Time-Coded Spiking Fourier Transform in
Neuromorphic Hardware

Javier Lopez-Randulfe, Nico Reeb, Negin Karimi, Chen Liu, Hector A. Gonzalez, Robin Dietrich,
Bernhard Vogginger, Christian Mayr, Member, IEEE, and Alois Knoll, Senior Member, IEEE

Abstract—After several decades of continuously optimizing computing systems, the Moore’s law is reaching its end. However, there is
an increasing demand for fast and efficient processing systems that can handle large streams of data while decreasing system
footprints. Neuromorphic computing answers this need by creating decentralized architectures that communicate with binary events
over time. Despite its rapid growth in the last few years, novel algorithms are needed that can leverage the potential of this emerging
computing paradigm and can stimulate the design of advanced neuromorphic chips. In this work, we propose a time-based spiking
neural network that is mathematically equivalent to the Fourier transform. We implemented the network in the neuromorphic chip Loihi
and conducted experiments on five different real scenarios with an automotive frequency modulated continuous wave radar.
Experimental results validate the algorithm, and we hope they prompt the design of ad hoc neuromorphic chips that can improve the
efficiency of state-of-the-art digital signal processors and encourage research on neuromorphic computing for signal processing.

Index Terms—Spiking Neural Network, FMCW radar, Fourier transform, Neuromorphic computing.

1 INTRODUCTION

Spiking neural networks (SNNs) can be executed rapidly
and with high energy efficiencies on dedicated neuromor-
phic hardware owing to their inherent event-based oper-
ation and sparse communication. Since the term was first
coined [1], there has been increasing interest in designing
not only accurate neuron models describing the neurobio-
logical dynamics in detail but also hardware that natively
supports event-based communication, sparse coding, and
highly parallel brain-inspired operations with distributed
memory. State-of-the-art neuromorphic chips [2], [3], such
as SpiNNaker2 [4] and Intel’s Loihi [5], have shown remark-
able performance in various tasks, including event-based
data processing, adaptive control, constrained optimization,
and graph search [6].

This offers a promising alternative to today’s artificial
intelligence (AI) systems, which build on the highly paral-
lelized von Neumann computers (GPUs). Although these
systems have become state-of-the-art solutions to many
problems, including image classification and speech pro-
cessing, they consume considerable energy. This introduces
a limitation, e.g., for highly automated vehicles, where sys-
tems that process sensor data can drain more than 10% of
the power stored for driving [7]. The success of current Al
algorithms further builds on the constant improvement of
CPU/GPU capabilities. The improvement in the traditional
von Neumann computers is, however, slowing down as we
approach physical manufacturing limits. The imminent end
of the Moore’s law [8] indicates the necessity of explor-
ing new computational technologies such as neuromorphic

e]. Lépez-Randulfe, N. Reeb, N. Karimi, R. Dietrich, and A. Knoll are with
the Department of Informatics, Technical University of Munich, Munich,
Germany. E-mail: lopez.randulfe@tum.de

o C. Liu, HA. Gonzalez, B. Vogginger, and C. Mayr are with the Faculty
of Electrical and Computer Engineering, Technische Universitit Dresden,
Dresden, Germany.

computing to further improve the performance and energy
efficiency of next-generation Al algorithms.

Along with the continuous improvement of neuromor-
phic chips, SNN-based solutions have emerged in recent
years for various applications and sensors, ranging from
speech recognition with resonate-and-fire neurons [9], object
tracking for monocular vision [10], [11], object detection
using raw temporal pulses of lidar sensors [12] for lane
keeping [13], feature extraction and motion perception [14],
and collision avoidance based on data obtained from a
dynamic vision sensor [15]. Currently, the most prominent
task addressed in radar data processing using SNNs is
gesture recognition [16], [17], [18], [19]. Micro-Doppler sig-
natures of hand movement are particularly suited for ges-
tures and contain temporal information, which on the other
hand leverages the recurrence ability of SNNs. Recently,
IMEC presented the pBrain chip [20], an event-driven, fully
synthesizable architecture for SNNs, targeting low-power
edge neuromorphic chips and applications such as radar-
based hand-gesture recognition and image classification
with MNIST. This first successful demonstration of radar-
based hand-gesture recognition substantiates the hypothesis
of SNN superiority in terms of energy efficiency and com-
putational execution time when applied to a suitable task
using specifically designed neuromorphic hardware.

Among the wide variety of relevant signal processing
algorithms that could benefit from neuromorphic efficiency,
the Fourier transform (FT) represents an attractive choice.
The FT is not only the workhorse of modern signal process-
ing but also governs almost every data-processing applica-
tion in our digital age. Exploring a spike-based FT brings
us closer to how biological organisms decode frequency
tones [21] and follows the same motivation as the quantum
research community working on quantum-based fast FT
(FFT) implementations [22], which is extending the applica-
tion of core inference engines in specialized hardware (e.g.,

quantum or neuromorphic) to extracting frequency-based
features.

In a specific case of radar processing, an efficient and
accurate spiking alternative for the FT opens the door to im-
plementing a full neuromorphic processing pipeline, which
would lead to using only one chip for handling the different
tasks at hand.

This study proposes an alternative and novel spike-
based FT (S-FT), which is suitable for neuromorphic hard-
ware. This study is a major extension of the work presented
in [23]. The main novel aspects are listed below:

e« We introduce a novel time-based neuron model, that
requires only one spike per input for computing a
matrix multiplication.

e We introduce a novel sparse spiking network archi-
tecture that can replicate the structure of the FFT.

o We implement the spiking algorithm on the Loihi
neuromorphic hardware [5] and benchmark the al-
gorithm on real-life scenarios from an automotive
radar.

The results indicate that the proposed algorithm has
competitive accuracy, showing a low error throughout the
entire spectrum of the processed data. Although the es-
timated energy consumption is higher than state-of-the-
art FFT accelerators, we believe that next generations of
neuromorphic hardware will close this gap, making the
S-FT a viable replacement for traditional versions of this
algorithm.

The remainder of this study is organized as follows.
Section II details the customized spiking neural model, the
network architecture, and the target neuromorphic imple-
mentation. Section III explains the validation experiments
and the comparison framework. Section IV discusses the
implications of the obtained results, and Section V concludes
the paper.

2 SPIKING NEURAL NETWORK

We propose a spiking neuron model that can replicate ma-
trix multiplications using time coding, i.e., by representing
each value with a single spike in time. Namely, we use time-
to-first-spike encoding to represent real numbers. For a real
value z; ranging from Zmin t0 Tmax, the equivalent spike time
will be t; for a time range between tyin and tmax:

tmax - tmin

tj = tmin +

Tmax — Tmin

— ;) . (1)

: (xmax

Equation (1) can be simplified for the common case

where tnin = 0 and Tpmin = —Tmax:
tma
i = Tm:x (Tmaz — ;) - (2)

This assumption is applied in the rest of the paper. In the
rest of the section, we will represent (2) as

ti =7 (Tmax — 75), 3)

where 7 is the constant factor

tmax
=) 4
ol ST 4)

2.1 Neuron model

The voltage dynamics of our model are the same as in the
model proposed in [24]. At a certain time ¢, the voltage of
neuron ¢ depends only on the weights of the input neurons
that have already spiked, also called causal neurons and
represented by I's~. The contribution of each causal neuron
J € TS to the voltage of neuron i is directly proportional to
the time elapsed since j spiked. Thus, the voltage of neuron
i takes the form of

U7(t) = Z U)U(t - tj) 5 (5)

jers

where w;; is the weight of the synapse connecting ¢ with
j, and each input neuron j is restricted to produce one
single spike. Moreover, the voltage change between two
consecutive steps results in the equation

JETE

and the neuron generates a spike whenever the voltage
reaches a threshold voltage ;. We modify (5) to obtain
a model that can represent a linear combination z = W - z,
where the element 7 of the resulting vector z takes the form

N
Ziy = Zwi]‘l‘j . (7)
J

The discrete FT (DFT) is a specific implementation of (7),
as it can be represented by the matrix-vector multiplication

N—-1

Yk = Z T - [cos (%kn) — - 8in (%kn)] , 8

n=0

where y;, represents the result of the k-th bin of the FT
over the input signal x, both including N elements. From
(8), the DFT of a vector x can be written as the matrix
multiplication y = Wppra with the weight matrix Wpgr
containing the given complex weights. By splitting x into its
real and imaginary parts, *(z) and 3(z), we can define the
matrix multiplication with only real-valued variables:

(30)) = (St) (56) - o

For implementing precise matrix multiplications (7), all
spikes representing the input x need to be causal, i.e., neu-
rons can only spike after all input spikes arrive. To achieve
this, the neuron operation is divided in two consecutive
stages (see Fig. 1). During the first stage, the information
contained in all input spikes is accumulated in the mem-
brane voltage u; by setting a high threshold voltage uy,.
During the second stage, the neuron is charged with a fixed
gradient that leads to an output spike at a time proportional
to u;.

ui(t) = 2wilt—t)
J

\

ur

ut) —uft=1) _, |
I

< Silent stage

>ie Spiking stage >

to

ts .

Fig. 1: Sketch of the time-evolution of the time-coded S-DFT membrane voltage. In the first stage, pre-synaptic spikes
charge the neuron to a voltage u;(tr). In the second stage, the spiking of the neuron is forced by an external current I.,;.

The voltage is reset at the end of the second stage.

Silent stage

On an initial silent stage during which the post-synaptic
neuron i does not spike, the membrane voltage of the
neuron is modified following (5) by the N pre-synaptic
spikes, which arrive between the times 0 and ¢,. Moreover,
we add a constant bias b; to the neuron and substitute ¢;
using (3). Hence, at time ¢ = ¢, (5) results in

Uz(ts) = Z ’LUij’y{I?j + Z wij(ts — 'Yxmax) + bz . (10)
The bias b; is chosen as b; = — > w;j(ts — YTmax), S0 that
the voltage u;(ts) is directly proportional to z; in (7),

(11)

’U,Z(ts) = vzwijwj .
J

We choose s to be the same for all neurons to keep the
same time-to-value mapping (3). For the special case of
representing a DFT without the offset bin (i = 0), using
a bias current in this stage is not required, as the sum of all
weights in (8) is zero for all non-zero bins {b; = 0, Vi # 0}.

Equation (11) is true only if neuron ¢ does not spike
during the silent stage. Thus, the membrane voltage u;
cannot reach the threshold voltage uy during this stage.
We refer the reader to Appendix A.1 for a more detailed
explanation.

To optimize the dynamic range of u;(ts), us, is set to the
boundary condition

Urp = Max {ui,max} = max«§ v Z ‘w1j| Lmax (12)
Vi Vi -

J

The maximum intensity ymax that can be computed by the
FT is given at the zero-frequency bin ¢ = 0 for a constant
input {z; = Tmax, Vi}. The maximum intensity for a non-
constant input is limited by half of ymax for frequency
bins i # 0, due to the symmetry property of the FT
spectrum. Therefore, the value of wj, for the S-DFT can be
further reduced and the calculations optimized by setting

the threshold to
Uth = % Xj: W05 Lmax - (13)

Spiking stage

To translate the voltage u;(ts) into time-coded spikes, neu-
ron ¢ is charged on a spiking stage by a constant current ey
from time ¢, until {7 (see Fig. 1). The increase in the mem-
brane voltage follows the linear function Au; = Atly:.
Therefore, the neuron generates a spike at time ¢; when
the membrane voltage u; reaches the threshold voltage s,
which is determined by

U — wi(ts)
lémt
The interval t; — t, is directly proportional to the output of
the original function y;(z), where the positive and negative
values are represented by the first and second halves of the
time range, respectively. ¢; spans between ¢, and the total

simulation time t7.

The value of I.,; is set to the minimum value that
makes the neuron spike for all possible voltage values
at t;. The most critical value is w;(ts)min, which leads to
min{u;(ts)} = —u. The external current I..; is then
obtained from (14) as

ti—1ts = (14)

2uth,
tT - ts .

Iext = (15)

2.2 Network architecture

The proposed neuron model replicates a matrix-vector mul-
tiplication z = Wz using input and output neural layers
connected by the weight matrix W. Thus, by applying feed-
forward connections W; between the layers, it is possible to
represent a sequence of L matrix multiplications

Z:WLWLfl...WliL‘. (16)

To transmit spikes between layers, the spiking stage
of a pre-synaptic layer overlaps with the silent stage of
the corresponding post-synaptic layer connected right after.
This is due to the nature of the SNN, as neurons collect
information from pre-synaptic connections during the silent
stage, and then generate information during the spiking
stage. This means that for an SNN with L layers, the total
number of stages over time is L + 1, and a given layer !
receives spikes during the [-th stage and generates spikes
during the [+1-th stage. Fig. 2 depicts a representation of the
architecture and the overlap of the different stages.

Due to the nature of the SNN, the network does not
need to wait for an input vector to be processed before
feeding a new vector. The frame rate of the network is only
determined by the maximum time required for a single stage
to be computed, ie., Ty = trna., Where Ty is the period
between consecutive frames. The latency of the network to
process a single frame is the sum of the time required for
processing spikes on each layer, i.e., 75 = ElL 71, where 7
represents the time delay for processing a frame, and 7; is
the execution time of layer [.

We exploited this property for reproducing the linear
combinations of an FT that operates in more than one
dimension, which is explained in more detail in [23].

Fig. 2: Representation of an SNN with an input layer and
three hidden layers. The connections throughout the net-
work are feed-forward, and the spiking stage of each layer
[overlaps with the silent stage of layer [4 1. During the
silent stage, the layer charges on the basis of spikes from
the previous layer, and during the spiking stage the layer
charges at a constant rate until reaching w,. Therefore,
neurons only produce spikes during the spiking stage.

2.2.1 Spiking fast Fourier Transformation

Here, we show an alternative architecture that takes ad-
vantage of the chained matrix multiplication (16) and re-
produces the structure of an FFT algorithm. By factorizing
the DFT matrix into linear combinations of sparse matrices
S, the number of computations and connections can be
reduced and an optimized FT can be obtained,

yZWDFT'l‘ZSLSL_l...Sl'LL’. (17)

The most common FFT algorithms exploit the symmetry
properties of the complex weights of the DFT and recur-
sively map the DFT to smaller DFTs, being the smallest DFT
called butterfly matrix [25]. This recursive mapping splits
the FT computation into several consecutive sparse matrix
multiplications that reduce the order of complexity. The
number of matrix multiplications depends on the number of
data points IV and the size of the butterfly matrix. Here, we
use the decimation-in-frequency Radix-4 butterfly matrix to
build the sparse matrix representations S. As a result, the
number of stages or layers L is determined by L = log,(N)
[26]. A detailed explanation of the Radix-4 algorithm, its
butterfly matrix, and complex weights can be found in [25]
and [26].

The sparse matrices S consist of multiplications of com-
plex 4-by-4 radix-4 butterlfy matrices

1 1 1 1

Byy = 1 :i _11 _21) (18)
1 ¢ -1 —i
and complex diagonal weight matrices
Wowe oo o
Woa=1 o w2 o | (19)
0 0 0 W

with Wk = €??™%/N As the neuron model only works with
real values, the complex matrix By - Wi is transformed
into a real-valued 8-by-8 radix-4 matrix Wgyg - Bgys, where
half of the connections represent the imaginary components.
By using the same rephrasing as in (9), the transformation
yields the result

Wisys - Bsxs =
_ (R(Waa) —S(Waa) R(Bixs) —S(Buxa)
- (%‘(wij) S%(w4j4§) ' (%(Bixi) éR(B;S) : (20)

Instead of using an all-to-all connection layout as in
the DFT matrix, only up to eight connections per neuron
are needed. As a spike generated in one neuron has to
be distributed to all neurons connected to its output, the
number of spike operations (ops) is given by the number of
connections per neuron Neonn, the total number of neurons
Nneurons, and the number of output spikes Noytput- Assuming
the same number of connections per neuron, the number of
spike ops is given by
21

N, spike ops. — 4 Vconn * N, neurons + N, output -

Based on (21), the number of spike ops of the S-DFT is
determined by

Noper = 2N - 2N + 2N, 22)

whereas the spiking FFT (S-FFT) version requires

Nsgpr = 8- 2N -log,(N) + 2N (23)

spike ops. In addition, the S-FFT requires log, (V) layers and
2N neurons per layer, including both real and imaginary
values. In Table 1, we compare the reduction of connections
in the S-FFT network with the reduced number of neurons
in the S-DFT network.

Thus, the S-FFT network reduces the number of spike
operations by increasing the total number of neurons. We
evaluated the benefits of using fewer spike operations in
Section 3.4 by comparing neuromorphic implementations of
both the S-DFT and S-FFT.

TABLE 1: Summary of the network parameters for an S-FFT
and S-DFT that process an input chirp with NV samples, and
has a delay 7; per stage.

Parameter S-FFT S-DFT
N° layers log,(N) 1
N° neurons 2N -log,(N) 2N
N° spike ops. 82N -logy(N) 4+ 2N N 2N + 2N
Ty 2.7 2.7
Ty 7 - (logy(N) +1) 2.7

2.3 Neuromorphic hardware implementation

To assess the feasibility of accelerating the network in neu-
romorphic hardware and evaluating its performance, the
proposed SNN has been implemented on Intel’s digital re-
search chip Loihi [5]. The chip consists of 128 neuromorphic
cores, and each core can integrate 1024 spiking neural units,
called compartments. Three embedded Intel Lakemont x86
processor cores manage the neuromorphic cores and control
the spike traffic that is directed in and out of the chip. The
chip is a fully-digital many-core mesh that implements the
current-based leaky integrate-and-fire (CUBA LIF) neuron
model. The compartments are implemented as homoge-
neous groups that share the basic structure and parameters.
Connections are configured similarly: synapses connecting
two populations of neurons show the same functional be-
havior and only differ in their weights.

To implement the proposed neuron model (5) on Loihi,
the parameters of the inherent CUBA LIF model have to be
adjusted. The voltage membrane of the standard implemen-
tation follows the differential equation

Uiy -~ L)+ 1) + by
dt Tu
with a voltage time constant 7, bias b;, and synaptic re-
sponse current I;”"(t) of neuron i. The synaptic current
depends on the incoming spike s; = 6(¢t — t;) as

(24)

Syn]- _ T
) = Zwm—;je YTH)(t—t;), (25
J

with a current time constant 77, Heaviside function H(t)
and weights w;;. The S-FT dynamics (6) have no leakage,
1/7, = 0, and no synaptic decay, (1/77)e” /7" = 1. The
synapses store and accumulate the weights of the incoming
spikes without decay and drive the voltage over time. Up to

5

this point, the calculations of the neuron model are limited
only by the 8-bit precision of weights on the Loihi chip.
Since we further rely on the silent stage for our neuron
calculations, the threshold has to be set accordingly. The
accuracy of the calculations is further constrained by the
existence of an upper limit of the voltage threshold in Loihi.

For the transition between the silent and spiking stages,
the synaptic current is reset, and a fixed synaptic bias is
introduced to each neuron, inducing a constant increase in
the membrane potentials, that eventually reach the voltage
threshold and generate a single spike per neuron.

The two architectures introduced in Section 2.2 take
encoded radar data as input. For the S-DFT, each input
node is connected to every neuron and weighted with the
corresponding DFT coefficient. For the S-FFT, the connection
matrix is sparse, with each neuron connected to eight inputs
(four real and four imaginary). Fig. 3 illustrates the distribu-
tion of the S-FFT in the chip. The input data affect two key
configuration features of the network: First, it determines
the network size, as the number of samples in the radar data
dictates the number of spike generators and the number of
neurons in each layer; second, it affects the run time, as the
process of encoding and feeding the data to the network
with a designated resolution takes a fixed number of time
steps ny. This determines the duration of the silent and
spiking stages, as the membrane dynamics of each stage
(10) are simulated on discrete time over nr steps. Increasing
the number of time steps will improve the resolution of the
network at the expense of a prolonged execution time.

The accumulation of incoming weighted spikes from all
input generators requires a high value range from Loihi’s
network parameters. The membrane potential of each neu-
ron is given a central role in these calculations. It takes
values in the range [—2%3,223], with 223 — 26 being the
maximum threshold. This threshold cannot be reached dur-
ing the silent stage. The current induced by each spike is

Layer 1 * Layer 2

e
i

n
1

Ef
™

E,

2

v
TTTTTTTTTIT T T T T TTTTTTITTTTT

L
TTTTTTTTTIT T TTTT I TTITTTTITTITT

re N
im N

Spike
Generators

Core 1 Core 2

Fig. 3: Representation of the S-FFT distribution in the Loihi
chip. In green, the spike generators feeding the information
from the N input samples. In blue, four arbitrary neurons
representing the real component of two values in the first
layer and two values in the second layer, respectively. In red,
four neurons representing the imaginary components of the
aforementioned four values. Due to hardware limitations,
some connections are implemented in the same core. This is
the case of the ones between layers 1 and 2 in the figure.
Other connections, like the output of layer 2, are routed
between different cores.

also limited to a fixed minimum value of 25. The synaptic
weights w can be excitatory and inhibitory, and they are
based on the FT equations. They are implemented in Loihi
according to

w = m *x 2P (26)
where m represents the mantissa, and exp is the exponent.
They can take integer values in the range [—28, 2% — 1] and
[—8, 7], respectively. Moreover, should the full range of m
be used, it can only take even values.

The aforementioned variable ranges introduce a bottle-
neck in the implementation, limiting the precision of the
network, which becomes more relevant as the number of
input samples increases.

3 VALIDATION EXPERIMENTS

To evaluate the performance of the proposed S-FT in realistic
conditions, we collected data in real-world scenarios using
a radar sensor, which is prompt to clutter perturbations. We
designed tailored experiments in which the radar sensor
was exposed to challenging corner cases, and compared
the spiking result with the output from a dedicated FFT
accelerator [27].

The code and data for running the experiments are
available at an open-source repository.

3.1 Radar dataset

We have collected raw radar data using a commercial
77-GHz frequency modulated continuous wave (FMCW)
radar (AWR1642Boost-ODS) from Texas Instruments.

Two representative setups were considered during the
recording. As shown in Fig. 4, the radar sensor is statically
erected in an empty yard with a height of 1m. In the first
setup, the radar faces a crossing, where different objects
with varied radar cross-section, e.g., pedestrians, cyclists
and cars, are captured. In the second setup, a mobile robot
delivers a radar corner reflector that returns high-intensity
radar echoes in the front. The robot moves within the range
of 22 m slowly (radial velocity between —1m/s and 1 m/s).

To ensure a long length of FFT benchmarking up to
1024 points, the radar configuration is well-designed, as
described in Table 2.

TABLE 2: Summary of radar configuration.

Parameter Value
Bandwidth (MHz) 1535
Sampling frequency (MHz) 5
Chirps per frame 128
Chirp time (ps) 230
Range Max. (m) 56.2
Range Res. (m) 0.1
Velocity Max. (m/s) 2.0
Velocity Res. (m/s) 0.06

1. https:/ / github.com /KI- ASIC-TUM/ time-coded-SFT

Fig. 4: Images with the two setups used for experimental
radar recordings. On the top image, the radar faces objects
with different radar cross-section. On the bottom image, the
radar faces a mobile robot carrying a corner detector.

3.2 FFT accelerator used for comparison

The FFT accelerator used to compare the performance of
the S-FT is a 22FDX memory-based approach described in
[27] and shown in Fig. 5, which is highly-optimized for the
radar processing chain in terms of latency and area with a
dual-radix butterfly. The accelerator uses a Radix-4 butterfly
for the Range-FFT at a resolution of 16 bits, whereas it uses
a Radix-2 buttefly for the Doppler and Angle FFT at 32 bits.

(IQ ADC CH1]{IQ ADC CH2J

Fig. 5: Block diagram of the FFT accelerator used as refer-
ence ([27, Figure 1]).

Despite this accelerator having a dual-radix butterfly,
and allowing the utilization of either a Radix-2 (32 bits) or
a Radix-4 (16 bits) mode, the latter is used in this study
to employ a more comparable counterpart for the S-DFT.
The accelerator maintains a high throughput by aligning
non-consecutive operators via a buffering stage that ensures
a single result is always written in every clock cycle.

3.3 Results

We have tested the proposed SNN on the dataset introduced
in section 3.1. The purpose of this experiment is to validate
the SNN by running it through different scenarios and
evaluating the error for each one of them.

We have computed the root mean square error (RMSE)
between the result of the scientific library NumPy? on a
general-purpose computer, and the results of the S-FT and
the FFT accelerator introduced in Section 3.2, respectively,
using the equation

N-1 R VAY)
RMSE(X,Y) = \/Zi X~ Y)

—o (
@
where X and Y represent two signals of size V.

We have also generated the plots of the SNN and FFT
accelerator outputs for specific configurations to visually
compare both signals and spot local deviations in specific
bins or scenarios.

We have analyzed the accuracy of the S-FT in four
static scenarios that include typical challenging situations
for radar sensors:

1) One strong reflection close to the sensor and one
weak reflection far away

2) A weak reflection far away

3) Two reflections close to each other

4) Multiple reflections

Fig. 6 shows the output of the S-FFT and the reference
FFT for each of the aforementioned cases. In all cases, we
have run the network with a stage time of 257 time steps,
and for a data length of 1024 samples. Table 3 depicts the
RMSE of the S-DFT, S-FFT, and the reference FFT accelerator
after correcting the offset and normalizing the output to
the same range. The table shows an error of 0.041 in the
worst-case scenario. In addition, the error is distributed
homogeneously over the transform, thereby preserving the
information contained in the intensity difference between
bins.

Fig. 7 shows how the number of time steps affects the
accuracy of the S-FFT. We have conducted the experiment
for three different bin configurations compatible with the
radix-4 architecture and calculated the RMSE over the four
static scenarios.

In addition, we have assessed the S-FFT on a scenario
with dynamic objects that introduce changes in the Doppler
dimension of the radar signal, i.e., by performing an FT over
consecutive chirps of a frame the velocity of the different
objects can be obtained. Fig. 8 depicts the performance of the
S-FFT on the range dimension for one of the input chirps, as
well as the Doppler dimension for a specific range bin. The

2. https://numpy.org/doc/stable/reference/routines.fft.html

7

TABLE 3: RMSE of the S-DFT and S-FFT compared to the
output from NumPy for npins = 256 and ¢ = 256.

Architecture S1 S2 S3 S4
S-DFT 0.004 0.041 0.009 0.030
S-FFT 0.006 0.026 0.007 0.028

Accelerator 0.0005 0.0005 0.0005 0.0005

S-FFT follows the reference with minor variations outside
the main peaks, as shown by the cross-section FT in Figs. 8a
and 8d.

3.4 Computational performance

We provide in this section a notion of the main aspects of
the computational performance of the proposed SNN when
implemented in the neuromorphic chip Loihi (See Table 4).

The values offered for the Loihi implementation are
estimated with the results of the performance experiments
conducted in [5] and combined with the S-DFT and S-FFT
computational parameters from Table 2. The energy and
execution time per frame are calculated using

E= Nspikes 236?] + Tsteps * T'neurons 52P] (28)

and

Tf = Tspikes * 3.5ns + Nsteps * Mneurons * 8.4ns. (29)

As the execution of SNNs can be highly parallelized
in neuromorphic hardware, we reduce (29) to the time
required to process all spikes and neuron updates in a single
neuromorphic core. In the case of Loihi, the execution is
distributed among 128 neural cores, resulting in 16 and 80
neurons per core for an S-DFT and S-FFT with 1024 bins,
respectively.

In addition, the multilayer architecture of the S-FFT
allows processing the incoming chirp n once the previous
chirp n — 1 has already passed the first layer. This implies
that the total energy consumed per chirp by the neuron
updates through the total time 7 is divided by the total
number of chirps that can be simultaneously processed.
In other words, the S-FFT uses only 1/L of its neurons at
every processing stage while the remaining neurons can
handle other chirps in the meantime.

TABLE 4: Figure of Merit for the proposed architectures in
the neuromorphic chip Loihi for processing data streams of
1024 samples and 75 simulation steps per processing stage.

Parameter S-DFT S-FFT
Nneurons 2048 10240
Tipike ops. (thsnd.) 2100 84
E (uJ) 65.5 499
Ty (us) 77.6 105
Ty (us) 77.6 315
P (mW) 844 158

Scenario 1 Scenario 2

Real Real

Scenario 3 Scenario 4

Real Real

— S-FT — acc — S-FT — acc — S-FT — acc — S-FT — acc
‘ WA ‘
o o "0 e Wit
173 100 200 300 400 500 13 100 200 300 400 500 13 100 200 300 400 500 173 100 200 300 400 500
1 Imaginary N Imaginary N Imaginary N Imaginary
|
|
y y y y |
0~ 0 0 oM 1
-t 0 100 200 300 400 500 -t 0 100 200 300 400 500 -t 0 100 200 300 400 500 -t 0 100 200 300 400 500
Magnitude Magnitude Magnitude Magnitude

Lok Ak

10‘

o W

300
Bin N©

400 500 0

Bin N©

100 200 300 400

Bin N©

300 500 0 500

Bin N©

400

Fig. 6: Error of the S-FFT for four different corner cases. In blue, the output of the S-FFT implemented in Loihi. In red, the

reference signal provided by the FFT accelerator introduced

in Section 3.2. The experiments have been conducted for a bin

size of 1024 and for 257 time steps per SNN simulation stage. A signal with only real values is used as input, resulting in
a symmetric FT. Thus, only the positive side of the spectrum is displayed. In addition, the offset bin has been removed, as
its information is irrelevant for the range dimension of a radar. The results have been normalized between —1 and 1 for
the real and imaginary terms. The magnitude plot depicts the logarithm of the output value normalized between 0 and 1.

RMSE over different sim times

0.25
—— 64 bins
0.20 —— 256 bins
1024 bins
w 0.15
wn
=
< 0.10

0.05

0.00 100 200

N¢ simulation steps

Fig. 7: RMSE of the S-FFT in Loihi for different simulation
times when compared to the reference FFT algorithm. The
x axis indicates the amount of simulation steps on each of
the SNN stages. The experiment has been performed for FT
sizes of 64, 256, and 1024 bins, respectively.

4 DISCUSSION

We have evaluated the proposed SNN on real-world radar
data. We tested the S-DFT and S-FFT architectures on five
different scenarios that pose different challenges, e.g., target
intensity, distances between targets, scenario complexity,
and dynamic properties. In all cases, the proposed SNN
provides a low-error output and can reproduce the result of
the reference algorithm for all FT bins. The error is caused
by the loss of dynamic range when converting to spikes and
the low resolution of Loihi’s parameters, such as the weights
and membrane voltage. The low error holds when the total
number of output bins changes, and it improves when the
number of simulation time steps is increased (see Fig 7).
We have also estimated the computational performance

Magnitude

5000

0.86683

40.08

30.16

2024

1032

0.4000

T
<« ~ o

aQ FFT Magnitude (1 0%)

~

\I/elocity (m/s)

—— Accelerator
—— S-DFT

d 6 -4 2 0 2 4 5
Velocity (m/s)

conesao~
FFT Magnitude (10%)

c

Fig. 8: Conventional and spike-based range (a) and Doppler
(d) FFT for the Range-Doppler map (b) of the scenario (c).

of both architectures in Loihi. Table 4 shows that the S-DFT
outperforms the S-FFT in terms of execution time, due to the
larger number of neurons in the latter. Regarding the total
energy required to process one chirp, the S-FFT offers better
performance, because each neuron of this network is only
used during a small fraction of the runtime, i.e., during its
corresponding silent and spiking stage (see Fig. 2).
State-of-the-art FFT accelerators include memory-based
DSPs in [28] and [27], the latter being a very attractive
solution for multi-core DSPs in MIMO FMCW radars, as its
footprint is minimal; or contributions for high-performance
applications such as the LTE communication chip in [29].
The energy consumption of these chips for the FT parame-
ters used in Section 3.4 is 484, 56.3, and 126 n]J, respectively,
whereas the execution time is 2.81, 8.8, and 1.38 us, respec-

tively. It must also be noted that the matrix-based FFT accel-
erator described in [29] is optimized for high performance,
which implies that the latency benefits are only evident for
FFT lengths larger than 1024 points. Such lengths have not
been covered by this work, as they were not supported by
the other FT accelerators and fall outside of the FMCW
radar scope. Table 4 shows that the performance of the
state-of-the-art FT accelerators is 9 - 76 times more efficient
than that of the neuromorphic implementation in terms
of execution time. The theoretical calculations of Loihi’s
energy consumption showed that it consumes 100 - 1000
times more energy than the FT accelerators. Although the
FT accelerators outperform the implementation of the S-FT
architectures, we see the later as promising.

First, contrary to traditional DSPs, neuromorphic hard-
ware design is still in its early stage, and the newest
generations of neuromorphic hardware are making big
progress in terms of chip performance. In the case of Loihi,
its newest version, Loihi2?, promises spike generation and
synaptic operations times that are 10 and 5 times faster,
respectively.

Second, there are alternative neuromorphic designs that
exploit the sub-threshold operation area and implement cer-
tain properties of the neuron models, such as the membrane
potential, which uses analog voltages instead of digital
values. Some chips implementing these strategy outper-
form Loihi’s 23.6p] energy consumption per spike, down
to 0.381p] [30], 0.134p] [31], or 0.077p] [32]. Adapting this
hardware paradigm to the proposed SNN would potentially
enable the design of neuromorphic solutions more efficient
than FT accelerators.

Moreover, the spiking nature of the S-FT allows increas-
ing the sparsity of the algorithm by discarding spikes that
represent zero values. The number of spikes that could be
removed is highly dependent on the nature of the data and
the error that can be sacrificed for improving the efficiency.
For the experiments that we have run, the spikes that occur
at t(z = 0) = 5 time steps account for 40 — 60% of the
total spikes. Removing them would lead to a proportional
reduction of the consumed energy and would not involve a
significant loss in accuracy. We would also like to emphasize
that FT accelerators are specialized chips manufactured for
a specific operation and with fixed parameters, whereas
neuromorphic counterparts are configurable chips used for
research, so they are not optimized for this specific algo-
rithm.

The existence of an SNN for performing the FT is also
crucial for being able to implement sensor signal processing
pipelines that are solely running in neuromorphic hardware.
This solution would avoid undesired costs introduced by
the need to apply conversion stages between float numbers
and spikes, and install intermediate traditional DSPs for
implementing this specific processing stage. We anticipate
that this algorithm will become more relevant as the SNN
algorithms for processing higher level data get more mature.

3. https:/ /download.intel.com /newsroom/2021/
new-technologies/neuromorphic-computing-loihi-2-brief.pdf

5 CONCLUSION

In this work, we have proposed a neuron model for convert-
ing precise matrix multiplications into an SNN and tested
the model for replicating the output of the FT. Compared
to previous works, we increased the sparsity of the network
by proposing a novel neuron model that encodes the data
using one spike per value. In addition, we have reduced
the total number of synaptic connections by designing an
architecture based on the FFT algorithm. We have also
implemented the network in neuromorphic hardware and
tested it with radar data obtained from real-world scenarios.

The experiments show that the error of the proposed
algorithm is low in all scenarios. However, the compu-
tational performance of the proposed work is behind FT
accelerators in terms of energy consumption and execution
time. We see this as a motivation for designing ad hoc
neuromorphic chips that are highly specialized in perform-
ing the FI. We hope that this work encourages further
research on the design of novel hardware architectures that
leverage the potential of neuromorphic hardware to create
signal processing solutions faster and more efficient than
current state-of-the-art solutions. We believe that replacing
the general-purpose board used for the experiments with
a chip that implements a neuron model and a connection
grid tailored for the proposed algorithm would significantly
improve the computational performance of the algorithm
and would outperform the traditional solutions used today
to implement the FT.

Besides the specific use case for computing the FT,
the proposed SNN serves as a general model for tasks
that involve matrix multiplications. For instance, the pro-
posed model could be applied for the conversion of deep
convolutional neural nets into SNNs for inference after
training. This use case has already been explored for rate-
based SNNs with minor losses in accuracy. We believe that
the proposed model would achieve a similar performance
while improving the energy efficiency and execution time.
The main limitation is the elaborate parametrization of
the threshold voltage, the amount of simulation steps, and
the minimum and maximum boundaries of the encoding
conversion. Moreover, the implementation of the proposed
model and other SNNs is restrained by the contemporary
absence of commercial neuromorphic chips.

By means of this paper we aim to stimulate further
research on the application of time-based SNNs for signal
processing. The S-FT can serve as the initial stage for larger
processing pipelines, providing input for higher-level oper-
ations performed by other time-based SNNs, such as object
detection, tracking, or classification.

ACKNOWLEDGMENTS

This research has been funded by the Federal Ministry of
Education and Research of Germany in the framework of
the KI-ASIC project (16ES0995 and 16ES0996).

The authors also acknowledge the financial support by
the Federal Ministry of Education and Research of Germany
in the programme of “Souverdn. Digital. Vernetzt.”. Joint
project 6G-life, project identification number: 16KISK001K.

We would like to thank Intel Corporation for granting us
access to the chip Loihi and its associated resources.

REFERENCES

(1]
(2]
(3]

(4]

(5]

6]

(7]

(8]
(9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

C. Mead, “Neuromorphic electronic systems,” Proceedings of the
IEEE, vol. 78, no. 10, p. 1629-1636, 1990.

S. Furber, “Large-scale neuromorphic computing systems,”
Journal of Neural Engineering, vol. 13, no. 5, p. 051001, 2016.
C.S. Thakur, J. L. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar,
N. Qiao, J. Schemmel, R. Wang, E. Chicca, J. Olson Hasler et al.,
“Large-scale neuromorphic spiking array processors: A quest to
mimic the brain,” Frontiers in neuroscience, vol. 12, p. 891, 2018.
Y. Yan, T. C. Stewart, X. Choo, B. Vogginger,]J. Partzsch,
S. Hoppner, F. Kelber, C. Eliasmith, S. Furber, and C. Mayr,
“Comparing loihi with a SpiNNaker 2 prototype on low-latency
keyword spotting and adaptive robotic control,” Neuromorphic
Computing and Engineering, vol. 1, no. 1, p. 014002, jul 2021.

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” Ieee Micro, vol. 38,
no. 1, pp. 82-99, 2018.

M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. E
Guerra, P. Joshi, P. Plank, and S. R. Risbud, “Advancing neuro-
morphic computing with loihi: A survey of results and outlook,”
Proceedings of the IEEE, vol. 109, no. 5, pp. 911-934, 2021.

S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous
driving: Constraints and acceleration,” in Proceedings of the
Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, 2018, pp.
751-766.

M. M. Waldrop, “The chips are down for moore’s law,” Nature,
vol. 530, no. 7589, pp. 144-147, 2016.

D. Auge, J. Hille, E Kreutz, E. Mueller, and A. Knoll, “End-
to-End Spiking Neural Network for Speech Recognition Using
Resonating Input Neurons,” in Artificial Neural Networks and
Machine Learning — ICANN 2021, ser. Lecture Notes in Computer
Science, I. Farkas, P. Masullj, S. Otte, and S. Wermter, Eds. Cham:
Springer International Publishing, 2021, pp. 245-256.

F. Piekniewski, P. Laurent, C. Petre, M. Richert, D. Fisher, and
T. Hylton, “Unsupervised Learning from Continuous Video in
a Scalable Predictive Recurrent Network,” arXiv:1607.06854 [cs],
Sep. 2016.

Y. Luo, M. Xu, C. Yuan, X. Cao, Y. Xu, T. Wang, and Q. Feng,
“SiamSNN: Spike-based Siamese Network for Energy-Efficient
and Real-time Object Tracking,” arXiv:2003.07584 [cs], Aug. 2020.
W. Wang, S. Zhou, J. Li, X. Li, J. Yuan, and Z. Jin, “Temporal
Pulses Driven Spiking Neural Network for Time and Power Ef-
ficient Object Recognition in Autonomous Driving,” in 2020 25th
International Conference on Pattern Recognition (ICPR), Jan. 2021,
PP- 6359-6366.

Z. Bing, C. Meschede, K. Huang, G. Chen, FE. Rohrbein, M. AKkl,
and A. Knoll, “End to End Learning of Spiking Neural Net-
work Based on R-STDP for a Lane Keeping Vehicle,” in
2018 IEEE International Conference on Robotics and Automation
(ICRA), May 2018, pp. 4725-4732.

F. Paredes-Valles, K. Y. W. Scheper, and G. C. H. E. de Croon,
“Unsupervised Learning of a Hierarchical Spiking Neural Net-
work for Optical Flow Estimation: From Events to Global Motion
Perception,” IEEE transactions on pattern analysis and machine
intelligence, vol. 42, no. 8, pp. 2051-2064, Aug. 2020.

N. Salvatore, S. Mian, C. Abidi, and A. D. George,
“A Neuro-inspired Approach to Intelligent Collision
Avoidance and Navigation,” in 2020 AIAA/IEEE 39th
Digital Avionics Systems Conference (DASC), Oct. 2020, pp.
1-9.

F. Kreutz, P. Gerhards, B. Vogginger, K. Knobloch, and C. G.
Mayr, “Applied Spiking Neural Networks for Radar-based
Gesture Recognition,” in 2021 7th International Conference
on Event-Based Control, Communication, and Signal Processing
(EBCCSP), Jun. 2021, pp. 1-4.

A. Safa, F. Corradi, L. Keuninckx, I. Ocket, A. Bourdoux,
FE. Catthoor, and G. G. E. Gielen, “Improving the Accuracy of Spik-
ing Neural Networks for Radar Gesture Recognition Through Pre-
processing,” IEEE Transactions on Neural Networks and Learning
Systems, pp. 1-13, 2021.

I.J. Tsang, F. Corradi, M. Sifalakis, W. Van Leekwijck, and S. Latré,
“Radar-Based Hand Gesture Recognition Using Spiking Neural
Networks,” Electronics, vol. 10, no. 12, p. 1405, Jan. 2021.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

10

B. Yin, F. Corradi, and S. M. Bohte, “Accurate and efficient time-
domain classification with adaptive spiking recurrent neural net-
works,” arXiv:2103.12593 [cs], Mar. 2021.

J. Stuijt, M. Sifalakis, A. Yousefzadeh, and F. Corradi, “uBrain: An
Event-Driven and Fully Synthesizable Architecture for Spiking
Neural Networks,” Frontiers in Neuroscience, vol. 15, p. 538,
2021. [Online]. Available: https://www.frontiersin.org/article/
10.3389/fnins.2021.664208

C. Carr and M. Konishi, “A circuit for detection of interaural
time differences in the brain stem of the barn owl,” Journal
of Neuroscience, vol. 10, no. 10, pp. 3227-3246, 1990. [Online].
Available: https:/ /www.jneurosci.org/content/10/10/3227

D. Coppersmith, “An approximate fourier transform useful in
quantum factoring,” arXiv preprint quant-ph/0201067, 2002.

J. Lépez-Randulfe, T. Duswald, Z. Bing, and A. Knoll, “Spiking
neural network for fourier transform and object detection for
automotive radar,” Frontiers in Neurorobotics, vol. 15, 2021.

B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking
neural networks using sparse temporal coding,” in 2018 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE,
2018, pp. 1-5.

P. Duhamel and M. Vetterli, “Fast fourier transforms: A tutorial
review and a state of the art,” Signal Processing, vol. 19, no. 4, pp.
259-299, 1990.

A. Ganapathiraju, J. Hamaker, J. Picone, and A. Skjellum, “A
comparative analysis of fft algorithms,” 02 1999.

H. A. Gonzalez, F. Kelber, M. Stolba, C. Liu, B. Vogginger,
S. Héanzsche, S. Scholze, S. Hoppner, and C. Mayr, “Ultra-
high Compression of Twiddle Factor ROMs in Multi-core DSP
for FMCW Radars,” in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), 2021, pp. 1-5.

L. Guo, Y. Tang, Y. Lei, Y. Dou, and]J. Zhou, “Transpose-
free variable-size FFT accelerator based on-chip SRAM,” IEICE
Electronics Express, vol. 11, pp. 20140 171-20140171, 07 2014.

X. Chen, Y. Lei, Z. Lu, and S. Chen, “A variable-size fft hardware
accelerator based on matrix transposition,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 26, no. 10, pp.
1953-1966, 2018.

A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza,
A. R. Voelker, C. Eliasmith, R. Manohar, and K. Boahen, “Brain-
drop: A mixed-signal neuromorphic architecture with a dynamical
systems-based programming model,” Proceedings of the IEEE,
vol. 107, no. 1, pp. 144-164, 2018.

S. Moradi, N. Qiao, E Stefanini, and G. Indiveri, “A scalable
multicore architecture with heterogeneous memory structures for
dynamic neuromorphic asynchronous processors (dynaps),” IEEE
transactions on biomedical circuits and systems, 2017.

N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sum-
islawska, and G. Indiveri, “A reconfigurable on-line learning
spiking neuromorphic processor comprising 256 neurons and 128k
synapses,” Frontiers in neuroscience, vol. 9, p. 141, 2015.

Javier Lopez-Randulfe received a M.Sc. de-
gree in electrical engineering from the University
of Vigo, Vigo, Spain, in 2014, and a M.Sc. de-
gree in Robotics from the University of South-
ern Denmark, Odense, Denmark, in 2019. He
is currently working toward a Ph.D. degree fo-
cused on efficient neuromorphic algorithms for
autonomous systems as a member of the chair
of Robotics, Atrtificial Intelligence, and Real-time
Systems with the Technical University of Munich,
Munich, Germany.

His main interests include neuromorphic computing, computational
neuroscience, and mobile robotics.

Nico Reeb received a B.Sc. degree in physics
from the Ludwig-Maximilians-University (LMU),
Munich, Germany in 2018. As an exchange stu-
dent at the University at Queensland, Brisbane,
Australia, he focused on computational neuro-
science and machine learning. In 2020 he re-
ceived a M.Sc. degree in physics from the LMU.
During his studies he worked on machine learn-
ing solutions in particle physics for the Belle Il
experiment and the ANTARES experiment at the
Max-Planck Institute for Astrophysics. Currently,
he is working toward a Ph.D. degree as a member of the chair of
Robotics, Artificial Intelligence, and Real-time Systems with the Tech-
nical University of Munich, Munich, Germany.

His main interests include Bayesian statistics and modelling, compu-
tational neuroscience, and neuromorphic algorithms.

Negin Karimi received a B.Sc. degree in elec-
trical engineering from the University of Applied
Sciences in Munich, Germany, in 2016 and a
M.Sc. degree in Robotics, Cognition, Intelligence
from the Technical University of Munich, Ger-
many, in 2021. She is currently working toward
her Ph.D. degree in computer science as a mem-
ber of the chair of Robotics, Atrtificial Intelligence,
and Real-time Systems with the Technical Uni-
versity of Munich, Germany.

Her research interests include neuromorphic
computing algorithms for robotics and autonomous systems.

Chen Liu received a B.Sc. degree in electrical
engineering from the Xidian University in Xi'an,
China, in 2012 and a M.Sc. degree in microelec-
tronics from the Technische Universitat Dresden,
Germany, in 2016. He is currently a scientific
staff and pursuing his Ph.D. degree with the
Chair of highly-parallel VLSI-systems and neu-
romorphic circuits, Technische Universitat Dres-
den, Germany.

His research interests include radar process-
ing, deep learning, neuromorphic computing,
and autonomous driving.

™ Hector A. Gonzalez (Student Member, IEEE)
received a B.Sc. degree in electronics engineer-
ing from the National University of Colombia,
Bogota, Colombia, in 2011, and a M.Sc. degree
in microsystems engineering from Khalifa Uni-
versity (Masdar Institute Campus), in collabo-
ration with MIT, Abu Dhabi, UAE, in 2017. He
is currently a Scientific Staff and working to-
ward a Ph.D. degree with the Chair of highly-
parallel VLSI-systems and neuromorphic circuits
with Technische Universitat Dresden, Dresden,
Germany. From 2011 to 2015, he held multiple industrial positions as
a Senior Engineer of instrumentation and control electronics. His re-
search interests include neuromorphic computing, hardware design for
machine learning algorithms, biomedical applications, and digital signal
processing for radar systems.

11

Robin Dietrich received his bachelor’s degree in
Computer Science from the Hochschule Darm-
stadt in March 2015 and his master's degree
in Computer Science from the University of
Stuttgart in August 2017. He stayed for one
semester at UMass Lowell (USA) in his bach-
elor’'s and specialized in robotics and Al during
his year at Oregon State University (USA) in
his master’s. Since 2019, he has been working
toward his PhD degree as a member of the chair
of Robotics, Artificial Intelligence and Real-time
Systems with the Technical University of Munich, Munich, Germany.

His research interests include the design and evaluation of efficient
biologically inspired navigation algorithms for autonomous mobile robots
as well as neuromorphic implementations of those.

Bernhard Vogginger received a Diploma de-
gree in physics from the University of Heidel-
berg, Heidelberg, Germany, in 2010. He is cur-
rently pursuing a Ph.D. with the Chair of Highly-
Parallel VLSI-Systems and Neuromorphic Cir-
cuits, Technische Universitat Dresden, Germany,
under the supervision of Prof. C. Mayr. He is also
a Research Associate with the Chair of Highly-
Parallel VLSI-Systems and Neuromorphic Cir-
cuits, Technische Universitat Dresden. His re-
search interests include neuromorphic engineer-
ing, neural computation, radar processing, and deep learning.

Christian Mayr (Member, IEEE) received the
Dipl.-Ing. (M.Sc.) in electrical engineering, and
Ph.D. and Habilitation degrees from Technis-
che Universitdt Dresden, Dresden, Germany,
in 2003, 2008, and 2012, respectively. He is
currently a Professor of electrical engineer-
ing at Technische Universitat Dresden. From
2003 to 2013, he was with Technische Univer-
sitdt Dresden, with a secondment to Infineon
(2004-2006). From 2013 to 2015, he was a
Postdoc with the Institute of Neuroinformatics,
University of Zurich and ETH Zurich, Zurich, Switzerland. Since 2015,
he has been the Head of the Chair of Highly-Parallel VLSI-Systems and
Neuromorphic Circuits with Technische Universitit Dresden. He is the
author or co-author of more than 80 publications and holds four patents.
His research interests include bio-inspired circuits, brain-machine inter-
faces, AD converters, and general mixed-signal VLSI-design.

Alois Knoll (Senior Member, IEEE)
received a Diploma (M.Sc.) degree in
electrical/communications engineering from

the University of Stuttgart, Stuttgart, Germany,
in 1985 and a Ph.D. (summa cum laude)
degree in computer science from the Technical
University of Berlin (TU Berlin), Berlin, Germany,
in 1988. He was with the Faculty of the Computer
Science Department, TU Berlin until 1993. He
joined the University of Bielefeld, as a Full
Professor and the Director of the research group
Technical Informatics until 2001. Since 2001, he has been a Professor
with the Department of Informatics, Technische Universitat Miinchen
(TUM), Munich, Germany. He was also on the Board of Directors of the
Central Institute of Medical Technology, TUM (IMETUM). From 2004 to
2006, he was Executive Director of the Institute of Computer Science,
TUM.

APPENDIX A
THEORETICAL FRAMEWORK OF S-FT

A.1 Silent phase

The DFT or FFT can be represented as matrix-vector multi-
plication. Here, we present the mathematical proof that our
neuron model can perform matrix-vector multiplications.
After all spikes in the silent stage 1 occurred, we can state
the final voltage of the neuron as

= Z wij(ts (30)
J

Inserting the data-spike conversion results in
ult) = Z wij(t 31)
= Z wij (¢ meax *(Tmax — ;) (32)
= 2x Z w”.’I}] =+ Z U)Zj T-rmax) (33)

max . max

= 236 Z Wi T Zw” (34)
=41 35
Zwuwﬁzww (35)
By introducing the offset b; = —3_, w;; % (that does

not depend on the input data) to the voltage, the voltage
becomes

V=N it — t5) + b (36)
J
t
= 2xs Zwijxj (37)
max _7
(38)

= ’y(l) Zwijmj .
J

Here, we can see that the voltage u; is proportional to
the matrix-vector multiplication u; ~ > Wi Tj.

For calculating the voltage threshold we have to deter-
mine the maximum value that can be reached. To maximize
the scalar product w; -z =) j WijTj, we assume that

has the same sign as w; and |zj| = ZmaxVj. Therefore, the
maximum voltage of one neuron can be calculated as
Ui max = ’Y(l) Z Wij Tmax - (39)
J

For the threshold, we have to determine the maximum
voltage of all neurons,

ga)x = MAaX Uj max = n@x 'y(l)xmax Z Wyj - (40)
J

A.2 Spiking phase

During the spiking phase a constant current Io; = 72 =
27“‘“ is inserted. This value is chosen according to the
data-spike conversion in (1) and depends on the maximum
voltage. By inserting this constant current into the voltage
equation u;(t) = u; + Iext, the spike time can be calculated
as

ty = 7(2)(umax - Ui) (41)
= 7(2 umax Z wzyfp] (42)
ts
= 5~ 7(2)7(1) Z Wi T (43)
J
tS ts S
= = — i 44
2 2Umax 2Tman 2; it @

It is important to highlight, that umax does not depend
on the input data = but only on the maximum value Zmay,
the weights w;;, and the time ¢,. The voltage domain v &
(—Umax; Umax) i again symmetric.

ls
Umax = Tmax max Z |wlj‘ (45)
Umin = — max Z |wsj] (46)
(47)
Inserting the result in ¢; yields
tS tS S
t= 2 T 48
2" Qs 20 Ej:w 7)
tg ts
= — - 49
2 2 o max » [wij| Q:Cmax Zw”xj)
ls ls
= = — W;i T 50
2 22 —max) [wg] szax Z 7 (50)
ts S
= -) Wi (51)
2 Qmaxzj\wm; 7
(52)

For each layer, | the output of the matrix-vector multi-
plication is normalized by max) _; |w)| which is indepen-
dent of the input data. These calculations can be repeated
for each layer or matrix vector multiplication, respectively.

APPENDIX B
BUTTERFLY MATRIX
Wiays - Bexg =
_ (R(Waa) —S(Waa) | (R(Boa) —S(Baxa)
S(Waa) R(Waa) S(Baxa) R(Baxs)
1 1 1 1 0 0 0 0
X sk =k sk o-sk ok sk ok
caF 2 c3F —e3y =S 528 —s3k s2F
_ C%C SSk CSk S:?\;C S%C Cdk SL;’\}C C?\;‘/
- 0 0 0 0 1 1 1 1
sk, =k —s ek ek sk —ck sk
Y - L e - e - e L
L R - L

