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ABSTRACT

Radar devices sense the environment and detect range, velocity,
and angel of arrival by applying multiple Fourier transformations.
However, these calculations are expensive and assume that the data
are in memory. Frequency-Modulated-Continuous-Wave sensors
are primarily used in the automotive industry but are affected by
signal superposition with other sensors. It can introduce ghost
targets or increase the noise such that low reflective targets are
lost. Inspired by the energy efficiency of Spiking Neural Networks,
we show that Resonate-and-Fire neurons are able to encode the
temporal radar signal into spikes and use a population of Leaky
Integrate-and-Fire neurons to distinguish between the normality
and patterns such as interference or saturation. We use simulations
to prove the concept and achieve in this preliminary study an
average accuracy of 85% by utilizing Back-Propagation Through
Time with surrogate gradient learning.
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1 INTRODUCTION

The increasing level of autonomy in automobiles and the growing
number of vehicles with advanced driver assistance systems drive
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the necessity of a precise and reliable environment perception. One
key element of these perception systems is the Radio Detection
and Ranging (RADAR) sensor, which transmits electromagnetic
signals at carrier frequencies around 77 GHz [13] and perceives its
environment based on the received reflections. Unlike cameras, the
radar sensor works in various conditions, such as low light and bad
weather.

In the automotive industry, the Frequency-Modulated-Continu-
ous-Wave (FMCW) modulation scheme is commonly used in which
the carrier frequency is linearly modulated over time. During short
measurement intervals, the emitted signal frequency continuously
increases. The temporal delay introduced by the round trip time
of the reflected signal expresses itself in a frequency difference
between the received signal and the currently emitted waveform.
Thus, this frequency difference is proportional to the distance be-
tween emitter and target.

Every radar emitter can modulate the transmit signal freely as
long as it adheres to the official regulations. The modulation scheme
can differ, for example, in the measurement intervals’ length, the
frequency modulation’s slope, and the length and order of active
and inactive periods. In a limited frequency band with multiple
RADAR sensors operating simultaneously, the likelihood of signal
superposition increases. This superposition is interference and can
either introduce ghost targets or increase the noise level. Targets
with a low reflective power could be lost in the noise level of non-
coherent interference [6]. Thus, it is crucial to detect interference to
ensure the assistance systems’ reliability and prevent accidents. The
system has to inform the user or mitigate the effect of interference.
[2, 17] analytically investigate radar interference.

Current approaches to detect the interfered signal sections com-
prise streaming evaluations like the detection of sudden increases
of the signal amplitude or the machine learning-based analyses of
complete measurements in the time domain [8] or the frequency do-
main [15]. The limitations of these approaches are either the limited
ability to detect interference scenarios or the restricted compute
performance and power budget in this embedded application.

In this work, we explore the use of Spiking Neural Networks
(SNNs) in this application. Their energy-efficient event-based com-
putation scheme renders them an interesting opportunity for detect-
ing complex patterns in restricted environments [3]. SNNs process
information by exchanging all-or-nothing pulses — spikes — be-
tween neurons. In contrast to common artificial neural networks,
this enables an energy-efficient time-based computation scheme,
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Figure 1: Block-diagram of the Radar sensor and the connec-
tion of the proposed pattern detector for interference detec-
tion. The spiking network architecture with ResFire input
stream encoding and the hidden population of LIF neurons.
The output is the membrane potential of the output neurons
without leak and spike mechanism.

in which only those parts of the network are updated where spikes
are emitted [4].

We use Resonate-and-Fire (ResFire) neurons to convert the con-
tinuous signal into a frequency-dependent spike representation.
Therefore, the ResFire oscillates with the resonate frequency, and
the threshold suppresses the noise component. These spikes are for-
warded into a hidden population of Leaky Integrate-and-Fire (LIF)
neurons, and the output uses Leaky Integrator (LI) with an insignif-
icant leak.

In the first step, we apply the approach in discrete time steps on
the discretized and quantized signal. However, the approach is not
limited to a purely digital implementation. With analog implemen-
tations of the ResFire and LIF neurons, as shown by [10, 11], the
entire interference detection can be realized before the analog-to-
digital conversion.

2 NEURON MODELS

The architecture for the differentiation between normal, interfer-
ence, and saturation is shown in Figure 1. It consists of an encoding,
hidden, and output layer of fully spiking neurons. The data are
converted into spikes after the analog-to-digital conversion in the
radar sensor. In the following, we will describe the dynamics of the
different neurons of the architecture.

2.1 Resonate-and-Fire Neuron

The encoding layer consists of ResFire neurons, which transform
the time domain signal into a temporal-spatial representation of
the frequency components. Originally, the neuron was found by
Izhikevich [9] to simulate an oscillatory membrane potential in-
spired by biological observation. Afterward, [1] showed that these
neurons have similarities to the traditional Fourier transform.
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The ResFire neuron represents a damped oscillation of the mem-
brane potential and therefore provides some very interesting prop-
erties. Izhikevich has proposed the neuron subthreshold dynamics
as the following linear system [9]:

b -w

v+
w b

0=

i
. ] 1)
where the resonant frequency of the neuron is defined by the an-
gular frequency w = 27 f and the damping factor b affects the
time to reach zero amplitude of the oscillation. We use in all our
simulations the damping factor of —1. In our simulations we use
the exact solution of the given differential equation by utilizing the
exact integration method proposed by [16], hence we can define
the discrete representation of the ResFire neurons as
zln] = &M% I gln—1] +iln], 6
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where At is the simulation step size. With the Euler formula, the
equation can be reformulated to cosine and sinus representation,
where the damping factor A and the oscillation kernel At w can be
precalculated for every neuron.

The generation of an output action potential is similar to the LIF,
which we use as hidden neurons. If the voltage-like variable Im(z)
exceeds a predefined threshold J, the neuron generates a spike (%)
and the internal states are reset.

{1, if Im(z[n]) > & — z[n] = 0
6[n] = : (3)
0, otherwise.

In [12] they use a different threshold method by forcing to spike
only at the peak of the oscillation and not in the rising edge by
detecting the zero transition of the current-like variable Re(z). This
additional complexity ensures a constant inter-spike-interval but
would increase the requirements for an analog implementation of
the neuron. Therefore, we focus on the usage of the simpler thresh-
old method. An exciting side effect of the threshold is the early
suppression of noise by focusing on higher amplitude oscillations.
After the threshold is exceeded, the neuron states are reset. In the
original work, only the real component was reset to zero such that
the neuron’s damped oscillation could continue, which provides an
important feature for spike-based inputs. With continuous input
values, such a threshold increases the number of spikes and adds
instability to the symmetric frequency detection, which we could
observe during our simulations. Thus, we use the approach to reset
the complete neuron to zero, and if the frequency still exists in the

input, the neuron’s oscillation starts to increase again.

2.2 Leaky Integrate-and-Fire

As hidden neuron population, we use the LIF neuron due to its
computational performance. The neuron’s subthreshold dynamics
are
—v+i
0= ; 4)

Tmem

where v represents the membrane potential and i the input current,
consisting of the superposition of the alpha-shaped input spikes.
The neuron integrates the incoming current of the weighted spikes
for the forward and recurrent connection. When v > ¢, then the
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neuron has exceeded the threshold and emits an action potential
with a membrane potential reset to zero. We refer to [5] for more
details about the neuron and the corresponding documentation of
the Norse simulator [14].

The readout neuron is a variation of the LIF neuron without
the firing and reset mechanism and is, therefore, called LI In this
application, the leak is insignificant, but it provides the capability
of forgetting information and of detecting the exact time of inter-
ference. Each readout neuron represents the prediction probability
of each class.

3 NETWORK TOPOLOGY AND TRAINING

The spiking network is connected with the radar sensor after the
digital processing of the Analog-Digital-Converter (ADC) as shown
in Figure 1. Furthermore, it indicates the organization of the net-
work, comprising an encoding, hidden, and output layer.

The radar data, consisting of 1024 sample points, are propagated
as streams to the encoding layer without using weights. The en-
coding consists of 100 ResFire neurons, where each neuron has a
different resonate frequency. We use a linear scale with the fre-
quency step size of 100 kHz. The encoding layer is fully connected
with the hidden population, consisting of 50 LIF neurons with dense
recurrent connections. The output or readout layer consists of three
leaky integrators representing the integration of the events in the
membrane potential. We use three classes to identify the normal,
interference, and saturation pattern. Saturation can occur due to
the fact that the interfere has a high transmit power and is close to
the sensor. For the network simulation, we use the Norse simulator
[14] that utilizes the surrogate gradient learning to enable Back-
Propagation Through Time (BPTT). We omit the training of the
encoding layer because the difference between the threshold and
the membrane potential varies due to the oscillating behavior of the
neuron. Therefore, we focus the training on the hidden population
of recurrent LIF neurons. The negative-log-likelihood loss function
minimizes the error between the true and the predicted class by
using the logarithmic softmax function of the readout neuron mem-
brane potential at the final time step. During training, we use class
weights to overcome the unbalanced occurrence of the classes.

4 EXPERIMENTS AND RESULTS

We use a simulator to generate the radar signal with random targets
with various range, angle, and velocity settings. The chirp sequence
of the sensor under test, who is the victim, is kept constant be-
cause it corresponds to real implementations. The aggressor chirp
sequence varies because not every sensor is the same. Therefore,
we use the same simulator and limits as described in [8]. The radar
time series is separated into consecutive chirps and invalid regions,
such as the wait time between chirps is removed. Therefore, we use
the same data as typically for the signal processing pipeline. Our
victim radar uses 8 chirps where different interference could affect
the signal. Hence, the dataset consists of 22781 training and 2531
test chirps with randomly generated targets. The dataset differs to
[8] because we use additionally the saturation class, which appears
during very strong interference or due to close targets. The train
and test set have a similar class distribution; on average 66% are
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Table 1: Simulation results of the proposed architecture with
an overall accuracy of 85%

class precision ‘ recall ‘ f1-score
normal 0.83 0.97 0.90
interference 0.83 0.43 0.57
saturation 1.00 1.00 1.00
1
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Figure 2: The encoding layer suppresses the low amplitude
interference and focuses on specific signal components. a)
shows an exemplary radar signal and b) the corresponding
readout potential without the detection of interference.

the normal class, 21.5% represent interference, and 12.5% of the
samples are saturated.

We utilize standard statistical methods [7], such as precision and
recall, to show the efficiency of the interference detection method.
Table 1 shows the examples of the best performing architecture,
which is shown in Figure 1. The class saturation is detected very
well since the signal has a high amplitude, and many spikes are
generated during the encoding stage. The missed detections of the
interference class come from the low amplitude interference for a
short duration, which has a minor effect on the overall signal pro-
cessing and are very difficult to detect due to the noise suppressing
effect of ResFire neurons. The high precision and low recall mean
fewer samples are detected as interference, but most detected ones
are actual interference. Figure 2 shows the radar signal with inter-
ference, where the readout neurons cannot detect it because the
ResFire neurons suppress the interference activity due to the low
amplitude. The false detected interference samples are also very
interesting because some classify the sample very early as inter-
ference, and the reason could be that interference not only affects
the valid sample points but also the signal outside of the window
and can negatively affect the beginning of the series. The accurate
labeling of the anomalies is complex in the time-domain signal. The
Figure 3 shows an exemplary classification of the interference class.
The encoded spike train shows the interference as a V-shaped spike
activity. The reason for this activity is that the received signal is
mixed with the transmit signal to extract the frequency difference
that is proportional to the time of flight between the sensor and
targets. A complete crossing of the instantaneous frequency during
interference leads from a negative to a positive frequency and is



ICONS 2022, July 27-29, 2022, Knoxville, TN, USA

]
< 80
Z go Terkgrrtoindeimnn gl g
g 40
2 20 K
14
a) Encoding Spike Train
—— normal
2 0.6 interference
E/ saturation
5041
]
E 0.2
w0

time
b) Readout Neurons

Figure 3: Example of an interfered radar signal. a) is the
spike train of the encoding layer with visible interference,
and b) shows the softmax function of the membrane poten-
tial of the readout neurons with rapid change of the classifi-
cation due to interference.

in the center zero [17], which is also shown by the spike train in
Figure 3. The longer period of lower resonant frequency ResFire
neurons (smaller index) explains the temporal spike shift. The read-
out neuron indicates a rapid change at the time of interference from
the normal to the interference class. Afterward, the certainty about
the interference class decreases because the signal is again nor-
mal. We observed that readout neurons with a smaller membrane
time constant are able to indicate faster changes, which we tried to
avoid for the classification of a complete ramp. The hard threshold
mechanism of the ResFire neurons provides two properties: 1) noise
suppresses and 2) low sensitivity to low interference amplitude. The
encoding stage already focuses on stronger signal components and
removes low amplitude signals such as interference and noise.

5 CONCLUSION AND FUTURE RESEARCH

The detection of failures is essential in various applications, so far
there is not a single solution for everything. Therefore, we focus on
detecting interference and saturation by only analyzing the radar
ramp signal. We show the spike encoding with ResFire neurons
and the spike-based processing of a LIF population. However, the
performance of the proposed system is reduced due to the fact
that ResFire neurons suppress noise and low amplitude signals,
which can even be seen as an advantage because the undetected
interference patterns do not influence the signal processing and
low reflective targets can still be detected.

Furthermore, the used dataset is limited because of a missing
definition of the strength of disturbance, which affects the over-
all performance of the detection. A public dataset with labels and
the strength of interference could increase the comparability of
approaches. The future research is inspired by the idea to overcome
the ADC and to enable event-driven processing in analog hardware
to reduce the system’s energy consumption by simultaneously re-
moving noise. Therefore, we investigate approaches to continuously
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detect interference in the radar signal to show that SNNs are poten-
tial competitors to traditional signal processing algorithms. Thus,

we will also investigate approaches to mitigate the interference and
retain the information of the signal that can be further processed

in the spiking domain. One important step is the detection of the
exact time of interference, as it was already observed with readout
neurons with a smaller membrane time constant.
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