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1 Introduction

Model- and distance-based clustering approaches are commonly used for clustering multi-
variate data. Usually, the data contains many variables. However, in many cases, consid-
ering all variables increases the complexity of the model. In addition, the data may contain
irrelevant or redundant variables that do not provide much benefit or may even cause in-
terference in detecting the hidden structure of the data. Therefore, variable selection in
clustering may not only simplify the model but also increase its accuracy. In this paper, we
discussed several different approaches of variable selection for model-and distance-based
clustering and apply them to the real data set to compare results. This dataset is ob-
tained from the Alzheimer’s Disease Neuroimaging Initiative, an organization that unites
researchers with research data to determine the progression of Alzheimer’s disease and is
available for free download under https://ADNI1.loni.usc.edu/data-samples/access-data/.
The ADNI dataset consists of 10 variables and three different disease states, namely Cog-
nitively normal, Mild cognitive impairment and Dementia.

In the second section, we will give a theoretical background including the mathemat-
ical definitions, theory, and approaches for clustering used throughout the thesis. Section
2 consists of seven subsections. In Sections 2.1-2.3, we mainly introduce the mixture
model. Besides, we also discuss the expectation-maximization algorithm, which is the ba-
sis for model-based clustering approaches. Section 2.4 briefly introduces the distance- and
model-based clustering approaches and their relationship. In Section 2.5, we review the
definitions and theory of vine copula. Section 2.6 provides two different performance mea-
sures for clustering to evaluate our approach later. Section 2.7 describes several different
variable selection approaches that we will use later.

For the third section, we will provide the data description and carry out the ex-
ploratory data analysis. Later, we will show the clustering results of the different ap-
proaches for the ADNI dataset. In Section 4, we use the different variable selection
approaches for Gaussian mixture models and perform the clustering to compare the re-
sults. In Section 5, we use the vine copula mixture model introduced by Sahin and Czado
[2022] to find the structure of the ADNI dataset and compare the results with the clus-
tering approaches based on the classical Gaussian mixture model. In addition to this, we
also make preliminary variable selections for the vine copula mixture model. Section 6
will be the summary of our thesis.
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2 Theoretical Background

2.1 Distributions

Univariate normal distribution A univariate Gaussian distribution, also known as
the univariate normal distribution, is a continuous probability distribution that has a
symmetrical bell-shaped curve. It consists of two parameters, mean µ and variance σ2.

Definition 1 (Univariate normal distribution). The probability density function of uni-
variate normal distribution is defined as follow:

ϕ(x;µ, σ2) =
1

(2πσ2)1/2
exp(− 1

2σ2
(x− µ)2), (1)

where µ and σ2 are scalars representing the mean and variance.

According to the Equation (1), its density reaches its maximum value when x equals
the mean µ and gets smaller the further away from the mean (see a left plot of Figure 1),
as the exponential function is monotonic. The univariate Gaussian distribution is denoted
as N (µ, σ2). Therefore, if the random variable X is Gaussian distributed with mean µ
and standard deviation σ, we can express it as X ∼ N (µ, σ2).

Figure 1: The left graph is univariate Gaussian density for a variable X ∼ N (0, 1) and the
right one is multivariate Gaussian density over two variables (X, Y ) ∼ N2(0,Σ), where
Σ = (3, 2; 2, 5).

Multivariate normal distribution A univariate Gaussian defines the distribution
of a random variable. However, in many real-world problems, we have more than one
random variable. To be able to handle this multivariate situation, the multivariate normal
distribution is a generalization of a univariate normal distribution to more than one
variable.

Definition 2 (Multivariate normal distribution). If a random vector X = (X1, . . . , XD)
T

follows a multivariate normal distribution with mean vector µ ∈ RD ; covariance matrix
Σ ∈ RD×D, which we assume it is a non-singular matrix, so that the inverse of covariance
matrix Σ exists, then the density function of X at its realization x ∈ RD has the following
form:

ϕD(x;µ,Σ) =
1

2πD/2|Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)), (2)
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where |Σ| is a determinant of the covariance matrix Σ and Σ−1 is the inverse of Σ. We
will use abbreviation X ∼ ND(µ,Σ). The right plot of Figure 1 is the example of a
bivariate normal density.

Compared to the univariate Gaussian density, for the density of multivariate Gaussian
distribution, (x−µ)TΣ−1(x−µ) is also a quadratic function of vector x. If the covariance
matrix Σ is positive definite, then the inverse of the covariance matrix is also positive
definite. Then, by the definition of positive definiteness, if any vector x ̸= µ, we have

(x− µ)TΣ−1(x− µ) > 0.

This implies,

−1

2
(x− µ)TΣ−1(x− µ) < 0.

Since the quadratic form f(x) is a paraboloid and its level set is f(x) = c with fixed
c, it is an ellipsoid along the direction of the eigenvectors of the matrix Σ. Because of the
negative coefficient of the quadratic function, like the univariate Gaussian density, the
parabola points downwards and the density will decrease as we move away from x = µ,
as seen in the right panel of Figure 1.

Other Marginal distribution Before introducing the theory of copula, we will intro-
duce some distribution density functions except for the previously mentioned Gaussian
distribution defined in Czado [2019].

Definition 3 (Log-normal distribution). A random variable X is log-normal distributed
if its logarithm is normal distributed. The probability density function of variable X ∈ R
is defined by the mean µ and standard deviation σ, such that,

f(x;µ, σ2) =
1

(2πσ2)1/2
exp(− 1

2σ2
(lnx− µ)2), x > 0 (3)

where σ is also called the shape parameter which affects the shape of the log-normal dis-
tribution and µ is the parameter that changes the location of the graph. Figure ??shows
the shape of log-normal under the different values of mean and variance.
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Figure 2: Density of log-normal distribution, where black is lnorm(0, 1); red is
lnorm(0.5, 1); blue is lnorm(0.5, 0.5); purple is lnorm(0, 0.45). The parameter value
are given inside the parenthesis (µ/σ).

Before further study, we first introduced a special function called the Gamma func-
tion, which is a generalization of the factorial function.

Definition 4 (Gamma function). The Gamma function Γ is defined as

Γ(k) =

∫ ∞

0

xk−1e−xdx k > 0 (4)

Definition 5 (chi-square distribution). If X1, . . . , Xν are independent standard normal
random variables, then the sum of squares Y =

∑ν
i=1X

2
i will follows chi-square distribu-

tion with ν degrees of freedom and the probability density function at x is,

f(x; ν) =
1

2ν/2Γ(ν/2)
xν/2−1e−x/2 (5)

Definition 6 (Gamma distribution). Suppose the random variable X follows the Gamma
distribution with shape parameter α ∈ (0,∞) and rate parameter β ∈ (0,∞), then the
probability density function at x is given by,

f(x;α, β) =
βα

Γ(α)
xα−1e−βx (6)

and its mean and variance are,

µ = E(X) =
α

β
σ2 = V (X) =

α

β2 (7)
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Figure 3: Density of Gamma distribution G(2, 2), where the parameter value are given
inside the parenthesis (µ/s) (α; β).

Besides, there is a special case of Gamma-distribution, that is the chi-square distribution
where α = ν/2 and β = 1

2
; ν is the degree of freedom. Figure 3 shows the density of

Gamma distribution with α = 2 and β = 0.5

Definition 7 (Student’s t distribution). Suppose Y and Z are independent random vari-
able, Y follows the chi-square distribution with ν degree of freedom and Z follows normal
distribution such that Z ∼ N (0, 1), then we could say variable X is student t distribution
with ν degree of freedom if it satisfies:

X =
Z√
Y/n

and its density of at x is given by :

f(x; ν) =
Γ(ν+1

2
)

√
νπΓ(ν

2
)
(1 +

x2

ν
)−

ν+1
2 (8)

where Γ is the Gamma function. The shape of the probability density function of X is
similar to a normal distribution with an µ = 0 and σ = 1, but lower and wider. As the
degree of freedom ν increases, it becomes closer to a normal distribution with an expected
value of 0 and a variance of 1, see in Figure 4.

Definition 8 (logistic distribution). If a random variable X ∈ R follows a logistic dis-
tribution with the mean, also called location parameter, µ ∈ R, and the scale parameter
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Figure 4: Density of Student’s t distribution and the density of normal distribution
N (0, 1), where black is normal distribution; red is t(2); orange is t(5); blue is t(1).The
parameter value is given inside the parenthesis (ν).



2.1 Distributions 7

Figure 5: Density of logistic distribution, where black is logis(0, 1); red is logis(0, 2); blue
is logis(1.5, 2).The parameters value are given inside the parenthesis (µ/s).

s ∈ R+, then its probability density function at x is given by,

f(x;µ, s) =
e−(x−µ)/s

s(1 + e−(x−µ)/s)2
(9)

Figure 5 shows the density of logistic distribution under the different values of mean and
scale parameters.

Definition 9 (log-logistic distribution). For the random variable X, if its logarithm has
the logistic distribution, such that Y = ln(X) follows logistic distribution, then X is log-
logistic distributed. The probability density of X at x is given by,

f(x;α, β) =
(β/α)(x/α)β−1

(1 + (x/α)β)2
(10)

where α > 0 is the scale parameter and β > 0 is the shape parameter. Figure 6vshows the
density of log-logistic distribution under different parameters.

Definition 10 (skew normal distribution). For a random variable X, if it is skew-normal
distributed, then the probability density of X at x is

f(x; ξ, ω, α) =
2

ω
ϕ(

x− ξ

ω
)Φ(α(

x− ξ

ω
)) (11)

where ξ ∈ R is location parameter, ω ∈ R+ is scale parameter and α ∈ R is shape
parameter. ϕ and Φ are the density and distribution functions of the univariate standard
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Figure 6: Density of log-logistic distribution, where black is llogis(1, 2); red is
llogis(1, 0.5); blue is llogis(0.5, 2).The parameters value are given inside the parenthe-
sis (α/β).
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Figure 7: Density of skew-normal distribution, where black is SN(0, 1, 1); red is
SN(0, 1,−1); blue is SN(0, 1, 0).The parameters value are given inside the parenthe-
sis (ξ, ω, α).

normal distribution. If α > 0, we say distribution is right-skewed and if α < 0 then it is
left-skewed. For α = 0, it means the normal distribution is recovered. The example of the
skew-normal distribution can be seen in Figure 7.

Definition 11 (skew Student’s t distribution).

f(x; ξ, ω, ν, α) = 2t(x; ξ, ω, ν)T (ζ; ν + 1) (12)

where

ζ = α(
x− ξ

ω
)(

ν + 1

ν + (x−ξ
ω
)2
)1/2

and t and T are the density and distribution function of the univariate standard student-t
distribution, such that

t(x; ξ, ω, ν) =
Γ(ν+1

2
)(1 + (x−ξ

ω
)2 1

ν
)−ν/2−1/2

ω(πν)1/2Γ(ν/2)

T (x; ν) =

∫ x

−∞
t(u; 0, 1, ν)du

ξ ∈ R is the location parameter, ω ∈ R+ is the scale parameter, ν ∈ R+ describes the shape
and α is the skewness parameter. If α = 0, it means the standard student’s t distribution is
recovered. Besides, if α = 0 and ν →∞, then it will be the standard normal distribution.
The Figure 8 shows the comparison of the density of standard normal distribution and
density of skew student’s t distribution under different ν.

We also introduce the definition of empirical distribution function which will be used
in the later section.



10 2 THEORETICAL BACKGROUND

Figure 8: Density of skew Student’s t distribution and standard normal distribution,
where black is N(0, 1); red is ST (0, 1, 5, 1); green is ST (0, 1, 20, 1).The parameters value
are given inside the parenthesis (ξ, ω, ν, α).

Definition 12 (Empirical distribution). Empirical distribution function is the distribution
function which is an estimate of the cumulative distribution function that associated with
the points in the sample. Suppose there are n sample, x1, . . . , xn, which are i.i.d points
from the distribution function F , then the empirical distribution of the sample is given by,

F̂ (x) =
1

n+ 1

n∑
i=1

1{xi≤x}

Converting data from a given continuous distribution of random variables to a random
variable with a standard uniform distribution, we have to use the probability integral
transform, which is defined in Definition 13.

Definition 13 (Probability integral transform). Suppose X is a random variable that
follows the continuous F distribution, then for an observed value of variable X, u := F (x)
is called the probability integral transform (PIT) at x.

According to the definition of probability integral transform, we can prove that
for U:=F(x), it will follow the uniform distribution. Since for u ∈ [0, 1]

P (U ≤ u) = P (F (X) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u.

Therefore, for the vectorX = (X1, . . . , Xd) follows the multivariate distribution F and Fj,
for for j = 1, . . . , d, are their corresponding marginal distribution functions, we can create
a vector U such that U := (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)) and Uj for j = 1, . . . , d
are uniform distributed. Then, if x is the observed sample value of X, we can estimate
u-scale value of x, denoted as u.
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2.2 Gaussian mixture model

Figure 9: Structure of mixture model: fk(x) is the kth component density of mixture
model and f(x) is the density of mixture model; ψk is the parameters of the kth compo-
nent’s distribution; αk is the mixing proportion of the kth component.

A mixture model can be used to model population data that are known or suspected to
contain several separate subpopulations. The most commonly used one is the Gaussian
mixture distribution (univariate and multivariate), which is currently the basis of a very
popular statistical model for clustering.

Definition 14 (Mixture model). A mixture model can always be expressed as the convex
combination, or weighted average of several simple component distributions. The den-
sity of mixture model consisting of K components for a random vector X ∈ RD at its
realization x ∈ RD has the following form:

f(x;η) =
K∑
k=1

αkfk(x;ψk);

K∑
k=1

αk = 1, 0 ≤ αk ≤ 1.

(13)

Here, αk is called the mixing coefficient for component k. The term fk(x;ψk) denotes
the probability density function of kth component. Further, ψk denote the parameters of
the kth mixture component, and η collects all unknown parameters of distribution,i.e.,
η = (η1, . . . ,ηK)

T ,ηk = (ψk, αk)
T ,for k = 1, . . . , K. Figure 9 illustrates the structure of

the mixture model.

2.2.1 Univariate Gaussian mixture model

Definition 15 (Univariate Gaussian mixture model). Suppose that x represents a random
sample of a random variable X from the mixture of K univariate Gaussian distribution,
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then we have the following form for the density function:

f(x;η) =
K∑
k=1

αkϕ(x;ψk), (14)

where η = (η1, . . . ,ηK)
T ,ηk = (µk, σk, αk)

T ,ψk = (µk, σk)
T , µk ∈ R and σk ∈ R are the

mean and standard deviation of the kth Gaussian distribution, αk is the mixing proportion
of mixture model, αk ≥ 0,

∑K
k=1 αk = 1, for k = 1, . . . , K. Besides, ϕ(x;ψ) is the density

of univariate Gaussian distribution for the data x with parameters ψ = (µ, σ2).

Figure 10: An example of a univariate mixture of Gaussian model, where the green line
shows component C1 ∼ N (0, 1), the blue line is C2 ∼ N (7, 1.2) and the yellow line C3 ∼
N (3, 0.6). Further, the mixing proportion is given as α = (α1, α2, α3)

T = (0.4, 0.2, 0.4)T

The mixture density is expressed as the red line.

Example 1. Let’s consider a simple example of a univariate Gaussian mixture model
with 3 components, as shown in Figure 10. The first component’s C1 distribution is given
by N (0, 1); the distribution of second component C2 is given by N (7, 1.2) and of third
component C3 is given by N (3, 0.6). If the probabilities of choosing components C1,C2,C3

are 0.4,0.2,0.4 respectively, then the probability density function(PDF) over x is

f(x;η) = 0.4 · N (0, 1) + 0.2 · N (7, 1.2) + 0.4 · N (3, 0.6)

=
0.4

(2π)1/2
exp(−1

2
x2) +

0.2

(2.4π)1/2
exp(− 1

2.4
(x− 7)2) +

0.4

(1.2π)1/2
exp(− 1

1.2
(x− 3)2)

(15)

where η = (0, 1, 0.4, 7, 1.2, 0.2, 3, 0.6, 0.4)T
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2.2.2 Multivariate Gaussian mixture model

Definition 16 (Multivariate Gaussian mixture model). A multivariate Gaussian mixture
model is a weighted combination of multivariate Gaussian distribution. Suppose we have
i.i.d observations D = (x1, . . . ,xN)

T ∈ RN×D, where xT
i = (xi1, . . . , xiD)

T ∈ RD for
i = 1, . . . , N . The density of the multivariate Gaussian mixture model with K components
at xi can be written as:

f(xi;η) =
K∑
k=1

αkϕD(xi;ψk) for i = 1, . . . , N, (16)

where η = (η1, . . . ,ηK)
T with ηk = (µk,Σk, αk)

T , ψk = (µk,Σk)
T , µk ∈ RD is the mean

vector, Σk ∈ RD×D is the covariance matrices; αk is the mixing proportion, αk ≥ 0,∑K
k=1 αk = 1, for k = 1, . . . , K.

Then, the loglikelihood of the Gaussian mixture model based on D can be expressed
as,

L(η;D) =
N∑
i=1

ln f(xi;η) =
N∑
i=1

ln(
K∑
k=1

αkϕD(xi;ψk)). (17)

The mixture model always contains a binary latent variable that corresponds to the
membership for mixture components. Here we introduce a latent variable and build a
latent model framework for multivariate Gaussian mixture model. Let Zk be a binary
variable such that

p(Zk = 1) = αk for k = 1, . . . , K

and assume that Zik, i = 1, . . . , N are i.i.d copies of Zk with realization zik.
We now use the binary latent variables Zi={Zik, k = 1, . . . , K},for i = 1, . . . , N ,in

which a particular Zik is equal to 1 and other elements are equal to 0, to identify the
component to which a D-dimension random vector Xi belongs, i = 1, . . . , N , i.e.,

Xi|Zik = 1 ∼ ND(µk,Σk)

with density ϕD(·,µk,Σk) and
∑K

k=1 Zik = 1. Then, we define the latent conditional
success probability, also called responsibility of kth component for xi, γk(xi) such that,

γk(xi) = p(Zik = 1|Xi = xi), for i = 1, . . . , N.

By Bayes theorem, we have,

γk(xi;η) =
p(Xi = xi|Zik = 1)p(Zik = 1)

p(Xi = xi)

=
αkϕD(xi;µk,Σk)∑K

j=1 p(Xi = xi|Zij = 1)p(Zij = 1)

=
αkϕD(xi;µk,Σk)∑K
j=1 αjϕD(xi;µj,Σj)

.

(18)
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Example 2. To better understand the responsibility of a new data point, we use the exam-
ple of one-dimension observations that we illustrate in Example 1 to show the computation
process. Suppose there is a new observed data x=2.5, we can estimate the following terms,

p(Z1 = 1) = 0.4

p(Z2 = 1) = 0.2

p(Z3 = 1) = 0.4

Since for first component C1, the distribution is N (0, 1), given data x in the first compo-
nent, the probability that x = 2.5 is,

p(x = 2.5|Z1 = 1) ∼ N (0, 1) ≈ 0.018

For the second component C2 ∼ N (7, 1.2), the probability that X = 2.5 is

p(x = 2.5|Z2 = 1) ∼ N (7, 1.2) ≈ 0.000

For the third component C3 ∼ N (3, 0.6), the probability that X = 2.5 is

p(x = 2.5|Z3 = 1) ∼ N (3, 0.6) ≈ 0.470

Therefore,

γ1(x = 2.5) = p(Z1 = 1|x = 2.5)

=
p(Z1 = 1)p(x|Z1 = 1)

p(Z1 = 1)p(x|Z1 = 1) + p(Z2 = 1)p(x|Z2 = 1) + p(Z3 = 1)p(x|Z3 = 1)

= 0.037

Similarly,
γ2(x = 2.5) = p(Z2 = 1|x = 2.5) = 0,

γ3(x = 2.5) = p(Z3 = 1|x = 2.5) = 0.963.

2.3 Expectation-Maximization algorithm for GMM

We cannot use the maximum likelihood method to estimate the parameters of the mixture
model since the mixture coefficients are unknown, therefore we need iterative approaches.
The main problem of fitting a Gaussian mixture model can be explained by the following
example.

Example 3. Suppose a data set D = (x1, . . . ,xN)
T ∈ RN×D,xi ∈ RD, containing two sub-

groups, each of which is generated by a Gaussian distribution and we denote as ND(µ1,Σ1)
and ND(µ2,Σ2) respectively.

In the example, if we want to know which observations belong to which kind of
sub-distributions, we consider two cases as follows:

If we know the parameters of two distributions and we want to know to which group
each data belongs, we can estimate the responsibility γk(xi) and assign the data to the
group that they are more likely belong to.
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If we know the label of the data, i.e., know the data belongs to ND(µ1,Σ1) or
ND(µ2,Σ2), and we want to know the mean and variance matrix of two Gaussian distri-
butions, then we can get the parameters of each distribution by estimating them over two
groups of the data.

However, if we aim to find out the parameters space (mean and variance in univariate
case; mean and covariance matrix in multivariate case) of the two Gaussian distributions,
and to which distribution or group each data point belongs, that is both are unknown,
then it will lead to a chicken-egg problem because only by knowing one can we get the
other.

Considering the above two cases, there is an iterative approach with two steps. First,
given the parameter of Gaussian distributions and we estimate the label of data; second,
use the label that we derived in step 1 to update the parameters of Gaussian distribution.

Therefore, Dempster et al. [1977] proposed the Expectation Maximization (EM) al-
gorithm to solve the Gaussian mixture model problem. It has two major steps, one is
Expectation step, the other is Maximization step. The expectation step is to cal-
culate the probability γk(xi) by using the current value of parameters η0 = (µ0,Σ0,α0)T ,
which can be done using the Equation (18). Since we do not know the complete data
loglikelihood, we will use γk to find the expectation of complete data likelihood eval-
uated at any estimated η. Suppose the set of all possible binary latent variables is
Z = {Z1, . . . ,ZK} and Zi = (Zi1, . . . , ZiK), where Zik ∈ {0, 1}. In Maximization step,
we will estimate new parameters η∗ = (µ∗

k,Σ
∗
k, α

∗
k)k=1,...,K by maximizing the expectation

of complete data log-likelihood.
First, in the E-step, the η0 is used to find the posterior distribution of binary latent

variables p(Z|x,η0). Then, in the M-step, we find the expectation of complete data
log-likelihood with respect to the posterior evaluated at η0 as Q(η,η0) and it equals to,

Q(η,η0) = EZ|D,η0 [ln p(D,Z|η)]

=
N∑
i=1

∑
Z

p(Zi|xi,η
0) ln p(xi,Zi|η).

(19)

Since the likelihood can be expressed as

p(xi,Zi|η) =
K∏
k=1

αZik
k ϕD(xi;µk,Σk)

Zik . (20)

Then, the log-likelihood is,

ln p(xi,Zi|η) =
K∑
k=1

Zik[lnαk + lnϕD(xi;µk,Σk)], (21)

and p(Zik = 1|xi,η
0) = γk(xi). Thus, combining Equation (19) and Equation (21),the

expectation of complete data loglikelihood Q(η,η0) can be expressed as,

Q(η,η0) =
N∑
i=1

K∑
k=1

γk(xi)[lnαk + lnϕD(xi;µk,Σk)]. (22)
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Now, in maximization step, the parameter η∗ can be estimated by maximizing the Q,
such that:

η∗ = argmax
η
Q(η,η0).

Since we need
∑K

k=1 αk = 1, we introduce a Lagrange multiplier to enforce it, i.e., we
consider the optimization of Q(η,η0) over λ,

Q(η,η0) =
N∑
i=1

K∑
k=1

γk(xi)[lnαk + lnϕD(xi;µk,Σk)]− λ(
K∑
k=1

αk − 1). (23)

Taking the derivative of Q, with respect to αk and setting it to zero, we get

αk =

∑N
i=1 γk(xi)

N

=
Nk

N
,

(24)

where we define Nk :=
∑N

i=1 γk(xi) is the the total responsibility of the kth mixture
component for the observations. Similarly, we take the derivative with respect to µ and
Σ and set it to zero, we obtain

µ∗
k =

∑N
i=1 γk(xi)xi∑N

i=1 γ(xi)

=

∑N
i=1 γk(xi)xi

Nk

;

(25)

Σ∗
k =

∑N
i=1 γk(xi)(xi − µk)(xi − µk)

T )∑N
i=1 γk(xi)

=

∑N
i=1 γk(xi)(xi − µk)(xi − µk)

T )

Nk

.

(26)

Then, given the complete data (D,Z), we can perform an iteration of the EM algo-
rithm. Although the log-likelihood increase during the iterations of the EM, the EM does
not necessarily converge to the global maximum likelihood solution. It is possible for the
EM algorithm to converge to a local maximum of the log-likelihood. We could run the
EM multiple times and use different initial parameters η to reduce the risk of the model
ending with a bad local optimum.

2.4 Clustering

Clustering is an unsupervised learning technique to divide a set of observations into several
groups such that the observations in the same groups are more similar. It is important
since it can discover hidden group structures among unlabelled data. The clustering is
done by using different criteria such as the distance, density of data points, graph, or
various statistical distributions.
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2.4.1 Model-based clustering approaches

Model-based clustering is a statistical approach to clustering, which assumes that obser-
vation is generated from a finite mixture of component models (see in Fraley and Raftery
[2002]). The observation within each subgroup follows a multivariate distribution, such
as multivariate Gaussian distribution. Then, the subgroup an observation should be as-
signed to will depend on the parameters(mean and variance matrix for the GMM) of
that subgroup’s distribution. Besides, the parameter estimates of a subgroup will depend
on which observations are assigned to it. We can use the EM algorithm of GMM for
clustering since we need to estimate the parameters of each subgroup’s distribution and
identify each observation’s group. Furthermore, the model-based clustering method can
automatically identify the optimal number of components or clusters based on information
criteria.

In practice, we always perform hard-clustering, that is each observation can only
be assigned to one subgroup. After estimating parameters, we will use maximum a
posterior (MAP) rule to assign the observation. To be more specific, for a observation
xi, we would assign it to the subgroup with the highest posterior probability(or called
responsibility γk(xi) ). Sometimes, if we consider soft-clustering, where observations can
be assigned to more than one subgroup, then we will use a score to indicate the degree
of association between the observation and the subgroup, and this score for observation
xi corresponding to each cluster k is the posterior probability(or called responsibility)
γk(xi). In this paper, we will only consider the hard-clustering case.

Suppose there are N observations for clustering, i.e., D = (x1, . . . ,xN)
T ∈ RN×D,xi ∈

RD, containing K subgroups. The observation in each subgroup k follows the distribution
N (µk,Σk), then we do the following steps to find the optimal partitions of GMM.

Step 1 ”Guess” the centers µ0
k and covariance Σ0

k of K clusters, that is initialize
the parameters with η0

k = (µ0
k,Σ

0
k, α

0
k), for each cluster k = 1, . . . , K. Then, perform the

iteration of EM-algorithm to update the η until the loglikelihood converges. The new
parameter is denoted as η∗ = (µ∗

k,Σ
∗
k, α

∗
k).

Step 2 For each observation xi, we will allocate the observation by MAP rule.
The posterior probability of belonging to each group k is calculated according to Bayes’
theorem,

γk(xi) = p(Zik = 1|Xi = xi)

=
p(Xi = xi|Zik = 1)p(Zik = 1)

p(Xi = xi)

=
α∗
kϕD(xi;µ

∗
k,Σ

∗
k)∑K

j=1 αjϕD(xi;µ∗
j ,Σ

∗
j)

and the observation xi is allocated to the subgroup k̂ with the highest posterior proba-
bility, that is,

k̂ = MAP (γk(xi)) = argmax
k

{γ1(xi), . . . , γK(xi)}.

Consider the Example 2, suppose we have known the parameters of the model by EM
iterations and we want to infer, given a new data point x = 2.5, which component it might
belong to. In Example 2, we have estimated the posterior probability of observation x for
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each group, given by γ1(x = 2.5), γ2(x = 2.5), γ3(x = 2.5), such that

γ1(x = 2.5) = p(Z1 = 1|x = 2.5) = 0.037,

γ2(x = 2.5) = p(Z2 = 1|x = 2.5) = 0,

γ3(x = 2.5) = p(Z3 = 1|x = 2.5) = 0.963.

Since γ3(x = 2.5) > γ1(x = 2.5) > γ2(x = 2.5), we can conclude the data x is more
likely to belong to third component.

2.4.2 Distance-based clustering method

In distance-based clustering, the observations are clustered by using the distance metric,
which is the criteria to determine the similarity between continuous observations. The
distance metric can be used to cluster observations by using the distance between each
pair of observations or the distance between observations and the center of the subgroup.
In contrast to model-based clustering, distance-based clustering has the drawback in that
it requires the number of clusters to be known in advance. One of the most common
distance-based clustering approaches is kmeans approach.

Considering the problem of finding clusters in a set of observations, we first use an
algorithm called standard kmeans. To partition the observations into different groups,
we first assume the number of clusters K is given. Since each cluster is composed of a
set of observations, we can assume that the inter-point distances of these observations
are smaller than the distances of the observations outside the cluster. Therefore, we are
trying to find a partition C = {C1, . . . , CK} that the sum of distance between the data in
the group and the corresponding empirical mean µ = (µ1, . . . ,µK)

T of the group space(
or the clustering) are minimized, where µk = (µk1, . . . , µkD) is the vector of the mean of
each variable in the group k, where µkd =

1
nk

∑
i∈Ck xid and nk is the number of points in

cluster k.
Let D ∈ RN×D be a data matrix containing N observations and each observation

has D variables. Suppose xi ∈ RD and yd ∈ RN are the ith row and dth column of D.
So, D = (y1, . . . ,yD)

T = (xT
1 , . . . ,x

T
N) = (xid)N×D. Then, it could be formulated as an

optimization problem that minimize the sum of dissimilarity of each data point to its
assigned center, J(C,µ), that is,

min
(C,µ)

J(C,µ) = min
(C,µ)

N∑
i=1

K∑
k=1

∑
i∈Ck

d(xi,µk), (27)

where d(·, ·) is called the dissimilarity function that satisfy d(m,m) = 0,d(m,n) ≥ 0
and d(m,n) = d(n,m), where m,n are random vectors. Here, we choose the square
of Euclidean distance as the dissimilarity function, which is d(xi,xj) = ∥xi − xj∥2 =∑p

q=1(xiq − xjq), for xi ∈ Rp.
To solve the problem of choosing the number of clusters K in kmeans, Tibshirani

et al. [2001] come up with a method called Gap statistic. We define variance quantity
WK as,

WK :=
K∑
k=1

1

2nk

∑
i,j∈Ck

d(xi,xj), (28)



2.4 Clustering 19

where K is the number of clusters and nk is the number of points in cluster k. The idea
of gap statistic is the comparison of the expectation of ln(WK) with an appropriate null
reference distribution of the dataset and ln(WK) of original dataset. The Gap function
is defined as follow,

Gap(K) := E[ln(W ∗
K)]− ln(WK), (29)

where En[ln(W
∗
K)] is estimated by the empirical mean of B copies ln(W ∗

K) which are
generated with a Monte Carlo sample of the reference distribution so we have

E[ln(Ŵ ∗
K)] =

1

B

B∑
b=1

ln(W ∗
Kb), (30)

where ln(W ∗
Kb) is derived by clustering the b reference dataset. The simulation error sK

of Monte Carlo simulation can be determined by the standard deviation of sd(K) and it
given by

sK = sd(K)

√
1 +

1

B
, (31)

where

sd(K) = [
1

B

B∑
b=1

(ln(W ∗
Kb)− E[ln(Ŵ ∗

K)])
2]

1
2 , (32)

Hence, after computing each number of clusters K, the optimal number of clusters K̂ is
given by the smallest K that satisfies,

Gap(K) ≥ Gap(K + 1)− sK+1. (33)

2.4.3 Relationship between EM and kmeans

The Gaussian mixture model is very similar to the kmeans clustering algorithm as we will
show that the kmeans algorithm is also an EM type algorithm that assigns data points to
clusters. To have a better understanding of the relationship between the Gaussian mixture
model and kmeans, we introduce a binary variable Z with its realization zik ∈ {0, 1}, where
k = 1, . . . , K, to represent the assigned result. If the data point xi is belong to the cluster
k, that is zik = 1 if xi belongs to cluster k ,zik = 0, otherwise. Then we could rewrite the
equation (27) as:

min
(C,µ)

J(C,µ) = min
(C,µ)

N∑
i=1

K∑
k=1

zikd(xi,µk)

= min
(C,µ

N∑
i=1

K∑
k=1

zik∥xi − µk∥2.

(34)

The kmeans algorithm is an iterative procedure to find out the mean µk and clustering
result zik that minimizes the objective function J . It mainly contains two steps. After
initializing the value of the mean µk for each group k, we firstly minimize the objective
function J with respect to zik by given µk. In the second step, we minimize the objective
function J with respect to µk by given zik. Then, we repeat these two steps until it
converges. During the first step, we assigned the data xi for i = 1, . . . , N to the closest
cluster. The assigned result zik for data xi can be estimated by,
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zik =

{
1 if k = argminj∥xi − µj∥2
0 otherwise.

(35)

For the second step, fix the cluster result zik of each data xi, we update the mean
µk for k = 1, . . . , K by deriving the objective function J . Since J is a quadratic function
respect to µk, we set the derivative to zero:

2
N∑
i=1

zik(xi − µk) = 0 (36)

Thus,

µnew
k =

∑N
i=1 z

old
ik xi∑N

i=1 z
old
ik

. (37)

Equation (37) is quite similar to the updating Equation (25) of the mean during
the EM for the Gaussian mixture model. We can think of kmeans as a special case of
GMM, where the mean in GMM is the cluster center and the covariance is set to the
identity matrix . As described by MacKay et al. [2003], kmeans assigns data points
”hard” to cluster centers, that is each data point is assigned to a specific unique cluster,
while GMM makes ”soft” assignments through the responsibility measure and does not
guarantee assignment to a unique cluster point. The following is a derivation of kmeans
as considered a special case of EM for Gaussian mixtures

Suppose a GMM with K components, in which the covariance matrix is Σk = σ2I ∈
RD×D, σ2 is variance and is the same for all K components, the mean of component k
is µk for k = 1, . . . , K. I is the identity matrix. Therefore, the density of GMM for
component k is that,

f(xi;µk) =
1

(2πσ2)1/2
exp(− 1

2σ2
(xi − µk)

2). (38)

Considering the EM algorithm of GMM we discussed before and from the formula of
responsibility, as seen in Equation (39), for fixed variance σ2, the responsibility of a given
data xi is

γk(xi) =
αkexp{−∥xi − µk∥2/2σ2}∑K
j=1 αjexp{−∥xi − µj∥2/2σ2}

. (39)

When σ2 → 0, the term in the denominator for which ∥xi − µj∥2 is smallest will go to
zero most slowly, thus the responsibilities γk(xi) for data xi will go to zero except for
term j, for which the responsibility γj(xi) will go to 1. Then γk(xi) → zik, which we
defined in Equation (35). Therefore, each data will assigned to only one cluster and we
will obtain the hard assignment of data points. Since γk(xi)→ zik, the update formula of
µk in EM for GMM, which given in Equation (25), is equivalent to the kmeans result in
Equation (37). Besides, the re-estimation of mixing coefficient is no longer active due to
the hard assignment we discussed above. Thus, the expected complete-data log likelihood
will reduce to,

E[ln p(D, Z|α,µ,Σ)]→ −1

2

N∑
i=1

K∑
k=1

zik∥xi − µk∥2 + const. (40)



2.5 Copulas 21

(a) Iteration=1 (b) Iteration=7

Figure 11: Example of two sets of centers in the iterative kmeans process.

Hence, it is obvious that maximizing expected complete-data log-likelihood is equiva-
lent to minimizing the dissimilarity function J in kmeans approaches, defined by Equation
(27).

Example 4. We generate the 400 observations from bivariate normal distribution with
Y1 ∼ N (0.45, 0.2),Y2 ∼ N (1, 0.3). We clustered them using the kmeans algorithm, which
consists of 7 iterations. Figure 11 shows the change of centers of two groups in iteration
=1 and iteration =7 by using the R package tryCatchLog( Altfeld [2021]).

2.5 Copulas

Now we are going to the concepts of the copula. By using the copula, we can handle
the multivariate data by modeling the margins separately. To measure the ordinal asso-
ciation between two measured quantities, we will introduce a measure called Kendall’s τ
coefficient.

Definition 17 (Kendall’s τ). The Kendall’s τ between the continuous random variables
X1 and X2 is defined as the probability of concordance minus the probability of discordance
of two random variables X1 and X2.

τ(X1, X2) = P ((X11X21)(X12X22) > 0)P ((X11X21)(X12X22) < 0).

where (X11, X12) and (X21, X22) are i.i.d distributed copies of (X1, X2)

Definition 18 (Copula and Copula density). A d-dimensional copula C is a multivariate
distribution function C : [0, 1]d → [0, 1] with d uniformly distributed random variables,

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud).

The corresponding density, denoted as c, can be estimated by partial differentiation, for
all u ∈ [0, 1]d

c(u1, . . . , ud) :=
∂d

∂u1 . . . ∂ud

C(u1, . . . , ud).
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According to Sklar (1959), there is a fundamental representation theorem for multi-
variate distributions.

Theorem 1 (Sklar’s theorem). For a d-dimensional random vector X with joint distri-
bution function F and its marginal distribution functions Fi, for i = 1, . . . , d, then we
cam express the joint distribution function as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (41)

and the associated density function is

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) . . . fd(xd). (42)

for some d-dimension copula C with copula density c. It also hold for inverse: the copula
corresponding to a multivariate distribution function F with the marginal distribution Fi,
for i = 1, . . . , d can be expressed as

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F

−1
d (ud)). (43)

with the copula density

c(u1, . . . , ud) =
f(F−1

1 (u1), . . . , F
−1
d (ud))

f1(F
−1
1 (u1)) . . . fd(F

−1
d (ud))

. (44)

Theorem 2 (Kendall’s τ expressed in terms of copula). Suppose (X1, X2) are random
variables, then the Kendall’s tau of these two variables can be expressed as,

τ = 4

∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1. (45)

2.5.1 Bivariate Copula Formulas

Now, we are going to introduce the bivariate copula, which will be applied in our dataset
analysis later.

Copulas from elliptical distributions We now discuss the copulas derived from el-
liptical distributions.

Example 5 (Bivariate Gaussian copula). The bivariate Gaussian copula can be expressed
as

C(u1, u2; ρ)Φ2(Φ
−1(u1),Φ

−1(u2); ρ). (46)

where Φ(·) is the distribution function of a standard normal N (0, 1); Φ(·, ·; ρ) is the bi-
variate normal distribution functionwith zero means and unit covariance and correlation
ρ. Besides, its density is given by,

c(u1, u2; ρ) =
1

ϕ(x1)ϕ(x2)

1√
1− ρ2

exp{−ρ2(x2
1 + x2

2)− 2ρx1x2

2(1− ρ2)
}. (47)
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Example 6 (Bivariate Student t copula). Suppose t(·, ·; ν, ρ) is the density of the bivariate
student’s t distribution with ν degrees of freedom, zero mean and the correlation ρ, and
Tν is the univariate student’s t distribution function with ν degree of freedom, zero mean
and density tν. Then the bivariate student’s t copula can be expressed as,

C(u1, u2; ν, ρ) =

∫ u1

0

∫ u2

0

t(T−1
ν (v1), T

−1
ν (v2); ν, ρ)

tν(T−1
ν (v1))tν(T−1

ν (v2))
dv1dv2

=

∫ T−1
ν (u1)

−∞

∫ T−1
ν (u2)

−∞
t(x1, x2; ν, ρ)dx1dx2.

(48)

The density is given by

c(u1, u2; ν, ρ) =
t(T−1

ν (v1), T
−1
ν (v2); ν, ρ)

tν(T−1
ν (v1))tν(T−1

ν (v2))
. (49)

Archimedean copula

Definition 19 (Bivariate Archimedean copula). Suppose Ω is the set of all continuous,
strictly monotone decreasing, and convex functions ϕ such that [0, 1]→ [0,∞] with ϕ(1) =
0. For ϕ ∈ Ω, then

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)). (50)

is called a bivariate Archimedean copula with generator ϕ, where ϕ[−1] is the pseudo-inverse
of ϕ, which is defined as ϕ[−1]: [0,∞]→ [0, 1]

ϕ[−1](t) :=

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0)
0, ϕ(0) ≤ t ≤ ∞.

(51)

Then the density of the continuous Archimedean copula is given by

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2

=
ϕ′′(C(u1, u2))ϕ

′(u1)ϕ
′(u2)

[ϕ′(C(u1, u2))]3
. (52)

The following are some examples of Archimedean copula

Example 7 (Clayton copula). The bivariate Clayton copula can be expressed as

C(u1, u2) = (u−δ
1 + u−δ

2 − 1)−
1
δ , (53)

where 0 < δ <∞ is the dependency parameter.

Example 8 (Bivariate Gumbel copula). The bivariate Gumbel copula can be expressed
as

C(u1, u2) = exp[−{(− lnu1)
δ + (− lnu2)

δ}
1
δ ], (54)

where δ ≥ 1 is the dependency parameter. If δ = 1 corresponds to independence.

Example 9 (Bivariate Frank copula). The bivariate Frank copula can be expressed as

C(u1, u2) = −
1

δ
ln(

1

1− e−δ
[(1− e−δ)− (1− e−δu1)(1− e−δu2)]), (55)

where δ ∈ [−∞,+∞]\0 is the dependency parameter.

Example 10 (Bivariate Joe copula). The bivariate Joe copula can be expressed as

C(u1, u2) = 1− ((1− u1)
δ + (1− u2)

δ − (1− u1)
δ(1− u2)

δ)
1
δ , (56)

where δ ≥ 1 is the dependency parameter. If δ = 1, the independence copula arises.
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2.5.2 Vine copula

Definition 20 (Graph, node and edge). A graph is a pair G = (V , E) of sets such that
E ⊆ x, y : x, y ∈ V, where E are the edges of the graph G, while V are nodes. We also
denote d(v) as the the number of neighbors of a node v ∈ V, which is also called the degree
of v.

Definition 21 (Path, cycle). For a graph G = (V , E), the path is a sequence of edges
(e1, e2, . . . , en−1) for which there is a sequence of nodes (v1, v2, . . . , vn) such that ei =
(vi, vi+1) for i = 1, 2, . . . , n− 1. A cycle is a path v1 = vn.

Definition 22 (Tree). For a graph G = (V , E), if any two nodes of G are connected by a
unique path in G, then we call it a tree.

Definition 23 (R-vine tree sequence). A regular vine tree sequence on d element is the
sequence of the tree T = (T1, . . . , Td−1) that satisfied

• Each tree Tj = (Vj, Ej) is connected

• T1 is a tree that has node set V1 = 1, . . . , d and edge set E1.

• For j ≥ 2, Tj = (Vj, Ej) is a tree with node set Vj = Ej−1.

• For all j = 2, . . . , d− 1,if (a, b) ∈ Ej, then it must satisfy |a ∩ b| = 1.

Definition 24 (C-vine tree sequence, D-vine tree sequence). For a regular vine tree
sequence T = (T1, . . . , Td−1) is, where Ti = (Vi, E⟩)

• D-vine tree sequence if it satisfies |{e ∈ Ei|v ∈ e}| = d− i for each node v ∈ Vi.

C-vine tree sequence if for each Tree Ti there is one node v ∈ Vi such that —|{e ∈ Ei|v ∈
e}| = d− i. Such a node is called the root node of tree Ti .

Definition 25 (Pair copula). The copula Ce corresponding to edge e can be denoted as
CCe,aCe,b;De and its density is expressed as cCe,aCe,b;De. Ce can be called as a pair copula.

Definition 26 (R-vine distribution). For the d-dimensional random vector X = (X1, . . . , Xd)
with joint distribution F , it has a regular vine distribution, if we can find a triplet (F ,V ,B)
satisfies:

• Marginal distributions F = (F1, . . . , Fd) is a vector of continuous invertible marginal
distribution functions, which shows the marginal distribution functions of the ran-
dom variable Xi, for i = 1, . . . , d.

• Regular vine tree sequence: T = (T1, . . . , Td−1) is an R-vine tree sequence on d
elements.

• Bivariate copulas: B = {Ce|e ∈ Ei; i = 1, . . . , d− 1} is a set of copulas, where Ei is
the edge set of tree Ti and Ce is symmetric bivariate copula.

• Ce is the copula associated with the conditional distribution of XCe,a and XCe,b given
XDe = xDe. And it does not dependent on the specific value of xDe
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2.5.3 Vine copula mixture model

In the subsequent clustering analysis, we will use the model-based clustering algorithm
based on the vine copula proposed by Sahin and Czado [2022], namely VCMM.

The algorithm of VCMM consists of roughly the following steps. More details can
be seen in Sahin and Czado [2022].

• First, we assign observations into K components using the fast clustering algorithm.
Most of our subsequent analysis will be discussed using kmeans as the initial clus-
tering method. In addition to this, we will also use GMM as an initial clustering
method for comparison.

• Second, we select an initial VCMM model. The marginal distributions of each
variable are determined by model selection criteria and truncate a vine tree structure
at tree level one for the initial selection of vine copula models.

• Third, we estimate the parameters via the ECM algorithm allowing for vine tree
structures. More detail on the ECM algorithm is provided in Sahin and Czado
[2022]. With the ECM algorithm, we constantly update the parameters of our
model (incl. mixture weight, pair copula parameters, and marginal parameters),
iterating until the stopping condition is met.

• Fourth, temporary clustering assignment: we use the updated posterior probabili-
ties to partition the observations into K clusters and make a temporary clustering
assignment.

• Final model selection and clustering assignment based on the full vine specification:
we estimate all possible vine tree levels and their parameters, with a temporary clus-
tering assignment obtained in the previous step. Finally, we cluster the observations
to the component by posterior probabilities estimated in the final model.

2.6 Performance measures for clustering

2.6.1 Adjusted Rand Index(ARI)

To compare the clustering performance of different approaches, we will use the Adjusted
Rand Index(ARI), which is put forward by Hubert and Arabie [1985]. Before talking
aboutARI, we will first introduce theRand Index(RI). TheRand Index(RI) is based
on the idea of comparing two clustering results. The result of measuring two different
partitions is to calculate the items that are correctly clustered. Rand Index(RI) does
not count individual elements, but pairs of identical elements. We can therefore define
Rand Index(RI) as follows:

Definition 27 (Rand Index). For N observations in the set S = {s1, . . . , sN}, suppose
there are two distinct partitions U = {u1, . . . , uG}, V = {v1, . . . , vK}, which satisfied
∪Gi=1ui = S = ∪Kj=1vj and ui ∩ ui′ = ∅ = vj ∩ vj′ for all i ̸= i′, j ̸= j′. We define the
following

• a, the number of pairs of elements in S that are in the same subset in U and in
the same subset in V
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• b, the number of pairs of elements in S that are in the different subset in U and
in the different subset in V

• c, the number of pairs of elements in S that are in the same subset in U and in the
different subset in V

• d, the number of pairs of elements in S that are in the different subset in U and
in the same subset in V

Then, the Rand Index(RI) is given by

RI =
a+ b

a+ b+ c+ d
. (57)

Here RI ranges from 0(no pair classified in the same way under both clusterings) to
1(similar clustering). The term a and b can be seen as agreements and b, and c as
disagreements.

However, a major problem of RI is that the expected value of Rand Index of two
random partition does not take a constant value. Therefore, to solve this problem, theAd-
justed Rand Index was introduced, where the generalized hypergeometric distribution
is used as the model of randomness. With the consideration of generalized hypergeometric
model, Adjusted Rand Index is given as the following form,

ARI =
RI− E(RI)

max(RI)− E(RI)
.

where max(RI) is the maximum possible Rand Index.

Definition 28 (Adjusted Rand Index(ARI)). According to Yeung and Ruzzo [2001],
we can rewrite the formula of Adjusted Rand Index. For N observations in the
set S = {s1, . . . , sN}, suppose there are two distinct partitions U = {u1, . . . , uG}, V =
{v1, . . . , vK}, which satisfied ∪Gi=1ui = S = ∪Kj=1vj and ui ∩ ui′ = ∅ = vj ∩ vj′ for all
i ̸= i′, j ̸= j′. If U is the real partition and V is the clustering result, then we could
estimate ARI to compare the two partitions and the formula is as follows:

ARI =

∑G
g

∑K
k

(
Ngk

2

)
− [

∑G
g

(
Ng.

2

)∑K
k

(
N.k

2

)
]/
(
N
2

)
1
2
[
∑G

g

(
Ng.

2

)
+
∑K

k

(
N.k

2

)
]− [

∑G
g

(
Ng.

2

)∑K
k

(
N.k

2

)
]/
(
N
2

) , (58)

where G and K are the number of clusters in two different partitions of the dataset, U ,V;
Ngk is the number of observations that are in the cluster g of partition U and cluster k

of partition V. Ng. =
∑K

k=1 Ngk is the number of observations when lie in the cluster g

of partition U and N.k =
∑G

K=1Ngk is the number of observation which fall in cluster K
of partition V. ARI lies between 0 and 1. The ARI is equal to 1 when two partitions are
exactly the same and are close to 0 for a random partition. Later, we will use ARI and
assess the performance of the estimated partition with real labels of dataset.

Example 11. Suppose we have two different partitions and each partition contains 3
clusters, see Table 1
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True class/ Assigned cluster v1 v2 v3 Sum
u1 3 1 0 4
u2 1 2 1 4
u3 0 2 4 6
Sum 4 5 5 14

Table 1: Example for computing the ARI

From the Table 1, we can estimate each term of Equation (58) as follow, since
(
14
2

)
=

91 and

G∑
g

K∑
k

(
Ngk

2

)
=

(
3

2

)
+

(
1

2

)
+

(
0

2

)
+

(
1

2

)
+

(
2

2

)
+

(
1

2

)
+

(
0

2

)
+

(
2

2

)
+

(
4

2

)
= 3 + 1 + 1 + 6 = 11

The number of pairs of observations in the same class in U :

G∑
g

(
Ng.

2

)
=

(
4

2

)
+

(
4

2

)
+

(
6

2

)
= 6 + 6 + 15

= 27

The number of pairs of observations in the same class in V :

K∑
k

(
N.k

2

)
=

(
4

2

)
+

(
5

2

)
+

(
5

2

)
= 6 + 10 + 10 = 26

And

ARI =
11− (27× 26)/91

1
2
(27 + 26)− (27× 26)/91

= 0.175

Therefore, the agreement between the true classification and the clustering result is
only 0.175.

2.6.2 Maximum-Match-Measure(MMM)

To explain another performance measure, we first give the following definitions.

Definition 29 (Bipartite Graph). A bipartite graph G = (V,E) is a graph whose vertex
set V can be partitioned into to nonempty subsets A and B(i.e., A∪B = V and A∩B = ∅)
such that each edge of G has one endpoint in A and one end point in B. The partition
V = A ∪B is called bipartition of G.

Definition 30 (Matching). Given a bipartite graph G = (V,E) with bipartition (A,B),
a subset of edges M is called a matching in G if no two edges in M share a common end
point in B.

Definition 31 (Perfect Matching). A matching M of graph G is perfect if every vertex
is connected to exactly one edge.
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Definition 32 (Maximum Weight Matching). Given a bipartite graph G = (V,E) with
bipartition (A,B) and weight function w : E → R find a matching of maximum weight
where the weight of matching M is given by w(M) =

∑
e∈M w(e)

Example 12. Suppose we have 5 observations in the set S = (x1, x2, . . . , , x5) and the
true clustering of them are Ctrue

1 = {x1, x2, x3}, Ctrue
2 = {x4, x5}. The assigned clustering

contains 3 components that given by, Cass
1 = {x1}, Cass

2 = {x2, x3} and Cass
1 = {x4, x5},

then we can compute the weight of each pairs as follow by counting the number of points
they have in common, i.e.,

w(Ctrue
1 , Cass

1 ) = 1, w(Ctrue
1 , Cass

2 ) = 2, w(Ctrue
1 , Cass

3 ) = 0

w(Ctrue
2 , Cass

1 ) = 0, w(Ctrue
2 , Cass

2 ) = 0, w(Ctrue
2 , Cass

3 ) = 2

Therefore, by the definition of maximum weight of perfect matching, we will assign the
Ctrue

1 ← Cass
2 and Ctrue

2 ← Cass
3 .

Figure 12: The bipartite of Example 12.

The Maximum Matching Measure(MMM), described in Wagner and Wagner
[2007], is motivated by the above idea, i.e., finding a feasible pair of the true partitions
and clusters that make the maximum weight matching, which is matching that the sum
of the weights of its edges is maximized. Besides, we also require this match should be
perfect, that is only one cluster can be assigned to a known partition.
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Figure 13: The bipartite of Maximum-Match-Measure(MMM), where C is the true par-
titions that contains l components and C′ is the clustering results with k clusters; the
weight w(Ci, C

′
j) equal to the number of common points denoted by mi,j.

Formally, we can treat it as a complete weighted bipartite graph G = (V,E), as shown
in Figure 13. Suppose each edge e in the graph G(V,E) connects two vertices, where each
partition and cluster is a node, such that V= C ∪ C ′. The edge e = (Ci, C

′
j) represent

the cluster C ′
j is assigned to the true partition Ci with the weight w(Ci, C

′
j) equal to the

number of common elements mi,j. A perfect matching M in G is a subset of E, such that
the edges e in M do not have a common vertex. The perfect maximum weighted match
M is the subset of edge set E that satisfy w(M ′) =

∑
e∈M ′ w(e) ≤ w(M) =

∑
e∈M w(e),

where M’ is any perfect match in G created by random assignment of vertices, w(e) is the
number of common point that in Ci and C ′

j. Hence, the maximum match measure is trying
to find the hard assignment that maximize the sum of the number of common elements in
true partition and assigned partition. Then, the maximum match of the clustering could
be defined as :

match(C,C ′) = argmax
M

w(M)

n
,

where w(M) =
∑

e∈M w(e). The maximum matching measure is calculated as follows

MMM(C,C ′) =
1

n

min{G,K}∑
i

w(Ci, C
′
i′) =

1

n

min{G,K}∑
i

mi,i′ , (59)

where n is the total number of the observations, mi,i′ is the number of common points
in the partition Ci and the cluster C ′

i′ where cluster C ′
i′ is assigned to true partition Ci,

G is the number of clusters and K is the number of class we have. When K = K, the
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maximum-match-measure is equal to classificationaccuracy =
∑K

i mi,i′ . If G ̸= K, This
measure completely ignores the |K −G| rest cluster in ”higher cardinality” clustering.

Example 13. Suppose there are two sets, one is the partition of dataset U = {u1, u2, u3}
and the other is the clustering result V = {v1, v2, v3, v4}. The relationship between these
two partitions is shown in Table 2

True class/Assigned cluster v1 v2 v3 v4
u1 3 1 0 1
u2 1 2 1 0
u3 0 2 4 1

Table 2: Example of MMM

Then, by the definition of maximum-match-measure, we will first assign v3 → u3

since 4 is the largest number of common points. Then, we delete the v′3s column and
u′
3s row. The common points between v1 and u2 now becomes the largest so we assign

v1 to u1. Same as before, we delete first column and first row of the common points
and the rest is just v′2s column and u′

2s row. Finally, we assign v2 to u2. That is v1 →
u1, v2 → u2, v3 → u3. Hence, the MMM can be estimated by Equation (59), that is

3+2+4
3+1+0+1+1+2+1+0+0+2+4+1

= 0.56.

2.7 Variables selection for clustering

Generally, we can use all variables for clustering. However, in many cases, considering all
variables will increase the complexity of the model and also may cause inaccurate clus-
tering. Variables can be broadly classified into three types: relevant variable, irrelevant
variable, and redundant variable. Relevant variable is the variable whose information
is useful for clustering. Irrelevant variable is variables that do not convey any ben-
eficial information. And Redundant variable is the variable that information of it is
already contained in another relevant variable for clustering. Some irrelevant and redun-
dant variables correspond to noise and their distribution is completely independent of the
group structure. Therefore, variable selection will keep relevant variables for clustering
and removes redundant and irrelevant variables.

Figure 14: The left graph is the relevant variable Y1, the middle graph shows the redun-
dant variable Y2 and the right graph shows the irrelevant variable Y3 for clustering, where
red and blue color represents the different labels of observations.

Example 14. For binary clustering, suppose there is a dataset with each data is D =
(y1,y2,y3) ∈ RN×3, which is a ”N” i.i.d observations with variables vector Y = (Y1, Y2, Y3).
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As Figure 14 shows, Y1 is relevant since it is able to discriminate two classes, see in the
left plot . However given Y1, Y2 is redundant as Y2 is perfectly correlated with Y1, see in the
middle plot. Y3 is irrelevant since it cannot separate the two classes, see in the right plot.
Therefore, removal of Y2 and Y3 will not negatively impact the clustering performance in
the dataset.

The approaches for variable selection in clustering can be broadly distinguished ac-
cording to the type of statistical approach used. Three major approach are the Bayesian
approach, penalization approach and model selection-approach. In general, most
of the variable selection approaches have some degree of overlap. Here, we will focus on
the penalization approaches and model-selection approaches.

2.7.1 Penalization approach

In this part the penalization term is introduced on the model parameters. We aim to
maximize the penalized log likelihood under a Gaussian mixture model and remove the
variables those parameter estimates are shrunken to 0. The general form of penalized
loglikelihood is given by

LQ(η;D) =
N∑
i=1

ln(
K∑
k=1

αkϕD(xi;ψk))−Qλ(Θ). (60)

where the penalization term Qλ(Θ) is a function of the Gaussian densities parameter
Θ and λ, a generic penalty parameter. The various methods are differentiated by the
form of function Qλ(·). For example, Pan and Shen [2007] suggest a L1 penalty function
λ
∑K

1

∑D
d=1 ∥µkd∥; Wang and Zhu [2008] replaces the L1 norm to L∞ norm such that

λ
∑D

d=1maxk{∥µ1d∥, . . . , |µKd∥}.
Now, we are going to introduce a method that differs from the general form of penal-

ized loglikelihood Equation (60). For clustering, we always rewrite the objection function
J , in Equation (27), by using theWithin-Cluster Sum of Square(WCSS) to minimize
the dissimilarity of the data in the same cluster. Suppose xi ∈ RD and D = (y1, . . . ,yd) =
(xT

1 , . . . ,x
T
N ) = (xid)N×D. Then, Within-Cluster Sum of Square(WCSS) can be ex-

pressed as

WCSS =
K∑
k=1

∑
i∈Ck

D∑
d=1

(xid − µkd)
2, (61)

where µkd =
1
nk

∑
i∈Ck xid is the mean of the variable Yd for all observations that belong to

cluster k, where nk is the number of observations in cluster k, Ck is the set that contains
the index of observations that belongs to cluster k.

However, in many practical examples, it is more convenient to consider Between-
Cluster Sum of Squares (BCSS), which is defined by

BCSS =
D∑

d=1

[
N∑
i=1

(xid − µd)
2 −

K∑
k=1

∑
i∈Ck

(xid − µkd)
2], (62)

where µd =
1
N

∑N
i=1 xid is the mean of variable Yd for all observations in the dataset. The

second term of function is within cluster sum of square. Hence, minimizing distortion



32 2 THEORETICAL BACKGROUND

measure J or minimizing within cluster sum of square (WCSS) is equivalent to maximizing
Between-Cluster Sum of Squares (BCSS).

Considering the selection of variables, Witten and Tibshirani [2010] suggested sparse
kmeans procedure, which generalized the BCSS to the optimization problem. Suppose
xi ∈ RD and yd ∈ RN are the ith row and dth column of D. So, the observation data
matrix D = (y1, . . . ,yD) = (xT

1 , . . . ,x
T
N ) = (xnd)N×D. Let C = {C1, . . . , CK} be a

partition of the observations into K disjoint subgroups, and w = (w1, ..., wd, ..., wD)
T be

a vector of weights for each variable Yd, for d = 1, . . . , D. Then we need to solve the
following optimization problem to select the variables and cluster our data.

argmax
C,w,µ

{
D∑

d=1

wd[
N∑
i=1

(xid − µd)
2 −

K∑
k=1

∑
i∈Ck

(xid − µkd)
2]}

subject to ∥w∥2 ≤ 1, |w| ≤ s,

with wd ≥ 0 ∀d.

(63)

where xid is observation i on variable Yd, µkd is the mean of variable d in group k, µd is
the sample mean of variable Yd and s is a tuning parameter. This approach optimizes the
weighted between-cluster sum of squares subject to constraints on the weight of variables.
The L1 penalty of w results in sparsity for small values of tuning parameters and some
of weights will equal to zero. The constraint of the L2 penalty on w will guarantee the
weights of variables in the interval [0,1]. If wd = 0, the variable Yd can be removed from
the clustering process since it does not affect clustering. Furthermore, the penalization
kmeans approach needs the number of clusters K to be known in advance.

To solve the optimization problem, we first fix w, and optimize the objective function
with respect to C. After that, we fix C with respect to w. The first step can be solved
by applying the standard kmeans approach. For the second step, we rewrite the convex
problem given in Equation (63) as

max
w

{wTa}

subject to ∥w∥2 ≤ 1, |w| ≤ s,

with wd ≥ 0 ∀d.

where a = (a1, . . . , aD)
T ,with ad =

N∑
n=1

(xnd − µd)
2 −

K∑
k=1

∑
n∈Ck

(xnd − µkd)
2 ∀d.

(64)
To solve the convex problem, we review some results from convex optimization Boyd

et al. [2004]. For a minimization problem,

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(65)

with variable vector x ∈ Rn, then the Lagrangian function is defined as:

L(x,λ,v) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

vihi(x), (66)
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where λ = (λ1, . . . , λm)
T , v = (v1, . . . , vp)

T and the Lagrange dual function is:

g(λ,v) = min
x

L(x, λ,v). (67)

The corresponding dual problem is:

max
λ,v

g(λ,v)

subject to λ ≥ 0
(68)

For primal and dual problems, they satisfy the weak duality such that:

f ∗
0 ≥ g∗ (69)

When Slater’s condition Slater [2014] is satisfied, then f ∗
0 = g∗ holds, where f ∗

0 and g∗ are
primal and dual optimal values.

Suppose x̂ is a primal optimal and (λ̂, v̂) is dual optimal point then

f0(x
∗) = g(λ̂, v̂)

= inf
x

(f0(x) +
m∑
i=1

λ̂ifi(x) +

p∑
i=1

v̂ihi(x))

≤ f0(x̂) +
m∑
i=1

λ̂ifi(x̂) +

p∑
i=1

v̂ihi(x̂)

≤ f0(x̂)

(70)

The second line is derived by the definition of dual problem. The last inequality follows
from the assumption that λ̂i ≥ 0, fi(x̂) ≤ 0 and hi(x̂) = 0 for i = 1, . . . ,m. And it is
obvious that the last two inequalities hold with equality. Therefore, we can conclude that

m∑
i=1

λ̂ifi(x̂) = 0, (71)

and since each term is non-positive, we have

λifi(x̂) = 0 for i = 1, . . . ,m. (72)

Therefore, for a general problem in Equation (65), if fi are convex and hi are affine,
x̂,λ̂,v̂ are any point that satisfy the Karush-Kuhn-Tucker conditions(KKT conditions):

fi(x̂) ≤ 0, i = 1, . . . ,m

hi(x̂) = 0, i = 1, . . . , p

λ̂i ≥ 0, i = 1 . . . ,m

λ̂ifi(x̂) = 0, i = 1 . . . ,m

∇f0(x̂) +
m∑
i=1

λ̂i∇fi(x̂) +
p∑

i=1

v̂i∇hi(x̂) = 0

(73)

Then x̃ and (λ̃, ṽ) are primal and dual optimal.
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Proposition 1. By the water filling example in the book Boyd et al. [2004] which is
derived if those Karush-Kuhn-Tucker conditions are satisfied, the convex problem, given
in Equation (64), has the solution

w =
S(a,∆)

∥S(a,∆)∥2
, (74)

where ∆ = 0 if |w| ≤ s; otherwise, ∆ > 0 is chosen so that |w| = s. S is soft-
thresholding function with S(a,∆) = max(a−∆, 0).

To illustrate the range of tuning parameters we used above, we consider the following
proposition below.

Proposition 2. For the vector w ∈ RD, Lq penalty of w must satisfies the following
inequalities,

D
1
2
− 1

q ∥w∥q ≤ ∥w∥2 ≤ ∥w∥q.

Therefore, for the s in the convex problem in Equation (64), it must be in the range
[1,
√
D]. If s >

√
D, the L1 constrain will be inactive and it will lead to the solution

w∗ = a
∥a∥2 , which none of them will equal to zero. If 0 < s ≤ 1, the L2 constraint will be

inactive and the solution w∗ will only have one non-zero element. For example, if w is
two-dimension vector and 0 < s ≤ 1, then the optimal solution of optimization problem
in Equation (64) will be w = (0, s) or w = (s, 0). Therefore,the tuning parameter must
satisfies 1 < s <

√
D. According to the optimization problem above, the sparse kmeans

clustering maximized the objective function can be summarized by the following steps:

Algorithm 1 Variable selection using a sparse kmeans approach

Input: observations: D = (x1, . . . ,xN ) ∈ RN×D, where xi = (xi1, . . . , xiD)
T ; K: number

of clusters; w:weight vector of variables; µkd is the mean of the variable Yd for all
observations that belong to cluster k.

Output: optimal variable set; clusters C
1: Initialize w as w1 = w2 = · · · = wD = 1√

D
.

2: Keeping w fixed, optimize the following formula with respect to C = {C1, . . . , CK} :

min
C

(
K∑
k=1

∑
i∈Ck

D∑
d=1

wd(xid − µkd)
2)

by the standard kmeans algorithm.
3: Keeping C = {C1, . . . , CK} fixed, optimize the convex problem in Equation (64) with

respect to weight w. The weight w can be updated by the Equation (74).
4: Iterate 2) and 3) until the change of weight w converge , that is∑D

d=1 |wnew
d − wold

d |∑D
d=1 |wold

d |
< 10−4.

where wnew
d and wold

d are the weight of variable Yd estimated in the past and current
iteration respectively.
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Example 15. We generate 600 observations from a 4-dimensional multivariate normal
distribution with covariance matrix equal to identity matrix. For each observation, it
contains four variables, denoted as Y1,Y2,Y3,Y4. There are three classes of the data and
the label of observations are defined by the first two variables Y1,Y2. The mean vector of
each cluster are (−3,−3, 0, 0), (0, 0, 0, 0), (3, 3, 0, 0).

(a) initial data with true class (b) kmeans (c) sparse kmeans with s=1.1

Figure 15: Comparison of clustering partition of kmeans and sparse kmeans.

In Example 15, if we set s = 1.1, the algorithm will choose only first two variables,
Y1,Y2, for clustering and the weight w = (0.650, 0.760, 0.00, 0.00). If we choose s = 2,
then the result will change to choosing 4 variables to cluster the dataset and the weight
vector of 4 variables are w = (0.70, 0.713, 0.002, 0.004). We can see that even though
the results contain four variables, Y3, Y4 are given very low weights. Figure 15 shows
the difference between the result of standard kmeans with 4 variables,Y1,Y2,Y3Y4, and
the result of the sparse kmeans with only two clustering variables, Y1 and Y2. From
the pairs plot figure of initial observations, seen in Figure 15(a), we can find that the
observations are distinguished by the variable Y1 and Y2. However, since the standard
kmeans cannot select irrelevant variables, the clustering result is negatively influenced by
some variables. For sparse kmeans, it only chooses the relevant variables and therefore,
it gets good partitions.

To consider the selection of the value of tuning parameters s, we cannot directly
choose the s that maximizes the objective function. Since if s increases, the value of the
objective function will increase. Therefore, for choosing the tuning parameter s, Witten
and Tibshirani [2010] use a permutation approach that is similar to the gap statistic
Tibshirani et al. [2001] for choosing the number of clusters in standard kmeans, see in
Section 2.4.2. We randomly and independently permute the original dataset, and then
the variables in the permuted dataset are uncorrelated, even though they are previously
highly correlated.

The algorithm for selecting tuning parameters contains the following steps:

• Obtained permuted the datasets D1,D2 . . . ,DB ∈ RN×D by randomly and indepen-
dently permuting the observations within the variables.

• Determine the objective function of the sparse kmeans approach by the sparse
kmeans algorithm with tuning parameter s and the original data D, given by
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O(s) =
∑D

d=1wd[
∑N

i=1(xid − µd)
2 −

∑K
k=1

∑
i∈Ck

(xid − µkd)
2], and the objective

functions obtained by performing sparse kmeans with tuning parameters s on each
dataset D1,D1 . . . ,DB, that is Ob(s), for b = 1, . . . , B.

• Calculate Gap(s) = ln(O(s))− 1
B

∑B
b=1 ln(Ob(s)).

• Choose ŝ that make the value of Gap(s) be largest.

If the group structure in the original dataset is supported by several correlated vari-
ables, then permutation will destroy this support. Here, the Gap function is a measure of
strength between the clustering result on the real dataset and the permuted dataset that
has no meaningful clustering structure. This approach of parameter selection allows the
optimal parameter s to be chosen as the value where the gap is greatest. However, this
approach is not the best algorithm to choose the value of s.

There can be some problems with using permutations of the original dataset to
eliminate clustering structures. If the values of a variable itself play an important role
in clustering, they will still be strongly clustered in the permuted dataset. Besides, if
there are a small number of variables, this may still lead to meaningful clustering, so
permutation may not eliminate all clustering structures. In Example 15, by executing
this algorithm, we obtain s = 1.4, which will select all four variables for clustering,
although the weights of the last two variables are very close to zero.

2.7.2 Information criteria-based approaches

Variable selection based on BIC Information criteria are often used for model se-
lection in clustering. One of the most popular criterion is the Bayesian Information
Criterion(BIC). Consider the model family F = {(K,m) ∈ {2, . . . , Kmax}×M}, where
M is the set of 28 different Gaussian mixture models that available in MIXMOD soft-
ware (Langrognet et al. [2020]) and K is the total number of clusters. Now, we are trying
to find the model that maximize the posterior probability p((K,m)|D) and by Bayes the-
orem, we can update prior probabilities of some model (K,M), given by (p(K,m)), to
posterior probabilities after observing D by accounting for the probabilities of observ-
ing D given the model, written as f(D|K,m), and f(D) is the marginal density of the
observations

p((K,m)|D) = f(D|K,m)p((K,m))

f(D)
. (75)

Then, the best model we select is (K̂, m̂) = argmax
(K,m)∈F

f(D|K,m), where the integrated

likelihood is defined as

f(D|K,m) =

∫
f(D|K,m,η)π(η|K,m) dη, (76)

where η is the parameter vector of the model (K,m) and π(η|K,m) is its prior distribu-
tion. Since the integrated likelihood is difficult to calculate, we will use BIC to choose
the optimal (K,m), which is the approximation of −2 ln f(D|K,m).

Definition 33 (Bayesian Information Criterion(BIC)). For N observations, Bayesian
Information Criterion(BIC) can be defined as:

BICclust(D|K,m) = −2 ln f(D|K,m, η̂) + q ln(N), (77)
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and the model we select is

(K̂, m̂) = argmax
(K,m)∈F

BICclust(D|K,m), (78)

where q is the number of parameters in model (K,m) and the vector of all parameters of
model computed by the EM algorithm is expressed as η̂, f(D|K,m, η̂) is the maximum
likelihood under this model. Then, the best model that makes the BIC minimum is selected.

As Fop et al. [2018] mentioned, there is a model selection approach proposed Maugis
et al. [2009] based on the Bayesian information criterion (BIC). For a dataset D =
(y1, . . . ,yD)T with variables Y1, . . . , YD we consider to separate the variables set Y into
the following three subgroups: YS, yP ,YNS, where YS is the subset of variables that al-
ready selected and will be considered in the clustering model, yP is the candidate variable
that has not yet been decided whether to add to the model, and YNS is the set of remain-
ing variables. Then, by comparing the BIC of the models with and without the yP , we
can decide whether to add the variable yP to the set of variables for clustering and obtain
the clustering model which has the lowest BIC.

More specifically, by comparing the following two models, it is possible to decide
whether to add or remove the variable yP from the set of clustering variables.

Model A We consider model A, denoted as MA, that now contains the clustering
variable set YS and the variable set YNS is supposed to be independent of the clustering
but dependent or independent of the clustering variables YS and yP . For variable yP ,
it can be explained by the subset of the current clustering variable set YS and has no
additional information for clustering. Hence, yP is independent of the clustering but
depends on the relevant variables through regression equations. Then, the integrated
likelihood of Model A is

fA(D|K,m) = fA(YNS, yP ,YS|K,m)

=
∑
z

fA(YNS, yP ,YS|z, K,m)fA(z|K,m)

= fA(YNS|yP ,YS)fA(y
P |YS)

∑
z

fA(YS|z, K,m)fA(z|K,m)

= fA(YNS|yP ,YS)freg(y
P |YR ⊆ YS)fclust(YS|K,m),

where YR is the subset of current clustering variables set YS, which have linear relationship
with yP and is allowed to be empty set. η is the vector of all unknown parameters of
model MA; z = (z1, . . . ,zn) consists out of binary vectors zi = (zi1, . . . , ziK)

T such
that zik = {0, 1} , which indicate the partition of observations. freg(y

P |YR ⊆ YS) is
the multidimensional regression integrated likelihood and fclust(YS|K,m) is the mixture
integrated likelihood.

Model B We suppose model B, denoted as MB, not only contains the current clus-
tering variable set YS but also contains the variable yP , which will useful for clustering.
Then, the integrated likelihood of model B is
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fB(D|K,m) = fB(YNS, yP ,YS|K,m)

=
∑
z

fB(YNS, yP ,YS|z,η)fB(z|K,m)

= fB(YNS|yP ,YS)
∑
z

fB(y
P ,YS|z, K,m)fB(z|K,m)

= fB(YNS|yP ,YS)fclust(y
P ,YS|K,m).

To choose one of two models based on the observed dataset D, we can use the Bayes
factor, which is a likelihood ratio of the marginal likelihood of two hypotheses, to make
the model comparison.

Definition 34. Suppose we have two models M1 and M2 with parameter vector Θ1 and
Θ2 respectively, Then the Bayes factor BM1M2 of model M1 and M2 is defined as the ratio
quantifying the relative probability of observed data under each of two models, such that

BM1M2 =
f(D|M1)

f(D|M2)

=

∫
f(Θ1|M1)f(D|Θ1,M1)dΘ1∫
f(Θ2|M2)f(D|Θ2,M2)dΘ2

.

(79)

If the two model have same prior probability, i.e.,f(Θ1|M1) = f(Θ2|M2), the Bayes
factor is equal to the ratio of posterior probability of M1 and M2. If BM1M2 > 1, it means
M1 is more strongly supported by the observation, compared to model M2; if BM1M2 < 1,
there is no enough evidence to support the model M1 and thus we will choose the M2.

Since fA(YNS|yP ,YS) = fB(YNS|yP ,YS) by the definition, then according to Bayes
factor BMAMB

for model MA against model MB, we can choose the model with high
strength evidence, i.e., the Bayes factor is

BMAMB
=

fA(D|K,m)

fB(D|K,m)

=
freg(y

P |YR ⊆ YS)fclust(YS|K,m)

fclust(yP ,YS|K,m)
.

(80)

As we discussed before, the integrated likelihood is hard to compute, we prefer us-
ing the approximation of 2 lnBMAMB

and the model selection problem is reduced to a
comparison of the model’s BIC, that is

BICdiff(y
P ) = BICclust(YS, yP |K,m)− [BIC clust(YS|K,m) +BICreg(y

P |YR ⊆ YS)].
(81)

The decision to add variable yP to the current variable set YS for the model does now
depend on the difference between the BIC of the model M and MB. Hence, the vari-
able yP is added to the model if the Equation (81) is less than 0; otherwise, remove it.
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BICclust(YS, yP |K,m) is the BIC of MB, which is GMM model contains the YS and new
variable yP . BICclust(YS|K,m) is the BIC of GMM model contains only the current vari-
able set YS and BICreg(y

P |YR ⊆ YS) is BIC of linear regression model of yP , given YR.
Therefore, the combination of last two terms is the BIC of the model MA.

Then, by searching through all variables, we can finally get the optimal subset of
variables and do the clustering by the selected variables set and EM algorithm. For the
searching step, we have two options, that is forward and backward search. To consider the
effects of all variables simultaneously, we will use the backward search for our later study.
Therefore, the following algorithm shows the variable selection with backward direction
search and it consists of the exclusion and inclusion steps. These two steps are based on
the BIC approximation of the Bayes factor, which we derived above.

Algorithm 2 Variable selection based on BIC criterion with backward direction search

Input: Original variable set Y; dataset D = (y1, . . . ,yD) ∈ RN×D; the index of the variable set S = {1, . . . , D}; the index
of the excluded/included variables iE/iI ; number of clusters K

Output: Optimal variable set;
1: initialize S = {1, . . . , D}, iE = ∅, iI = ∅;
2: Exclusion Step: ∀i ∈ S, compute BICdiff(yi) in Equation (81) and

iE = argmax
i∈S

BICdiff(yi)

3: if BICdiff(yiE ) ≥ 0 then
4: S = S\{iE}
5: if iE = iI then
6: stop
7: else
8: go to inclusion step
9: end if
10: else
11: if iI = ∅ then
12: stop
13: else
14: go to inclusion step
15: end if
16: end if
17: Inclusion Step: ∀i ∈ Sc, where Sc is the complementary set of S, compute BICdiff(yi) and

iI = argmin
i∈Sc

BICdiff(yi)

18: if BICdiff(yiI ) < 0 then
19: if iE = iI then
20: stop
21: else
22: S = S ∪ iI and go to the exclusion step
23: end if
24: else
25: go to exclusion step
26: end if

Variable selection based on the maximum integrated likelihood of the complete
data(MICL) criterion Assume D = (y1, . . . ,yD) = (xT

1 , . . . ,x
T
N) = (xid)N×D is a

data matrix in RN×D. We consider a binary indicator vector z = (z1, . . . ,zN )T , zi =
(zi1, . . . , ziK) indicates the class label of the observation xi, i.e., zik = 1 if xi belongs
to component k and zik = 0 otherwise. Then, according to Marbac and Sedki [2019],
integrated likelihood of the complete data (D, Z)(ICL)(observed data and latent
variable) could be preferred to the integrated likelihood(only observed data) since it
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doesn’t require heavy parameter estimation, where the ICL is defined as

f(D, z|m) =

∫
f(D, z|m,η)π(η|m)dη. (82)

And

f(D, z|m,η) =
N∏
i=1

f(xi, zi|m,η);

f(xi, zi|m,η) =
K∏
k=1

[αkϕD(xi;ψk)]
zik ,

where a modelm = (k, ω) is defined by a number of components k and the binary vector
ω = (ω1, . . . , ωD) such that ωd ∈ {0, 1}, which encode whether the variables are relevant,
i.e., if the variable Yd is relevant, then ωd = 1, otherwise ωd = 0. η = (µ,Σ,α) are all
parameters to be estimated and π(η|m) is the prior distribution of η, µ = (µkd; k =
1, . . . , K; d = 1, . . . , D) are the means of all variables split by clusters, Σk ∈ Rd×d is the
covariance matrices in cluster k, α = (α1, . . . , αK) is the vector of the mixing proportion.

After assuming that relevant variables are independent within clusters and irrelevant
variables are independent of relevant variables and placing conjugate priors, the integrated
completed data likelihood Equation (82) can be reduced to

f(D, z|m) = f(z|k)
D∏

d=1

f(x·,d|k, ωd, z), (83)

where x·,d = {xid; i = 1, . . . , n}
But if we directly use the ICL criteria: ICL(m) = ln f(D, ẑ|m) and EM algorithm,

to carry out the variable selection, it would be difficult to compute. Here ẑ is the clustering
result estimated by MAP rule (discussed in Section 2.4.1) at maximum likelihood estimate
of model’s parameter η̂ = (µ̂, Σ̂, α̂), i.e.,

ẑik =

{
1 if k = argmax

k=1,...,K
α̂k

∏D
d=1 ϕD(xid; µ̂kd, Σ̂kd)

0 otherwise.

This approach has a heavy computational workload due to the estimation of the
partition of ẑ. Therefore, the approach carried out by Marbac and Sedki [2019] is based
on a new criterion called MICL. MICL criterion is based on the maximum value of
integrated complete-data likelihood among all the possible clustering result z. MICL
is expressed as,

MICL(m) = ln f(D, ẑ|m), with ẑ = argmax
z

ln f(D, z|m). (84)

Compared with the ICL criterion, it does not require the maximum likelihood esti-
mate, making it less computationally difficult. And we select the model that maximizes
the MICL among all the possible model sets. In particular, for specific cluster k, the
algorithm iterates in two steps, one is partition step, that is optimize the partition z by
given the observation D and the modelm = (k, ω). Then, the next step is a maximiza-
tion step that maximizes over m, given the observation D and the partition z that we
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calculated at previous step. Therefore, we could select the optimal model m̂k for number
of cluster K = k by

m̂k = argmax
m∈Mk

MICL(m),

withMk = {(k, ω) : ω ∈ {0, 1}d}. Finally, to determine the optimal number of clusters
k̂, we running the algorithm from k = 1 to k = Kmax and get the best model, which has
the largest MICL. The algorithm is shown below.

Algorithm 3 Variable selection based on MICL criterion

Input: Dataset D = (y1, . . . ,yD) ∈ RN×D; Maximum number of clusters Kmax;
Output: Optimal model m̂ = (k,ω) containing the indicator of variable (i.e., if the

variable Yd is relevant, then ωd = 1, otherwise ωd = 0); ω and optimal number of
clusters k; Clustering result of observations z;

1: For k = 1, . . . , Kmax, we iterate the following steps until the integrated completed-data
likelihood converge and get the optimal model, denoted by m̂k

a Optimize z[t] such that

ln f(D, z[t]|m[t]
k ) ≥ ln f(D, z[t−1]|m[t]

k ).

b Optimize model m
[t+1]
k that satisfy m

[t+1]
k = argmax

m∈Mk

ln f(D, z[t]|m), such that

m
[t+1]
k = (k,ω[t+1]) where ω

[t+1]
d = argmax

ωd∈{0,1}
f(x·d|k, ωd, z

[t]).

2: For all possible number of clusters k = 1, . . . , Kmax, select the model with maximum
MICL such that,

m̂ = argmax
k=1,...,Kmax

MICL(m̂k) = argmax
k=1,...,Kmax

ln f(D, z|m̂k).

2.7.3 Hybrid filter-wrapper approaches

Hybrid filter-wrapper approach based on within-group variance We discuss
now a hybrid filter-wrapper algorithm that proposed by Andrews and McNicholas [2014].
The idea of this approach is based on finding variables that not only minimize the within-
group variance but also maximize the between-group variance. For the observation data
D = (y1, . . . ,yD) = (xT

1 , . . . ,x
T
N) = (xid)N×D ∈ RN×D, within-group variance of the

variable Yd is given by:

Wd =

∑K
k=1

∑N
i=1 zik(xid − µd)

2

N
, (85)

where µd = 1
N

∑N
i=1 xid is the mean of variable Yd for all observations in the dataset;

binary indicator vector z = (z1, . . . ,zN)
T , zi = (zi1, . . . , ziK) indicates the class label of

the observation xi, i.e., zik = 1 if xi belongs to component k and zik = 0 otherwise.
Then, the variance of between-group for variable Yd can be expressed by the variance

of variable Yd, σ
2
d, as σ2

d −Wd. As the variance between groups needs to be taken into
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account, to simplify the problem, we standardized the data so that the variance of each
variable is the same with variance equal to 1 and mean equal to 0, then minimizing the
within-group variance is equivalent to maximizing the between-group variance.

Suppose we just select a variable from the remaining variable set by using a simple
threshold process. For example, by sorting W = {W1, . . . ,WD} in ascending order and
selecting those variables Yd for whichWd is less than some value w, where all correlations
between the variable Yd and the variable Yr in the selected set of variables are also less
than some value c. It seems to be a viable approach. However, our need is to first
consider the within-group variance and then the correlations between every two variables.
Therefore, we will use a sliding correlation threshold to express the relationship between
the within-group variance and the correlation so that is more forgiving for small values of
Wd and more strict for larger values.

The algorithm of variable selection based on within-group variance is given as follows,
we first calculate the within-group variance of each variable by Equation (85), Wd, ∀d =
1, . . . , D, and sort them by ascending order. Then, we choose the first one to the selected
variable set H and for the later variable, Yd, we will add variable Yd to the variable set
for clustering if

|ρdr| ≤ 1−Wd, ∀Yr ∈ H, (86)

where ρrd =
∑

i(yid−µd)(yir−µr)√∑
i(yid−µd)2

∑
i(yir−µr)2

is the empirical correlation between the variable

Yr in the selected variable set and variable Yd that proposed to be added or removed.
Hence, the algorithm can be expressed as,

Algorithm 4 A hybrid filter-wrapper approach based on within-group variance

Input: Original variable set; Dataset D = (y1, . . . ,yD) ∈ RN×D

Output: Optimal variable set
1: Calculate within-group variance Wd by Formula (85);
2: Sort Wd in ascending group;
3: Initial selected variable set is H = {Ys}, where Ys is the variable that Ws is the

minimal.
4: for d ≤ D do
5: Compute correlation between Yd and Yr, denote as ρdr, ∀Yr ∈ H and d ̸= r;
6: if |ρdr| ≤ 1−Wd, ∀Yr ∈ H then
7: Variable Yd is selected to variable set such that

H = H ∪ Yd

8: end if
9: d = d+ 1;

10: end for

However, Andrews and McNicholas [2014] suggests that the linear relationship in
Equation (86) may be too strong. For example, if a variable with within-group variation
W = 0.3 and the correlation with one of the variables in the selected variable set is
0.71, it would be removed from the clustering variable set. Therefore, we also need to
consider the relationship of order greater than one, see Table 3. Since we use different
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Linear |ρdr| ≤ 1−Wd

Quadratic |ρdr| ≤ 1−W2
d

Cubic |ρdr| ≤ 1−W3
d

Quartic |ρdr| ≤ 1−W4
d

Quintic |ρdr| ≤ 1−W5
d

Table 3: Relationship between variance and correlation

variance-correlation relationships in the Table 3 as criteria, we will get results for up to
five different variable choice sets. To determine the final clustering variables set, we need
an approach to select one of these subsets for clustering. We will therefore present an
approach based on estimating the uncertainty of the clustering results.

The uncertainty of the clustering result is the sum of uncertainty of each observa-
tions. The uncertainty of each observations can be estimated by the N ×K fuzzy matrix
containing the posterior probability γk(xi). γk(xi) evaluates the strength of evidence that
observation xi belongs to cluster k. If an observation xi is clustered perfectly, all values
in the row i will be almost equal to 0 except for only one of γk(xi) which will be close to
1. Thus, for this observation xi, the uncertainty is equal to the sum of all γk(xi) without
the highest one maxk{γk(xi)}. For the uncertainty of clustering result, we can estimate
it by the sum of all γk(xi) for i = 1, . . . , N, k = 1, . . . , K, without the maxk{γk(xi)} for
i = 1, . . . , N =, that is

∑N
i=1

∑K
k=1 γk(xi)−

∑N
i=1 maxk{γk(xi)}, can be rewrite as

Uncertainty = N −
N∑
i=1

maxk{γk(xi)}. (87)

We will select variance-correlation and its corresponding subset of variables such that
uncertainty is minimized so that we can obtain the strongest group structure of variables.

Hybrid filter-wrapper approach based on lasso-like procedure Celeux et al.
[2019] proposed a hybrid approach that performs variable selection through penalization.
This will reduce the dimension of data and reduce computational difficulty when we use
a BIC-based variable selection approach. It contains two steps.

First of all, according to Zhou et al. [2009], use the lasso-like procedure to rank the
variables. For the data matrix D = (y1, . . . ,yD) = (xT

1 , . . . ,x
T
N) = (xid)N×D ∈ RN×D

with K clusters, we need to maximize the criterion called lasso-loglikelihood:

N∑
i=1

ln[
K∑
k=1

αkϕD(x̄i|µk,Σk)]− λ1

K∑
k=1

∥µk∥1 − λ2

∥∥Σ−1
k

∥∥
1
, (88)

where

∥µk∥1 =
D∑

d=1

|µkd| ,
∥∥Σ−1

k

∥∥
1
=

∑
d1,d2=1,d1 ̸=d2

∣∣(Σ−1
k )d1,d2

∣∣
1

and x̄i is normalized data such that x̄i = (xi1 − µ1, . . . , xiD − µD) with µd =
1
N

∑N
i=1 xid,

for d = 1, . . . , D; µk ∈ RD are the means vector of each cluster k; Σk ∈ RD×D is the
covariance matrices of the cluster k; αk is the mixing proportion, αk ≥ 0,

∑K
k=1 αk = 1,

for k = 1, . . . , K. λ1, λ2 are the penalization parameters.
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Then, by the EM algorithm, the estimated parameter η̂ with regularization param-
eters λ1 and λ2 can be computed, which is of the form

η̂(λ1, λ2) = (α̂(λ1, λ2), µ̂1(λ1, λ2), . . . , µ̂K(λ1, λ2), Σ̂1(λ1, λ2), . . . , Σ̂K(λ1, λ2)).

Considering the selection of relevant variables, we need to define a score that mea-
sures the relevance of variables for clustering. Celeux et al. [2019] mention that if the
µ̂kd(λ1, λ2) = 0 for all k = 1, . . . , K, the variable Yd is independent for clustering and will
be removed from variable set. Therefore, by choosing specified number of cluster K and
the different combination of two non-negative regularization parameters (λ1, λ2) from two
sets Lλ1 and Lλ2 , the clustering score for each variables Yd, for d = 1, . . . , D with number
of cluster K is defined by:

OK(Yd) =
∑

(λ1,λ2)∈Lλ1
×Lλ2

B(K,λ1,λ2)(Yd), (89)

where

B(K,λ1,λ2)(Yd) =

{
0 if µ̂1d(λ1, λ2) = · · · = µ̂Kd(λ1, λ2) = 0
1 otherwise.

OK(Yd) is the sum of scores among all possible regularization parameters. A larger value
of OK(Yd) indicates that the variable is more relevant to the clustering and we prefer to
select it. And we sort them in descending order, such that,

IK = (Y1, . . . , YD) with Ok(Y1) > · · · > Ok(Yd) · · · > Ok(YD).

Secondly, to perform the variable selection, we use variable selection relies on BIC.
By Equation (81), we scanned the variables by the order we got at the first step, denoted
as IK , and put the variables to the clustering variable set until c consecutive variables
have nonnegative BICdiff, where c is a fixed positive number. For variables that are inde-
pendent of clustering, we search through the reversed order of IK and move the variable
to the irrelevant variable set until c consecutive variables are judged to be dependent on
clustering. Then, the remaining variables are redundant variables for clustering.
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Algorithm 5 A hybrid approach based on the lasso-like procedure

Input: Original variable set Y = (Y1, . . . , YD); Number of clusters K; Possible regular-
ization parameters set Lλ1 ,Lλ2 ;

Output: Optimal variable set;
1: For all combination of regularization parameters (λ1, λ2) ∈ Lλ1 × Lλ2 , estimate the

mixture parameter η by using EM algorithm for the problem of maximizing the lasso-
loglikelihood function g in Equation (88) and iterate until the lasso-loglikelihood con-
verge , where

η(λ1, λ2) = (α(λ1, λ2),µ1(λ1, λ2), . . . ,µK(λ1, λ2),Σ1(λ1, λ2), . . . ,ΣK(λ1, λ2)).

2: Calculate the score of each variables Yd, denoted as OK(Yd),for d = 1, . . . , D, over K
clusters, such that

OK(Yd) =
∑

(λ1,λ2)∈Lλ1
×Lλ2

B(K,λ1,λ2)(Yd)

and B(K,λ1,λ2)(Yd) is a binary variable that indicate the relevance of variable Yd with
regard to clustering. If µkd(λ1, λ2) = 0,∀k = 1, . . . , K, then B(K,λ1,λ2)(Yd) = 0; other-
wise.

3: According to the score of each variable Yd, OK(Yd), we rank the variables by decreasing
values OK(Yd), denoted as IK , such that

IK = (Y1, . . . , YD) with Ok(Y1) > · · · > Ok(Yd) · · · > Ok(YD).

4: Scan the variable set according to the order IK and use BIC based variable selection
we discussed in Section 2.7.2. Variable Yd is added if

BICdiff(Yd) = BICclust(Yd,YS|K,m)− [BIC clust(YS|K,m) +BICreg(Yd|YR ⊆ YS)]

is negative. Here, YS is the variable set for clustering and YR is the subset of YS that
linearly explain the variable Yd.
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3 Alzheimer’s Disease Neuroimaging Initiative(ADNI)

data analysis

3.1 Data description

Alzheimer’s disease will cause a sustained decline in thinking, behavior, and social skills,
disrupting a person’s ability to care for themselves. Early symptoms of this disease
may be forgetting recent events or conversations. As the disease progresses, people with
Alzheimer’s disease will experience severe memory impairment and lose the ability to
perform everyday activities.

Many patients are unable to work full-time or part-time because of Alzheimer’s dis-
ease, and their own lives, employment, families, and even lives are affected, not only by
the financial burden but also by the many more complex social issues that arise. This
shows that Alzheimer’s is a disease for governments to worry about, and the challenges
it poses to families, healthcare, the economy, society, and regulations are becoming in-
creasingly profound and extensive. Rapid prevention and early detection programs are
therefore needed, as many cases of dementia can be effectively prevented through early
detection.

This dataset is obtained from the Alzheimer’s Disease Neuroimaging Initiative(ADNI)
under https://ADNI1.loni.usc.edu/data- samples/access-data/. ADNI began in 2004 un-
der the leadership of Dr. Michael W. Weiner. The study now has three phases. At
each stage, the patients are tested for various indicators and their disease status. In our
research, we just consider the participants that join the first phase of ADNI, which was
launched in October 2004 for a 6-year duration. In the dataset, it provides the measure-
ment data from neuropsychological tests, MRI and disease states of each patients includ-
ing Cognitively Normal(CN), Mild Cognitive Impairment(MCI) and Dementia
(DEM). Dementia (DEM) represents Alzheimer’s disease and Mild Cognitive Im-
pairment (MCI) is a transitional stage between CN ageing and the onset of DEM. If
the condition is not detected in time, there is a very high risk that the patient’s condition
will progress to DEM. Not all people diagnosed with MCI show progressive decline in
cognitive ability, many of them remain at MCI levels and a significant proportion revert
to cognitive normal (CN) status with treatment. Early detection of MCI is therefore
essential. There are many models for predicting Alzheimer’s disease. In contrast, our re-
search in this thesis focuses on identifying the constituent structures of potential patients,
helping us to identify the subtypes of patients for earlier treatment.

• Neuropsychological test: contains Alzheimer’s Disease Assessment Scale(ADAS)
test and Alzheimer Cognitive Composite(MPACC) tests that evaluate a person’s
cognition and analyze the dysfunctional level of Alzheimer’s disease.

• MRI measure: is an approach applied for visualization of the physiological process
of the brain.

• Disease status: Cognitively normal, Mild Cognitive impairment and Alzheimer’s
disease.

There are 203 CN ,129 DEM, 312 MCI in dataset, see in Table 4. In our analysis
of the dataset ADNI, we just consider neuropsychological test variables (incl.S13, mPd,
mPt) and the MRI variables, which contains Ven, Hip,WhB,Ent since in the other
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Disease status Number of patients
CN 203
MCI 312
DEM 129
Total 644

Table 4: Several patients in each disease status.

variables too many missing values and some are discrete, Fui, MTp, ICV. Table 5 gives
a short description of each variables in our data set obtained from ADNI group [2010].

Attribute
Number of

unique values
Description Domain

Cognitive test measurement

S13 114
The Cognitive Subscale (13 items)

Alzheimer’s Disease Assessment Scale
[1,50]

mPd 608
Modified Preclinical Alzheimer Cognitive
Composite with Digit test Composite

[-20.646,5.176]

mPt 605
Modified Preclinical Alzheimer Cognitive

Composite with Trails test
[-19.46,5.455]

MRI measurements
Ven 626 Ventricles volume(mm3) [5834,145115]
Hip 590 Hippocampus volume(mm3) [3091,10769]
WhB 627 Whole Brain volume(mm3) [669364,1364690]
Ent 566 Entorhinal volume(mm3) [1467,5731]
Fui 610 Fusiform Gyrus volume(mm3) [9610,24788]
MTp 613 Middle Temporal Gyrus volume(mm3) [9375,28103]
ICV 624 intracranial volume(mm3) [1116280,2110290]

Patient specific measurement
DX 3 disease status CN,MCI,DEM

PTGEND 2 Gender male, female
PTRACT 2 Race white, not-white
PTMARY 2 Marital status married, not-married

Table 5: Description of variables studied in ADNI dataset.

3.2 Exploratory Data Analysis(EDA)

Figure 16 and Figure 17 show the pairwise scatter plots of variables in the dataset ADNI.
From Figure 17, it is clear that there are some differences between CN and the other two
disease status. For MCI and DEM, their distributions on the variables mPd and mPt
also differed. Then we fit the empirical cumulative distribution function of each variable
to obtain u-data.

Figure 18 shows the normalized contour plot of ADNI dataset. The variables mPd
andmPt have very strong dependence sincemPd andmPt use a similar test system. But
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mPd measures working memory by asking the patient to repeat back a sequence of digits
of increasing length, until they are not able to. The mPt test determines performance
of processing speed with a smaller score indicating more severe impairment. Besides,
S13 is dependent on mPt with an empirical Kendall’s τ equal to -0.71. WhB is highly
correlated with ICV, MTp and Hip. Moreover, Ent and Hip also have high correlation
coefficient. Besides, we observe there are non- Gaussian dependence between some pairs
of variables since the contours are non-elliptical. For example the counter plot of S13
and mPd as well as mPt shows they are non-Gaussian dependent.

Figure 16: Pairwise scatter plots of ADNI1.
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Figure 17: Pairwise scatter plots of the ADNI dataset, where red points represent CN
patients, blue is for the MCI patients and green is for the DEM patients; diagonal is
the marginal density function of each variable stratified; upper triangular contains the
pairwise Kendall’s τ also stratified by disease status.
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Figure 18: Normalized contour plot of ADNI (lower triangular: pairwise normalized
contours; diagonal: histogram of empirical copula margins; upper triangular: pairwise
empirical Kendall’s τ ).

Normalized contour plot of all variables separated by disease status

We also fit the empirical cumulative distribution function of each variable in each disease
status to obtain u-data and plot the normalized contour plot for each class, including cog-
nitively normal (CN), mild cognitive impairment(MCI) and Alzheimer’s disease(DEM),
see in Figure 19. There are still many contours plots that are non-elliptical, which means
there are non-Gaussian dependence structures. Furthermore, pairwise dependency pat-
terns between the same pair of variables are usually similar for CN, MCI, and DEM
patients but may differ in strength. As we can see, for each disease status, it exists non
Gaussian dependence between S13 and mPt. Comparing three different disease status,
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it has higher strength for DEM patients than others. We use the R package VineCop-
ula(Nagler et al. [2021]) for the analysis. After fitting a bivariate copula for (S13, mPt)
in each disease status, we have the following results.

(a) CN patients (b) MCI patients

(c) DEM patients

Figure 19: Normalized empirical contour plot for each disease status (lower triangular:
pairwise normalized contours; diagonal: histogram of empirical copula margins; upper
triangular: pairwise empirical Kendall’s τ).
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(a) CN patients (b) MCI patients

(c) DEM patients

Figure 20: Bivariate copula for (S13, mPt) for each disease status where R2B1: Rotated
BB1 270 degrees; F:F; R2G:Rotated Gumbel 270 degrees. The true parameter value and
corresponding Kendall’s τ of the pair copula are given inside the parenthesis (parame-
ter/Kendall’s τ).
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Empirical pairwise Kendall’s τ separated by disease status

The Table 6 shows the empirical pairwise Kendall’s τ separated by disease status. We can
see that the empirical Kendall’s τ coefficient between S13 and Hip is different for CN
and others two disease status. The Kendall’s τ is much smaller than the values for MCI
and DEM. Similarly, mPt and Ent has lower correlation in the group CN. Similarly
for mPt and ICV. For Hip and WhB, the Kendall’s τ of MCI and DEM are higher
than that of CN. Besides, for group MCI, the Ven and MTp, mPd and Fui are hardly
dependent.

status S13 mPd mPt Ven Hip WhB Ent Fui MTp ICV

S13 CN 1 -0.43 -0.38 0.11 0.06 0.12 -0.03 0.09 0.11 0.15
MCI 1 -0.55 -0.53 0.07 -0.26 -0.09 -0.30 -0.13 -0.17 -0.04
DEM 1 -0.55 -0.56 0.07 -0.20 -0.11 -0.29 -0.18 -0.21 -0.04

mPd CN 1 0.79 -0.06 -0.09 -0.10 0.03 -0.01 -0.07 -0.11
MCI 1 0.82 -0.09 0.22 0.10 0.25 0.19 0.20 0.04
DEM 1 0.80 -0.046 0.25 0.14 0.29 0.23 0.18 0.059

mPt CN 1 -0.04 -0.09 -0.07 0.04 -0.08 -0.05 -0.10
MCI 1 -0.08 0.23 0.09 0.26 0.18 0.21 0.03
DEM 1 -0.05 0.22 0.11 0.25 0.21 0.18 0.05

Ven CN 1 -0.13 0.12 0.08 0.06 0.14 0.40
MCI 1 -0.16 0.06 -0.08 -0.05 0.00 0.35
DEM 1 0.02 0.19 -0.05 0.05 0.10 0.42

Hip CN 1 0.44 0.27 0.32 0.36 0.23
MCI 1 0.41 0.49 0.32 0.40 0.24
DEM 1 0.39 0.40 0.24 0.34 0.31

WhB CN 1 0.25 0.46 0.59 0.62
MCI 1 0.30 0.47 0.53 0.62
DEM 1 0.24 0.43 0.56 0.67

Ent CN 1 0.28 0.20 0.20
MCI 1 0.31 0.32 0.21
DEM 1 0.30 0.21 0.19

Fui CN 1 0.38 0.37
MCI 1 0.43 0.33
DEM 1 0.41 0.36

MTp CN 1 0.47
MCI 1 0.39
DEM 1 0.43

ICV CN 1
MCI 1
DEM 1

Table 6: Empirical pairwise Kendall’s τ separated by disease status.
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Boxplot of all continuous variables separated by disease status

According to the boxplot of ADNI in Figure 21, we can conclude that the variables S13,
mPd and mPt behave differently for each disease status group. The values of mPd,
mPt and Ent will get smaller as the disease progress, while S13 presented an opposite
trend, i.e increased as the condition worsens. Ent and Hip also differ slightly in the
status of disease. For variable Ven, the patients who are CN has lower value than whose
in other two status and values for MCI are similar to DEM. The same is true for variable
Fui, i.e., the value for DEM is distinct but for other status, they are almost same.

Figure 21: Boxplots of continuous variables S13, mPd, mPt, Ven, Hip, WhB, Ent,
Fui, MTp and ICV separated by disease status(DX).

Histograms of all variables separated by disease status

The histograms of continuous variables separated by three disease status are given in
Figure 22. As we mentioned in the pairwise scatter plot in Figure 17, the first three
variables, S13, mPd and mPt maybe useful for clustering since there exists the clear
difference between CN, MCI and DEM, especially for CN and DEM.
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Figure 22: Histogram of continuous variables S13, mPd, mPt, Ven, Hip, WhB, Ent,
Fui, MTp and ICV separated by disease status, where red color represent CN patients,
green DEM patients, Blue MCI patients.

Boxplot of all variables separated by gender

The dataset also contains variables for gender, and to better understand the dataset, we
plot the boxplot of ADNI classified by gender. As seen in Table 7, there are 97 females
and 107 males that are diagnosed with CN. For MCI, 115 females and 198 males are in
the group, and for DEM, it has 129 patients with 61 females and 68 males. From Figure
23, there is some difference between females and males in the variables. The average
volume of male’s Ven, Hip, Ent, Fui, MTP and ICV are higher than the female. The
value of the first three variables differed for the three disease status in both males and
females. However,for variable ICV, the value of female who is CN is close to the MCI,
which may mislead the clustering results.
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Disease status female male
CN 96 107
MCI 115 197
DEM 61 68

Table 7: Number of patients in each disease status and gender

Figure 23: Boxplot of ADNI1 by gender.

Boxplot of all variables separated by marital status

In addition, the dataset contains information on the marital status of patients. The
status contains married, divorced, never married, and widowed. To simplify these status,
we divide them into two groups one is married and another is non-married. The Table
8 shows the number of patients with each disease status and marital status. There is
not much difference between married and non-married patients. For married person, the
values of Ven for MCI and DEM are almost the same. Therefore, these variables may
mislead the performance of results for a married person.
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Disease status married not married
CN 140 62
MCI 244 68
DEM 106 23

Table 8: Number of patients in each disease status and marital

Figure 24: Boxplot of ADNI dataset by marital status.
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4 Performance of the Gaussian variable selection ap-

proaches for clustering in the ADNI data

In the subsequent clustering analysis, we will apply the variable selection approaches
discussed in the Section 2.7 and compare the results of the distance-based and dif-
ferent Gaussian model-based approaches. The R packages we use for clustering tasks
are: mclust(Scrucca et al. [2016]), sparcl(Witten and Tibshirani [2018]), Clustvarsel
(Scrucca and Raftery [2018]), VarselLCM(Marbac and Sedki [2017]), Vscc(Andrews
and McNicholas [2013]) and SelvarMix(Sedki et al. [2017]). The R package mclust is
the package for classic Gaussian mixture model clustering without performing variable se-
lection and the other 5 packages are used for the variable selection. Table 9 shows the type
of variable selection approach that each R package used. All information criterion-based
and hybrid-based approaches except VarselLCM perform Gaussian mixture model clus-
tering via R package mclust after variable selection. For the approach VSCC we need
to check the uncertainty of each possible model to select variables, as shown in Equa-
tion (87). However, because it only makes sense to perform variable selection without
”harm”, we can calculate the uncertainty from the original dataset and its solution can
be considered as part of the variable selection process. In other words, under VSCC, if
the uncertainty of the full data set is minimal, we will select the full data set rather than
a reduced set. In addition, we have scaled data with mean 0 and variance 1 in advance
due to some assumptions and requirements of variable selection approaches.

Approach R package Detail Section
Penalization Sparcl Penalization k-means approach 2.7.1

Information criterion
Clustvarsel Model selection based on BIC 2.7.2
VarSelLCM Model selection based on MICL 2.7.2

Hybrid
VSCC Hybrid filter-wrapper approach 2.7.3

SelvarMix Hybrid approach based on lasso penalization 2.7.3

Table 9: Variable selection approaches and their corresponding R package.

4.1 Performance using complete ADNI dataset ADNI10

According to the data description, we have 10 variables in the dataset and we denoted
it as ADNI10. To find out the relevant variables for clustering, we applied 5 variable
selection approaches explained in Section 2.7 and compare them with GMM. Since the
number of clusters is unknown, we estimate it after fitting 2 to 10 clusters and compute
the Adjusted Rand Index(ARI) as well as Maximum-Match-Measure(MMM). In Table
10, it is clear that the optimal clusters that most of the approaches selected are either
3 or 4. The Sparcl has highest ARI and MMM when the number of components is
3, while VSCC is second largest value of ARI for the cluster K=4. The ARI of the
original approach for the Gaussian mixture model,GMM, reached its maximum at K=2
compared to the other variable selection approach.
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ARI
number of clusters 2 3 4 5 6 7 8 9 10

GMM 0.31 0.29 0.21 0.19 0.15 0.17 0.18 0.13 0.11
Sparcl 0.28 0.43 0.22 0.25 0.24 0.21 0.20 0.17 0.15

Clustvarsel 0.08 0.29 0.24 0.14 0.13 0.19 0.16 0.16 0.11
VarSelLCM 0.28 0.34 0.23 0.24 0.23 0.21 0.20 0.18 0.17

VSCC 0.10 0.29 0.38 0.17 0.22 0.25 0.24 0.21 0.11
SelvarMix 0.16 0.24 0.26 0.25 0.23 0.21 0.20 0.22 0.23

MMM
number of clusters 2 3 4 5 6 7 8 9 10

GMM 0.66 0.60 0.51 0.39 0.38 0.39 0.42 0.30 0.28
Sparcl 0.59 0.77 0.52 0.49 0.44 0.42 0.37 0.31 0.30

Clustvarsel 0.41 0.61 0.56 0.42 0.36 0.54 0.41 0.39 0.36
VarSelLCM 0.60 0.71 0.52 0.47 0.40 0.38 0.37 0.32 0.29

VSCC 0.44 0.60 0.61 0.46 0.53 0.42 0.43 0.40 0.28
SelvarMix 0.46 0.56 0.60 0.57 0.54 0.47 0.47 0.50 0.50

Table 10: ARI and MMM of approaches using ADNI10 data under different numbers
of K (The best model selected by each approach is bolded).

Analysis for assuming K=2 to 10 clusters: By the mclust package, we performed
the GMM approach by setting K=2 to 10 and considering all variables to get the opti-
mal clusters that are equal to 3 with ARI=0.29. Then, we applied 5 variable selection
approaches to the ADNI10 dataset with all 10 variables and get the results. As for
the penalization kmeans approach Sparcl, it requires the number of clusters in advance.
Therefore, we will use the number of clusters K=3, which is estimated by the GMM
approach in mclust package. For the remaining four approaches of variable selection,
we derived relevant variables and corresponding clustering results by iterating over the
number of clusters from K = 2 to 10, see Figure 25.

As we can see in Figure 25, except for SelvarMix, the other approaches all choose
3 as the optimal number of clusters and it is the same as the number of true components
in our dataset. According to ARI and MMM, the performance of Sparcl is great
but it selects all the variables. For the approach Clustvarsel, we choose the backward
direction rather than the forward direction since for forward selection, each addition of
a new variable may render one or more of the already included variables non-significant.
And it chooses only 5 variables with ARI =0.294 and MMM=0.61. The results are
almost the same as GMM and VSCC, but it chooses fewer variables which means some
variables may be irrelevant for clustering. VarselLCM also chooses all the variables
for clustering with the number of clusters equal to 9, which is unsatisfactory. For these
6 approaches, they all consider Ven, Hip, WhB and ICV for clustering. For Hip is
reasonable because we have observed from the boxplot in Figure 21 that different disease
status are represented differently in this variable. However, in boxplot, Ven, WhB and
ICV do not distinguish diseases well, so including these variables may mislead the results.
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Figure 25: Selected variables(black) chosen according to variable selection approaches
indicated in the row using ADNI10 dataset allowing for K=2 to 10 clusters.

Figure 26: Selected variables(black) chosen according to variable selection approaches
indicated in the row using ADNI10 dataset assuming K=3 clusters.
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Performance assuming K=3: Now, we specify K=3 and cluster the observations
again to see the effect of the number of clusters for VarSelLCM see in Figure 26. As
we said at the beginning of our introduction to VSCC in Section 2.7.3, we consider the
model with full variables as an option for model selection, that is, if the uncertainty in the
complete dataset is minimal, we select the complete dataset. Since the complete dataset
has the least certainty in this clustering process, we select all variables and cluster them
with mclust, which leads to the same results for GMM and VSCC. However, if we do
not consider the full data model even though it has lowest uncertainty during the selection
process, i.e., if we must exclude variables, we will get a model with only three variables,
that is mPd, Ven and Hip with ARI= 0.22 and MMM=0.54. Besides, the result of
VarSelLCM is improved, which becomes the second-best result. Compare this with the
original GMM approach, which both selects all variables for clustering, but the results
are different.

Therefore, to compare these two models estimated by GMM and VarSelLCM, we
used the Hungarian algorithm and found the maximum weight matching to assign each
cluster to the true partitions. The mixture probability of GMM and VarSelLCM can
be easily estimated and is given in Table 11.

DEM CN MCI
GMM

α 0.10 0.41 0.49
VarSelLCM

α 0.28 0.42 0.30

Table 11: Mixture probability of two approaches.

According to the mixture probability, we found that the probability of the cluster
assigned to DEM under the model estimated by GMM is much smaller than the others,
which implies thatDEM is not a strong component under this model. However, the model
estimated by VarSelLCM can clearly identify the other two disease status,MCI and
DEM. Figure 27 shows the mean of each variable estimated by GMM and VarSelLCM
as well as the true partitions. As we can see, the cluster C3 GMM and C2 V arSelLCM is
similar to the disease statusCN. But for C1 GMM , it differs from theDEM, while for the
other two clusters estimated byVarSelLCM, i.e., C1 V arSelLCM and C3 V arSelLCM ,
are both closer to the true disease status. The most important reason for the different
result is that VarSelLCM assumes the independence of the variables used for clustering,
so it only considers the variable’s variance and not the covariance. Thus, it does not
model the dependence we indicated in pairsplot in Figure 17. For GMM estimated by
mclust, it considers covariance of variables as well as a richer family of models. The result
of VarSelLCM is better than GMM may because GMM considers larger covariance
matrices and might overfit.

Table 12 shows the partition results for all six approaches. From the table we found
that almost all approaches identify CN patients. However, most of them do not perfectly
distinguish between MCI and DEM, as they are all clustered in the same cluster. Com-
pared to clustervarsel and selvarmix, Sparcl and VarSelLCM used all the variables
but are able to better distinguish between the two diseases, i.e., MCI and DEM. For
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Figure 27: Comparison of the cluster estimated by GMM and VarSelLCM and true
class mean for each clustering variable for K=3 (the dotted line represents the mean of
each variable in each cluster estimated by GMM, dashed line represents the mean of
each variable in each cluster estimated by VarSelLCM and the solid line represents the
mean of each variable in each disease status).
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Sparcl, not only 98% of CN is clustered into the same components, but 81% of DEM is
in component C2, while 62% of MCI was in the remaining components, which performs
better than the other approaches.

Sparcl
C1 C2 C3

CN 199 0 4
DEM 0 105 24
MCI 69 49 194

GMM
C1 C2 C3

CN 14 4 185
DEM 12 116 1
MCI 36 197 79

Clustvarsel
C1 C2 C3

CN 14 2 187
DEM 13 116 0
MCI 38 193 81

VarselLCM
C1 C2 C3

CN 1 197 5
DEM 100 0 29
MCI 79 75 158

VSCC
C1 C2 C3

CN 14 4 185
DEM 12 116 1
MCI 36 197 79

selvarMix
C1 C2 C3

CN 189 1 13
DEM 4 115 10
MCI 116 163 33

Table 12: Partition results for the complete dataset ADNI10 for the 6 approaches and
the number of cluster is chosen to K=3 clusters.

To better compare the clustering results, we plot the mean of each variable in the true
class and clustering group. Figure 28 represents a comparison of the estimated results
with true classes. For Clustvarsel in Figure 28(a), the mean of each variable in C3 is
close to the mean of group CN, but the mean of each variable in C1 is greater than the
means in DEM as well as and the mean of C2 is also lower than the true MCI’s means.
In Figure 28(b), three lines are more consistent with the mean lines of true disease status.
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(a) Clustvarsel when K=3 (b) Sparcl when K=3

Figure 28: Comparison of the cluster and true class means for each clustering variable
for K=3 (the dotted line represents the mean of each variable in each cluster estimated
by the approaches and the solid line represents the mean of each variable in each disease
status).

Although the set of relevant variables we derived from Sparcl for clustering is all
10 variables, we can compare the weights of the individual variables in the model, see
Table 13. The weights of variables mean the importance of this variable for the clustering
dataset. According to the Table 13, the weight of mPd is greatest and mPt, S13, Hip
as well as Ent are also higher than others. This is reasonable since the boxplots in
Figure 21 demonstrate that S13, mPd and mPt play important roles in distinguishing
between the three disease states. Besides, the weights of variablesVen and ICV are much
lower than the others. As we mentioned before, Figure 21 and 22 show that there is not
much difference between the three disease status in variable ICV. The strictness of the L1

penalty and the selection of the value of the parameter s caused the weights to be not zero
but close to zero, only 0.034 and 0.039 respectively. Here, s is calculated by the Algorithm
2.7.1 which equals 2.59. If we change the value of s, the weight of some variables may
converge to 0 or equal to zero. Because of the lower weights of these two variables, we
can consider them as irrelevant variables that hardly matter for the model and cluster the
observations again. Given the remaining variables S13, mPd,mPt,Hip,WhB,Ent,Fui
and MTp, we perform the clustering and the model we got is almost the same with the
model considering 10 variables, where ARI=0.43 and MMM=0.77, which also indicates
the influence of Ven and ICV can be ignored. The Table 13 also shows the new weight of
variables after removing two low-weight variables. In the table, we can find that S13,mPd
and mPt still have high weight and WhB is the least important for clustering.

The weights of variables estimated by Sparcl
S13 mPd mPt Ven Hip WhB Ent Fui MTp ICV

Weight 0.469 0.526 0.525 0.034 0.286 0.104 0.285 0.142 0.173 0.039
The weights of variables estimated by Sparcl after removing Ven and ICV

Weight 0.473 0.527 0.526 0 0.285 0.100 0.286 0.142 0.169 0

Table 13: The weights of variables estimated by Sparcl.

Considering the gender of patients we also estimate theARI andMMM with respect
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to gender, where Table 14 shows the ARI and MMM results for females and males as
well as for a different marital status. According to Table 14, we find by most of the
approaches, the performance of these approaches for females is better than that of the
male while the performance of married patients is worse than the non-married patients.
This may be due to the relatively smaller proportion of female MCI patients and of
non-married MCI in our dataset and the fact that we know that these approaches do
not perform very well for MCI discrimination. Comparing the result of Clustvarsel and
the result of VSCC and GMM, the ARI of male in GMM and VSCC is a bit higher
than that in the Clustvarsel but of female is lower than the Clustvarsel. Similarly, the
MMM of male in VaselLCM is higher than Clustvarsel but for female, it is lower. The
reason may because the model estimated by GMM and VSCC contain more variables,
such that Fui,MTp. According to the boxplots of variables classified by gender shown
in Figure 23, there is no significant difference between the two disease status CN and
MCI for females in these variables, only for males. For female patients, containing these
variables may mislead the clustering result.

ARI MMM ARI MMM
male female male female married non-married married non-married

GMM 0.23 0.38 0.58 0.64 0.26 0.36 0.59 0.67
Sparcl 0.43 0.47 0.78 0.76 0.40 0.53 0.76 0.82

Clustvarsel 0.21 0.39 0.57 0.66 0.27 0.37 0.60 0.67
VarSelLCM 0.36 0.37 0.74 0.65 0.32 0.40 0.70 0.73

VSCC 0.23 0.38 0.58 0.64 0.26 0.36 0.59 0.67
SelvarMix 0.18 0.34 0.51 0.63 0.21 0.35 0.53 0.66

Table 14: The ARI and MMM of different approaches for complete dataset ADNI10
classified by gender and marital status when K=3.

Performance assuming K=4 clusters: According to Table 10, some approaches per-
form better when K=4. We also set K=4 to see the clustering result, shown in Figure
30. SelvarMix and VSCC have a better result when K=4. For SelvarMix, it discards
WhB but the ARI is improved, which indicates that WhB might not be helpful in the
clustering. The boxplot in Figure 21 shows that there is no significant difference between
the three disease status. Compared with the result of K=3, VSCC chooses only two
variables but gets the highest ARI, which is quite reasonable. As we mentioned before,
the value of three disease status in these two variables mPd and mPt represent differ-
ently and it is useful for clustering. However, Clustvarsel also choose two variables but
the results were not good. The reason is that, according to the pairsplot and boxplot in
Figure 17 and 21 Ven did not help much for clustering compared to mPt. Furthermore,
we found that Sparcl is very sensitive to the number of different clusters.
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Figure 29: Selected variables(black) chosen according to variable selection approaches
indicated in the row using ADNI10 dataset assuming K=3 clusters.

Figure 30: Selected variables(black) chosen according to variable selection approaches
indicated in the row using ADNI10 dataset assuming K=4 clusters.
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Table 15 shows the partition of 6 approaches after specifying K=4. Comparing the
partition when K=3 in Table 12, we can find that for most of the approaches except
GMM, the majority MCI and DEM are no longer clustered in the same component.
The reason why the MMM are still not satisfactory may be because the true number of
components is 3 and for each real disease state, they are clustered into two clusters instead
of concentrating in just one. As we can see in Sparcl, only 52% of CN are clustered to
the one component C4 but if we specify K=3, as shown in Table 12, then 98% of CN will
be distinguished into the same component. The same is true for VSCC, the percentage of
CN that clustered into same cluster decreased from 91% to 77% and of MCI decreased
from 63% to 53% while for DEM, the percentage increased significantly from 9% to 54%.

Sparcl
C1 C2 C3 C4

CN 95 2 0 106
DEM 1 42 86 0
MCI 49 142 66 55

GMM
C1 C2 C3 C4

CN 13 49 2 139
DEM 11 5 113 0
MCI 35 60 178 39

Clustvarsel
C1 C2 C3 C4

CN 21 3 1 178
DEM 22 37 70 0
MCI 58 112 82 60

VarselLCM
C1 C2 C3 C4

CN 0 107 93 3
DEM 77 0 0 52
MCI 66 44 50 152

VSCC
C1 C2 C3 C4

CN 45 0 1 157
DEM 1 70 58 0
MCI 124 6 166 16

SelvarMix
C1 C2 C3 C4

CN 191 0 1 11
DEM 2 41 79 7
MCI 104 17 160 31

Table 15: Partition results for the complete dataset ADNI10 for the 6 approaches and
the number of clusters is chosen to K=4.
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4.2 Analysis of the complete dataset ADNI10 based on in-sample
and out-of-sample

To perform out-of-sample analyses, we randomly sample 80% of our data as the training
data, denoted as ADNI10 80%, and 20% as the testing data, denoted as ADNI10 20%.
It contains 515 training data and 129 testing data. First, we use the 6 approaches above
to train the dataset with cluster number K=3 and get the results. The results is shown in
Figure 31. SelvarMix selects fewest variables. VSCC, GMM and Clustvarsel perform
similarly, but Clustvarsel chooses fewer variables, making it more concise. Besides,
according to the situation we mentioned before, that is the weight of Sparcl may very
close to zero, we check the weight of variables that estimate by Sparcl, and we found
that the weight of Ven and ICV are still quite small, both of them less than 0.03, see
Table 16. Therefore, we remove them and cluster the observations again. The result have
similar ARI and MMM in training dataset, result denoted as Sparcl*.

Figure 31: Selected variables(black) are chosen according to variable selection approaches
indicated in the row using ADNI10 80% dataset as training data assuming K=3 clusters.

S13 mPd mPt Ven Hip WhB Ent Fui MTp ICV
First time 0.47 0.53 0.54 0.03 0.28 0.1 0.27 0.13 0.16 0.03

Table 16: Weight of each variable estimated by Sparcl using the training dataset
ADNI10 80% when K=3.

In the training process, we estimate the Gaussian mixture model for clustering and
get the mean matrix and covariance matrix of each cluster Ck, where K = 1, 2, 3. Then
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approaches ARI MMM
SelvarMix 0.25 0.54
VSCC 0.27 0.55

VarSelLCM 0.41 0.74
Clustvarsel 0.28 0.57

Sparcl 0.44 0.76
Sparcl∗ 0.46 0.78
GMM 0.27 0.55

Table 17: ARI and MMM of different approaches for test dataset, where Sparcl∗ is the
clustering result after removing the variables(Ven and ICV) whose weight is close to
zero.

Sparcl
C1 C2 C3

CN 41 0 0
DEM 0 26 7
MCI 17 6 32

Clustvarsel
C1 C2 C3

CN 4 37 0
DEM 5 0 28
MCI 9 19 27

VarselLCM
C1 C2 C3

CN 41 0 0
DEM 0 7 26
MCI 16 29 10

Table 18: Partition results for the 3 approaches under test dataset and the number of
clusters is chosen to K=3.

by using these parameters, we can calculate the loglikelihood of each cluster for each
observation xi in the testing dataset. Since larger loglikelihood Lik for observation xi in
cluster g means that the observation xi tend to be grouped into that cluster g. Therefore,
we assigned the observation xi in the testing dataset to the cluster that has the highest
loglikelihood. Furthermore, to evaluate the performance of the clustering, we will estimate
the ARI and MMM for each approach, which is shown in Table 17 as follow.

As Table 17 shows, the performance of the Sparcl is the best with highest ARI=0.44
and MMM=0.76. After removing the variables whose weight is close to zero, the ARI
and MMM improved, which is shown in the result of Sparcl∗. VSCC and the GMM
have the same results. Clustvarsel works well since it choose the fewer variables than
GMM but the result of ARI is good and MMM is also higher. From the Table 18,
Clustvarsel can separateCN well but still not work for identifyingDEM andMCI since
the majority of these two disease status are clustered in the same component. However,
Sparcl can distinguish DEM and MCI better. Therefore, the penalization- and distance
based approach is better suited to our dataset than the classicGMM. Besides, comparison
of the result from VSCC, GMM and VarselLCM, the clustering approach based on
MICL-criterion performs better than the BIC-based model selection approach.
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4.3 Variable selection performance for a 5-dimension variable
subset ADNI5

Based on our analysis and the results of the variable selection for each approach, we found
that these approaches select some variables that are highly correlated with the clustering,
including mPd, mPt and Hip but also some variables that are not relevant with the
clustering, such as Ven, making our clustering results not satisfactory and only distin-
guishing between CN and Non-CN. Therefore, we reduce the variables to 5 variables as
follows: S13, mPd, mPt Hip and Ent and denoted the new dataset as ADNI5, since
they seem to group the patients marginally by observing the boxplots in Figure 21. As
before, since Sparcl needs to know the size of K in advance, we will choose the number
of clusters calculated by mclust, that is GMM in figure.

Figure 32: Selected variables(black) chosen according to variable selection approaches
indicated in the row using ADNI5 dataset allowing for K=2 to 10 clusters.

As Figure 32 shown, results of ARI and MMM are significantly improved for all
approaches except Sparcl. The number of clusters chosen by the approaches is almost K=
2. As before, VarselLcm tends to choose a larger number of clusters therefore the value of
MMM is very low even though it chooses all variables. The performance of clustvarsel
and SelvarMix are great since it is parsimonious, which just choose the fewest variables
but with highARI andMMM. Comparing Clustvarsel with SelvarMix, both of which
use the same approach of clustering as GMM after performing variable selection, they
perform better than GMM which clusters with all the variables. It indicates that there
are still redundant or irrelevant variables that affect the clustering result among these five
variables. Furthermore, as we mentioned before S13 and mPd are relevant variables to
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distinguish the three disease status, which is why it is selected by all these 6 approaches.
For most approaches, however, they choose 2 as the optimal number of clusters rather

than 3, which is the true number of components. Therefore, to discover which disease
status the two clusters correspond to, we can see the partition result estimated by these
6 approaches, shown in Table 21. As we have seen, for both CN and MCI patients, they
can be clustered into one component completely. But for MCI, it is not exactly gathered
at the same cluster and therefore cannot be distinguished very well. The Figure 33 shows
the comparison of the mean of each variable in the group estimated by SelvarMix with
true classes. As our analysis of the table, the line for C2 is very close to CN, but the line
for C1 is between MCI and DEM, indicating an unclear distinction between these two
disease status.

Sparcl
C1 C2

CN 203 0
DEM 0 129
MCI 136 176

GMM
C1 C2

CN 200 3
DEM 0 129
MCI 102 210

Clustvarsel
C1 C2

CN 13 190
DEM 128 1
MCI 58 256

VarselLCM
C1 C2 C3 C4 C5 C6

CN 15 104 0 84 0 0
DEM 0 0 55 0 62 12
MCI 104 3 71 39 5 90

VSCC
C1 C2

CN 200 3
DEM 0 129
MCI 102 210

SelvarMix
C1 C2

CN 10 193
DEM 129 40
MCI 254 58

Table 19: Partition results for ADNI5 dataset for the 6 approaches and the number of
clusters is allowing for K=2 to 10.
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Figure 33: Comparison of the cluster estimated by SelvarMix and true class means for
dataset ADNI5 for K=2; where dotted line represents the mean of each variable in each
cluster estimated by the approach and solid line represents the mean of each variable in
each disease status.

To compare the results under same number of clusters, we fix the number of clusters
K=3 and perform the clustering. Here is the variable selection and clustering performance
results when we specify K=3 on the ADNI5 dataset, i.e., the dataset that only contains
5 variables (S13, mPd, mPt,Hip and Ent), see in Figure 34. After setting K=3, the
variables used for clustering are unchanged except forVSCC. It chooses only two variables
instead of all five, but the results, including ARI and MMM, are significantly improved.
Although both SelvarMix and VSCC select two variables, SelvarMix does not perform
as well as VSCC, which indicates that S13 is not as effective as Hip in clustering. Apart
from that, Clustvarsel selects one more variable S13, but the result is still lower than
VSCC, which also suggests that S13 may be a redundant variable if mPd and Hip
have already been selected. Furthermore, when we do clustering under K=3 for the
dataset ADNI10, if we disregard the whole dataset as an option for variable selection
by VSCC, we got a model with three variables mPd,Ven and Hip, whose ARI and
MMM are 0.22 and 0.54 respectively. Comparing this model to the two-variable model
here(incl. mPd and Hip), we found that the result of the model without variable Ven
have improved dramatically. For penalization- and distance-based clustering, we check
the weights of each variable calculated by Sparcl, see in Table 20, and it shows that the
first three variables, i.e., S13, mPd and mPt, have higher weights than the last two, i.e.,
Hip and Ven, indicating that the first three variables are more helpful for clustering the
observations in the Sparcl approach, which is somewhat different from the conclusions
obtained from other approaches. Besides, since the true number of component is 3, the
MMM of Clustvarsel and Sparcl are better when we fix the number of cluster as 3
instead of 2. Comparing with the result on whole dataset under K=3 or GMM’s result,
we can conclude that the existence of relevant or redundant variables in theADNI dataset
causes the model to perform poorly when more variables are present.
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S13 mPd mPt Hip Ven
0.519 0.580 0.582 0.170 0.160

Table 20: Weight of each variables estimated by Sparcl when K=3.

Figure 34: Selected variables(black) chosen according to variable selection approaches
indicated in the row using ADNI5 dataset assuming K=3 clusters.

Table 21 shows the partition results of 6 approaches. It is clear that for the Sparcl,
Clustvarsel, VarselLCM and VSCC, the majority of MCI and DEM are no longer
clustered into the same clusters which means it can distinguished the MCI better than
before. Besides, according to the table, VSCC clusters better than Sparcl for MCI but
performs worse for DEM.

Figure 35 shows the difference in means of each variable in each cluster and true
disease status after reducing variables. Figure 35(a) shows the result of the original
Gaussian mixture model with 5 variables. Except for CN, the other two clusters C1

and C2 are somewhat different from both MCI and DEM. Thus it also shows that the
interference of redundant variables causes MCI and DEM to be poorly discriminated.
But for distance and weight-based clustering approaches Sparcl, shown in Figure 35(b),
we can observe that the mean of cluster estimated by Sparcl approach is almost the same
as the mean of true disease status although it also uses all the variables. Besides, both
Clustvarsel and VSCC use fewer variables, but the curves do not differ much from the
true disease status, especially for CN, see Figure 35(c) and Figure 35(d). However, for
DEM and MCI, the means of variables mPd, mPt and Hip in group estimated by
Clustvarsel and Vscc are lower than the means in MCI and DEM.
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Sparcl
C1 C2 C3

CN 198 0 5
DEM 0 103 26
MCI 68 38 206

GMM
C1 C2 C3

CN 5 4 194
DEM 26 103 0
MCI 89 179 44

Clustvarsel
C1 C2 C3

CN 2 0 201
DEM 62 65 2
MCI 209 70 33

VarselLCM
C1 C2 C3

CN 3 200 0
DEM 28 0 101
MCI 209 70 33

VSCC
C1 C2 C3

CN 199 0 4
DEM 0 72 57
MCI 83 8 221

selvarMix
C1 C2 C3

CN 201 0 2
DEM 0 48 81
MCI 101 13 198

Table 21: Partition results for the dataset ADNI5 for the 6 approaches and the number
of clusters is chosen to K=3.
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(a) GMM (b) Sparcl

(c) Clustvarsel (d) VSCC

Figure 35: Comparison of the cluster and true class means for 5 variables( incl. S13,
mPd, mPt,Hip and Ent) for K=3(dotted line represent the mean of each variable in
each clusters estimated by the approach and solid line represent the mean of each variable
in each disease status).

(a) Pairsplot of dataset sampled from the
model estimated by GMM with 5 vari-
ables(S13,mPd,mPt,Hip and Ent).

(b) Pairsplot of original dataset with 5 vari-
ables(S13,mPd,mPt,Hip and Ent).

Figure 36: Comparison of simulated data sampled from the model estimated by GMM
and original dataset.

Figure 36(a) shows pairsplot of dataset sampled from the model estimated by GMM
with 5 variables(S13,mPd,mPt,Hip and Ent). Comparing with the pairsplot of original
dataset, the distributions are not similar in variable mPd, mPt,Hip and Ent. However,
for the clustvarsel, see in Figure 37(a), the distributions of simulated data are more
similar. Hence, the ARI and MMM of the clustering result estimated by clustvarsel
are higher than GMM.
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(a) Pairsplot of dataset sampled from the
model estimated by clustvarsel with 5 vari-
ables(S13,mPd and Ent).

(b) Pairsplot of original dataset with 3 vari-
ables(S13,mPd,Hip and Ent.

Figure 37: Comparison of simulated data sampled from the model estimated by clust-
varsel and original dataset.

Optimal variable subset Furthermore, to confirm our conclusions,i.e., S13, mPd and
Hip are both relevant for clustering, we considering the 31 different combinations of these
5 variables and fit GMM again by mclust allowing the number of cluster K from 2 to 10,
we found that the best result of ARI is from the model that contains only mPd, Hip and
its ARI is equal to 0.42, with the number of clusters K=3, see the red line in Figure 38(a)
and Figure 38(b). After specifying K=3, we fit GMM using these 5 variables again,see
the blue line in Figure 38(a) and Figure 38(b). The model with S13, mPd and Hip
performs well. Besides, the model containing mPd,mPt and Ent with cluster K=3 has
best performance, that is ARI =0.43, MMM=0.77. According to the weights estimated
by sparcl, the most relevant variables are S13,mPd and mPt. We can compare this
result with the one estimated by GMM, the model with these three variables also has
satisfactory ARI and MMM, i.e. ARI= 0.34, MMM=0.69 .

(a) ARI of different variables combination, where 1: S13;
2: mPd; 3:mPt; 4:Hip; 5:Ent.

(b) MMM of different variables combination, where 1: S13;
2: mPd; 3:mPt; 4:Hip; 5:Ent.

Figure 38: ARI and MMM of different variables combination where red represents the
best model chosen allowing for K=1 to 10 clusters and the blue represents the model
with the number of cluster K=3 .
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4.4 Conclusion

• Sparcl, the penalization- and distance-based approach, is the most effective among
all approaches for identifying DEM and MCI. But it needs to know the number
of clusters in advance. It always chooses all the variables into consideration, which
may because the setting of s in the L1 penalty affects the weight of variables, leading
to situations where variables with weights close to, but not equal to, zero occur. For
example, when we use the s = 2.59 estimated by the algorithm in Section 2.7.1, we
will discard none of the variables in the dataset. But if we set s = 1.2, the weights of
variables will change so that only variables mPd and mPt will be selected. We may
therefore need to confirm whether the weights of the variables are small or choose a
better and more appropriate s to adjust the weights of the variables and the number
of variables selected. For kmeans-based and GMM approaches, we were expecting
an even better performance from GMM. In general, according to Section 9 of Bishop
and Nasrabadi [2006], GMM clustering should perform better since it is somewhat
more flexible and with a covariance matrix so that we can make the boundaries
elliptical, as opposed to circular boundaries with k-means. However, according to
our result, the penalization-and kmeans-based approach performs more prominently
than the traditional GMM-based approach. The reason may be that it identifies
the relevant and irrelevant variables and gives them different weights so that the
clustering results are not disturbed too much by the irrelevant variables. Besides,
some data are probably non-Gaussian.

• Clustvarsel, the approach based on information criterion BIC, has a satisfactory
outcome, i.e., it always has better results than GMM. Its performance is stable,
always removing some variables that are not relevant to the clustering and retaining
those that contribute to clustering. Although it does not perform as well as Sparcl,
which cannot distinguish between patients with DEM and MCI, it can cluster CN
perfectly with a small number of variables.

• For VarselLCM, the approach based on information criterion MICL, it does not
discard any variables in our dataset and an optimal number of clusters is always
large. As we mentioned in the Section 2.7.2, this approach assumes that the variables
are independent when it estimates the integrated complete-data likelihood. There-
fore, this approach does not perform very well for variable selection and choosing the
optimal clusters. However, we found that after determining the number of clusters,
its clustering results were better than those of the classic GMM models and it can
cluster the MCI and DEM patients into two different components even though
both approaches used all variables. This phenomenon may be explained by the fact
that for classic GMM, it considers a richer family of models and covariance matrix
than the VarselLCM approach, which may lead to over-fitting. However, the per-
formance of the classic GMM is more stable when the exact number of clusters is
not known, and the number of clusters obtained by GMM will be closer to the true
number of clusters, which also implies that the classic GMM may be more flexible.

• VSCC, the hybrid based on the within-group variance approach, will sometimes
selects all variables for clustering though, and the results are the same as those of a



78 4 PERFORMANCE OF GMM VARIABLE SELECTION APPROACHES

traditional GMM. But in many cases, VSCC is still able to select the most relevant
variables for clustering, making the model more concise. However, it is sensitive
to the number of clusters and its results may change when the number of clusters
changes significantly.

• SelvarMix, the hybrid based on the lasso penalization approach, performs not bad
and also removes some variables but its results sometimes tend to be lower than the
classic GMM approach that uses all variables for clustering.

• For the analysis of gender and marital status, we found that the performance of
these approaches for a female is better than the male while the performance of a
married person is worse than the non-married person.
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5 Analysis of the vine copula mixture model(VCMM)

for clustering

As we can see that there are some problems in the clustering with the Gaussian mixture
model and the Gaussian mixture model does not cluster the data perfectly, since the
MCI and DEM are always clustered into the same component. We have observed some
non-Gaussian dependence between the pair of variables in the Figure 18. Therefore, we
will now continue to use the vine copula mixture model to see if the performance can be
improved.

First of all, we will fit the data with the vine copula mixture model. For this pur-
pose, we use the univariate Gaussian normal, log-normal, log, logistic, gamma, t-fix,
skew-normal and skew-t distributions as possible candidate distributions for the marginal
distribution for each variable. Besides, we allow the Gaussian, t, Clayton, Gambel, Frank,
Joe, BB1, BB6, and BB8 families of covariates and their rotations as candidates for the
family of the pair copula.

5.1 Analysis of the complete dataset ADNI10

From the analysis of the Gaussian mixture model with the dataset containing 10 variables,
ADNI10, we find that the clustering model with K=2,3 and 4 fit the dataset better than
the others. Therefore, we will use K=2, 3, and 4 to see the performance of the vine copula
mixture model on the ADNI10 dataset. First, we set the number of clusters K=3, then
we fit ADNI10 dataset with kmeans as the initial clustering approach. Figure 39 shows
the estimated marginal distributions of three clusters. The first tree level of the estimated
vine copula model for ADNI10 data with three clusters is shown in Figure 40.

Then, we can evaluate the performance of this model by comparing the ARI and
MMM with each patient’s disease status. According to the partition result of VCMM
in Table 22, we can associate the final clusters with the 3 disease status to estimate the
classification rate. For MMM calculation, we assigned the clusters to the corresponding
disease status, that is C1 → CN, C2 → MCI and C3 → DEM. Besides, in Table 23, we
can find most of CN, DEM are clustered to the C1 and C2 but for MCI it is split over
three clusters and it is hard to distinguish. Besides, as shown in Table 23, most of the
DEM and MCI clustered in the same clusters, and the number of people identified as
DEM according to the Hungarian algorithm is very low, is only 16. The ARI for this
10 variable model is lower, which equals 0.20. It is much worse than the result of the model
based on the Gaussian mixture model in Table 10. We, therefore, wonder whether our
clustering model has been affected by the existence of redundant and irrelevant variables.
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1 2 3
CN 155 5 43
DEM 3 110 16
MCI 75 150 87
ARI 0.20
MMM 0.50

Table 22: Partition of VCMM for
ADNI10 by using kmeans for the initial
partition.

1 2 3
CN 0.764 0.024 0.212
DEM 0.023 0.853 0.124
MCI 0.240 0.481 0.279

Table 23: Percentage of observations in
a disease status assigned to the clusters
forADNI10 by using kmeans for the ini-
tial partition.

Figure 39: Estimated marginal distributions of three clusters for ADNI10 using kmeans
for the initial partition.
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(a) First cluster

(b) Second cluster

(c) Third cluster

Figure 40: The first tree level of the estimated vine copula model for the ADNI dataset
with three clusters by using kmeans for the initial partition. A letter at an edge refers
to its bivariate copula family, where N: Gaussian; t:t; C: Clayton; SB1:Survival BB1;
SC: Survival Clayton; SG: Survival Gumbel; BB1:BB1; F: Frank; BB8:B8. The true
parameter value and corresponding Kendall’s τ of the pair copula are given inside the
parenthesis (parameter/Kendall’s τ).

To consider the initial clustering effect, we also try the Gaussian mixture model
clustering as the initial clustering approach and get the following Table 24. The clustering
results are also not as good as those previously obtained by the approaches based on GMM.
As the table shows, for both approaches, the optimal number of components is K=2. The
ARI and MMM of the models estimated using GMM as an initial clustering approach
are higher in most cases.

Tables 25 and 26 show the partition result by using kmeans and GMM as initial
clustering approach respectively. From the tables, it is obvious that the two components
that the model only separates out are CN and non-CN. In the kmeans approach, the
MCI is spread over two clustering points but in GMM approach, it is concentrated on
the same clusters as DEM.
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ARI MMM
kmeans as initial clustering
K=2 0.22 0.56
K=3 0.20 0.50
K=4 0.16 0.46
GMM as initial clustering
K=2 0.31 0.65
K=3 0.25 0.59
K=4 0.15 0.42

Table 24: Clustering results of the VCMM for ADNI10 using different initial clustering
approaches.

1 2
CN 198 5
DEM 13 116
MCI 143 169
ARI 0.22
MMM 0.56

Table 25: Partition of VCMM for ADNI10
by using kmeans for the initial partition
when K=2.

1 2
CN 184 19
DEM 0 129
MCI 74 238
ARI 0.31
MMM 0.65

Table 26: Partition of VCMM for ADNI10
by using GMM for the initial partition when
K=2.
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5.2 Performance of VCMM on a subset of variables ADNI5

Considering the effect of possible redundant or irrelevant variables and according to the
pairsplot in Figure 17 and boxplots in Figure 21, we first choose the 5 variables(S13,mPd,
mPt,Hip and Ent) to do the clustering by vine copula model and as we mentioned before,
the dataset is denoted as ADNI5. As before, we try different initial clustering approaches
and compare the performance of these two approaches. Unlike the result for ADNI10,
the results obtained using kmeans as an initial clustering approach are generally better
than those of GMM. In particular, we get the best ARI and MMM when K = 3.

ARI MMM
kmeans as initial clustering
K=2 0.31 0.63
K=3 0.40 0.75
K=4 0.36 0.64
GMM as initial clustering
K=2 0.38 0.69
K=3 0.35 0.65
K=4 0.34 0.64

Table 27: Clustering results of VCMM using different initial clustering approaches for
ADNI5

Figure 41 shows the first level of the vine tree structure of ADNI data for each
cluster using kmeans as the initial clustering approach when K=3. The estimated vine
tree structure is different for MCI and the other two disease status since it is a D-
vine structure. As we can see the partition of ADNI in Table 28, the CN is perfectly
identified and clustered to C2. Unlike the result in the 10-variables model, the cluster
with the highest percentage of DEM and DEM are also no longer the same, indicating
its performance is improved after reducing the variables. Besides, the ARI and MMM is
also outperformed most of previous models in Gaussian mixture model except for Sparcl,
vscc and VarselLCM.

1 2 3
CN 0 199 4
DEM 100 0 29
MCI 56 71 185
ARI 0.40
MMM 0.75

Table 28: Partition of VCMM for the
dataset ADNI5 by using kmeans for the
initial partition when K=3.

1 2 3
CN 0 0.98 0.02
DEM 0.78 0 0.22
MCI 0.17 0.23 0.60

Table 29: Percentage of observations in
a disease status assigned to the clusters
for dataset ADNI5 by using kmeans for
the initial partition when K=3.

Besides, we can simulate data from the model we estimated by using the 5 variables
and we only use kmeans as the initial clustering approach since it performs better, see
Figure 42(a), and compare the simulated data to our observations. Figure 43(a) shows
a contour plot of the dataset sampled from the model with 5 variables. If the datasets
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(a) First cluster

(b) Second cluster

(c) Third cluster

Figure 41: First level of vine tree structure of ADNI5 data with three clusters K=3 by
using kmeans for the initial partition. A letter at an edge refers to its bivariate copula
family, where N: Gaussian; C: Clayton; t:t; F: F; R2B8:Rotated BB8 270 degrees; R2C:
Rotated Clayton 270 degrees; R9G: Rotated Gumbel 90 degrees. The true parameter
value and corresponding Kendall’s τ of the pair copula are given inside the parenthesis
(parameter/Kendall’s τ).
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are sampled from the same distribution, then they are likely to look similar. Compare
with the Figure 17, we found that the distributions of these variables are similar in some
variables, especially for the variable Ent. For comparison of contour plots, some are
similar but we can still see that there are still some differences between the original and
simulated data from this model.

(a) Pairsplot of dataset sam-
pled from the model with 5 vari-
ables(S13,mPd,mPt,Hip and Ent).

(b) Pairsplot of original dataset with 5 vari-
ables(S13,mPd,mPt,Hip and Ent).

Figure 42: Comparison of dataset sampled from the model estimated by VCMM with 5
variables and original dataset.

(a) Contour plot of dataset sam-
pled from the model with 5 vari-
ables(S13,mPd,mPt,Hip and Ent).

(b) Contour plot of original dataset with 5
variables(S13,mPd,mPt,Hip and Ent).

Figure 43: Comparison of contour plot for dataset sampled from the model estimated by
VCMM with 5 variables and for original dataset.
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Then, we can compare the result of the 10-variable model with a 5-variable model to
see if the performance improved for any other value of K. By associating with the true
disease status, we obtain theARI andMMM of the model as well as the loglikelihood and
BIC, which shown in Table 30. It is clear that ARI and MMM of the 5-variables model
are much higher than the model estimated by the complete dataset. When we reduced
the variables, the result improved considerably, which proved our assumption that our
data contained some irrelevant and redundant variables for clustering and considering all
variables will lead to over-fitting.

ADNI10
ARI MMM loglik BIC

K=2 0.22 0.56 -5347 11625
K=3 0.20 0.54 -5285 11960
K=4 0.16 0.46 -5260 12377

ADNI5
ARI MMM loglik BIC

K=2 0.31 0.63 -2448 5208
K=3 0.40 0.75 -2420 5275
K=4 0.36 0.62 -2404 5404

Table 30: Clustering results of a different number of variables allowing several clusters
K=2,3,4 by using kmeans for the initial partition.

5.2.1 Exploring variable selection for VCMM

To find out which variables are relevant to clustering, we first fit the observations in
ADNI5 for K=2, K=3, and K=4 by using the different combinations of these 5 variables
and use kmeans as initial clustering since it performs better.

To see the performance of each model, we estimated the ARI and MMM for each
models and make comparison, see in Figure 44(a) and Figure 44(b). We can see in the
Figure 44(a) and 44(b) that both of them illustrates that the model with K=3 tends to
perform better than those with K=2 and K=4 in most cases. And for K=2, the value
of MMM are in the range between 0.55 and 0.65, which does not fluctuate much with
the change of clustering variables. The model containing variable mPd,mPt and Hip
has highest ARI=0.46 and MMM=0.79, which is different from the result estimated
by GMM, i.e., the model estimated by GMM reaches the maximum ARI=0.43 and
MMM=0.77 when it contains mPd, mPt and Ent. Apart from that, clustering result
with only two variables, mPd and mPt, is also the second-highest among all the combi-
nations. The results of the models including mPd are satisfactory, which also indicates
that mPd plays an important role in clustering. This is reasonable since in the pairsplot
in Figure 17 and boxplot in Figure 21 the values of different disease status and distribu-
tions are distinct in variable mPd. In addition, since the most three relevant variables
estimated by sparcl are S13, mPd and mPt, we also applied VCMM to these three
variables and the ARI=0.42, and MMM=0.76.

Figure 44(c) indicates the BIC for each model estimated with each combination of
variables. It can be seen that the model with only two variables(mPd,mPt) has lowest
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(a) ARI of different variables combination, where 1:
S13; 2: mPd; 3:mPt; 4:Hip; 5:Ent.

(b) MMM of different variables combination, where
1: S13; 2: mPd; 3:mPt; 4:Hip; 5:Ent.

(c) BIC of different variables combination, where
1: S13; 2: mPd; 3:mPt; 4:Hip; 5:Ent.

Figure 44: ARI, MMM, and BIC of different variables combination.

BIC. However, the best variable combination by ARI in Figure 44(a) is different, that
is the model with mPd,mPt and Hip. The main reason for this may be the greater
number of variables included in the model. Comparing the models with the same number
of variables, we also found that the smaller the BIC of the model, the higher the ARI.
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5.3 Backward search for variable selection for VCMM

Now, we go back and look at the complete dataset ADNI10 which has 10 variables. To
find variables that are relevant for clustering so that our clusters are not affected by
irrelevant and redundant variables, we need a way to filter out the available variables.
Here we decide to use the backward-forward search for variable selection, as shown in the
Algorithm 6. For the backward search, we start with the model containing all variable.
Then, in each following step, we remove the clustering variables that would improve
the BIC of the existing model. We iterate until removing any variables in the selected
variable set will not have lower BIC. Finally, we can derive the most relevant variables
for clustering.

Algorithm 6 Backward selection

Input: Original variable set; Dataset D = (y1, . . . ,yD) ∈ RN×D

Output: Optimal variable set S
1: S ← Vall, where Vall is all the variables in datasetD;
2: For backward search:
3: while S changes do
4: Vworst ← argminV ∈SBIC(S\V )
5: if BIC(S\V ) < BIC(S) then
6: S ← S\Vworst

7: end if
8: end while

Therefore, to verify the relevant variables for clustering, we applied the backward-
forward search to select the variables based on the BIC criterion. From Table 31, the
model with mPd and mPt are chosen due to the lowest BIC and we denoted the dataset
containing these two variables as ADNI2. Besides, we can find that the first variable
to be removed is ICV and in the box plot in Figure 21, there is little difference in the
performance of this variable between disease status. Other than that it removes WhB,
Ven, MTp and Fui. When there are five variables left, they are exactly the ones we
selected earlier based on the boxplots in Figure 21, which proves our previous suspicions,
i.e., several of the excluded variables do not contribute much to the clustering. Table
32 shows the partition of the model contains only mPd and mPt. According to the
partition, it is easy to distinguish the CN and DEM even though there is still some
confusion about the MCI. The Figure 47 shows the first level of the vine tree structure
for ADNI data with clusters K=3.

1 2 3
CN 28 175 0
DEM 14 0 115
MCI 209 27 76
ARI 0.44
MMM 0.77

Table 32: Partition result for the dataset ADNI2 containing mPd and mPt as well as
the ARI and MMM.
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iter0 iter 1 iter 2 iter 3 iter 4 iter 5 iter 6 iter 7 iter 8
S13

√ √ √ √ √ √ √ √

mPd
√ √ √ √ √ √ √ √ √

mPt
√ √ √ √ √ √ √ √ √

Ven
√ √ √

Hip
√ √ √ √ √ √

WhB
√ √

Ent
√ √ √ √ √ √ √

Fui
√ √ √ √ √

MTp
√ √ √ √

ICV
√

Table 31: Process of the backward search for variable selection based on BIC.

(a) First cluster (b) Second cluster

(c) Third cluster

Figure 45: Vine tree structure of ADNI10 data with three clusters. A letter at an edge
refers to its bivariate copula family, where BB8:BB8; C: Clayton. The true parameter
value and corresponding Kendall’s τ of the pair copula are given inside the parenthesis
(parameter/Kendall’s τ).

We also simulate data from the best fit model we estimate above. Figure 46 shows a
contour plot of the dataset sampled from the model with 2 variables. Compare with the
Figure 18, the contour plot is similar to those of the original observations.

Figure 47(a), Figure 47(b) and Figure 47(c) show the ARI, MMM and BIC of the
best BIC models in each iteration. As we can see, most of the time the model performs
better with fewer variables, except when the second variable(WhB) is discarded. The
results of the model improved a lot when the first variable was removed, indicating that
ICV hurt the clustering results.
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Figure 46: Contour plot of dataset sampled from the model with 2 variables(mPd and
mPt).

(a) ARI of the best BIC models in each iteration (b) MMM of the best BIC models in each iter-
ation

(c) BIC of the best BIC models in each iteration
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5.4 Analysis of complete dataset ADNI10 based on in-sample
and out-of-sample

In the previous chapters, we do the out-of-sample analysis to evaluate the different Gaus-
sian mixture model clustering approaches. We want to do the same here to compare
the result of GMM and VCMM. We choose 80% of the dataset ADNI10 and fit them
with the vine copula mixture model under K=3 over all variables and by the backward
forward search introduced in the previous section to find out the best model with BIC.
The following are the result using the same observations as the example shown in the
previous Section 4.2. The model we estimated is the VCMM with only mPd and mPt.

(a) First cluster (b) Second cluster

(c) Third cluster

Figure 47: Vine tree structure of ADNI10 80% as training data with three clusters. A
letter at an edge refers to its bivariate copula family, where G: Gumbel; F: F; SB8:Survival
BB8. The true parameter value and corresponding Kendall’s of the pair copula are given
inside the parenthesis (parameter/Kendall’s τ).

Then, by using the model we trained before, we test the model using the observations
in the test set. We compute the loglikelihood of each observation for each cluster Cg for
K = 1, 2, 3 and assign them to the cluster that has a higher loglikelihood. Then the
result is shown as follows, see Table 33. We can estimate the performance of the result by
using MMM and ARI. According to the table, we found that the model can cluster the
patients who are the CN and DEM but for those who are MCI, unlike in the Section 5.3,
it was distributed in two components rather than clustered in the one component. To see
the reason, we compare the vine structure of the model estimated by the training dataset
with the structure of the tree obtained in Section 5.3, we found for the first and third
clusters the structure of the tree is similar, but for the second cluster its structure has
changed from BB8 to F and the second cluster corresponds to the disease status MCI.
It means that the tree structure of the second cluster obtained from the training dataset
does not match the original data very well.

Compared to the model obtained by GMM, we find that this model gives better
results than most of the previous approaches because it chooses the fewest number of
variables but obtains better results. Although in the previous chapter, Sparcl obtained
a model with higher MMM and ARI, i.e., MMM=0.76, ARI=0.44, it contains more
variables. In contrast, VCMM is more parsimonious, i.e., VCMM is the approach that
uses the fewest variables but its results are third only to Sparcl and VarSelLcm. Table
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34 shows the partition of clustvarsel, which is the approach based on BIC and backward
search for GMM. GMM cannot identifies the disease status MCI well. Comparing with
the results in Section 4.2, VCMM does fit our dataset better than most Gaussian model-
based clustering approaches. This may be due to its flexibility, taking into account the
non-Gaussian relationship.

1 2 3
CN 40 1 0
DEM 6 2 25
MCI 11 20 24
ARI 0.32
MMM 0.65

Table 33: Partition result of test dataset by VCMM as well as ARI and MMM result
using variable mPd and mPt

1 2 3
CN 4 37 0
DEM 5 0 28
MCI 9 19 27
ARI 0.28
MMM 0.57

Table 34: Partition of test dataset by GMM and backward selection as well as ARI and
MMM result using variable mPt, Ven, Hip,WhB and ICV.

We also consider the influence on gender and marital status. Table 35 represents the
ARI and MMM results for different gender and marital status. Same as the Gaussian
mixture model-based clustering approaches, see in Table 14, VCMM performs better for
females than males and worse for a married person than non-married. In addition, the
difference in ARI and MMM between males and females decreases when some irrelevant
variables are removed.

ARI MMM ARI MMM
male female male female married non-married married non-married

VCMM 0.17 0.30 0.45 0.57 0.18 0.27 0.48 0.58
VCMM 5ft 0.39 0.43 0.75 0.76 0.37 0.50 0.73 0.80
VCMM sel 0.41 0.50 0.76 0.79 0.42 0.52 0.76 0.80

Table 35: Estimated ARI and MMM of models estimated by VCMM for stratified
dataset by gender and marital status when K=3, respectively, where VCMM 5ft is
the model using ADNI5 dataset and VCMM sel is the model estimated by backward-
forward approach (including mPd and mPt).
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5.5 Comparison of VCMM based with Gaussian model-based
clustering results

We applied the variable selection approaches for Gaussian model-based and kmeans clus-
tering. Besides, we also perform GMM clustering without variable selection in Section 4 as
well as the VCMM approach in Section 5 to the ADNI dataset. The approach sparcl is a
penalization kmeans-based method and we consider a rather simple BIC criteria (Ramsey
et al. [2008]) given by,

BIC = WCSS +K ln(n)(d+ 1)

where WCSS denotes the within cluster sums of squares calculate on all variables,
K is the number of cluster and d is number of variables. Possible improvement on these
rather naive criteria could be in the form of more accurate estimation of the degrees of
freedom in the BIC criteria Hofmeyr [2020]. In our comparison, we set K=3 for all models
studied.

Results using ADNI10: Table 36 shows the performance of each approach using
ADNI10. The penalization-based clustering approach sparcl has the highest ARI and
MMM among the results of GMM approaches. Since the sparcl contains all variables
and some of them have weights close to zero, we removed these variables and got the
new model denoted as sparcl*, which has the almost the same ARI and MMM. The
Gaussian mixture model-based approach without variable selection, GMM, performs
better than VCMM. Although VarselLCM consider all variables, it has better results
than GMM. Besides, clustvarsel chose fewer variables but the result is almost the same
as the vscc. However, if we applied the stepwise algorithm for VCMM to select variables
described in Section 5.3, we will have the best ARI and MMM, see VCMM sel.

Approach SelvarMix vscc clustvarsel GMM VarselLCM sparcl sparcl* VCMM VCMM sel
ARI 0.24 0.29 0.294 0.29 0.34 0.43 0.43 0.2 0.44
MMM 0.56 0.61 0.611 0.61 0.71 0.77 0.77 0.54 0.77
BIC 8048 11605 7173 11605 7827 4165 2896 11960 1346

Number of free parameters 84 198 63 198 63 40 32 213 20
Variables

S13
√ √ √ √ √ √ √

mPd
√ √ √ √ √ √ √ √

mPt
√ √ √ √ √ √ √ √

Ven
√ √ √ √ √ √ √ √

Hip
√ √ √ √ √ √ √ √

WhB
√ √ √ √ √ √ √

Ent
√ √ √ √ √ √

Fui
√ √ √ √ √ √

MTp
√ √ √ √ √ √

ICV
√ √ √ √ √ √ √

Number of variables selected 6 10 5 10 10 10 8 10 2

Table 36: The clustering results and their performance of each approach using ADNI10
with all observations.

Results using ADNI5: VarselLCM has highest ARI and MMM. Sparcl also
has the better performance than most approaches. Compared to the results of ADNI10,
we found an improvement in the ARI and MMM of the models estimated by these
approaches, especially for vscc, see in Table 37. It chose the fewest variables and the
ARI and MMM are the fourth highest. Clustvarsel selects one more variable but the
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result is lower than vscc, which indicates that S13 may be a redundant variable if mPd
and Hip have been selected.

Approach SelvarMix vscc clustvarsel GMM VarselLCM sparcl VCMM VCMM sel
ARI 0.34 0.42 0.37 0.31 0.47 0.46 0.4 0.44
MMM 0.69 0.76 0.73 0.62 0.792 0.79 0.75 0.77
BIC 3407 2657 4264 5144 3432 1328 5275 1346

Number of parameters 18 18 27 63 33 20 68 20
Variables

S13
√ √ √ √ √ √

mPd
√ √ √ √ √ √ √ √

mPt
√ √ √ √ √

Hip
√ √ √ √ √ √

Ent
√ √ √ √

Number of variables selected 2 2 3 5 5 5 5 2

Table 37: The clustering results and their performance of each approach using ADNI5
with all observations.

Results using ADNI2: Since we used the stepwise algorithm to do the variable
selection for VCMM and we got the model containing variable mPd and mPt, then we
also applied GMM and variable selection approaches for GMM to the dataset ADNI2
containing these 2 variables and compare their results, see in Table 38. The penalization
approach sparcl still has the best performance. VCMM performs better than GMM,
which implies that these two variables may have non-Gaussian dependence. For VSCC
and clustvarsel, they only consider one variable mPt but the results are quite good.

Approach SelvarMix vscc clustvarsel GMM VarselLCM sparcl VCMM
ARI 0.41 0.4 0.4 0.41 0.39 0.45 0.44
MMM 0.75 0.75 0.75 0.75 0.742 0.78 0.77
BIC 1272 1636 1636 1272 1239 696 1346

Number of parameters 18 9 9 18 15 8 20
Variables

mPd
√ √ √ √ √

mPt
√ √ √ √ √ √ √

Number of variables selected 2 1 1 2 2 2 2

Table 38: The clustering results and their performance of each approach using ADNI2
with all observations.

Table 39-Table 41 show the selected variables for the models estimated by different
approaches and models’ performance using 80% ADNI10, ADNI5 and ADNI2 data as the
train dataset. VCMM with all variables has the worst result but after reducing variables,
the performance of VCMM improved considerably, which is better than most of the
models estimated by the variable selection approaches for the Gaussian mixture model
except VarSelLCM. This indicates that the data may have been over-fitted. Besides, we
also found the performance of sparcl is similar in three different dataset. The reason that
the results of sparcl are stable for ADNI10 80%, ADNI5 80% and ADNI2 80% is that the
weights estimated by sparcl of relevant variables S13, mPd and mPt are always much
higher than of the other irrelevant variables. As before, we removed the variables with
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almost zero weight in ADNI10 80% and we will have better test results ARI=0.46 and
MMM=0.78.

Approach SelvarMix vscc clustvarsel GMM VarselLCM sparcl sparcl* VCMM VCMM sel
training ARI 0.28 0.33 0.31 0.33 0.42 0.44 0.44 0.26 0.38
training MMM 0.61 0.65 0.63 0.65 0.74 0.77 0.77 0.54 0.73

test ARI 0.25 0.27 0.28 0.27 0.41 0.44 0.46 0.2 0.32
test MMM 0.54 0.55 0.57 0.55 0.74 0.76 0.78 0.43 0.65

BIC of the training model 2819 9423 5761 9423 6308 3415 2402 9730 1140
Number of free parameters 18 198 63 198 63 40 32 208 20

Variables
S13

√ √ √ √ √ √

mPd
√ √ √ √ √ √ √ √

mPt
√ √ √ √ √ √ √ √

Ven
√ √ √ √ √ √ √ √

Hip
√ √ √ √ √ √ √

WhB
√ √ √ √ √ √ √

Ent
√ √ √ √ √ √

Fui
√ √ √ √ √ √

MTp
√ √ √ √ √ √

ICV
√ √ √ √ √ √

Number of variables selected 2 10 5 10 10 10 8 10 2

Table 39: The clustering results and their performance of each approach using using
ADNI10 80% for training and ADNI10 20% for testing with all observations.

Approach SelvarMix vscc clustvarsel GMM VarselLCM sparcl VCMM VCMM sel
training ARI 0.35 0.35 0.35 0.33 0.5 0.51 0.36 0.38
training MMM 0.7 0.7 0.7 0.66 0.8 0.8 0.72 0.73

test ARI 0.28 0.28 0.28 0.27 0.43 0.44 0.3 0.32
test MMM 0.59 0.59 0.59 0.57 0.77 0.77 0.61 0.65

BIC of the training model 2145 2145 2145 4163 2663 1094 4323 1140
Number of free parameters 18 18 18 63 33 20 65 20

Variables
S13

√ √ √ √ √ √ √

mPd
√ √ √ √ √ √ √ √

mPt
√ √ √ √ √

Hip
√ √ √ √

Ent
√ √ √ √

Number of variables selected 2 2 2 5 5 5 5 2

Table 40: The clustering results and their performance of each approach using ADNI5 80%
for training and ADNI5 20% for testing with all observations.
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Approach SelvarMix vscc clustvarsel GMM VarselLCM sparcl VCMM
training ARI 0.36 0.35 0.38 0.36 0.42 0.45 0.38
training MMM 0.708 0.706 0.72 0.708 0.76 0.78 0.73

test ARI 0.3 0.29 0.31 0.3 0.4 0.45 0.32
test MMM 0.6 0.59 0.62 0.6 0.75 0.78 0.65

BIC of the training model 1016 1496 1444 1016 1036 558 1140
Number of free parameters 18 9 9 18 15 8 20

Variables
mPd

√ √ √ √ √ √

mPt
√ √ √ √ √ √

Number of variables selected 2 1 1 2 2 2 2

Table 41: The clustering results and their performance of each approach using ADNI2 80%
for training and ADNI2 20% for testing with all observations.

Table 42 and Table 43 show the ranks of the performance of each clustering approach
for ADNI10, ADNI5 and ADNI2 and corresponding train-test dataset. Sparcl always has
lowest BIC and its performance is great. But as we said before, the BIC estimation for
sparcl is rather simple and is a bit different from the other Gaussian mixture models. For
the other variable selection approaches for GMM, the average rank of BIC in the three
dataset of SelvarMix is a little lower. Although the models estimated VarselLCM
contains all the variables, it also outperforms most approaches. Besides, VCMM always
has highest BIC but it performs better than GMM regarding to ARI and MMM in
ADNI5, ADNI2 and their corresponding train-test dataset. The models estimated by
Clustvarsel have fewer variables and the performance of Clustvarsel is always better
than GMM. SelvarMix also select few variables using ADNI10, but its results are worse
than those of GMM. Sometimes, VSCC will select all variables, which is the same
result as GMM. However, it is also often able to select the relevant variables to make
the clustering results better than GMM.

Approach SelvarMix vscc clustvarsel GMM VarselLCM sparcl VCMM VCMM sel

ARI/MMM
ADNI10 7 5 4 5 3 2 8 1
ADNI5 7 4 6 8 1 2 5 3
ADNI2 4 6 6 4 8 1 2 2

BIC
ADNI10 5 6 3 6 4 2 8 1
ADNI5 4 3 6 7 5 1 8 2
ADNI2 3 7 7 3 2 1 5 5

Number of selected variables
(low variable is better)

ADNI10 3 4 2 4 4 4 4 1
ADNI5 1 1 4 5 5 5 5 1
ADNI2 3 1 1 3 3 3 3 3

Table 42: The rank of the performance of each clustering approach for ADNI10, ADNI5
and ADNI2 with all observations.
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Approach SelvarMix vscc clustvarsel GMM VarselLCM sparcl VCMM VCMM sel

Training ARI/MMM
ADNI10 80% 7 4 6 4 2 1 8 3
ADNI5 80% 5 5 5 8 2 1 4 3
ADNI2 80% 6 8 5 6 2 1 3 3

Test ARI/MMM
ADNI10 80% 7 5 4 5 2 1 8 3
ADNI5 80% 5 5 5 8 2 1 4 3
ADNI2 80% 6 8 5 6 2 1 3 3

BIC of the training model
ADNI10 80% 3 6 4 6 5 2 8 1
ADNI5 80% 7 3 3 3 6 1 8 2
ADNI2 80% 2 7 7 2 4 1 5 5

Number of selected variables
(low variable is better)

ADNI10 80% 1 4 3 4 4 4 4 1
ADNI5 80% 1 1 1 5 5 5 5 1
ADNI2 80% 3 1 1 3 3 3 3 3

Table 43: The rank of the performance of each clustering approach using ADNI10 80%,
ADNI5 80% and ADNI2 80% for training and ADNI10 20%, ADNI5 20% and ADNI2 20%
for testing with all observations.

We also counted the number of non-Gaussian and Gaussian pair copula in the models
estimated by VCMM using ADNI10, ADNI5, ADNI2 and their corresponding train-test
dataset, see Table 44. The table shows that the number of non-Gaussian pair copula
is more than the number of Gaussian pair copula, and according to the previous ta-
bles, VCMM outperforms some GMM methods using ADNI5, ADNI2, ADNI5 80% and
ADNI2 80%, which indicates the need for non-Gaussian models.

Number of Gaussian pair copulas Number of non-Gaussian pair copulas
First cluster

ADNI10 8 37
ADNI5 4 6
ADNI2 0 1

ADNI10 80% 11 34
ADNI5 80% 1 9
ADNI2 80% 0 1

Second cluster
ADNI10 9 36
ADNI5 2 8
ADNI2 0 1

ADNI10 80% 10 35
ADNI5 80% 0 10
ADNI2 80% 0 1

Third cluster
ADNI10 7 38
ADNI5 2 8
ADNI2 0 1

ADNI10 80% 6 39
ADNI5 80% 2 8
ADNI2 80% 0 1

Table 44: Number of different types of copula pairs.

In the models estimated by sparcl, different variables have different weights, with
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Dataset GMM VCMM

ARI

ADNI10 0.29 0.2
ADNI5 0.31 0.40
ADNI3 0.34 0.42
ADNI2 0.41 0.44

MMM

ADNI10 0.61 0.54
ADNI5 0.62 0.75
ADNI3 0.69 0.76
ADNI2 0.75 0.77

BIC

ADNI10 11605 11960
ADNI5 5144 5275
ADNI3 2125 2182
ADNI2 1272 1346

Using 80% of dataset for training and 20% for testing

training ARI

ADNI10 80% 0.33 0.26
ADNI5 80% 0.33 0.36
ADNI3 80% 0.38 0.41
ADNI2 80% 0.36 0.38

training MMM

ADNI10 80% 0.65 0.54
ADNI5 80% 0.66 0.72
ADNI3 80% 0.74 0.76
ADNI2 80% 0.71 0.73

test ARI

ADNI10 80% 0.27 0.20
ADNI5 80% 0.27 0.30
ADNI3 80% 0.32 0.30
ADNI2 80% 0.30 0.32

test MMM

ADNI10 80% 0.55 0.43
ADNI5 80% 0.57 0.61
ADNI3 80% 0.63 0.62
ADNI2 80% 0.60 0.65

BIC of the training model

ADNI10 80% 9423 9730
ADNI5 80% 4163 4323
ADNI3 80% 1725 1848
ADNI2 80% 1016 1140

Table 45: Comparison of VCMM to GMM when the same variables are used.

the three most heavily weighted variables being S13, mPd and mPt. Therefore, we
also applied the GMM and VCMM to these three variables, denoted as ADNI3, and
compared the results. Table 45 shows the comparison of VCMM to GMM when the
same variables are used.
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6 Conclusion

In this thesis, we discussed variable selection approaches for clustering. To reduce the com-
plexity of the model and increase the accuracy, we introduced several different approaches
of variable selection for the mixture model clustering and applied them to the dataset ob-
tained from Alzheimer’s Disease Neuroimaging Initiative to compare results. First of all,
we fitted with different types of variable selection approaches, i.e., penalization-based, in-
formation criterion-based, and hybrid-based approaches. To be more specific, we used four
different variable selection approaches for GMM, including Clustervarsel, VarSelLCM,
VSCC and Selvarmix, where Clustervarsel and VarSelLCM are information crite-
rion approaches based on the BIC and MICL respectively, VSCC is hybrid approach
based on within-group variance and Selvarmix is hybrid approach based on lasso penal-
ization. Besides, we also applied Sparcl to the dataset, which is a penalization kmeans
approach, a special case for GMM-based approach. After that, we started with a vine cop-
ula mixture model and use the R package vineclust Sahin [2022]. For them, we allowed
Gaussian and non-Gaussian marginal distributions and different parametric copula family
sets. For model comparison, two measurements were used, namely ARI and MMM.

6.1 Findings

In Section 4, we performed the clustering for the Gaussian mixture model without variable
selection and the 5 different variable selection approaches for clustering. We found that
in most cases the accuracy of the model improved after removing some variables for
clustering, indicating that the presence of some irrelevant and redundant variables had
a negative impact on the results of the model. Among the five approaches of variable
selection, the approach Sparcl which is a penalization kmeans approach, always gave
the highest ARI and MMM. Although it may select all variables, we can exclude those
with weights close to zero. And according to the previous analysis, this does not affect
the clustering results much or even improve them. Clustervarsel performs stable and
concise. It always keep some relevant variables and remove some irrelevant ones. But
it cannot distinguish well between MCI and DEM in our dataset. VSCC sometimes
selects all variables for clustering and the results are the same as the traditional Gaussian
model estimated by mclust. However, in many cases, VSCC is still able to select the
most relevant variables for clustering. Selvarmix does not perform as well as other
approaches. It removes some variables but its results sometimes tend to be lower than
classic GMM approaches even though it needs to improve the clustering performance by
selecting variables. For VarselLCM, it outperforms the other three Gaussian model-
based approaches for a fixed number of clusters. But if we want to choose the best model
among different numbers of clusters and variables, it tends to obtain a larger number
of clusters, making the results worse. In addition, according to our analysis by using
GMM we found that the variable mPd, mpt and Ent has the most significant effect
on clustering in our dataset, while S13, mPd , mPt are more important for clustering if
we analysed the results of penalization approach sparcl. We also applied the GMM to
these most relevant variables estimated by sparcl, the ARI and MMM are satisfactory.

Most clustering approaches based on Gaussian mixture models do not identify MCI
and DEM well and they are always concentrated in the same component. According to
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the boxplots of all variables, there are some non-Gaussian dependencies between variables
in the normalized contour plot. Therefore, we applied the vine copula mixture model
approach to the dataset in Section 5. Comparing ARI and MMM of these models, it
showed that the results of the vine copula mixture models using all variables are worse.
However, it performed much better after reducing some variables. Unlike the classic
Gaussian mixture model-based approach, VCMM after variable selection can distinguish
patients more clearly between the MCI and DEM. For variable selection, we used the
stepwise approach based on the BIC criterion and got the model containing two most
relevant variables mPd and mPt. It has higher ARI and MMM than the models
estimated by GMM. Besides, we also applied the VCMM to the most three relevant
variables estimated by sparcl, the results are better than most of Gaussian mixture
model approaches. Furthermore, we also found that all approaches are less effective in
identifying disease status in males than in females and married than non-married.

6.2 Future work

• The approach based on penalization, sparcl, always chooses all variables since none
of the variables has a weight equal to zero. But if we remove the variables with
very little weights, the result remains the same or even improves. An unsatisfied
value of s may lead to this situation, i.e., the weight of some variables is close to
but not equal to zero, and thus the variable cannot be excluded. When we applied
our proposed method for selecting the value of s to our dataset, we found that
our method calculates a slightly larger value for s using our dataset, resulting in a
situation where almost no variables weight zero, and therefore all variables can be
retained. We may therefore need to consider a more appropriate method to choose a
better s to adjust the weights of the variables and the number of variables selected.

• Comparing the clustering approaches for Gaussian mixture model and vine copula
mixture models, we found that VCMM does not perform as well as GMM when
there are too many variables. But as the number of variables are reduced, the perfor-
mance of VCMM improves significantly. Therefore variable selection is important
for vine copula mixture models. In our thesis, we used a stepwise search based on
BIC to select the variable and estimate the model that minimizes BIC. However,
it can be computationally expensive if many variables are observed. Furthermore,
the lowest BIC may not imply a good fit of the model to the observations. As we
plotted in Section 5.3, when WhB was removed to reduce BIC in the second step,
the ARI and MMM did not improve. Even though we ended up with a model with
the greatest ARI and MMM of the process, this model is not the best model with
highest ARI and MMM we observed in Figure 44(a) and Figure 44(b). There-
fore, we may be able to find a more reliable and time-saving approach to variable
selection for VCMM in future studies.
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