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1 Introduction 
 

1.1 Ewing Sarcoma 
 

1.1.1 Epidemiology and Prognosis 
Ewing sarcoma (EwS) is the second-most common primary bone malignancy in children and 
adolescents, which can also affect soft tissue [1-3]. It occurs in adults as well, where incidence 
and prognosis decrease with age. Survival rates in EwS have strongly increased from only 10% 
in the 1970s to currently 70-80% for localized disease [1, 4, 5]. This has been due to the 
introduction of a multimodal therapeutic approach combining chemotherapy, surgery and/ or 
radiation [6]. However, the 5-year survival rate for patients with metastases or recurrences is 
still dismal at only 10-30% [1, 5]. Furthermore, little therapeutic progress to improve outcome 
has been made in the last two decades [7-10], even for localized disease. 
Therapeutic intensity stratification is of utmost importance in children because of severe long-
term effects. Therapies have acute as well as chronic adverse effects leading to organ 
toxicities, mental disabilities or even secondary cancer [1, 11].  
Both aspects, toxicity and poor survival rates, require treatment improvement, for example 
by the discovery of new methods, and individualization of therapy [12]. 
 

1.1.2 Genetic Background 
EwS was first described by James Ewing in 1921 and has been characterized in great genetic 
detail in recent decades. The genetic characteristic of EwS is a translocation event, most 
commonly t(11;22)(q24;12) [2, 3, 13]. This translocation fuses the 5’ RNA binding domain of a 
member of the FET gene family with the 3’ domain of a member of the ETS gene family, which 
are transcription factors (TFs) [6]. The most common fusion is EWS-FLI1 occurring in 85-90% 
of cases [1-3], followed by EWS-ERG, and rarely fusions of EWS to ETV1, ETV4, or FEV [2]. The 
chimeric fusion protein is an oncoprotein that activates or represses transcription of many 
target genes [2, 13, 14]. The fusion is necessary and sufficient for tumorigenesis as no 
additional mutation is required [15]. However, EWS-FLI1 expression is usually toxic for cells 
[16]. It can only be expressed at stable levels in cells that are capable of mitigating replicative 
stress [16]. This is the case in cells that tolerate high proliferation rate and transcriptional 
activity at the same time, which are cells in developmental stages [16]. This could be a reason 
that EwS shows a stem-cell like phenotype with poor differentiation [15, 17]. However, the 
exact cell of origin is still under debate: candidates are mesenchymal stem cells, neural crest 
cells, or even endothelial cells [17-24]. 
 
Apart from the EWS-ETS fusion, there are few somatic mutations in EwS tumors. 4 broad 
genetic studies on patients with EwS found recurrent mutations in STAG2 (mostly loss of 
function mutations in 21.5%, 17% or 15-20% of EwS tumors, respectively), in TP53 (mostly 
truncating mutations in 6.2%, 7.1%, or 5-20%, respectively) and in CDKN2A (eg homozygous 
deletions in 13.8%)  [2, 3, 15, 25].  
The frequency of these mutations indicates that large cohorts with 100s of patients are 
required for genetic studies of EwS. 
However, despite its homogeneous genetic background, EwS shows a variable phenotype. 
Thus, epigenetics and transcriptional regulation are thought to play an important role [1-3, 
17, 25, 26]. However, it is unclear how they contribute to the malignant phenotype and 
whether they are related to imaging data. 
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1.1.3 Necessity of New Targets for Treatment 
Since EwS is so clearly characterized by the fusion transcript, the obvious question is whether 
this can be exploited for treatment? 
The problem is that the fusion transcript itself cannot be targeted [15, 25]. It has been 
observed that EWS-FLI1 expression levels vary in EwS tumors, which has opposed 
consequences: high levels promote proliferation, whereas low levels foster invasiveness [16]. 
Hence, downregulation of EWS-FLI1 leads to metastasis [6].  
In addition, targeted immunotherapies are difficult in EwS. First, the oncoprotein EWS-FLI1 
does not bind well to human leukocyte antigen (HLA), and therefore is not presented on tumor 
cells [27]. Second, there are hardly any additional mutations, which is why no other tumor 
specific antigens are presented. 
In conclusion, new targets for treatment have to be identified. 
 
 

1.2 General Characteristics of Childhood Cancer 
 

1.2.1 Pediatric Versus Adult Cancer: Genetic Differences in Oncogenesis 
As said, EwS is genetically very homogeneous. In general, genetic homogeneity is a typical 
pattern in childhood cancer and fundamentally distinguishes it from cancer in adults. There 
are four basic differences of pediatric and adult cancer on genetic level [28]. 
First, pediatric cancer accumulates 14 times less mutations than adult cancer (0.13 versus 1.8 
mutations per megabase, respectively) [11, 28]. 3 large genetic studies on patients with EwS 
found a low mutational burden of 0.15 and 0.38 mutations per megabase, respectively [3, 15], 
with on average 319 mutations and 10 coding mutations per genome [2]. The number of 
mutations increases for patients with relapse by the factor of 2 to 3 [11, 15, 25]. This may be 
due to treatment effects as Crompton et al. [25] observed 3 times more somatic mutations 
after treatment in pediatric cancer patients. The number of mutations in EwS seems to be 
independent of the age of the patient [11, 15]. The low mutational burden in EwS may be 
explained by the gene fusion, as for example fusion driven pediatric cancers like fusion-
positive rhabdomyosarcoma have less mutations than fusion-negative rhabdomyosarcoma 
[3].  
The second difference between pediatric and adult cancer is the number of tumor drivers. 
Pediatric cancers are in most cases characterized by a single event, while there are multiple 
drivers in adult cancer [28].  
Third, the mutations in pediatric and adult cancer affect different genes [28]. Gröbner et al. 
[11] found that 30% of genes mutated in pediatric cancer overlap with genes mutated in adult 
cancer, Ma et al. [29] found 45%, which means that only about one third of the genes mutated 
in pediatric cancer are genes that are typically known from adult cancer types [28]. Gröbner 
et al. [11] found 77 genes mutated in pediatric cancer, so called significantly mutated genes 
(SMGs). SMGs are found in 93% of adult tumors but only in 47% of pediatric tumors, even 
rarer in some entities like EwS (<15%) [11]. What pediatric and adult SMGs have in common, 
is that most genes have “epigenetic” or “transcriptional regulation” function [11]. In contrast, 
in adult cancer “DNA repair” genes are frequently muted, which only play a minor role in 
pediatric cancer [11]. This shows that DNA repair is often disrupted in adult cancer types and 
contributes to tumorigenesis, but is functional in pediatric cancer. This suits the fact that 
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pediatric cancer do not accumulate mutations [17]. The only gene in “DNA repair” that is also 
mutated in pediatric cancer is TP53 [11].  
The fourth difference is that the tumor drivers are entity specific in pediatric cancer [28]. Each 
entity is defined by its characteristic genetic event, e.g. which genes are fused by a 
chromosomal translocation. The timing of the genetic event in developmental context is 
important for tumorigenesis [28]. In contrast, tumor drivers are often shared across adult 
cancer types, where usually multiple hits are needed for cancer development [28].  
 
In conclusion, these differences between adult and pediatric cancer may reflect two distinct 
ways of cancer development [28].  
 

1.2.2 Examination of Systemic Diseases Requires Whole-Body Approaches Like 
Imaging 

Despite the differences in oncogenesis between children and adults, there are difficulties in 
cancer treatment that are in common. 
The major challenge for targeted therapies is resistance, which is related to heterogeneity and 
plasticity of tumors [30]. When cancer becomes a systemic disease, the treatment of patients 
is complex. Lesions are often heterogeneous among themselves, and in addition there is 
intratumoral heterogeneity between different clones. This may give rise to both resistance 
and recurrence.  
When performing tissue studies to characterize the disease, biopsy of a single lesion is clinical 
standard. It is challenging to assess multiple or even all lesions. However, the complexity of a 
systemic disease cannot be mapped with such a locally restricted procedure. Whole-body 
molecular imaging might aid to overcome these limitations  [31, 32]. Radiomics offers new 
opportunities in analyzing these large imaging datasets. The combination of advanced image 
analysis with tissue based genomic data – called radiogenomics – allows an in-depth 
characterization of the disease. 
 
 

1.3 PET Tumor Glucose Uptake Indicating Malignancy 
 

1.3.1 Functional Imaging 
A common method in clinical practice for diagnosing tumors and assessing therapy response 
is 18-F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). For 18F-FDG-PET, 
radiolabeled glucose is used, which is taken up like normal glucose and accumulates in the 
cells. Thus, one can measure the glucose uptake quantitatively by measuring the radioactivity 
concentration: cells with increased uptake correspond to a stronger PET signal, which also 
refers to increased metabolic activity. This is why PET is also referred to as functional 
molecular imaging, because it does not give insight into the anatomy like computed 
tomography (CT) or magnetic resonance (MR), but provides information about functional 
processes in the cells. 
The signals in PET are measured quantitatively per volume unit (voxel) as standardized uptake 
value (SUV). As the name indicates, SUV is a relative measure of radioactivity concentration 
standardized by the weight of the patient and the amount of injected radiolabeled glucose, 
which also incorporates the decay in the meantime between injection and imaging. Due to the 
standardization, SUVs can be compared between patients.  
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In short, a tumor in PET consists of a collection of 3D voxels with corresponding signal strength 
given as SUVs. The SUV values can be summarized in different ways to characterize the tumor 
based on image features (IFs). One way is to use the maximum SUV in the tumor region 
(SUVmax) describing the highest rate of FDG uptake in the tumor tissue. Advantageously, 
SUVmax is invariant to the exact definition of the tumor boundaries, called segmentation [33].  
Segmentation is a nontrivial problem, as boundaries cannot be clearly defined in the 
peripheral regions of a tumor with lower SUV values. Thus, segmentation varies depending on 
the delineation created by algorithms or different experts [31, 34-36]. This variability affects 
most IFs [36, 37] but does not bias SUVmax [38, 39]. 
 

1.3.2 Prognostic Value of SUV 
Quantitative FDG-PET parameters and in particular SUVmax have been shown to be prognostic 
in several cancers and at different points during the course of the disease.  
Higher SUVmax correlates with tumor growth, worse survival, poor prognosis, advanced 
stage, and worse course of disease in various cancer entities (thyroid cancer, cervical cancer, 
breast cancer, glioma, ovarian cancer, head and neck squamous cell cancer, renal cell 
carcinoma, lung cancer, esophageal cancer, and pancreatic cancer amongst others) [40-54]. 
SUVmax is prognostic in primary cancer [41, 42, 46, 48], as well as in recurrence [44, 45, 52-
54]. A lung cancer study found that SUVmax signals show similar pattern for primary and 
relapsed disease [52]. Furthermore, SUVmax is found to be prognostic in studies on pre-
treatment PETs [42, 47, 52], and PETs after neoadjuvant therapy [51] in different types of 
cancer. 
The prognostic value of SUVmax applies similarly to EwS, where PET signals vary significantly 
between individual patients. High SUVmax is associated with worse survival, poor 
histopathological response and stage of the disease in primary EwS [55-60]. So far, there are 
no studies examining the prognostic value in relapsed EwS. However, SUVmax values were 
studied in primary and recurrence: a comprehensive study on almost 500 bone and soft tissue 
sarcoma patients showed a similar SUVmax distribution for primary and relapsed cases, 
especially for EwS [61]. Furthermore, like in other entities, SUVmax is prognostic pre-
treatment [55-57, 59] and after neoadjuvant therapy [57-60]. Given these previously 
published data, it is reasonable to assume that SUVmax may also prove prognostic in both 
primary and relapsed EwS. 
However, the biological basis for the generally elevated but variable glucose metabolism of 
Ewing sarcoma has not been well explored so far. 
 
 

1.4 Objectives of Our Study 
 

1.4.1 Objective 1: To Investigate Information Content of Transcriptomic and Radiomic 
Data  

To our knowledge, there is no radiogenomic study in EwS using large-scale transcriptomic data 
with molecular, functional imaging. In the present study, we connect these data in order to 
investigate their relation and whether they complement each other. We attempt to infer 
tumor entity or genomic features from molecular imaging parameters, and predict survival 
based on the different data types.  
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1.4.2 Objective 2: To Elucidate the Transcriptomic Basis for Varying Glucose Uptake 
As stated, EwS has a homogeneous genetic background but shows a variable phenotype, e.g. 
regarding glucose uptake or survival. 
We investigate SUVmax referring to the glycolytic activity of the tumor. As the biological basis 
for increased glucose uptake is not well understood, this is correlated with transcriptomic data 
to search for differences in gene expression levels regarding SUVmax. 
 
Our assumption is that gene expression changes will also be visible in altered PET signals. 
Several studies in entities other than EwS (lung cancer, breast cancer, hepatocellular 
carcinoma, and head and neck cancer) state that gene expression affects PET signals. This is 
not limited to glycolytic pathways, but involves multiple cellular processes as alterations in 
pathways reflecting a broad spectrum of oncogenic changes were found [62-69]. These 
include pathways associated with the hallmarks of cancer [70, 71], such as the cell cycle, 
proliferation, apoptosis, metabolism, (oncogenic) signaling and signal transduction, cell-to-cell 
adhesion and extracellular matrix organization, DNA repair, and immune system [63, 64, 66-
68]. 
Thus, we aim at characterizing EwS with variant SUVmax on the transcriptomic level, and 
hypothesize about the biological basis for elevated glucose uptake. We do not perform 
causational studies, but we provide observations of correlations and assume that the PET 
signal is driven by transcriptomics and not the other way around. 
 

1.4.3 Objective 3: To Identify Prognostic Biomarker Candidates 
As was mentioned before, new treatment options are urgently needed. A first step to 
accomplish this is to identify genes that can serve as biomarkers for risk stratification, i.e., 
correlate with survival or malignancy features.  
Due to the prognostic value of SUVmax, we use it as quantitative phenotype in the analysis of 
the transcriptomic data. The results indicate which genes and pathways may be more or less 
active with regard to increased levels of malignancy. We hypothesize which genes or pathways 
are biomarker candidates for risk stratification and qualify for future studies of novel 
treatment options.  
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2 Materials and Methods 
 
An overview of all analysis steps is provided in Figure 1, which depicts the whole workflow. 
In general, we used R Statistical Software (v4.0.2) [72] for data analysis, statistical testing and 
plot generation.  
For all machine learning tasks, we used random forest modeling as this method outperformed 
other machine learning methods in several studies across different omics datasets [73-76]. 
 
 

2.1 Inclusion Criteria and Clinical Data 
 
We included all patients suffering from Ewing sarcoma (EwS) in the „Kinderklinik Schwabing” 
and “Klinikum rechts der Isar der Technischen Universität München” in the years 2011 to 2019 
who fulfilled our inclusion criteria. The inclusion criteria were as follows: all patients suffering 
from primary or relapsed EwS, aged up to 40 years, with image data and tissue sampled from 
the same lesion. Patients without any prior therapy or untreated relapse were classified as 
“untreated”, otherwise “treated”. The time interval between tissue sampling and imaging had 
to be short: maximum 6 weeks for untreated patients, and maximum 2 weeks for treated 
patients, thus ensuring that tissue sample and PET reflected the same biological characteristics 
of the tumor. This yielded 19 samples from 17 patients. 
The recorded clinical data (see  
Table 1 and Suppl. Table 1) included sex (male, female), disease state (primary disease, 
relapse), sample type (tumor, metastasis), therapy (untreated, treated), age at PET imaging, 
imaging modality (PET-CT, PET-MR), and overall survival (begin: diagnosis of primary disease 
or relapse; end: death or last follow up). 
The data were analyzed retrospectively. The registry study was approved by the local ethics 
committee (reference number 223/16S). All patients gave their written consent for data 
evaluation. 
 
 

2.2 Gene Expression Data 
 

2.2.1 Tissue and Microarray Preparation 
Frozen tumor samples for expression analysis were obtained from biopsies or resection 
specimens, and passed the quality control of experienced pathologists. Sample preparation 
followed the Affymetrix protocol and was previously described [19]. Gene expression was 
measured using microarray chips [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST Array 
[transcript (gene) version]. 
The advantage of using microarray chips for expression measurements was that our lab had 
experience in that method. We had collected a data basis comprising 144 samples: 31 normal 
tissue, 48 EwS, 20 osteosarcoma, 13 rhabdomyosarcoma, 11 synovial sarcoma, and 21 other 
entities. These could be used for normalization and quality control. This way, we identified 11 
arrays of poor quality, which were excluded in a first step. The remaining 133 samples were 
clustered hierarchically. Based on this, we identified 29 EwS samples that could be used for 
analyses. They either showed a typical EwS expression profile or were tested positively for the 
EWS gene fusion and had good tissue quality. We could include 19/29 for the radiogenomic 
analysis as these also had PET data available.  
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2.2.2 Expression Data Preprocessing 
The microarray data was processed using Robust Multichip Average (RMA) preprocessing [77-
79] (R package oligo [80]). This method computed log2 expression values of genes by applying 
background subtraction, quantile normalization and median-polish summarization of probe 
sets to genes. For summarization, Brainarray (version 24) was used to obtain entrez gene ids. 
Brainarray supplies up-to-date definitions of probe sets, which are more accurate than the 
original Affymetrix definitions [81-83]. The entrez gene ids were further annotated by gene 
symbols using Brainarray (20722 genes).  
Additional quality control was applied using hierarchical clustering of samples (Euclidean 
distance and average linkage using R package dendextend [84]) and boxplots of log2 
expression values. 
 

2.2.3 Expression Data Filtering 
We applied two filtering steps on the gene expression data.  
In a first step, we excluded genes with low expression, i.e., we removed genes with average 
expression below 10 as microarray chips do not function accurately at low expression levels. 
198 genes were removed, 20524 genes remained. 
 
The second filtering step was based on a machine learning approach applied to external 
datasets in order to obtain genes associated with EwS survival. We collected all EwS datasets 
from the GEO database [85] (as of March 2018) of gene expression plus survival data, which 
yielded 3 datasets: GSE63155 [73], GSE17618 [86], and GSE63156 [73]. The survival data was 
used to split the patients into long-term survival (overall survival, OS>5 years) or short-term 
survival (OS<5 years and dead). Ambiguous patients were excluded, which yielded n=31 for 
GSE63155 (12 short OS, 19 long OS), n=40 for GSE17618 (22 short OS, 18 long OS), and n=31 
for GSE63156 (9 short OS, 22 long OS). Each dataset was analyzed separately to avoid bias of 
different data sources.  
The external expression data was preprocessed the same way as our expression data 
described above. To reduce dimensionality, 50% of the genes with low coefficient of variation 
were removed [87] as these are constant in the dataset and have low information content for 
distinguishing subgroups of patients.  
Random forest classification was applied to the external datasets to predict binary OS in 
repeated 10-fold cross-validation (R package caret [88], method “rf” using 1000 trees). Due to 
class imbalance in all datasets, downsampling was performed to obtain the same number of 
samples with long- and short-term OS. To increase the number of subgroups analyzed, we 
repeated this analysis 10 times. For each dataset, the models selected a set of genes that were 
informative for predicting survival time (see scheme in Figure 9). We called the overlap of the 
3 gene sets “potential survival genes” as these were independently associated with survival in 
all 3 external datasets (1491 genes). Functional annotation of these genes was analyzed using 
DAVID Bioinformatics Resources (v6.8) [89, 90], category UP_KEYWORDS. Benjamini-adjusted 
q-values<0.01 were considered significant. 
The “potential survival genes” were used to filter the expression data in our cohort 
(1376/1491 genes).  Thus, we focused on genes that may be prognostic in EwS for our 
subsequent analyses.  
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2.3 Image Data 
 

2.3.1 Image Feature Calculation 
We analyzed positron emission tomography computed tomography (PET-CT) / positron 
emission tomography magnetic resonance (PET-MR) to obtain PET image features (IFs) for 
those lesions that were used for gene expression measurements. All patients underwent 18-
F-fluorodeoxyglucose PET (18F-FDG-PET) imaging for diagnostic or staging purposes in our 
institution. 
The PET series were analyzed and controlled for quality using OsiriX DICOM viewer [91] and 
tumors were delineated using cuboids by experienced nuclear medicine physicians. Exact, 
voxel-wise delineations (so-called masks) were obtained based on a standardized uptake value 
(SUV) threshold of 40% of the maximal SUV for each lesion, which is a common standard [56, 
63, 92-94]. Based on the segmented tumors, 3D IFs were calculated according to the image 
biomarker standardization initiative (IBSI) [95] using PyRadiomics [96] v3.0.1 with standard 
settings (Python version 3.8 as of October 2020). Spatial resampling to 4x4x4mm was applied 
to obtain isotropic spacing for both PET-CT and PET-MR. This is needed as a non-uniform 
resolution affects some IFs [63]. For image discretization a fixed bin size of 0.5 was used, which 
has advantages compared to fixed bin number [97].  
IFs from different feature classes were calculated, namely shape, first, and second-order 
features. Filters were applied to the original image series to obtain derived images, which 
were used to obtain higher-order IFs. Altogether, 1502 IFs were calculated. For a detailed 
description of the IFs and formulas, see [37, 95, 96]. 
SUVmax was obtained from the original image, i.e., no filters were applied (PyRadiomics 
feature “original_firstorder_Maximum”). 
 

2.3.2 Image Feature Analysis 
 

2.3.2.1 Robustness 
To examine the robustness of IFs, the intraclass correlation coefficient (ICC) was calculated, 
which is a measure of inter-rater reliability. We analyzed robustness with regard to two 
aspects: imaging modality and lesion delineation.  
For the analysis of robustness towards imaging modality, we used 21 double series (21 PET-
CT plus 21 PET-MR) from 15 sarcoma patients, including Ewing sarcoma (n=13 double series), 
osteosarcoma (n=5), rhabdomyosarcoma (n=1), and synovial sarcoma (n=2). The lesions were 
segmented using 40% of SUVmax. The intraclass correlation for absolute inter-rater 
agreement was calculated for each IF by comparing PET-CT and PET-MR using the R package 
irr [98], function icc (settings: twoway model, type agreement). To define robust IFs, we used 
a cutoff of ICC≥0.75 [99, 100], resulting in 260/1502 features.  
To study the sensitivity towards delineation variability, different segmentations were 
generated per lesion, based on 20%, 30%, and 40% of SUVmax. ICC for consistency was 
calculated for each IF using the R package irr [98], function icc (settings: twoway model, type 
consistency). This was analyzed separately for each imaging modality: we used PET-CT series 
(n=106 sarcoma patients, referred to as analysis a) and PET-MR series (n=54, analysis b). In 
addition, we examined a mixed dataset of all available PET series (n=160, analysis c on PET-CT 
and PET-MR).  
To define IFs robust to delineation variation, we used a cutoff of ICC≥0.8 [96]. This resulted in 
1157/1502 stable IFs in PET-CT series (analysis a), 1071/1502 stable IFs in PET-MR series 
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(analysis b), and 1141/1502 stable IFs in the mixed dataset (analysis c). The sets of stable IFs 
from analysis a, b, and c overlapped in 1009/1502 IFs. Venn diagrams were generated using 
the tool jvenn [101]. 
Finally, we combined both analyses. This resulted in 184 IFs that were robust towards imaging 
modality and lesion delineation.  
 

2.3.2.2 Correlation and Redundancy 
We investigated whether the IFs were redundant or complementary descriptors for a tumor. 
For this analysis, we used all PET series of sarcoma patients (PET-CT and PET-MR, n=160) based 
on 40% SUVmax segmentation. The pairwise Pearson correlation was calculated for all 1502 
IFs. Plots were generated using the R package psych [102] (function corPlot) and the R package 
ggcorrplot [103] (function ggcorrplot).  
We obtained a set of non-redundant IFs by applying a correlation cutoff of 0.9 [104]. If two IFs 
had abs(r)>0.9, the IF with higher mean absolute correlation to all IFs in the dataset was 
removed (R function caret::findCorrelation [88]). This resulted in 321/1502 non-redundant IFs. 
 
 

2.4 Image Based Diagnosis Prediction 
 
We analyzed whether it is possible to distinguish different sarcoma entities or molecular 
subtypes in EwS based on PET radiomic data (see Figure 1, the panel in the middle on the left). 
For this prediction study, we used 184 IFs that were robust towards imaging modality and 
lesion delineation. To predict the sarcoma entity, the dataset included 138 PET series: 75 EwS 
and 63 non-EwS (35 osteosarcoma, 15 rhabdomyosarcoma, 10 synovial sarcoma, and 3 
others). To predict the fusion type in EwS, the dataset included 67 PET series of EwS patients: 
48/67 positive for EWS-FLI1, and 19/67 negative for EWS-FLI1. The 19 EWS-FLI1 negative 
tumors included tumors with approved EWS-ERG or EWS-ETV1 translocations, tumors with 
EWS fusions with a unknown translocation partner other than FLI1, and tumors diagnosed as 
EwS but with negative test for the EWS-FLI1 fusion.  
For each task, a random forest classification model was built (R package caret [88], method 
“rf” using 500 trees). Before modeling, each dataset was split into a training cohort (80% of 
samples) and a validation cohort (20% of samples). The training cohort was downsampled to 
obtain equal group sizes. Then it was used for parameter tuning in 5-fold repeated cross-
validation and model generation. The model with highest area under the receiver operating 
characteristic curve (ROC AUC) was chosen as final model, and tested on the validation cohort. 
 
 

2.5 Statistical Analysis of SUVmax and Clinical Data 
 

2.5.1 SUVmax Distribution Regarding Clinical Variables 
We tested for equal distribution of SUVmax values regarding the following clinical variables: 
sex (male or female), disease state (primary disease or relapse), sample type (tumor or 
metastasis), therapy (treated or untreated), and age (<=15 years or >15 years). A two-sided 
Welch two-sample t-test was applied (R function stats::t.test). P-values<0.05 were considered 
significant. 
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2.5.2 Survival Analysis 
We applied univariate Kaplan-Meier analyses for overall survival with log-rank tests (R package 
survival [105, 106]). We tested for sex (male vs. female), disease state (primary disease vs. 
relapse), age (<=15 years vs. >15 years), and SUV categories (samples split by median SUVmax 
into low SUV vs. high SUV). P-values<0.05 were considered significant. 
Furthermore, we built multivariate Cox proportional hazards models (R package survival [105, 
106]) including SUV and disease state (primary disease vs. relapse). We fitted two models: the 
first model used binary SUV categories (low SUV vs. high SUV defined by median SUVmax), the 
second model used continuous SUVmax values. Forest plots were generated using R package 
survminer [107]). P-values<0.05 were considered significant. 
 

2.5.3 Proliferation and SUVmax 
We used linear regression to correlate SUVmax and the expression of 4 common proliferation 
markers: PCNA (proliferating cell nuclear antigen), MKI67 (marker of proliferation Ki-67), 
TOP2A (DNA topoisomerase II alpha), and MCM2 (minichromosome maintenance complex 
component 2). To determine whether there was a link between SUVmax and the proliferation 
rate, we examined the slope of the regression lines and r2, i.e., the squared Pearson 
correlation coefficient. 
 
 

2.6 Correlation Analysis With Radiomic Data 
 

2.6.1 Outcome Prediction Using Radiomic and Transcriptomic Data 
We examined whether overall survival time could be inferred from transcriptomic data, from 
radiomic data, or from transcriptomic plus radiomic data (see Figure 1, the panel at the 
bottom left). For this, we predicted overall survival of the patients using random forest 
classification models with leave-one-out cross-validation (R package caret [88], method “rf” 
using 1000 trees). 
The patients were divided into "long survival" or "short survival" based on their overall survival 
time using a cutoff of 2 years. Patients, who had died within 2 years had “short survival” 
(n=11), and patients with overall survival of at least 2 years had “long survival” (n=6). As 2 
patients were excluded who were lost to follow up within 2 years, we examined 17/19 patients 
of our cohort (Suppl. Table 1). 
We computed 3 models: model 1 based on transcriptomic data, model 2 based on radiomic 
data, and model 3 based on transcriptomic plus radiomic data. The transcriptomic input data 
comprised 20524 genes with average expression above 10 and the radiomic input data 
comprised 184 IFs robust to modality and delineation. Before model generation, the input 
data were filtered to remove features that were constant in the dataset. Features with 
coefficient of variation <0.7 were removed, respectively [87]. This resulted in 1774/20524 
genes, and 112/184 IFs. Hence, model 1 was based on the expression of 1774 genes, model 2 
was based on 112 IFs, and model 3 was based on 1886 mixed features (1774 genes + 112 IFs). 
The performance of the 3 models was compared using R package MLeval [108].  
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2.7 Correlation Analysis With SUVmax 
 

2.7.1 Correlation of SUVmax and Immune Cell Infiltration 
We investigated whether there was a relation between immune cell infiltration and SUVmax 
(see Figure 1, the panel at the bottom right, top row). 
The infiltration rates were obtained from the deconvolution algorithm Cibersortx [109], which 
estimated absolute infiltration of 22 immune cell types based on bulk expression data (587 
genes in pre-calculated reference profiles). The estimated cell types were: B cells (naive and 
memory), plasma cells, T cells (CD8, CD4 naive, CD4 memory resting, CD4 memory activated, 
follicular helper, regulatory (Tregs), and gamma delta), NK cells (resting and activated), 
monocytes, macrophages (M0, M1, and M2), dendritic cells (resting and activated), mast cells 
(resting and activated), eosinophils, and neutrophils. For each cell type, an absolute score was 
returned, which allowed intra- and inter-sample comparison. In addition, Cibersortx 
calculated empirical p-values for each sample, which represented the credibility of the 
deconvolution results. However, we did not consider the p-values in our analysis.  
We analyzed the immune cell signature for all EwS samples with microarray data, which were 
29 samples (referred to as the Schwabing dataset). We compared the signature to 4 public 
datasets of EwS tumors (Delattre GSE34620 [110], Savola GSE17618 [86], Dirksen GSE63157 
[73], and Lawlor GSE68776 [111]) and a dataset of EwS cell lines (Savola GSE17618 cell lines 
[86]). 
For 19/29 samples in the Schwabing dataset, we had SUVmax values available. For these, we 
correlated absolute CD8 T cell and M2 macrophage infiltration with SUVmax in two ways. First, 
we used continuous SUVmax values in linear regression. Second, we examined whether CD8 
and M2 infiltration differed among SUV groups of tumors (tumors with high SUVmax 
compared to tumors with low SUVmax) using a Wilcoxon rank sum test. 
 

2.7.2 Correlation of SUVmax and Gene Expression Using Linear Regression 
After preprocessing and filtering of the expression data, 1376 genes remained which were 
correlated with SUVmax using linear regression (see Figure 1, the panel at the bottom right, 
bottom row). “Least squares” was used as fitting method.  Moderated t-statistics were 
calculated based on an empirical Bayes method in the R package limma [112], which is an 
acronym for “linear models for microarray data”. Limma increases statistical power to 
determine differentially expressed genes [112, 113] and shows best performance and broad 
applicability in a comparison of different statistical testing methods for gene expression data 
[114]. We applied the limma-trend method to fit a trend to the prior variances, which is 
beneficial for microarray data, if the data has a mean-variance relationship [113]. Limma was 
run on all genes with average expression above 10 (20524 genes). We did not apply further 
filtering as we wanted to use as many genes as possible to obtain a stable estimate of the 
expression variance for modeling. Afterwards, the model results were filtered for the 
“potential survival genes”, which resulted from the machine learning approach described 
previously (1376 genes). We corrected for multiple testing using the Benjamini-Hochberg 
procedure, i.e., false discovery rate (FDR) adjustment [115]. Adjusted p-values (q-values)<0.05 
were considered significant. For comparability, slopes were normalized using Z-score 
standardization.  
Furthermore, we defined relations of high effect size by transferring the standard abs(logFC) 
cutoff of 1 – which corresponds to doubling or halving of gene expression in classical two 
group comparison – to regression modeling. When splitting our cohort by median SUVmax 
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into two groups, the group of low SUV lesions had a mean SUVmax of 3.2, whereas the group 
of high SUV lesions had a mean SUVmax of 10. When transferring the comparison of groups 
to regression, a doubling or halving of gene expression over 6.8 SUV units, which was the 
difference in means of the groups, corresponded to abs(slope) of 0.146. Therefore, we 
considered all relations of abs(slope)>0.146 to be of high effect size (23 genes).  
The heatmap depicting Z-scaled gene expression in all samples with clinical data in the side 
bars was generated using R function GMD::heatmap.3 [116]. The dendrograms are based on 
Euclidean distance and average linkage. 
 

2.7.3 Enrichment Analyses 
The results of linear regression of gene expression and SUVmax were further tested in 
enrichment analyses for functional annotation by applying 2 tools: Enrichr [117-119] and gene 
set enrichment analysis (GSEA v4.1.0) [120, 121]. The set of 23 genes of high effect size 
(abs(slope)>0.146) was analyzed using Enrichr (applied in September 2021). We focused on 
pathways in “Reactome 2016” and the Gene Ontology (GO) knowledgebase including “GO 
biological process 2021”, “GO molecular function 2021” and “GO cellular component 2021”. 
Adjusted p-values (q-values)<0.01 were considered significant. 
Additionally, we performed GSEA based on all 1376 genes ranked by their correlation with 
SUVmax. As input, the genes were ranked by decreasing slope. On this ranked gene list, we 
tested annotations of these categories: H (hallmark gene sets), C2cp (curated gene sets: 
canonical pathway), C3tft (regulatory target gene sets: transcription factor targets), and C5 
(ontology gene sets). For each gene set, a normalized enrichment score (NES) is calculated, 
which corresponds to the maximum or minimum value of the curve in the enrichment plot 
(enrichment score = ES) normalized by gene set size. If GSEA is used for hypothesis generation, 
the developers suggest a less stringent cutoff for significance. Thus, FDR<0.1 was considered 
significant.  
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3 Results 
 
An overview of all analysis steps is provided in Figure 1, which depicts the whole workflow. 
The 3 panels at the top refer to the data that was used in this analysis: the PET image data, 
the clinical data, and the gene expression data. The 2 panels in the middle refer to analyses 
that combine clinical data and PET radiomic data or SUVmax, respectively. The 2 panels at the 
bottom refer to analyses that integrate transcriptomic data and PET radiomic data or SUVmax, 
respectively.  
 
 

3.1 Description of Patient’s Characteristics 
 
We defined inclusion criteria to obtain the cohort for our retrospective analysis: all patients 
suffering from EwS, age up to 40 years, with image data and tissue sampled from the same 
lesion. Patients without any prior therapy or untreated relapse were classified as “untreated”, 
otherwise “treated”. We only included patients with short time interval between tissue 
sampling and imaging: maximal 6 weeks for untreated patients, maximal 2 weeks for treated 
patients. Thereby we ensured that tissue sample and PET reflect the same biological 
characteristics of the tumor.  
Out of 75 patients referred to our institution during the duration of the study, only 17 met all 
of our quality standards and PET and tissue samples were available in a timely manner. We 
included 19 samples (primary disease n=5 and recurrence n=14) from 17 EwS patients (female 
n=10 and male n=7) aged 3 to 31 years. Tissue samples for expression analysis were obtained 
from one lesion each (tumor n=5 and metastasis n=14) before (n=12) or during (n=7) 
treatment. From this tissue, expression of all genes (20722) was assessed by microarray chips 
(HuGene-1_0-st Affymetrix Human Gene 1.0 ST Array, transcript (gene) version). Of the same 
lesion, we also analyzed positron emission tomography computed tomography (PET-CT, n=15) 
/ positron emission tomography magnetic resonance (PET-MR, n=4) to obtain SUVmax, which 
measures the maximal glucose uptake in the tumor. The glucose uptake varied in our cohort 
(Figure 2): SUVmax showed a spectrum of 1.9 to 21.3, with a mean of 6.8 and median of 5.4. 
Based on the median, the samples were split into two groups: lesions with low SUV (n=9, 
SUVmax 1.9 to 5.1, mean 3.2, median 2.8) and lesions with high SUV (n=10, SUVmax 5.4 to 
21.3, mean 10.1, median 9.0).  
 
A summary of all patient characteristics is provided in Table 1 and Suppl. Table 1. 
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Figure 1: Workflow scheme.The 3 panels at the top refer to the data that is used in this analysis: the PET image data, the 
clinical data, and the gene expression data. PET images are used to calculate IFs, especially SUVmax values. The IFs are 
analyzed regarding their robustness and redundancy. Gene expression data is preprocessed and filtered. The 2 panels in the 
middle refer to analyses that combine clinical data and PET radiomic data or SUVmax, respectively. Diagnosis is predicted 
based on PET radiomic data. The SUVmax distribution is analyzed with regard to clinical data, and a survival analysis is 
performed. The 2 panels at the bottom refer to analyses that integrate transcriptomic data and PET radiomic data or SUVmax, 
respectively. Transcriptomic and PET radiomic data are combined for outcome prediction. Transcriptomic data and SUVmax 
are combined to investigate associations of glucose uptake and immune cell infiltration or gene expression in general. The 
results of the correlation analysis of gene expression and SUVmax are further annotated using enrichment analyses.  
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Figure 2: 19 EwS samples ordered by increasing SUVmax having a range of 1.9 to 21.3.On top, additional clinical information 
is provided about sex (female or male), disease state (primary disease or relapse), sample type (tumor or metastasis), 2-year 
overall survival, age (≤15 years or >15 years), and categorical partitioning of the samples into high SUV or low SUV (split by 
median SUVmax). 
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Number Fraction 

Total 
 

19 1 
    

Sex Female 11 0.58 
 

Male 8 0.42 
    

Disease state Primary disease 5 0.26 
 

Relapse 14 0.74 
    

Sample type Tumor 5 0.26 
 

Metastasis 14 0.74 
    

Therapy Untreated 12 0.63 
 

Treated 7 0.37 
    

Age at PET All: number 19 1 
 

   Range 3 - 31 
 

 
   Median 14 

 

 
   Mean 14.8 

 

 
≤15: number 11 0.58 

 
   Range 3 - 15 

 

 
   Median 10 

 

 
   Mean 9.2 

 

 
>15: number 8 0.42 

 
   Range 17 - 31 

 

 
   Median 21 

 

 
   Mean 22.5 

 

 
   

Imaging modality PET-CT 15 0.79 
 

PET-MR 4 0.21 
    

SUVmax All: number 19 1 
 

   Range 1.898 - 21.269 
 

 
   Median 5.387 

 

 
   Mean 6.819 

 

 
SUVmax low: number 9 0.47 

 
   Range 1.898 - 5.084 

 

 
   Median 2.756 

 

 
   Mean 3.207 

 

 
SUVmax high: number 10 0.53 

 
   Range 5.387 - 21.269 

 

 
   Median 9.035 

 

 
   Mean 10.07 

 

 
Table 1: Patients’ characteristics of our EwS cohort. 
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3.2 Image Analysis 
 

3.2.1 Image Feature Description 
For each PET series containing one lesion, we calculated 3D image features (see Figure 1, the 
panel at the top left). To improve the comparability of radiogenomic studies, the use of 
standardized IFs is enormously important [31, 63, 96, 122]. One approach to achieve this is 
automatic feature extraction instead of subjective, manual extraction [123]. We used an 
established tool called PyRadiomics [96], which follows the image biomarker standardization 
initiative (IBSI) [95]. 
We calculated features from different classes, namely shape features, first-order statistics, 
and second-order statistics (glcm, gldm, glrlm, glszm, and ngtdm). Shape features include 
geometric characteristics of a lesion describing its 3-dimensional extension. First-order 
features focus on the histogram of intensity values. Second-order features additionally include 
the spatial relationship of intensities describing textural heterogeneity.  
Additionally, different filters were applied to the raw PET data to obtain derived images. 
Dependent on filter type, certain patterns are emphasized such as contours, fine-grained or 
coarse-grained structures. On the derived images, first- and second-order features were 
calculated yielding features of higher order.  
Suppl. Table 2 shows an overview of the IFs including a description of feature classes, filter 
types, and the number of features, respectively. For a more detailed description of the IFs and 
formulas, see [37, 95]. 
Finally, we obtained 1502 IFs describing each lesion.  
 

3.2.2 Robustness of Image Features 
Some PET IFs have higher variability than others [63]. Thus, it is important to examine their 
robustness and only use reproducible IFs for analysis. 
 

3.2.2.1 Robustness Towards Imaging Modality 
The first question was: how comparable are the IFs between PET-CT and PET-MR? 
Since we have a mixed dataset with PETs from both modalities, this question is relevant for 
our study. Only features that show agreement between PET-CT and PET-MR can be used in a 
mixed analysis to draw meaningful conclusions. Moreover, they are valid across studies. 
Therefore, we examined the features for robustness with respect to imaging modality and 
identified stable features. 
 
This analysis was based on 21 double series (21 PET-CT plus 21 PET-MR) from 15 sarcoma 
patients, including Ewing sarcoma (n=13 double series), osteosarcoma (n=5), 
rhabdomyosarcoma (n=1), and synovial sarcoma (n=2). The lesions were segmented using 
40% of SUVmax. To determine agreement between PET-CT and PET-MR, we examined the 
intraclass correlation for absolute inter-rater agreement for each IF. The intraclass correlation 
coefficient (ICC) is a measure of inter-rater reliability, with a maximum value of 1 indicating 
perfect agreement. 
The ICC distribution split by filter type can be seen in Suppl. Figure 1. The LoG filters and a 
wavelet filter show higher ICC values than the other filter types: there were significantly more 
IFs with ICC≥0.75 than expected (empirical q-value 0.00008 for log.sigma.4.0.mm.3D, 0 for 
log.sigma.5.0.mm.3D, and 0.0152 for wavelet.LHL). Wavelet filters focus on contours and de-
noise the image by neglecting details. LoG filters are used for edge detection. Since these 3 
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filter types include IFs with high ICC, they seem to focus on structures that are similarly 
depicted in both modalities. Note that not all edge or contour detection filters contain IFs 
achieving high ICCs. 
 
There are two guidelines for interpreting ICC values, which are summarized in Table 2. To 
define robust IFs, we used a cutoff of ICC≥0.75, since this includes the categories "excellent" 
and "good" according to Koo and Li [99] and "excellent" according to Cicchetti [100]. By this 
definition, 260/1502 features agreed between PET-CT and PET-MR.  
SUVmax, which we used in the subsequent correlation analyses, had an ICC of 0.723 indicating 
"moderate" or "good" accordance between PET-CT and PET-MR. 
 
 
(A)                                                                                                 (B) 

Guideline of Cicchetti  Guideline of Koo and Li 

Inter-rater 
agreement 

Cutoff Number  
of IFs (%) 

 Inter-rater 
agreement 

Cutoff Number of 
IFs (%) 

excellent 0.75 ≤ ICC ≤ 1.00 260 (17%)  excellent 0.90 ≤ ICC ≤ 1.00 6 (0.4%) 

good 0.60 ≤ ICC < 0.75 437 (29%)  good 0.75 ≤ ICC < 0.90 254 (17%) 

fair 0.40 ≤ ICC < 0.60 491 (33%)  moderate 0.50 ≤ ICC < 0.75 707 (47%) 

poor ICC < 0.40 314 (21%)  poor ICC < 0.50 535 (36%) 

  1502     1502 

 
Table 2: Two alternative guidelines for ICC interpretation as excellent, good, fair/ moderate, or poor inter-rater agreement. 
For each guideline, the cutoffs for the 4 categories are listed. The last column indicates the number of IFs that fall into each 
category in our analysis of robustness to imaging modality (PET-CT versus PET-MR). (A) The guideline according to Cicchetti. 
(B) The guideline according to Koo and Li. 

 
 

3.2.2.2 Robustness Towards Delineation Variability 
Another aspect was: how sensitive are the IFs towards delineation variation of a lesion?  
This is an important aspect as tumor segmentation is very subjective and difficult to 
reproduce. Therefore, it is important to identify IFs that are robust to changes of tumor 
boundaries. 
 
This analysis was based on different segmentations with varying degrees of strictness. For 
each lesion, 3 thresholds were used to define tumor boundaries: 20%, 30%, and 40% of 
SUVmax. The values of each IF were compared between these 3 segmentations and evaluated 
using the ICC for consistency. This was examined separately for each imaging modality. We 
used PET-CT series (n=106 sarcoma patients, referred to as analysis a) and PET-MR series 
(n=54, referred to as analysis b). With this, we aimed to identify IFs that were stable in PET-CT 
and in PET-MR, respectively. In addition, we examined a mixed dataset of all available PET 
series (n=160 PET-CT or PET-MR, referred to as analysis c).  
 
We examined which feature classes and which filter types were least affected when tumor 
boundaries varied. The ICC distribution split by filter type is shown for analysis a on PET-CT 
series in Suppl. Figure 2A. For all filter types, ICC distributions were in a similar range. This 
shows that the filter type had minor impact on the delineation sensitivity. Median ICC was 
over 0.8 for all filter types, around 0.9 for all filters except the logarithm filter, indicating that 
many features had high consistency independent of variation in tumor boundaries.  
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The ICC distribution split by feature class showed slightly more differences between classes 
(Suppl. Figure 2B) but consistently achieved high ICC values as well (median ICC>0.85).  
Note that analysis b on PET-MR and analysis c on the mixed dataset showed the same pattern 
as analysis a on PET-CT. 
 
To define IFs robust to delineation variation, we used a cutoff of ICC≥0.8. Since the 3 
segmentations were based on the same raw PET data and the series differed only in their 
lesion boundaries, many IFs achieved higher ICC values in this analysis than in the analysis 
investigating the sensitivity to imaging modalities. 0.8 is commonly used when determining 
sensitivity to delineation variation according to the European Association of Nuclear Medicine 
(EANM) annual conference 2019, and is for example used by van Griethuysen et al. [96]. 
Applying ICC≥0.8, we obtained 1157/1502 stable IFs in PET-CT series (analysis a), 1071/1502 
stable IFs in PET-MR series (analysis b), and 1141/1502 stable IFs in the mixed dataset (analysis 
c). 
 
Next, we compared the results of analyses a, b, and c. The aim was to identify the IFs that 
were stable in the mixed dataset as well as in the PET-CT and PET-MR series, respectively. The 
sets of stable IFs from analysis a, b, and c overlapped in 1009/1502 IFs (Suppl. Figure 3). 
Overall, the sets of stable features showed a large overlap: 1009/1157 = 87% for analysis a on 
PET-CT series, 1009/1071 = 94% for analysis b on PET-MR series, and 1009/1141 = 88% for 
analysis c on mixed PET series. This suggests that the use of a mixed dataset, a PET-CT-only or 
PET-MR-only dataset had minor effect on determining delineation-insensitive IFs. 
We examined whether any feature class or filter type was particularly prevalent among the 
1009 robust IFs. No filter type was enriched among the robust IFs (empirical q-values for all 
filter types >0.05). In terms of feature classes, first-order features (empirical q-value=0), glcm 
features (empirical q-value =0.015), and glrlm features (empirical q-value=0) were enriched. 
First-order features are intensity histogram features. Glcm and glrlm features assess the 
spatial distribution of SUVs by analyzing the neighborhood of a voxel (glcm) or by analyzing 
stretches of the same SUV value in an image (glrlm). These 3 feature classes are particularly 
robust to variation of tumor boundaries. 
Note that SUVmax is invariant to delineation variability (ICC=1 in each analysis).  
 

3.2.2.3 Combination Into a Set of Robust Image Features 
After analyzing the IFs for their robustness to imaging modality and delineation, we compared 
and combined the results. The goal was to determine those IFs satisfying both properties. 
There are four times more features that are robust to delineation than to modality (1009 
versus 260 IFs). The overlap comprises 184 IFs (Figure 3), which is 18% (184/1009) of the 
delineation-robust IFs, and 71% (184/260) of the modality-robust IFs. Thus, if a feature is 
robust to modality, it is likely to be robust to delineation as well.  
In summary, these 184 IFs are independent of tumor boundaries and imaging modality (PET-
CT or PET-MR) and thus suitable for further analysis. 
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Figure 3: Venn diagram depicting the IFs robust to imaging modality (robust_mod, green) and delineation (robust_del, 
blue).The overlap of both lists comprises 184 IFs. Below, the barplot shows the number of IFs in each list: 260 IFs are robust to 
modality, 1009 are robust to delineation. 

 
 

3.2.3 Pairwise Correlation and Redundancy of Image Features 
Another aspect when examining the IFs is their redundancy. We wanted to know whether the 
IFs represent the same or different characteristics of a lesion, which provides an overview of 
their information content. Moreover, one can reduce redundancy in the dataset by focusing 
on complementary IFs. 
 

3.2.3.1 Pairwise Correlation 
For this analysis, we used all PET series of sarcoma patients (PET-CT and PET-MR, n=160) based 
on 40% SUVmax segmentation. To determine redundancy, pairwise Pearson correlation was 
calculated for all 1502 IFs. The resulting distribution of correlation coefficients (Pearson’s r) is 
shown in Suppl. Figure 4. In general, there were more positive correlations than negative ones. 
Most of the correlations were close to 0, indicating complementary information content of 
the IFs. However, there was also a portion of IFs with high pairwise correlation between 0.8 
to 1.  
 
Next, we examined whether the IFs within one feature class were more strongly correlated 
among each other than with the IFs of other classes. In this case, one would expect some 
regular pattern in the correlations respecting the feature classes.  
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We examined all 107 IFs on the original image using a correlogram (Suppl. Figure 5). Visual 
inspection showed that the shape features were clearly separated from the other feature 
classes: they were only correlated among themselves. Note that shape features are the only 
feature class computed on the mask files without including the SUV values of the voxels. This 
fundamental difference could explain why the shape features were complementary to the 
other feature classes, capturing different properties of a lesion.  
Apart from that, there were some blocks of correlated features (e.g., the first-order features), 
but there was no obvious pattern reflecting feature classes. Thus, it seems that intraclass 
correlations are in general not stronger than interclass correlations, especially for second-
order IFs.  
 
Since shape and first-order features were strongly correlated among themselves, we 
examined these feature classes in more detail (Figure 4). 
For the shape features, the red square in the correlogram corresponds to a large cluster of 10 
strongly correlated features: MinorAxisLength, Maximum2DDiameterSlice, 
Maximum3DDiameter, Maximum2DDiameterColumn, Maximum2DDiameterRow, 
MajorAxisLength, SurfaceArea, LeastAxisLength, VoxelVolume, and MeshVolume. All these IFs 
describe the tumor’s dimensions, which explains their high redundancy. Sphericity and 
SurfaceVolumeRatio were (slightly) negatively correlated with these IFs. Flatness and 
Elongation were correlated with each other but not with the other shape features. 
Among the first-order features, a group of 13 strongly correlated IFs stood out: Entropy, 
RobustMeanAbsoluteDeviation, InterquartileRange, MeanAbsoluteDeviation, Mean, 
90Percentile, Median, RootMeanSquared, Maximum, 10Percentile, Minimum, Range, and 
Variance. TotalEnergy and Energy were complementary to these 13 IFs. The 3 IFs Skewness, 
Kurtosis, and Uniformity were redundant among each other but complementary to the 
remaining first-order features. 
 

3.2.3.2 Relation of Lesion Volume and SUVmax 
In this analysis, two IFs are of particular interest, namely lesion volume 
(original_shape_VoxelVolume) and SUVmax (original_firstorder_Maximum). It has been 
observed before that there is a relationship: the larger the volume, the higher the SUVmax in 
different entities, e.g., lung cancer [124-126] or breast cancer (moderate correlation) [127, 
128]. Furthermore, these important features can be expected to affect other features as well 
[63]. Thus, the question arises whether some IFs are just surrogates for volume or SUVmax in 
our dataset. 
 
Volume (VoxelVolume) is a shape feature, belonging to the cluster of 10 redundant shape 
features (Figure 4A). Likewise, SUVmax (Maximum) as a first-order feature belonged to the 
large cluster of redundant first-order features (Figure 4B). Thus, a large fraction within their 
feature class was a surrogate for volume and SUVmax, respectively. 
Regarding all IFs, a low proportion correlated strongly with lesion volume, as only 48/1502 IFs 
achieved abs(r)>0.9 and 77/1502 achieved abs(r)>0.8. This was probably due to the 
fundamental differences between shape features and the other feature classes. In conclusion, 
only a low number of IFs except shape features were indirect surrogates for lesion volume.  
For SUVmax, a total of 157/1502 achieved abs(r)>0.9 and 415/1502 achieved abs(r)>0.8. Thus, 
more IFs correlated strongly with SUVmax than with lesion volume. This was presumably 
influenced by the fact that all feature classes except shape features were calculated for each 
filter type. For example, the feature firstorder_maximum was computed 16 times, once on 
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the original image and on 15 derived images. As expected, these duplicated features 
correlated strongly with each other: 12/16 firstorder_maximum had abs(r)>0.9 to 
original_firstorder_maximum. 
 
Next, we examined the relation of volume and SUVmax to each other. 
Based on all 160 PET series, we obtained no correlation (r=0.07).  
In addition, we focused on the cohort of 19 EwS samples we used for linear regression analysis 
of gene expression and SUVmax. Again, no correlation was found (r=-0.02, p=0.95; Figure 5). 
17/19 lesions in this cohort had a size of 0.8 cm3 to 109 cm3. 2 lesions were much larger, 
namely 509 cm3 and 725 cm3. When omitting these 2 very large lesions and testing the 
correlation on lesions with maximal 110 cm3, a moderate positive correlation between volume 
and SUVmax was detected (r=0.57, p=0.02). 
In short, SUVmax only correlates with volume in a subgroup of our cohort.  
 

3.2.3.3 Non-Redundant Image Features 
Finally, we aimed to obtain a set of non-redundant IFs by applying a correlation cutoff of 0.9 
[104]. If two IFs had abs(r)>0.9, the IF with higher mean absolute correlation to all IFs in the 
dataset was removed. This resulted in 321/1502 non-redundant IFs. See Suppl. Table 3 for a 
listing, split up by feature class and filter type. 
Percentage-wise, many of the glrlm and first-order features were redundant, as only 7% and 
16% of the IFs remained, respectively. In contrast, many of the glszm (36.7%) and shape 
(35.7%) features were non-redundant. The latter may be unexpected at first glance as it was 
noted before that the shape features were highly correlated among each other. However, the 
non-redundant shape features were Elongation, Flatness, Sphericity and SurfaceVolumeRatio, 
which showed low correlation with all shape features (Figure 4A). As a representative for the 
large group of strongly correlated features, only MajorAxisLength was retained. Thus, the 
result was as expected.  
In terms of filter type, many wavelet-LLL (12.9%), square root (14%), and original features 
(15%) were redundant. In contrast, many IFs of gradient (29%) and wavelet-HHH filters (29%) 
were non-redundant. 
 
In summary, the 321 non-redundant IFs provide complementary information about tumor 
shape and structure in PET imaging. 
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Figure 4: Correlogram depicting intraclass pairwise correlation of (A) all 14 shape features and (B) all 18 first-order features 
(original images, 160 PET series).IFs are clustered hierarchically (complete linkage). A cross indicates a non-significant 
correlation. 

 
 
 
 

 
(C)  

EwS tumors (n=19) EwS tumors <110 cm3 (n=17) 

Regression line slope -0.0004 0.105 

Pearson's correlation r (95% CI) -0.02 (-0.47; 0.44) 0.57 (0.12; 0.82) 

p-value 0.95 0.02 

 
Figure 5: Correlation of SUVmax (original_firstorder_Maximum) and tumor volume (original_shape_VoxelVolume). 
(A) Analyzing all 19 samples in the cohort used for regression analysis, SUVmax does not correlate with tumor volume. 17/19 
tumors have a volume of 0.8 cm3 to 109 cm3, 2/19 large tumors stand out with 509 cm3 and 725 cm3. (B) Focusing on the 
group of tumors with a maximal volume of 110 cm3 (n=17, excluding the large tumors), there is a mediate correlation of 
SUVmax and tumor volume. (C) Table providing details of the regression analysis. 

  

(A) (B) 

(A) (B) 
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3.3 Correlation of Radiomic and Clinical Data 
 

3.3.1 Image Based Diagnosis Prediction 
We wanted to know whether it is possible to distinguish different sarcoma entities or 
molecular subtypes in EwS on the basis of PET radiomic data (see Figure 1, the panel in the 
middle on the left). Do the entities or gene fusion types have different structure – e.g., in terms 
of homogeneous or heterogeneous functional regions – that is reflected in the PET and thus 
in the IFs?  
Background for this question is a study of Macpherson et al. [61], who compared the SUVmax 
values of 17 entities of bone and soft tissue sarcoma (n=493). They found that high-grade 
sarcomas were associated with higher SUVmax values. A limitation of this study was that only 
SUVmax was examined. More IFs need to be analyzed to fully capture the functional 
heterogeneity in the tumor. 
In addition, we asked whether different gene fusions in EwS had a characteristic structure of 
PET signals that could be measured in the IFs. A study examining fusion characteristics was 
performed by Soffer et al. [129]. They found that EWS translocation positive tumors had 
significantly lower SUVmax than EWS translocation negative Ewing-like tumors. We 
complement this study by including more IFs in the analysis and focusing on distinguishing 
fusion types. 
 
To answer these questions, we applied a machine learning approach: random forest 
classification with repeated cross-validation on a training set and subsequent testing of the 
model on a validation set. We predicted either entity or fusion type based on 184 PET IFs that 
were robust regarding modality and delineation. 
For entity prediction, our dataset included 138 PET series: 75 EwS, 35 osteosarcoma, 15 
rhabdomyosarcoma, 10 synovial sarcoma, and 3 others. Since the groups varied in size, we 
arranged them into EwS (n=75) and non-EwS (n=63). Table 3A provides an overview of the 
composition of the training and validation sets. Performance in cross-validation was slightly 
better than random guessing (ROC AUC=0.647, F1=0.605). However, performance on the 
validation set was not superior to random prediction as the ROC curve was close to the 
diagonal line (ROC AUC=0.539, F1=0.686; Figure 6A). Accuracy was 59% (16/27 correct 
predictions in the validation set). In summary, the PET image features did not contribute much 
more information than random prediction to distinguish EwS versus non-EwS (Cohen's 
kappa=0.139 on the validation set). 
For the question regarding gene fusions, our dataset included 67 PET series of EwS patients. 
48/67 were positive for EWS-FLI1, and 19/67 were negative for EWS-FLI1, which included 
tumors diagnosed as EwS but with a negative test for the EWS-FLI1 fusion indicating other 
translocation partners of EWS. For example, EWS-ERG or EWS-ETV1 translocation were 
approved in some samples. Table 3B provides an overview of the composition of the training 
and validation set. Performance of the model in cross-validation was comparable to random 
prediction (ROC AUC=0.434, F1=0.356). Performance of the validation set was better as the 
ROC curve was superior to the diagonal line (ROC AUC=0.704, F1=0.571; Figure 6B). However, 
this could be an artifact due to the coarse steps of the curve as only 3 samples were EWS-FLI1 
negative in the validation set. Accuracy was 50% (6/12 correct predictions in the validation 
set). Taken together, the performance was comparable to random prediction (Cohen's 
kappa=0.077 on the validation set). It was not possible to distinguish fusion types in EwS based 
on the PET IFs in our dataset. 



29 
 

 
In conclusion, random forest modeling did not detect any characteristic differences in PET 
signal structures in EWS-FLI1 positive compared with EWS-FLI1 negative EwS tumors. That 
different fusion types have similar structuring in PET supports that we can analyze different 
fusion types together in subsequent analysis.  
In terms of entity prediction, a reliable discrimination of EwS versus non-EwS was not possible 
based on the information obtained from PET images. This may indicate similar structures of 
PET signals in all entities; and if there were differences, they could not be detected reliably in 
our dataset. This can also be due to the fact that we had to aggregate different sarcoma 
entities (osteosarcoma, rhabdomyosarcoma, synovial sarcoma, and other entities) into one 
non-EwS group comparing them to EwS. Further studies comparing single entities may provide 
other results about PET signal structures in sarcoma entities.  
 
 
 
(A) 

Group for 
modeling 

Entity Dataset Training Validation 

EwS EwS 75 60 15 

Non-EwS 

Sum 63 51 12 

     Osteosarcoma 35 29 6 

     Rhabdomyosarcoma 15 11 4 

     Synovial sarcoma 10 8 2 

     Other entity 3 3 0 

 
(B) 

Group for modeling:  
EwS molecular subtype (fusion) 

Dataset Training Validation 

EWS-FLI1 positive 48 39 9 

EWS-FLI1 negative 19 16 3 

 
Table 3: Dataset composition for random forest prediction of (A) entity (EwS vs. non-EwS) or (B) EwS fusion type (EWS-FLI1 
positive vs. negative).For both questions, the whole dataset was split into a training cohort (80%) and a validation cohort 
(20%) before modeling. The training cohort – after downsampling to obtain equal group sizes – was used for parameter tuning 
in 5-fold repeated cross-validation and model generation. The final model that achieved the highest ROC AUC in cross-
validation was tested on the validation cohort afterwards. 
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(C)   

Reference   Reference 
 

Entity EwS Non-EwS  EWS-FLI1 positive negative 

Prediction 
EwS 12 8  positive 4 1 

Non-EwS 3 4  negative 5 2 
 

Sum 15 12  Sum 9 3 
 

       

 Accuracy 0.593   Accuracy 0.5  

 
Figure 6: ROC curve indicating performance of final random forest model on validation set.(A) Predict entity EwS versus non-
EwS. The ROC curve is close to the grey diagonal line indicating random prediction (ROC AUC 0.539). (B) Predict EwS fusion 
type EWS-FLI1 positive versus negative. The ROC curve is superior to random prediction (ROC AUC 0.704). However, this can 
be an artifact due to the coarse steps of the curve as only 3 samples are EWS-FLI1 negative in the validation set. (C) Confusion 
matrices for both prediction tasks. 16/27 and 6/12 samples are predicted correctly, respectively, giving accuracies of 59% and 
50%. Considering the ROC curves and the accuracies, prediction is not superior to random prediction for both tasks. 

 
  

(A) EwS versus non-EwS (B) EWS-FLI1 positive versus negative 



31 
 

3.3.2 Equal SUVmax Distribution Regarding Clinical Variables 
We explored the correlation of SUVmax with clinical variables in our cohort (see Figure 1, the 
panel in the middle on the right). Potential correlations would render the clinical variables 
confounding factors and introduce bias in subsequent analyses when we correlated gene 
expression with SUVmax. To rule out confounding factors, we related all clinical variables in 
our dataset with SUVmax: sex (male vs. female), disease state (primary disease vs. relapse), 
sample type (tumor vs. metastasis), therapy (untreated vs. treated), and age (<=15 years vs. 
>15 years). 
Each variable split the patients into two groups, which we compared for equal distribution of 
SUVmax values applying a Welch two-sample t test. We found that SUVmax was equally 
distributed with respect to all tested variables (Figure 7).  
 
This demonstrates that there are no confounding factors among the clinical variables in our 
dataset. Thus, when we correlate gene expression with SUVmax, we mainly correlate with 
metabolic activity in the form of glucose uptake. 
 
 

 
 
Figure 7: Boxplots showing equal SUVmax distribution with regard to clinical variables: sex (female or male), disease state 
(primary disease or relapse), sample type (tumor or metastasis), therapy (treated or untreated), and age (≤15 years or >15 
years). P-values from the Welch two-sample t-test. 

 
 
  

p=0.29 

p=0.31 

p=0.42 p=0.81 

p=0.26 
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3.3.3 Survival Analysis 
We investigated the impact of clinical variables and SUVmax on survival in our cohort (see 
Figure 1, the panel in the middle on the right). As measure for survival, overall survival starting 
from the day of initial diagnosis or relapse was used. 
We tested the following variables for their correlation with overall survival: sex (male vs. 
female), disease state (primary disease vs. relapse), age (<=15 years vs. >15 years), and binary 
SUV categories (low vs. high SUV split by median SUVmax). To this end, in a first step, we 
performed a univariate Kaplan-Meier analysis for each variable. We found no significant 
correlations with overall survival (Figure 8A). The confidence intervals (CIs) of the curves were 
very wide and overlapped strongly, which was due to our small sample size.  
This univariate analysis indicated that no variable had a strong, significant correlation with 
overall survival on its own.  
 
As a next step, we combined several variables in a multivariate Cox proportional hazards 
model. For this, we used those variables in our dataset that have an impact on survival 
according to the literature, namely disease state, SUVmax, and age [130, 131]. However, since 
age did not show any correlation with overall survival in our dataset in univariate analysis 
(p=0.65), we did not include age into the model. Disease state and SUVmax showed some 
tendency in univariate analysis (p=0.087 and p=0.14, respectively). Thus, disease state and 
SUVmax remained for the multivariate analysis. 
There were two ways to use SUV in the model: First, we compared two groups of tumors (with 
high vs. low SUVmax values split by median SUVmax), and second, we tested continuous 
SUVmax values.  
The first model based on SUV groups achieved an overall p-value of 0.06 in the likelihood ratio 
test. Thus, there was a trend that relapse (p=0.10, Hazard Ratio HR [95 CI]=3.7 [0.79; 16.9]) 
and high SUV (p=0.12, HR [95 CI]=2.6 [0.78; 8.9]) were associated with higher risk of death 
(Figure 8B). 
The second model based on continuous SUVmax obtained an overall p-value of 0.02. In 
combination, both variables showed significant correlation with overall survival (Figure 8C): 
higher SUVmax (p=0.02, HR [95 CI]=1.2 [1.0; 1.3]) and relapse (p=0.05, HR [95 CI]=5.0 [1.0; 
24.9]) were associated with shorter overall survival. 
In conclusion, the multivariate model obtained significant correlations when using the exact 
fine grading of SUVmax values instead of the coarse classification of tumors into "high SUV" 
versus "low SUV". Altogether, there was a trend that SUVmax together with disease state 
(primary disease vs. relapse) were prognostic factors in our cohort. 
 
 
 
 
Figure 8: Survival analysis.(A) Kaplan-Meier curves for univariate analyses. There is no significant difference in overall survival 
with regard to sex (male vs. female), disease state (primary disease vs. relapse), age (≤15 years vs. >15 years), or SUV 
categories (low SUV vs. high SUV). (B+C) Forest plots for multivariate Cox proportional hazards models including SUV and 
disease state (primary disease vs. relapse). (B) Model using binary SUV categories (samples split into low SUV vs. high SUV by 
median SUVmax) indicates a trend that high SUV and relapse decrease overall survival time (global p-value=0.06 in log-rank 
test). (C) Model using continuous SUVmax values shows that higher SUVmax and relapse significantly decrease overall survival 
time (global p-value=0.02 in log-rank test). For continuous SUVmax, the hazard ratio is 1.2 per increase of 1 SUV unit.  

(continued →) 
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(A) Kaplan-Meier 

(B) Cox model using disease state and 
binary SUV categories 

(C) Cox model using disease state and 
continuous SUVmax values 
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3.3.4 No Correlation of SUVmax With Proliferation Associated Gene Expression 
Next, we examined whether glucose uptake was merely a measure of proliferation. Hence, we 
tested for association between SUVmax and proliferation rate of cells in means of expression 
of 4 genes associated with proliferation: PCNA, MKI67, TOP2A, and MCM2. We correlated the 
expression of these genes with SUVmax using linear regression, which showed weak 
correlations (Table 4). For all 4 genes, we obtained positive correlations that were small in 
terms of effect size, as the slope of the regression line was close to 0 (0.03 to 0.07). Moreover, 
the samples varied a lot around the regression lines, as the variance of gene expression 
explained by SUVmax (r2) was only 0.03 to 0.23. PCNA expression correlated strongest with 
SUVmax, with a slope of 0.07 and r2 of 0.23, which corresponds to a doubling of gene 
expression over 14 SUV units. Hence, even the strongest expression change is unlikely to be 
of biological relevance for processes in a cell.  
 
All in all, these results indicate that there was no relation of SUVmax with markers of 
proliferation in our dataset. This implies that proliferation rate was not a key factor in our 
data.  
 
 
  

PCNA MKI67 TOP2A MCM2 

Regression line slope 0.071 0.037 0.027 0.027 

Gene expression doubling over x SUV units 14.18 27.03 36.63 37.31 

r2  0.234 0.053 0.027 0.118 

 
Table 4: Linear regression analysis of SUVmax and expression of 4 proliferation markers (PCNA, MKI67, TOP2A, MCM2) 
indicates no correlation of SUVmax and proliferation rate.Details of the regression analysis are provided: the regression line 
slopes meaning the expression change over 1 SUV unit; and r2 (coefficient of determination of the Pearson correlation) 
indicating the proportion of variance in expression levels that is explained by SUVmax. 
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3.4 Gene Expression Analysis 
 

3.4.1 Preprocessing 
After analyzing our cohort with regard to radiomic and clinical data, the next step in our 
workflow was the gene expression analysis (see Figure 1, the panel at the top right). We first 
performed standard preprocessing steps consisting of RMA with background subtraction, 
quantile normalization, and summarization of probe sets to genes. For the summarization, we 
used the Brainarray annotation, which supplies up-to-date definitions of probe sets [81-83]. 
After summarization we obtained 20726 genes, which were further annotated with gene 
symbols, yielding 20722 genes. In addition, we performed quality control to ensure that there 
were no outliers in the dataset and that all samples could be included.  
Finally, 20722 genes remained in our dataset for further analysis. 
 

3.4.2 Gene Filtering 
A problem in large-scale analyses is the high dimensionality of the data, e.g. the expression of 
20722 genes [123, 132]. To overcome this, we performed two filtering steps to reduce the 
number of genes for further analyses. 
In the first filtering step, we excluded genes with low expression as microarray chips do not 
perform accurately in this case. We kept genes with an average expression above 10. 
Altogether, 198 genes were removed, leaving 20524 for further analysis. 
In the second filtering step, we focused on genes that may be prognostic in EwS. To obtain 
such survival-related genes, we used a machine learning approach on 3 external public EwS 
datasets: GSE63155, GSE17618, GSE63156 (Figure 9). We predicted long-term versus short-
term survival based on gene expression separately for each external dataset by using random 
forest classification models. The models achieved an average performance of ROC AUC of 0.67 
in GSE63156, 0.75 in GSE63155, and 0.87 in GSE17618 in repeated cross-validation. 
Furthermore, the models identified a group of genes that were predictive in each external 
dataset. These 3 gene sets overlapped in 1491 genes. Since these 1491 genes were related to 
survival in 3 independent datasets, we refer to them as "potential survival genes" for EwS. 
Functional annotation of these genes yielded phosphoprotein, alternative splicing, 
polymorphism, acetylation, cytoplasm, cell division, cell cycle, Golgi apparatus, DNA 
replication, disease mutation, mitosis, cell junction, and endoplasmic reticulum (Figure 10). 
The “potential survival genes” were kept in our dataset for further analysis.  
 
After both filtering steps, we obtained a total of 1376 genes for further analysis. We reduced 
the dimensionality of our gene expression data by focusing on genes that contain information 
about survival in external, independent EwS cohorts. 
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Figure 9: Diagram of machine learning analysis in order to obtain “potential survival genes” in EwS.Random forest classifiers 
are applied to 3 public datasets (GSE63155, GSE17618, GSE63156) in 10-fold cross-validation, obtaining ROC AUC of 0.67 to 
0.87. These models yield genes that are predictive for survival for each dataset. The intersection of these 3 gene sets contains 
1491 genes, which we consider as “potential survival genes” in EwS. 

 
 

 
Figure 10: DAVID functional annotation of “potential survival genes” obtained from machine learning analysis on 3 external 
datasets.13 terms in category UP-KEYWORDS obtained significant p-values (Benjamini adjusted p<0.01). For each term, the 
number of annotated genes among the “potential survival genes” is indicated by the bar and the adjusted p-value is given by 
the number in the bar.  
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3.5 Correlation Analysis of Radiomic and Transcriptomic Data 
 

3.5.1 Outcome Prediction using Radiomic and Transcriptomic Data 
When integrating image and expression data into one analysis, we first aimed at predicting 
outcome (see Figure 1, the panel at the bottom left). As some PET image features and 
expression of genes are predictive for survival, we examined whether overall survival could be 
inferred in our cohort. This shows, how much information the PET image features and gene 
expression values in our dataset contain about patient survival, respectively. Next, we asked 
whether integrating expression and image data improves outcome prediction compared with 
expression or image data alone. This indicates whether the information from image and tissue 
is redundant or complementary.  
 
To predict overall survival (binary classification, cut two years), we applied random forest 
machine learning modeling with leave-one-out cross-validation. We computed 3 models: 
model 1 using expression data (1774 genes), model 2 using image data (112 IFs, robust with 
respect to delineation and modality), and model 3 using expression and image data (1886 
features, 1774 genes + 112 IFs). We compared the performance of the 3 models in predicting 
long-term overall survival (n=6 "long survival") versus short-term overall survival (n=11 "short 
survival") in 17 EwS patients (Suppl. Table 1).  
The performance of the models was worse than baseline (Figure 11). Model 1 based on 
expression data achieved an area under the precision-recall curve (PR AUC)=0.47, model 2 
based on PET data achieved PR AUC=0.50, and model 3 based on combined data achieved PR 
AUC=0.47. Matthew's correlation coefficient (MCC) was negative and close to zero, implying 
random prediction (MCC=-0.19, MCC=-0.12, and MCC=-0.12 based on an optimal cutoff for 
discrimination). These results indicate no information gain regarding overall survival based on 
expression data, image data, or the combination of both.  
Possible reasons for this could be the limited sample size or the heterogeneous composition 
of the cohort. Examining the predictions of one model, e.g. the third model based on 
expression and image data (Table 5), gives more insight. 4/6 "long survival" patients scored 
very high for "short survival" in the model, so they were unambiguous false predictions. One 
explanation is as follows: 1/17 samples was removed before model generation, respectively 
(leave-one-out cross-validation). The model was computed on the remaining 16 samples 
(training dataset), which corresponds to a search for patterns (features) that distinguish the 
"long survival" patients from the "short survival" patients in training. The model was then 
applied to the removed test sample to check how well the learned pattern fitted a new 
patient. In our models, a characteristic pattern for "short survival" seemed to be identified in 
the training set that fitted 4/6 of the "long survival" patients very well, resulting in their high 
scoring for "short survival". This implies that in a cross-validation round with a “long survival” 
patient as test sample, the remaining 5 “long survival” patients in the training dataset did not 
exhibit a recognizable pattern of feature values, which could be learned by the classifier to 
correctly identify a new “long survival” patient. The resulting false scoring causes poor ranking 
of patients (measured in PR AUC) and poor classification rate (measured in MCC).  
 
In conclusion, there is no consistent pattern of gene expression and/or IFs in our dataset that 
could be learned to predict outcome superior to random guessing. This analysis needs 
replication with a larger dataset to identify and model predictive patterns that may exist. 
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Figure 11: Performance comparison of models for survival time prediction.The 3 models are based on expression data 
(“expr”, blue), image data (“IFs", green), or expression plus image data (“exprIFs”, red). The grey line indicates the baseline 
model: baseline ROC AUC=0.5 and baseline PR AUC=0.65. (A) ROC curve with ROC AUC. (B) Precision Recall (PR) curve with PR 
AUC. 

 
  

(A) 

(B) 
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(A) 

Patient’s real 
survival 

Predicted 
score for  
„short 
survival“ 

Predicted 
score for  
„long 
survival“ 

Prediction (default 
cutoff ≥0.5 for „short 
survival“) 

Prediction (optimal cutoff 
≥0.57 for „short survival“) 

"short survival" 0.406 0.594 "long survival" "long survival" 

"short survival" 0.46 0.54 "long survival" "long survival" 

"short survival" 0.475 0.525 "long survival" "long survival" 

"long survival" 0.569 0.431 "short survival" "long survival" 

"short survival" 0.57 0.43 "short survival" "short survival" 

"short survival" 0.578 0.422 "short survival" "short survival" 

"short survival" 0.58 0.42 "short survival" "short survival" 

"short survival" 0.582 0.418 "short survival" "short survival" 

"short survival" 0.604 0.396 "short survival" "short survival" 

"long survival" 0.615 0.385 "short survival" "short survival" 

"short survival" 0.64 0.36 "short survival" "short survival" 

"short survival" 0.648 0.352 "short survival" "short survival" 

"short survival" 0.692 0.308 "short survival" "short survival" 

"long survival" 0.732 0.268 "short survival" "short survival" 

"long survival" 0.735 0.265 "short survival" "short survival" 

"long survival" 0.746 0.254 "short survival" "short survival" 

"long survival" 0.807 0.193 "short survival" "short survival" 

 
(B)   

Reference   Reference 
 

Prediction 
(default cutoff 
≥0.5 for „short 
survival“) 

„short 
survival“ 

„long 
survival“ 

 Prediction 
(optimal cutoff 
≥0.57 for „short 
survival“) 

„short 
survival“ 

„long 
survival“ 

Prediction 
„short survival“ 8 6  „short survival“ 8 5 

„long survival“ 3 0  „long survival“ 3 1 
 

Sum 11 6  Sum 11 6 
 

       

 Accuracy 0.471   Accuracy 0.529  

 
Table 5: Survival time prediction (“long survival” vs. “short survival”) of 17 EwS in leave-one-out cross-validation generated 
from the random forest model using expression plus image data (1886 features).537/1886 features were selected in the 
model (509 genes and 28 IFs). (A) The patient’s real survival time, and the predicted scores (probabilities) for “short survival” 
and “long survival” are listed. Based on the scores, a prediction was made using the default cutoff ≥0.5 for “short survival”. 
This classified 3/17 as “long survival” patients and 14/17 as “short survival” patients (accuracy=0.47, Matthew’s correlation 
coefficient MCC=-0.34). Based on MCC, an optimal cutoff for discrimination was identified: ≥0.57 for “short survival”. This 
classified 4/17 as “long survival” patients and 13/17 as “short survival” patients (accuracy=0.53, MCC=-0.12). Samples are 
sorted by increasing score for “short survival”. (B) Confusion matrices for default and optimized cutoff values. 
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3.5.2 Correlation of SUVmax and Immune Cell Infiltration 
The immune system plays an important role in cancer. Whether and which immune cells can 
infiltrate the tumor determines distinct immune responses, which are associated with 
outcome. For example, infiltration of CD8 T cells counteracts tumor progression [133], while 
infiltration of immunosuppressive macrophages correlates with poor patient survival [134, 
135]. This was observed in several cancer types and in EwS [18]. Since both inflammation and 
PET are prognostic, we investigated whether there was an association in our cohort. 
Therefore, we correlated immune infiltration with SUVmax (see Figure 1, the panel at the 
bottom right, top row). 
 

3.5.2.1 Immune Cell Profile In Ewing Sarcoma 
The infiltrates of different immune cells were determined based on gene expression applying 
the deconvolution algorithm Cibersortx [109]. Cibersortx used the expression of 587 genes 
characteristic of immune cell types. Based on these cell type reference profiles, the absolute 
proportion of 22 immune cell types in bulk tumor tissue was estimated.  
 
We analyzed all EwS samples with microarray data, which were 29 samples. Their immune cell 
profile was dominated by CD8 T cells (18% of total immune cell infiltrates), M0 macrophages 
(16%), monocytes (15%), and regulatory T cells (Tregs, 12%) (Suppl. Table 4). This profile 
differed from the profile described by Stahl et al. [18], who analyzed 197 EwS tumors using 
Cibersort [136], the predecessor of Cibersortx. This profile was dominated by M2 
macrophages (about 25% of immune cell infiltrates) and M0 macrophages (about 13%).  
In our dataset, there may be patients who were analyzed after allogeneic stem cell 
transplantation, which may well explain a T cell infiltrate. The clinical annotation is not 
complete but at least one patient was analyzed several months after stem cell transplantation, 
and we cannot exclude the possibility that there are more patients, or that some of them have 
received therapies that affect immune cell infiltration. 
 
To further validate the immune cell profile in our dataset (Schwabing, n=29), we compared it 
to 4 public datasets of EwS tumors (Delattre GSE34620 [110], Savola GSE17618 [86], Dirksen 
GSE63157 [73], and Lawlor GSE68776 [111]) and a dataset of EwS cell lines (Savola GSE17618 
cell lines [86]). Overall, two types of immune signatures arose (Table 6, Suppl. Figure 6). The 
datasets from Delattre and Savola showed an "M2 predominant" signature with high 
infiltration of M2 and M0 macrophages. In contrast, the datasets from Dirksen, Lawlor, and 
Schwabing showed high infiltration of Tregs, activated NK cells, CD8 cells, MO macrophages, 
and monocytes, which we summarized as a "T cell predominant" signature.  
This raised the question of why there were different signatures and whether correlations with 
other factors might explain the differences among the datasets (cohort composition, 
treatment, affy platform; see dataset description in Table 6). In terms of tumor type, 
homogeneous cohorts comprising only primary tumors were "M2 predominant" (Delattre) or 
"T cell predominant" (Dirksen). Mixed cohorts of primary and relapsed tumors showed a "M2 
predominant" (Savola) or "T cell predominant” signature (Schwabing). With respect to 
treatment, mixed cohorts of treated and untreated patients exhibited both signatures: "M2 
predominant" in the Savola dataset and “T cell predominant" in the Schwabing dataset. Thus, 
these factors cannot explain the differences among the datasets. Strikingly, all datasets with 
"M2 predominant" signature were measured with HG-U133_Plus_2 microarray chips, 
whereas the datasets with "T cell predominant" signature were measured with HuEx-1_0-st 
or HuGene-1_0-st chips. This raised the question whether different array platforms introduced 
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systematic bias in the measurement of expression of the genes in the cell type reference 
profile. 
However, one must consider that there are many factors that affect immune infiltration, such 
as the type of treatment. The composition of the tissue sample also affects the estimated 
infiltration of immune cells. Such data were not available, so the question regarding 
differences among the datasets could not be adequately answered here. 
 
The EwS cell lines (dataset Savola cell lines) also showed immune infiltration but in much lower 
proportions than in the EwS tumor samples. M2 macrophages were the most abundant. This 
suggests that the EwS cells themselves have an expression profile similar to immune cell types, 
and therefore could increase the estimated proportion in the profiles. 
 
To conclude, further studies are needed to address the question of a unique EwS immune 
profile but this is beyond the scope of this work. In summary, our dataset had a similar profile 
to some public datasets, from which we concluded that our dataset had, at least to some 
extent, a typical EwS immune profile. 
 
 

Dataset 
(GEO Id) 

Array 
platform 

n with signif. 
profile  
/ n total 

Tumor type Treatment Predominant 
immune 
infiltrates 

Immune 
signature 

Delattre 
(GSE34620) 

HG-U133 
_Plus_2 

71/117 primary tumor no 
statement 

M2, M0 M2 
predominant 

Savola 
(GSE17618) 

HG-U133 
_Plus_2 

44/44 32 primary,  
7 metastasis,  
5 recurrence 

29 
untreated, 
15 treated 

M2, M0 M2 
predominant 

Savola cell 
lines 
(GSE17618) 

HG-U133 
_Plus_2 

11/11 // // M2 M2 
predominant 

Dirksen 
(GSE63157)  

HuEx-
1_0-st 

24/85 primary tumor no 
statement 

Tregs T cell 
predominant 

Lawlor 
(GSE68776) 

HuEx-
1_0-st 

5/32 local tumor untreated activated NK 
cells, Tregs 

T cell 
predominant 

Schwabing 
(-) 

HuGene-
1_0-st 

9/29 5 primary,  
16 recurrence,  
8 na 

12 
untreated,  
8 treated,  
9 na 

CD8, M0, 
monocytes 

T cell 
predominant 

 
Table 6: Signature of immune cell infiltrates in 6 EwS datasets.Each dataset is described with technical details (GEO ID; array 
platform) and composition (number of significant deconvolution results, meaning Cibersortx p<0.05, of total sample number; 
tumor type; patients’ treatment). The predominant immune cell infiltrates are listed (cell types with mean absolute 
abundance>0.25% from Cibersortx). There are two main signatures: M2 predominant (Delattre, Savola, Savola cell lines) or T 
cell predominant (Schwabing, Dirksen, Lawlor). 

 
 

3.5.2.2 P-values Provided by Cibersortx 
For further interpretation of the results, Cibersortx calculates empirical p-values for each 
sample, which represent the credibility of the deconvolution results. The p-values were 
significant for a subset of samples in each dataset (Table 6). This indicated that the absolute 
proportion of immune cell infiltrates had differing reliability.  
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The profiles of the samples with a p-value<0.05 (9/29 Schwabing, 71/117 Delattre, 24/85 
Dirksen, 5/32 Lawlor, 44/44 Savola, and 11/11 Savola cell lines) differed slightly from the 
profiles of the full datasets. However, they retained the same characteristics and signatures: 
it had minor impact whether the profile was based on the complete datasets or the significant 
deconvolution results. In previous studies using Cibersort, such as that of Stahl et al. [18], a p-
value has not yet been calculated because it is only available in the successor Cibersortx. For 
these reasons, we decided to use the profiles of all samples regardless of the p-values. 
 

3.5.2.3 Correlation of SUVmax With CD8 and M2 Infiltration 
To investigate relations between immune infiltration and PET signal, we correlated the 
immune profiles in our dataset with SUVmax, which was available for 19/29 of our EwS 
samples. The first approach was to split the samples into groups of immune subtypes 
analogous to Stahl et al. [18], who defined 3 subtypes: “T cell predominant", characterized by 
high T cell infiltration but low M2 and neutrophil infiltration; "M2 neutrophil predominant", 
characterized by low T cell infiltration but high M2 and neutrophil infiltration; "mixed" for 
other combinations. However, this definition was not applicable to our dataset. We had no 
neutrophil infiltration in our samples. Based on T cell and M2 infiltration, 6/19 samples were 
"T cell predominant" (high T cell and low M2 infiltration based on median infiltration, 
respectively), 5/19 were "M2 predominant" (low T cell and high M2 infiltration), and 8/19 
were "mixed" (both T cell and M2 either high or low). This grouping seemed ambiguous. For 
this reason, and because of the fundamental differences in the profiles of the Schwabing 
cohort and the Stahl cohort described earlier, we decided that this grouping approach was not 
applicable to our cohort. 
 
Instead of splitting the samples into groups, we analyzed the absolute frequencies of 
infiltrates and focused on immune cell types of particular interest: immune-activating CD8 T 
cells promoting anti-tumor responses [133, 137, 138]; and immune-suppressive, pro-tumoral 
M2 macrophages [18, 138].  
We correlated absolute CD8 and M2 infiltration with SUVmax in two ways. First, we used 
continuous SUVmax values in linear regression. Second, we examined whether CD8 and M2 
infiltration differed among SUV groups of tumors (tumors with high SUV compared to tumors 
with low SUV). 
CD8 T cell abundance correlated negatively with SUVmax in linear regression modeling (p-
value=0.14, slope -0.012) (Figure 12A). Comparison of SUV groups showed significantly lower 
CD8 infiltration in tumors with high SUV (p-value=0.01): the mean abundance of CD8 T cells 
was 0.28 in tumors with high SUV and 0.47 in tumors with low SUV (Figure 12B). 
M2 macrophage abundance correlated positively with SUVmax in linear regression modeling 
(p-value=0.07, slope 0.008) (Figure 12C). Comparison of SUV groups showed more M2 
infiltration in tumors with high SUV (p-value=0.08): the mean abundance of M2 macrophages 
was 0.15 in tumors with high SUV and 0.07 in tumors with low SUV (Figure 12D). 
 
In summary, there is a tendency that M2 macrophages are more likely to infiltrate tumors with 
high SUV, whereas CD8 T cells are more likely to infiltrate tumors with low SUV. Thus, we 
conclude that there might be a relationship between immune cell infiltration and glucose 
uptake.  
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Figure 12: Correlation of SUVmax and absolute infiltration of CD8 T cells (A + B) and M2 macrophages (C + D).(A) Absolute 
CD8 T cell abundance correlates negatively with SUVmax in linear regression modeling (not significant, p-value=0.14). The 
plot shows the regression line and confidence interval. (B) Comparison of SUV groups indicates significantly less CD8 infiltration 
in tumors with high SUV (p-value=0.01 from Welch two-sample t-test). (C) Absolute M2 macrophage abundance correlates 
positively with SUVmax in linear regression modeling (not significant, p-value=0.07). The plot shows the regression line and 
confidence interval. (D) Comparison of SUV groups indicates more M2 infiltration in tumors with high SUV (not significant, p-
value=0.08 from the Welch two-sample t-test). 

 
  

(A) Relation of SUVmax and CD8 (B) Relation of SUVmax groups and CD8 

(D) Relation of SUVmax groups and M2 (C) Relation of SUVmax and M2 

p=0.14 

p=0.08 p=0.07 

p=0.01 
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3.5.3 Linear Regression of SUVmax and Gene Expression 
The main step in our analysis workflow was the relation of transcriptomic data with glucose 
uptake (see Figure 1, the panel at the bottom right, bottom row). We wanted to know whether 
gene expression was associated with SUVmax? To identify associations in 19 EwS samples, we 
applied linear regression modeling using the R package limma [112, 113] and examined all 
1376 genes that remained after the preprocessing and filtering steps of expression analysis. 
Recapped, these genes met the quality criteria and were predictive for survival in 3 external 
EwS datasets. For each gene, a regression model was fit, a p-value was calculated and adjusted 
for multiple testing using the Benjamini-Hochberg procedure. The volcano plot (Figure 13A) 
illustrates the effect size (i.e., the slope of the regression line) and r2 (i.e., the squared Pearson 
correlation coefficient). r2 indicates how well the data fit the regression model and implies 
which proportion of the variance in gene expression can be explained by SUVmax. 
Additionally, the slope and the adjusted p-value are depicted in Figure 13B. To increase the 
interpretability of the effect size, the slopes were standardized using Z-score normalization. 
The distribution of slopes and Z-scaled slopes is depicted in Suppl. Figure 7. Altogether, 
645/1376 genes were positively correlated with SUVmax, 731/1376 genes negatively.  
 
 

 
Figure 13: Volcano plot showing results from linear regression modeling of SUVmax and gene expression.5 genes are 
significantly correlated with SUVmax with adjusted p-value<0.05 (FAXDC2, MYBL2, PLSCR4, ELOVL2, and NETO2). 23 genes 
show a high effect size of abs(slope)>0.146 (labelled genes). (A) For each gene tested, the regression line slope and r2 (Pearson 
correlation) are plotted. (B) The regression line slope and -log10(adjusted p-value) are plotted. 

 
  

(A) (B) 
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3.5.3.1 Five Genes Significantly Correlated With SUVmax 
The linear regression analysis of gene expression and SUVmax showed 5 significant 
correlations with adjusted p-value<0.05 (see Suppl. Table 5). 
3/5 genes were positively associated with SUVmax (Figure 14, top row):  
MYBL2 showed a slope of the regression line of 0.15 (95% CI [0.09; 0.21]) indicating that the 
gene expression doubles over 6.69 SUV units (r2= 0.58). ELOVL2 showed a slope of 0.15 (CI 
[0.08; 0.21]) indicating that the expression doubles over 6.76 SUV units (r2=0.54). NETO2 
showed a slope of 0.16 (CI [0.09; 0.23]) indicating that the expression doubles over 6.38 SUV 
units (r2=0.51). 
 
In contrast, 2/5 genes were negatively associated with SUVmax (Figure 14, bottom row):  
FAXDC2 showed a slope of -0.18 (CI [-0.25; -0.11]) indicating that the expression halves over 
5.67 SUV units (r2=0.59). PLSCR4 showed a slope of -0.22 (CI [-0.32; -0.12]) indicating that the 
expression halves over 4.49 SUV units (r2=0.51). 
 
The Z-scores of the slopes of these 5 genes were ≤-3.37 and ≥2.99, respectively, which 
corresponds to a probability of <0.003 to obtain more extreme slopes. In summary, the effect 
sizes were high for these genes, as expression doubles over maximal 6.76 SUV units, which is 
a difference in SUV values that is commonly seen amongst patients [55, 57-60, 139]. 
 
 

 
Figure 14: Scatterplots of significant correlations of SUVmax and gene expression (adjusted p-value<0.05).Expression of 
MYBL2, ELOVL2, and NETO2 is positively associated with SUVmax (top row), whereas FAXDC2 and PLSCR4 are negatively 
associated (bottom row).  
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3.5.3.2 23 Genes Correlating With SUVmax with High Effect 
When interpreting the results of the linear regression of gene expression and SUVmax, 
especially with our limited sample size, one must not focus on significance alone. Another 
important aspect is the effect size, which indicates how much gene expression changes in 
relation to SUVmax. Genes with a high difference in expression levels in relation to SUVmax 
are more likely to have an impact of biological relevance. 
To define genes with high effect size, we chose a cutoff for the regression line slope, namely 
abs(slope)>0.146. This cutoff corresponds to the standard log fold change of 1, which is 
normally applied when comparing gene expression levels between two groups, and which we 
transferred to regression analysis. A slope of 0.146 corresponds to a doubling (or halving) of 
expression levels over 6.8 SUV units, which seems appropriate regarding the SUV range in our 
cohort.  
Applying this cutoff to the results from linear regression, we obtained 23 genes with high 
effect size (Figure 13, labelled genes plotted in red). The majority of genes was negatively 
correlated with SUVmax, namely 17/23, whereas 6/23 were positively associated. The 23 
genes included the 5 significant correlations, so the previously described 5 genes had a high 
effect size by our definition.  
Normalizing the slopes to yield Z-scores, we found that the 23 genes had absolute Z-
scores>2.91 (Figure 13B, labelled genes plotted in red). This corresponds to a probability of 
0.0036 to obtain a more extreme effect, which would be only 5 genes in our dataset by 
expectation. In summary, the slopes of the regression lines for these 23 genes are very 
extreme compared to the mean of all slopes in our analysis.  
 
The expression of the 23 genes in the 19 samples is illustrated in a heatmap (Figure 15), 
together with clinical variables of the patients and their classification into 2 groups of low SUV 
or high SUV according to median SUVmax.  
The hierarchical clustering of the samples based on expression displayed outliers, namely the 
2 tumors with the highest glucose uptake in our cohort (SUVmax 13.6 and 21.3), and 2 slight 
outliers with low SUVmax (2.7 and 4.3). Without these outliers, the samples split into 2 groups: 
a cluster with lower SUVmax (5/6 with low SUV), and a cluster with higher SUVmax (7/9 with 
high SUV). As this sample clustering was based on genes whose expression changes strongly 
in relation to SUVmax, it nicely reflected the samples’ spectrum of SUVmax values.  
The hierarchical clustering of the genes displayed 2 clusters without outliers. In the smaller 
cluster, 5/6 genes correlated positively with SUVmax. In the larger cluster 16/17 genes 
correlated negatively with SUVmax. Thus, the clustering reflected the two directions of 
association with SUVmax.  
 
A list of the 23 genes with high effect size is provided in Suppl. Table 5 giving the results from 
linear regression (slope, Z-score of slope, adjusted p-value, r2 from Pearson correlation) and a 
functional annotation of the genes. In summary, these 23 genes showed a substantial change 
in expression level with regard to increasing SUVmax, and may have effects of biological 
relevance. The clustering based on their expression suggests that there is an expression 
signature for metabolic activity.  
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Figure 15: Heatmap depicting expression of 23 genes with high effect (abs(slope)>0.146) in linear regression with SUVmax. 
On top, clinical data is provided about sex (male or female), disease state (primary disease or relapse), sample type (tumor or 
metastasis), 2-year overall survival, age (≤15 years or >15 years), and categorical partitioning of the samples into high SUV or 
low SUV (split by median SUVmax). 17/23 genes were negatively associated with SUVmax, 6/23 positively. 14/23 genes were 
prognostic in cancer according to the Human Protein Atlas.  
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3.5.3.3 Linear Regression Without Sample_19 of Extreme SUVmax 
Examining the distribution of SUVmax values in our cohort, 18/19 samples had SUVmax values 
between 1.9 and 13.6. One sample with a much higher SUVmax of 21.3 stood out (sample_19). 
This skewed distribution of SUVmax values may cause that the sample with the extreme 
SUVmax affects the linear regression more than a single sample in the group of SUVmax 
values. This could be problematic if sample_19 is an outlier in the dataset. Arguing against 
sample_19 being an outlier is the clustering of samples in the heatmap of genes with high 
effect size (Figure 15). In this heatmap, sample_19 is no outlier but is placed next to the sample 
with the second highest SUVmax of 13.6 (sample_18). This indicates that both samples are 
similar in their expression pattern.  
Nevertheless, we checked how sensitive our results were with respect to sample_19. To this 
end, we repeated the linear regression of gene expression values for 18 samples – removing 
sample_19 – and compared how much the correlations had changed.  
 
The effect sizes of all 1376 genes for both regression analyses are depicted in Figure 16. The 
horizontal and vertical blue line corresponds to an effect size of 0, respectively. The red 
diagonal line indicates identical effect sizes, meaning that the slope is independent of 
sample_19.  
For the genes in the red highlighted areas, the presence of sample_19 heightened the effect 
in comparison to the linear regression without sample_19 (294 genes). These were 165/294 
genes with positive effect size and 129/294 with negative. 
For the genes in the yellow highlighted areas, sample_19 diminished the effect size. Thus, the 
effect increased when sample_19 was absent (791 genes). These were 301/791 genes with 
positive effect size and 490/791 with negative.  
In short, the presence of sample_19 attenuates the effect size for most genes (791 vs. 294 
genes). 
 
Of particular interest is the location of the genes relative to the green lines marking the 
threshold for high effect size (abs(slope) 0.146). The results falling into the green rectangles 
were independent of the presence of the sample_19 (Suppl. Table 6). 15 of the 23 genes with 
high effect size still showed it after removing sample_19: 2/6 with positive correlation (NEB 
and GRP) and 13/17 with negative correlation (NPY5R, NPY1R, PLSCR4, PGAP1, TES, 
DNASE1L3, ABCA5, ZDHHC21, SLC38A4, C5, FAXDC2, SGIP1, and GPR174).  
The genes next to these green rectangles showed a high effect size in either the analysis 
without sample_19 (47 genes) or in the analysis with sample_19 (8 genes). Thus, sample_19 
contributed strongly to the high effect size we originally found for 8/23 genes (CLVS2, MYL2, 
ELOVL2, NETO2, SYT1, FRZB, SLC17A8, and MYBL2). These findings only showed up due to the 
presence of sample_19. 
In the original regression analysis, 5 genes were significantly correlated with SUVmax. Of 
these, only PLSCR4 was significant without sample_19. Instead, 4 other genes showed 
significant correlations: SNX13, ESPL1, TET1, and NAPEPLD. Thus, the significant results relied 
on the presence of sample_19. 
 
Overall, the presence of sample_19 mostly diminished the effect size. Only a smaller portion 
of the results was dependent on sample_19. 
The results for the 23 genes with high effect size were mostly stable. This supports that the 
results based on effect size are more robust findings than the results based on significance 
and that it is important to focus on robust methods such as enrichment analysis.  
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Figure 16: Effect sizes from linear regression analysis with and without sample_19.For each gene (1376 genes) the slope 
from linear regression is depicted for both regression analyses. The horizontal and vertical blue line corresponds to an effect 
size of 0, respectively. The red diagonal line indicates identical effect sizes, meaning that the slope is independent of 
sample_19. The green lines mark the threshold for high effect size (abs(slope) 0.146). The red highlighted areas indicate that 
the presence of sample_19 increases the effect size (294 genes), while the yellow highlighted areas indicate that the effect 
size is diminished in presence of sample_19 (791 genes). Genes falling into the green rectangles have a high effect size 
independent of sample_19 (15 genes). 
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3.6 Enrichment Analysis of Regression Results 
 
After analyzing single correlations of gene expression and SUVmax, we asked for shared 
pathways and processes that correlated with glucose uptake. The aim was to summarize and 
generalize the results of the correlation analysis on a functional level. We investigated 
whether there were pathways and functionally annotated gene sets characterizing tumors 
with varying glucose uptake by applying different approaches of enrichment analysis. 
Enrichment analyses are robust to false positive findings because many genes are considered 
at once and a single false positive will be of less consequence. This is an advantage especially 
with our small sample size. 
 

3.6.1 Annotation of 23 Genes With High Effect Size 
For the 23 genes that correlated with SUVmax with high effect size, we looked for shared 
pathways and functions. To this end, we scanned their annotation for their prognostic value 
in cancer entities (Suppl. Table 5), and then performed enrichment analysis. 
 
First, we wanted to know whether the 23 genes were prognostic in cancer. In total, 14/23 
genes predict survival in several cancer types [140]. These are underlined in the heatmap of 
gene expression (Figure 15). Expression of ABCA5, C5, DNASE1L3, ELOVL2, FAXDC2, NPY1R, 
SLC38A4, TES, and ZDHHC21 predicts a favorable outcome in breast, liver, pancreatic, renal, 
and urothelial cancer. In contrast, expression of FRZB, MYBL2, MYL2, NETO2, PLSCR4, and TES 
predicts unfavorable outcome in endometrial, head and neck, liver, pancreatic, and renal 
cancer. 
 

3.6.1.1 Genes With High Effect Size Enriched for NPY Signaling Pathway 
Next, we tested for enrichment of pathways and functions systematically using the tool 
Enrichr [117-119]. We focused on pathways in “Reactome 2016” and the Gene Ontology (GO) 
knowledgebase including “GO biological process 2021”, “GO molecular function 2021” and 
“GO cellular component 2021”. As we decided to be more stringent, we considered 
enrichments with adjusted p-value (q-value)<0.01 as significant.  
The set of 23 genes with high effect size showed significant enrichment for the Reactome 
pathway “Peptide ligand-binding receptors Homo sapiens R-HAS-375276” with q=0.004 
(Figure 17A), which included a subset of the rhodopsin-like G protein-coupled receptor (GPCR) 
family. This enrichment was due to 4 genes: C5, NPY1R, NPY5R, and GRP.  
There were no significant enrichments in GO biological process and GO cellular component. 
However, the 23 genes were significantly enriched for the GO molecular function 
"neuropeptide Y receptor activity (GO:0004983)" with q-value=0.0007 (Figure 17B). NPY 
receptors are rhodopsin-like receptors, too. This enrichment was based on the 2 genes NPY1R 
and NPY5R.  
 
 
Figure 17: Enrichments among the 23 genes with high effect size (abs(slope)>0.146) found by Enrichr.Details for all terms 
with adjusted p-value<0.05 are provided below, respectively. Here, “overlap” indicates the proportion of genes with a high 
effect size among the genes in the gene set. (A) Enrichments of “Reactome Database”. Considering terms with p-value<0.01 
as significant, one term obtains a significant adjusted p-value (q=0.0043): “Peptide ligand-binding receptors Homo sapiens R-
HAS-375276”. (B) Enrichments of “GO molecular function”. Considering terms with p-value<0.01 as significant, one term 
obtains a significant adjusted p-value (q=0.0007): “neuropeptide Y receptor activity (GO:0004983)”. 

(continued →)  
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Term Overlap Genes P-value Adjusted 

P-value (q) 

Peptide ligand-binding receptors Homo sapiens R-
HSA-375276 

4/193 C5; NPY5R; 
GRP; NPY1R 

0.00006 0.004 

Class A/1 (Rhodopsin-like receptors) Homo sapiens 
R-HSA-373076 

4/323 C5; NPY5R; 
GRP; NPY1R 

0.0005 0.015 

Striated Muscle Contraction Homo sapiens R-HSA-
390522 

2/34 MYL2; NEB 0.0007 0.015 

Amino acid and oligopeptide SLC transporters 
Homo sapiens R-HSA-425374 

2/49 SLC17A8; 
SLC38A4 

0.001 0.021 

GPCR ligand binding Homo sapiens R-HSA-500792 4/447 C5; NPY5R; 
GRP; NPY1R 

0.002 0.021 

G alpha (i) signalling events Homo sapiens R-HSA-
418594 

3/240 C5; NPY5R; 
NPY1R 

0.003 0.028 

 

 
Term Overlap Genes P-value Adjusted 

P-value 

neuropeptide Y receptor activity (GO:0004983) 2/5 NPY5R; NPY1R 0.00001 0.0007 

neuropeptide receptor activity (GO:0008188) 2/30 NPY5R; NPY1R 0.0005 0.011 

calcium ion binding (GO:0005509) 4/348 SYT1; MYL2; PLSCR4; 
DNASE1L3 

0.0006 0.011 

metal ion binding (GO:0046872) 4/517 SYT1; MYL2; PLSCR4; 
DNASE1L3 

0.003 0.037 

(A) 

(B) 
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3.6.1.2 NPY Pathway Negatively Associated With Glucose Uptake 
As the NPY receptors contributed to both enrichments, we further investigated the role of the 
NPY pathway in our dataset. The expression of the genes in the NPY signaling axis was 
decreased as SUVmax increased (Figure 18).  
The signaling molecule NPY showed a slope of the regression line of -0.14 (95% CI [-0.26;  
-0.0087], Z-score=-2.57), implying that expression halved per 7.37 SUV units (r2=0.18). 
The NPY receptor NPY1R showed a slope of -0.33 (95% CI [-0.51; -0.15], Z-score=-6.46), 
indicating that expression halved per 2.99 SUV units (r2=0.40). 
NPY5R, another NPY receptor, showed a slope of -0.22 (95% CI [-0.43; -0.01], Z-score=-4.26), 
indicating that expression halveed per 4.51 SUV units (r2=0.17). 
 
In contrast, 2 other NPY receptors (NPY2R and pseudogene NPY6R) were expressed constantly 
regardless of SUVmax. NPY2R showed a slope of 0.00007 (95% CI [-0.03; 0.05]), and NPY6R 
showed a slope of 0.009 (95% CI [-0.04; 0.04]). 
In addition, there are 2 paralogs of the signaling molecule NPY, namely PYY (peptide YY) and 
PPY (pancreatic polypeptide). Their expression was independent of SUVmax as well: PYY 
showed a slope of -0.005 (95% CI [-0.06;0.05]), and PPY showed a slope of 0.015 (95% CI  
[-0.02; 0.05]). 
 

3.6.1.3 Summary of Annotation of Genes With High Effect 
All in all, of the 23 genes that were strongly associated with SUVmax, most are associated with 
survival in several cancer entities and therefore play a role in distinguishing subgroups in 
entities other than EwS. Our findings, namely that these genes have different expression levels 
in EwS tumors with high or low glucose uptake indicating a different prognosis, suggest that 
they may also distinguish subgroups in EwS.  
Looking for functional similarities of the 23 genes, we found that the NPY signaling axis 
correlated negatively with glucose uptake. 
 
 
 

 
 
Figure 18: Correlation of SUVmax and the NPY axis.Expression of NPY axis members (NPY, NPY1R, NPY5R) decreases as 
SUVmax increases. 
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3.6.2 GSEA of the Total Regression Results 
In addition to enrichments in the set of 23 genes with high effect size, we investigated 
enrichments across the entire results obtained from linear regression. To this end, we used 
gene set enrichment analysis (GSEA), which has several advantages compared to enrichment 
methods working on a set of genes of interest. First, no cutoff has to be chosen to determine 
the gene set for enrichment testing, which makes the whole analysis less arbitrary. Second, 
GSEA utilizes much more information because the entire linear regression results serve as 
input, namely a list of genes ranked by their correlation with SUVmax. Using this ranking of 
genes, the direction of the association is considered: whether enrichment for a gene set occurs 
at the top of the list (among genes that correlate positively with SUVmax) or at the bottom 
(among genes that correlate negatively with SUVmax). Thus, GSEA provides a broader view of 
which functional gene sets are related to glucose uptake compared to the analysis limited to 
the 23 genes with high effect size. 
 
With GSEA, we tested different categories of gene sets. First, we used "hallmark gene sets" 
(H), which provided initial insight and a general overview of all categories. We then focused 
on more specific aspects. To investigate pathways, we used "curated gene sets: canonical 
pathway" (C2cp), which summarized pathways from 5 databases (BIOCARTA, KEGG, PID, 
REACTOME, and WikiPathways). We also scanned for transcription factors (TFs) whose targets 
were positively or negatively correlated with SUVmax. Thus, we used "regulatory target gene 
sets: transcription factor targets" (C3tft), which contained gene sets that share TF binding sites 
or motifs. Finally, we tested "ontology gene sets" (C5) containing terms from GO and the 
Human Phenotype Ontology (HPO).  
 
For each gene set tested for enrichment, GSEA calculates a normalized enrichment score 
(NES). The NES indicates the extent to which this gene set is enriched at the top or bottom of 
the given ranked gene list. Additionally, a p-value is calculated and corrected for multiple 
testing (FDR q-value). As the authors suggest less stringent q-value cutoffs for formulating 
hypothesis, we considered q<0.1 as significant. 
 

3.6.2.1 Basic Cellular Functions Positively Associated With Glucose Uptake 
The results of GSEA – the number of enriched terms found for each category – is listed in Table 
7. Across all categories, we observed more significant enrichments associated with high 
SUVmax than enrichments associated with low SUVmax. In H, there were 3 terms enriched at 
high SUVmax, in C2cp 16 terms, in C5 71 terms – all representing basic functions such as cell 
cycle, DNA replication and repair, transcription, cytoskeleton, actin-myosin interaction, 
muscle and muscle development. These processes appeared to be upregulated in EwS cells in 
the context of increased glucose uptake. 
 

3.6.2.2 Rhodopsin-Like GPCRs Negatively Associated With Glucose Uptake 
However, we also found enrichments that covered more specific aspects.  
Looking at category C2cp for canonical pathways, 2 pathways were significantly enriched at 
low SUVmax (Figure 19A): "REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS" (NES -1.90; 
q=0.042) and "WP_GPCRS_CLASS_A_RHODOPSINLIKE" (NES -1.86; q=0.036), which both 
involved rhodopsin-like GPCRs. The genes that contributed most to the enrichment (so-called 
core enrichment) were NPY1R, NPY5R, C5, NPY for "REACTOME_PEPTIDE_LIGAND_BINDING_ 
RECEPTORS", and NPY1R, NPY5R, GPR174, LPAR6, LPAR4 for "WP_GPCRS_CLASS_A 
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_RHODOPSINLIKE" (Suppl. Table 7A-B). For both terms, the enrichments were predominantly 
due to genes of the NPY signaling axis. As NPY receptors belong to the class of rhodopsin-like 
receptors, these findings mirror the results of the previous enrichment analysis of Enrichr on 
the 23 genes with high effect size. 
 

3.6.2.3 Transcription Factor Activity of RNF2, the E2F family, and TCF3 Positively Associated 
With Glucose Uptake 

Furthermore, in category C3tft of TF targets, 3 terms showed significant enrichment. The 
targets of RNF2 (NES 2.26; q=0.003), of the E2F family of TFs (NES 2.00; q=0.065), and of TCF3 
(NES 1.99; q=0.048) all showed enrichment among genes positively associated with SUVmax 
(Figure 19B, genes in core enrichment see Suppl. Table 7C-E). This may indicate that the 
activity of RNF2, the E2F family and TCF3 was related to the glucose uptake by EwS cells.  
 

3.6.2.4 Summary of GSEA Enrichments 
In summary, we identified pathways and TFs that characterize tumors in terms of glucose 
uptake. Tumors with high glucose uptake had more enriched terms than tumors with low 
glucose uptake, especially terms referring to increased turnover like cell cycle, replication and 
transcription. Furthermore, the activity of the 3 TFs RNF2, the E2F family and TCF3 might be 
positively associated with glucose uptake, whereas rhodopsin-like receptor pathways might 
be negatively associated with glucose uptake in EwS tumors.  
 
 
 

   Enriched among genes 
with positive correlation 
with SUVmax 

Enriched among genes 
with negative correlation 
with SUVmax 

Category Category 
name 

Number of gene sets 
used for analysis / 
number of gene sets 
in category 

Number of 
gene sets 

Sets with 
FDR<0.1 

Number of 
gene sets 

Sets with 
FDR<0.1 

H Hallmark gene 
sets 

32/50 13 3 19 0 

C2cp Canonical 
pathway 

129/2922 74 16 55 2 

C3tft Transcription 
factor targets 

730/1133 285 3 445 0 

C5 Ontology gene 
sets 

1748/14998 852 71 896 0 

 
Table 7: Results from GSEA analysis on 1376 genes ranked by their correlation with SUVmax.For each category (H “hallmark 
gene sets”, C2cp “canonical pathway”, C3tft “transcription factor targets”, C5 “ontology gene sets”), the number of annotated 
gene sets is given. Some gene sets are filtered out before analysis based on size (default criteria for analysis: gene set size 
min=15 and max=500). The remaining gene sets are either enriched among genes with positive (red columns) or with negative 
correlation (green columns) with SUVmax. Finally, the number of gene sets with significant enrichments (FDR<0.1) is given. 
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Gene set Size ES NES p-value FDR q-value 

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS 18 -0.68 -1.90 <0.0005 0.042 

WP_GPCRS_CLASS_A_RHODOPSINLIKE 15 -0.69 -1.86 0.002 0.036 

 
 

 
Gene set  
(name in GSEA) 

Size ES NES p-value FDR q-value 

Target genes of RNF2 
(HSD17B8_TARGET_GENES*) 

81 0.52 2.26 <0.0005 0.003 

Target genes of E2F family (E2F_Q6) 27 0.58 2.00 <0.0005 0.065 

Target genes of TCF3 (E47_01) 16 0.68 1.96 <0.0005 0.048 

* HSD17B8 was wrong name in GSEA at the time of analysis (presumably corrected in the meantime) 

 
Figure 19: Enrichment plots of GSEA analysis on 1376 genes ordered by positive to negative correlation with SUVmax.  
(A) For canonical pathways (C2cp), 2 gene sets of rhodopsin-like receptors are enriched among genes that are negatively 
associated with SUVmax: "REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS" and "WP_GPCRS_CLASS_A_ 
RHODOPSINLIKE". (B) 3 transcription factors (TFs) (in C3tft) show target gene enrichment among genes that are positively 
associated with SUVmax: RNF2, E2F family, TCF3.  

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTOR
S 

WP_GPCRS_CLASS_A_RHODOPSINLIKE 

(A) 

NES -1.90 NES -1.86 

positively correlated positively correlated 

negatively correlated negatively correlated 

(B) 
RNF2 targets                                  E2F family targets                                      TCF3 targets 

NES 2.26 NES 2.00 NES 1.99 

positively correlated positively correlated positively correlated 

negatively correlated negatively correlated negatively correlated 
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4 Discussion 
 
Investigating a systemic disease requires whole-body examinations like functional FDG-PET 
imaging. EwS has long been known for its predilection for glucose utilization and FDG-PET 
sensitivity [10]. However, the biological basis for elevated but variable glycolytic activity is not 
well understood. Furthermore, it is not known how radiomic data from PET imaging relates to 
transcriptomic data in EwS.  
Long-term treatment effects and poor survival rates in EwS require the discovery of new 
treatment methods and individualization of therapy. This necessitates the identification of 
genes that can serve as biomarkers for risk stratification, i.e., that correlate with survival and 
malignancy features. Such genes can eventually provide opportunities for novel treatment 
options.  
 
As the first large-scale, functional radiogenomic study in EwS, the present study 
comprehensively examined the correlations between gene expression and radiomic data from 
PET imaging.  
We found genes, signaling pathways, immune infiltration and transcription factors (TFs) 
characterizing EwS tumors in terms of SUVmax, i.e., maximal glucose uptake and consecutive 
glycolysis.  
What most studies investigating the prognostic value of PET have in common is that high SUV 
values indicate a worse survival and more aggressive stage of disease, although the exact 
cutoff values vary. Nevertheless, it is established that higher glucose uptake, in general 
associated with the Warburg effect [141-144], indicates a higher level of malignancy. As PET 
signals like SUVmax are prognostic in EwS, we anticipate that our findings will provide novel 
biomarker candidates for risk stratification, which may also open up new therapeutic options 
in the future.  
 
 

4.1 Discussion of Assumptions and Methodology 
 

4.1.1 SUVmax as Prognostic Phenotype 
First of all, it needs to be discussed whether IFs and especially SUVmax are suitable as 
prognostic phenotype. In this context, some limitations of PET imaging and SUVmax should be 
considered. 
 

4.1.1.1 Relationship of SUVmax and Tumor Volume 
First, it can be a drawback that SUVmax correlates with lesion volume, which is stated in 
different studies [124-128] and also found in a subgroup of our patient cohort. However, this 
indicates that SUVmax is associated with another prognostic factor, namely tumor size. Thus, 
this correlation is consistent with expectations. It is not reasonable to correct for this 
correlation as tumor size may contribute to the prognostic value of SUVmax. 
 

4.1.1.2 Variability of PET Signals and SUVmax 
A drawback of PET imaging is that signals are variable due to technical influences, biological 
and physical sources of error, and different image reconstruction methods [33]. SUVmax 
signals varied by 10-16% in a test-retest study of 62 patients from 8 imaging centers [145]. 
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Even with the same scanner, 15% variance was measured at different time points [33]. 
Kinahan et al. [33] discuss that SUVmax may vary by more than 15-20% in reality.  
In addition, SUV is not measured correctly for lesions smaller than 3 cm due to the partial 
volume effect [33, 37]. However, Kinahan et al. [33] state that SUVmax is more reproducible 
and stable than SUVmean, and a better representation of the ground truth [5]. Although 
SUVmax – unlike SUVmean – describes only one pixel in the tumor region, the variance and 
bias is lower than expected [33]. 
In our cohort, we had 5/19 small lesions with less than 3 cm3. If we would select samples by 
size, we would introduce another bias. Thus, we used all samples in our cohort, which also 
reflects reality better as tumors do vary in size. At least, using SUVmax seems to be a valid 
choice to estimate ground truth [33]. 
 

4.1.1.3 Inconsistency of the Literature Regarding the Prognostic Value of SUVmax 
One limitation regarding the prognostic value of SUVmax is that study results are not 
completely consistent. Some studies found pretreatment SUVmax to be prognostic for survival 
[55, 56, 59] but others did not – yet, post-treatment SUVmax was prognostic here [57, 58]. 
The SUVmax cutoff value to define prognostic subgroups was also study-dependent. For 
example, Hwang et al. identified a cutoff of 5.8 [55], Salem et al. identified 11.6 [59], while 
Jamet et al. [56] found a significant effect of SUVmax on overall survival but could not 
determine a cutoff value at all. 
 
These deviations in the studies indicate that one cannot rely on cutoff values for SUVmax. The 
aforementioned general variability of PET signals certainly plays a role in these studies as well. 
It is not straightforward to find a universal cutoff, and it is questionable whether cutoff 
definitions are useful at all if they have limited validity [33]. 
Our approach is to circumvent the problem by working without cutoff definitions but 
correlating SUVmax values directly with gene expression using linear regression. Overall, we 
focus on cutoff independent results, which is why we specifically rely on the GSEA results. 
 

4.1.1.4 Bias Due to Joint Analysis of PET-CT and PET-MR 
Another source of bias in our study may be the joint analysis of PET-CT and PET-MR. Studies 
analyzing simultaneous PET-CT and PET-MR runs on tumors of different entities show that 
signals are not identical [146-148]. 
Reasons for this may be technical effects like different PET scanners, and different methods 
of attenuation correction [146, 147]. In addition, different time intervals between injection 
and imaging for PET-CT and PET-MR could have an effect as uptake may vary [147]. 
SUVmean and SUVmax measured in PET-CT are slightly higher than in PET-MR. For example, 
average SUVmax was 5.8 in PET-MR and 7.9 in PET-CT [147], and average SUVmean was 
5.4±3.1 in PET-MR and 6.1±3.1 in PET-CT [148]. At least, both modalities showed a strong 
correlation in the studies (r=0.85 [146], r=0.855 [147], and r=0.93 [148]). Thus, there seems to 
be a linear relationship between SUVs in PET-CT and PET-MR. Sachpekidis et al. [147] and 
Drzezga et al. [148] described these relationship using formulas from linear regression lines. 
However, the two studies differ as the regression line was SUVmax_MR=0.735*SUVmax_CT-
0.003 in Sachpekidis et al. [147], and SUVmean_MR=0.79*SUVmean_CT+0.57 in Drzezga et al. 
[148]. Again, the variability of PET signals probably affects these analyses.  
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In our dataset, we also analyzed the correlation of SUVs between PET-CT and PET-MR using 
21 simultaneous runs in 15 sarcoma patients. The intraclass correlation coefficient (ICC) of 
SUVmean and SUVmax was 0.72, respectively, which is interpreted as "moderate" agreement 
according to Koo and Li [99] or "good" agreement according to Cicchetti [100]. This 
corresponds to the findings in the literature.  
In our dataset for correlation analysis with gene expression values, the majority of 15/19 
samples were PET-CT. 4/19 samples were PET-MR, distributed over the entire SUVmax 
spectrum: sample_1 (SUVmax 1.9), sample_9 (SUVmax 5.1), sample_13 (SUVmax 7.4), and 
sample_15 (SUVmax 9.6) (see Suppl. Table 1). It is likely that these SUVmax values are little 
underestimated compared with the SUVmax values from PET-CT. One idea was to correct for 
this and estimate SUVmax_CT from SUVmax_MR based on the literature. However, since the 
formulas in [147] and [148] differ and do not provide a universal description of the 
relationship, this was not applicable.  
As the minority of 4/19 PET-MR in our cohort are spread across the SUVmax spectrum not 
introducing bias selectively, and SUVmax values have intrinsic variance, we assume that there 
is no major impact of imaging modality in our analysis. Furthermore, studies agree about 
comparability of modalities to some extend [146, 148]. To eliminate any bias in this regard, 
we will validate our results on an external cohort of the same imaging modality in a follow-up 
project (n=7 samples of PET-CT series from Münster).  
 

4.1.1.5 SUVmax as Established Prognostic Marker Despite Limitations 
One must consider the discussed limitations of imaging and SUVmax. However, SUVmax is an 
established prognostic marker used in clinical practice. Although cutoffs and signal strength 
vary between studies, it is widely accepted that high values indicate poor prognosis and 
malignancy. Although the ground truth can only be measured with variance, SUVmax seems 
to be the most appropriate value reflecting this ground truth [33]. Therefore, we posit that 
SUVmax is suitable as prognostic quantitative phenotype.  
 

4.1.2 Approach of Linear Regression Versus Comparison of Groups 
In our study, we correlated gene expression data with SUVmax values of tumors. For doing so, 
there are different approaches: comparing groups of patients or linear regression analysis.  
 

4.1.2.1 Standard Approach of Comparing Phenotypic Groups 
An established approach is to stratify tumors into two groups based on PET signal and compare 
the distribution of expression levels for each gene. To determine differentially expressed 
genes, a fold change of 2 is usually chosen. Even though this cutoff is used by default, it is 
arbitrary. 
One advantage of the group comparison is that you can consider variances for each gene to 
interpret the results. You normalize the results by comparing the between-group variance to 
the within-group variance.  
 
However, the group comparison approach also has drawbacks. One issue is to find an 
appropriate criterion for defining the groups. As mentioned earlier, there is no universal cutoff 
for SUVmax with prognostic relevance, which could be used to stratify patients into groups. 
Thus, it is common practice to use the median SUVmax in the cohort to define tumors with 
SUVmax below average (group with low SUV) and tumors with SUVmax above average (group 
with high SUV). This cutoff ensures that the groups are of equal size but is otherwise arbitrary.  
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A drawback of using median SUVmax is that tumors with intermediate SUVmax are assigned 
to either high or low. This may weaken signals in the dataset. If both groups contain some 
tumors with intermediate SUVmax that can be expected to have a similar phenotype, it is 
more difficult to detect differences between the groups. 
Another drawback is that the median depends on the composition of the cohort, since it is 
defined by the SUVmax distribution. Cohorts with different SUV spectra have different 
groupings. This results in different effect sizes for the same gene, as the fold change only refers 
to high versus low neglecting the absolute SUV values. 
 

4.1.2.2 Linear Regression Approach to Overcome The Drawbacks Of Group Comparison 
Given these drawbacks, we used a method other than group comparison. Since SUVmax and 
expression values are both continuous, we applied linear regression. To do this, we first set 
up the standards for interpreting the results. 
When you are not comparing groups, you cannot calculate a fold change and need a different 
measure of effect size. The slope of the regression line is appropriate as it indicates how 
"steep" the correlation between gene expression and SUVmax is. To facilitate interpretation 
of the effect size, the slope can be represented as change in gene expression levels by a factor 
of 2. This describes how many SUV units are needed to obtain a doubling or halving of gene 
expression. The expression change by a factor of 2 is chosen arbitrarily and is based on the 
standard fold change cutoff of 2. Still, this conveys a good impression of how much gene 
expression varies with respect to SUVmax. It provides an estimate of the expected change in 
expression level when comparing two tumors.  
To define correlations with high effect size, we transferred the standard fold change cutoff of 
2 to a slope cutoff of 0.146. Thus, our results are more comparable with studies that used 
group comparison and calculated fold changes. However, this involves the aforementioned 
disadvantage of an arbitrary cutoff. To avoid this, we focused on the results of analyses that 
do not rely on a cutoff definition, such as GSEA. 
 

4.1.2.2.1 Disadvantages of Linear Regression 
A disadvantage of the approach without grouping is that it is less straightforward to account 
for variance of gene expression. Thus, to better interpret our results, we considered the 
distribution of outcomes and used the slope distribution to calculate Z-scores. 
Another drawback of linear regression is that the exact SUVmax values are used, which means 
that this approach is more sensitive to variation of the values. In comparison, the accuracy of 
the values is less relevant in a grouping approach as the values are assigned to only two 
categories of "high" or "low”. This implies that in linear regression the intrinsic variance of 
SUVmax has a greater impact. In addition, the bias due to the joint analysis of PET-CT and PET-
MR and the bias due to small lesion size have a greater influence than in the approach based 
on group comparison.  
As a last limitation of the linear regression approach, it could be discussed that it only tests 
whether the correlations are linear. This may not correspond to reality. If a linear model does 
not fit well, this results in a low r2 and a high p-value. This indicates that there is no relation 
between gene expression and SUVmax – or that there may be relation other than linear. A 
nonlinear, more complex model could fit better. However, the use of more complex models 
increases the risk of overfitting. Due to the limited sample size, this was not an appropriate 
approach for our cohort. In addition, the clinical relevance of models with higher complexity 
is questionable. The goal of this study was not to accurately derive gene expression values 
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based on SUVmax, but to identify patterns in the dataset. Based on this, we could hypothesize 
which genes might explain elevated glucose uptake and may be associated with tumor 
malignancy. 
 

4.1.2.2.2 Advantages of Linear Regression 
The linear regression approach has advantages that basically overcome all the disadvantages 
of the group comparison approach.  
In linear regression, as mentioned above, the exact SUVmax values are included in the 
analysis. Thus, more detailed information about the tumors is used than in binary grouping.  
Furthermore, tumors with intermediate phenotype do not attenuate the signal but contribute 
to pattern recognition. 
Another advantage over group comparison is that no SUVmax cutoff needs to be defined. 
Therefore, this analysis is less sensitive to the phenotypic composition of the cohort and the 
SUVmax spectrum. Moreover, the slope is independent of cohort composition and therefore 
comparable between studies. Taking into account the distribution of the results and 
calculating the Z-scores of the slopes, these give a good impression of how extreme an 
association is. 
 
Given all this, we conclude that the advantages outweigh the disadvantages, and therefore 
we used linear regression. 
 
 

4.2 Limitations of the Study 
 

4.2.1 Limited Sample Size and Heterogeneous Dataset 
Due to the low prevalence, studies of EwS have a small sample size [2]. Thus, validation on an 
external dataset is important. As radiogenomic analyses are not established for pediatric 
sarcoma yet, public datasets of imaging and expression data are not available. So, we searched 
for collaboration partners who could supply EwS patients for validation. To this end, we have 
evaluated several large treatment centers for EwS patients across Germany. We collaborate 
with Universitätsklinikum Münster that provides data from 7 EwS patients. Using this cohort, 
the results of this study will be validated in a follow-up project. 
 
Another limitation is the heterogeneity in our cohort regarding clinical variables. To obtain a 
more homogeneous cohort we aimed to analyze subsets of our dataset stratified by risk 
factors. However, such a stratification was not feasible for our dataset. There are multiple 
prognostic factors in EwS such as age, ethnic background, localized or metastatic disease, 
primary site, tumor volume, response to therapy, primary disease or recurrence, in which the 
time to recurrence has also an influence [130, 131]. With this complex interplay of risk factors, 
it is futile to stratify patients just by one risk factor, and limited sample sizes do not allow to 
create subgroups with respect to multiple risk factors. To compensate for this, we checked for 
distribution of SUVmax values with respect to risk factors that were available for our dataset. 
Among the clinical variables, no SUVmax-related confounding factors were identified 
suggesting that different risk factors do not introduce an obvious bias into our data.  
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4.2.2 Skewed SUVmax Distribution 
A third limitation is the skewed SUVmax distribution in our cohort. The sample with a very 
high SUVmax of 21.3 (sample_19) may influence the linear regression more than one of the 
other samples with SUVmax between 1.9 to 13.6. To evaluate the sensitivity of our findings 
towards sample_19, we compared the results from regression analysis with and without 
sample_19. We conclude that the sample with high SUVmax has an impact on the correlation 
results in some cases. The significant results rely on the presence of sample_19, while the 
findings with high effects size are mostly independent of it. 
However, there is no reason to consider that the results based on the 18 samples are more 
correct than the results based on the 19 samples. For completeness, we have pointed out the 
problem that might be caused by the skewed SUVmax distribution in our cohort. To dispel 
doubts and to validate the results, we propose to repeat this analysis on a larger dataset with 
a better covered range of SUVmax values. 
 

4.2.3 Importance of Robust Methods to Overcome Limitations 
A consequence of our small, heterogeneous cohort are broad confidence intervals and that 
results like single significant relationships may be little generalizable. To compensate for these 
limitations, we focused on the results of robust methods like functional enrichment analyses. 
 
 

4.3 Glycolytic Pathway Gene Expression Did Not Correspond with PET Signal 
Intensities 

 
When correlating gene expression with glucose uptake, one would expect glycolytic gene 
expression to be upregulated with increasing SUVmax. Macpherson et al. [61] describe a 
frequent upregulation of glucose transporters in sarcoma, which results in raised SUV levels.  
However, this was not observed in our study. Glycolytic gene expression pattern did not turn 
up in enrichment analysis, and glucose transporters showed only minor association with 
SUVmax. The member of the SLC2 family of glucose transporters with highest correlation with 
SUVmax was SLC2A1 with a slope of 0.061. 
This observation is not unique to our study. PET-transcriptomic studies in lung and breast 
cancer got similar results [64-66]: only modest enrichments of glycolytic expression patterns 
were found, and glycolytic genes were not under the most significant correlations.  
This indicates that PET imaging captures much more than glucose uptake alone.  
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4.4 Five Genes Significantly Associated with Glucose Uptake 
 
We found 5 genes whose expression was significantly associated with SUVmax: PLSCR4, 
FAXDC2, NETO2, ELOVL2, and MYBL2, which are set into context regarding functionality in the 
following.  
 

4.4.1 PLSCR4 
PLSCR4 (phospholipid scramblase 4) is an organizer of the plasma membrane [149]. High 
expression is related to worse prognosis in endometrial and renal cancer [140]. However, in 
metastatic melanoma drugs are proposed that upregulate PLSCR4 as it is significantly 
downregulated there [150]. This implies an opposite role of PLSCR4 depending on cancer 
entity.  
Our data showed downregulation of PLSCR4 in EwS tumors with increased SUVmax. Due to 
the prognostic role of SUVmax, this indicates that high PLSCR4 expression might be beneficial 
in EwS. This warrants future research on the possibility to apply drugs to upregulate PLSCR4 
especially for patients with high SUVmax and poor prognosis.  
 

4.4.2 FAXDC2 
FAXDC2 (fatty acid hydroxylase domain containing 2) has oxidoreductase activity and binds 
iron ions [149]. It is associated with vascular diseases [149]. In addition, it plays a role in 
megakaryocyte differentiation [149, 151]. It has low expression levels in acute myeloid 
leukemia, where drugs are used to foster differentiation [151]. Additionally, FAXDC2 
expression is prognostic for better outcome in renal and liver cancer [140].  
In our cohort, FAXDC2 was negatively associated with SUVmax, which may indicate a 
prognostic role for better outcome in EwS. Furthermore, it suggests higher differentiation in 
EwS tumors with low SUVmax. 
 

4.4.3 NETO2 
NETO2 (neuropilin and tolloid like 2) is a transmembrane protein, a subunit of neuronal 
glutamate receptors [149]. NETO2 is upregulated in several cancer types like osteosarcoma, 
infantile hemangioma, hepatocellular carcinoma, nasopharyngeal carcinoma, colorectal, 
gastric, lung, pancreatic, and renal cancer [152, 153]. Its expression is associated with worse 
survival and/or metastasis [140, 152, 153]. Furthermore, NETO2 activates tumorigenic, 
stemness-related signaling pathways [152, 153].  
In our analysis, we found a positive association of NETO2 expression and SUVmax in EwS. This 
may contribute to increased stemness in EwS tumors with high glucose uptake.   
 

4.4.4 ELOVL2 
ELOVL2 (ELOVL fatty acid elongase 2) is involved in fatty acid biosynthesis of membrane lipids 
and lipids for signaling [149]. Its role in cancer is controversial and depends on cancer type as 
it has a favorable prognostic function in breast cancer [140, 154], but promotes progression 
and worse outcome in renal cell carcinoma [155]. In general, Gimple et al. [156] summarize 
that fatty-acid synthesis is upregulated in different cancer types (glioma, breast, prostate, 
colon, and ovarian cancer) and often relates with worse prognosis. In particular, ELOVL2 is 
upregulated in glioma stem cells in glioblastoma, which is mediated by stem cell enhancers 
like SOX2 (SRY-box transcription factor 2) [156]. SOX2 expression in EwS was shown to 
increase malignancy [157]. 
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In our EwS cohort, ELOVL2 was significantly positively correlated with SUVmax, and SOX2 was 
positively correlated with SUVmax but below our cutoff for high effect size (slope=0.12; 95% 
CI=[0.01; 0.22]; Z-score=2.42; r2=0.21). We hypothesize that SOX2 upregulates ELOVL2, so that 
the correlation with SUVmax is stronger on downstream-levels, and that both genes may be 
associated with undifferentiated state in tumors with high SUVmax. 
 

4.4.5 MYBL2 
MYBL2 (MYB proto-oncogene like 2) is a TF – activator and repressor –  regulating cell cycle 
progression, cell survival, and proliferation [149], and maintaining an undifferentiated state 
of cells [158]. High expression of MYBL2 is prognostic for poor outcome in renal, liver, and 
endometrial cancer [140]. Overexpression or amplification also correlates with poor outcome 
and metastatic ability in lung [159], prostate [160], and breast cancer [161]. It is an oncogene 
in ovarian cancer fostering tumor growth and metastases [162]. Due to the oncogenic role of 
MYBL2 across different cancer types, its inhibition is considered for treatment [158]. As no 
MYBL2 inhibitor is available, downstream inhibition of MYBL2 targets is considered, for 
example by using CDK2 (cyclin dependent kinase 2) inhibitors [158].  
The role of MYBL2 in EwS was analyzed by Musa et al. [163], who found MYBL2 upregulation 
by EWS-FLI1. However, the intensity of MYBL2 expression did not depend on EWS-FLI1 levels 
but on the genetic composition of the EWS-FLI1 binding locus [163]. High expression was 
related to poor survival of patients, and MYBL2 silencing in EwS cell lines reduced proliferation 
rate [163]. However, high levels of MYBL2 sensitized EwS towards treatment with CDK2 
inhibitors in vitro and in vivo [163]. 
In our cohort, we found upregulation of MYBL2 in EwS tumors with high SUVmax indicating 
poor prognosis. This replicates the finding by Musa et al. [163] that MYBL2 contributes to 
malignancy. As MYBL2 levels can be a biomarker for efficacy of CDK2 inhibitors [163], we 
speculate that this therapy may be most effective for EwS tumors with high SUVmax.  
 

4.4.6 Significant Correlations Warrant Experimental Validation 
In summary, these genes are candidates for experimental validation to uncover their 
mechanistic role in EwS. Furthermore, our results warrant future research on drugs 
upregulating PLSCR4 or inhibiting CDK2 downstream of MYBL2, especially for patients with 
strong PET signal and poor prognosis.  
 
However, due to our limited sample size, we will rather focus on more robust methods such 
as the enrichment analyses. 
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4.5 Function of NPY Signaling Axis 
 
In our enrichment analyses, the expression of genes in the NPY signaling axis and rhodopsin-
like GPCRs were found to be decreased as glycolysis increased.  
 
Generally, NPY signaling promotes inflammation [164-167] and differentiation of cells as 
rhodopsin-like receptors [168].  
The role of NPY and its receptors in cancer is not completely understood. NPY receptors are 
overexpressed in different cancer entities [169]. Yet studies are sometimes contradictory and 
indicate cancer type-specific mechanism. For example, high NPY expression predicted poor 
prognosis in endometrial cancer [140]. In gastric cancer high expression of NPY indicated 
better survival [170] but high NPY1R poor survival [171]. In hepatocellular carcinoma an 
inverse pattern was found as NPY signaling via NPY5R promoted progression, and NPY5R 
expression correlated with shorter survival time [172], whereas NPY1R expression was a 
marker for longer survival and showed tumor inhibiting functionality [173]. Similarly, in breast 
cancer NPY signaling via NPY5R promoted migration and proliferation in vitro [174]. Though, 
NPY1R expression was a marker for longer survival [140]. Another study found high NPY5R 
expression to indicate better prognosis, activated apoptosis and cell cycle arrest [175]. NPY5R 
expression also sensitized the breast cancer cells to doxorubicin treatment [175].  
In conclusion, these studies suggest a very context-specific role of NPY signaling in cancer 
types other than EwS. 
 
NPY pathway expression and function in EwS has been studied as well [21, 176-184]. NPY and 
its receptors NPY1R and NPY5R are targets of EWS-FLI1, and therefore upregulated in EwS 
[180, 183, 185]. One study showed NPY signaling to foster bone metastasis in vivo [184]. 
However, this study did not examine different receptor types and their impact on NPY 
downstream effects. The pro-metastatic and proliferation signaling of NPY was conveyed by 
the receptors NPY2R and NPY5R [182, 185]. However, Tilan et al. [180] showed in vitro that 
NPY signaling via the receptors NPY1R and NPY5R promoted cell death.  
A survival analysis of a publicly available EwS dataset (Savola dataset, n=44) on the R2 platform   
[186] showed significantly longer overall and event-free survival for tumors with high NPY1R 
or NPY5R expression. 
 
In our cohort, the expression of NPY, NPY1R and NPY5R was negatively associated with 
SUVmax. We infer from that that there is not a uniform upregulation of these genes in all EwS 
tumors. Instead, the expression seems to be related to the glucose uptake of the tumor. We 
hypothesize that there is more NPY signaling promoting cell death in EwS tumors with low 
glucose uptake indicating less malignancy, possibly associated with neuroectodermal 
differentiation. A beneficial effect on survival of NPY1R and NPY5R expression could be 
replicated in the Savola dataset.  
 
In conclusion, more studies are needed to elucidate the context specific role of NPY signaling 
in cancer in general and EwS in particular. Our analysis in the context of the current literature 
proposes a prognostic and favorable role of NPY signaling through NPY1R and NPY5R in EwS 
tumors with low glucose uptake. 
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4.6 Discussion of GSEA Results 
 
In addition to the enrichment analysis for individual genes with high effect size, the 
enrichment analysis for all genes using GSEA provides a broader overview. 
 

4.6.1 General Cellular Processes Reflecting the Hallmarks Of Cancer 
Several enrichments from GSEA with high SUVmax represent basic functions such as cell cycle, 
DNA replication and repair, transcription, cytoskeleton, actin-myosin interaction, muscle and 
muscle development. These processes seem to be upregulated in cells relative to increased 
glucose uptake and reflect raised metabolic activity and the hallmarks of cancer. Such findings 
are consistent with other radiogenomic studies [63, 64, 66-68]. 
 

4.6.2 Expression Levels Regulated by the Activity of Transcription Factors Correlating 
With Glucose Uptake 

GSEA also indicated 3 TFs with targets enriched at high SUVmax: RNF2 (ring finger protein 2), 
the E2F family of TFs, and TCF3 (transcription factor 3).  
 

4.6.2.1 Transcription Factor RNF2 
RNF2 is a core component, namely the catalytic subunit, of the Polycomb repressive complex 
1 (PRC1) belonging to the Polycomb group (PcG) [149]. PcG genes are crucial developmental 
genes and epigenetically maintain the transcriptionally repressive stemness state [19, 22, 149, 
187, 188]. As such, RNF2 plays a role in cancer development and proliferation, and its 
expression correlates with progression, invasiveness, recurrence and sensitivity to therapies 
[189]. Its expression is a predictive marker for poor survival in renal and liver cancer [140]. 
However, RNF2 can also have contradictory roles as high expression in basal breast cancer 
indicates worse survival, but in ER+ breast cancer it indicates longer survival [189]. 
Furthermore, RNF2 affects the tumor microenvironment and suppresses antitumor immune 
responses [190]. In short, RNF2 is discussed as promising target for therapies in tumor entities 
other than EwS [189]. 
Our analysis suggests a role of RNF2 in EwS as well. As its targets are mostly upregulated in 
tumors with high glucose uptake, we hypothesize that the activity of RNF2 correlates with 
metabolic activity, and is prognostic for worse outcome. Based on this, we suggest further 
studies to elucidate the role of RNF2 in EwS and therapeutic options.  
 

4.6.2.2 E2F Family of Transcription Factors 
The E2F family of TFs is studied for more than 30 years but the mechanisms are not completely 
understood yet [191]. The family members have various functions in cell cycle control – like in 
DNA replication, proliferation, apoptosis, differentiation and stemness – and are linked to 
energy metabolism enhancing glycolysis [191-194]. E2F is upregulated in response to DNA 
damage as it maintains genomic stability in DNA damage repair [194].  
Most of the E2F TFs are active across all cancer entities [194]. High expression of certain family 
members is prognostic for poor survival in liver, endometrial, renal, pancreatic, bladder, and 
breast cancer [140, 191] but prognostic for longer survival in cervical, thyroid, and ovarian 
cancer [140]. However, in general E2Fs foster invasiveness, angiogenesis, and drug resistance 
[191-194]. This can be due to the fact that E2F target genes maintain stemness features, and 
thereby E2F contributes to the characteristics of cancer stem cells, which are associated with 
treatment failure [191]. Thus, the E2F TFs are discussed as targets for therapies [194], 



66 
 

although no specific drugs are known that directly inhibit E2F [191]. An alternative is to inhibit 
upstream regulators of E2F, like inhibiting CDK4  (cyclin dependent kinase 4) and CDK6 (cyclin 
dependent kinase 6)  [194]. Many studies are ongoing on CDK inhibition, and some inhibitors 
are FDA approved drugs for treatment of advanced breast cancer: palbociclib, ribociclib and 
abemaciclib [194]. These drugs have an effect on E2F and its target genes, as in breast cancer 
resistant to palbociclib no changes in E2F target gene expression were observed [194]. Hence, 
E2F and its target genes indicate sensitivity towards CDK inhibitors [194]. 
 
Just as in other cancer entities, E2Fs are active in EwS. EWS-FLI1 activates the expression of 
the E2F family, except of E2F4 [195]. Furthermore, Schwentner et al. [195] describe a clear 
overlap of E2F and EWS-FLI1 binding sites in the promotors of target genes. Normally, E2F4 is 
bound to the promotors and represses transcription. However, in presence of EWS-FLI1, E2F4 
is replaced by a E2F3 having activating function, which leads to increased expression of E2F 
target genes [195]. 
Therefore, studies were conducted for EwS treatment by inhibiting E2F upstream regulators 
using CDK inhibitors. In general, CDK inhibition is no standard treatment in EwS. However, 
Bailey et al. [196] describe CDK4/6 inhibitors to be of high priority for testing in clinical trials. 
In vivo data showed longer survival and reduced tumor growth under CDK4/6 inhibition. So 
far, CDK4/6 inhibitors have been tested in completed or ongoing phase I trials in children 
showing beneficial effects [196-198]. Yet, an appropriate combination treatment has to be 
identified [196]. 
In our analysis, we saw that E2F targets were enriched among genes that were upregulated in 
tumors with high metabolic activity. As E2F enhances glycolysis and was shown to promote 
aerobic glycolysis [199], this may be the reason for the observed PET signal. We hypothesize 
that E2Fs are more active in EwS tumors with higher level of malignancy. Since indirect 
targeting of E2F by CDK inhibitors showed effects in EwS treatment trials, we speculate that 
CDK inhibition may be beneficial especially for patients who suffer from EwS with high SUVmax 
and poor prognosis. 
 

4.6.2.3 Transcription Factor TCF3 
TCF3 is a helix-loop-helix TF with context and cell lineage specific functionality [200]. It recruits 
different proteins, and dependent on this protein partner TCF3 has activating or repressive 
effects on target gene transcription [201]. As such, TCF3 can act as tumor suppressor fostering 
differentiation, or as tumor promotor fostering proliferation [201]. Its function is cancer type 
and context specific: high expression of TCF3 is prognostic for better survival in colorectal 
cancer [200, 201]; however, another study found TCF3 as tumor promotor and/or prognostic 
marker in colorectal cancer [202], as well as in renal, liver, breast, gastric, and prostate cancer, 
lymphoma, cervical squamous cell carcinoma and hepatocellular carcinoma [140, 200, 201]. 
Furthermore, TCF3 is associated with mesenchymal to epithelial transition [149, 201, 202] and 
stemness as it is highly expressed in stem cells and poorly differentiated cancers [203]. 
 
Despite its role in various cancer types, TCF3 has not been studied in EwS so far. Our 
radiogenomic analysis showed that the targets of TCF3 are mostly upregulated in EwS tumors 
with high glucose uptake. 
Based on our findings, we hypothesize that the activity of TCF3 correlates with metabolic 
activity, and is prognostic for worse outcome in EwS. Considering its role in multiple cancer 
entities, our results suggest further research to uncover the mechanism of TCF3 action in EwS.  
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4.7 Spectrum of Differentiation to Stemness 
 
Strikingly, many of our findings have a link to stemness or differentiation. 4/5 genes that were 
significantly associated with SUVmax in our EwS cohort indicate a link between stemness or 
differentiation and SUVmax. Furthermore, the 3 TFs (RNF2, E2F family, TCF3), whose targets 
were enriched among the genes that were positively correlated with SUVmax, are associated 
with maintaining stemness. Additionally, based on the findings of the NPY axis, we speculate 
about potential neuroectodermal and endothelial differentiation of cells at low SUVmax. 
Similar findings were reported in studies on esophageal cancer [49] and lung carcinoma [124], 
where the authors found a correlation of high SUVmax and poorly differentiated tumors. 
 
A stem-cell like phenotype is a basic characteristic of EwS, and maintaining stemness plays an 
important role [15-17, 19, 22]. Our group [19, 22] and Sheffield et al. [26] found that EwS 
tumors exhibit a spectrum of stemness varying from stem-like towards mesenchymal, 
neuroectodermal or endothelial differentiation. However, correlation analyses with outcome 
were not performed in these studies. Another group, Sheffield et al. [26], showed that tumors 
with STAG2 mutations have a tendency towards stem-like characteristics, and STAG2 
mutations are associated with worse prognosis [2, 3]. An analysis of stemness and prognosis 
was conducted by Stahl et al. [18], who investigated immune infiltrates in EwS, and found an 
association of stemness genes (HIF1A expression) and unfavorable immune cell infiltration 
(positive correlation with M2 macrophages and neutrophils, negative correlation with T cell 
infiltration). Furthermore, they described a trend of high HIF1A expression – reflecting 
stemness – and shortened overall and event-free survival in EwS [18].  
This is in concordance with the general observation that stemness in cancer is predominantly 
associated with poor prognosis [204-206]. 
 
In our analyses, we used SUVmax as indicator for malignancy and outcome. Given our findings 
described above, we hypothesize that the spectrum of stemness to differentiation, which was 
described for EwS tumors by Sheffield et al. [26], is reflected in the SUVmax of the tumor. 
While stemness may be predominant in EwS tumors with high glucose uptake and seems to 
indicate increased malignancy, differentiation may be associated with low glucose uptake 
indicating better prognosis. 
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4.8 Spectrum between Immune Activation and Immune Suppression 
 
Several analyses we have performed suggest a relationship between glucose uptake and 
immune signatures. To our knowledge, there are no studies on the relationship between 
immune response and PET in EwS. So far, there is only one study in soft tissue sarcoma that 
observed a positive association of macrophage infiltration and SUVmax [135]. We were able 
to replicate this correlation in our EwS cohort, as we found a positive correlation between M2 
macrophage signature and SUVmax. In addition, we found a negative correlation between CD8 
T cell infiltration and SUVmax. One has to consider that some therapies, e.g. allogeneic stem 
cell transplantation, have an effect on T cell infiltration. Since not all clinical data were 
available, we cannot exclude whether this might be the case in some of our patients. 
However, a limitation in this analysis is that the absolute immune cell infiltration is very low 
in our cohort as in EwS in general. 
 
The detected correlations of DC8 and M2 infiltration and glucose uptake match with our 
results from additional analyses indicating a link to immune signatures. NPY signaling, which 
correlated with low SUVmax, acts proinflammatory. We speculate that a NPY induced 
proinflammatory microenvironment may favor CD8 infiltration. In contrast, RNF2, whose 
target genes were predominantly upregulated at high SUVmax, suppresses an antitumor 
immune response [190]. Taken together, we hypothesize that immune response may be 
associated with low SUV and immunosuppression with high SUV.  
 

4.8.1 Activated T Cells and Macrophages are PET Active 
However, this hypothesis contradicts the observation that inflammation is PET active. 
Activated T cells have an increased metabolism and thus contribute to measured FDG uptake 
[207, 208]. The same holds for macrophages, which could strengthen the measured positive 
correlation with SUVmax [135]. In short, both the infiltrates we observed at low SUVmax and 
high SUVmax could amplify the PET signal. However, we think this has only minor impact in 
our data. The sum of all infiltrated immune cells is maximal 2.5% of cells in the bulk sample, 
much lower than the number of tumor cells. We assume that the signal measured in PET is 
predominantly due to the tumor cells. 
 

4.8.2 Hypotheses for Characteristic Absence of T Cell Infiltration in EwS 
In general, EwS is considered as immunogenic "cold” [18]. Stahl et al. [18] discuss two 
hypotheses regarding the scarcity of T cell infiltration in EwS. 
The first hypothesis is based on the genetic homogeneity of EwS. The low mutational burden 
results in few neoantigens that could be recognized by T cells [18, 138]. Therefore, the number 
of T cells in the tumor is low and immune response is poor [18]. This should apply in general 
to all EwS tumors. However, we observe variation of CD8 T cell infiltration with respect to 
SUVmax. Further analyses should examine whether there is a correlation between mutational 
load and SUVmax. Otherwise, this hypothesis (low mutational burden makes cold tumors) may 
contribute to the low T cell infiltration in general but cannot explain the pattern observed in 
our cohort. 
The second hypothesis is that hypoxia has an effect on immune cells [134]. Hypoxia fosters 
the attraction of macrophages to tumor tissue and the development of M2 macrophages [134, 
209]. It also promotes features of aggressive tumors and glycolytic reprogramming [134]. We 
can detect this altered metabolism – called Warburg effect – in PET and observe that increased 
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SUV correlates with poor survival. Two factors affect T cell infiltration [18]. On the one hand, 
an environment develops that excludes effector T cells and suppresses their function. Thus, 
there is no anti-tumor response and the "cold" state is maintained [18, 134, 209]. On the other 
hand, T cells and tumor cells compete for energy supply [18, 134]. This is consistent with our 
observation that tumors with high energy consumption, i.e., high glucose uptake, present with 
lower CD8 T cell infiltration. Thus, our results – the relation of CD8 infiltration and SUVmax – 
support the second hypothesis. This implies that one could expect hypoxia in tumors with high 
SUVmax. This is consistent with our finding of a positive correlation between SUVmax and M2 
infiltration, which is related to hypoxia as described above. However, we do not find a 
correlation of hypoxia with glucose uptake. The effects of hypoxia are mainly mediated by 
HIF1A [18, 210]. In our data, the expression of HIF1A is independent of SUVmax (slope 0.003 
in linear regression, i.e., doubling of gene expression over 291 SUV units). Furthermore, the 
term hypoxia does not pop up in any of our enrichment analyses. This suggests that the 
mechanism can be independent of hypoxia and proceed, for example, directly via glycolytic 
reprogramming. Further analysis in larger cohorts is needed to confirm the underlying 
mechanism.  
 

4.8.3 Link Between Immune Infiltration, Hypoxia and Stemness 
There is also a link between hypoxia and stemness [209], for example, HIF1A mediates hypoxia 
but also represents stemness [18].  
All of this is reflected in PET. We found stemness in tumors with high glucose uptake, both of 
which indicate a poor prognosis. Immune infiltration, which is prognostic as well, was also 
associated with glucose uptake. However, against expectations, there was no association 
between hypoxia indicating worse survival and glucose uptake. This suggests that hypoxia may 
be not a necessary mechanism. Other mechanisms such as glycolytic reprogramming might be 
sufficient for the observed relations. 
 
In short, we summarize from the literature and our observations that there seems to be an 
association between stemness and immunosuppression, both of which are reflected in PET 
signal. We hypothesize that these mechanisms might contribute to the prognostic role of PET 
imaging. 
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5 Conclusion 
 
This study is the first radiogenomic study in EwS relating large-scale transcriptomic data and 
functional radiomic data from PET imaging. Since EwS tumors are uniform at the genomic 
level, we assessed gene expression. To investigate the information content of transcriptomic 
and radiomic data and whether they complement each other, we performed prediction 
studies on tumor entity, genetic fusion type, and outcome. For outcome prediction in our 
cohort, the integration of transcriptomic plus radiomic was equivalent compared with 
prediction based on either transcriptomic or radiomic data alone.  
Furthermore, we characterized EwS tumors in terms of their glucose uptake measured as 
SUVmax in PET, which correlates with the level of malignancy. With this, we aimed to elucidate 
the transcriptomic basis for the variant glucose uptake and to identify novel prognostic 
biomarker candidates.  
Due to the low incidence of EwS, we focused on the results of enrichment analyses, as these 
are more robust to single false positive findings. Thus, we identified correlations between 
SUVmax and infiltration of immune cells, neuroectodermal signaling pathways, and stemness-
related transcription factors. We hypothesize that stemness is associated with increased 
glucose uptake and poor prognosis. Furthermore, increased differentiation may indicate 
better prognosis correlating with low glucose uptake.  
These findings warrant prospective validation in an external cohort, as well as in experimental 
and clinical settings. They may eventually provide a better risk stratification of patients and 
open up new therapeutic opportunities. 
 
The present study tested the potential of a radiogenomic approach in EwS. Large-scale 
analyses are not yet established in clinical practice. Therefore, it is necessary that they will be 
part of the clinical routine in the future. However, clinical procedures are often not suited for 
such analyses. Out of 75 patients referred to our institution during the duration of the study, 
only 19 met all of our quality standards. Thus, if we are to reap the benefits of large-scale 
analyses in the future, clinical practice must be adapted to the requirements of large-scale 
analyses. 
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6 Appendix 
 

6.1 Supplementary Figures and Tables 
 
 

 
Suppl. Table 1: Patients' metadata including clinical data, genetic data, tissue data, survival data and image data.na=not 
available/ not applicable.  
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(A) 

Feature class Description Number of IFs 

shape 3D size and shape description (based on mask neglecting voxel values; 
only for original image) 

14 

first-order Histogram based intensity statistics 18 

glcm Gray level co-occurrence matrix features 24 

glrlm Gray level run length matrix features 16 

glszm Gray level size zone matrix features 16 

gldm Gray level dependence matrix features 14 

ngtdm Neighboring gray tone difference matrix features 5 

  107 

 
(B) 

Filter type Description Number of IFs 

original Original image without filter 107 

log-sigma-4-0-
mm-3D 

Laplacian of Gaussian filter, sigma 4 (emphasizing finer textures) 93 

log-sigma-5-0-
mm-3D 

Laplacian of Gaussian filter, sigma 5 (emphasizing coarser textures) 93 

wavelet-LLH Wavelet filter, decomposition low-low-high 93 

wavelet-LHL Wavelet filter, decomposition low-high-low 93 

wavelet-LHH Wavelet filter, decomposition low-high-high 93 

wavelet-HLL Wavelet filter, decomposition high-low-low 93 

wavelet-HLH Wavelet filter, decomposition high-low-high 93 

wavelet-HHL Wavelet filter, decomposition high-high-low 93 

wavelet-HHH Wavelet filter, decomposition high-high-high 93 

wavelet-LLL Wavelet filter, decomposition low-low-low 93 

square Squaring and scaling of voxel intensities 93 

squareroot Applying square root and scaling of voxel intensities 93 

logarithm Logarithm of absolute voxel intensities +1 and scaling 93 

exponential Applying exponential (absolute intensities) and scaling 93 

gradient Returning magnitude of local gradient 93 

  1502 

 
Suppl. Table 2: Overview and short description of image features (IFs).(A) Overview of 7 feature classes. For each class, the 
number of contained IFs is given. Altogether, there are 107 distinct IFs: 14 shape features and 93 first- and second-order (glcm, 
glrlm, glszm, gldm, and ngtdm) IFs. (B) Overview of image filter types: original image and 15 filter types to obtain derived 
images. For each filter type, the number of IFs is given. Shape features are only calculated on the original image together with 
first-order and second-order IFs, which yield 107 IFs. On derived images, first-order and second-order IFs are calculated 
yielding 93 higher-order IFs, respectively. Altogether, there are 1502 IFs. 

 
 
  



73 
 

 

 
 
Suppl. Figure 1: ICC values distribution to analyze robustness to imaging modality (PET-CT versus PET-MR).The ICC 
distributions are split by filter type. Median ICC varies between 0.4 (wavelet.HHL filter) and 0.7 (LoG filters). 
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Suppl. Figure 2: ICC values distribution to analyze robustness to delineation variability.Lesion segmentation was based on 
20%, 30%, and 40% of SUVmax, and examined in PET-CT series (n=106). (A) The ICC distributions are split by filter type. For all 
filter types, ICC distributions are in a similar range with median ICC around 0.9, except for the logarithm filter. This shows that 
the filter type has minor impact on the analysis of delineation sensitivity. (B) The ICC distributions are split by feature class. All 
feature classes, except glszm features, achieved consistently high ICC values (median ICC around 0.9). 

 
  

(A) 

(B) 
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Suppl. Figure 3: Venn diagram depicting the overlaps of delineation-robust IFs identified in PET-CT series (green), in PET-
MR series (blue), or in a mixed dataset (red).1009 IFs are stable in all 3 datasets. Below, the total number of delineation-
robust IFs per dataset is given: 1157 for our PET-CT series, 1071 for our PET-MR series, and 1141 for our mixed dataset. 
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Suppl. Figure 4: Histogram of pairwise correlation coefficients (Pearson’s r) for all 1502 IFs.IFs originate from 160 PET series 
(PET-CT and PET-MR) based on 40% SUVmax segmentation. Though most IFs are uncorrelated (r around 0), a portion of IFs 
shows high correlation between 0.8 to 1, which indicates redundant information content. 
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Suppl. Figure 5: Correlogram depicting pairwise correlation of all 107 IFs on original images (160 PET series).Shape features 
show high intraclass correlation but no correlation with features of other classes. First-order features show high intraclass 
correlation but also some correlations with features of second order. Except for shape features, there is no obvious partition 
by feature class.  

Pearson’s r 

shape 

firstorder 

glcm 

glrlm 

glszm 

gldm 

ngtdm 
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(A) 

Feature class Number of non-redundant IFs/ 
total number of IFs in this class 

% non-redundant of total IFs in this 
feature class 

shape 5/14 35.7% 

first-order 46/288 16% 

glcm 74/384 19.3% 

glrlm 18/256 7% 

glszm 94/256 36.7% 

gldm 65/224 29% 

ngtdm 19/80 23.8% 

 321/1502  

 
(B) 

Filter type Number of non-redundant IFs/ 
total number of IFs for this filter 

% non-redundant of total IFs for this filter 
type 

original 16/107 15% 

log-sigma-4-0-mm-3D 18/93 19.4% 

log-sigma-5-0-mm-3D 17/93 18.3% 

wavelet-LLH 25/93 26.9% 

wavelet-LHL 20/93 21.5% 

wavelet-LHH 21/93 22.6% 

wavelet-HLL 21/93 22.6% 

wavelet-HLH 20/93 21.5% 

wavelet-HHL 22/93 23.7% 

wavelet-HHH 27/93 29% 

wavelet-LLL 12/93 12.9% 

square 19/93 20.4% 

squareroot 13/93 14% 

logarithm 25/93 26.9% 

exponential 18/93 19.4% 

gradient 27/93 29% 

 321/1502  

 
Suppl. Table 3: Overview of non-redundant IFs.321/1502 IFs are non-redundant, which means they have pairwise absolute 
correlations ≤0.9. (A) Number of non-redundant IFs split by feature class. (B) Number of non-redundant IFs split by filter type. 
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Immune cell type Relative infiltration Standard deviation 

T cells CD8 18.0% 0.082 

Macrophages M0 16.2% 0.088 

Monocytes 14.6% 0.068 

T cells regulatory (Tregs) 11.9% 0.048 

Plasma cells 8.1% 0.041 

NK cells activated 8.1% 0.033 

Macrophages M2 6.1% 0.066 

B cells memory 5.4% 0.057 

B cells naive 2.9% 0.043 

T cells CD4 naive 2.1% 0.024 

Mast cells resting 1.8% 0.023 

T cells CD4 memory resting 1.5% 0.040 

Dendritic cells activated 1.1% 0.021 

T cells follicular helper 0.9% 0.017 

Macrophages M1 0.6% 0.011 

NK cells resting 0.3% 0.013 

Mast cells activated 0.3% 0.010 

Dendritic cells resting 0.0% 0.000 

T cells CD4 memory activated 0.0% 0.000 

T cells gamma delta 0.0% 0.000 

Eosinophils 0.0% 0.000 

Neutrophils 0.0% 0.000 

 
Suppl. Table 4: Immune cell infiltration in our cohort (Schwabing, n=29) deconvoluted by Cibersortx.Relative numbers with 
regard to total infiltrating immune cells are given. The most abundant cell types are CD8 T cells, M0 macrophages, monocytes, 
and regulatory T cells. 
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Suppl. Figure 6: Infiltration of 22 immune cell types in 6 EwS datasets (Schwabing, Delattre, Dirksen, Lawlor, Savola, Savola 
cell lines) deconvoluted by Cibersortx.For each cell type, the estimated absolute proportion in the sample is given in percent 
of total cells. For better comparability, the plots y axes are limited to the same range (0.00% to 1.00%). 
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Suppl. Figure 7: Distribution of effect sizes from linear regression modeling of SUVmax and gene expression. (A) Distribution 
of slopes. (B) Distribution of Z-scaled slopes. 

 
  

(A) (B) 
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Suppl. Table 5: Results from linear regression analysis correlating gene expression and SUVmax.23 genes with high effect 
size (abs(slope)>0.146) are annotated, sorted by decreasing effect size. 
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GeneSymbol_EntrezID Slope in regression 

with sample_19 
(original analysis) 

Slope in regression 
without sample_19 

Change in effect size with 
sample_19 present 
compared to absent 

NPY5R_4889 -0.222 -0.450 0.229 

NPY1R_4886 -0.334 -0.486 0.152 

GRP_2922 0.193 0.339 0.146 

PLSCR4_57088 *    -0.223 *    -0.333 0.111 

PGAP1_80055 -0.193 -0.292 0.099 

TES_26136 -0.158 -0.239 0.081 

DNASE1L3_1776 -0.174 -0.242 0.068 

ABCA5_23461 -0.154 -0.218 0.064 

ZDHHC21_340481 -0.172 -0.235 0.063 

SLC38A4_55089 -0.235 -0.289 0.054 

C5_727 -0.156 -0.209 0.053 

FAXDC2_10826 *   -0.176 -0.205 0.028 

SGIP1_84251 -0.163 -0.187 0.025 

MYBL2_4605 *    0.149 0.145 -0.004 

NEB_4703 0.177 0.149 -0.027 

GPR174_84636 -0.193 -0.154 -0.039 

SLC17A8_246213 -0.153 -0.108 -0.045 

FRZB_2487 -0.172 -0.121 -0.051 

SYT1_6857 -0.171 -0.119 -0.052 

NETO2_81831 *    0.157 0.104 -0.053 

ELOVL2_54898 *    0.148 0.083 -0.065 

MYL2_4633 0.205 0.139 -0.066 

CLVS2_134829 -0.186 -0.099 -0.087 

 
Suppl. Table 6: Linear regression results for 23 genes with high effect size.For each gene, the slope from regression with and 
without sample_19 is given. Significant results are marked by * (adjusted p-value<0.05). High effects (abs(slope)>0.146) are 
highlighted in green. 15 of the 23 genes with high effect size still showed it after removing sample_19. The last column specifies 
increased (yellow) or decreased (red) effect sizes in the regression with sample_19 compared to the regression without. 
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(A) Term "REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS" 

Gene symbol Rank in gene list Rank metric score (= slope) Running ES Core enrichment 

GRP 1 0.193 0.16 No 

PENK 240 0.039 0.01 No 

APLNR 306 0.032 -0.01 No 

CXCL13 415 0.019 -0.07 No 

CCL4 435 0.017 -0.07 No 

F2R 466 0.013 -0.08 No 

EDN1 477 0.013 -0.08 No 

PPBP 540 0.007 -0.12 No 

CXCL16 627 0.001 -0.18 No 

CCL19 669 -0.002 -0.21 No 

HEBP1 673 -0.002 -0.21 No 

ACKR3 694 -0.004 -0.22 No 

GRPR 774 -0.012 -0.27 No 

C3 855 -0.018 -0.31 No 

NPY 1352 -0.136 -0.57 Yes 

C5 1361 -0.156 -0.45 Yes 

NPY5R 1372 -0.222 -0.27 Yes 

NPY1R 1375 -0.334 0.00 Yes 

 
(B) Term "WP_GPCRS_CLASS_A_RHODOPSINLIKE" 

Gene symbol Rank in gene list Rank metric score (= slope) Running ES Core enrichment 

ADORA3 28 0.096 0.07 No 

APLNR 306 0.032 -0.11 No 

CHRM3 431 0.017 -0.18 No 

F2R 466 0.013 -0.19 No 

PTGER2 541 0.007 -0.24 No 

ACKR3 694 -0.004 -0.35 No 

OR10H1 770 -0.011 -0.39 No 

GRPR 774 -0.012 -0.39 No 

HTR1F 924 -0.024 -0.47 No 

GPR20 984 -0.029 -0.49 No 

LPAR4 1109 -0.043 -0.54 Yes 

LPAR6 1112 -0.044 -0.50 Yes 

GPR174 1371 -0.193 -0.51 Yes 

NPY5R 1372 -0.222 -0.31 Yes 

NPY1R 1375 -0.334 0.00 Yes 

 
(C) Targets of transcription factor RNF2 

Gene symbol Rank in gene list Rank metric score (= slope) Running ES Core enrichment 

MYBL2 4 0.149 0.04 Yes 

GINS1 14 0.118 0.06 Yes 

ESPL1 27 0.096 0.08 Yes 

MND1 31 0.093 0.10 Yes 

RRM2 33 0.092 0.13 Yes 

TROAP 52 0.080 0.14 Yes 
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E2F8 53 0.079 0.16 Yes 

UBE2C 54 0.078 0.18 Yes 

DLGAP5 55 0.078 0.20 Yes 

NCAPH 63 0.074 0.22 Yes 

FOXM1 66 0.073 0.24 Yes 

CENPA 74 0.069 0.25 Yes 

SPC25 81 0.068 0.26 Yes 

SMC4 86 0.067 0.28 Yes 

UBE3D 90 0.066 0.29 Yes 

PLCXD1 95 0.064 0.31 Yes 

RAD51AP1 99 0.064 0.32 Yes 

MCM10 126 0.058 0.32 Yes 

PTTG1 128 0.057 0.34 Yes 

CDCA8 130 0.057 0.35 Yes 

CIT 134 0.056 0.36 Yes 

CDCA7 135 0.056 0.38 Yes 

ZWINT 141 0.055 0.39 Yes 

KIF20A 142 0.055 0.41 Yes 

KIF14 146 0.055 0.42 Yes 

KIF15 159 0.052 0.42 Yes 

MCM5 178 0.047 0.42 Yes 

TACC3 185 0.047 0.43 Yes 

POLQ 186 0.046 0.44 Yes 

CCNB2 187 0.046 0.46 Yes 

CENPK 194 0.045 0.46 Yes 

CENPO 197 0.045 0.47 Yes 

GATA2 216 0.043 0.47 Yes 

CHD7 220 0.043 0.48 Yes 

NCAPG2 231 0.041 0.49 Yes 

BLM 232 0.041 0.50 Yes 

STIL 238 0.040 0.50 Yes 

HEY2 249 0.039 0.51 Yes 

FANCD2 269 0.036 0.50 Yes 

NDC80 275 0.035 0.51 Yes 

SHCBP1 278 0.035 0.52 Yes 

ASPM 298 0.033 0.51 Yes 

CEP55 303 0.032 0.52 Yes 

KPNA2 309 0.031 0.52 Yes 

POLE 318 0.030 0.52 Yes 

C1orf112 356 0.026 0.50 No 

FANCI 376 0.023 0.49 No 

LSM5 384 0.022 0.49 No 

PARPBP 396 0.021 0.49 No 

RFC3 443 0.016 0.46 No 

SMC6 458 0.014 0.45 No 

RPL39L 462 0.014 0.45 No 

WNK1 479 0.012 0.45 No 
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CDC25C 481 0.012 0.45 No 

INTS7 531 0.008 0.41 No 

MRPL13 533 0.008 0.41 No 

ZW10 542 0.007 0.41 No 

ARHGAP19 543 0.007 0.41 No 

DLX1 558 0.006 0.40 No 

NUDCD2 566 0.005 0.40 No 

CDKN2C 589 0.004 0.38 No 

SNRPD2 631 0.001 0.35 No 

TOPBP1 640 0.000 0.35 No 

DNMT3B 645 0.000 0.34 No 

EPOR 674 -0.002 0.32 No 

RGS5 720 -0.006 0.29 No 

MASTL 736 -0.008 0.28 No 

HOXD11 742 -0.008 0.28 No 

TRMT13 762 -0.010 0.27 No 

DZIP3 918 -0.023 0.15 No 

HPGD 920 -0.023 0.16 No 

RFWD3 947 -0.026 0.14 No 

CEP192 951 -0.027 0.15 No 

FBXO15 957 -0.027 0.15 No 

DIAPH3 999 -0.031 0.13 No 

ZNF43 1099 -0.041 0.07 No 

SLFN11 1214 -0.057 -0.01 No 

TMEFF2 1247 -0.063 -0.01 No 

EPHA5 1331 -0.099 -0.05 No 

TNKS 1345 -0.119 -0.03 No 

CLVS2 1369 -0.186 0.00 No 

 
(D) Targets of E2F family of transcription factors 

Gene symbol Rank in gene list Rank metric score (= slope) Running ES Core enrichment 

RRM2 33 0.092 0.08 Yes 

E2F8 53 0.079 0.15 Yes 

GMNN 87 0.066 0.20 Yes 

NELL2 92 0.065 0.27 Yes 

CDCA7 135 0.056 0.30 Yes 

E2F7 143 0.055 0.36 Yes 

ATF5 151 0.054 0.41 Yes 

DNMT1 179 0.047 0.44 Yes 

NRP2 222 0.042 0.46 Yes 

POLE2 245 0.039 0.49 Yes 

RASAL2 263 0.037 0.52 Yes 

FANCD2 269 0.036 0.55 Yes 

ID3 332 0.029 0.54 Yes 

MCM2 350 0.027 0.55 Yes 

DMD 360 0.025 0.58 Yes 

STAG1 413 0.019 0.56 No 
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SMC6 458 0.014 0.54 No 

INTS7 531 0.008 0.50 No 

PCSK1 535 0.007 0.50 No 

PRRC2C 587 0.004 0.47 No 

TOPBP1 640 0.000 0.43 No 

PODN 641 0.000 0.43 No 

KPNB1 643 0.000 0.43 No 

TRMT13 762 -0.010 0.36 No 

SMC3 895 -0.021 0.28 No 

FMO4 980 -0.029 0.25 No 

ALDH6A1 1066 -0.037 0.23 No 

 
(E) Targets of transcription factor TCF3 

Gene symbol Rank in gene list Rank metric score (= slope) Running ES Core enrichment 

NETO2 3 0.157 0.18 Yes 

DPYSL5 8 0.135 0.34 Yes 

FLNC 73 0.070 0.38 Yes 

BCL11B 80 0.068 0.45 Yes 

STC2 83 0.068 0.53 Yes 

CD47 110 0.062 0.59 Yes 

CDH2 148 0.054 0.62 Yes 

MACF1 195 0.045 0.64 Yes 

MTSS1 214 0.043 0.68 Yes 

PODXL 297 0.033 0.66 No 

HOXB7 468 0.013 0.55 No 

PARP8 493 0.011 0.55 No 

DGKD 576 0.004 0.49 No 

KLF10 871 -0.019 0.30 No 

DSCAM 891 -0.021 0.31 No 

DAAM1 1075 -0.039 0.22 No 

 
Suppl. Table 7: List of genes in GSEA core enrichments, which contribute most to the found enrichments.(A) Term 
"REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS". (B) Term "WP_GPCRS_CLASS_A_RHODOPSINLIKE". (C) Targets of 
transcription factor RNF2. (D) Targets of E2F family of transcription factors. (E) Targets of transcription factor TCF3. 
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C3tft Regulatory target gene sets: transcription factor targets 
(GSEA) 
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CDK2 Cyclin dependent kinase 2 

CDK4 Cyclin dependent kinease 4 
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E2F3 E2F transcription factor 3 

E2F4 E2F transcription factor 4 
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ETV4 ETS variant transcription factor 4 
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FAXDC2 Fatty acid hydroxylase domain containing 2 

FDA Food and Drug Administration 
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FEV FEV transcription factor, ETS family member 

FLI1 Fli-1 proto-oncogene, ETS transcription factor 

FRZB Frizzled related protein 
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gldm Gray level dependence matrix 

glrlm Gray level run length matrix 

glszm Gray level size zone matrix 

GO Gene Ontology 
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GSEA Gene set enrichment analysis 
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HIF1A Hypoxia inducible factor 1 subunit alpha 

HLA Human leukocyte antigen 

HPO Human Phenotype Ontology 

HR Hazard ratio 

IBSI Image biomarker standardization initiative 

ICC Intraclass correlation coefficient 
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limma Linear models for microarray data 

LoG  Laplacian of Gaussian filter 

logFC Log2 fold change 

LPAR4 Lysophosphatidic acid receptor 4 

LPAR6 Lysophosphatidic acid receptor 6 
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MCC Matthew's correlation coefficient  

MCM2 Minichromosome maintenance complex component 2 

MKI67 Marker of proliferation Ki-67 

MR Magnetic resonance 

MYBL2 MYB proto-oncogene like 2 

MYL2 Myosin light chain 2 

n Number 
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NEB Nebulin 

NES Normalized enrichment score  

NETO2 Neuropilin and tolloid like 2 

ngtdm Neighboring gray tone difference matrix features 

NPY Neuropeptide Y 

NPY1R Neuropeptide Y receptor Y1 

NPY2R Neuropeptide Y receptor Y2 

NPY5R Neuropeptide Y receptor Y5 

NPY6R Neuropeptide Y receptor Y6 (pseudogene) 

OS Overall survival 
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PET Positron emission tomography 

PGAP1 Post-GPI attachment to proteins inositol deacylase 1 

PLSCR4 Phospholipid scramblase 4 

PPY Pancreatic polypeptide 

PR AUC Area under the precision-recall curve 
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r2 Squared Pearson correlation coefficient 

RMA Robust Multichip Average  

RNA Ribonucleic acid 

RNF2 Ring finger protein 2 

ROC AUC Area under the receiver operating characteristic curve 

SGIP1 SH3GL interacting endocytic adaptor 1 

SLC17A8 Solute carrier family 17 member 8 

SLC38A4 Solute carrier family 38 member 4 

SMGs Significantly mutated genes 

SOX2 SRY-box transcription factor 2 

STAG2 Stromal antigen 2 

SUV Standardized uptake value 

SUVmax Maximal standardized uptake value 

SUVmean Mean standardized uptake value 

SYT1 Synaptotagmin 1 

TCF3 Transcription factor 3 

TES Testin LIM domain protein 

TF Transcription factor 

TOP2A DNA topoisomerase II alpha 

TP53 Tumor protein p53 

ZDHHC21 Zinc finger DHHC-type palmitoyltransferase 21 
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