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Abstract

In this thesis LiHoF4 is investigated experimentally, which shows a quantum phase tran-
sition (QPT) at T = 0, when an external magnetic field of Bc ≈ 5.1 T is applied perpen-
dicular to the easy axis. The central question of this study is the evolution of this phase
transition under tilting the magnetic field away from this perfect transverse orientation.
The magnetic and caloric properties are determined by measuring the AC susceptibil-
ity, heat capacity and magnetocaloric effect using a dilution fridge and a vector magnet.
From these data, a detailed evolution of the phase diagram is obtained. The established
microscopic Landau theory expects a crossover under tilted magnetic field, since the longi-
tudinal field component breaks the symmetry. In stark contrast however, the main result
of this thesis shows a well-defined phase transition under tilted field and a strong angular
dependence of the critical field. Therefore, a model is developed in collaboration with
colleagues from the TU Dresden, which takes magnetic domains and the volume frac-
tion of the minority domains into account and allows to explain the experimental results
quantitatively.
All experiments require a very precise orientation of the sample with respect to the vector
magnet. Therefore, a procedure is presented which allows alignment with precision better
than one tenth of a degree. For the measurements of the heat capacity and magnetocaloric
effect a special experimental setup is developed and constructed, which withstands the
magnetic torque resulting from applying the magnetic field perpendicular to the easy axis.



Kurzzusammenfassung

Im Rahmen dieser Arbeit wird der Quantenphasenübergang in LiHoF4 experimentell un-
tersucht, der selbst bei T = 0 K auftritt, wenn man ein externes Magnetfeld senkrecht
zur magnetisch leichten Achse anlegt und dieses ein kritisches Feld Bc überschreitet. Die
zentrale Fragestellung lautet, wie sich der Phasenübergang entwickelt, wenn man das Mag-
netfeld gegenüber dieser perfekt senkrechten Ausrichtung verkippt. Mithilfe eines Ent-
mischungskryostaten und Vektormagneten wird das magnetische Phasendiagram unter
verschiedenen Kippwinkeln in den Messgrößen der AC Suszeptibilität, der Wärmeka-
pazität und des magnetokalorischen Effektes vermessen. In der mikroskopischen Theo-
rie erwartet man wegen der Symmetriebrechung beim Anlegen des Feldes unter einem
Winkel einen Crossover-Übergang. Im Gegensatz dazu zeigen die Messergebnisse einen
klaren Phasenübergang und eine starke Abhängigkeit des kritischen Feldes vom Feld-
winkel, was das Hauptergebnis dieser Arbeit darstellt. Deshalb wird in Kooperation mit
Kollegen der TU Dresden ein Modell entwickelt, das die ferromagnetischen Up- und Down-
Domänen und deren Verhältnis berücksichtigt und es erlaubt die Messdaten quantitativ
zu beschreiben.
Alle Experimente setzen eine sehr präzise Orientierung der Probe im Bezugssystem des
Vektormagneten voraus, weshalb eine Vorgehensweise beschrieben wird, mit der man eine
Präzision genauer als ein zehntel Grad erreichen kann. Für die Messungen der Wärmeka-
pazität und des magnetokalorischen Effekts werden Messaufbauten entwickelt, die dem
magnetischen Drehmoment widerstehen können, welches entsteht, wenn das Magnetfeld
senkrecht zur leichten Achse angelegt wird.
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1. Introduction

1.1. Quantum Phase Transitions

Following the definitions by Sachdev [1] and Vojta [2], a quantum phase transition (QPT)
occurs at absolute zero temperature. This transition takes place at a quantum critical
value of a non-thermal parameter such as pressure, magnetic field or chemical composition.
There, quantum fluctuations originating from Heisenbergs uncertainty principle destroy
the order.

Various review articles were published over the last decades, which discuss this class of
phase transitions [1–3] and provide a thorough overview of the topic. The introduction
to the topic relevant to this thesis follows Refs. [2, 4, 5].

In order to discuss the differences between classical thermal phase transitions, driven
by the reduction of entropy and thermal fluctuations, and quantum phase transitions,
driven by quantum fluctuations, we will in the following address general aspects of phase
transitions. Three cases are commonly differentiated, namely the first and second order
phase transition as well as the crossover. These are displayed in Fig. 1.1.1 (A), (B) as well
as (C), respectively.

Classification of Phase Transitions Phase transitions can be described using Landau
theory using a local order parameter, in the following M . This order parameter can be
found by minimizing the Landau free energy, which is a function determined from Taylor
expansion, only including terms allowed by symmetry [6]. The Landau free energy for
a first order phase transition is shown in Fig. 1.1.1 (A1). Within the ordered phase, the
system has two global minima at the order parameter ±M and a local minimum at M = 0.
When an external parameter g, such as the temperature for a thermal transition, or
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Chapter 1. Introduction

magnetic field, pressure or chemical composition for a QPT, is varied the energy landscape
changes. At the first order phase transition, the minima at finite ±M and M = 0 coexist.
Accordingly, the coexistence of the ordered and disordered phases at this point is a defining
feature of first order phase transitions. By increasing the external parameter further, the
minimum at M = 0 evolves from a local to global minimum and the order parameter
jumps to M = 0. The order parameter as a function of the external parameter is shown
in (A2). The values of M in the minimum are displayed as dots both in (A1) and (A2)
for comparison.

A second order phase transition is shown in Fig. 1.1.1 (B). An example for a system dis-
playing such a continuous phase transition is the easy-axis ferromagnet (as LiHoF4), where
M is the magnetization along the easy-axis per site. For symmetry reasons, only even
terms are included in the Landau free energy

F (M) = a

2M
2 + b

4M
4. (1.1.1)

The coefficients a and b are functions of the external control parameter g. In this case,
b > 0 across the phase transition and a > 0 only in the disordered phase. Then, the
Landau free energy only has a single minimum at M = 0, cf. Fig. 1.1.1 (B1), and the order
parameter vanishes in the disordered phase as expected. At the critical point a = 0,
marking the second order phase transition. Within the ordered phase, a < 0 and two
degenerate minima can be observed at ±M . The system orders, as the degeneracy of both
minima reflects the symmetry of the system. This symmetry is spontaneously broken, as
one of the solutions is realized. Fig. 1.1.1 (B2) shows the order parameter M as a function
of the external parameter g, which continuously decreases as g is increased, until it reaches
M = 0 at the critical point.

In contrast to the above examples, a crossover is no phase transition, as the order pa-
rameter is always finite. A simple example for a crossover can be given by including an
external magnetic field along the easy axis in the example given above. This leads to an
additional linear term in the Landau free energy, which breaks the symmetry

F (M) = a

2M
2 + b

4M
4 + hM. (1.1.2)

The Landau energy then has only one single minimum at a finite M > 0, cf. Fig. 1.1.1 (C1).
The order only decreases across the crossover, but never reaches zero as shown in (C2).
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Figure 1.1.1.: Classifications of phase transitions in Landau theory. (A1, B1, C1) The Landau
free energy F (M) as a function of the order parameter M for three choices of
an external parameter g. Within the ordered phase (blue), two symmetric min-
ima are observed and the disordered phase only displays one minimum (green).
(A1) At the first order phase transition, three global minima are observed simul-
taneously. (A2) Thus the order parameter jumps as a function of the external
parameter g. (B1) At the critical point of the second order phase transition the
two minima have merged into one minimum . (B2) Simultaneously, M goes to
zero continuously at the critical point. (C1) For the crossover, independent of the
external parameter g, only one minimum is observed. (C2) The order parameter
M decreases continuously without reaching zero.
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Chapter 1. Introduction

Critical Behavior For the discussion of QPTs, the case of the second order phase tran-
sition is most interesting. While the thermodynamic mean of the order parameter is zero
in the disordered state, fluctuations around this value remain. These fluctuations can
be described by a correlation length ξ and a correlation time τ . When approaching the
critical point, the spatial correlation length of the order parameter diverges as

ξ ∝ |g − gc|−ν , (1.1.3)

with ν being a so called critical exponent. Similarily, the lifetime of the fluctuation diverges
as

τ ∝ ξz ∝ |g − gc|−νz, (1.1.4)

with z another critical exponent. These divergences lead to the so-called critical phenom-
ena [2]. At the critical point of the phase transition, both ξ and τ are infinite. Thus
fluctuations happen on all length- and timescales. The system becomes scale invariant, as
the observables are described by power laws and their properties are qualitatively iden-
tical on both small and large scales. A set of so-called critical exponents corresponding
to these power laws describe the behavior of many physical properties near a particular
phase transition. The most commonly used definitions of critical exponents are shown in
Tab. 1.1.1.

Table 1.1.1.: Important critical exponents at second order phase transitions [2] relevant to this
work.

Exponent Definition
Specific heat α C ∝ |g − gc|−α

Order parameter β m ∝ (gc − g)β
Susceptibility γ χ ∝ |g − gc|−γ

Correlation length ν ξ ∝ |g − gc|−ν
Dynamic z τ ∝ ξz

4



1.1. Quantum Phase Transitions

Mean-Field Theory The mean-field ansatz is probably the simplest approximation used
in the context of phase transitions. This ansatz replaces all individual degrees of freedom
within the systems by their average. For example, in a magnetic system, the influence
of every individual spin on one local moment is replaced by the mean magnetic field
generated by all spins in the sample. For this approach to be reasonable, the mean-field
must be calculated self-consistently, which is often done by iteration [5]. A drawback of
the mean field method is that by replacing the individual degrees of freedom with a model
for its mean only descriptions consistent with this model will be found.

At this point it needs to be noted, that the mean field approximation neglects fluctuations
[2, 5]. Since fluctuations around this mean value become increasingly important when the
dimensionality of the system is reduced, mean-field theory is only accurate in systems with
a dimension greater than the upper critical dimension d ≥ d+

c . In this case, every site
has a large number of neighbors, thus fluctuations average out. For systems with short
range interactions and scalar order parameters, the upper critical dimension is d+

c = 4.
At d = d+

c logarithmic corrections to the power laws discussed above need to be taken
into account.

In this context, an important difference between thermal and quantum phase transitions
needs to be highlighted. In the classical case of a thermal transition, the kinetic and
potential energies commute in the Hamiltonian and thus static and dynamic can be de-
coupled. This means, that the singularities at the phase transition are only caused by
the potential energy terms and such transition can be described by a static theory in d

dimensions. In contrast, a theory of a QPT must include dynamics, since kinetic and
potential energy are linked by the laws of quantum mechanics. Therefore the necessary
dimensionality increases, since both time and space need to be included. It can be shown,
that a QPT in d dimensions is related to a classical transition in d+ z dimensions, where
z is the critical exponent of the lifetime fluctuations as shown in Tab. 1.1.1 [2]. Therefore
the QPT of the 3d transverse field Ising model of LiHoF4 can be described with mean
field theory including logarithmic corrections due to the dynamic critical exponent z = 1
and thus D = d+ z = 3 + 1 = d+

c = 4.

While the QPT can be described using the scaling laws above, this description is only
valid for ground states and thus at T = 0. The quantum critical point (QCP) however still
influences the physical properties in its proximity. At finite temperature these properties
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Figure 1.1.2.: Phase diagram of a typical quantum phase transition with dimensionality d ≥ 2.
The transition is controlled by a non-thermal control parameter g. At low temper-
ature and order parameter, the system shows an ordered phase. With increasing
g > gc above the quantum critical point (QCP) where g = gc, the system becomes
quantum disordered. Above the QCP, a quantum critical regime evolves, where
thermal fluctuations can couple to quantum entangled states. Figure adapted
from Refs. [2, 4].

are dominated by two relevant energy scales, the thermal energy kBT and long-range
order parameter fluctuations ~ωc, which vanish at the QCP

~ωc ∝ |g − gc|νz. (1.1.5)

From this we will discuss the phase diagram for a QPT depicted in Fig. 1.1.2. Three dif-
ferent regions can be distinguished, which are separated by the dashed lines corresponding
to T ∝ |g−gc|νz. In the regime of g � gc thermal disorder dominates as order is destroyed
by classical thermal fluctuations of the order parameter. Here, an ordered phase can arise,
when the temperature is low enough. The corresponding transition line of this ordered
phase is entirely classical down to lowest temperatures. For g � gc, a quantum disordered
regime is observed, where quantum fluctuations dominate the physics [2]. In between is
the so-called quantum critical region, where both types of fluctuations are important.
This regime is the blue region between the dashed lines in Fig. 1.1.2, determined by the
condition kBT > ~ωc ∝ |g − gc|νz. Here, the system appears critical with respect to the
external parameter g, but is driven away from criticality by thermal fluctuations. In this
quantum critical region, the physics is governed by thermal excitations of the quantum
critical ground state, whose main characteristic is the absence of conventional excitations
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1.1. Quantum Phase Transitions

with quasi-particle behavior. This regime therefore often displays unusual behavior, such
as unconventional power laws and non-Fermi liquid behavior. Interestingly, this quantum
critical nature is sometimes enhanced with increasing temperature [3, 7] and in this case
accessible for experiments. The quantum critical behavior however is cut of at high tem-
peratures as soon as kBT exceeds the microscopic energy scales of the problem, such as
the exchange energy for typical magnets.

7



Chapter 1. Introduction

1.2. State of the Art: LiHoF4

The conceptually simplest example of a quantum phase transition [8] arises from the re-
sponse of an insulating easy-axis ferromagnet to a magnetic field applied transverse to the
preferred magnetization axis. This transverse-field quantum magnetism is of broad inter-
est, as it allows to benchmark, among other things, the quantum entanglement of complex
spin systems, the tunneling of single magnetic moments and domain walls, quantum an-
nealing, and Rabi oscillations [9–11]. The most extensively studied material featuring such
transverse-field phenomena is LiHoF4, in which AC susceptibility and inelastic neutron-
scattering measurements have long identified Ising ferromagnetism that vanishes in a QCP
at Bc = 5.1 T [12–14].

Outside of the interest in basic research outlined below, LiHoF4 recently caught attention
due to its magnetocaloric properties as a possible medium for adiabatic demagnetization
cooling [15]. Additionally, LiHoF4 is structurally very similar to LiYF4, which doped
with Neodymium finds large scale application as a lasing medium in solid state lasers.
Therefore, high quality crystals of LiHoF4 are commercially available nowadays1. For
information about the typical growth procedure using the Bridgman-Stockbarger and
Czochralski methods refer to Ref. [16].

In the following the crystalline structure and its effect on the energetic landscape of the
magnetic ions will be described. This will be followed by a summary of the important
magnetic properties of LiHoF4. Based on this knowledge previous work on the ferromag-
netic phase will be summarized, including the search for logarithmic corrections around
the thermal phase transition as well as magnetic domain formation and dynamics. Fol-
lowing that, the transverse field Ising model will be presented in the context of LiHoF4,
discussing the developments in the description of the magnetic phase boundaries and
quantum criticality.

1The samples used in this thesis were purchased at Altechna / AcalBFI Germany.
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1.2. State of the Art: LiHoF4

1.2.1. Crystal Structure and Magnetic Properties

LiHoF4 is a paramagnetic insulator at room temperature. It crystallizes in a tetragonal
scheelite structure visualized in Fig. 1.2.1 (A) with lattice constants a = b = 5.175 Å, c =
10.75 Å and in the space group C6

4h (I41/a) [17]. The Ho3+ ions in 4f 10 [18] configuration
occupy positions with S4 point symmetry. Their electronic spin is J = 8 and nuclear
spin is I = 7/2 [12]. The large local magnetic moments of the Ho-ions (≈ 7µB per Ho-
ion) order ferromagnetically below the Curie temperature of Tc = 1.53 K [19]. Within
this ordered state the spins align parallel to the easy axis due to the Ising-like magnetic
anisotropy (g‖ ≈ 14, g⊥ ≈ 0 [20]). While the crystalline c-axis represents the easy axis,
no magnetic anisotropy is observed in the ab-plane [19, 20]. The ferromagnetic order is
driven by dominant long-ranged dipolar interactions between the magnetic ions as well as
weak short-ranged exchange interactions.
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E
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Figure 1.2.1.: Crystal structure and crystalline electric fields of LiHoF4. (A) Crystallographic
unit cell of LiHoF4 with a four-fold symmetry along the c-axis, which represents
the magnetic easy axis. (B1) Crystal field spectrum of the Ho3+ ions as a function
of a magnetic field applied within the ab-plane. (B2) The splitting of the to
lowest-lying CEF levels show a quadratic field dependence characteristic of the
non-Kramers nature of the Ho ions. Figure adapted from Ref. [21].
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Chapter 1. Introduction

LiHoF4 is part of a larger family of compounds LiREF4 where RE is a trivalent rare earth
ion such as Ho, Tb, Yb or Er [20, 22–26]. This class of materials offers the advantage
that it is relatively easy to replace the magnetic RE ions with Y to dilute and disorder
the system to create and discover interesting physics like (anti)glass states, quantum
annealing, domain wall tunneling, coherent spin oscillations and quantum entanglement
[27–38].

The crystalline electric field (CEF) at the location of the Ho3+ ions exhibits an S4 sym-
metry originating from the surrounding F− ions. It lifts the 17-fold degeneracy of the
5I8 configuration, such that the ground state is a non-Kramers doublet. Applying a mag-
netic field transverse to the easy c-axis (Φ = 0) changes the energies of the CEF levels as
shown in Fig. 1.2.1 (B1). Due to the non-Kramers nature of the Ho3+ ions, the ground
state doubletsplits with a quadratic field dependence, cf. Fig. 1.2.1 (B2). The CEF levels
were studied in various works with neutron spectroscopy, electron paramagnetic resonance
(EPR) and optical spectroscopy [14, 20, 22, 39, 40] which report similar values for the
parameters. The theoretical model presented in Sec. 2.4 uses the parameters published in
Ref. [41].

As it will be shown later in Sec. 2.4.1 this non-Kramers nature of the Ho-ions has important
implications on the model of domain driven phase transitions in LiHoF4. Earlier studies
[12, 14, 41, 42] neglected all higher levels due to their large separation from the ground
state doublet and treated this doublet as an effective spin 1/2. Since the ground state
doublet are not Kramers partners, they are not related by time reversal symmetry and a
polarization along the x-direction as a reaction to transverse field cannot be achieved by
a simple superposition of up- and down states but must involve higher excited states [5].

Due to the large nuclear spin (I = 7/2), a large hyperfine interaction of the nuclear spin
and electronic states via a core polarization effect arises [12, 43], which influences the
static and dynamic properties of LiHoF4 at low temperatures (< 800 mK). From early
specific heat [43] and EPR [22] measurements the hyperfine constant was determined as
A = (A‖)g/g‖ = 0.039 K with A‖ = 0.43 K, the Landé factor g = 1.25 and the ground
state longitudinal g-factor g‖ = 13.8 [12].

10



1.2. State of the Art: LiHoF4

1.2.2. Ferromagnetic Phase

First investigations of LiHoF4 in the 1970s and 1980s focused on the classic ferromagnetic
phase transition at the Curie temperature of Tc = 1.53 K in zero field. Critical phenom-
ena and logarithmic corrections to classic Landau theory were topic of theoretical and
experimental investigations [44]. LiHoF4 caught special attention since for an uniaxial
dipolar ferromagnet the spatial and marginal dimension are equal d = d∗ = 3 and thus
are a perfect system for testing theoretical predictions [45–48].

Logarithmic Corrections In this context, first measurements of the specific heat in
LiREF4 compounds, namely LiTbF4, were performed in the 1970s by Holmes et al. [49]
and Ahlers et al. [50]. They claimed to have found logarithmic corrections to the specific
heat from Landau theory. When Mennenga et al. [43] investigated the specific heat of
LiHoF4 in the temperature range of T = 0.06 − 7 K almost one decade later, they did
not search for such logarithmic corrections, since this requires a very good temperature
resolution around the phase transition. Only when approaching the phase transition as
close as ε = |T − Tc|/Tc ≈ 10−5 − 10−6, these effects could be distinguished from normal
specific heat behavior. Lattice defects, impurities, etc. reduced the approachable distance
to the transition to ε ≈ 10−3 [43].

In 2001, Nikkel et al. [51] performed additional specific heat measurements and confirmed
renormalization group predictions at the critical dimension of LiHoF4 in the proximity
of the thermal phase transition (Tc ± 4%). By combining their measurements with ex-
isting data from magnetization and susceptibility they were able to confirm logarithmic
corrections Cp ∝ log1/3(ε) akin to Ref. [50]. The properties of the temperature driven,
classical phase transition was again investigated by Biltmo et al. [52] using Monte-Carlo
simulations providing further evidence for logarithmic corrections. Furthermore, the au-
thors emphasized that magnetic domains and sample shape play an important role in the
ordered state due to the long-range and angular dependence of the dipolar interaction.

Magnetic Domains In the study by Biltmo et al. [52] domains appeared naturally in
Monte-Carlo simulations and the authors predicted a ground state domain pattern of thin
parallel sheets for cylindrical LiHoF4 samples. Since the domain walls showed no width,
the authors recommended LiHoF4 as an ideal testing ground for domain physics. Magnetic
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Figure 1.2.2.: Experimental observations of domain structure in the ferromagnetic phase of
LiHoF4. (A) Image taken by Battison et al. [53] via light scattering at the domain
walls at 1.4 K. The white stripes are the domain walls perpendicular to the c-axis.
The two stripe patterns are a result of two crystal layers being observed at the
same time. (B) Scanning hall probe microscope image of LiHoF4 at 40 mK by
Karci et al. [54]. Both images show domains of a few micrometer in size. Both
pictures taken from their respective Refs. .

domains in LiHoF4 were part of several studies with their first mention in Refs. [19, 53]
which provided a first image of the domains at 1.4 K, shown in Fig. 1.2.2 (A). They found
domain walls perpendicular to the c-axis with domain sizes in the µm-regime.

Pommier et al. [55] and Meyer et al. [56] investigated the magnetic phase diagram of
LiHoF4 with field applied to along the easy c-axis in the vicinity of the thermal phase
transition. Using Faraday rotation, they found stripe like domains at low fields and
bubble like domains at larger fields. In low fields, up- and down-domains are populated
equally. With increasing field, the volume ratio of the domains changes until at large
fields the volume fraction of the down domain gets so small that they collaps into bubbles.
Furthermore the authors discussed the effects of domain nucleation near the surface from
spike like domains.

Later, Karci et al. [54] observed bubble-like domain structures with µm-size at a much
lower temperature of 40 mK, cf. Fig. 1.2.2 (B). The authors utilized scanning Hall probe
microscopy [57], which is only sensitive to the surface. They conclude that the ground
state domains in LiHoF4 are needle shaped cylinders and explain their formation - and the
differences to the study of Biltmo et al. [52] - with branching effects at the surface. Pau
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(A) (B)

Figure 1.2.3.: Frequency dependence of the real and imaginary parts of the susceptibility of
LiHoF4 in the low temperature region. (A) Reχ⊥ as a function of the magnetic
field at T = 139 mK for excitation frequencies between fAC = 10 Hz and 501 Hz.
(B) Imχ⊥ as a function of the magnetic field at T = 139 mK for various frequen-
cies. Imχ⊥ shows a strong peak-shaped contribution at low magnetic fields for all
measured frequencies, indicated by red triangles. Figure taken from Ref. [4].

Jorba [57] also conducted studies varying the transverse magnetic field and temperature
as part of his master thesis with the same setup. He observed denser domains at higher
temperatures, which are consistent with the predictions about branching effects in dipolar
magnets by Gabay et al. [58], which were also investigated in greater detail for the
example of LiTbF4 [59, 60]. At T ≈ 30 mK Jorba observed significant changes of the
domain structure even at small transverse fields, with some domains shrinking rapidly.
Their measurements were limited to the regime below 3 T due to instrument resolution
and and the domain size growing larger than their field of view. Furthermore, the authors
directly observed domain freezing at very low temperatures, when comparing the field
cooled and zero-field cooled states.

Evidence for such a reduction of domain-wall mobility was also observed in the studies
by Bitko et al. [61] and Rucker et al. [4] using AC susceptibility in a transverse magnetic
field. This domain wall freezing was expressed in several observations. First, with the
magnetic field applied perpendicular to the c-axis, the real part of the AC susceptibility
at low temperatures (< 500 mK) and fields (< 2 T) was suppressed and this effect was
more pronounced for larger excitation frequencies as shown in Fig. 1.2.3 (A). Second, the
reduction of the real part was complemented by a peak in the imaginary part indicating
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dissipation, cf. Fig. 1.2.3 (B). The authors discussed that the domain wall freezing was
better visible for higher frequencies as their mobility was reduced such that the domain
walls cannot follow the AC field. Furthermore Ref. [4] attributed the recovery of the
plateau value at higher fields to quantum fluctuations facilitating tunneling of the domain
walls akin to the observations of Brooke et al. in the diluted compound LiHo0.44Y0.56F4

[28].

1.2.3. Phase Boundaries and Quantum Criticality

In the previous subsection we covered the developments in the ferromagnetic phase, its
dipolar interactions and domains as well as the thermal phase transition. However, LiHoF4

caught an even bigger attention in the study of quantum criticality and quantum phase
transitions.

Transverse Field Ising Transition LiHoF4 is described by the transverse field Ising
model as a textbook example for a quantum field transition driven by magnetic field [1].
The Hamiltonian reads

H = −J
∑
〈i,j〉

SizSjz − ge ~H ·
∑
i

~Si, (1.2.1)

where the electronic spins ~Si sit on the lattice sites i, j and interact via the ferromagnetic
Ising interaction J > 0 of the z-components. The first sum 〈i, j〉 runs over the nearest
neighbors. This notation of the Hamiltonian considers a vectorial magnetic field ~H applied
transverse to the Ising axis, which interacts with the spins. The vector description is a
improvement of the model introduced by our collaborators from theory [5, 21] necessary
to describe the effects of rotating the magnetic field. Earlier publications of the transverse
field Ising model and LiHoF4 ignore this facet [12, 13, 62].

For a vanishing transverse field H → 0 ferromagnetic order along the z-direction develops.
In strong external magnetic fields H → ∞ the spins align parallel to the field direction
x. Between both limits a second order phase transition from the ordered ferromagnetic
to the disordered field polarized state occurs at a critical field H0.

The first descriptions of such order-disorder transitions date back to the sixties, when de
Gennes investigated ferroelectric materials [63]. In the seventies, it was established that
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(A) (B)

Figure 1.2.4.: Key results of the transverse susceptibility study of the transverse-field Ising tran-
sition in LiHoF4 by Bitko et al. [12]. (A) Mean field critical behavior of the
magnetic AC susceptibility as a function of temperature and field. The lines rep-
resent fits to the data corresponding to a critical exponent γ = 1.07± 0.11 (solid
circles) and γ = 1.01± 0.08 (open circles). (B) The experimental phase boundary
shown as circles is compared to the mean-field theory only incorporating electronic
spins (dashed line) and also including the nuclear hyperfine interaction (solid line).
Figure adapted from [12].

QPTs of Ising systems, such as in LiHoF4, in d-dimensions can be mapped to the same
universality class as the classical (d+ 1)-dimensional Ising model [62, 64, 65], cf. Sec. 1.1.
Bitko et al. [12, 61] found that the critical exponent γ ≈ 1 has a mean field value both in
the classical and quantum limit down to temperatures as low as 50 mK, cf. Fig. 1.2.4 (A).
They describe the phase boundary above 0.6 K in terms of a classical mean-field model
of a spin-1

2 magnet in transverse field. The corresponding phase boundary is shown in
Fig. 1.2.4 (B) as a dashed line. Below T = 0.6 K this model clearly does not represent the
experimental data. Hence, Bitko et al. attributed this feature with an additional hyperfine
term. It arises from the interaction of the nuclear spins of the Ho-ions with the electronic
states through a core polarization effect. Their effective mean-field Hamiltonian utilized
the transverse g-factor g⊥ and an effective dipole coupling strength J0 as free parameters.

In 2004 Chakraborty et al. [41] described the magnetic phase diagram of LiHoF4 theoret-
ically by going beyond mean-field theory and employing a quantum Monte Carlo method.
The influence of domains was incorporated into the model by considering an imaginary
sphere deep within a single domain and clever utilization of the demagnetization factor
in a partly mean-field approach. While pure mean-field treatment overestimates the size
of the ferromagnetic regime, both in field and temperature, the authors were able to
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reproduce the experimental phase diagram of Bitko et al. [12] qualitatively by tuning
their parameters, see Fig. 1.2.5 (A). The authors emphasized the importance of hyperfine
interactions for the low temperature physics and included an antiferromagnetic exchange
interaction, which helped to reduce the critical temperature to the experimental value.

Electronic Mode Softening The next big developments in the studies of the QPT in
LiHoF4 were brought by a series of works by Rønnov and coworkers, who studied the
excitation spectrum using triple-axis neutron spectroscopy [13, 14, 66]. The excitations
with lowest energy known at that time were magnons, at a QPT and ~k = 0, the gap
of such a lowest lying excitation should vanish according to Eq. (1.1.5). In contrast, the
authors observed a incomplete softening with a remaining energy gap of ∆E = 0.24 meV,
cf. Fig. 1.2.5 (B). They attribute this to the hyperfine coupling, which shunts the electronic
mode and raises the critical field. Additionally, the hyperfine interaction leads to a broad-
ening of the peak Q = (2, 0, 0) in reciprocal space, showing that it limits the electronic
quantum coherence by coupling to the nuclear spin bath [13]. The features of the strong
magnetic mode, which softens at the QPT highlight the impact of the hyperfine interac-
tion. Lowering the field, coming from the field polarized paramagnetic phase, the mode
follows the predictions from a ordinary transverse field Ising model. Once the energy of
the mode becomes comparable to the hyperfine interaction strength, new modes appear,
which are much lower energy. Therefore the ferromagnetic state emerges prematurely and
the complete softening of the electronic mode is prevented.

Differences between theory and experiments were attributed to domain walls and magne-
toelastic couplings [14]. Another glaring difference between these neutron spectroscopy
studies and the AC susceptibility measurements by Bitko is that the ”nose” at low tem-
peratures and high fields, attributed to the hyperfine coupling is not visible in the neutron
data, cf. Fig. 1.2.5 (A). Rønnow et al. explained this discrepancy with insufficient thermal
coupling of the sample, meaning the sample temperature is never cooler than T ≈ 310 mK,
even when the temperature reading of the sensor at the cooling stage is lower [14]. In
another study from the same group carried out by Krämer [66], a better thermalization
was achieved and thus the feature observed. The maximum critical field at T ≈ 45 mK
however was only Hc ≈ 4.7 T. As shown in this thesis, such a reduction of critical field
can be explained by sample misalignment.
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(B)(A)

Bitko et al.
Rønnow et al., exp.
Rønnow, J = -0.1 µeV
Rønnow, J = -0.27 µeV
Charkaborty et al.

Figure 1.2.5.: Key results of Rønnow et al. [14]. (A) Direct comparison of experimental re-
sults and theoretical models. The experimental phase diagram of Bitko et al.
[12] is shown as solid circles. The experimental phase boundary determined
by Rønnow et al. [14] using neutron spectroscopy is shown as squares. Using
the additional free parameter J , an exchange coupling term, the phase diagram
could not be reproduced exactly. Adjusting it to the correct behavior at high
fields, leads to an overestimation of the Curie temperature in zero field. Also the
model by Chakraborty et al. overestimates the transition temperature, when the
same parameters are applied, that Rønnow used. (B) The energy gap of the low-
est excitation accessible to the triple-axis neutron spectroscopy measurements at
T = 310 mK. Neglecting the hyperfine interaction leads to the blue dotted-dashed
curve, whereas the model of Rønnov leads to the purple dashed line, which is a
factor of 1.15 lower than the experimental data. Figure taken from Ref. [14].
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Electronuclear Mode Softening The energy landscape and details of the mode soften-
ing were analyzed in greater detail by McKenzie and Stamp [42]. Their work focused on
incorporating both thermal and quantum fluctuations in the description of the quantum
Ising system coupled to the spin bath. Their main finding was that quantum Ising sys-
tems, like LiHoF4, show a QPT, even if the system is coupled to a spin bath and quantum
fluctuations are taken into account. Long-range dipolar interactions enhance fluctuations,
but do not destroy the QPT. The QPT can be destroyed if the nuclear (bath) spins are
frozen. As shown in Fig. 1.2.6 the electronic mode in blue was gaped, consistent with
the observations by Rønnov et al.. Simultaneously, the electronuclear mode in red soft-
ened at the QPT and developed a sharp peak in intensity, diverging at the QPT. Their
model however did not include thermal fluctuation at this point, thus Fig. 1.2.6 is in the
zero-temperature limit.

To verify their predictions, McKenzie and Stamp worked together with Libersky et al.
[67], who studied the mode softening around the QPT using microwave spectroscopy very
recently. The authors observed a variety of electronuclear modes at very low energies
of only several µeV, inaccessible for neutron TAS. They observed (incomplete) mode
softening of the lowest electronuclear mode at 1 GHz ≈ 4µeV and B = 4.7 T, which is
lower than the critical field predicted in theory and measured by AC susceptibility [4, 12].
After accounting for the experiment temperature of T = 55 mK in the calculations, they
showed that this can be identified with the soft mode, which weakly interacts with the 14
other electronuclear modes. Additionally they were able to show that the soft mode can
be quenched by applying a finite longitudinal magnetic field. Libersky et al. were able to
describe this behavior only by incorporating magnetic domains with finite domain wall
energies.

Taken together these studies of the mode softening in LiHoF4 showed that the material is a
good candidate for a QCP and sensitive to longitudinal magnetic fields. Simultaneously,
other experimental work focused on the details of the magnetic phase diagram, which
opens another perspective on the same topic.
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Figure 1.2.6.: Theoretical prediction of the modes in LiHoF4 by McKenzie and Stamp [42].
(a) Energies of the zero-temperature modes at k = 0, as a function of transverse
field Bx, obtained by RPA. The inset shows the electronuclear soft mode in the
vicinity of the QCP. Dashed lines correspond to modes with negligible spectral
weight. (b) Intensities of the modes. Figure taken from Ref. [42].

Phase Diagram Since both Chakraborty and Rønnov could not present a complete
theoretical model for the experimental observations without using free scaling parameters,
Tabei et al. [68] revisited the microscopic Hamiltonian using pertubative quantum Monte
Carlo to resolve the remaining issues. Although they excluded deficits of the theoretical
tools, discussed in Ref. [41] as reasons for the incomplete picture, Tabei et al. were not
able to modify the Hamiltonian to describe the complete phase diagram.

Legl et al. performed measurements of the magnetization in a vibrating coil magnetometer
[44, 69], allowing measurements of the magnetization at mK-temperatures. Their key
result was that the magnetization component perpendicular to the easy-axis shows a
broadening at the phase transition down to the lowest temperatures, in contrast to the
model proposed by Rønnow at this time. They interpreted this as a thermal broadening of
the nuclear excitation spectrum within the picture of the coupled electronuclear system.

Simultaneously, Sarah Eisenhardt [70] investigated the magnetization of LiHoF4 at mK-
temperatures in her masters thesis using Cantilever magnetometry. In her experiments at
the EPFL and University of Copenhagen she failed to observe the QPT due to a sample
misalignment of 4°. She afterwards highlighted the complications by simple mean field
calculations at finite misalignment angles.
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C. Duvinage [71] continued the VCM studies of Legl et al. and investigated the impact
of sample alignment on the hard axis magnetization under transverse magnetic field. It
became obvious that such changes had a significant impact on the phase diagram in
transverse fields as the critical field decreased for larger misalignment of the sample. The
impact of the alignment angle, which was previously determined by X-ray Laue diffraction,
however was difficult to quantize.

In order to investigate several inconsistencies in the theoretical modeling, like the broad-
ening of the field driven phase transition at low temperatures observed by Legl and cal-
culations typically predicting either the critical field or critical temperature too large,
F. Rucker [4] continued to study the magnetic phase diagram of LiHoF4 with great preci-
sion using AC susceptibility in transverse magnetic fields [72]. To achieve a better sample
orientation he used a 2D vector magnet. His detailed description of the magnetic phase
diagram highlighted the effects of domain wall freezing for T < 500 mK and B < 2 T, an
additional contribution to the AC susceptibility at T < 500 mK and B > 4 T originating
from the hyperfine interaction and discovered a reentrant behavior of the phase boundary
around the thermal phase transition at T ≈ 1.53 K and B < 2 T. Additionally these stud-
ies confirmed the critical behavior of the phase transitions in LiHoF4 described earlier by
Bitko et al. [12]. As part of the sample orientation Ref. [4] showed that the vector mag-
net is a good tool to investigate the angular dependence quantitatively, recommending
detailed studies of the phase diagram at various angles.
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1.3. Open Questions: Angular Dependence and
Mesoscale Quantum Phase Transitions

Previous experimental and theoretical studies summarized above left several key questions
unresolved. While several more recent studies acknowledge the importance of the sample
orientation of the LiHoF4 system, neither a quantitative experimental nor theoretical
study of these effects was performed. Explicitly, the development of the magnetic phase
diagram as a function of relative orientation of the crystalline c-axis and the magnetic
field is unknown. Several experimental studies presented and discussed the formation
and shape of magnetic domains in the ferromagnetic phase of LiHoF4. In theoretical
modeling however, the magnetic domains play only a minor role and their interaction
with the microscopic system is often neglected. Apart from the early measurements of
Mennenga et al., no specific heat data are available at mK-temperatures. Furthermore,
no data are available in transverse magnetic fields despite the heat capacity being one
of the most important observables for the energy and entropy landscape of a magnetic
system.

One special curiosity is the behavior of LiHoF4 under a finite field angle Φ, thus with
field components both perpendicular and parallel to the easy c-axis. As described earlier
such a field parallel to the easy axis breaks the symmetry of the ground state as it forces
a global minimum of the Landau free energy at a finite order parameter, cf. Eq. (1.1.2).
Therefore, microscopic theory expected a crossover as a function of magnetic field in
LiHoF4 under finite field angles, cf. Fig. 1.1.1. As it will be shown in this thesis, this
cannot be observed in our experiments, leading to the discovery and description of a new
kind of QPT governed by magnetic domains.

Magnetic domains are a type of mesoscale pattern that forms in ferromagnets and hence
can be observed in LiHoF4, as seen in multiple studies described above. Mesoscale pat-
terns reflect spatial variations of order parameters on length and timescales that may be
described classically. Ferromagnets, ferroelectrics, superconductors, monomolecular films
or block copolymers all fall in this category. The theory of quantum phase transitions,
however, typically neglects such patterns in their microscopic description. As part of this
thesis, it should be explored, how both length scales interact and what influence mesoscale
patterns have on QPTs. Thus the possibility of mesoscale quantum phase transitions will
be investigated.
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1.4. Thesis Outline

The experimental studies presented in this thesis aim to resolve the questions stated above,
thus the thesis is organized in the following way. This first chapter gives an overview of
the the LiHoF4 system and related research.

The second chapter presents the AC susceptibility studies of the magnetic phase diagram
under varying magnetic field orientation and a theoretical model which describes the
observations in the picture of a mesoscale quantum phase transition. The chapter starts
with a introduction of the AC susceptibility technique and the experimental setup. Special
focus is given to the sample alignment with the magnet, which is crucial for a precise
measurement of the field angle relative to the crystalline c-axis. Then, the experimental
results are presented, focusing on the magnetic phase diagram, its angular dependence
and an analysis of the critical exponents around the field driven transition. Thereafter,
the results are compared to previous studies by Bitko et al. and Rucker et al.. After a
short remark about the discrepancy of experimental observations and expectations from
microscopic models mentioned above, the chapter continues to explain a theoretical model
which was developed by H. Eisenlohr and M. Vojta from TU Dresden after discussion of
the new experimental observations in this thesis. Afterwards, this model of domain driven
phase transitions is successfully compared with the results. The section concludes with a
summary of the results and outlook about future research options.

In the third chapter, the caloric properties of LiHoF4 under transverse magnetic fields
are investigated. After a short introduction of the underlying principles, relaxation time
specific heat and magnetocaloric measurements are explained in general. By discussing
the challenges of such measurements at low temperatures, the design criteria for the
experimental setup are developed. On this basis, the choice of the various components of
the novel specific heat setup for measurements at mK-temperatures and under transverse
magnetic fields are presented. Following this, the results of the specific heat measurements
and magnetocaloric sweeps are presented and compared to other techniques and literature.
Finally, these results are compared with the theoretical model developed in the second
chapter and a summary of the results is provided.
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2. AC Susceptibility in Transverse
Magnetic Fields

This chapter covers the experimental and technical aspects of measurements of the AC
susceptibility in transverse magnetic fields. The first section gives a definition of the
magnetic susceptibility and describes the basic principles of the measurement technique.
The technical details of the experimental setup used are discussed thereafter, followed by
a presentation of the experimental results. The chapter concludes with a discussion of
the theory of a domain driven transition in LiHoF4.

2.1. The Magnetic Susceptibility

Modern condensed matter physics explores a variety of different magnetic structures,
ranging from simple ferromagnets or antiferromagnets to more complex structures, like
the skyrmion lattice [73] or spin ice [74, 75]. A simple way to describe different kinds of
magnetism is to analyze the magnetization M , defined as the magnetic moment per unit
cell [76]. Usually this quantity describes the material on a macroscopic scale, where M is
described as a continuous pseudo-vector field up to the edges of the sample. It typically
varies as a function of external parameters, such as magnetic field H or temperature T .

The magnetization may in general be described as a function of time and space M(r, t) or
momentum transfer and frequency M(q, ω). Each representation may be beneficial when
describing different physical phenomena, e.g. reciprocal space is helpful when describing
periodicity, long range order and spin waves. When the magnetization of a sample as a
whole is measured, one investigates the uniform magnetization, corresponding to M(q =
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0). The AC susceptibility measurements performed as part of this thesis measure the
uniform susceptibility, thus χ(q = 0).

Additional information about the magnetic structure can be derived from the response to
time dependent fields. The response of the magnetization in a static magnetic field H to
a small change in field δHAC(ω) can be expressed by the magnetic susceptibility tensor
χij. It describes the change in the magnetization component along spatial direction i in
response to a small change of magnetic field δHAC,j(ω) along direction j, i.e.

χij(H, T, ω) = δMi(H, T )
δHAC,j(ω) (2.1.1)

where T is the sample temperature, ω is the frequency, and the indizes i and j denote the
three spatial directions x, y, and z [4, 72].

The term magnetic susceptibility is widely used and often simplified in the literature
for specific situations. In general two generic cases can be differentiated. First, the AC
susceptibility χ, in which an oscillating field HAC(ω) is used to probe the response of the
magnetization in addition to an applied static field H, stabilizing the magnetic order.
Second, letting ω approach zero, the static case, χstat, in which a small change of the
static field H is used to cause a change of the magnetization in the sample.

χij(H,T, ω) i,j=x−−−→ χ(H,T, ω) ω→0−−→ χstat(H,T ) (2.1.2)

In many materials, the static susceptibility may be approximated by the ratio of the
magnetization to the static field H [76]:

χstat(H,T ) = δM(H,T )
δH

≈ M(H,T )
H

(2.1.3)

To simplify these considerations, we restrict the susceptibility tensor χij in Eq. (2.1.2) to
diagonal elements only, assuming i = j. While the off-diagonal elements of the suscepti-
bility tensor might be quantities of interest, in the context of the work presented in this
thesis we expect the materials to show the largest response along the excitation axis and
therefore keep this restriction.

The magnetic susceptibility χ is the defining response function of magnetic phase transi-
tions. It diverges at the second order phase transition from a paramagnet to a ferromagnet.
For experimental studies, additionally the demagnetization factor N needs to be included.
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Figure 2.1.1.: Inverse susceptibility of LiHoF4 as a function of temperature. Different sample
shapes with different demagnetization factors N result in different susceptibilities.
Figure taken from Ref. [78].

This factor describes the relation between the applied field Ha and the magnetization M ,
such that the internal field in a sample is Hi = Ha − NM . With it, the susceptibility
measured in an experiment χexp relates to the microscopic susceptibility χmicro via [19]

1
χexp

= 1
χmicro

+N. (2.1.4)

Within the ferromagnetic phase and at the phase transition a diverging microscopic sus-
ceptibility χmicro → ∞ is expected. Therefore the experimentally observed susceptibility
is limited by the demagnetization factor χexp = 1/N , cf. Fig. 2.1.1. The demagnetization
factor depends on the sample shape and the direction of the applied field and magneti-
zation [77]. A special case is the spherical sample, which has N = 1/3 independent of
direction and is thus well suited for studies with varying field direction. Therefore, this
sample geometry was chosen for the experiments presented in this thesis.
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2.1.1. Longitudinal and Transverse Susceptibility

In general, the direction of the static magnetic field H and the oscillating excitation field
HAC are independent of each other. We denote the direction of the static field with the
index k, i.e. H = |H| · êk = Hk and keep the restriction to diagonal elements i = j.

Two configurations are of special interest, first the longitudinal susceptibility χ‖, where
the oscillatory and static field are parallel. Second, the transverse susceptibility χ⊥, which
corresponds to an AC excitation δHAC,j(ω) perpendicular to the static field Hk, i.e.

χ⊥ = χii(Hk⊥i, T, ω) = δMi(Hk⊥i, T )
δHAC,i(ω) . (2.1.5)

The latter was extensively studied as part of this thesis to determine the magnetic phase
diagram of LiHoF4 at low temperatures. However it should be noted, that this description
lacks when the magnetic field angle Φ is changed, since the direction of the AC field cannot
be changed simultaneously. Thus the quantity determined is

χ = δMz(H(Φ), T )
δHAC,z(ω) , (2.1.6)

where z denotes the crystalline z-axis. For perfect perpendicular field alignment Φ = 0,
both equations (2.1.5) and (2.1.6) are equal.
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2.1.2. Experimental Technique

A mutual induction method was used to determine the AC susceptibility. In this method
an oscillating magnetic field of a primary induced a voltage in a balanced pair of secondary
coils [4, 79]. The induced voltage is described by Faraday’s law

Uvac
ind (t) = −Ns

dΦ
dt = −Ns

d
dt

∫
A
µ0 ·HAC · dA = µ0H0ωANs sin(ωt) (2.1.7)

where Ns is the number of windings of the secondary ”pick-up” coil, Φ is the magnetic
flux, µ0 is the magnetic permeability, HAC ∝ cos (ωt) is the magnetic field of the primary
coil and A the cross-section of the solenoid. Since the pair of secondary coils is balanced
Uvac

ind,1 = Uvac
ind,2, their combined vacuum signal is zero Uvac

ind,tot = Uvac
ind,1 − Uvac

ind,2 = 0.

Inserting a sample in one of the secondary coils leads to a net signal proportional to the
magnetic AC susceptibility χ.

U sample
ind = Uvac

ind,1 + U sample
ind,1 − Uvac

ind,2 = µ0H0ωANs sin(ωt)χsamplefsample, (2.1.8)

where fsample represents the filling factor, i.e. the volume fraction of the secondary coil
filled by the sample.

This differential signal of the two secondary coils is recorded with a phase sensitive detector
(PSD), which was phase-locked to the current of the primary coil Ip, allowing to record the
in-phase and out-of-phase signal. In practice, both signals are recorded simultaneously in
a lock-in amplifier [80].

The in-phase signal is the direct response of the sample to the excitation corresponding to
the real part of the susceptibility χ′, while the out-of-phase signal represents the dissipative
or imaginary part χ′′ of the susceptibility

χ = χ′ + iχ′′ = Re(χ) + iIm(χ). (2.1.9)

As part of this study, the real and imaginary part of the transverse susceptibility (2.1.5)
were measured using this method. Throughout this thesis the transverse AC susceptibility
will denoted by χ⊥ = χ unless stated otherwise.
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2.2. Experimental Method

The following section describes the experimental methods used for the measurements of
the transverse susceptibility of LiHoF4. First the dilution refrigerator will be introduced,
which provided access to temperatures between 60 mK and 1.6 K. The vector magnet used
to study the angular dependence under magnetic fields up to 5.5 T at angles Φ between
−10° and 90° will be presented in the second subsection. This is followed by a descrip-
tion of the small susceptometer, similar to the design presented in Refs. [4, 72], used for
measurements of the AC susceptibility. The section concludes by presenting the spherical
LiHoF4 sample and the procedure used to align the sample with the susceptometer and
vector magnet.

2.2.1. Dilution Unit

The experiments in this thesis focused on the temperature regime between ≈ 1.5 K and ≈
50 mK, of the ferromagnetic phase of LiHoF4. To achieve such low temperatures, a Joule-
Thompson (JT) 3He/4He dilution insert from Oxford Instruments was used. A mixture of
3He/4He gas circulates through the insert as shown in Fig. 2.2.1 (A). A compressor raises
the pressure of the gas to 1.5 bar and pushes it through a nitrogen trap. The mixture
is pre-cooled in a heat exchanger in the helium bath of the magnet. A Joule-Thomson
expansion stage reduces the temperature to T ≈ 1 K such that the He gas condenses. In
the mixing chamber (MC), the mixture separates into 3He rich and a 3He poor phase.
Additional cooling is achieved by depleting the 3He poor phase further referred to as
dilution [4, 81, 82]. This drives a quasi-evaporation of 3He atoms from the rich to the
poor phase which allows cooling down to a few milli-Kelvin. The JT insert used achieved
temperatures down to 35 mK, although ohmic-heating limited the base temperature to
T ≈ 60 mK when using the susceptometer.

The susceptometer and heat capacity setup were mounted to the bottom of the mixing
chamber as shown in Fig. 2.2.1 (B). Thermometers at the 4 K-heat-exchanger, on the
inside of the IVC-seal, at the still and at the MC allowed to monitor and regulate the
insert with a Lakeshore LS370 controller via a LabView program [4].
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Figure 2.2.1.: The JT dilution unit primarily used in this thesis. (A) A scheme of the layout
and flow of 3He (orange) gas through the system. (B) A picture of the insert, the
components are described in further detail in the text.

2.2.2. Superconducting Vector Magnet

A superconducting 2D vector magnet from American Magnetics was used for this study.
The system allowed to generate magnetic fields of ±9 T along the vertical axis (z) and
±4.5 T along the horizontal axis (y). Due to technical limitations, it was not possible
to drive the horizontal field to full strength, when the vertical field exceeded ±4.5 T.
Therefore any magnetic field with an absolute strength below 4.5 T was accessible within
the y-z-plane, but stronger fields were limited to angles closer to the z-axis. The accessible
regime in field is shown in Fig. 2.2.2 (A). The magnets power supplies were capable of
adjusting angles reproducibly. Above 1 T absolute field, the angle can be adjusted with
above 0.001° precision, while being strictly less precise at lower fields, as determined by
Ref. [4], cf. Fig. 2.2.2 (B) and (C).

The magnet was capable of ramping as fast as 1.72 T/min along the z-axis and 0.17 T/min
along the y-axis. The minimal ramp speed was defined by the precision of the power
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Figure 2.2.2.: Key characteristics of the AMI vector magnet. (A) The accessible fields as taken
from the magnet manual and corresponding angles at the given points. These
values are taken from the corresponding diagram in the AMI Magnet user manual.
(B) At absolute fields below 1 T, the magnet is capable to drive angles better than
0.01°, at larger fields (C) a precision even under 0.001° is achieved. These points
are taken from Ref. [4].

supplies for ramping the field at small angles, which was relevant for the magnetocaloric
measurements described in Sec. 3.1.3. Each power supply was capable of adjusting the
ramp rate at a minimum of 0.001 A/min ≈ 0.0455 mT/min. This limited the precision of
the slower power supply when ramping at an angle. Thus, the minimal ramp-rate was
faster at low angles and minimal at 45°. For the magnetocaloric measurements described
in Sec. 3.3.2 ramp rates as slow as 15 mT/min at ≈ 1° were used.
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2.2.3. Susceptometer

For measurements of the transverse susceptibility a susceptometer originally designed
by F. Rucker [4, 72] was used, cf. Fig. 2.2.3 (A). A copper body provided good thermal
anchoring to the mixing chamber. The temperature of this body was monitored with a
calibrated Ruthenium oxide (ROX) resistor thermometer and recorded with a Lakeshore
LS372 resistance bridge. Further details on the thermometer properties are provided in
Sec. 3.2.5.

The primary coil, made of 100µm thick Cu-wires, was wound on a sapphire cylinder
(length: 16 mm, diameter: 8 mm). It consists of 1525 windings resulting in a resistance
of 105 Ω at room temperature. Two secondary coils (length: 4 mm, inner diameter:
3.2 mm, outer diameter: 6 mm) with 1200 windings and 260 Ω at room temperature each
were attached to the inside of this sapphire cylinder and cast in 2850 Stycast epoxy.
One of the secondaries supported the sample, while the other was empty measuring the
vacuum background only. The signal of these coils without sample was adjusted so that
the measured difference in induction voltage was close to zero. In this configuration
the secondaries are referred to as balanced and the combined voltage corresponds to the
samples response. The balance is achieved by optimizing their position within the sapphire
cylinder manually until the difference of the vacuum signal Eq. (2.1.7) is effectively zero.
Following this, the position is fixed using GE-varnish. All coils were in good thermal
contact with the MC via the sapphire cylinder and the copper body. The sample was
mounted on top of a sapphire rod and inserted into one of the two secondaries.

A Keithley K6221 current source provided the AC excitation current of the primary. A
Stanford Research SR830 lock-in amplifier detected the signal, recording the difference
of the voltage signal of the secondaries, thus the magnetic susceptibility as discussed in
Sec. 2.1.2. The electric wiring is illustrated in Fig. 2.2.3 (B).

For the study presented, the susceptibility was calibrated using the low temperature field
sweeps from Ref. [4], since the same sample was used. For a comparison of the datasets
used, see Fig. 2.3.8.
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Figure 2.2.3.: Setup used for transverse susceptibility measurements. (A) Schematic depiction
of the low temperature susceptometer for studies in transverse field geometry
developed by F. Rucker [4]. The body is designed as symmetric as possible to
reduce signal background. The primary coil is wound on a sapphire tube whereas
the secondary coils are fixed inside it. A sapphire rod centers the sample in
one of the secondary coils and couples it thermally to the susceptometer body.
(B) Sketch of the electronics used in the experiment. A Keithley K6221 current
source drives the primary coil. A Stanford Research SR830 Lock-in Amplifier
measures the induced voltage in the two primary coils, using the frequency of the
AC current source as a reference. The temperature is determined by a Lakeshore
LS372 resistance bridge with a calibrated ROX sensor, see Tab. 3.2.1 for further
details.

2.2.4. Spherical LiHoF4 Sample

The sample was purchased from Altechna/AcalBFI Germany with the tracking number
#523201216. The single crystal had the shape of a cylinder of 6 mm diameter, with the
c-axis pointing along the cylinder axis. A cubic sample was cut by a diamond wire saw in
the crystal lab. Afterwards, an external gem-cutter polished it into a spherical shape. The
diameter of the sphere was d ≈ 2.8 mm and the sample mass was mLiHoF4 = 54.7±0.7 mg.
The sample is shown in Fig. 2.2.4 (A) on top of the sample holder during the alingment
process described below.
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Figure 2.2.4.: Orientation of the sample using X-ray Laue diffraction. (A) The sample on the
sapphire rod on the Laue diffractometer. (B) Image of the Laue pattern during
initial orientation. (C) Laue pattern along the susceptometer axis after the glue
has hardened.

2.2.5. Sample Alignment Process

The exact orientation of the sample within the reference frame of the vector magnet was
mandatory for the precise measurement of the angle Φ between the easy axis of LiHoF4

and the magnetic field. In the following, the procedure used for sample alignment with
respect to the susceptometer is described, followed by definitions for the various angles,
planes and reference frames necessary to understand the multi-step alignment process
with respect to the vector magnet.

Alignment in the Susceptometer In the first step, the sample was aligned with its
c-axis (001) along the sapphire sample holder in the susceptometer, parallel to the AC
field, as shown in Fig. 2.2.4 (A) and (B). GE varnish 7031 is used to glue the sphere to
the rod. While the varnish dried the sphere shifted by roughly 2-3°, cf. Fig. 2.2.4 (C).

Alignment in the Vector Magnet In addition to the alignment of sample and sus-
ceptometer, the assembly also needs to be aligned in the AMI vector magnet. For the
description of this process, the angles and directions are defined, as shown in Fig. 2.2.5.
Within the coordinate system (x, y, z) of the vector magnet, the magnetic field points
along

~B = B


0

sinφ
cosφ

 , (2.2.1)
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Figure 2.2.5.: The definitions of the angles used in this experiment.

which is depicted as a green arrow in Fig. 2.2.5 together with the field angle φ. The
crystalline c-axis points along

~c =


sin(γ) sin(α + αJT)
sin(γ) cos(α + αJT)

cos(γ)

 , (2.2.2)

where α is the azimuth misalignment angle, αJT is the manual rotation angle of the insert.
The zenith angle of the easy axis is γ. The two angles α and γ are highlighted in orange
and red respectively in Fig. 2.2.5.

For the experiment this c-axis (red arrow) needs to lie within the y-z-plane (blue) of the
vector magnet. In this case, the field angle φ describes the angle between ~B and c-axis,
apart from a constant offset. For a successful alignment, α and γ were determined and
corrected by turning the JT insert and magnetic field.

To define the rotation angle of the JT insert αJT, the AMI magnet was equipped with a
scale with a diameter of 727.2 mm and 0.1° steps. A laser on top of the JT insert pointed
on the scale and allowed to read its rotation relative to the magnet. The mounting
precision of this scale is better than 2 mm ≈ 0.26° and the reading precision is better than
1 mm ≈ 0.13°, which gives a combined error of not larger than ∆αJT ≈ 0.4°. The various
possible sources of misalignment are summarized in Tab. 2.2.1. Especially the orientation
within the azimuthal plane was challenging, since the angle between susceptometer and
laser was difficult to determine and the approximate direction of the y-z-field-plane was
known only.
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Table 2.2.1.: Relevant angles for the alignment process, their definitions and factors influencing
their precision.

angle error sources estimate
φ field angle AMI precision B > 2 T < 0.001° (Fig. 2.2.2)
α azimuth misalignment orientation on X-ray Laue < 3°

mounting the suszeptometer < 5°
on the JT
orienting the JT with < 5°
respect to the magnet

γ zenith misalignment orientation on X-ray Laue < 3°
δαs precision of the scale laser point size and < 0.4°

on top of the magnet scale spacing

To determine α and γ, the JT was positioned in two different orientations, defined by
its rotation with respect to the scale αJT. A linear system of equations then allowed to
calculate the angles. The three steps are summarized as follows:

Step I: The c-axis was perpendicular to the field plane within precision. The rotation of
the insert was αJT = 90°. The misalignment angles α and γ were unknown.

Step II: The c-axis was turned by exactly 90°, thus approximately parallel to the y-axis
of the magnet. The rotation of the insert was αJT = 0°; The misalignment angles α
and γ were calculated.

Step III: The c-axis was aligned with the field plane. The rotation of the insert αJT was
adjusted such that α = 0°.

The configuration in every step is depicted in Fig. 2.2.6. At each position, the critical field
Bc was determined by a field sweep at the lowest temperature of T ≈ 65 mK as described
later. The sweeps were repeated for different angles φ, as shown in Fig. 2.2.7 (A), where
the upward triangles mark the critical field.

The optimal field orientation ~Bopt is found, when the critical field is maximal. In this con-
figuration, the field is perpendicular to the crystalline c-axis, as highlighted in Fig. 2.2.6.
Fig. 2.2.7 (B) shows Bc as a function of the magnet field angle φ. As expected, the angular
dependence is a lot flatter in the first step, when the c-axis points almost perpendicular to
the field plane. A Gaussian fit is used to determine the position of the maximum in each
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Figure 2.2.6.: Procedure used to align the sample within the vector magnet. (A) The c-axis of
the sample points roughly perpendicular to the field plane (blue), along the x-
axis. The optimal field ~Bopt, where it is perpendicular to the c-axis is determined
by scanning the field angle φ (green). (B) After turning the insert by 90°, the
c-axis points roughly along the y-axis. A different optimal field orientation will
be determined. (C) After calculating the zenith and azimuth misalingment angle,
the sample is aligned with the field plane (blue) by turning the insert again. The
zenith misalignment angle is always measured from the z-axis to the c-axis, as
defined in Fig. 2.2.5, but was only drawn from the x-y plane in (B) and (C) for
better visibility.

step. The location of the maximum was φI = 7.07±0.18° for step I and φII = −2.21±0.028°
for step II.

With these information, the zenith (γ) and azimuth (α) angle of the c-axis were determined
by solving a linear system of equations. The following two expressions were found for

α = arctan tanφII

tanφI
= −17.36± 0.47° (2.2.3)

and
γ = arctan −1

tanφII cosα = 87.881± 0.023°. (2.2.4)

These two misalignment angles were corrected in the third step, confirming that the
maximal field now lies at φIII = −2.22°± 0.041, close to the expected γ − 90° = −2.12°.
Uncertainties were inferred from partial derivatives and Gaussian error progression.

After successful orientation, the field angle can be redefined, such that Φ = φ+ 2.2°. For
all other parts of this thesis, we refer to the field angle as this corrected value, denoted
by capital Φ, whereas the absolute reading of the AMI-magnet is denoted by φ.
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Figure 2.2.7.: Experimental results for the determination of the sample alignment. (A) During
each step, data were recorded at T ≈ 65 mK and various field angles as a function
of magnetic field strength. The critical field was determined by the intersection
of two lines, shown exemplary for selected curves and is marked by the upward
triangle. (B) The maximum critical field Bc as a function of field angle φ was
determined by Gaussian fits.

Estimates of Angular Uncertainties The uncertainty of the arrangement was estimated
based on the error of the scale when turning the JT between step I and II as well as
twice the reading error, as summarized in Tab. 2.2.1. δα = 0.46° + 0.26° + 2 · 0.13° =
0.98°. The alignment of the crystalline a-axis with this plane is the precision of the X-ray
Laue orientation ≈ 2 deg. The angle between the field ~B and the c-axis ~c around their
perpendicular orientation can be determined with much larger precision since it mostly
depends on the precision of the vector magnet, which is better than δφ < 0.001 for fields
B > 2 T, cf. Fig. 2.2.2. The influence of the possible misalignment of the various angles
was estimated numerically by Monte Carlo methods. Namely, we considered an error of
the vector magnet of δφ = 0.001°, the uncertainty of the zenith angle δγ = 0.024°, the
uncertainty of the azimuth angle δα = 0.98° as derived above. A worst case scenario of
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Figure 2.2.8.: The worst case deviation of the field angle Φ from the direction perpendicular
to the crystalline c-axis as determined by Monte Carlo methods. (A) The worst
case deviation δΦ is shown over the full range ±90°. The experimental window is
highlighted in grey. An interpolation is shown in orange. (B) In the experimental
regime δΦ is basically linear.

the angular precisions is shown in Fig. 2.2.8. The orange line is an interpolation to this
estimate and represents the angular uncertainties used throughout this chapter.

The c-axis of the sample was put within the field plane of the magnet. This means that
the uncertainties are dominated by the magnet precision in the regime at low angles,
perpendicular to the c-axis, where the phase diagrams were recorded, cf. grey-shaded area
in Fig. 2.2.8 (A) and (B). At larger angles, the uncertainties in the JT-rotation αJT and
azimuth angle α play a more pronounced role as the field vector is shifting towards the
y-axis of the magnet. As will be shown later, the susceptibility is not very sensitive to the
field orientation at large angles, hence the precision achieved was sufficient for all results
presented.
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2.3. Experimental Results

This section covers the results of the measurements of the transverse AC susceptibility χ⊥
of LiHoF4. First the determination of the critical field and the magnetic phase diagram
will be reported for selected examples for constant Φ and the general features of the
data will be explained. Following that, specific details will be highlighted, starting at the
dependence of the susceptibility on the field angle, followed by the analysis of the critical
exponents around the quantum phase transition.

2.3.1. Magnetic Phase Diagram

The magnetic phase diagrams were determined by performing scans at constant temper-
ature or constant field, as shown in Fig. 2.3.1 for a tilt angle of Φ = 0°. The field scans
were performed while increasing the field in 25 mT steps from zero to 5.5 T to reduce
systematic errors when ramping the magnet continuously. The temperature scans were
performed as continuous sweeps at 5 mK/min from 1.4 to 1.6 K using the heater at the
MC.

Data were recorded at temperatures between T = 67 mK and T = 1.6 K for magnetic
fields from B = 0 to 5.5 T. The susceptibility was measured at an excitation frequency of
fAC = 511 Hz and an excitation field BAC = 13µT, unless stated otherwise.

The resulting phase diagram is shown as a 2D colorplot of the real part of the transverse
susceptibility χ′ as a function of magnetic field and temperature in Fig. 2.3.1 (A) for
Φ = 0°, i.e. perfect transverse orientation. Typical scans of the temperature (B1), (B2)
and field (C1), (C2) are shown in the panels, the real part χ′ is shown in blue and the
imaginary part χ′′ in red. The position of the scans is highlighted by grey lines in the
colormap (A).

The data of the temperature scans were smoothed with a rolling average to reduce noise
in temperature unavoidable when operating the JT insert in this temperature range. The
critical temperature and critical field were determined by the intersection of two linear fits.
A first line was fitted to the jump in χ′, between the two points of inflection (minimum
and maximum in the second derivative of χ′). When no jump was visible, as for Φ = 0°
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Figure 2.3.1.: Determination of the magnetic phase diagram for Φ = 0°. (A) The data are
shown as a colormap, where the phase boundary is shown in black. The grey lines
highlight the position of the exemplary slices. (B, C) The real and imaginary parts
of the transverse susceptibility are shown in blue and red, respectively. The phase
transition is denoted by a triangle and black line. Critical fields Bc and critical
temperatures Tc were determined by the linear fits shown as solid lines. (B1, B2)
Temperature sweeps were performed at B = 1 T and B = 0. The number of data
points shown is reduced by a factor of 100 for better visibility. (C1, C2) Field step
scans were performed at T = 69 mK and T = 0.599 K.

and Fig. 2.3.1, the value of the plateau was used instead to determine a line of intersection.
A second line was fitted to the decreasing χ′ in the paramagnetic regime above the second
point of inflection.

As a function of increasing temperature at B = 1 T, χ′ displays a plateau up to Tc,
followed by a linear decrease. For B = 0 T the real part of the transverse susceptibility
rises slightly up to Tc, after which it decreases slowly, as shown in Fig. 2.3.1 (B2). The
imaginary part χ′′ shown in red decreases up to the phase transition and is constant
and almost zero above. This thermal phase transition was studied in great detail in
Refs. [4, 12, 41, 43, 47, 68].
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The field scan for the lowest temperature studied, T = 67 mK, is shown in Fig. 2.3.1 (C1).
With increasing field, the real part of the magnetic susceptibility starts at zero and rises
rapidly around Bd ≈ 2 T. This region can be attributed to a freezing of domain walls,
which follow no longer the AC-field and thus contributes no longer to χ′. Increasing
the field further a plateau at χ′ ≈ 0.34 stabilizes up to the quantum phase transition,
observed at a critical field of Bc = 5.13 T in excellent agreement with literature [12].
The plateau reflects an infinite susceptibility that is limited by the effects of stray fields
[78]. With increasing temperatures Bc as well as Bd decrease, cf. Fig. 2.3.1 (C2), and the
susceptibility at low temperatures becomes non-zero. While Bd may be observed with
a clear increase or maximum in the imaginary part χ′′, Bc is not clearly visible. The
signal χ′′ around 4 T cannot be clearly distinguished from the background signal of the
susceptometer.

While many features do not change when tilting the magnetic field away from the optimal
orientation, some key differences arise. These will be illustrated for Φ = 1° and Φ = 10°
but can be observed also at all other angles Φ 6= 0. For tilted fields, Landau theory predicts
a smooth crossover instead of a well-defined phase transition, because the longitudinal field
component breaks the Ising symmetry between up and down states [5, 21] and prevents
spontaneous symmetry breaking, as explained in Sec. 1.1. As a crossover of the order
parameter, the magnetization, is smooth, one would expect also a smooth behavior of its
derivative, the susceptibility.

In stark contrast, we observe, that already at an angle as small as Φ = 1° the shape of χ′

around the phase transition changes significantly, cf. Fig. 2.3.2 (C1). The kink at Bc turns
into a drop of χ′ characteristic of a well-developed, distinct phase transition. We defined
the height of the discontinuous jump by the difference in χ′ at the phase transition and the
plateau value, representing χ′ in the ferromagnetic phase as limited by demagnetization
effects.

Additionally, the value of the critical field is reduced in comparison to Φ = 0, and Bc = 5 T
at 64 mK and Bc = 3.9 T at 599 mK. The behavior at low fields does not change signif-
icantly with increasing Φ, indicating that the domain wall freezing is not affected when
tilting the field. A small jump of χ′ is also visible at the phase transition in the tem-
perature scans in Fig. 2.3.2 (B1, B2), indicating a change of the nature of this transition
at finite angles as compared to Φ = 0. The transition temperature Tc is not influenced
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Figure 2.3.2.: Determination of the magnetic phase diagram for Φ = 1°. (A) The data are
shown as a colormap, where the phase boundary is shown in black. The grey lines
highlight the position of the exemplary slices. (B, C) The real and imaginary parts
of the transverse susceptibility are shown in blue and red, respectively. The phase
transition is denoted by a triangle and black line. Critical fields Bc and critical
temperatures Tc were determined by the linear fits shown as solid lines. (B1, B2)
Temperature sweeps were performed at B = 1 T and B = 0. The number of data
points shown is reduced by a factor of 100 for better visibility. (C1, C2) Field step
scans were performed at T = 68 mK and T = 0.599 K.

significantly. The imaginary part of the transverse susceptibility χ′′ is qualitatively un-
changed.

At Φ = 10°, the jump at the phase transition is even more pronounced, both in the temper-
ature scans, cf. Fig. 2.3.3 (B1, B2) and the field scans, cf. Fig. 2.3.3 (C1, C2). The critical
field is suppressed further. As shown in Fig. 2.3.3 (C2), the critical field at T ≈ 0.6 K is
Bc ≈ 2 T as compared to the 4 T for Φ = 0. For the lowest temperature of T = 69 mK, the
critical field is in the field range of domain wall freezing and is barely visible in χ′. The
domain freezing at Bd is not shown in Fig. 2.3.3 (C1), since the regime of the plateau is
completely suppressed here. Apart from that, the low-temperature and low-field behavior
is unchanged, showing that the domain wall freezing is independent of the field angle.
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Figure 2.3.3.: Determination of the magnetic phase diagram for Φ = 10°. (A) The data are
shown as a colormap, where the phase boundary is shown in black. The grey lines
highlight the position of the exemplary slices. (B, C) The real and imaginary parts
of the transverse susceptibility are shown in blue and red, respectively. The phase
transition is denoted by a triangle and black line. Critical fields Bc and critical
temperatures Tc were determined by the linear fits shown as solid lines. (B1, B2)
Temperature sweeps were performed at B = 1 T and B = 0. The number of data
points shown is reduced by a factor of 100 for better visibility. (C1, C2) Field step
scans were performed at T = 69 mK and T = 0.599 K.

The imaginary part displays peaks at both the thermal and the quantum phase transition
for this angle, as shown in Fig. 2.3.3 (B1) and (C2).

These observations may be summarized by taking a look at the complete evolution of the
phase diagram with changing field orientation from Φ = 0° to Φ = 15°. This is shown
in Fig. 2.3.4, where the phase boundary as defined by Bc and Tc is shown in red. For
comparison, the phase boundary for Φ = 0 is shown in white. The first observation is,
that by increasing the field angle from Φ = 0° in Fig. 2.3.4 (A) to Φ = 15° in Fig. 2.3.4 (F)
the critical field decreases strongly. Second, for Φ = 0°, Bc is enhanced below T ≈ 0.5 K
due to hyperfine interactions, as explained in above and originally observed by Bitko
et al. [12]. With increasing tilt angle this feature is suppressed and the critical field
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Figure 2.3.4.: Overview over the magnetic phase diagrams by determined from transverse sus-
ceptibility. (A-F) The real part of the transverse susceptibility is given as a color
map. The phase boundaries are shown in red and the boundary for Φ = 0° is
shown in white.

Bc is constant for Φ > 5° at temperatures up to 800 mK. Third, the region of low AC
susceptibility χ′ at low fields and low temperatures is independent of the field orientation
Φ, cf. the blue area at T < 0.5 K and B < 2 T in Fig. 2.3.4 (A-F). Thus the domain wall
freezing is not function to the field orientation.

At temperatures T ≈ 1.5 K a small regime of re-entrant behavior can be observed,
cf. Fig. 2.3.7. It will be discussed later in comparison with previous studies in Sec. 2.3.4.
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2.3.2. Angular Dependence of Field Sweeps

The behavior of χ′ and χ′′ was investigated in detail for angles below Φ = 15°, covering
the full phase diagram. A specific comparison of field sweeps at T = 64 mK is shown in
Fig. 2.3.5 (A1,A2). Exemplary also larger field angles Φ = 0 − 90° were investigated by
field sweeps at T = 1.2 K, shown in Fig. 2.3.5 (B1, B2). The fast decrease of the value of
Bc at low field angles Φ slows down significantly with increasing Φ, cf. Fig. 2.3.5 (B1, B2).
It reaches a constant value of Bc ≈ 0.5 T for Φ > 50° and the shape of the discontinuous
jump remains qualitatively unchanged.

The dataset therefore shows a continuous connection of the transition observed at finite
angles with the coercitive field in the ferromagnetic LiHoF4, observed in the longitudinal
AC susceptibility along the easy axis at Φ = 90°. This suggests that anisotropic fer-
romagnets may display such characteristics in general and that the picture of mesoscale
quantum phase transitions developed in Sec. 2.4 applies to these material class as a whole.
The continuous connection to Φ = 90° also suggests that domains play a key role in this
material [21] and this behavior of the phase boundary is in very good agreement with
theoretical predictions based on the formation of domain walls presented in Sec. 2.4. The
direct connection to the coercive field at large field angles is again discussed later, when
this effect is also found in the heat capacity and in comparison to results of Mennenga
et al. [43], cf. Fig. 3.4.3 in Sec. 3.4.
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Figure 2.3.5.: Transverse susceptibility as a function of magnetic field for various tilt angles. (A1)
The real part of the magnetic susceptibility is shown for T = 64 mK. Triangles
highlight the position of Bc and lines the corresponding linear fits as explained in
the text. (A2) The imaginary part of the magnetic susceptibility is shown for the
same angles as in (A1). (B1) The real part of the magnetic susceptibility is shown
for T = 1.2 K. (B2) The imaginary part of the magnetic susceptibility is shown
for the same angles as in (B1).
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2.3.3. Analysis of Critical Exponents

Already in the earliest studies of LiHoF4, the critical mean-field exponent γ = 1 has been
determined and since then has been confirmed in various studies [4, 12, 19]. It may be
extracted by fitting a power law to the magnetic susceptibility at the phase transition, as
the susceptibility diverges in the ferromagnetic state.

χ ∝ (T − Tc)−γ (2.3.1)

for the case of a thermal phase transition and

χ ∝ (B −Bc)−γ (2.3.2)

for field driven transition, such as at the QCP. In a real experiment however, the suscep-
tibility χ is limited by demagnetization effects and a plateau is observed. To correct this
effect Eq. (2.1.4) is rewritten so that the theoretical susceptibility reads

χ′th = 1
1/χ′exp −N

= 1
1/χ′exp − 1/χ′max

, (2.3.3)

where χ′exp = χ′ is the transverse AC susceptibility measured experimentally, N = 1/χ′max
is the demagnetization factor, which is equal to the inverse of the maximum of the trans-
verse susceptibility in the regime of diverging χth. Therefore, χ′max = 0.335 is defined as
the value at the plateau of the transverse susceptibility in the ferromagnetic state.

Following this, we determined the theoretical susceptibility according to Eq. (2.3.3) and
fitted it with a power law dependence

χ′th = a · (B −Bc)−γ (2.3.4)

for Φ = 0 as shown in Fig. 2.3.6 (A). For all temperatures the results agree with the
theoretical prediction of γ = 1, cf. Fig. 2.3.6 (B). When the theoretically predicted sus-
ceptibility χ′th is shown as a function of (B − Bc)/Bc on a logarithmic scale, the power
law dependence appears as a straight line with the slope proportional to γ. As shown in
Fig. 2.3.6 (C), the curve for Φ = 0° shows this behavior. For larger Φ however, the curve
is non-linear and thus does not permit a description with a critical exponent. Similar
to the critical behavior expected from theory (see. Sec. 2.4, Fig. 2.4.7), the susceptibility
approaches a constant value at large field angles and fields.
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Figure 2.3.6.: Typical data featuring power law dependence and the critical exponent γ at Bc.
(A) Normalized transverse susceptibility as a function of transverse field B for two
temperatures and Φ = 0°. The circles are data points, the black lines are fits to
the data. The vertical lines mark the position of Bc. (B) The results for the fits
for all temperatures at Φ = 0°, the line serves as a guide to the eye and represents
γ = 1 predicted theoretically. (C) Data for different Φ at T = 63 mK shown on
a double-logarithmic scale. Only the data for Φ = 0° follows a linear dependence
and thus shows the power law dependence expected.

2.3.4. Comparison with Previous Studies

The most detailed study of the magnetic susceptibility of LiHoF4 to date was published
by Bitko et al. [12]. It was also one of the first reporting a detailed investigation of the
magnetic phase diagram and discussing the importance of hyperfine interactions. The
phase diagram of LiHoF4, reported by Bitko et al. is reproduced in Fig. 2.3.7 as light
blue squares in comparison to the results obtained in this study, shown as the circles
for various field orientations Φ. In 2018, Rucker et al. [4, 72] repeated this study and
discovered additional details (green squares). They reported an enhancement of the AC
susceptibility in the region, where hyperfine interactions play an important role. This
region is shown in Fig. 2.3.7 (B). Additionally, a re-entrant behavior at low fields around
the thermal transition was reported, cf. Fig. 2.3.7 (C). Further details of previous studies
were summarized above.
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Figure 2.3.7.: Comparison of the phase diagram for various field orientations to with literature.
(A) Tc and Bc as determined by the AC susceptibility measurements presented in
this study are shown for various angles Φ (◦). Bitko et al. [12] and Rucker [4]
performed AC susceptibility measurements at Φ = 0 conceptually similar to this
study (�). Rønnow et al. [14] and Krämer [66] utilized neutron diffraction and
neutron triple-axis-spectroscopy to determine the phase boundary at Φ = 0 (♦).
(B) A detailed view of the high field, low temperature region shows the reduced
Bc for the neutron studies [14, 66]. (C) The low field, high temperature regime
shows re-entrant behavior around the thermal phase transition.
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Another set of experimental phase boundaries was published by Rønnow et al. [14] (yellow
diamonds) and later by Krämer [66] (white diamonds). They performed extensive neutron
scattering studies to determine the electronic mode softening at the QPT. In their studies,
however, it was not possible to reproduce the low temperature critical field observed in the
transverse susceptibility. As shown in Fig. 2.3.7 (B) the authors attributed this to poor
thermal coupling of the sample, which decoupled at 300 mK. While this scenario is plausi-
ble, given the comparatively low thermal conductivity of LiHoF4 at low temperatures and
the technical challenges of providing a proper thermal connection between sample and
bath in such experiments, a comparison with our data also suggests another explanation,
namely that there was a slight misalignment of the sample in the order of ≈ 2 deg in the
experiments of Rønnow and Krämer.

Fig. 2.3.7 (C) shows the thermal phase transitions with a critical temperature of Tc =
1.53 K at zero field in good agreement with literature [4, 12, 13, 19, 43, 53, 55, 72, 83]. As
already observed by Ref. [4], the critical temperature has a maximum around B = 1.1 T,
where Tc = 1.54 K. This behaviour is visible even after considering the error margins
stemming from the critical field determination process and can be seen directly in the raw
data, cf. Fig. A.1.2. It should be mentioned at this point, that the same thermometer was
used compared to the study of Ref. [4], so that this comparison is not able to reveal any
systematic errors in the temperature determination.

A comparison of the magnetic field dependence of χ′ with the results of Ref. [4] is shown
in Fig. 2.3.8. Both datasets were recorded at the same frequency of 511 Hz and at Φ = 0.
The excitation field of Ref. [4] was significantly larger and 0.16 mT, compared to the
0.013 mT applied in our study. Our lowest temperature studied is also slightly lower with
T = 62 mK compared to the T = 76 mK of Ref. [4]. Nonetheless, the data show excellent
agreement over a large field range. The biggest difference is the regime between 4 T
and 5 T, where Ref. [4] found an enhancement of the susceptibility due to the hyperfine
interaction. In our data, this feature is not clearly visible. Since the same parameters
and sample were used, this is most likely a result of a small field dependent background
signal of the susceptometer. The other features, such as the position of the critical field,
the field dependence at high fields and the domain wall freezing at lower temperatures are
in excellent agreement. Therefore the present study agrees in all points relevant to the
determination of the magnetic phase diagram and the development of the theory discussed
in the next section (Sec. 2.4). The significantly lower excitation field chosen in this study
might explain the differences as compared to Ref. [4]. As explained below, magnetic
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Figure 2.3.8.: Comparison of the real part of the magnetic susceptibility with the results of
Rucker [4]. The results for the lowest temperature of 62 mK and Φ = 0 are shown
in blue and compared to the data of Rucker, recorded at 76 mK shown as red
squares. The red line is a guide to the eye.

domains play an important role in the underlying physics of LiHoF4. Domain formation,
rearrangement and domain wall movement are sensitive to the excitation strength, thus
the difference in BAC may explain the different results.
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2.4. Discussion and Comparison with Theory

The key observations in tilted magnetic fields, which need theoretical explanation can be
summarized as follows:

1. The onset of magnetic order displays the characteristics of a well-defined phase
transition in contrast to the crossover, which is expected from microscopic theory.

2. The transition immediately changes its character when deviating from the transverse
field alignment as a jump in χ′ develops.

3. Increasing the field angle Φ leads to a rapid decrease of the critical field Bc.
4. The temperature dependence of the phase boundary changes qualitatively, since the

enhancement of Bc attributed to hyperfine coupling disappears.

Based on these findings and in a close collaboration with Heike Eisenlohr [5] and Matthias
Vojta from the Technical University of Dresden a theoretical interpretation of our data was
developed [21]. In summary, a dipolar Ising ferromagnet which forms domains is sufficient
to describe all observations listed above. However, several important improvements of the
transverse field Ising model compared to previous studies are necessary to describe the
system properly and capture all effects.

The following section summarizes the theory. We follow the derivation presented in
Refs. [5, 21] permitting detailed comparison with the experiment and highlight the new in-
sights gained through this collaboration. For full details of the derivation of the presented
theory, refer to part III of the dissertation of H. Eisenlohr [5].

We begin in Sec. 2.4.1 with a Landau model of the transverse field quantum phase transi-
tion under tilted magnetic fields. Following this, we describe the microscopic Hamiltonian
for LiHoF4 taking into account the crystalline electric field (CEF), Zeeman terms of the
tilted field, hyperfine coupling to nuclear spins and interaction between electronic spins.
Afterwards, the mean-field approximation of this model is presented. At this point the
pure microscopic model will be reviewed and established, that it is insufficient to describe
the experiments and that domain effects need to be included. In Sec. 2.4.2 we proceed
with a review of the literature on domains in LiHoF4, in order to motivate our choice of
sheet-like domains considered in our model. Finally, we will describe the domain pattern
in this model and show how it can be combined with the microscopic mean-field model.
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The chapter will be concluded with a direct comparison of the final model and the data
to complete the discussion.

2.4.1. Microscopic Model

Landau Theory A simple phenomenological description of a transverse-field Ising quan-
tum phase transition may be given in terms of a Landau model [5, 21]. The magnetization
M acts as a scalar order parameter with Ising symmetry. Its order-parameter mass term
is (h − hc) for perfectly transverse field h (Φ = 0°). Hence, for h < hc an ordered phase
is realized. If we account for tilting of the field by an angle Φ 6= 0°, we find a Landau
functional of the form [21]

F (M) = a

4M
4 + 1

2 (h cos Φ− hc)M2 +Mh sin Φ. (2.4.1)

where h sin Φ represents a field conjugate to the order parameter. For Φ = 0 the transition
at hc displays mean-field exponents, i.e., M ∝ (h− hc)β and M δ ∝ hcΦ.

At finite Φ however, the longitudinal field renders M non-zero for any order-parameter
mass and in turn destroys the field-driven phase transition, which turns into a crossover.
The location of this crossover can be defined by the maximum of the susceptibility as a
function of h. Linear expansion of the free energy F at small angles Φ � 1 removes the
trigonometric terms and allows to calculate the susceptibility, which yields [5]

hc − h∗ ∝ Φ2/3. (2.4.2)

As described in more detail below, our microscopic calculation for LiHoF4 also yields a
crossover at Bc −B∗ ∝ Φ2/3 if domain effects are neglected, see Fig. 2.4.1 (B).

In stark contrast, the experiment provides evidence of a qualitatively different behavior.
Instead of a crossover, a sharp transition is observed, with the critical field approximately
shifting proportional to Φ2. The existence of a sharp thermodynamic transition at finite
tilt angles is clearly beyond a single-component order-parameter description in the spirit
of Landau theory.
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Microscopic Model Since the magnetism in LiHoF4 originates in the Holmium ions,
the development of a microscopic description starts with the properties of a single Ho3+

ion. This Ho-atom is placed in a magnetic field applied under an angle Φ with respect to
the hard axis, ~B = (B cos Φ, 0, B sin Φ). It is subject to the crystal field of S4 symmetry,
which in LiHoF4 is created by the neighboring F− ions [68] as described in Sec. 1.2.1. The
single ion Hamiltonian can be written as

Hion = VCF( ~J) + A~J · ~I − µB ~B · (g ~J + gN ~I) (2.4.3)

with J = 8 electronic moments and I = 7/2 nuclear moments [5, 21]. The hyperfine
coupling to the nuclear spins is assumed to be of Heisenberg type [42]. The associated
material-specific strength of the hyperfine coupling for LiHoF4 is A = 39 mK. The CEF
term VCF is described by the common Stevens operators, which describe the orientational
dependence, and coefficients fitting to the experimental data provided by Chakraborty
et al. [41].

From the same Ref. [41], the electronic Landé factor g of a single Ho3+ ion is derived
from the Wigner-Eckardt theorem to be 5/4. In large crystals, small deviations from this
single-ion value are expected [19, 53]. We used g = 1.1, i.e., 12% lower than the single-
ion value to achieve good agreement with our experimental data. Our results remain
qualitatively unchanged without this adjustment, however there is a larger mismatch of
Bc/Tc compared to experiment. As will be shown later, the value of g additionally has
an influence on the stray-field energies and thus domains. The nuclear Zeeman term with
gN = 1.5 × 10−3 is included for completeness. Since the behavior of the nuclear spins is
dominated by the hyperfine coupling, its impact stays relatively small.

The energetic landscape of the crystalline electric field in LiHoF4 was already described
in detail in Sec. 1.2.1 and shown in Fig. 1.2.1 (B1). The relevant detail for our model is
the low-lying non-Kramers doublet with a large moment along the Ising axis, but non
perpendicular to it. As a result of mixing with higher CEF levels, the application of
a magnetic field along the hard axis x1 leads to the corresponding moment scaling as
〈Jx〉 ∝ B2, Fig. 1.2.1 (B2).

1Note: Here, we stick to the nomenclature established in Ref. [21]. This means, that the easy, crystalline
c-axis is denoted by z, x is the hard axis within the field plane and y the hard axis perpendicular to
the field plane.
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In contrast to theoretical work reported in the literature [41, 42, 68] where the ground-
state doublet was treated as a pseudospin 1/2, we keep the full 17-dimensional Hilbert
space. This way our calculation fully accounts for the non-Kramers physics. This proves
to be essential when describing the effects of an applied magnetic field in both the z and
the x direction.

Ferromagnetism in LiHoF4 is driven by interactions between the electronic spins of dif-
ferent Ho3+ ions, which involve both long-range dipolar and nearest-neighbor exchange
interactions. For simplicity, we model this combination by a nearest-neighbor Heisenberg
interaction K [68], recalling that the dominant source of magnetic anisotropy is the CEF
term.

Taken together, this leads to a microscopic Hamiltonian of electronic spins ~J and nuclear
spins ~I of the form

Hmic = −K
∑
〈ij〉

~Ji · ~Jj +
∑
i

[
VCF( ~Ji) + A~Ji · ~Ii

]
− µB ~B ·

∑
i

(g ~Ji + gN ~Ii), (2.4.4)

where 〈ij〉 runs over pairs of nearest neighbors. At this point the strength of the effective
interaction reduces to a fit parameter. For good agreement with the experimental critical
temperature Tc we choose K = 14.5 mK, which is consistent with the order of magnitude
of values estimated for the dipolar and exchange couplings in LiHoF4 [42].

Mean-Field Modeling The effects of fluctuations are suppressed due to the long-ranged
nature of the dipolar interaction in LiHoF4 and a mean-field treatment appears justified.
Within mean-field approximation, the Hamiltonian in Eq. (2.4.4) reduces to a single-site
problem

HMF
mic = −nK( ~J · ~̄J −

~̄J2

2 ) + VCF( ~J) + A~J · ~I − µB ~B · (g ~J + gN ~I), (2.4.5)

where n = 4 represents the number of nearest neighbors. Solving HMF
mic amounts to

the diagonalization of a 17× 8-dimensional matrix, supplemented by the self-consistency
condition ~̄J = 〈 ~J〉. All parameters used as well as the details of the derivation can be
found in Sec. 9.2 of Ref. [5].
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Figure 2.4.1.: Microscopic phase transition without magnetic domains. (A1) The field angle is

applied in the plane between one hard axis and the easy axis. (A2) The phase
transition is visualized for Φ = 0. The longitudinal (red arrows) and transverse
(black arrows) magnetization are visualized on the cube for increasing magnetic
field. At the critical field Bc, the longitudinal magnetization vanishes. (A3)
For Φ 6= 0°, the transition turns into a crossover with B∗, as the longitudinal
magnetization, thus the order parameter, stays finite for all field strengths. (B)
The zero-temperature phase diagram is shown as a colormap of the magnetic
susceptibility along the easy axis χzz as a function of B and Φ. From the quantum
critical point at Φ = 0 a line of crossovers at field B∗ emerges under tilted fields.
Figure adapted from Ref. [21].
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The resulting zero temperature phase diagram of this purely microscopic (i.e. single-
domain) scenario is displayed in Fig. 2.4.1.

Crossover in the Single-Domain Model To emphasize, why it is important to include
magnetic domains into the theory, this single-domain model will be analyzed at this point.
It simultaneously acts as a status quo of the microscopic description of LiHoF4 prior to
the work carried out as part of this project [21], since it captures the features of Landau
theory of a transverse-field Ising quantum phase transition, as described above.

Fig. 2.4.1 illustrates this single-domain model, calculated for T = 0. The field is applied
within the plane spanned by one hard and the easy axis, cf. Fig. 2.4.1 (A1). The angle Φ
measures the deviation of the magnetic field from perfect perpendicular alignment to the
easy axis. The situation for perfect transverse field (Φ = 0°) is shown in Fig. 2.4.1 (A2).
For zero field, the magnetization is oriented solely along the easy axis. Hence, the easy
axis magnetization is maximal (red arrow) and the transverse magnetization is zero (black
arrow). Increasing the magnetic field leads to an increase in the transverse magnetization
and a decrease in the longitudinal magnetization. Upon reaching the critical field Bc, the
longitudinal magnetization is zero and the magnetization is parallel to ~B.

For Φ 6= 0°, Fig. 2.4.1 (A3), however, this transition turns into a crossover with a char-
acteristic field B∗, above which the magnetization is parallel to ~B, but its longitudinal
component is non-zero.

The corresponding phase diagram as a function of magnetic field B and field angle Φ is
shown in Fig. 2.4.1 (B). The colormap shows the magnetic susceptibility along the easy
axis χzz. A quantum critical point (red) exists for Φ = 0° at Bc = 5.1 T, which evolves
into a line of crossover transitions for Φ 6= 0°, as shown in a dashed grey line. The
properties of this crossover are consistent with the results from Landau theory as outlined
above. Namely, the susceptibility χzB along the hard axis z with field change in the field
direction B displays a maximum as function of applied field at B∗, the location of which
is shown in Fig. 2.4.1 (B). At small angles, we find Bc −B∗ ∝ Φ2/3 as expected.

At Φ = 0, a first order transition occurs, since the easy axis field Bz = B sin(Φ) changes
sign and 〈Jz〉 < 0 goes to 〈Jz〉 > 0.
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(A) (B)

Figure 2.4.2.: Critical behavior of the susceptibility in the single-domain model. (A) zz-
component of the susceptibility, which represents the measured real part of the
susceptibility component in the single-domain model. (B) The critical behavior
with γ = 1 is visible at Φ = 0° and T = 0. Figure taken from Ref. [5].

Fig. 2.4.2 shows the magnetic susceptibility χzz along the easy axis, with field change along
the easy axis, for various orientations of the external magnetic field [5]. It corresponds to
the real part of the AC susceptibility measured in this thesis. A direct comparison to the
data, as in Fig. 2.3.5 (A), reveals significant differences. Not only does the single-domain
model lack a jump of χ′ at the phase transition, but also is for Φ 6= 0° no clear transition
visible in this choice of components of the susceptibility (zz).

For Φ = 0° however, the expected critical behavior with γ = 1 is found, see Fig. 2.4.2 (B).
This is observed for measurements with Φ = 0 as well, see Sec. 2.3.3. It thus follows
that the purely microscopic model is sufficient to describe experiments at Φ = 0°. Since
all susceptibility data published so far [4, 12] used perfect sample alignment, it becomes
clear, why our study was necessary to trigger further development of the theory. Only
under tilted fields Φ 6= 0° appear new features asking for more theoretical insights.

In the next section we will proceed with the importance of magnetic domains in the
LiHoF4 system and show how they improve the model.
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2.4.2. Mesoscopic Model

Magnetic Domains in LiHoF4 It is well-known, that ferromagnets exhibit magnetic
domains. As presented in Sec. 1.2.2, the formation of domains in LiHoF4 has been known
since the 1970s [53] and has since been the object of several experimental studies [53–57]
as well as theoretical work [41, 52, 84].

Magnetic domains form due to the stray-field energy, also referred to as demagnetization
energy. The magnetization of a sample creates a magnetic field around it. If the net
magnetization is large, the energy of the stray-field is large as well. The formation of
domains, areas with homogeneous magnetization pointing in different directions, allows
to minimize this energy significantly. Since it also costs energy to create the domain walls,
the border between two domains where the magnetic moments are not aligned in parallel,
the stray field effect is counteracted and domains typically have a finite size significantly
larger than the crystal lattice. The size of the domain walls is usually much thicker than
the lattice spacing and the magnetization changes gradually between domains.

Due to this interplay, the optimal domain pattern of a sample tends to be complex in
principle. Microscopic interactions and anisotropies influence the structure of domain
walls and the form of the domains. Hence, changes in T and B often directly impact
the domain pattern as the underlying mechanics changes. Defects in the lattice can pin
domain walls and stop their movement. Additionally, the sample geometry has a signifi-
cant impact on the domain shape, domains interact with the surface, for example in the
form of branching [58, 85]. The complexity of domain forms is captured in experimental
images of LiHoF4 as presented in Sec. 1.2.2, cf. Fig. 1.2.2.

Theoretical studies of LiHoF4 addressing the long-ranged dipolar interaction employed
an Ewald summation [86] or the reaction-field method [87]. The latter incorporates the
presence of domains by considering an imaginary microscopic sphere in an effective field of
surface charges [41], which breaks down to the use of a demagnetization factor. The former
naturally leads to domain formation in Monte Carlo simulations with a large enough unit
cell and appropriate boundary conditions [52]. In the study by Biltmo et al. [52] a domain
pattern of parallel sheets was found to be favorable at zero temperature for an effective
spin-1/2 model. The study however only focused on the zero field case.
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Domain Model As the simplest possible geometry, we assume an alternating domain
pattern as shown in Fig. 2.4.4 (A), where up and down domains are stacked along the
hard axis, with no field component along the stacking. This configuration has the lowest
energy in zero field, according to Ref. [52]. Ref. [5] notes, that a pattern with stacking
along the other hard axis is unfavorable due to charged domain walls.

The sample in this calculation is cubic, with a base length of L = 5 mm, about twice the
size of the experimental sample, as shown in Fig. 2.4.3 (A). N domains of each type (up
and down) are considered. To represent the approximate size of microns of real domains
in LiHoF4, a number of N = 200 domain pairs is chosen. Since the number of domains is
fixed, the variational parameter in this model is the volume ratio of the domains, called
shortly domain ratio. It is defined as

v = D2

D1 +D2
, (2.4.6)

with D1,2 the thickness of the up and down domain respectively, so that L = N ·(D1+D2).
The optimum of v is determined by energy mimimization and varies as a factor of magnetic
field and temperature [5, 21], cf. Fig. 2.4.3 (B, C). The details of the energy optimization
are beyond the scope of this thesis, for more information we refer to Refs. [5, 21].

The model assumes a homogeneous magnetization throughout all domains of each type.
While this idealization is not true for a cubic sample, where demagnetization effects are
present at the surface and edges of the sample, it is a good assumption, when a spherical
sample is used, such as the one in the experiment which is homogeneously magnetized.
This magnetization density can be related to the microscopic spins by ~m1,2 = gµb ~J1,2M/V

with the electronic g-factor g, the Bohr magneton µB, the number of lattice sites M and
the sample volume V . Nuclear spins are neglected, since they are suppressed by their
significantly smaller g-factor.

The domain energy terms are quadratic in the magnetization, thus also in spin and can
therefore be seen as effective interactions between the microscopic moments ~J . Hence,
the domain energy can be written as [21]

Edom = M
∑
α

(
cα1 J̄

α
1 J̄

α
1 + cα2 J̄

α
2 J̄

α
2 + cα12J̄

α
1 J̄

α
2

)
, (2.4.7)

with the coupling parameters cα containing the domain wall energies as well as the po-
tential energy contributions of the surface charges by the magnetization along α = x, y, z.
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(C)(B)

(A)

Figure 2.4.3.: The domain model used in the theory. (A) Sheet like arrangement of the magnetic
domains stacked along one easy axis. The magnetic field is applied in the plane
of the sheets. (B) Free energy as a function of domain ratio for T = 0, Φ = 6°
and various fields. The optimal domain ratio v∗ is found at the minimum of the
free energy. (C) v∗ as a function of field B for various field angles Φ. Figure taken
from Ref. [21].

The above mentioned energy minimization determines these parameters, which are used
in the combined mean-field model.
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Chapter 2. AC Susceptibility in Transverse Magnetic Fields

Combined Mean-Field Hamiltonian The microscopic Hamiltonian Eq. (2.4.5) as well
as the domain energies Eq. (2.4.7) may at this point be combined in a final model. By
introducing domain independent mean-fields ~̄J1,2 as well as neglecting the microscopic
interactions across domain walls, the microscopic Hamiltonian Hmic is translated in two
independent mean-field problems for each domain, Eq. (2.4.8) and (2.4.9). Interactions
between the domains are turned into effective mean-field interactions. The two coupled
mean-field Hamiltonians are [21]

HMF
1 =

(
−n2K + cx1

1− v

) (
2J̄x1 Jx1 − (J̄x1 )2

)
+ cx12

1− v

(
J̄x2 J

x
1 −

1
2 J̄

x
1 J̄

x
2

)
+

(
−n2K + cz1

1− v

) (
2J̄z1Jz1 − (J̄z1 )2

)
+ cz12

1− v

(
J̄z2J

z
1 −

1
2 J̄

z
1 J̄

z
2

)
− n

2K
(
2J̄y1Jy1 − (J̄y1 )2

)
+Hion( ~̂J1), (2.4.8)

and

HMF
2 =

(
−n2K + cx2

v

) (
2J̄x2 Jx2 − (J̄x2 )2

)
+ cx3

v

(
J̄x1 J

x
2 −

1
2 J̄

x
1 J̄

x
2

)
+

(
−n2K + cz2

v

) (
2J̄z2Jz2 − (J̄z2 )2

)
+ cz12

v

(
J̄z1J

z
2 −

1
2 J̄

z
1 J̄

z
2

)
− n

2K
(
2J̄y2Jy2 − (J̄y2 )2

)
+Hion( ~̂J2), (2.4.9)

with the self-consistency conditions

~̄Jn = 〈 ~Jn〉, (2.4.10)

which are solved iteratively and where the expectation value is taken with respect to
HMF
n . This is equivalent to promoting Edom Eq. (2.4.7) to a bilinear Hamiltonian and

using mean-field notation to decouple its interaction terms, thus producing terms of the
form J̄α1 J

α
1 etc. The total energy then may be written as

EMF
tot = M(1− v)〈HMF

1 〉+Mv〈HMF
2 〉 . (2.4.11)
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The optimum domain ratio v∗ is then obtained for each set of parameters (B, T, φ) by min-
imizing the free energy F (v). Taken together, Eqs. (2.4.8-2.4.10) form the model, which
combines and consistently describes the domain energy term, microscopic interactions as
well as the interplay of stray-field effects with the microscopic expectation values.

Mesoscopic Model in Tilted Fields After this overview of the mesoscopic (multi-
domain) model, we want to present its behavior in tilted magnetic fields to emphasize
the improvements compared to the purely microscopic (single-domain) model.

As described in Sec. 2.4.1, the magnetic field is applied in the plane spanned by one hard
axis and the easy axis. The field angle Φ is defined to be zero, when perfectly perpendicular
to the hard axis, representing the experimental configuration, cf. Fig. 2.4.4 (A1).

Within the ferromagnetic phase, at fields below Bc, it is favorable for the system to create
a domain pattern with up and down domains stacked along one hard axis, with the easy-
axis magnetization alternating, as discussed above and shown in Fig. 2.4.4 (A2). For
perfect field alignment, Φ = 0°, the transition from the ferromagnetic multi-domain to
the field polarized single-domain state coincides with the microscopic ordering transition
at Bc. As seen in Fig. 2.4.5 (A2), the magnetization along the easy axis approaches zero
simultaneously for both domains and the volume ratio v of both domains stays the same
at v = 0.5. This is shown quantitatively in Fig. 2.4.5 (A1), where the magnetization of
the up and down domains along the easy z-axis is displayed in cyan and the domain ratio
v is shown in brown.

Under tilted magnetic fields, Φ 6= 0°, the volume fraction of the minority domains de-
creases continuously with increasing field, characterizing a second-order phase transition
at Bc, where v reaches zero. As shown quantitatively in Fig. 2.4.5 (A2) and depicted in
Fig. 2.4.4 (A3), the domain ratio decreases monotonously. This decrease is linear close to
the phase transition [5] and for larger angles the linear regime expands towards B = 0 T.
Again, the magnetization along the hard axis increases with field and the magnetization
of both domains along the easy axis decreases. Above Bc the magnetization in the single
domain polarized state points along the field direction. Looking into the magnetization
in detail, cf. Fig. 2.4.5 (A1, A2), reveals that the magnetization in each domain behaves
the same for Φ = 0° and Φ = 3°. But only for the optimal orientation, the microscopic
transition, where Jz reaches zero coincides with the vanishing of the minority domains.
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Figure 2.4.4.: The multi-domain model of transverse field QPT and mesoscale QPT. (A1) The
field angle is applied in the plane between one hard axis and the easy axis. (A2)
The transverse field QPT is visualized for Φ = 0. The longitudinal (red arrows)
and transverse (black arrows) magnetization are visualized on the cube for increas-
ing magnetic field. The minority domains are shown in blue and majority domains
in white, respectively. At the critical field Bc, the longitudinal magnetization van-
ishes in both domain types simultaneously. The domain ratio v is constant up
to the critical field. (A3) For Φ 6= 0°, both the longitudinal magnetization in the
domains as well as the volume fraction of the minority domains v decreases with
increasing field. At the critical field, v vanishes. (B) The zero-temperature phase
diagram is shown as a colormap of the magnetic susceptibility along the easy axis
χzz as a function of B and Φ. From the transverse field quantum critical point
at Φ = 0 a line of quantum critical points emerge under tilted fields. The exper-
imental datapoints for the critical field at T = 67 mK (green circles) are in good
agreement with this theory. Figure adapted from Ref. [21].
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For tilted fields, the minority domains vanish much earlier and the average magnetization
approaches the magnetization of the majority domains at the transition.

Based on this, an alternative order parameter can be defined, in terms of the difference
of the easy axis magnetization of the majority domain and the average magnetization
in that direction [5], which shows critical behavior β = 1/2 only for Φ = 0° and β = 1
otherwise.

These observations are summarized in the B-Φ-phase-diagram shown in Fig. 2.4.4 (B). In
very good agreement with our experimental data (green circles), a line of sharp second-
order phase transitions (red line) expands from the quantum critical point. The strong
polarization along the easy axis is suppressed by application of the magnetic field. The
magnetic susceptibility is large within the ferromagnetic multi-domain state and only
limited by the demagnetization factor of the sphere.

2.4.3. Comparison of Experiment and Theory

Magnetization along specific directions and domain ratios are difficult to evaluate experi-
mentally. Therefore the magnetization along the field direction is shown in Fig. 2.4.5 (B1).
It shows a kink at the phase transition, highlighted by an arrow. In comparison to the AC
susceptibility, this feature is significantly less pronounced and makes the determination
of Bc difficult from this quantity alone [44].

The phase transition is characterized by a jump in the magnetic susceptibility along the
easy axis, as shown in Fig. 2.4.5 (B2). Both experimental results for T = 67 mK (solid
lines) and theoretical results for T = 0 K (dashed lines) are in very good agreement in
the field polarized state at high fields. While the theoretical results show a sharp jump at
Bc, the experimental data are rounded in this regime. Nonetheless, the definition of the
location of Bc as the point, where χ′ deviates from the high field behavior2 is confirmed as
a good choice, since this point is very similar in both theory and experiment. The rounding
effect in the experiment is expected, since the theory assumes ideal homogeneous stray
fields. In the real sample, however, these stray fields are likely inhomogeneous and the
domains vanish at different external fields, depending on their position within the sample.
Imperfections in the spherical sample shape enhance this effect. This further highlights

2See Sec. 2.2.5 and Fig. 2.2.7 for the exact definition.
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Figure 2.4.5.: Results of the magnetization and susceptibility from the multi-domain model.
(A1) For Φ = 0°, the domain ratio (brown) is constant up until the phase tran-
sition, where it jumps to zero. The magnetization along the easy axis Jz for the
up and down domains (cyan) goes continuously to zero at the phase transition.
(A2) For Φ = 3° the domain ratio decreases continuously and reaches zero at the
phase transition. Jz is finite over the whole field range. (B1) The magnetization
along the field direction JB displays a small kink at the phase transition. (B2) In
the experimental (solid lines) and theoretical (dashed lines) data of the transverse
susceptibility, the transition is clearly visible as a jump. (C) The phase bound-
aries from theory (dashed lines) and experiment(solid lines) are compared in the
B-T -phase-diagram. Figure taken from Ref. [21].
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the importance to use a spherical sample compared to cuboids, where this effect will be
even more pronounced.

Decreasing the field below Bc leads to the formation of a plateau in both experiment and
theory, before χ′ goes to zero for B < 2 T in the experiment. In the data for the imaginary
part χ′′ is a peak visible at this drop. As explained earlier, this is a sign of a dissipative
process, previously identified with the freezing of domain wall motion. Dynamic and
dissipative effects however are beyond the current modelling, which assumes a static
susceptibility χzz(f = 0) and therefore cannot replicate such effects [5]. It should be noted
at this point, that the AC susceptibility measured at f = 511 Hz can be considered quasi-
static for the comparison with theory, since the electronic energy scales are significantly
larger, and the crystal field energies in the range of several Kelvin translate into the GHz
frequencies.

While it is shown here only for T = 0 K, the qualitative theoretical findings are basi-
cally unchanged for finite temperatures [5, 21]. The corresponding results are shown in
the magnetic phase diagram in Fig. 2.4.5 (C). Theory and experiment agree over a wide
temperature and field range.

Especially the surprising sensitivity of the transition field Bc to small tilt angles and the
disappearance of the inflection point in the phase boundary as a function of temperature
for Φ > 5° is captured by the theory very well. Both effects can only be replicated by
including the interplay of non-Kramers physics and strong hyperfine coupling [21], as
depicted in Fig. 2.4.6.

Due to the crystal field environment the magnitude of the magnetic moment |J | is not
constant as a function of B, cf. Fig. 2.4.6 (B1). While the easy axis component decreases
slowly, the field induced hard axis component increases quadratically, since its forma-
tion requires a interaction of the non-Kramers doublet states with higher CEF states
[21]. As a result, |J | has a minimum at Bc. With increasing angle Φ this minimum gets
less pronounced, cf. Fig. 2.4.6 (B1). Since the hyperfine coupling A energetically prefers
large electronic moments |J |, it stabilizes the ferromagnetic with respect to the param-
agnetic phase for temperatures T < 0.5 K as more hyperfine energy can be gained by
anti-alignment of nuclear spins if |J | is larger, cf. Fig. 2.4.6 (A1). This leads to the low-
temperature ”nose” feature in the phase boundary [12], see Fig. 2.4.5 (C). As the variation
of |J | gets less pronounced with increasing tilt angle Φ, the energy gain of the ordered
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Figure 2.4.6.: Interplay of hyperfine coupling with the non-Kramers ground state at zero tem-
perature. Treatment of the Ising anisotropy in terms of the non-Kramers full
crystal field terms is denoted (CF). Treatment of the Ising anisotropy in terms
of a simple single-ion anisotropy acting on a Kramers moment is denoted (SIA).
(A1) Calculated critical field, Bc, as a function of Φ, with and without hyper-
fine coupling A, while the full crystal-field Hamiltonian is taken into account. Bc
exhibits a strong dependence on Φ, when hyperfine coupling is included. (A2)
Bc as a function of Φ with and without hyperfine coupling A, where the Ising
character is accounted for by a SIA acting on a Kramers moment. The critical
field does not exhibit a substantial dependence on the hyperfine coupling and the
sensitivity of Bc to changes of φ is much reduced. (B1) The electronic moment of
the Ho ion, |J | =

√
〈Jx2 + Jy2 + Jz2〉, as a function of field. Within the ordered

phase it is significantly enhanced. (B2) |J | is essentially field-independent. The
tiny variation of |J | under these conditions, highlighted in the inset, reflects the
hyperfine-induced entanglement of the electronic moment with the nuclear spin.
Figure taken from Ref. [21].
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phase is only slightly enhanced by the hyperfine interaction. This explains both the ab-
sence of the ”nose” of the phase-boundary for Φ > 5° and the strong variation of Bc

for Φ < 5° as shown in Fig. 2.4.5 (C), Fig. 2.3.7 (A), and Fig. 2.3.5. In short, tilted fields
rapidly eliminate the non-Kramers variation of |J | and hence the hyperfine-induced en-
hancement of Bc. If only a simple single ion anisotropy is considered instead of the full CF
scheme, Bc is less sensitive to the tilt angle and the hyperfine coupling A has no impact,
cf. Fig. 2.4.6 (A2). This is due to |J | being basically independent of the magnetic field B

as shown in Fig. 2.4.6 (B2). For a more detailed analysis of the non-Kramers physics refer
to the Supplementary Information of Ref. [21] and Cha. 10.5 of Ref. [5].

The largest discrepancies are found around the thermal phase transition, which is common
for theoretical work and also observed in Refs. [41, 68]. A good match of both Tc and Bc

strongly depends on the g-factor. Our work uses g = 1.1, 12% below the literature
value of g = 1.25 found with various techniques [19, 22, 43]. Mean field models, such as
the presented multi-domain model tend to overestimate order, thus it is not surprising
that Tc is larger in the theory. Moreover, we found a re-entrant behavior near the thermal
transition, shown in Fig. 2.3.7 (C). This feature is not replicated by the calculations. Taken
together with the mismatch of Tc, this suggests, that additional mechanism might be
present, which suppress magnetic order at elevated temperatures, which are not part of
the current model.

Earlier, in Sec. 2.3.3, it was shown that the experimental AC susceptibility χ′ displays
a critical behavior with γ = 1 for perfect transverse field, i.e. Φ = 0°. For Φ 6= 0°
however the critical power law cannot be observed, rather χ′ is constant at large angles.
Similarly, an analysis of the order parameter susceptibility in Ref. [5] reveals that within
the multi-domain state only for Φ = 0° a mean field exponent of γ = 1 is observed.
For tilted fields, the order parameter susceptibility approaches a constant at the phase
transition (γ = 0), as shown in Fig. 2.4.7 (A). This is closely connected to the domain
ratio v, which mirrors this behavior (B). For Φ = 0, the domain ratio is constant and thus
all domains have the same size near the phase transition. In this regime, microscopical
criticality is observed, characterized by an increasing correlation length [5]. In tilted
fields however the correlation length is constant and the domain ratio goes to zero. The
position of the crossover between the regime of domain-driven criticality and microscopical
criticality could not be determined exactly by the model, since computation near the phase
transition and at smallest angles is numerically difficult [5].
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Figure 2.4.7.: The order parameter susceptibility χOP in the ordered phase diverges with the
mean-field exponent γ = 1 in transverse field and approaches a constant (γ = 0)
in tilted fields (A). This change of the critical exponent mirrors the deviation of
the optimal domain ratio from its Φ = 0 value v = 0.5 (B) and thus separates
microscopic and domain-driven criticality. Figure taken from [5], with updated
labels to adjust the notation.

It needs to be noted, that the calculation shown here is valid within the multi-domain
state and is thus not directly comparable to the analysis presented in Sec. 2.3.3, which
was done above Bc in the field polarized state. Nonetheless gives this comparison insight
in the sensitivity of the transition to the field angle and the aspects of the domain-driven
transition.
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2.5. Summary and Outlook

In this chapter, the transverse susceptibility of the dipolar Ising ferromagnet LiHoF4

was investigated as a function of field, temperature and field angle. In the first part
the technique of AC susceptibility was introduced, followed by a detailed description
of the experimental setup. Special attention was brought to the sample alignment and
corresponding error estimates, since a good angular precision proved crucial for this study.

In the third section, an overview of the data collected was given. We determined the
magnetic phase diagram as a function of field and temperature for fields perfectly perpen-
dicular to the easy c-axis and for tilt angles Φ = 1°, 2°, 5°, 10° and 15°. As a main result,
we observed a strong dependence of the critical field on the field orientation as well as a
disappearance of the hyperfine enhanced ferromagnetic regime at low temperatures and
high fields. Already tilt angles as small as 1° change the form of the AC susceptibility sig-
nal significantly, as the kink in χ′ at the phase transition observed at perfectly transverse
field develops into a jump of χ′.

The regime at low fields B < 2 T and temperatures T < 0.4 K, where freezing of the
domain wall motion suppresses the AC susceptibility signal was found to be independent
of the field orientation. This is consistent with the picture of domain walls pinning to
crystalline defects, since those are intrinsic to the material and not influenced by the
direction of the applied magnetic field.

In agreement with the findings of Ref. [4], we observe discrepancies to the published mean-
field behavior around Tc. Not only is the measured critical temperature lower than the
calculated value, but more importantly we find that Tc is slightly enhanced around B =
1 T compared to zero field. Future efforts of the theoretical modeling might concentrate
on this aspect, which suggests additional underlying interactions. This feature appears to
be independent of the field angle and only disappears, when the critical field is reduced
significantly due to tilted field.

Field sweeps of the AC susceptibility for various field angles revealed, that a clear phase
transition with a sharp jump of χ′ is observed at finite angles. As a result the form of
the transition changes significantly and the critical behavior with γ = 1 at Φ = 0° can no
longer be identified in tilted fields.
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Since the transition observed in tilted fields is in stark contrast to the expected crossover
from Landau theory, an advanced theoretical description was developed [5, 21] by includ-
ing a mesoscopic model of the magnetic domains and considering the non-Kramers physics
of the CEF instead of treating the system as spin 1/2. These two new aspects go beyond
previous modeling [12, 14, 41, 42] and prove do be key to understand the experimental
observations.
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3. Caloric Properties under Transverse
Magnetic Fields

As part of this thesis, two caloric properties were investigated, namely the specific heat
and the magnetocaloric effect. By combining the two observables, the entropy of LiHoF4

can be studied. This chapter provides an overview of the experimental principles and
setup, followed by a presentation of the results and their discussion in the context of the
theory described in the previous chapter.

3.1. Experimental Techniques

3.1.1. Theoretical Foundations

For the experiments reported in this thesis, the entropy S, heat capacity C and thermal
conductance k play an important role and will be described in this section.

Entropy In statistical physics, the entropy is defined as

S = kB ln Ω, (3.1.1)

where kB is the Boltzmann constant and Ω is the accessible phase-space, typically de-
scribed by the systems particle number, energy, volume and pressure. In a quantum
mechanical sense it is the number of accessible states in the microcanonical ensemble.
Therefore, the entropy is a measure of the systems degrees of freedom and highly ordered
systems have smaller entropy.
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A system of N independent particles in an external magnetic field ~B may also be described
by its internal energy U , the total differential of which reads

dU = TdS − pdV − V ~M · d ~B. (3.1.2)

Here, T is the temperature, S the entropy, p the pressure, V the volume, ~M the magne-
tization and ~B the applied magnetic field. The first term TdS = δQ is the applied heat,
which leads to the second law of thermodynamics

dS ≥ δQ

T
, (3.1.3)

stating that in any process in a closed system, the entropy never decreases. In Eq. (3.1.3)
the equality holds for reversible processes in closed systems or quasi-static processes if
the system is not closed. Furthermore, the third law of thermodynamics states that the
entropy approaches zero at zero temperature.

Heat Capacity The heat capacity of a system is defined as

C = δQ

dT
= T

δS

δT
(3.1.4)

the heat change in a system per temperature change. It is therefore a measure of the
energy content of a material, directly related to the entropy. The term specific heat
describes the heat capacity per particle number or mass of material.

In the context of this thesis the heat capacity per Ho-ion will be reported. It proves to
be helpful to compare the molar heat capacity to the universal gas constant R = NAkB ≈
8.314 J/mol K, where NA is Avogadro’s number. C/R therefore gives the specific heat per
Ho-ion in units of kB.

There are several contributions to the heat capacity of a system. The phononic con-
tribution was described by Debye [88]. In an isotropic (cubic) system at temperatures
significantly below the Debye temperature T � ΘD, the phononic heat capacity can be
written as [89]

Cph = 12/5π4NAkB

(
T

ΘD

)3
. (3.1.5)
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The experiments in this thesis were performed at temperatures below T < 4 K, well below
the Debye temperature of LiHoF4 ΘD ≈ 600 K [37]. At such low temperatures, the lattic
contribution to the heat capacity played a minor role.

In addition to the lattice vibrations, the conduction electrons in metals also contribute to
the heat capacity. Since electrons are Fermions they obey the Pauli principle. Therefore
the electrons fill energy states up to the Fermi energy EF = kBTF, with TF the Fermi
temperature. The electronic specific heat is given by

Ce = π2/2NAkB
T

TF
= γT, (3.1.6)

where γ is the Sommerfeld constant tabulated for most metals [89]. While LiHoF4 is an
insulator, the electronic heat capacity plays an important role for the low temperature
contribution to the specific heat of the sample support, which was made of silver.

A very important contribution at low temperatures originates in the energy levels of
a magnetic system. Crystalline electric field levels are one prominent example of special
relevance to LiHoF4. The canonical ensemble of such a system is described by its partition
function

Z =
∑
i

exp(−Ei/kBT ), (3.1.7)

with the energy levels Ei. The occupation of a single level is given by

P (Ei) = exp(−Ei/kBT )/Z. (3.1.8)

The internal energy of the system then reads

U =
∑
i

P (Ei)Ei. (3.1.9)

The specific heat can be derived from this energy as [43]

C/R = 1
N

δE

δT
(3.1.10)

resulting in

C/R = 1
(kBT )2

∑
ij(E2

i − EiEj) exp(−(Ei + Ej)/kBT )∑
ij exp(−(Ei + Ej)/kBT ) . (3.1.11)

The specific heat therefore shows a maximum depending on the distribution of the energy
levels. Such a maximum is referred to as a Schottky anomaly. For a simple two level system
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with E0 = 0 and E1 = ∆E, one finds the location of the maximum with 0.42∆E ≈ kBT .
Below, the maximum the specific heat rises exponentially, while it falls off with 1/T 2

above the maximum. For a magnetic system, the value of the maximum Cmax/R as well
as its position rise with increasing spin or nuclear moment.

LiHoF4 also displays a Schottky anomaly at low temperatures, originating from the hyper-
fine interaction of the Ho-ions (I = 7/2) [43] described in detail in Ref. [5] and introduced
in Eq. (2.4.4). From these hyperfine levels, one expects a peak at T ≈ 0.2 K with a value
of Cmax/R ≈ 0.9 [43]. At larger temperatures, additional peaks are expected originating
from the CEF levels, depicted in Fig. 1.2.1.

For the investigation of phase transitions, the following characteristics of the heat capacity
are helpful. At a first order phase transition, latent heat and a discontinuity in the entropy
is observed, resulting in diverging heat capacity. At a second order phase transition, the
change of entropy is continuous, but the heat capacity shows a discontinuity.

Thermal Conductance The thermal conductance describes the rate of heat flow under
a temperature gradient. While not a primary observable of the experiments presented in
this thesis, the absolute thermal conductance

k = Q̇

∆T (3.1.12)

is important for the design of the experimental setup. Since the heat flow depends on the
cross section A and the length l of the material, where the heat is transported through,
the specific thermal conductivity is defined as

κ = k · l/A. (3.1.13)

The transport of heat in non-magnetic materials, such as the experimental setup, has two
major sources, electrons and phonons. The lattice thermal conductivity is given by

κph = 1
3
Cph

Vm
vsλph, (3.1.14)
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with the factor 1/3 due to three dimensions, Cph the phononic heat capacity, λph the
phonon mean free path and vs the speed of sound [89]. At low temperatures, it is propor-
tional to the phononic specific heat as well as the phonon mean free path and thus

κph ∝ T 3λph, atT ≤ ΘD/10. (3.1.15)

At even lower temperatures, the phonon density is low and phonon-phonon scattering
unlikely, thus the phonon mean free path is constant. Therefore at very low temperatures,
as in the experiments presented below, the thermal conductivity is only proportional to
[89]

κph ∝ T 3, atT � ΘD. (3.1.16)

As a result of the absence of phonon-phonon scattering, defects and impurities play a
important role for the heat transport at low temperatures. Hence, pure materials have a
better thermal conductivity. These effects are rather complex and will not be discussed
in detail. In literature the following contributions are reported [89]:

λph = const. phonon-grain boundary scattering
λph ∝ T−1 phonon-dislocation scattering (3.1.17)
λph ∝ T−4 phonon-point defect scattering

Heat transport originating from conduction electrons in metals is described by

κe = 1
3
Ce

Vm
vFλe, (3.1.18)

with vF the Fermi velocity, Ce the electronic heat capacity and λe the electronic mean
free path [89]. In typical metals, the Fermi velocity is much larger than the velocity of
sound vs � vF. In turn, the electronic thermal conductivity is significantly larger than the
phonon contribution. As for phonons, the electronic mean free path at low temperatures
is constant and thus the thermal conductivity tracks the temperature dependence of the
electronic heat capacity

κe ∝ Ce ∝ T. (3.1.19)

All these mechanisms play an important role for the design of the heat capacity setup for
measurements in the mK-regime, presented in Sec. 3.2.
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Figure 3.1.1.: Signal shape for the two most common adiabatic heat capacity techniques. (A)
The heat pulse method (HPM) relies on a well defined heat pulse of length ∆t,
that raises the temperature by ∆T . (B) In the continuous heating method (CHM),
the heater is on during the whole measurement and the slope of the temperature
δT/δt is measured.

3.1.2. Specific Heat Measurements

Since the pioneering work by Eucken and Nernst [90, 91], several experimental methods
were developed to determine the heat capacity of materials at low temperatures. A
review of those methods can be found in Refs. [92, 93]. Two classes of experiments can
be distinguished in terms of the thermal coupling between the sample and a heat bath.
Typical adiabatic and non-adiabatic methods with their benefits and challenges will be
presented to motivate the choice for the non-adiabatic thermal relaxation method in this
study followed by a detailed description of this method.

Adiabatic Methods aim to decouple sample and setup thermally from the surroundings.
Important examples are the heat pulse method (HPM) as well as the continuous heating
method (CHM). In the HPM [43, 94, 95] the relation C = lim∆T→0(∆Q

∆T ) is used to infer
the heat capacity of the sample by applying a well defined heat pulse ∆Q = P ·∆t and
measuring the resulting temperature difference ∆T . A schematic heating curve is shown
in Fig. 3.1.1 (A). As may be seen, the system needs some time to equilibrate after the
heater is turned off.

At low temperatures, the study of small samples is limited by the contribution of the
electrical wiring to the thermal conductance to the bath. These cannot be avoided and
lead to considerable heat loss. On the other hand, when large samples are studied heat
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switches are required for cooling the sample in the first place, adding technical complexity
to the setup. The HPM is widely used, for instance, in measurements of the specific heat
of low temperature antiferromagnetic samples in magnetic fields [96, 97]. By waiting for
platform and sample to equilibrate this method avoids complications originating from
poor thermal coupling between sample and platform. These so called τ2-effects will be
discussed in greater detail below when presenting the thermal relaxation method and the
setup used in this work.

The CHM [98, 99] exploits the relation C = δQ
δT

= Q̇
Ṫ

. Thus the heat capacity is inferred
from the slope of the temperature δT/δt, while a constant power P = δQ/δt = Q̇ is
applied to the platform, as shown in Fig. 3.1.1 (B). Due to the small thermal link, the
heat flow from the sample to the bath is minimal and the sample temperature rises
continuously. Only changes of the heat capacity can be extracted from the slope of the
curve. As a consequence it is necessary to determine the absolute specific heat at the start
of the measurement using another method. The great strength of this technique lies in the
fast measurement times as data are acquired during a temperature scan. Furthermore,
changes in the heat capacity, e.g. at thermal phase transitions, may be resolved with such
improved resolution. This method is challenging to implement for measurements spanning
the 0.1 K to 10 K regime, since both the specific heat and thermal conductivity change
drastically in this temperature range.

Similar to the CHM is the large pulse method, used in the Quantum Design PPMS systems
[100, 101], which is also based on the derivative of the temperature trace. However, it is
effectively a non-adiabatic method due to the much stronger thermal coupling between
platform and bath.

Non-Adiabatic Methods determine the heat capacity, while the sample is thermally
coupled to the heat bath in a non-negligible strength. The correct choice of this heat link
defines the time constant τ1 characterizing the relaxation to thermal equilibrium between
platform and heat bath. Two main techniques fall in this category, the AC method (ACM)
and the thermal relaxation method (TRM), the latter was used in this thesis and will be
introduce in more detail below.

The ACM, first described by Sullivan and Seidel [102], employs a sinusoidal AC heating
power to determine the heat capacity from the temperature oscillation, permitting data
can be recorded also while changing other external parameters such as magnetic field. A
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Figure 3.1.2.: Signal shape for the two non-adiabatic heat capacity measurement techniques. (A)
The AC method measures the temperature response to a sinusoidal heater power.
(B) The large pulse method determines δT/δt, similar to the CHM. Changes in
the heat capacity, e.g. at phase transitions, are visible as kinks (red circles).

schematic temperature signal of this technique is shown in Fig. 3.1.2 (A). Due to the strong
thermal link, no heat switch is necessary to cool even large samples to low temperatures.
A correct choice of the frequency with respect to the relaxation times of sample and
addenda is crucial. Compared to the TRM presented below, the ACM is inaccurate if the
sample has a low thermal conductance. Furthermore, the technique is most reliable when
measuring relative changes of the heat capacity in the presence of a large addenda [93].
Therefore, this method can be limited at lowest temperatures compared to the TRM or
needs to be complimented with TRM to obtain a precise starting point of the heat capacity
from which relative changes are tracked. A recent example of this technique is the AC
setup reported by Rost et al. [103] which is capable of withstanding the mechanical forces
generated at the metamagnetic transition of Sr3Ru2O7.

More exotic methods involve the measurement of the thermal conductivity and heat ca-
pacity at the same time, by observing the heat flow through a sample with a heater at
one side and the bath on the other [104].

As mentioned above, by knowing the thermal conductance between bath and platform
the heat capacity can be inferred from the relation C = dQ

dT
= Q̇

Ṫ
under non-adiabatic con-

ditions as well. The large pulse method [105, 106] measures the slope of the temperature
during long and large heating pulses, where the temperature of the sample changes by
typically 10-30%. Fig. 3.1.2 (B) visualizes a typical signal, kinks in the temperature curve
indicate large changes in the heat capacity, for example at phase transitions.
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Figure 3.1.3.: The relaxation time method for heat capacity measurements. (A) Schematic setup
and key variables. (B) Idealized heat pulse comprising three phases.

The Thermal Relaxation Method (TRM) first reported by Bachmann et al. [107]
in 1972 was chosen for the work presented in this thesis. It exploits the characteristic
exponential relaxation of the platform temperature towards the bath temperature after a
heat pulse. The heat capacity is then extracted from the characteristic time scale τ1. The
data analysis is based on the algorithm presented by Hwang et al. [108], which is rather
sophisticated and especially designed for this kind of experimental setup. The initial focus
of this technique lied on small sample sizes [107, 109] and the usage in the mK-regime
[110], where the TRM performs better as compared to the adiabatic methods, due to the
reliable cooldown through the thermal link. Additionally, automation and data analysis
tools [108, 111] were developed.

Fig. 3.1.3 (A) depicts the minimal experimental setup needed for this method. It consists
of a thermal bath with a constant temperature Tb. Connected to the bath via a thermal
link with thermal conductance kl is a platform with heat capacity Cp and temperature
Tp. Applying the power P (t) heats the platform. A sample with heat capacity Cs and
temperature Ts is connected to the platform and the corresponding thermal conductance
is ks.

To measure the heat capacity of the sample C = Cs at a given temperature T and
magnetic field B, a certain measurement protocol is used, resulting in a heat pulse. A
typical curve is shown for an idealized experiment (ks =∞;Cp = 0) in Fig. 3.1.3 (B). Each
heat pulse may be separated in three phases. In phase I the heater is off and the sample
is in thermal equilibrium with the platform and the bath. If both are not in equilibrium
due to changes in B, T before the measurement, this phase is extended until thermal
equilibrium between bath and platform is reached. The sample temperature is constant
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at the temperature of the bath T = T0, the base temperature. In phase II, the heater
is turned on, leading to a rise of the platform temperature. It reaches a constant value,
when a balance between the heater power and the heat flux to the bath Q̇ = k(T − T0)
is reached and the sample and platform are warmed up. The heating curve follows a
characteristic exponential dependence

T (t) = T1 + (T0 − T1)e− k
C

(t−t1) = T1 + (T0 − T1)e−
(t−t1)
τ . (3.1.20)

Phase III begins, when the heater is turned off and the platform temperature relaxes
back to the base temperature T0

T (t) = T0 + (T1 − T0)e− k
C

(t−t2) = T0 + (T1 − T0)e−
(t−t2)
τ . (3.1.21)

Here, C = Cs is the sample heat capacity and k = kl is the thermal conductance of the
link. It can be determined in the steady state with the heater turned on, at the end of
phase II from the applied power and temperature difference k = Q̇

T1−T0
. Above, we have

also introduced the relaxation time
τ = C

k
(3.1.22)

as the time constant of the exponential time dependence. A typical heat pulse recorded at
T = 210 mK, B = 5.1 T and Φ = 0° and the associated fit using the algorithm of Hwang
et al. [108] described below is shown in Fig. 3.1.4. The pulse is shown as the temperature
difference ∆T = T − T0 compared to the baseline in percent as a function of time t in
seconds. At t = 0, the heater is turned on and a jump ∆T2 of the temperature is recorded.
The experimental heat pulse differs from the idealized pulse described above. It allows to
illustrate the challenges of the TRM and non-adiabatic methods in general.

The most important difference is the jump ∆T2, when the heater is turned on and off. It
may be attributed to the so-called τ2-effect, which originates from the heat capacity of the
platform Cp and the thermal link between sample and platform ks neglected so far. For
a finite heat capacity of the addenda and a finite thermal conductance between platform
and sample, a second relaxation time τ2 is observed. In this regime the thermometer,
heater and platform heat up much faster than the sample, since these components have a
much smaller specific heat. Therefore, the τ2-effect effect appears as a jump in Fig. 3.1.4,
as τ2 ≈ 10−2 τ1 in the experiments presented in this thesis.

The analysis and reduction of this effect was in the focus of the development of the TRM
[107, 109, 111, 112]. A good summary of the τ2-effect may be found in Ref. [113]. To
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Figure 3.1.4.: Typical heat pulse at a base temperature of T = 210 mK, a magnetic field of
B = 5.1 T and Φ = 0°. Only every tenth data point is shown, representing a
spacing of 1 second between two points. See text for details on the temperature
differences ∆T∞, ∆T1 and ∆T2 as well as the τ2 effect.

understand the phenomena in this thesis it is sufficient to know that the relaxation time of
the addenda is proportional to the heat capacity of the addenda τ2 ∝ Caddenda, representing
the whole setup (platform, heater, thermometer, etc.) combined. Furthermore, also the
height of the jump ∆T2, or more accurately the ratio of ∆T1 to ∆T2, depends on the ratio
of kl to ks. The larger ks is as compared to kl, the smaller ∆T2. This is due to the fact,
that a smaller temperature gradient between sample and platform is needed to achieve
the same heat flow, if ks is large.
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The Curve Fitting Method (CFM) provides a practical solution to the τ2-effect by
including it in the fitting algorithm developed by Hwang et al. [108]. This algorithm was
used to fit the data presented in this thesis. Hwang et al. developed a fitting routine,
which takes the full response of a calorimeter into account and makes it applicable for all
heat pulse based methods, ranging from TRM to HPM type setups. This allows to extend
the temperature range of measurements as the choice of the thermal link becomes less
important and the τ2-effect is treated correctly. As a result, the choice of τ1 is a lot more
flexible such that the sample size may be chosen more flexibly. As the CFM works for
both adiabatic and non-adiabatic conditions, significant changes in the thermal coupling
with the same setup are tolerable. These properties make the CFM the method of choice
for research presented in this thesis, since the whole operation range of the JT-insert
(40 mK - 5 K) can be covered, where a large variation of the thermal conductance of the
link may be expected.

The CFM is based on a set of differential equations that describes the system. The heat
flux in and out of the platform are in equilibrium

P (t) = Cp
dTp
dt

+ ks(Tp − Ts) + kl(Tp − T0). (3.1.23)

When P is the power applied by the heater, Cp the heat capacity of the platform, Ts and
Tp the temperature of the sample and platform, respectively, and ks and kl the thermal
conductance between platform and sample and platform and thermal bath, respectively.
The heat flux to the sample may be described by

Cs
dTs
dt

= ks(Tp − Ts). (3.1.24)

The following assumptions are important, when deriving this framework:

• The heater and the thermometer are firmly attached to the platform with a large
thermal conductance, thus Cp describes the whole addenda, without differentiating
between different components.

• The internal thermal conductance of sample and platform are significantly larger
than ks and kl. Note that the TRM actually works up to a ratio of ks ≈ kl, while
the ACM would not be able to provide meaningful results under these conditions
[93, 107].

84



3.1. Experimental Techniques

• Cs, Cp, kl and ks are temperature independent within the small temperature window
of a single heat pulse.

To fit these differential equations to an experimental heat pulse, equations 3.1.23 and
3.1.24 are combined and written in the form

T (t)− T (0) = h ·H(t) + q ·Q(t) + s · S(t), (3.1.25)

as derived in Ref. [108]. Where the characteristic functions are defined as

H(t) = P (t)− CpV (t) (3.1.26)
V (t) = dT

dt′
|t0 (3.1.27)

Q(t) =
∫ t

0 P (t′)dt′ (3.1.28)
S(t) =

∫ t
0 T (t′)dt′, (3.1.29)

and P (t) is the heater power applied. These functions can be easily determined from
the data recorded by means of numerical integration and differentiation using Python.
Eq. (3.1.25) is then fitted using least squares methods. From the parameters h, q and s,
the heat capacity Cs, the thermal conductances kl and ks as well as the relaxation times
τ1 and τ2 can be calculated as described in Ref. [108].

Since the measurement protocol is the same as for the TRM and the signal follows the
characteristic exponential shape, thermal relaxation (TRM) and curve fitting method
(CFM) will be used as interchangeable terms throughout this thesis, especially, since
CFM is a term solely used by Hwang et al. [108].
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3.1.3. Magnetocaloric Measurements

The magnetocaloric effect describes a change in entropy in a material that originates from
a change of applied magnetic field. Today this effect is often used for demagnetization
refrigeration, which allows cooling to mK-temperatures without using liquid helium [89,
114, 115]. In contrast to the specific heat measurements, where the temperature is varied
for constant magnetic field, a magnetocaloric measurement is a magnetic field sweep at
constant temperature. The quantity of interest is the isothermal entropy change

δS

δH

∣∣∣∣∣
T

. (3.1.30)

The magnetocaloric effect is linked to the magnetic Grüneisen parameter

ΓH = 1
T

δT

δH

∣∣∣∣∣
S

, (3.1.31)

for which Zhu, Garst and Rosch [116, 117] showed divergent behavior close to quantum
critical points. Moreover, they showed that the Grüneisen parameter and magnetocaloric
effect change sign near generic quantum critical points.

The entropy as a function of magnetic field can be calculated from the heat capacity

S(H1, T )− S(H0, T ) =
∫ T
0

(
δS(H1,T ′)

δT ′
− δS(H0,T ′)

δT ′

)
dT ′ (3.1.32)

=
∫ T

0

(
C(H1,T ′)

T ′
− C(H0,T ′)

T ′

)
dT ′.

Thus it is in principle possible to reconstruct the entropy of a system by only mea-
suring the heat capacity. In reality however, the heat capacity cannot be measured to
zero temperature and therefore interpolations are necessary. In turn, this also implies
that such reconstructions can only be applied reliably in well understood systems. The
magnetocaloric sweeps presented here provide experimental access to the entropy change
as a function of field, without prior knowledge of the heat capacity down to zero tem-
perature. The technique described here follows the procedure described by Rost et al.
[103, 118, 119].

In the following, the method will be described for the data recorded at T ≈ 0.2 K at
a ramp rate of Ḃ = 15 mT/min. Fig. 3.1.5 (A) shows the temperature reading of the
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bath in blue and the sample platform in black. The dashed lines show the temperature
readings, without correction of the magnetoresistance of the temperature sensor, which
are performed as described in Sec. 3.2.6 below. Following this calibration, the curves
with the solid lines are obtained. The bath temperature is not constant due to the
magnetoresistance of the mixing chamber thermometer, which is not compensated for the
combination of JT insert and AMI magnet.

The temperature difference ∆T = Ts− T0 between platform and bath, shown in 3.1.5 (B)
originates from heating and cooling effects in the sample due to the magentocaloric effect.
As the magnetic field B is increased from B = 0 to 6.5 T, the temperature drops mono-
tonically by about 5 mK and reaches a minimum at the phase transition at Bc = 4.6 T.
Increasing the field above the phase boundary, heat is released and the sample warms up.
This temperature profile as well as its derivative were used to extract the derivative of
the entropy with respect to the magnetic field, which can be written as [119]

δS

δB

∣∣∣∣∣
T

= − k

Ts
∆T 1

Ḃ
− C

Ts

dTs
dB . (3.1.33)

Here, Ts is the sample/platform temperature, T0 the bath temperature, Ḃ the derivative
of the magnetic field with respect to time. C is the heat capacity of the sample and k the
thermal conductance between platform and bath.

While magnetocaloric measurements offer additional information on the entropy land-
scape, they cannot be performed without additional relaxation time measurements of the
heat capacity, since the parameters k and C must be determined independently. For-
tunately, both can be extracted directly from the heat pulses. To make use of them in
Eq. (3.1.33), C was interpolated over the whole T -B-region of the magnetocaloric mea-
surements as shown in Fig. 3.4.6. The link k = kl was independent of B and Φ, where the
relevant data are shown in Fig. 3.3.2 (E).

The results following data reduction are shown in Fig. 3.1.5 (C). For further analysis, these
can be integrated as a function of magnetic field B to obtain the change in entropy

∆S(B∗, T ) = S(B∗, T )− S(0, T ) =
∫ B∗

0

δS

δB

∣∣∣∣∣
T

dB, (3.1.34)

which is shown in Fig. 3.1.5 (D).
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Figure 3.1.5.: Data reduction process for magnetocaloric sweeps. (A) The raw data consist of
two temperature readings, the platform thermometer and the sample thermometer
(dashed lines). To correct for the magneto-resistance of the temperature sensor,
these are field calibrated (solid lines), as described in Sec. 3.2.6. The slope of the
calibrated thermometers follows the control thermometer at the mixing chamber
of the JT insert. (B) The difference of the calibrated temperature readings is used
to calculate δS

δB (C) using Eq. (3.1.33). (D) These results can be integrated as a
function of magnetic field to obtain ∆S.
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While the data analysis takes equation Eq. (3.1.33) fully into account, the measurements
were performed in the non-adiabatic limit, where the thermal link k is large as compared
to the ramp rate Ḃ and the first term dominates.

δS

δB

∣∣∣∣∣
T

≈ − k

Ts
(Ts − T0) 1

Ḃ
(3.1.35)

If a faster ramp rate is chosen, the heat capacity of the sample introduces significant delay
of the heating and cooling effects with respect to the true value of the magnetic field. This
effect is highlighted in Fig. 3.1.6 (A), where ∆T is shown as a function of B. Ramping
the field down from B = 6.5 T to B = 0 at 15 mT/min, a small kink in the temperature
can be seen at the critical field, after which the temperature rises to a maximum around
4 T. Increasing the ramp rate leaves the field of the kink unchanged, while the maximum
shifts to lower temperatures, approaching 3 T for 100 mT/min. This can be explained
by the heat capacity of the sample, which delays the heating of the sample. Due to the
higher ramp rate, the field at which the maximum is observed is lowered. In addition, the
heating effects are stronger at larger sweep rates, consistent with expectation.

Ignoring the effects of the heat capacity and the second term of Eq. (3.1.33), the behavior
shown in Fig. 3.1.6 (B) is obtained. The shift in the maximum is clearly visible, while the
amplitudes are corrected for the sweep rate.

Including the heat capacity and using the full Eq. (3.1.33) the behavior shown in Fig. 3.1.6 (C)
is obtained, where the derivative of the entropy as a function of field is independent of
the ramp rate, consistent with expectation. While the same results are obtained using
both formulas, the measurements were performed at slow ramp rates to be as close to the
non-adiabatic limit as possible. Only in this limit are the effects of the heat capacity are
negligible, reducing errors due to imperfect interpolation of the heat capacity. In practice
however the ramp rate is limited by the available measurement time and the precision of
the thermometers, as lower ramp rates yield smaller signals.
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Figure 3.1.6.: Influence of the sweep rate of the magnetic field in magneto-caloric measurements.
(A) Temperature difference between platform and bath as a function of field for
various ramp rates. At higher ramp rates, the heat capacity leads to significant
rounding of the curves. (B) δS

δB using Eq. (3.1.35) for the adiabatic limit, which
neglects the effects of the heat capacity and keeps the rounding. (C) When cor-
recting for the heat capacity and using Eq. (3.1.33), the curves are found to be
independent of the ramp rate.
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3.2. Experimental Setup

In this section, we will focus on the experimental setup developed for this project and its
design criteria, temperature calibration and sample alignment.

3.2.1. Design Criteria

The fundamentals of the experimental techniques described above impose several require-
ments on the experimental setup that will be summarized in the following.

Mechanical Stability Since LiHoF4 carries a large magnetic moment with a strong
anisotropy, the setup needs to be designed to withstand a large force due to the mag-
netic torque.

Good Temperature Stability of the Bath Due to the large sample heat capacity, mea-
surement times at lowest temperatures may be as long as several hours. The mixing
chamber temperature needs to be stable over the whole period.

Large Thermal Coupling of the Sample To reduce the τ2-effect, the thermal coupling
ks between sample and platform needs to be large.

Small Heat Capacity of the Addenda In comparison to the specific heat of the sample,
the heat capacity of heater, thermometer and platform needs to be small to reduce the
τ2-effect. A small Caddenda results in short relaxation times of τ2 and thus allow an easier
correction of this effect.

Thermal Link to the Bath To obtain reasonable measurement times, kl needs to be
tuned according to τ = C/kl. The last two points will be achieved by separating the
mechanical support, thermal link and electrical connections into separate components to
have maximum freedom to optimize for a specific application. A first attempt of this
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Tb

base plate / MC
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Kevlar thread

sample

silver platform

GE varnish

Figure 3.2.1.: Qualitative depiction of the setup used for heat capacity measurements and mag-
netocaloric sweeps. (A) Several thermal conductances contribute to the setup.
The indices correspond to the various components as defined in the text. (B) A
simplified sketch of the experimental setup.

concept was presented by Nives Bonačić [101]. The design presented in this thesis was
optimized for the use at mK-temperatures and found to be satisfactory.

Thermometry and Heater A well defined power P (t) needs to be applied to the plat-
form and the temperature of both platform and bath need to be measured with sufficient
resolution as well as a fast readout rate. Noise and a low number of data-points especially
influence the precision of the derivatives negatively, which are crucial to the specific heat
fits and magnetocaloric data-reduction.

The components of the experimental setup are shown in Fig. 3.2.1 (A) and (B). The
thermal bath is realized by the copper base plate and the mixing chamber, a thermometer
measures Tb. The mechanical connection of the platform to the support is realized by
Kevlar threads with thermal conductance km denote in brown shading. A silver wire
(blue) acts as the thermal link kl, which may be modified. Heater (red) and thermometer
(green) are connected to the platform via GE varnish (black), as is the LiHoF4 sample
(pink).

Fig. 3.2.2 shows pictures of the setup, which is mounted on the bottom of the mixing
chamber of the JT dilution insert described in Sec. 2.2.1 right in the field center of the
AMI vector magnet described in Sec. 2.2.2 using a heat shield. The temperature of the
bath was controlled with the mixing chamber (MC) thermometer. A silver platform
supports the sample in a half-spherical mold attached using GE varnish 7031. The sample
is additionally secured against the magnetic torque in the experiment by a woven basket
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Figure 3.2.2.: The experimental setup used for heat capacity and magnetocaloric measurements.
(A) The JT dilution insert with the setup covered by a heat shield. The red square
depicts the central region of the field of the AMI vector magnet. (B) A side view
of the setup provides an overview of the components inside the heat shield. (C)
Backside of the sample platform, facing the mixing chamber. (D) Front of the
platform with the sample fixed under a weave of Kevlar strings.

made of Kevlar strings. The silver platform was held in place by one Kevlar string, which
was woven through nine holes in the platform to connect it with two copper rings above
and below the platform. These in total 18 connections can be tightened by separating
the two rings using nuts on threaded rods. A 250µm thick silver link, glued to both
platform and ring using a silver epoxy1, connected the platform thermally with bath.
Both thermometer and heater were connected to the back of the silver disk using GE
varnish.

1EPO-TEK EJ2018
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3.2.2. Mechanical Stability

LiHoF4 under an applied magnetic field experiences a strong magnetic torque. For the
sample used, a magnetic moment up to ~m = 0.01 J/T may be expected based on the easy
axis magnetization measurements by Stefan Legl [44, 69] and the number of Ho-ions of
NHo = 0.22 milli-mol in the sample. Under the assumption that the magnetic moment is
constant and aligned parallel to the easy axis, a magnetic torque of ~τ = 0.08 Nm may be
expected for the largest field of 9 T of the AMI vector magnet.

This force is too strong for a conventional setup like the one in a Quantum Design PPMS
[120], where the sample platform is supported by the electrical wiring only. Kevlar2 was
chosen due to its low thermal conductivity - to minimize km - combined with high strength,
cf. Fig. 3.2.1 and Fig. 3.2.2 (B,D).

In the literature, designs have been discussed that put enormous effort on counteracting
the effects of the thermal expansion of Kevlar [119], which has a negative linear thermal
expansion coefficient of αL,Kevlar = −2 · 10−6 K−1 [121]. While negative, this is also
quite small compared to most other materials, notably copper which has a coefficient of
αL,Cu = 17 ·10−6 K−1 [122] the material used mostly in the setup. Since the Kevlar strings
used are short, their change of length under cooling will not be a major factor and not
weaken the setup. Technical solutions to correct this effect such as additional springs,
which tighten under cooling [119], were discarded, since they are impractical to use for
the large number of Kevlar strands. Instead the strings were pre-tensioned manually by
separating the base- and the tensioning-ring via threaded rods, cf. Fig. 3.2.2 (B).

2The used Kevlar threads are tex-80 provided by kiutra. [115]
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3.2.3. Thermal Conductance

The thermal conductance of the mechanical support and the electrical connections was
designed to be as low as possible to allow tuning of the thermal coupling between platform
and bath with an additional silver wire, shown in blue in Fig. 3.2.1 and in Fig. 3.2.2 (B,
C). For our preliminary calculations, we used the values for silver given in Ref. [89]

κAg(T ) = 10−1T W cm−1 K−1. (3.2.1)

With a diameter of the wire dAg = 250µm and a length of lAg = 4 mm the black line
shown in Fig. 3.2.3 (A) is obtained.

The fitting routine [108] allowed to determine the true value of the thermal conduc-
tance as shown in Fig. 3.2.3 (A). The thermal conductance kl is independent of magnetic
field. While the temperature dependence develops as expected, the measured thermal
conductance is up to five times smaller than calculated. Impurities reduce the thermal
conductivity of metals significantly [89, 123] and are the most likely explanation for the
observed reduction. Furthermore, the silver wire is connected to both the platform and
the bath using a silver epoxy3 typically used for microelectronics manufacturing. While
this epoxy mixed with small silver particles provides good electrical and thermal connec-
tion, it is likely that it also reduces the thermal conductance of the link, especially at
T < 1 K. To minimize this effect, the silver wire was completely engulfed by silver epoxy
in a bore-hole with a diameter of 0.75 mm to fit three intertwined 0.25 mm silver wires,
cf. Fig. 3.2.2 (C).

Later, the strand of three silver wires shown in cf. Fig. 3.2.2 (C) was replaced by a single
0.25 mm silver wire, since the larger link required too much heating for a good signal to
noise ratio and influenced the bath-stability negatively. This smaller thermal link led to
longer measurement times, which could only be counteracted by a smaller sample.

3EPO-TEK EJ2018; A similar epoxy - EPO-TEK H20S - used by N. Bonačić [101] proved that it provides
good thermal conductivity at low temperatures, where these products are not specified. EJ2018 was
used over H20S due to its better thermal conductivity within the specified range and easier treatment
after consultation with the manufacturer.
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Both electrical wiring made of Manganin and Kevlar strings have far lower thermal con-
ductance, cf. Fig. 3.2.3 (A), which allows to describe the system by only considering the
silver heat link. For Kevlar, the expression for thermal conductivity from Ref. [124]

κKevlar(T ) = 3.9 · 10−5 T 1.17 W/cmK (3.2.2)

was used. For the setup this yields a thermal conductance of km = κKevlar · A/l =
6.59 · 10−8W/K at 100 mK, for 18 strings with a total cross section of A = 0.55 mm2 and
length of l = 4 mm each. For the four Manganin wires with a length of lManganin = 2 cm
eacj and a diameter of dManganin = 30µm each used for the electrical connections the
relation [89, 101]

κManganin(T ) = 9.5 · 10−4 T 1.19 W/cmK, (3.2.3)

lead to the green curve shown in Fig. 3.2.3 (A).

3.2.4. Heat Capacities

As described above, for an easy correction of the τ2-effect, the heat capacity of the addenda
needs to be significantly smaller, than the heat capacity of the sample Caddenda < C. The
various contributions to the addenda are shown in Fig. 3.2.3 (B) in comparison to the
measured absolute zero field heat capacity of LiHoF4.

The largest part of the mechanical setup is the silver platform with its mass of 360 mg.
As the temperatures studied are far below the Fermi and Debye temperature of silver,
the specific heat can be estimated to be the dominant part of the addenda due to the
electronic specific heat following the Sommerfeld approximation

Cp = CAg = γAgT + βAgT
3, (3.2.4)

where γAg = 0.64 mJ/g/K2 and βAg = 0.167 mJ/g/K4 from the Debye temperature ΘD =
227.3 K [93]. With a mass of 360 mg one obtains the blue curve in Fig. 3.2.3 (B). At
lowest temperatures the term linear in temperature dominates and above 2 K the T 3-
term increases. Eq. (3.2.4) was used to calculate the addenda for the fitting algorithm.

The electrical wiring consisted of 30µm thick Manganin as described above. As depicted
in Ref. [89], this material has a very low specific heat, but shows an increase below ≈ 0.5 K
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Figure 3.2.3.: Preliminary calculations of caloric properties for the configuration of the setup.
(A) Comparison of theoretical and experimental thermal conductances of com-
ponents in the setup. Dashed lines describe calculations for ideal components as
described in the text. Solid lines show measurement results of the real components.
The electrical wiring made from Manganin was described as by Bonačić[101].
Kevlar was described by Eq. (3.2.3) derived by Ref. [124]. Values for the silver
link were taken from Ref. [89]. The link between bath and platform was deter-
mined in the measurement and does not change with magnetic field. (B) Estimates
(dashed) of the zero field heat capacities of various components of the addenda
compared with experimental results (solid) for the heat capacity of LiHoF4. The
total addenda is comprised of the electronic heat capacity of silver described by
Eq. (3.2.4) with values from Ref. [93], GE varnish (5 mg)[125], Manganin wires [89]
and RuO2 chips based on Ref. [126] and scaled as described in the text.

due to a Schottky anomaly. Manganin, however, exhibits a minimal magnetoresistance
only, which is helpful for measurements under magnetic fields [127]. Manganin was used
in other low-temperature heat capacity setups reported, e.g. , in Refs. [101, 103, 119].
Its contribution to the total addenda is reduced due to its low thermal conductivity,
i.e. only the part close to the platform contributes effectively. Yet, in future versions of
the setup, designed to study much smaller samples, Pt/W-wiring should be used instead,
as it exhibits a Schottky anomaly below 50 mK only [89, 128], well below the practical
measuring range of interest of most studies.
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Sample, heater and thermometer were attached to the silver platform using GE varnish
7031. The contribution of this component as well as the Kevlar strings to the heat capacity
are minimal due to their T 3-dependence and low mass of mGE 6 5 mg. An estimate for
their contribution is given in Fig. 3.2.3 (B) based on the addenda reported in Ref. [125].

As heater and thermometer Ruthenium oxide (ROX) resistors were used, which also show
a broad Schottky anomaly at T ≈ 400 mK [126]. While the pure compound RuO2 shows
no such peak [126], the Al2O3 substrate displays this behavior at low temperatures [104].
Based on the extensive data reported by Volokitin et al. [126] the characteristics of a
sensor close to the chips used in our setup was chosen and its heat capacity scaled by
a factor of five to match the mass of the chips in our setup. The result is presented in
Fig. 3.2.3 (B).

Taken together, all contributions to the specific heat of the addenda are more than two
orders of magnitude smaller than the specific heat of LiHoF4 and therefore allow precise
measurements with manageable τ2-effect.

3.2.5. Thermometry

As stated at the beginning of this chapter, precise and fast temperature measurements
that can resolve the shape of a heat pulse as depicted in Fig. 3.1.4 are crucial for the
relaxation time technique. ROX chips were used, as the resistance increases with decreas-
ing temperature, cf. Fig. 3.2.5. The resistance of the thermometers was recorded with a
Lakeshore resistance bridge, as shown in Fig. 3.2.4 (A). These bridges also provide directly
the temperature by comparing the measured resistance with a calibration file. Unfortu-
nately, this coarse method of calibration is only suitable for temperature control and
better precision is needed for the measurements. Therefore, the resistance was measured
and converted to the temperature using the procedure described below. Tab. 3.2.1 lists
all thermometers, their location, calibration range and their respective functions. The
locations of the chips are shown in Fig. 3.2.4 (B) schematically and in (E) in the picture
of the HC platform. The JT MC ROX (i) chip was located at the mixing chamber. It was
used for temperature control, using the Labview software [4]. The WMI ROX4 (ii) was a
thermometer calibrated over a wide range of magnetic fields and thus used for calibration
and monitoring the bath stability Tb. The E51 ROX BR3 was a small 1.5 x 1.5 mm bare

4Provided by Dr. Neumaier from the WMI; field calibrated by Rucker [4]
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sensor function location B range T range
JT MC ROX temperature on the top of the 0 T 0.01 - 150 K

regulation mixing chamber
WMI ROX bath on the base plate 0 T 0.1 - 5 K

thermometer attached to the MC 0-9 T 0.18 - 2 K
E51-ROX BR3 platform on the back of the 0 T 0.02 - 5.5 K

thermometer sample platform

Table 3.2.1.: Thermometers used during this thesis.

JT MC ROX

WMI ROX

E51 ROX BR3

Heater

LS 370 - II

LS 370 - I

LS 372

K6221

K2182 A

Filter

(i)

(ii)

(iii)

(iv)

(i)

(ii)

(iii) (iv)

(iii)

(iv)

control

data acquisition

4.7µH

4.7µH

50 kΩ

50 kΩ
100 nFout in

(A)

(B)

(E)

(D)

(C)

Figure 3.2.4.: The electrical wiring of the heat capacity setup. (A) Schematic depiction of the
instruments used for measurement, control and input. The connected sensors are
highlighted by connections and color. (B) Chips installed on the experimental
setup with a schematic depiction of their location. (C) Depiction of the usage of
the devices in the software. The data acquisition was separated from the control
to enhance the readout time. (D) Diagram of the custom built low-pass filter for
usage with the K6221 current source. (E) Photograph of the sample platform with
the heater and E51 ROX BR3 chip.
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ROX chip purchased from Lakeshore. It was glued to the back of the silver platform to
determine the platform temperature Tp. Platform and bath thermometer were read by
two separate Lakeshore resistance bridges, using different sampling frequencies of their
internal Lock-in amplifiers to minimize cross-talk and noise. All Lakeshore resistance
bridges used the Lakeshore scanner module, since it provided proper signal shielding for
the devices.

The heater (iv) was a 1kΩ SMD 0603 resistor as depicted in Fig. 3.2.4 (E) directly con-
nected to the back of the platform. It was driven by a Keithley K6221 current source
in DC mode. To reduce parasitic heating effects due high frequency noise coupling into
the resistor, the output was fed through a bespoke low-pass filter as recommended in the
Keithley manual Appendix E [129] with the specifications shown in (D). Since the voltage
drop over the heater was measured by a Keithley K2182A Nanovoltmeter, the power P (t)
could be calculated using Ohm’s law.

To ensure a fast data acquisition rate, the equipment readout was completely decoupled
from the control program. With this setup, it was possible to record roughly 10 datapoints
every second, which was the limit of the Lakeshore instruments and proved to be sufficient
for the time constants between 10 s and 1 h achieved in the measurements.

3.2.6. Temperature Calibration

As mentioned above, the resistance values measured need to be converted to a precise
temperature reading when analyzing the heat pulses. The following section provides the
relevant steps for temperature calibration for the heat capacity and the magnetocaloric
measurements.

Heat Capacity Measurements The ROX sensors used showed a strong magnetoresis-
tance, which had to be taken into account to obtain a correct temperature and thus
correct specific heat readings. The first step of the calibration process was to record the
resistance of the platform sensor Rp (E51 ROX BR3) in the regime of thermal equilibrium
between bath and platform. Thus for each heat pulse the average before the heating phase
was taken. The temperature was determined by simultaneously recording the resistance
of the bath thermometer Rb (WMI), calibrated as summarized in Tab. 3.2.1 [4]. From this
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followed the resistance-temperature relation for the platform thermometer, as shown in
Fig. 3.2.5 (A) and (C).

Different models for the Tp versus Rp relation were tested to describe the B = const
behavior. Spline interpolation provided the best results, cf. Fig. 3.2.5 (B) where the de-
viation of the interpolation from the data points is shown. For each constant field B,
the spline was determined, cf. Fig. 3.2.5 (C). For increasing magnetic field, the resistance
increases, as shown in Fig. 3.2.5 (D). Since this effect depends on the temperature, an
individual correction for each heat pulse was carried out.

Kinks in these splines provide another problem. Kinks, jumps and oscillations like in
the blue curve in Fig. 3.2.5 (D) lead to errors in the temperature derivative and thus
significant errors in the heat capacity fits. Chebycheb polynomials have the same issue
and were discarded after testing for this reason.

Therefore, all heat pulses were calibrated in the same way. First, the mean temperature
of the heat pulse was determined. The resistance data of the pulse were divided by the
value shown in Fig. 3.2.5 (D) at the given T and B. This way the resistance values were
obtained, equivalent to the resistance values if this heat pulse was measured at zero-field.
As the heat pulses were only a few percent in amplitude, this simplification is valid,
since the magnetoresistance does not change significantly during the pulse. The zero-field
equivalent resistance data Rp were all calibrated using the same Lakeshore calibration
dataset, obtaining the smooth platform temperature Tp.

Magnetocaloric measurements While the calibration for the heat capacity measure-
ments required a smooth definition of the resistance-temperature relation for a constant
field only, magnetocaloric measurements required to cover the whole B-T -space. Due to
the different spacing of datapoints, notably twelve values as a function of field but close
to fifty values as a function of temperature, a 2D-interpolation using typical methods
appeared to be too complicated. Furthermore, finding a sufficiently precise expression in
2D was not possible. The data were therefore calibrated using a mixed method of fitting
and interpolation.

Taking the data from Fig. 3.2.5 (D), a curve was fit at constant temperature. The expres-
sion

R = a+ b ·B1/2 + c ·B + d ·B2 (3.2.5)
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Figure 3.2.5.: Calibration of the ROX-BR3 thermometer. (A) For a given magnetic field, the
restistance of the the thermometer is plotted against the temperature of the cal-
ibrated Bath thermometer. The data were interpolated with cubic splines, the
relation R = A + B/T , R = A exp

(
(B/T )C

)
as well as Chebycheb polynomials.

Both equations fail to describe the R-T -relation in parts of the temperature range,
as shown in (B) where the difference between interpolation and measured resis-
tivity is shown exemplary for zero field. (C) The resistivity rises with increasing
field. This is clearly visible when dividing the spline interpolation for each field
by the zero field value as shown in (D).
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Figure 3.2.6.: Exemplary slices through the spline dataset from Fig. 3.2.5 (d) fitted using (3.2.5).
The qualitative behavior, especially the minimum below 1 K for low temperatures
is in agreement with the study of Goodrich et al. [130].

was used to describe the data, following by the findings of Rost and Goodrich et al.
[119, 130]. In the high field data, the square root behavior dominated, but the linear
and cubic term were necessary to describe the minimum between 0.5 and 1 T at low
temperatures, which is typical for ROX chips as a direct comparison with Goodrich et al.
[130] shows. The behavior together with the corresponding fit is shown in Fig. 3.2.6 for
various cuts of constant temperature. The R − T − B dataset was cut in 1 mK wide
slices and each slice was fitted as shown in Fig. 3.2.6. Full details are shown in App. A.2.
These results were stored in a lookup table. For each magneto-caloric sweep, the mean
bath temperature Tb was used to select the appropriate parameters, which were then used
to calculate the resistance Rp according to Eq. (3.2.5). These calibrated resistances were
used to determine the temperature according to the zero-field calibration.
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Figure 3.2.7.: Process of orienting and attaching the sample to the HC platform using X-ray
Laue diffraction. (A) The spherical LiHoF4 sample is sucked to a small plastic
tube using a vacuum pump connected to the tube. Rotating the goniometer allows
to orient the sample. (B) The oriented sample is kept in a fixed position. The heat
capacity setup is moved in position with a x-y-z translation stage. (C) Looking
along the easy axis (001) the typical four fold pattern can be observed. Mounted
in the cryostat, this is the direction of the y-axis of the vector magnet. Rotating
the sample to the right by 90° reveals the (100) direction as shown in (D), which
is along the z-axis of the magnet. The goniometer allows to orient the sample
with a precision < 0.1°. (E) After gluing the sample to the platform, only small
deviations < 1.5° from the optimal orientation are observed. The screws of the
setup cover parts of the X-ray detector, leading to areas without reflections.

3.2.7. Sample Alignment Procedure

As established in Sec. 2.2.5, a good alignment of the sample with respect to the transverse
magnetic field is crucial for the studies pursued in this thesis. The spherical LiHoF4

sample with a diameter of 2.8 mm was aligned using X-ray Laue diffraction.

As shown in Fig. 3.2.7 (A), the sphere was oriented using the goniometer at the Laue
diffractometer. A small plastic tube was connected to a vacuum pump, which sucked
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Figure 3.2.8.: Sample orientation inferred from magnetocaloric sweeps. (A) The critical field is
visible as a clear kink of the platform temperature when ramping the magnetic
field at a constant angle φ. (B) A maximum is observed around ≈ 0.7°. The colors
of the curves in (A) correspond to the datapoints in (B). The line represents a
guide to the eye.

the sphere in a fixed position. This allowed to put the sample in the desired orientation
with respect to the diffractometer, as shown in Fig. 3.2.7 (C) and (D). Next the heat
capacity setup was aligned with the optical table of the Laue diffractometer and the
sample was glued to the platform using the x-y-z translation mount to move the HC
setup, cf. Fig. 3.2.7 (B). After the GE varnish had dried, the vacuum pump was turned
off. A scattering pattern was recorded, as shown in Fig. 3.2.7 (E). The alignment was
confirmed to be better than ≈ 1.5° along both rotational directions.

After inserting the JT in the AMI vector magnet, the sample alignment with the magnet
was determined similar to Sec. 2.2.5. Since heat capacity measurements take a very long
time, magnetocaloric sweeps were used to determine the critical field Bc as a function of
angle Φ. Bc is visible as a kink in the platform temperature, cf. Fig. 3.2.8 (A). An optimal
field angle φ ≈ 1.2° was determined after the initial cooldown of the sample. Ramping the
field to its maximum value it was observed that the sample shifted. Another set of MC
sweeps determined the optimum angle φ ≈ 0.7° afterwards, as shown in Fig. 3.2.8 (B). In
analogy to Sec. 2.2.5, the field angle was then defined as Φ = φ− 1.2°/0.7°.
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3.3. Experimental Results

Using the measurement setup described in the last section, the experimental results
recorded will be presented in the following. First, the results of the specific heat measure-
ments using the relaxation time method will be described in Sec. 3.1.2. The heat pulses
will be discussed, followed by a detailed overview of the fit results as a function of angle
Φ, field B and temperature T . Second, following the same strategy, the magnetocaloric
sweeps will be presented and analyzed in Sec. 3.3.2.

3.3.1. Specific Heat

Data were recorded using the JT dilution refrigerator insert described in Sec. 2.2.1 in com-
bination with the AMI vector magnet described in Sec. 2.2.2. Heat pulses were measured
after setting the magnetic field B at angle Φ and the platform temperature at T , following
the procedure described in Sec. 3.1.2.

Heat Pulses Fig. 3.3.1 shows typical heat pulses for various B, Φ and T . Similar baseline
temperatures in the range of T ≈ 200 mK, 470 mK, 900 mK and 1.35 K are shown in
Fig. 3.3.1 (A-D), respectively. Since the heat pulses were set manually, they range between
1 and 4% in height. With increasing temperature T , the time constants τ and thus pulse
times decrease significantly. Simultaneously, the τ2-effect with the distinct jump at 200 mK
decreases in size. This suggests, that the thermal coupling of the sample as compared to
the silver link improves with increasing temperature. Given that the thermal conductivity
of GE 7031 varnish strongly depends on the temperature, consistent with expectation.

Increasing the magnetic field B and angle Φ, the τ2-effect was found to become more
pronounced, suggesting that there are additional effects influencing the heat flow. Large
differences in the pulse shape between zero field and B = 5.1 T can be observed at
T > 0.9 K. They may be attributed to the precise location in the ferromagnetic and the
field polarized phases of LiHoF4, respectively.

A noteworthy observation can be made at T = 210, 480 mK, B = 5.1 T. The shapes of
the pulses at 0°, cf. Fig. 3.3.1 (A2,B2), and 5°, cf. Fig. 3.3.1 (A3,B3), differ significantly,
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Figure 3.3.1.: Exemplary heat pulses for various field angles Φ, magnetic fields B and platform
baseline temperatures T ≈ 200 mK (A), 470 mK (B), 900 mK (C) and 1.35 K
(D). The pulse amplitude ∆T is given in percent of the baseline temperature.
Only every 250th, 100th, 25th and 25th point is shown for clarity. (A1-D1) Zero
field heat pulses. (A2-D2) Pulses at B = 5.1 T and Φ = 0°. (A3-D3) Pulses at
B = 5.1 T and Φ = 5°.
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although both are located in the field polarized regime at the same temperature and field.
It appears that the thermal conductivity varies in this regime, since both the relaxation
time and the τ2 effect are influenced here. We have no explanation for this effect.

Fit Results Fig. 3.3.2 shows the fit results of the specific heat as well as the other fit
parameters as a function of temperature for several transverse fields B at Φ = 0°. These
parameters were fitted as explained above using Eq. (3.1.25) [108]. The specific heat
C/R is shown in Fig. 3.3.2 (A). In zero field, with increasing temperature a broad peak
is observed around T ≈ 200 mK after which C/R displays a minimum around 800 mK.
Following this the heat capacity increases again monotonically until the critical temper-
ature Tc is reached, where it sharply falls by one order of magnitude and then starts to
rise slowly afterwards.

The maximum at low T bears the characteristics of a Schottky anomaly and can be
attributed to the hyperfine interaction [43]. Increasing the magnetic field B shifts its
position to lower temperatures. Below 150 mK C/R is enhanced at larger fields, especially
around the critical field B = 5.1 T. Above 5.1 T the hyperfine peak starts to shift towards
higher temperatures. The minimum above the hyperfine peak deepens and shifts to larger
temperatures with increasing field reaching ≈ 1 K at 7.5 T.

The increase of C/R approaching the phase transition is identical for all fields, the sharp
drop appears earlier as Tc shifts to lower temperatures with increasing field. Additionally,
a broader peak evolves above B = 2 T, appearing beneath the sharp transition and shifting
to higher temperatures with increasing field. This feature can be attributed to the crystal
field splitting of the ground state doublet under magnetic field.

Fig. 3.3.2 (B) shows the fitted relaxation time of the sample τs, which is maximal at low
temperatures, where the heat capacity of the sample is large as compared to the thermal
link. It shows a local maximum at the phase transition, where the specific heat has a
maximum.

The relaxation time of the addenda τl is shown in Fig. 3.3.2 (C). Since this property
depends strongly on the shape of the jump of the τ2-effect it displays a large spread in
the data points, also because only a few data points contribute to this fit parameter. It is
inversely correlated to the thermal conductance of the sample ks shown in Fig. 3.3.2 (D),
which reduces the height of the τ2 effect. Above 500 mK the initial jump is not very
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Figure 3.3.2.: Specific heat fit results for a angle of Φ = 0°. (A) The specific heat C/R as a
function of temperature. The triangles mark the position of the phase transition
to the ferromagnetic state. (B) The relaxation time of the sample τs is directly
correlated to the specific heat. (C) The relaxation time of the addenda τl is several
orders of magnitude faster as compared to the sample. (D) The thermal conduc-
tance between sample and platform ks. (E) The thermal conductance between
platform and bath kl is independent of magnetic field and is dominated by the
thermal conductance of the silver wire.
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pronounced and a large spread of this parameter is observed. In stark contrast, the
thermal conductance of the link kl shows almost no variation, cf. Fig. 3.3.2 (E), since it
can be directly derived from the amplitude of the heat pulses which are known precisely.

At a finite angle of Φ = 5°, the peak at the ferromagnetic transition Tc is unchanged
in form, but is cut off at lower fields, since the ferromagnetic phase is suppressed at a
lower temperature. As depicted in Fig. 3.3.3 (A), already at 2.5 T no transition may be
discerned in C/R. The broad peak, which evolves under the transition peak around 1.5 K
at 2.5 T shifts to higher temperatures with increasing field even faster than for Φ = 0°,
reaching a maximum at 5.1 T at 3 K.

In the peak of the hyperfine contribution, the data above 4.6 T stand out, since they have
a larger spread and are higher compared to the data recorded in low fields in the region of
150 mK to 400 mK. As discussed above, the pulse shape in this regime differs significantly
from the shapes at lower fields and other angles. The relaxation time τs is especially
large in this area, cf. Fig. 3.3.3 (B). This made measurements very demanding as longer
wait times were required to reach equilibrium. Simultaneously, the relaxation time of
the addenda shown in Fig. 3.3.3 (C) is also enhanced and the thermal conductance of the
sample ks is reduced significantly. Possible explanations for this effect will be discussed
below. Apart from this anomaly, τs, τl, ks and kl at Φ = 5° follow the behavior of Φ = 0°.

At an even larger angle of Φ = 10°, the heat capacity data shows no transition as a
function of temperature for B ≥ 2 T, as these fields are outside the ferromagnetic phase;
see Fig. 3.3.4 (A). The increase of the shift of the high temperature maximum is even more
pronounced, with the maximum at 5.1 T being located at 4 K.

The results of the fits of the relaxation times and thermal conductance (Fig. 3.3.4 (B)-(E))
show no anomalies at this angle and follow the trends observed at Φ = 0°. The changes
with field angle were investigated in more depth for B = 2 T, 3 T and 5.1 T. Fig. 3.3.5 (A)
shows the evolution of the specific heat C/R with increasing field angle for a constant field
of B = 2 T. The hyperfine peak is independent of Φ as the specific heat C/R is the same
for all angles up to 600 mK, where differences are due to the thermal phase transition. For
Φ = 0° and B = 2 T, the transition occurs at Tc ≈ 1.5 K. The transition shifts towards
lower temperatures with increasing angle Φ and reaches Tc ≈ 1.1 K at Φ = 6.6°. At higher
angles only a broad peak is visible, which shifts to higher temperature with increasing
angle.
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Figure 3.3.3.: Specific heat fit results for a angle of Φ = 5°. (A) The specific heat C/R as a
function of temperature. The triangles mark the position of the phase transition
to the ferromagnetic state. (B) The relaxation time of the sample τs is directly
correlated to the specific heat. (C) The relaxation time of the addenda τl is several
orders of magnitude faster as compared to the sample. (D) The thermal conduc-
tance between sample and platform ks. (E) The thermal conductance between
platform and bath kl is independent of magnetic field and is dominated by the
thermal conductance of the silver wire.
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Figure 3.3.4.: Specific heat fit results for a angle of Φ = 10°. (A) The specific heat C/R as a
function of temperature. The triangles mark the position of the phase transition
to the ferromagnetic state. (B) The relaxation time of the sample τs is directly
correlated to the specific heat. (C) The relaxation time of the addenda τl is several
orders of magnitude faster as compared to the sample. (D) The thermal conduc-
tance between sample and platform ks. (E) The thermal conductance between
platform and bath kl is independent of magnetic field and is dominated by the
thermal conductance of the silver wire.
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The other fit parameters τs, τl, ks and kl show no unexpected trends or anomalies and
follow the general behavior described above. The associated data are shown in App. A.3
for the three fields presented in Fig. 3.3.5.

For Φ ≤ 6.6° the specific heat follows the same form quantitatively up to the phase
transition, whereas at larger angles the curves start to deviate from one another around
T ≈ 600 mK. While the peak amplitude decreases with increasing angle, it stays almost
constant at C/R ≈ 0.6 for Φ ≥ 7.5°. In summary, while the ferromagnetic phase is
characterized by essentially the same specific heat independent of the angle φ, the para-
magnetic or field polarized is phase are characterized by maxima shifting towards larger
temperatures with increasing Φ.

The same behavior is found at B = 3 T, as shown in Fig. 3.3.5 (B). For this field, also a
sweep at an angle of Φ = 90°, thus along the easy c-axis was performed. As may be seen,
the curve shifts drastically to larger temperatures. As shown in App. A.3, the other fit
parameters τ and k also diverge from the lower angles, indicating that the setup performs
differently at such large angles, explaining also the larger scatter of the data points of this
curve.

At a constant field of B = 5.1 T all measurements apart from Φ = 0 at the lowest
temperatures were performed in the field polarized regime, cf. Fig. 3.3.5 (B). The hyperfine
peak of the specific heat shifts to larger temperatures with increasing angle. While Φ = 0°
the specific heat starts do decrease around 200 mK, this drop shifts to over 300 mK in the
case of 10°. The same behavior is also observed for the high temperature peak, which
shifts from T ≈ 2 K to T ≈ 5 K respectively.

In this dataset, the B = 5.1 T and Φ = 5° stands out, since they show the anomalously
high hyperfine peak described above, which is also visible as a large deviation in the other
parameters, cf. Fig. A.3.3 (B-E). As discussed above, the thermal conductance seems to
be reduced here. Whether this originates from the experimental setup or is related to the
internal thermal conductivity of LiHoF4 is beyond the scope of the work presented here.
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Experimental results for B = 2 T. The triangles mark the position of the phase
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B = 5.1 T.
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3.3.2. Magnetocaloric Field Sweeps

Using the same experimental setup, the magnetocaloric effect was measured in LiHoF4.
As explained in Sec. 3.1.3, the derivative of the entropy Eq. (3.1.33) may be determined by
scanning the magnetic field at a constant rate and recording the sample temperature. The
experiments were performed in the non-adiabatic limit, cf. Eq. (3.1.35), in order to reduce
errors due to the heat capacity of the material. Since in practice the ramp-rate represented
a compromise between measurement time, signal-to-noise and errors, cf. Eq. (3.1.35), the
ramp rates were adjusted manually for each temperature. Due to the lower thermal
conductance k = kl of the link, the ramp rate was slower at low temperatures.

The results at Φ = 0° are shown in Fig. 3.3.6. Each sweep shows three distinct features.
First, with increasing field, δS/δB rises linearly as the field approaches the phase tran-
sition from the ferromagnetic to the field polarized state at Bc. Generally, this slope
is steeper for lower temperatures and the maximum reached at the phase transition is
higher. For T ≥ 1.3 K this initial slope shows an additional feature. Below B = 0.5 T a
distinct maximum in the up- and a minimum in the down-sweep can be observed. This
feature likely does not originate from the magnetocaloric effect, since the platform was
heated in both cases and an inversion of heating/cooling between up- and down-sweep
would be expected from the magnetocaloric effect instead. Moreover, this feature is also
present in a field sweep at T = 1.82 K, a temperature above the ferromagnetic phase. An
systematic or instrumental effect seems most plausible for this. At the lowest temperature
of T = 0.2 K up- and down-sweep show a different shape approaching the jump of δS/δB
at B ≈ 4 T, which is likely due to a violation of the non-adiabatic condition Eq. (3.1.35).

Second, at the phase transition, marked in Fig. 3.3.6 using triangles pointing down, the
derivative δS/δB drops significantly. This jump is larger in regimes, where the specific
heat is also large, such as the hyperfine peak at 0.2 K or between 1.3 and 1.5 K. At
T = 1.82 K, no drop is visible, since the field sweep was outside of the ferromagnetic
phase. Third, above the phase transition, the slope of δS/δB is almost horizontal for
temperatures up to 0.6 K. With rising temperature the slope increases and reaches a
maximum at 1.5 K.

All previous descriptions correspond to the up-sweeps shown in Fig. 3.3.6 (A). Due to
the definition of the temperature difference ∆T in the sweeps, all curves start at zero
at B = 0 T. Therefore, distortions are not represented equally in up- and down-sweeps,
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Figure 3.3.6.: Magnetocaloric sweeps. The derivative of the entropy with respect to magnetic
field after Eq. (3.1.33) is shown as a function of the magnetic field B for the up-
sweeps (A) and the down-sweeps (B). Data were recorded at different ramp-rates
to accommodate for the effects of the heat capacity as discussed in Sec. 3.1.3.

cf. Fig. 3.3.6 (A) vs. (B). These differences arise from the heat capacity and the spike
in temperature, which occurs immediately after the magnet ramping was started while
it takes time to establish an equilibrium between heat flow and Eddy current heating.
These are especially significant above 1.3 K, where larger ramp rates lead to stronger
Eddy current heating. Nevertheless, both sweep directions result in the same critical
fields Bc and allow to describe the phase diagram qualitatively.

In the next step, δS/δB can be integrated to obtain ∆S = S(B)−S(B = 0 T). The result
is shown in Fig. 3.3.7. To account for the differences between up- and down-sweep in the
analysis, both are shown as dotted and dashed lines respectively, while the mean is shown
as a solid line. Starting from zero, for all temperatures ∆S/R is basically constant as a
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Figure 3.3.7.: Entropy as a function of magnetic field for various temperatures. The results from
the up- (dotted line) and down (dashed line) are combined to a mean (solid line).
The phase transition is visible as a kink in the curve up to 1.5 K.

function of field up to B ≈ 2 T. Above this field, it rises up to the phase transition, where
a kink at the maximum can be observed. This maximum shifts from ∆S/R = 0.39 at
T = 0.2 K to ∆S/R ≈ 0 at T = 1.51 K. Similarly, the position of the transition decreases
with temperature, as already observed in susceptibility and heat capacity measurements.
Notably, the increase approaching the transition also becomes flatter with temperature
and the decrease after the maximum deeper. This entropy landscape will be compared
below to the theoretical predictions.
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3.4. Comparison with Literature and Theory

In this section the experimental results described above will be discussed in comparison
to other experimental work and the theoretical model developed above. The discussion
focuses first on the specific heat followed by the magnetocaloric sweeps.

Specific Heat in the Literature The first measurements of the specific heat in LiHoF4

were reported by Mennenga et al. [43, 83]. This study reported the most sophisticated
analysis of the low temperature heat capacity in this material so far. Therefore, it is
natural to compare the results presented above with this study, as shown in Fig. 3.4.1.
Over a wide temperature range, both studies are in perfect agreement, both the hyperfine
peak at ≈ 200 mK and the thermal phase transition at T = 1.53 K coincide quantitatively.
Only the data above the phase transition display a smaller specific heat in our study. This
discrepancy may be related to account of the addenda, since the heat capacity of any setup
typically increases with T 3. In the heat pulse technique of Ref. [43] based on Ref. [94], the
addenda is quite extensive and the corresponding subtraction not described, making an
assessment difficult.

10−1 100

T (K)
10−1

100

C/
R

LiHoF4
This study B= 0
Mennenga B= 0

Figure 3.4.1.: Comparison of zero-field heat capacity data with the data reported by Mennenga
et al. [43].
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Experimental results for Φ = 5°. (C) Results from Ref. [43] with magnetic field
applied parallel to the easy axis (Φ = 90°).

119



Chapter 3. Caloric Properties under Transverse Magnetic Fields

Mennenga et al. furthermore recorded data applying the magnetic field parallel to the
c-axis of their spherical LiHoF4 sample, cf. Fig. 3.4.2 (C). They oriented the sample by
applying a magnetic field at T = 4.2 K, leading to a rotation of the sample due to the Ising
anisotropy [43]. Comparing the longitudinal data reported by Mennenga et al. , shown
in Fig. 3.4.2 (C), with our results obtained under transverse magnetic field (A and B) one
finds a very similar qualitative evolution of the curve shape around the phase transition.
In both cases, the low-temperature side slope of the peak is independent of field and the
drop marking the phase transition occurs at a lower temperature with increasing field.
However, while Mennenga’s data appear almost field independent for T < 1 K, our results
show pronounced changes. Furthermore, the phase transition is also visible here as a drop,
which appears sharper between 1 and 1.3 K, cf. 3, 3.5 T in (A) vs. 0.3, 0.35 T in (C).

The total field values that are necessary to suppress the transition are a factor of ≈ 10
smaller under longitudinal fields as compared to the transverse fields. A direct comparison
of the phase boundary inferred from the transition temperatures is shown in Fig. 3.4.3 in
good agreement with our results from transverse susceptibility measurements.

Phase Diagram from Different Methods Fig. 3.4.3 shows a comparison of the phase
boundaries obtained by various methods and at various angles. The results inferred from
the transverse susceptibility are shown as circles and for angles of Φ = 0, 1, 5, 10°. In
direct comparison are the results inferred from the heat capacity measurements shown
as squares. Both methods observed the same phase boundary. At low temperatures the
boundary could not be determined in the specific heat, since it is too flat with respect
to temperature scans performed during heat capacity measurements. The points at the
lowest temperatures for their respective angle, for Φ = 0° at 0.2 K and Φ = 5° at 1.4 K,
show a lower critical field as expected in the susceptibility. This may be an indication for
a slight misalignment of the sample not affecting the comparison with theory.

At low temperature, the magnetocaloric sweeps were used to determine the phase bound-
ary and they are in agreement with the results obtained by the AC susceptibility measure-
ments. No MC sweeps were recorded at larger angles and only data for Φ = 0° and 1° are
available. As another direct comparison, the results of Mennenga et al. [43] obtained from
specific heat and Bitko et al. [12] obtained from AC susceptibility are depicted as ”+”-
and ”x”-symbols respectively. The transverse susceptibility results of Bitko are in good
agreement with our results for Φ = 0. The longitudinal heat capacity results of Mennenga
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Figure 3.4.3.: The magnetic phase boundary for various angles Φ obtained from different meth-
ods. Results from transverse susceptibility (◦) are taken from Cha. 2. One scan of
the transverse susceptibility at Φ = 90° only provided one point and is therefore
shown separately. The results of Bitko et al. [12] (x) are provided as comparison.
The experimental results of the heat capacity (�) are compared to the study by
Mennenga et al. [43] (+), who measured with field applied along the easy axis.
The experimental results of the magnetocaloric sweeps (O) compare well with the
other methods. Lines are guides to the eye.

are consistent with our findings of the AC susceptibility measured under Φ = 90°. This
shows that the phase diagram evolves smoothly from the transverse to the longitudinal
configuration confirming that the domain-driven phase transition connects to the coercive
field.
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Figure 3.4.4.: Theoretical prediction of the specific heat of LiHoF4 in units of kB. The curves
are shifted proportional to the magnetic field for better visibility. Figure taken
from [5].

Theoretical Results of the Specific Heat After this comparison with other results,
follows a direct comparison with the theory presented in Sec. 2.4. The theoretical model
described in Sec. 2.4.2 permits to calculate the specific heat and entropy. Three con-
tributions enter the calculated heat capacity. The occupation of the energy levels is
temperature dependent and leads to the well known formula C0 = kBβ

2(〈E2〉 − 〈E〉2) of
the heat capacity for a simple temperature independent Hamiltonian [5]. Furthermore,
the energy levels themselves are temperature dependent due to the mean fields. The
corresponding terms were evaluated by H. Eisenlohr in terms of derivatives of the form
〈E · δTE〉−〈E〉 〈δT 〉 and 〈δ2

TE〉 [5]. In addition, also the domain ratio v(T ) is temperature
dependent. If the up- and down-domain have different free energies, a shift in the domain
pattern will also lead to an energy change.

The results of this calculation are shown in Fig. 3.4.4 over the temperature range of 10 mk
to 150 K. With increasing temperature, a broad peak is observed around 100-200 mK,
which may be identified as the hyperfine peak stemming from the contribution of nuclear
excitations. Its maximum shifts as a function of magnetic field, reaching a minimum at
B = 5.1 T. This is consistent with the picture of the nuclear modes closing the gap at
the quantum phase transition at B ≈ 5.1 T. At higher temperatures T > 5 K, above the
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Figure 3.4.5.: Comparison of the specific heat results from heat capacity measurements (points)
and the theory (lines). (A) Results for Φ = 0° at various magnetic fields. (B)
Results for Φ = 5°. The datasets were shifted by C/R = 0.5 each for clarity.

range of measured data, several flat peaks may be discerned that correspond to crystal
field levels at higher energies. The corresponding crystal field spectrum may be seen in
Fig. 1.2.1. Another maximum is located at 1-2 K, which is the most prominent feature
of the heat capacity data, resembling the anomaly at the phase transition. It is visible in
the calculations for 0 T and 2 T and then replaced at larger fields with a broad maximum
that shifts to larger temperatures with increasing fields. The dotted lines mark the results
for C0, if the temperature dependent energy level and domain ratio terms are neglected.
As it may be seen, in this case, the sharp peaks at the phase transition disappear.

The results of these theoretical calculations may be compared with the data in Fig. 3.4.5.
Fig. 3.4.5 (A) shows the results for Φ = 0°, where good agreement between experiment
and theory both qualitatively and quantitatively is observed. The height and location
of the hyperfine peak as well as its shift to lower temperatures at 5.1 T are in remark-
able agreement. Also the development of the broad maximum from the thermal phase
transition matches the experimental observations well.
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The thermal transition itself however differs between experiment and theory, as observed
in the transverse susceptibility. Within the model, the peak position is located at slightly
larger temperatures for low fields, as the mean-field modeling over-estimates the stability
of the ordered phase. Furthermore, the anomaly is not as high in the theory as critical
fluctuations are not included in the theory. At fields, B > 2 T, the maximum and location
match better.

In Fig. 3.4.5 (B) with results for Φ = 5°, only some of the calculations were performed
at parameters matching the data [5]. In the case of comparable parameters however,
good agreement is observed. Especially the thermal phase transition at B = 2 T (blue)
matches the experiment both in terms of height and location. This parameter set is
especially important, since Ref. [5] does not find the transition at B = 2 T and Φ = 5°,
when a model without domains is investigated, further emphasizing the importance of
magnetic domains in this system. The anomalously large heat capacity observed at the
hyperfine peak of the B = 5 T, Φ = 5° data-set (red) is not accounted for in the theory.
The calculations do find, however, that the hyperfine peak shifts to lower temperatures,
at the domain driven quantum phase transition at B ≈ 3 T.

Another depiction of this behavior may be found in Fig. 3.4.6, where the experimental
results and the theoretical calculations of the specific heat C/R for Φ = 0° are shown as
colormaps. Fig. 3.4.6 (A) shows the positions of the measured data points in B-T -space
as black dots. The color map shows a cubic interpolation on a triangular grid between
these points. Using the same interpolation scheme, the model is shown in Fig. 3.4.6 (B).
Both panels also show the phase boundary as a black line, with the exact position of the
phase transition observed in the measurements highlighted with black triangles.

Several features may be discerned in this representation. First, the position of the hy-
perfine peak resides at the lowest temperature in the field range of the quantum phase
transition. This is consistent with the expected mode softening around the QCP. Second,
the peak of the thermal phase transition does not shift, but is cut off at Tc. Its falling flank
is independent of temperature. Furthermore, another peak develops from underneath the
thermal phase transition peak and shifts towards higher temperatures with increasing
field. This is visible as the green band in the high-T and high-B region of the graphs and
may be explained in terms of the Zeeman splitting of the crystal fields.
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Figure 3.4.6.: Colormaps of the specific heat C/R measured experimentally and calculated the-
oretically as a function of magnetic field B and temperature T for a perfect align-
ment of Φ = 0°. (A) The color map of the experimental data was created using
a cubic grid interpolation. Positions of data-points used for the interpolation
are marked as dots. The black line represents the experimental phase boundary
inferred from the transverse susceptibility, cf. Sec. 2.3.1. The phase boundary in-
ferred from the experimental results of the specific heat as shown in Fig. 3.3.2
is depicted as triangles. (B) Color map of the theoretically calculated specific
heat. Dots represent the calculated datapoints used for the cubic grid interpola-
tion. The phase boundary inferred from theoretical calculations of the transverse
susceptibility, cf. Sec. 2.4.2, depicted as squares. The line is a guide to the eye.
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Figure 3.4.7.: Colormaps of the specific heat C/R measured experimentally and calculated the-
oretically as a function of magnetic field B and temperature T for a perfect align-
ment of Φ = 5°. (A) The color map of the experimental data was created using
a cubic grid interpolation. Positions of data-points used for the interpolation
are marked as dots. The black line represents the experimental phase boundary
inferred from the transverse susceptibility, cf. Sec. 2.3.1. The phase boundary in-
ferred from the experimental results of the specific heat as shown in Fig. 3.3.3
is depicted as triangles. (B) Color map of the theoretically calculated specific
heat. Dots represent the calculated datapoints used for the cubic grid interpola-
tion. The phase boundary inferred from theoretical calculations of the transverse
susceptibility, cf. Sec. 2.4.2, depicted as squares. The line is a guide to the eye.
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Figure 3.4.8.: Colormap of the experimental specific heat C/R as a function of magnetic field B
and temperature T for an angle of Φ = 10°. Positions of data-points used for the
interpolation are marked as dots. The location of the phase transition determined
by AC susceptibility is shown as a black line.

Looking at the same representation for Φ = 5° in Fig. 3.4.7, the same features may be
observed. The measurements, cf. Fig. 3.4.7 (A), do not reach low enough temperatures to
observe the minimum of the hyperfine peak at the domain driven phase transition, as it
is predicted in the theory. Here, theory predicts that this dip is weaker as compared to
Φ = 0°, cf. Fig. 3.4.7 (B). Again, the evolution of the high-T , high-B peak is tracked both
in the experimental data and calculation.

An interpolation of the experimental data at Φ = 10° is shown in Fig. 3.4.8. Unfortunately
no calculations were performed for this angle. The hyperfine peak is now independent of
B. No significant changes of its position are observed around the domain driven phase
transition, marked by the black line in Fig. 3.4.8, which represents the phase boundary
determined by AC susceptibility. At Φ = 10°, the peak, which emanates from the thermal
phase transition with increasing field shifts to higher temperatures faster as compared to
Φ = 0° and 5°.

While the theory [5] covers the contribution at high temperatures accurately on a quan-
titative level, a simple model is helpful to highlight the underlying physics in a more
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approachable way. One of the simplest accounts for peaks in the heat capacity is a simple
two level model

C/R ∝ (∆/T )2 e∆/T

1 + e∆/T , (3.4.1)

where ∆ is the energy gap between the two levels. This simple model was fitted to the
peak evolving from the thermal phase transition, as shown in Fig. 3.4.9. Each panel shows
the data for one field angle Φ = 0, 5, 10°. The data points, which contribute to the fit are
highlighted as circles, while the other data are depicted by smaller rectangles. Since the
peak is visible above the thermal phase transition, only fields above B = 3, 2.5, 2 T were
investigated for Φ = 0, 5, 10°, respectively, and only data above the transition temperature
were considered. The fits are shown as lines. The peak shifts towards higher temperatures
with increasing field. The increase is faster at larger field angles. This behavior is also
shown in Fig. 3.4.10, where the energy gap ∆ of the two level model is shown as a function
of magnetic field B. Thus the peak may be attributed to the two lowest lying crystalline
electric field (CEF) levels, cf. Fig. 1.2.1 (B), whose splitting is shown as a dotted line.
The agreement between the fit results for Φ = 0° and the CEF splitting is very good,
emphasizing that the single ion effects set an important energy scale in the paramagnetic
phase. Within the ferromagnetic phase however the peak is not visible, suggesting that
the spin degrees of freedom and their ordering are the dominant scale.

The accelerated shifting of the peak for Φ = 5° and 10° shown in Fig. 3.4.10, suggests
that the tilted magnetic field does not only control the magnetic domain formation, but
also the crystalline electric fields. The theoretical calculations also display a stronger field
dependence of ∆ for the case of tilted fields Φ = 10°, cf. Fig. 3.4.10. The theory based on
the crystal field parameters from Ref. [41] expects a flatter dependency when compared
to the experiment [5]. Further investigation is necessary to determine if subtle changes in
the crystal field environment can explain this behavior. Nonetheless, this highlights, why
the model presented in Sec. 2.4.2 is so important, incorporating the full CEF Hamiltonian
and properly treating tilted field angles.

In addition, the hyperfine peak is also dependent on the magnetic field for small field
angles. Interestingly, the effect becomes less pronounced, with increasing field angle. This
emphasizes the relevance of the interaction between nuclear and electron spins included
in the model. As explained in Sec. 2.4.2, the non-Kramers doublet CEF states of the
Ho ions display an interesting interplay with the hyperfine coupling. The non-Kramers
nature leads to a minimum of |J | near Bc. Since the hyperfine interactions favor large
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Figure 3.4.9.: The evolution and fit of the specific heat peak above 1 K for various fields and field
angles. (A) Experimental data of the specific heat as a function of temperature
for Φ = 0. Lines represent fits to the data in the form of a simple two level model
Eq. (3.4.1). Data points that contribute to the fit are highlighted as larger circles.
(B) Experimental results for C/R and corresponding fits for Φ = 5°. (C) Results
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Figure 3.4.10.: The energy gap ∆ of the two level model as a function of field for Φ = 0, 5, 10 deg.
Solid lines represent guides to the eye. For comparison, the splitting of the two
lowest CEF levels are shown as a dotted line for Φ = 0 and 10°. The theoretical
line for Φ = 0 corresponds to the line in Fig. 1.2.1 (B2).

moments |J | they stabilize the ferromagnetic phase, increasing Bc for small field angles.
As Φ increases, the minimum in |J | becomes less pronounced and the effect vanishes.
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Figure 3.4.11.: Theoretical calculations of the specific entropy S/R of LiHoF4 as a function of
magnetic field B at various temperatures. Values are taken from calculations by
H. Eisenlohr [5].

Theory of Magneto-Caloric Sweeps Comparing the specific heat results to the lit-
erature and theory, the results of the magneto-caloric sweeps will now be addressed as
compared to the theoretical model describe above. It allows to calculate the free energy
of the system [5]. Starting from the free energy the entropy may be calculated as

S = −δF
δT
≈ −F (T + ∆T )− F (T )

∆T , (3.4.2)

where in a numeric evaluation with ∆T = 10−3 K was chosen. Ref. [5] then proceeded to
calculate the derivative with respect to field as

δS

δB
≈ F (T + ∆T,B + ∆B)− F (T + ∆T,B)− F (T,B + ∆B) + F (T,B)

∆T ·∆B , (3.4.3)

with ∆T = 10−3 K and ∆B = 5 · 10−5 T.

The results of the specific entropy S/R are shown in Fig. 3.4.11 as a function of magnetic
field for various temperatures between 10 mK and 2.66 K. At the lowest temperature, the
entropy is close to zero as expected and increases with temperature. In addition, the
entropy also increases with magnetic field and develops a maximum at the critical field
Bc = 5.1 T, which shifts to lower fields with increasing temperature. This peak disappears
above the critical temperature. To compare these results to the measurements, the entropy
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Figure 3.4.12.: The change of the specific entropy ∆S/R = S(B)/R− S(B = 0 T)/R of LiHoF4
as a function of the magnetic field B at various temperatures. (A) Results of the
theoretical calculations performed by H. Eisenlohr [5]. (B) Experimental data.

change with field ∆S/R = S(B)/R − S(B = 0 T)/R needs to be investigated, since the
magneto-caloric sweeps can only measure δS/δB/R, and thus ∆S after integration.

Therefore, the entropy was evaluated numerically in detail around the phase transition.
Subtracting the zero field values, Fig. 3.4.12 is obtained. Fig. 3.4.12 (A) shows ∆S/R from
the theoretical calculations and Fig. 3.4.12 (B) shows the mean of up and down sweeps
from Fig. 3.3.7. Both data and theory show the same general behavior, with a steady
increase up until the maximum at the phase transition. The theory however predicts a
maximum 50% larger than experiment. Furthermore, in the experimental data the height
of the maximum decreases steadily with increasing temperature. In the theory however,
the peak value is minimal around 0.8 K, where also the specific heat has its local minimum,
and increases again towards higher temperatures. In addition, a decrease at larger fields
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Figure 3.4.13.: Derivative of the specific entropy with respect to magnetic field δS/δB/R of
LiHoF4 as a function of the magnetic field B at various temperatures. Values
are taken from calculations performed by H. Eisenlohr [5].

is expected in shape and magnitude and the difference between 0.2 K and 1.5 K at the
larges field of B = 5 T is similar in both theory and experiment.

As the next step, the derivative δS/δB/R was calculated according to Eq. (3.4.3) and
plotted in Fig. 3.4.13. As may be seen, the derivative is zero at the lowest temperature of
10 mK. With increasing temperature, a sharp maximum with a rapid drop develops around
the critical field Bc. This maximum is largest for 0.1 K and decreases with temperature
to reach a minimum at 1.15 K. Similarly, the jump height is minimal at 1.15 K. The jump
disappears above the thermal phase transition where it merges into a broad minimum.

To explain the behavior around the critical field in further detail, δS/δB/R was calculated
with a smaller step size between 2 and 5 T for temperatures between 0.2 K and 1.7 K. The
results ares shown in Fig. 3.4.14 (A). For comparison the experimental results are displayed
in Fig. 3.4.14 (B) and (C) for the up- and down-sweep, respectively. Again, the absolute
values are approximately 50% larger in the calculation, as compared to experiment. The
location and relative height of the maximum at the phase transition as well as the shape
of the curves in the paramagnetic regime agrees very well. The drop is sharper in the
calculation, which is likely due to the fact, that the heat capacity effects and sample
inhomogeneities smear out the transition in the experiment.
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(C) Experimental results from the down-sweep.
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When comparing up- and down-sweep, the up-sweeps seem to represent the calculation
better. Likely reasons for this behavior may be the imperfect thermalization of the sample
when switching from up to down sweep. In the experiments, this effect was counteracted
by giving the sample time to equilibrate between both sweeps. Another option is that
the numeric process of correcting the effects of sample heat capacity did not work as well
for the down sweeps as the features appear more rounded. While the reason for such a
behavior is unclear, it is possible that the tiny effects of hysteresis observed in the AC
susceptibility play also a role here. Such effects would not be visible in the heat capacity
data, since they were measured in temperature sweeps. Thus the correction method
cannot take them into account.
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3.5. Conclusions

In this section, we have described the development of a new experiemental setup that
allows measurements of the specific heat and magnetocaloric effect at mK-temperatures
on a LiHoF4 sample with large magnetic anisotropy. For the first time, measurements
under transverse field and as a function of field angle were conducted.

Several findings can be concluded from these measurements and their comparison to the
theory. The first and most important observation is that the model for a mesoscale
quantum phase transition introduced in Sec. 2.4.2 qualitatively accounts for the caloric
properties determined in this chapter. Moreover, the quantitative agreement is excellent
as well, apart from a linear offsets in δS/δB/R, resulting from critical fluctuations which
are neglected in the theory at this point. This proves, that the model introduced based
on the AC susceptibility describes the energy landscape of LiHoF4 very well, validating
the ansatz of magnetic domains and the corresponding minimization of the domain wall
energy.

These measurements furthermore allow a direct observation of the mode softening around
the QCP at B = 5.1 T, as the specific heat is very high even at lowest temperatures T <

60 mK. The calculations suggest, that this softening is also present in a less pronounced
fashion even if the field is applied at an angle of Φ = 5°. This supports the notion of
a new kind of quantum phase transition, associated with mesoscale magnetic domains
only. Unfortunately, at Φ > 0° it was not possible to collect data down to sufficiently low
temperatures of T < 100 mK, to fully verify this observation as shown in Fig. 3.4.7.

Measurements of the specific heat, magnetocaloric effect and AC susceptibility in com-
bination with the theory show that the mesoscale quantum phase transitions play a key
role to understanding the LiHoF4 system, especially for Φ 6= 0. The strong sensitivity to
changes of the field angle is visible in the jump of the transverse susceptibility and shift of
the critical field Bc and can only be explained by including magnetic domains. Similarly,
the evolution of the anomaly at the thermal phase transition with magnetic field for finite
Φ is better explained by the full mesoscale model [5]. Moreover, the methods combined
establish for Φ = 0 a transverse field QPT with mean field character due to the long-range
dipolar interactions. The critical exponents for this transition are α = 0 describing the
jump of the heat capacity when crossing the transition by increasing the magnetic field,
cf. Fig. 3.4.6, β = 1/2 describing the vanishing of the longitudinal magnetization, which is
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the order parameter in this case, cf. Fig. 2.4.5 (A1) and γ = 1 as established in Sec. 2.3.3.
For Φ > 0 however our studies showed that the continuous suppression of the minority
domains drives the mesoscale QPT. Here we find again α = 0 due to the jump of the heat
capacity, β = 1 due to the linear behavior of the domain ratio v at the transition and
γ = 0 due to the flat order susceptibility approaching the jump of the AC susceptibility
[5].

Future measurements might be conducted to focus on this regime as well as to reproduce
the increase in heat capacity C and reduction of the thermal conductance ks of the sample
around T = 200 mK, B = 5.1 T and Φ = 5°. Such measurements could be accompanied
by direct measurements of the thermal conductivity of LiHoF4 under the same conditions.

In addition, spectroscopic measurements of the critical modes using neutron TAS [131,
132] should be conducted, since new insights were gained since the experiments by Rønnov
and Krämer et al. [13, 14, 66]. Our studies emphasize the importance of the sample
alignment with respect to the magnetic field. Additional studies under varying field angle
promise to shed new light on these results and the importance of either domain driven
mesoscale QPT or transverse-field QPT. Furthermore, MIEZE spectroscopy [75, 133–135]
might be employed to analyze the very low energy excitations around the QCP. These
promise additional information as a function of wave vector adding to the studies of
McKenzie, Stamp and Libersky et al. [42, 67].

Another direction of future research are fluctuations, beyond the modeling in this thesis,
which must be anticipated in several regions of the phase diagram, for example, when the
thickness of the minority domains approaches microscopic distances near Bc or around
the re-entrant phase boundary, cf. Fig. 2.3.7 (C). Furthermore, the mesoscale QPT con-
tinuously connect the TF-QCP with the coercive field, cf. Fig. 2.3.5 (B1), suggesting the
search for mesoscale QPT in other anisotropic ferromagnets.

The experimental setup developed as part of this thesis opens up the opportunity to
investigate the mK-heat capacity in magnetic fields in a variety of materials with strong
magnetic anisotropy.
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A.1. Transverse Susceptibility: Additional Data

This section gives an overview of all transverse susceptibility data, which were recorded
and discussed above. As shown in Fig. A.1.1, the transverse susceptibility was recorded
as a function of temperature by performing a step sweep. The color represents the corre-
sponding temperature going from cold (blue) to hot (red) the up-sweeps are depicted as
dashed lines, whereas the down-sweeps are depicted as solid lines.

Fig. A.1.2 shows the temperature sweeps, where the color represents the field strength,
going from B = 0 (blue) to maximum field (red).

The parameters of every measurement shown in these figures are summarized in Tab. A.1.1.
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Figure A.1.1.: Overview of transverse susceptibility field sweeps for various angles. The up sweep
is shown as a dashed the down sweep as a solid line.
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Figure A.1.2.: Overview of transverse susceptibility temperature sweeps for various angles. The
up sweep is shown as a dashed the down sweep as a solid line.
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B-Scans 0 - 5.5 T
Fig. A.1.1 Φ (°) T (mK) blue - red
(A1, A2) 0 67, 101, 136, 186, 243, 364, 483, 599, 711, 819, 925

1031, 1146, 1189, 1291, 1345
(B1, B2) 1 68, 101, 136, 186, 243, 364, 482, 599, 711, 819, 925

1031, 1189, 1282, 1345
(C1, C2) 2 68, 100, 137, 186, 243, 364, 483, 599, 711, 819, 925

1031, 1189, 1281, 1345
(D1, D2) 5 68, 101, 137, 186, 243, 364, 483, 599, 711, 819, 925

1031, 1188, 1281, 1345
(E1, E2) 10 69, 137, 244, 364, 483, 599, 711, 819, 925, 1031

1189, 1281, 1345
(F1, F2) 15 63, 99, 135, 185, 243, 364, 483, 599, 711, 820, 925

1031, 1275, 1394
T -Scans 1.35 - 1.6 K
Fig. A.1.2 Φ (°) B (T) blue - red
(A1, A2) 0 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.15, 1.3, 1.5, 1.6, 1.75, 2.0, 2.25, 2.5
(B1, B2) 1 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.15, 1.3, 1.5, 1.6, 1.75, 2.0, 2.25, 2.5
(C1, C2) 2 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.15, 1.3, 1.5, 1.6, 1.75, 2.0, 2.25, 2.5
(D1, D2) 5 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.15, 1.3, 1.5, 1.6, 1.75, 2.0, 2.25, 2.5
(E1, E2) 10 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.15, 1.3, 1.5, 1.6, 1.75, 2.0
(F1, F2) 15 0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.15, 1.3, 1.5, 1.75

Table A.1.1.: Parameters for measurements shown in Figs. A.1.1 and A.1.2.
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A.2. Magnetocaloric Measurements: Resistance
Interpolation

For the magnetocaloric measurements described in Sec. 3.1.3, it was established in Sec. 3.2.6
that a proper calibration of the sensors is necessary to compensate for the magneto-
resistance. To allow magnetocaloric sweeps as a function of field at various temperatures,
an interpolation of the resistance was determined, by using the field-calibrated WMI-ROX
sensor as a reference as described in Sec. 3.2.6.

Fig. A.2.1 shows the whole interpolated regime as a color map of R/R(B = 0) of the
ROX-BR3 thermometer as a function of field and temperature.
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Figure A.2.1.: Interpolation of the resistance R as a function of field and temperature for cali-
bration of the ROX-BR3 thermometer.
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A.3. Specific Heat: Additional Data

The heat capacity data were described in Sec. 3.3.1 and discussed in full detail in the cor-
responding figures. For completeness the data will be presented here covering additional
angles Φ at B = 2, 3, 5.1 T.

A.3.1 (A) shows the specific heat C/R as a function of temperature for various angles
between Φ = 0° and 20°. The hyperfine peak below 800 mK is identical for all field orien-
tations. The anomaly at the thermal phase transition is cut off at lower temperatures with
increasing angle. For large angles, a broad maximum emerges at elevated temperatures,
which shifts towards higher temperatures with increasing Φ.

The sample relaxation time τs displays no anomalies and correlates with the specific heat,
as shown in Fig. A.3.1 (B). The relaxation time of the addenda shows a broad minimum
around T = 1 K, cf. Fig. A.3.1 (C). The sample thermal conductance ks increases mono-
tonically and shows no significant dependence on Φ, cf. Fig. A.3.1 (D). As in all datasets,
the thermal conductance of the addenda is independent of the angle, cf. Fig. A.3.1 (E).

Fig. A.3.2 (A) shows the specific heat C/R as a function of temperature for various angles
between Φ = −5° and 90°. The hyperfine peak below 800 mK exhibits a small angular
dependence shifting to higher temperatures at Φ = 10°. For large angles, a broad max-
imum emerges at elevated temperatures, which shifts towards higher temperatures with
increasing Φ, as already observed for the other fields.

The sample relaxation time τs displays an unusual increase for the Φ = 90° curve with
decreasing temperature approaching T = 1.3 K, cf. Fig. A.3.2 (B). The relaxation time of
the addenda shows a broad minimum around T = 1 K, cf. Fig. A.3.2 (C). Only the data
at Φ = 90° deviate significantly putatively suggesting that the thermal conductance of
the platform to the bath is angle dependent. An analogous anomaly may be seen in the
sample thermal conductance ks, which is significantly reduced in the case of Φ = 90°,
cf. Fig. A.3.2 (D). As in all datasets, the thermal conductance of the addenda is indepen-
dent of the angle, cf. Fig. A.3.2 (E).

Fig. A.3.3 (A) shows the specific heat C/R as a function of temperature for various angles
between Φ = 0° and 10°. The hyperfine contribution displays a strong angular dependence,
shifting towards higher temperatues with increasing field angle Φ.
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The sample relaxation time τs lies above the other curves for Φ = 5°, as shown in
Fig. A.3.3 (B). Together with the increased τl, Fig. A.3.3 (C), and decreased ks, cf. Fig. A.3.3 (D)
it supports the notion that the thermal conductance of the sample, or from the sample
to the platform is reduced at this angle. As in all datasets, the thermal conductance of
the addenda is independent of Φ, cf. Fig. A.3.3 (E).
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Figure A.3.1.: Specific heat fit results for B = 2 T and various angles Φ. (A) The specific heat
C/R as a function of temperature. The triangles mark the position of the phase
transition to the ferromagnetic state. (B) The relaxation time of the sample
τs is directly correlated to the specific heat. (C) The relaxation time of the
addenda τl is several orders of magnitude faster as compared to the sample. (D)
The thermal conductance between sample and platform ks. (E) The thermal
conductance between platform and bath kl is independent of magnetic field and
is dominated by the thermal conductance of the silver wire.
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Figure A.3.2.: Specific heat fit results for B = 3 T and various angles Φ. (A) The specific heat
C/R as a function of temperature. The triangles mark the position of the phase
transition to the ferromagnetic state. (B) The relaxation time of the sample
τs is directly correlated to the specific heat. (C) The relaxation time of the
addenda τl is several orders of magnitude faster as compared to the sample. (D)
The thermal conductance between sample and platform ks. (E) The thermal
conductance between platform and bath kl is independent of magnetic field and
is dominated by the thermal conductance of the silver wire.
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Figure A.3.3.: Specific heat fit results for B = 5.1 T and various angles Φ. (A) The specific heat
C/R as a function of temperature. The triangles mark the position of the phase
transition to the ferromagnetic state. (B) The relaxation time of the sample
τs is directly correlated to the specific heat. (C) The relaxation time of the
addenda τl is several orders of magnitude faster as compared to the sample. (D)
The thermal conductance between sample and platform ks. (E) The thermal
conductance between platform and bath kl is independent of magnetic field and
is dominated by the thermal conductance of the silver wire.
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[55] J. Pommier, P. Meyer, J. Ferré, and I. Laursen, “(H, T) phase diagram of a uniaxial
dipolar ferromagnet: LiHoF4,” Le Journal de Physique Colloques, vol. 49, p. C8, 1988.

[56] P. Meyer, J. Pommier, and J. Ferre, “Magnetooptic observation of domains at low
temperature in the transparent ferromagnet LiHoF4,” in Electro-Optic and Magneto-
Optic Materials and Applications (J.-P. Castera, ed.), vol. 1126, p. 93, SPIE, 1989.

153



Bibliography

[57] P. Jorba, “SHPM imaging of LiHoF4 at ultra low temperatures,” Master’s thesis,
2014.

[58] M. Gabay and T. Garel, “Properties of the branched state of an Ising dipolar mag-
net,” Journal de Physique Lettres, vol. 45, p. 989, 1984.
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