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Reduced-order battery lifetime models, which consist of algebraic expressions for various aging modes, are widely utilized for
extrapolating degradation trends from accelerated aging tests to real-world aging scenarios. Identifying models with high accuracy
and low uncertainty is crucial for ensuring that model extrapolations are believable, however, it is difficult to compose expressions
that accurately predict multivariate data trends; a review of cycling degradation models from literature reveals a wide variety of
functional relationships. Here, a machine-learning assisted model identification method is utilized to fit degradation in a stand-out
LFP-Gr aging data set, with uncertainty quantified by bootstrap resampling. The model identified in this work results in
approximately half the mean absolute error of a human expert model. Models are validated by converting to a state-equation form
and comparing predictions against cells aging under varying loads. Parameter uncertainty is carried forward into an energy storage
system simulation to estimate the impact of aging model uncertainty on system lifetime. The new model identification method used
here reduces life-prediction uncertainty by more than a factor of three (86% ± 5% relative capacity at 10 years for human-expert
model, 88.5% ± 1.5% for machine-learning assisted model), empowering more confident estimates of energy storage system
lifetime.
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Models of battery degradation provide guidance for energy
storage system design, empower battery dispatch to be optimized
to extend system lifetime, and enable prognostic maintenance, all of
which are crucial for leveraging the large initial investment required
for any given battery energy storage system.1,2 Qualitative under-
standing of the calendar and cycle life of various lithium-ion battery
technologies, from sources such as battery warranties or from
literature review, helps to define overarching industry trends or to
identify targets for improving system lifetime,3 but does not provide
enough detail for optimizing the design or dispatch of individual
battery systems, as degradation trends vary dependent on cell format,
electrode chemistry, and manufacturer.4 To provide this detail, many
researchers utilize battery lifetime models parameterized using
accelerated aging test data. While a wide variety of battery
degradation models with varying levels of computational or math-
ematical complexity exist,5,6 ranging from simple linear “bucket”
models,7 empirical or “semi-empirical” non-linear models,8–10 or
physics-based models (single particle7,10 or pseudo-2D11), empiri-
cally derived algebraic lifetime models, also referred to as reduced-
order models, are used widely due to their relative accessibility,
interpretability, and ease of implementation. Many systems level and
technoeconomic analyses utilize reduced-order lifetime models,
combining these degradation models with simulations of battery
systems and financial models to optimize the sizing of home energy
storage systems,12 determine battery degradation costs with energy
arbitrage,10,13,14 or optimizing mixed battery use, such as application
stacking of stationary systems or use of electric vehicle batteries for
vehicle-to-grid services.15–17

Battery degradation models can also be used to extend system
lifetime and increase revenue for any given application, by balancing
the revenue/utilization of the energy storage system with the cost of
the incurred degradation during that use.7,14,18–20 Battery dispatch
can be optimized either through the development of battery derating
strategies derived from the battery lifetime model,19,20 or by directly
optimizing the battery dispatch considering revenue, system costs,
and degradation costs. Various optimization approaches exist,

depending on the complexity of the model and compute resources.
Linear degradation models or piecewise linear approximations of a
non-linear degradation model may be implemented into a mixed-
integer linear program,21,22 which are computationally efficient.
Non-linear convex degradation models can be used within a model
predictive control framework.14 Non-linear or physics-based models
may be used to optimize dispatch using an algorithmic or gradient-
free approach.10,23,24 Accessibility of battery degradation models,
and their use in applications such as those cited above, is improved
by recent publication of open-access battery models, including
physics-based models such as SLIDE25 and PyBAMM,26 as well
as technoeconomic modeling tools using the reduced-order battery
lifetime models studied in this work, such as SimSES developed by
Technical University of Munich,27 and the System Advisor Model
developed by the National Renewable Energy Lab.28

One of the primary challenges for utilizing battery lifetime
models is the relationship between accelerated aging data and real-
world use. While battery lifetime in real-world use may be anywhere
from 10 to 20 years, it is not reasonable to wait 20 years before
making evaluations of system lifetime. Thus, accelerated aging
experiments, where the rate of degradation is increased by operating
batteries aggressively, are common for evaluating battery lifetime.
These experiments usually require from 6 months to a few years of
aging to reach battery end-of-life instead of 10–20 years. However,
there are many factors to consider when when extrapolating models
from accelerated aging data to real-world use:

• Separating time- and cycling-dependent degradation, as ag-
gressively cycled cells can reach 10 000 cycles in 2 years (∼14
cycles per day)29 while real world cells may not reach 10 000 cycles
for 20+ years30

• Aging mechanisms driven by cell age may not appear during
accelerated aging, such as the onset of a “knee” in the capacity
curve31,32

• Aging mechanisms driven by aggressive cycling or extreme
temperatures may not appear during real-world use33

• Experimental noise and life model inaccuracy may result in
substantial predictive uncertainty when predicting battery state at
10–20 years34zE-mail: pauljgasper@gmail.com; paul.gasper@nrel.gov
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• Accelerated aging is typically conducted at constant tempera-
ture or using a repeating cycle,9,29,35,36 while real-world use and
environment vary dynamically30

The complications above apply not only to cell performance
metrics, such as capacity and internal resistance, but also to cell
internal states, such as lithium inventory and electrode capacities,
which may be diagnosed via incremental capacity analysis.37 Thus,
to extrapolate degradation trends observed during accelerated aging
to real-world applications, four key considerations need to be made:

(i) Visualization of degradation trends and connection to physical
mechanisms, qualitatively deconvoluting stress-dependent
trends (e.g., degradation rate vs. temperature) from chem-
istry-/architecture-dependent parameters

(ii) Identification of modeling equations predicting degradation
trends

(iii) Optimization of model parameters and quantification of model
uncertainty, deconvoluting the contributions of various degra-
dation mechanisms

(iv) Extrapolation to dynamic aging and validation using lab-based
or real-world data

The most significant challenge in the above approach is step (ii): the
identification of modeling equations. Degradation trends may be
dependent on three or more experimental variables, making a trial-
and-error search for an accurate model equation very difficult. This
work aims to summarize prior efforts to address this challenge, then
demonstrate a methodology to identify accurate models by com-
bining human-expert judgement with machine-learning methods,
and finally describe how these models can be used to simulate real-
world aging. Thus, the main contributions of this work are:

• A review of cycling degradation models, which reveals a wide
variety of equation forms and complexities, indicating the challenge
researchers face when attempting to discover accurate models

• Demonstration of a machine-learning assisted model identifica-
tion procedure on a stand-out data set of the degradation of LiFePO4

(LFP) - graphite (Gr) batteries8,29 (accessible at38,39), using bootstrap
resampling and cross-validation to quantify the accuracy and un-
certainty of human-expert8,29 and machine-learning assisted models

• Comprehensive description of the procedure for deriving
dynamic state equations from the optimized degradation model,
which is used for model validation on dynamic aging data as well as
simulation of real-world aging in a stationary energy storage system
using SimSES40

Each of these contributions is detailed in sections throughout the
paper. The degradation model described in this work is provided
open-source via SimSES.40

Literature Review of Cycling Degradation Models

Approaches for separating degradation modes.—In contrast to
calendar aging trajectories, which in Li-ion batteries is usually
dominated by a single degradation mechanism, growth of the solid-
electrolyte interface (SEI) layer on the graphite electrode, and a
function of only one variable, time (assuming temperature and state-
of-charge (SOC) are constant), degradation for cycling batteries
often involves multiple degradation modes and requires considera-
tion of both time and cumulative cycles (even assuming constant
cycling protocol). There are many possible approaches for handling
these challenges. To account for the overlapping influence of time-
and cycle-dependent degradation, many studies consider overall
degradation, D, as a superposition of the calendar- and cycling-
induced degradation, DCalendar and DCycling:

8,29,32

= + [ ]D D D 1Cycling Calendar

These equations can then be separated into “calendar degradation”,
which is dependent only on time, and “cycling degradation”, which

is dependent on time, cycle count, or charge/energy throughput.
Another possible approach is to multiply the time-dependent fade
trajectory by calendar or cycling dependent stress parameters:

β β= · · ( ) [ ]D f t 2Cycling Calendar

where βCycling and βCalendar are stress parameters dependent on
cycling and calendar test conditions, respectively. The calendar
degradation component, β · ( )f tCalendar can be first optimized to
calendar aging data, and then the cycling component optimized
afterwards,9 or βCycling and βCalendar can be treated as a single stress
parameter, optimized over both the calendar and cycling aging test
data simultaneously.41 Degradation modes can also be combined
logically, as in Smith et al.:9

= ( ) [ ]D D Dmin , ,... 31 2

where the degradation states represented the lithium inventory,
positive electrode capacity, and negative electrode capacity, con-
necting the degradation modes to the battery physics. Finally,
various degradation trends can simply be treated independently by
breaking the aging data set into two or more independent groups,
identifying separate aging models for each group.36,42,43 For
example, Sarasketa-Zabala et al. develop two equations to describe
capacity loss, one for cells cycling between 10% and 50% depth of
discharge (DOD), and one for cells cycling outside of that range.43

Note that empirical degradation models do not necessarily need
to account for the separate contributions of time- and cycle-
dependent losses, however, models that do not account for both
cannot extrapolate accurately to real-world uses that mix resting and
cycling. Models with only time dependence assume that either
calendar aging dominates all other aging effects,44 or that the
degradation of the battery will not vary substantially with time,45

i.e., either battery use is unchanging or the degradation rate is
constant regardless of how the battery is utilized. Models with only
cycle dependence are making a similar assumption,46,47 implying
that the cells are constantly cycling at a consistent rate, or that no
degradation is expected if the battery is at rest.

Time-/cycle-dependent egradation trajectory models.—Once de-
gradation modes have been identified, each mode needs to be fit with a
trajectory model. A trajectory model is an equation that predicts the
degradation of the cell as a function of a time-dependent variable, e.g.,
either time, cycle count, charge-throughput, or energy-throughput. Many
trajectory equations for cycling degradation have been proposed, due to
the wide variety of trends observed in cycle aging studies. Table I reports
several examples from literature. By far the most common type of
trajectory equation in this literature review is a power law function of
cumulative charge-throughput, which can be expressed in units of Ah or
as equivalent full cycles (EFCs), which is equal to the charge-throughput
divided by twice the nominal battery capacity. The power law model is
simple, with only two free parameters (the degradation rate β1 and the
power, β2) while still being flexible enough to fit a wide variety of
degradation trends, such as self-limiting, linear, or accelerating degrada-
tion. Cumulative charge-throughput is a convenient input variable, as it
can be easily measured in real-world systems, inherently incorporates the
impact of the magnitude of the current on the degradation rate, and does
not require a definition of the cycle count that is consistent between
varied charge/discharge protocols or dynamic tests.

While the rate coefficient (β1) can be easily optimized to each test
condition, the power (β2) is often assumed to be cell-independent, and
thus shared across cells with varying degradation rates, making
optimization of either parameter non-trivial; the power and degradation
rate are co-dependent, so changing the value of the power will affect the
value of the rate coefficient and vice-versa. Many studies simply judge
the curvature of the capacity fade trajectory by eye, assigning linear
trajectories a power of 129,48–50 and sub-linear trajectories a power of
1/2,29,36 or even provide no justification.43 Some works propose several
possible values, selecting one based on fit metrics.61 Others optimize the
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power separately for each test condition, and then assume the average
value from the entire data set45,53–55,51 or choose qualitatively.41,56 Uddin
et al.,17 after optimizing a power law model of charge-throughput with
both the power and coefficient fit to each test condition, simply used
linear interpolation by the test conditions to solve for values of the power
and coefficient at untested conditions. β2 can be directly optimized if an
equation for β1 depending on the cell aging conditions is
presupposed,46,47,56 but the structure of the β1 equation will bias the
optimal value for β2. Determining the optimal value of shared parameters
without needing to propose equations for parameters that vary across the
data set can be done rigorously using a bilevel optimization scheme;34

this approach has been suggested, in other terms, as far back as 2009,57

though they did not state explicitly how to implement the method.

Degradation-rate models dependent on cycling stress.—Once a
trajectory equation has been fit to each test condition, some method
to interpolate or extrapolate between various test conditions needs to
be determined so that the degradation at new conditions can be
predicted. Nearly all works accomplish this by defining some
function of the aging stressors that predicts the value of any model
parameters, such as β1 above, that are dependent on cycling stress
variables such as temperature, average SOC, or DOD:

β γ= ( ) [ ]f , S 4n1 1:

where γ1:n are any optimized parameters, and S are the test
conditions for any given cell. While there are a wide variety of
physical models proposed in the literature, well reviewed by Reniers
et al.,25 most researches use an empirical approach to identify an
expression for stress dependent parameters like β1.

A large number of equations for calculating degradation rates as a
function of cycling stress variables are reported in Table II. Many
possible features have been proposed as inputs to predict degradation
rate during cycling: environmental conditions like temperature,
physical battery characteristics such as the gravimetric capacity
(ρAh, Alhaider et al.

48), or features related to the battery dispatch. In
the equations from Cordoba-Arenas et al.,51 the variable Ratio is
equal to ( + )t t tCD CD CS , where tCD is the time spent under a charge-
depleting drive cycle and tCS is the time spent under a charge-
sustaining drive cycle at SOCmin. Thus, Ratio incorporates informa-
tion about both the DOD and the time spent in different state-of-
charge windows. The Ratio variable used by Stadler et al.60 is

similar but adds time spent during charging to both the numerator
and denominator. These Ratio variables are information dense but
they limit model applicability to cells conducting the specific type of
mixed-use tested in those works.60,51 Occasionally, features are
normalized by minimum or maximum values used during testing, for
example, Cordoba-Arenas et al.51 use the minimum SOC, SOC0, and
maximum charging rate, CChg,0. These basic features can then be
used to create an infinite variety of complex features using algebraic
operations.

Once potential features are defined, there are a variety of
techniques used to down select from many features to only critical
features. Mathieu et al.41 used multivariate linear regression to down
select from a variety of possible equation features generated by
calculating square and interaction terms of the original features,
selecting features using a cutoff on the normalized absolute
coefficient value. Stadler et al.60 identified a multivariate linear
regression model using a stepwise backwards feature selection
process to down select from 20 to 16 features. Uddin et al.17 avoid
the need to find an single expression to predict degradation rate,
instead linearly interpolating between test conditions in four dimen-
sions (SOCmax, DOD, CChg, and CDis) to predict the degradation rate
for untested conditions. The equation used by de Hoog et al.63 and
Hosen et al.64 is repeated in Tables I and II, as it additively combines
Ah, a time-varying variable, and DOD, a time-invariant variable, to
calculate overall degradation, blurring the distinction made here
between a trajectory equation, which describes time-varying cell
behaviors, and rate equations, which describe variance between cells
as functions of the test conditions.

There are a few key takeaways from this review. One is that there
are some test conditions that impact degradation strongly across all
models and data sets. The two most critical variables present in this
review are DOD and temperature. The importance of these variables
is intuitive; temperature has an impact both on the rate of unwanted
side-reactions, e.g., SEI growth and electrolyte solvent decomposi-
tion, as well as cycling-induced degradation like Li plating, while
large DOD increases both the physical stress induced in electrodes
that experience volume change during Li de/intercalation and
chemical stresses by increasing the range of the potential window
of the battery, which may drive a variety of degradation mechan-
isms. The next most important variable for predicting the degrada-
tion rate is Crate, which can imply the average rate or the dis/charge
rates in particular. The magnitude of the current is especially

Table I. Table of trajectory equation from literature for degradation due to cycling. y refers to some battery state, such as capacity or DC pulse
resistance, β0:n refers to optimizable parameters, and X refers to an independent variable. Independent variables include Ah, the cumulative charge-
throughput that can be expressed either in terms of cumulative Amp·hours or as EFCs; AhChg/AhDis, the cumulative charge-throughput during
charge/discharge; depth-of-discharge DOD; time t; and cycle count N. The power of the trajectory equation (β2 for power-law and stretched-
exponential equations, β3 for sigmoidal equation) is nearly always in the range of 0.5 to 1, while the values of other parameters vary substantially.

Reference Description Equation Independent variable

Various authors36,48–50,51 Linear y = 1 − β1 · X X=Ah,48,50,51 X = AhDis,
49 X = AhChg

36

Takei,52 Smith9 Linear y = β0 − β1 · X X = N
Various authors32,36,44 Square root β= − ·y X1 1

X = Ah,32,36 X = AhChg,
36 X = t44

Various authors17,29,41,47,51,53–57,43,58,59 Power law β= − · βy X1 1 2 X = Ah,17,29,47,53–57,51,58,43 X = t,41 X = N59

Stadler60 Power law β β= − · βy X0 1 2 X = Ah

Baghdadi45 Stretched exponential β β= · ( · )βy Xexp0 1 2 X = t

Cuervo-Reyes61 Stretched exponential ⎛
⎝

⎞
⎠( )β= · −

β

β
y exp X

0
1

2 X = N

Ecker44 Logarithm β= − ·y X1 log1 X = t
Gering62 Sigmoidal ⎡

⎣
⎤
⎦

β= − · · −
β+ ( · )βy 1 2

X1
1

2

1

1 exp 2 3

X = t

Smith9 Site loss β β β= [ − · · · ]y X20
2

1 0
1
2

X = N

de Hoog,63 Hosen64 Polynomial β β= − ∑ · − ∑ ·= =y X X1 i i
i

j j
j

0
3

1, 1 0
3

2, 2
X1 = Ah, X2 = DOD
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Table II. Table of cycling degradation rate equations from literature. Equations are predicting degradation rate coefficients, such as β1 in the equation β= · βy x1 2, as a function of cycling stressors,
such as DOD or Crate, and environmental stressors like temperature. In some cases, such as for,9,51,58 equations were reported for several degradation rate coefficients, usually for predicting multiple
degradation states. There are two approaches that blur the distinction made in this work between trajectory equations, described in Table I, and degradation rate equations, described here. The
approach by de Hoog63 and Hosen64 uses DOD as an input to directly predict lost capacity. Stadler60 completely avoid predicting a trajectory, instead predicting the lost capacity at some specific
amount of charge-throughput directly using the cycling stressors as input.

References Equation

Alhaider48 γ γ ρ( · + ∣ − ∣· )· ( · )DOD SOC C0.5 exp Ah rate1 2

Baghdadi45 ( )( )γ+ ·γ
Cexp exp

T rate2
1

Cordoba-Arenas51 ( )γ γ γ[ + · + ·( − ) ]·γ γ γ
Ratio SOC SOC exp

T1 2 4 min 03 5 6

( )
γ γ γ

γ γ

[ + ·( − ) +

· ( ·( − )) + ·( − )]·

γ

γ

SOC SOC

C C SOC SOCexp expChg Chg T

1 2 min 0 4

5 ,0 6 min 0

3

7

de Hoog,63 Hosen64 β β= − ∑ · − ∑ ·= =Q Ah DOD1 i i
i

j j
j

0
3

1, 0
3

2,

Diao46 γ γ( · + )Texp 1 2

γ1 · T + γ2
Ebbesen,47

Schimpe36
( )γ · γ

exp
T1
2

Mathieu41 ( )γ γ γ γ γ+ + · + · + · + + ·γ γ
exp SOC I SOC

T

I

T T1 3 4 5 7
22 6

2

Naumann29 γ γ γ γ( · + )·( ·( − ) + )C DOD 0.6rate1 2 3
3

4

Petit58 ( )γ · γ γ+ ·∣ ∣
exp

I

T1
2 3

Sarasketa-Zabala43 γ1 · DOD
2 + γ2 · DOD + γ3

γ γ γ γ· ( · ) + · ( · )DOD DODexp exp1 2 3 4

Saxena53 γ γ γ· ·( + · + · )SOC DOD DOD11 2 3
2

Schimpe36 ( )γ γ· + ·γ
Cexp

T Chg1 3
2

Schmalsteig32 γ γ γ γ+ ·( − ) + ·V DOD1 2 3
2

4

γ( · )γexp DOD2 3

Smith9 1 + γ1 · DOD

( )γ · ·γ γDODexp
T1
2 3

Stadler60 QLoss@Ah = γ1 + γ2 · Ratio +γ3 · T
2 + γ4 · T + γ γ· + ·Ratio SOC5

2
6 max

2 + γ γ· + ·SOC SOC7 min 8 min
2 + γ γ· + · ·P SOC RatioChg9

2
10 max

+γ11 · Ratio · PChg +γ γ· · + ·T SOC PChg12 max 13 + γ γ· + · ·SOC T Ratio14 max 15 +γ γ· · + · ·SOC SOC T PChg16 max min 17

Suri54 ( )γ γ( · + )· γ γ+ ·
SOC exp

C

T1 2
rate3 4

Todeschini55 γ γ γ+ · + · ( )DOD Cexp rate1 2 3

Uddin17 Linear interpolation by SOCmax, DOD, CChg, and CDis between test points
Wang 201156 ( )γ · γ γ+ ·

exp
C

T1
rate2 3

Wang 201450 γ γ γ γ γ( · + · + )· (( · + )· )T T T Cexp rate1
2

2 3 4 5

Journal
of

T
he

E
lectrochem

ical
Society,

2022
169

080518



impactful in tests at low temperature, where high charging rates may
lead to Li plating. Finally, some studies incorporate SOC variables
into their degradation models. Perhaps one reason why SOC is not
incorporated into more models is simply due to limited testing
resources; creating a test matrix that varies temperature, DOD, dis/
charging rates, and SOC windows requires a prohibitive number of
batteries, forcing researchers to prioritize which experimental
variables to explore.

A crucial takeaway from this review is that the range of possible
input features, equation forms, and modeled variables used to predict
cycling degradation is extremely wide, and there is little consistency
between works. This is in contrast to a prior review of calendar
degradation modeling,34 which showed relatively uniformity in the
features and equation forms, e.g., Arrhenius and Tafel type equations.
Uniformity across works is somewhat expected, as degradation
trajectories are often qualitatively similar between data sets, and most
of the works cited here study Li-ion batteries from a narrow set of
commercialized electrode and electrolyte chemistries. This qualitative
similarity in the degradation trends between studies implies that most
degradation is due to shared root causes, most commonly the growth of
the SEI at the graphite electrode; but despite these shared trends, the
features, equations, and model identification procedures reviewed here
are widely disparate. This variety of approaches makes it difficult to
compare modeling results, find useful models for new data sets by
searching prior works, or to replicate the model identification procedure
described in any given work. Thus, there is a clear need for identifying
not only accurate equations, but also a replicable and repeatable model
identification procedure, using automated methods when possible to
assist the search for accurate and robust empirical degradation models.

Machine-Learning Assisted Model Identification Approach

In this work, model identification is done using a bilevel optimiza-
tion and symbolic regression approach.34 First, separate degradation
modes are identified using expert-judgement; use of expert-judgement
is required, as not all degradation mechanisms are electrochemically
visible, and the connection of specific degradation mechanisms to
degradation modes is complicated by mechanical, chemical, and
electrochemical interactions.65 After splitting the data into regimes
dominated by individual modes, each mode is fit with the ML-assisted
model identification method. Model identification has two key steps:
defining a trajectory equation using expert-judgement aided by bilevel
optimization, and identification of local parameter submodels using
either intuition or symbolic regression. A graphical representation of
this procedure can be seen in Fig. A·1 (Fig.1 of Ref. 34).

In the first step of identifying a model for a specific degradation
mode, expert-judgement is used to select one or more potential
trajectory equations for any given degradation mode, based on
qualitative trends in the data or domain knowledge of the physical

root cause. For instance, the calendar degradation mode, which is
attributed to the SEI growth degradation mechanism, can be
modeled well by a power law expression,66 while a self-limiting
reaction can be modeled by a sigmoidal expression.62 Bilevel
optimization is used to separately optimize the values of local
(stress dependent) and global (cell independent) parameters. Global
parameters are optimized in an upper level optimization loop, with
multiple lower level optimization loops solving for the values of
each local parameter for every data series. Each optimization loop is
attempting to minimize the root mean square error between the
model prediction and the data. Model fitness is reported using the
adjusted coefficient of determination (Radj

2) and the mean absolute
error (MAE).

In the second step of identifying a model for a specific degradation
mode, local parameters are then modeled as functions of the aging
conditions, such as constant temperature or constant average SOC.
Sometimes, well performing equations for these local parameter
submodels can be identified by introspection or with domain
knowledge,9,34 but often, defining an equation that is robust is quite
difficult; robust meaning a model that is accurate when trained on all
the available data, cross-validates with low error, has narrow confidence
intervals, and extrapolates to extreme conditions without diverging.
Here, the ML method of symbolic regression is utilized to identify
candidate submodels for local parameters. Symbolic regression is
conducted by algorithmically generating a large library of possible
equation features, and then utilizing a regularization algorithm to search
for an optimal linear combination of a small subset of features. This
procedure can also be used to find multiplicative models by fitting the
log of the response variable.34

Features for predicting locally fit parameter values are generated using
an algorithmic approach, which is decscribed in Table III. Possible
equations, which are constructed by linearly or multiplicative combining
these features, vary from simple, such as β1= γ0+ γ1 ·DOD, to more
complex, like β γ γ γ= · ( · )· ·( · )γexp C DOD Crate rate1 0 1

1 3
2

2 3. Because any
subset of features could be a valid model, the search space of possible
equations has combinatorial complexity. For example, an exhaustive
search for the optimal equation using 6 features from a set of 1000 would
require calculating the results of 1.4 · 1015 equations.

Searching for a parsimonious model in this large search space can
be done using many regularization or feature selection algorithms. In
a prior work,34 the LASSO regularization algorithm was used.67

However, it was found that this algorithm did not perform well when
used on large feature libraries, approximately 102 features or greater,
as large feature libraries create wide matrices that have more features
(columns) than data points (rows). Here, the Sure-Independent
Screening and Sparsifying Operator (SISSO) algorithm was used.
SISSO has been demonstrated to perform better than LASSO in
similar cases.68–70 SISSO also has several other advantages over

Table III. Algorithm for generating feature libraries used during symbolic regression. At each step, features from the prior step are kept, so the
total number of descriptors is cumulative. Note that the procedure differs slightly when generating features for linear (additive) or multiplicative
equations. The example shown here uses temperature, SOC, and the anode-to-reference potential, Ua, as input features for generating features to
model calendar aging behaviors. When generating features for cycle aging, only DOD and the average of the charge/discharge rate (Crate) are used,
and step 3 is omitted to prevent division by 0 (DOD is set equal to 0 when evaluating calendar degradation), resulting in 48 features. Temperature is
omitted when generating features for cycle aging because the aging test matrix does not have enough variance in the cycling temperature to identify
any trends.

Step Description Formula Example # descriptors

1 Input features XA(T), XB(SOC, Ua) T, SOC, Ua 3
2 Non-linearities X1/4, X1/3, X1/2, X2, X3, X4 T4, SOC1/3 21
3 Inverse (calendar only) X−1 1/T2, 1/Ua 42
4 Multiplicative interactions *X X1 2 *T Ua

3 1 4, SOC/T3 434

5a Exponential (linear eq. search) eX ( )exp Ua , ( )exp SOC T2 4 868

5b Natural log (multiplicative eq. search) log(X) log(T), ( )log T Ua
1 4 868

6 Remove any infinities or NaNs 573 (linear), 553 (multiplicative)
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LASSO. Rather than outputting a single model, SISSO outputs
several candidate models of increasing complexity, which can then
be manually screened to identify the best model. SISSO also is
repeatable, outputting the same candidate models when re-run on the
same inputs, which is not the case when using LASSO with wide
input matrices. SISSO requires defining two hyperparameters: the
maximum number of non-zero coefficients and the number of
features selected per iteration (one iteration per non-zero coeffi-
cient). For searching for calendar degradation submodels, the
maximum number of non-zero coefficients is set to 4, and the
number of features per iteration is set to 40. Implementations of
SISSO in Fortran,71 MATLAB,72 and Python with integration to the
sklearn API73 are available.

Local parameter submodels are then substituted into the trajec-
tory equation, defining a global equation that predicts the behavior of
all data series with a single expression. The global equation is then
reoptimized on the entire data set, evenly weighting each data series
so that the number of data points per series does not impact the
optimal parameter values. This process is repeated each time a new
degradation mode is added to the model, so that the values of all
model parameters are optimized considering the cumulative effects
of each degradation mode. Predictive uncertainty is estimated by
training the model on a randomly resampled subset of the test groups
using a bootstrap resampling approach,34 and also using a leave-one-
out cross-validation approach. Finally, the model is reformulated
into a state model, enabling simulation of battery aging under
dynamic environmental conditions or varying use, the procedure for
which is described later.

Data

The data used for this study is LFP/Gr cell aging data,
previously published in Naumann et al.8,29 and available for
download.38,39 Data was provided at request from the original
authors, and includes some data not reported in the prior works.
The cells studied were commercial Sony/Murata US26650FTC1
LFP/Gr cells in the 26 650 cylindrical format. The manufacturer
specified nominal discharge capacity of these cells is 2.85 Ah,
however, the nominal discharge capacity is considered to be 3 Ah
due to prior characterization work on over 1000 cells.74 The aging
study was conducted by aging cells in climate controlled
chambers. Cell performance was monitored by routine perfor-
mance checkups, conducted every week for the first three weeks,
every other week for the following six weeks, and every four
weeks for the rest of the study, approximately 900 d. Performance
checkups consist of capacity checks and pulse resistance

measurements. Capacity is measured using two repeated con-
stant-current constant-voltage (CCCV) charge and discharge
cycles (1C CC, 3.6V CV on charge with a C/30 cutoff on charge,
2.0 V CV with a C/20 cutoff on discharge). DC pulse resistance is
measured using 10 s charge and discharge pulses at 50% SOC and
at 1/3C, 2/3C, and 1C rates, with 10 min of relaxation between
each pulse. This work develops a model for the relative discharge
capacity, which is defined as the mean of the discharged capacity
from the two full CCCV discharge cycles (Eq. 5), divided by the
initial discharge capacity recorded for each cell.

= ( + ) [ ]Q Q Q
1

2
5CCCV CCCVdischarge discharge,1 ,2

Table A·I reports the aging conditions of each test group. The
aging matrix consists of 17 static calendar aging test groups (groups
1-17), 19 static cycle aging test groups (groups 18-36), 8 dynamic
calendar aging test groups (groups 37-44), and 5 dynamic cycling
aging test groups (groups 45-49), with three test replicates for most
groups. Static calendar aging tests varied storage temperature from
0 °C to 60 °C and SOC from 0% to 100%. Static cycle aging tests
cycled cells using CC charge and discharge steps at only 25 °C and
45 °C, but widely varied DOD between 1% and 100%, varied
average SOC between 25% and 75% at 20% DOD, varied discharge
and charging rates (Crate) between 0.2C and 2C, and cycled some
cells using CCCV charging steps instead of CC charging steps. More
detail is provided in the original works.8,29 For modeling purposes,
the Crate is considered as the average of the charging and discharging
rates, as a direct comparison of cells aging under asymmetric
charging and discharge rates (groups 26, 27, 28, and 30) revealed
no substantial difference in the capacity fade or resistance growth
behavior.29

Visualizing prominent capacity fade trends.—The development
of the capacity fade model begins with identifying major trends in
the data, correlating those trends with the aging conditions, and
determining an appropriate order in which to model individual
mechanisms, which may combine additively29,36 or competitively.9

Key calendar degradation trends are shown in Fig. 1, and cycling
degradation trends are shown in Fig. 2. The prominent trends
observed during calendar aging are increasing degradation rate
with respect to temperature (Fig. 1a) as well as with increasing SOC
(Fig. 1b). The time-dependent calendar aging behavior appears sub-
linear for most aging conditions, however, it can be seen in Fig. 1b
that as the SOC approaches 0%, the degradation trajectory becomes
almost linear. This behavior was also observed in a prior work.34

Figure 1. Capacity fade trends observed during calendar aging. (a) Impact of temperature variation at 50% SOC (groups 1, 2, 4, 10, 16). (b) Impact of SOC
variation at 40 °C (groups 6-14).
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Figure 2 shows the dominant trends in the cycling data.
Figures 2a–2b both show the impact of the average Crate on the
capacity fade, but with time on the x-axis in Fig. 2a and EFCs on
the x-axis in Fig. 2b. While in Fig. 2a it seems clear that
increasing Crate increases the degradation rate, this is not
accounting for the impact that increased charge-throughput may
have on cell capacity over time. But when plotted vs EFCs in
Fig. 2b, the apparent trend reverses, and it becomes unclear if the
increased degradation at high Crate is simply due to increased
charge-throughput, or if there is an impact of Crate on the
degradation per EFC as well. these effects can be potentially
deconvoluted by first subtracting the contribution of calendar
fade, as described in Eq. 1; Naumann et al. identified a positive
impact of Crate on the degradation per EFC using this approach.29

This simple example demonstrates why it is crucial to plot data vs
both time and charge- or energy-throughput when considering the
impact of Crate on cell health metrics.

Figure 2c shows the impact of varying DOD on the capacity
fade trajectory. The variation of DOD reveals that there are two
additive degradation modes involved in the loss of discharge
capacity during cycling: an initial sudden drop of capacity
followed by a saturation period, i.e., break-in loss, and a nearly
linear loss of capacity over the entire experiment, i.e., long-
term loss. Break-in loss appears to always saturate within the
first 300 d and 4000 EFCs. The magnitude of the break-in loss
is a non-monotonic function of DOD and SOC. As seen in
Figs. 2c–2d, the maximum break-in loss is observed at
approximately 20% DOD and 50% SOC, decreasing in

magnitude as both SOC and DOD vary from these values.
This break-in loss has been characterized in detail by prior
work,75 and is attributed to a uneven distribution of lithium
throughout that occurs when cycling at low DODs. While some
of the break-in capacity loss is recoverable, by letting the
lithium in the cell redistribute via relaxation or very slow
cycling, the uneven utilization of the anode during low DOD
cycling also results in unrecoverable capacity loss. This
physical explanation also implies that cells cycled with varying
DOD, or with suitably long rest periods between cycles, would
likely not experience this loss mechanism, which has implica-
tions for extrapolating the trends observed during the acceler-
ated aging study to real-world use.

In contrast to the break-in fade, the long-term capacity loss
trends are relatively straightforward. The slope of the long-term
capacity loss appears to be a monotonic function of DOD, with
an increasing slope at increasing DODs. Figure 2d shows the
impact of varying the average SOC on capacity fade. SOC seems
to primarily impact the magnitude of the break-in loss, with a
maximum break-in loss at 50% SOC, and has no obvious impacts
on the slope of the long-term loss. Due to the complexity of
these trends, prior work modeling the cycling degradation trends
in this data set29 neglected to fit the break-in loss. However, due
to the additive nature of the break-in and long-term capacity loss
modes, and the large contribution of the break-in loss to many of
the cells, accurately modeling the dependence of the long-term
loss rate on DOD without also modeling the break-in behavior is
not possible.

Figure 2. Capacity fade trends observed during cycling aging. (a), (b) Impact of Crate variation vs (a) time and (b) EFC (groups 23-25). (c) Impact of DOD
variation (groups 22-23, 29, 31, 34). (d) Impact of SOC variation at 20% DOD (groups 31-33).
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Model Identification Using Static Aging Data

In this section, the identification of a capacity loss model using
the bilevel optimization and symbolic regression approach and the
test data from static aging tests (groups 1-36) is described in detail.
Model identification begins by fitting the calendar degradation data
(groups 1-17), and then this calendar degradation model is used to
estimate the contribution of calendar degradation to the degradation
observed during cycle aging (groups 8-36). As discussed in the
previous section, capacity loss due to cycle aging is modeled using
the additive combination of a break-in mode and a long-term
degradation mode; the break-in mode is fit first, followed by fitting
of the long-term degradation mode. After identifying the cycling
degradation equations, all model parameters, including the calendar
fade model parameters, are reoptimized over all of the static aging
data.

Fitting calendar aging data.—Various different equation forms
were considered for predicting the capacity loss due to calendar
aging.34 Comparing between square-root, linear, power-law, and
sigmoidal equation forms, the sigmoidal equation results in the best
overall model with regards to accuracy and uncertainty. This
trajectory model is reported in Eq. 6:
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where q1, q2, and q3 are free parameters, and t is the time in days.
The parameters q1 and q3 are fit locally to each cell, as both the
extent of degradation and the curvature of the capacity fade
trajectory differ across the various test conditions, while the
parameter q2 is optimized globally with a resulting value of
1.31 · 10−4; fitting q1 locally has a clear physical basis (the max-
imum extent of the reaction), while model errors are lower when
allowing q3 to be fit locally rather than q2. Fitting all parameters
locally results in chaotic trends for parameter values vs temperature
and SOC, leading to a non-physical model. The result of this bilevel
optimization is shown in Fig. 3. The model fits the data precisely,

and there are no obvious trends observable in the residual errors,
indicating that the data is well fit.

Locally fit values of q1 and q3 are then modeled using the
symbolic regression procedure. Locally fit values of q1 and q3 are
shown as circles in Figs. 4a–4b. q1 varies primarily as an exponential
function of temperature, with little dependence on SOC until the
SOC reaches 0%. q3 seems to vary mostly as a function of SOC.
Considering both parameters, the behavior at 0% SOC across all
temperatures differs substantially from cells tested at other SOCs;
this is because the capacity fade trajectory of cells at 0% SOC is
much closer to linear than any of the other cells, leading to higher
values of q3, which then impacts the optimal value of q1. The
symbolic regression procedure is able to find robust equations for
predicting the values of q1 and q3 as functions of temperature and
SOC. The equation found for q1 is reported below (Eq. 7), where
q1,a−c are free parameters, T is the temperature in Kelvin, and Ua is
the anode-to-reference potential, calculated according to the equa-
tion defined by Safari and Delacourt76 and parameterized for this
specific cell in Schimpe et al.36 Model predictions are plotted as X’s
with 95% confidence intervals as determined by bootstrap resam-
pling in Fig. 4a. The only test condition poorly predicted by the
identified model is at 0 °C and 50% SOC, however, both the
measured and predicted values are very small, resulting a low
predicted value for the capacity fade in Eq. 6, which matches the
observed trends.
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where Ua is a function of SOC, described in equation A·1.
Equation 7 is then simulated between 0 °C–60 °C and 0%–100%
SOC, to evaluate model trends over a wide range of conditions.
Model predictions at 0% SOC vary substantially from those at higher
SOCs, which makes sense intuitively because the capacity fade
trajectory of cells at 0% SOC is much different than those at larger
SOCs.

The equation found for q3 is reported below (Eq. 8), where q3,a−e

are free parameters, with predictions plotted as X’s in Fig. 4b. The
identified equation correctly captures all the trends of the locally fit

Figure 3. Calendar model local fit on all calendar aging cells.
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q3 values accurately. Simulation of the model shows that the model
behaves sensibly across a large range of conditions. At 0% SOC and
5 °C, the value of q3 becomes larger than 1, which results in faster
than linear degradation, however, the value of q1 is extremely small
at this condition, so the predicted capacity fade (Eq. 6) will still
conform to physical intuition.
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The overall calendar fade model is then defined by substituting
Eqs. 7 and 8 into Eq. 6.

Fitting cycling aging data.—For fitting the break-in and long-
term cycling degradation modes, the data from static cycling cells
was split into regions dominated by the break-in and long-term
degradation behaviors. Splitting the data was done by defining
logical conditions with respect to EFCs and the second derivative of
the relative discharge capacity with respect to time in days;
derivatives were calculated by element-wise division of the differ-
ence of capacity and the difference of time and then using the Matlab
function smoothdata. The conditional statement for the break-in data
mask is shown in Eq. 9, and the conditional statement for the long-

term data mask is shown in Eq. 10.
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Modeling cycling break-in loss.—Because the capacity loss due
to the break-in mechanism appears to saturate for all cases, a
sigmoidal equation was used to account for it (Eq. 11). This
mechanism was additively combined with the existing equation for
the capacity loss due to calendar aging, optimizing the parameters
q4, q5, and q6; q4 was optimized locally to each test group, while q5
and q6 were optimized globally to the entire data set. The result of
optimizing Eq. 11 to the masked off break-in data is shown in Fig. 5.
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As shown in Figs. 2c–2d, the magnitude of the break-in
mechanism is both a function of DOD and average SOC. This
variation is captured by the locally optimized values of q4, shown as
circle markers in Fig. 6. The parameters q5 and q6 have optimal
values of 3.04 · 10−3 and 1.43, respectively. Due to the lack of test
cases varying SOC, there is not enough data available to use the
symbolic regression approach to learn a robust equation that predicts
the behavior of q4 vs both SOC and DOD. Qualitative analysis of the
trends of q4 vs both DOD and average SOC led to the insight that a
two-dimensional skewed normal distribution describes the overall
trend, while also ensuring the boundary conditions match physical
expectations by multiplying by a sigmoid; there should be no break-
in if the DOD is equal to 0, or very near 0, and the experimental
results show no break-in at 100% DOD either. So, the data was fit
with Eq. 12:
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where SOC and DOD are inputs, q4,a, q4,b, q4,SOC,σ, q4,SOC,ξ,
q4,DOD,σ, and q4,DOD,ξ are fitting parameters, and q4,SOC,μ and
q4,DOD,μ are set to 0.5 manually based on the qualitative trends
observed in Figs. 2c–2d. φskew is defined here as:
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where φ is the normal probability distribution function and Φ is the
normal cumulative distribution function, both with mean μ and
standard deviation σ, and a skew of ξ. Equation 12 fits the data
accurately, as seen in Fig. 6. The magnitude of the uncertainty at
DOD less than 20% is quite large, which is sensible as q4 grows very
quickly and there are only 3 available data points to train the model
in this regime.

Modeling long-term cycling loss.—After fitting the break-in
behavior, the long-term cycling fade behavior was fit with a power
law model (Eq. 14), where the degradation rate parameter, q7, was fit

Figure 4. (a) Parameter q1 values from local fits (circles), ML model (Eq. 7)
fits with 95% confidence intervals (X’s with error bars), and model
predictions vs temperature at 0%, 25%, 50%, 75%, and 100% SOC. (b)
Parameter q3 values from local fits, ML model (Eq. 8) fits with 95%
confidence intervals, and model predictions vs temperature at 0%, 25%, 50%,
75%, and 100% SOC.
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locally to each test group, and the power, q8, was fit to all of the data.
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The resulting fits can be seen in Fig. 7. Because the calendar and
break-in losses are already accounted for, the contribution of just the
long-term fade is deconvoluted from the overall capacity loss, and
the data is fit well by a nearly linear model; the optimal value of q8 is
1.13. The residual errors of the fit are small, with little apparent
slope, excepting that from test group 30, which has very large cell-
to-cell variance between the three cells in the test group due to the
break-in loss. The locally fit values of q7 are shown vs DOD and
average Crate in Fig. 8. The overall trend is relatively simple:
degradation rate increases monotonically with DOD, and the impact
of Crate on q7 increases with increasing DOD, indicating an
interaction between DOD and Crate. This data was fit by Eq. 15,

which was identified via ML. Model uncertainty is relatively low,
except for the regime with high DOD and high Crate, which has only
a single test group, resulting in high uncertainty.

= + · + · ( · ) [ ]q q q DOD q exp DOD C 15a b c rate7 7, 7, 7,
2 3

Capacity Fade Model Results and Comparison to Prior Work

After identification of the capacity fade model using the ML-
assisted identification procedure, all parameters of the model are
reoptimized to all of the static aging data simultaneously to
deconvolute the relative contributions of each degradation mode
(qLoss,Cal, qLoss,BreakIn, and qLoss,LongTerm) as accurately as possible.
Resulting optimal parameter values are reported in Table IV. The
model predictions on the entire data set are shown in Fig. 10. All
major trends in the data are clearly accounted for, resulting in low
model error: MAE for the calendar degradation data is only 0.4%,
and 1.2% for the cycling degradation data.

This model performance can be compared to that of the model
defined by Naumann et al. for this same data set.8,29 The model in
Naumann et al. incorporates a square-root of time calendar loss
equation and a square-root of EFC cycling loss equation. The values
of the model parameters identified by Naumann et al. were fit using an
iterative procedure, as described in the original publications;8,29 to make
a like-for-like comparison, the parameters have been reoptimized on the
same data as the ML-assisted model. The resulting predictions when
optimizing the model described by Naumann et al. to the entire data set
are shown in Fig. 9. While most of the calendar aging trends are
predicted accurately, the degradation at 60 °C is fit poorly across the
entire range of SOCs due to the deviation of the aging trajectory from a
square-root of time trend. Cycling degradation does not take into
account the impact of break-in, and the square-root of EFC trend
assumed by the model cannot accurately fit the cycling fade for several
cases, clearly seen by the systematic deviation of the residual errors in
both positive and negative directions.

A comparison of the model errors from the Naumann model with
parameter values from prior work,8,29 after refitting all parameters to the
entire data set, and from the ML-assisted model defined here are
reported in Table V. Note that the simple act of optimizing all of the

Figure 5. Local fitting of break-in cycling degradation behavior using Eq. 11.

Figure 6. Parameter q4 values vs DOD and SOC from local fits (circles),
machine-learned model (Eq. 12) fits with 95% confidence intervals (X’s with
error bars), and model predictions vs DOD at 25%, 50%, and 75% SOC; only
valid ranges of DOD and SOC are shown (maximum DOD at an average
SOC of 75% is 50%).
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parameters in the Naumann model has resulted in approximately a 20%
decrease of the model error. The ML-assisted model outperforms both
the original and the refit Naumann model, with about 50% of the MAE
as the refit Naumann model on all splits of the data. The uncertainty of
the Naumann model and the ML-assisted model can also be compared
using a cross-validation approach, where by each model is trained while
leaving out one of the test groups, and a prediction made for this left out
group, repeating across all groups. The ML-assisted model, overall,
appears more robust than the refit Naumann model, with lower MAECV.

Uncertainty can be quantified more precisely utilizing a bootstrap
resampling procedure. The predictive uncertainty for the ML-assisted
and refit Naumann capacity fade models are shown in Figs. 11a–11e
and 11f–11j, respectively, for 5 test groups from the overall data set.
Bootstrap resampling for the “refit Naumann” model is done using a
“sequential bootstrap” method, where for each bootstrap iteration the
calendar fade model parameters are trained on a bootstrap resampled set
of the calendar aging groups and the cycling fade model parameters
trained on a bootstrap resampled set of the cycle aging groups,
reflecting the model identification procedure outlined in the original
works.8,29 The ML-assisted model fits data trends more accurately for
all cases. Confidence intervals for the ML-assisted model are also

narrower than that of the refit Naumann model. Additionally, the
variance of the uncertainty of the ML-assisted model is larger than that
of the refit Naumann model; uncertainty is extremely small for the
calendar degradation data (test groups 13 and 22, Figs. 11a–11b),
slightly larger for cycling degradation data at both low and high DODs
(test groups 22 and 32, Figs. 11c, 11e), and very large for cycling
degradation at high DOD and high Crate (test group 28, Fig. 11d). The
variance of the uncertainty highlights which degradation regimes are
difficult to predict accurately based on the available training data, and is
crucial for helping distinguish between high-confidence and low-
confidence predictions, or for identifying potential new test cases that
may be useful for improving the performance of the aging model. For
example, uncertainty is large for cells in test group 28 because this is
the only cell at high DOD and high Crate, resulting in a linear
degradation trajectory with a much steeper slope than any other test
groups in the data set; this uncertainty can also be observed in the wide
confidence interval for the data point at 80% DOD and 1.5 average
Crate in Fig. 8. In comparison, the uncertainties of the refit Naumann
model have low variance, with qualitatively similar trends across the
entire data set, making it difficult to gain insights into model behavior.

Dynamic Aging Validation and Simulation of Real-World Use

In order to simulate battery aging under varying load or environ-
mental conditions, the identified aging model needs to be reformulated
to be path independent, e.g. “memory-less”.77 Path independent aging
depends not on the amount of time or cycles that have elapsed since the
beginning of battery life, but rather, on the current state and the future
stress on the battery. For instance, consider the case of aging dominated
by the loss of lithium inventory, which is primarily driven by SEI
growth: the growth rate of the SEI at any point depends not on the
amount of time passed since beginning of life, but rather on the current
thickness of the SEI. This concept was first proposed by Thomas and
Bloom,77 and was likely independently applied by Serrao et al.57 at the
same time. Dynamic state models, as they are referred to here, have
been utilized in a wide variety of studies since.8,29,35,36,41,44,58

Deriving dynamic state models.—There have been several past
descriptions on deriving dynamic state models, using various
terminologies or definitions.8,29,35,77,78 For any given degradation
equation, the dynamic model for each state (degradation mode) can
be derived using the following approach: (1) separate the overall
model into several independent states, = ( )y f x , each dependent on

Figure 7. Local fitting of long-term cycling degradation behavior.

Figure 8. Parameter q7 values from local fitting to the long-term cycling
fade data (circles), fits by an ML equation (Eq. 15) with 95% confidence
intervals (X’s with error bars), and model predictions vs DOD at 0.2, 0.5,
0.75, 1, and 1.5 Crate.
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only one time-varying independent variable (e.g., calendar and cycle
aging;8,29 lithium loss, positive electrode capacity, and negative
electrode capacity9); (2) solve the derivative of the equation with
respect to the time-varying independent variable:
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where x is the time-varying independent variable (e.g. time, charge-
throughput, cycles, ...), and S is a vector of stressor values
(temperature, average SOC, DOD, ...), which are assumed to be
constant over the time step δx; (3) invert the equation to solve for x*,
referred to as the virtual-time or virtual-EFC in Naumann et al.8,29

and in the next section, given the values of S for the current time step
and the prior value of the state variable, yt−1:
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(4) substitute x in the derivative (Eq. 16) with x* to get the derivative
for the current time step, dyt/dx, dependent not on x, but on the prior
value of the state:
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(5) solve for the degradation in the current time step, δyt, by
multiplying Eq. 18 by δx:
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or, as is done in SimSES and used in the following section, simply
solve for δy by taking the difference between yt and yt−1:

* *δ δ= ( + ) − ( ) [ ]y f x x f x, S , S 20t

This is equivalent to the above approach at small time steps but
may be more accurate if the time step is large, and thus the
linearization described above is not valid; (6) enforce any initial
conditions or special considerations (see Smith et al.,35 Appendix
A); (7) combine the dynamic models for each state additively (as in
Refs. 8, 29) or logically (as in Ref. 9) to match the structure of
overall degradation model. Derivations for a variety of degradation
equations are reported by Santhanagopalan et al.78 and Smith et al.35

Even after deriving the dynamic equation forms for each state in the
model, there are a several considerations for extracting the values of
stress variables (temperature, C-rate, SOC, ...) from the varying load.
Note that only one variable in the degradation model can be treated as
time-varying for any given state, therefore, the values of stressors such
as temperature, SOC, DOD, or others must be treated as constant within
any given time step. Thomas and Bloom77 avoid this issue by solving
an integral where both time and the values of the stressors are
continuous variables (replacing the discrete calculation in Eq. 19), but
this approach only works for variables that smoothly vary with time,
such as temperature or SOC, and cannot account for variables such as
DOD or cycle count, which do not smoothly vary and are difficult to
define for complex battery loads. One approach is to break up the SOC
timeseries into discrete time steps by identifying turning points, using
techniques such as the rainflow algorithm9,35,78 or the rising sun
envelope method;79 DOD and cycle-count are then constant between
each turning point. DOD can also be treated as a continuous variable
using a time-superposition approach.35,80 A simpler approach, not
requiring turning point identification, is to simply take the difference
between the maximum and minimum SOC in a predefined time step;
however, this requires setting the simulation time step to some
appropriate value that captures the dynamics of the battery use. A
fast Fourier transform of the battery load can be used to help determine
an appropriate time step for simulating the battery degradation, but
there is still a risk of splitting a long duration charge or discharge into

Table IV. Optimal parameter values for the ML-assisted model identified here.

Parameter q1,a q1,b q1,c q2 q1,a q3,b
Value 9.90E-01 −2.88E+06 8.74E+03 1.31E-04 3.33E-04 7.35E+11
Parameter q3,c q3,d q3,e q4,a q4,SOC,ξ q4,SOC,σ
Value −2.82E-06 −3.28E+09 1.27E-03 5.82E-01 5.83E-02 2.09E-01
Parameter q4,DOD,ξ q4,DOD,σ q4,b q5 q6 q7,a
Value −3.81E+00 1.16E+00 2.54E+01 3.04E-03 1.44E+00 −6.81E-06
Parameter q7,c q8
Value 2.12E-06 1.13E+00

Figure 9. Refit Naumann capacity loss model. (a) Fit to calendar degradation data and (b) residual errors. (c) Fit to cycling degradation data and (d) residual
errors. Axis limits are shared with Fig. 10 to assist comparison.
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two different time steps, incurring some simulation error. SimSES,
which is used in this work to simulate the lifetime of battery energy
storage systems, avoids this issue by calculating degradation once per
day, only calculating cycling degradation once at least a half-EFC of
charge-throughput has occured.27 Determining a “best-practice” ap-
proach from all of these options would require a huge variety of long-
term aging data under dynamic use. Each of the approaches described
above has demonstrated satisfactory results on available validation data.

Model validation on dynamic aging tests.—Comparisons of
model predictions with 95% confidence intervals on a variety of
dynamic aging tests are shown in Fig. 12. Qualitatively, both the human

expert and ML-assisted models perform well on the validation tests
shown. The confidence intervals for the ML-assisted model identified
here are much narrower for both the calendar- and cycling-dependent
degradation states. Prediction errors on the dynamic validation data
from each model are reported in Table VI. Corroborating the results
from the model identification on the static testing data, the ML-assisted
model identified here has the lowest average prediction erro. This
improvement comes from substantially better accuracy on the dynamic
cycling cells. For duty cycles with less aggressive cycling, such as the
PV-HESS and PV-PCR-BESS load profiles shown in Figs. 12c–12d
(Naumann refit) and Figs. 12g–12h (ML-assisted), overall cycling
degradation is relatively low for both models. Where cycling

Table V. MAE and cross-validation MAE (MAECV) of models on the static aging data used for model identification and optimization. The Naumann
model uses the structure and the parameter values defined in prior work,8,29 while the “Naumann (refit)” model reoptimizes the model parameters
to all of the available aging data, and the “ML-assisted”model is the degradation model identified in this work. Storage error is calculated over data
from test groups 1–17. Cycling error is calculated over data from test groups 18–36.

All data Storage Cycling

Model description MAE MAECV MAE MAECV MAE MAECV

Naumann 2.11% 1.01% 3.18%
Naumann (refit) 1.66% 1.91% 0.72% 0.99% 2.58% 2.82%
ML-assisted 0.79% 0.83% 0.38% 0.47% 1.20% 1.43%

Figure 11. Comparison of model fits for groups 5 (a, f), 13 (b, g), 22 (c, h), 28 (d, i), and 32 (e, j) between the refit Naumann model (a)–(e) and the ML-assisted
model identified in this work (f)–(j). Dots correspond to experimental data, solid lines are best-fit model predictions, and shaded regions denote 95% confidence
intervals from 1000 iterations of bootstrap resampling.

Figure 10. ML-assisted capacity loss model predictions. (a) Fit to calendar degradation data and (b) residual errors. (c) Fit to cycling degradation data and (d)
residual errors. Axis limits are shared with Fig. 9 to assist comparison.
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degradation is incurred, the ML-assisted model predicts that it is
dominated by the saturating break-in fade, which matches with the
trends observed in the static aging data (Fig. 2c).

There is an additional assumption required for extrapolating the
break-in fade to less aggressive cycling conditions that are more likely
to be observed in real-world use: based on the aging data, and the
known physics causing the break-in effect,75 break-in is treated as
unrecoverable, however, it should only occur during periods of high

use, where lithium in the cell would not have a chance to redistribute
during rest. For this work, “high-use” is assumed to be periods when
the battery is utilized at a rate of 2 EFCs/day or more. This is less
strenuous than the accelerated aging tests, but more strenuous than most
real-world use cases, and thus break-in fade should only be expected to
occur during short periods of very high-use in real-world applications.

The approach shown here assumes that aging is path indepen-
dent, however, there is experimental evidence that lithium-ion

Figure 12. Model validation on dynamic aging tests. For each model, the overall capacity loss (black solid line) is the sum of the loss due to each state (dotted
and/or dashed colored lines). (a)–(d) Human expert model described in Naumann et al.,8,29 refit to the exact data used for ML-assisted model identification here.
(e)–(h) ML-assisted model identified in this work. The dynamic calendar fade test (Group 44 in Table A·I) data and model predictions plotted in (a, e) are shown
with colored regions denoting the aging temperature between capacity checks throughout the experiment.

Figure 13. Distribution and mean values of the stress factors SOC, DOD and Crate as well as average EFCs per annum (EFC/a) for the three applications:
Frequency Containment Reserve (FCR), Peak Shaving (PS), and Self Consumption Increase (SCI). Counts reported on y-axes are from 15 year simulations.
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battery degradation may sometimes be path dependent, e.g., not
only does the number of cycles matter, but also the order in which
those cycles occur, or how many cycles are conducted consecu-
tively before rest periods.81 Achieving accurate prediction of cell
degradation in cases where path dependence is a clear factor is an
open challenge for the battery degradation modeling community,
but luckily, the assumption that degradation is path independent
seems to hold true for many common real-world use cases, as is
shown by the good performance of both the refit Naumann model

and ML model when validated against dynamic aging data
presented here.

Simulation of realistic stationary energy storage applications.—
Battery lifetime models may be utilized to estimate the lifetime of real-
world energy storage systems by incorporating them into systems-level
simulation tools such as SimSES. SimSES is a time-series based open
source tool that allows to perform holistic techno-economic simulations
and analyses for battery energy storage systems.27 Here, we consider

Table VI. MAE of models on dynamic aging data used for validation. Storage error is calculated over data from test groups 37–44. Cycling error is
calculated over data from test groups 45–49.

Model description MAE (All data) MAE (Storage) MAE (Cycling)

Naumann 1.18% 0.78% 1.28%
Naumann (refit) 0.84% 0.71% 0.88%
ML-assisted 0.68% 1.29% 0.52%

Figure 14. Schematic overview of how confidence intervals for the incremental capacity losses are calculated in the adapted version of the environment SimSES
for each time step. The adapted version of SimSES has been made available open-access.40

Journal of The Electrochemical Society, 2022 169 080518



three applications: a commercial frequency containment reserve
application (FCR), a commercial peak-shaving application (PS), and
a residential PV-battery system performing a self-consumption increase
service (SCI). These three applications are described in detail in
previous work.30 Battery load for each application is calculated using
an energy management system based on realistic input profiles for the
selected application and system parameterization. For FCR, a grid
frequency profile serves as input, with the BESS discharging during
underfrequency and charging during overfrequency. In PS, the BESS
discharges when the used industrial load profile exceeds a predefined
peak shaving limit and charges again afterwards. For SCI, a household
load and PV generation profile serve as inputs. The BESS charges
when PV power exceeds the household load and discharges when the
household load exceeds PV power.

Histograms of the SOC, DOD, and Crate stress factors throughout
fifteen years of simulation are shown in Fig. 13. Each of the
application cycles shows significantly different battery use: the FCR
application operates around 50% SOC at low DOD with Crate up to
0.5, the PS application spends a large amount of time at high SOC,
even resting at 100% SOC for long periods, with an average DOD of
approximately 40% but with low power demands (low Crate), and the
SCI application has the battery regularly being fully discharged, with
little amount of time spent resting at high SOC, regular operation at
high DOD, and relatively high Crate. As the EFCs are less than 2 per
day in all applications, the break-in loss model is not considered in
this analysis. Furthermore, the BESS is assumed to be in a
temperature controlled environment, kept at a constant temperature
of 25 °C, to ensure comparability between applications.

In this work, uncertainty from the battery-level degradation is
incorporated to estimate uncertainty at the system-level by resolving
the degradation model using not only the best-fit parameter values
for any given model, but also the bootstrapped parameter values. The
process for calculating the capacity loss at each simulation time step
with uncertainty in SimSES is shown in Fig. 14. For each model,
there is a vector of the best-fit parameter values and 1:M vectors
from M bootstrap resampling iterations. Incorporating degradation
uncertainty into the system level simulation is challenging because
the capacity loss in a given time step influences the requested power
for the following time steps, i.e., the dispatch of the battery is
dependent on its current health. For example, a home storage system
that is degrading faster will see less charge-throughput over the same
time frame, as it fills up quicker with surplus photovoltaic (PV)
power at daytime and empties faster during nighttime. Estimating

the impact of degradation uncertainty thus requires simulating the
entire system lifetime for every set of M bootstrapped degradation
parameters, resulting in M system lifetime predictions. This is how
confidence intervals are calculated for Figs. 11 and 12, but with 1000
sets of bootstrapped parameters used in this work, it is far too
computationally expensive to run on a single workstation. To avoid
this issue, the simulation can instead be run at a specified degrada-
tion percentile. This is conducted by calculating the incremental
change of each battery state (Eq. 20, for calendar loss and cycling
loss) for each bootstrapped parameter sets at each time step. The
1000 values for the incremental change of each state are then sorted
and the desired percentile output at each time step. The entire system
lifetime then only needs to be calculated once for each desired
percentile, as well as for the best fit scenario.

The results from simulations of the FCR, PS, and SCI energy
storage system applications for both the ML-assisted and refit
Naumann degradation models are shown in Fig. 15. Immediately
clear is that the uncertainty of the model identified in Naumann et
al.8,29 is much larger than the uncertainty of the ML-assisted model
identified here, which reflects the results shown from the model
identification (Fig. 11) and validation (Fig. 12) steps reported prior.
This improved model confidence gives much narrower estimates for
the system lifetime: taking the lower-bound of the 99% confidence
interval as a prediction for the ’worst-case’ lifetime of the energy
storage system, the ML-assisted model predicts that the discharge
capacity will remain >80% for at least 15 years in all of the aging
scenarios, while the refit model from Naumann et al. gives a
minimum lifetime estimate of 9 years for the FCR application, 7
years for the PS application, and 10 years for the SCI application.
Overall, the expected lifetime (best-fit line) does not vary hugely
between the two models, with both models estimating 15 years or
more of battery lifetime for all applications; this agreement is
because calendar degradation dominates all applications, and in
terms of the absolute error, the models differ more when predicting
substantial cycling degradation than when predicting calendar
degradation. An application with more aggressive battery use would
likely result in a larger disagreement between the two models than
the results shown here.

Conclusions

Battery degradation models play a key role in the planning,
development, and control of battery energy storage systems. Most

Figure 15. Relative discharge capacity for various realistic use-cases of battery energy storage systems over 15 years predicted by the degradation models
identified by Naumann et al.8,29 (a)–(c) and the degradation model identified in this work using ML (d)–(f). The green line in plots (a)–(c) uses the parameter
values originally reported by Naumann et al.8,29
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often, they take the form of empirically-derived algebraic models due to
the simplicity of identifying model equations, optimizing model
parameters, and implementing the model into battery performance
models, technoeconomic simulations of energy storage systems, or real-
time controllers. But despite their prevalence, identifying accurate
models remains a trial-and-error process, with a huge variety of
approaches in the literature, making it difficult to replicate work or
identify best practices. Thus, in this work, a general framework for
developing battery lifetime models is described:

(i) Visualization of degradation trends and connection to physical
mechanisms, qualitatively deconvoluting stress-dependent
trends from behaviors shared across the data set

(ii) Identification of modeling equations describing degradation
trends

(iii) Optimization of model parameters and quantification of model
uncertainty, deconvoluting the contributions of various degra-
dation mechanisms

(iv) Extrapolation to dynamic aging and validation using lab-based
or real-world data

This approach is demonstrated using a ML-assisted model identifi-
cation procedure that searches through millions of potential equa-
tions to find potential candidates for the human-expert to analyze.
On a stand-out LFP/Gr aging data set, the ML-assisted model is
shown to be about twice as accurate as a human-expert model, and
this is validated on dynamic aging test data. The improved accuracy
of the ML-assisted model also results in smaller confidence
intervals for the majority of model predictions, indicating that
the ML-assisted model is more likely to provide accurate estimates
for capacity loss when extrapolating to untested conditions. The
impact of degradation model uncertainty on lifetime estimates for
energy storage systems is then evaluated using the technoeconomic
simulation software SimSES. It is found that uncertainty may
substantially impact system lifetime predictions for any model.
This demonstrates the importance of incorporating battery lifetime
uncertainty into system models, as well as the importance of
identifying models that are as accurate as possible given the
available experimental data.
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Appendix

Ua is calculated from the state-of-charge (SOC) using the following
formula, which was defined in Schimpe et al.36 for this cell using curve
fitting of the negative electrode half-cell data and comparison of the
half-cell potentials to the full-cell open-circuit potential.
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where xa, the anode stoichiometry, is calculated using:

Table A·I. Test matrix for static and dynamic aging tests used for model training and validation, respectively. Except for group 21, all static cycling
cells are aging using CC cycling protocols. For dynamic tests, conditions were changed following each performance checkup. Values of SOC, DOD,
CCharge, and CDischarge for the PV-HESS and PV-PCR-BESS dynamic tests are daily averages.

Group Type Condition T (°C) SOC (%) DOD (%) CCharge (hr
−1) CDischarge (hr

−1) # of Cells

1 Static Storage 0 50 n/a n/a n/a 3
2 Static Storage 10 50 3
3 Static Storage 25 0 3
4 Static Storage 25 50 3
5 Static Storage 25 100 3
6 Static Storage 40 0 3
7 Static Storage 40 12.5 3
8 Static Storage 40 25 3
9 Static Storage 40 37.5 3
10 Static Storage 40 50 3
11 Static Storage 40 62.5 3
12 Static Storage 40 75 3
13 Static Storage 40 87.5 3
14 Static Storage 40 100 3
15 Static Storage 60 0 3
16 Static Storage 60 50 3
17 Static Storage 60 100 3
18 Static Cycling 25 50 100 1 1 3
19 Static Cycling 25 50 80 1 1 3
20 Static Cycling 25 50 20 1 1 3
21 Static Cycling CCCV 40 50 100 1 1 3
22 Static Cycling 40 50 100 1 1 3
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Table A·I. (Continued).

Group Type Condition T (°C) SOC (%) DOD (%) CCharge (hr
−1) CDischarge (hr

−1) # of Cells

23 Static Cycling 40 50 80 1 1 3
24 Static Cycling 40 50 80 0.5 0.5 3
25 Static Cycling 40 50 80 0.2 0.2 3
26 Static Cycling 40 50 80 0.5 1 3
27 Static Cycling 40 50 80 1 0.5 3
28 Static Cycling 40 50 80 1 2 3
29 Static Cycling 40 50 40 1 1 3
30 Static Cycling 40 50 40 1 2 3
31 Static Cycling 40 50 20 1 1 3
32 Static Cycling 40 75 20 1 1 3
33 Static Cycling 40 25 20 1 1 3
34 Static Cycling 40 50 10 1 1 3
35 Static Cycling 40 50 5 1 1 3
36 Static Cycling 40 50 1 1 1 3
37 Dynamic Storage 25/40 100 n/a n/a n/a 2
38 Dynamic Storage 25/60 100 2
39 Dynamic Storage 40/60 100 2
40 Dynamic Storage 0/60 100 2
41 Dynamic Storage 60 0/50 2
42 Dynamic Storage 60 0/100 2
43 Dynamic Storage 60 50/100 2
44 Dynamic Storage 25/40/60 100 1
45 Dynamic Cycling/ Storage 40 50 80 1 1 3
46 Dynamic Storage/ Cycling 40 50 80 1 1 3
47 Dynamic Cycling 40 50 20/80 1 1 3
48 Dynamic PV-HESS 40 51.4 74.6 0.243 0.172 3
49 Dynamic PV-PCR-BESS 40 51.2 25.1 0.073 0.057 3
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