was removed from each scenario and
its initial and finial state enlarged by the spatial dimensions
of the vehicle were used as initial state and goal region
for the planning problem. If the initial state of a generated
scenario is not invariably safe, we did not use this scenario
for learning. Additionally, we excluded scenarios where other
vehicles appear in the scenario within the first planning cycle
of the ego vehicle and close to the ego vehicle. Since these
vehicles were absent for the first safety verification, they
can lead to collisions due to the scenario data. Overall,
we generated approximately 5000 traffic scenarios for the
learning. Particularly, we used 1966 scenarios for AAH 1,
1904 for AAH 2, and 959 for AAH 3. The time step size for
the scenarios is 0.04 s while the agent can decide on a new
action every 10 time steps (i.e., 0.4 s) in case a lane change
did not finish before or the meaningful actions changed (see
Fig. 4). All experimental parameters are specified in Table II.

We trained a safe and baseline agent without safety
verification on each of the three inD locations and eval-
uated them on the test set. The safe agent uses the full
safety layer for action verification. The baseline agent only
uses the safety layer to eliminate meaningless actions (see
Sec. III-E.a), thereby increasing the learning efficiency. For
each experiment, we split the dataset into 70% training
and 30% test sets. The implementation was based on the
CommonRoad-RL2 environment [35] and the stable baselines
algorithm toolbox3. The PPO parameters and policy network
architecture were identified by hyperparameter tuning. We
trained every agent 500 000 training steps, which took
approximately 24 hours for the safe agents with one thread
on a machine with an AMD EPYC 7742 2.2 GHz processor
and 1024 GB of DDR4 3200 MHz memory.

1commonroad.in.tum.de/dataset-converters
2We plan to release the exact implementation of this study with the next

CommonRoad-RL release (commonroad.in.tum.de/commonroad-rl).
3https://github.com/hill-a/stable-baselines

0.0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
oa

l-
re

ac
hi

ng
 r

at
e

Baseline
Safe

Training steps * 1e6

(a) Goal-reaching rate of agents at location AAH 1.

0.0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
oa

l-
re

ac
hi

ng
 r

at
e

Baseline
Safe

Training steps * 1e6

(b) Goal-reaching rate of agents at location AAH 2.

0.0 0.1 0.2 0.3 0.4 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
oa

l-
re

ac
hi

ng
 r

at
e

Baseline
Safe

Training steps * 1e6

(c) Goal-reaching rate of agents at location AAH 3.

Fig. 6. Goal-reaching rates for agents during training.

B. Results

The goal-reaching performance of the safe and baseline
agent shows a approximately constant gap between 20 %
and 40 % (see Fig. 6). The safe agent reached the goal for
the AAH 1 location most often and the baseline agent for the
AAH 3 location. The baseline agents still collided for 1.4 %
to 7.2 % of the scenarios, whereas the safe agents did not
cause any collision. Evaluation on the test set is similar to the
training results indicating that the agents are not overfitted
to the training set. The detailed training and testing results
are shown in Table III.

C. Ablation Study

We conducted an ablation study to identify the benefits of
the safety layer and its components. Therefore, we trained
two additional safe agents: one restricts the actions only
with the intersection safety (named safe int. agent) and

https://commonroad.in.tum.de/dataset-converters
https://commonroad.in.tum.de/commonroad-rl
https://github.com/hill-a/stable-baselines


TABLE III
EVALUATION OF TRAINED AGENTS ON TRAINING AND TEST SETS FOR

GOAL-REACHING RATE (COLLISION RATE).

Agent AAH 1 AAH 2 AAH 3

Training Dataset

Safe 30.4% (0.0%) 27.2% (0.0%) 29.1% (0.0%)
Safe lane 73.0% (3.1%) 55.8% (5.4%) 73.9% (1.5%)
Safe int. 42.1% (4.4%) 33.9% (4.8%) 52.4% (2.4%)
Baseline 65.1% (3.9%) 46.5% (6.8%) 72.6% (2.1%)

Test Dataset

Safe 29.9% (0.0%) 25.3% (0.0%) 28.8% (0.0%)
Safe lane 75.8% (1.9%) 54.6% (4.6%) 71.2% (2.4%)
Safe int. 43.3% (4.5%) 30.4% (4.9%) 51.7% (2.4%)
Baseline 65.9% (4.1%) 44.4% (7.2%) 75.0% (1.4%)

Note: The collision rate is revised by collisions not caused by the ego
vehicle, for example, another vehicle driving into the ego vehicle from
behind, thus, violating the safe distance to the ego vehicle.

the other restricts the actions with the lane safety (named
safe lane agent). The detailed evaluation results for the
trained agents are shown in Table III. For the safe lane
agent, the collision rate reduces to less than 5.5% for the
training and test scenarios. Interestingly, at the same time
the goal-reaching rate increased compared to that of the
unsafe baseline agent. Thus, the agent learns better when
guided by less and safer actions. For the agent whose actions
are only restricted by intersection safety, the collision rate
slightly increases compared to the baseline. Furthermore, the
goal-reaching performance decreases on the training and test
datasets compared to that of the baseline agent. However,
only if the two concepts are combined in the safe agent, no
collision caused by the ego vehicle occurred.

D. Discussion

The goal-reaching rate for the safe agent is comparably
low. This is primarily due to the conservative setting of the
parameters, which is necessary to guarantee safety with the
current assumptions. However, integrating urban traffic rules
in the verification of the safe actions could decrease conser-
vative behavior in crowded intersections. This is supported
by preliminary experiments on the data of the more complex
T-junction at Neuköllner Strasse in Aachen. Furthermore, we
plan to use our more holistic verification approach [44] in
the future to alleviate conservativeness. This study has not
realized this due to the RL’s required low computation times.

Additionally, the current fail-safe planner is optimized for
driving comfort and, thus, has limited capabilities to execute
quick and uncomfortable reactions to maintain safety. There-
fore, an advanced fail-safe planner [45] could be integrated.
This is particularly important when human drivers break
traffic rules since the autonomous agent needs to respond as
quickly as possible to minimize the chances of an accident.
However, the challenge is to decide for the correct time to
use the fail-safe planner [46]. Additionally, formalized traffic
rules could help to efficiently detect when and if a fail-safe
planner should be activated.

To make our approach applicable to the real world, other
traffic participants, such as pedestrians and cyclists, need
to be included in the calculation of the invariably safe
sets. Further, all urban traffic rules must be integrated into
the verification process. Additionally, the current Python
implementation would need to be computationally more
efficient and possibly needs refactoring to C++. These issues
are subject to future research.

V. CONCLUSIONS

We present a provably safe RL approach for urban driving
that can simultaneously handle lane-changing and intersec-
tion crossing. Our general high-level action space can be
applied to various intersection types. We show the capabil-
ities of our approach on real-world traffic data from three
intersections in Germany. These experiments demonstrate
that our safety layer is inherently safe and provides safety
guarantees for the ego vehicle. The ablation study indicates
that compared to the unsafe baseline, adding the lane safety
verification improves the performance while reducing colli-
sions. To boost the provably safe RL agent’s goal-reaching
rate in the future, more traffic rules, a more complex fail-
safe planner, better informed set-based prediction, and online
verification of arbitrary maneuvers should be investigated.

ACKNOWLEDGMENT

The authors gratefully acknowledge the partial financial
support of this work by the research training group ConVeY
funded by the German Research Foundation under grant
GRK 2428.

REFERENCES

[1] S. Aradi, “Survey of deep reinforcement learning for motion planning
of autonomous vehicles,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 23, no. 2, pp. 740–759, 2022.

[2] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yo-
gamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 6, pp. 4909–4926, 2022.

[3] Z. Wang, Z. Yan, and K. Nakano, “Comfort-oriented haptic guidance
steering via deep reinforcement learning for individualized lane keep-
ing assist,” in Proc. of IEEE International Conference on Systems,
Man and Cybernetics, 2019, pp. 4283–4289.

[4] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforcement learning
based approach for automated lane change maneuvers,” in Proc. of
IEEE Intelligent Vehicles Symposium, 2018, pp. 1379–1384.

[5] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D.
Lam, A. Bewley, and A. Shah, “Learning to drive in a day,” in Proc.
of IEEE International Conference on Robotics and Automation, 2019,
pp. 8248–8254.

[6] I.-M. Chen and C.-Y. Chan, “Deep reinforcement learning based path
tracking controller for autonomous vehicle,” Proc. of the Institution of
Mechanical Engineers, Part D: Journal of Automobile Engineering,
vol. 235, no. 2-3, pp. 541–551, 2021.

[7] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer,
“Cooperation-aware reinforcement learning for merging in dense
traffic,” in Proc. of IEEE International Conference on Intelligent
Transportation Systems, 2019, pp. 3441–3447.

[8] S. Triest, A. Villaflor, and J. M. Dolan, “Learning highway ramp
merging via reinforcement learning with temporally-extended actions,”
in Proc. of IEEE Intelligent Vehicles Symposium, 2020, pp. 1595–1600.

[9] D. Isele, A. Nakhaei, and K. Fujimura, “Safe reinforcement learning on
autonomous vehicles,” in Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2018, pp. 1–6.



[10] M. Shikunov and A. I. Panov, “Hierarchical reinforcement learning
approach for the road intersection task,” in Proc. of Biologically
Inspired Cognitive Architectures Meeting, 2019, pp. 495–506.

[11] Y. Guan, Y. Ren, H. Ma, S. E. Li, Q. Sun, Y. Dai, and B. Cheng,
“Learn collision-free self-driving skills at urban intersections with
model-based reinforcement learning,” in Proc. of IEEE International
Intelligent Transportation Systems Conference, 2021, pp. 3462–3469.

[12] J. Li, L. Sun, J. Chen, M. Tomizuka, and W. Zhan, “A safe hierar-
chical planning framework for complex driving scenarios based on
reinforcement learning,” in Proc. of IEEE International Conference
on Robotics and Automation, 2021, pp. 2660–2666.

[13] H. Chae, C. M. Kang, B. Kim, J. Kim, C. C. Chung, and J. W. Choi,
“Autonomous braking system via deep reinforcement learning,” in
Proc. of IEEE International Conference on Intelligent Transportation
Systems, 2017, pp. 1–6.

[14] Y. Fu, C. Li, F. R. Yu, T. H. Luan, and Y. Zhang, “A decision-making
strategy for vehicle autonomous braking in emergency via deep
reinforcement learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 6, pp. 5876–5888, 2020.

[15] L. Wen, J. Duan, S. E. Li, S. Xu, and H. Peng, “Safe reinforcement
learning for autonomous vehicles through parallel constrained policy
optimization,” in Proc. of IEEE International Conference on Intelligent
Transportation Systems, 2020, pp. 1–7.

[16] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proc. of AAAI Conference on Artificial
Intelligence, 2019, pp. 3387–3395.

[17] X. Wang, “Ensuring safety of learning-based motion planners using
control barrier functions,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 4773–4780, 2022.

[18] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in Proc. of
IEEE International Conference on Intelligent Transportation Systems,
2020, pp. 1–7.

[19] C. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochen-
derfer, “Combining planning and deep reinforcement learning in
tactical decision making for autonomous driving,” IEEE Transactions
on Intelligent Vehicles, vol. 5, no. 2, pp. 294–305, 2020.

[20] Z. Qiao, J. Schneider, and J. M. Dolan, “Behavior planning at urban
intersections through hierarchical reinforcement learning,” in IEEE
International Conference on Robotics and Automation, 2021, pp.
2667–2673.

[21] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in Proc. of IEEE International Confer-
ence on Robotics and Automation, 2018, pp. 2034–2039.

[22] D. Kamran, C. F. Lopez, M. Lauer, and C. Stiller, “Risk-aware
high-level decisions for automated driving at occluded intersections
with reinforcement learning,” in Proc. of IEEE Intelligent Vehicles
Symposium, 2020, pp. 1205–1212.

[23] T. Tram, I. Batkovic, M. Ali, and J. Sjöberg, “Learning when to
drive in intersections by combining reinforcement learning and model
predictive control,” in Proc. of IEEE International Conference on
Intelligent Transportation Systems, 2019, pp. 3263–3268.

[24] H. Krasowski, J. Thumm, M. Müller, X. Wang, and M. Althoff,
“Provably safe reinforcement learning: A theoretical and experimental
comparison,” arXiv preprint arXiv:2205.06750, 2022.

[25] Z. Li, U. Kalabić, and T. Chu, “Safe reinforcement learning: Learning
with supervision using a constraint-admissible set,” in Proc. of Annual
American Control Conference, 2018, pp. 6390–6395.

[26] W. Saunders, G. Sastry, A. Stuhlmüller, and O. Evans, “Trial without
error: Towards safe reinforcement learning via human intervention,”
in Proc. of International Conference on Autonomous Agents and
MultiAgent Systems, 2018, p. 2067–2069.

[27] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer,
“Safe reinforcement learning with scene decomposition for navigating
complex urban environments,” in Proc. of IEEE Intelligent Vehicles
Symposium, 2019, pp. 1469–1476.

[28] N. Fulton and A. Platzer, “Safe reinforcement learning via formal
methods: Toward safe control through proof and learning,” in Proc. of
AAAI Conference on Artificial Intelligence, 2018, pp. 6485–6492.

[29] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker,
“High-level decision making for safe and reasonable autonomous lane
changing using reinforcement learning,” in Proc. of IEEE International

Conference on Intelligent Transportation Systems, 2018, pp. 2156–
2162.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[31] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction of
traffic participants,” in Proc. of IEEE Intelligent Vehicles Symposium,
2017, pp. 1686–1693.

[32] C.-Y. Tang, C.-H. Liu, W.-K. Chen, and S. D. You, “Implementing
action mask in proximal policy optimization (PPO) algorithm,” ICT
Express, vol. 6, no. 3, pp. 200–203, 2020.

[33] N. Murgovski, G. R. de Campos, and J. Sjöberg, “Convex modeling of
conflict resolution at traffic intersections,” in Proc. of IEEE Conference
on Decision and Control, 2015, pp. 4708–4713.

[34] C. Pek and M. Althoff, “Efficient computation of invariably safe states
for motion planning of self-driving vehicles,” in Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2018, pp.
3523–3530.

[35] X. Wang, H. Krasowski, and M. Althoff, “CommonRoad-RL: A
configurable reinforcement learning environment for motion planning
of autonomous vehicles,” in Proc. of IEEE International Conference
on Intelligent Transportation Systems, 2021, pp. 466–472.

[36] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a frenét frame,” in Proc.
of IEEE International Conference on Robotics and Automation, 2010,
pp. 987–993.

[37] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map represen-
tation for autonomous driving,” in Proc. of IEEE Intelligent Vehicles
Symposium, 2014, pp. 420–425.

[38] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “For-
malization of interstate traffic rules in temporal logic,” in Proc. of the
IEEE Intelligent Vehicles Symposium, 2020, pp. 752–759.

[39] C. Pek and M. Althoff, “Fail-safe motion planning for online ver-
ification of autonomous vehicles using convex optimization,” IEEE
Transactions on Robotics, vol. 37, no. 3, pp. 798–814, 2021.

[40] H. Kowshik, D. Caveney, and P. R. Kumar, “Provable systemwide
safety in intelligent intersections,” IEEE Transactions on Vehicular
Technology, vol. 60, no. 3, p. 804–818, 2011.

[41] G. R. de Campos, F. D. Rossa, and A. Colombo, “Safety verification
methods for human-driven vehicles at traffic intersections: Optimal
driver-adaptive supervisory control,” IEEE Transactions on Human-
Machine Systems, vol. 48, no. 1, pp. 72–84, 2018.

[42] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein,
“The inD dataset: A drone dataset of naturalistic road user trajecto-
ries at German intersections,” in Proc. of IEEE Intelligent Vehicles
Symposium, 2020, pp. 1929–1934.

[43] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017, pp. 719–726.

[44] C. Pek, S. Manzinger, M. Koschi, and M. Althoff, “Using online
verification to prevent autonomous vehicles from causing accidents,”
Nature Machine Intelligence, vol. 2, no. 9, pp. 518–528, 2020.

[45] S. Magdici and M. Althoff, “Fail-safe motion planning of autonomous
vehicles,” in Proc. of IEEE International Conference on Intelligent
Transportation Systems, 2016, pp. 452–458.

[46] M. Althoff, S. Maierhofer, and C. Pek, “Provably-correct and com-
fortable adaptive cruise control,” IEEE Transactions on Intelligent
Vehicles, vol. 6, no. 1, pp. 159–174, 2021.


	Introduction
	Related Work
	Reinforcement Learning for Autonomous Driving
	Provably Safe Reinforcement Learning

	Safe Reinforcement Learning in Urban Environments
	Observation Representation
	Action Representation
	Reward Function
	Preliminaries and Assumptions for the Safety Layer
	Safety Layer

	Experiments
	Experimental Setup
	Results
	Ablation Study
	Discussion

	Conclusions
	References

