
Technische Universität München

TUM School of Computation, Information and Technology

Efficient Analytical Workflows for
Computational Database Systems

André Kohn

Technische Universität München

TUM School of Computation, Information and Technology

Efficient Analytical Workflows for
Computational Database Systems

André Kohn

Vollständiger Abdruck der von der TUM School of Computation, Informa-
tion and Technology der Technischen Universität München zur Erlangung des
akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Helmut Seidl

Prüfer der Dissertation: 1. Prof. Dr. Thomas Neumann

2. Prof. Dr. Alfons Kemper

Die Dissertation wurde am 20.09.2022 bei der Technischen Universität
München eingereicht und durch die TUM School of Computation,
Information and Technology am 17.01.2023 angenommen.

Abstract

Demand for data insights is at an all-time high, yet relational data processing
integrates poorly into analytical workflows. This thesis improves the workflow
capabilities of relational database management systems. First, we introduce the
language DashQL, an extension to SQL that describes analytical workflows in a
single coherent language. The language facilitates holistic optimizations across
the domains of information visualization and traditional relational algebra. We
include knowledge about the workflow context to implement visualization-
driven aggregation, predicate pushdown, and adaptive materialization. Sec-
ond, we extend the analytical capabilities of database systems through ad-
vanced aggregation functions and statistics. We decouple monolithic aggre-
gation logic into low-level plan operators to compose complex SQL aggregates
and speed-up multi-expression queries. Third, we improve the flexibility of
compilation-based database systems for varying workflow characteristics. Our
adaptive execution framework includes runtime feedback to reduce latencies
of cheap queries while reaching maximum efficiency when necessary. Finally,
we make analytical workflows more interactive by pushing some computation
closer to the user through DuckDB-Wasm. DuckDB-Wasm is a WebAssembly
version of the embedded database system DuckDB that evaluates analytical
SQL queries efficiently in the browser.

Zusammenfassung

Daten-Analysen sind gefragter denn je, und dennoch ist die relationale
Daten-Verarbeitung schlecht in analytische Arbeitsabläufe integriert.
Diese Arbeit verbessert die Unterstützung von Arbeitsabläufen in
relationalen Datenbanksystemen. Zuerst stellen wir die Sprache DashQL
vor, welche die Sprache SQL erweitert, um analytische Arbeitsabläufe
zu beschreiben. Die Sprache vereinfacht ganzheitliche Optimierungen
in den Domänen der Informations-Visualisierung und der traditionellen
relationalen Algebra. DashQL berücksichtigt Kontext-Informationen
analytischer Abläufe, um visualisierungs-spezifische Aggregationen,
verlagerte Prädikats-Auswertung und adaptive Materialisierung zu
implementieren. Außerdem erweitern wir die analytische Funktionalität von
Datenbanksystemen um komplexe Aggregatsfunktionen und Statistiken.
Wir entkoppeln monolithische Aggregations-Logik in feingranulare
Plan-Operatoren, um fortgeschrittene SQL-Aggregate auszuwerten und
Abfragen mit mehreren Ausdrücken zu beschleunigen. Weiterhin verbessern
wir die Flexibilität kompilierender Datenbanksysteme gegenüber Abläufen
mit unterschiedlichen Charakteristiken. Unser adaptives Ausführungs-System
benutzt Laufzeit-Informationen, um Latenzen billiger Abfragen zu reduzieren,
ohne dabei auf eine maximale Effizienz bei teuren Abfragen zu verzichten.
Zuletzt verbessern wir die Interaktivität von analytischen Arbeitsabläufen,
indem wir Berechnungen mit Hilfe von DuckDB-Wasm näher zum Benutzer
verlagern. DuckDB-Wasm ist eine nach WebAssembly übersetzte Version des
integrierten Datenbanksystems DuckDB und kann analytische SQL Abfragen
effizient im Browser auswerten.

A C K N O W L E D G M E N T S

First, I am very grateful to my advisor Thomas Neumann. Thomas operates
at the frontier of database system research, and I feel privileged that I could be
a part of his research group. He has developed two of the fastest compilation-
based database systems in the world, offering his Ph.D. students an ideal en-
vironment for exploring their own ideas. His students are free to follow their
interests, which gifted me five years of diverse and self-determined research. I
am grateful to Alfons Kemper, who held the first foundational database course
in my undergraduate studies. He pulls many strings behind the scenes in our
group and gives the students a steady stream of advice and anecdotes. I also
want to thank Jana Giceva, who inspired new ideas and assisted us in breaking
new ground with research around MLIR.

I am lucky to have worked with Viktor Leis, who introduced me to the
research field and convinced me to pursue a Ph.D. He taught me valuable
lessons on short evaluation loops, the power of ggplot, and scientific paper
writing. Working with him was characterized by explorative discussions with
honest feedback, and I warmly recommend him as a mentor.

I want to thank Dominik Moritz for our long chats on data visualization and
database systems. Dominik is an open-minded and incredibly well-connected
researcher with an impressive background in fast visualization techniques. He
helped me shape DuckDB-Wasm and pushed me towards using Arrow for
efficient communication with WebAssembly. He also inspired me to try Vega-
Lite for declarative visualizations in the language DashQL.

I also want to thank Hannes Mühleisen and Mark Raasveldt for their efforts
around DuckDB. They helped me release DuckDB-Wasm as an open-source
project and promoted future research around front-facing analytics. Hannes
and Mark both have extensive knowledge of vectorized databases, which pre-
sented an exciting contrast to compilation-based systems.

I am grateful for my two internships in the Hyper database group at Tableau.
My mentor Jan Finis supported me with many technical discussions and gave
me the freedom to realize my own ideas during two fascinating projects. I en-
joyed working with Michael Haubenschild, Adrian Vogelsgesang, Jonas Kam-

i

ii acknowledgments

merer, Manuel Then, Jonas Eckhardt, and Tobias Mühleisen, who impressed
me through their expertise and work culture.

Thank you also to my colleagues at the TUM, Jan Böttcher, Timo Kersten,
Maximilian Bandle, Philipp Fent, Dominik Durner, Mortiz Sichert, Alexander
Beischl, Andreas Kipf, Christoph Anneser, Alice Rey, Michael Jungmair, To-
bias Schmidt, Altan Birler, Ferdinand Gruber, Bernhard Radke, Lukas Vogel,
Michael Freitag, Maximilian Reif, Maximilian Rieger and Alex Khatskevich for
debating trends, for evaluating ground-breaking ideas, for enduring euphoric
demos, and for all other activities besides our research.

Finally, I want to thank Kristina and my parents for their support and love
during this journey. This thesis wouldn’t have been possible without you.

Thank You.

acknowledgments iii

Funding.
This project has received funding from the European Research Council

(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 725286).

P R E FA C E

Excerpts of this thesis were published in advance.

Chapter 4 has previously been published in:
André Kohn, Viktor Leis, and Thomas Neumann. “Building Advanced
SQL Analytics From Low-Level Plan Operators”. In: SIGMOD. 2021,
pp. 1001–1013

Chapter 5 has previously been published in:
André Kohn, Viktor Leis, and Thomas Neumann. “Adaptive Execution
of Compiled Queries”. In: ICDE. Apr. 2018, pp. 197–208

André Kohn, Viktor Leis, and Thomas Neumann. “Making Compiling
Query Engines Practical”. In: TKDE 33.2 (2021), pp. 597–612

Initial experiments were performed in:
André Kohn. “Adaptive Execution of Compiled Queries”. MA thesis.
Technical University of Munich, 2017

Chapter 6 has previously been published in:
André Kohn, Dominik Moritz, Mark Raasveldt, Hannes Mühleisen, and
Thomas Neumann. “DuckDB-Wasm: Fast Analytical Processing for the
Web”. In: PVLDB. vol. 15. 12. 2022, pp. 3574–3577

v

C O N T E N T S

Acknowledgments i

Preface v

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Thesis Contributions . 2

1.3 Prior Publications and Authorship 4

2 Background 5

2.1 Analytical Data Processing . 5

2.1.1 Efficiency through Dynamic Code Generation 5

2.1.2 Towards Computational Database Systems 6

2.2 Information Visualization . 7

2.2.1 Declarative Visualization . 8

2.2.2 Data Visualization Management Systems 9

3 Complete Analytical Workflows with DashQL 11

3.1 Introduction . 11

3.2 Grammar of Analytics . 13

3.2.1 SQL Extension . 13

3.2.2 Driving Analytical Workflows 16

3.3 Implementation . 19

3.3.1 AST Format . 19

3.3.2 From AST to Task . 20

3.3.3 Adaptive Task Graphs . 21

3.3.4 Complementing Vega-Lite 23

3.3.5 Language Extensions . 25

3.3.6 Holistic Optimization . 26

3.4 Example Data Exploration . 29

3.5 Visualization with AM4 . 32

3.6 Related Work . 33

3.6.1 Declarative Analysis Languages 33

3.6.2 Scalable Visual Analysis . 35

3.7 Summary . 36

4 Evaluating Advanced Analytical SQL Queries 37

vii

viii contents

4.1 Introduction . 37

4.2 Background . 39

4.3 From SQL To LOLEPOPs . 42

4.3.1 LOLEPOPs . 42

4.3.2 From Tree to DAG . 44

4.3.3 Advanced Expressions . 48

4.3.4 Extensibility . 51

4.4 LOLEPOP Implementation . 52

4.4.1 Code Generation . 52

4.4.2 Tuple Buffer . 54

4.4.3 Sorting . 56

4.4.4 Aggregation . 57

4.4.5 Partitioning . 59

4.4.6 Combine . 59

4.5 Evaluation . 60

4.5.1 Comparison with other Systems 60

4.5.2 Advanced Aggregates in TPC-H 64

4.5.3 LOLEPOPs in Action . 65

4.5.4 Adaptive Sorting . 66

4.6 Related Work . 68

4.7 Summary . 69

5 Reducing Latency in Compiling Query Engines 71

5.1 Introduction . 71

5.2 Query Execution Via Compilation 73

5.2.1 Latency vs. Throughput Tradeoff 74

5.2.2 Compiling Large Queries 75

5.3 Adaptive Execution . 76

5.3.1 Overview . 76

5.3.2 Tracking Query Progress . 78

5.3.3 Switching Between Execution Modes 78

5.3.4 Choosing Execution Modes 80

5.4 Fast Bytecode Interpretation . 82

5.4.1 Virtual Machine . 83

5.4.2 Translating into VM Code 84

5.4.3 Register Allocation . 86

5.4.4 Linear-Time Liveness Computation 87

5.4.5 Interoperability . 91

5.4.6 Optimizations . 91

contents ix

5.5 Evaluation . 92

5.5.1 Static vs. Adaptive Mode Selection 93

5.5.2 Adaptive Execution in Action 94

5.5.3 Planning and Compilation Time 96

5.5.4 Performance of Interpreted and Compiled Code 97

5.5.5 Compiling Very Large Queries 99

5.5.6 Adaptivity to Data Size and Parallelism 100

5.5.7 Resistance to Estimation Errors 102

5.6 Related Work . 103

5.7 Summary . 105

6 Eliminating Latency with WebAssembly 107

6.1 Introduction . 107

6.2 Design and Implementation . 108

6.2.1 Embedding WebAssembly 108

6.2.2 Web Filesystem . 109

6.2.3 Web Workers . 110

6.2.4 User-Defined Functions . 111

6.3 TPC-H Benchmark . 111

6.4 Demonstration Scenario . 113

6.5 Summary . 114

7 Conclusion 117

7.1 Review of Thesis Contributions . 117

7.2 Limitations of the Systems . 118

7.3 Future Directions . 118

7.3.1 Distributing Workflows . 119

7.3.2 Advanced Aggregation . 119

7.3.3 Latency-driven Optimization 120

7.4 Concluding Remarks . 120

Bibliography 121

L I S T O F F I G U R E S

Figure 1 Kandel et al. describe five tasks that occur in data analy-
sis workflows [55]. Profiling and Modeling are evaluated
within database systems. Discovery, Wrangling and Re-
porting cannot be fomulated in SQL alone and are often
implemented externally. 1

Figure 2 Example of a DashQL script describing a complete anal-
ysis workflow. The script loads site activity data, re-
solves country names via ISO 3166 country codes, ag-
gregates daily page views, and visualizes the data using
an area chart and a table. DashQL statements unify user
interactions, data loading, and the analysis in a single
language. 11

Figure 3 Grammar rules of the five DashQL statements SET,
DECLARE, IMPORT, LOAD and VISUALIZE that are combined
with the statement rules of PostgreSQL. 14

Figure 4 DashQL scripts as a driver for data analysis workflows.
AST nodes store the location in the input text, the node
type, the attribute key, the index of the parent node, and
either a raw value or a span of children nodes. Script-
based analysis workflows allow for interactive explo-
ration, scalable dashboards, and a collaborative work-
flow development. 16

Figure 5 Example of a task graph that is derived from a previous
task graph and an AST-based script difference. The two
scripts visualize grouped timeseries data and differ in
a deleted statement and the grouping granularity. The
AST colors equal statements in green, changes in blue
and deletions in orange. 20

Figure 6 Two VISUALIZE statements that produce the same time
series line chart, showing website hits of multiple web-
sites. DashQL generates Vega-Lite specifications based
on the table schema and statistics. 23

xi

xii list of figures

Figure 7 Two load statements that extract two relations from a
single JSON document using JMESPath expressions.
Both expressions extract populations in Oklahoma. The
first expression emits the city data in column-major
format, the second expression returns county data in
row-major format. 25

Figure 8 M4, a query for value-preserving time series aggrega-
tion, described by Jugel et al [54]. This version uses a
CTE instead of a subquery with equal semantics. 27

Figure 9 AM4, a more efficient version of M4 that provides value-
preserving time series aggregation using a single scan
and the aggregation functions arg_min and arg_max. . . . 28

Figure 10 Authoring an example analysis workflow with DashQL.
The workflow explores website activity data in four
steps. The steps are labeled with 1 to 4 and associate
textual changes in the script with adjusted visual
output. Visualization statements are colored in green,
the input statement and the corresponding predicate in
orange. 30

Figure 11 Downloading and rendering dominate the visualization
times for increasing data sizes in a client-server setting.
M4 and AM4 efficiently reduce large datasets to a small
cardinality that can be visualized quickly. 32

Figure 12 Translation of a GROUP BY operator into a computation
graph to construct a DAG of LOLEPOPs. 44

Figure 13 Algorithm to derive the LOLEPOP DAG. 46

Figure 14 Plans for three example queries outlinining challenges
with composed aggregates, implicit joins and order sen-
sitivy. 48

Figure 15 Plans for three example queries that allow for the opti-
mization of result ordering and aggregate nesting. 50

Figure 16 Plans and simplified code for a query that computes a
median, an average, and a distinct sum of two joined
relations. 53

Figure 17 Tuple buffer and translator code that accesses sorted key
ranges through iterator abstraction at query compile time. 55

Figure 18 Morsel-Driven Quicksort and merge of two partitions.
One partition is split eagerly to increase parallelism. . . . 56

list of figures xiii

Figure 19 Two-phase hash aggregation with two threads. The hash
tables on the left are fixed in size while the hash tables
in green grow dynamically. 58

Figure 20 Execution times of five TPC-H queries at scale factor 10

with and without additional aggregates. 63

Figure 21 Execution traces of two queries on the TPC-H schema at
scale factor 0.5 with four threads and 16 buffer partitions. 66

Figure 22 Sort performance for varying tuple sizes using different
access methods. 67

Figure 23 Architecture of compilation-based query engines. 73

Figure 24 Single-threaded query compilation and execution time
for different execution modes on TPC-H query 1 on scale
factor 1. 74

Figure 25 Execution modes and their compilation times. 76

Figure 26 Illustration of query plan translation to pseudo code.
queryStart is the main function. Each of the three query
pipelines is translated into a worker function. The lower
left corner shows that the work of each pipeline is split
into small morsels that are dynamically scheduled onto
threads. 77

Figure 27 Switching on-the-fly from interpretation to execution.
The dispatch code is run for every morsel. 79

Figure 28 LLVM compilation time for (un-)optimized machine
code for TPC-H and TPC-DS queries. 80

Figure 29 Extrapolation of the pipeline durations. 81

Figure 30 VM code fragment implementing the interpreter loop.
ip points to the current instruction and reg points to
the memory storing the registers. 82

Figure 31 Translation of LLVM IR into VM code. 84

Figure 32 Computing the liveness of a variable x. The vertices are
basic blocks, which are connected by control flow edges
(i.e., branch instructions). 87

Figure 33 Linear-time algorithm for liveness computation. 88

Figure 34 Dominator tree annotated with pre-/post-order. 89

Figure 35 Geometric mean of all TPC-H queries including plan-
ning, compilation, and execution using 8 threads for dif-
ferent scale factors and execution modes. 93

xiv list of figures

Figure 36 Plan and execution trace of TPC-H query 11 on scale
factor 1 using 4 threads. The optimized mode is not
shown, as its compilation takes very long (103ms). 95

Figure 37 Compilation times of queries with a large number of
instruction using optimized compilation, unoptimized
compilation and interpretation. 99

Figure 38 Plan and execution traces of TPC-H query 4 for adaptive
execution on scale factors 0.25 and 1 using 1, 2, and 4

threads. 101

Figure 39 The effect of different speed-up factors between the byte-
code interpreter and unoptimized compiled code on the
execution time for the TPC-H queries 1 – 5 at the scale
factors 1 and 10 using 8 threads. The constant used in
our system is marked in blue. 102

Figure 40 Browser-based analytics tools process data either locally
with a low efficiency or on servers with a high latency.
DuckDB-Wasm pushes the boundaries with fast analyti-
cal processing for the Web. 107

Figure 41 A SQL script that downloads stock data from AWS S3

stored in a Parquet file and joins it with a portfolio stored
in a CSV file. The left side presents multiple ways to ex-
ecute the script in a distributed setting. 1 shows the tra-
ditional separation between client and server, 3 a fully
local execution, 2 a hybrid mode in between. 109

Figure 42 A shell that runs entirely in the browser and evaluates
SQL queries using DuckDB-Wasm. The figure shows a
query joining two parquet files with the relations orders
and customer of the TPC-H benchmark at scale factor 0.1.
1 lists the query results and page accesses, 2 shows the
query plan. 113

L I S T O F TA B L E S

Table 1 LOLEPOPs for advanced SQL analytics. The input and
output are either a tuple stream (,) or tuple buffer
(,). 40

Table 2 Execution times in seconds of queries with simple ag-
gregates in HyPer, PostgreSQL and MonetDB. 61

Table 3 Execution times in seconds for advanced SQL queries on
the TPC-H lineitem table (scale factor 10). 62

Table 4 Planning and compilation times in ms for TPC-H queries
on PostgreSQL (“PG”), MonetDB (“Monet”), and HyPer. 96

Table 5 Execution times of TPC-H queries on scale factor 1 on
PostgreSQL (“PG”), MonetDB (“Monet”) and HyPer.
The geometric means (“geo.m.”) are over all 22 queries. . 97

Table 6 CPU counters (×106) for TPC-H queries 1 and 5 on scale
factor 1 using 1 thread. 98

Table 7 Execution times in seconds for TPC-H queries at the
scale factors 0.01, 0.1 and 0.5. 112

xv

1 I N T R O D U C T I O N

The amount of data that is being collected has never been greater. This has
a transformative impact on organizations, as they slowly understand the value
of data-driven decision-making across all departments and roles. Part of the
transformation is the data analyst that faces new requirements while growing
into an integral component of modern business operations.

In [55], Kandel et al. conducted a study on current data analysis practices in
enterprises. They characterize industrial methodologies based on interviews
with analysts from 25 organizations across multiple sectors, including health-
care, retail, marketing, and finance. The study identifies the five high-level
tasks shown in Figure 1 that frequently occur in analysis workflows: Discovery
refers to locating the data, such as files stored in a cloud data store. Wran-
gling means extracting tuples from that data, for example, by interpreting it as
JSON or CSV. Profiling verifies the quality of the data by checking distributions
and searching for errors and outliers. Modeling transforms the data, for exam-
ple, by computing summary statistics. Reporting produces insights that can be
communicated to consumers of the analysis.

Discovery Wrangling Profiling Modeling Reporting

In DBMS

Figure 1: Kandel et al. describe five tasks that occur in data analysis workflows [55].
Profiling and Modeling are evaluated within database systems. Discovery,
Wrangling and Reporting cannot be fomulated in SQL alone and are often
implemented externally.

The study further reveals common pain points. First, operating these work-
flows in a repeatable, reliable, and scalable way is difficult as the task execution
is spread across several systems. These systems produce different intermedi-
ate results, such as scripts, spreadsheet formulas, and data sets, that cannot be
assembled quickly. Additionally, the first two tasks, Discovery and Wrangling
are the most tedious and time-consuming. They involve locating and ingesting

1

2 introduction

incomplete data from multiple data sources and in different formats, a task
underserved by current systems. Moreover, the interviewed analysts consider
today’s visualization tools to be insufficiently scalable and too static for Report-
ing as they lack access to data provenance.

We consider the fractured task evaluation a significant obstacle to efficient
analysis workflows. Ultimately, analysis workflows are processes for ingest-
ing, transforming, and visualizing data sets, and yet, database management
systems drive only two out of the five tasks. Profiling and Modeling can be
formulated in SQL and therefore draw on decades of research on efficient
query optimization and execution. Wrangling and Reporting both interact with
database systems but are not expressible with SQL alone and are thus often
implemented externally. However, external implementations usually give up
on holistic data-driven optimizations, leaving the question if we should not
expand the workflow capabilities of database systems instead.

1.1 thesis statement

This thesis hypothesizes that relational database management systems can
efficiently evaluate complete analysis workflows. We suggest using a coherent
SQL-based language model for workflows to enable optimizations across the
domains of information visualization and data processing with traditional rela-
tional algebra. Such a language allows for a combination of advanced database
functionality, such as complex aggregation functions and declarative visualiza-
tion specifications. Finally, we increase the sensitivity of database systems
towards query latencies in interactive workflows through adaptive execution
strategies and by pushing computation to the user.

1.2 thesis contributions

This thesis makes contributions to accelerate analysis workflows in relational
database management systems. We call the resulting systems computational
databases and zoom in on four aspects that target the language model, aggre-
gation, latency, and distribution of workflows.

1.2 thesis contributions 3

complete analytical workflows with dashql. Chapter 3 introduces
the language DashQL. DashQL combines SQL, the grammar of relational
database systems, with a grammar of graphics in a grammar of analytics.
It supports preparing and visualizing arbitrarily complex SQL statements
in a single coherent language. The proximity to SQL facilitates holistic
optimizations of analysis workflows covering data input, encoding,
transformations, and visualizations. These optimizations use relation and
query metadata for visualization-driven aggregation, predicate pushdown,
and adaptive materialization. We introduce the DashQL language as an
extension to SQL and describe the efficient and interactive processing of
text-based analysis workflows.

advanced analytics using low-level plan operators. Aggregation
and statistics are prime sources of complexity in analysis workflows, and Chap-
ter 4 describes how to evaluate them efficiently. SQL already offers various
functionalities to summarize data, such as associative aggregates, distinct ag-
gregates, ordered-set aggregates, grouping sets, and window functions. These
features add significant complexity to a relational database system, restrain-
ing the support for additional sophisticated and combined aggregation func-
tions. Chapter 4 proposes a unified framework for advanced statistics that
composes all flavors of complex SQL aggregates from low-level plan operators.
These operators can reuse materialized intermediate results, which decouples
monolithic aggregation logic and speeds up complex multi-expression queries.
Our framework modularizes aggregate implementations and outperforms tra-
ditional systems whenever multiple aggregates are combined.

reducing latency in compiling query engines. Analytical workflows
are sensitive to latency spikes in interactive settings, which poses a problem
for database systems that use dynamic code generation for executing queries.
These systems compile SQL to machine code, resulting in very efficient query
plans at the cost of increased base latencies. Generating machine code can
take hundreds of milliseconds for complex queries, even with fast compila-
tion frameworks like LLVM. Such durations can disadvantage workflows that
execute many complex but quick queries. To solve this problem, Chapter 5 in-
troduces an adaptive execution framework, which dynamically switches from
interpretation to compilation. The framework uses a fast bytecode interpreter
for LLVM that executes queries without costly translation to machine code
and dramatically reduces query latency. Adaptive execution is fine-grained

4 introduction

and executes code paths of the same query using different execution modes.
We show that this approach achieves optimal performance in a wide variety of
settings—low latency for small data sets and maximum throughput for large
data sizes.

eliminating latency with webassembly. Chapter 6 introduces DuckDB-
Wasm. DuckDB-Wasm is a WebAssembly version of the embedded database
system DuckDB that evaluates analytical SQL queries in the browser. It can
further reduce query latencies of analysis workflows by eliminating costly
round-trips over the internet and pushing computation closer to the user. The
database runs asynchronously in web workers, supports efficient user-defined
functions written in JavaScript, and features a browser-agnostic filesystem that
reads local and remote data in pages. We show that DuckDB-Wasm outper-
forms previous data processing libraries for the Web in the TPC-H benchmark
at multiple scale factors.

1.3 prior publications and authorship

Although I am the principle author of the research in this dissertation, all
of the work was done in collaboration with my advisor Thomas Neumann.
Chapter 3 introduces the language and system DashQL that I discussed exten-
sively with Dominik Moritz from the Carnegie Mellon University. Chapter 4

proposes low-level plan operators for advanced aggregates and was published
at ACM SIGMOD 2020 as joint work with Viktor Leis. Chapter 5 describes
the adaptive optimization of query latencies in compiling query engines that I
started to explore in my Master’s thesis in 2017 and later expanded on at IEEE
ICDE 2018 and IEEE TKDE 2019 together with Viktor Leis. Chapter 6 intro-
duces DuckDB-Wasm that I developed with Dominik Moritz as well as Mark
Raasveldt and Hannes Mühleisen from the Centrum Wiskunde & Informatica
and was published at VLDB 2022. In this thesis, I use the first person plural to
reflect my collaborators’ contributions.

2 B A C KG R O U N D

This thesis contributes to the intersection between data processing and infor-
mation visualization and builds on prior work in both domains. We outline
foundational research for the thesis in the following and introduce specific re-
lated work in each chapter.

2.1 analytical data processing

In 1970, Codd introduced the relational data model [25]. He set off a race
for building the fastest database management systems, processing what would
become the de-facto standard representation of structured data. The race is
still ongoing today and is fueled by the continuously evolving hardware and
software landscapes. Particularly online analytical data processing, also called
"OLAP" presents an attractive target for low-level optimizations that squeeze
the last bit of performance out of given hardware. OLAP queries involve join-
ing and summarizing large datasets, an operation that quickly dominates the
entire execution time of analytical workflows.

2.1.1 Efficiency through Dynamic Code Generation

Around the beginning of the 20th century, the rise of main memory capaci-
ties powered a new wave of database systems entering this race. Large main
memory sizes steered database research from shadowing costly disk accesses
to optimizing for swift CPU caches. Boncz et al. demonstrated the severe
impact of cache-aware algorithms in the database systems MonetDB and Vec-
torWise [81, 15]. In 2011, Neumann pioneered a novel execution strategy for
the database system HyPer that efficiently translates SQL queries to machine
code [87]. This dynamic code generation eliminates the traditional overhead of
interpreting query plans by flattening plan pipelines into compact loops. The
generated code keeps values in CPU registers as long as possible and even
rivals the efficiency of hand-written query programs. Ever since, code gener-

5

6 background

ation has established itself as a major driver for fast analytical processing in
database systems and is used by a large and growing number of commercial
systems (e.g., Hekaton [31, 37], MemSQL [90], Spark [2], and Impala [124]) as
well as research projects (e.g., HIQUE [68], DBToaster [60], Tupleware [28, 27],
LegoBase [59], ViDa [56], Vodoo [95], Weld [89], Peloton [82, 92]).

On the flip side, the increased efficiency is accompanied by a higher system
complexity as code generation only serves as a staging point into the terri-
tory of classical compiler construction. While chasing maximum performance,
database systems slowly morph into domain-specific compilers with custom
intermediate representations and own optimization passes. The framework
LLVM provides initial relief through modular access to compiler components
but only partially fulfills the requirements of a database system. Kersten et al.,
therefore introduce their code generation framework for the database system
Umbra that abstracts operator translators, data structures, tuple handling, and
SQL values [57]. The system LegoBase reduces the system complexity of the
low-level code generation by lowering high-level programs through multiple
but simple, intermediate representations [59, 111]. LB2 simplifies code gener-
ation by deriving query programs automatically from interpreting operators
written in the high-level language Scala [118].

2.1.2 Towards Computational Database Systems

The growing SQL standard is an additional driver for continuous research
on relational database systems. Since the ’92 standard, SQL has grown consid-
erably and offers a variety of features for analytical workflows. The statistics
functionality in the standard started with simple associative aggregates such as
SUM, COUNT, MIN and MAX that can be computed for grouped data. In SQL:1999,
the grouping of values was extended by grouping sets that allow summariz-
ing data sets at multiple aggregation granularities simultaneously. SQL:2003

added window functions that compute aggregates for individual rows based
on surrounding values in a partition. They simplify time series analysis and
provide a convenient way to express ranking, moving averages, and cumula-
tive sums. SQL:2003 also added the capability of computing percentiles (e.g.,
median). PostgreSQL calls these functions ordered-set aggregates because per-
centiles require (partially) sorted data.

In parallel to the standardization efforts, several projects have extended re-
lational database systems to integrate external logic of analysis workflows. In-

2.2 information visualization 7

tegratedML by De Boe et al. [30] extends the SQL language with the state-
ments CREATE MODEL, TRAIN MODEL and the functions PREDICT and PROBABILITY

that add machine learning capabilities to SQL scripts. SolveDB, by Siksnys
et al. [114] introduces the statement SOLVESELECT for efficient problem solving
with linear programming in SQL. Hellerstein et al. implemented MADlib [49],
a rich library for the databases PostgreSQL and Greenplum that provides
advanced analytical functions for machine learning and statistics. Yu pro-
poses the statement CREATE GEOVIZ, implementing spatial optimizations for
data preparation and map visualizations. Schüle et al. describe ArrayQL [107],
a SQL extension with improved support for multidimensional arrays. Edi-
Flow [12], by Benzaken et al., is a workflow platform for visual analytical ap-
plications that implements a process model on top of relational algebra. Howe
et al. describe the merits of the SQL language over R programs for collabo-
rative science workflows in their system SQLShare [52]. The project Pipem-
izer [40], by Gakhar et al., lifts relational optimizations to the level of analytical
workflows by reordering jobs and identifying common subexpressions. We
identify this as a trend towards computational database systems that combine
the efficient processing of traditional relational algebra with domain-specific
algorithms.

2.2 information visualization

Three years prior to Codd’s publication of the relational data model, the
french cartographer Jacques Bertin made a major contribution to the theory
of information design in 1967. His Semiology of Graphics describes and catego-
rizes foundational concepts for graphic communication [13]. He focuses on
our visual perception of data with concepts like retinal variables that describe
the position, size and shape of a graphical representation. 16 years later, Tufte
expanded the field with an extensive collection of statistical graphics and a
detailed analysis on how to display data [123]. He introduced the concept of
data-ink ratio and coined the term chart junk as superfluous visual elements
that distract viewers from the actual information. Bertin and Tufte both ana-
lyzed the effectiveness of graphical representations and provided a foundation
for following research on information design.

8 background

2.2.1 Declarative Visualization

In 1999, Wilkinson shaped the field of declarative visualization specifications
decisively through his work Grammar of Graphics [129]. Wilkinson adopts the
work of Bertin and proposes a comprehensive language to construct a wide
range of statistical graphics from individual components. The result is a formal
model that allows users to describe a statistical chart instead of selecting from
a set of predefined chart types.

Inspired by Wilkinson, Stolte et al. later published the Polaris system that
constructs visual specifications of graphical displays based on pivot tables [116].
Polaris adopted the work of Wilkinson to formalize statistical transformations
and graphical representations but deviated from it in the underlying data
model. Wilkinson describes data transformations as part of his own non-
relational table algebra, while Polaris builds on a relational model for compati-
bility with SQL. Through SQL, Polaris provides data insights for a large variety
of OLAP databases later popularized in their commercial offering, Tableau.

In 2010, Wickham published ggplot2 [127], a grammar of graphics for the
programming language R that extends Wilkinsons’ ideas with a component
hierarchy [128]. Wickham proposes to change the parameterization of Wilkin-
sons components to build graphics from multiple layers of data. These layers
increase the interoperability and reuse between components and enable hierar-
chical default settings that condense specifications. ggplot2 is embedded into
the language R to reduce the friction between data visualization and the rest of
the analysis workflow. According to Wickham, using R offers a wide range of
prepackaged statistics functions and facilitates data import and manipulation.
This thesis follows a very similar idea in Chapter 3 by embedding visualization
and data import into the language SQL.

Polaris and ggplot2 share the same goal of abstracting and simplifying
graphical configuration settings. The projects D3 [16] and Vega [105] contrast
this approach by providing lower-level interfaces for visualization design. They
offer fine-grained control over statistical charts at the cost of more specific dec-
larations. D3 is a visualization library that targets the document object model
(DOM) in web browsers. It exposes arbitrary document elements instead of
hiding them behind a scene graph, improving the integration into the program-
ming language JavaScript. Vega, on the other hand, specifies visualizations
entirely in JSON documents. These documents are parsed and translated into
optimized dataflow graphs that unify input data and scene graph elements.
Both have in common that constructing a statistical graphic can become ver-

2.2 information visualization 9

bose. As a result, several projects build on top of Vega and D3 and use them
as intermediate representations [23, 75, 113, 42, 132].

One such project is Vega-Lite, a higher-level grammar on top of Vega that
Wongsuphasawat et al. developed for the Voyager system [131, 104]. Vega-Lite
abstracts the Vega grammar to simplify the enumeration of designs and opti-
mize data transformations and visual encodings. Their compiler lowers Vega-
Lite to Vega and uses a rule-based system to resolve ambiguities in specifica-
tions. They also describe the Compass recommendation engine that generates
Vega-Lite specifications from user selections, the data schema, and statistical
properties. Vega-Lite trades general expressiveness of the grammar for a con-
venient formalism and more room for optimizations. We adopt this concept
in Chapter 3 with the DashQL visualization statement that embeds Vega-Lite
specifications into SQL scripts.

2.2.2 Data Visualization Management Systems

Wu et al. outline their vision of an integrated Data Visualization Manage-
ment System (DVMS) that uses a declarative language to compile end-to-end
visualization pipelines into a set of relational algebra queries [133]. They note
that current visualization tools decouple the data processing from computa-
tions targeting visualization and rendering. These tools spare costly roundtrips
to database systems through local result caching, and additional downstream
data transforms. This introduces an information gap towards database systems
that are no longer aware of the user context. Instead, they waste computing
resources when repeatedly re-evaluating complex queries on user interactions.
Wu et al. use the panning of a map as an example, where a small gesture
may issue a query to recompute the entire map, even if the new input affects
only a tiny fraction of the result set. They propose to bridge this gap by exe-
cuting common visualization transforms directly in the database. Their vision
hints at novel visual optimization techniques that may reduce rendering la-
tencies through occlusion filters, output-based downsampling, and distributed
rendering. This thesis develops this vision in Chapter 3 by extending the SQL
language with new statements for visualization, interaction, and data loading.
We call this language DashQL, a declarative language for DVMS’s, and imple-
ment optimizations such as visualization-oriented time-series aggregation and
projection pushdown.

3 C O M P L E T E A N A LY T I C A L
W O R K F LO W S W I T H DA S H Q L

3.1 introduction

DashQL Script cdn://activity.dashql

DECLARE site AS VARCHAR (
default = 'app.dashql.com'

);

IMPORT a FROM HTTP (
url = urlencode('base/{}', main.site),

);
IMPORT c FROM 's3://bucket/iso3166.csv';

LOAD activity FROM a USING PARQUET;
LOAD countries FROM c USING CSV;

CREATE VIEW daily AS
SELECT date_trunc('day', ts) AS t,

sum(a.views), c.name
FROM activity a, countries c
WHERE a.country = c.code
GROUP BY t, c.name ORDER BY t, c.name

VISUALIZE daily USING STACKED AREA CHART;
VISUALIZE activity USING TABLE;

USER

ANALYSIS

DATA

USER DECLARE

IMPORT

LOAD

IMPORT

LOAD

QUERY

VISUALIZE VISUALIZE

Figure 2: Example of a DashQL script describing a complete analysis workflow. The
script loads site activity data, resolves country names via ISO 3166 country
codes, aggregates daily page views, and visualizes the data using an area
chart and a table. DashQL statements unify user interactions, data loading,
and the analysis in a single language.

Interactive Data Analysis has evolved as an umbrella term for diverse re-
search around approachable, inspirational, explanatory, and efficient data pro-
cessing. Decades of prior work in these areas have assembled a comprehensive
toolbox, guiding users on their paths toward valuable data insights. A common
principle among these tools has been the unification of graphics and database
interactions, creating a gap towards database query languages like SQL. Pio-
neering systems like Polaris shield users from database specifics by pairing a
graphic taxonomy with an own relational table algebra [116]. This table al-
gebra is lowered to SQL transparently, which abstracts from subtle differences
between SQL dialects and allows supporting various database systems through
a single interface.

In the meantime, however, SQL has become the de-facto standard for data
transforms at all scales, ranging from embedded systems (e.g., DuckDB [100],

11

12 complete analytical workflows with dashql

SQLite [47]) to large data warehouses (e.g., Snowflake [29], F1 [102], Pro-
cella [22], Presto [110], Redshift [45], Azure Synapse [3], CockroachDB [117],
Hive [18]). Therefore, database abstractions that do not match SQL in expres-
sivity turn into an explicit translation layer that data analysts might have to
work around. This is particularly pronounced for advanced SQL functionality
such as nested subqueries, non-inner joins, window aggregates, or grouping
sets that are often omitted as early victims during generalization. A lack of
these features can render today’s tools insufficient for analysts that use SQL as
their mental model for database interactions.

Additionally, database abstractions prevent holistic optimizations of analysis
workflows. The optimization of SQL queries is a well-studied problem but is
usually unaware of how data is ingested and how the results are consumed [11].
Data analysts, therefore, propagate information back into the database, for ex-
ample, by optimizing requests for the following visualization. This is not only
error prone but exposes relational optimizations to the user. Database abstrac-
tions also obfuscate the capabilities of the underlying database. It is not uncom-
mon in today’s analysis tools to prepare and cache volatile data to optimize the
repeated and interactive query evaluation during exploration [120]. However,
this is a pitfall as it nullifies standard database optimizations like projection
and selection pushdown. Structured file formats like Parquet allow reading
data partially based on the query columns and filters. A tool that lacks these
query-driven optimizations might therefore be slower if it loads unnecessary
data for a workflow.

We expand the vision of Wu et al. [133] and propose a language for a Data
Visualization Management System (DVMS) that embeds data retrieval, load-
ing, and visualization into SQL. We call this SQL dialect DashQL and explain
how a single coherent language model can drive interactive analysis workflows.
Figure 2 shows the first example of a DashQL script that visualizes grouped
timeseries data using an area chart and table. In the figure, the input script on
the left is translated to a graph of tasks that drives the parallel evaluation of
statements. The right side of the figure hints at the visual output of the script
as an interactive dashboard including an input field at the top of the screen,
followed by the two visualizations.

The contribution of this chapter is twofold. We first introduce the language
grammar and statement semantics in Section 3.2 and outline how a SQL di-
alect facilitates interactive exploration, scalable dashboards, and workflow de-
velopment. We then describe the efficient evaluation of DashQL workflows in
Section 3.3 and present holistic optimizations that use metadata for predicate

3.2 grammar of analytics 13

pushdown and adaptive materialization. Section 3.3 also introduces AM4, an
optimization in DashQL that accelerates visualizations with time series data.
We demonstrate DashQL examples throughout the chapter and author an in-
teractive analysis workflow step-by-step in Section 3.4. We measure the per-
formance of the holistic optimization AM4 in Section 3.5. We close with a
discussion of related work in Section 3.6 and a summary of the chapter in
Section 3.7.

3.2 grammar of analytics

DashQL unifies the predominant grammar of relational [26] database sys-
tems, SQL, with a grammar of graphics [129] into a grammar of analytics. This
section introduces the DashQL language and its role in an analytics system.
We first list the grammar rules of DashQL and describe the semantics of every
new statement. Afterward, we present three advantages of driving analysis
workflows with a coherent analysis language.

3.2.1 SQL Extension

DashQL introduces the five statements SET , DECLARE , IMPORT , LOAD and
VISUALIZE to the SQL language. Together, they extend SQL just enough to
specify where data is located, how it can be loaded, and how it can be visual-
ized for users. This allows DashQL to describe complete analysis workflows
in self-contained scripts while preserving the expressiveness of arbitrary SQL
queries. The grammar rules of all statements are shown in Figure 3 and are
outlined in the following.

SET is a utility statement that defines global script properties as individual
key-value pairs. This allows modifying script evaluation settings or provide
script metadata such as titles, descriptions or versions.

DECLARE declares values that are provided to the script at runtime. For ex-
ample, an DECLARE statement with identifier x and value type FILE presents
an input control to users that opens a file picker dialog when clicked. The
provided file is then exposed to the remainder of the script through the iden-
tifier x. DECLARE may further be followed by an explicit component type and
configuration options, matching additional settings like default values.

14 complete analytical workflows with dashql

Figure 3: Grammar rules of the five DashQL statements SET, DECLARE, IMPORT, LOAD
and VISUALIZE that are combined with the statement rules of PostgreSQL.

IMPORT accompanies DECLARE as the second statement that provides input
data for DashQL scripts. In its simplest form, the rule IMPORT name FROM uri

specifies a raw data source as a single URI. The value "https://a/b.parquet",
for example, declares a remote file that will be loaded using HTTPS. If a sim-
ple URI is not sufficient, the statement may alternatively be written with the
explicit keyword HTTPS followed by fine-granular settings such as the method
type or request headers. Similarly, the IMPORT statement allows supporting
additional source types such as AWS S3, following the same syntax.

The fourth statement LOAD defines how raw data can be loaded into the
database. We deliberately separate the importing of opaque data and the ex-
traction of relations since the boundary between these two can be fuzzy and

3.2 grammar of analytics 15

depends on the capabilities of the underlying database. DuckDB, for example,
can partially scan remote Parquet files over HTTPS using a dedicated table func-
tion and a virtual file system abstraction. This collapses both statements into
following SQL statements, emphasizing the decoupled nature of declarations
in a script and their efficient execution. Other databases without these capabil-
ities might need to execute either one or both tasks explicitly upfront. Similar
to IMPORT, the LOAD statement can also be extended with additional keywords
to introduce new data formats to the language.

The last statement VISUALIZE displays data using charts and tables. Cre-
ating visualizations is an iterative process that benefits from short round-trip
times between ideas and their realizations. DashQL offers approachable and
fast exploration by combining a simple and short syntax with a fallback to a
full grammar of graphics for refinements. After all, visualizations are created
in tandem with SQL statements which already provide useful information such
as the attribute order of SQL projections or data types.

For example, users might want to display timeseries data with a time at-
tribute t, and a value attribute v backed by a SQL query such as CREATE TABLE

a AS SELECT t, v Creating the first visualization for this table can be
as simple as VISUALIZE a USING LINE. Without further information, DashQL
assumes that t and v were deliberately provided as first and second attributes
referring to x and y values of the line chart. Alternatively, SQL column aliases
can be used in anticipation of ambiguities to name x and y explicitly, as in
SELECT v AS y, t AS x ... , . Later iterations may then add a third at-
tribute in the SQL projection list followed by VISUALIZE a USING MULTI LINE,
in which case the new attribute would map to the line color. This example
shows that the interplay with traditional SQL statements may provide enough
information to simplify the syntax significantly through carefully chosen de-
faults.

This simplified syntax enables rapid prototyping but may not suffice for
advanced analysis reports. The grammar therefore supports an alternative
grammar rule with VISUALIZE a USING (...) that describes visualizations
using raw Vega-Lite specifications. In fact, the simple form is lowered down to
Vega-Lite internally, enabling automatic rewrites as explicit specification when
refinements are needed. In alignment with SQL, the Vega-Lite attributes are
case insensitive in DashQL and JSON objects are replaced with nested key-
value pair lists enclosed by round brackets. The systematic generation and
completion of Vega-Lite specifications is described in Section 3.3.4.

16 complete analytical workflows with dashql

SCRIPT VISUALIZE (SELECT * FROM activity , countries WHERE ...) USING TABLE;

REL_NAME REL_NAME TABLE_REF TABLE_REF PROJECTION FROM_CLAUSE SELECT_STMT

0 0 1 1 2 2
... ...AST

Interactive Exploration Scalable Dashboards Collaborative Development

WHERE country = code

GROUP BY country)

USING TABLE;

USING STACKED BAR CHART;

+

-

+Client Client Client

USING TABLE;

USING AREA CHART;

Figure 4: DashQL scripts as a driver for data analysis workflows. AST nodes store
the location in the input text, the node type, the attribute key, the index
of the parent node, and either a raw value or a span of children nodes.
Script-based analysis workflows allow for interactive exploration, scalable
dashboards, and a collaborative workflow development.

3.2.2 Driving Analytical Workflows

An extended SQL dialect offers an opportunity to describe entire analysis
workflows in self-contained scripts. These scripts become the single source of
truth for an analysis system and can drive features such as interactive explo-
ration, scalable dashboards, and collaborative workflow development. Figure 4

illustrates these features based on a single visualization statement that displays
the results of a join as a table.

Interactive Exploration

DashQL demystifies system internals by replacing a multitude of configu-
ration knobs with guided textual editing. DashQL strikes a balance between
flexibility and intuition by providing short and long versions of the different
grammar rules. This flexibility allows users to start the exploration with short
statements and later refine the workflow by manually adjusting inferred prop-
erties. This simplifies the exploration as the syntactical differences between
statements stay small.

The example in Figure 4 expresses the intent to display data as a table by
writing VISUALIZE ... USING TABLE. The short syntax allows altering the
visualization quickly. For example, a user can replace the keyword TABLE with
AREA CHART to change the visualization type and add the keyword STACKED to

3.2 grammar of analytics 17

group areas based on an additional attribute. Once the correct chart type is
found, a user can adjust fine-granular configuration options such as colors and
labels through explicit Vega-Lite settings. These rewrites can either be done
manually by changing the script text or by modifying a previously rendered
chart. The result is an interactive loop where partially evaluated DashQL work-
flows guide users through following refinements.

Additionally, the analysis workflows are interactive themselves through the
DECLARE statement. These statements parameterize worklows explicitly by ex-
posing variables to viewers. This allows embedding arbitrary complex SQL
queries into the workflow and steer them through input controls. A popular
alternative to DECLARE statements is to derive raw SQL text from input values
through text interpolation. This is flexible, but complicates the semantic analy-
sis of workflows as it gives up crucial information about statement dependen-
cies, types, and the exact usage of parameters. It also requires a preprocessing
step to generate the actual script text which does not align well with the con-
tinuous and iterative re-evaluation of workflows.

DashQL distinguishes between the analysts authoring workflows and the
viewer that consume the workflows’s output. Viewers are not exposed to the
language but instead only see the results from statements as opaque analysis
dashboards. Authors, in contrast, see the language and visual output side-
by-side and benefit from semantic information in the script editor. Interactive
exploration in DashQL is therefore emphasized differently for these two user
groups as authors benefit from frictionless feedback loops for textual changes
while viewers require efficient re-evaluations after changing input values.

Scalable Dashboards

DashQL simplifies the sharing of analysis dashboards. A workflow is a sin-
gle self-contained script text and can be treated as such for the distribution to
multiple users. This decouples the workflow description from the evaluating
analysis tool, similarly to SQL being the common denominator between rela-
tional database systems. Sharing a data analysis workflow is cheap since there
is no dependency on specific service resources except for the workflow’s input
data. The price for serving this data is often lower than maintaining comput-
ing resources for traditional server-based analytics tools, more so with scalable
cloud storage services and large content delivery networks.

We introduce the language DashQL alongside a reference implementation
available at github.com/ankoh/dashql . The implementation is powered by

https://github.com/ankoh/dashql

18 complete analytical workflows with dashql

DuckDB-Wasm, an efficient WebAssembly version of the analytical database
DuckDB [100] that we describe in Chapter 3. It evaluates entire analytical
workflows ad-hoc in the browser, presenting a cost-efficient and interactive
solution without dedicated analytics servers. The lack of a dedicated server in-
creases the horizontal scalability of the system at the cost of higher bandwidth
requirements for the viewers. According to Vogelsgesang et al, shared analysis
workflows on smaller datasets are not uncommon today [125]. They state that
only approximately 600 out of 62 thousand workbooks uploaded to the service
Tableau Public contain more than a million tuples. All other workflows fall into
browser-manageable data sizes, eliminating the need for dedicated computing
resources in the cloud.

This also covers workflows that process larger datasets but reduce the data
size quickly based on user input. For example, if a workflow processes event
data of a logging service, the entire dataset for all users might easily exceed
petabytes of records. However, if the workflow analyzes specific user events
over a fixed period, the datasets can get sufficiently small. Section 3.3.6 intro-
duces holistic optimizations that optimize the amount of loaded data based
on SQL queries in the workflow. Nevertheless, the language DashQL itself is
not limited to small datasets. It instead offers an opportunity to dynamically
combine client and server-side implementations to optimize for scalability and
interactivity wherever possible and fall back to traditional server-side process-
ing when needed.

Collaborative Development

DashQL also simplifies the collaborative development of analysis workflows.
Text-based version control systems like Git dominate distributed software de-
velopment today. Since DashQL workflows are self-contained scripts, they can
be developed as part of a versioned development process. Users can fork
DashQL workflows and contribute changes back through simple textual up-
dates. This process is facilitated by the concise grammar of SQL that keeps
the textual differences small. Figure 4 demonstrates this versioning by adding
a grouping clause and a changed chart type in the example statement. The
patch tracks the new grouping by the country attribute and the visualization
as a stacked bar chart in the same script. DashQL workflows can therefore
be created, updated, forked, and discussed in environments that have already
proven their effectiveness in collaborative development.

3.3 implementation 19

3.3 implementation

This section outlines the implementation of a DashQL-powered analysis tool.
We first describe the efficient AST encoding we use as a textual language model
for analysis workflows. This model allows the runtime to update only the parts
of the execution state that have changed instead of complete re-evaluations.
We then introduce the concept of tasks and show how adaptive task graphs
can be maintained using immediate difference computations. We discuss the
extensibility of DashQL and the use of query metadata to simplify declarative
visualizations for fast exploration. Finally, we present two examples of holistic
optimizations accelerating the coupled workflow components.

3.3.1 AST Format

DashQL translates many user interactions into modifications of the associ-
ated script text. This positions the underlying text model as a fundamental
component of the entire system. Our implementation is therefore built around
a fast syntactical analysis backed by an efficient representation of the abstract
syntax tree (AST). The parser extends the SQL grammar rules of PostgreSQL
and allocates compact AST nodes into a single, bump-allocated memory buffer.
This accelerates parsing and increases the cache efficiency of any following op-
erations, such as tree traversals. An AST node is exactly 20 B large and stores
the location in the input text, the node type, the attribute key, and the index
of the parent node. It also stores either a raw integer value or a span of chil-
dren nodes in the same buffer. The text location associates each node with the
substring matched by its grammar rule, enabling partial rewrites of individual
statements. The AST further acts as an auxiliary data structure and references
string literals in the original script text instead of copying them. Children of
an AST node are further stored in sorted order based on the attribute key,
accelerating key lookups and recursive comparisons.

Figure 4 illustrates the AST encoding of an example statement that visualizes
an inline SQL query joining two base relations. The AST presents two nodes
of type REL_NAME that match the table names A and B. The parser creates nodes
following a post-order traversal of matched grammar rules which emits chil-
dren before their parents. This eliminates additional serialization steps since
nodes can be written to the buffer while parsing. In the example, the relation
names are matched as table references and form the two children of a from

20 complete analytical workflows with dashql

P
r
e
v
i
o
u
s
S
c
r
i
p
t

0
1
2

3

4
5

DECLARE duration AS INTERVAL;
IMPORT data FROM "s3://bucket/file1";
LOAD activity FROM data USING PARQUET;

CREATE VIEW grouped AS
SELECT date_trunc('day' , ts) AS time,

sum(hits), site
FROM activity WHERE ts > (now() - main.duration)
GROUP BY time, site ORDER BY time, site;

VISUALIZE grouped USING TABLE;
VISUALIZE grouped USING STACKED BAR CHART;

N
e
x
t
S
c
r
i
p
t

0
1
2

3

4

DECLARE duration AS INTERVAL;
IMPORT data FROM "s3://bucket/file1";
LOAD activity FROM data USING PARQUET;

CREATE VIEW grouped AS
SELECT date_trunc('hour' , ts) AS time,

sum(hits), site
FROM activity WHERE ts > (now() - main.duration)
GROUP BY time, site ORDER BY time, site;

VISUALIZE grouped USING STACKED BAR CHART;

DECLARE IMPORT LOAD QUERY VISUALIZEVISUALIZE VISUALIZE

KEEP KEEP KEEP UPDATE DELETE KEEP

Previous AST

Next AST

DECLARE

IMPORT

LOAD

QUERY

VISUALIZE VISUALIZE

DECLARELOAD

IMPORT

QUERY

VISUALIZE

DROP TABLE

DROP VISDROP VIS

+ ⇒

0

1

2

3

4

5

KEEP

KEEP

KEEP

UPDATE

DELETE

KEEP

Figure 5: Example of a task graph that is derived from a previous task graph and an
AST-based script difference. The two scripts visualize grouped timeseries
data and differ in a deleted statement and the grouping granularity. The AST
colors equal statements in green, changes in blue and deletions in orange.

clause. The output of the syntactic analysis is a program description represent-
ing statements as offsets of root nodes in this AST buffer. This representation
is not only cache efficient but also simplifies the crossing of system boundaries
as the consecutive memory buffer and fixed size nodes simplify the communi-
cation between system components and languages.

3.3.2 From AST to Task

The actionable units of our system are called tasks. Tasks are derived from
statements and form a graph based on the statement dependencies. A query
statement that references a LOAD statement, for example, translates into a query
task that scans the output of a load task. These tasks are partially ordered
and evaluate the entire script starting with data ingestion and ending with
the visualization of derived tables. New tasks are derived from every user
interaction based on the difference between the AST and its predecessor. This

3.3 implementation 21

includes tasks to undo the effects of deleted statements, update the effects of
modified statements and add the effects of new statements.

For example, if a SQL statement that created a table is deleted from the script,
the system derives a task to undo the effects by dropping the table. This mech-
anism is more abstract than the traditional transaction isolation of database
systems as all tasks maintain a single workflow state that is updated with re-
spect to changes in the script text and the user input. VISUALIZE statements,
for example, compile Vega-Lite specifications only once and delete or update
the specification only when the statement changes. IMPORT statements that
download data using HTTP will further cache the data until a script change
invalidates the output. The task graph drives the execution of an analysis
workflow and serves as an anchor for any operations on the derived state.

3.3.3 Adaptive Task Graphs

The task graph of DashQL is adaptive as it reflects all continuous changes in
the script and the user input. We implement a variant of an algorithm known
as Patience Diff that is implemented in the version control systems GNU Bazaar
and Git. The algorithm derives task updates from the difference between two
scripts and works as follows:

We first determine all unique statement mappings between a script and its
predecessor. Two statements are compared based on their ASTs instead of texts
for whitespace insensitivity and support for incremental changes. The similar-
ity can be quantified by counting equal AST nodes in two simultaneous DFS
traversals and weighting them by the distance to the AST root. The tree traver-
sals profit from the compact and cache-efficient encoding of nodes into a single
AST buffer. Next, we compute the longest common subsequence among the
mapped statements and use them as anchors for the remaining assignments.
The remainder is then iterated in sequence and assigned to the most similar
matches that have not been assigned yet. This identifies new and deleted state-
ments and emits a similarity score for the rest.

Afterward, we determine the applicability of all previous tasks. A task is
applicable if it was derived from a statement that stayed the same, does not
transitively depend on an inapplicable task, and is not followed by an inappli-
cable task that successfully modified the own output. The applicability can be
determined through a single DFS traversal with backward propagation when
encountering an inapplicable task. Applicable tasks and their state are migrated

22 complete analytical workflows with dashql

and marked as completed while the effects of all other tasks are updated or
undone.

Figure 5 illustrates the entire process with an example of two scripts that an-
alyze site activity data stored in AWS S3. The first script starts with an DECLARE

statement that receives a time interval for the analysis. It then downloads the
data from an AWS S3 bucket using a IMPORT statement and inserts the data
into the database as a Parquet file using LOAD. The statements are followed by
a traditional SQL query to filter the site activity in the input interval and com-
pute aggregates grouped by days. The final two statements visualize the result
of this query as a table and a stacked bar chart. The second script is almost
identical to the first one except that the data is now grouped per hour instead
of days and is no longer visualized as table.

AST buffers of both scripts are shown below, with the node color indicating
the statement differences. The first three statements and the last are equal and
therefore do not need to change. The query statement differs in the string
literal that is passed to the function date_trunc and is marked as updated.
The first visualization statement is no longer present in the new script and is
marked as deleted.

The figure also contains a task graph derived from the previous script. It
shows one task for every statement and a checkmark indicating that all of them
were successfully executed. This task graph is then combined with the com-
puted statement mappings to derive a new set of tasks reflecting the changes
between the scripts. The table visualization was deleted, emitting a task called
DROP VIZ to remove the table. The query statement was updated and results
in the task DROP TABLE to undo the effects of the SQL query. However, this ef-
fect propagates since both visualizations depend on the table data. Therefore,
we also undo the second visualization’s effects and recreate it after executing
the updated SQL statement. The remaining tasks that fetch and load the re-
mote data into the database and receive input from the user are migrated and
marked as completed.

This example demonstrates differences with the traditional script execution
in relational database systems. DashQL defines entire analysis workflows, in-
cluding external data, visualizations, and interactions with a user. Scripts are
therefore not evaluated independently but in the context of a preceding execu-
tion, rewarding awareness of the existing state.

3.3 implementation 23

3.3.4 Complementing Vega-Lite

time

DATETIME

15.10 00:00

15.10 00:00

15.10 01:00

15.10 01:00
...

22.10 23:00

22.10 23:00

23.10 00:00

23.10 00:00

hits

BIGINT

1296

2766

3844

1205
...

2671

2022

3875

4178

site

VARCHAR

app.dashql.com

www.dashql.com

app.dashql.com

www.dashql.com

...

app.dashql.com

github/dashql

app.dashql.com

www.dashql.com

VISUALIZE activity USING MULTI LINE CHART;

VISUALIZE activity USING (
mark = 'line',
encoding = (
x = (
field = 'time',
type = 'temporal',
scale = (
domain = [
'15.10 00:00',
'23.10 00:00'

]
)),
y = (
field = 'hits',
type = 'quantitative',
scale = (domain = [1205, 4178])

),
color = (
field = 'site',
type = 'nominal',
scale = (
domain = [
'https://github.com/dashql',
'https://app.dashql.com',
'https://www.dashql.com'

]
))));

Figure 6: Two VISUALIZE statements that produce the same time series line chart,
showing website hits of multiple websites. DashQL generates Vega-Lite spec-
ifications based on the table schema and statistics.

Vega-Lite offers a grammar to describe an expressive range of charts in
declarative JSON specifications. The VISUALIZE statement of DashQL supports
Vega-Lite specifications as nested key-value pair lists in SQL. VISUALIZE does
not need to embed its own grammar of graphics, and users already familiar
with Vega-Lite do not have to learn a new language.

Vega-Lite specifications are self-contained and describe visualizations with-
out the context of an existing data model. In DashQL, visualizations are always
backed by SQL queries which offer an opportunity to auto-complete parts of
a specification. This reduces the pressure on Vega-Lite and pushes costly data
introspection into the database system. Examples of this are encoding types
and scale domains. We know the data types of all involved attributes based on
the SQL metadata, which enables robust defaults, for example, when selecting
between quantitative, ordinal, and nominal encoding types. Additionally, we can
determine a value domain or range efficiently upfront using SQL queries.

24 complete analytical workflows with dashql

DashQL further provides simplified VISUALIZE statements that can be
written in tandem with SQL queries. This follows the observation that explicit
defaults can guide the writing of SQL queries for subsequent visualization.
For example, users can express a preferred field assignment through attribute
aliases. A projection like SELECT time AS x, hits AS y, site AS color

... implicitly provides the fields for a visualization that can be reduced to
VISUALIZE ... USING MULTI LINE CHART. These mappings can still be
overruled by explicit settings but enable short statement variants for fast
exploration. Users can default to listing attributes in a specific order without
matching aliases. By default, DashQL assigns the first three attributes to the
encoding channels x, y, color, resulting in the same output.

Figure 6 lists two VISUALIZE statements. The first one presents a simplified
syntax that instructs DashQL to draw a chart with multiple lines. The second
one describes the same output using an embedded Vega-Lite specification. In-
ternally, DashQL uses the table on the right to derive the specification of the
second statement for the first one. The table has the three columns time, hits
and site with the data types DATETIME, BIGINT and VARCHAR. By default, a chart
with multiple lines requires encoding declarations for x-values, y-values and
the line color. Without further hints, DashQL assigns the columns in-order,
using the time attribute for x, the number of hits for y, and the site name as
color. The encoding types are derived based on the encoded column names
and the column data types. An x-encoding backed by a DATETIME attribute
is temporal, by default. The other encoding types are quantitative for y-values
of type BIGINT and nominal for color-values of type VARCHAR. DashQL then
resolves the domain for each of the scales in the encodings. The domains of
temporal and quantitative scales are computed using minimum and maximum
aggregates and yield the interval between the 15th and 23nd of August for the
time attribute and the value range between 1205 and 4178 for the hit count. The
domain of the nominal scale is then resolved by querying distinct site values,
emitting the three websites of the DashQL project.

In summary, Vega-Lite provides a robust grammar for declarative visualiza-
tions in DashQL. We further extend the capabilities of Vega-Lite by complet-
ing specifications based on the contextual query metadata. This accelerates
the data exploration without losing the flexibility of a complete specification
whenever needed.

3.3 implementation 25

3.3.5 Language Extensions

city

VARCHAR

Oklahoma City

Tulsa

Normann

pop

INTEGER

681054

413066

128026

county

VARCHAR

Oklahoma County

Tulsa County

Cleveland County

pop

INTEGER

796292

669279

295528

JSON

IMPORT d FROM 'https://api';
LOAD cities FROM d USING JSON (

jmespath = '{
city: keys(@.cities),
pop: values(@.cities)

}'
);
LOAD counties FROM d USING JSON (

jmespath = '@.counties[*].{
county: @.key, pop: @.value

}',
);

{
"cities": {
"Oklahoma City": 681054,
"Tulsa": 413066,
"Normann": 128026

},

"counties": [
{ "key": "Oklahoma County", "value": 796292 },
{ "key": "Tulsa County", "value": 669279 },
{ "key": "Cleveland County", "value": 295528 }

]
}

Figure 7: Two load statements that extract two relations from a single JSON document
using JMESPath expressions. Both expressions extract populations in Okla-
homa. The first expression emits the city data in column-major format, the
second expression returns county data in row-major format.

The syntax of the DashQL statements DECLARE, IMPORT, LOAD and VISUALIZE

end with optional settings provided as key-value pair lists. This offers a mecha-
nism to extend DashQL without modifying the grammar rules or the language
model. The settings translate to a generic dictionary passed to the derived
tasks. Custom task implementations can read this dictionary and enable exten-
sions based on available keys.

Our reference implementation, for example, extends the loading of JSON
data through JMESPath expressions. Our embedded database DuckDB-Wasm
can default load a table from a JSON document in two formats. Either in
row-major format as a top-level array of objects where each object contains all
attributes of the relation or in a column-major format as a top-level object with
members storing column arrays. If a JSON document is not in either of those
formats, it has to be transformed first. For this, the JSON task checks for the

26 complete analytical workflows with dashql

key "jmespath" in the settings. If it is present, the task evaluates the expression
on the input data first before loading it into the database.

Figure 7 lists an example DashQL script that loads two relations from a
single JSON document that was returned from a remote HTTP API. The doc-
uments stores population data of Oklahoma. City populations are stored as
a single object with city names as properties, whereas county populations are
provided as an array of objects. The first expression emits an object with the
field city storing an array of city names and the field pop holding an array of
population values. The second expression returns the county object array with
changed attribute names. This example demonstrates the extensibility of the
DashQL language through custom task implementations that can be config-
ured through dynamic configuration options.

3.3.6 Holistic Optimization

Data transformations can be expensive, which makes their optimization in-
dispensable for every data analysis workflow. Therefore, query optimizers are
a vital component of every data processing system today and significantly im-
pact overall execution times. Research around query optimization is profound
and has been expanded for decades. Nevertheless, databases are universal and
face the difficult task of accelerating specific queries without losing the gen-
erality. As a result, database systems rarely include external information dur-
ing planning, leaving these non-trivial problems to the applications. DashQL
unifies the data retrieval, transformations, and visualizations in the same lan-
guage, which presents an opportunity for holistic optimizations.

Visualization-Driven Aggregation

The first example of holistic optimization is the automatic aggregation
of SQL results for VISUALIZE statements. Jugel et al. introduced the
value-preserving aggregation M4 [54] to accelerate the visualization of time
series data. M4 follows the observation that the amount of rendered data
points in line charts can be limited by the number of visible pixels on the
screen. Instead of visualizing every single tuple of a time series, we can select
a subset of the tuples based on the chart dimensions. The authors group
values by time bins and compute the four name-giving aggregates min(x),
max(x), min(y), and max(y) per bin. The associated points span a bounding
box around all tuples in a bin that intersects any pixels that should be colored

3.3 implementation 27

WITH m4 AS (

SELECT round($width * (x - $lb) / ($ub - $lb)) as k,

min(x) AS min_x, max(x) AS max_x,

min(y) AS min_y, max(y) AS max_y

FROM $user_data GROUP BY k)

SELECT x, y FROM m4, $user_data

WHERE k = round($width * (x - $lb) / ($ub - $lb))

AND (y = min_y OR y = max_y OR

x = min_x OR x = max_x)

Figure 8: M4, a query for value-preserving time series aggregation, described by Jugel
et al [54]. This version uses a CTE instead of a subquery with equal seman-
tics.

for the line chart. With DashQL, introducing M4 becomes an optimization
that propagates the visualization context towards the backing SQL query.

M4 is a value-preserving time series aggregation equivalent to the one listed
in Figure 8. The query scans the relation user_data and computes the four
aggregates grouped by a bin key. Afterward, the query resolves the corre-
sponding x- and y-values of the aggregates by joining the aggregates again
with the input data. A tuple in the input qualifies in that join, if an aggregate
exists with the same key and either x or y equals an extreme value. The query
does not rely on any specific aggregation functions, making it compatible with
various database systems.

However, the original version of M4 introduces a subtle but essential as-
sumption. It scans the input relation twice and joins the extreme values to
reconstruct the corresponding input tuples. This assumes that the extreme val-
ues are unique as the join might otherwise emit duplicates. For example, a
constant function like f (x) = 42 will resolve 42 as minimum and maximum y

value of every group. The following join will then emit the entire input relation
since all tuples contain the same value for y. To support non-unique y-values,
we therefore also have to make the output distinct on k, x, and y. As a result,
M4 consists of a repeated scan, a join, and two aggregations or otherwise has
to fall back to significantly slower window functions.

We propose an alternative version of M4, called AM4, shown in Figure 9. It
uses the aggregation functions arg_min and arg_max, sometimes implemented
as min_by, and max_by, that are provided by several databases today (e.g., by
ClickHouse, DuckDB and Presto). The function arg_min(a, b) selects an ar-
bitrary attribute for a where b is minimal and can be computed alongside a

28 complete analytical workflows with dashql

0 5 10 15 20

0

5

10

15

20

⇒

min(x) max(x)

max(y)

min(y)

SELECT min(x), arg_min(y, x), max(x), arg_max(y, x),

min(y), arg_min(x, y), max(y), arg_max(x, y),

round($width * (x - $lb) / ($ub - $lb)) AS bin,

FROM ($user_data) GROUP BY bin

Figure 9: AM4, a more efficient version of M4 that provides value-preserving time
series aggregation using a single scan and the aggregation functions arg_min
and arg_max.

min(b) aggregate at negiligble costs. We extend M4 by additionally comput-
ing the aggregates arg_min(y, x) , arg_max(y, x) , arg_min(x, y) and
arg_max(x, y) . This resolves existing points associated with the extreme val-
ues in a single efficient grouping, eliminating the second scan and the distinct
aggregation.

Adaptive Materialization

The second example of holistic optimization is called Adaptive Materializa-
tion. DashQL statements like IMPORT and LOAD only specify data sources and
formats. It is left to the optimizer to decide at runtime if the file contents
should be materialized as a table upfront or if the data should be loaded lazily
as part of the following SQL query. This decision depends not only on a single
query but the entire script context, as multiple statements might refer to the
same data. If the file format allows it, DashQL can use projection and predi-
cate pushdown of databases only to fetch relevant parts of a file based on the
specific query.

Predicate pushdown is a common optimization technique in databases and
describes the evaluation of predicates as far down in the query plan as possible.
The direction down refers to the widespread representation of relational algebra
where relations form leaves of a tree that are combined using joins. When
optimizing relational algebra, a common task is to push individual predicates
towards these leaves to reduce the cardinality of relation as early as possible. If
such a predicate is evaluated right after scanning file formats like Parquet, the

3.4 example data exploration 29

database can evaluate the predicates on file statistics and skip reading entire
row groups.

For example, the database DuckDB supports reading remote Parquet files par-
tially using an HTTP filesystem and skips row groups based on predicates in
the table function parquet_scan. With DuckDB, DashQL fetches and loads the
Parquet files in following SQL queries, if the data is not consumed by mul-
tiple statements. On the other hand, formats like CSV require downloading
and parsing the entire file, independent of subsequent filters. In these cases,
DashQL materializes the CSV contents once and shares the table with all the
following statements. The decision to materialize data depends on the data
source, the data format, all queries in the script, and the underlying database’s
capabilities. We call this technique Adaptive Materialization and see it as an
opportunity to replace traditional caching logic with query-driven optimiza-
tion passes.

3.4 example data exploration

We demonstrate data exploration with DashQL by constructing an example
analysis workflow. The example analyzes a dataset with website activity data
and builds a dashboard to view daily total page views for individual websites.
We describe the textual changes to the script in every step and how they affect
the reevaluation of the derived task graph. The script text and the associated
output of the tool are shown in Figure 10.

Data Input. Our exploration begins with a declaration of the workflow’s
input data. The first script is labeled with 1 and consists of three DashQL
statements. A IMPORT statement declares that a file with name data can be
retrieved using HTTP, a LOAD statement interprets this data as Parquet file and
a VISUALIZE statement colored in green displays the file contents. The figure
also presents the output of the first statements that visualizes the unaggregated
site activity data using a single table. This table is virtualized, which means
that only visible rows are rendered. In SQL, this virtualization translates to
LIMIT and OFFSET clauses to only query the relevant subset of the data. With a
coherent language model, we can propagate the LIMIT and OFFSET specifiers to-
wards the data retrieval during an optimization pass. As a result, this first step
only reads the file metadata and the first bytes of the Parquet file using HTTP
range requests. When the user scrolls through the data, the table dynamically

30 complete analytical workflows with dashql

reads following tuples by adjusting both specifiers. The internal WebAssembly
database also uses an accelerating readahead buffer for the remote file to min-
imize the number of roundtrips to the remote server. This reduces the latency
that users have to wait until seeing a visualization and provides a graceful
fallback to large reads when the data is being requested.

1

2

3

4

1 Data Input 2 Aggregate Views

3 Filter Website4 Polish Aesthetics

IMPORT data FROM "https://static.dashql.com/data/examples/infovis.parquet"
LOAD activity FROM data USING PARQUET;

VISUALIZE activity USING TABLE;

DECLARE website AS VARCHAR;

CREATE TABLE activity_grouped AS
SELECT date_trunc('hour', timestamp) AS hour, sum(views) AS views

WHERE (website IS NULL OR website = main.website)

FROM activity GROUP BY hour;

VISUALIZE activity_grouped USING AREA CHART;

VISUALIZE activity_grouped USING (
title = 'Website Views',
mark = (type = 'area', line = true, opacity = 0.5),
encoding = (x = (field = 'hour', type = 'temporal', "title" = 'Time', axis.tick_count = 5),

y = (field = 'views', type = 'quantitative', "title" = 'Views')));

Figure 10: Authoring an example analysis workflow with DashQL. The workflow ex-
plores website activity data in four steps. The steps are labeled with 1 to
4 and associate textual changes in the script with adjusted visual output.

Visualization statements are colored in green, the input statement and the
corresponding predicate in orange.

Aggregate Views. Next, we want to aggregate the site activity to inspect
the hourly sum of page views. We modify the script as shown in 2 and add
an explicit SQL statement that groups the site activity data as well as an ad-

3.4 example data exploration 31

ditional VISUALIZE statement in green to display the aggregates using an
area chart. During reevaluation, the former workflow state is left untouched
since the previous statements were neither modified, nor invalidated. The new
query statement, however, needs to scan the attributes timestamp and views of
all tuples in the Parquet file to compute the new aggregates. The additional
visualization statement waits for the grouping to complete and then displays
an area chart. This demonstrates the generation of Vega-Lite specifications as
outlined in Section 3.3.4 since the tool automatically selects the time and sum
attributes for the x- and y-values and identifies temporal and quantitive axes.

Filter Website. The next step makes the analysis dashboard interactive. In-
stead of showing the total page views across all websites, we want to filter the
activity data by a website name that is provided dynamically by the user. For
this, 3 introduces an DECLARE statement colored in orange and includes a
filter predicate in the SQL statement. The new input with name website is of
type VARCHAR and displays a text field on top of the previous area chart. The
added filter predicate checks if the website is either NULL or if the website
attribute of the tuple equals the website variable in the script. By default, the
input value will be NULL which means that the dashboard will show the total
page views until a website name is entered. During reevaluation, the Patience
Diff algorithm identifies the additional WHERE clause in the query statement and
marks it as updated. The system therefore drops and recreates the grouped ac-
tivity table as well as the area chart that consumes its data. The query now
filters the attribute website, which means that an additional column needs to
be fetched from the remote Parquet file. This input statement shows the ca-
pability of DashQL to parameterize any SQL statement without explicit text
instantiation. The AST allows us to reference the input variable by qualifying
its name with the default schema.

Polish Aesthetics. The last step polishes the aesthetics of the generated anal-
ysis dashboard. The short syntax of DashQL offers a frictionless visualization
of arbitrary SQL statements but may be insufficiently generic for a final work-
flow output. For example, the former area chart visualization falls back to the
SQL attribute names for axis labels and default colors for the covered area. As
described in Section 3.3.4, DashQL internally lowers the short syntax to verbose
specifications. To adjust fine-granular settings, DashQL can therefore rewrite
existing statements and specify all lowered options explicitly. 4 demonstrates
this by replacing the single area chart visualization with explicit settings after
interacting with the previously rendered chart. It uses the verbose specifica-

32 complete analytical workflows with dashql

tion to adjust the title, the axis labels, the tick count and the area opacity in the
workflow script.

This example demonstrates that DashQL allows for a progressive construc-
tion of analysis workflows. The interplay between textual adjustments and
continuous visualizations provides short feedback loops during the data ex-
ploration. Propagating limit and offset specifiers is an example for a holistic
optimization that reduces the amount of loaded data based on user input.

3.5 visualization with am4

In this section, we measure the performance of AM4, a visualization-driven
aggregation and an example for a holistic optimization in DashQL. As de-
scribed in Section 3.3.6, AM4 accelerates chart rendering and reduces the total
amount of downloaded data in a client-server setting by filtering minimum and
maximum values of grouped data. We want to demonstrate the effects of this
optimization by analyzing render and download times with increasing data
sizes. The experiments were performed on a Ryzen 5800X CPU with Node.js
v17.6.0 that is powered by the V8 engine v9.6.

Figure 11: Downloading and rendering dominate the visualization times for increas-
ing data sizes in a client-server setting. M4 and AM4 efficiently reduce
large datasets to a small cardinality that can be visualized quickly.

3.6 related work 33

Figure 11 contains three plots. The plot at the top shows in green color the
time it takes to draw all points on a Cairo-backed canvas, using a prepared
Vega view. It further adds the time to download the data in blue with either
mobile (Cellular) or fixed broadband speeds. The Cisco Annual Internet Re-
port [53] projects average global network performances of 110.4 Mbit s−1 for
fixed broadband and 43.9 Mbit s−1 for mobile networks by 2023. We assume
a small record size of 16 B and compute the required time to download all tu-
ples without any network latencies. Both durations present a significant delay
especially for data sizes beyond 100k tuples that hamper any interactive explo-
ration. The plot in the bottom right shows execution times of M4 and AM4. If
we assume a canvas width of 1000 pixels and a device pixel ratio of 2, M4 and
AM4 reduce the data cardinality to 8k tuples. AM4 computes the aggregates
for a relation with 500k entries in 22.3 ms and is twice as fast as M4 which
takes 53.7 ms. The plot in the bottom left shows the render and download and
times for up to 10k tuples. A vertical line marks the resulting 8k tuples emitted
by both algorithms that can be visualized quickly.

The experiment shows that both, M4 and AM4, accelerate the visualization
of large data sets. This holds even when computing the analysis locally with-
out downloads since rendering alone becomes expensive with an increasing
number of tuples. AM4 is therefore a good example for an optimization that
propagates data from visualizations, such as the canvas width, back to the SQL
query.

3.6 related work

DashQL builds on ideas from declarative visualization and analysis lan-
guages and automatically optimizes workflows to make them more scalable.

3.6.1 Declarative Analysis Languages

Visualization and analysis languages are fundamental to exploratory analy-
sis, either as a programming interface or as the underlying representation of a
UI tool.

Declarative, textual languages provide a high-level notation to describe data
science workflows. They often come with runtimes that optimize the data
representation and query execution. These advantages make them a popular

34 complete analytical workflows with dashql

choice over imperative languages like Python, R, or JavaScript. For example,
SQL remains a popular tool for data scientists to express queries to databases
decades after its invention [20]. Additionally, many declarative visualization
and analysis languages have emerged. Vega [105] and Vega-Lite [104], for ex-
ample, describe visualizations in JSON syntax. Their runtimes reduce redun-
dant computation in these specifications and fill in rendering details. DashQL
extends this research around declarative visualizations by integrating Vega-
Lite specifications in the VISUALIZE statements. Vega also supports declara-
tive data loading and transformations but authoring and debugging them can
be cumbersome [51] and is often not performant enough. Dedicated analysis
languages can fill this gap, for example by extracting analytical queries into
explicit steps that can be annotated and tracked. Glinda [112] is a declarative
format for specifying data science workflows including data loading, transfor-
mation, machine learning, and visualization. In contrast to Vega and Vega-
Lite, Glinda describes analysis steps in YAML. DashQL follows the principles
of declarative analysis languages but extends the language SQL instead. This
approaches the goal of a coherent analysis language from the opposite direc-
tion as data ingestion and visualization are embedded into the database query
language itself.

Vega, Glinda and DashQL, as most analysis languages, build on relational
algebra and share a similar expressiveness in terms of the analyses they can de-
scribe [26]. Beyond the analysis steps, DashQL specifications describe inputs
via UI widgets and outputs via tables and visualizations. Unlike Precision in-
terfaces [139] and the recent PI2 [119] which implicitly generate UIs from SQL
queries, the UI components in DashQL are explicitly described using the state-
ments DECLARE and VISUALIZE. Like Vega visualizations, DashQL dashboards
are interactive and update reactively to changes. Vega proposed a reactive run-
time for visualizations [105] but all declarative components need to be specified
by the author. When a declaration changes, the runtime needs to re-parse and
re-evalute the entire JSON specification.

When languages are used as model in a UI tool, analysts interactively mod-
ify an underlying specification that the system can reason about [48]. Polaris,
which led to the creation of Tableau, explored this concept with the language
VisQL [116]. In Voyager [131], people interactively change CompassQL [130]
specifications and a recommender system suggests a gallery of visualizations.
Lyra is an interactive visualization design environment that authors Vega-Lite
specifications on behalf of the user [103] . We show in the chapter that DashQL

3.6 related work 35

extends these ideas with an compact AST representation that allows for effi-
cient updates.

Systems often blend code and graphical interfaces and allow modifications
through either direct manipulation or code. Mage [58] and B2 [134] blur the
boundaries between code and UI in Jupyter Notebooks. In Sketch-n-Sketch [50],
people can write a program to generate graphics or manipulate the graphics
directly in the rendering canvas. Inspired by these ideas, DashQL scripts de-
scribe visualizations like inputs, tables, and charts with text, but users can also
change the statement by interacting with the UI. For example, DashQL offers to
expand the short syntax of VISUALIZE statements or updates chart dimensions
in the text when resizing the UI widget.

3.6.2 Scalable Visual Analysis

Even small latencies in visual analysis systems negatively affect people’s
behavior during data exploration [78, 138]. Intial exposure to delays impair
the subsequent performance even when delays are removed. Therefore, we
want DashQL to respond to user interactions with low latency. DashQL builds
on two ideas to achieve this goal.

First, DashQL uses an efficient in-browser analytical database based on
DuckDB [100] that is further described in Chapter 6. The database allows to
evaluate analysis workflows entirely on the client, avoiding costly roundtrips
to a backend server. This lays the foundation for a distributed evaluation of
workflows in the future that optimize dynamic client server scaling using a
cost model [83]. Second, DashQL leverages the declarative format of analysis
scripts to apply known optimizations from the database literature. These
optimizations reduce redundant and unnecessary computations and avoid
loading data that is not needed to answer a query. For example, DashQL
reads data dynamically from remote files based on query predicates and
projected attributes [10]. Propagating such information across statements
shares similarities with provenance-supported interactions described by
Psallidas et al. [98]. DashQL further implements a variant of the algorithm
M4 [54] to reduce the rendering overhead with time series data.

Ideally, these optimizations happen transparently without the user having
to manually specify them (as they would need to if they wrote their analysis
in e.g., D3). Previous systems [79, 76, 84] used specialized engines to enable
interactive response times. DashQL does not yet apply some of the indexing

36 complete analytical workflows with dashql

techniques these systems proposed but it supports a wide range of analysis
scenarios through general SQL queries. VegaPlus [136] is a related project
that aims to improve performance of general visualizations by extracting data
transformations from Vega [105] specifications and running them in a system
that is more scalable than the Vega runtime. VegaPlus shifts computation but
does not automatically apply data reduction techniques like M4.

3.7 summary

This chapter introduces the language DashQL. We list example scripts
throughout the sections and discuss iterative data exploration in Section 3.4.
The examples demonstrate the proximity of the language to SQL and the
capability to describe complete analysis workflows. DashQL extends SQL by
defining how data can be resolved and how results should be visualized. The
coherent language model facilitates holistic optimizations covering data input,
transforms and visualizations.

4 E VA L U AT I N G A D VA N C E D
A N A LY T I C A L S Q L Q U E R I E S

Excerpts of this chapter have been published in [65].

4.1 introduction

Users are rarely interested in wading through large query results when ex-
tracting knowledge from a database. Summarizing data using aggregation and
statistics therefore lies at the core of analytical query processing. The most ba-
sic SQL constructs for this purpose are the associative aggregation functions
SUM, COUNT, AVG, MIN, and MAX, which may be qualified by the DIS-
TINCT keyword and have been standardized by SQL-92. Given the importance
of aggregation for high-performance query processing, it is not surprising that
several parallel in-memory implementations of basic aggregation have been
proposed [101, 97, 71, 35, 85].

Chapter 2 lists additional aggregation functionality such as Window func-
tions and grouping sets that joined associative aggregates in later versions of
the standard. These constructs can also be used in conjunction, as the following
SQL query illustrates:

WITH diffs AS (
SELECT a, b, c-lag(c) OVER (ORDER BY d) AS e
FROM R

) -- window function (lag)
SELECT a, b,

avg(e), -- associative aggregate
median(e) -- ordered-set aggregate
count(DISTINCT e), -- distinct aggregate

FROM diffs
GROUP BY (a, b)

The common table expression (WITH) computes the difference of each at-
tribute c from its predecessor using the window function lag. For these differ-
ences, the query then computes the average, the median, and the number of
distinct values.

37

38 evaluating advanced analytical sql queries

Associative aggregates, ordered-set aggregates, and window functions not
only have different syntax, but also different semantics and implementation
strategies. For example, we usually prefer on-the-fly hash-based aggrega-
tion for associative aggregates but require full materialization and sorting for
ordered-set aggregates and window functions. The traditional relational ap-
proach would therefore be to implement each of these operations as a sepa-
rate relational operator. However, this has two major disadvantages. First, all
implementations rely on similar algorithmic building blocks (such as materi-
alization, partitioning, hashing, and sorting), which results in significant code
duplication. Second, it is hard to exploit previously-materialized intermediate
results. In the example query, the most efficient way to implement the count-
ing of distinct differences may be to scan the sorted output of median rather
than to create a separate hash table. An approach that computes each statis-
tics operator separately may therefore not only require much code, but also be
inefficient.

An alternative to multiple relational operators would be to implement all
the statistics functionality within a single relational operator. This would mean
that a large part of the query engine would be implemented in a single, com-
plex, and large code fragment. Such an approach could theoretically avoid the
code duplication and reuse problems, but we argue that it is too complex. Im-
plementing a single efficient and scalable operator is a major undertaking [85,
73] – doing all at once seems practically impossible.

We instead propose to break up the SQL statistics functionality into several
physical building blocks that are smaller than traditional relational algebra.
Following Lohman [80], we call these building blocks low-level plan operators
(LOLEPOPs). A relational algebra operator represents a stream of tuples. A
LOLEPOP, in contrast, may also represent materialized values with certain
physical properties such as ordering. Like traditional operators, LOLEPOPs are
composable – though LOLEPOPs often result in DAG-structured, rather than
tree-structured, plans. LOLEPOPs keep the code modular and conceptually
clean, while speeding up complex analytics queries with multiple expressions
by exploiting physical properties of earlier computations. Another benefit of
this approach is extensibility: adding a new complex statistic is straightfor-
ward.

In this chapter, we present the full life cycle of a query, from translation, over
optimization, to execution: In Section 4.3, we first describe how to translate
SQL queries with complex statistical expressions to a DAG of LOLEPOPs, and
then discuss optimization opportunities of this representation. Section 4.4 de-

4.2 background 39

scribes how LOLEPOPs are implemented, including the data structures and
algorithms involved. In terms of functionality, our implementation covers
aggregation in all its flavors (associative, distinct, and ordered-set), window
functions, and grouping sets. As a side effect, our approach also replaces
the traditional sort and temp operators since statistics operators often require
materializing and sorting the input data. Therefore, this chapter describes a
large fraction of any query engine implementing modern SQL (the biggest ex-
ceptions are joins and set operations). We integrated the proposed approach
into the high-performance compiling database system Umbra [88, 57] and com-
pare its performance against HyPer [87]. We focus on the implementation
of non-spilling LOLEPOP variants, and assume that the working-set fits into
main-memory. The experimental results in Section 4.5 show that our system
outperforms HyPer on complex statistical queries – even though HyPer has
highly-optimized implementations for aggregation and window functions. We
close with a discussion of related work in Section 4.6 and a summary of the
chapter in Section 4.7.

4.2 background

Relational algebra operators are the prevalent representation of SQL queries.
In relational systems, the life cycle of a query usually begins with the transla-
tion of the SQL text into a tree-shaped plan containing logical operators such
as SELECTION, JOIN, or GROUP BY. These trees of logical operators are optimized
and lowered to physical operators by specifying implementations and access
methods. The physical operators then serve as the driver for query execution,
for example through vectorized execution or code generation. System designs
differ vastly in this last execution step but usually share a very similar notion
of logical operators.

Database systems usually introduce at least two different operators to sup-
port the data analysis operations of the SQL standard. The first and arguably
most prominent one, is the GROUP BY operator, which computes associative ag-
gregates like SUM, COUNT and MIN. These aggregate functions are part of the
SQL:1992 standard and already introduce a major hurdle for query engines
in form of the optional DISTINCT qualifier. A hash-based DISTINCT implemen-
tation will effectively introduce an additional aggregation phase that precedes
the actual aggregation to make the input unique for each group. When comput-

40 evaluating advanced analytical sql queries

Table
1:LO

LEPO
Ps

for
advanced

SQ
L

analytics.The
input

and
output

are
either

a
tuple

stream
(

,
)

or
tuple

buffer
(

,
).

O
perator

In
O

ut
Sem

antics
Im

plem
entation

Transform

P
A
R
T
I
T
I
O
N

H
ash-partitions

input
M

aterializes
hash

partitions
(per

thread),then
m

erges
across

threads
S
O
R
T

Sorts
hash

partitions
Sorts

partitions
w

ith
a

m
orsel-driven

variant
of

BlockQ
uicksort

[
3
3]

M
E
R
G
E

M
erges

hash
partitions

M
erges

partitions
w

ith
repeated

6
4-w

ay
m

erges
C
O
M
B
I
N
E

Joins
unique

input
on

the
group

key
Builds

partitioned
hash

tables
after

m
aterializing

input.
Flushes

m
issing

groups
to

local
hash

partitions
and

then
rehashes

betw
een

pipelines
S
C
A
N

Scans
hash

partitions
Scans

m
aterialized

hash
partitions

and
indirection

vectors

Compute

W
I
N
D
O
W

A
ggregates

w
indow

s
Evaluates

m
ultiple

w
indow

fram
es

for
each

row
O
R
D
A
G
G

A
ggregates

sort-based
A

ggregates
sorted

key
ranges.Scans

tw
ice

for
nested

aggregates
H
A
S
H
A
G
G

A
ggregates

hash-based
A

ggregates
input

in
fixed-size

localhash
tables

and
flushes

collisions
to

hash
partitions,then

m
erges

partialaggregates
w

ith
dynam

ic
tables

*
Traditionaloperators

–

4.2 background 41

ing the aggregate SUM(DISTINCT a) GROUP BY b, for example, many systems
are actually computing:

SELECT sum(a)
FROM (SELECT a, b FROM R GROUP BY a, b)
GROUP BY b

Now consider a query that contains the two distinct aggregates
SUM(DISTINCT a), SUM(DISTINCT b) as well as SUM(c). If we resort to hashing
to make the attributes a and b distinct, we will receive a DAG that performs
five aggregations and joins all three aggregates into unique result groups
afterwards. This introduces a fair amount of complexity hidden within a
single operator.

Grouping sets increase the complexity of the GROUP BY operator further as
the user can now explicitly specify multiple group keys. With grouping sets,
the GROUP BY operator has to replicate the data flow of aggregates for every
key that the user requests. An easy way out of this dilemma is the UNION ALL

operator, which allows computing the aggregates independently. This reduces
the added complexity but gives away the opportunity to share results when
aggregates can be re-grouped. For example, we can compute an aggregate
SUM(c) that is grouped by the grouping sets (a,b) and (a) using UNION ALL as
follows:

SELECT a, b, sum(c) FROM R GROUP BY a, b
UNION ALL
SELECT a, NULL, sum(c) FROM R GROUP BY a

Order-sensitive aggregation functions like median are inherently incompat-
ible with the previously-described hash-based aggregation. They have to be
evaluated by first sorting materialized values that are hash-partitioned by the
group key and then computing the aggregate on the key ranges. Sorting it-
self, however, can be significantly more expensive than hash-based aggrega-
tion which means that the database system cannot just always fall back to
sort-based aggregation for all aggregates once an order-sensitive aggregate is
present. The evaluation of multiple aggregates consequently involves multiple
algorithms that, in the end, have to produce merged result groups. The op-
timal evaluation strategy heavily depends on the function composition which
presents a herculean task for a monolithic GROUP BY operator.

The WINDOW operator is the second aggregation operator that databases have
to support. Unlike GROUP BY, the WINDOW operator computes aggregates in the

42 evaluating advanced analytical sql queries

context of individual input rows instead of the whole group. That makes a
hash-based solution infeasible even for associative window aggregates. Instead,
the WINDOW operator also hash-partitions the values, sorts them by partition
and ordering keys, optionally builds a segment tree, and finally evaluates the
aggregates for every row [73].

It is tempting to outsource the evaluation of order-sensitive aggregates to this
second operator that already aggregates sorted values. Some database systems
therefore rewrite ordered-set aggregates into a sort-based WINDOW operator fol-
lowed by a hash-based GROUP BY. This reduces code duplication by delegating
sort-based aggregations to a single operator but introduces unnecessary hash
aggregations to produce unique result groups. For example, the median of
attribute a grouped by b can be evaluated with a pseudo aggregation function
ANY that selects an arbitrary group element:

SELECT b, any(v)
FROM (SELECT b, median(a) OVER (PARTITION BY b) AS v FROM R)
GROUP BY b

We see this as an indicator that relational algebra is simply too coarse-
grained for advanced analytics since it favors monolithic aggregation operators
that have to shoulder too much complexity. We further believe that this is an
ingrained limitation of relational algebra rooting in its reliance on (multi-)set
semantics and its inability to share materialized state between operators.

4.3 from sql to lolepops

In this section, we first introduce the set of LOLEPOPs for advanced SQL
analytics and describe how to derive them from SQL queries. We then outline
selected properties of complex aggregates and how LOLEPOPs can evaluate
them efficiently.

4.3.1 LOLEPOPs

The execution of SQL queries traditionally centers around unordered tuple
streams. Relational algebra operators like joins are defined on unordered sets
which allows execution engines to evaluate queries without fully materializ-
ing both inputs. State-of-the-art systems evaluate operators by processing the

4.3 from sql to lolepops 43

input tuple-by-tuple regardless of whether the execution engine implements
the Volcano-style iterator model, vectorized interpretation or code generation
using the push model. An exception to this rule are systems that always mate-
rialize the entire output of an operator before proceeding. This adds flexibility
when manipulating the same tuples across several operators but the inherent
costs of materializing all intermediate results by default is usually undesirable.

Our LOLEPOPs bridge the gap between traditional stream-based query en-
gines and full materialization by defining operators on both unordered tuple
streams and buffers. These buffers are further specified with the physical prop-
erties partitioning and ordering which allows reusing materialized tuples wher-
ever possible. Table 1 lists eight LOLEPOPs that are both necessary and suffi-
cient to compose advanced SQL aggregates. Of these, five transform material-
ized values and three compute the actual aggregates. The transform LOLEPOPs
can be thought of as utility operators that prepare the input for the compute
LOLEPOPs. For example, before one can compute an ordered aggregate using
ORDAGG, the input data has to be partitioned and sorted. Buffers can be scanned
multiple times, which allows decomposing complex SQL analytics into consec-
utive aggregations that pass materialized state between them.

For every LOLEPOP, Table 1 lists whether it produces and consumes tuple
streams (,) or tuple buffers (,). These input and output types
form the interface of a LOLEPOP and may be asymmetric. For example, the
PARTITION operator consumes an unordered stream of tuples () and pro-
duces a buffer that is partitioned (). The SORT operator, on the other hand,
reorders elements in place and therefore defines input and output as buffer (

). Together, the two operators form a reusable building block () that
materializes input values and prepares them, e.g., for ordered-set or windowed
aggregation. This allows implementing complex tasks like parallel partitioned
sorting in a single code fragment and enables more powerful optimizations on
composed aggregates.

Most of the LOLEPOPs consume data from a single producer and provide
data for arbitrary many consumers. The only exception is the operator COMBINE
that joins multiple tuple streams on group keys. The operator differs from a tra-
ditional join in a detail that is specific to aggregation. It leverages that groups
are produced at most once by every producer to simplify the join on parallel
and partitioned input. We deliberately use the term COMBINE distinguishing
the join of unique groups from generic sets.

We use dedicated LOLEPOPs to differentiate between hash-based (HASHAGG)
and sort-based (ORDAGG) aggregation. Many systems implement these two fla-

44 evaluating advanced analytical sql queries

Γ
Γ

Π

Γ

R

MEDIAN
ARG KEY ORD

SUM
ARG KEY ORD

COUNT
ARG KEY ORD

ANY
ARG KEY ORD

ANY
ARG KEY ORD

SUM
ARG KEY ORD/

a b c d

SINK

ΠΠ

R

PARTITION

SORT

ORDAGG

COMBINE

HASHAGG

HASHAGG

SCAN

Π

R

Figure 12: Translation of a GROUP BY operator into a computation graph to construct
a DAG of LOLEPOPs.

SQL: SELECT median(a), avg(b), sum(DISTINCT c) FROM R GROUP BY d

vors of aggregation by lowering a logical GROUP BY operator to two physical
ones. However, this choice is very coarse-grained since the result is still a sin-
gle physical operator that has to evaluate very different aggregates at once.
With our framework, database systems can freely combine arbitrary flavors
of aggregation algorithms as long as they can be defined as a LOLEPOP. Sec-
tion 4.3.3 discusses several examples that unveil the hitherto dormant potential
of such hybrid strategies. For example, while associative aggregates usually fa-
vor hash-based aggregation, we may switch to sort-aggregation in the presence
of an additional ordered-set aggregate. If the required ordering is incompatible,
however, it may be more efficient to combine both, hash-based and sort-based
aggregation.

4.3.2 From Tree to DAG

We derive the LOLEPOP plan from a computation graph that connects the
input values, the aggregate computations as well as virtual source and sink
nodes based on dependencies between them. Figure 12 shows, from left to
right, a relational algebra tree, the derived computation graph, and the con-
structed DAG containing the LOLEPOPs for a query that computes the three
aggregates median, average and distinct sum.

4.3 from sql to lolepops 45

The relational algebra tree only consists of a scan, a monolithic GROUP BY, and
a projection. At first, the GROUP BY aggregates are split up to unveil inherent
dependencies of the different aggregation functions. The average aggregate,
for example, is decomposed into the two aggregates SUM and COUNT, and a di-
vision expression. The distinct SUM, on the other hand, is first translated into
ANY aggregates for arguments and keys followed by a SUM aggregate. ANY is
an implementation detail that is not part of the SQL standard. It is a pseudo
aggregation function that preserves an arbitrary value within a group and al-
lows, for example, to distinguish the group keys from the unaggregated input
values. Here, the attributes c and d are aggregated with ANY, grouped by c, d
to make them unique.

The resulting aggregates and expressions are connected in the computation
graph based on dependencies between them. A node in this graph depends on
other nodes if they are referenced as either argument, ordering constraint or
partitioning/grouping key. For example, the median computation references
the attributes a and d whereas the any aggregates only depend on the attributes
c and d. LOLEPOPs offer the option to compute the median independently of
the distinct sum and then join the groups afterwards using the COMBINE opera-
tor. This results in DAG structured plans and requires special bookkeeping of
the dependencies during the translation.

The computation graph of the example is translated into the seven LOLE-
POPs on the right-hand side of the figure. The non-distinct aggregates in blue
color are translated into the operators PARTITION, SORT, and ORDAGG since the
median aggregate requires materializing and sorting all values anyway. The
ANY aggregates, however, differ in the group keys and are therefore inlined as
HASHAGG operator into the input pipeline. The distinct sum is computed in a
second HASHAGG operator and is then joined with the non-distinct aggregates
using the COMBINE operator.

The algorithm that derives these LOLEPOPs from the given computation
graph is outlined in Figure 13. It consists of five steps that canonically map
the aggregates to the LOLEPOP counterparts and then optimize the result-
ing DAG. Step A collects sets of computations with similar group keys and
constructs a single COMBINE operator for each set respectively. These COMBINE

operators implicitly join aggregates with the same group keys and will be op-
timized out later if they turn out to be redundant. Step B then constructs
aggregate LOLEPOPs for computations within these sets. If the query contains
grouping sets, it decomposes them into aggregations with separate grouping

46 evaluating advanced analytical sql queries

SOURCE

PARTITION(d)

SORT(d,a)

SUM(b)MEDIAN(a) COUNT(b)

ANY(c) ANY(d)

COMBINE(d,c)

SUM(DISTINCT c)

COMBINE(d)

SCAN

SINK

A

A

B B

B

C

C

C

D

D

E

A Add combine operators

B Compute aggregates

• Expand grouping sets
• Select aggregation order
• Select aggregation strategies

C Propagate buffers

• Add sorting operators
• Add partitioning operators
• Add scan operators

D Connect DAG

• Consume from source operator
• Produce for sink operator

E Optimize DAG

• Replace unbounded windows
• Remove redundant combines
• Select producer order
• Select buffer layouts
• Select sort modes

Figure 13: Algorithm to derive the LOLEPOP DAG.

keys and adds them to the other aggregates attached to the combine operator.
Afterwards, it divides the aggregates based on the grouping keys of their in-
put values and determines favorable execution orders. In the example query,
the operator COMBINE(d) joins the aggregates MEDIAN(a), SUM(b), COUNT(b) and
SUM(DISTINCT c). The first three aggregates depend on values that originate
directly from the source operator whereas SUM(DISTINCT c) depends on val-
ues that are grouped by d, c. Among the first three, the aggregates SUM and
COUNT are associative aggregates that would favor a hash-based aggregation.
The MEDIAN aggregate, however, is an ordered-set aggregate and requires the
input to be at least partitioned. The algorithm therefore constructs a single
ORDAGG operator to compute the first three aggregates and a HASHAGG operator
to compute the distinct sum. Step C introduces all transforming operators

4.3 from sql to lolepops 47

to create, manipulate and scan buffers. In the example query, this introduces
the SORT and PARTITION operators required for ORDAGG as well as the final SCAN
operator to forward all aggregates to the sink. Step D connects the source and
sink operators and emits a first valid DAG.

Step E transforms this DAG with several optimization passes. The goal
of these optimization passes is to detect constellations that can be optimized
and to transform the graph accordingly. In the given query, the operator
COMBINE(d,c) can be removed since there is only a single inbound HASHAGG op-
erator. Other optimizations include, for example, the merging of unbounded
WINDOW frames into following ORDAGG operators if the explicit materialization of
an aggregate is unnecessary or the elimination of SORT operators if the order-
ing is a prefix of an existing ordering. In addition to graph transformations,
these passes are also used to configure individual operators with respect to
the graph. An example is the order in which COMBINE operators call their pro-
ducers. If, for example, a COMBINE operator joins two ordered-set aggregates
with different ordering constraints it is usually favorable to produce the op-
erator "closer" to the source first to enable in-place reordering of the buffer.
In general, such a favorable producer order can be determined with a single
pre-order DFS traversal starting from the plan source. Another example, is the
selection of the sorting strategy in the SORT operator and the propagation of
the access method to consuming operators. Very large tuples may, for exam-
ple, favor indirect sorting over in-place sorting which has to be propagated to
a consuming ORDAGG operator.

The result is a plan of LOLEPOPs that eliminates many of the performance
pitfalls that monolithic aggregation operators will run into. We do not claim
that we always find the optimal plans for the given aggregations but instead
make sure that certain performance opportunities are seized. We want to ex-
plore this plan search space using a physical cost model in future research.

The algorithm translates simple standalone aggregates into chains of LOLE-
POPs. An associative aggregate with distinct qualifier, for example, is
translated into the sequence HASHAGG(HASHAGG(R)). An ordered-set aggre-
gate is computed on sorted input using ORDAGG(SORT(PARTITION(R))). For
a window function, we just need to replace the last operator and evaluate
WINDOW(SORT(PARTITION(R))) instead. This already hints at the potential code
reuse between the different aggregation types but does not yet take full advan-
tage of DAG-structured plans.

48 evaluating advanced analytical sql queries

R

HASHAGG

Π

0

STREAM
BUFFER

R

HASHAGG

HASHAGG HASHAGG

COMBINE

SCAN

Π

1

R

PARTITION

SORT HASHAGG

HASHAGGORDAGGSORT

ORDAGG

COMBINE

SCAN

Π

2

0 SELECT a, var_pop(b), count(b), sum(b) FROM R GROUP BY a

1 SELECT a, b, sum(c) FROM R GROUP BY GROUPING SETS ((a), (b), (a, b));

2 SELECT a, sum(b), sum(DISTINCT b),

percentile_disc(0.5) WITHIN GROUP (ORDER BY c),

percentile_disc(0.5) WITHIN GROUP (ORDER BY d) FROM R GROUP BY a

Figure 14: Plans for three example queries outlinining challenges with composed ag-
gregates, implicit joins and order sensitivy.

4.3.3 Advanced Expressions

Advanced expressions demand complex evaluation strategies. Figure 14 and
Figure 15 show six example queries and the low-level plan.

Composed Aggregates must be split up to eliminate redundancy. The SQL
standard describes various aggregation functions that can be decomposed into
smaller ones. The aggregation function VAR_POP, for example, is defined as

Var(x) =
1
N

·
N

∑
i=0

(xi − x)2 = (
1
N

·
N

∑
i=0

x2
i)− (

1
N

·
N

∑
i=0

xi)
2

and can be decomposed into

SUM(x2)− SUM(x)2

COUNT(x)

COUNT(x)
.

We have to share the aggregate computations among and within composed
aggregates, which favors a graph-like representation of aggregates and expres-
sions. 0 shows a query that computes the aggregates VAR_POP(x), SUM(x), and
COUNT(x). We can evaluate all three aggregates with a single hash-based aggre-

4.3 from sql to lolepops 49

gation operator, but still have to infer that SUM(x) and count(x) can be shared
with the variance computation.

Implicit joins are necessary whenever different groups need to be served
at once. This can be the result of multiple order-sensitive and distinct aggre-
gates or an explicit grouping operation such as GROUPING SETS. 1 shows a
query where an associative aggregate SUM(c) is computed for the grouping
sets (a), (b), and (a,b). We can evaluate the query efficiently by inlining the
grouping of (a,b) into the input pipeline and then grouping (a,b) by (a) and
(b). Afterwards, the output of all three aggregates is joined by (a,b) within
a single hash-table. Grouping operations usually emit complicated graphs of
LOLEPOPs and cause non-trivial reasoning about the evaluation order.

Order sensitivity has an invasive effect on the desirable plans since it usu-
ally requires materializing and sorting the entire input. This renders additional
hash-based aggregation, which is often superior for standalone aggregation,
inferior to aggregating sorted key ranges. 2 shows a query that computes
two order-sensitive aggregates MEDIAN(c) and MEDIAN(d) as well as two asso-
ciative aggregates SUM(b) and SUM(DISTINCT b). One would usually prefer
hash-bashed aggregation for the non-distinct sum aggregate to exploit the as-
sociativity. In the presence of the median aggregates, however, it is possible to
compute the non-distinct sum on the same ordered key range and thus elimi-
nate an additional hash table. The second median reuses the buffer of the first
median and reorders the materialized tuples by (a,d). The distinct qualifier
leaves us with the choice to either introduce two hash aggregations, grouped
by (a,c) and (a), or to reorder the key ranges again by (a,c) and skip du-
plicates in ORDAGG. In this particular query, we use hash aggregations since the
runtime is dominated by linear scans over the data as opposed to O(n log n)
costs for sorting. If the key range was already sorted by (a,c), a duplicate-
sensitive ORDAGG would be preferable.

Result ordering is specified through the SQL keywords ORDER BY, LIMIT and
OFFSET and is crucial to reduce the cardinality of the result sets. We already
rely on ordered input in the WINDOW and ORDAGG operators, which makes stan-
dalone sorting of values a byproduct of our framework. There are only two
adjustments necessary. First, we have to support the propagation of LIMIT

and OFFSET constraints through the DAG of LOLEPOPs to stop sorting eagerly.
This can be implemented as pass through the DAG very similar to traditional
optimizations of relational algebra operators. Additionally, we need a dedi-
cated operator MERGE that uses repeated k-way merges to reduce the partition
count efficiently.

50 evaluating advanced analytical sql queries

R

PARTITION

SORT

WINDOW

SORT

MERGE

SCAN

Π

3

R

PARTITION

SORT

WINDOW

SORT

ORDAGG

Π

4

R

PARTITION

SORT

WINDOW

ORDAGG

Π

5

STREAM
BUFFER

3 SELECT row_number() OVER (PARTITION BY a ORDER BY b) FROM R ORDER BY c LIMIT 10

4 SELECT a, mad() WITHIN GROUP (ORDER BY b) FROM R GROUP BY a

5 SELECT b, sum(pow(next_a - a, 2)) / nullif(count(*) - 1, 0)

FROM (SELECT b, a, lead(a) OVER (PARTITION BY b ORDER BY a) AS next_a

FROM R) GROUP BY b

Figure 15: Plans for three example queries that allow for the optimization of result
ordering and aggregate nesting.

3 shows a query that computes the window function row_number of at-
tribute b and then sorts the results by an attribute c. The traditional approach
would involve a dedicated operator on top that materializes and sorts the
scanned output of the window aggregation. We instead just reorder the already
materialized tuples by the new order constraint and eliminate the additional
materialization.

Nested aggregates blur the boundary between grouped and windowed
aggregations. The Median Absolute Deviation (MAD), for example, is a
common measure for dispersion in descriptive statistics and is defined for a
set {x1, x2, ..., xn} as MEDIAN(|xi − x̃|) with x̃ = MEDIAN(x). x̃ represents
a window aggregate since xi − x̃ has to be evaluated for every row. The outer
median, however, is an order-sensitive grouping aggregation that reduces each
group to a single value. One would like to try to transform this expression
into a simpler form that eliminates the nested window aggregation, similar to
the aforementioned variance function. However, the nature of the median
prevents these efforts and one is forced to explicitly (re-)aggregate xi − x̃. 4

shows a query that computes this MAD function. Our framework allows us to
first compute the window aggregate and then reorder the key ranges for a
following ORDAGG operator. This shows the power of our unified framework,

4.3 from sql to lolepops 51

which blurs the boundary between the GROUP BY and WINDOW operators and
can reuse the materialized output of xi − x̃.

Nested aggregates can also be provided by the user if the database system
accepts window aggregates as input arguments for aggregation functions. The
Mean Square Successive Difference (MSSD) is defined as√

∑N−1
i=0 (xi+1 − xi)2

n − 1
.

It estimates the standard deviation without temporal dispersion. 5 shows a
query that computes the MSSD function by nesting the window aggregate LEAD

into a SUM aggregate. A typical implementation would translate this query into
a WINDOW operator followed by a GROUP BY. This, however, disregards the fact
that the nested WINDOW ordering is compatible with the outer group keys. We
can instead just aggregate the existing key ranges without further reordering
using the ORDAGG operator.

4.3.4 Extensibility

We already mentioned a number of useful and widely-used statistics that
are not part of the SQL standard, and many more exist. One advantage of
our approach is that the computation graph facilitates the quick composition
of new aggregation functions. We construct the computation graph using a
planner API that lets us define nodes with attached ordering and key prop-
erties. We then use this API in Low-Level-Functions to compose complex
aggregates through a sequence of API calls. In fact, we even implement the ag-
gregation functions defined in the SQL standard as such Low-Level-Functions.
The following example code defines the aforementioned Mean Square Successive
Difference aggregate without explicitly implementing it in the operator logic:

def planMSSD(arg, key, ord):
f = WindowFrame(Rows, CurrentRow, Following(1))
lead = plan(LEAD, arg, key, ord, f)
ssd = plan(power(sub(lead, arg), 2))
sum = plan(SUM, ssd, key)
cnt = plan(COUNT, ssd, key)
res = plan(div(sum, nullif(sub(cnt, 1), 0)))
return res

Other complex statistical functions like interquartile range, kurtosis, or cen-
tral moment can be implemented similarly. Furthermore, a database system

52 evaluating advanced analytical sql queries

can expose this API through user-defined aggregation functions. This allows
users to combine arbitrary expressions and aggregations without the explicit
boundaries between the former relational algebra operators.

4.4 lolepop implementation

In this section, we describe how the framework affects the code generation
in our database system Umbra. We further introduce the data structures used
to efficiently pass materialized values and outline the implementation of the
LOLEPOPs PARTITION and COMBINE as well as the ORDAGG, HASHAGG, and WINDOW

operators.

4.4.1 Code Generation

Umbra follows the producer/consumer model to generate efficient code for
relational algebra plans [88, 57, 87]. In this model, operator pipelines are
merged into compact loops to keep SQL values in CPU registers as long as
possible. More specifically, code is generated by traversing the relational alge-
bra tree in a depth-first fashion. By implementing the function produce, an
operator can be instructed to recursively emit code for all child operators. The
function consume is then used in the inverse direction to inline code of the par-
ent operator into the loop of the child. Operators are said to launch pipelines by
generating compact loops with inlined code of the parent operators and break
pipelines by materializing values as necessary.

Figure 16 illustrates the code generation for a query that first joins two rela-
tions A and B and then computes the aggregates median, average, and distinct
sum. The coloring indicates which line in the pseudocode was generated by
which operator. On the left-hand side of the figure, the scan of the base rela-
tion B is colored in red and only generates the outermost loop of the second
pipeline. The join is colored in orange and inlines code building a hash
table into the first pipeline as well as code probing the hash table into the sec-
ond pipeline. Both operators integrate seamlessly into the producer/consumer
model since the generated loops closely match the unordered (multi-)sets at
the algebra level. The group by operator, on the other hand, bypasses the
model almost entirely. The code in yellow color partitions and sorts all values
for the median and average aggregates and additionally computes the distinct

4.4 lolepop implementation 53

Γ

Π

Γ

A B

PARTITION

SORT

ORDAGG

COMBINE

HASHAGG

HASHAGG

SCAN

Π

A B

for e in A:
ht1.insert(e)

for (a,b,c,d,f) in B:
for e in ht1.lookup(f):
partitions.insert(d,(a,b))
agg1.preagg((d,c),())

partitions.shuffle()
partitions.sort((d,a))
for (md,sum,cnt) in partitions:
ht2[d] = (md,sum,cnt,NULL)

for (d,c) in agg1.merge():
agg2.preagg(d, sum(c))

for (d,sumc) in agg2.merge():
ht2[d][3] = sumc

for (d,md,sum,cnt,sumc) in ht2:
print(d,md,sum/cnt,sumc)

for e in A:
ht1.insert(e)

for (a,b,c,d,f) in B:
for e in ht1.lookup(f):
partitions.insert(d,(a,b))
agg1.preagg((d,c),())

partitions.shuffle()
partitions.sort((d,a))

for (md,sum,cnt) in partitions:
ht2[d] = (md,sum/cnt,NULL)

for (d,c) in agg1.merge():
agg2.preagg(d, sum(c))

for (d,sumc) in agg2.merge():
ht2[d][3] = sumc

for (d,md,avg,sumc) in ht2:
print(d,md,avg,sumc)

Figure 16: Plans and simplified code for a query that computes a median, an average,
and a distinct sum of two joined relations.

sum via two hash aggregations. In contrast to the scan and join operators, most
of this code is generated in between the unordered input and output pipelines
since the aggregation logic primarily manipulates materialized values.

Our framework breaks this monolithic aggregation logic into a DAG of
LOLEPOPs. Within the producer/consumer model, a LOLEPOP behaves just
like every other operator with the single exception that it does not necessarily

54 evaluating advanced analytical sql queries

call consume on the parent operator. Instead, multiple LOLEPOPs can manip-
ulate the same tuple buffer via code generated in the produce calls.

These derived DAG that roots in the two outgoing edges of the former join
operator. The producer/consumer model supports DAGs since we can inline
both consumers of the join (the PARTITION and HASHAGG operators) into
the loop of the input pipeline. The only adjustment necessary is to substitute
the total order among pipeline operators with a partial order modeling the
DAG structure. Our framework further unveils pipelines that have been hid-
den within the monolithic translation code. The output of the ORDAGG and the
two HASHAGG operators represent unordered sets that can now be defined as
pipelines explicitly. The dashed edges between the operators indicate passed
tuple buffers as opposed to the solid edges for pipelines. In this example,
data is passed implicitly between the operators PARTITION, SORT, and ORDAGG

through the variable partitions. This lifts the usual limitation to only pass
tuples in generated loops and allows us to compose buffer modifications.

In the example, the code that is generated through LOLEPOPs equals the
code generated by the monolithic aggregation operator. This underlines that
LOLEPOPs are not fundamentally new ways to evaluate aggregates but serve
as more fine-granular representation that better matches the modular nature
of these functions.

4.4.2 Tuple Buffer

The tuple buffer is a central data structure that is passed between multi-
ple LOLEPOPs and thereby allows reusing intermediate results. Our tuple
buffer design is driven by the characteristics of code generation as well as the
operations that we want to support. First, the code generated by the producer-
consumer model ingests data into the buffer on a tuple-by-tuple fashion. We
also do not want to rely on cardinality estimates, which are known to be in-
accurate [72]. Yet, we want to avoid relocating materialized tuples whenever
possible. This favors a simple list of data chunks with exponentially growing
chunk sizes as the primary way to represent a buffer partition. Second, we
prefer a row-major storage layout for the tuple buffer. Our system implements
a column-store for relations but materializes intermediate results as rows to
simplify the generated attribute access. This will particularly benefit the SORT

operator since it makes in-place sorting more cache-efficient.

4.4 lolepop implementation 55

Iterator Logic

emit("while #{it != end}:")
emit(" #{s = {}; g = it.keys()}")
emit(" while #{++it != end && it.keys() == g}:")
emit(" #{combine(s, it.values())}")
emit(" #{consumer.consume(s)})

Figure 17: Tuple buffer and translator code that accesses sorted key ranges through
iterator abstraction at query compile time.

However, in-place sorting also becomes inefficient with an increasing tuple
size since the overhead of copying wide tuples overshadows the better cache
efficiency. A common alternative is to sort a vector of pointers (or tuple identi-
fiers) instead. These indirection vectors suffer from scattered memory accesses,
but feature a constant entry size that will be beneficial once tuples get larger.
This contrast leads to tradeoff between cache efficiency and robustness which
oftentimes favors the latter. We instead combine the best of both worlds by in-
troducing a third option that we call the permutation vector. A permutation vector
is a sequence of entries that consist of the original tuple address followed by
copied key attributes. This preserves the high efficiency of key comparisons in
the operators SORT, ORDAGG, and WINDOW at the cost of a slightly more expensive
vector construction.

Figure 17 shows a chunk list , a permutation vector , and a hash table
of a single tuple buffer partition. The right-hand side of the figure lists an
exemplary translation code for the ORDAGG operator. The code generates a loop
over a sequence of tuples that aggregates key ranges and passes the results to a
consumer. Keys and values are loaded through an iterator logic that abstracts
the buffer access at query compile time. This way, the operator does not need

56 evaluating advanced analytical sql queries

Figure 18: Morsel-Driven Quicksort and merge of two partitions. One partition is split
eagerly to increase parallelism.

to be aware of either chunks or permutation vectors but can instead rely on the
iterator to emit the appropriate access code.

4.4.3 Sorting

Sorting often dominates the evaluation of order-sensitive aggregate func-
tions. Hence, the SORT operator is a central pillar for the fast evaluation of
advanced aggregates. Our implementation is based on the BlockQuicksort al-
gorithm by Edelkamp and Weiß [33]. BlockQuicksort extends a modified In-
trosort [86, 108] with a partitioning function that avoids branch mispredictions
through block wise pivot comparisons. We adapt it for compiled query plans
by using generated block comparison and block swap functions.

BlockQuicksort offers a good single-threaded sort performance but does not
scale well to multiple cores. It is tempting to place this burden on the buffer
partitioning by running the single-threaded sort algorithm on each buffer parti-
tion independently. This, however, is very vulnerable to data skew that cannot
be mitigated easily in the presence of arbitrarily-sized groups. Even some
moderate amount of data skew may stall the parallel query execution until the
largest (straggler) partition is processed. We instead propose to embody the
principles of Morsel-Driven Parallelism [71] into BlockQuicksort.

Morsel-Driven Parallelism elastically schedules small fragments of work on
a dynamic number of worker threads. This eliminates any upfront schedul-
ing decisions and allows the database system to adapt to data skew, varying
system workloads, and NUMA topologies. In case of BlockQuicksort, how-
ever, we cannot just schedule arbitrary input fragments since the partitioning
phases cannot be subdivided without introducing later merges. This leads to a
tradeoff between fragment granularity and bookkeeping complexity.

We instead follow the observation that BlockQuicksort itself generates inde-
pendent fragments quickly. BlockQuicksort uses repeated partitioning steps,

4.4 lolepop implementation 57

similar to textbook Quicksort implementations, to recursively sort ranges left
and right of chosen pivot elements. We propose to adapt these partitioning
steps by recursively sorting left ranges as usual but pushes the right ranges on
an explicit stack that is shared with other threads. This will provide O(log n)
fragments of each participating thread until every buffer partition is sorted. A
Morsel-Driven scheduler can then steal those ranges and assign them to idle
worker threads.

This adjustment makes BlockQuicksort elastic at very low cost. However,
data skew can still limit the speedup because threads may have to wait for
the very first partitioning steps to finish. We mitigate this effect by splitting
overly large partitions upfront. This will increase the number of initial frag-
ments at the cost of a following k-way merge. Morsel-Driven BlockQuicksort
will therefore sort independently at very little overhead if buffer partitions are
numerous and of roughly equal size. In extreme cases, the algorithm will per-
form an additional k-way merge afterwards. These two adjustments allow the
algorithm to scale well with both the number of cores and the number of buffer
partitions.

Figure 18 illustrates the Morsel-Driven BlockQuicksort using two buffer par-
titions. Each partition shows the ranges that are either sorted uninterruptedly
, or shared with the other threads . The partition at the bottom is significantly
larger than the partition on top and is therefore split in half upfront. This al-
lows processing the very first morsels with three threads instead of two. Once
all rages are sorted, we select three global separators within the split partition
and perform a parallel two-way merge afterwards.

4.4.4 Aggregation

The framework uses the three aggregation operators ORDAGG, WINDOW, and
HASHAGG. In Figure 17, we already outlined the ORDAGG operator, which gener-
ates compact loops over sorted tuples and computes aggregates without ma-
terializing any aggregation state. We use the ORDAGG operator whenever our
input is already sorted since it spares us explicit hash tables. We further use
ORDAGG to efficiently evaluate nested aggregates such as SUM(x - MEDIAN(x)).
Since all values are materialized, ORDAGG can compute the nested aggregates
by scanning the key range repeatedly. Traditional operators are here forced to
write back the result of the median into every single row and then compute the
outer aggregate using a hash join. The LOLEPOPs therefore not only spare us

58 evaluating advanced analytical sql queries

Sh
uf

fle

T1

T2

Figure 19: Two-phase hash aggregation with two threads. The hash tables on the left
are fixed in size while the hash tables in green grow dynamically.

the hash tables but also the additional result field which will positively affect
the sort performance.

The second aggregation operator is WINDOW. Algorithmically, its implementa-
tion closely follows the window operator described by Leis et al. [73]: Within
our DAG, however, the materialization, partitioning and sorting of values is
delegated to other LOLEPOPs and is no longer the responsibility of the WINDOW

operator. Instead, the operator begins with computing the segment trees for
every hash partition in parallel. Afterwards, it evaluates the window aggre-
gates for every row and reuses the results between window frames wherever
possible. We additionally follow the simple observation that segment trees can
be computed for many associative aggregates at once, independent of their
frames, as long as they share the same ordering. A single WINDOW operator
therefore computes multiple frames in sequence to share the segment aggrega-
tion and increase the cache-efficiency.

The third aggregation operator, HASHAGG, is illustrated in Figure 19. HASHAGG
adopts a two-phase hash aggregation [101, 71]. We first consume tuples of
an incoming pipeline and compute partial aggregates in fixed-size thread-local
hash tables. These first hash tables use chaining, and we allocate its entries
in a thread-local partitioned tuple buffer. However, we do not maintain the
hash table entries in linked lists, but instead simply replace the previous entry
whenever the group keys differ. This will effectively produce a sequence of
partially aggregated non-unique groups that have to be merged afterwards.

4.4 lolepop implementation 59

The efficiency of this operator roots in the ability to pre-aggregate most of
its input in these local hash tables that fully reside in the CPU caches. That
means that if the overall number of groups is small or if group keys are not too
spread out across the relation, most of the aggregate computations will happen
within this first step, which scales very well. Afterwards, the threads merge
their hash partitions into a large buffer by simply concatenating the allocated
chunk lists. These hash partitions are then assigned to individual threads and
merged using dynamically-growing hash tables.

4.4.5 Partitioning

The PARTITION operator consumes an unordered tuple stream and produces
a tuple buffer with a configurable number of, for example, 1024 hash parti-
tions. Every single input tuple is hashed and allocated within a thread-local
tuple buffer first. Once the input is exhausted, the thread-local buffers are
merged across threads similar to the merging of hash partitions in the HASHAGG

operator. Afterwards, the partition operator checks whether any of the follow-
ing LOLEPOPs has requested to modify the buffer in-place. If that is the case,
the partition operator compacts the chunk lists into a single chunk per parti-
tion. We deliberately introduced this additional compaction step to simplify
the buffer modifications. The alternative would have been to implement all
in-place modifications in a way that is aware of chunk-lists. This is particu-
larly tedious for algorithms like sorting and also makes the generated iterator
arithmetic in operators like WINDOW and ORDAGG more expensive.

4.4.6 Combine

The COMBINE operator joins unique groups on their group keys. Consider,
for example, a query that pairs a distinct with a non-distinct aggregate. Both
aggregates are computed in different HASHAGG LOLEPOPs but need to be served
as single result group. The COMBINE operator joins an arbitrary number of input
streams with the assumption that these groups are unqiue. We simply check
for every incoming tuple whether a group with the given key already exists. If
it is, we can just update the group with the new values and proceed. Otherwise,
we materialize the group into a thread-local tuple buffer. After every pipeline,
the COMBINE operator merges these local buffers and rehashes the partitions if
necessary.

60 evaluating advanced analytical sql queries

4.5 evaluation

In this section, we experimentally evaluate the planning and execution of
advanced SQL analytics in Umbra using LOLEPOPs. We first compare the
execution times of advanced analytical queries with Hyper, a database system
that implements aggregation using traditional relational algebra operators. We
then analyze the impact of aggregates on five TPC-H queries with a varying
number of joins. Additionally, we show the performance characteristics of
certain LOLEPOPs based on four execution traces. Our experiments have been
performed on an Intel Core i9-7900X with 10 cores, 128 GB of main memory,
LLVM 9, and Linux 5.3.

4.5.1 Comparison with other Systems

We designed a set of queries to demonstrate the advantages of
our framework over monolithic aggregation operators. We chose the
main-memory database system HyPer as reference implementation for
traditional aggregation operators since it also employs code generation with
the LLVM framework for best-of-breed performance in analytical workloads.
The design of Umbra shares many similarities with HyPer besides the query
engine which allows for a fair comparison of the execution times. Both
systems rely on Morsel-Driven Parallelization [71] and compile queries using
LLVM [87].

The database systems PostgreSQL and MonetDB were excluded due to their
lacking performance for basic aggregates. The following table compares the ex-
ecution times between HyPer, PostgreSQL and MonetDB for an associative ag-
gregate, an ordered-set aggregate and a window function as well as for group-
ing sets with two group keys. Our queries represent complex and composed
versions of these aggregates and will increase the margin between the systems
further.

The experiment differs from benchmarks such as TPC-H or TPC-DS in that
the queries are not directly modeling a real-world interaction with the database.
We instead define queries that only aggregate a single base table without fur-
ther join processing. We focus on the relation lineitem of the benchmark TPC-H
since it is well-understood and may serve as placeholder for whatever analyti-
cal query precedes. This does not curtail our evaluation since those operators
usually form the very top of query plans and any selective join would only

4.5 evaluation 61

Table 2: Execution times in seconds of queries with simple aggregates in HyPer, Post-
greSQL and MonetDB.

Query HyPer PgSQL MonetDB
SUM(q) GROUP BY k 0.50 4.03 0.64

SUM(q) GROUP BY ((k,n),(k)) 0.55 42.31 4.77

PCTL(q,0.5) GROUP BY k 0.89 32.96 10.19

ROW_NUMBER() PARTITION BY k

ORDER BY q

0.87 26.58 10.36

n=linenumber q=quantity k=suppkey

reduce the pressure on the aggregation logic. Our performance evaluation
comprises 18 queries across five different categories. Table 3 shows the exe-
cution times using Umbra and HyPer with 1 and 20 threads and the factors
between them.

Queries 1, 2, and 3 provide descriptive statistics for the single attribute
extendedprice with a varying number of aggregation functions. The aggre-
gates in all three queries have to be optimized as a whole since they either
share computations or favor different evaluation strategies. Query 2 presents
a particular challenge for monolithic aggregation operators since the function
percentile (PCTL) is not associative. The associative aggregates SUM, COUNT,
and VAR_SAMP can be computed on unordered streams and can be aggregated
eagerly in thread-local hash tables. Non-associative aggregates like PCTL, on
the other hand, require materialized input that is sorted by at least the group
key. HyPer delegates this computation to the Window operator and computes
the associative aggregates using a subsequent hash-based grouping. Umbra
computes all aggregates on the sorted key range using the ORDAGG operator,
which spares us the hash tables.

Queries 4, 5, 6, and 7 target the scalability of ordered-set aggregates. All four
queries are dominated by the time it takes to sort the materialized values and
therefore punish any unnecessary reorderings. The databases have to optimize
the plan with respect to the ordering constraints to eliminate redundant work
in query 5 and 6. Query 7 additionally groups by the attribute linenumber

which contains only seven distinct values across the relation. HyPer does not
to sort partitions in parallel and is therefore considerably slower when scaling
to 20 threads.

Queries 8, 9, 10, 11, and 12 analyze grouping sets that introduce a significant
complexity in the aggregation logic by combining different group keys. This
offers potential performance gains through reaggregation of associative aggre-
gates and stresses the importance of optimized sort orders. HyPer only sup-

62 evaluating advanced analytical sql queries

Table
3:Execution

tim
es

in
seconds

for
advanced

SQ
L

queries
on

the
TPC

-H
lineitem

table
(scale

factor
1
0).

1
thread

2
0

threads

#
A

ggregates
U

m
bra

H
yPer

×
U

m
bra

H
yPer

×

Single

1
S
U
M
(
e
)
,

C
O
U
N
T
(
e
)
,

V
A
R
_
S
A
M
P
(
e
)

G
R
O
U
P

B
Y

k
3.

1
0

4.
7
3

1.
5
3

0.
3
7

0.
6
0

1.
6
2

2

↰,
P
C
T
L
(
e
,
0
.
5
)

G
R
O
U
P

B
Y

k
4.

3
2

9.
3
6

2.
1
7

0.
4
7

0.
9
6

2.
0
3

3
C
O
U
N
T
(
e
)
,

C
O
U
N
T
(
D
I
S
T
I
N
C
T

e
)

G
R
O
U
P

B
Y

k
9.

6
1

1
2
7.

6
3

1
3.

2
8

1.
2
1

2
6.

5
2

2
1.

9
0

Ordered-Set

4
P
C
T
L
(
e
,
0
.
5
)

G
R
O
U
P

B
Y

k
4.

0
0

8.
8
8

2.
2
2

0.
4
3

0.
9
2

2.
1
4

5

↰,
P
C
T
L
(
e
,
0
.
9
9
)

G
R
O
U
P

B
Y

k
4.

0
2

1
2.

6
6

3.
1
5

0.
4
2

1.
4
0

3.
3
1

6

↰,
P
C
T
L
(
q
,
0
.
5
)
,

P
C
T
L
(
q
,
0
.
9
)

G
R
O
U
P

B
Y

k
6.

4
8

2
2.

3
9

3.
4
6

0.
6
4

2.
6
8

4.
2
0

7
P
C
T
L
(
e
,
0
.
5
)
,

P
C
T
L
(
q
,
0
.
5
)

G
R
O
U
P

B
Y

n
6.

7
4

2
1.

9
3

3.
2
5

0.
9
3

1
9.

8
5

2
1.

3
6

Grouping-Sets

8
S
U
M
(
q
)

G
R
O
U
P

B
Y

(
(
k
,
n
)
,
(
k
)
,
(
n
)
)

2.
3
0

1
0.

7
3

4.
6
6

0.
2
8

1.
0
9

3.
9
6

9
S
U
M
(
q
)

G
R
O
U
P

B
Y

(
(
k
,
s
,
n
)
,
(
k
,
s
)
,
(
k
,
n
)
,
(
n
)
)

2.
6
3

1
6.

3
7

6.
2
2

0.
4
2

1.
7
1

4.
0
9

1
0

P
C
T
L
(
q
,
0
.
5
)

G
R
O
U
P

B
Y

(
(
k
,
n
)
,
(
k
)
)

2.
4
3

1
8.

1
1

7.
4
6

0.
2
4

1.
8
5

7.
5
6

1
1

P
C
T
L
(
q
,
0
.
5
)

G
R
O
U
P

B
Y

(
(
k
,
s
,
n
)
,
(
k
,
s
)
,
(
k
)
)

2.
7
7

2
7.

7
8

1
0.

0
5

0.
3
1

2.
8
9

9.
4
4

1
2

P
C
T
L
(
q
,
0
.
5
)

G
R
O
U
P

B
Y

(
(
k
,
n
)
,
(
k
)
,
(
n
)
)

1.
9
7

2
6.

6
0

1
3.

5
0

0.
5
2

1
0.

4
3

2
0.

2
0

Window

1
3

L
E
A
D
(
q
)
,

L
A
G
(
q
)

P
A
R
T
I
T
I
O
N

B
Y

k
O
R
D
E
R

B
Y

r
8.

3
3

1
3.

6
9

1.
6
4

0.
9
7

1.
4
6

1.
5
0

1
4

↰,
C
U
M
S
U
M
(
q
)

P
A
R
T
I
T
I
O
N

B
Y

k
O
R
D
E
R

B
Y

d
1
2.

7
7

1
9.

0
5

1.
4
9

1.
5
6

2.
2
7

1.
4
6

1
5

C
U
M
S
U
M
(
q
)

P
A
R
T
I
T
I
O
N

B
Y

n
O
R
D
E
R

B
Y

d
5.

1
0

1
2.

3
2

2.
4
2

0.
8
9

1
0.

9
3

1
2.

2
9

Nested

1
6

P
C
T
L
(
e
-

P
C
T
L
(
e
,
0
.
5
)
,
0
.
5
)

G
R
O
U
P

B
Y

k
6.

3
5

1
2.

3
9

1.
9
5

0.
6
9

1.
4
4

2.
0
7

1
7

P
C
T
L
(
S
U
M
(
q
)
,

0
.
5
)

G
R
O
U
P

B
Y

k
1.

5
8

4.
0
8

2.
5
8

0.
2
0

0.
5
2

2.
6
2

1
8

S
U
M
(
P
O
W
(
L
E
A
D
(
q
)
-

q
,
2
)
)
/

C
O
U
N
T
(
*
)

G
R
O
U
P

B
Y

k
5.

6
3

1
0.

9
0

1.
9
4

0.
5
8

1.
0
9

1.
8
9

e
=
e
x
t
e
n
d
e
d
p
r
i
c
e

n
=
l
i
n
e
n
u
m
b
e
r

s
=
l
i
n
e
s
t
a
t
u
s

o
=
o
r
d
e
r
k
e
y

p
=
p
a
r
t
k
e
y

q
=
q
u
a
n
t
i
t
y

r
=
r
e
c
e
i
p
t
d
a
t
e

k
=
s
u
p
p
k
e
y

d
=
s
h
i
p
d
a
t
e

m
=
s
h
i
p
m
o
d
e

4.5 evaluation 63

Query 4 Query 5 Query 7 Query 10 Query 12

Q
ue

ry

+O
SA

+2
xO

SA

+G
.S

ET

Q
ue

ry

+O
SA

+2
xO

SA

+G
.S

ET

Q
ue

ry

+O
SA

+2
xO

SA

+G
.S

ET

Q
ue

ry

+O
SA

+2
xO

SA

Q
ue

ry

+O
SA

+2
xO

SA

+G
.S

ET

0.00

0.05

0.10

0.15

0.20

E
x
e

c
u

tio
n

 T
im

e
 [

s
]

Umbra

HyPer

Figure 20: Execution times of five TPC-H queries at scale factor 10 with and without
additional aggregates.

ports grouping sets by computing the different groups independently and com-
bining the results using UNION ALL. With LOLEPOPs, we instead start grouping
by the longest group keys first and then reaggregate key prefixes whenever nec-
essary. In query 8, for example, we first group by (suppkey, linenumber) and
then reaggregate the results by suppkey afterwards. Queries 10, 11, and 12 use
the percentile function and emphasize the sort optimizations of our frame-
work. We compute the queries 10 and 11 efficiently on a single buffer that
is partitioned by attribute suppkey. We reorder the buffer by the constraints
arranged in decreasing lengths, i.e., (suppkey, linenumber, quantity) followed
by (suppkey, quantity) for query 10. Query 12 adds (linenumber) as addi-
tional group key which will again penalize systems that sort key ranges in a
single-threaded fashion.

Queries 13, 14, and 15 target the scaling (in terms of number of expressions)
of window queries. Query 13 combines the two window functions LEAD and
LAG that can be evaluated on the same key ranges. Query 14 adds a cumulative
sum on a different ordering attribute which favors an efficient reordering of
the previous key range. Query 15 partitions by linenumber again to underline
the importance of parallel sorting for all flavors of ordered aggregation.

Queries 16, 17, and 18 compose complex aggregates from window
and grouping aggregates. Query 16 computes the Median Absolute
Deviation (MAD) function that we described as advanced aggregate in
Section 4.3.3. It first computes a median m of the attribute extendedprice

as window aggregate and then reorders the buffer to compute the median
of (extendedprice−m) as ordered-set aggregate. With LOLEPOPs, we can
explicitly reorder the partitioned buffer by the first computed median
aggregate and then compute the second median with a ORDAGG operator.
Query 18 computes the also aforementioned function Mean Square Successive
Difference (MSSD) that sums up the square difference between the window
function LEAD and a value. This time, we do not need to reorder values but

64 evaluating advanced analytical sql queries

can directly compute the result on the sorted key range using ORDAGG. They
query also shows that the performance of traditional aggregation operators is
sometimes saved by coincidence due to almost-sorted tuple streams. In HyPer,
the WINDOW operator streams the key ranges to the hashing GROUP BY almost in
order, improving the effectiveness of thread-local pre-aggregation.

In summary, these 18 queries show scenarios that occur in real-world work-
loads and already profit from the optimizations on a DAG of LOLEPOPs.
These optimizations are quite difficult to implement in relational algebra, but
can be broken up into composable blocks with LOLEPOPs.

4.5.2 Advanced Aggregates in TPC-H

We next analyze the performance impact of advanced aggregates on TPC-H.
Figure 20 shows the execution times of the TPC-H queries 4, 5, 7, 10, and 12

with and without additional aggregates at scale factor 10. The modifications
of the individual queries only consist of up to two additional ordered set ag-
gregates with different orderings or a prefix of the group key as additional
grouping set.

Query 5 and 7 contain five joins that pass only few tuples to the topmost
GROUP BY operator. Both queries are dominated by join processing and the
additional ordered-set aggregates, percentiles of l_quantity and l_discount,
have an insignificant effect on the overall execution times. Yet, the additional
grouping by either n_name or l_year doubles the execution times in HyPer
since the joins are duplicated using UNION ALL. This suggests that, even
without Low-Level-Plan operators, a system should at least introduce tempo-
rary tables to share the materialized join output between different GROUP BY

operators.

Query 4 only contains a single semi join that filters 500,000 tuples of the
relation orders. This increases the pressure on the aggregation logic which
results in a slightly faster execution with Low-Level-Plan operators. These
differences are further pronounced in the modified queries computing ad-
ditional percentiles of o_totalprice and o_shippriority and grouping by
o_orderstatus. Query 12 behaves very similar to query 4 and aggregates
300,000 tuples. HyPer is slightly faster when computing the original aggre-
gates but loses when adding the percentiles l_quantity and l_discount or
grouping by l_linestatus.

4.5 evaluation 65

Query 10 aggregates over one million tuples produced by three joins and
is also slightly faster in HyPer. However, Umbra outperforms HyPer by a
factor of almost two when additionally computing the percentiles l_quantity

and l_discount. This is attributable to the high number of large groups that
are accumulated by the aggregation operator. The aggregation yields over
300,000 groups that are reduced with a following top-k filter. As a result,
traditional hash-based aggregation suffers from the cache-inefficiency of larger
hash tables. Umbra loses slightly against HyPer when computing the single
sum but wins as soon as the ordered-set aggregates can eliminate the hash
aggregation entirely.

The experiment demonstrates that minor additions to the well-known TPC-
H queries such as adding a single ordered-set aggregate or appending a group-
ing set suffice to unveil the inefficiencies of monolithic aggregation operators.
It also shows that queries may very well be dominated by joins, leaving only
insignificant work for a final summarizing aggregation operator. In such cases,
the efficiency of the aggregation is almost irrelevant which is not changed by
introducing LOLEPOPs.

4.5.3 LOLEPOPs in Action

In a next step, we illustrate the different performance characteristics of LOLE-
POPs based on two different example queries. Both queries target the relation
lineitem of TPC-H. We execute the queries at scale factor 0.5 with four threads
and reduce the number of partitions in tuple buffers to 16 to make morsels
graphically distinguishable. Figure 21 shows precise timing information about
the morsels being processed.

Query 1 computes the aggregate SUM grouped by the grouping sets (suppkey,
linenumber), (suppkey), and (linenumber). It is significantly faster than the
second query although it groups the input using three different HASHAGG op-
erators. Umbra computes these grouping sets efficiently by pre-aggregating
the 3 million tuples of the first scan pipeline by (suppkey, linenumber). The
second pipeline then merges these partial aggregates into 35,000 groups using
dynamic hash tables for each of the 16 partitions. The third pipeline scans the
results afterwards, re-aggregates them by suppkey and linenumber, and passes
them to the COMBINE operator. All remaining pipelines are barely visible since
they operate on only a few tuples. The plan of this query corresponds to query
1 in ??.

66 evaluating advanced analytical sql queries

2: sum(q), var_samp(q), median(q - median(q)) group by k

1: sum(q) group by ((k,n),(k),(n))

0 25 50 75 100

Time [ms]

T
h
re

a
d

hashagg

ordagg

partition

combine

sort

window

scan

*

Figure 21: Execution traces of two queries on the TPC-H schema at scale factor 0.5
with four threads and 16 buffer partitions.

Query 2 computes the associative aggregates SUM and VAR_SAMP, as well as
the Median Absolute Deviation that was introduced as advanced aggregate in
Section 4.3. We include it as execution trace in this experiment to illustrate the
advantages of sharing materialized state between operators. Umbra evaluates
this query by computing the nested median as window expression and then
reordering the results in place. In contrast to the previous query, the first
pipeline is now faster since it only materializes the tuples into 16 hash parti-
tions. Thereafter, the compaction merges the chunk list of each hash partition
into single chunks that enable the in-place modifications. The fourth pipeline
represents the window operator that computes the median for every key range
and stores the result in every row. The following pipeline then reorders the
partitioned buffer by this median value. It is significantly faster than the first
sort since the hash partitions are already sorted by the key. The last pipeline
then iterates over the sorted key-ranges and computes the three aggregates at
once.

4.5.4 Adaptive Sorting

We have seen that aggregation is oftentimes dominated by the sorting of
materialized values. As a result, we introduced a flexible iterator abstraction
and the permutation vector in Section 4.4 to make sorting more cache efficient.

4.5 evaluation 67

0.5

1.0

2.0

4.0

8.0

0 50 100 150 200 250

Tuple size [bytes]

M
 t

u
p

le
s
 /

 s
 [

lo
g

]

indirection-vector

permutation-vector

in-place

adaptive

Figure 22: Sort performance for varying tuple sizes using different access methods.

In-place sorting can be significantly faster than sorting a vector of pointers
since the overall sort performance is driven by the cache efficiency. Vectors
of addresses are a very conservative approach to sorting that is robust against
growing tuple sizes. If tuples get overly large, the cache efficiency of in-place
sorting will evaporate and the excessive copies will add detrimental effects. In
this experiment, we analyze the impact of a growing tuple size on the sort
performance.

We generate a relation that contains 100 million tuples with 40 attributes of
random 4-byte integers. We sort the relation by a single attribute with the four
different access modes, in-place, a permutation vector, a vector of pointers, and
an adaptive approach that picks the access mode based on the tuple size. We
select a varying number of values and scan the sorted buffer once after sort-
ing to incorporate the effects of indirections on the buffer accesses. Figure 22

shows the results of the experiment. In-place sorting turns out to be the fastest
choice for all tuple sizes up to 64 bytes. The permutation vector is around 60%
faster than the indirection vector across all tuple sizes. The raw indirection vec-
tor is the worst option in this experiment although this is partly attributable
to the small key size. Growing key sizes favor the indirection vector over the
permutation vector as soon as the cache efficiency of the key access gets over-
ruled by the costs for copying. All three options therefore have their own sweet
spots where they become the most efficient solution. The experiment further
suggests that an adaptive mode does not require excessive fine-tuning to take
advantage of cache-efficient sorting for small tuple sizes.

68 evaluating advanced analytical sql queries

4.6 related work

Research on optimizing in-memory query processing on modern hardware
has been growing in the past decade. However, in comparison to joins [14, 4,
5, 6, 69, 9, 7, 106, 8, 38], work on advanced statistics operators is relatively
sparse. Efficient aggregation is described by a number of papers [101, 97, 71,
35, 85]. However, these papers omit to discuss how to implement DISTINCT
aggregates, which are significantly more complicated than simple aggregates,
in particular, when implemented using hashing. There is even less work on
window functions: The papers of Leis et al. [73] and Wesley et al. [126] are
the only one that describe the implementation of window functions in detail.
Cao et al. [19] present query optimization techniques for queries with multiple
window functions (e.g., reusing existing partitioning and ordering properties),
which are also applicable and indeed are directly enabled by our approach. Ex-
cept for Xu et al. [135], much work on optimizing sort algorithms for modern
hardware [24, 33] has focused on small tuple sizes. Grouping sets have been
proposed by Gray et al. [43] in 1997, and consequently there have been many
proposals for optimizing the grouping order: Phan and Michiardi’s [94] fairly
recent paper offers a good overview. We are not aware of any research papers
describing how to efficiently implement ordered-set aggregates in database
systems. Even more importantly, all these papers focus on a small subset of
the available SQL functionality and do not discuss how to efficiently execute
queries that contain multiple statistical expressions like the introductory exam-
ple in Section 4.1. Given the importance of statistics for data analytics, this
chapter fills this gap by presenting a unified framework that relies on many of
the implementation techniques found in the literature.

Our approach uses the notion of LOw-LEvel Plan OPerators (LOLEPOP),
which was proposed in 1988 by Lohman [80] and is itself based on work by
Freytag [39]. According to them, a LOLEPOP may either be a traditional re-
lational operator (e.g., join or union) or a low-level building block (e.g., sort
or ship). The result of a LOLEPOP may either be a buffer or a stream of
tuples. Furthermore, a LOLEPOP may have physical properties such as an order-
ing. A concept similar to LOLEPOPs was very recently described by Dittrich
and Nix [32], who focus on low-level query optimizations. They introduce
the concept of Materialized Algorithmic Views (MAVs), that represent materi-
alized results at various granularity levels in the query plan. We understand
our LOLEPOPs to be an instantiation of MAVs at a granularity that is slightly
lower than relational algebra. Our framework further represents aggregates as

4.7 summary 69

directed acyclic graphs and therefore might benefit from existing research on
parallel dataflows [34]. There are also some similarities with low-level alge-
bras [95, 89] and compilation frameworks [28, 27, 17]. However, these papers
generally focus on simple select-project-join queries and on portability across
heterogeneous hardware, but do not discuss how to translate and execute com-
plex statistical queries.

The optimization of query plans with respect to interesting sort orders dates
back to a pioneering work of Selinger et al. [109]. They consider a sort order
interesting if it occurs in GROUP BY or ORDER BY clauses or if it is favored by
join columns. These sort orders are then included during access path selec-
tion, for example, to introduce merge joins for orders that are required anyway.
AWS Redshift is a distributed commercial system that uses interesting orders
to break up certain aggregations at the level of relational algebra operators.
Redshift introduces the operator GroupAggregate that consumes materialized
tuples from a preceding Sort operator to compute ordered-set aggregates more
efficiently. Our system generalizes this idea and performs access path selection
with interesting orderings and partitionings to derive LOLEPOPs for all kinds
of complex aggregation functions.

4.7 summary

The SQL standard offers a wide variety of statistical functionalities, includ-
ing associative aggregates, distinct aggregates, ordered-set aggregates, group-
ing sets, and window functions. In this chapter we argue that relational algebra
operators are not well suited for expressing complex SQL queries with multiple
statistical expressions. Decomposing complex expressions into independent re-
lational operators may lead to sub-optimal performance because query execu-
tion is generally derived directly from this execution plan. We instead propose
a set of low-level plan operators (LOLEPOPs) for SQL-style statistical expres-
sions. LOLEPOPs can access and transform buffered intermediate results and,
thus, allow reusing computations and physical data structures in a principled
fashion. Our framework subsumes the sort-based and hash-based aggregation
as well as several non-statistical SQL constructs like ORDER BY and WITH. We
presented our LOLEPOP implementations and integrated our approach into
the high-performance database system Umbra. The experimental comparison
against the HyPer shows that LOLEPOPs improve the performance of queries
with complex aggregates substantially.

5 R E D U C I N G L AT E N C Y I N
C O M P I L I N G Q U E R Y E N G I N E S

Excerpts of this chapter have been published in [64, 66].
Initial experiments were performed in [62].

5.1 introduction

Chapter 2 describes compiling query engines as popular approach for exe-
cuting analytical queries. The main advantage of translating SQL to machine
code is, of course, efficiency. By generating code for a given query, compilation
avoids the interpretation overhead of traditional execution engines and thereby
achieves much higher performance.

One obvious drawback of generating machine code is compilation time. Con-
sider, for example, the following meta data query:

SELECT c.oid, c.relname, n.nspname
FROM pg_inherits i
JOIN pg_class c ON c.oid = i.inhparent
JOIN pg_namespace n ON n.oid = c.relnamespace
WHERE i.inhrelid = 16490
ORDER BY inhseqno

This query touches only a very small number of tuples, which means that its
execution time is negligible (less than 1 millisecond in HyPer). However, before
HyPer can execute this query, it needs to compile it to machine code. With
optimizations enabled, LLVM takes 54ms to compile this query. In other words,
compilation takes 50 times longer than execution. Assuming a workload where
similar queries are executed frequently, 98% of the time will be wasted on
compilation. And this query is still fairly small; compilation times can be
much higher for larger queries. Compilation of the largest TPC-DS query, for
example, takes close to 1 second. Of course, for large data sizes, compilation
does pay off as the resulting code is much more efficient than interpretation.

In this work, we focus on database systems that compile queries to LLVM
IR (“Intermediate Representation”), which is afterwards compiled to machine

71

72 reducing latency in compiling query engines

code by the LLVM compiler backend. This approach offers the same machine
code quality as compiling to C/C++, while reducing compilation time by an
order of magnitude [87]. The compilation times of the LLVM compiler may be
low enough for some workloads, for example those consisting of long-running
ad hoc queries or pre-compiled stored procedures. For other applications, how-
ever, long compilation times are a major problem.

The example query shown above is one of the queries sent by the PostgreSQL
administration tool pgAdmin. We identified in [62], that pgAdmin executes
dozens of complex queries (up to 22 joins), all of which access only very small
meta data tables. Compiling these queries causes perceptible and unnecessary
delays. Caching the machine code (e.g., after stripping out constants) might
improve subsequent executions, but would not improve the initial user experi-
ence. More generally, because the human perception threshold is less than a
second, the additional latency caused by compilation can lead to a worse user
experience for interactive applications. Finally, business intelligence tools occa-
sionally generate extremely large queries (e.g., 1 MB of SQL text) [125], which
de facto cannot be compiled with standard compilers.

For the workloads just mentioned, the user experience of a
compilation-based engine can be worse than that of a traditional,
interpretation-based engine (e.g., Volcano-style execution). Thus, depending
on the query, one would sometimes prefer to have a compilation-based
engine and sometimes an interpretation-based engine. Implementing two
query engines in the same system, however, would involve disproportionate
efforts and may cause subtle bugs due to minor semantic differences. In
this work, we instead propose an adaptive execution framework that is
principally based on a single compilation-based query engine, yet integrates
interpretation techniques that reduce the query latency. The key components
of our design are a (i) fast bytecode interpreter specialized for database
queries, (ii) a method of accurately tracking query progress, and (iii) a way to
dynamically switch between interpretation and compilation. Without relying
on the notoriously inaccurate cost estimates of query optimizers, this dynamic
approach enables the best of both worlds: Low latency for small queries and
high throughput for long-running queries.

This thesis extends the adaptive execution framework proposed in [62]. It
is directly applicable to many compilation-based systems and is non-invasive,
i.e., the query engine itself does not have to be rewritten. The system always
generates LLVM IR code for the incoming query but does not immediately
compile it to machine code. Rather, it adaptively ensures that the query is

5.2 query execution via compilation 73

Optimizer
0.05 ms

Parser
0.05 ms

Semantic
Analysis
0.1 ms

Code
Generation

0.7 ms

LLVM
Opt. Passes

30 ms

LLVM Comp.
Optimized

19 ms

Planning

ASTSQL

x86
code

plan

LLVM IRLLVM IR

plan

Figure 23: Architecture of compilation-based query engines.

executed as fast as possible using runtime feedback and without relying on
cost estimates from the query optimizer.

This chapter is organized as follows: Section 5.2 discusses how compilation-
based query engines compile queries to machine code and the challenges these
systems face. Section 5.3 then describes our adaptive execution framework,
which dynamically switches from interpretation to compilation. One crucial
component of that design is a bytecode interpreter, which we introduce in
Section 5.4. In Section 5.5, we compare the performance of the interpreter
with machine code, and evaluate our adaptive execution framework. After
discussing related work and alternative approaches for reducing compilation
time in Section 5.6, we summarize the chapter in Section 5.7.

5.2 query execution via compilation

Executing a SQL query in a relational database system involves a complex
multi-step process that is illustrated in Figure 23. The SQL text is first parsed
into an abstract syntax tree (“Parser”). The AST is translated into an unopti-
mized query plan (“Semantic Analysis”) that is optimized afterwards (“Op-
timizer”). Traditional engines directly execute this query plan (e.g., using
Volcano-style iteration). Compilation-based engines, in contrast, translate the
optimized query plan into some imperative, low-level, machine-independent
language (“Code Generation”) that is optimized again (“LLVM Opt. Passes”)
and finally compiled to machine code (“LLVM Comp. Optimized”). Some
compilation-based systems have multiple intermediate languages between the
relational algebra and the low-level imperative representation (LLVM IR in
our case). This does not really affect our discussion, as machine code genera-

74 reducing latency in compiling query engines

handwrittenLLVM optimized
LLVM unoptimized

LLVM bytecode

LLVM IR

100ms

1s

10s

100s

1ms 10ms 100ms 1s
compilation time [log scale]

ex
ec

ut
io

n
tim

e
[lo

g
sc

al
e]

Figure 24: Single-threaded query compilation and execution time for different execu-
tion modes on TPC-H query 1 on scale factor 1.

tion generally takes longer than these additional phases. In the following, we
describe the major challenges faced by compilation-based query engines that
compile to machine code.

5.2.1 Latency vs. Throughput Tradeoff

This chapter is based on HyPer, which executes queries by compiling them
to the LLVM IR. LLVM is a widely-used open source compiler framework for
ahead-of-time and just-in-time compilation. Figure 23 shows the execution
times of each stage for TPC-H query 1 in our system using LLVM. The numbers
show that most time is spent in the final two LLVM compiler phases (“LLVM
Opt. Passes” and “LLVM Comp. Optimized”), while the preceding code gen-
eration, query optimization, and analysis phases are negligible. Therefore, to
optimize overall latency, we need to focus on making machine code generation
cheaper (or avoid it completely).

Compilation time and execution time differ depending on the compiler and
optimization settings used. Figure 24 shows the compilation and execution
time of TPC-H query 1 on scale factor 1 under different settings1. As the figure
shows, LLVM has a similar throughput as the handwritten C++ query while
requiring a much lower compilation time2. Disabling all LLVM optimizations
results in significantly lower compilation times at the cost of (slightly) higher

1 The experimental setup is described in Section 5.5.
2 Note that the handwritten version does not implement overflow checks, which explains its

slightly faster runtime.

5.2 query execution via compilation 75

execution times. The figure also shows the built-in LLVM interpreter (“LLVM
IR”), which directly interprets the LLVM IR module, and our bytecode-based
interpreter (“LLVM bytecode”), which we describe in Section 5.4. These num-
bers show that only interpreters can achieve very low latency but, unsurpris-
ingly, this is achieved by sacrificing throughput.

Figure 24 clearly shows that there is a tradeoff between latency and through-
put. For long-running queries, compilation to machine code with a maximum
optimization level is often preferable, while for quick queries an interpreter
would be best. Unoptimized machine code lies in between and offers a good
tradeoff between these two extremes. Depending on the complexity of the
SQL query and the amount of data accessed, different execution schemes are
optimal. In this work, we therefore propose to dynamically adapt the query
execution by switching between a LLVM bytecode interpreter and the LLVM
compiler with optional optimization passes.

Another relevant aspect is that not all code paths of a query are equally im-
portant. A query consisting of an in-memory hash join between a very small
build relation and a large probe relation, might be best executed by interpret-
ing the hash table build code and compiling the hash probe code. Thus, for
different parts of the query, different execution modes can be ideal. Let us also
note that compilers are single-threaded, while modern query engines are gen-
erally multi-threaded. Thus, while compilation is ongoing, all but one CPU
cores are idle, whereas an interpreter could start utilizing all available cores
much earlier.

5.2.2 Compiling Large Queries

A compilation time of 59ms for TPC-H query 1 may still be considered low
enough for some applications. However, query 1 is still fairly small in terms
of its resulting code size and larger queries take much longer to compile. The
compilation time of the largest TPC-H and the largest TPC-DS query are 146ms
and 911ms respectively.

Furthermore, we observed for very large, machine-generated queries
(e.g., from business intelligence tools), that the compilation times grow
super-linearly with the query size. The compilation times may thus become
significantly longer and queries may not finish at all (see Section 5.5.5). While
such queries are not common, any industrial-strength system must be able to

76 reducing latency in compiling query engines

Planning
0.2 ms

LLVM IR

LLVM IR

LLVM IR

LLVM IR

Code
Generation

0.7 ms

LLVM
Passes
25 ms

LLVM Comp.
Optimized

17 ms

LLVM Comp.
Unoptimized

6 ms

Byte Code
Compiler

0.4 ms

SQL

plan

Adaptive Execution

x86
code

byte
code

x86
code

Figure 25: Execution modes and their compilation times.

execute them—in particular, since traditional database systems do not have
this problem.

5.3 adaptive execution

We argue that compilation-based engines should support the 3 execution
modes shown in Figure 25. Bytecode interpretation enables very low latency
for quick queries, unoptimized machine code is a good tradeoff for medium-
sized queries, and optimized machine code achieves peak throughput for long-
running queries. A system that supports these modes, can provide an optimal
user experience if it chooses the right mode for a given query.

One possible way to decide between the different execution modes is to rely
on the cost estimates computed by the query optimizer. Cardinality estimates
as well as cost models are often inaccurate [72, 74], which may result in unnec-
essary compilations or long-running queries being executed in the interpreter.
The effects of a wrong decision can be severe as the bytecode interpreter can be
slower by an order of magnitude and compilation can easily take hundreds of
milliseconds. Furthermore, the compilation itself is single-threaded so compil-
ing up-front leaves all remaining threads idle until the compilation is finished.

5.3.1 Overview

Our adaptive execution approach is dynamic, as we avoid any up-front deci-
sion about the execution mode. Instead, we always start executing every query

5.3 adaptive execution 77

B CA

T1

T2

workerA workerB

workerBworkerA

queryStart():
 state = initQueryState()
 state.Ha = createHashTable()
 state.Hb = createHashTable()
 ...
 schedule()
 ...
 schedule()
 ...
 schedule()

workerA

workerB

workerC

workerB(state, morsel):
 for i in morsel:
 state.Hb.insert(B[i])

workerC(state, morsel):
 for i in morsel:
 for tb in state.Hb.lookup(C[i]):
 for ta in state.Ha.lookup(tb):
 ...

workerA(state, morsel):
 for i in morsel:
 state.Ha.insert(A[i])

schedule(worker):
 // assign morsels to threads
 ...

Figure 26: Illustration of query plan translation to pseudo code. queryStart is the main
function. Each of the three query pipelines is translated into a worker func-
tion. The lower left corner shows that the work of each pipeline is split into
small morsels that are dynamically scheduled onto threads.

using the bytecode interpreter and all available threads. We then monitor the
execution progress to decide whether (unoptimized or optimized) compilation
would be beneficial. If this is the case, we start compiling on a background
thread, while the other threads continue the interpreted execution. Once com-
pilation is finished, all threads quickly switch to the compiled machine code.
Because all execution modes semantically execute the same instructions on the
same data structures, no work is lost when switching between execution modes
and the machine code can pick up where the interpreter left off.

Our approach is fine-grained. The tracking and the decision to compile
is not done for the entire query, but for a specific query pipeline (e.g., an
expensive hash table probe). Therefore, different pipelines might be executed
using different execution modes. This can be better than any static up-front
decision because optimized compilation is done only for very expensive parts
of the query. As we show later, in a multi-threaded setting, it is also often
beneficial to execute the same pipeline by consecutively running all 3 modes.

To implement our dynamic approach we need a number of mechanisms,
which we describe in the following three sections. First, it must be possible
to track the progress of a pipeline. Second, there must be a way to switch
the execution from bytecode to compiled execution without losing any work.
Finally, we need a model for deciding whether it is beneficial to switch to
compilation.

78 reducing latency in compiling query engines

5.3.2 Tracking Query Progress

Figure 26 illustrates the basic code structure for an example query plan
and the code structure that our compiler generates. The entry point is the
queryStart function, which, when called, executes the query. queryStart is
mainly responsible for calling C++ initialization code and for launching the
different pipelines of the query. It can be fairly large in size, but since this
code is executed only once, it never pays off to compile it. The actual data-
dependent parts of the query are always performed in the worker functions,
each of which computes the result of one pipeline. The query plan in Figure 26

consists of 3 pipelines that are processed by the 3 worker functions workerA,
workerB, and workerC.

This code structure has been chosen with multi-core parallelization in mind.
Each worker function requires two arguments: the state (e.g., intermediate
query processing hash tables) and a morsel, which determines the range of
values to process. Intra-query parallelization is implemented by running mul-
tiple worker threads on the same worker function, but with different (non-
overlapping) morsels (e.g., of a relation). In our parallelization framework,
the threads use work stealing and the range for each invocation is fairly small
(e.g., 10,000 tuples), which avoids thread imbalances.

This morsel-wise (or block-wise) execution has been identified as a fast
model for intra-operator parallelism in main-memory databases [21, 71, 91]
and is also just the right granularity at which the progress of a query can be
monitored. After each morsel, worker threads consult a work-stealing data
structure anyway. At this point, we added some extra monitoring code and
timing information to keep track of how many morsels have been processed
per pipeline. Additionally, we also record the total amount of work whenever
a pipeline starts (e.g., the size of the relation or hash table being scanned). This
information allows us to monitor the query progress.

5.3.3 Switching Between Execution Modes

With adaptive execution, a morsel represents the smallest unit of work that
can be processed by the query engine. Besides being useful to track the
progress of a query, these morsels also emerge as the crucial mechanism for
dynamically switching between different execution modes. Processing a single
morsel involves reading a specified range of values and operating on a shared
state like a hash table. Providing both—range and shared state—as input pa-

5.3 adaptive execution 79

B

dispatch(, state):handleB

 nextMorsel = grabMorsel()
 if (handleB.isCompiled()):
 handleB.fn(state, nextMorsel)
 else:
 VM.execute(handleB.byteCode, state, nextMorsel)
 // switch execution mode?
 choice = extrapolatePipelineDurations(...)
 if (choice != DoNothing):
 runAsync(λ -> handleB.fn = handleB.compile(choice))

handleB.byteCode:
 0x00 load_i64 40 8 0
 0x14 load_i64 48 8 64
 0x28 icmp_ult_i64 56 40 48
 0x50 condbr 56 0x64 0xf0
 ...

handleB.fn:
 0x00 mov rax, [r12]
 0x04 mov rbx, [r12+8]
 0x08 cmp rax, rbx
 0x0b jnl 0xf00
 ...

Figure 27: Switching on-the-fly from interpretation to execution. The dispatch code is
run for every morsel.

rameters to a worker function simplifies the generated code and makes the
processing of morsels independent from each other.

This independence enables us to choose the execution mode for an individ-
ual worker arbitrarily. It becomes semantically equivalent to process either all
morsels, every second morsel, or no morsel with the bytecode interpreter and
process the remainder with a compiled worker function. We can further com-
pile a single worker function multiple times with different optimization levels
to improve the throughput of the function step-by-step.

Figure 27 illustrates the integration of this concept into the morsel-driven par-
allelization framework. Instead of identifying a worker function by its memory
address, we introduce an additional handle indirection. This object stores mul-
tiple variants of the same function. For every single morsel, we then choose
the fastest available representation which could either be bytecode or an ad-
dress to compiled machine code. Consequently, to change the execution mode,
one only needs to set a function pointer in this handle object. Once set, all
remaining morsels will be processed using the new variant enabling seamless
transitions between execution modes.

80 reducing latency in compiling query engines

optimized

unoptimized
10ms

100ms

1s

500 1000 2000 4000 8000 16000
number of LLVM instructions [log scale]

co
m

pi
la

tio
n

tim
e

[lo
g

sc
al

e]

TPC-H

TPC-DS

Figure 28: LLVM compilation time for (un-)optimized machine code for TPC-H and
TPC-DS queries.

5.3.4 Choosing Execution Modes

We have already shown that a higher query throughput comes at the cost of
a higher query latency. We therefore always start the execution of each worker
function with the low-latency bytecode interpreter and compile it only if the
need becomes evident. This, however, raises the question of how to determine
when compilation is beneficial. To make this decision, we continuously evalu-
ate the following options for every pipeline:

1. proceed with the current execution mode

2. compile the worker function to machine code without compiler optimiza-
tions (unoptimized)

3. compile the worker function to machine code with compiler optimizations
(optimized)

Without compilation, the remaining time is entirely based on the current pro-
cessing speed (i.e., the speed of the bytecode interpreter). We track this speed
for every worker thread individually by calculating the local tuple processing
rate whenever we finish a morsel. The total pipeline duration can then easily
be extrapolated based on the remaining tuples in the pipeline, which is always
known at that point in time, and the number of active worker threads. We can
further refine this extrapolation by using a dynamically growing morsel size,
yielding a higher number of sample points.

5.3 adaptive execution 81

fig:adaptive: worker function
n: remaining tuples
w: active worker threads
extrapolatePipelineDurations(f, n, w):

r0 = avg(rate in threadRates)
r1 = r0 * speedup1; c1 = ctime1(f)
r2 = r0 * speedup2; c2 = ctime2(f)
t0 = n / r0 / w
t1 = c1 + max(n - (w - 1) * r0 * c1, 0) / r1 / w
t2 = c2 + max(n - (w - 1) * r0 * c2, 0) / r2 / w
switch min(t0, t1, t2):

case t0: return DoNothing
case t1: return Unoptimized
case t2: return Optimized

Figure 29: Extrapolation of the pipeline durations.

With compilation, the remaining time of the pipeline also depends on the
expected compilation time as well as an estimate of how much faster the com-
piled code would be. Another aspect that needs to be incorporated is that,
while compilation is ongoing, the execution of the pipeline can continue in a
multi-threaded setting (using the bytecode or optimized code). We thus have
to compute the tuples that can be processed on the remaining threads during
the compilation and extrapolate the time needed for the remainder afterwards.

The compilation time of a worker function depends on the generated query
plan and is determined empirically in our system. As Figure 28 shows, the
number of LLVM instructions of a query correlates very well with its compi-
lation time for all TPC-H and TPC-DS queries. The generated plans contain
between 300 and 19,000 instructions for which we observe a near-linear com-
pilation time. For the speed-ups between different execution modes, we use
empirical data (see Section 5.5.4). While it is generally difficult to forecast accu-
rate query speed-ups and compilation times, adaptive execution only requires
rough extrapolations (see Section 5.5.7).

Figure 29 shows the pseudo code for comparing the different execution
modes. In order to reduce the synchronization overhead, the extrapolation
is only performed by a single worker thread. We delay the first evaluation by
1 millisecond to increase the accuracy of the estimates and reevaluate after ev-
ery processed morsel thereafter. After every morsel, the thread computes the
average processing speed of all threads and compares the remaining process-
ing time of the execution modes. If the transition to a new execution mode

82 reducing latency in compiling query engines

while (true) {
switch ((++ip)->op) {

case Op::add_i32: *((int32_t*)(regs + ip->a1)) =

((int32_t)(regs + ip->a2))
+ *((int32_t*)(regs + ip->a3)); break;

case Op::add_i64: *((int64_t*)(regs + ip->a1)) =

((int64_t)(regs + ip->a2))
+ *((int64_t*)(regs + ip->a3)); break;

case Op::call_void_i32: (void(*)(int32_t))(ip->lit)
(*(int32_t*)(regs + ip->a1)); break;

case Op::call_void_i64: (void(*)(int64_t))(ip->lit)
(*(int64_t*)(regs + ip->a1)); break;

... // around 500 more instructions
}

}

Figure 30: VM code fragment implementing the interpreter loop. ip points to the
current instruction and reg points to the memory storing the registers.

appears beneficial, the thread compiles the worker function and resets all pro-
cessing rates. This allows one to eventually transition to the fastest execution
mode for every pipeline.

5.4 fast bytecode interpretation

As Figure 24 shows, generating machine code takes a non-trivial amount
of time—even without compiler optimizations. An interpreter is therefore a
crucial part of our design.

LLVM is a compiler framework that has been designed to generate machine
code, but it also contains an interpreter. This interpreter directly executes the
LLVM IR without any additional compilation step. Thus, systems that compile
to LLVM IR could execute queries using this interpreter. However, as can be
seen in Figure 24, the built-in interpreter is extremely slow (over 800 times
slower than the corresponding machine code). The reason is that LLVM IR
was designed as a versatile and generic format for implementing optimization
passes. Its pointer-based in-memory representation allows easy code transfor-
mations but is highly cache unfriendly. Furthermore, the execution of an in-
struction involves a costly runtime dispatch as there is only a single instruction
(e.g., integer addition) for all operand widths (e.g., 8, 16, 32, 64 bits).

5.4 fast bytecode interpretation 83

To make interpretation a viable strategy, we therefore translate the native
LLVM IR into an optimized bytecode format for a virtual machine (VM) that
can be interpreted much more efficiently. We have to address two key chal-
lenges here: First, processing the bytecode should be as cheap as possible in
order to minimize the interpretation overhead. Second, an efficient translation
into this bytecode has to be possible. The latter is particularly difficult as many
standard compiler techniques like liveness analysis have a super-linear worst-
case behavior, yielding unacceptable translation times for very large queries.
And finally, the VM must behave 100% identical to native machine code as
we want to seamlessly switch between interpreted VM code and native ma-
chine code. We therefore developed a virtual machine that mostly follows the
LLVM instruction set, but aims for cheap interpretation and offers additional
functionality for common constructs.

5.4.1 Virtual Machine

Our virtual machine is a register machine. When calling an interpreted func-
tion, we allocate a register file that holds all values computed during function
allocation. This allocation happens on the stack if possible, falling back to heap
allocation if the register file is too large. For now, we can pretend that every
value computed in the LLVM IR has one fixed position in that register file. As
we will see in Section 5.4.3, it is actually undesirable to map values to registers
like that, but for now we just assume that all values exist somewhere in the
register file. The first two entries in the register file are initialized to 0 and 1,
respectively, such that these constants are always readily available in registers.

The instruction set of the VM is fixed length, statically typed, and in most places
mimics the LLVM IR instruction set. For example, the small LLVM function

define i32 @add(i32, i32) {
%3 = add i32 %1, %0
ret i32 %3

}

will be translated into a very similar VM fragment:

add_i32 24 16 20
return_i32 24

The add_i32 instruction loads the two function arguments from the registers
16 and 20 (which are byte offsets into the register file), and writes the result

84 reducing latency in compiling query engines

compute liveness and order blocks
for each block b:

allocate registers for values that become live in b
for each instruction i in b:

if i is not subsumed:
translate i into VM opcodes

propagate values in ϕ nodes
release register for values that ended in b

Figure 31: Translation of LLVM IR into VM code.

back into register 24. The return_i32 instruction returns that value to the caller.
Note that there is not always a 1:1 correspondence between LLVM instructions
and VM instructions, like in this example. First, the LLVM instructions are
annotated with types, while the VM instructions have the type baked into to
the opcode itself. For example the LLVM add is expanded into different add
instructions during translation depending upon the argument types. And sec-
ond, we sometimes collapse multiple LLVM instructions into one VM instruc-
tion to handle frequently occurring instruction sequences (see Section 5.4.6).

We use a fixed length encoding for the opcodes to improve the decoding
speed. This increases the memory footprint of the translated function relative
to native machine code, but it is still much more compact than the original
pointer-heavy LLVM IR. As Figure 30 shows, the VM code itself then con-
ceptually consists of a large switch statement3 that evaluates all supported
instructions.

In total, the VM handles about 500 instruction/type combinations, each con-
sisting of a single and fairly simple line of C++ in the VM code. The bytecode
interpreter code is about 800 lines of code, which is surprisingly small for a
component that allows us to interpret arbitrary query plans without modify-
ing the query code generation. This is important for the maintainability of the
system as it would be highly unattractive to maintain completely separate code
paths for both—native code and interpreted execution.

5.4.2 Translating into VM Code

The translation of LLVM IR code into VM code is shown in Figure 31. It
starts by computing the liveness information for register allocation, which is

3 Instead of a single switch statement, we use a dispatch table with computed goto statements as
that will reduce the branch mispredictions in modern CPUs.

5.4 fast bytecode interpretation 85

by far the most challenging step of the translation, and therefore discussed
below in detail. Afterwards, we know when a value becomes alive within the
control flow and when it dies.

With that information, the transformation itself is simple. Note that the trans-
formation exploits the fact the LLVM programs are in Single Static Assignment
(SSA) form, i.e., a value is produced exactly once, and never changes during
the lifetime of the program.

We iterate over all basic blocks of the program in the order that the liveness
computation has determined. For every block, we then check whether values
become alive even though the producing instruction is not contained in the
block itself (this is rare, but can happen with a complex control flow). If so,
we immediately allocate a register for these values. The instructions within the
block are then translated into VM opcodes one by one, except for cases where
subsequent instructions are subsumed by previous instructions, for example
when folding a sequence of instructions into one VM opcode (see Section 5.4.6).
At the end of the block we copy values into the ϕ nodes of successor blocks
if needed (i.e., if the successor block uses ϕ nodes to unify different values in
SSA representation), and release registers for all values where the lifetime has
ended. Just as the allocation mentioned before, this is also an exception caused
by the control flow, as we will discuss below. For the vast majority of cases we
allocate registers on demand and release them when the last user of that value
is gone. In summary, we consider block boundaries only when the control flow
forces us to extend the lifetime of a value.

After this translation step, the VM program is ready for execution. It per-
forms exactly the same work as the native code would, including all function
calls and all memory writes, which is important for the switch between inter-
pretation and compilation. There are some engineering details here to make
that substitution possible. Calls to interpreted code, for example, need to be
patched during the translation to accept an additional parameter (the VM pro-
gram). However, that is similar to standard compiler techniques for nested
functions and does not introduce too much complexity. Our translator has
about 2,400 lines of code most of which are dedicated to the register alloca-
tion. As the translation operates almost entirely on the well defined LLVM IR
language, the additional engineering effort is not too high.

86 reducing latency in compiling query engines

5.4.3 Register Allocation

As mentioned before, there is only one step during the translation into VM
code that is algorithmically challenging, and that is the register allocation, i.e.,
the mapping of LLVM values to register slots. Our problem differs slightly
from traditional register allocation, as we only use virtual registers and there-
fore could allocate a (nearly) arbitrarily large number of them. However, we
clearly do not want to do this: The register file is accessed very frequently
during interpretation, and therefore should always be in the L1 cache. A large
register file wastes precious L1 cache entries.

Our register allocation problem is therefore the following:

1. Assign a register slot to every LLVM value in the program

2. Make sure that a register is only shared between different values if their
lifetimes do not overlap

3. Minimize the total number of registers

4. Translate very large programs efficiently

In principle, register allocation is a well understood problem in compiler con-
struction [93]. In order to do register allocation we need liveness information,
i.e., we have to know for each basic block which values are alive and which are
dead. However, computing this liveness information has super-linear runtime
in the number of basic blocks, which can make these algorithms prohibitively
expensive for large functions. And unfortunately, some of our queries do com-
pile into very large functions with thousands of basic blocks and tens of thou-
sands of values. This is very different from handwritten programs, which tend
to consist of small functions. Register allocators try to avoid the expensive
liveness computation by splitting the life-ranges via spilling to memory [96].
But this is not really an option for us (in contrast to regular machine code),
as we would then have to find a mechanism to minimize the spill region, as
that would have to be cache-resident, too. Some JIT systems therefore restrict
the register allocation to values within a single basic block (which is easy) or
consider only a fixed number of neighboring basic blocks. This approach is
computationally simple but can lead to a poor register allocation.

We developed a new linear-time register algorithm that recognizes and uti-
lizes loop structures to quickly approximate the optimal register allocation.
Finding the optimal register allocation for a program in SSA form with an un-
bounded number of registers is super-linear. Instead, our register allocator may

5.4 fast bytecode interpretation 87

Live range of v
in Cv

3 6

5

4

z = v

v = f() loop
head

1 2 7

Figure 32: Computing the liveness of a variable x. The vertices are basic blocks, which
are connected by control flow edges (i.e., branch instructions).

sometimes needlessly extend the lifetime of a variable within the bounds of the
innermost loop that contains all uses of that value. In practice, however, this
only occurs with complex control flows, has imperceptible effects and serves
as reasonable trade off for the linear worst-case behavior.

Having a linear runtime algorithm is very important for the adaptive
execution framework. As we will see in Section 5.5.5, the regular LLVM
compiler is de facto unable to compile some very complicated queries
due to the super-linear algorithms used. Indeed, we have encountered
machine-generated queries where the largest function consists of 300,000

values and thousands of basic blocks. An algorithm with super-linear runtime
for such functions thus leads to unacceptable compile times (hours or even
days).

To give an impression of different register allocation strategies, we report the
size of the register file for different allocation strategies for the relatively large
TPC-DS query 55: If we just allocate values to registers without reuse we need
36 KB, which is larger than our L1 cache. Using a greedy assignment strategy
instead where we consider a fixed window of basic blocks for the lifetime, we
need 21 KB. This is better and sufficient for some JIT compilers, but still quite
large. The algorithm that we present below reduces this number to 6 KB, which
is much more reasonable.

5.4.4 Linear-Time Liveness Computation

Our algorithm is based upon two key concepts: 1) we compute that liveness
of a value as a live-range with a start block and an end block. The traditional

88 reducing latency in compiling query engines

// compute the liveness of values in function F
ComputeLiveness(F):

// find loop structures in F
label all basic blocks in F in reverse postorder
compute the dominator tree D for each basic block
label all nodes in D with pre-/postorder numbers
mark the first basic block in F as loop head
for each jump edge j : B → B′:

if B′ is ancestor of B in D:
mark B′ as loop head

for each basic block B:
associate B with the next dominating loop head

for each loop:
compute the first and last block of the loop
compute the next dominating loop head
label loop with nesting depth

// use the loop information to compute lifetimes
for each value v in F

B_v = set of basic blocks containing
definition and users of v

C_v = innermost loop containing all blocks in B_v
L_v = empty lifetime interval

for each B in B_v:
if C_v is innermost loop for B:
extend L_v with B

else:
extend L_v with outermost loop below C_v

that contains B

Figure 33: Linear-time algorithm for liveness computation.

method of computing the liveness for each block individually inherently has
O(n2) runtime. And 2) we keep the live-range of each value as tight as possible
by labeling the blocks according to the control flow and by explicitly handling
loops. This is illustrated in Figure 32: The basic blocks in this figure are labeled
in reverse postorder, which matches the control flow order. The value x is created
in block 2 and consumed in block 5. Naively one could think that the lifetime
of x is therefore the interval [2,5], but this is incorrect: Block 5 is part of a loop
that starts in 3 and which involves the blocks [3,6]. Any of these blocks can
reach block 5. Therefore, we extend the lifetime to include the containing loop
of the reader, which results in the life range in [2,6].

5.4 fast bytecode interpretation 89

Outermost
Loop in Cv

3

4

5

6

1 2

7

1|14 2|13 3|12

8|11

6|7

4|5

9|10

loop
head

Figure 34: Dominator tree annotated with pre-/post-order.

The full algorithm is shown in Figure 33. It operates in two phases: In
the first phase, it identifies all loops that occur in the function and associates
each basic block with the innermost enclosing loop4. With this information
we can compute the lifetime of a value by identifying all basic blocks that
contain definition or uses of a value and lifting these blocks to the level of the
innermost loop that contains all blocks. Conceptually, a value is alive from its
definition to its last user, including all blocks that might be traversed along the
way due to loop constructs.

We now look at the algorithm in more detail. It starts by labeling (and
ordering) all basic blocks in reverse postorder, i.e., a block is placed after all its
incoming blocks. Ignoring loops this directly corresponds to the control flow
order, and for a human would be the “natural” way to order the blocks in a
programming language. This order is required for the next algorithm step and
has the added advantage of making sure that the block labels are meaningful
regarding the control flow. Using this labeling, we can compute the dominator
tree D efficiently [41, 36], which, for each basic block, tells us the closest basic
block that must have been executed before. For lookup purposes we label
all nodes in D with pre-/post-order numbers [44]. This labeling allows us to
determine ancestor/descendant relationships in O(1). The dominator tree for
our running example is shown in Figure 34. Using the pre/postorder numbers
we can immediately see that, e.g., block 2 transitively dominates block 6, as the
interval [8,11] of block 6 is contained in the interval [2,13] of block 2.

All this infrastructure is used to identify loops. To avoid edge cases for
blocks outside of loops, we pretend that the whole function body is part of one

4 To avoid edge cases for blocks outside loops the algorithm behaves as if the whole function
body is contained in one huge outermost loop

90 reducing latency in compiling query engines

large loop, and we mark the first block of the function as the loop head (i.e., the
entry point of the loop). Now we look at all jumps between pairs of blocks B
and B′. If B′ is an ancestor of B in the dominator tree D, we have found a loop,
and we mark B′ as the loop head. In our example block 6 jumps to block 3,
which dominates 6, and thus block 3 is a loop head, i.e., the entry point of a
loop. After identifying all loops, we associate each block with their innermost
containing loop, represented by the nearest dominating loop head. We use a
disjoint set data structure with path compression here to make this computation
fast. We remember the first and the last block of a loop (according to the block
labels) and the loop in which it is nested. In our example the loop starting at
block 3 contains the block 3–6, and is contained in the top-level (pseudo) loop
starting at block 1. Finally, we compute the nesting depth for each loop.

While this computation is involved and uses several non-trivial algorithms,
the overall complexity of each step is linear. Indeed, most of the complexity
stems from the fact that we want to guarantee linear runtime: We could, for
example, leave out the pre/post-order labeling or the path-compression, but
we would then get super-linear runtime in subsequent steps. The same is true
for the choice of the dominator tree algorithms.

Using this loop information, the liveness computation for each individual
value v becomes simple. We identify the set Uv of all blocks that contain either
the definition or the uses of v. If the containing loop was the same for all
these blocks, the lifetime would simply be the span from the first block to the
last block, according to the reverse postorder labeling. In the general case, we
identify the least common loop Cv that contains all blocks from Uv. We extend
the lifetime of v to include the blocks from Uv within Cv that are not located
within nested loops. For every other block b in Uv, we extend the lifetime
of v to include all blocks of the outermost loop within Cv containing b. In our
example the containing loop Cv for value v is the whole function, the definition
of v in block 2 is immediately in that loop, but the use of v in block 5 is one
loop level deeper. As a result, the lifetime of v is the interval [2,6]. This whole
computation is very cheap due to lookup structures we have prepared while
analyzing the loops in the first phase.

Note that some care is required for LLVM’s ϕ nodes: The ϕ nodes are used
for the Single-Static-Assignment (SSA) form, and they pick a value depending
upon the incoming edge that has led to the basic block with the ϕ node. For
the purpose of lifetime computations, the arguments of ϕ are “read” at end of
the corresponding incoming block, and the ϕ node is “written” immediately
afterwards in the same block, and then “read” in the block that contains the ϕ

5.4 fast bytecode interpretation 91

node. This is not particularly difficult to implement, but one has to keep that
in mind when computing the liveness for ϕ nodes.

5.4.5 Interoperability

We interpret the original LLVM IR using our virtual machine. Therefore, our
bytecode interpreter behaves equivalently to generated machine code (except
for speed differences, of course). This is important, because it allows us to
seamlessly switch between interpretation and machine code, without modify-
ing the rest of the system.

The interoperability between bytecode and machine code, however, raises a
problem. While a function pointer suffices to run machine code, we need to
interpret the bytecode with the virtual machine. So instead of a direct func-
tion call we need to call additional dispatch code (see Figure 27) and pass to
it the function’s bytecode as an additional argument. We could then differenti-
ate both signatures by tagging the pointer and dynamically call the respective
function, but that would be quite invasive and would introduce unnecessary
branches. Instead, we always pass an extra pointer argument to the function
even though it is redundant in the machine code case. This allows us to trans-
parently switch from interpreted to compiled code by replacing the function
pointer and inject the additional argument.

The reverse direction is simpler as we can call existing C++ code from both,
generated machine code and from our VM. We just have to make sure that
a suitable call instruction is available in our VM for every existing function
signature. Referring to Figure 30, the opcode Op::call_void_i32 is required
to call C++ functions with a single 32 bit integer parameter and no return value.
As we know all exported C++ functions, we can identify missing opcodes at
compile time.

5.4.6 Optimizations

While being possible, it is sometimes inadvisable to translate LLVM instruc-
tions independent from each other. One example for this is overflow checking.
Any arithmetic that occurs within a query is checked for overflows in order to
report overflow errors to the user. With LLVM, this check boils down to 4 in-
structions that are always executed in sequence. With the bytecode interpreter,
our translator recognizes this sequence, and replaces it with a single VM byte-

92 reducing latency in compiling query engines

code that performs all four steps at once. This greatly reduces the number of
instructions for some queries and decreases their execution time.

Another frequently occurring pattern is the GetElementPtr (i.e., pointer arith-
metic) instruction followed by a load or store. These sequences are also recog-
nized during the translation and merged into one VM opcode to reduce the
instruction count.

In general, it would make sense to translate a large corpus of queries, and
to check for frequently occurring sequences of instructions in order to replace
them by macro instructions. One candidate for that could, for example, be
NULL handling, which also tends to create similar instruction sequences. In
future work, we will expand this mechanism to recognize more of these con-
structs.

5.5 evaluation

In this section, we experimentally compare the adaptive query execution
framework discussed in Section 5.3 with different statically chosen execution
modes. We also devote special attention on the bytecode interpreter introduced
in Section 5.4 to answer the question whether query interpretation adds addi-
tional value to compilation-based databases.

Our experiments are performed in HyPer, a database system that directly
generates LLVM IR, and, so far, always compiled it to machine code. By default,
optimized compilation was used, which enables all machine-specific (backend)
optimizations after executing a number of hand-picked LLVM IR optimiza-
tion passes (peephole optimizations, reassociate expressions, common subex-
pression elimination, control flow graph simplification, aggressive dead code
elimination). We also implemented an unoptimized compilation mode, which
also generates machine code but disables most compiler optimizations to im-
prove compile times. Specifically, this mode enables fast instruction selection,
does not execute any LLVM IR optimization passes, and uses a low backend
optimization level. Our interpreter translates the LLVM IR directly into the byte-
code discussed in Section 5.4. Finally, the adaptive execution mode interleaves
machine code generation and execution as described in Section 5.3.

Unless otherwise noted, the experiments have been performed on a desktop
system with an 8 core AMD Ryzen 7 1700X CPU, 32 GB of RAM, LLVM 3.8,
and Linux 4.11.

5.5 evaluation 93

bytecode

optimized

unoptimized

adaptive10ms

100ms

1s

0.01 0.1 1 10 30
TPC-H scale factor [log scale]

ex
ec

ut
io

n
tim

e
[lo

g
sc

al
e]

Figure 35: Geometric mean of all TPC-H queries including planning, compilation, and
execution using 8 threads for different scale factors and execution modes.

5.5.1 Static vs. Adaptive Mode Selection

Let us first investigate whether adaptive switching of the execution mode
can compete with a static up-front decision. In this experiment, we run all 22

TPC-H queries on scale factors ranging from 0.01 (around 10 MB) to 30 (around
30 GB).

Figure 35 presents the geometric means over all queries and for all execution
modes. Without having prior knowledge about the exact data size, adaptive
execution is able to always compete with the best statically chosen execution
mode. For the scale factors 0.01 and 0.1, the superior strategy is determined
solely by the query latency which clearly favors interpretation over compilation.
At these data sizes, adaptive execution never chooses to compile and performs
just as well as pure bytecode interpretation. Starting from scale factor 1, it
becomes viable to compile many of the pipelines, making unoptimized com-
pilation competitive. However, adaptive execution is still able to outperform
unoptimized compilation as fast pipelines can still be processed as bytecode.
Finally, at scale factor 30 the queries run long enough to justify the optimized
compilation. Adaptive execution now picks the best out of three execution
modes per pipeline and outperforms both compilation modes noticeably. At
even larger scale factors, we expect this trend to continue, with optimized com-
pilation becoming the main competitor for adaptive execution. However, we
also expect that adaptive execution will continue to have the overall lowest pro-
cessing time as there will still be cheap pipelines in the query plans, that can
be executed immediately.

94 reducing latency in compiling query engines

5.5.2 Adaptive Execution in Action

In a next step, we investigate the adaptive behavior of the framework based
on TPC-H query 11 on scale factor 1 using 4 threads5. We compare adaptive
execution with its competitors using Figure 36, which shows the query plan
in (a) and a dynamic execution trace with precise timing information about
the processed morsels in (b). Starting with the bytecode interpreter, the fig-
ure shows that the database quickly uses all 4 worker threads to process the
pipeline morsels in parallel. It also reveals that the amount of work is dis-
tributed very unequally among the 7 pipelines and that most of the time is
spent on the processing of the pipelines “scan partsupp 1” and “scan partsupp
2”. Unoptimized compilation, in contrast, uses a significant proportion of the
time for the initial single-threaded compilation of the query plan. Afterwards,
the morsels can hardly be distinguished from each other as the processing
with compiled pipelines is much faster. The execution trace of optimized com-
pilation looks very similar to the one from unoptimized compilation but is not
shown for graphical reasons, as the additional compiler optimizations lengthen
the compilation time to 103 milliseconds. In summary, unoptimized compila-
tion dominates the other statically chosen execution modes for this query (at
scale factor 1) due to being a good tradeoff between an increased efficiency and
a fast query preparation. These observations already indicate, that the quality
of a static up-front decision highly depends on the complexity of individual
pipelines and the data that is being processed.

Figure 36 also shows the execution trace of our adaptive execution mode
which is able to outperform all of its competitors. Very similar to the pure
bytecode interpreter, adaptive execution can immediately start to process the
pipeline morsels on all 4 worker threads. After 1 millisecond, it determines for
the two largest pipelines that switching the execution mode is worthwhile and
therefore dedicates a worker thread to compile them. As the compilation is
restricted to a single function, it only takes a fraction of the time we observed
when transforming the whole query plan. Once compiled, all worker threads
automatically shift gear to the newly-created machine code and process the
remaining morsels very efficiently. However, the unequal complexity distribu-
tion favors the compilation of only 2 out of 7 pipelines. Thus our framework
processes the remaining pipelines using the bytecode interpreter and finishes
the query 10%, 40% and 80% faster than the competitors (i.e., unoptimized
compilation, bytecode interpreter and optimized compilation).

5 Query 11 has been chosen such that the individual morsels are graphically distinguishable.

5.5 evaluation 95

Nation Supplier

PartSupp

Sort

Nation Supplier

PartSupp

800,000

31,680

1

800,000

31,680

29,818

1,024

10,0001 1 10,000

(a) Plan

C

C C

bytecode
unoptim

ized
adaptive

0 10 20 30
time [ms]

th
re

ad

plan + cdg. (+ bc.)
scan partsupp 1 scan partsupp 2

hash table scan compilationC

(b) Execution trace

Figure 36: Plan and execution trace of TPC-H query 11 on scale factor 1 using 4

threads. The optimized mode is not shown, as its compilation takes very
long (103ms).

96 reducing latency in compiling query engines

Table 4: Planning and compilation times in ms for TPC-H queries on PostgreSQL
(“PG”), MonetDB (“Monet”), and HyPer.

TPC-H plan HyPer

PG Monet plan cdg. bc. unopt. opt.

1 0.1 0.8 0.2 0.7 0.4 6 42

2 1.0 0.7 0.7 1.5 1.2 23 149

3 0.3 0.5 0.4 0.9 0.7 10 69

4 0.2 0.4 0.2 0.7 0.4 7 47

5 1.2 0.8 0.7 1.2 0.9 15 104

6 0.1 0.5 0.2 0.5 0.2 3 15

7 0.9 0.5 0.6 1.2 0.9 16 108

8 1.3 1.0 0.8 1.4 1.1 19 130

9 1.9 0.6 0.7 1.2 0.9 16 109

10 0.5 0.9 0.5 1.0 0.7 12 81

max 1.9 1.0 0.8 1.5 1.2 23 149

5.5.3 Planning and Compilation Time

Bytecode interpretation is a viable approach to provide a low-latency execu-
tion mode in compilation-based databases. In order to provide evidence for
this statement, we evaluate the planning and compilation times of HyPer and
compare them with PostgreSQL 9.6, which uses Volcano-style interpretation,
and MonetDB 1.7, which uses column-at-a-time processing. Table 4 shows the
planning times for TPC-H queries 1 through 5 and the maximum over all 22

queries. For TPC-H, plan generation (labeled as “plan” in the table), which
includes parsing, semantic analysis, and query optimization, is very fast in
all systems. While MonetDB and PostgreSQL can directly execute this plan,
HyPer generates LLVM IR code in the code generation phase (abbreviated as
“cdg.” in the table). LLVM IR generation typically takes slightly longer than
planning, but is still very fast (less than 2ms over all 22 TPC-H queries). The
next phase in HyPer is either bytecode (“bc.”), unoptimized (“unopt.”), or op-
timized (“opt.”) machine code generation. The table shows, that even unopti-
mized machine code compilation is generally around 10x slower than planning
and code generation. Optimized compilation is even slower and takes up to
150 ms for TPC-H. Bytecode generation, on the other hand, is very fast and is
always finished in less than 2 ms.

5.5 evaluation 97

Table 5: Execution times of TPC-H queries on scale factor 1 on PostgreSQL (“PG”),
MonetDB (“Monet”) and HyPer. The geometric means (“geo.m.”) are over all
22 queries.

TPC-H 1 thread 8 threads

PG Monet bc. unopt. opt. bc. unopt. opt.

1 4908 484 858 161 77 170 34 16

2 254 5 94 13 8 25 5 3

3 1258 64 323 104 80 54 21 17

4 193 56 352 67 45 57 16 12

5 516 51 362 60 37 67 14 10

6 102 38 18 23 27 5 4 5

7 664 71 252 79 61 52 16 14

8 1514 46 461 56 40 67 14 12

9 2345 139 863 183 135 123 35 35

10 1138 46 167 57 51 35 14 12

geo.m. 497 57 232 60 46 45 15 12

5.5.4 Performance of Interpreted and Compiled Code

Let us next compare the execution times of the bytecode interpreter and the
compiled machine code. Table 5 shows the TPC-H performance on scale factor
1 for the different execution modes and compares them with MonetDB as well
as PostgreSQL. Considering the geometric mean across all 22 queries, the byte-
code interpreter is 3.6 times slower than unoptimized machine code and 5.0
times slower than optimized machine code. While interpreted code is slower
than compiled code, it is still 2.1 times faster than PostgreSQL and scales just as
well as compiled code when multiple cores are used. The bytecode interpreter
is, however, slower than MonetDB, which uses combining pre-compiled, per-
column primitives. This highlights the fact that even a fast bytecode interpreter
is not capable of achieving performance competitive with compilation.

In order to better understand the performance results of Table 5, we mea-
sured some important6 CPU counters7 for TPC-H queries 1 and 5. These two
queries are quite different: query 1 is very computation-heavy, while query 5 is
dominated by join processing. As most queries spent the vast majority of their

6 Instructions cache misses, which can be problem in some systems [122, 121, 115], are not shown
as they are negligible in our execution engine (even in the interpreter).

7 These counters were measured with perf on an Intel Haswell CPU, because on our recent AMD
CPU perf does not yet support all counters.

98 reducing latency in compiling query engines

Table 6: CPU counters (×106) for TPC-H queries 1 and 5 on scale factor 1 using 1

thread.

TPC-H query 1 TPC-H query 5

bc. uno. opt. bc. uno. opt.
cycles 2669 606 306 1500 360 170

instructions 6257 1530 829 2700 510 200

IPC 2.3 2.5 2.7 1.8 1.4 1.2
branches 548 165 137 280 56 20

branch misses 1.4 1.2 0.7 4 3.2 3.5
L1 accesses 3993 476 253 1800 130 60

L1 misses 14 13 12 6 6 5

LLC accesses 1.8 1.7 1.7 4 5 4

LLC misses 0.6 0.6 0.6 2 2 1.2

time in joins, query 5 is fairly representative for the rest of TPC-H, and query 1

is a bit of an outlier. As presented in Table 6, the counters for the unoptimized
code generally lie between the interpreted code and the optimized code. In the
following, we therefore mostly contrast interpretation and the optimized code.

Maybe the most striking feature of the bytecode interpreter is that it exe-
cutes 7.5 times (query 1) and 13 times (query 5) as many instructions as the
optimized machine code. This sheer number of instructions executed by the
interpreter explains most of the performance difference in comparison with
machine code. Even simple operations like 64-bit integer addition, result in
around 10 machine instructions with bytecode. Another important difference
is the number of level 1 data cache accesses, which are 13.5 times (query 1) and
30 times (query 5) higher in the interpreter than in the optimized code. The
high number of L1 accesses are due to the registers of the interpreter being
stored in cache (as opposed to CPU register). Most other counters including
the L1 data misses and last level cache (LLC) misses are fairly similar in the dif-
ferent execution modes. This shows that the bytecode and registers are largely
cache resident, despite our fairly large instruction set and our frequent register
accesses. Most cache misses are due to unavoidable data access during query
processing (e.g., for probing hash tables). Finally, one can observe that in query
5, which is more representative of the rest of TPC-H, the optimized machine
code actually has a lower instructions per cycle (IPC) metric than the bytecode
and the unoptimized machine code. This shows that a higher IPC is not neces-
sarily better, as optimized, lean code has more CPU stalls due to unavoidable
data access.

5.5 evaluation 99

optimized

unoptimized

bytecode

0s

2s

4s

0 50000 100000 150000
query size (# of instructions)

co
m

pi
la

tio
n

tim
e

Figure 37: Compilation times of queries with a large number of instruction using op-
timized compilation, unoptimized compilation and interpretation.

5.5.5 Compiling Very Large Queries

In Section 5.3, we introduced a linear cost function that estimates the compi-
lation time based on the number of instructions in the pipeline. However, we
derived this function from the TPC-H and TPC-DS benchmarks which do not
contain particularly complex queries. Machine-generated queries, on the other
hand, can easily comprise multiple MB of SQL text with very unpleasant prop-
erties for the query compiler. In our last experiment we therefore investigate
the effects of very large queries on our three execution modes and show that
fast translation into bytecode is indispensable for these workloads.

Our sample queries consist of a single table scan and an increasing number
of aggregate expressions. By scaling this number from 10 to 1900, we receive
query plans that contain between 1,000 and 160,000 LLVM instructions, most
of which are in a single large function. Figure 37 shows the compilation times
of these queries with the different execution modes. Above all, the measure-
ments show that optimized LLVM compilation is no longer a viable approach
for larger query sizes. Its compilation times are characterized by an explosive
growth and exceed the 4 seconds mark already for 10,000 LLVM instructions.
Without optimization passes, the query compilation scales better but still re-
quires 4.4 seconds for the largest of our queries. In comparison, the bytecode
interpreter scales perfectly and is able to process this very large query in only
0.9 seconds. This workload stresses the importance of the fast bytecode trans-
lation that we introduced in Section 5.4. The translation allows us to execute

100 reducing latency in compiling query engines

queries of (almost) arbitrary size with the interpreter and adaptively compile
parts of the query whenever efficiency is needed.

5.5.6 Adaptivity to Data Size and Parallelism

We now investigate how varying data sizes and different degrees of paral-
lelism affect adaptive execution. We chose TPC-H query 4 as an example and
analyze the query execution on the scale factors 0.25 and 1 using 1, 2, and
4 threads. Figure 38 shows both the plan of the query and the resulting 6

execution traces. Similar to Figure 36, the execution traces show the timing
information of the morsels that are being processed as well as the pipelines
to which they belong. The morsels with the labels C/C* indicate compilation
tasks without/with compiler optimizations.

It is immediately striking that the execution traces differ significantly de-
pending on the data size and the thread count. On scale factor 0.25, we can
observe that the scan of the Orders relation is always executed with the in-
terpreter whereas the scan of the LineItem relation is always getting compiled.
On scale factor 1, in contrast, the scan of the Orders relation is getting compiled
with 1 and 2 threads but still uses the interpreter with 4 threads. Furthermore,
the compilation of the LineItem scan even uses optimization passes on scale
factor 1 for 1 and 2 threads. The final hash table scan is, independent from the
scale factor, always executed with the interpreter.

These observations highlight two important characteristics of adaptive query
execution. First, the pipelines are getting compiled more often and more ag-
gressively when the number of threads is smaller. This is because the costs
of a single-threaded compilation, even with enabled optimization passes, can
amortize through the higher amount of work that is left once the compilation
finishes. Or, put another way, single-threaded compilation is less attractive
with a higher number of threads as the interpreter will already process most
of the pipeline during compilation. Second, the pipelines are getting compiled
more often with a larger data size. This is no surprise as a larger amount of data
usually favors a higher processing efficiency. The experiment shows the impor-
tance of the decisions at pipeline-granularity as the amount of work might is
often small for some of the pipelines.

5.5 evaluation 101

14
k

/ 6
0k

1m
 /

4m

13
k

/ 5
0k

So
rt

O
rd

er
s

Li
ne

Ite
m

5
/ 5

(a
)

Pl
an

C C
C

C
*

C
C

C
C

*

SF
 0

.2
5

SF
 1

C C
*

pl
an

 +
 c

dg
. (

+
bc

.)
sc

an
 o

rd
er

s
sc

an
 li

ne
ite

m
ha

sh
 ta

bl
e

sc
an

sh
or

t m
or

se
ls

co
m

pi
la

tio
n

co
m

pi
la

tio
n

(o
pt

)

(b
)

Ex
ec

ut
io

n
Tr

ac
e

Fi
gu

re
38

:P
la

n
an

d
ex

ec
ut

io
n

tr
ac

es
of

TP
C

-H
qu

er
y

4
fo

r
ad

ap
ti

ve
ex

ec
ut

io
n

on
sc

al
e

fa
ct

or
s

0
.2

5
an

d
1

us
in

g
1

,2
,a

nd
4

th
re

ad
s.

102 reducing latency in compiling query engines

SF1 SF10

Q
1

Q
2

Q
3

Q
4

Q
5

2 4 6 2 4 6

1

1.5

1

1.5

1

1.5

1

1.5

1

1.5

speedup parameter [unopt. / interpr.]

e
x
e

c
u

tio
n

 t
im

e
 [

re
la

tiv
e

 t
o

 b
e

s
t]

Figure 39: The effect of different speed-up factors between the bytecode interpreter
and unoptimized compiled code on the execution time for the TPC-H
queries 1 – 5 at the scale factors 1 and 10 using 8 threads. The constant
used in our system is marked in blue.

5.5.7 Resistance to Estimation Errors

We mention in Section 5.3 that adaptive execution requires a rough estimate
of how much faster code will be at different compilation levels. For that pur-
pose, we introduced speed-up factors that were determined empirically in our
system. We now want to illustrate that these constants do not need to be care-
fully calibrated as adaptive execution is resistant to estimation errors.

Figure 39 shows the effect of different speed-up factors between the bytecode
interpreter and unoptimized compiled code on the execution time of the TPC-
H queries 1 – 5 at scale factors 1 and 10. We further assume that compiler
optimizations increase the speed-up of compiled code by around 30 percent.
Despite these arbitrary constants, we can see that the execution times of these
queries stay roughly the same. The reason for that is that adaptive execution
evaluates the execution modes in a “careful” way.

If the speed-up is assumed to be much larger than the actual speed-up, one
would compile more pipelines than required. In the experiment, however, we
do not observe a significantly longer execution time for higher speed-up fac-
tors as we usually delay the first extrapolation of the pipeline duration in favor
of more accurate throughput estimates. This allows many small pipelines to

5.6 related work 103

already complete the execution with the bytecode interpreter even though the
compiled code would appear to be arbitrarily faster. Furthermore, in a multi-
threaded setting, we can continue to process the query with the bytecode inter-
preter and abort ongoing compilations if the processing finishes early.

If the speed-up is, on the other hand, assumed to be much smaller than
the actual speed-up, one would prefer interpretation more often. This effect
is, in fact, observable but only for extreme speed-up values that are close to 1.
Intuitively, if the system assumes that there is almost no difference between the
interpreted and the compiled execution mode it is worthwhile to fully process
the query with the bytecode interpreter.

For all speed-up values in between these two extremes, the decisions are
usually unchanged for the pipelines which results in almost the same query
execution times. This experiment therefore shows that adaptive execution does
not depend on carefully calibrated constants but is very robust.

5.6 related work

Many papers on compilation-based query processing only report execution
times without stating the time it takes to generate the machine code itself.
Those papers that do report them, show compilation times between 5ms and
37ms when LLVM IR is used as a target language [63] and closer to 1 sec-
ond for compilation to C [59, 111]. As compilation is becoming widespread,
we expect that compilation times will receive more attention as any industrial-
strength system must deal with very large queries. Indeed, our personal ex-
perience has been that after transitioning from standard benchmark queries,
which are usually well-designed and “sane”, to real-world customer queries,
which are sometimes very “interesting”, query compilation latency becomes a
major problem [125]. We therefore believe that adaptive execution is a crucial
component for making query compilation truly practical—in particular since
traditional engines and modern columns stores (e.g., [70, 1, 101, 91]) do not
have large compilation times. In the following, we describe how adaptive com-
pilation can be integrated into other systems, and discuss other approaches for
reducing compilation time.

Adaptive execution has been designed for systems that directly compile
queries to LLVM IR, which includes HyPer [87] and Peloton [82]. MemSQL
is another system that is based on compilation that would benefit from adap-

104 reducing latency in compiling query engines

tive execution. It originally compiled queries to template-heavy C++, which
resulted in very high compilation times. Likely for this reason, recent versions
compile to a high-level imperative language called MemSQL Plan Language,
which is then lowered down via a mid-level intermediate language called Mem-
SQL Bit Code to LLVM IR [90]. Since the MemSQL Bit Code can be interpreted,
switching between interpretation and execution could easily be implemented
at that level. A similar approach like adaptive execution could also be applied
to systems like LegoBase [59] and its successor systems [111, 118], both of
which can either execute queries through the Java VM or by compiling to a
low-level language like C. Adaptive execution might also be useful for tradi-
tional (e.g., Volcano-style) systems that use compilation to specialize the query
engine code for a particular query [141, 140, 124]. Microsoft Hekaton, which
is part of SQL Server, compiles stored procedures to C [37]. For this use case,
compilation times are arguably less important than for ad hoc queries because
stored procedures are generally defined infrequently, but executed often.

Automatic plan caching, i.e., reusing query plans between subsequent exe-
cutions of the same (or a similar) query, is another, orthogonal approach for re-
ducing compilation times. However, plan caching, like explicit prepared state-
ments, cannot hide the compilation time of the first incoming query. For inter-
active applications this means that the initial user experience of compilation-
based systems is far from ideal. Another disadvantage of plan caching is that
recurring queries are often not exactly the same, but, e.g., differ by the selection
constants. Our adaptive approach can re-optimize queries on every execution,
which has the advantage that the specific query constants are visible to the
query optimizer, potentially leading to better query plans. Nevertheless, it
would also be possible to combine our approach with plan caching. Indeed,
one could extend adaptive execution to incorporate multiple executions of the
same query by keeping track of how often each pipeline is executed. In this
design, eventually all pipelines of frequently-executed queries would be com-
piled with optimizations.

Adaptive execution bears similarities with the execution engines of modern
managed languages like Java (HotSpot), C# (CLR), and JavaScript (V8, Jäger-
Monkey). These systems initially execute code in an interpreter and then, for
hot code, dynamically switch to compilation. Our adaptive execution frame-
work can be considered a database-specific implementation of similar ideas.
However, for maximum performance, database systems require precise control
over memory management and are therefore generally written in (or generate)
low-level languages. Therefore, databases cannot use automatic solutions at

5.7 summary 105

the language level, which, to the best of our knowledge, only exist for man-
aged languages. On the other hand, in contrast to a general-purpose program-
ming language, a database system knows much more about the code structure
and the instructions generated. This simplifies the design and implementation
of adaptive execution (e.g., we do not implement LLVM IR instructions that
we do not generate) and allows database-specific optimizations (e.g., macro
operations for common operations like overflow checking).

5.7 summary

We showed that interpretation and compilation are both important building
blocks for achieving low query latency and high throughput. We also pre-
sented an adaptive execution framework that dynamically and automatically
adjusts the execution mode of a query to minimize its overall execution time.
In this approach, all decisions are made at a pipeline granularity and are based
on runtime feedback instead of having to decide up-front. We further proposed
a bytecode interpreter that features a linear-time translation of LLVM IR into
efficient bytecode. Using this interpreter and the existing LLVM compiler with
optional optimization passes, our system was able to dynamically adapt to
data sizes ranging from 10MB to 30GB and outperform all statically chosen
execution modes for queries in the TPC-H benchmark.

We described the implementation details of adaptive execution in the con-
text of HyPer. We want to point out, however, that HyPer merely serves as
a basis for evaluation and that its design principles are no strict prerequisite
for the adaptive query execution. The two most important requirements of
adaptive execution are the compatibility of the generated language to virtual
machine bytecode and sufficiently fine granular control over the query execu-
tion. Within HyPer, the generated LLVM code, and its SSA form in particular,
simplify the translation into a bytecode for a custom virtual machine signif-
icantly. Other intermediate languages are still able to execute queries adap-
tively as long as they can be paired with a virtual machine featuring a fast
bytecode translation and a good interoperability with the compiled code. In
addition, fine-granular control is required to able to efficiently switch the ex-
ecution mode and track the query progress. The processing of data in small
chunks, as done with morsel-driven parallelism, is not specific to HyPer but
can be found in different variations in modern execution engines like IBM

106 reducing latency in compiling query engines

BLU [101] and Quickstep [91]. For these reasons, we believe that adaptive exe-
cution is directly applicable to other compiling query engines—including ones
that do not use LLVM for code generation.

6 E L I M I N AT I N G L AT E N C Y W I T H
W E B A S S E M B LY

Excerpts of this chapter have been published in [67].

6.1 introduction

Server

Browser

L
a
t
e
n
c
y

Efficiency

Analytics

Figure 40: Browser-based analytics tools process data either locally with a low effi-
ciency or on servers with a high latency. DuckDB-Wasm pushes the bound-
aries with fast analytical processing for the Web.

The web browser has evolved to a universal computation platform. Its rise
has been accompanied by increasing requirements for the browser program-
ming language JavaScript. JavaScript was designed to be flexible which comes
at the cost of a reduced processing efficiency. This is pronounced when con-
sidering the execution times of complex data analysis tasks that often fall be-
hind the native execution by orders of magnitude. In the past, analysis tasks
have therefore been pushed to servers that tie any client-side processing to
additional round-trips over the internet. These round-trips introduce network
latencies that negatively affect interactive data exploration [78].

The processing capabilities of browsers were boosted significantly in 2017

with the release of WebAssembly [46]. WebAssembly is a collaborative effort
to design a portable low-level binary instruction format for a safe stack-based
virtual machine. It is supported by major browser engines today and serves as
efficient compilation target for programming languages like C++. WebAssem-

107

108 eliminating latency with webassembly

bly aims to execute programs at native speed and supersedes JavaScript for
performance-critical applications in browsers.

The rise of WebAssembly presents an opportunity for the database DuckDB
to bring fast analytical data processing to the Web. DuckDB is a purpose-built
embeddable database for interactive analytics [100, 99]. Embeddable databases
are linked to programs as libraries and run in their processes. This design
distinguishes DuckDB from stand-alone data management systems and allows
for tight integrations into different environments. We identified one such en-
vironment to be the browser and introduce DuckDB-Wasm, a comprehensive
data analysis library for the Web.

Figure 40 presents a difficult trade-off that motivates a more efficient analyti-
cal processing in the browser. Web-based analysis tools can either process data
locally or on more powerful remote servers. Browsers are limited by the effi-
ciency of the language JavaScript but increase the interactivity by saving costly
round-trips over the internet. This contrast asks for a continuous assessment, if
the higher efficiency of remote servers justifies higher base latencies. The deci-
sion is non-trivial and offers the popular escape-hatch to always run the entire
analysis remotely. DuckDB-Wasm accelerates the data processing in browsers
and sheds new light on local processing as driver for interactive analytics.

This chapter demonstrates the concept of WebAssembly-driven analytics.
We give an overview about the design of DuckDB-Wasm in Section 6.2. Sec-
tion 6.3 compares the performance with existing libraries in the Web. Sec-
tion 6.4 demonstrates the capabilities of DuckDB-Wasm using an interactive
SQL shell in the browser. We close with a summary of the chapter in Sec-
tion 6.5.

6.2 design and implementation

In this section, we introduce four key design aspects of DuckDB-Wasm. We
describe the interaction with WebAssembly, a browser-agnostic web filesystem,
the role of web workers and the efficient integration of user-defined functions.

6.2.1 Embedding WebAssembly

We translate DuckDB to WebAssembly using the compiler Emscripten that
builds on the LLVM framework [137]. DuckDB is written in C++, a language

6.2 design and implementation 109

.duckdb .parquet .csv

Server Server

Client Client Client Client Client Client

1 2 3

Traditional DuckDB

CREATE VIEW recentdaily AS (
SELECT date_trunc('day', ts) AS day,

name, max(price) AS price

FROM 's3://bucket/stocks.parquet'

WHERE ts > current_date - 30
GROUP BY day);

SELECT r.day,p.name,max(p.count*r.price)

FROM 'https://remote/portfolio.csv' p,

recentdaily r
WHERE p.name = r.name GROUP BY ALL;

Figure 41: A SQL script that downloads stock data from AWS S3 stored in a Parquet
file and joins it with a portfolio stored in a CSV file. The left side presents
multiple ways to execute the script in a distributed setting. 1 shows the
traditional separation between client and server, 3 a fully local execution,
2 a hybrid mode in between.

that differs significantly from JavaScript in areas such as function calls, data
types and memory ownership. WebAssembly does not conceal these language
differences but pronounces them further through the memory isolation to-
wards the JavaScript heap. DuckDB-Wasm therefore uses Arrow for efficient
data exchange between the two languages. Arrow is a columnar format that
is organized in chunks of column vectors, called record batches, and supports
zero-copy reads with a small overhead. DuckDB-Wasm serializes results as Ar-
row IPC streams in C++ and then reads them directly from the WebAssembly
heap using JavaScript.

6.2.2 Web Filesystem

DuckDB-Wasm integrates a filesystem that is agnostic to the browser envi-
ronment. DuckDB is built on top of a virtual filesystem that decouples higher
level tasks, such as reading a Parquet file, from low-level filesystem APIs
that are specific to the operating system. We use this abstraction in DuckDB-
Wasm to tailor filesystem implementations to the different WebAssembly en-
vironments, such as the browser and Node.js. In the browser, file opera-

110 eliminating latency with webassembly

tions are mapped either to the web File API for local files or synchronous
XMLHttpRequests for remote data. We use the HTTP range header to request
parts of remote files and maintain exponentially growing readahead buffers to
reduce the total number of requests.

Figure 41 shows an example script with two SQL statements. The script
filters stock price data of the last 30 days, stored in a Parquet file on AWS S3.
Afterwards, it joins the data with a stock portfolio in a CSV file that is specified
as raw HTTP URL. The green color hints at relevant stock prices in the Parquet
file and indicates, that DuckDB-Wasm can skip row groups based on the filter
predicate. The CSV file is colored in blue and is fetched completely.

The figure also displays different execution strategies for the two statements.
Traditionally, the capabilities of browsers have been limited, favoring server-
based analytics. With this model, a rising number of clients increases the load
on the infrastructure and demands for elastic scaling. DuckDB-Wasm, in con-
trast, offers a choice between the three options labeled with 1 to 3 . 1 adopts
the traditional approach where the entire computation would be done by ded-
icated servers. 3 presents distributed computations where every client runs
the analysis locally. 2 combines both approaches by aggregating and filtering
stock data using a server and joining the result with the portfolio on the local
device.

6.2.3 Web Workers

The format Arrow also facilitates the offloading of DuckDB-Wasm to
dedicated web workers as we can pass Arrow buffers efficiently through the
browser’s message API. We use web workers for multiple reasons. First, they
unblock the browser’s main event loop and allow running complex analytical
queries without pausing user interface updates. Second, DuckDB-Wasm
can select between worker versions dynamically. Since the release of
WebAssembly back in 2017, which is now referred to as MVP, the standard has
been evolving. New features, such as WebAssembly Exceptions and SIMD,
find their way into the browsers at different speeds, creating a fractured
space of post-MVP functionality. These features can bring flat performance
improvements and are indispensable when aiming for a maximum speed. We
compile DuckDB-Wasm with multiple feature profiles and select a worker
based on dynamic browser checks.

6.3 tpc-h benchmark 111

6.2.4 User-Defined Functions

DuckDB-Wasm further simplifies the interaction with JavaScript through
user-defined functions. DuckDB follows a vectorized execution model and
processes queries chunk-wise to amortize the overhead of query interpretation
and benefit from superscalar capabilities of the CPU. We use this vectorization
to implement efficient user-defined functions in the browser. Users can register
JavaScript functions in DuckDB-Wasm and reference them within a SQL query.
During execution, the runtime system reads the current chunk data directly
from the WebAssembly heap and passes the tuples to the user function in a
compact loop.

6.3 tpc-h benchmark

In this section, we experimentally evaluate analytical query processing
with DuckDB-Wasm using the TPC-H benchmark. Our experiments were
performed on a Ryzen 5800X CPU with Node.js v17.6.0 that is powered by the
V8 engine v9.6.

We compare the execution times of TPC-H queries using DuckDB-Wasm and
the systems SQL.js, Arquero, and Lovefield. SQL.js is the WebAssembly ver-
sion of the database SQLite and supports all TPC-H queries out of the box.
Lovefield only supports a custom SQL-like API but optimizes query plans in-
ternally. However, Lovefield does not support arithmetic operations and nested
subqueries within the plan which makes it difficult to run more complex TPC-
H queries. Arquero only provides a DataFrame-like API without any upfront
optimization. We therefore constructed the TPC-H queries manually for Ar-
quero using the optimized plans produced by the optimizer of a relational
database.

We ran the benchmark at the scale factors 0.01, 0.1, and 0.5. A scale factor of
0.1 refers to approximately 100 MB of combined data, resulting in a range be-
tween 10 to 500 MB in the experiment. The WebAssembly memory is currently
capped at 4 GB in browsers, leaving some room for higher scale factors. We
omitted them in the benchmark because of the already significant differences
between the systems at scale factor 0.5. Table 7 lists the execution times of
the first 14 TPC-H queries. The table also shows the geometric means using a
subset of all 22 queries, that are supported by every system. DuckDB-Wasm
outperforms the competition by a factor of 10 to 100 across all scale factors.

112 eliminating latency with webassembly

Table
7:Execution

tim
es

in
seconds

for
TPC

-H
queries

at
the

scale
factors

0.
0
1,

0.
1

and
0.

5.

SF
=

0.
0
1

SF
=

0.
1

SF
=

0.
5

#
D

uckD
B

SQ
L.js

A
rquero

Lovefield
D

uckD
B

SQ
L.js

A
rquero

Lovefield
D

uckD
B

SQ
L.js

A
rquero

Lovefield

1
0.005

0.054
0.063

0.046
0.047

0.584
0.823

0.805
0.235

3.412
9.080

4.979
2

0.002
0.002

0.003
−

0.005
0.019

0.122
−

0.015
0.101

3.314
−

3
0.002

0.014
0.047

0.020
0.008

0.150
0.570

0.281
0.048

0.791
5.923

1.626
4

0.001
0.003

0.028
0.014

0.008
0.033

0.361
0.234

0.048
0.181

2.060
1.573

5
0.003

0.013
0.020

0.008
0.008

0.153
0.539

0.178
0.049

0.875
9.498

1.415
6

0.001
0.010

0.009
0.007

0.005
0.100

0.107
0.121

0.026
0.532

0.622
0.793

7
0.003

0.017
0.049

0.016
0.016

0.202
0.491

0.498
0.086

1.174
2.574

12.391
8

0.004
0.020

0.016
0.008

0.010
0.288

0.157
0.189

0.070
1.831

0.894
1.399

9
0.006

0.027
0.716

0.211
0.057

0.481
−

3.243
0.483

3.317
−

−
10

0.003
0.010

0.029
0.013

0.020
0.106

0.420
0.270

0.116
0.559

7.784
1.678

11
0.001

0.004
0.001

−
0.003

0.050
0.007

−
0.007

0.265
0.039

−
12

0.003
0.009

0.012
0.017

0.019
0.096

0.154
0.277

0.089
0.493

1.992
1.704

13
0.002

0.020
0.012

0.044
0.014

0.327
0.197

0.572
0.068

2.246
5.200

3.251
14

0.001
0.009

0.039
0.013

0.005
0.094

0.405
0.223

0.024
0.498

2.261
1.475

∅
geo

0.003
0.012

0.023
0.019

0.013
0.142

0.268
0.338

0.073
0.809

2.822
2.049

6.4 demonstration scenario 113

1 2

Figure 42: A shell that runs entirely in the browser and evaluates SQL queries using
DuckDB-Wasm. The figure shows a query joining two parquet files with
the relations orders and customer of the TPC-H benchmark at scale factor
0.1. 1 lists the query results and page accesses, 2 shows the query plan.

The two JavaScript libraries Arquero and Lovefield scale worse with a growing
amount of data compared to the two WebAssembly systems.

The experiment confirms, that WebAssembly enables efficient data process-
ing in the browser. It also shows that DuckDB-Wasm offers sub-second execu-
tion times for complex analytical queries on data sizes that may be considered
large for the Web. We want to emphasize that DuckDB-Wasm does not substi-
tute existing database systems when processing large amounts of data. Instead,
DuckDB-Wasm aims to complement database servers to increase the interactiv-
ity for browser-manageable data subsets.

6.4 demonstration scenario

We demonstrate the capabilities of a WebAssembly database with an interac-
tive SQL shell that runs entirely in the user’s browser. The SQL shell is acces-
sible at ankoh.github.io/duckdb-wasm and provides a command prompt for
a local DuckDB-Wasm instance.

We invite the reader to explore the remote TPCH-H data and their own local
files ad-hoc in the browser using arbitrary SQL queries. We further propose
to reproduce the following three observations: First, when scanning a Parquet
file with a limit clause, DuckDB-Wasm only reads the metadata in the back of
the file and the first bytes of required columns in the front. Second, aggregates
like the global tuple count can be evaluated entirely on the Parquet metadata
and finish quickly even on large remote files. Third, when fully scanning a

https://ankoh.github.io/duckdb-wasm

114 eliminating latency with webassembly

file, DuckDB-Wasm reads ranges of exponentially increasing sizes to reduce
the overhead of individual reads.

Figure 42 shows the WebAssembly shell in action. The figure presents the
execution of a query that joins data from two local Parquet files. The files store
the relations orders and customers from the TPC-H benchmark at scale factor 0.1.
orders.parquet contains 150’000 tuples and measures 11.8 MB. customer.parquet
contains 15’000 tuples and accounts for 2.6 MB. 2 shows the query plan that
consists of two Parquet scans, a hash join on the customer key and a topmost
projection. DuckDB-Wasm executes the query in 40 milliseconds with cold
caches and in 6 milliseconds afterwards. 1 also prints paging information of
the customer data after running the query twice. It shows that DuckDB-Wasm
reads 475 KB in total for the metadata in the back of the file and the required
attributes in the front.

6.5 summary

In this chapter, we introduced DuckDB-Wasm, a WebAssembly version of
the database system DuckDB that provides fast analytical processing for the
web. We outlined implementation details and showed that DuckDB-Wasm out-
performs existing systems by a large margin in the TPC-H benchmark. The
demonstration scenario presents an interactive shell that allows executing an-
alytical SQL statements in the local browser. Nevertheless, we identify two
major opportunities for future improvements.

First, we believe that WebAssembly unveils hitherto dormant potential for
shared query processing between clients and servers. Pushing computation
closer to the client eliminates costly round-trips over the internet and thus
increases interactivity and scalability of in-browser analytics. However, client-
sided analytics also stresses the importance of data locality and asks for a thor-
ough optimization of distributed query plans. Distributed query plans should
take into account where data is located, how computation and bandwidth re-
sources can be scaled, and how query latencies evolve during interactive and
repeated executions. We see the tandem of DuckDB and DuckDB-Wasm as a
first step towards a universal data plane spanning across traditional database
servers, clients, CDN workers, and computational storage.

Second, DuckDB-Wasm barely scratches the surface of efficient browser-
agnostic data processing. The browser landscape is evolving with new APIs

6.5 summary 115

and WebAssembly capabilities at the horizon. Extensive filesystem support,
for example, will evolve DuckDB-Wasm from an in-memory analytical query
engine to a persistent database system that can bypass browser memory limi-
tations completely through out-of-core operators. WebAssembly Module Link-
ing will further facilitate the dynamic loading of DuckDB extensions for ICU
timezones and full-text search. Additionally, multithreading in browsers has
been hampered by the repercussions of the Spectre and Meltdown vulnerabil-
ities [61, 77]. DuckDB scales seamlessly to a large number of cores outside of
WebAssembly which could accelerate in-browser analytics even further in the
future.

7 C O N C L U S I O N

This thesis demonstrates the capability of relational database systems to exe-
cute complete analysis workflows. We proposed a language extension for anal-
ysis workflows and examined three options to improve the functionality and
latency of existing systems. This chapter reviews the contributions, describes
their limitations and outlines future research directions.

7.1 review of thesis contributions

We introduce the language DashQL in Chapter 3 as an extension to SQL
that facilitates optimizations between previously loosely connected domains.
The coherent language model of DashQL extends known techniques, such as
projection and predicate pushdown, in two directions, towards the visualiza-
tion of query results and the preparation of remote data. AM4 is an example
of a visualization-driven aggregation that combines knowledge about the data
model and the embedding workflow context to accelerate the visualization of
time series data significantly. The thesis optimizes analytical workflows in
Chapter 4 by modularizing aggregation operators within relational database
systems. Low-level plan operators decompose traditional aggregation opera-
tors into DAG-shaped computation graphs and simplify the reasoning about
complex and composed aggregation functions. For interactive workflows, we
show in Chapter 5 that adaptive query execution significantly reduces the la-
tency of compilation based query engines. These engines can pair the high pro-
cessing efficiency of an optimized query program with the low latency of un-
optimized variants to launch the query execution quickly and update to more
efficient versions whenever necessary. Finally, the thesis eliminates round-trips
to central analytics servers in Chapter 6 by pushing computation closer to the
user with WebAssembly. DuckDB-Wasm is an embedded analytical database
for the web that outperforms existing data processing libraries in that space by
orders of magnitude.

117

118 conclusion

7.2 limitations of the systems

Nevertheless, the language DashQL is limited in flexibility. We propose a
grammar in Chapter 3 that provides several extension points for declaring new
input types, importing new data sources, loading different formats or abbre-
viating visualizations. However, DashQL remains a SQL dialect for declara-
tive analysis workflows and is more constrained than an imperative scripting
language. DashQL workflows enable holistic optimizations and seamless map-
pings to computation graphs but do not offer rich control-flow constructs for
branches and loops. They further cannot make use of arbitrary external li-
braries without mapping them to the task graph first. We hope to embed
external libraries more quickly in the future by controlling the effects that they
may have on existing data.

Additionally, reducing latency and maximizing throughput appear as con-
trary goals to adaptive query execution. In Chapter 5, we selected multiple
execution modes based on the number of assigned threads, the expected compi-
lation times, and the expected speedups. Based on these estimates, the system
would often start the execution with a less efficient mode and later upgrade
pipelines to higher efficiency, if necessary. When using LLVM, upgrading is
done on a single thread which means that a fast start involves other threads
more quickly. This approach optimizes for the shortest execution times of in-
dividual queries at the expense of less efficient use of the hardware during the
upgrade. When executing multiple queries simultaneously, the system should
not waste precious CPU cycles on less efficient execution modes but instead
optimize more pipelines upfront. Our cost model hides this contrast through
the number of assigned threads, which will require careful and non-trivial co-
ordination with the query scheduler.

7.3 future directions

The thesis contributes to a tighter integration of relational database manage-
ment systems into analytical workflows. We see the following three directions
for future research that build upon the introduced concepts.

7.3 future directions 119

7.3.1 Distributing Workflows

DashQL workflows can be distributed. We describe DashQL in Chapter 3 as
a language that evaluates analytical workflows interactively by maintaining a
task graph and updating the workflow state based on user interactions. We out-
line optimizations that increase workflow efficiency by propagating valuable
information between the statements. Similarly, the coherent language model
would enable informed decisions about the distribution of a workflow based
on data sizes, data proximity, and query complexity. This bridges the gap be-
tween traditional research around distributed query execution and workflow
system architectures that spread different parts of a workflow across machines.

7.3.2 Advanced Aggregation

We introduced low-Level plan operators in Chapter 4 that modularize re-
lational algebra operators for advanced and composed aggregation functions.
The chapter describes a canonical translation of traditional query plans based
on heuristic optimization rules. In contrast, text-book optimizations of rela-
tional algebra often use cost models and derive optimal plans using dynamic
programming. These cost models are not directly applicable to low-level plan
operators since they do not account for the added physical properties of inter-
mediate results. It would be interesting to construct a cost model that includes
partitioning and ordering costs to improve the plan quality.

Additionally, the chapter focuses on the efficient evaluation and composi-
tion of associative aggregates and window functions. Low-level plan operators
can also be used to implement even more complex aggregation functions such
as MATCH_RECOGNIZE introduced in SQL:2016. MATCH_RECOGNIZE resembles SQL
windows in that aggregates are computed per row and respect explicit parti-
tioning and ordering clauses. However, it also adds filtering of values based on
patterns defined on SQL expressions that may require optimizations found in
regular expression engines. MATCH_RECOGNIZE therefore serves as a good exam-
ple where low-level plan operators may already implement and optimize parts
of the required functionality and only need a specific operator to implement
the matching.

120 conclusion

7.3.3 Latency-driven Optimization

Database systems should optimize for end-to-end latencies. Chapter 5 men-
tioned the PostgreSQL administration tool pgAdmin that runs dozens of queries
at startup, joining only small metadata tables. In such scenarios, optimizing
for the highest processing efficiency can have detrimental effects if higher base
latencies dominate the execution time of cheap queries.

We see this as an example of misaligned optimization goals in the larger con-
text of analytical applications: Databases have traditionally lacked information
about the application context and have therefore optimized queries defensively
and in isolation. This has led to a suboptimal performance which is under-
pinned by the widespread use of external data caching in front of databases
for fast result reuse and refinement. The effects are severe as workarounds,
such as external caching, drag applications into data management territory and
expose them to consistency requirements better handled within a database sys-
tem. This motivates the question of whether today’s database systems should
not optimize queries concerning the surrounding application context. Doing
so would shift the focus from optimizing individual queries in isolation to
minimizing end-to-end latencies across multiple queries.

7.4 concluding remarks

Our ever-expanding digital footprints generate an increasing amount of data
that ought to be summarized, explored, shared, and explained. Relational
database systems form the backbone of these efforts as they are indispensable
for efficiently persisting and querying this data. In the past, however, database
systems have operated in isolation without including the broader context of
data analysis workflows. We broke the isolation in this thesis through extended
language support, reduced latencies and advanced analytical functions. I see
the interoperability with external tools as a distinguishing functionality of to-
morrow’s database services and expect the overlap between the research fields
to grow in the future.

B I B L I O G R A P H Y

[1] Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and
Samuel Madden. “Database Languages for Sensor Networks”. In: Ency-
clopedia of Database Systems 3 (2018), pp. 951–956.

[2] Sameer Agarwal, Davies Liu, and Reynold Xin. Apache Spark as a Com-
piler: Joining a Billion Rows per Second on a Laptop. "https://databricks
.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-bil

lion-rows-per-second-on-a-laptop.html". 2016.

[3] Josep Aguilar-Saborit, Raghu Ramakrishnan, Krish Srinivasan,
Kevin Bocksrocker, Ioannis Alagiannis, Mahadevan Sankara,
Moe Shafiei, Jose Blakeley, Girish Dasarathy, Sumeet Dash, et al.
“POLARIS: the distributed SQL engine in azure synapse”. In: PVLDB
12 (2020), pp. 3204–3216.

[4] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. “Mas-
sively parallel sort-merge joins in main memory multi-core database
systems”. In: PVLDB 10 (2012), pp. 1064–1075.

[5] C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu. “Main-memory
hash joins on multi-core CPUs: Tuning to the underlying hardware”. In:
ICDE. 2013.

[6] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu.
“Multi-core, main-memory joins”. In: PVLDB 1 (2013), pp. 85–96.

[7] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer ozsu.
“Main-Memory Hash Joins on Modern Processor Architectures”. In:
TKDE 7 (2015), pp. 1754–1766.

[8] Maximilian Bandle, Jana Giceva, and Thomas Neumann. “To Partition,
or Not to Partition, That is the Join Question in a Real System”. In:
SIGMOD. 2021.

[9] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri, N.
Chainani, S. Lightstone, and D. Sharpe. “Memory-efficient Hash Joins”.
In: PVLDB 4 (2014), pp. 353–364.

121

https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html

122 bibliography

[10] Leilani Battle, Remco Chang, and Michael Stonebraker. “Dynamic
Prefetching of Data Tiles for Interactive Visualization”. In: SIGMOD.
2016, pp. 1363–1375.

[11] Leilani Battle and Carlos Scheidegger. “A Structured Review of Data
Management Technology for Interactive Visualization and Analysis”.
In: IEEE Transactions on Visualization and Computer Graphics 2 (2021),
pp. 1128–1138.

[12] Veronique Benzaken, Jean-Daniel Fekete, Pierre-Luc Hemery,
Wael Khemiri, and Ioana Manolescu. “EdiFlow: Data-intensive
interactive workflows for visual analytics”. In: ICDE. 2011.

[13] Jacques Bertin. Semiology of Graphics. 1983.

[14] Spyros Blanas, Yinan Li, and Jignesh M. Patel. “Design and evaluation
of main memory hash join algorithms for multi-core CPUs”. In: SIG-
MOD. 2011.

[15] Peter A. Boncz, Marcin Zukowski, and Niels Nes. “MonetDB/X100:
Hyper-Pipelining Query Execution”. In: CIDR. 2005.

[16] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. “D3 Data-Driven
Documents”. In: IEEE Transactions on Visualization and Computer Graphics
12 (2011), pp. 2301–2309.

[17] Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann
Rabl, and Volker Markl. “Generating custom code for efficient query
execution on heterogeneous processors”. In: The VLDB Journal 6 (2018),
pp. 797–822.

[18] Jesús Camacho-Rodríguez et al. “Apache Hive: From MapReduce to
Enterprise-Grade Big Data Warehousing”. In: SIGMOD. 2019.

[19] Yu Cao, Chee-Yong Chan, Jie Li, and Kian-Lee Tan. “Optimization of
analytic window functions”. In: PVLDB 11 (2012), pp. 1244–1255.

[20] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A structured
English query language”. In: Proceedings of the 1974 ACM SIGFIDET
(now SIGMOD) workshop on Data description, access and control. 1976,
pp. 249–264.

[21] Craig Chasseur and Jignesh M. Patel. “Design and evaluation of storage
organizations for read-optimized main memory databases”. In: PVLDB
13 (2013), pp. 1474–1485.

bibliography 123

[22] Biswapesh Chattopadhyay et al. “Procella: Unifying serving and analyt-
ical data at Youtube”. In: PVLDB 12 (2019), pp. 2022–2034.

[23] Edward Y Chen, Christopher M Tan, Yan Kou, Qiaonan Duan, Zichen
Wang, Gabriela Vaz Meirelles, Neil R Clark, and Avi Ma’ayan. “Enrichr:
interactive and collaborative HTML5 gene list enrichment analysis tool”.
In: BMC bioinformatics 1 (2013), pp. 1–14.

[24] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy,
Mostafa Hagog, Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and
Pradeep Dubey. “Efficient implementation of sorting on multi-core
SIMD CPU architecture”. In: PVLDB 2 (2008), pp. 1313–1324.

[25] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”.
In: Software Pioneers 6 (2002), pp. 263–294.

[26] Edgar F Codd. “A relational model of data for large shared data banks”.
In: Software pioneers. 2002, pp. 263–294.

[27] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten
Binnig, Ugur Cetintemel, and Stan Zdonik. “An architecture for compil-
ing UDF-centric workflows”. In: PVLDB 12 (2015), pp. 1466–1477.

[28] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Çet-
intemel, and Stanley B. Zdonik. “Tupleware: "Big" Data, Big Analytics,
Small Clusters”. In: CIDR. 2015.

[29] Benoit Dageville et al. “The Snowflake Elastic Data Warehouse”. In: SIG-
MOD. 2016.

[30] Benjamin De Boe, Tom Woodfin, Thomas Dyar, Dave McCaldon, Aleks
Djakovic, Alex MacLeod, and Don Woodlock. “IntegratedML: Every
SQL Developer is a Data Scientist”. In: DEEM’20. 2020.

[31] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. “Hekaton:
SQL server’s memory-optimized OLTP engine”. In: SIGMOD. 2013.

[32] Jens Dittrich and Joris Nix. “The Case for Deep Query Optimisation”.
In: CIDR. 2020.

[33] Stefan Edelkamp and Armin Weiß. “BlockQuicksort: Avoid Branch Mis-
predictions in Quicksort”. In: ACM Journal of Experimental Algorithmics 1

(2019), pp. 1–22.

[34] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl.
“Spinning fast iterative data flows”. In: PVLDB 11 (2012), pp. 1268–1279.

124 bibliography

[35] Ziqiang Feng and Eric Lo. “Accelerating aggregation using intra-cycle
parallelism”. In: ICDE. 2015.

[36] Wojciech Fraczak, Loukas Georgiadis, Andrew Miller, and Robert E. Tar-
jan. “Finding dominators via disjoint set union”. In: Journal of Discrete
Algorithms (2013), pp. 2–20.

[37] Craig Freedman, Erik Ismert, and Per-Åke Larson. “Dynamic SQL”. In:
IEEE Data Eng. Bull. 1 (2019).

[38] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper,
and Thomas Neumann. “Adopting worst-case optimal joins in rela-
tional database systems”. In: PVLDB 12 (2020), pp. 1891–1904.

[39] Johann Christoph Freytag. “A Rule-Based View of Query Optimization”.
In: SIGMOD. 3. 1987, pp. 173–180.

[40] Sunny Gakhar et al. “Pipemizer: An Optimizer for Analytics Data
Pipelines”. In: PVLDB. 2022, pp. 95–109.

[41] Loukas Georgiadis, Robert E. Tarjan, and Renato F. Werneck. “Finding
Dominators in Practice”. In: Journal of Graph Algorithms and Applications
1 (2006), pp. 69–94.

[42] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,
John Karro, and David Sculley. “Google vizier: A service for black-box
optimization”. In: Proceedings of the 23rd ACM SIGKDD international con-
ference on knowledge discovery and data mining. 2017, pp. 1487–1495.

[43] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don
Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. “Main-
tenance of cube automatic summary tables”. In: Proceedings of the 2000
ACM SIGMOD international conference on Management of data - SIGMOD
’00 1 (2000).

[44] Torsten Grust. “Accelerating XPath location steps”. In: SIGMOD. 2002.

[45] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza,
Rahul Pathak, Stefano Stefani, and Vidhya Srinivasan. “Amazon
Redshift and the Case for Simpler Data Warehouses”. In: SIGMOD.
2015.

[46] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. “Bringing the web up to speed with WebAssembly”. In:
ACM SIGPLAN Notices 6 (2017), pp. 185–200.

bibliography 125

[47] Sibsankar Haldar. Inside sqlite. 2007.

[48] Jeffrey Heer, Joseph M Hellerstein, and Sean Kandel. “Predictive Inter-
action for Data Transformation.” In: CIDR. 2015.

[49] Joseph M. Hellerstein et al. “The MADlib analytics library”. In: PVLDB
12 (2012), pp. 1700–1711.

[50] Brian Hempel, Justin Lubin, and Ravi Chugh. “Sketch-n-Sketch: Output-
Directed Programming for SVG”. In: UIST. 2019, pp. 281–292.

[51] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. “Visual Debug-
ging Techniques for Reactive Data Visualization”. In: Computer Graphics
Forum. 3. 2016, pp. 271–280.

[52] Shrainik Jain, Edward D. Lazowska, Bill Howe, Dan C. Halperin,
and Dominik Moritz. “SQLShare: Results from a Multi-Year
SQL-as-a-Service Experiment”. In: SIGMOD. 2016.

[53] Abdallah Jarwan, Ayman Sabbah, and Mohamed Ibnkahla.
“Information-Oriented Traffic Management for Energy-Efficient and
Loss-Resilient IoT Systems”. In: IEEE Internet of Things Journal 10 (2022),
pp. 7388–7403.

[54] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl.
“M4: A Visualization-Oriented Time Series Data Aggregation”. In:
PVLDB 10 (2014), pp. 797–808.

[55] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer.
“Enterprise Data Analysis and Visualization: An Interview Study”. In:
IEEE Transactions on Visualization and Computer Graphics 12 (2012),
pp. 2917–2926.

[56] Manos Karpathiotakis, Ioannis Alagiannis, Thomas Heinis, Miguel
Branco, and Anastasia Ailamaki. “Just-In-Time Data Virtualization:
Lightweight Data Management with ViDa”. In: CIDR. 2015.

[57] Timo Kersten, Viktor Leis, and Thomas Neumann. “Tidy Tuples and
Flying Start: fast compilation and fast execution of relational queries in
Umbra”. In: The VLDB Journal 5 (2021), pp. 883–905.

[58] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz,
Kanit Wongsuphasawat, and Kayur Patel. “mage: Fluid Moves Between
Code and Graphical Work in Computational Notebooks”. In: UIST.
2020, pp. 140–151.

126 bibliography

[59] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi.
“Building efficient query engines in a high-level language”. In: PVLDB
10 (2014), pp. 853–864.

[60] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic,
Andres Nötzli, Daniel Lupei, and Amir Shaikhha. “DBToaster:
higher-order delta processing for dynamic, frequently fresh views”. In:
The VLDB Journal 2 (2014), pp. 253–278.

[61] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”.
In: S&P. 2019.

[62] André Kohn. “Adaptive Execution of Compiled Queries”. MA thesis.
Technical University of Munich, 2017.

[63] Andre Kohn, Viktor Leis, and Thomas Neumann. “Making Compiling
Query Engines Practical”. In: TKDE 1 (2019), pp. 1–1.

[64] André Kohn, Viktor Leis, and Thomas Neumann. “Adaptive Execution
of Compiled Queries”. In: ICDE. Apr. 2018, pp. 197–208.

[65] André Kohn, Viktor Leis, and Thomas Neumann. “Building Advanced
SQL Analytics From Low-Level Plan Operators”. In: SIGMOD. 2021,
pp. 1001–1013.

[66] André Kohn, Viktor Leis, and Thomas Neumann. “Making Compiling
Query Engines Practical”. In: TKDE 2 (2021), pp. 597–612.

[67] André Kohn, Dominik Moritz, Mark Raasveldt, Hannes Mühleisen, and
Thomas Neumann. “DuckDB-Wasm: Fast Analytical Processing for the
Web”. In: PVLDB. 12. 2022, pp. 3574–3577.

[68] Konstantinos Krikellas, Stratis D. Viglas, and Marcelo Cintra. “Generat-
ing code for holistic query evaluation”. In: ICDE. 2010.

[69] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann,
and Alfons Kemper. “Massively Parallel NUMA-Aware Hash Joins”. In:
IMDM. 2015, pp. 3–14.

[70] Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L.
Price, Srikumar Rangarajan, Aleksandras Surna, and Qingqing Zhou.
“SQL server column store indexes”. In: SIGMOD. 2011.

[71] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann.
“Morsel-driven Parallelism: A NUMA-aware Query Evaluation
Framework for the Many-core Age”. In: SIGMOD. 2014.

bibliography 127

[72] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons
Kemper, and Thomas Neumann. “How good are query optimizers, re-
ally?” In: PVLDB 3 (2015), pp. 204–215.

[73] Viktor Leis, Kan Kundhikanjana, Alfons Kemper, and Thomas
Neumann. “Efficient processing of window functions in analytical SQL
queries”. In: PVLDB 10 (2015), pp. 1058–1069.

[74] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Pe-
ter Boncz, Alfons Kemper, and Thomas Neumann. “OLTP through the
looking glass, and what we found there”. In: Making Databases Work: the
Pragmatic Wisdom of Michael Stonebraker (2018), pp. 409–439.

[75] Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot,
and Hanspeter Pfister. “UpSet: visualization of intersecting sets”.
In: IEEE transactions on visualization and computer graphics 12 (2014),
pp. 1983–1992.

[76] Lauro Lins, James T. Klosowski, and Carlos Scheidegger. “Nanocubes
for Real-Time Exploration of Spatiotemporal Datasets”. In: IEEE Trans-
actions on Visualization and Computer Graphics 12 (2013), pp. 2456–2465.

[77] Moritz Lipp et al. “Meltdown”. In: USENIX. 6. 2020, pp. 46–56.

[78] Zhicheng Liu and Jeffrey Heer. “The Effects of Interactive Latency on
Exploratory Visual Analysis”. In: IEEE Transactions on Visualization and
Computer Graphics 12 (2014), pp. 2122–2131.

[79] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. “imMens: Real-time Visual
Querying of Big Data”. In: Computer Graphics Forum 3pt4 (2013), pp. 421–
430.

[80] Guy M. Lohman. “Grammar-like functional rules for representing query
optimization alternatives”. In: SIGMOD. 3. 1988, pp. 18–27.

[81] Stefan Manegold, Peter Boncz, and Martin Kersten. “Optimizing
database architecture for the new bottleneck: Memory access”. In: The
VLDB Journal (Dec. 2000), pp. 231–246.

[82] Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. “Relaxed oper-
ator fusion for in-memory databases”. In: PVLDB 1 (2017), pp. 1–13.

[83] Dominik Moritz, Jeffrey Heer, and Bill Howe. “Dynamic Client-Server
Optimization for Scalable Interactive Visualization on the Web”. In:
DSIA. 2015.

128 bibliography

[84] Dominik Moritz, Bill Howe, and Jeffrey Heer. “Falcon: Balancing Inter-
active Latency and Resolution Sensitivity for Scalable Linked Visualiza-
tions”. In: CHI. 2019.

[85] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and
Franz Färber. “Cache-Efficient Aggregation: Hashing Is Sorting”. In:
SIGMOD. 2015.

[86] DAVID R. MUSSER. “Introspective Sorting and Selection Algorithms”.
In: Software: Practice and Experience 8 (1997), pp. 983–993.

[87] Thomas Neumann. “Efficiently compiling efficient query plans for mod-
ern hardware”. In: PVLDB 9 (2011), pp. 539–550.

[88] Thomas Neumann and Michael J. Freitag. “Umbra: A Disk-Based Sys-
tem with In-Memory Performance”. In: CIDR. 2020.

[89] Shoumik Palkar, James J. Thomas, Anil Shanbhag, Malte Schwarzkopf,
Saman P. Amarasinghe, and Matei Zaharia. “Weld: A Common Runtime
for High Performance Data Analysis”. In: CIDR. 2017.

[90] Drew Paroski. Code Generation: The Inner Sanctum Of Database Perfor-
mance. "http://highscalability.com/blog/2016/9/7/code-gener
ation-the-inner-sanctum-of-database-performance.html". 2016.

[91] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti,
Zuyu Zhang, Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh.
“Quickstep: A Data Platform Based on the Scaling-Up Approach”. In:
PVLDB 6 (2018), pp. 663–676.

[92] Andrew Pavlo et al. “Self-Driving Database Management Systems”. In:
CIDR. 2017.

[93] Fernando Magno Quintão Pereira and Jens Palsberg. “SSA Elimination
after Register Allocation”. In: Lecture Notes in Computer Science (2009),
pp. 158–173.

[94] Duy-Hung Phan and Pietro Michiardi. “A novel, low-latency algorithm
for multiple Group-By query optimization”. In: ICDE. 2016.

[95] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. “Voodoo - a
vector algebra for portable database performance on modern hardware”.
In: PVLDB 14 (2016), pp. 1707–1718.

[96] Massimiliano Poletto and Vivek Sarkar. “Linear scan register alloca-
tion”. In: ACM Transactions on Programming Languages and Systems 5

(1999), pp. 895–913.

http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html

bibliography 129

[97] Orestis Polychroniou and Kenneth A. Ross. “High throughput heavy
hitter aggregation for modern SIMD processors”. In: DaMoN. 2013.

[98] Fotis Psallidas and Eugene Wu. “Provenance for Interactive Visualiza-
tions”. In: HILDA. 2018.

[99] Mark Raasveldt and Hannes Mühleisen. “Data Management for Data
Science - Towards Embedded Analytics”. In: CIDR. 2020.

[100] Mark Raasveldt and Hannes Mühleisen. “DuckDB: An Embeddable An-
alytical Database”. In: SIGMOD. 2019.

[101] Vijayshankar Raman et al. “DB2 with BLU acceleration”. In: PVLDB 11

(2013), pp. 1080–1091.

[102] Bart Samwel et al. “F1 Query: Declarative Querying at Scale”. In:
PVLDB 12 (2018), pp. 1835–1848.

[103] Arvind Satyanarayan and Jeffrey Heer. “Lyra: An Interactive
Visualization Design Environment”. In: Computer Graphics Forum. 3.
2014, pp. 351–360.

[104] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jef-
fery Heer. “Vega-Lite: A Grammar of Interactive Graphics”. In: IEEE
transactions on visualization and computer graphics (2016), pp. 341–350.

[105] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer.
“Reactive Vega: A Streaming Dataflow Architecture for Declarative Inter-
active Visualization”. In: IEEE Transactions on Visualization and Computer
Graphics 1 (2016), pp. 659–668.

[106] Stefan Schuh, Xiao Chen, and Jens Dittrich. “An Experimental Compar-
ison of Thirteen Relational Equi-Joins in Main Memory”. In: SIGMOD.
2016.

[107] Maximilian Schüle, Tobias Götz, Alfons Kemper, and Thomas
Neumann. “ArrayQL for Linear Algebra within Umbra”. In: SSDBM.
2021.

[108] Robert Sedgewick. “Implementing Quicksort programs”. In: Communi-
cations of the ACM 10 (1978), pp. 847–857.

[109] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. “Access path selection in a relational database management
system”. In: Proceedings of the 1979 ACM SIGMOD International Confer-
ence on Management of Data. Boston, Massachusetts, 1979, pp. 511–522.

130 bibliography

[110] Raghav Sethi et al. “Presto: SQL on Everything”. In: ICDE. 2019.

[111] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mo-
hammad Dashti, and Christoph Koch. “How to Architect a Query Com-
piler”. In: SIGMOD. 2016.

[112] Jie Shen, Ana Lucia Varbanescu, Henk Sips, Michael Arntzen, and Dick
G. Simons. “Glinda: A Framework for Accelerating Imbalanced Appli-
cations on Heterogeneous Platforms”. In: Proceedings of the ACM Inter-
national Conference on Computing Frontiers. 2013.

[113] Carson Sievert and Kenneth Shirley. “LDAvis: A method for visualiz-
ing and interpreting topics”. In: Proceedings of the workshop on interactive
language learning, visualization, and interfaces. 2014, pp. 63–70.

[114] Laurynas Šikšnys and Torben Bach Pedersen. “SolveDB: Integrating Op-
timization Problem Solvers Into SQL Databases”. In: SSDBM. 2016.

[115] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki.
“Micro-architectural Analysis of In-memory OLTP”. In: SIGMOD. 2016.

[116] Chris Stolte, Diane Tang, and Pat Hanrahan. “Polaris”. In: Communica-
tions of the ACM 11 (2008), pp. 75–84.

[117] Rebecca Taft et al. “CockroachDB: The Resilient Geo-Distributed SQL
Database”. In: SIGMOD. 2020.

[118] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. “How to Ar-
chitect a Query Compiler, Revisited”. In: SIGMOD. 2018, pp. 307–322.

[119] Jeffrey Tao, Yiru Chen, and Eugene Wu. “Demonstration of PI2: Interac-
tive Visualization Interface Generation for SQL Analysis in Notebook”.
In: Proceedings of the 2022 International Conference on Management of Data
(2022).

[120] Pawel Terlecki, Fei Xu, Marianne Shaw, Valeri Kim, and Richard Wesley.
“On Improving User Response Times in Tableau”. In: SIGMOD. 2015.

[121] Pinar Tözün, Islam Atta, Anastasia Ailamaki, and Andreas Moshovos.
“ADDICT: Advanced Instruction Chasing for Transactions”. In: PVLDB
14 (2014), pp. 1893–1904.

[122] Pinar Tözün, Brian Gold, and Anastasia Ailamaki. “OLTP in wonder-
land: where do cache misses come from in major OLTP components?”
In: DaMoN. 2013.

[123] Edward R. Tufte. The Visual Display of Quantitative Information. USA,
1986.

bibliography 131

[124] Sahithi Tummalapalli and Venkata rao Machavarapu. “Managing Mysql
Cluster Data Using Cloudera Impala”. In: Procedia Computer Science 1

(2016), pp. 463–474.

[125] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kem-
per, Viktor Leis, Tobias Muehlbauer, Thomas Neumann, and Manuel
Then. “Get Real: How Benchmarks Fail to Represent the Real World”.
In: DBTest. 2018.

[126] Richard Wesley and Fei Xu. “Incremental computation of common win-
dowed holistic aggregates”. In: PVLDB 12 (2016), pp. 1221–1232.

[127] Hadley Wickham. “A Layered Grammar of Graphics”. In: Journal of Com-
putational and Graphical Statistics 1 (2010), pp. 3–28.

[128] Hadley Wickham. “A layered grammar of graphics”. In: Journal of Com-
putational and Graphical Statistics 1 (2010), pp. 3–28.

[129] Leland Wilkinson. “The grammar of graphics”. In: Handbook of computa-
tional statistics. 2012, pp. 375–414.

[130] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock
Mackinlay, Bill Howe, and Jeffrey Heer. “Towards a general-purpose
query language for visualization recommendation”. In: Proceedings of
the Workshop on Human-In-the-Loop Data Analytics. 2016, pp. 1–6.

[131] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand,
Jock Mackinlay, Bill Howe, and Jeffrey Heer. “Voyager: Exploratory
Analysis via Faceted Browsing of Visualization Recommendations”.
In: IEEE Transactions on Visualization and Computer Graphics 1 (2016),
pp. 649–658.

[132] Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang,
Felix Ouk, Anushka Anand, Jock Mackinlay, Bill Howe, and
Jeffrey Heer. “Voyager 2: Augmenting visual analysis with partial view
specifications”. In: Proceedings of the 2017 chi conference on human factors
in computing systems. 2017, pp. 2648–2659.

[133] Eugene Wu, Fotis Psallidas, Zhengjie Miao, Haoci Zhang, and Laura
Rettig. “Combining Design and Performance in a Data Visualization
Management System”. In: CIDR. 2017.

132 bibliography

[134] Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. “B2: Bridg-
ing code and interactive visualization in computational notebooks”. In:
Proceedings of the 33rd Annual ACM Symposium on User Interface Software
and Technology. 2020, pp. 152–165.

[135] Wenjian Xu, Ziqiang Feng, and Eric Lo. “Fast Multi-Column Sorting in
Main-Memory Column-Stores”. In: SIGMOD. 2016.

[136] Junran Yang, Hyekang Kevin Joo, Sai S. Yerramreddy, Siyao Li, Dominik
Moritz, and Leilani Battle. “Demonstration of VegaPlus: Optimizing
Declarative Visualization Languages”. In: Proceedings of the 2022 Inter-
national Conference on Management of Data (2022).

[137] Alon Zakai. “Emscripten: an LLVM-to-JavaScript compiler”. In: SIG-
PLAN. 2011.

[138] Emanuel Zgraggen, Alex Galakatos, Andrew Crotty, Jean-Daniel Fekete,
and Tim Kraska. “How Progressive Visualizations Affect Exploratory
Analysis”. In: IEEE Transactions on Visualization and Computer Graphics 8

(2017), pp. 1977–1987.

[139] Haoci Zhang, Viraj Raj, Thibault Sellam, and Eugene Wu. “Precision
Interfaces for Different Modalities”. In: SIGMOD. 2018.

[140] Rui Zhang, Saumya Debray, and Richard T. Snodgrass.
“Micro-specialization: dynamic code specialization of database
management systems”. In: International Symposium on Code Generation
and Optimization. 2012.

[141] Rui Zhang, Richard T. Snodgrass, and Saumya Debray.
“Micro-Specialization in DBMSes”. In: ICDE. 2012.

	 Acknowledgments
	 Preface
	Contents
	1 Introduction
	1.1 Thesis Statement
	1.2 Thesis Contributions
	1.3 Prior Publications and Authorship

	2 Background
	2.1 Analytical Data Processing
	2.1.1 Efficiency through Dynamic Code Generation
	2.1.2 Towards Computational Database Systems

	2.2 Information Visualization
	2.2.1 Declarative Visualization
	2.2.2 Data Visualization Management Systems

	3 Complete Analytical Workflows with DashQL
	3.1 Introduction
	3.2 Grammar of Analytics
	3.2.1 SQL Extension
	3.2.2 Driving Analytical Workflows

	3.3 Implementation
	3.3.1 AST Format
	3.3.2 From AST to Task
	3.3.3 Adaptive Task Graphs
	3.3.4 Complementing Vega-Lite
	3.3.5 Language Extensions
	3.3.6 Holistic Optimization

	3.4 Example Data Exploration
	3.5 Visualization with AM4
	3.6 Related Work
	3.6.1 Declarative Analysis Languages
	3.6.2 Scalable Visual Analysis

	3.7 Summary

	4 Evaluating Advanced Analytical SQL Queries
	4.1 Introduction
	4.2 Background
	4.3 From SQL To LOLEPOPs
	4.3.1 LOLEPOPs
	4.3.2 From Tree to DAG
	4.3.3 Advanced Expressions
	4.3.4 Extensibility

	4.4 LOLEPOP Implementation
	4.4.1 Code Generation
	4.4.2 Tuple Buffer
	4.4.3 Sorting
	4.4.4 Aggregation
	4.4.5 Partitioning
	4.4.6 Combine

	4.5 Evaluation
	4.5.1 Comparison with other Systems
	4.5.2 Advanced Aggregates in TPC-H
	4.5.3 LOLEPOPs in Action
	4.5.4 Adaptive Sorting

	4.6 Related Work
	4.7 Summary

	5 Reducing Latency in Compiling Query Engines
	5.1 Introduction
	5.2 Query Execution Via Compilation
	5.2.1 Latency vs. Throughput Tradeoff
	5.2.2 Compiling Large Queries

	5.3 Adaptive Execution
	5.3.1 Overview
	5.3.2 Tracking Query Progress
	5.3.3 Switching Between Execution Modes
	5.3.4 Choosing Execution Modes

	5.4 Fast Bytecode Interpretation
	5.4.1 Virtual Machine
	5.4.2 Translating into VM Code
	5.4.3 Register Allocation
	5.4.4 Linear-Time Liveness Computation
	5.4.5 Interoperability
	5.4.6 Optimizations

	5.5 Evaluation
	5.5.1 Static vs. Adaptive Mode Selection
	5.5.2 Adaptive Execution in Action
	5.5.3 Planning and Compilation Time
	5.5.4 Performance of Interpreted and Compiled Code
	5.5.5 Compiling Very Large Queries
	5.5.6 Adaptivity to Data Size and Parallelism
	5.5.7 Resistance to Estimation Errors

	5.6 Related Work
	5.7 Summary

	6 Eliminating Latency with WebAssembly
	6.1 Introduction
	6.2 Design and Implementation
	6.2.1 Embedding WebAssembly
	6.2.2 Web Filesystem
	6.2.3 Web Workers
	6.2.4 User-Defined Functions

	6.3 TPC-H Benchmark
	6.4 Demonstration Scenario
	6.5 Summary

	7 Conclusion
	7.1 Review of Thesis Contributions
	7.2 Limitations of the Systems
	7.3 Future Directions
	7.3.1 Distributing Workflows
	7.3.2 Advanced Aggregation
	7.3.3 Latency-driven Optimization

	7.4 Concluding Remarks

	 Bibliography

