
DEPARTMENT OF INFORMATICS
(Guided Research in Informatics)

Technische Universität München

DAAD WISE Internship Report

Learning Aerosol Dynamics Directly From
Image Data

Siddharth Sanjay Gandhi

DEPARTMENT OF INFORMATICS
(Guided Research in Informatics)

Technische Universität München

DAAD WISE Internship Report

Learning Aerosol Dynamics Directly From Image Data

Author: Siddharth Sanjay Gandhi

Advisor: Dr. Felix Dietrich

Examiner: Dr. Felix Dietrich

Submission Date: August 15th, 2022

ii

Abstract

Understanding aerosol dynamics is important for several applications such as under-
standing the spread of infectious diseases or how fuel injection works in a combustion
engines. We generally operate aerosol modelling at coarse macroscopic scale, as it is very
challenging to do a microscopic scale. Partial and Stochastic Differentials Equations can
be used to model aerosol dynamics, however they are quite challenging to solve numer-
ically, especially for large data sets. We have to consider interactions such as gas-fluid
and aerosol-air interactions to model the dynamics properly. Hence, in this project, we
aim to learn aerosol dynamics directly from the inputted image data. The images are
first segmented using the U-Net architecture, then the aerosol dynamics (cloud growth)
are modelled using Stochastic Differential Equations (SDEs), which are learnt using neu-
ral networks. As there is a lack of labelled image data, we will use crude simulations in
Blender to generate synthetic data for training the models. We were able to train neural
networks to learn the trajectories of the cloud sizes over time. We then looked at various
ways to get a better fit and to address the imbalanced regression problem that is inher-
ently present in the dataset. We looked at SMOGN and KDE based reweighing to solve
the imbalance problem and compare the various results for different configurations.

iii

Contents

 Abstract iii

 1 Introduction 1

 2 State of the Art 3
 2.1 Previous Work . 3
 2.2 Modelling aerosol dynamics to estimate the risk of viral exposure 3
 2.3 Image Segmentation . 4

 2.3.1 Convolutional Neural Networks . 4
 2.3.2 The U-Net Architecture . 5

 2.4 Learning Stochastic Differential Equations . 6
 2.4.1 The Euler-Maruyama Scheme: . 6
 2.4.2 Learning drift and diffusivity using Neural Networks 7

 3 Learning Aerosol Dynamics from Images 9
 3.1 Problem Definition . 9
 3.2 Pipeline . 9
 3.3 Generating Synthetic Data Using Blender . 10
 3.4 Image Segmentation using U-Net Architecture 11

 3.4.1 Evaluation Metrics . 11
 3.4.2 Results . 12

 3.5 Modelling Cloud Sizes with SDEs using Neural Networks 13
 3.5.1 Extracting data from the dataset . 15
 3.5.2 Results with 11 people and 7 simulations each 15
 3.5.3 Quantifying Model Predictions . 20
 3.5.4 Results with fresh dataset of 11 people with 13 simulations each . . . 21
 3.5.5 Imbalanced Dataset . 23
 3.5.6 Hyperparameter Optimization . 27

 4 Conclusion 32

 Bibliography 33

iv

1 Introduction

Aerosols are defined as ”any colloidal suspension of solid or liquid particles in gas”

1
 .This

can refer to many things, such as, the contents of a perfume or a spray paint, which are
artificial, to more natural occurrences such as fog, mist and smoke. Understanding aerosol
dynamics is important because it has uses in understanding how air flows in jet engines
or how fuel injections work in combustion engines. Airborne diseases can also spread via
aerosol particles in the air when a person coughs or sneezes. They also make up a signif-
icant portion of our atmosphere’s particles, and can have major effect on the weather or
climate of a region, depending on the properties of aerosol particles and their concentra-
tions.

In 2020, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), a novel
strain of coronavirus causing respiratory disease with high chances of severe illness and
death, resulted in a global pandemic, which is still on-going as of today. The primary
transmission mode of SARS-CoV-2 virus was through aerosol transmission, specifically
through coughing and sneezing. Even breathing and speaking normally released respira-
tory aerosol particles, carrying the virus. These particles could remain suspended in the air
for several hours, before settling on a surface, where it can still be transmitted via surface
and contact transmission.

A good example of understanding aerosol dynamics came from testing various preven-
tive measures to stop the spread of COVID-19 disease. In one experiment, the efficacy of
face-shields was tested with humans exhaling white smoke in an otherwise dark room,
and observing the growth of the white aerosol cloud. It was found that the aerosol parti-
cles rapidly spread around the room and thus, face-shield type designs were considered
futile for containing the aerosol particles after coughing

2
 .

Figure 1.1: Experiments of humans breathing smoke against a dark background (Simu-
lated)

1Source: https://en.wikipedia.org/wiki/Aerosol

2Prof. Christian Schwarzbauer’s Study: https://www.br.de/nachrichten/wissen/pilotstudie-
umstrittene-klarsichtmaske-bietet-keinen-schutz,SIZ0Tcp

1

https://en.wikipedia.org/wiki/Aerosol
https://www.br.de/nachrichten/wissen/pilotstudie-umstrittene-klarsichtmaske-bietet-keinen-schutz,SIZ0Tcp
https://www.br.de/nachrichten/wissen/pilotstudie-umstrittene-klarsichtmaske-bietet-keinen-schutz,SIZ0Tcp

1 Introduction

Hence, modelling aerosol growth can allow us to understand how and where the parti-
cles will flow and what factors can influence them (such as emission source, surrounding
air velocity, turbulence, particle size, etc). Running such simulations can allow us to better
understand viral exposure in indoor spaces such as a classroom or office [10] and how ven-
tilation may help or how aerosol particles interact in the atmosphere with other particles.

Now, there is a lack of good labelled training data for breathing experiments such as
Prof. Schwarzbauer’s study. So, in order to train the model with enough data, we have
to do crude simulations using a 3D rendering software like Blender. These images will
be quite coarse and it is not possible to observe them at the individual, microscopic scale.
Hence, we will be relying on the growth of the volume of the aerosol cloud, over time.

This aerosol cloud growth is considered a non-linear discrete time sequence. These can
be modelled in many ways, namely with ordinary, stochastic or partial differential equa-
tions [2], where we can take into account many initial factors such as turbulence, grav-
ity, pose, etc. However, as there are elements of stochasticity (such as turbulence), we
will be trying to model them with SDEs. Generally, to solve these equations numerically
would take a long time and much computation. However there are techniques available to
learning coarse Stochastic Differential Equations (SDEs) directly from fine grained particle
simulations[3]. Hence, it is a natural progression to attempt to learn the dynamics of cloud
growth using SDEs with neural networks, which is what we’ll look at in this project: Given
a series of images like Figure 1.1 , can we model the cloud growth?

My contributions are as follows:

1. Develop a script for automating the Blender Simulations of any amount of image
data, with different initial parameters. We can input random Strength values (for the
Turbulence object in the Blender) and the script will automatically generate the data
and organize it in folders.

2. Replicate Rohan Saxena’s work of the U-Net based Image Segmentation model [8],
which can separate the aerosol cloud (subject) from the rest of the image (back-
ground). We then train it on the newly generated training data.

3. Use the work of Dietrich et al. [3] to train a neural network to learn drift and diffusiv-
ity of the SDEs over time (directly from data). This was done for both parameterized
and non-parameterized cases. We then passed the Cloud Size data over time for all
the persons and simulations to learn the SDE underlying the cloud growth.

4. Optimize the SDE model with techniques like Hyperparameter Optimization with
the Keras Tuner library to get the model with best-fit.

To give a brief outline of what follows: in Section 2, we will take a look at the previous
work on this topic, the background of the concepts involved and the popular techniques
used. In section 3, we can see the details of our model, the project pipeline from the input
images to the trained SDE model and also the results obtained. Finally, in Section 4, we
will end with the conclusion and future scope of this topic.

2

2 State of the Art

2.1 Previous Work

Rohan Saxena’s work on this topic [8] was successful at training a U-Net based image
segmentation model, capable of separating the cloud or white part of the image from the
rest. An example of the same is presented below:

Figure 2.1: U-Net Model Predictions Overlaid on top of original input images.

Figure 2.1 (from Rohan’s Report) shows a thin red outline, which is the U-Net model’s
prediction of the region where the aerosol cloud is located.

He was able to achieve this by first setting up synthetic simulations in Blender, for 11
people in 7 different scenarios, with varying initial conditions. For example, the turbulence
may have varying Strength parameter, which can change how the aerosol cloud will grow
over time (which is what we will be attempting to learn in this paper). Then he used
Convolutional Neural Networks in the form of a U-Net architecture (very good for image
segmentation tasks), along with the dataset of images and masks generated by blender
to train the model for our specific segmentation task. He also experimented training the
model with different configurations during training, and tried to find the model which
generalizes the best, i.e. which segments regardless of the person’s color, or orientation of
image.

2.2 Modelling aerosol dynamics to estimate the risk of viral
exposure

As we saw in Section 1 , studying aerosol dynamics is an important problem to understand
airborne transmission of diseases. This can help measure the risk of exposure to viruses,
by modelling the path each viral particle can take. Vuorinen et al. [10] carried out various

3

2 State of the Art

simulations in different configurations such as coughing when in a closed room with a
many walls in it or when in a supermarket walking at regular speed. They determined
that how fast an aerosol cloud becomes diluted, depends largely on turbulence intensity
and the size of the room. Sukrant Dhavan [2] also used a comprehensive model to monitor
aerosol dynamics to come to several conclusions about how the risk of infection depends
on the size of droplets, ventilation in the area, physical distance from others, and mask
usage. Jones et al. [4] uses an aerosol model to estimate the uncertainty to viral exposure
in a classroom and office setting and states the importance of good ventilation to minimize
viral exposure from aerosols.

2.3 Image Segmentation

Image segmentation is the splitting or segmentation of the image into various groups,
where each group is a bunch of closely related pixels. This relationship can be defined
by various properties such as color, texture, etc. It finds the most use in medicine, where
medical images can be segmented to identify malignant cells from benign ones.

2.3.1 Convolutional Neural Networks

There are a variety of techniques available for image segmentation, and neural networks
are quite popular. Even in neural networks, we can have different types of architectures;
the most common being Artificial Neural Networks (ANNs) or Feed Forward Neural Net-
works. However, they are not suitable for image segmentation tasks because:

1. They are not very efficient at identifying features or commonalities between groups
of pixels.

2. They are unable to account for small movements in positions of the pixels (so they
over-fit the training data in a way).

3. They require large amounts of training data and take a long time to train, while being
computationally expensive.

Instead, another form of neural networks called Convolutional Neural Networks (CNNs)
are used [5]. CNNs use a mix of perceptrons (ANNs) and convolution layers, which create
feature maps to extract high level features from a portion of the image. This provides a
more structured approach to the segmentation task with each layer responsible for differ-
ent ’tasks’. For example, one layer may be grouping all white pixels, while another may be
looking for eyes and noses. Thus, they are good at finding similarities between a group of
pixels. Due to this, they can automate the task of feature extraction making training much
easier as compared to previous models where feature extraction was manual, and they can
even tolerate small shifts in the input images.

4

2.3 Image Segmentation

2.3.2 The U-Net Architecture

For image segmentation tasks, a very popular and precise convolutional neural net archi-
tecture is the U-Net architecture [7]. It is widely used in biomedical image segmentation
tasks.

Figure 2.2: U-Net Architecture for Biomedical Image Segmentation [7]

This architecture, as demonstrated in Figurefig:unet-arch, has 2 parts, the contracting
(encoder) part on the left and the expansive (decoder) part on the right.

The encoder part is a classical fully convolutional neural network, which extracts high
level features from the input image to create a feature map. However, it drastically reduces
the resolution of the image, and for image segmentation tasks, we would like to have the
segmented image be the same resolution as the input image. So we add a decoder part to
the end of the encoder which up-samples (opposite of convolution operation) the image
repeatedly, to restore it’s original resolution.

Each step level is a double convolution with size 3∗3 (kernel size). The padding same as
input so as to maintain the image size. Moving down the encoder, a 2∗2 max-pooling layer
with a stride of 2 is used, meaning we replace a 2∗2 portion of the image with it’s maximum
value. And then we slide over 2 positions and then repeat the process. During the up-
sampling, we just reverse what we did in the down-sampling step. However, at each up-
sampling step, we also concatenate the feature map from the encoder step of same level,
which helps give localization information for semantic segmentation. Finally, to avoid
over-fitting to the input data, we drop 10% of the pixels randomly at each convolution
step.

All of this allows U-Net to perform much better than the previous state of the art meth-

5

2 State of the Art

ods, and it is efficient enough that it can do so with a small set of labelled data.

2.4 Learning Stochastic Differential Equations

Stochastic Differential Equations are used to model stochastic processes which involve
random variables. They are used to describe phenomenons like stock price fluctuations or
physical systems which are subject to much randomness.

Traditionally, ordinary differential equations are of the form

dxt = f(xt)dt, (2.1)

given some initial condition x0 = c (as it is a first order derivative). Such equations are
deterministic, meaning they can have only one possible value of x at a time t. However,
SDEs are of the form

dxt = f(xt)dt+ σtdWt. (2.2)

Here f is the deterministic term (called drift) while the σ is the stochastic or noise term
(also called diffusivity). The noise term W is white noise, where W is a Wiener Process
(standard Brownian Motion) with ∆W (ti) = W (ti+1) −W (ti). It is normally distributed,
with mean = 0 and standard deviation =

√
∆ti (as each increment will be a normal distri-

bution, the variances will be linear, meaning it is added at each time step and thus, the
std. deviation is the square root of time interval). It is also independent of it’s previous
increments, meaning it only depends on the current term and no other.

2.4.1 The Euler-Maruyama Scheme:

Now upon integrating Equation 2.2 , we get∫ ti+1

ti

dxt = xt+1 − xt =

∫ ti+1

ti

f(xt)dt+

∫ ti+1

ti

σtdWt. (2.3)

Assuming a very small time interval ∆t, we can approximate the f and σ terms as con-
stants (at time ti) and thus Equation 2.3 will become∫ ti+1

ti

dxt = xti+1 − xti = f(xti)

∫ ti+1

ti

dt+ σtid

∫ ti+1

ti

Wt

∴ xti+1 = xti + f(xti)∆ti + σti∆Wti . (2.4)

This is called the Euler-Maruyama Scheme of process x with ∆ti = ti+1 − tt and ∆Wti =
Wti+1 − Wti . For simplicity, let us assume ti = 0, ∆ti = h and ∆Wti = δW0, so from
Equation 2.4 , we will have

x1 = x0 + hf(x0) + σ(x0)δW0. (2.5)

6

2.4 Learning Stochastic Differential Equations

2.4.2 Learning drift and diffusivity using Neural Networks

Now, from the work of Dietrich et al. [3], we can learn the drift f and diffusivity σ, directly
from the tuples (x0, x1, h) over time. Let us assume that f and σ are neural networks with
weights θ. In order to train this network from the tuples in our dataset D, we need to
formulate the equation for loss function from Equation 2.5 and minimize it.

We can think of x1 as a multivariate normal distribution conditioned on x0 and h. We
need to find out the expected value (E) and variance (V ar) to define it, so from Equa-
tion 2.5

E(x1) = E(x0 + hf(x0) + σ(x0)δW0)

= E(x0 + hf(x0)) ∵ E(σ(x0)δW0)) = σ(x0)E(δW0)) = 0 by def-
inition; see Section 2.4

= x0 + hf(x0) ∵ there is no stochastic term left, so purely
deterministic

(2.6)

V ar(x1) = V ar(x0 + hf(x0) + σ(x0)δW0)

= V ar(σ(x0)δW0) ∵ the other terms are deterministic, so they
do not ’vary’

= σ2(x0)V ar(δW0) ∵ σ(x0) is a constant and V ar(cX) = c2 ∗
V ar(X) if c is a constant

= hσ2(x0) ∵ std. dev. of δW =
√
δt =

√
h; see 2.4 and

V ar = (std. dev)2

(2.7)

∴ x1 ∼ N (x0 + hfθ(x0), hσ
2
θ(x0)). (2.8)

Now we can find the probability density function for Equation 2.8 from

p(x) =
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)√

(2π)k|Σ|
where µ = mean and Σ =variance.

(2.9)
For convenience, we can take the natural logarithm of Equation 2.9

ln (p(x)) = −1

2
(x− µ)TΣ−1(x− µ)− k

2
ln (2π)− 1

2
ln (|Σ|) . (2.10)

Next, we can define the maximum (expected) log likelihood for new position x1 given
current position x0 and time interval h as

θ := argmax
θ

ln (pθ(x1|x0, h)) . (2.11)

7

2 State of the Art

To repeat this for all tuples (x1, x0, h) in our dataset D (with N tuples), we can take the
average of all the maximum (expected) log likelihood values and maximize that

θ ≈ argmax
θ

1

N

N∑
n=1

ln
(
pθ(x

(n)
1 |x(n)0 , h(n))

)
. (2.12)

Finally, to get the loss function to estimate θ for drift (fθ) and diffusivity (σθ), we can take
negative of Equation 2.12 and substitute p(x) from Equation 2.9 :

L(θ|x1, x0, h) :=
1

2

(x1 − x0 − hfθ(x0))
2

hσ2
θ(x0)

+
k

2
ln (2π) +

1

2
ln
(
hσ2

θ(x0)
)
. (2.13)

Minimizing the loss in Equation 2.13 over dataset D implies maximizing the log likeli-
hood values in Equation 2.12 . This will allow us learn the values of drift (fθ) and diffu-
sivity (σθ) directly from the given image data.

8

3 Learning Aerosol Dynamics from Images

3.1 Problem Definition

The aim of this project is to train a neural network, which can model aerosol (cloud) growth
over time, given a dataset of simulations of persons breathing out white smoke against a
dark background (in image format). We will construct a pipeline which takes in random
values for the turbulence strengths, which are used to generate the image dataset. This
data is first used to train a U-Net based image segmentation model, which will separate
the aerosol cloud from the rest of the image. From this we measure the cloud size of each
segmented image and create another dataset consisting of cloud size at each frame for each
simulation (given some input parameters such as turbulence). We will use this dataset to
train the SDE Neural Network model, in order to learn the aerosol growth over time.

3.2 Pipeline

Figure 3.1 demonstrates the entire process taken during this project, from random values
to dataset generation, to training the U-Net model and SDE neural network.

9

3 Learning Aerosol Dynamics from Images

Figure 3.1: Pipeline for the project

3.3 Generating Synthetic Data Using Blender

There is not much image data available for smoke simulations, where a human is ex-
haling out white smoke against a dark background. However, we do not need to have
perfect/real-life training data to train our image segmentation model for this task. For im-
age segmentation, U-Net is efficient enough to use data augmentation to utilize the given
annotated data effectively. Hence, crude simulations from Blender should be enough.

Rohan gathered images of humans from stock photographs on the internet, which are
free to use, and with consent of the individuals involved. He then set up the Blender sim-
ulations with the person background, smoke emitter and turbulence objects. He generated
image and mask data for 7 simulations of 11 different persons [8]. However, as we will see
later, more data was required to better fit the SDE model, to have smoother trajectories.

For generating new data, we had to tweak the turbulence strength of the Turbulence
object. All 11 people had their own .blend file, where we could do it manually. However,

10

3.4 Image Segmentation using U-Net Architecture

it is slow to tweak the value with mouse and clicking to generate data 11n times (11 people
and n simulations).

Hence, to automate things, we have created a simple script using the Blender Python
API

1
 . Using this script , we can vary any parameters in the initial simulations set up in

.blend files of each person (right now, we are only tweaking the turbulence strength). We
generate random turbulence values between 1 and 15 (as values more than 15 resulted in
smoke covering the person’s face significantly). Then we pass these values to the script
to generate and organize the data in our original dataset according to person num and
simul num. Now, we can generate as much data as we want from random values and all
we have to do is wait for the simulations to finish.

3.4 Image Segmentation using U-Net Architecture

We wish to have a U-Net model which is able to generalize well, meaning it should work
with any person regardless of their skin tone, camera angle or clothing. The model should
generate a segmentation map for the image, meaning each pixel will have a particular label
(binary segmentation in this case, as there are only 2 labels namely: part or not part of the
aerosol cloud).

Albumentations library is used to create some randomness in the image such as hori-
zontal/vertical flips and Gaussian blurs. The U-Net network is then trained on this modi-
fied dataset with 11 people and 7 simulations.

3.4.1 Evaluation Metrics

1. Pixel Accuracy is the percentage of pixels which have been correctly segmented.

Accuracy =
Ntrue positives +Ntrue negatives

Ntrue positives +Ntrue negatives +Nfalse positives +Nfalse negatives
(3.1)

However it may not be a very good measure as in case of a class imbalance, where
(Nbackground pixels ≫ Nforeground pixels), the model may not segment the background
images at all, however it will still get a high accuracy as this score did not place more
importance on the segmented part.

2. Dice Score defined as

DICE =
2 ∗Area of Overlap

Total pixels in both images

=
2 ∗Ntrue positives

2 ∗Ntrue positives +Nfalse positives +Nfalse negatives

(3.2)

1
 https://docs.blender.org/api/current/info_overview.html

1
 https://albumentations.ai/

11

https://docs.blender.org/api/current/info_overview.html
https://albumentations.ai/

3 Learning Aerosol Dynamics from Images

Hence, it not only finds the number of true positives found, but also penalizes the
model for finding false positives. This makes it a much more robust measure than
accuracy, especially for image segmentation tasks. A value closer to 1 means a perfect
segmentation and vice-versa.

Figure 3.2 gives a better idea about the difference between dice score and accuracy.

Figure 3.2: Comparison between DICE score and Pixel Accuracy

2

3.4.2 Results

First, we recreated the results that Rohan found. A sample segmentation is visible in Fig-
ure 3.3 . We used 9 people’s data for training and the remaining 2 for validation. Next, we
used another dataset (never seen by the model) of 11 people with 7 additional simulations
each, for testing. Here, we found an accuracy of 99.871% and a dice score of 0.985, which
has about a 0.7% error/deviation from what Rohan found (99.9% accuracy and 0.992 dice
score).

Next, we tried to retrain the model with more simulations. We created additional 6
simulations for all 11 persons in the first dataset. Using the same train-validation-test
split, we were able to get an accuracy of 99.86%. and a dice score of 0.985.

2Image Source: https://towardsdatascience.com/metrics-to-evaluate-your-semantic-
segmentation-model-6bcb99639aa2

12

https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2
https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

Figure 3.3: U-Net Model Predictions vs Actual Masks from dataset

This is still close to what we had before, and thus adding new data to train the model
was not very useful. This verifies that U-Net is quite efficient at making good use of the
limited data it might have available, and hence throwing more data at it might not improve
it’s performance significantly.

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

Now that we have segmented the cloud part of the image from our dataset, we wish to
learn the growth of this cloud over time. We will first define Cloud Size as

Cloud Size = %white pixels =
Ntotal pixels −Nblack pixels

Ntotal pixels

where Nblack pixels = Ntotal pixels | Gray V alue (pixel) < 10 [Thresholding] (3.3)

Next, let us visualize the exact trajectories that we will be attempting to learn. From the
original Blender Masks, if we plot Cloud Size vs Time for 11 persons and 7 simulations,
we get Figure 3.4 .

As we can see for each person, the graphs for the simulations are more or less the same.
This would not be true in real world, as the cloud growth may depend on the person’s size
or lungs. However, now it makes sense as we are using simulations and thus, the aerosol

13

3 Learning Aerosol Dynamics from Images

Figure 3.4: Cloud growth over time for 11 persons and 7 simulations

14

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

growth should not be dependent on the person in the image. It should only be affected by
external factors such as turbulence, posture, etc. So these will be the trajectories we will be
attempting to learn using SDEs.

3.5.1 Extracting data from the dataset

As we saw in Section 2.4 , we need the triplets (x0, x1, h) in order to train the neural
network. To get these, we will first parse through the entire image dataset and their dataset
info files to get a detailed dataset, as can be seen below:

Figure 3.5: Cloud Size Dataset.

From Figure 3.5 , we can extract (x0, x1, param) values (as h is implicitly defined as
repeating [1...30] over and over, which are the frame numbers in the simulations). Doing
that we get Figure 3.6 . This is the dataset we can pass to the SDE neural network created
by Dietrich et al. [3]. We can now test it with different configurations of this dataset to see
the output.

3.5.2 Results with 11 people and 7 simulations each

Without Parameter Values

We can first try to train the model on just (x0, x1) values alone, i.e. without considering any
of the initial parameters such as turbulence. Passing this to the model, we get a training
loss of 0.7195 and a validation loss of 0.829. The resulting graphs are in Figure 3.7 .

As we can see in Figure 3.7c , the predicted paths are all over the place and not very
smooth. However, this can be improved if we also consider some initial parameters from
the simulations to model it.

15

3 Learning Aerosol Dynamics from Images

Figure 3.6: Relative cloud growth over time for 11 persons and 7 simulations

Table 3.1: Losses for non-parametrized case of (11, 7) configuration

Loss Data Value
Training 9 people with 7 simulations each 0.7292

Validation 20% of training data 0.8457
Testing 2 people with 7 simulations each 1.0015

With Parameter Values

If we pass the entire triplet (x0, x1, param) to the model, we get the a training loss of
−0.323 and a validation loss of −0.117. As we can see in Figure 3.8 , with 4 parame-
ters, it is quite hard to visualize the paths. So let us try to plot them in 3D with (x, y, z) as
(time, param, cloud size). We will plot 3 graphs, first is actual cloud growth over time, sec-
ond is predicted cloud growth over time and third is comparing the actual and predicted
growths.

As we can see in Figure 3.9 [C], we have multiple predicted paths for a single parameter.
That is because since we have a stochastic process, it will vary because of the initial condi-
tion (which is random). Hence, we see a lot of paths for every parameter value depending
on the random initial condition.

However, none of the predicted paths fit very well to the actual paths. They grow much
faster in size as compared to the actual masks. So let us look at some ways in which we
can get a better fit model.

Table 3.2: Losses for parameterized case of (11, 7) configuration

Loss Data Value
Training 9 people with 7 simulations each −0.2846

Validation 20% of training data −0.2181
Testing 2 people with 7 simulations each −0.03773

16

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

(a) Training and validation loss

(b) Drift and Diffusivity over time

(c) Predicted vs Actual Cloud growth over time

Figure 3.7: Various plots for 11 people with 7 simulations

17

3 Learning Aerosol Dynamics from Images

(a) Training and validation loss

(b) Drift and Diffusivity over time

(c) Predicted vs Actual Cloud growth over time

Figure 3.8: Various plots of 11 people and 7 simulations with parameter as an input

18

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

Figure 3.9: 3D plots for 11 people and 7 simulations with parameters

19

3 Learning Aerosol Dynamics from Images

3.5.3 Quantifying Model Predictions

We can see that loss is not a good metric to tell us how good our model is at predicting the
trajectories. Both parameterized and non-parameterized cases have quite low losses, but
they still do not fit properly. Hence, we need to define a metric to quantify how good our
model is doing. For this, we will use the Mean Square Error (MSE). To calculate it:

1. We will first consider a particular parameter. For each frame number in that parame-
ter, we will average all of the different predicted cloud size value (which are a result
of the fact that we have a stochastic process). We will repeat this for all parameters.
This will give us a predicted average trajectories for each parameter.

2. We will repeat the same for original dataset as well, which will give us actual average
trajectories for each parameter.

3. Finally, to calculate MSE, we can just square the difference of these 2 arrays of cloud
sizes. Our goal to get a better fit is to minimize MSE.

Currently, the MSE will (11 people, 7 simulations) configurations (without optimiza-
tions) is 7.107. And the average paths can be seen in Figure 3.10 .

Figure 3.10: Comparison of average trajectories 11 people and 7 simulations with parame-
ters

20

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

3.5.4 Results with fresh dataset of 11 people with 13 simulations each

In the previous results, we were using 7 pre-existing simulations (done by Rohan) and 6
new simulations, that we created with random turbulence values. However, the previous
data had some problems, namely:

• The data was not consistent. Each simulation had varying values for noise amount,
initial velocity, flow, etc. Since we are only trying to learn the strength parameter, all
the other varying variables can hamper learning.

• There was not enough distribution in the values of the strength. A good portion of
the data (the first 7 simulations) only had 4 different parameter values. This meant
that the model may have had too much data for them and thus might be overfitted
because of it.

• Finally, we also want variability in the seed parameter. This is because it is respon-
sible for the inherent randomness in the simulations, which no model can ever learn
(also true in real life). Hence, our model should be good enough that it can learn
the cloud growth trajectories despite changing seed values. However the previous
dataset had same seed values for all simulations.

So to overcome these issues, we created a fresh dataset (11 persons with 13 simula-
tions) with completely random turbulence strength values, from 1-15 (values higher than
15 leads to very chaotic images). We keep distinct seed for each simulation, starting from
1 to Nsimuls ∗ Npersons. Other parameters such as size, flow and wind factors are set to
constant (0). And the noise amount is set to 0.2 (actually 0.20000000298023224 because of
a floating point error in Blender-Python API, but since it is constant across all simulations,
it should not be an issue).

Table 3.3: Losses for a fresh dataset of (11, 13) configuration (parameterized)

Loss Data Value
Training 9 people with 13 simulations each 0.6713

Validation 20% of training data 0.6750
Testing 2 people with 13 simulations each 0.4935

As we can see in Figure 3.11 [B], we have a much more uniform spread of parameters,
with no peaks in between. We also have a surface like resemblance to the cloud growth
(which makes sense as higher parameter values leads to higher cloud sizes). And finally,
even with the varying seed parameter, the model was able to learn the cloud growth tra-
jectories.

An interesting thing to note is that in Figure 3.11 [A], we can see that with increasing
parameter (turbulence), the drift (movement from original position) increases. This makes
sense as increasing turbulence would lead to more chances of the aerosol cloud spreading.

21

3 Learning Aerosol Dynamics from Images

Figure 3.11: Various plots for fresh dataset 11 people and 13 simulations (parameterized)

22

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

However, the diffusivity (how randomly it spreads) appears to remain constant with pa-
rameter size. We would expect it to also increase, as more turbulence in the environment
would lead to more randomness, however we do not see that. Perhaps the reason for this
is because on the X-axis, we using Cloud Size, which is the percentage of the image, which
is covered by white pixels. But, if there were many small clouds or one big cloud, the Cloud
Size would still remain the same. Hence, if we perhaps trained it using some other metric
(like cloud shape), we would get different results.

The MSE in this case is 123.54, which is still quite high. It is more than the less dataset
case because we have more data points for the parameters (previously there were only 4,
but now there are 15). However, we are still overshooting for higher cloud size values.

3.5.5 Imbalanced Dataset

In order to see what is causing the problem of overshooting in higher cloud size range, let
us plot the histogram for all the cloud sizes:

Figure 3.12: Cloud Size Distribution in the Dataset

As we can see in Figure 3.12 , there is a clear imbalance in the dataset. This means
that small cloud size values (from 0 − 20%) are represented a lot more than the higher
cloud size values (more than 30%). This leads to our model being skewed/biased towards
smaller cloud sizes during training. As a result in Figure 3.11 , we see that in the predicted
trajectories, the smaller cloud sizes fit much better than the higher cloud sizes. The model
does not have enough training data for the minority class (higher cloud sizes) to predict
properly.

Now, imbalanced datasets are not new and have been seen multiple times in real life
datasets. There are various techniques to counter this imbalance such as sampling (over
and under sampling) or Synthetic Minority Oversampling Technique (SMOTE). However,

23

3 Learning Aerosol Dynamics from Images

all of these methods are made for classification problems (where some classes are rep-
resented more than others), but we are dealing with a regression problem (we have to
predicted the next cloud size in a given trajectory).

The literature about dealing with imbalanced regression problem is limited, but we will
look at 2 approaches:

Synthetic Minority Oversampling Technique for Regression (SMOGN)

SMOGN [1] is the application of traditional SMOTE algoithm (used in classification) for
regression problem. It uses the current data and interpolates, to create more instances
for the minority classes. It also introduces some Gaussian noise depending on the KNN
distance between the underlying observations. When SMOGN is applied on our dataset,
the resulting histogram can be seen in green in Figure 3.12 . As we can see, we get a much
better spread in the frequencies, however, we are still missing representation from higher
cloud sizes. We would expect this to not perform very well for higher cloud sizes as well,
which is seen in the following graphs:

Table 3.4: Losses when trained on SMOGN dataset

Loss Data Value
Training 9 people with 13 simulations each 4.8711

Validation 20% of training data 4.5430
Testing 2 people with 13 simulations each 4.389

As we can see in Figure 3.13 [C], the graphs are not very smooth and there are a lot
of outlier points. The MSE is also quite high at 686.36. The reason for this is because
SMOGN automatically removes certain observations (rows) and columns (features) which
contain missing values, as can be seen in Figure 3.14 . However, for our task, we do not
want a dataset with missing points as we are dealing with a time bound dataset where
order matters. So we cannot skip certain frames in training, otherwise the model will not
properly learn how it grows over 30 frames. Hence, SMOGN is not very useful for our
task.

Reweighing samples using Kernel Density Estimation (KDE)

However, there is another approach to trying to solve the imbalanced dataset problem. We
can reweigh the training sample so that samples occurring more frequently (smaller cloud
sizes) have less weights and vice versa [9]. This would ensure that whilst the frequencies
are different, we can still level the playing field by adjusting the weights given to training
samples. Thus, in the ideal scenario here, larger cloud sizes (which are more scarce) would
have higher weights as compared to smaller cloud sizes.

In order to achieve this, we will use a Kernel Density Estimator (KDE), which uses kernel
smoothing to do probability density estimation. In other word, it returns a function which

24

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

Figure 3.13: Various plots for (11, 13) dataset after SMOGN

25

3 Learning Aerosol Dynamics from Images

Figure 3.14: Dataset after SMOGN with certain rows missing

traces the histogram of some given data. Figure 3.12 demonstrates this quite clearly where
the red line is the KDE for the original histogram. This is done by drawing a Gaussian
curve at each point on the graph and adding them up to form a smooth curve like the one
we see in the red.

Once we have the KDE, we can flip it upside down (with respect to it’s midpoint) to get
a curve which looks like Figure 3.15 .

Figure 3.15: KDE vs KDE flipped with respect to mid point

If we pass these as weights during the training (by multiplying the weights with the loss
values), and we test the model, we get the trajectories in Figure 3.16 .

26

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

Table 3.5: Losses after reweighing with inverse KDE weights

Loss Data Value
Training 9 people with 13 simulations each 1.5905

Validation 20% of training data 1.5871
Testing 2 people with 13 simulations each 1.4080

Figure 3.16: Trajectory comparision when passing inverse KDE as weights to the model

For this case, we get a MSE of 156.363. As we can see from this and the trajectories, we
actually get worse performance than using no weights at all! However, this may be due
to that the hyperparameters currently are meant for unweighted case. Perhaps tuning the
hyperparameters with weights might improve the problem.

3.5.6 Hyperparameter Optimization

Hyperparameter means high-level parameters/variables which are selected before the learn-
ing starts. These are the parameters which actually control the learning itself. For eg.,
parameters like number of layers, number of neurons per layer, the learning rate, etc are
hyperparameters, because changing them without changing input data, will still lead to
different results. We can tune these hyperparameters in any machine learning model. Ini-
tially, these values are chosen completely at random and we then tune them over time
using the validation dataset. It is not possible to know the most optimal hyperparameters
(to get a perfectly fitting model) in the beginning, which is why we have to find them out
using trial and error.

As we are using TensorFlow for this project, we will be using the Keras Tuner library

27

3 Learning Aerosol Dynamics from Images

3
 , which helps us optimize hyperparameter easily. We will be trying to vary Nlayers,
Ndim per layer and learning rate of the the neural network. The search space is listed in
Figure 3.17 .

Figure 3.17: HyperBand Tuner Search Space

The tuner will be using HyperBand search algorithm [6] to search. HyperBand is a more
efficient RandomSearch algorithm, where it starts by trying random tuples for the hyper-
parameters, but then uses adaptive resource allocation and early stopping to optimize the
process. Also, we cannot cover the entire search because with the amount of permutations
we have and the fact that each trial will have 50 epochs, this process will take a long time.
So we will be focusing on finding a good enough solution . We will be using validation loss
as our objective (to minimize).

Initially, the tuner will pick random combinations of Nlayers, Ndim per layer and learning
rate from the search space. First it will run few (4-5) epochs on it. Then it will take the best
performing samples, and run it through more epochs. Meanwhile, it will also keep trying
other unseen combinations.

After tuning, we get the best configuration for (Nlayers, Ndim per layer, learning rate) =
(8, 448, 0.001). When we train a model based on this hyperparameters with the inverse
KDE weights, we get Figure 3.18 .

Table 3.6: Losses after reweighing with HP tuned inverse KDE weights

Loss Data Value
Training 9 people with 13 simulations each 1.5698

Validation 20% of training data 1.558
Testing 2 people with 13 simulations each 0.1112

However, the MSE in this case was 81.727, which is significantly better than the non HP
tuned inverse KDE case. Hence, optimizing the hyperparameters for the weighted case
certainly improved performance.

3
 https://keras.io/keras_tuner/

28

https://keras.io/keras_tuner/

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

Figure 3.18: Various plots for HP tuned Inverse KDE

29

3 Learning Aerosol Dynamics from Images

Comparison between different weights

Finally, let us compare how each of the different weighing strategies affect losses and MSE.
We will try to compare it between unweighted, inverse KDE, HP tuned inverse KDE and
KDE (passing weights directly out of KDE) as well. We use KDE just to find out what
happens. Upon plotting the losses over cloud size plots for each of these configurations,
we see the following:

Figure 3.19: Loss vs Cloud Size for various configurations.

Table 3.7: MSE values for different configurations

Configuration Mean Square Error (MSE)
Unweighted 123.54

KDE 68.45
Inverse KDE 156.363

HP Tuned Inverse KDE 81.727

As we can see in Figure 3.19 , there is quite a lot of fluctuations in the beginning when
the model is just starting to learn the trajectories. However, over time (as time progresses,
cloud sizes get bigger so going left to right can also be interpreted as over time), the fluc-
tuations start to lessen.

First, when we pass KDE as weights, it means that we are giving more weights to the
smaller cloud sizes (which are already abundant in the dataset). Hence, the model should
have no problems learning the smaller cloud size growth and as a result, we see very little
(the least among the 4) fluctuation among smaller cloud sizes for KDE. However, the loss
does start becoming higher (the highest among the 4) once we reach higher cloud sizes.

Next, for inverse KDE, we see that small cloud sizes are a fluctuation because even
though they are abundant, we are not assigning much weights to them. So the model
cannot train as well as it did for KDE. However for larger cloud sizes, we see noticeable
improvement as compared to KDE.

Finally, for the HP tuned inverse KDE, we again see a lot of fluctuation for smaller cloud

30

3.5 Modelling Cloud Sizes with SDEs using Neural Networks

sizes (as we are not giving them much importance), however, for larger cloud sizes, we see
the least loss values (the least among all 4), which is exactly what we would hope when
we give them higher weights.

At last, when we look at the MSE for all the different configurations in Table 3.7 , we
see that KDE performs the best, counterintuitively! We would expect it to not perform
well as we are giving less importance to the larger cloud even more as compared to the
unweighted case. However, it may be that the sheer number of data points in the smaller
cloud size range (0 − 10%) and the lower losses there maybe enough to compensate the
larger deviations in the larger cloud sizes.

31

4 Conclusion

To summarize, in Section 1 , we looked at the introduction of aerosols, what they are and
why it may be important to learn aerosol dynamics. Next in Section 2 , we looked at the
current state of the art literature for the various concepts to be used in the project. We
looked at the previous work on this topic, then how aerosol modelling is used to estimate
the risk of viral exposure, then how to segment and image using U-Net and finally how
we can learn Stochastic Differential Equations (SDE) using neural networks. And at last,
in Section 3 , we looked at recreating the U-Net model by Rohan, extracting a dataset of
cloud sizes, using it to train an SDE neural network and then optimizing it to get a better
fit for the trajectories, while addressing the imbalanced dataset problem which exists in
the dataset.

The key takeaways from this project are that we can indeed learn the growth of an
aerosol cloud using just images and a neural network (albeit in unrealistic conditions).
We first generated datasets using Blender simulations with nothing more than random
turbulence values. Then we segmented those images to get cloud size dataset and this was
passed to the SDE model to learn their growth. This can be used to model how aerosol
particles may spread inside a closed space (again, to model viral exposure). Another key
takeaway is the attempt to address the imbalanced regression problem, as current solu-
tions to addressing imbalanced datasets are generally for classification and the literature
of regression is limited. However, we looked at 2 techniques to potentially address this
and they worked with a varying degree of success.

Finally, in the future, this work may be improved by training on real life image data (as
compared to the simulations used here) or passing in new input parameters (other than
turbulence) such as pose of the person or wind speed. The imbalanced dataset problem
could also be improved further to get a much better fit (again the best results we got were
from KDE counterintuitively). And we could also develop a better metric to pass for model
training. The current loss function (from Equation 2.13 is not a good indicator of how well
our model is fitting to the original trajectories. All configurations that we tested this upon
had quite low loss values, so if we could come up with something like DICE score for
image segmentation, where model is penalized from straying away too much, it would
yield better results. As a last idea, we can take a look at the inverse question: can we
find the initial parameter values, given a model and a series of images of an aerosol cloud
growing?

32

33

Bibliography

[1] Paula Branco, Luı́s Torgo, and Rita P Ribeiro. Smogn: a pre-processing approach for
imbalanced regression. In First international workshop on learning with imbalanced
domains: Theory and applications, pages 36–50. PMLR, 2017.

[2] Sukrant Dhawan and Pratim Biswas. Aerosol dynamics model for estimating the
risk from short-range airborne transmission and inhalation of expiratory droplets of
sars-cov-2. Environmental Science & Technology, 55(13):8987–8999, 2021.

[3] Felix Dietrich, Alexei Makeev, George Kevrekidis, Nikolaos Evangelou, Tom Bertalan,
Sebastian Reich, and Ioannis G. Kevrekidis. Learning effective stochastic differential
equations from microscopic simulations: Combining stochastic numerics and deep
learning, June 2021.

[4] Benjamin Jones, Patrick Sharpe, Christopher Iddon, E. Abigail Hathway, Catherine J.
Noakes, and Shaun Fitzgerald. Modelling uncertainty in the relative risk of exposure
to the SARS-CoV-2 virus by airborne aerosol transmission in well mixed indoor air.
Building and Environment, 191:107617, March 2021.

[5] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[6] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. Hyperband: A novel bandit-based approach to hyperparameter optimiza-
tion. Journal of Machine Learning Research, 18(185):1–52, 2018.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. In Nassir Navab, Joachim Horneg-
ger, William M. Wells, and Alejandro F. Frangi, editors, Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015, volume 9351, pages 234–241.
Springer International Publishing, Cham, 2015.

[8] Rohan Krishna Saxena. Learning Aerosol Features From Image Data. TUM Guided
Research, page 28, 2022.

[9] Michael Steininger, Konstantin Kobs, Padraig Davidson, Anna Krause, and Andreas
Hotho. Density-based weighting for imbalanced regression. Machine Learning,
110(8):2187–2211, 2021.

34

Bibliography

[10] Ville Vuorinen, Mia Aarnio, Mikko Alava, Ville Alopaeus, Nina Atanasova, Mikko
Auvinen, Nallannan Balasubramanian, Hadi Bordbar, Panu Erästö, Rafael Grande,
Nick Hayward, Antti Hellsten, Simo Hostikka, Jyrki Hokkanen, Ossi Kaario, Aku
Karvinen, Ilkka Kivistö, Marko Korhonen, Risto Kosonen, Janne Kuusela, Sami Lesti-
nen, Erkki Laurila, Heikki J. Nieminen, Petteri Peltonen, Juho Pokki, Antti Puisto,
Peter Råback, Henri Salmenjoki, Tarja Sironen, and Monika Österberg. Modelling
aerosol transport and virus exposure with numerical simulations in relation to SARS-
CoV-2 transmission by inhalation indoors. Safety Science, 130:104866, October 2020.

35

	Abstract
	Introduction
	State of the Art
	Previous Work
	Modelling aerosol dynamics to estimate the risk of viral exposure
	Image Segmentation
	Convolutional Neural Networks
	The U-Net Architecture

	Learning Stochastic Differential Equations
	The Euler-Maruyama Scheme:
	Learning drift and diffusivity using Neural Networks

	Learning Aerosol Dynamics from Images
	Problem Definition
	Pipeline
	Generating Synthetic Data Using Blender
	Image Segmentation using U-Net Architecture
	Evaluation Metrics
	Results

	Modelling Cloud Sizes with SDEs using Neural Networks
	Extracting data from the dataset
	Results with 11 people and 7 simulations each
	Quantifying Model Predictions
	Results with fresh dataset of 11 people with 13 simulations each
	Imbalanced Dataset
	Hyperparameter Optimization

	Conclusion
	Bibliography

