
Technical University of Munich

Department of Mathematics

Vine Copula Based Synthetic Data
Generation for Classification

Master’s Thesis

by

Elisabeth Griesbauer

Supervisor: Prof. Claudia Czado, Ph.D.
Prof. Arnoldo Frigessi, Ph.D. (external)
Prof. Ingrid Hobæk Haff, Ph.D. (external)

Submission Date: July 11, 2022

I hereby declare that this thesis is my own work and that no other sources have been used
except those clearly indicated and referenced.

Oslo, July 11, 2022

Acknowledgments

I want to sincerely thank Prof. Claudia Czado, Prof. Arnoldo Frigessi and Prof. Ingrid
Hobæk Haff for their great supervision and support and for giving me the opportunity to
come to Oslo for my thesis.
I also want to thank my colleagues and friends who accompanied me the past years of
study and who made them a wonderful time: thank you for the shared laughter and the
mutual encouragement.
Finally I want to express my deep gratitude to my partner and my family: Your un-
conditional love and support are my foundation and have brought me to where I am
today.

Abstract

Generating synthetic data enables research on data, which due to privacy protection must
not be published, such as patient data. Synthetic data can also augment existing (real)
data, if they are limited. Commonly used methods for synthetic data generation, such
as generative adversarial networks (GANs) (Goodfellow et al. (2014)) or variational auto
encoders (VAEs) (Kingma and Welling (2013)), are based on neural networks. This makes
their training intensive and, especially in the case of GANs, difficult (Arjovsky and Bottou
(2017)). We use vine copulas as a synthetic data generator and focus on a setting, where
the analysis to be done on true and synthetic data is classification. The synthetic data
produced should allow the user to estimate a classification rule, which is similar to the
classification rule, that would be estimated on the true data. We compare three different
vine estimation methods in a simulation study, as well as on real-data applications in
astronomy and cancer genomics. We find, the best vine estimation method depends on
the properties of the true data, but the differences are overall not very large.

Zusammenfassung

Synthetische Daten ermöglichen Forschung dort, wo aus Datenschutzgründen Daten nicht
veröffentlicht werden können, wie beispielsweise Patientendaten aus medizinischen Stu-
dien. Ebenso können synthetische Daten einen bestehenden Datensatz vergrößern, wenn
dieser wenige Beobachtungen beinhaltet. Gängige Methoden zur Erzeugung synthetis-
cher Daten, wie Generative Adversarial Networks (GANs) (Goodfellow et al. (2014))
oder Variational Auto Encoders (VAEs) (Kingma and Welling (2013)), basieren auf neu-
ronalen Netzen. Das macht ihr Training intensiv und insbesondere bei GANs schwierig
(Arjovsky and Bottou (2017)). Wir verwenden Vine Copulas als Erzeugungsmethode von
synthetischen Daten und konzentrieren uns auf Klassifikation der echten und synthetis-
chen Daten als Anwendung. Dabei sollen die erzeugten synthetischen Daten es dem Be-
nutzer ermöglichen, eine Klassifizierungsregel zu schätzen, die der auf den wahren Daten
geschätzten Klassifizierungsregel ähnlich ist. Wir vergleichen drei verschiedene Methoden
zur Schätzung der Vine Copula in einer Simulationsstudie sowie an realen Daten aus der
Astronomie und Krebsgenomik. Dabei hängt die beste Vine-Schätzungsmethode von den
Eigenschaften der wahren Daten ab, wobei die Unterschiede eher gering ausfallen.

Notation

Sets

[d] set of natural numbers {1, 2, ..., d} with d ∈ N
|A| cardinality of set A

N the set of natural numbers {1, 2, 3, ...}
∅ the empty set

Vectors and Matrices

Vectors are denoted by small letters, matrices by capital letters.

x =

|
x

|

 d-dimensional vector (x1, x2, ..., xd) ∈ Rd, visual indication of the vector

xA subvector of x ∈ Rd with components of indices i ∈ A ⊂ [d]

x−j subvector of x ∈ Rd without the component of index j ∈ [d]

M matrix in Rm×n, denoted a by capital, non-bold letter

(mij)i∈[m],j∈[n] matrix M ∈ Rm×n with ijth component mij ∈ R
MA submatrix of matrix M ∈ Rm×n with rows and columns i, j ∈ A ⊂

[m]× [n]

M−i submatrix of matrix M ∈ Rm×n with row i ∈ [m] removed

M−j submatrix of matrix M ∈ Rm×n with column j ∈ [n] removed

mj column vector of column j ∈ [n] for a given matrix M ∈ Rm×n with
mj ∈ Rn

mT
i row vector of row i ∈ [m] for a given matrix M ∈ Rm×n with mT

i ∈ Rm

Probabilities and Random Variables

X random variable with X : Ω→ R
X d-dimensional random vector (X1, X2, ..., Xd) : Ω→ Rd

Contents

1 Introduction 1

2 An Introduction to Vine Copulas 3
2.1 An Intuition for Non-Statisticians . 3
2.2 Copulas . 3
2.3 Regular Vines . 15
2.4 Sample Quantiles . 40

3 An Introduction to Classification 42
3.1 Types of Classifiers . 44
3.2 Classification Performance Measures . 53

4 Synthetic Data for Classification Generated with Vines 62
4.1 Generating Synthetic Data with Vines . 63
4.2 Assessing the Quality of Synthetic Data 67

5 Simulation Study: Parametrically Simulated True Data 72
5.1 Simulation of

(
xtrue ytrue

)
. 72

5.2 Results – Simulation Study: Parametrically Simulated True Data 88

6 Application I: MAGIC Gamma Telescope Data Set 110
6.1 Results – Application I: MAGIC Gamma Telescope Data Set 111

7 Application II: Blueprint Study Data Set 118
7.1 Results – Application II: Blueprint Study Data Set 119

8 Conclusion and Further Work 135

9 Appendix 141

1

1 Introduction

Making data sets publicly available enables research. However, this is in many cases
not possible in order to protect confidential data. For example think of patient data in
medical studies. Synthetic data generated from the original true data can be a solution
to this problem. Instead of analysing the relation between features X true and response
Ytrue on the true data, researches can estimate the relation between synthetic features
Xsynth and synthetic response Ysynth on the synthetic data. Therefore the synthetic data
generating method must reproduce the dependencies between true X true and true Ytrue

in the synthetic data. If this is given, the relation estimated on the synthetic data will
be similar to the one estimated on the true data. If at the same time the synthetic data
does not disclose observations from the true data, it will not be necessary to publish the
true confidential data. In other situations we encounter the problem, that data are avail-
able but limited. Training data intense methods on them, such as neural nets, becomes
difficult. Here synthetic data can augment the existing data.

A commonly used method to generate synthetic data are generative adversarial networks
(GANs) by Goodfellow et al. (2014). They are based on the idea of pitting a genera-
tive model against a discriminative model in training. GANs enjoy popularity in high
dimensional data applications such as image data, see for example Frid-Adar et al. (2018)
and Han et al. (2018), as well as in synthetic data generation for tabular data, see Xu
et al. (2019) and Choi et al. (2017). Furthermore, variational auto encoders (VAEs) by
Kingma and Welling (2013) are used for the generation of synthetic data. Wan et al.
(2017) for example apply them to generate synthetic data for imbalanced learning in high
dimensions. Both GANs and VAEs are based on neural nets, which is why their training
is intensive and especially for GANs can be difficult, Arjovsky and Bottou (2017).

Instead of neural networks, other generative models can be used as synthetic data gener-
ators. Vine copulas introduced by Aas et al. (2009) and based on works by Sklar (1959),
Bedford and Cooke (2001), Bedford and Cooke (2002) are flexible generative models con-
structed from bivariate building blocks. Tagasovska et al. (2019) generate synthetic data
by combining them with a pre-trained autoencoder for lower dimensional representation
to overcome intense training. They restrict themselves to non-parametric vines with trun-
cation after 5 trees. Similarly, Kamthe et al. (2021) exploit the features of vine copulas to
obtain a synthetic data generator, which can deal with mixed data and is interpretable.
They use normalizing flows to learn the multivariate copula density and marginals.

In this thesis, we use vine copulas as a synthetic data generator and focus on the case
when the task is classification. We assess the quality of the synthetic data by its capability
to let a classifier learn a similar rule from them, that the same classifier would estimate on
the true data. Through our analysis, we provide a benchmark of how well vines are gen-
erally suited to generate synthetic data for classification. In addition, we compare three
different vine estimation methods: vine estimation with non-parametric, parametric and
mixed pair copula estimation. The comparison is done with respect to classification and
variable selection performance of the classifier trained on the synthetic data obtained by
each method. We find that the best vine estimation method depends on properties of

2 1 INTRODUCTION

the true data and whether the intended goal is best classification performance or best
variable selection performance. Overall, our approach works well when comparing the
results of the synthetic classifier to the one trained on the true data. The differences in
performance between the vine estimation methods are not very large and increase with
increasing difficulty of the classification task.

The remainder of this thesis is organized as follows: In Sections 2 and 3 we introduce
the most important theory on vine copulas and classification. Section 4 combines the
previously reviewed concepts to the methodology of vine copula based synthetic data
generation for classification. In Section 5 we apply the latter in a simulation study,
Sections 6 and 7 we assess vines as synthetic data generator on real data in astronomy
and cancer genomics and compare the three vine estimation methods. Finally Section 8
concludes this thesis and points to further work.

3

2 An Introduction to Vine Copulas

2.1 An Intuition for Non-Statisticians

One of the main goals of statistics is to understand the joint behavior of various (random)
quantities, called random variables. The mood of a person for example seems to be varying
so let us view it as a random variable. When I am visiting my family I can observe that
my father’s mood is somehow linked to the mood of my mother. Her being happy has
also an effect on how my two siblings are feeling. It is not only interesting to learn the
marginal distribution of each random variable, such as if it is more likely that my brother
is in a happy rather than a grumpy mood. It is especially interesting to know how the
moods of the different family members influence each other. So the goal is to find out the
dependence structure among the random variables. The joint distribution of the random
variables, the moods, contains all the information, i.e. all dependencies as well as all
marginal distributions, and can be modeled with the help of data.
However, the information I receive about mutual dependence when observing my father’s
and my sister’s mood together is always influenced by both their marginal distributions.
We will see later that the joint density - which is, if it exists, derived from the joint
distribution - can be split into the copula density and marginal densities. The copula
captures the mere dependence between all the random variables and therefore enables us
to understand their joint behavior.

2.2 Copulas

For introducing the concept of copulas first their formal definition is given. After stating
Sklar’s central theorem a method of constructing multivariate probability distributions
with the help of bivariate copulas is given. Further we cover different dependence measures
and families of copulas. In Czado (2019) for example the reader can find more details.

Definition 2.2.1. Let d ∈ N. The function C : [0, 1]d → [0, 1]d is a d-dimensional
copula if it is a d-dimensional cumulative distribution function with uniform marginal
distributions U [0, 1].

So for the random vector (U1, . . . Ud) taking on values (u1, . . . , ud) ∈ [0, 1]d it is:

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud) . (2.1)

As for all distributions, the copula distribution has a density if it is absolutely continuous.
For (u1, . . . , ud) ∈ [0, 1]d the copula density is obtained by:

c(u1, ..., ud) =
∂dC(u1, . . . , ud)

∂u1 . . . ∂ud

. (2.2)

Before stating Sklar’s Theorem we remind ourselves of the probability integral transform.

Definition 2.2.2 (Probability integral transform, PIT). Let X be a continuous random
variable with distribution function F . Then u := F (x) is defined as the probability integral
transform of X at x ∈ R.

4 2 AN INTRODUCTION TO VINE COPULAS

Remark 2.2.1. The distribution of U := F (X) can easily be obtained:

P (U ≤ u) = P (F (X) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u , (2.3)

using that X ∼ F . As this holds for any u ∈ [0, 1] we find that U ∼ Unif [0, 1].

Theorem 2.2.1 (Sklar’s Theorem). Let X be a d-dimensional random vector with dis-
tribution function F and marginal distributions F1, . . . Fd. Then F can be expressed as:

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) , (x1, . . . , xd) ∈ Rd . (2.4)

where C is a copula. If F is absolutely continuous, the copula C is unique. We then say
that the copula C is corresponding to the distribution F . In the case of absolute continuity
all densities exist and we can express the joint density f of X as:

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) · f1(x1) · ... · fd(xd) . (2.5)

Conversely, let C be the d-dimensional copula corresponding to the joint distribution func-
tion F of X with marginal distributions F1, . . . Fd. Then we can express C as:

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F

−1
d (ud)) (2.6)

with copula density:

c(u1, . . . , ud) =
f(F−1

1 (u1), . . . , F
−1
d (ud))

f1(F
−1
1 (u1)) · ... · fd(F−1

d (ud))
. (2.7)

Sklar’s Theorem, Sklar (1959) provides us with the link between the copula on the d-
dimensional hypercube and the probability distribution of the random vector X. Some
remarks on the theorem:

• Given any copula C and some marginal distributions F1, . . . Fd, the expression in
(2.4) allows us to construct an arbitrary joint distribution function F . The same is
true for densities.

• The equation in (2.5) illustrates how the joint density f of a random vector X can
be split into the joint copula density, which captures the dependence structure of
X, and the marginal densities f1, . . . fd.

• The copula C is by definition again a distribution function with uniform density.
Therefore Sklar’s Theorem can be applied to the copula itself. This might not be of
interest now, as for u ∈ [0, 1] we have that C(u) = u and c(u) = 1 trivially. However
having this in mind will be of use later.

The following bounds allow us to later describe certain properties of copulas:

Theorem 2.2.2 (Fréchet-Hoeffding bounds). Let C be a d-dimensional copula. Then for
any u ∈ [0, 1]d:

W d(u) ≤ C(u) ≤Md(u) ,

with:

W d(u) := max{u1 + · · ·+ ud − d+ 1, 0} ,
Md(u) := min{u1, . . . , ud} .

2.2 Copulas 5

A proof of this theorem can for example be found in Nelsen (2007).

Remark 2.2.2. It can be shown, that the upper bound Md(u) is a copula. The lower
bound W d(u) is only a copula for d = 2. In the following we use the notation:

W (u1, ud) := W 2(u1, u2) = max{u1 + u2 − 1, 0} ,
M(u1, u2) := M2(u1, u2) = min{u1, u2} .

Following Nelsen (2007), we say that for two uniformly distributed random variables
U1, U2 ∈ [0, 1] ”U1 is an almost surely increasing function of U2” if and only if their copula
is C(U1, U2) = M(U1, U2). Then P (U1 = U2) = 1 and we call this complete positive
dependence. Similarly, we say that ”U1 is an almost surely decreasing function of U2” if
and only if their copula is C(U1, U2) = W (U1, U2). Then P (U1 + U2 = 1) = 1 and we call
this complete negative dependence.

Additionally, it is useful to look at the following 2-dimensional case:

Remark 2.2.3. For two independent random variables the corresponding bivariate copula
distribution function is by (2.5) of Sklar’s Theorem:

C(u1, u2) = F (F−1
1 (u1), F

−1
2 (u2))

ind.
= F1(F

−1
1 (u1)) · F2(F

−1
2 (u2)) = u1 · u2 .

It is known as the independence copula and denoted by Π(u1, u2).

In the same manner that we have different classes of probability distributions with their
respective explicit formulation, we have different classes of copula distributions with their
corresponding formulation. The inverse Sklar’s Theorem 2.2.1 gives the construction of
one class of copulas, namely the elliptical copulas. The two most prominent members of
the class are the Gauss copula and the Student’s t copula. We define the bivariate cases
here. The multivariate cases are constructed in the same way.

Definition 2.2.3 (bivariate Gauss copula). Let Φ2(·, ·; ρ) be the 2-dimensional standard
normal distribution with mean vector µ = 0 and correlation parameter ρ ∈ (0, 1), and let
Φ−1(·) be the quantile function of the univariate standard normal distribution. Then by
Sklar’s Theorem 2.2.1 we obtain the bivariate Gauss copula by:

C(u1, u2; ρ) = Φ2(Φ
−1(u1),Φ

−1(u2); ρ) . (2.8)

Definition 2.2.4 (bivariate Student’s t copula). In the same manner, the bivariate Stu-
dent’s t copula is given by:

C(u1, u2; ν, ρ) =

∫ u1

0

∫ u2

0

t(T−1
ν (v1), T

−1
ν (v2); ν, ρ)

tν(T−1
ν (v1))tν(T−1

ν (v2))
dv1dv2 , (2.9)

with t(·, ·; ν, ρ) the bivariate Student’s t density with ν > 0 degrees of freedom of two
random variables with correlation ρ ∈ (−1, 1).
Remark 2.2.4. For the bivariate Gauss copula and the bivariate Student’s t copula it
holds, that:

C(u1, u2; ρ) =

Π(u1, u2), for δ = 0 ,

W (u1, u2), for δ → −1 ,

M(u1, u2), for δ → 1 .

Verbally expressed, they show complete positive dependence for δ → −1, independence
δ = 0 and complete negative dependence for δ → 1.

6 2 AN INTRODUCTION TO VINE COPULAS

An overview of commonly used distribution functions and their notation can be found in
the Appendix 9.

Bivariate Copula Families

Beside the elliptical copulas such as the bivariate Gauss copula and the bivariate Student’s
t copula, which we have seen are constructed from known multivariate distributions, we
want to introduce further bivariate copula families. They can all be extended to any
dimension d ∈ N. Let u1, u2 ∈ [0, 1]:

• Clayton copula: The bivariate Clayton copula is given by:

C(u1, u2) = (u−δ
1 + u−δ

2 − 1)−
1
δ . (2.10)

For the Clayton copula the parameter δ can take on values in [−1,∞) \ {0}. How-
ever, for δ ∈ [−1, 0) there arise numerical problems as stated in Dißmann (2010).
Therefore we use the Clayton copula to model only positive dependence and thus
δ ∈ (0,∞): for δ → 0 we have independence, for δ →∞ we have complete positive
dependence.

• Gumbel copula: The bivariate Gumbel copula is given by:

C(u1, u2) = exp
{
− [(−ln(u1))

δ + (−ln(u1))
δ]

1
δ

}
, (2.11)

where δ ≥ 1. For δ = 1 we have independence and for δ → ∞ we have complete
positive dependence.

• Frank copula: The bivariate Frank copula, which can model positive as well as
negative dependence, is defined as:

C(u1, u2) = −
1

δ
ln
(1

1− e−δ
[(1− e−δ)− (1− e−δu1)(1− e−δu2)]

)
, (2.12)

with δ ∈ (−∞,∞) \ {0}. For δ → 0 we obtain independence, for δ → −∞ complete
negative dependence and for δ →∞ complete positive dependence.

• Joe copula: The bivariate Joe copula is given by:

C(u1, u2) = 1−
(
(1− u1)

δ + (1− u2)
δ − (1− u1)

δ(1− u2)
δ
) 1

δ
, (2.13)

where the parameter δ takes on values δ > 1. For δ → 1 we have independence and
for δ →∞ we have complete positive dependence.

The pair copulas listed above all have one parameter. They can be extended to d ∈ N
dimensions and belong to the copula class called Archimedean copulas, which arise from
generator functions1. In Nelsen (2007), which the list of pair copulas above is based on,

1These generator functions φ : [0, 1]→ [0,∞) are continuous, strictly monotone decreasing and convex
with φ(1) = 0. For a chosen generator function φ we obtain the Archimedean copula C by:

C(u1, u2) = φ[−1](φ(u1) + φ(u2)) ,

where φ[−1](t) :=

{
φ−1(t) for 0 ≤ t ≤ φ(0) ,

0 for φ(0) ≤ t ≤ ∞ .

2.2 Copulas 7

the reader can find more details. The BB1 and BB7 family are examples of Archimedean
copula families with two parameters. The Archimedean class is covered in more detail for
example in Nelsen (2007).
Further there exists the class of extreme-value copulas, which are based on a generalization
of extreme-value theory to higher dimensions. Representatives of this class are the Tawn
copula, BB5 and Extended Joe copula (BB8). In Gudendorf and Segers (2010) the reader
can find more details.

Dependence and Association Measures

The possibly complex dependence structure between two random variables X1 and X2 is
fully captured in their joint distribution function F and their corresponding pair copula
C respectively. We introduce several one-number summaries of the pairwise association
between two random variables, which give information about strength and direction of
the association present, or the occurrence of joint extreme events.

Definition 2.2.5 (Pearson correlation). Let the two random variables X1 and X2 have
finite second moments. The Pearson correlation coefficient ρ betweenX1 andX2 is defined
as:

ρ(X1, X2) := Cor(X1, X2) =
Cov(X1, X2)√

V ar(X1)
√
V ar(X2)

∈ [−1, 1] . (2.14)

If it is clear from the context, ρ(X1, X2) will be denoted as ρ. For a set of observations
{(xi1, xi2) | i ∈ [n]} of (X1, X2) the estimated Pearson correlation coefficient is given by:

ρ̂ = ρ̂(X1, X2) :=

∑n
i=1(xi1 − x̄1)(xi2 − x̄2)√∑n

i=1(xi1 − x̄1)2
√∑n

i=1(xi2 − x̄2)2
, (2.15)

with x̄1 :=
∑n

i=1 xi1 and x̄2 :=
∑n

i=1 xi2 the sample means.

The Pearson correlation is a measure of linear dependence and not ”scale-invariant”, i.e.
not invariant under monotone increasing transformations of the random variables. Kurow-
icka and Cooke (2006) also showed, that the value of (2.14) depends on the marginal
distributions of X1 and X2.

We wish to have an association measure, which is not influenced by whether we compute
it on the original-scale or on the copula scale. Therefore it has to remain unaltered when
applying the marginal distribution F1 to X1 and F2 to X2. In other words: we wish to
have a scale-invariant measure.
Additionally, we would like to capture not only linear dependence, but also a general
association between the values of two random variables X1 and X2. One aspect of this
general association is the so-called concordance: Two random variables are said to be
concordant, if ”large” values of one variable tend to be associated with ”large” values of the
other random variable and equivalently ”small” values of one tend to be associated with
”small” values of the other. In a mathematical formulation, let (x11, x12) and (x21, x22) be
a pair of observations of (X1, X2). It is said to be concordant, if (x11−x21)(x12−x22) > 0
or discordant, if (x11 − x21)(x12 − x22) < 0.

8 2 AN INTRODUCTION TO VINE COPULAS

The Kendall’s τ introduced in the following is a scale-invariant association measure for
two continuous random variables X1 and X2 based on the comparison of concordant with
discordant behavior:

Definition 2.2.6 (Kendall’s τ). For two continuous random variables X1 and X2 the
Kendall’s τ is defined as:

τ(X1, X2) := P
(
(X11 −X21)(X12 −X22) > 0

)
− P

(
(X11 −X21)(X12 −X22) < 0

)
,

(2.16)

where (X11, X12) and (X21, X22) are i.i.d. copies of (X1, X2). Let {(xi1, xi2) | i ∈ [n]} be
n observations of (X1, X2). Then we have

(
n
2

)
distinct pairs of observations of (X1, X2)

being either concordant or discordant in the continuous case.2 In the discrete case there
can also exist so-called extra x1 pairs for x11 = x21 or extra x2 pairs for x12 = x22. Then
the estimated Kendall’s τ (discrete case) is given by:

τ̂discr. :=
Nc −Nd√

Nc +Nd +N1

√
Nc +Nd +N2

, (2.17)

with Nc the number of concordant pairs, Nd the number of discordant pairs, N1 the
number of extra x1 pairs and N2 the number of extra x2 pairs. The estimated Kendall’s
τ (continuous case) is defined as:

τ̂cont. :=
Nc −Nd(

n
2

) . (2.18)

From the definition of Kendall’s τ it becomes obvious, that with the help of Sklar’s
Theorem it can be expressed in terms of the copula associated with the distribution of
(X1, X2):

Theorem 2.2.3 (Kendall’s τ expressed in terms of copula). Let (X1, X2) be a continuous
random vector. Then:

τ = 4

∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1 . (2.19)

Proof. Following Czado (2019), let (X11, X12) ∼ G and (X21, X22) ∼ G be two i.i.d. copies
of (X1, X2). Let F1 be the marginal distribution of X1 and F2 of X2 respectively and let
C be the bivariate copula distribution associated with G. We know that τ(X1, X2) is
defined as:

τ(X1, X2) = P
(
(X11 −X21)(X12 −X22) > 0

)
− P

(
(X11 −X21)(X12 −X22) < 0

)
.

With:

P
(
(X11 −X21)(X12 −X22) > 0

)
= 1− P

(
(X11 −X21)(X12 −X22) < 0

)
and thus:

τ(X1, X2) = 2P
(
(X11 −X21)(X12 −X22) > 0

)
− 1 ,

2For (X1, X2) continuous the case (x11 − x21)(x12 − x22) = 0 occurs with probability 0.

2.2 Copulas 9

it remains to compute P
(
(X11 −X21)(X12 −X22) > 0

)
. It holds, that:

P
(
(X11−X21)(X12−X22) > 0

)
= P (X11 > X21, X12 > X22)+P (X11 < X21, X12 < X22) ,

and hence the proof is complete, once we evaluated P (X11 > X21, X12 > X22) and
P (X11 < X21, X12 < X22). This can be done by integrating over either (X11, X12) or
(X21, X22). We integrate over the former:

P (X11 > X21, X12 > X22) =

∫∫
R2

P (X21 < x1, X22 < x2)dG(x1, x2)

=

∫∫
R2

G(x1, x2)dG(x1, x2)

Sklar
=

∫∫
R2

C(F1(x1), F2(x2))dC(F1(x1), F2(x2))

=

∫∫
R2

C(u1, u2)dC(u1, u2) ,

with u1 = F1(x1) and u2 = F2(x2). By the same reasoning we have:

P (X11 < X21, X12 < X22) =

∫∫
R2

P (X21 > x1, X22 > x2)dG(x1, x2)

=

∫∫
R2

[
1− F1(x1)− F2(x2) + P (X21 < x1, X22 < x2)

]
dG(x1, x2)

Sklar
=

∫∫
R2

[
1− F1(x1)− F2(x2) + C(F1(x1), F2(x2))

]
dC(F1(x1), F2(x2))

=

∫∫
R2

[
1− u1 − u2 + C(u1, u2)

]
dC(u1, u2)

= 1− 1

2
− 1

2
+

∫∫
R2

C(u1, u2)dC(u1, u2)

=

∫∫
R2

C(u1, u2)dC(u1, u2) ,

which concludes the proof.

For the Gauss and Student’s t copulas and the copula families introduced in Section 2.2
the expression for the Kendall’s τ is given in Table 1. We notice, that for these copulas
the Kendall’s τ stands in one-to-one correspondence to the copula family parameter. The
estimation method called inversion of Kendall’s τ will later use this fact to estimate the
parameter of the chosen copula family, i.e. ρ or δ respectively, from an estimated τ̂ .

10 2 AN INTRODUCTION TO VINE COPULAS

family Kendall’s τ range of Kendall’s τ

Gauss τ = 2
π
arcsin(ρ) [−1, 1]

Student’s t τ = 2
π
arcsin(ρ) [−1, 1]

Gumbel τ = 1− 1
δ

[0, 1]

Clayton τ = δ
δ+2

[0, 1]

Frank
τ = 1− 4

δ
+ 4D1(δ)

δ [−1, 1]
where D1(δ) =

∫ δ

0
x/δ
ex−1

dx is the Debye function

Joe

τ = 1 +
(

−2+2γ+2ln(2)+Ψ(1
δ
)+Ψ(1

2
2+δ
δ

)+δ

−2+δ

)
[0, 1]where γ ≈ 0.57721 is the Euler constant

and Ψ(x) = d
dx
ln(Γ(x)) the digamma function

Table 1: Kendall’s τ computed for elliptical copulas and Archimedean copulas with one
parameter.

Association measures, which give information about the occurrence of joint extreme be-
havior, are the upper and lower tail dependence coefficient:

Definition 2.2.7 (Upper and lower tail dependence coefficients). Let X1 ∼ F1 and X2 ∼
F2 be two continuous random variables. The upper tail dependence coefficient λupper is
defined as:

λupper := lim
t→1−

P
(
X2 > F−1

2 (t) | X1 > F−1
1 (t)

)
= lim

t→1−

1− 2t+ C(t, t)

1− t
, (2.20)

and the lower tail dependence coefficient λlower is given by:

λlower := lim
t→0+

P
(
X2 < F−1

2 (t) | X1 < F−1
1 (t)

)
= lim

t→0+

C(t, t)

t
. (2.21)

Explicitly calculated, we obtain the following upper and lower tail dependence coefficients
for the different copula families mentioned in Subsection 2.2 and before:

2.2 Copulas 11

family upper tail dependence λupper lower tail dependence λlower

Gauss 0 0

Student’s t 2 tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
2 tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
Gumbel 2− 21/δ 0

Clayton 0 2−1/δ

Frank 0 0

Joe 2− 21/δ 0

Table 2: Upper and lower tail dependence coefficients of selected copula families.

Both the BB1 and BB7 copula model upper and lower tail dependence asymmetrically.
The Tawn copula has a lower tail dependence coefficient equal to 0.

Rotation of Bivariate Copulas

We have already seen that some copulas, e.g. the Gumbel copula, have λupper ̸= 0 and
λlower = 0, i.e. they are only suited to model data that show strong dependence in the
upper tail, some have λupper = 0 and λlower ̸= 0, i.e. they are only suited to model lower
tail dependence in the data and other none at all because of λupper = λlower = 0. When
fitting a bivariate copula to data, which for example show a clear dependence in the lower
tail, the Gumbel copula among all other copula families, which do not model lower tail
dependence, would not be a reasonable choice. The concept of rotating the Gumbel cop-
ula, such that instead of upper tail dependence it can handle lower tail dependence, seems
very natural here. Rotations of pair-copulas are indeed used to extend their modelling
capability.

We rotate the copula density c(·, ·) counterclockwise by:

• 90◦ and define c90(u1, u2) := c(1− u2, u1),

• 180◦ and define c180(u1, u2) := c(1− u1, 1− u2) and

• by 270◦ and define c270(u1, u2) := c(u2, 1− u1).

For the Gumbel, Clayton and Joe copula the range of Kendall’s τ can be extended to
take on values in the whole interval [−1, 1] by rotations of 90◦ and 270◦ respectively.
Figure 1 illustrates the rotation of a Gumbel copula. The plots displayed are so-called
normalized contour plots, which are commonly used to visually assess the characteristic
shape of bivariate copulas and the tail dependence behavior. They show the contours of
the density:

f(z1, z2) = c(Φ(z1),Φ(z2))ϕ(z1)ϕ(z2) ,

of the random vector (Z1, Z2) :=
(
Φ−1(F1(X1)),Φ

−1(F2(X2))
)
.

12 2 AN INTRODUCTION TO VINE COPULAS

Figure 1: Normalized contour plots of rotated Gumbel copula: top left: rotation of 0◦, τ = 0.6,
top right: rotation of 90◦, τ = −0.6, bottom left: rotation of 180◦, τ = 0.6 and bottom right:
rotation of 270◦, τ = −0.6.

Pair Copula Construction (PCC)

We have seen, that with the help of Sklar’s Theorem 2.2.1 a multivariate distribution
can be decomposed into or constructed from its corresponding multivariate copula and
its marginal distributions. Especially from the construction point of view, the set of
multivariate copulas to choose from, i.e. elliptical and Archimedean copulas, is rather
limited so far and constrained in modeling flexibility. However, complex high-dimensional
dependence structures call for more flexible multivariate copulas.

An answer can be found when we look into the decomposition of multivariate distributions:
Aas et al. (2009), which the following subsection is based on, decompose a multivariate
density by using a cascade of bivariate building blocks: pair copulas. Knowing how to
decompose a multivariate distribution, we can reverse this approach in order to construct
multivariate copulas and distribution functions respectively. These are flexible and their
construction is simple. This is the idea of pair copula construction.

Before we start with a three dimensional example, we define the following notation:

2.2 Copulas 13

Definition 2.2.8. Let XD ∈ Rd be a random vector and xD ∈ Rd, let i, j, d ∈ N
and D ⊂ N with i, j /∈ D and |D| = d. Let Fij |D(·, · |XD = xD) be the conditional
distribution of (Xi, Xj) given that XD = xD. The copula distribution associated with
Fij |D(·, · |XD = xD) is denoted by:

Cij;D(·, ·;xD) .

If existing, its corresponding density is denoted by:

cij;D(·, ·;xD) .

Example 2.2.1. Let X = (X1, X2, X3) be a random vector with joint density function f123
and marginal density functions f1, f2 and f3. Using conditioning we can rewrite the joint
density function:

f123(x1, x2, x3) = f1|23(x1 |x2, x3)f2|3(x2 |x3)f3(x3) , (2.22)

with:

f2|3(x2 |x3) =
f23(x2, x3)

f3(x3)
, (2.23)

f1|23(x1 |x2, x3) =
f123(x1, x2, x3)

f23(x2, x3)
=

f13|2(x1, x3 |x2)

f3|2(x3 |x2)
. (2.24)

By Sklar’s Theorem 2.2.1 we know, that:

f23(x2, x3) = c23(F2(x2), F3(x3))f2(x2)f3(x3) , (2.25)

and thus (2.23) becomes:

f2|3(x2 |x3) :=
f23(x2, x3)

f3(x3)
= c23(F2(x2), F3(x3))f2(x2) . (2.26)

In the same manner we obtain (2.24):

f1|23(x1 |x2, x3) =
f13|2(x1, x3 |x2)

f3|2(x3 |x2)

=
c13;2(F (x1 |x2), F (x3 |x2);x2)f1|2(x1 |x2)f3|2(x3 |x2)

f3|2(x3 |x2)

= c13;2(F (x1 |x2), F (x3 |x2);x2)f1|2(x1 |x2)

= c13;2(F (x1 |x2), F (x3 |x2);x2)c12(F1(x1), F2(x2))f1(x1) . (2.27)

Combining (2.26) and (2.27) we can decompose (2.22) into a product of pair copulas and
marginal distributions:

f123(x1, x2, x3) = c13;2(F (x1 |x2), F (x3 |x2);x2)

c12(F1(x1), F2(x2)) c23(F2(x2), F3(x3))

f1(x1) f2(x2) f3(x3) . (2.28)

14 2 AN INTRODUCTION TO VINE COPULAS

Remark 2.2.5. (a) The decomposition with conditioning in (2.22) is not unique. Neither
is therefore (2.28). In general we could reorder (X1, X2, X3) in 3! = 6 ways. However,
in a pair copula there is no distinction made between the first and the second
argument, i.e. cij(ui, uj) = cji(uj, ui). That is why we end up with three distinct
decompositions in the form of (2.28).

(b) We see, that c13;2(·, ·;x2), the pair copula associated with the conditional distribution
of (X1, X3) givenX2 = x2 depends on the value x2 ofX2. We stick to the terminology
in Czado (2019) and speak of a pair copula decomposition, if the copulas associated
with conditional distributions are allowed to depend on the value of the conditioning
variable, i.e. here X2 = x2. If we ignore this dependence, which in our case would
be equivalent to:

∀x2 ∈ R : c13;2(u1, u3;x2) = c13;2(u1, u3), u1 ∈ [0, 1], u3 ∈ [0, 1] ,

we make the simplifying assumption in three dimensions. In general it assumes, that
copulas associated with conditional distributions do not depend on the value(s) of
the conditioning variable(s). More details on whether this assumption is too sim-
plistic can be found in Haff et al. (2010). If we assume the simplifying assumption,
we can reverse the decomposition approach and view the simplified version of (2.28)
as the construction of the three dimensional density f123 from pair copula densities,
conditional distributions and marginal densities. In this case we speak of pair copula
construction.

(c) For the rest of the thesis we will work with the simplifying assumption, even if not
mentioned explicitly, and therefore speak of pair copula construction.

(d) Obviously the construction in Example 2.2.1 can be generalized to higher dimen-
sions. There we encounter conditional marginal densities, which can be expressed
as:

f(x |v) = cxvj ;v−j
(F (x |v−j), F (vj | v−j)) · f(x |v−j) , (2.29)

with v ∈ Rd and v−j the sub-vector of v with the jth component left out. The
second factor of (2.29) can again be factorized with (2.29). This illustrates the
iterative nature of the construction. Finally, with the result of Joe (1996), that:

∀j : F (x |v) =
∂Cx,vj ;v−j

(
F (x |v−j), u

)
∂u

∣∣∣∣∣
u=F (vj |v−j)

=:
∂Cx,vj ;v−j

(
F (x |v−j), F (vj |v−j)

)
∂F (vj |v−j)

, (2.30)

the construction or decomposition respectively is completed. Here h-functions help
to simplify the notation of conditional distributions and copulas.

Definition 2.2.9. For a bivariate copula Cuv the corresponding h-function is defined
for all (u, v) ∈ [0, 1]2 as:

hu | v(u | v) :=
∂

∂v
Cuv(u, v) . (2.31)

2.3 Regular Vines 15

Clearly (2.30) holds for any continuous distribution F and thus also for the bivariate
copula distribution Cuv. With C(u) = u for any u ∈ [0, 1] and the copula C it follows
that:

Cu | v(u | v)
(2.30)
=

∂

∂v
Cuv(u, v)

2.2.9
= hu | v(u | v) . (2.32)

2.3 Regular Vines

In Section 2.2 we saw that a d-dimensional probability distribution function can be con-
structed from or decomposed into bivariate building-blocks, pair copulas. For a specific d-
dimensional probability distribution there exist several pair copula constructions, a subset
of them satisfying a condition, which we will later get to know as the proximity condition.
Bedford and Cooke (2001) and Bedford and Cooke (2002) introduced regular vines (R-
vines) and the R-vine specification to efficiently represent the pair copula constructions
satisfying the proximity condition. The R-vine specification captures the structure of the
pair copula construction: each bivariate copula is associated with an edge in a sequence of
nested trees, the R-vine. The families, rotations and parameters of the bivariate copulas
may be stored in matrices. This compact notation facilitates the estimation and sam-
pling procedures on R-vines. Bedford and Cooke (2001) and Bedford and Cooke (2002)
also show, that each R-vine specification stands for a unique d-dimensional distribution F .

Regular vines rely on concepts of graph theory, to which a brief introduction will be given
next.

A Brief Introduction to Graph Theory

For more details the reader is directed to Diestel (2018). A graph consists of nodes, which
are connected with edges. It is therefore very suitable to capture and illustrate for example
the relationship (represented be an edge) between several random variables (represented
by nodes). After introducing the basic concept we give special types of graphs, namely
paths, cycles and trees, whose name already gives a good intuition about their structure.

Definition 2.3.1 (graph, adjacent, subgraph).

• A graph G = (V,E) is a pair of sets with E ⊂ {{v, w} | v, w ∈ V }. For E ⊂
{(v, w) | v, w,∈ V }, G is called directed.

• The elements of the set V are called vertices or nodes, the elements of E are called
edges.

• Two nodes v, w ∈ V are called adjacent, if they are joined by an edge: {v, w} ∈ E.
For e = {v, w} ∈ E the nodes v and w are called endpoints.

• Let V ′ ⊂ V and E ′ ⊂ E. Then G′ := (V ′, E ′) is a subgraph.

From now on we will speak about undirected graphs, even if not explicitly specified.
Now that we can depict the dependence structure of several random variables in a graph we
want to additionally capture the strength of association of each pair of random variables,

16 2 AN INTRODUCTION TO VINE COPULAS

which are related to each other, i.e. are connected by an edge. In other words we want
to assign each edge a weight, i.e. the value of the association measure of the two random
variables connected. For this reason we introduce the concept of a weighted graph.

Definition 2.3.2 (weighted graph). Let G = (V,E) be a graph. G is called weighted, if
there exists a function f : E → R assigning a weight f(e) to each edge e ∈ E. Then G
can be denoted as G = (V,E, f).

Random variables, which are endpoints of many edges in the graph, are in relation with
many other random variables: they are influential. For being able to describe this from
the graph, we introduce the degree of a node.

Definition 2.3.3 (degree of a node). Let G = (V,E) be a graph. The degree of a node
v ∈ V is defined as:

deg(v) :=
∣∣{w ∈ V | {v, w} ∈ E}

∣∣ .
It is the number of neighbors, which are connected to v via an edge.

Graphs can itself take on different structures, by which they can be characterized.

Definition 2.3.4 (path, cycle, connected, acyclic). Let G = (V,E) and P = (W,F) be
two graphs.

• P is a path, if it is a non-empty and:

W = {v0, v1, . . . , vk} , F = {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}} ,

for some k ∈ N and with vi ̸= vj for all i ̸= j, i, j ∈ [k]. The number of edges of the
path is its length.

• G is called connected, if there exists a path between any two nodes v, w ∈ V .

• If v0 = vk, then P is called a cycle. G is called acyclic, if it does not contain any
cycles as subgraphs.

Graphs, which are so-called trees, will become central for regular vines. Their name
already suggests their structure.

Definition 2.3.5 (tree, leaf). Let T = (V,E) be a graph. Then T is a tree, if it is acyclic
and connected. A node v ∈ V is called a leaf, if deg(v) = 1.

The following properties closer characterize trees.

Theorem 2.3.1. The following assertions are equivalent for a graph T = (V,E):

(i) T is a tree.

(ii) Any two vertices of T are linked by a unique path in T .

(iii) T is minimally connected, i.e. T is connected but T ′ := (V,E \{e}) is not connected
for any edge e ∈ E.

2.3 Regular Vines 17

(iv) T is maximally acyclic, i.e. T contains no cycle but T ′ := (V,E ∪ {v, w}) does, for
any two non-adjacent vertices v, w ∈ V .

For a graph, which is not a tree, it can be possible to find a subgraph spanning the whole
graph while fulfilling the characteristics of a tree. This is then called a spanning tree.

Definition 2.3.6 (spanning tree). A subgraph T = (VT , ET) of G = (V,E) is called a
spanning tree of G, if T is a tree and V = VT .

Regular Vines

Definition 2.3.7 (Vine, regular vine, regular vine tree sequence). A set of trees V =
(T1, ..., Td−1) is a vine on d elements if:

(i) T1 is a tree with edge set E1 and node set V1 = {1, ..., d}.

(ii) For i ∈ {2, ..., (d − 1)} it holds that Ti is a tree with edge set Ei and node set
Vi = Ei−1.

V is an regular vine (R-vine) or regular vine tree sequence (R-vine tree sequence) if addi-
tionally the so called proximity condition holds:

(iii) For i ∈ {2, ..., (d − 1)} and {a, b} ∈ Ei with a = {a1, a2} and b = {b1, b2} we have
that |a ∩ b| = 1.

Remark 2.3.1. The proximity condition makes sure that nodes a and b are only then joined
by an edge in tree Ti if they share a common node in tree Ti−1, where a, b ∈ Ei−1.

Among the R-vines we have two sub-classes: the C-vines and the D-vine. They distinguish
themselves through a special structure each tree in V takes on.

Definition 2.3.8 (C-vine, D-vine). An R-vine tree sequence V on d elements is called:

(i) D-vine, if for each node v of each tree Ti ∈ V , i ∈ [d− 1] it holds that deg(v) ≤ 2,

(ii) C-vine, if in each tree Ti ∈ V , i ∈ [d−1] there is one unique node v with deg(v) = d−i
which is called root node.

Example 2.3.1 (C-vine). Below we see the tree sequence of a C-vine on 5 elements without
node and edge labels. The root node in each star-shaped tree is coloured. The trees (T3)
and (T4) are stars and paths at the same time.

(T1) (T2)

(T3) (T4)

Figure 2: A C-vine on 5 elements.

18 2 AN INTRODUCTION TO VINE COPULAS

In order to illustrate the concept of an R-vine tree sequence and its nested structure we
give another example.

(T1) 1 2 3 4
{1, 2} {2, 3} {3, 4}

(T2) {1, 2} {2, 3} {3, 4}

{
{1, 2}, {2, 3}

} {
{2, 3}, {3, 4}

}

(T3)
{
{1, 2}, {2, 3}

} {
{2, 3}, {3, 4}

}{{
{1, 2}, {2, 3}

}
,
{
{2, 3}, {3, 4}

}}

Figure 3: A D-vine on 4 elements.

Example 2.3.2 (R-vine tree sequence on 4 elements). In Figure 3 an R-vine tree sequence
V on d = 4 elements is displayed. We notice that V is actually a D-vine. This is
recognizable by the path structure of the graphs, which is the geometric consequence of
deg(v) ≤ 2 ∀v ∈ Vi with (Vi, Ei) = Ti ∈ V and connectedness. It is obvious from the trees
that conditions (i) and (ii) of Definition 2.3.7 are satisfied: (i) the node set V1 = {1, 2, 3, 4}
and (ii) V2 = E1 as well as V3 = E2. That the proximity condition (iii) holds here is only
slightly harder to check:

• In tree T2 we have the edge set:

E2 =
{{
{1, 2}, {2, 3}

}
,
{
{2, 3}, {3, 4}

}}
.

According the proximity the proximity condition 2.3.7 we check for edge
{
{1, 2}, {2, 3}

}
and set:

{a, b} :=
{
{1, 2}, {2, 3}

}
, a := {1, 2} , b := {2, 3} .

Then:

|a ∩ b| = |{1, 2} ∩ {2, 3}| = |{2}| = 1 .

Similarly, for the second edge we can set:

{a, b} :=
{
{2, 3}, {3, 4}

}
, a := {2, 3} , b := {3, 4} .

and obtain:

|a ∩ b| = |{2, 3} ∩ {3, 4}| = |{3}| = 1 .

• In tree T3 the edge set E3 contains only of one edge:

E3 =

{{{
{1, 2}, {2, 3}

}
,
{
{2, 3}, {3, 4}

}}}
.

2.3 Regular Vines 19

If we set:

{a, b} :=
{{
{1, 2}, {2, 3}

}
,
{
{2, 3}, {3, 4}

}}
a :=

{
{1, 2}, {2, 3}

}
, b :=

{
{2, 3}, {3, 4}

}
,

we obtain:

|a ∩ b| = |
{
{1, 2}, {2, 3}

}
∩
{
{2, 3}, {3, 4}

}
| = |

{
{2, 3}

}
| = 1 .

Thus in total the proximity condition holds.

This notation for edges and nodes is hard to read and use. By Bedford and Cooke
(2002) and results of Kurowicka and Cooke (2003) the edges of each tree can be uniquely
identified by two conditioned nodes and a set of conditioning nodes. With the following
definition we introduce this concept of representation.

Definition 2.3.9 (Complete union, conditioning set, conditioned set). Let V be an R-vine
tree sequence. The complete union Ue of the edge e ∈ Ei is defined as:

Ue := {j ∈ V1 | ∃e1 ∈ E1, ..., ei−1 ∈ Ei−1 s.th. j ∈ e1 ∈ ... ∈ ei−1 ∈ e}. (2.33)

The set:

De := Ua ∩ Ub (2.34)

is called conditioning set De of an edge e = {a, b} and the conditioned sets Ce,a, Ce,b and
Ce are given by:

Ce,a := Ua \De , Ce,b := Ub \De and Ce1 := Ce,a ∪ Ce,b . (2.35)

Example 2.3.2 (continued). If we use the notation introduced above we obtain the follow-
ing conditioning sets:

T1 : D{1,2} = ∅ , D{2,3} = ∅ , D{3,4} = ∅ ,
T2 : D{{1,2},{2,3}} = {2} , D{{2,3},{3,4}} = {3} ,
T3 : D{{{1,2},{2,3}},{{2,3},{3,4}}} = {2, 3} .

and the following conditioned sets:

T1 : C{1,2} = {1, 2} , C{2,3} = {2, 3} , C{3,4} = {3, 4} ,
T2 : C{{1,2},{2,3}} = {1, 3} , C{{2,3},{3,4}} = {2, 4} ,
T3 : C{{{1,2},{2,3}},{{2,3},{3,4}}} = {1, 4} .

1The set Ce will be called conditioned set as well. This might seem confusing as it is actually the
union of the two conditioned sets Ce,a and Ce,b. However, in the pair copula construction we deal with
pair copulas of two random variables Xi and Xj with {i, j} = Ce. So most of the time we speak about
Ce, which will therefore be called conditioned set for simplicity.

20 2 AN INTRODUCTION TO VINE COPULAS

Figure 4 displays a tree sequence with the new notation which is more readable. It still
describes the R-vine tree sequence uniquely up to permutation and order of the elements
of the set Ce.2

(T1) 1 2 3 4
1, 3 2, 3 3, 4

(T2) 1, 2 2, 3 3, 4
1, 3; 2 2, 4; 3

(T3) 1, 3; 2 2, 4; 3
1, 4; 2, 3

Figure 4: A D-vine on 4 elements with the notation of Definition 2.3.9.

Definition 2.3.10 (Constraint set). The constraint set CV for the R-vine tree sequence
V is defined as:

CV :=
{
(Ce,a, Ce,b;De) | e = {a, b}, e ∈ Ei for i ∈ [d− 1]

}
. (2.36)

Here the edge e = (Ce,a, Ce,b;De) of the R-vine tree sequence will often be abbreviated by
e = (ea, eb;De).

Example 2.3.2 (continued). Here the constraint set is:{
(1, 2), (2, 3), (3, 4), (1, 3; 2), (2, 4; 3), (1, 4; 2, 3)

}
.

Note that the curly braces of the conditioned and conditioning sets are left out. This
is not completely precise nor consistent to Definition 2.3.10, but facilitates notation. In
Figure 4 the round braces are left out as well.

The following results, which are stated and proved in Kurowicka and Cooke (2003) on
pages 228 to 231, show that any edge of an R-vine tree sequence can be identified by its
conditioning or conditioned sets. Let V be an R-vine tree sequence on d elements and
and a, b ∈ Ei ∈ Ti ∈ V with i ∈ [d− 1]:

• If Ua = Ub, then a = b.

• If the conditioned sets of edges a, b in V are equal, then a = b.

Definition 2.3.11 (R-vine specification). The triple (F ,V , B) is called R-vine specifica-
tion if:

(i) F = (F1, ..., Fd) is a vector of continuous and invertible distribution functions,

(ii) V is an R-vine tree sequence on d elements and

(iii) B :=
{
Ce | e ∈ Ei for i ∈ [d− 1]

}
is the set of bivariate copulas Ce with Ei the

edge set of tree Ti of the R-vine tree sequence V .
2As a convention we order the elements of Ce in ascending as done in Figure 4.

2.3 Regular Vines 21

By this definition each edge e ∈ Ei of a tree Ti in V corresponds to a bivariate copula Ce.

Definition 2.3.12 (Realizing an R-vine specification). A joint distribution F of the
random vector X = (X1, ..., Xd) is said to realize an R-vine specification (F ,V , B) or
exhibit an R-vine dependence, if Ce is the bivariate copula of XCe,a and XCe,b given XDe

for each edge e = {a, b} ∈ Ei and the marginal distribution of Xi is Fi for i ∈ [d].

Remark 2.3.2 (Simplifying assumption). The assumption that for each edge e of V the
bivariate copula Ce does not depend on the value xDe the conditioning random vector
XDe takes on is called simplifying assumption.

Theorem 2.3.2. Let (F ,V , B) be an R-vine specification on d elements where all pair-
copulas Ce ∈ B satisfy the simplifying assumption and have densities ce. There is a unique
distribution F that realizes this R-vine specification with density:

f1,...d(x1, ..., xd) =
d∏

i=1

fi(xi) · (2.37)

d−1∏
i=1

∏
e∈Ei

cCe,a,Ce,b;De

(
FCe,a|De(xCe,a |xDe), FCe,b|De(xCe,b|xDe)

)
, (2.38)

where fi denote the densities of Fi.

Proof. The proof of theorem can be found in Bedford and Cooke (2001) and Bedford and
Cooke (2002).

Representing Regular Vines: Regular Vine Matrices

In order to efficiently store an R-vine specification (F ,V , B), we introduce R-vine matrices
for the R-vine structure. R-vine family matrices and R-vine parameter matrices specify
the pair copulas of the pair copula construction. R-vine matrices were first introduced by
Dißmann (2010), based on Kurowicka (2009). We start with some notation:

• Let M = (mi,j)i,j∈{1,2,...,d} ∈ {1, 2, ..., d}d×d be a lower triangular matrix.

• Let the set of non-zero entries of the ith column in M be:

LM(i) := {mi,i,mi+1,i, ...,md,i} . (2.39)

• Additionally, we define:

BM(i) :=
{
(mi,i, D) | D = {mk,i, ...md,i}, k ∈ {i+ 2, ..., d}

}
(2.40)

B̃M(i) :=
{
(mk,i, D) | D = {mi,i} ∪ {mk+1,i, ...md,i}, k ∈ {i+ 2, ..., d}

}
. (2.41)

Now we can give the following definition:

Definition 2.3.13 (R-vine matrix). Let M ∈ {1, 2, ..., d}d×d be a lower triangular matrix.
M is called an R-vine matrix, if it satisfies the three conditions:

22 2 AN INTRODUCTION TO VINE COPULAS

(i) LM(i) ⊂ LM(j) for all 1 ≤ j < i ≤ d,

(ii) mi,i /∈ LM(i+ 1) for all i ∈ [d− 1],

(iii) for all i ∈ [d− 1] it holds that for all k ∈ {i+ 1, ..., d− 1}:(
mk,i, {mk+1,i, ...,md,i}

)
∈ BM(i+ 1) ∪ ... ∪BM(d− 1) ∪ B̃M(i+ 1) ∪ ... ∪ B̃M(d− 1) .

We want to interpret the conditions given in Definition 2.3.13.

Remark 2.3.3. Condition (i) makes sure, that every column i contains the entries of all
columns right of column i. Condition (ii) requires, that all elements of [d] occur exactly
once as a diagonal entry ofM . After being a diagonal entry in column i, mi,i will not occur
in a column right of column i. It can be shown, that (i) and (ii) follow from condition (iii).
However, they are kept for better understanding. Condition (iii) is hard to check for a
given R-vine matrix, but essentially, it assures that the R-vine tree sequence constructed
from the R-vine matrix satisfies the proximity condition.

Dißmann (2010) shows, that there are 2d−1 R-vine matrices specifying the same R-vine
tree sequence on d elements. An algorithm to compute an R-vine matrix from an R-vine
tree sequence and to construct an R-vine tree sequence from an R-vine matrix can be
found in Stöber and Czado (2017)3.

Remark 2.3.4. Generally we can read off the edges of the respective trees in the R-vine
tree sequence from the R-vine matrix M as follows:

1. The nodes of T1 are V1 = [d], which is clear without looking at the R-vine matrix.

2. The edges of T1 are given as the set:

E1 =
{
{mi,i,md,i} | i ∈ [d− 1]

}
. (2.42)

3. For all trees Tj with j ∈ {2, ..., d− 1} the edges are given by:

Ej =
{
{mi,i,m(d−j+1),i | m(d−j+2),i, ...,md,i} | i ∈ [d− j]

}
. (2.43)

We want to illustrate Definition 2.3.13 and this construction procedure by an example.

Example 2.3.3. We consider the R-vine matrix M :

M =

1
5 4
4 5 2
3 2 5 3
2 3 3 5 5

 . (2.44)

3Note, that Stöber and Czado (2017) use upper triangular matrices instead of lower triangular matrices
as R-vine matrices. Both are common choices in the literature. To read and construct upper triangular
R-vine matrices, one can just ”reflect” the methods shown here. In the R-package rvinecopulib by
Nagler and Vatter (2021) anti-diagonal upper triangular matrices are used as R-vine matrices to ease the
use of indices in the algorithms.

2.3 Regular Vines 23

Checking Definition 2.3.13, we immediately note, that (i) each column contains all ele-
ments of columns right of it. Also (ii) holds, namely that we have each element of [5]
once as a diagonal element. After that it does not occur again in a column to the right.
Condition (iii) can also be checked. Reading off of M , the edges of T1 are:

E1 =
{
(1, 2) (3, 4) (2, 3) (3, 5)

}
. (2.45)

This makes sense, if we have a look at 2. of Remark 2.3.4 and M :

M =

1

5 4

4 5 2

3 2 5 3

2 3 3 5 5

.

Then the edges of T2 are:

E2 =
{
(1, 3; 2) (2, 4; 3) (2, 5; 3)

}
. (2.46)

Considering 3. of remark 2.3.4 and M , this is also correct:

M =

1

5 4

4 5 2

3 2 5 3

2 3 3 5 5

.

By the same reasoning we get:

E3 =
{
(1, 4; 2, 3) (4, 5; 2, 3)

}
, (2.47)

E4 =
{
(1, 5; 2, 3, 4)

}
, (2.48)

which can be seen from M :

M =

1

5 4

4 5 2

3 2 5 3

2 3 3 5 5

and M =

1

5 4

4 5 2

3 2 5 3

2 3 3 5 5

.

24 2 AN INTRODUCTION TO VINE COPULAS

For each column we marked the components of M belonging to the conditioning set with
rectangles and the two conditioned nodes with circles. The R-vine tree sequence given by
M consequently looks like Figure 5.

(T1) 1 2 3

4

5

1, 2 2, 3
3, 4

3, 5

(T2) 1, 2 2, 3

3, 4

3, 5

1, 3; 2
2, 4; 3

2, 5; 3

(T3) 1, 3; 2 2, 4; 3 2, 5; 3
1, 4; 2, 3 4, 5; 2, 3

(T4) 1, 4; 2, 3 4, 5; 2, 3
1, 5; 2, 3, 4

Figure 5: R-vine tree sequence corresponding to the R-vine matrix M .

Recall, that there are two sub-classes of R-vines, namely the C- and D-vines. Their special
graphical structure is reflected in the structure of their R-vine matrix.

Remark 2.3.5. After reordering of the nodes, each C-vine on d elements can be represented
by an R-vine matrix of the form:

MC =

1
2 2
...

...
. . .

d− 1 d− 1 . . . d− 1
d d . . . d d

 . (2.49)

The root node of T1 is d, the root node of T2 is
(
(d− 1), d

)
and for j ∈ {3, ..., d− 1} the

root node of Tj is
(
(d− j + 1), (d− j + 2) ; (d− j + 3), ..., d

)
.

Similarly, each D-vine on d elements can be represented by an R-vine matrix of the
following form, if we reorder the nodes:

MD =

d
1 d− 1
2 1 d− 2
3 2 1 d− 3
...

...
...

.

d− 2 d− 3 d− 4 . . . 1 2
d− 1 d− 2 d− 3 d− 4 . . . 1 1

. (2.50)

2.3 Regular Vines 25

After introducing R-vine matrices, which capture V , it remains to define R-vine family
matrices and R-vine parameter matrices to fully describe the pair copulas in the pair
copula construction. Together with the marginal distributions in F we then have a full
representation of the R-vine specification (F ,V , B).
So let (F ,V , B) be an R-vine specification and M be an R-vine matrix for V . For each
pair copula Ce ∈ B its family can be stored as an entry of a lower triangular family
matrix. The location of this entry depends on the location of the edge e in V . In the same
manner each parameter determining Ce can be stored as an entry of a lower triangular
parameter matrix. If Ce belongs to a copula family with k > 1 parameters θ1, . . . , θk,
then for each j ∈ [k] the parameter θj will be stored in a separate parameter matrix Pj

at a location again corresponding to the location of e in V . In more detail:

Definition 2.3.14 (R-vine family matrix). Let (F ,V , B) be an R-vine specification with
M an R-vine matrix corresponding to V . Let F = (fij)i,j∈[d] ∈ Rd×d be a matrix with:

(i) fij ∈ {0} ∪ {I,N,C,G, F, J, t, BB1, BB7, . . . } for all i, j ∈ [d],

(ii) fij = 0 for all i ≤ j ∈ [d],

(iii) fij gives the family of the pair copula Ce corresponding to the edge e given in M :

e = {mj,j,mi,j | m(i+1),j, . . . ,md,j} .

Then F is an R-vine family matrix for (F ,V , B).

Similarly to Definition 2.3.14 we define R-vine parameter matrices.

Definition 2.3.15 (R-vine parameter matrices). Let (F ,V , B) be an R-vine specification.
Let M be an R-vine matrix corresponding to V and F be the R-vine family matrix
encoding the families of the pair copulas Ce ∈ B. Let:

l := max{# parameters of Ce | Ce ∈ B}

be the maximal number of parameters among all families of pair copulas specified in F .
Let P1 = (p

(1)
ij)i,j∈[d], . . . , Pl = (p

(l)
ij)i,j∈[d] ∈ Rd×d be matrices with:

(i) p
(k)
ij ∈ R for all i, j ∈ [d], k ∈ [l],

(ii) p
(k)
ij = 0 for all i ≤ j ∈ [d], k ∈ [l],

(iii) p
(k)
ij gives the kth parameter of the pair copula Ce corresponding to the edge e given
in M :

e = {mj,j,mi,j | m(i+1),j, . . . ,md,j} .

If this parameter does not exist, i.e. the family fij has less than k parameters,

p
(k)
ij = 0.

Then P1, . . . , Pl are R-vine parameter matrices for (F ,V , B).

26 2 AN INTRODUCTION TO VINE COPULAS

Example 2.3.3 (continued). To fully represent the pair copulas, that are given by the
R-vine matrix M , we have a look at the corresponding R-vine family matrix and R-vine
parameter matrices of M :

M =

1

5 4

4 5 2

3 2 5 3

2 3 3 5 5

, F =

0

I

N I

J J I

G C BB1 F 0

,

P1 =

0

0

0.45 0

2.24 1.72 0

1.58 3.69 1.47−5.71 0

, P2 =

0

0

0 0

0 0 0

0 0 3.21 0 0

.

We notice, that the pair copula (2, 4; 3) is of the copula type J , which stands for the Joe
copula. This copula has one parameter with value 1.72. The pair copula of the edge (2, 3)
is of the family type BB1 and has two parameters 1.47 and 3.21. The second parameter
is encoded in a second parameter matrix P2 at the corresponding component.

Estimating Regular Vines

We estimate the joint distributions F1...d of the random vector X = (X1, . . . , Xd) ∈ Rd

from data by estimating an R-vine specification (F ,V , B)4 from them. So let (xi1, . . . , xid)i∈[n]
be n ∈ N i.i.d. realizations of X. Estimating (F ,V , B) we perform the following steps:

(1) estimate the marginal distributions Fj(·) of Xj with j ∈ [d] stored in F ,

(2) select the R-vine tree sequence V and choose the pair copula families of the pairs of
random variables corresponding to V and (if applicable) estimate their parameter(s).
They are stored in B.

For Step (1) we can decide to non-parametrically estimate the univariate marginal distri-
bution functions. In case we have prior information, e.g. on the parametric distribution
family, this can also be done parametrically, i.e. estimating the respective parameter.

We introduce two non-parametric estimators of univariate distribution functions:

4We estimate one out of several R-vine specifications, which estimate F1...d.

2.3 Regular Vines 27

• empirical distribution function: For realizations xij with i ∈ [n] of Xj it is
defined as:

F̂ emp
j (x) :=

1

n

n∑
i=1

1{x |xij≤x}(x) , (2.51)

where 1(·) denotes the indicator function.

• kernel density estimator: Let again xij with i ∈ [n] be n realizations of Xj. A
non-negative, symmetric function K : R → R with

∫∞
−∞K(x)dx = 1 is called a

kernel. It could for example be:

K(x) :=

{
1
2

for− 1 ≤ x ≤ 1

0 else ,
,

or any kind of probability density function. Rosenblatt (1956) first investigated in
the kernel density estimator defined as:

F̂ kde
j (x) :=

1

n

n∑
i=1

K(x− xij) . (2.52)

Then we select the R-vine tree sequence V together with the pair copulas in B in Step (2).
The tree sequence V determines of which two random variables the bivariate (conditional)
dependence structure is modeled through a pair copula in B. ”It is more important to
model the dependence structure between random variables that have high dependencies
correctly, because most copula families can model independence and the copulae distri-
bution functions for parameters close to independence are very similar.” This is one of
the reasons Dissmann et al. (2013) give for constructing their Dißmann’s algorithm in
the following way: they use a maximum spanning tree algorithm to select the R-vine tree
sequence V while maximizing the sum of the edge weights - the absolute Kendall’s τ value
of the two adjacent random variables5. The Dißmann’s algorithm is given in Algorithm
1.

We want to outline lines 3 and 7 of Dißmann’s Algorithm shown in Algorithm 1 more
closely. This is, how in Step (2) the pair copula family is chosen and the corresponding
parameters are estimated.

• Selecting pair-copula families and estimating parameters: More details to
this can be found in Dissmann et al. (2013) and Czado (2019), on which the following
is based on. For fitting in R we use the package rvinecopulib by Nagler and Vatter
(2021).

– We first consider the pair copulas corresponding to edges in tree T1. Let Be
be the set of possible pair copula families to choose from for an edge e =

5For tree levels 2 to d− 1 these are additionally conditioned on a set of random variables.

28 2 AN INTRODUCTION TO VINE COPULAS

Algorithm 1: Dißmann’s algorithm of Dissmann et al. (2013)

Input: n ∈ N i.i.d. realizations of the random vector (X1, . . . , Xd), i.e.
(xi1, . . . , xid)i∈[n]

Output: V and B of R-vine copula specification
1 Calculate the empirical Kendall’s τ value τ̂j, k for all possible variable pairs (j, k),

1 ≤ j < k ≤ d.
2 Select the spanning tree that maximizes the sum of absolute empirical Kendalls’s

τ values, i.e.:

T1 = argmax
T=(V,E) in spanning tree

∑
e=(j,k)∈E

|τ̂j, k| .

3 For each edge (j, k) in the selected spanning tree, select a copula ad estimate the
corresponding parameter(s). Then generate pseudo-observations
ûi,j | k := F̂j | k(xij |xik) and ûi,k | j := F̂k | j(xik |xij), i ∈ [n] using Equation (2.30)

with the fitted copula Ĉjk.
4 for l ∈ {2, . . . , d− 1} do
5 For all conditional variable pairs (j, k ; D) that can be part of tree Tl, i.e. all

edges fulfilling the proximity condition (iii) of Definition 2.3.7: calculate the
empirical Kendall’s τ value τ̂j, k ;D by applying the estimator of Definition
2.2.6 to the pseudo-observations

(
ûi,j | k∪D, ûi,k | j∪D

)
. Denote these edges in

the set E∗
l .

6 Among these edges, select the spanning tree that maximizes the sum of
absolute empirical Kendall’s τ values, i.e.:

Tl = argmax
T=(V,E) in spanning tree with E⊂E∗

l

∑
e=(j, k ;D)∈E

|τ̂j, k ;D| .

7 For each edge (j, k ; D) in the selected spanning tree Tl, select a conditional
copula and estimate the corresponding parameter(s). Then generate
pseudo-observations ûi,j | k∪D := F̂j | k∪D(xij |xik, xiD) and

ûi,k | j∪D := F̂k | j∪D(xik |xij, xiD), i ∈ [n] using Equation (2.30) with the fitted

copula Ĉjk;D.

8 end

(j, k) ∈ E1. The set Be can for example contain all Archimedean copulas given
in Bivariate Copula Families on page 6, all bivariate copulas with at most
two parameters or any other choice of parameteric pair copula families. In the
function vinecop of the R-package rvinecopulib by Nagler and Vatter (2021),
which we use for R-vine estimation, Be is specified in the function parameter
family set. It allows for different family collections, such as "onepar" for
pair copula families with only one parameter, "elliptical" for elliptical pair
copula families or "archimedean" for Archimedean pair copula families.

– For each element CB ∈ Be we fit CB with density cB to the copula data

2.3 Regular Vines 29

(ui,j, ui,k)i∈[n] with ui,j := F̂j(xi,j) and ui,j := F̂j(xi,j), i ∈ [n]. Here F̂ (·) is for
example one of the estimators of univeriate distribution functions introduced
on page 27.

– Fitting each CB ∈ Be is equivalent to estimating the parameter(s) of each CB.
This can be done with maximum likelihood estimation (mle). The maximum
likelihood estimator θ̂mle maximizes the likelihood:

l(θB;u) =
n∏

i=1

cB(ui,j, ui,k;θ
B) .

In our analyses we always use maximum likelihood estimation for estimation
parametric pair copulas.

For the pair copula families with a one-to-one relation between the copula
parameter θ and Kendall’s τB6:

τ = kB(θB) ,

estimation through inversion of Kendall’s τ can also be used:

θ̂Bτ := kB−1

(τ̂) . (2.53)

In (2.53) we use the empirical estimator τ̂ of τ defined in Definition 2.2.6.

In the R-function vinecop of the package rvinecopulib the parameter estima-
tion method is specified in the parameter par method as "itau" representing
inversion of Kendall’s τ or "mle" fpr maximum likelihood estimation. We use
maximum likelihood estimation as default in our analyses.

– Then for each pair copula CB ∈ Be the corresponding AIC value, Akaike (1998),
is calculated:

AIC(CB, θ̂
B
;ue) := −2

n∑
i=1

ln
(
cB(ui,j, ui,k; θ̂

B
)
)
+ 2 · kB , (2.54)

where kB is the dimension of the parameter vector θ̂
B
and ue := (ui,j, ui,k)i∈[n].

– The pair copula Ce with parameter θe is selected for edge e, which mini-

mizes AIC(CB, θ̂
B
;ue). In vinecop the selection criterion can be specified

in selcrit with "aic" as default.

– For an edge e = (j, k ; D) ∈ Ei of tree Ti with i > 1 we proceed similarly.
Pseudo-observations are computed:

ûi,j | k∪D := F̂j | k∪D(xij |xik, xiD) ,

ûi,k | j∪D := F̂k | j∪D(xik |xij, xiD) ,

for i ∈ [n] using Equation (2.30) with the fitted copula Ĉjk;D. Applying the
estimator of Definition 2.2.6 to these pseudo-observations, we obtain τ̂j, k ;D.

6These are all pair copulas with at most one parameter: independence, Gauss, Student’s t, Clayton,
Gumbel, Frank and Joe.

30 2 AN INTRODUCTION TO VINE COPULAS

Again we can estimate the parameter(s) θB of pair copula CB ∈ Be by inversion
of Kendall’s τ , if applicable, or by maximum likelihood estimation. We again
select the pair copula Ce, which minimizes the AIC.

Instead of estimating the pair copulas completely parametrically in Step (2) as outlined
above, we can also decide to estimate some of them non-parametrically, if this yields
a better fit in terms of AIC of Equation 2.54. There the number of parameters kB in
Equation 2.54 is substituted with a non-parametric analogue, the effective number of
parameters, Nagler (2014). An introduction to the effective number of parameters can
be found in Friedman et al. (2001). The R-package kdecopula by Nagler (2016), which
implements kernel density estimation for copulas, such as the transformation estimator,
uses the definition of the effective number of parameters from Section 5.3.2. of Loader
(2006).
To allow parametric as well as non-parametric pair copula estimation we have to aug-
ment Be with a non-parametric pair copula. In the R-function vinecop of the package
rvinecopulib, which we use for R-vine estimation, this is done by adding "tll" (Trans-
formation Kernel) to family set and setting the non-parametric estimation method in
nonpar method to either "constant", "linear" or "quadratic". In the following we il-
lustrate, how a non-parametric pair copula can be estimated with the transformation ker-
nel estimator corresponding to the choice nonpar method = "constant" in the vinecop-
function, which we use in our analyses.

• Estimation of non-parametric bivariate copula - Transformation Kernels:
For details beyond this short introduction the reader is referred to Charpentier et al.
(2007), Nagler (2014) and Nagler (2016), which the following is based on.

Let K : R → R be a non-negative, symmetric function with
∫∞
−∞ K(x)dx = 1. We

call K a kernel and for now define it to be:

K(x) :=

{
1
2

for− 1 ≤ x ≤ 1

0 else ,

In general K could be any probability density function. For b > 0 we define the
notation:

Kb(x) :=
K(x

b
)

b
.

Given n samples {(xi1, xi2) | i ∈ [n]} of the bivariate random vector (X1, X2) the
bivariate kernel density estimator with bandwidth bn > 0 is given by:

f̂n(y1, y2) =
1

n

n∑
i=1

Kbn(y1 − xi1)Kbn(y2 − xi2) . (2.55)

In order to use this bivariate kernel density estimator to obtain a non-parametric
pair-copula estimate, we need to overcome the boundedness of the support of the

2.3 Regular Vines 31

copula, which is restricted to the unit cube. Therefore the copula data are trans-
formed, such that their distribution is supported on R2. Then kernel estimation
methods can be applied before the estimate is back-transformed to [0, 1]2.
Let (X1, X2) be a random vector with marginal distributions F1 and F2 and (U1, U2) :=
(F1(X1), F2(X2)) and G be a continuous distribution function on R with differen-
tiable strictly positive density g. A common choice is G = Φ, the normal dis-
tribution, which we also use in our analyses. We obtain a new random vector
(Z1, Z2) := (Φ−1(U1),Φ

−1(U2)), which has the density:

f(z1, z2) = ϕ(z1)ϕ(z2) c(Φ(z1),Φ(z2)) . (2.56)

Given a sample {(ui1, ui2) | i ∈ [n]} of (U1, U2), which can be transformed to a
sample {(zi1, zi2) | (zi1, zi2) = (Φ−1(ui1),Φ

−1(ui2)), i ∈ [n]}, this joint density can
be estimated with the kernel estimator:

f̂n(y1, y2) =
1

n

n∑
i=1

Kbn(y1 − zi1)Kbn(y2 − zi2) .

If we then rearrange (2.56) and use the estimator f̂n for f , then for any (v1, v2) ∈
[0, 1]2 we obtain the transformation kernel estimator of the copula density c(v1, v2)
with bandwidth bn:

ĉ(T)
n (v1, v2) =

∑n
i=1KbnΦ

−1(v1)− Φ−1(ui1))Kbn(Φ
−1(v2)− Φ−1(ui2))

nϕ(Φ−1(v1))ϕ(Φ−1(v2))
(2.57)

We do not have use the same bandwidth bn for both components of the random
vector (U1, U2). Instead we can specify two different bandwidths: b1n for U1 and b2n
for U2. Then we can store them in a diagonal matrix:

Bn :=

(
b1n ∗
∗ b2n

)
,

with det(Bn) = b1nb2n. With this and with setting v := (v1, v2) and ui := (ui1, ui2)
we can rewrite the transformation kernel estimator:

ĉ(T
′)

n (v) =

∑n
i=1 KBn

(
Φ−1(v)− Φ−1(ui)

)
nϕ(Φ−1(v1))ϕ(Φ−1(v2))

,

where Φ−1 is applied componentwise and short notation:

KBn

(
Φ−1(v)− Φ−1(ui)

)
=

K
((

B−1
n [Φ−1(v)− Φ−1(ui)]

)
1

)((
B−1

n [Φ−1(v)− Φ−1(ui)]
)
2

)
det(Bn)

.

32 2 AN INTRODUCTION TO VINE COPULAS

We even do not have to restrict ourselves to diagonal matrices but introduce a third
bandwidth parameter b3n below the diagonal:

Bn =

(
b1n 0
b3n b2n

)
such that BnB

T
n is a symmetric and positive definite matrix. Nagler (2014) call the

resulting transformation estimator the fully parametrized transformation estimator
with bandwidth matrix Bn.

How is this bandwidth matrix selected in practice? In the vinecop-function of their
R-package rvinecopulib Nagler and Vatter (2021) select the bandwidth matrix Bn

with a rule of thumb suggested in Nagler (2016) and introduced in Nagler (2014):

Bn = n−1/6Σ̂
1/2
Z ,

with Σ̂Z the empirical covariance matrix of Z :=
(
Φ−1(ui1),Φ

−1(ui2)
)
i∈[n].

Besides the transformation kernel estimator a local likelihood transformation estimator
could be used to estimate the pair copula. Nagler (2014) sketches the underlying idea
in the following way: ”The idea behind the local likelihood method [. . .] is to assume
that the log-density log f(x, y) [. . .] can locally be approximated by a polynomial [. . .]
of some order p.” Its definition can be found in Definition 3.6. of Nagler (2014).
In the vinecop-function of rvinecopulib by Nagler and Vatter (2021) the local likelihood
transformation estimator of order 1 (linear) corresponds to the option nonpar method =

"linear", the local likelihood transformation estimator of order 2 (quadratic) to nonpar method

= "quadratic".

Simulating from Regular Vines

Simulation algorithms can be found in Czado (2019).

Regular Vines with Discrete Components

So far we have only dealt with copulas and R-vines for continuous random vectors X =
(X1, . . . , Xd) ∈ Rd. Suppose now, that without loss of generality the last component of
X takes on only discrete values: Xd ∈ {1, . . . , K} with K ∈ N. How would a pair copula
construction in this mixed7 case look like? We illustrate this with two examples:

Example 2.3.4. (2-dimensional mixed cases) Let X1 ∈ R and X2 ∈ {1, . . . , K} be two
random variables, X1 being continuous and X2 being discrete. For x1 ∈ R and x2 ∈
{1, . . . , K} we compute the joint density f12(x1, x2). For clarity we color the discrete
random variable X2 and its corresponding observations with x2 in purple.

7Using the term ”mixed” we mean, that the random vector X consists of continuous and discrete
random variables.

2.3 Regular Vines 33

(i) In the first case we decompose:

f12(x1, x2) = f1 | 2(x1 |x2) · f2(x2) ,

where f1 | 2(x1 |X2 = x2) is abbreviated by f1 | 2(x1 |x2). We will use this notation in
the subsequent. Therefore we compute the conditional distribution:

F1 | 2(x1 |x2) =
P (X1 ≤ x1, X2 = x2)

P (X2 = x2)

=
P (X1 ≤ x1, X2 ≤ x2)− P (X1 ≤ x1, X2 ≤ x2 − 1)

P (X2 ≤ x2)− P (X2 ≤ x2 − 1)

=
F1,2(x1, x2)− F1,2(x1, x2 − 1)

F2(x2)− F2(x2 − 1)

(2.4)
=

C1,2(F1(x1), F2(x2))− C1,2(F1(x1), F2(x2 − 1))

F2(x2)− F2(x2 − 1)
. (2.58)

Computing the corresponding probability mass function yields:

f1 | 2(x1 |x2) =
∂

∂x1

F1 | 2(x1 |x2)

=
∂

∂x1

[
C1,2(F1(x1), F2(x2))− C1,2(F1(x1), F2(x2 − 1))

F2(x2)− F2(x2 − 1)

]
=

∂
∂x1

C1,2(F1(x1), F2(x2))− ∂
∂x1

C1,2(F1(x1), F2(x2 − 1))

F2(x2)− F2(x2 − 1)

=

∂
∂F1(x1)

C1,2(F1(x1), F2(x2))− ∂
∂F1(x1)

C1,2(F1(x1), F2(x2 − 1))

F2(x2)− F2(x2 − 1)
· ∂F1(x1)

∂x1

2.2.9
=

h2 | 1(F2(x2) |F1(x1))− h2 | 1(F2(x2 − 1) |F1(x1))

f2(x2)
· f1(x1) .

(2.59)

This gives in total:

f12(x1, x2) = f1 | 2(x1, |x2) · f2(x2)

=
[
h2 | 1(F2(x2) |F1(x1))− h2 | 1(F2(x2 − 1) |F1(x1))

]
· f1(x1) .

(ii) Obviously, choosing a different decomposition of the joint density f12(x1, x2) should
not change the result, which we illustrate quickly. This time we decompose:

f12(x1, x2) = f2 | 1(x2, |x1) · f1(x1) .

34 2 AN INTRODUCTION TO VINE COPULAS

Therefore we compute:

F2 | 1(x2 |x1) =
∑

z∈{1,...K},
z≤x2

f12(x1, z)

f1(x1)

=
∑

z∈{1,...K},
z≤x2

∂
∂x1

F12(x1, z)− ∂
∂x1

F12(x1, z − 1)

f1(x1)

=
1

f1(x1)

[∑
z∈{1,...K},

z≤x2

∂

∂x1

F12(x1, z)−
∑

z∈{1,...K},
z≤x2−1

∂

∂x1

F12(x1, z)

]

=
∂

∂x1
F12(x1, x2)

f1(x1)

(2.4)
=

∂
∂x1

C12(F1(x1), F2(x2))

f1(x1)

=

∂
∂F1(x1)

C12(F1(x1), F2(x2)) · ∂F1(x1)
∂x1

f1(x1)

2.2.9
=

h2 | 1(F2(x2) |F1(x1)) · f1(x1)

f1(x1)

= h2 | 1(F2(x2) |F1(x1)) . (2.60)

The corresponding probability mass function is:

f2 | 1(x2 |x1) = F2 | 1(x2 |x1)− F2 | 1(x2 − 1 |x1)

= h2 | 1(F2(x2) |F1(x1))− h2 | 1(F2(x2 − 1) |F1(x1)) ,

which in total again gives:

f12(x1, x2) = f2 | 1(x2, |x1) · f1(x1)

=
[
h2 | 1(F2(x2) |F1(x1))− h2 | 1(F2(x2 − 1) |F1(x1))

]
· f1(x1) .

Before we proceed with the 3-dimensional example, we introduce the following notation,
which is based on Czado (2019):

Definition 2.3.16. (general notation of h-functions of bivariate copulas) For the bivariate
copula Cij;D(ui, uj) in a simplified regular vine we use the notation:

hi | j;D(ui |uj) :=
∂

∂uj

Cij;D(ui, uj) ,

hj | i;D(uj |ui) :=
∂

∂ui

Cij;D(ui, uj) .

We also give the following identity:

2.3 Regular Vines 35

Lemma 2.3.1. For the bivariate distribution F12 of the continuous random variables
X1, X2 ∈ R with corresponding copula distribution C12 and densities f12 and c12 it holds
that:

f1 | 2(x1 |x2) = c12(F1(x1), F2(x2))f1(x1) (2.61)

F1 | 2(x1 |x2) =
∂

∂u2

C12(F1(x1), u2)
∣∣∣
u2=F2(x2)

=:
∂

∂F2(x2)
C12(F1(x1), F2(x2)) (2.62)

Proof. Following Czado (2019) we have:

f1 | 2(x1 |x2) =
f12(x1, x2)

f2(x2)

(2.5)
=

c12(F1(x1), F2(x2))f1(x1)f2(x2)

f2(x2)

=

[
∂2C12(u1, u2)

∂u1∂u2

· ∂u1

∂x1

]∣∣∣∣∣u1=F1(x1)
u2=F2(x2)

=
∂

∂u2

[
∂

∂x1

C12(F1(x1), u2)

]∣∣∣∣∣
u2=F2(x2)

F1 | 2(x1 |x2) =

∫ x1

−∞
f1 | 2(z |x2) dz

=

∫ x1

−∞

∂

∂u2

[
∂

∂x1

C12(F1(z), u2)

]∣∣∣∣∣
u2=F2(x2)

dz

=
∂

∂u2

[∫ x1

−∞

∂

∂x1

C12(F1(z), u2) dz

]∣∣∣∣∣
u2=F2(x2)

=
∂

∂u2

C12(F1(x1), u2)
∣∣∣
u2=F2(x2)

Example 2.3.5. (3-dimensional mixed cases) Let (X1, X2, X3) ∈ R2 × {1, . . . , K} be a
random vector and let x1, x2 ∈ R, x3 ∈ {1, . . . , K}. As in Example 2.3.4 we will use the
abbreviation fi |D(xi |xD) for fi |D(xi |XD = xD). For clarity we again color discrete X3

and x3 in purple.

(i) We can factorize the joint probability mass function in the following way:

f123(x1, x2, x3) = f3 | 12(x3 |x1, x2) · f1 | 2(x1 |x2) · f2(x2) .

36 2 AN INTRODUCTION TO VINE COPULAS

Therefore we derive:

F3 | 12(x3 |x1, x2) =
∑

z∈{1,...K},
z≤x3

f13 | 2(x1, z |x2)

f1 | 2(x1 |x2)

=
∑

z∈{1,...K},
z≤x3

∂
∂x1

F13 | 2(x1, z |x2)− ∂
∂x1

F13 | 2(x1, z − 1 |x2)

f1 | 2(x1 |x2)

=
1

f1 | 2(x1 |x2)

[∑
z∈{1,...K},

z≤x3

∂

∂x1

F13 | 2(x1, z |x2)−
∑

z∈{1,...K},
z≤x3−1

∂

∂x1

F13 | 2(x1, z |x2)

]

=
∂

∂x1
F13 | 2(x1, x3 |x2)

f1 | 2(x1 |x2)

(2.4)
=

∂
∂x1

C13;2(F1 | 2(x1 |x2), F3 | 2(x3 |x2))

f1 | 2(x1 |x2)

=

∂
∂F1 | 2(x1 |x2)

C13;2(F1 | 2(x1 |x2), F3 | 2(x3 |x2)) ·
∂F1 | 2(x1 |x2)

∂x1

f1 | 2(x1 |x2)

2.3.16
=

h3 | 1;2(F3 | 2(x3 |x2) |F1 | 2(x1 |x2)) · f1 | 2(x1 |x2)

f1 | 2(x1 |x2)

= h3 | 1;2(F3 | 2(x3 |x2) |F1 | 2(x1 |x2)) .

This yields the probability mass function:

f3 | 12(x3 |x1, x2) = F3 | 12(x3 |x1, x2)− F3 | 12(x3 − 1 |x1, x2)

= h3 | 1;2(F3 | 2(x3 |x2) |F1 | 2(x1 |x2))− h3 | 1;2(F3 | 2(x3 − 1 |x2) |F1 | 2(x1 |x2)) .

For continuous X1 and X2 we know by Lemma 2.2.9 that:

f1 | 2(x1, |x2) = c12(F1(x1), F2(x2)) · f1(x1) ,

which gives in total:

f123(x1, x2, x3) = f3 | 12(x3 |x1, x2) · f1 | 2(x1, |x2) · f2(x2)

=
[
h3 | 1;2(F3 | 2(x3 |x2) |F1 | 2(x1 |x2))− h3 | 1;2(F3 | 2(x3 − 1 |x2) |F1 | 2(x1 |x2))

]
· c12(F1(x1), F2(x2)) · f1(x1) · f2(x2) .

Here we can re-express F1 | 2(x1 |x2), F3 | 2(x3 |x2) and F3 | 2(x3−1 |x2) as h-functions
with the help of Lemma 2.3.1 for continuous X1 and X2 and (2.60):

F1 | 2(x1 |x2) =
∂

∂F2(x2)
C12(F1(x1), F2(x2))

2.2.9
= h1 | 2(F1(x1) |F2(x2)) ,

F3 | 2(x3 |x2)
(2.60)
= h3 | 2(F3(x3) |F2(x2)) .

Note, that we can reorder continuous X1 and X2 as we wish.

2.3 Regular Vines 37

(ii) This time we factorize the joint probability mass function in the following way:

f123(x1, x2, x3) = f1 | 23(x1 |x2, x3) · f3 | 2(x3 |x2) · f2(x2) .

Therefore we derive:

F1 | 23(x1 |x2, x3) =
P (X1 ≤ x1, X3 = x3 |X2 = x2)

P (X3 = x3 |X2 = x2)

=
F13 | 2(x1, x3 |x2)− F13 | 2(x1, x3 − 1 |x2)

f3 | 2(x3 |x2)

(2.4)
=

C13;2(F1 | 2(x1 |x2), F3 | 2(x3 |x2))− C13;2(F1 | 2(x1 |x2), F3 | 2(x3 − 1 |x2))

f3 | 2(x3 |x2)
.

The probability mass function is:

f1 | 23(x1 |x2, x3) =
∂

∂x1

F1 | 23(x1 |x2, x3)

=
∂

∂x1

[
C13;2(F1 | 2(x1 |x2), F3 | 2(x3 |x2))− C13;2(F1 | 2(x1 |x2), F3 | 2(x3 − 1 |x2))

]
f3 | 2(x3 |x2)

=
∂

∂F1 | 2(x1 |x2)
[C13;2(F1 | 2(x1 |x2), F3 | 2(x3 |x2))

− C13;2(F1 | 2(x1 |x2), F3 | 2(x3 − 1 |x2))
]
·
∂F1 | 2(x1 |x2)

∂x1

· 1

f3 | 2(x3 |x2)

2.3.16
=

h3 | 1;2(F3 | 2(x3 |x2) |F1 | 2(x1 |x2))− h3 | 1;2(F3 | 2(x3 − 1 |x2) |F1 | 2(x1 |x2))

f3 | 2(x3 |x2)

· f1 | 2(x1 |x2) .

This gives in total:

f123(x1, x2, x3) = f1 | 23(x1 |x2, x3) · f3 | 2(x3 |x2) · f2(x2)

=
h3 | 1;2(F3 | 2(x3 |x2) |F1 | 2(x1 |x2))− h3 | 1;2(F3 | 2(x3 − 1 |x2) |F1 | 2(x1 |x2))

f3 | 2(x3 |x2)

· f1 | 2(x1 |x2) · f3 | 2(x3 |x2) · f2(x2)
2.3.1
=
[
h3 | 1;2(F3 | 2(x3 |x2) |F1 | 2(x1 |x2))− h3 | 1;2(F3 | 2(x3 − 1 |x2) |F1 | 2(x1 |x2))

]
c12(F1(x1), F2(x2)) · f1(x1) · f2(x2) .

Again F3 | 2(x3 |x2), F3 | 2(x3 − 1 |x2) and F1 | 2(x1 |x2) can be re-expressed as h-
functions as above.

(iii) Finally, we decompose the joint probability mass function in the following way:

f123(x1, x2, x3) = f1 | 23(x1 |x2, x3) · f2 | 3(x2 |x3) · f3(x3) .

38 2 AN INTRODUCTION TO VINE COPULAS

That is why we compute:

F1 | 23(x1 |x2, x3) = P (X1 ≤ x1 |X2 = x2, X3 = x3)

=
∂

∂x2
F12 | 3(x1, x2 |x3)

f2 | 3(x2 |x3)

(2.4)
=

∂
∂x2

C12;3(F1 | 3(x1 |x3), F2 | 3(x2 |x3))

f2 | 3(x2 |x3)

=

∂
∂F2 | 3(x2 |x3)

C12;3(F1 | 3(x1 |x3), F2 | 3(x2 |x3))

f2 | 3(x2 |x3)
·
∂F2 | 3(x2 |x3)

∂x2

=
∂

∂F2 | 3(x2 |x3)
C12;3(F1 | 3(x1 |x3), F2 | 3(x2 |x3))

2.3.16
= h1 | 2;3(F1 | 3(x1 |x3) |F2 | 3(x2 |x3))

Hence:

f1 | 23(x1 |x2, x3) =
∂

∂x1

F1 | 23(x1 |x2, x3)

=
∂

∂x1

[
∂

∂F2 | 3(x2 |x3)
C12;3(F1 | 3(x1 |x3), F2 | 3(x2 |x3))

]
=

∂2

∂F1 | 3(x1 |x3)∂F2 | 3(x2 |x3)
C12;3(F1 | 3(x1 |x3), F2 | 3(x2 |x3))

·
∂F1 | 3(x1 |x3)

∂x1

= c12;3(F1 | 3(x1 |x3), F2 | 3(x2 |x3)) · f1 | 3(x1 |x3) .

Together with (2.59) this gives:

f123(x1, x2, x3) = c12;3(F1 | 3(x1 |x3), F2 | 3(x2 |x3)) · f1 | 3(x1 |x3)

· f2 | 3(x2, |x3) · f3(x3)

(2.59)
= c12;3(F1 | 3(x1 |x3), F2 | 3(x2 |x3))

·
h3 | 1(F3(x3) |F1(x1))− h3 | 1(F3(x3 − 1) |F1(x1))

f3(x3)
· f1(x1)

·
h3 | 2(F3(x3) |F2(x2))− h3 | 2(F3(x3 − 1) |F2(x2))

f3(x3)
· f2(x2)

· f3(x3)

= c12;3(F1 | 3(x1 |x3), F2 | 3(x2 |x3)) ·
f1(x1) · f2(x2)

f3(x3)

·
[
h3 | 1(F3(x3) |F1(x1))− h3 | 1(F3(x3 − 1) |F1(x1))

]
·
[
h3 | 2(F3(x3) |F2(x2))− h3 | 2(F3(x3 − 1) |F2(x2))

]
,

where with the help of (2.58) we could re-express the conditional distributions
F1 | 3(x1 |x3) and F2 | 3(x2 |x3).

2.3 Regular Vines 39

A few remarks here:

Remark 2.3.6. (a) Genest and Nešlehová (2007) illustrate, that Sklar’s Theorem 2.2.1
still guarantees the existence of a copula representation as is (2.4) of the bivariate
distribution F12(X1, X2) for the case, that at least one random variables is discrete:

F12(X1, X2) = C12(F1(X1), F2(X2)) . (2.63)

Due to jumps in the distribution function of a discrete random variable and plateaus
in their corresponding inverse, the copula in (2.63) is no longer unique on the entire
unit cube, but unique on the product of the ranges of the marginal distribution
functions.

(b) In Example 2.3.5 we have seen, how the joint probability mass function of the 3-
dimensional random vector (X1, X2, X3) ∈ R2 × {1, . . . , K} containing one discrete
random variable X3 can be factorized.

(c) Again we notice, that we can decompose the joint probability mass function of a
mixed random vector into pair copulas and marginal distributions. Examples 2.3.4
and 2.3.5 already give an idea, how the decomposition of the mixed joint probability
mass function can be generalized to higher dimensions. Section 3 of Schallhorn
(2017) illustrates this in detail. This motivates fitting an R-vine in a similar way as
in Section 2.3.

(d) In Examples 2.3.4 and 2.3.5 we gave the decomposition of the joint probability mass
function of a mixed random vector. Panagiotelis et al. (2012) introduce pair copula
constructions for a (purely) discrete random vector:

X = (X1, . . . , xd) ∈ {1, . . . , K}d .

For (x1, . . . , xd) ∈ {1, . . . , K}d the joint probability mass function of X can be
factorized as:

P (X1 = x1, . . . , Xd = xd) = P (X1 = x1 |X2 = x2, . . . , Xd = xd)

· P (X2 = x2 |X3 = x3, . . . , Xd = xd) · . . .
· P (Xd = xd) .

Here each factor can be re-expressed with the discrete analogue of (2.30), which
Panagiotelis et al. (2012) give as:

P (Xj = xj |V = v)

=
P (Xj = xj, Vh = vh |V −h = v−h)

P (Vh = vh |V −h = v−h)

=
1

P (Vh = vh |V −h = v−h)
·
{ ∑

ij=0,1

∑
ih=0,1

(−1)ij+ih

· P (Xj ≤ xj − ij, Vh ≤ vh − ih |V −h = v−h)
}
, (2.64)

40 2 AN INTRODUCTION TO VINE COPULAS

where V is a sub-vector of X. With Sklar’s Theorem 2.2.1 this yields:

P (Xj = xj |V = v)

=
1

P (Vh = vh |V −h = v−h)
·
{ ∑

ij=0,1

∑
ih=0,1

(−1)ij+ih

· CXj ,Vh;V −h
(FXj |V −h

(xj − ij |V −h = v−h), FVh |V −h
(vh − ih |V −h = v−h))

}
,

where the arguments of the copula can be expressed with the help of the following
identity:

FXj |Vh,V −h
(xj |Vh = vh,V −h = v−h)

=
[
CXj ,Vh;V −h

(FXj |V −h
(xj |V −h = v−h), FVh |V −h

(vh |V −h = v−h))

− CXj ,Vh;V −h
(FXj |V −h

(xj |V −h = v−h), FVh |V −h
(vh − 1 |V −h = v−h))

]
· 1

P (Vk = vk |V −{h,k})
.

Here k ̸= h indexes another component of the sub-vector V .

As mentioned in (c) we want to estimate an R-vine specification (F ,V , B), that the joint
distributions F1...d of the mixed random vector X = (X1, . . . , Xd) realizes, from n ∈ N
i.i.d. realizations of X, i.e. (xi1, . . . , xid)i∈[n].
Panagiotelis et al. (2017) propose two R-vine selection algorithms with only parametric
pair copula families, that adapt Dißmann’s Algorithm 1 to the discrete case. They use
maximum likelihood estimation and an in-sample modified version of the AIC8 by Akaike
(1998) or an out-of-sample log predictive score based on Gneiting and Raftery (2007),
respectively, as edge weights.
In the R-package rvinecopulib by Nagler and Vatter (2021), which we will later use for
our analysis, Dißmann’s Algorithm 1 is used with edge weights ”corrected for ties”. This
means in practice, that the estimator (2.17) of Definition ?? is used in lines 1 and 5 of
Dißmann’s Algorithm 1.

2.4 Sample Quantiles

Definition 2.4.1 (sample quantiles). The quantile function Q : (0, 1)→ R of a distribu-
tion F is defined to be:

Q(p) = F−1(p) := inf{x : F (x) ≥ p} .

Remark 2.4.1. By Hyndman and Fan (1996) the sample quantiles Q̂(p) for independent
observations {X1, . . . Xn} of F with order statistics {X(1), . . . , X(n)}, that are commonly
used in statistical packages, are of the form:

Q̂(p) := (1− γ)X(j) + γ X(j+1) (2.65)

8In case of the in-sample modified version of the AIC as edge weight, a minimum instead of a maximum
spanning tree search is conducted.

2.4 Sample Quantiles 41

with 0 ≤ γ < 1 a function of j and g and:

j −m

n
≤ p <

j −m+ 1

n
j = ⌊pn+m⌋
g = pn+m− j ,

where ⌊x⌋ := max{k ∈ Z | k ≤ x}. The sample quantiles of type 1 of stats::quantile
correspond to the inverse of the empirical distribution function with m = 0 and:

γ =

{
1 for g = pn− j > 0

0 for g = 0
.

The sample quantiles of type 8 of stats::quantile are derived on the basis of the
assumption:

pk = median
(
F (X(k))

)
with pk ∈ [0, 1] an observed value. Hyndman and Fan (1996) use the approximation:

median
(
F (X(k))

)
≈

k − 1
3

n+ 1
3

.

This gives sample quantiles of the form (2.65) with:

γ = g , m =
1

3
(p+ 1)

and the remaining constants derived from m as stated above. Sample quantiles of type 8
are considered as the best choice among the commonly used sample quantile definitions, as
they give (approximately) median-unbiased estimates ofQ(p) regardless of the distribution
F . For ordinal random variables the sample quantiles of type 1 are a sensible choice.

42 3 AN INTRODUCTION TO CLASSIFICATION

3 An Introduction to Classification

A classification task - as the name already suggests - is the task of deciding which class,
out of a set of known classes, a previously unknown observation (rather) belongs to. This
decision is executed by a function, which is called classifier.
So let X ∈ Rd be a random vector and Y ∈ G be the random variable indicating the
class an observation of X belongs to with G the known set of possible classes. Let then
xi ∈ Rd, i ∈ [n] be n realizations of X with n ∈ N and d different feature values
xij ∈ R, j ∈ [d].
The discrimination of the observations xi ∈ Rd, i ∈ [n] by the classes in G (in the best
case) makes sense9 and each respective true class membership yi can (manually and with
some effort) be checked. However, we do not want to assign the class yi of xi by hand but,
instead we perform a classification to let the class yi of xi be estimated by the classifier
f :

(X, Y) = (xi, yi) ,

f : Rd → G , f(xi) = ŷi .

We do this based on the assumption, that a set of rules, which underlies the data
(xT

i yi)i∈[n], determines the true class yi of each observation xi. We assume, that the clas-
sifier f can learn these rules from data, such that ideally the estimated label ŷi := f(xi)
is equal to the true label yi or at least is as ”close” as possible to the truth:

estimated label : ŷi := f(xi)

true label : yi

This ”closeness” is measured by a so-called loss function L(Y, f(X)) ≥ 0, which penalizes
prediction errors of f . Two common choices of a loss function for classification are:

L(Y, f(X)) =

{
1{Y ̸= f(X)} 0-1 loss,

−2 logP (Y = y |X) −2× log-likelihood, deviance.
(3.1)

Here 1(·) denotes the indicator function. For a set A it is defined as:

1A(x) :=

{
1 , for x ∈ A

0 , else
,

and, if clear from the context, sometimes abbreviated by 1{x ∈ A}. For our analysis we
use the deviance loss as default.
For building this set of rules, the classifier f is trained on a data set consisting of m ∈
N, m < n observations xi ∈ Rd and their respective true class label yi ∈ G with i ∈
T ⊂ [n], i.e. through learning by example. For this, the data (xT

i yi)i∈[n] are split into a
training and a test set, where observation (xT

i yi) belong to the training set, if i ∈ T .10

9The discrimination of observations by class labels, which were randomly assigned to them, is regarded
as not sensible: there is no discriminating feature.

10We denote xtrain
j := xi and ytrainj := yi where i is the jth element of T arranged in ascending order.

43

To choose f we minimize the expected prediction error (EPE), quantified by the loss
L(Y, f(X)):

EPE(f) = E[L(Y, f(X))] ,

which, by conditioning, can be rewritten as:

EPE(f) = EX

[
EY |X [L(Y, f(X))|X]

]
= EX

[∑
y∈G

L(y, f(X)P (y |X)
]
.

By pointwise minimization we obtain:

f̂(x) = argmink∈G

∑
y∈G

L(y, k)P (y|X = x) , (3.2)

and the solution depends on the chosen loss function L(·, ·). If we take the 0-1 loss function
of Equation (3.1), Equation (3.2) is equal to:

f̂(x) = argmink∈G[1− P (k|X = x)] ,

which gives:

f̂(x) = y if P (y|X = x) = max
k∈G

P (y|X = x) .

The classifier f̂(·) of Equation (3.2) is estimated from the training data:

(
x y
)
train

:=

xT, train
1 ytrain1
...

...
xT, train
m ytrainm

 :=
(
xT
i yi

)
i∈T ∈ Rm×(d+1) . (3.3)

This form of learning is called supervised learning.

So how do we do the pointwise minimization and estimation in Equation (3.2)? We first
need to decide on a loss function. Apparently, the pointwise minimum in Equation (3.2)
depends on the model F : Rd → [0, 1] we use to estimate the conditional probability
P (y|X = x) from the training data. It would be ideal, but in practice it is not possible to
minimize over all models F without setting up further constraints. Possible model classes
F are, see Czado and Brechmann (2021):

• P (y|X = x) = F (xTβ) with F a known cumulative distribution function, such as
the standard normal distribution, see page 141:

F (xTβ) = Φ(xTβ;R)

with density

ϕ(xTβ;R) :=
1

(2π)d/2
|R|−1/2 exp

{
− 1

2
(xTβ)TR−1xTβ

}
,

44 3 AN INTRODUCTION TO CLASSIFICATION

• P (y|X = x) = F (xTβ) with F a known function class, such as:

F (xTβ) =
exp(xTβ)

1 + exp(xTβ)
,

• P (y|X = x) = F (x;θ) with F : Rd × Θq → [0, 1] with Θq ⊂ Rq, q ∈ N, with θ
parameters of an iterative and/or graphical method

Then Equation (3.2) can be specified for the chosen model class and optimized with regard
to the respective parameter(s) of the model class. This can be either solved explicitly or
with a numerical procedure on the training data.
Summarized, depending on the class of f or the constraints put on f and the loss function
L(Y, f(X)) used we arrive at different types of classifiers.

Imagine for example you are blind-folded and handed a fruit bowl. Your task is to name
the type of fruit by touching each fruit with your hands. Before being blind-folded you
were able to inspect another fruit bowl containing the same type of fruit (apples, oranges,
pears, bananas and kiwis) but not the identical number or pieces of fruit. While preparing
for your classification task, you tried to recognize specific features of a type of fruit, e.g.
the lengthy shape of a banana, the furry surface of a kiwi or the weight of an orange,
by touching the fruit and connecting the haptic information to the type of fruit you see
in your hands: You set up a set of rules of what each fruit feels like. Blind-folded and
with the new fruit bowl in front of you, you classify the fruit by the rules you learned
beforehand. How successfully you executed your task can be assessed by removing the
blindfold and comparing your estimation to the true fruit type of each fruit in the bowl.

The fruit bowl example already gives a good impression on how data should be handled
in a classification task. We notice, that there are two phases as part of the classification:
the training and the testing.
The performance of the classifier is tested, as seen in the fruit bowl example, on a sepa-
rate test data set. This should remain untouched during training, because otherwise the
performance of the classifier can be biased: obviously the classification rules learnt on the
training data apply well to the training data. The difficulty of a classification task is to
learn general and at the same time precise rules, which can be transferred to a new data
set and still deliver a good discrimination between classes.

For a more detailed introduction the reader is referred to Friedman et al. (2001), which
this section is based on.

3.1 Types of Classifiers

Logistic Regression

Imagine we wish to have a model, that answers one of the following modeling questions
based on observed features:

3.1 Types of Classifiers 45

• Does this picture show a dog: Yes or no?

• Given medical or vital data, does this patient have cancer: Yes or no?

The response Y is an indicator taking on values Y ∈ {”no”, ”yes”} or more mathematically
taking on the classes Y ∈ {0, 1}. We want to model the posterior probability of the two
classes {0, 1} via linear functions in the input data x, while at the same time ensuring
that they sum to one and remain in [0, 1], as Friedman et al. (2001) precisely expressed
it. The model fulfilling this is called logistic regression model and is of the form:

ln
(p(x)

1− p(x)

)
= ln

(P (Y = 1 |X = x)

P (Y = 0 |X = x)

)
= β0 +

d∑
j=1

βjxj , (3.4)

with p(x) := P (Y = 1 |X = x). Rearranging (3.4) we get:

p(x) = P (Y = 1 |X = x) =
exp(η)

1 + exp(η)
, with: η := β0 +

d∑
j=1

βjxj ,

and a sanity check confirms: exp(η)
1+exp(η)

is a:

continuous:
exp(η)

1 + exp(η)
∈ C∞

(
R
)
,

monotonously increasing:
∂

∂η

exp(η)

1 + exp(η)
=

exp(η)(
1 + exp(η)

)2 > 0 ∀ η ∈ R ,

and bounded: lim
η→−∞

exp(η)

1 + exp(η)
= 0 , lim

η→∞

exp(η)

1 + exp(η)
= 1 ,

function and thus:

p(x) =
exp(η)

1 + exp(η)
∈ [0, 1] .

The expression in (3.4) can be seen as the logarithm of the odds of event Y = 1 occurring
compared to Y = 0, which in this case is the reference class.11

How can we estimate the model parameters β0, . . . , βd? Nelder and Wedderburn (1972)
apply maximum likelihood estimation for generalized linear models, such as the binomial
logistic regression model. They show, that ”the solution of the maximum likelihood
equations is equivalent to an iterative weighted least-squares procedure”:
The log-likelihood equations are non-linear β = (β0, . . . , βd), which is why the Fisher
scoring method, is used to solve them. This can be re-expressed as a weighted least
squares procedure.
For data analysis we use implementation of the R-function glm of the package stats, R
Core Team (2022).

11In the dichotomous case this is also called odds of success.

46 3 AN INTRODUCTION TO CLASSIFICATION

Multinomial Logistic Regression Let us now assume, that we do not just want to
answer:

• Given medical data, does the patient have cancer: Yes or no?

but:

• Given medical data, how severe is the cancer the patient suffers from? Or more
precise: what is the patient’s cancer severity status, ranging from 1 (mild) to K
(life-threatening)?

For answering this question we extend the logistic regression model with dichotomous
response to the multinomial logistic regression model with multinomial response: Let
Y ∈ {1, . . . , K} for some K ∈ N. We regard let Y = K as the reference class. As a
multinomial generalization of (3.4) we obtain:

ln
(P (Y = k | X = x)

P (Y = K | X = x)

)
= β0k +

d∑
j=1

βjkxj , k ∈ [K − 1] ,

where we have a different set of βs for each class k ∈ [K − 1], i.e. {β0k, . . . , βdk}. As
before this can be rearranged and we obtain the multinomial logistic regression model :

P (Y = k | X = x) =
exp
{
β0k +

∑d
j=1 βjkxj

}
1 +

∑K−1
l=1 exp

{
β0l +

∑d
j=1 βjlxj

} , k ∈ [K − 1] , (3.5)

P (Y = K | X = x) =
1

1 +
∑K−1

l=1 exp
{
β0l +

∑d
j=1 βjlxj

} . (3.6)

Here the coefficient βjk weights the influence of the jth covariate xj for the case that
Y = k, k ∈ [K].
Let

(
x y
)
be a data set:

(
x y
)
=
(
xij yi

)
i∈[n], j∈[d] =

x11 x12 · · · x1d y1
...

...
. . .

...
...

xn1 xn2 · · · xnd yn

 =
(
x1 · · · xd y

)
∈ Rn×(d+1) ,

xj,y ∈ Rn, j ∈ [d] ,

and let x′
j, j ∈ [d], be the vectors of standardized covariate values, i.e.:

x′
ij :=

xij − x̄j

sj
, x′

j =

x′
1j
...

x′
nj

 ,

with the sample mean and sample standard deviation12 given by:

12Both estimators are unbiased.

3.1 Types of Classifiers 47

x̄j =
1

n

n∑
i=1

xij , sj := s(xj) =

√√√√ 1

n− 1

n∑
i=1

(xij − x̄j)2 .

Let the multinomial logistic regression model estimated on a data set
(
x y
)
be:

P̂ (Y = k | X i = xi) =
exp
{
β̂′
0k +

∑d
j=1 β̂

′
jk x

′
ij

}
1 +

∑K−1
l=1 exp

{
β̂′
0l +

∑d
j=1 β̂

′
jl x

′
ij

} , k ∈ [K − 1] , (3.7)

P̂ (Y = K | X i = xi) =
1

1 +
∑K−1

l=1 exp
{
β̂′
0l +

∑d
j=1 β̂

′
jl x

′
ij

} , (3.8)

where the superscript ′ indicates, that xj, j ∈ [d] have been standardized before fitting.
Then β′

jk is the coefficient of the standardized covariate X ′
j for Y = k. To illustrate how

to obtain β′
jk from the non-standardized βjk, we compute the so called log-odds of class

k ∈ [K − 1] :

log

(
P̂ (Y = k | X i = xi)

P̂ (Y = K | X i = xi)

)
= log

((
exp
{
β̂0k +

∑d
j=1 β̂jkxij

})
1 +

∑K−1
l=1 exp

{
β̂0l +

∑d
j=1 β̂jlxij

}
·
(
1 +

K−1∑
l=1

exp
{
β̂0l +

d∑
j=1

β̂jlxij

}))

= log
(
exp
{
β̂0k +

d∑
j=1

β̂jkxij

})
= β̂0k +

d∑
j=1

β̂jkxij

= β̂′
0k +

d∑
j=1

β̂′
jkx

′
ij

= β̂′
0k +

d∑
j=1

β̂′
jk

xij − x̄j

sj

=
(
β̂′
0k −

d∑
j=1

β̂′
jkx̄j

sj

)
+

d∑
j=1

β̂′
jk

sj
xij .

By this we conclude, that:

β̂jk =
β̂′
jk

sj
⇐⇒ β̂′

jk = sjβ̂jk , (3.9)

β̂0k = β̂′
0k −

d∑
j=1

β̂′
jx̄j

sj
⇐⇒ β̂′

0k = β̂0k +
d∑

j=1

β̂′
jx̄j

sj
. (3.10)

48 3 AN INTRODUCTION TO CLASSIFICATION

Model Selection with Lasso We want to include only those covariates into the logis-
tic regression model that matter for prediction on a new data set. That is why we perform
model selection. The resulting model becomes better ”interpretable and has possibly a
lower prediction error than the full model”, Friedman et al. (2001). For logistic regression
model selection can be done with shrinkage or regularization methods. We introduce one
of them, namely the Lasso.

The general idea behind the Lasso is to maximize the log-likelihood by minimizing the
negative log-likelihood while at the same time penalizing the L1-norm of the coefficient
vector. The L1-norm of a vector is defined as:

Definition 3.1.1 (L1-norm). Let x ∈ Rd. Then:

∥x∥1 :=
d∑

i=1

|xi| ,

Brokate et al. (2016).

(a) dichotomous classification problem: For a dichotomous classification problem
the logistic regression model with Lasso can be estimated by maximizing the penal-
ized log-likelihood function of the logistic regression model of Equation (3.4):

max
β0,β

{ n∑
i=1

[
yi(β0 + βTxi)− log(1 + eβ0+βTxi)

]
− λ

d∑
j=1

|βj|
}

, (3.11)

with β := (β1, . . . , βd)
T , see Friedman et al. (2001). They also give an estimation

algorithm. In our analyses we use the implementation of the R-package glmnet,
Simon et al. (2011).

Note, that the λ-parameter governs the amount of penalization on ∥β∥1 in Equation
(3.11). The higher it is, the stricter the penalty on ∥β∥1 and thus the smaller the
number of predictors included into the model. The penalty parameter λ needs to
be set prior to estimation. It is chosen with k-fold cross-validation with deviance as
loss, see Equation (3.1). A typical value is k = 10.

The value for λ is picked that results in the ”[...] least complex model within one
standard error of the best [...]” model, Friedman et al. (2001).

This means: the value for λ is picked, which corresponds to the model with deviance
one standard error above (i.e. towards the positive λ-direction of) the minimal
deviance achieved.

It makes sense, to pick the λ value, that results in the model with minimal loss.
The reason for selecting a higher and thus more restrictive value for λ is, that over-
parameterized models tend to be selected when choosing the λ value that gives a
model with minimal deviance.

3.1 Types of Classifiers 49

We use the implementation of the cv.glmnet-function of the R-package glmnet

by Simon et al. (2011), in which 10-fold cross-validation and deviance as loss are
the default values. The sequence of λs evaluated in cross-validation, which can
be supplied by the user or chosen by cv.glmnet, can be displayed with the plot-
function of glmnet as shown in Figure 6.

Figure 6: Displaying the sequence of λ values evaluated in cross-validation for the Lasso penalty
parameter, Hastie and Qian (2014). The first vertical line marks the minimal deviance value,
the vertical line to its right marks the λ corresponding to the deviance one standard error away
from the minimal deviance towards the positive λ direction.

(b) multinomial classification problem: For Lasso-regularization in the multino-
mial regression model we need some pre-considerations:

Using the model formulation of Equations (3.5) and (3.6), where we set K as the
reference class, we can only estimate whether a predictor has influence on an obser-
vation rather belonging to class k ∈ [K − 1] than to the reference class K.

However, we want to only then penalize a predictor, if it has weak influence on
whether an observation belongs to any class in [K]. That is why for multinomial
logistic regression with Lasso Simon et al. (2013) use a symmetric formulation of the
multinomial logistic regression model. We use α for the model parameters to not
confuse the symmetric formulation with the model formulation of Equations (3.5)
and (3.6):

P (Y = k | X = x) =
exp
{
α0k +

∑d
j=1 αjkxj

}∑K
l=1 exp

{
α0l +

∑d
j=1 αjlxj

} , k ∈ [K] . (3.12)

Simon et al. (2013) show, that this formulation is unique if a penalty like in the

50 3 AN INTRODUCTION TO CLASSIFICATION

Lasso is added.

We estimate the multinomial logistic regression model with Lasso by minimizing the
penalized negative log-likelihood function:

min
α

{
−
[
1

n

n∑
i=1

(K∑
k=1

zik(α0k + xT
i αk)− log(

K∑
k=1

eα0k+xT
i αk
)]

+ λ

[
p∑

j=1

∥(α1j, . . . , αKj)
T∥1
]}

, (3.13)

with αk := (αk1, . . . , αkd)
T and zik := I(yi = k). Note that in the multinomial case,

i.e. for K > 1 we obtain K×d regularized coefficients, with K the number of classes
and d the number of covariates.

The algorithm solving this minimization problem is based on Park and Hastie (2007)
and we use its implementation of the R-function glmnet of the glmnet-package.

As for the binomial logistic regression model the λ-parameter governs the amount
of penalization on ∥(α11, . . . , αd1, . . . , α1K , . . . , αdK)

T∥1 in Equation (3.13). For es-
timating the multinomial logistic regression model with Lasso we need to choose λ.
This is done as explained above for the binomial logistic regression with Lasso.

Random Forest

The following section is based on Breiman (2001) and Friedman et al. (2001).

A random forest is a classification model, which consists itself of an ensemble of de-
correlated classifiers, namely decision trees. A random forest prediction is equal to the
label predicted most often by the trees of the random forest. By this the random forest
exploits the idea of bagging : reducing its variance by averaging many noisy decision trees,
which, if grown sufficiently deep, show relatively low bias.

What is a decision tree and how are they grown to obtain a random forest classifier?

A decision tree or classification tree divides a data set and allocates its observations to
the tree’s nodes.13 It is grown on a training data set by splitting an existing node of
the tree into two new nodes, which is equal to allocating the observations of the existing
node to the two new nodes. This is done according to whether an observation’s value of
a randomly selected feature is above or below the selected split value. The split feature
as well as the split point are chosen, which minimize a so-called node impurity measure,
the Gini index :

13An introduction to graph theory and trees can be found on page 15 and following. In the context of
random forests, the nodes are often also called regions.

3.1 Types of Classifiers 51

Definition 3.1.2 (Gini index). Let the nodes of a decision tree T be numbered from 1
to M . For a node m ∈ [M] representing a region Rm containing Nm ∈ N observations
(xi, yi)i∈[Nm] let:

p̂mk :=
1

Nm

∑
xi∈Rm

1(yi = k) .

The Gini index is then defined as:

∑
k ̸=j

p̂mkp̂mj =
K∑
k=1

p̂mk(1− p̂mk) , (3.14)

see Friedman et al. (2001).

There exist other node impurity measures for classification, such as the misclassifica-
tion error or the cross-entropy or deviance, see Friedman et al. (2001). For growing a
random forest on data we use the R-package randomForest by Liaw and Wiener (2002)
with the Gini index, which is also equal to the default impurity measure in randomForest.

Algorithm 2 illustrates, how a random forest classifier is built from data and how it pre-
dicts the label ŷi of an observation xi for i ∈ [n].

Algorithm 2: Random Forest, see Friedman et al. (2001)

Input: training data
(
x y
)
train
∈ Rn×(d+1), random forest parameters ntree, mtry,

snodesize
Output: random forest classifier Ĉntree

rf (·) and predictions ŷ

1 for b ∈ {i, . . . , ntree} do
2 draw a bootstrap sample Z∗ by drawing n observations from the training data

with replacement
3 grow a random forest tree Tb to the bootstrapped data Z∗ by recursively

repeating the following steps for each terminal node of the tree, until the
minimum node size snodesize is reached:

(i) select mtry covariates at random from all d predictors

(ii) pick best split variable and split point pair with regard to the Gini index
among the mtry covariates

(iii) split the current node into two new nodes

output the ensemble of trees {Tb}b∈[ntree]

ŷi ← Ĉntree
rf (xi) := majority vote of {Ĉb(xi)}b∈[ntree] with Ĉb(xi) the class

prediction of the bth random forest tree

4 end

5 return random forest classifier Ĉntree
rf (·) and predictions ŷ

52 3 AN INTRODUCTION TO CLASSIFICATION

For fitting a random forest classifier to data as illustrated in Algorithm 2 we need to set
or tune the model parameters:

• ntree: The number of trees in the random forest. A good estimate can be obtained
by using the out-of-bag (OOB) error estimate, introduced below in Definition 3.1.3.
The number of trees, for which this value stabilizes, will be picked.

Definition 3.1.3 (out-of-bag (OOB) error estimate). For each observation (xi, yi)i∈[n]
of the training data

(
x y

)
train

∈ Rn×(d+1) construct its random forest classifier by
averaging only over those trees corresponding to the bootstrap samples Z∗ in which
(xi, yi) did not appear. We denote it as Ĉ−i

rf (·). Then the out-of-bag error estimate
is the prediction error estimate averaged over all random forest classifiers obtained
as described above:

OOB error estimate:
1

n

n∑
i=1

L(yi, Ĉ
−i
rf (xi)) ,

see Friedman et al. (2001).

The OOB error estimate is similar to N -fold cross-validation. It can be estimated
”along the way” while fitting the random forest classifier as described in Algorithm
2.

• mtry: The cardinality of the subset of covariates {Xi1 , . . . Xip}, that are randomly
drawn from all the d covariates {X1, . . . , Xd} in each branching process in each
decision tree:

{i1, . . . , ip} ⊂ [d] with mtry = |{i1, . . . , ip}| .

The current split variable is then chosen from {Xi1 , . . . Xip} by minimization of the

Gini index defined in Definition 3.1.2. The value mtry = ⌊
√
d⌋ with d the total

number of covariates is recommended by Friedman et al. (2001) as a typical value.
It is also the default value in the R-package randomForest, see Liaw and Wiener
(2002).

• snodesize: The minimal size of all terminal nodes. Here ”size” means the number of
observations ”in the terminal node”. These are the observations classified according
to the rule corresponding to the path in the decision tree from its root node to
the respective terminal node. Intuitively it makes sense, that the smaller snodesize
the more interactions a classification tree can capture and the smaller its prediction
error. Therefore snodesize for our analyses we set snodesize to 1, which corresponds to
the default value in the R-package randomForest, Liaw and Wiener (2002).

3.2 Classification Performance Measures 53

3.2 Classification Performance Measures

An overview of measures for comparing classifications and clusterings can be found in
Wagner and Wagner (2007). Let

(
x y
)
∈ Rn×(d+1) with n, d ∈ N be a data set:

(
x y
)
:=

xT
1 y1
...

...
xT
n yn

 ∈ Rn×(d+1) ,

where yi is the true class label of observation xT
i with i ∈ [n]. Let there exist a subset of(

x y
)
, the training set

(
x y
)
train

, containing m < n observations:(
x y
)
train

:=
(
xT, train
i ytraini

)
i∈[m]

:=
(
xT
i yi

)
i∈T ∈ Rm×(d+1)

We use the notation:

xtrain :=

xT, train
1
...

xT, train
m

 ∈ Rm×d , ytrain :=

ytrain1
...

ytrainm

 ∈ Rm ,

(
x y
)
train

=
(
xtrain ytrain

)
.

The remaining observations of
(
x y
)
belong to the test set:(

x y
)
test

:=
(
xT, test
i ytesti

)
i∈[n−m]

:=
(
xT
i yi

)
i∈[n]\T ,

The following classification performance measures are based on the comparison of the
estimated class label ŷtesti = f̂(xtest

i) to a class label ytesti . Here f̂ , the estimate of the
classifier f , is obtained on

(
x y
)
train

.

Confusion Matrix

A very intuitive way of comparing estimated with true class labels on the test set
(
x y
)
test

is counting the observations, where the class membership was correctly predicted by the
classifier f(·), i.e. (yi, ŷi) = (k, k) with k ∈ [K], and the ones, where the true class was
confused with another class, i.e. (yi, ŷi) = (k, l) for k ̸= l ∈ [K] and i ∈ [n] \ T . So for
K ∈ N distinct classes this can then be displayed or stored in a K × K-matrix. This
matrix is appropriately called confusion matrix and defined as:

C = (ckl)k,l∈[K] ∈ RK×K ,

ckl :=
∣∣{i ∈ [n] \ T | (yi, ŷi) = (k, l), k, l ∈ [K]}

∣∣ ,
ŷi := f̂(xi) with i ∈ [n] \ T . (3.15)

Thus
∑

i∈[K] cii, the sum of diagonal elements of C gives the number of pairs (yi, ŷi), where
the classifier correctly estimated the true label.

We illustrate the confusion matrix in an example:

54 3 AN INTRODUCTION TO CLASSIFICATION

Example 3.2.1. Let Y ∈ {0, 1}, let f̂(·) be a classifier trained on training data
(
x y
)
train

and let the test data be:

(
x y
)
test

=

xT
1 1

xT
2 1

xT
3 0

xT
4 1

xT
5 0

xT
6 1

xT
7 1

xT
8 0

xT
9 1

xT
10 1

,

with predictions:

ŷ1 = f̂(x1) = 1 , ŷ2 = f̂(x2) = 1 , ŷ3 = f̂(x3) = 1 ,

ŷ4 = f̂(x4) = 1 , ŷ5 = f̂(x5) = 1 , ŷ6 = f̂(x6) = 1 ,

ŷ7 = f̂(x7) = 0 , ŷ8 = f̂(x8) = 0 , ŷ9 = f̂(x9) = 0 , ŷ10 = f̂(x10) = 0 .

This yields the following confusion matrix:

C =

(
c00 c01
c10 c11

)
=

(
1 2
3 4

)
.

F-Measure for Dichotomous Classification Problems

We introduce the F-measure used for dichotomous classification problems: Let Y ∈ {0, 1}
and let therefore the confusion matrix C be as defined in (3.15):

C =

(
c00 c01
c10 c11

)
, (3.16)

which in form of a table looks like:

prediction ŷ

ŷ = 0 ŷ = 1
∑

a
ct
u
a
l
y

y = 0 c00 (true ”0”) c01 (false ”1”) c00 + c01 (actual ”0”)

y = 1 c10 (false ”0”) c11 (true ”1”) c10 + c11 (actual ”1”)

∑
c00 + c10 (predicted ”0”) c01 + c11 (predicted ”1”) n

Table 3: Contingency table of a 0-1-classification problem corresponding to the confusion
matrix C in (3.16).

3.2 Classification Performance Measures 55

The precision of the classification with confusion matrix C (3.16) and contingency table
in Table 3 can be described as the fraction of the predicted ”1”s, for which the prediction
is correct, i.e. y = 1 and thus:

precision :=
c11

c11 + c01
=

true ”1”

predicted ”1”
∈ [0, 1] . (3.17)

The recall on the other hand gives the fraction of observations with label y = 1, that a
classifier could correctly recall in its prediction:

recall :=
c11

c11 + c10
=

true ”1”

actual ”1”
∈ [0, 1] . (3.18)

The higher the value for precision and recall respectively the better we regard the classifier
f̂(·) tested on

(
x y
)
test

. Ideally we want a classifier to have high values for precision and
recall simultaneously. We illustrate why in two small examples:

Figure 7: Two 0-1-classification examples for illustrating precision and recall. Observations
within a rectangle have (estimated) label 1. The respective larger rectangle is equal to the
domain.

• The top image of Figure 7 shows a 0-1-classification example, where all observations
have class labels 1. This yields precision = 1, but recall < 0.5.

• The bottom image of Figure 7 shows a 0-1-classification example, where all labels
are estimated to be 1. This yields recall = 1, but precision < 0.5.

The classifiers of both examples would be of no use in an application, as either ”1” (top)
or ”0” (bottom) would be estimated incorrectly more than half of the time. However, for
precision and recall we get the following values:

56 3 AN INTRODUCTION TO CLASSIFICATION

• top:

precision =
true ”1”

predicted ”1”
=

area of ”prediction”

area of ”prediction”
= 1 ,

recall =
true ”1”

actual ”1”
=

area of ”prediction”

are of ”actual”
< 0.5 .

• bottom:

precision =
true ”1”

predicted ”1”
=

area of ”actual”

area of ”prediction”
< 0.5 ,

recall =
true ”1”

actual ”1”
=

area of ”actual”

are of ”actual”
= 1 .

Consulting just the precision in the top case or the recall in the bottom case could naively
make us assume, that we have a good classifier at hand in both cases.

Due to this it is reasonable to consult the F-measure. It combines precision and recall in
the harmonic mean:

Definition 3.2.1 (harmonic mean). The harmonic mean of the n observations x1, . . . , xn

with n ∈ N is defined as:

H :=
n∑n
i=1

1
xi

=
n ·
∏n

i=1 xi∑n
i=1 xi

.

Definition 3.2.2 (F -measure). For precision ∈ (0, 1] and recall ∈ (0, 1] we defined the
F -measure as:

F :=
2

1
precision

+ 1
recall

=
2 · precision · recall
precision + recall

=
2 · true ”1”

actual ”1” + predicted ”1”
.

Here (a, b] is the notation for the half open interval excluding a for a, b ∈ R with a < b.

Remark 3.2.1. If we have precision = recall = 0, Definition 3.2.2 does not apply. Following
Ballabio et al. (2018) we set in this case:

F := 0 .

Remark 3.2.2. We can reformulate the F -measure in terms of the expression used in Table
3 as:

F =
2 · true ”1”

actual ”1” + predicted ”1”
.

We quickly show the following property:

Lemma 3.2.1. For precision ∈ (0, 1] and recall ∈ (0, 1] we have, that:

3.2 Classification Performance Measures 57

(i) F ∈ (0, 1],

(ii) F is strictly monotonously increasing in precision and recall.

Proof. Let x := precision and y := recall and we denote F(x, y) as the F -measure is a
function of precision and recall:

F : (0, 1]2 → R .

(i) Then:

F(x, y) = 2 · x · y
x+ y

=
2

1
x
+ 1

y

≤ max
(x,y)∈[0,1]2

2
1
x
+ 1

y

Finding the maximum:

max
(x,y)∈[0,1]2

1
1
x
+ 1

y

,

is equivalent to: (
min

(x,y)∈(0,1]2

1

x
+

1

y

)−1

=
1

2
.

Thus we obtain:

F(x, y) ≤ max
(x,y)∈(0,1]2

2
1
x
+ 1

y

= 1 .

It obviously holds, that:

F(x, y) ≥ 0 ∀ (x, y) ∈ (0, 1]2 ,

as both numerator and denominator are positive functions on (0, 1]2, where 0 cannot
be reached due to a positive numerator for any (x, y) ∈ (0, 1]2.

(ii) Obviously, F(x, y) ∈ C1
(
(0, 1]2

)
. We can derive:

∇F(x, y) =
(2y2

(x+ y)2
,

2x2

(x+ y)2

)T
.

Then for any y ∈ (0, 1] it holds, that:

∂

∂x
F(x, y) = 2y2

(x+ y)2
> 0 ,

and equivalently for any x ∈ (0, 1]:

∂

∂y
F(x, y) = 2x2

(x+ y)2
> 0 .

Thus for any (x, y) ∈ (0, 1]2 and any (x̃, ỹ) ∈ (0, 1]2 with x̃ ≥ x and ỹ ≥ y, where at
least one of the inequalities is strict, we have that:

F(x, y) < F(x̃, ỹ) .

58 3 AN INTRODUCTION TO CLASSIFICATION

Due to (ii) we can say, that: the higher the value of the F -measure, the better we regard
the respective classifier.

Why is it the harmonic mean instead of the arithmetic mean14 that is used to compare
the rates in the F -measure? Ferger (1931) illustrates the reason for this very well: ”If
it is desired to keep constant that factor which is constant in the rates as stated, then
the arithmetic mean should be used: if, on the contrary, the recorded rates make variable
the factor desired to be constant, then the harmonic mean is the correct average to be
employed.”
For the precision we set the true ”1” into relation to the predicted ”1”. For the recall we
set the number of true ”1” into relation to the actual ”1”. Through the harmonic mean
we obtain a measure, which compares the true ”1” to the constant rate (actual ”1! +
predicted ”1”).

Hand and Christen (2018) show, that F -measure can also be formulated as a weighted
arithmetic mean of precision and recall. These weights depend on the classification itself,
i.e. on the cell counts of the corresponding confusion matrix. This is a ”fundamental flaw”
of the F -measure. We decide to still use it as a performance measure for classification
due to its widespread application.

Receiver Operating Characteristics (ROC), Area Under the ROC Curve and
Its Multi-Class Generalization

The following introduction on the receiver operating characteristic (ROC) and the area
under the receiver operating characteristics curve is based on Fawcett (2006) and Hand
and Till (2001).

We can measure the performance of a classification model f : Rd → {0, 1} for a di-
chotomous classification problem with true positive rate (tp rate) or sensitivity and false
positive rate (fp rate) or specificity :

Definition 3.2.3 (true positive rate (tp rate), false positive rate (fp rate)). Let f : Rd →
{0, 1} be a classifier for a dichotomous classification task and let with (cii)i∈[0,1] be its
confusion matrix as defined in Table 3. Then the sensitivity and specificity of f are
defined as:

true positive rate = sensitivity = recall =
c11

c11 + c10
=

true ”1”

actual ”1”
∈ [0, 1] , (3.19)

false positive rate = specificity =
c01

c01 + c00
=

false ”1”

actual ”0”
∈ [0, 1] . (3.20)

As the names already suggest, the true positive rate measures, which percentage of actual
”positives” or ”1” are recognized as ”1” by the classifier. The false positive rate measures
how many ”negative” or ”0” are incorrectly classified as ”positive” or ”1” when comparing

14The arithmetic mean of n observations x1, . . . , xn with n ∈ N is given by: A := 1
n

∑n
i=1 xi.

3.2 Classification Performance Measures 59

to the total number of ”0”. Thus, the tp rate can be viewed as benefit and the fp rate
can be viewed as cost.

The receiver operating characteristics graph plots the true positive rate of a classifier f
against its false positive rate, see Figure 8. It therefore ”depicts relative trade-offs between
benefits (true positives) and costs (false positives)”, Fawcett (2006). Some remarks to the
ROC plot:

Remark 3.2.3.

• One point in the plot corresponds to one classifier, such as the round dot in Figure
8. The corresponding classifier has a tp rate of 80% and a fp rate of 20%.

• A perfect classifier, which predicts all labels correctly, would score a tp rate of 1
and a fp rate of 0. This corresponds to the star-shaped point on Figure 8.

• Obviously, a classifier f1 is better than a classifier f2, if:

tp rate1 ≥ tp rate2 ∧ fp rate1 ≤ fp rate2 ,

with at least one inequality being strict. Informally speaking, f1 is better than f2, if
its point in the ROC plot ”is to the northwest of” f2’s ROC-point, Fawcett (2006).

• A classifier, which was able to gain information on the response Y given the covariate
values X = x in training, should score:

tp rate > fp rate .

It should thus yield a point in the ROC plot lying above the dashed diagonal line
tp rate = fp rate in Figure 8. The latter corresponds to the performance of classi-
fying by random guessing and serves as a benchmark for comparison.

Figure 8: ROC plot: the classifier displayed achieves a true positive rate of 0.8 and a false
positive rate of 0.2.

60 3 AN INTRODUCTION TO CLASSIFICATION

By now we obtained only a single point in the ROC plot depicting the performance of a
classifier f . How do we obtain ROC curves illustrating the performance of f?

In most cases the classifier at hand is not a discrete classifier outputting a class labels,
but it is a probabilistic classifier: its predictions are posterior probabilities of the label
given the predictor values:

p̂(x) := P̂ (Y = 1 |X = x) = f̂(x) ∈ [0, 1] .

To obtain labels from the predictions p̂(x) of f we need to threshold the posterior prob-
ability estimates with a threshold value t ∈ [0, 1]:

ŷ :=

{
1 if p̂(x) ≥ t ,

0 else .

For each threshold value t ∈ [0, 1] we obtain so to say a different version of f , which we
call f(t) with a different set of predictions:

f(t)(x) :=
(
1{x≥t} ◦ f̂

)
(x) = 1{x≥t}

(
f̂(x)

)
We obtain a ROC curve for a classifier f by moving the threshold t from 0 to 1 and com-
puting the resulting tp and fp rate of f(t) for each t ∈ [0, 1]. An algorithm for efficiently
computing ROC curves can be found in Fawcett (2006).

The area under the ROC curve (AUC) is a one-number-summary of the ROC curve and
therefore enables to directly compare two classifiers f1 and f2. An algorithm for computing
the AUC can again be found in Fawcett (2006). Some remarks on the AUC:

Remark 3.2.4.

• As the ROC curve has the unit cube [0, 1]2 as support, the AUC takes on values
between 0 and 1.

• A perfect classifier, which classifies all observation correctly for all t ∈ [0, 1] achieves
an AUC = 1.

• A classifier is considered better than random guessing, if it scores an AUC ≥ 0.5,
which is equal to the AUC of classification by random guessing.

• For randomly chosen observation (xi, yi) and (xj, yj) with yi = ”1” and yj = ”0”
the AUC of a classifier f is equivalent to:

AUC = P (p(xi) > p(xj)) ,

with p(xi) = f(xi) and p(xj) = f(xj), Fawcett (2006).

3.2 Classification Performance Measures 61

How can we generalise the AUC to a performance measure for a multi-class classification
problem?
Let C be the set of all classes of a classification problem, e.g. C = [K] with K ∈ R. The
basic idea behind the multi-class generalization of the AUC by Hand and Till (2001) is
to compare all pairs of classes in C with the of the AUC and average the resulting values
over the number of distinct class pairs existing. The resulting measure, which Hand and
Till (2001) call M , is insensitive to class distribution. Fawcett (2006) reformulates it as:

Definition 3.2.4 (multi-class AUC (mAUC)). Let C be the set of classes of a multi-class
classification problem. Then the multi-class AUC (mAUC) is defined as:

mAUC :=
2

|C|(|C| − 1)

∑
{ci,cj}∈C

AUC(ci, cj) (3.21)

with AUC(ci, cj) the AUC of a dichotomous classification problem only involving classes
ci ∈ C and cj ∈ C.

In our analyses we use the R-package pROC by Robin et al. (2011) for the computation of
the AUC and the mAUC.

62 4 SYNTHETIC DATA FOR CLASSIFICATION GENERATED WITH VINES

4 Methodology: Synthetic Data for Classification Gen-

erated with Vines

Usually, the task is to produce a simulated data set, which resemble the true one as much
as possible, but preserves privacy. We turn the problem to a more specific context. We
assume, that the purpose of the analysis to be done on the true and on the synthetic data
set is classification. This means, that the data have a label per unit or patient, which is
used for classification. Because of this specific context, we are interested in producing a
synthetic data set, which allows the user to estimate a classification rule from the syn-
thetic data, which is similar to the classification rule, which would be estimated on the
true data. We also want, that the classifier trained on this synthetic data can reproduce
well the predictive performance of the classifier trained on the true data set. Because we
want the synthetic data to exhibit the same dependence structure of the true data, as
this is needed in our case, we believe that vine copulas can be appropriate to generate
synthetic data from a true data set.

We restrict ourselves to a setup, where the true data consist of a data matrix Xtrue ∈ Rn×d

of quantitative random variables Xtrue, i,j, i ∈ [n], j ∈ [d] and an ordinal response vector
Y true ∈ {1, . . . , K}n:

Xtrue :=

X11, true X12, true · · · X1d, true
...

...
. . .

...
Xn1, true Xn2, true · · · Xnd, true

 =

XT
1, true
...

XT
n, true

 ∈ Rn×d , XT
i, true ∈ Rd, i ∈ [n] ,

Y true :=

Y1, true
...

Yn, true

 ∈ {1, . . . , K}n , n, d,K ∈ N.

Each row XT
true, i of Xtrue can for example be interpreted as patient i in a clinical study: it

captures the patient’s features Xtrue, i,1, . . . , Xtrue, i,d. The label Ytrue, i, which is assigned
to patient i, gives his or her health status, for example it indicates the severity of patient
i’s disease from mild, i.e. 1, to life-threatening, i.e. K.

Let Ftrue be a (d+ 1)-dimensional probability distribution function. We assume, that:(
XT

1, true Y1, true

)
, . . . ,

(
XT

n, true Yn, true

) i.i.d.∼ Ftrue . (4.1)

From Xtrue and Y true we generate the synthetic data xsynth ∈ Rm×d with synthetic response
ysynth ∈ Rn, where m ∈ N can be possibly different from n:

xsynth :=

x11, synth x12, synth · · · x1d, synth
...

...
. . .

...
xm1, synth xm2, synth · · · xmd, synth

 ∈ Rm×d ,

ysynth :=

y1, synth
...

ym, synth

 ∈ {1, . . . , K}m .

4.1 Generating Synthetic Data with Vines 63

4.1 Generating Synthetic Data with Vines

We aim to produce synthetic data xsynth and ysynth such that a classifier trained on(
xsynth ysynth

)
learns a similar rule to the one it would have learned on

(
Xtrue Y true

)
.

Let
(
Xtrue Y true

)
take on observed values

(
xtrue ytrue

)
:

(
xtrue ytrue

)
:=

x11, true x12, true · · · x1d, true y1, true
...

...
. . .

...
...

xn1, true xn2, true · · · xnd, true yn, true

 ,

where Y true ∈ {1, . . . , K}n is a discrete random vector. We first fit a vine copula model
F̂true to the true data

(
xtrue ytrue

)
to approximate Ftrue. The synthetic data

(
xsynth ysynth

)
are then generated by sampling from F̂true. We do not seek the model F̂true, that resembles
Ftrue best. Our goal is to capture the ”important” characteristics of

(
Xtrue Y true

)
in F̂true,

that let a classifier learn a ”good” classification rule on the synthetic data. Subsection
4.2 explains, how the quality of the classification rule estimated on the synthetic data is
assessed.
As illustrated in Figure 9 the synthetic data are generated in two steps:

(1) a vine copula model F̂true is fit to
(
xtrue ytrue

)
∈ Rn×(d+1),

(2)
(
xsynth ysynth

)
∈ Rm×(d+1) is sampled from F̂true.

Figure 9: Generating synthetic data with vines illustrated in two steps.

A vine copula is a very flexible model: It allows to model the joint dependence sepa-
rately from the marginals. The marginal distribution families again are not tied to the
family of the joint distribution chosen. This is a major advantage over other graphical
models such as Bayesian networks. For those, both joint and marginal distributions are
typically Gaussian. Moreover a vine copula does not require conditional independence
between pairs of random variables, like Markov trees do. Instead it also allows to model
bivariate conditional dependence. Hence it can capture various dependence structures
between pairs of random variables. In sum, a vine copula can fit complex data well in
many situations.

64 4 SYNTHETIC DATA FOR CLASSIFICATION GENERATED WITH VINES

distribution
samples from

description
distribution

m
e
th

o
d
o
lo
g
y

Ftrue

(
xtrue ytrue

) - see Equation (4.1)

- Ftrue is the distribution we assume to underlie

the true data

F̂true

(
xsynth ysynth

)
- see Figure 9

- F̂true is the distribution we sample the synthe-

tic data from

- F̂true is an estimate of the distribution of the

true data produced by a vine copula model

Table 4: An overview of the distributions used in the methodology of this section.

Depending on the properties of Ftrue and the structure of
(
Xtrue Y true

)
, it can well be,

that some vine copula models are more appropriate to capture the relation between Yi, true

and XT
i, true than others.

In this project we will experiment in Step (1) with several vine types, in order to study,
which of them is best at generating synthetic data for training a classifier, that is similar
to the one trained on the true data. The type of classifier chosen may further influence
which vine estimation method performs best. We compare setups 1 to 3 of Table 5.

setup
R-vine tree sequence

pair copula estimation
selection

1
estimated with Dißmann

non-parametric: tll (transformation kernel)
2 parametric: mle (maximum-likelihood estimation)
3 mixed

Table 5: Vine copula estimation methods for synthetic data generation.

When fitting the vine copula model, the R-vine tree sequence V is selected by Dißmann’s
algorithm by Dissmann et al. (2013), which is shortly covered in Subsection 2.3.

The dependence between pairs of random variables, which is captured in the pair copulas,
can be estimated non-parametrically, parametrically and using both approaches together.
For non-parametric estimation transformation kernels, which were introduced on page 30
in Subsection 2.3, are used. For the parametric alternative we use the maximum likelihood
estimator, mle, which can be found in Subsection 2.3 as well. It is applicable for the pair
copula families independence, Gaussian, Frank, Joe, Clayton, Gumbel, Student’s t, BB1,
BB6, BB7 and BB8, which are introduced in Subsection 2.2. Then the copula family is
chosen by the Akaike information criterion (AIC) of Akaike (1998), see Equation 2.54.

4.1 Generating Synthetic Data with Vines 65

The inversion of Kendall’s τ , itau, could also be used as parameter estimation method
for pair copulas with one or less parameters (i.e. independence, Gaussian, Frank, Joe,
Clayton, Gumbel and central Student’s t). However, it is less precise, which is why we
choose to use maximum likelihood estimation instead.

Furthermore it is possible to repeatedly sample from F̂true. That is why we can execute
Step (2) several times and by this obtain psynth ∈ N synthetic data sets

(
x (l)
synth y

(l)
synth

)
, l ∈

[psynth] from one true data set
(
xtrue ytrue

)
. Therefore we can train a chosen type of clas-

sifier on all psynth synthetic data sets and assess its predictive performance on true data
several times. Hence we can construct confidence intervals.

The procedure of generating
(
x (l)
synth y

(l)
synth

)
, l ∈ [psynth] from the data set

(
xtrue ytrue

)
is

summarized in Algorithm 3.

The sample quantile function Q̂(·) is defined in Equation 2.4.1 of Subsection 2.4. For
copula data15 of the covariates sample quantiles of type 8 are used, whereas for copula
data of the response variable we use quantiles of type 1, see Remark 2.4.1.

15The term copula data is used to speak of data on the copula scale.

66 4 SYNTHETIC DATA FOR CLASSIFICATION GENERATED WITH VINES

Algorithm 3: Algorithm for producing
(
x (l)
synth y

(l)
synth

)
, l ∈ [psynth] from(

xtrue ytrue

)
Input:

(
xtrue ytrue

)
∈ Rn×(d+1), psynth, m, vine model specification

Output:
(
x (l)
synth y

(l)
synth

)
∈ Rm×(d+1), l ∈ [psynth]

1 for j ∈ {1, . . . , d} do
2 for i ∈ {1, . . . , n} do
3 uij, true ← 1

n+1

∑n
k=1 1{xkj, true ≤ xij, true}: compute pseudo-observations on

copula scale

4 end

5 end
6 for i ∈ {1, . . . , n} do
7 uYi, true ← 1

n

∑n
k=1 1{yk, true ≤ yi, true}: compute pseudo-observations on copula

scale

8 end

9 Utrue ←

u11, true u12, true · · · u1d, true uY1, true
...

...
. . .

...
...

un1, true un2, true · · · und, true uYn, true

10 v̂ine← vine

(
Utrue, setup

)
: fit vine copula model of chosen vine estimation

method to pseudo observations
11 for l ∈ {1, . . . , psynth} do
12 Sample m observations (u

(l)
ij, synth)i∈[m], j∈[d+1] ∼ v̂ine

13 for j ∈ {1, . . . , d} do
14 for i ∈ {1, . . . ,m} do
15 x

(l)
ij, synth ← Q̂(u

(l)
ij, synth)

16 end

17 end
18 for i ∈ {1, . . . ,m} do
19 y

(l)
i, synth ← Q̂(u

(l)
i(d+1), synth)

20 end

21
(
x (l)
synth y

(l)
synth

)
←

x
(l)
11, synth x

(l)
12, synth · · · x

(l)
1d, synth y

(l)
1, synth

...
...

. . .
...

...

x
(l)
m1, synth x

(l)
m2, synth · · · x

(l)
md, synth y

(l)
m, synth

22 end

23 return
(
x (l)
synth y

(l)
synth

)
∈ Rm×(d+1), l ∈ [psynth]

4.2 Assessing the Quality of Synthetic Data 67

4.2 Assessing the Quality of Synthetic Data

Did we manage to produce synthetic data
(
x (l)
synth y

(l)
synth

)
, l ∈ [psynth] with vines, such

that a classifier trained on
(
x (l)
synth y

(l)
synth

)
learns a similar rule to the one it would have

learned on data
(
xtrue ytrue

)
?

To answer this question we first split true and synthetic data into training and test data
(typically 70% / 30%), and denote them by:(

xtrue ytrue

)
train

,
(
xtrue ytrue

)
test

,
(
x (l)
synth y

(l)
synth

)
train

,
(
x (l)
synth y

(l)
synth

)
test

, l ∈ [psynth] ,

where we will in the following use the notation:(
x train
true ytrain

true

)
:=
(
xtrue ytrue

)
train

,
(
x test
true y

test
true

)
:=
(
xtrue ytrue

)
test

,(
x (l), train
synth y

(l), train
synth

)
:=
(
x (l)
synth y

(l)
synth

)
train

,
(
x (l), test
synth y

(l), test
synth

)
:=
(
x (l)
synth y

(l)
synth

)
test

equivalently.

Then we train a classifier g(·) on both
(
xtrue ytrue

)
train

and each
(
x (l)
synth y

(l)
synth

)
train

,
l ∈ [psynth]:

ĝtrue(·) := g
((

xtrue ytrue

)
train

, θ̂true

)
, ĝ

(l)
synth(·) := g

((
x (l)
synth y

(l)
synth

)
train

, θ̂
(l)

synth

)
.

Afterwards we compute a prediction of ytest
true with ĝtrue(·) and ĝ

(l)
synth(·) on x test

true:

ŷtest
true := ĝtrue(x test

true), ŷ
(l), test
synth := ĝ

(l)
synth(x

test
true) ,

Notice that we use the same test data for ytest
true and ŷ

(l), test
synth , l ∈ [psynth], which here can

be thought as the new patients who need to be classified.
We compare the predictions ŷtest

true and ŷ
(l), test
synth with m(·), a classification performance

measure, which is specified in the following, (i) directly to each other as well as (ii)
through the comparison to the true labels ytest

true:

(i) m(ŷtest
true, ŷ

(l), test
synth) , (ii) |m(ytest

true, ŷ
test
true)−m(ytest

true, ŷ
(l), test
synth) | .

If the vine copula model is able to capture those characteristics of
(
xtrue ytrue

)
appropri-

ately, which induce a good classification, we assume, that (i) will score well according to
the scale of the chosen m(·) and that (ii) will take on small values.

As an intuition, the comparison through m(·) enables us to set the performance of the
classifier on the synthetic data into perspective. Namely, if the classification task was
already hard on the true data, it will be similarly hard or even harder on the synthetic
data. This intuitively makes sense because of the error we make on the way from true
to synthetic data. Here we first have to select a model and then estimate its parame-
ters in order to sample synthetic data from the model. In these two steps we introduce
an error consisting of model error (selecting the wrong model) and estimation error (for

68 4 SYNTHETIC DATA FOR CLASSIFICATION GENERATED WITH VINES

the selected model: the deviation of the estimated parameter from the parameter val-
ues, which would be estimated from an infinite amount of data). Thus the comparison
of classification performance measures, as proposed above, lets us see a more complete
picture. Summarized, we focus not on properties of the synthetic data themselves, but
on the performance of the procedures we want to use the data for.

Performance Measures

Possible choices of m(·) are:
(a) confusion matrix: We compute the confusion matrix introduced on page 53 for

dichotomous classification problems, i.e. K = 2. The component value mkl of the
confusion matrix M = (mkl)k,l∈[K] is given by:

mkl :=
∣∣{i ∈ [n] | (ŷtesti, true, ŷ

(l), test
i, synth) = (k, l), k, l ∈ [K]}

∣∣ . (4.2)

Thus
∑

i∈[K] mii, the sum of diagonal elements of M , gives the number of pairs

(ŷtesti, true, ŷ
(l), test
i, synth), where the synthetic prediction is equal to the prediction from the

classifier trained on the true data.

(b) F-measure: For dichotomous classification problems we also compute the F -
measure, introduced on page 54 and following of Subsection 3.2.

(c) positive relative mean error (ME+
rel) and negative relative mean error

(ME−
rel): The sign of (ŷ

(l), test
i, synth− ŷtesti, true) tells us, whether the classifier trained on the

synthetic data over- or underestimates the severity of patient i’s disease compared
to the classifier trained on the true data. This information can be important for
researchers, who want base the patient’s further treatment on the severity score ob-
tained from the synthetically trained classifier. Hence instead of looking at absolute
differences, we also take the positive and negative relative error (ME+

rel, ME−
rel) into

consideration for the quality assessment of the synthetic data. It only makes sense
to calculate them for multinomial classification problems. Let:

B+
l := {i ∈ [n] | ŷtesti, true < ŷ

(l), test
i, synth} , (4.3)

B−
l := {i ∈ [n] | ŷtesti, true > ŷ

(l), test
i, synth} , (4.4)

be the sets of indices of synthetic predictions ŷ
(l), test
i, synth, which over- or underestimate

ŷtesti, true respectively. Then the positive relative mean error:

ME+
rel(ŷ

test
true, ŷ

(l), test
synth) :=

1

|B+
l |
∑
i∈B+

l

|ŷtesti, true − ŷ
(l), test
i, synth|

ŷtesti, true

, (4.5)

gives the average share by which ŷtesti, true was overestimated and the negative relative
mean error:

ME−
rel(ŷ

test
true, ŷ

(l), test
synth) :=

1

|B−
l |
∑
i∈B−

l

|ŷtesti, true − ŷ
(l), test
i, synth|

ŷtesti, true

, (4.6)

4.2 Assessing the Quality of Synthetic Data 69

gives the average percentage by which ŷtesti, true was underestimated in the synthetic
data set l.

(d) multi-class AUC (mAUC): We compare the multi-class generalization of the
area under the receiver operating curve (mAUC) of Definition 3.21, see page 58 and
following, in two ways:

(i) We compute the mAUC of ŷ
(l)
synth with respect to ŷtrue to directly compare the

predictions:

mAUC
(l)
dir := m(ŷtest

true, ŷ
(l), test
synth) = mAUC(ŷtest

true, ŷ
(l), test
synth) , (4.7)

(ii) Additionally, we compute the mAUC of ŷtest
true with respect to ytest

true and the

mAUC of ŷ
(l), test
synth with respect to ytest

true and compare the two:

mAUC
(l)
indir := |mAUC(ytest

true, ŷ
test
true)−mAUC(ytest

true, ŷ
(l), test
synth)| . (4.8)

Figure 10 illustrates, how the quality of the synthetic data is assessed.

Rather than focusing on the best predictive performance possible, it could be more im-
portant for researches, who use the synthetic data to learn a classification rule, that this
synthetic classification rule allows a similar interpretation as the classification rule esti-
mated on the true data. In terms of for example a logistic regression with Lasso this
would mean, that the β-coefficients of the synthetic classification model are similar in
their values to the ones of the model trained on the true data. This implies then, that on
both true and synthetic data similar features impact the response with similar strength.
Hence the synthetic model also enables a meaningful interpretation. For this reason we
introduce a second measure to compare synthetic and true data through classification,
namely by performance of variable selection.

Measures for Variable Selection Performance

Recall from Subsection 3.1, that the multinomial logistic regression model is given by
Equations (3.5) and (3.6). Let the estimated logistic Lasso models on

(
xtrue ytrue

)
train

and
(
x (l)
synth y

(l)
synth

)
train

, l ∈ [psynth] be as in Equations (3.7) and (3.8) with covariates
xj, j ∈ [d], that have been standardized before fitting as shown in Subsection 3.1. For
both true and synthetic training data β′

jk is the coefficient of the standardized covariate

X ′
j for Y = k. On this basis we can compare β̂′

jk, true and β̂
(l)
jk, synth

′ and see, whether they
allow a similar interpretation.

(a) Therefore the average distance of the logistic regression β-coefficients is computed:

Dist(β̂true, β̂synth) :=
1

psynth ·K · d

psynth∑
l=1

K∑
k=1

d∑
j=1

∣∣β̂′
jk, true − β̂

(l)
jk, synth

′∣∣ . (4.9)

The closer (4.9) is to 0, the better we regard the performance in variable selection

of the classification rule estimated data set
(
x (l)
synth y

(l)
synth

)
train

, l ∈ [psynth].

70 4 SYNTHETIC DATA FOR CLASSIFICATION GENERATED WITH VINES

Figure 10: Assessing the quality of the synthetic data produced.

(b) It is also interesting to see, whether the logistic Lasso considered a chosen covariate
less (or more) influential in the synthetic data as in the true data. In other words we

are interested in the cases, where for a feature Xj we have β̂
(l)
j, synth

′ = 0 whereas it is

β̂′
j, true ̸= 0 or the other way around. That is why we count the cases of discordant

β-pairs and average them over psynth. The average number of discordant β-pairs
obtained is then compared to the total number of regularized β-coefficients, which
is K · d for multinomial logistic regression, see ??. In the binomial case the total
number of regularized β-coefficients is equal to d.

4.2 Assessing the Quality of Synthetic Data 71

Discor(β̂true, β̂synth) :=
1

psynth

psynth∑
l=1

K∑
k=1

d∑
j=1

1{1,−1}

(
1{0}

(
β̂′
jk, true

)
− 1{0}

(
β̂
(l)
jk, synth

′)) ,

(4.10)

with 1(·) the indicator function.

Important for the comparison of the classification performance as well as the variable
selection performance is, that on

(
xtrue ytrue

)
and each

(
x (l)
synth y

(l)
synth

)
, l ∈ [psynth] we

use the same classifier and the same parameter tuning method. As classifiers we choose
logistic regression with Lasso with penalty parameter s tuned by 10-fold cross-validation.
Note, that for the calculation of Dist(β̂true, β̂synth) and Discor(β̂true, β̂synth) the intercept

β̂0k is excluded.

72 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

5 Simulation Study: Parametrically Simulated True

Data

Overview

We apply the methodology introduced in Section 4 to data. We do this to answer the
question:

Given a ground truth data set with specific properties and structure,
which vine copula model is most appropriate to produce synthetic data,
on which the classification rule estimated is similar to the classification
rule estimated on the ground truth data? Can we even formulate recom-
mendations for the vine copula model depending on the specific classifier
used?

In Section 5 we use apply our methodology on a simulated true data set
(
xtrue ytrue

)
.

We obtain
(
xtrue ytrue

)
by sampling the data

(
xtrue ỹbase

)
from a distribution denoted

by F̃ , which we specify beforehand. The response ytrue is obtained by perturbing ỹbase,
the response vector: ytrue is a random forest prediction of ỹbase, the original sample from

F̃ . So
(
xtrue ytrue

)
is obtained by sampling from the distribution F̃ and perturbing the

response. In the following we will use the term random forest perturbation to refer to the
random forest classifier, that is applied to produce a prediction of the original sample of
the response, which was obtained from F̃ . This prediction is denoted by ytrue. It is the
vector of response values, which we work with in the following as true response values.
Taken together, we can control the relationship between quantitative XT

i, true and ordinal

Yi, true, i ∈ [n] through F̃ and the parameters of the perturbing random forest. We aim to
find out, which characteristics of

(
xtrue ytrue

)
and which type of classifier16 used promote

which vine copula model for synthetic data generation. Therefore we tweak the param-
eters of F̃ and the response generating random forest perturbation. Then we analyse
the effect this has on the performance of the classifier ĝ

(l)
synth(·) on x test

true compared to the
performance of ĝtrue(·) on x test

true for each l ∈ [psynth].

5.1 Simulation of
(
xtrue ytrue

)
We simulate the true data

(
xtrue ytrue

)
∈ Rn×(d+1). They are obtained from a data set

denoted by
(
x̃base ỹbase

)
by perturbing the response values and setting xtrue := x̃base.

The data
(
x̃base ỹbase

)
themselves are sampled from the (d + 1)-dimensional distribution

F̃ . It is the unique distribution, that realizes the R-vine specification on d + 1 elements
(F̃ , Ṽ , B̃)17, which will be explicitly given in the subsequent. Then a random forest
perturbation is added on ỹbase to produce ytrue. In other words: ytrue are predictions of

16It is not to confuse with the random forest classifier used to perturb the response ytrue of the true
data. By this we mean the classifier, that will be trained with synthetic data to deliver a classification
rule, which is similar to the rule estimated on the true data.

17For F̃ to be the unique distribution, that satisfies (F̃ , Ṽ, B̃) as stated in Theorem 2.3.2, we ensure, that
the R-vine specification has the following properties: the pair copulas satisfy the simplifying assumption

5.1 Simulation of
(
xtrue ytrue

)
73

ỹbase produced by a random forest classifier. The latter is trained beforehand on the data(
x̃rf ỹrf

)
. As

(
x̃base ỹbase

)
, the data

(
x̃rf ỹrf

)
are sampled from F̃ .

Thus
(
x̃rf ỹrf

)
can be seen as a mere training data set for the random forest classifier, that

perturbs ỹbase to obtain ytrue. As ytrue should be different from ỹbase, but its dependence

on xtrue should remain similar, we sample
(
x̃rf ỹrf

)
from F̃ as we did for

(
x̃base ỹbase

)
.

After the random forest has been trained on
(
x̃rf ỹrf

)
, the data set will not be used again.

So as a first layer we have the data sets
(
x̃base ỹbase

)
and

(
x̃rf ỹrf

)
. They are both

observations of the random matrix
(
X̃ Ỹ

)
:

(
X̃ Ỹ

)
:=

X̃11 X̃12 · · · X̃1d Ỹ1
...

...
. . .

...
...

X̃n1 X̃n2 · · · X̃nd Ỹn

 =

X̃
T

1 Ỹ1
...

...

X̃
T

n Ỹn

 , (5.1)

X̃
T

i ∈ Rd , Ỹi ∈ {1, 2, 3, 4, 5} , i ∈ [n] , (5.2)

(
X̃

T

1 Ỹ1

)
, . . . ,

(
X̃

T

n Ỹn

)
i.i.d.∼ F̃ , (5.3)

(
x̃base ỹbase

)
=

x̃T
1, base ỹ1, base
...

...

x̃T
n, base ỹn, base

 ∼ F̃ ,
(
x̃rf ỹrf

)
=

x̃T
1, rf ỹ1, rf
...

...

x̃T
n, rf ỹn, rf

 ∼ F̃ . (5.4)

How
(
x̃base ỹbase

)
and

(
x̃rf ỹrf

)
are sampled from F̃ is illustrated in 5.1.

We then obtain
(
xtrue ytrue

)
from

(
x̃base ỹbase

)
and

(
x̃rf ỹrf

)
by setting:

f̂RF (·) := fRF

((
x̃rf ỹrf

)
, θ̂RF

)
,

xT
i, true := x̃T

i, base , yi, true := ̂̃yi, base = f̂RF

(
x̃T
i, base

)
, i ∈ [n] ,

(
xtrue ytrue

)
:=

xT
1, true y1, true
...

...
xT
n, true yn, true

 ∈ Rn×(d+1) ,

where fRF (·) denotes a random forest classifier. The steps of producing
(
xtrue ytrue

)
are

illustrated in Figure 11. Table 6 gives an overview of the distributions used in the method-
ology in Section 4 and in the simulation study of this section.

Here we apply the non-linear transformation f̂RF (·) to obtain ytrue for the following reason:

and have densities.

74 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

distribution
samples from

description
distribution

m
e
th

o
d
o
lo
g
y

Ftrue

(
xtrue ytrue

) - see Equation (4.1)

- Ftrue is the distribution we assume to underlie

the true data

F̂true

(
xsynth ysynth

)
- see Figure 9

- F̂true is the distribution we sample the synthe-

tic data from

- F̂true is an estimate of the distribution of the

true data produced by a vine copula model

si
m
u
la
ti
o
n

st
u
d
y

F̃

- see Equations (5.1) to (5.4) and page 72(
x̃base ỹbase

)(h)
, - F̃ is the distribution that realizes the R-vine(

x̃rf ỹrf

)(h)
, specification on d+ 1 elements (F̃ , Ṽ , B̃)

h ∈ [pbase] - perturbed samples of F̃ are simulated true

data
(
xtrue ytrue

)
used in the simulation study

Table 6: An overview of the distributions used in the methodology, Section 4 and in the
simulation study of this section.

• Assume we directly set
(
xtrue ytrue

)
:=
(
x̃base ỹbase

)
and do not perform a transfor-

mation. We expect a vine copula to capture the relation between X̃
T

i, base and Ỹi, base

quite well, as their joint distribution F̃ is itself merely governed by the R-vine spec-
ification (F̃ , Ṽ , B̃). Thus we expect the synthetic data generated from

(
xtrue ytrue

)
to be very similar to

(
xtrue ytrue

)
. If this is the case, a classifier, e.g. the logistic

Lasso classifier, trained on the synthetic data will learn a very similar rule to a
classifier trained on

(
xtrue ytrue

)
. However, this tells us very little about how well

vine copulas in general are suited to produce synthetic data for classification. The
task is posed too easy.

• Also a data setup, where the data are merely generated from a vine copula model,
is rather artificial with regard to real world data. In order to create more realistic
data and gain more knowledge from the simulation study, we introduce an error
through the non-linear transformation obtained by a random forest.

There are two things we have to note here.

Firstly, drawing only one sample
(
x̃base ỹbase

)
and one sample

(
x̃rf ỹrf

)
from F̃ to produce

true data could bias our analysis: We could be lucky and end up with samples
(
x̃base ỹbase

)

5.1 Simulation of
(
xtrue ytrue

)
75

Figure 11: An illustration how the true data is produced.

and
(
x̃rf ỹrf

)
, such that the relation between the features in

(
x̃base ỹbase

)
and the predicted

response ytrue, which is given by the random forest classifier trained on data
(
x̃rf ỹrf

)
,

is captured very well by the vine we use to generate synthetic data. Or it could be the
other way around and our vine copula model performs very poorly on the sampled and
perturbed true data due to ”poor” samples

(
x̃base ỹbase

)
and

(
x̃rf ỹrf

)
.18 To level out this

randomness we do not draw one but pbase ∈ N samples of
(
x̃base ỹbase

)
and

(
x̃rf ỹrf

)
from

the distribution F̃ :(
x̃base ỹbase

)(h) ∼ F̃ ,
(
x̃rf ỹrf

)(h) ∼ F̃ , h ∈ [pbase] ,

where we use the notation
(
x̃ ỹ
)(∗)

:=
(
x̃ (∗) ỹ(∗)) for simplicity, compare to the notation

in Section 4.

Secondly, the predictability of Yi, true through XT
i, true, i ∈ [n] is based on the structure

of F̃ . The amount of perturbation added on Yi, true, i ∈ [n] through the random forest

influences this predictability on top of F̃ as a second layer. For a fixed h ∈ [pbase] we can

therefore generate not one but ptrue ∈ N true data sets from the samples
(
x̃base ỹbase

)(h)
and(

x̃rf ỹrf

)(h)
generated from F̃ . By using different parameter configurations of the random

forest perturbation we can produce several predictions y
(h, r)
true , r ∈ [ptrue]. Hence we obtain

several true data sets from one sample of
(
x̃base ỹbase

)(h)
and

(
x̃rf ỹrf

)(h)
respectively:

f̂
(h, r)
RF (·) := fRF

((
x̃rf ỹrf

)(h)
, θ̂

(h, r)

RF

)
,

18We do not make any statement about what ”good” or ”poor” samples
(
x̃base ỹbase

)
and

(
x̃rf ỹrf

)
mean in this case.

76 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

x
T (h, r)
i, true := x̃

T (h)
i, base , y

(h, r)
i, true := ̂̃yi, base

(h, r)
= f̂

(h, r)
RF

(
x̃
T (h)
i, base

)
, i ∈ [n] ,(

xtrue ytrue

)(h, r)
, h ∈ [pbase], r ∈ [ptrue] .

By using our methodology on the different simulated
(
xtrue ytrue

)(h, r)
, we can hence anal-

yse, which vine copula model suits a certain configuration of
(
xtrue ytrue

)(h, r)
best to

generate (in our sense) good synthetic data.

For each true data set
(
xtrue ytrue

)(h, r)
, h ∈ [pbase], r ∈ [ptrue] we then generate psynth

synthetic data sets
(
xsynth ysynth

)(h, r, l)
, l ∈ [psynth] as described in Subsection 4.1.

The indices and symbols used are summarized below in Table 7. Table 8 additionally
gives an overview of the size of the data sets used. Figure 12 sketches the links between
the different data sets.

Figure 12: An overview of the different data sets used in Subsection 5

Summarized, we specify F̃ to sample
(
x̃base ỹbase

)(h)
and

(
x̃rf ỹrf

)(h)
, h ∈ [pbase]. After

that for each r ∈ [ptrue] we fit f̂
(h, r)
RF (· , θ̂

(h, r)

RF) to
(
x̃rf ỹrf

)(h)
and apply it to

(
x̃base ỹbase

)(h)
to finally obtain

(
xtrue ytrue

)(h, r)
. These two steps are further elaborated below.

5.1 Simulation of
(
xtrue ytrue

)
77

Index/Symbol Range/Value Description

n n = 500 number of observations stored in the data matrices

d d = 100 number of covariates Xj, j ∈ [n]

pbase pbase = 10 number of data sets
(
x̃base ỹbase

)(h)
and(

x̃rf ỹrf

)(h)
, h ∈ [pbase] sampled from F̃

ptrue ptrue = 7 number of true simulated data sets
(
xtrue ytrue

)(h, r)
r ∈ [ptrue] produced from

(
x̃base ỹbase

)(h)
psynth psynth = 15 number of synthetic data sets

(
xsynth ysynth

)(h, r, l)
l ∈ [psynth] produced for each true data set(
xtrue ytrue

)(h, r)
i i ∈ [n] row index of data matrices indexing observations

j j ∈ [d] column index of data matrices indexing

covariates Xj

h h ∈ [pbase] index for base data sets
(
x̃base ỹbase

)(h)
r r ∈ [ptrue] index for simulated true data sets

(
xtrue ytrue

)(h, r)
under a random forest specification r

l l ∈ [psynth] index for synthetic data sets produced from

one true data set
(
xsynth ysynth

)(h, r, l)
Table 7: Table of symbols and indices.

Sampling
(
x̃base ỹbase

)(h)
and

(
x̃rf ỹrf

)(h)
from F̃ :

Recall the following:

• We set: (
X̃

T

i Ỹi

)
∼ F̃ ∀i ∈ [n] .

• Here F̃ is the unique distribution, which realizes the R-vine specification (F̃ , Ṽ , B̃).

• The data sets
(
x̃base ỹbase

)(h)
and

(
x̃rf ỹrf

)(h)
, h ∈ [pbase] are both realizations of(

X̃
T

i Ỹi

)
∼ F̃ ∀i ∈ [n] with:

–
(
x̃base ỹbase

)(h)
used as a basis for

(
xtrue ytrue

)(h, r)
, h ∈ [pbase], r ∈ [ptrue],

–
(
x̃rf ỹrf

)(h)
used to train the perturbing random forest

f̂
(h, r)
RF (·) := fRF

((
x̃rf ỹrf

)(h)
, θ̂

(h, r)

RF

)
for obtaining y

(h, r)
true .

78 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

Data set and dimension Description(
x̃base ỹbase

)(h) ∈ R500×101, data set, of which the true data is a version

h ∈ [10](
x̃rf ỹrf

)(h) ∈ R500×101, data set used to train the random forest classifier,

h ∈ [10] which is used to perturb ỹ
(h)
base(

xtrue ytrue

)(h, r) ∈ R500×101, simulated true data set, on which we use the

h ∈ [10], r ∈ [7] methodology introduced in Section 4(
xsynth ysynth

)(h, r, l) ∈ R500×101, synthetic data set produced from
(
xtrue ytrue

)(h, r)
,

h ∈ [10], r ∈ [7], l ∈ [15] on which a classifier will be trained

Table 8: Table indicating dimensions of data sets used.

So through the R-vine specification (F̃ , Ṽ , B̃) we specify F̃ , from which we sample
(
x̃base ỹbase

)(h)
and

(
x̃rf ỹrf

)(h)
, h ∈ [pbase] through the following steps:

(a) Sampling copula data:

First we sample copula data from (I, Ṽ , B̃), where the symbol I := (U [0, 1], . . . , U [0, 1])
denotes the vector of uniform distributions on [0, 1]. This is done as shown in Sub-
section Simulating from Regular Vine on page 32. Therefore we specify (1) the

R-vine tree sequence Ṽ and (2) set of pair copulas B̃.

(b) Transform copula data of covariates to original scale:
For this we then apply the inverse of the corresponding marginal distribution, i.e.
the respective quantile function, to each covariate. Therefore (3) the vector of

marginal distributions F̃ is given.

(c) Transform copula data of response to original scale through thresholding:
As a last step we obtain the observations of the response variable through thresh-
olding the corresponding copula data:

Ỹi := k , if ũi,(d+1) ∈ [
k − 1

K
,
k

K
] , k ∈ [K] .

We set K = 5.

We give (1) the R-vine tree sequence Ṽ , (2) the set of pair copulas B̃ and (3) the vector

of marginal distributions F̃ :

(1) R-vine tree sequence Ṽ:
We choose Ṽ to be a star shaped C-vine with root nodes:

R :=
{
Ỹi, (Ỹi, X̃id), (Ỹi, X̃id; Ỹi),

}
∪
{
(Ỹi, X̃ij; X̃i(j+1), . . . , X̃id, Ỹi) | j ∈ [d− 1]

}
.

(5.5)

5.1 Simulation of
(
xtrue ytrue

)
79

– Why?
The reason for this is, that we want to enforce the response Ỹi to depend on

(some of) the covariates X̃ij, j ∈ [d]. This then allows to predict Ỹi from X̃
T

i ,
which makes a classification task meaningful.

– How does it work?
Through the C-vine structure of Ṽ together with the root nodes given in R
we can directly govern the pairwise dependence between Ỹi and each covariate
X̃ij, j ∈ [d]: In T1 each X̃ij, j ∈ [d] is connected to Ỹi by an edge e ∈ E1, which

corresponds to the pair copula Ce ∈ B̃. We can set the pairwise dependence
between X̃ij, j ∈ [d] and Ỹi by specifying the pair copula Ce with e ∈ E1.

– How does it look like?
Recall from (2.49) of Remark 2.3.5 the special band structure of the R-vine
matrix M of C-vine. By setting d, R in (5.5) and the order of the random

vector to
(
X̃

T

i Ỹi

)
∈ Rd × {1, 2, 3, 4, 5} with Ỹi in the last component, the

R-vine matrix MC in (2.49) represents Ṽ .
– Example:

To illustrate this we give an example with d = 8. Here Ṽ is represented by
the R-vine matrix M in (5.6). The first tree T1 of the R-vine tree sequence is
displayed in Figure 13, where the index 9 corresponds to Y and indices 1, . . . , 8
correspond to covariates X1, . . . , X8.

M =

1
2 2
3 3 3
4 4 4 4
5 5 5 5 5
6 6 6 6 6 6
7 7 7 7 7 7 7
8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9

. (5.6)

(2) Set of pair copulas B̃:

We specify Ce ∈ B̃ by setting their copula families, corresponding parameter(s) and
rotations.

We require:

– a sparse setting : 20% of the covariates have a significant influence on the re-
sponse variable, the remaining 80% of the covariates have low to no association
with the response variable and

– some dependence within these 20% influential covariates.

→ Hence: We decide on the first covariates X̃i1, . . . , X̃i20 of the d = 100 covariates
to have a high association with Ỹi.

19

19This is w.l.o.g. as we can reorder the covariates as we wish.

80 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

(T1) YX1

X2

X5

X3

X4

X7

X6X8

Figure 13: An example of the first tree T1 of a C-vine V of a random vector (X1, X2, ...X8, Y).
Here Y is the central node of the star.

The pair copulas are specified through their families, their rotations and their pa-
rameter(s) as follows:

(i) For each pair copula (X̃ij, Ỹi) with j ∈ [20]:

– family: Its family is drawn uniformly from the set:

Acopula := {Gaussian, Clayton, Joe, Gumbel, Frank} .

– rotation: Similarly, its rotation is sampled uniformly taking on values in:

Arotation := {0◦, 90◦, 180◦, 270◦} .

– parameter: The inversion of Kendall’s τ is applicable. Hence, for a fixed
pair copula the parameter is then obtained by:

∗ The Kendall’s τ value is uniformly sampled from the interval [0.6, 0.8].

∗ According to the rotation of the pair copula sign(τ) is adjusted.

∗ Then:
θ := k−1

acopula
(τ) ,

with acopula ∈ Acopula.

(ii) For each pair copula (X̃ij, X̃ik ; X̃ik+1, . . . , X̃i100, Ỹi) with j, k ∈ [20], j < k:

– family: As before, its family is drawn uniformly from the set Acopula.

– rotation: Similarly, its rotation is sampled uniformly taking on values in
Arotation.

– parameter: The inversion of Kendall’s τ is again applicable. Hence, for a
fixed pair copula the parameter is then obtained by:

∗ The Kendall’s τ value is uniformly sampled from the interval [0.4, 0.7].

∗ According to the rotation of the pair copula sign(τ) is adjusted.

5.1 Simulation of
(
xtrue ytrue

)
81

Distribution family (Fθ)θ∈Θ Parameter space ΘF

normal (µ, σ) ∈ [−10, 10]× [1, 4]

beta (α, β) ∈ [1, 20]× [0.3, 10]

gamma (α, 1
σ
) ∈ [2, 10]× [1, 2]

Student’s t df ∈ {1, 2, ..., 15}
exponential λ ∈ [0.2, 3]

uniform (min,max) ∈ [−100, 20]× [20, 100]

Table 9: Prespecified parameter spaces for the different distribution families. For the
gamma distribution family α is the shape and 1

σ
the rate parameter with σ the scale

parameter.

∗ Then:
θ := k−1

acopula
(τ) ,

with acopula ∈ Acopula.

(iii) For all the remaining pair copulas:

– family: The family is sampled to be either independence with 80% prob-
ability or Gauss with 20%.

– rotation: For these two pair copula families rotation does not make sense.

– parameter: For the Gauss pair copulas the inversion of Kendall’s τ is again
applicable, which is why:

∗ The Kendall’s τ value is uniformly sampled from the interval [0, 0.3].

∗ Again:
θ := k−1

acopula
(τ) ,

with acopula ∈ Acopula.

(3) Vector of marginal distributions F̃ :

The marginal distribution of each X̃ij, j ∈ [d] is randomly selected:

– First the distribution family (Fθ)θ∈Θ is sampled discrete uniformly from:

Adist := {normal, beta, gamma, Student’s t, exponential, uniform} .

– Then the respective marginal parameter vector θ ∈ Rk of the chosen dis-
tribution family is sampled uniformly from the prespecified parameter space
ΘF ⊂ Rk, see Table 9.

Algorithm 4 schematizes, how
(
x̃base ỹbase

)
and

(
x̃rf ỹrf

)
are generated.

F̃ is specified through (F̃ , Ṽ , B̃). Its specific value can be found on page ?? of the Ap-
pendix 9.

82 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

An alternative way of generating
(
x̃base ỹbase

)
and

(
x̃rf ỹrf

)
is for example to sample

both from a (d + 1)-dimensional Gauss distribution, where the mean µ ∈ Rd+1 and
the covariance matrix Σ ∈ R(d+1)×(d+1) are randomly selected.20 However, with the joint
distribution being a multivariate Gauss the marginal distributions are set to be also Gauss.
To create more complex data and pose an interesting task, we generate

(
x̃base ỹbase

)
and(

x̃rf ỹrf

)
as described above.

Fitting the Random Forest Classifier f̂
(h, r)
RF (· , θ̂

(h, r)

RF), h ∈ [pbase], r ∈ [ptrue]:

Recall from Section 3.1, that to fit a random forest classifier fRF to
(
x̃rf ỹrf

)(h)
we need

to tune or set its parameters θ
(h, r)
RF := (n

(h, r)
tree , m

(h, r)
try , s

(h, r)
nodesize), see page ?? and following:

• ntree: The number of trees in the random forest is estimated with the out-of-bag
(OOB) error estimate, see 3.1.3. The number of trees, for which this value stabilizes,
will be picked. We set the maximum number of trees to 2200.

• mtry: The number of covariates randomly selected from all d covariates to choose

the current split variable and spilt point from. It is set to mtry = ⌊
√
d⌋, which

is recommended by Friedman et al. (2001) and the default value in the R-package
randomForest, see Liaw and Wiener (2002).

• snodesize ∈ N: The minimal nodesize of all terminal nodes in each classification
tree. We set snodesize = 1, which corresponds to the default value in the R-package
randomForest, see Liaw and Wiener (2002).

So as a first step we tune θRF ”optimally” and obtain the values θ̂
∗ (h)
RF = (n̂

∗ (h)
tree , m̂

∗
try, ŝ

∗
nodesize).

By ”optimal” we mean, that (ntree, mtry, snodesize) are set to their recommended default
value or tuned according to best practice, see Section 3. With this we set:

θ̂
(h, 1)

RF := θ̂
∗ (h)
RF , h ∈ [pbase] ,

f̂
(h, 1)
RF (·) := fRF

((
x̃rf ỹrf

)(h)
, θ̂

(h, 1)

RF

)
,

and:
y
(h, 1)
true := f̂

(h, 1)
RF

(
x̃ (h)
base

)
.

So for each h ∈ [pbase] the first version of the true data
(
xtrue ytrue

)(h, 1)
is the least per-

turbed one.

Starting from θ̂
(h, 1)

RF we change the parameter values to get the remaining θ̂
(h, r)

RF , r ∈
[ptrue] \ {1}.

By gradually perturbing y
(h, r)
true we gradually ”worsen” one of the parameters ntree, mtry

or snodesize at a time, while keeping the remaining to their optimal value n̂
∗ (h)
tree , m̂

∗
try and

ŝ∗nodesize. This means:

20This corresponds to a vine copula, where all pair copulas and marginal distributions are Gauss.

5.1 Simulation of
(
xtrue ytrue

)
83

• In each iteration step we either reduce ntree to take on the non-optimal values:

for r ∈ {2, 3} : n
(h, r)
tree ∈ {650, 1300} .

Recall, that n
(h, 1)
tree = n̂

∗ (h)
tree is the OOB estimate of the optimal number of trees in

the random forest. Thus n
(h, r)
tree ∈ {650, 1300, n̂

∗ (h)
tree }, r ∈ {1, 2, 3}. The remaining

parameters are fixed to their optimal/tuned values:

for r ∈ {1, 2, 3} :
(
m

(h, r)
try , s

(h, r)
nodesize

)
:= (m∗

try, s
∗
nodesize) = (10, 1) .

• Or, starting from the value m
(h, 1)
try = ⌊

√
d⌋ = 10, we reduce mtry to take on values:

for r ∈ {4, 5} : m
(h, r)
try ∈ {3, 6} .

The remaining parameters are fixed to their optimal/tuned values:

for r ∈ {4, 5} :
(
n
(h, r)
tree , s

(h, r)
nodesize

)
:= (n

∗ (h)
tree , s

∗
nodesize) = (n

∗ (h)
tree , 1) .

• As a last possibility we increase snodesize from the starting value s
(h, 1)
nodesize = 1 to take

on values:

for r ∈ {6, 7} : s
(h, r)
nodesize ∈ {50, 100} .

Again the remaining parameters are fixed to their optimal/tuned values:

for r ∈ {6, 7} :
(
n
(h, r)
tree , m

(h, r)
try

)
:= (n

∗ (h)
tree , m

∗
try) = (n

∗ (h)
tree , 10) .

Table 10 summarizes the different parameters θ̂
(h, r)

RF , r ∈ [ptrue] we use for a fixed h ∈ pbase
for the random forest perturbation:

r ∈ [ptrue] (n
(h, r)
tree , m

(h, r)
try , s

(h, r)
nodesize)

1 (n
∗ (h)
tree , 10, 1)

2 (1300, 10, 1)

3 (650, 10, 1)

4 (n
∗ (h)
tree , 6, 1)

5 (n
∗ (h)
tree , 3, 1)

6 (n
∗ (h)
tree , 10, 50)

7 (n
∗ (h)
tree , 10, 100)

Table 10: Values of the parameter of the perturbing random forest θ̂
(h, r)

RF , r ∈ [ptrue] for

a fixed h ∈ [pbase]. Recall, that n̂
∗ (h)
tree is the OOB estimate of the optimal number of trees

in the random forest, see 3.1.3.

84 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

Table 11 gives the optimal number of trees in the random forest n
∗ (h)
tree obtain as the OOB

error estimate for each h ∈ pbase.

h ∈ [pbase] n
∗ (h)
tree h ∈ [pbase] n

∗ (h)
tree

1 n
∗ (1)
tree = 2100 6 n

∗ (6)
tree = 2000

2 n
∗ (2)
tree = 2000 7 n

∗ (7)
tree = 1300

3 n
∗ (3)
tree = 2000 8 n

∗ (8)
tree = 2200

4 n
∗ (4)
tree = 2000 9 n

∗ (9)
tree = 2200

5 n
∗ (5)
tree = 1100 10 n

∗ (10)
tree = 2000

Table 11: Values of n
∗ (h)
tree for h ∈ [pbase], the OOB error estimate, see Subsection Random

Forests on page 52 .

With θ̂
(h, r)

RF set, the classifier fRF is refit:

f̂
(h, r)
RF (·) := fRF

((
x̃rf ỹrf

)(h)
, θ̂

(h, r)

RF

)
,

and:

y
(h, r)
true := f̂

(h, r)
RF

(
x̃ (h)
base

)
,

for h ∈ [pbase] and r ∈ [ptrue] \ {1}.

To simplify the interpretation we introduce the some nomenclature. We speak of a true
data set with low, medium or high perturbation introduced on the response variable, if
the random forest parameter currently varied has the following values given in Table 12:

perturbation:

low medium high

ntree n
∗ (h)
tree 1300 650

mtry 10 6 3

snodesize 1 50 100

Table 12: Nomenclature regarding perturbation introduced on the simulated true data
set depending on the value of the parameter currently varied. Recall, that n̂

∗ (h)
tree is the

OOB estimate of the optimal number of trees in the random forest, see 3.1.3.

Table 13 gives again the parameter values θ̂
(h, r)

RF , r ∈ [ptrue] of the perturbing random
forest for a fixed h ∈ [pbase] and links them to the nomenclature introduced in Table 12.

5.1 Simulation of
(
xtrue ytrue

)
85

r ∈ [ptrue] (n
(h, r)
tree , m

(h, r)
try , s

(h, r)
nodesize) perturbation

1 (n
∗ (h)
tree , 10, 1) low

2 (1300, 10, 1) medium

3 (650, 10, 1) high

4 (n
∗ (h)
tree , 6, 1) medium

5 (n
∗ (h)
tree , 3, 1) high

6 (n
∗ (h)
tree , 10, 50) medium

7 (n
∗ (h)
tree , 10, 100) high

Table 13: Values of the parameter of the perturbing random forest θ̂
(h, r)

RF , r ∈ [ptrue] for

a fixed h ∈ [pbase]. The perturbation introduced on the response y
(h, r)
true of the simulated

true data set
(
xtrue ytrue

)(h, r)
is low, medium or high depending on the parameter θ̂

(h, r)

RF

given above, r ∈ [ptrue], h ∈ [pbase]. Recall, that n̂
∗ (h)
tree is the OOB estimate of the optimal

number of trees in the random forest, see 3.1.3.

Summarized we obtain the following number of data sets given in Table 14 for low, medium
and high perturbation respectively.

perturbation no. of true data sets no. of synthetic data sets

low 10 (= pbase · 1) 150 (= pbase · 1 · psynth)

medium 30 (= pbase · 3) 450 (= pbase · 3 · psynth)

high 30 (= pbase · 3) 450 (= pbase · 3 · psynth)

Table 14: Total number of true and corresponding synthetic data sets per low, medium

and high perturbation respectively. Recall from Table 7, that
(
xtrue ytrue

)(h, r)
and(

xsynth ysynth

)(h, r, l)
with r ∈ [ptrue], h ∈ [pbase], l ∈ [psynth] and pbase = 10, ptrue =

7, psynth = 15.

The entire process of generating the true data sets can be traced in Algorithm 5.

86 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

Algorithm 4: Algorithm for producing
(
x̃base ỹbase

)
and

(
x̃rf ỹrf

)
.

Input: n, d, Adist, ΘF for all F ∈ Adist, Acopula, Arotation, root nodes R and

ordering
(
X̃

T

i Ỹi

)
Output:

(
x̃base ỹbase

)
,
(
x̃rf ỹrf

)
1 for j ∈ [d] do
2 Fj ← distribution family sampled from Adist

3 θj ← parameter vector of Fj sampled from ΘFj

4 end

5 F̃ ← (F1,θ1 , . . . , Fd,θd
)

6 Ṽ ← C-vine on d+ 1 elements according to R
7 for each tree Ti = (Vi, Ei) ∈ V do
8 for each pair copula Ce with edge e ∈ Ei do

9 if e corresponds to (X̃ij, Ỹi) with j ∈ [20] then
10 familye ← copula family sampled from Acopula

11 rotatione ← rotation sampled from Arotation

12 |τe| ← Kendall’s τ sampled from [0.6, 0.8]

13 else if e corresponds to (X̃ij, X̃ik ; X̃k+1, . . . , X̃i100, Ỹi) with
j, k ∈ [20], j < k then

14 familye ← copula family sampled from Acopula

15 rotatione ← rotation sampled from Arotation

16 |τe| ← Kendall’s τ sampled from [0.4, 0.7]

17 else
18 familye ← Gauss with p∗ = 0.2, independence with 1− p∗ = 0.8
19 rotatione ← 0
20 |τe| ← Kendall’s τ sampled from [0, 0.3]

21 end
22 sign(τe)← sign according to rotatione for familye ̸= independence
23 θe ← k−1(τe)
24 Ce ← pair copula of familye with rotatione and parameter θe
25 end

26 end

27 B̃ ← {Ce | e ∈ Ei for i ∈ [d]}
28 Ũbase ← n from (d+ 1)-dimensional copula C specified by (I, Ṽ , B̃)

29 Ũrf ← n from (d+ 1)-dimensional copula C specified by (I, Ṽ , B̃)
30 for j ∈ [d] do
31 x̃j, base ← F−1

j,θj
(ũj, base)

32 x̃j, rf ← F−1
j,θj

(ũj, rf)

33 end
34 ỹbase ← back-transform ũ(d+1), base to x-scale by thresholding
35 ỹrf ← back-transform ũ(d+1), rf to x-scale by thresholding

36
(
x̃base ỹbase

)
←

 | | | |
x̃1, base x̃2, base · · · x̃d, base ỹbase

| | | |

37
(
x̃rf ỹrf

)
←

 | | | |
x̃1, rf x̃2, rf · · · x̃d, rf ỹrf

| | | |

38 return

(
x̃base ỹbase

)
,
(
x̃rf ỹrf

)

5.1 Simulation of
(
xtrue ytrue

)
87

Algorithm 5: Algorithm for generating
(
xtrue ytrue

)(h, r)
, r ∈ [ptrue] from(

x̃base ỹbase

)(h)
and

(
x̃rf ỹrf

)(h)
with h ∈ [pbase] fixed.

Input: for h ∈ [pbase] fixed:
(
x̃base ỹbase

)(h) ∈ Rn×(d+1),
(
x̃rf ỹrf

)(h) ∈ Rn×(d+1),
d = 100

Output:
(
xtrue ytrue

)(h, r) ∈ Rn×(d+1), r ∈ [ptrue]

1 n
∗ (h)
tree ← OOB estimate of ntree on

(
x̃rf ỹrf

)(h)
2 θ̂

(h, 1)

RF ← θ̂
∗ (h)
RF := (n

∗ (h)
tree , ⌊

√
d⌋, 1) = (n

∗ (h)
tree , 10, 1)

3 f̂
(h, 1)
RF (·)← fRF

((
x̃rf ỹrf

)(h)
, θ̂

(h, 1)

RF

)
4 y

(h, 1)
true ← f̂

(h, 1)
RF

(
x̃ (h)
base

)
5 r ← 2
6 for ntree ∈ {650, 1300} do
7 n

(h, r)
tree ← ntree

8 θ̂
(h, r)

RF ← (n
(h, r)
tree , ⌊

√
d⌋, 1)

9 f̂
(h, r)
RF (·)← fRF

((
x̃rf ỹrf

)(h)
, θ̂

(h, r)

RF

)
10 y

(h, r)
true ← f̂

(h, r)
RF

(
x̃ (h)
base

)
11 r ← r + 1

12 end
13 for mtry ∈ {3, 6} do
14 m

(h, r)
try ← mtry

15 θ̂
(h, r)

RF ← (n
∗ (h)
tree , m

(h, r)
try , 1)

16 f̂
(h, r)
RF (·)← fRF

((
x̃rf ỹrf

)(h)
, θ̂

(h, r)

RF

)
17 y

(h, r)
true ← f̂

(h, r)
RF

(
x̃ (h)
base

)
18 r ← r + 1

19 end
20 for snodesize ∈ {50, 100} do
21 s

(h, r)
nodesize ← snodesize

22 θ̂
(h, r)

RF ← (n
∗ (h)
tree , ⌊

√
d⌋, s(h, r)nodesize)

23 f̂
(h, r)
RF (·)← fRF

((
x̃rf ỹrf

)(h)
, θ̂

(h, r)

RF

)
24 y

(h, r)
true ← f̂

(h, r)
RF

(
x̃ (h)
base

)
25 end
26 for r ∈ [ptrue] do

27
(
xtrue ytrue

)(h, r) ← (
x̃ (h)
base y

(h, r)
true

)
28 end

29 return
(
xtrue ytrue

)(h, r) ∈ Rn×(d+1), r ∈ [ptrue]

88 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

5.2 Results – Simulation Study: Parametrically Simulated True
Data

We generate synthetic
(
xsynth ysynth

)(h, r, l)
, l ∈ [psynth] from true

(
xtrue ytrue

)(h, r)
, r ∈

[ptrue] as explained in Subsection 4.1. For executing the steps schematized in Algorithm
3 the R-package rvinecopulib, see Nagler and Vatter (2021) is used:
To obtain pseudo-observations Ûtrue of the true data on the (d + 1)-dimensional unit
cube the function pseudo obs for observations xtrue or the manually computed empirical
marginal distribution F̂Ytrue for ytrue is applied:

y ∈ R : F̂Ytrue(y) :=
1

n

n∑
i=1

1{x ≤ y}(yi) . (5.7)

Then the vine copula estimation methods of Table 5 are fit to Ûtrue with the function
vinecop. As Yi, true ∈ {1, 2, 3, 4, 5} is an ordinal random variable, additional observations

on the copula scale uYi, true := F̂Ytrue(yi − 1), i ∈ [n] are needed to fit a vine model with
vinecop as explained in Subsection Regular Vines with Discrete Components on

page 32. With the function rvinecop synthetic data U (l)
synth on the copula-scale are sam-

pled. They are transformed back to
(
x (l)
synth y

(l)
synth

)
to the original scale by applying the

sample quantiles with the function quantile from the R-package stats, see R Core Team

(2021). We use the quantile type 8 (2.4.1) to obtain observations x (l)
synth and quantile type

1 (2.4.1) to obtain observations y
(l)
synth.

After that we assess the quality of the synthetic data generated with the non-parametric,
parametric and mixed vine estimation methods as shown in Subsection 4.2. We com-
pute the performance measures and plot them: the positive relative mean error (ME+

rel)
defined in (4.5) on page 90 and the negative relative mean error (ME−

rel) defined in (4.6)
on page 93, the direct mAUC given in (4.7) on page 96 and the indirect mAUC given in
(4.8) on page 99 versus the one parameter of ntree, mtry and snodesize, that is currently
varied.
Additionally to ME+

rel and ME−
rel we compute how often ŷ

(h, r, l), test
i, synth overestimates and

underestimates respectively ŷtesti, true
(h, r) per low, medium and high perturbation while av-

eraging over pbase and psynth:

average no. of overestimations :
1

pbase · psynth

∑
h∈[pbase],
l∈[psynth]

B
+(h, r)
l ,

average no. of underestimations :
1

pbase · psynth

∑
h∈[pbase],
l∈[psynth]

B
− (h, r)
l . (5.8)

The definition of B
+(h, r)
l and B

− (h, r)
l can be found in Equation (4.3). The average num-

ber of over- and underestimations should be set in relation to the size of the test data set(
xtrue ytrue

)(h, r)
test

, h ∈ [pbase], r ∈ [ptrue], which consists of 150 observations.

5.2 Results – Simulation Study: Parametrically Simulated True Data 89

We also compute and plot the variable selection performance measures, i.e. the average
distance of the logistic β-coefficients, see (4.9) on page 102, and the average number of dis-

cordant β-pairs, see (4.10) on page 105 derived from
(
xtrue ytrue

)(r)
and

(
xsynth ysynth

)(r, l)
,

r ∈ [ptrue], l ∈ [psynth] versus the one parameter of ntree, mtry and snodesize, that is cur-
rently varied. One point in each graph corresponds to one measure computed.

Note, that in the R-package glmnet of Simon et al. (2011) the covariates can be standard-
ized prior to fitting the multinomial logistic regression (with Lasso) with the function
glmnet by setting the argument standardize = TRUE, which is the default. The β-
coefficients returned are however on the original scale. In order to compute the average
distance of the standardized logistic β-coefficients of (4.9), we need to standardize β̂jk, true

and β̂
(l)
jk, synth, j ∈ [d], k ∈ [K] by hand as illustrated in (3.9).

For the following subsections recall the nomenclature of Table 15.

perturbation:

low medium high

ntree n
∗ (h)
tree 1300 650

mtry 10 6 3

snodesize 1 50 100

Table 15: Nomenclature regarding perturbation introduced on the simulated true data
set depending on the value of the parameter currently varied. Recall, that n̂

∗ (h)
tree is the

OOB estimate of the optimal number of trees in the random forest, see 3.1.3.

Also recall the number of true and synthetic date sets respectively used in the simulation
study given in Table 16.

perturbation no. of true data sets no. of synthetic data sets

low 10 (= pbase · 1) 150 (= pbase · 1 · psynth)

medium 30 (= pbase · 3) 450 (= pbase · 3 · psynth)

high 30 (= pbase · 3) 450 (= pbase · 3 · psynth)

Table 16: Total number of true and corresponding synthetic data sets per low, medium

and high perturbation respectively. Recall from Table 7, that
(
xtrue ytrue

)(h, r)
and(

xsynth ysynth

)(h, r, l)
with r ∈ [ptrue], h ∈ [pbase], l ∈ [psynth] and pbase = 10, ptrue =

7, psynth = 15.

90 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

Positive Relative Mean Error ME+
rel

Figure 14: ME
+
rel obtained from synthetic data of the vine estimation methods non-parametric, parametric

and mixd versus the perturbing random forest parameters ntree, mtry and snodesize. Per vine fitting and colour the
classification performance on 600 synthetic data sets is displayed with n = 500 observations per data set, d = 100
features, pbase = 10, ptrue = 7, psynth = 15. The positive relative mean error is given in (4.5), the three vine estimation
methods in Table (5).

5.2 Results – Simulation Study: Parametrically Simulated True Data 91

LOW PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd average no. of

method parameter quartile quartile overestimations

ME
+
rel

non-parametric

ntree

0.4066 0.4583 0.5000 18.6741mtry

snodesize

parametric

ntree

0.4222 0.4635 0.5108 16.7852mtry

snodesize

mixed

ntree

0.4222 0.4635 0.5115 16.8074mtry

snodesize

MEDIUM PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd average no. of

method parameter quartile quartile overestimations

ME
+
rel

non-parametric

ntree 0.4167 0.4722 0.5321 19.5533

mtry 0.4395 0.4889 0.5386 17.48

snodesize 0.4111 0.4621 0.5251 16.8

parametric

ntree 0.4363 0.4815 0.5321 17.8467

mtry 0.4497 0.4944 0.5564 16.14

snodesize 0.4094 0.4583 0.5116 15.1533

mixed

ntree 0.4363 0.4815 0.5324 17.8267

mtry 0.4476 0.4944 0.5564 16.14

snodesize 0.4106 0.4833 0.5116 15.1333

HIGH PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd average no. of

method parameter quartile quartile overestimations

ME
+
rel

non-parametric

ntree 0.4125 0.4573 0.5070 18.3467

mtry 0.4152 0.4833 0.5532 18.3867

snodesize 0.4521 0.5000 0.5613 17.3867

parametric

ntree 0.4314 0.4766 0.5117 17.14

mtry 0.4625 0.5088 0.5762 17.4267

snodesize 0.4495 0.5201 0.5882 16.2933

mixed

ntree 0.4314 0.4766 0.5128 17.1533

mtry 0.4625 0.5088 0.5762 17.4067

snodesize 0.4495 0.5201 0.5879 16.3067

Table 17: Comparing ME
+
rel scores of the non-parametric, parametric and mixed vine estimation method for

low, medium and high perturbation. Recall the number of true and synthetic data sets per degree of perturbation from
Tables 13 and 16. The average number of overestimations, defined in Equation (5.8), should be set in relation to the size

of the test data set
(
xtrue ytrue

)(h, r)
test

, h ∈ [pbase], r ∈ [ptrue], which consists of 150 observations.

92 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

From Figure 14 and Table 17 we observe:

• Overall ŷ
(l), test
i, synth overestimate ŷtesti, true by 46% up to 52.0% at median, more de-

tailed:

– ≈ 46% to 50% at median for the non-parametric vine fitting and

– ≈ 46% to 52% at median for the parametric and mixed vine fitting.

• This occurs overall on average in 16 to 20 out of 150 observations of the test set.
This equals 10% to 13% of the cases:

– ≈ 17 to 20 (11% to 13%) at mean for the non-parametric vine fitting and

– ≈ 15 to 18 (10% to 12%) at mean for the parametric and mixed vine fitting.

• Overall we observe an increase in ME+
rel as well as the number of overestimations

for increasing perturbation in the true data.

• For the non-parametric vine fitting this trend is not so clearly visible.

• The parametric and mixed vine fitting yield very similar, almost identical
results with regard to ME+

rel.

• The non-parametric vine fitting performs slightly better in terms of ME+
rel than

the parametric and mixed ones:

it yields a ME+
rel, which is at median 1% lower than the median ME+

rel of the
parametric and mixed vine fitting for low and medium perturbations. For high
perturbations the ME+

rel is at median 2% lower compared to the median ME+
rel of

the parametric and mixed vine fitting.

• However, the number of predictions ŷ
(l), test
i, synth, that overestimate ŷtesti, true, are slightly

higher for the non-parametric vine fitting: it exceeds the parametric and mixed
vine fitting by approximately 1 on average.

5.2 Results – Simulation Study: Parametrically Simulated True Data 93

Negative Relative Mean Error ME−
rel

Figure 15: ME
−
rel obtained from synthetic data of the vine estimation methods non-parametric, parametric

and mixd versus the perturbing random forest parameters ntree, mtry and snodesize. Per vine fitting and colour the
classification performance on 600 synthetic data sets is displayed with n = 500 observations per data set, d = 100
features, pbase = 10, ptrue = 7, psynth = 15. The negative relative mean error is given in (4.6), the three vine estimation
methods in Table (5).

94 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

LOW PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd average no. of

method parameter quartile quartile underestimations

ME
−
rel

non-parametric

ntree

0.3307 0.3573 0.3876 21.9556mtry

snodesize

parametric

ntree

0.3127 0.3324 0.3473 18.4296mtry

snodesize

mixed

ntree

0.3122 0.3327 0.3455 18.4296mtry

snodesize

MEDIUM PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd average no. of

method parameter quartile quartile underestimations

ME
−
rel

non-parametric

ntree 0.3325 0.3572 0.3850 23.56

mtry 0.3266 0.3500 0.3821 22.9467

snodesize 0.3263 0.3525 0.3705 22.08

parametric

ntree 0.3123 0.3306 0.3532 19.66

mtry 0.3111 0.3314 0.3461 18.6333

snodesize 0.3107 0.3239 0.3441 18.7867

mixed

ntree 0.3122 0.3306 0.3528 19.6467

mtry 0.3111 0.3314 0.3448 18.64

snodesize 0.3107 0.3222 0.3441 18.7733

HIGH PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd average no. of

method parameter quartile quartile underestimations

ME
−
rel

non-parametric

ntree 0.3314 0.3515 0.3784 22.8133

mtry 0.3314 0.3606 0.3891 21.3467

snodesize 0.3420 0.3806 0.4170 20.4933

parametric

ntree 0.3131 0.3290 0.3566 18.5533

mtry 0.3156 0.3306 0.3522 18.5

snodesize 0.3170 0.3325 0.3597 17.66

mixed

ntree 0.3129 0.3290 0.3566 18.56

mtry 0.3156 0.3306 0.3523 18.5

snodesize 0.3170 0.3333 0.3597 17.6467

Table 18: Comparing ME
−
rel scores of the non-parametric, parametric and mixed vine estimation method for

low, medium and high perturbation. Recall the number of true and synthetic data sets per degree of perturbation from
Tables 13 and 16. The average number of underestimations, defined in Equation (5.8), should be set in relation to the size

of the test data set
(
xtrue ytrue

)(h, r)
test

, h ∈ [pbase], r ∈ [ptrue], which consists of 150 observations.

5.2 Results – Simulation Study: Parametrically Simulated True Data 95

From Figure 15 and Table 18 we observe:

• Overall ŷ
(l), test
i, synth underestimate ŷtesti, true at median by 33% up to 38%, more de-

tailed:

– ≈ 35% to 38% at median for the non-parametric vine fitting and

– ≈ 33% at median for the parametric and mixed vine fitting.

• Overall, this occurs on average in 18 to 24 out of 150 observations of the test set.
This equals 12% to 16% of the cases:

– ≈ 20 to 24 (13% to 16%) at mean for the non-parametric vine fitting and

– ≈ 18 to 19 (12%) at mean for the parametric and mixed vine fitting.

• Overall, we observe a quite constant ME−
rel as well as the number of underestima-

tions for increasing perturbation in the true data.

• For the non-parametric vine fitting ME−
rel is increased for high perturbation, while

the number of underestimations is increased for medium perturbation.

• As for ME+
rel, the parametric and mixed vine fitting yield very similar, almost

identical results with regard to ME−
rel.

• The parametric and mixed vine fitting perform slightly better in terms of
ME−

rel than the non-parametric one:

they yield a ME−
rel, which is at median 2% to 3% lower compared to the median

ME−
rel of the non-parametric vine fitting.

• Also the number of predictions ŷ
(l), test
i, synth, that underestimate ŷtesti, true, are slightly

higher for the non-parametric vine fitting: it exceeds the parametric and mixed
vine fitting by approximately 3 on average.

96 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

Direct mAUCdir

Figure 16: mAUCdir obtained from synthetic data of the vine estimation methods non-parametric, parametric
and mixd versus the perturbing random forest parameters ntree, mtry and snodesize. Per vine fitting and colour the
classification performance on 600 synthetic data sets is displayed with n = 500 observations per data set, d = 100
features, pbase = 10, ptrue = 7, psynth = 15. The direct mAUC is given in (4.7), the three vine estimation methods in
Table (5).

5.2 Results – Simulation Study: Parametrically Simulated True Data 97

LOW PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

mAUCdir

non-parametric

ntree

0.9247 0.9338 0.9412mtry

snodesize

parametric

ntree

0.9347 0.9420 0.9498mtry

snodesize

mixed

ntree

0.9347 0.9421 0.9492mtry

snodesize

MEDIUM PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

mAUCdir

non-parametric

ntree 0.9243 0.9298 0.9393

mtry 0.9203 0.9287 0.9342

snodesize 0.9262 0.9336 0.9435

parametric

ntree 0.9328 0.9401 0.9468

mtry 0.9327 0.9387 0.9441

snodesize 0.9364 0.9446 0.9506

mixed

ntree 0.9328 0.9401 0.9470

mtry 0.9332 0.9387 0.9444

snodesize 0.9368 0.9444 0.9507

HIGH PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

mAUCdir

non-parametric

ntree 0.9242 0.9315 0.9393

mtry 0.9194 0.9266 0.9345

snodesize 0.8992 0.9142 0.9250

parametric

ntree 0.9335 0.9413 0.9467

mtry 0.9254 0.9343 0.9418

snodesize 0.9120 0.9232 0.9348

mixed

ntree 0.9335 0.9413 0.9467

mtry 0.9254 0.9344 0.9418

snodesize 0.9120 0.9232 0.9348

Table 19: Comparing mAUCdir scores of the non-parametric, parametric and mixed vine estimation method
for low, medium and high perturbation. Recall the number of true and synthetic data sets per degree of perturbation
from Tables 13 and 16.

98 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

From Figure 16 and Table 19 we observe:

• Overall, the mAUCdir, which is directly comparing ŷ
(l), test
i, synth with ŷtesti, true, takes on a

value of 91% to 94% at median. In more detail:

– ≈ 91% to 93% at median for the non-parametric vine fitting and

– ≈ 92% to 94% at median for the parametric and mixed vine fitting.

• Only for perturbation through the random forest parameter mtry we observe a slight
decrease in mAUCdir for increasing perturbation in the true data. Otherwise there
is no clear trend visible for the mAUCdir for increasing perturbation.

• The parametric and mixed vine fitting yield very similar, almost identical
results with regard to mAUCdir.

• The parametric and mixed vine fitting perform slightly better in terms of
mAUCdir than the non-parametric one:

they yield a mAUCdir, which is at median 1% higher than the median mAUCdir of
the non-parametric vine fitting.

5.2 Results – Simulation Study: Parametrically Simulated True Data 99

Indirect mAUCindir

Figure 17: mAUCindir obtained from synthetic data of the vine estimation methods non-parametric, parametric
and mixd versus the perturbing random forest parameters ntree, mtry and snodesize. Per vine fitting and colour the
classification performance on 600 synthetic data sets is displayed with n = 500 observations per data set, d = 100
features, pbase = 10, ptrue = 7, psynth = 15. The direct mAUC is given in (4.8), the three vine estimation methods in
Table (5).

100 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

LOW PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

mAUCindir

non-parametric

ntree

0.0072 0.0144 0.0203mtry

snodesize

parametric

ntree

0.0031 0.0065 0.0133mtry

snodesize

mixed

ntree

0.0032 0.0065 0.0135mtry

snodesize

MEDIUM PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

mAUCindir

non-parametric

ntree 0.0089 0.0148 0.0208

mtry 0.0093 0.0148 0.0224

snodesize 0.0067 0.0142 0.0120

parametric

ntree 0.0049 0.0086 0.0132

mtry 0.0036 0.0088 0.0132

snodesize 0.0043 0.0096 0.0147

mixed

ntree 0.0049 0.0087 0.0132

mtry 0.0039 0.0088 0.0132

snodesize 0.0044 0.0091 0.0143

HIGH PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

mAUCindir

non-parametric

ntree 0.0064 0.0139 0.0194

mtry 0.0110 0.0192 0.0270

snodesize 0.0126 0.0229 0.0330

parametric

ntree 0.0047 0.0080 0.0138

mtry 0.0065 0.0133 0.0191

snodesize 0.0066 0.0142 0.0236

mixed

ntree 0.0047 0.0080 0.0138

mtry 0.0062 0.0132 0.0191

snodesize 0.0063 0.0142 0.0236

Table 20: Comparing mAUCindir scores of the non-parametric, parametric and mixed vine estimation method
for low, medium and high perturbation. Recall the number of true and synthetic data sets per degree of perturbation
from Tables 13 and 16.

5.2 Results – Simulation Study: Parametrically Simulated True Data 101

From Figure 17 and Table 20 we observe:

• Overall, the mAUCindir, which is indirectly comparing ŷ
(l), test
i, synth with ŷtesti, true, takes on

a value of 0.7% to 2.3% at median, more detailed:

– ≈ 1.4% to 2.3% at median for the non-parametric vine fitting and

– ≈ 0.7% to 1.4% at median for the parametric and mixed vine fitting.

• Overall, for increasing perturbation the values of mAUCindir increase for all three
vine fitting methods. This trend in mAUCindir is not so clear for perturbation
through the random forest parameter ntree.

• The parametric and mixed vine fitting yield very similar, almost identical
results with regard to mAUCindir.

• The parametric and mixed vine fitting perform slightly better in terms of
mAUCindir than the non-parametric one.

102 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

Average Distance of the Logistic Regression β-Coefficients Dist(β̂true, β̂synth)

Figure 18: Dist(β̂true, β̂synth) obtained from synthetic data of the vine estimation methods non-parametric,
parametric and mixd versus the perturbing random forest parameters ntree, mtry and snodesize. Per vine fitting and
colour the classification performance on 600 synthetic data sets is displayed with n = 500 observations per data set,
d = 100 features, pbase = 10, ptrue = 7, psynth = 15. The average distance of the logistic β-coefficients is given in
(4.9), the three vine estimation methods in Table (5).

5.2 Results – Simulation Study: Parametrically Simulated True Data 103

LOW PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

D
is
t(β̂

t
r
u
e
,
β̂
s
y
n
t
h
)

non-parametric

ntree

0.0596 0.0612 0.0645mtry

snodesize

parametric

ntree

0.0474 0.0515 0.0537mtry

snodesize

mixed

ntree

0.0474 0.0515 0.0537mtry

snodesize

MEDIUM PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

D
is
t(β̂

t
r
u
e
,
β̂
s
y
n
t
h
)

non-parametric

ntree 0.0488 0.0541 0.0635

mtry 0.0561 0.0605 0.0662

snodesize 0.0543 0.0622 0.0650

parametric

ntree 0.0415 0.0456 0.0518

mtry 0.0475 0.0516 0.0544

snodesize 0.0477 0.0517 0.0582

mixed

ntree 0.0415 0.0456 0.0518

mtry 0.0475 0.0516 0.0544

snodesize 0.0477 0.0517 0.0582

HIGH PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

D
is
t(β̂

t
r
u
e
,
β̂
s
y
n
t
h
)

non-parametric

ntree 0.0601 0.0665 0.0693

mtry 0.0451 0.0530 0.0568

snodesize 0.0375 0.0478 0.0534

parametric

ntree 0.0505 0.0577 0.0612

mtry 0.0426 0.0456 0.0512

snodesize 0.0337 0.0393 0.0497

mixed

ntree 0.0507 0.0577 0.0612

mtry 0.0424 0.0456 0.0512

snodesize 0.0337 0.0393 0.0497

Table 21: Comparing Dist(β̂true, β̂synth) scores of the non-parametric, parametric and mixed vine estimation
method for low, medium and high perturbation. Recall the number of true and synthetic data sets per degree of
perturbation from Tables 13 and 16.

104 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

From Figure 18 and Table 21 we observe:

• Overall, the Dist(β̂true, β̂synth) takes on values of 3.9% to 6.6% at median, more
detailed:

– ≈ 4.7% to 6.6% at median for the non-parametric vine fitting and

– ≈ 3.9% to 5.7% at median for the parametric and mixed vine fitting.

• Overall, the parametric and mixed vine fitting perform slightly better in terms
of Dist(β̂true, β̂synth) than the non-parametric one.

• However, there is no clear trend visible for the median of Dist(β̂true, β̂synth) when
perturbation through the random forest parameters is increasing.

• The parametric and mixed vine fitting yield overall very similar, almost iden-
tical results with regard to mAUCindir.

5.2 Results – Simulation Study: Parametrically Simulated True Data 105

Average Number of Discordant β-Pairs Discor(β̂true, β̂synth)

Figure 19: Discor(β̂true, β̂synth) obtained from synthetic data of the vine estimation methods non-parametric,
parametric and mixd versus the perturbing random forest parameters ntree, mtry and snodesize. Per vine fitting and
colour the classification performance on 600 synthetic data sets is displayed with n = 500 observations per data set,
d = 100 features, pbase = 10, ptrue = 7, psynth = 15. The average number of discordant β-pairs is given in (4.10), the
three vine estimation methods in Table (5).

106 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

LOW PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

D
is
c
o
r
(β̂

t
r
u
e
,
β̂
s
y
n
t
h
)

non-parametric

ntree

105.867 111.867 113.800mtry

snodesize

parametric

ntree

110.067 116.000 118.467mtry

snodesize

mixed

ntree

110.067 116.000 118.467mtry

snodesize

MEDIUM PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

D
is
c
o
r
(β̂

t
r
u
e
,
β̂
s
y
n
t
h
)

non-parametric

ntree 100.433 104.267 116.167

mtry 102.733 111.933 112.733

snodesize 102.533 110.600 115.533

parametric

ntree 103.333 114.267 119.567

mtry 110.600 115.667 121.000

snodesize 113.467 115.133 122.800

mixed

ntree 103.333 114.267 119.567

mtry 110.600 115.667 121.000

snodesize 113.467 114.667 122.733

HIGH PERTURBATION:

measure
vine estimation perturbing 1st

median
3rd

method parameter quartile quartile

D
is
c
o
r
(β̂

t
r
u
e
,
β̂
s
y
n
t
h
)

non-parametric

ntree 108.183 116.700 119.717

mtry 94.067 102.867 107.533

snodesize 79.800 94.400 97.733

parametric

ntree 116.033 120.167 125.217

mtry 106.800 107.800 115.133

snodesize 81.667 98.867 108.067

mixed

ntree 115.883 120.167 125.217

mtry 106.800 107.800 115.133

snodesize 81.667 98.867 108.067

Table 22: Comparing Discor(β̂true, β̂synth) scores of the non-parametric, parametric and mixed vine estima-
tion method for low, medium and high perturbation. Recall the number of true and synthetic data sets per degree of
perturbation from Tables 13 and 16.

5.2 Results – Simulation Study: Parametrically Simulated True Data 107

From Figure 19 and Table 22 we observe:

• Overall, the Discor(β̂true, β̂synth) takes on values of 94 to 120 discordant β-pairs
at median:

– ≈ 94 to 116 at median for the non-parametric vine fitting and

– ≈ 98 to 120 at median for the parametric and mixed vine fitting.

• This should be compared to the total number of regularized β-coefficients in the
logistic regression model with Lasso, which is equal to K · d = 500 due to the
symmetric model formulation, see Equation ??. For the:

– non-parametric vine fitting we have ≈ 19% to 23% discordant β-pairs at
median and

– for the parametric and mixed vine fitting we have ≈ 20% to 24% discordant
β-pairs at median.

• The non-parametric vine fitting therefore performs slightly better in terms of
Discor(β̂true, β̂synth) than the parametric and mixed ones.

• However, there is no clear trend in median of Dist(β̂true, β̂synth) visible for in-
creasing perturbation in the random forest parameters.

• The parametric and mixed vine fitting yield very similar, almost identical
results with regard to Dist(β̂true, β̂synth).

• For all three vine fitting methods it holds, that:

– high perturbation in mtry and snodesize decreases Discor(β̂true, β̂synth)

– while on the contrary high perturbation in ntree increases Discor(β̂true, β̂synth).

108 5 SIMULATION STUDY: PARAMETRICALLY SIMULATED TRUE DATA

Vine Estimation Method Comparison – Simulation Study

Summarized:

• For each measure and degree of perturbation the parametric and the mixed
vine estimation method are very similar or almost identical. The reason for this
might be, that in fitting the mixed vine most of the times a parametric pair copula
is estimated instead of non-parametric one.

• All three vine estimation methods cause a classifier trained on the synthetic data
to overestimate ŷtesti, true, i ∈ [n] by a higher percentage than underestimating
them. In detail:

– overestimation by around 46% to 52%,

– underestimation by around 33% to 38%.

• However, underestimation occurs slightlymore often than overestimation, namely
in detail:

– overestimation in 12% to 16% of the 150 predictions,

– underestimation in 10% to 13% of the cases.

• The estimates ŷ
(l), test
i, synth, i ∈ [n] of the non-parametric vine estimation method

overestimate ŷtesti, true, i ∈ [n] to a slightly lower percentage than the ones obtained
from the parametric or mixed vine estimation method.

• On the other hand ŷ
(l), test
i, synth, i ∈ [n] of the parametric and mixed vine estimation

method underestimate ŷtesti, true, i ∈ [n] by less than the ones obtained from the
non-parametric vine estimation.

• Thus, if for example in a clinical study underestimating a patient’s cancer severity is
a more severe error than overestimating it, the user should choose the parametric
or mixed vine estimation method.

If for other applications the contrary is the case, namely overestimation of the
label is a more severe error than underestimation, the user should choose the non-
parametric vine fitting.

• Measured with mAUCdir and mAUCindir the parametric and mixed vine esti-
mation method outperform the non-parametric vine estimation method slightly.
This might be due to the fact, that the true data is simulated parametrically!

• If the user wishes to gain a similar interpretation for a fixed feature’s influence (i.e.
by the magnitude of its logistic β-coefficient), Dist(β̂true, β̂synth) indicates, that the
parametric and mixed vine estimation method are to be slightly preferred
to the non-parametric vine fitting.

• Similarly, the Discor(β̂true, β̂synth) indicates, that the parametric and mixed
vine estimation method are to be slightly preferred to the non-parametric vine
fitting, if the logistic Lasso classifier trained on the synthetic data should recognize

5.2 Results – Simulation Study: Parametrically Simulated True Data 109

similar features as important for the predictions as the logistic Lasso classifier trained
on the true data.

• The parametric and mixed vine fitting yield almost identical results with respect to
all measures. This lets us assume, that the mixed vine fitting chooses to fit most of
the pair copulas parametrically.

• All in all the differences between the non-parametric, parametric and mixed vine
estimation methods in terms of (variable selection) performance are small and all
three methods are able to generate synthetic data, that lets a classifier learn a similar
rule as from the true data.

Table 23 illustrates at a glance, which vine estimation method should be chosen to achieve
good performance and interpretability respectively for which degree of perturbation.

measure
perturbation level

low medium high

p
e
rf
o
rm

a
n
ce

ME+
rel

non-parametric non-parametric non-parametric

parametric parametric parametric

mixed mixed mixed

ME−
rel

non-parametric non-parametric non-parametric

parametric parametric parametric

mixed mixed mixed

mAUCdir

non-parametric non-parametric non-parametric

parametric parametric parametric

mixed mixed mixed

mAUCindir

non-parametric non-parametric non-parametric

parametric parametric parametric

mixed mixed mixed

in
te
rp

re
ta
b
il
it
y

Dist(β̂true, β̂synth)

non-parametric non-parametric non-parametric

parametric parametric parametric

mixed mixed mixed

Discor(β̂true, β̂synth)

non-parametric non-parametric non-parametric

parametric parametric parametric

mixed mixed mixed

Table 23: Comparison of the non-parametric, parametric and mixed vine estimation
method at a glance for the simulation study. Coloured cells indicate, which vine fitting
should be preferred for a chosen measure and degree of perturbation.

110 6 APPLICATION I: MAGIC GAMMA TELESCOPE DATA SET

6 Application I: MAGIC Gamma Telescope Data Set

Additionally to the parametrically simulated true data of Section 5 we try our method-
ology on the MAGIC gamma telescope data set of the UCI Machine Learning Repository
Bock (2007). It was generated by a Monte Carlo program, Corsika, which is described in
Heck et al. (1998), to simulate registration of high energy gamma particles in a ground-
based atmospheric Cherenkov gamma telescope. We do this in order to obtain a complete
picture on how well the three different vine estimation methods of Table 5 perform in
generating synthetic data for training a classifier in our sense.
The MAGIC gamma telescope data set consists of:

• 19020 instances of

• 10 continuous covariates numbered as 1 to 10 and

• one dichotomous response variable class ∈ {g, h}:

g = gamma (signal) : 12332 times

h = hadron (background) : 6688 times .

We should note, that ”[...] classifying a background event as signal is worse than
classifying a signal event as background” Bock (2007).

• The 10 covariates show a non-sparse correlation structure given in Figure 20. That
is why we decide to use logistic regression without regularization for classification.

Figure 20: Coloured correlation matrix of the 10 covariates of the MAGIC data set displaying
the magnitude of the Pearson correlation. As it is not sparse, we use a logistic regression
without regularization for classification.

6.1 Results – Application I: MAGIC Gamma Telescope Data Set 111

We use the methodology of Section 4 with the three different vine estimation methods of
Table 5 on the MAGIC gamma telescope data set. For the analysis we code the labels
the following way:

”2” := g (signal) , ”1” := h (background) . (6.1)

6.1 Results – Application I: MAGIC Gamma Telescope Data
Set

The methodology of Section 4 was used on the MAGIC gamma telescope data set. We
generated:

• psynth = 15 synthetic data sets
(
x (l)
synth y

(l)
synth

)
, l ∈ [15] from the MAGIC gamma

telescope data,

• each containing the same number of instances as the original MAGIC gamma tele-
scope data, namely 19020 instances.

• For a fixed l ∈ [15] we compare:

– ⌊ 30% test share ×19020⌋ = 5706 predictions of a (logistic regression) classifier

trained on 70% of
(
x (l)
synth y

(l)
synth

)
to

– ⌊ 30% test share ×19020⌋ = 5706 predictions of the same type of classifier
trained on 70% of the MAGIC gamma telescope data.

• This yields 15 · 5706 = 85590 comparisons in total.

A Closer Look at the Mixed Vine Estimation Method

Before looking at the performance measures we are interested to see, how often a pair
copula of the first tree level is estimated non-parametrically instead of parametrically in
the mixed vine fitting due to a better AIC value.21 In the first tree level this is the case
for 8 out of 10 pair copulas. We have a look at their normalized contour plots22 displayed
in Figure 21. We do this in order to see, whether the non-parametric estimation is appro-
priate for the respective pair copula. We say, that this is the case, since the normalized
contour plot in Figure 21 does not show a shape similar to one of the parametric pair
copula families, which could have been chosen instead for estimation. Fitting the pair
copula of a pair of variables non-parametrically when this is not appropriate could lead
to overfitting. We want to avoid this as a vine consisting of overfitted pair copulas might
not be well suited to generate synthetic data that let a classifier learn a similar rule as it
would have learned on the true data.
The contour plots of Figure 21 suggest, that a non-parametric fit of the pair copula is
appropriate for pairs (8, 2), (6, 7), (7, 1), (10, 1), (1, 4), (2, 4) and (3, 4). We refit the pair
copula of pair (3, 9) parametrically and compare the log-likelihood of the parametric pair

21Recall the procedure of estimating R-vines illustrated in Section Estimating Regular Vines on
page 26.

22Normalized contour plots were shortly introduced on page 11.

112 6 APPLICATION I: MAGIC GAMMA TELESCOPE DATA SET

copula fit to its non-parametric counterpart. Using the function BiCopEstList of the
R-package VineCopula by Nagler et al. (2021). The BB8 copula rotated by 270◦ yields
the best fit in terms of log-likelihood with a log-likelihood equal to 911.13. The non-
parametric fit clearly outperforms parametric fit with a log-likelihood equal to 1410.92.

Figure 21: MAGIC data: Normalized contour plots of the pair copulas of the first tree level,
that were estimated non-parametrically.

Performance Measures

• confusion matrix and contingency table: We compare the confusion matrices
of the non-parametric vine fitting, the parametric vine fitting and the mixed
vine fitting and the benchmark confusion matrix in the tables of Figure 22.

The benchmark confusion matrix refers to the confusion matrix comparing the
predictions of the logistic regression model trained on the true data to the true labels
of the test set. It gives an impression on how difficult the classification problem is
already on the true data.

• F-measure: Recall Definition 3.2.2 of the F -measure:

F =
2 · precision · recall
precision + recall

.

The F -measure values for non-parametric, parametric and mixed vine fitting
can be found in Table 24. The benchmark -value refers to the F -measure regarding
the predictions of the classifier trained on the true data. It gives an impression on
how difficult the classification problem is already on the true data.

vine fitting F-measure precision, recall

non-parametric 0.8400 precision = 0.7802, recall = 0.9096

parametric 0.8459 precision = 0.7937, recall = 0.9054

mixed 0.8412 precision = 0.7870, recall = 0.9052

benchmark 0.8545 precision = 0.8088, recall = 0.9057

Table 24: F-measure of MAGIC gamma telescope data set.

• AUCdir and AUCdir: The performance in terms of the direct and indirect multi-
class AUC (4.7) and (4.8), which in the dichotomous case is the regular AUC, can
be read off of Figure 23 and Table 25.

6.1 Results – Application I: MAGIC Gamma Telescope Data Set 113

vine fitting: NON-PARAMETRIC:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 15639 14271 29910

ytest
i, true = 2 5031 50649 55680

∑
20670 64920 85590

vine fitting: NON-PARAMETRIC:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 0.1827 0.1667 0.3495

ytest
i, true = 2 0.0588 0.5918 0.6505

∑
0.2415 0.7585 1

vine fitting: PARAMETRIC:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 16806 13104 29910

ytest
i, true = 2 5266 50414 55680

∑
22072 63518 85590

vine fitting: PARAMETRIC:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 0.1964 0.1531 0.3495

ytest
i, true = 2 0.0615 0.5890 0.6505

∑
0.2579 0.7421 1

vine fitting: MIXED:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 16271 13639 29910

ytest
i, true = 2 5278 50402 55680

∑
21549 64041 85590

vine fitting: MIXED:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 0.1901 0.1594 0.3495

ytest
i, true = 2 0.0617 0.5889 0.6505

∑
0.2518 0.7482 1

BENCHMARK:

ŷtest
i, true = 1 ŷtest

i, true = 2
∑

ytest
i, true = 1 1199 795 1994

ytest
i, true = 2 350 3362 3712

∑
1549 4157 5706

BENCHMARK:

ŷtest
i, true = 1 ŷtest

i, true = 2
∑

ytest
i, true = 1 0.2101 0.1393 0.3495

ytest
i, true = 2 0.0613 0.5892 0.6505

∑
0.2715 0.7285 1

Figure 22: Comparing the confusion matrices of the non-parametric, parametric and
mixed vine estimation method with the benchmark confusion matrix of the MAGIC gamma
telescope data. In the left column the confusion matrices are given, in the right column the
values of the corresponding confusion matrix are divided by the total number of observations
giving percentages.

• comparing AUC(ytest
true, ŷ

test
true) and AUC(ytest

true, ŷ
(l), test
synth):

To determine how well vines are suited for generating synthetic data for classifica-
tion, we calculate AUC(ytest

true, ŷ
test
true), from which we learn, how difficult the classi-

fication problem is on the true data. Then we compute the synthetic counterparts
AUC(ytest

true, ŷ
(l), test
synth), l ∈ [15] and compare to AUC(ytest

true, ŷ
test
true), see Figure 24.

We find, that the AUC(ytest
true, ŷ

(l), test
synth), l ∈ [15] of all three vine estimation methods

are overall less than 4% off compared to AUC(ytest
true, ŷ

test
true) ≈ 0.754, see Figure 24.

114 6 APPLICATION I: MAGIC GAMMA TELESCOPE DATA SET

measure
vine estimation 1st

median
3rd

method quartile quartile

mAUCdir

non-parametric 0.9186 0.9206 0.9226

parametric 0.9172 0.9210 0.9231

mixed 0.9130 0.9150 0.9186

mAUCindir

non-parametric 0.0356 0.0377 0.0385

parametric 0.0185 0.0205 0.0212

mixed 0.0264 0.0295 0.0313

Table 25: Comparing the mAUCdir and the mAUCindir scores of the non-
parametric, parametric and mixed vine estimation methods for the MAGIC
gamma telescope data set.

Figure 23: mAUCdir and mAUCdir, direct and indirect mAUC of the MAGIC gamma
telescope data.

6.1 Results – Application I: MAGIC Gamma Telescope Data Set 115

Figure 24: Plotting the AUC(ytest
true, ŷ

(l), test
synth), l ∈ [15] per vine estimation method (non-

parametric, parametric and mixed) in a boxplot. The dashed purple horizontal line indicates
the value of AUC(ytest

true, ŷ
test
true), which the boxplots should be compared to.

This is still a satisfactory performance.

Variable Selection Performance Measures

As we are using binomial logistic regression without regularization for classification on
the MAGIC data set, it does not make sense to consider Discor(β̂true, β̂synth), the avergae

number of discordant β-pairs, but only Dist(β̂true, β̂synth), the average distance of the
logistic regression β-coefficients.

measure vine fitting value reference

Dist(β̂true, β̂synth) (4.9)

non-parametric 0.0998

standardized β-coefficients,
see (3.9)

parametric (mle) 0.1806

mixed 0.1231

benchmark –

Table 26: Dist(β̂true, β̂synth): variable selection performance measure for the MAGIC
gamma telescope data set.

Vine Estimation Method Comparison – MAGIC Gamma Telescope Data

• All three vine estimation methods perform well in terms of prediction and
variable selection in generating synthetic data suitable to train a logistic classifier
similar as on the true data.

• The non-parametric vine estimation method produces synthetic estimates
ŷ
(l), test
i, synth, that underestimate ŷtesti, true the least often, namely in only 5.88% of the

116 6 APPLICATION I: MAGIC GAMMA TELESCOPE DATA SET

cases. This is even better than the benchmark with 6.13% and might be due to
randomness, see tables of Figure 22.

• The parametric and mixed vine estimation methods follow with 6.15% and 6.17%
respectively, see tables of Figure 22.

• At the same time, the non-parametric vine fitting produces ŷ
(l), test
i, synth, that over-

estimate ŷtesti, true in 16.67% of the cases. This is the most often.

• In terms of overestimation the parametric vine fitting is to be preferred with
15.31% labels overestimated, closely followed by the mixed vine fitting with
15.94%, see again tables of Figure 22. All of the vine fitting methods score close to
the benchmark with 13.93%, see Table ??.

• In terms of the F -measure all three vine estimation methods perform similarly
well: the parametric vine fitting only slightly scores better with 0.8459 than the
mixed vine estimation method with 0.8412 and the non-parametric vine
fitting with 0.8400, see Table 24. These values are very close to the benchmark
with 0.8545, see Table 24.

• Regarding mAUCdir as well as mAUCindir the parametric vine estimation
method is to be slightly preferred to the mixed and the non-parametric vine fit-
ting. All three methods achieve amAUCdir ≥ 91.5% at median and amAUCindir ≤
3.8% at median, which is satisfactory.

• Is the focus on variable selection performance, the non-parametric vine es-
timation method outperforms the remaining two in terms of Dist(β̂true, β̂synth).

Overall Performance of the Vine Copula Synthetic Data Generator on the
MAGIC Data

How well are vine copulas in general suited for generating synthetic data for classifying
the MAGIC gamma telescope data? According to the confusion matrices of Table 22
very well: A model trained on the true data classifies around 20 out of 100 patients
incorrectly. A model trained on synthetic data produced by vine copulas classifies 21 to
22 out of 100 patients incorrectly. This is a very good performance.

For the F -measure Table 24 shows a similarly good picture. The F -measure of the clas-
sifier trained on the true data is at most ≈ 1.5% higher than compared to the one of the
classifier trained on synthetic data by vines, which is very good.

Finally, the AUC(ytest
true, ŷ

(l), test
synth), l ∈ [15] of all three vine estimation methods are at mean

overall less than 4% off compared to AUC(ytest
true, ŷ

test
true) ≈ 0.754, see Figure 24. This is

satisfactory.

6.1 Results – Application I: MAGIC Gamma Telescope Data Set 117

measure vine fitting

p
e
rf
o
rm

a
n
ce

underestimation

non-parametric

parametric

mixed

overestimation

non-parametric

parametric

mixed

F -measure

non-parametric

parametric

mixed

mAUCdir

non-parametric

parametric

mixed

mAUCindir

non-parametric

parametric

mixed

in
te
rp

re
ta
b
il
it
y

Dist(β̂true, β̂synth)

non-parametric

parametric

mixed

Discor(β̂true, β̂synth)

–

–

–

Table 27: Comparison of non-parametric, parametric and mixed vine estimation method
at a glance for the MAGIC gamma telescope data set. Coloured cells indicate, which vine
fitting should be preferred for a chosen measure.

118 7 APPLICATION II: BLUEPRINT STUDY DATA SET

7 Application II: Blueprint Study Data Set

We apply our methodology to the Blueprint study data of Qian et al. (2020). They anal-
yse the stromal compartment of the tumor microenvironment, which consists of a het-
erogeneous set of tissue-resident and tumor-infiltrating cells. The latter are profoundly
moulded by cancer cells. ”An outstanding question is to what extent this heterogeneity
is similar between cancers affecting different organs.” In their paper Qian et al. (2020)
profile 233,591 single cells from patients with lung, colorectal, ovary and breast cancer (n
= 36) and construct a pan-cancer blueprint of stromal cell heterogeneity using different
single-cell RNA and protein-based technologies.

For our application:

• we sample 1000 observations from the original Blueprint data set.

• As response variable we choose the expression of gene ESR1, which is a continuous
variable with observations in [−2.7664, 10.0]:

Figure 25

• We limit ourselves to 100 covariates. We choose the genes, whose expression is
the most correlated with the expression of ESR1. The data is still sparse in its
correlation structure as can be seen in Figure 26. That is why we use a logistic
regression with Lasso for classification.

• The gene expression data, i.e. the covariates are continuous.

• To obtain labels Y ∈ {1, 2}, we threshold ESR1 and set:

yi := ”1” for |ESR1i| < 1 , yi := ”2” for |ESR1i| ≥ 1 , i ∈ [1000] , (7.1)

7.1 Results – Application II: Blueprint Study Data Set 119

Figure 26: Correlation matrix of the 100 covariates of the Blueprint study data set. Com-
ponents of the matrix are coloured in black, if the corresponding covariates have an absolute
correlation > 0.2. As it is sparse, we use a logistic regression with Lasso for classification.

where the ”2” is the biologically interesting event. By this we obtain a more balanced
data set in terms of response labels with 630 observations with label ”1” and 370
observations with label ”2”.

7.1 Results – Application II: Blueprint Study Data Set

The methodology of Section 4 was used on the Blueprint study data set. We generated:

• psynth = 15 synthetic data sets
(
x (l)
synth y

(l)
synth

)
, l ∈ [15] from the Blueprint study

data,

• each containing the same number of instances as the original Blueprint study data,
namely 1000 instances.

• For a fixed l ∈ [15] we compare:

– ⌊ 30% Lasso test share ×1000⌋ = 300 predictions of a (logistic Lasso) classifier

trained on 70% of
(
x (l)
synth y

(l)
synth

)
to

– ⌊ 30% Lasso test share ×1000⌋ = 300 predictions of the same type of classifier
trained on 70% of the Blueprint study data.

• This yields 15 · 300 = 4500 comparisons in total.

120 7 APPLICATION II: BLUEPRINT STUDY DATA SET

A Note on the Selection of the Lasso Regularization Parameter λ

As explained on pages 48 and following, we need to choose the penalty parameter λ,
which governs the amount of regularization in the logistic regression model with Lasso.
This is done with 10-fold cross-validation and deviance as loss. The value for λ is picked,
which corresponds to the model with deviance one standard error above (i.e. towards
the positive λ-direction of) the minimal deviance achieved. The reason for selecting a
more restrictive value for λ is, that over-parameterized models tend to be selected when
choosing the λ value that results in the model with minimal deviance.

When we follow this standard procedure for selecting the regularization parameter λ for
the logistic Lasso model on the Blueprint study data, all β-coefficients are set to 0. How-
ever, we know that the features have an influence on the response as the Blueprint breast
cancer data has been studied before. Thus, a logistic regression model containing only
the intercept and no predictors does not make sense! The chosen λ is too strict.

For this reason we deviate from the standard procedure of selecting the Lasso regular-
ization parameter and pick λ to be equal to the λ value, that results in the model with
minimal deviance.

Pair Copula Estimation in the Parametric and Mixed Vine Fitting

It is interesting to observe, which pair copula families were chosen in the estimation of
the R-vine distribution in T1 displayed in Figure 27 as well as for all trees T1, . . . , Td−1

displayed in Figure 28 for the parametric and the mixed vine fitting:

• We find, that in the mixed vine estimation method 97 out of the 100 pair copu-
las of T1 are estimated non-parametrically with transformation kernels, which
corresponds to the symbol ”tll” in Figure 27.

• In T1 the parametric vine fitting selects the Student’s t pair copula most often,
i.e. in almost 50% of the cases, followed by the BB8 pair copula, see Figure 27.

• From Figure 27 we observe overall, that in T1 the parametric and mixed vine fitting
preferably select pair copula families with two parameters (e.g. BB8 and Student’s
t) or very flexible pair copulas, i.e. the transformation kernel estimator.

• In Figure 28 we find, that for non-parametric, parametric and mixed vine
fitting the pair copula selected the most often in trees T1, . . . , Td−1 is the in-
dependence copula. This lets us assume, that at a certain tree level we have
truncation, meaning that the remaining conditional pair copulas are set to indepen-
dence copulas.

• For the parametric vine fitting the BB8, Frank and Student’s t copula are overall
predominating besides the independence copula.

• For the mixed vine fitting the Student’s t, Frank and Clayton pair copula and the
non-parametric transformation kernel estimation are overall predominating.

7.1 Results – Application II: Blueprint Study Data Set 121

• Overall we observe more than double the number of independence pair cop-
ulas selected in trees T1, . . . , Td−1 by the non-parametric vine fitting as by the
parametric or by the mixed vine fitting. This indicates a lower truncation level of
the R-vine distribution estimated with the non-parametric vine fitting. This might
suggest that the non-parametric vine fitting was able to capture important depen-
dence structures already on lower tree levels than the parametric and mixed vine
fitting.

• Overall the independence pair copulas are clearly the dominating pair copula family.

• Besides those, pair copulas, which are able to model tail dependence, such as the
Student’s t, Gumbel, Clayton and Joe, as well as pair copulas not modeling tail
dependence, such as the Gauss or Frank pair copula are fit to data. There seems to
be no clear pattern recognizable.

Figure 27: Counting the pair copula families chosen for estimation of the R-vine distribution
in T1 for the parametric and mixed vine fitting. The total number of pair copulas estimated
in T1 is equal to 100.

122 7 APPLICATION II: BLUEPRINT STUDY DATA SET

Figure 28: Counting the pair copula families chosen for estimation of the R-vine distribution
in T1 for the non-parametric, parametric and mixed vine fitting. The total number of pair
copulas estimated in the R-vine distribution is equal to 5050.

7.1 Results – Application II: Blueprint Study Data Set 123

Performance Measures

• confusion matrix and contingency table: We compare the confusion matrices
of the non-parametric vine fitting, the parametric vine and the mixed vine
fitting with the benchmark confusion matrix in the tables of Figure 29.

The benchmark confusion matrix refers to the confusion matrix comparing the
predictions of the classifier trained on the true data to the true labels. It gives an
impression on how difficult the classification problem is already on the true data.

vine fitting: NON-PARAMETRIC:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 2670 75 2745

ytest
i, true = 2 1605 150 1755

∑
4275 225 4500

vine fitting: NON-PARAMETRIC:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 0.5933 0.0167 0.6100

ytest
i, true = 2 0.3567 0.0333 0.3900

∑
0.9500 0.0500 1

vine fitting: PARAMETRIC:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 2484 261 2745

ytest
i, true = 2 1258 497 1755

∑
3742 758 4500

vine fitting: PARAMETRIC:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ŷtest
i, true = 1 0.5520 0.0580 0.6100

ŷtest
i, true = 2 0.2796 0.1104 0.3900

∑
0.8316 0.1684 1

vine fitting: MIXED:

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 2571 174 2745

ytest
i, true = 2 1366 389 1755

∑
3937 563 4500

vine fitting: MIXED

ŷ
(l), test
i, synth = 1 ŷ

(l), test
i, synth = 2

∑
ytest
i, true = 1 0.5713 0.0387 0.6100

ytest
i, true = 2 0.3036 0.0864 0.3900

∑
0.8749 0.1251 1

BENCHMARK:

ŷtest
i, true = 1 ŷtest

i, true = 2
∑

ytest
i, true = 1 173 10 183

ytest
i, true = 2 89 28 117

∑
262 38 300

BENCHMARK:

ŷtest
i, true = 1 ŷtest

i, true = 2
∑

ytest
i, true = 1 0.5767 0.0333 0.6100

ytest
i, true = 2 0.2967 0.0933 0.3900

∑
0.0873 0.1267 1

Figure 29: Comparing the confusion matrices of the non-parametric, parametric and
mixed vine estimation method with the benchmark confusion matrix of the Blueprint study
data. In the left column the confusion matrices are given, in the right column the values of the
corresponding confusion matrix are divided by the total number of observations giving percent-
ages.

124 7 APPLICATION II: BLUEPRINT STUDY DATA SET

• F-measure: Recall Definition 3.2.2 of the F -measure. The F -measure values for
non-parametric, parametric and mixed vine fitting can be found in Table 28.
The benchmark -value refers to the F -measure regarding the predictions of the
classifier trained on the true data. It gives an impression on how difficult the
classification problem is already on the true data.

vine fitting F-measure precision, recall

non-parametric 0.1515 precision = 0.6667, recall = 0.0855

parametric 0.3955 precision = 0.6557, recall = 0.2832

mixed 0.3356 precision = 0.6909, recall = 0.2217

benchmark 0.3613 precision = 0.7368, recall = 0.2393

Table 28: F-measure of Blueprint study data set.

• AUCdir and AUCdir: The performance in terms of the direct and indirect multi-
class AUC (4.7) and (4.8), which in the dichotomous case is the regular AUC, can
be read off of Figure 30 and Table 29.

measure
vine estimation 1st

median
3rd

method quartile quartile

AUCdir

non-parametric 0.6513 0.7086 0.7387

parametric 0.7861 0.8285 0.8605

mixed 0.8142 0.8457 0.8653

AUCindir

non-parametric 0.0516 0.0617 0.0747

parametric 0.0068 0.0214 0.0281

mixed 0.0081 0.0204 0.0309

Table 29: Comparing the AUCdir and the AUCindir scores of the non-parametric,
parametric and mixed vine estimation methods for the MAGIC gamma telescope
data set.

• comparing AUC(ytest
true, ŷ

test
true) and AUC(ytest

true, ŷ
(l), test
synth):

Again we want to also determine how well vines are suited for generating syn-
thetic data for classification. Therefore we calculate AUC(ytest

true, ŷ
test
true), from which

we learn, how difficult the classification problem is on the true data. Then we
compute the synthetic counterparts AUC(ytest

true, ŷ
(l), test
synth), l ∈ [15] and compare to

AUC(ytest
true, ŷ

test
true), see Figure 24.

– We find, that the AUC(ytest
true, ŷ

(l), test
synth), l ∈ [15] of the parametric vine estima-

tion method even exceeds AUC(ytest
true, ŷ

test
true) ≈ 0.69, see Figure 24. This is

might be due to randomness in the synthetic data.

7.1 Results – Application II: Blueprint Study Data Set 125

Figure 30: mAUCdir and mAUCdir, direct and indirect mAUC of the Blueprint study data.

– The AUC(ytest
true, ŷ

(l), test
synth), l ∈ [15] of the mixed vine fitting is at mean around

4% lower than AUC(ytest
true, ŷ

test
true).

– Summarized the vine estimation methods using (among others) parametric
pair copula estimation are quite produce synthetic data, such that a classifier
trained on them scores close in terms of the AUC to a classifier trained on the
true data.

– Data from the non-parametric vine fitting yield classifier that scores an AUC
that is around 6% lower at mean than the true AUC, which is still satisfactory.

126 7 APPLICATION II: BLUEPRINT STUDY DATA SET

Figure 31: Plotting the AUC(ytest
true, ŷ

(l), test
synth), l ∈ [15] per vine estimation method (non-

parametric, parametric and mixed). The dashed purple horizontal line indicates the value of
AUC(ytest

true, ŷ
test
true), which the boxplots should be compared to.

7.1 Results – Application II: Blueprint Study Data Set 127

Variable Selection Performance Measures

measure vine fitting value reference

Dist(β̂true, β̂synth) (4.9)

non-parametric 0.0089

standardized β-coefficients,
see (3.9)

parametric (mle) 0.0181

mixed 0.0114

benchmark -

Discor(β̂true, β̂synth) (4.10)

non-parametric 26.13
total number of regularized β-
coefficients (without intercept):
100

parametric (mle) 38.27

mixed 31.13

benchmark -

Table 30: Dist(β̂true, β̂synth) and Discor(β̂true, β̂synth): variable selection perfor-
mance measures for the Blueprint study data set.

Variable Selection of the Non-Parametric Vine Estimation Method

We find, that in terms of variable selection the non-parametric vine estimation method
performs better than the parametric or mixed vine fitting. That is why we have a closer
look at it:
We plot the coefficient profiles of the logistic Lasso classifier trained on

(
xsynth ysynth

)(l)
,

l ∈ [15] obtained from the non-parametric vine estimation method in Figure 32. It dis-
plays a curve for each regularized coefficient βj, j ∈ [d] of the logistic regression model, see
Equation (3.11): the coefficient value is plotted versus the L1-norm of the coefficient vec-
tor ∥(β1, . . . , βd)

T∥1. We compare the coefficient profile plots of the 15 classifiers trained

on
(
xsynth ysynth

)(l)
, l ∈ [15] to the logistic Lasso classifier trained on

(
xtrue ytrue

)
of

Figure 33.
Note, that the plot displays the non-standardized βj, j ∈ [d] values, which is due to the
implementation in glmnet, Simon et al. (2011).

We also compare the following quantities in Table 31:

• the number of coefficients, that the Lasso includes into the logistic regression model

when trained on
(
xsynth ysynth

)(l)
, l ∈ [15] and on

(
xtrue ytrue

)
respectively (column

2):

|{j ∈ [d] : β′
j, true ̸= 0}| .

• We compute the percentage of covariates Xj, true, j ∈ [d] included in the true model,
that are re-detected in the synthetic model (column 3):

|{j ∈ [d] : β′
j, synth ̸= 0 ∧ β′

j, true ̸= 0}|
|{j ∈ [d] : β′

j, true ̸= 0}|

128 7 APPLICATION II: BLUEPRINT STUDY DATA SET

• and the number of covariates selected by the Lasso for the classifier trained on the
synthetic data, but not for the classifier trained on the true data, which we call
”false findings” (column 4):

|{j ∈ [d] : β′
j, synth ̸= 0 ∧ β′

j, true = 0}| .

• Then we average the absolute value of the standardized coefficients, see Equation
(3.9), denoted by β′

j, j ∈ [d] of the ”false findings” (column 5):

1

|{j ∈ [d] : β′
j, synth ̸= 0 ∧ β′

j, true = 0}|
∑

j∈[d]:β′
j, synth ̸=0∧

β′
j, true=0

β′
j, synth ,

• and give the average absolute standardized β-value of the selected covariates of the
models built from true and synthetic data respectively (column 6):

1

|{β′
j ̸= 0}|

∑
β′
j ̸=0

|β′
j| .

For the variable selection measures as well as the values given in Table 31 we use the stan-
dardized coefficients β′

j, j ∈ [d] with the prime ′ indicating standardization as explained
in Equation (3.9)!

Summarized we find:

• The classifier trained on the true data includes (by far) the most covariates, namely
24 of 100 possible.

• The majority, namely 8 out of 15 (≈ 53%) of the logistic Lasso models trained on
the synthetic data include 1 to 8 covariates. This is equal to a third or less of the
covariates selected by the true classifier.

• In 6 out of 15 of (40%) of the cases the synthetic logistic Lasso model includes 9 to
16 covariates, which equals 1

3
to 2

3
of the covariates selected by the true classifier.

• Only 1 out of 15 synthetic models has approximately the size (21 covariates) of the
model trained on the true data.

• We find, that each of the 15 synthetic logistic Lasso models is able to recognize at
least 1 of the covariates, which are selected by the classifier trained on the true data.

From the coefficient profile plots of Figure 33 we observe, that this is the covariate
X97. It is not just recognized each time: the coefficient profile of β

(l)
97, synth

′ is for all
l ∈ [15] very similar to the coefficient profile of β′

97, true.

• It is very plausible, that the number of covariates included in the true model, which
are correctly recognized by the synthetic Lasso model, increases as the synthetic
model increases in size.

7.1 Results – Application II: Blueprint Study Data Set 129

l ∈ [psynth]
no. of β′

j ̸= 0, % (no.) of Xj, true no. of false average |β′| of average |β′|
j ∈ [100] re-detected findings false findings of β′ ̸= 0

1 4 8.33% (2) 2 0.054 0.109

2 8 12.5% (3) 5 0.027 0.064

3 15 20.83% (5) 10 0.049 0.063

4 1 4.17% (1) 0 – 0.323

5 11 25% (6) 5 0.040 0.063

6 5 12.5% (3) 2 0.014 0.081

7 1 4.14 % (1) 0 – 0.248

8 2 4.17% (1) 1 0.003 0.055

9 4 4.17% (1) 3 0.024 0.075

10 8 12.5% (3) 5 0.042 0.078

11 12 20.83% (5) 7 0.032 0.064

12 13 16.67% (4) 9 0.027 0.073

13 14 20.83% (5) 9 0.039 0.075

14 21 20.83% (5) 16 0.052 0.066

15 15 25% (6) 9 0.049 0.069

true 24 – – – 0.077

Table 31: Comparing the logistic regression model with Lasso trained on(
xsynth ysynth

)(l)
, l ∈ [15] and

(
xtrue ytrue

)
in detail. Description of the column val-

ues can be found on page 127 and following.

• In 9 of the 15 cases, the number of false findings exceeds the number of correctly
identified features.

• We find that for each l ∈ [15] the average |β′| of the false findings does not exceed
the average |β′| of predictors included into the model. The average |β′| of the

logistic Lasso classifiers trained on
(
xsynth ysynth

)(l)
, l ∈ [15] \ {4, 7} are of the

same magnitude as the average |β′| of the logistic Lasso classifiers trained on the

true data. The models trained on
(
xsynth ysynth

)(l)
, l ∈ {4, 7} only include one

predictor, namely X97, and estimate its coefficient higher than the average |β′|
obtained from the true data.

• No synthetic classifier is able to recognize more than 25% of the features included
into the true logistic regression model with Lasso, see Tabl 31. It is at the same
time important to keep in mind that the classification task on the blueprint data
is difficult, see for example the benchmark F -measure of Table 28 which is around
0.36. The degree to which the response Y depends on the covariates X1, . . . , Xd

is limited. For this reason, it may be more difficult for the logistic Lasso classifier
trained on the synthetic data to find among the limited influential predictors the
ones chosen by the model trained on the true data.

130 7 APPLICATION II: BLUEPRINT STUDY DATA SET

Figure 32: Plotting the coefficient profiles of the logistic Lasso classifier trained on the

synthetic data
(
xsynth ysynth

)(l)
, l ∈ [15] obtained from the non-parametric vine fitting.

Each curve corresponds to a regularized coefficient βj , j ∈ [d] of the logistic regression model of
Equation (3.11) plotting the coefficient value versus ∥(β1, . . . , βd)T ∥1.

7.1 Results – Application II: Blueprint Study Data Set 131

Figure 33: Plotting the coefficient profiles of the logistic Lasso classifier trained on the
true data

(
xtrue ytrue

)
. Each curve corresponds to a regularized coefficient βj , j ∈ [d] of the

logistic regression model of Equation (3.11) plotting the coefficient value versus ∥(β1, . . . , βd)T ∥1.

132 7 APPLICATION II: BLUEPRINT STUDY DATA SET

Vine Estimation Method Comparison – Blueprint Study Data

• The non-parametric vine estimation method produces synthetic estimates
ŷ
(l), test
i, synth, that overestimate ŷtesti, true the least often, namely in only 1.67% of the
cases. This is even better than the benchmark with 3.33% and might be due to
randomness.

• The mixed and parametric vine estimation methods follow with 3.87% and 5.8%
respectively, see tables of Figure 29.

• In terms of underestimation the parametric vine fitting is to be preferred with
27.96% labels overestimated, followed by the mixed vine fitting with 30.36% and
the non-parametric vine fitting with 35.67%, which performs worst here.

• The parametric vine fitting even outperforms the benchmark, in which 29.67%
of the labels are underestimated by the classifier trained on the synthetic data, see
again tables of Figure 29. This might be due to randomness.

• In terms of the F -measure the non-parametric vine fitting clearly scores worse
with 0.1515 than the remaining two vine fittings and the benchmark. This is due
to a poor recall of 0.0855, see Table 28.

• The F -measure of the mixed vine fitting is with 0.3356 quite close to the bench-
mark value of 0.3613. It is even exceeded by the parametric vine fitting with
0.3955. Although it has a lower precision, the recall of the parametric vine fitting
is better than in the benchmark. This might again be due to randomness.

• Regarding mAUCdir as well as mAUCindir the mixed vine estimation method
is to be slightly preferred to the parametric vine fitting: with a mAUCdir-value
of 0.8457 at median for the mixed and 0.8285 at median for the parametric and
a mAUCindir-value of 0.0204 at median for the mixed and 0.0214 at median for
the parametric. The non-parametric vine fitting performs worst by some distance
with 0.7086 for mAUCdir and 0.617 for mAUCindir.

• Is the focus on variable selection performance, the non-parametric vine es-
timation method outperforms the remaining two in terms of Dist(β̂true, β̂synth)

and Discor(β̂true, β̂synth). Especially in the latter non-parametric vine fitting
performs quite well.

• It is interesting to observe, that the parametric vine fitting scores worst in terms of
the variable selection performance measures Dist(β̂true, β̂synth) and Discor(β̂true,

β̂synth) compared to the non-parametric and mixed vine estimation method. It is

also interesting to observe, that the distance of the Dist(β̂true, β̂synth) values and

Discor(β̂true, β̂synth) values between the parametric and the mixed vine fitting is
larger than the distance between the two values of mixed and non-parametric vine
fitting. This might be due to the fact, that in the mixed vine estimation 97 out of
100 pair copulas of the first tree level are estimated non-parametrically instead of
parametrically.

7.1 Results – Application II: Blueprint Study Data Set 133

• Why is parametric vine fitting performing quite well compared to the performance
measure scores of the mixed and the non-parametric vine fitting, when we find, that
in the mixed fitting 97 out of 100 pairs of T1 are estimated non-parametrically and
thus have a better AIC than the parametric pair copula fits?

The reason for this might be low dependence in the data. When plotting the absolute
value of Kendall’s τ estimates of T1 of the mixed vine fitting in Figure 34 we find this
assumption supported to some extent: 78 out of 100 of the estimated pair copulas
of T1 have a absolute Kendall’s τ value below 0.4, which can be regarded as low
dependence.

Figure 34: Histogram of the absolute Kendall’s τ values of T1 of the mixed vine fitting. We
find that 78 out of 100 of the estimated pair copulas of T1 have a absolute Kendall’s τ value
below 0.4.

Overall Performance of the Vine Copula Synthetic Data Generator on the
Blueprint Data

How well are vine copulas in general suited for generating synthetic data for classifying
the Blueptrint breast cancer study data? According to the confusion matrices of Table 29
quite well: A model trained on the true data classifies around 31 out of 100 patients in-
correctly. The classification task at hand is rather difficult. A model trained on synthetic
data produced by vine copulas classifies 33 to 37 out of 100 patients incorrectly. This is
a very close to the performance of the classifier trained on the true data.

For the F -measure Table 28 shows a similar picture. The F -measure of the classifier
trained on the true data is only around ≈ 2.5% off compared to the one of the classifier
trained on synthetic data by vines using (also) parametric pair copula estimation, i.e.
the parametric and mixed vine fitting. Only the non-parametric vine fitting shows some
difficulties in terms of the F -measure, more precisely in the recall, see Table 28.

134 7 APPLICATION II: BLUEPRINT STUDY DATA SET

measure vine fitting

p
e
rf
o
rm

a
n
ce

underestimation

non-parametric

parametric

mixed

overestimation

non-parametric

parametric

mixed

F -measure

non-parametric

parametric

mixed

mAUCdir

non-parametric

parametric

mixed

mAUCindir

non-parametric

parametric

mixed

in
te
rp

re
ta
b
il
it
y

Dist(β̂true, β̂synth)

non-parametric

parametric

mixed

Discor(β̂true, β̂synth)

non-parametric

parametric

mixed

Table 32: Comparison of non-parametric, parametric and mixed vine estimation method
at a glance for the Blueprint study data set. Coloured cells indicate, which vine fitting
should be preferred for a chosen measure.

Finally, the AUC(ytest
true, ŷ

(l), test
synth), l ∈ [15] of all three vine estimation methods are at mean

less than 6% off compared to AUC(ytest
true, ŷ

test
true), see Figure 31. This is satisfactory.

135

8 Conclusion and Further Work

In this master thesis we used vine copulas to generate synthetic data for classification: We
fit a vine copula model to the true data using Dißmann’s algorithm for R-vine selection and
non-parametric, parametric and mixed pair copula estimation. From this fitted model we
sampled synthetic data, which we used to train a logistic regression classifier (with Lasso).

We applied this method to data sets from astronomy (MAGIC gamma telescope data)
and cancer genomics (Blueprint breast cancer study data). The classifier trained on the
synthetic data generated with our methodology achieved overall very comparable results
to those of the same classifier trained on the true data (benchmark) considering classifi-
cation error, the F -measure and AUC.

We also compared the three vine estimation methods, which utilize non-parametric, para-
metric and mixed pair copula estimation, to each other in simulations and on the previ-
ously mentioned MAGIC Gamma telescope data and the Blueprint breast cancer study
data. On the Magic data we found that the parametric vine estimation method performs
best in terms of classification performance. When the focus is on variable selection, the
non-parametric vine estimation method achieved the best results. When applying the
methodology to the Blueprint data, the picture regarding classification performance was
slightly less clear: parametric and mixed vine fitting achieved the best results with respect
to classification performance. Only regarding overestimation did the non-parametric vine
fitting outperform the remaining two. If we look at the variable selection performance, the
non-parametric vine fitting again clearly dominates. Overall, the differences between the
vine fitting methods in classification and variable selection performance are not very large
but increase with increasing difficulty of the classification task. In the closer examination
of the non-parametric vine estimation method on the Blueprint data, it became clear that
the classifier trained on the synthetic data is able to recognize the covariate that the true
classifier weights highest on each of the 15 synthetic data sets produced. However, the
percentage of recognized features did not exceed 25%. One reason for this may be that
the classification task on the Blueprint data is difficult in the first place, which may be
why it is challenging to identify the set of predictors that influence the response the most.

A continuation of this work should verify, whether synthetic data generated by vine cop-
ulas protect the privacy of the real data within the framework of differential privacy, see
Dwork et al. (2006), Dwork (2011) and Dwork et al. (2014). Vine copulas as synthetic
data generators should furthermore be compared to competitor methods, such as GANs
and VAEs on a classification task. It would also be very interesting to apply D-vine re-
gression to generate synthetic data. One could also investigate whether vine fitting with
non-parametric pair copula estimation using local likelihood transformation estimator, see
Nagler (2014), instead of transformation kernels could generate synthetic data improving
classification results.

136 REFERENCES

References

K. Aas, C. Czado, A. Frigessi, and H. Bakken. Pair-copula constructions of multiple
dependence. Insurance: Mathematics and economics, 44(2):182–198, 2009.

H. Akaike. Information theory and an extension of the maximum likelihood principle. In
Selected papers of hirotugu akaike, pages 199–213. Springer, 1998.

M. Arjovsky and L. Bottou. Towards principled methods for training generative adver-
sarial networks. arXiv preprint arXiv:1701.04862, 2017.

D. Ballabio, F. Grisoni, and R. Todeschini. Multivariate comparison of classification
performance measures. Chemometrics and Intelligent Laboratory Systems, 174:33–44,
2018.

T. Bedford and R. M. Cooke. Probability density decomposition for conditionally de-
pendent random variables modeled by vines. Annals of Mathematics and Artificial
intelligence, 32(1):245–268, 2001.

T. Bedford and R. M. Cooke. Vines–a new graphical model for dependent random vari-
ables. The Annals of Statistics, 30(4):1031–1068, 2002.

R. Bock. UCI machine learning repository: Magic data set, 2007. URL https://archive.

ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope.

L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

M. Brokate, N. Henze, F. Hettlich, A. Meister, G. Schranz-Kirlinger, and T. Sonar. Grund-
wissen mathematikstudium. Springer, 2016.

A. Charpentier, J.-D. Fermanian, and O. Scaillet. The estimation of copulas: Theory and
practice. Copulas: From theory to application in finance, pages 35–64, 2007.

E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun. Generating multi-label
discrete patient records using generative adversarial networks. In Machine learning for
healthcare conference, pages 286–305. PMLR, 2017.

C. Czado. Analyzing dependent data with vine copulas. Lecture Notes in Statistics,
Springer, 2019.

C. Czado and E. Brechmann. Generalized linear models with applications. Unpublished,
as of January, 15, 2021.

R. Diestel. Graph theory. fifth. vol. 173. Graduate Texts in Mathematics. Paperback
edition of [MR3644391]. Springer, Berlin, 2018.

J. Dissmann, E. C. Brechmann, C. Czado, and D. Kurowicka. Selecting and estimating
regular vine copulae and application to financial returns. Computational Statistics &
Data Analysis, 59:52–69, 2013.

J. F. Dißmann. Statistical inference for regular vines and application. 2010.

https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
https://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope

REFERENCES 137

C. Dwork. A firm foundation for private data analysis. Communications of the ACM, 54
(1):86–95, 2011.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of cryptography conference, pages 265–284. Springer,
2006.

C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874,
2006.

W. F. Ferger. The nature and use of the harmonic mean. Journal of the American
Statistical Association, 26(173):36–40, 1931.

M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan. Synthetic data
augmentation using gan for improved liver lesion classification. In 2018 IEEE 15th
international symposium on biomedical imaging (ISBI 2018), pages 289–293. IEEE,
2018.

J. Friedman, T. Hastie, R. Tibshirani, et al. The elements of statistical learning, volume 1.
Springer series in statistics New York, 2001.

C. Genest and J. Nešlehová. A primer on copulas for count data. ASTIN Bulletin: The
Journal of the IAA, 37(2):475–515, 2007.

H.-O. Georgii. Stochastics. de Gruyter, 2012.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 102(477):359–378, 2007.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. Advances in neural in-
formation processing systems, 27, 2014.

G. Gudendorf and J. Segers. Extreme-value copulas. In Copula theory and its applications,
pages 127–145. Springer, 2010.

I. H. Haff, K. Aas, and A. Frigessi. On the simplified pair-copula construction—simply
useful or too simplistic? Journal of Multivariate Analysis, 101(5):1296–1310, 2010.

C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda, S. Muramatsu, Y. Furukawa,
G. Mauri, and H. Nakayama. Gan-based synthetic brain mr image generation. In 2018
IEEE 15th international symposium on biomedical imaging (ISBI 2018), pages 734–738.
IEEE, 2018.

D. Hand and P. Christen. A note on using the f-measure for evaluating record linkage
algorithms. Statistics and Computing, 28(3):539–547, 2018.

138 REFERENCES

D. J. Hand and R. J. Till. A simple generalisation of the area under the roc curve for
multiple class classification problems. Machine learning, 45(2):171–186, 2001.

T. Hastie and J. Qian. Glmnet vignette. Retrieved June, 9(2016):1–30, 2014.

D. Heck, J. Knapp, J. Capdevielle, G. Schatz, T. Thouw, et al. Corsika: A monte carlo
code to simulate extensive air showers. Report fzka, 6019(11), 1998.

R. J. Hyndman and Y. Fan. Sample quantiles in statistical packages. The American
Statistician, 50(4):361–365, 1996.

H. Joe. Families of m-variate distributions with given margins and m (m-1)/2 bivariate
dependence parameters. Lecture Notes-Monograph Series, pages 120–141, 1996.

S. Kamthe, S. Assefa, and M. Deisenroth. Copula flows for synthetic data generation.
arXiv preprint arXiv:2101.00598, 2021.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

S. Kotz and S. Nadarajah. Multivariate t-distributions and their applications. Cambridge
University Press, 2004.

D. Kurowicka. Vine truncations. In 3rd Vine Copula Workshop, Oslo, 2009.

D. Kurowicka and R. Cooke. A parameterization of positive definite matrices in terms of
partial correlation vines. Linear Algebra and its Applications, 372:225–251, 2003.

D. Kurowicka and R. M. Cooke. Uncertainty analysis with high dimensional dependence
modelling. John Wiley & Sons, 2006.

A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):
18–22, 2002. URL https://CRAN.R-project.org/doc/Rnews/.

C. Loader. Local regression and likelihood. Springer Science & Business Media, 2006.

T. Nagler. Kernel methods for vine copula estimation. 2014.

T. Nagler. kdecopula: An r package for the kernel estimation of bivariate copula densities.
arXiv preprint arXiv:1603.04229, 2016.

T. Nagler and T. Vatter. rvinecopulib: High Performance Algorithms for Vine Cop-
ula Modeling, 2021. URL https://CRAN.R-project.org/package=rvinecopulib. R
package version 0.5.5.1.1.

T. Nagler, U. Schepsmeier, J. Stoeber, E. C. Brechmann, B. Graeler, and T. Er-
hardt. VineCopula: Statistical Inference of Vine Copulas, 2021. URL https:

//CRAN.R-project.org/package=VineCopula. R package version 2.4.3.

J. A. Nelder and R. W. Wedderburn. Generalized linear models. Journal of the Royal
Statistical Society: Series A (General), 135(3):370–384, 1972.

https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/package=rvinecopulib
https://CRAN.R-project.org/package=VineCopula
https://CRAN.R-project.org/package=VineCopula

REFERENCES 139

R. B. Nelsen. An introduction to copulas. Springer Science & Business Media, 2007.

A. Panagiotelis, C. Czado, and H. Joe. Pair copula constructions for multivariate discrete
data. Journal of the American Statistical Association, 107(499):1063–1072, 2012.

A. Panagiotelis, C. Czado, H. Joe, and J. Stöber. Model selection for discrete regular vine
copulas. Computational Statistics & Data Analysis, 106:138–152, 2017.

M. Y. Park and T. Hastie. L1-regularization path algorithm for generalized linear models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):659–
677, 2007.

J. Qian, S. Olbrecht, B. Boeckx, H. Vos, D. Laoui, E. Etlioglu, E. Wauters, V. Pomella,
S. Verbandt, P. Busschaert, et al. A pan-cancer blueprint of the heterogeneous tumor
microenvironment revealed by single-cell profiling. Cell research, 30(9):745–762, 2020.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2022. URL https://www.R-project.org/.

X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, and M. Müller.
proc: an open-source package for r and s+ to analyze and compare roc curves. BMC
bioinformatics, 12(1):1–8, 2011.

M. Rosenblatt. Remarks on some nonparametric estimates of a density function. The
Annals of Mathematical Statistics, 27(3):832–837, 1956. ISSN 00034851. URL http:

//www.jstor.org/stable/2237390.

N. Schallhorn. D-vine quantile regression for mixed discrete and continuous data with
applications to bank stress testing. 2017.

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for cox’s
proportional hazards model via coordinate descent. Journal of Statistical Software, 39
(5):1–13, 2011. URL https://www.jstatsoft.org/v39/i05/.

N. Simon, J. Friedman, and T. Hastie. A blockwise descent algorithm for group-penalized
multiresponse and multinomial regression. arXiv preprint arXiv:1311.6529, 2013.

M. Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ.
Paris, 8:229–231, 1959.

J. Stöber and C. Czado. Pair copula constructions. In Simulating Copulas: Stochastic
Models, Sampling Algorithms and Applications, pages 185 – 230. 2nd edition, 2017.

N. Tagasovska, D. Ackerer, and T. Vatter. Copulas as high-dimensional generative models:
Vine copula autoencoders. Advances in neural information processing systems, 32, 2019.

S. Wagner and D. Wagner. Comparing clusterings: an overview. Universität Karlsruhe,
Fakultät für Informatik Karlsruhe, 2007.

https://www.R-project.org/
https://www.R-project.org/
http://www.jstor.org/stable/2237390
http://www.jstor.org/stable/2237390
https://www.jstatsoft.org/v39/i05/

140 REFERENCES

Z. Wan, Y. Zhang, and H. He. Variational autoencoder based synthetic data generation
for imbalanced learning. In 2017 IEEE symposium series on computational intelligence
(SSCI), pages 1–7. IEEE, 2017.

L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni. Modeling tabular
data using conditional gan. Advances in Neural Information Processing Systems, 32,
2019.

141

9 Appendix

Commonly Used Distributions

• Univariate Normal distribution, Gauss distribution: The random vector
X ∈ R is univariate Gauss distributed or univariate normally distributed with mean
µ ∈ R and positive variance σ2 > 0, if it has the probability density function:

f(x;µ, σ) :=
1√
2πσ2

exp
{
− 1

σ2
(x− µ)2

}
.

This is denoted by: X ∼ N (µ, σ2). For µ = 0 and σ2 = 1, i.e. X ∼ N (0, 1), we
say, that X is standard normally distributed and denote its density with ϕ(x) and
its distribution with Φ(x). See Georgii (2012).

• Multivariate Normal distribution, Gauss distribution: In the same manner
the random vector X ∈ Rd is multivariate Gauss distributed or multivariate nor-
mally distributed with mean vector µ ∈ Rd and positive definite covariance matrix
Σ ∈ Rd×d, if it has the probability density function:

fd(x;µ,Σ) :=
1

(2π)d/2
|Σ|−1/2 exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
.

In particular, if it holds for X, that for all i ∈ [d] it is Xi ∼ N (0, 1), then X
is said to be multivariate standard normally distributed and its density is denoted
by ϕ(x;R) and its distribution by Φ(x;R) with R ∈ Rd×d the positive definite
correlation matrix. See Georgii (2012).

• Univartiate Student’s t distribution: The random vector X ∈ R is univariate
Student’s t distributed with degree of freedom parameter ν > 0, mean µ ∈ R and
scale parameter σ2 > 0, if it has the probability density function:

ft(x; ν, µ, σ
2) :=

Γ(ν+1
2
)

√
πνσ2Γ(ν

2
)

{
1 +

(x− µ

σ

)2 1
ν

}− ν+1
2

.

It is denoted by: X ∼ tν(µ, σ
2). For µ = 0 and σ2 = 1, i.e. X ∼ tν(0, 1), we say,

that X is standard Student’s t distributed and denote its density function with tν(x)
and its distribution with Tν(x).

• Multivartiate Student’s t distribution: The direct generalization of the uni-
vartiate Student’s t distribution is according to Kotz and Nadarajah (2004) given
as the following: The random vector X ∈ Rd is multivartiate Student’s t distributed
with degrees of freedom ν, mean vector µ ∈ Rd and correlation matrix R ∈ Rd×d, if
it has the probability density function:

ft(x; ν,µ, R) :=
Γ(ν+d

2
)

(πν)p/2 Γ(ν
2
) |R|1/2

{
1 +

1

ν
(x− µ)TR−1(x− µ)

}− ν+d
2

.

It is denoted by: X ∼ tν(µ, R). For if µ = 0 the distribution is said to be central
and we denote its density function with t(x; ν,R) and its distribution function with
T (x; ν,R). Otherwise it is called non-central. The degrees of freedom parameter ν
is also referred to as the shape parameter.

	Introduction
	An Introduction to Vine Copulas
	An Intuition for Non-Statisticians
	Copulas
	Regular Vines
	Sample Quantiles

	An Introduction to Classification
	Types of Classifiers
	Classification Performance Measures

	Synthetic Data for Classification Generated with Vines
	Generating Synthetic Data with Vines
	Assessing the Quality of Synthetic Data

	Simulation Study: Parametrically Simulated True Data
	Simulation of (to. xtrue bold0mu mumu yyyyyytrue)to.
	Results – Simulation Study: Parametrically Simulated True Data

	Application I: MAGIC Gamma Telescope Data Set
	Results – Application I: MAGIC Gamma Telescope Data Set

	Application II: Blueprint Study Data Set
	Results – Application II: Blueprint Study Data Set

	Conclusion and Further Work
	Appendix

