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Abstract

Inspection and maintenance (I&M) is essential to ensure the integrity of feeder pipes, which are
parts of the primary heat transport system in a nuclear power plant. The pipes are subject to flow
accelerated corrosion (FAC), which can compromise the integrity of the piping system and lead
to high repair costs. We explore the opportunity for improving I&M strategies while ensuring
that the system still maintains an acceptable level of reliability. To this aim, a reliability-based
planning framework is proposed, in which every pipe in the system meets the minimum thickness
requirement at a specified annual probability. With this planning framework we can a) evaluate the
performance of any I&M strategy constrained to a fixed reliability criterion, without requiring this
strategy to be specifically designed for such a criterion; and b) find an I&M strategy optimized for
this reliability level using a heuristic description of the strategy space. We demonstrate the frame-
work with a case study, where the wall thinning due to FAC is modeled as a Gamma process with
uncertain parameters. We compare the expected life-cycle cost of multiple strategies for I&M of a
feeder system with 480 pipes. The proposed approach is compared with an I&M strategy currently
used by the industry, which highlights the efficiency of the proposed optimization method.
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1. Introduction

Operation and maintenance of a nuclear power plant (NPP) requires careful planning. Aside
from the safety of the plant, which is ensured by a multitude of redundant safety systems, the
continued operation of the plant is a major goal of the operator. Regular maintenance of the
reactor components is essential to prevent interruptions in energy production and associated loss
in revenue.

In a Canada Deuterium Uranium (CANDU) reactor, the feeder piping system consists of inlet
pipes that supply coolant to cool the nuclear fuel and of outlet pipes that bring the hot fluid to the
steam generators (see Figure 1). These hundreds of carbon steel pipes are susceptible to flow ac-
celerated corrosion (FAC), which is largely responsible for wall thinning and leakage, particularly
at the bends formed by the outlet feeder pipes (Wu, 1989; Lister et al., 1997; Yuan et al., 2008).
Wall thinning and leakage can have serious consequences on the operability of the nuclear reactor.
In the event of a leakage, total interruption of plant activity is typically required, at a very high
cost. Inspection and maintenance (I&M) planning of feeder pipes is part of the FAC management
program. Such planning is especially challenging due to the high number of pipe bends where
FAC can occur. Inspecting and/or replacing every single pipe is not economically feasible.
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Figure 1: Schematic of a CANDU reactor and its feeder piping system. Each fuel channel is connected to inlet and
outlet feeders (not all depicted for clarity purposes). The outlet feeders transport the coolant from the fuel channel
to the steam generators, where heat is exchanged. The coolant is then transported back to the fuel channels through
the inlet feeders. Flow accelerated corrosion is responsible for pipe wall thinning, particularly at the first bend of the
outlet feeders. After Lister et al. (1997).

Following a major FAC-related incident at the Surry NPP in 1986 and to address the lack of a
unified maintenance practice, guidelines and principles were drafted (Wu, 1989). They are articu-
lated around the following points: (i) piping systems must be inspected regularly; (ii) inspections
must measure the wall thickness; (iii) the evolution of the wall thickness must be predicted for
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every pipe and account for the past inspection outcomes; (iv) pipes that do not comply with a min-
imum wall thickness must be replaced; (v) pipes selected for the next planned inspection should
include pipes never inspected, as well as pipes marked as near-critical during a past inspection
(EPRI, 2013).

Good I&M planning controls the risk of an unplanned outage due to pipe failures, while keep-
ing the I&M costs (pipe inspection and replacement costs) low. In the current unified practice, the
I&M strategies adopted for FAC management in NPPs do not vary widely and have been adapted
from past practice. These strategies have not been explicitly optimized to comply to a certain relia-
bility level. Such a level is also not quantified in the guidelines. Therefore, there is an opportunity
to optimize the I&M costs while maintaining a specified level of reliability.

To improve current I&M practice and to quantify the potential reduction in I&M costs, we
propose a reliability-based planning framework for evaluating and optimizing I&M strategies of a
multi-component piping system subject to FAC, under a reliability constraint applied at the system
level. The pipes correspond to the system components. The system reliability accounts for the
inspection information at component level using Bayesian updating. This framework utilizes a
deterioration model, which accounts for the components’ interdependence and correlation. The
expected cost optimization uses a heuristic description of I&M strategies, which enables the def-
inition of I&M rules based on the reliability of individual components and of the system. The
optimization is then performed on a few chosen heuristic parameters. The adopted heuristic op-
timization method was developed and formalized for risk-based I&M planning in (Luque and
Straub, 2019; Bismut and Straub, 2021) and notably allows for including eventual operator con-
straints. The framework proposed in this paper is designed to handle hidden system failures, which
can only be detected through component inspection. Furthermore, it can cope with a large number
of deteriorating components, as is typical of a nuclear piping system.

Individual aspects of this reliability-based planning framework have been proposed and imple-
mented in past studies (Alaswad and Xiang, 2017; de Jonge and Scarf, 2020) but not in combina-
tion. Few studies have considered multi-level decision making for multi-unit systems (Alaswad
and Xiang, 2017; Wang et al., 2022). Several studies have investigated the effect of a reliability re-
quirement on the planning of I&M actions at the system level or at the individual component level
(e.g., Sagrilo et al., 1997; Onoufriou, 1999; Frangopol et al., 1997; Onoufriou and Frangopol,
2002; Bressi et al., 2021), a few of which include the cost optimization (Hellevik et al., 1999;
Sørensen and Faber, 2001; Gholami et al., 2020; Bressi et al., 2021). In the studies that consider
the interaction between the system and its components, the dependence between the component
deterioration processes are not accounted for (Barker and Newby, 2008; Flage et al., 2012; Sun
et al., 2017; Faddoul et al., 2018), and otherwise the methods are not adapted to a large num-
ber of system components (Straub and Faber, 2005; Barone and Frangopol, 2014; Li et al., 2016;
Wang et al., 2022). In several studies that enable inspection decisions at the component level,
preventive or corrective maintenance actions are limited to a major intervention at the system level
(Onoufriou and Frangopol, 2002; Barker and Newby, 2008; Zio and Viadana, 2011), and failures
(at the system or component level) are typically assumed to be self-announcing (Flage et al., 2012).

The paper is organized as follows: Section 2 presents the type of nuclear piping system as well
as the cost and operational constraints for which the reliability-based framework is developed.
Section 3 details the simulation-based evaluation of the expected cost of a given I&M strategy
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under reliability constraint, which is formulated as a threshold p0 on the system failure rate (see
Section 3.3). In Section 4, we present the associated reliability-based strategy optimization prob-
lem, whose solution via the heuristic approach is described in Section 4.2. The probabilistic model
for FAC at the pipe level is described in Section 5. The computation and updating of the reliability
of the system and the pipes are detailed in Section 6. In Section 7, the framework is demonstrated
on a 480-feeder piping system subject to FAC. The I&M constrained expected costs of a strat-
egy representative of current I&M practice are evaluated and compared to the optimized heuristic
strategies for different values of p0. The effect of the prior deterioration model parameters is also
investigated.

2. Inspection and maintenance of a piping system

The presented methodology is applicable in general to I&M planning of nuclear piping system.
Nevertheless, to facilitate the description of the reliability-based planning framework in Sections 3
and 4, we introduce here the configuration and planning constraints of the specific system investi-
gated in Section 7.

2.1. Piping system
We consider a piping system of a CANDU power reactor. A CANDU piping system typically

consists of different pipe geometries (angle of pipe bend, diameter of pipe, thickness of pipe)
(Yuan, 2007). However, to restrict the analysis, the piping system considered here consists of
N identical large-bore pipes of 2-inch diameter, with initial nominal thickness W0 (Hazra et al.,
2020a).

The pipes are indexed by 1 ≤ i ≤ N. The thickness of a pipe i at time t is denoted by Wi(t),
with Wi(0) =W0. The loss of wall thickness resulting from FAC, Di(t), is

Di(t) =Wi(0)−Wi(t). (1)

To ensure adequate safety and fitness-for-service, the operator must ensure throughout the
service life that the wall thickness loss in any of the N pipes does not exceed a certain threshold
dmax. Piping design standards specify this threshold dmax to be 40% of the initial thickness W0
(ASME, 2013; Hazra et al., 2020a). Failure to comply with this criterion at time t is indicated by
the event F(t) = {maxi Di(t)> dmax} and is here called system failure. The event Fi(t) = {Di(t)>
dmax} is called failure of pipe i. It is F(t) = ∪iFi(t).

The threshold dmax is based on a regulatory constraint, which typically includes a safety factor.
In this case, a non-compliant pipe does not entail a failure (e.g., a leak) as such. Therefore, pipe
failure as defined here is not self-announcing and can only be detected through wall-thickness
inspection.

Time is measured in effective full-power year (EFPY). To simplify the notation, we refer to 1
EFPY as 1 year (yr). The design service life of the piping system is denoted by T .
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2.2. I&M actions and cost model
To ensure compliance with the dmax criterion , the plant operator performs inspections of the

piping system throughout the service life, by measuring the wall thicknesses at the bend of selected
pipes with ultrasonic probes. Based on the inspection results, the operator can choose to replace
pipes bends by cutting out the old bend and welding in a new pipe bend. In theory, the operator can
decide to inspect or repair the pipes at any point in time. In practice, inspection and repair times
are typically synchronized with planned maintenance outages, during which the NPP undergoes
different types of checks and maintenance operations.

In a practical setting, the costs of pipe inspection and repair depend on the manner they are
scheduled. We outline the I&M scheduling constraints and resulting I&M life-cycle costs in Fig-
ure 2. The I&M campaigns occur at times fixed in advance, typically at regular time intervals ∆T .
Pipe inspections and maintenance actions are preferably planned one I&M campaign ahead. Cer-
tain pipes are labeled of interest’ (for future inspection). Others are labelled critical’ (for eventual
future maintenance) and form the PM pool. Maintenance performed on pipes from the PM pool
is called preventive maintenance. However, the inspections carried out during an I&M campaign
can reveal critical pipes among those that have not been scheduled for maintenance during the
previous campaign, which form the CM pool; critical pipes in the CM pool warrant corrective
maintenance. This happens for example when an inspected pipe is deemed to deteriorate too fast
so that their replacement cannot be postponed until the next outage. The corrective maintenance
cost per pipe is typically higher than the cost of preventive maintenance. It is therefore advanta-
geous to plan preventive maintenance well, so that a minimal amount of corrective maintenance is
required. However labelling too many pipes as critical can result in an unnecessarily large number
of inspections.

Note that we do not consider the possibility that maintenance actions occur outside of the
predetermined campaign times, for instance during unplanned outages to maintain other parts of
the NPP. This also means that what here is labeled as corrective pipe maintenance does not include
maintenance actions that occur outside of the planned maintenance times, such as emergency
repairs due to an unexpected pipe failure or other incidents. As we discuss in Sections 3 and 4,
system failure is only considered through the system reliability.

The following costs are considered. The cost of launching an I&M campaign is cC. It includes
mobilization costs and other overheads. The cost of inspecting one pipe is cI . It accounts for the
time needed for one inspection. A unit cost cPM is incurred for each pipe repaired as planned. The
corrective maintenance cost per pipe is cCM, which is larger than cPM.

3. Reliability-constrained I&M strategy

In this section, we present the framework to evaluate the performance of any operator-defined
I&M strategy when constrained by a reliability criterion.

3.1. I&M strategies
A strategy S is the set of rules (policies) that governs at any time the decision process based on

the information available at that time. When considering a deteriorating multi-component system,
the rules take as input all or part of the current knowledge on the state of the system, and give
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Figure 2: Overview on I&M planning. Inspection and maintenance actions occurring at time t are indicated by lightly
hatched boxes. Planning of I&M actions for the next I&M campaign are indicated by unhatched boxes. The PM pool
consists of the the pipes pre-selected for preventive maintenance for the next campaign, the CM pool consists of all
other pipes. The plain arrows indicate a scheduling imperative. The dashed arrow indicates possible influences, but
does not constrain the I&M strategies to follow them. For instance, preventive maintenance or corrective maintenance
can be performed on pipes that have not been inspected during the campaign, but might have been in the past. This
means that the pipes in the PM pool can be, but not necessarily are, inspected at the next campaign, as indicated by
the arrow. nC(t) records the times of I&M campaigns. During a I&M campaign at time t, nI(t), nPM(t) and nCM(t)
are the total number of pipes inspected, and replaced for preventive and corrective maintenance, respectively.

the answer to the questions ‘Inspect?’ {yes, no}, ‘Where?’ {component i, j, ...},‘What to look
for?’ {corrosion, fatigue,...} ,‘How?’ {visually, ultrasonic inspection, thickness measurements,
...}, ‘Repair?’ {yes, no, how}. The system knowledge includes the history of inspection outcomes,
monitoring data, repairs and eventual component failures. A formal description of I&M strategies
is given by Bismut and Straub (2021).

For the I&M planning problem considered in this paper, a strategy defines at which time step
the inspection outage takes place, how the PM pool is composed, which pipes are of interest and
which pipes are preventively (or correctively) maintained.

A history M contains all the information gathered during the lifetime of the structure, in-
cluding inspection outcomes, pipe replacements and eventual system failure. M0:t− is the I&M
information collected up to time t, and Mi,0:t− is the information collected on pipe i.

3.2. Evaluating a strategy under a reliability criterion
The efficiency of a strategy can be assessed with different metrics. One metric is the total life-

cycle expected cost, adding the I&M action expected costs (see Equation (8)) to the lifetime risk of
failure. This is the risk-based assessment of a strategy. The risk of failure considers explicitly the
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consequences of failure. These consequences include the cost of an accident (or failure), which
entails replacing ruptured feeders but also loss of revenue due to unplanned outage, loss of life, and
any other type of financial penalty imposed by the regulator. As an example, the loss incurred after
the 1986 Surry NPP incident mentioned in Section 1 above amounted to tens of millions of dollars
(EPRI, 2013). Correctly appraising the consequences of failure is crucial for a meaningful result
using the risk-based approach. Due to the high uncertainty on the magnitude of the consequences
of failure, a risk-based assessment is not further pursued here.

One could also simply assess the life-cycle I&M expected cost (see Equation (8) below), but
this assessment presents an obvious flaw: if the strategy considered prescribes no inspections and
no repairs during the entire service life, this cost is simply zero, hence this do-nothing’ strategy
would always be the one with minimal cost, even if this strategy is clearly undesirable. In real-life,
it has been observed that the current I&M practice implicitly leads to a certain level of reliability
(Sagrilo et al., 1997). Most I&M strategies in the nuclear industry are, however, defined in a
rule-based approach, without quantifying the system reliability (e.g., EPRI, 2013), and they do not
explicitly guarantee a reliability level.

Here, we propose a method to assess any given I&M strategy, such as those described in guide-
lines, by assessing the life-cycle I&M expected cost associated with this strategy while constrain-
ing the system to a fixed reliability level. This method is illustrated by the diagram of Figure 3.

The I&M campaigns occur at times prescribed by the considered strategy, for example at
regular intervals ∆T . The rules for selecting pipes for inspection, for planning the PM pool and
for performing preventive (and eventually corrective) maintenance are applied as prescribed by the
strategy.

Then, the reliability criterion is evaluated for the time period until the next campaign and is
compared against the required reliability level. If the criterion is violated, maintenance actions are
performed such that the piping system is brought to a compliant state. Here, additional pipes are
replaced one by one until the failure rate of the system falls under a certain value (see Section 3.3).
The pipes selected for corrective maintenance to satisfy the criterion are those with the highest
probability of pipe failure. Since these repairs occur after all I&M actions prescribed by the
strategy have taken place, they are accounted for as corrective maintenance, with unit cost cCM.

If system failure is detected, i.e., if an inspection reveals a non-compliant pipe, a major in-
tervention is required and the simulated I&M history is interrupted. As explained above, we do
not consider explicitly any costs or further I&M action resulting from system failure. A major
intervention is also warranted in the unlikely eventuality that all pipes are replaced and the system
is still not compliant, which might occur if the constant deterioration rate µ is too high.

3.3. Defining the reliability criterion
In this study, we express the reliability criterion as a threshold p0 on the system failure rate at

time t conditional on past I&M outcomes and actions M0:t− , which in turn depend on the chosen
I&M strategy S. The failure rate evaluated at time t must be such that

H(t,M0:t−)≤ p0. (2)

The failure rate is approximated by
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Figure 3: Simulation of an I&M history following a given strategy S constrained to reliability criterion p0 for the
evaluation of a sample life-cycle cost (see Equations (4) to (9)). The definition of H is given in Section 3.3 and
Equation (3).

H(t,M0:t−) =
Pr [Fcumu(t +1)|M0:t−]−Pr [Fcumu(t)|M0:t−]

1−Pr [Fcumu(t)|M0:t−]
yr−1. (3)

Fcumu(t) =
⋃

τ≤t F(τ) is the accumulated system failure event at time t (Straub et al., 2020) and
Pr [Fcumu(t)|M0:t−] is the filtered cumulative probability of system failure at time t. Pr [Fcumu(t +1)|M0:t−]
is the predictive cumulative probability of system failure at time t +1.

p0 can be prescribed explicitly by the regulator. However, in most situations, such a value is
not given as such, but is implied by current regulations and constraints. In these cases, a value
of the reliability criterion can be extracted from I&M plans that are considered acceptable by the
practitioners and the regulators.
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3.4. Life-cycle I&M cost
For an I&M history M following a strategy S, the life-cycle cost is calculated by recording

the times and numbers of inspection and repair actions during the lifetime, and aggregating their
cost. To account for the time-value of money, an annual discount rate r is considered, such that
all costs incurred at time t are discounted at time 0 by a factor 1/(1+ r)t . The components of the
life-cycle cost are

CI,T (M) =
T

∑
t=1

[cInI(t)+ cCnC(t)]
1

(1+ r)t (4)

CPM,T (M) =
T

∑
t=1

cPMnPM(t)
1

(1+ r)t (5)

CCM,T (M) =
T

∑
t=1

cCMnCM(t)
1

(1+ r)t , (6)

where CI,T (M), CPM,T (M) and CCM,T (M) are respectively the total life-cycle inspection costs
(including I&M campaign costs and pipe inspection costs), the total preventive maintenance costs
and the total corrective maintenance costs. nC(t) = 1 if an I&M campaign takes place at time t, 0
otherwise. All unit costs cC, cI , cPM and cCM are constant throughout the service life, their values
for the numerical investigation are given in Table 2.

The life-cycle I&M cost for history M is therefore

CT (M) =CI,T (M)+CPM,T (M)+CCM,T (M). (7)

Before the execution of a strategy, the observation outcomes and eventual maintenance actions
are uncertain. Therefore one can compute the expected life-cycle I&M cost associated with a
strategy S as

C(S) =CI,T (S)+CPM,T (S)+CCM,T (S), (8)

where CI,T (S), CPM,T (S) and CCM,T (S) are the expected life-cycle inspection, preventive and cor-
rective maintenance costs, respectively.

3.5. Computing the expected cost of a strategy
In I&M planning, it is typically not possible to obtain an analytical form of the distribution of

the observation histories M for a given strategy S. This is because the vector of varying dimension
M is generated sequentially with time from the strategy S. Luque and Straub (2019) propose to
approximate the distribution of M and evaluate the expected life-cycle I&M cost in Equation (8)
by sample averaging the I&M costs (Equation (7)) associated with 1≤ k ≤ nMC Monte Carlo (MC)
sample observation histories M (k) following strategy S, as
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C(S)'
nMC

∑
k=1

[
CI,T

(
M (k)(S)

)
+CPM,T

(
M (k)(S)

)
+CCM,T

(
M (k)(S)

)]
. (9)

Furthermore, in the presented reliability-based framework each I&M sample history is gen-
erated in two phases: first by following the considered I&M strategy; then by checking if the
reliability criterion is complied with and replacing additional pipes if necessary (see Figure 3).
This procedure requires many computations of the failure rate in Equation (3) (one at every time
step), for which sampling-based reliability methods are not appropriate. In this case, an efficient
reliability computation performed sequentially is needed to generate one sample history M (k).
Section 6 describes the procedure for evaluating the probabilities of component and system failure
conditional on past observations for the deterioration, inspection and maintenance models pre-
sented in Section 5.

4. Reliability-based heuristic planning

In this section we introduce the reliability-based optimization framework to find an I&M strat-
egy optimized for a fixed reliability level.

4.1. Reliability-based optimization
Optimal I&M planning means finding the solution of a sequential decision problem in the

form of a strategy, which tells one what to do (inspect, repair) and when and where to do it. In this
context, the optimal strategy is the one that minimizes an objective function, typically an expected
cost. We can distinguish three approaches to I&M planning: rule-based, reliability-based and risk-
based. All three approaches affect the formulation of the optimization problem and the objective
function. The first approach is the one currently recommended by the regulator. Effectively, it
constrains the operator to follow certain principles (see an example below in Section 7.2), and
leaves little leeway in modifying the prescribed strategy. Risk-based planning prescribes the risk-
based assessment of a strategy and, as stated in Section 3.2, is not suitable for the considered
application.

We therefore implement a reliability-based approach, which is reflected in the form of the con-
sidered objective function. In this approach, the optimal strategy minimizes the total I&M costs,
while ensuring that the system always complies with a reliability criterion. The objective function
thus excludes any costs associated with all consequences of system failure, as the occurrence of
failure is represented through the reliability criterion. The desired I&M strategy S∗ is the solution
to this minimization problem:

S∗ =argmin
S

[
CI,T (S)+CPM,T (S)+CCM,T (S)

]
, (10)

such that ∀ I&M history M ,∀t, H(t,M0:t−,S)≤ p0.
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The planning problem expressed in Equation (10) is difficult to solve, in part because it is not
feasible to explore the entire space of all possible I&M strategies S. Several methodologies have
been developed to address the unconstrained, risk-based I&M planning problem (Yang and Trapp,
1975; Bloch et al., 2000; Durango and Madanat, 2002; Straub, 2004; Nielsen and Sørensen, 2011;
Papakonstantinou and Shinozuka, 2014; Nielsen and Sørensen, 2015; Memarzadeh and Pozzi,
2016; Schöbi and Chatzi, 2016; Papakonstantinou et al., 2018; Bismut and Straub, 2021). Optimal
reliability-based planning of the form of Equation (10) has been investigated for multi-component
systems, however, in this last case, with simplifying assumptions such as non-correlated compo-
nents or small-sized systems (e.g., Barone and Frangopol, 2014; Li et al., 2016; Sun et al., 2017;
Faddoul et al., 2018; Do and Bérenguer, 2020; Wang et al., 2022). One particular challenge of this
optimization is the verification of the reliability constraint, which requires to assess the evolution
of the system reliability in combination with an I&M strategy. In the section below, we explain
how we combine a heuristic formulation of the optimization with a history sampling method to
address this challenge.

4.2. Heuristic formulation
The heuristic optimization approach formalized by Bismut and Straub (2021) gives an ap-

proximate solution to Equation (10). Its appeal resides in the fact that one can explicitly include
operational constraints in the definition of a suitable plan. A heuristic is defined by a set of rules
associated to a set of parameters ω = {ω1, ...,ωn} so that an I&M strategy is fully defined by the
heuristic and the values of its parameters. An example rule is that I&M campaigns take place at
fixed time intervals and the associated heuristic parameter is the interval ∆T . Another possible
rule is to replace a pipe if the inspected wall thickness is lower than a threshold dC, with dC being
the heuristic parameter. A heuristic strategy is well defined when every decision can be resolved,
such that the questions when and where to inspect and repair are clearly answered.

The optimization of Equation (10) is restricted to a chosen heuristic and is thus reduced to an
optimization of the parameter values ωl .

min
ω

CI,T (ω)+CPM,T (ω)+CCM,T (ω), (11)

s. t. ∀ I&M history M ,∀t, H(t,M0:t−,ω)≤ p0.

The selected heuristic has an effect on how optimal the strategy resulting from Equation (11)
is with respect to Equation (10). Choosing the heuristic is in itself an optimization problem. An
important aspect is for instance the rules for selecting pipes for inspection and for maintenance.
This selection can be random, or guided by a prioritization index of sorts (e.g., Bismut et al., 2017;
Do and Bérenguer, 2020; Wang et al., 2022). In a previous study we observed that decision rules
that account for past observations and associated uncertainty perform better than those which
are formulated directly in terms of individual measurements (Bismut and Straub, 2019). In the
heuristic chosen for the numerical investigation (see Section 7.3), we base the pipe inspection
prioritization on the potential reduction in uncertainty, linked to the coefficient of variation of the
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distribution of the pipe thickness at a given time. The selection of the ’critical’ pipes (PM pool) is
based on the probability of pipe failure.

With the heuristic formulation, the reliability constraint can be integrated directly into the
maintenance rules, which results in the modified history diagram of Figure 4, where pipe replace-
ments are carried out specifically to satisfy the reliability criterion. An example of the system
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Figure 4: Simulation of an I&M history for the evaluation and optimization of heuristic strategies under reliability
constraint p0.

failure rate, where the I&M history is such that it follows the strategy and the constraint, is shown
in Figure 5, for two different strategies. The underlying computations are detailed in Section 6. We
note that the life-cycle I&M cost associated with a history, for which the system does not comply
with the criterion (i.e., the branch "major intervention" is reached at some point during the service
life), is high. This ensures that strategies which lead to a high number of non-compliant histories
are avoided during the optimization process explained in Section 4.3 below, without requiring the
actual cost of a major intervention to be defined.

4.3. Heuristic parameters optimization method
We implement the algorithm developed in (Bismut and Straub, 2021) to optimize the heuristic

parameters, based on the cross-entropy (CE) method (Rubinstein and Kroese, 2004). An initial
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(a) (b)

Figure 5: Evolution of the failure rate H(t,M0:t−) for a sample history, following two I&M strategies with different
inspection intervals (a) ∆T = 3 and (b) ∆T = 4. In both cases, the strategy ensures that the system complies with the
reliability constraint p0 = 1.0 ·10−2, but the second strategy does so in a more efficient manner (see Tables 3 and 4).

sampling density over parameters ω1, ...,ωn is chosen, for instance a multivariate Gaussian distri-
bution. At each iteration, nS sample sets of parameter values are generated from the CE sampling
density. For each sample set, the expected cost of the associated strategy is evaluated with nMC
samples. The sample sets are ranked in increasing order of expected cost. The parameters of the
CE sampling density for the next iteration are fitted to the top nCE sample sets, the elite samples.
In the numerical investigation, we choose nS = 100 and nCE = 20. Samples values for discrete
heuristic parameters, such as the number of inspected pipes nI , are sampled from a continuous,
truncated, Gaussian sampling density and rounded to the nearest integers. We also implement
smoothed-updating (Rubinstein and Kroese, 2004) to avoid too fast convergence of the density.
The CE optimization stops after 20 iterations, resulting in a total of 2000 sample strategies. This
has proven to allow satisfying convergence of the sampling density. The optimal heuristic param-
eter values are given by the mean of the final sampling density.

The value of the expected cost evaluated with Equation (9) of a strategy is subject to sampling
noise. The accuracy depends on the number of sample histories nMC generated to compute the
expected cost. The computational cost of generating an I&M history depends on the failure rate
evaluation loop (see Figure 4). The advantage of assigning a small value to nMC is that little
computational effort is spent on non-suitable, i.e., expensive, strategies. Here, we find that nMC =
10 provides suitable accuracy and results for the CE optimization method. This optimization
algorithm can be further optimized by running the computations in parallel. Previous works have
demonstrated the efficiency of this computational setup (Bismut and Straub, 2021).

Finally, the expected cost associated with the identified optimal heuristic parameters is esti-
mated with Equation (9) with 2000 MC sample histories.

The convergence of the CE method is illustrated in Figure 6, where the sampling progression is
shown for two different initial sampling distributions. There is a variation in the obtained optimal
heuristic parameter values, which reflects the higher or lower sensitivity of the objective function
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to the parameters (see Section 7.6 below).

(a) (b)

Figure 6: 2000 CE samples for the constrained optimization with p0 = 1.0 · 10−2, for two different initial sampling
densities. Each point represents a specific I&M strategy, defined by parameters nI and pth. ∆T = 3yr is fixed.
The expected cost of each strategy is evaluated with 10 sample histories. Colored dots indicate samples belonging to
selected CE iterations. a) The optimal heuristic strategy obtained from the last iteration is nI = 195 and pth = 5.6 ·10−7

with expected cost 379.1 (see Table 3). b) The optimal heuristic strategy obtained from the last iteration is nI = 246
and pth = 2.5 ·10−10. The resulting expected cost for this strategy is 388.9, which is close to the cost for the strategy
obtained in a).

5. Models of pipe deterioration and inspection and repair models

The reliability-based planning framework requires a probabilistic model describing the evo-
lution of the state of the system and its components. Here, FAC in the pipes is modeled with a
Gamma process with unknown parameters.

5.1. Modeling FAC with a mixed-scale Gamma process
Mechanistic models of FAC have been developed (e.g., Lister and Lang, 2002), but they require

the knowledge of numerous parameters characterizing the operating condition of the operator, such
as the chemical environment, temperature and pH levels, which typically fluctuate over time. It is
therefore appropriate to model the evolution of FAC with a random process. Here, we model the
evolution of FAC in the N pipe bends with a mixed-scale Gamma process (Lawless and Crowder,
2004; Yuan, 2007; Yuan et al., 2021).

The service life between time 0 and T is discretized in time steps, corresponding to 1 year. The
loss of thickness in one pipe i due to corrosion is modeled by a Gamma process with stationary
increments ∆Dτ , with strictly positive shape and scale parameters [α,β ]ᵀ (Hazra et al., 2020b).
We denote by µ = αβ the mean and by ν = 1√

α
the coefficient of variation of these increments.

µ and ν are population parameters, common to all pipes.
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The wall thinning ∆D in ∆t time steps is written as the sum of i.i.d yearly increments ∆Dτ

∆D =
∆t

∑
τ=1

∆Dτ . (12)

∆D is Gamma distributed with shape and scale parameters [α∆t,β ]ᵀ.
F∆D,∆t(d) and f∆D,∆t(d) denote the associated cumulative distribution function (cdf) and prob-

ability density function (pdf) for a given ∆t. It is

f∆D,∆t(d) =
1

Γ(α∆t)β α∆t dα∆t−1 exp
(
− d

β

)
. (13)

In the mixed-scale Gamma process, νi = ν is a known constant and the mean of the yearly
increment µ is modeled as a random variable, with an inverse Gamma distribution, here denoted
by IGa(a,b), with prior shape and scale parameters [a,b]. The inverse Gamma pdf with parameters
[a,b] is

f (µ) =
ba

Γ(a)

(
1
µ

)a+1

exp
(
− b

µ

)
. (14)

The distribution of the increment mean µ is updated through measurements of pipe thicknesses,
following Section 6.3.

The choice of the prior distribution in a parameter learning context, performed with Bayesian
analysis, becomes less important as more inspection data are gathered. In the context of pre-
posterior analysis, where we are interested in computing an expected cost, choosing an appropri-
ate prior has a significant effect on the outcome of the analysis. For a plant-specific optimization,
the calibration of the prior distribution of the population parameters can be done by using past in-
spection data. When no specific information is available, expert knowledge can be a good starting
point. The prior parameters a and b of the model are given in Section 7.1 for I&M planning of a
new plant.

5.2. Inspection model
During a I&M campaign, information is collected on the state of deterioration of the pipes

through in-situ inspections. The inspections are carried out with an array of ultrasonic probes to
measure the wall thickness. In practice, one probe scan measures the thickness of one quadrant of
the pipe bend and four scans are required for full inspection of one pipe bend. The minimum wall
thickness from those scans is recorded. The recorded wall thickness at time t of pipe i is Mi(t).
For simplicity, we consider the measurement to be perfect, hence

Mi(t) =Wi(t). (15)

The presented approach can also be used when the observation likelihood includes measure-
ment error. The associated computational aspects are discussed in Section 6.5.
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5.3. Repair model
Replacing a pipe at time t sets the wall thinning back to 0, i.e., Wi(t) = Wi(0) and Di(t) = 0

immediately after repair at time t. Furthermore, µ is assumed to be remain constant even if the
piping system is fully replaced.

6. Piping system reliability

In this section, we derive the expressions for the probability of system failure for the FAC
model presented in Section 5 as well as the characteristics of pipe damage distribution, conditional
on past inspection outcomes. These quantities are required for the reliability constraint check and
for implementing selected heuristic I&M strategies.

6.1. Cumulative probability of system failure
During the execution of the strategy, the reliability constraint must be met. To verify the

criterion, one must compute at each step t the failure rate of the system as per Equation (3). As
per the definitions given in Sections 2.1 and 3.3, the accumulated system failure event at time t is

Fcumu(t) =
⋃
τ≤t

F(τ) =
⋃
τ≤t

⋃
i

Fi(τ). (16)

The probability of this accumulated failure event must be computed conditional on the inspec-
tion outcomes and repair actions up to time t.

We use the notation Di(t) = Di,t , and similarly for all time-variant random variables. At every
time t we evaluate the filtered cumulative probability of system failure Pr(Fcumu(t)|M0:t−). Θ
denotes the model parameters. Here Θ= µ .

Using Equation (16), one finds

Pr(Fcumu(t)|M0:t−) = 1−Pr

(⋂
τ≤t

⋂
i

{Di,τ < dmax}|M0:t−

)
. (17)

Conditionally on Θ, the deterioration processes and measurements of pipes i 6= j are indepen-
dent. Conditioning on Θ, one obtains

Pr(Fcumu(t)|M0:t−) = 1−
∫

ΩΘ
∏

i
Pr

(⋂
τ≤t

{Di,τ < dmax}|Mi,0:t−,θ

)
fΘ|M0:t−

(θ)dθ, (18)

where fΘ|M0:t−
(θ) is the posterior pdf of Θ conditional on the measurements M0:t− .

The posterior distribution of Θ is obtained with Bayes’ rule:

fΘ|M0:t−
(θ) ∝ L(θ;M0:t−) fΘ(θ). (19)
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L(θ;M0:t−) is the likelihood of M0:t− conditional on Θ. The normalizing constant is
c =

∫
ΩΘ

fΘ(θ)L(θ;M0:t−)dθ. The measurements are independent conditionally on Θ. This is
actually an approximation, due to the selection bias (Nie et al., 2018). We will not correct this
bias, as it does not significantly affect our results.

Thus
L(θ;M0:t−) = ∏

i
L(θ;Mi,0:t−). (20)

L(θ;Mi,0:t−) is the likelihood of Mi,0:t− conditional on Θ.
As stated in Section 5.2, we consider that there is no uncertainty in the measurement. Hence

for τ < T we have Mi,τ = Wi,0 −Di,τ , where the initial thickness Wi,0 is also known. The condi-
tional probability of pipe failure and the posterior distribution of parameter Θ are derived in the
paragraphs below.

6.2. Conditional cumulative probability of pipe survival
For a fixed time t, we denote by Ii = {tI,1 < ... < tI,p} the inspection times and by Ri = {tR,1 <

... < tR,q} the repair times of component i up to and not including time t. If no inspection occurred,
Ii = /0. If no repair occurred prior to time t, q = 1 and tR,1 = 0.

For a given pipe, the deterioration process Di,τ is monotonously increasing in the interval be-
tween two consecutive replacements. Therefore, the intersection of pipe survival events in Equa-
tion (18) is equivalent to

⋂
τ≤t

{Di,τ < dmax}= {Di,t < dmax}
⋂
{∩1≤ j≤q{Di,tR, j < dmax}}, (21)

where Di,tR, j is the deterioration of pipe i just before it is replaced at time tR, j. The state of pipe
deterioration is furthermore independent of all states and measurements previous to the last repair
time. This and the above simplification allow writing the conditional cumulative probability of
pipe survival as

Pr

(⋂
τ≤t

{Di,τ < dmax}|Mi,0:t−,θ

)
= Pr

(
Di,t < dmax|Mi,tR,q:t−,θ

)
· ∏

1≤ j≤q
Pr
(
Di,tR, j < dmax|Mi,tR, j−1:tR, j ,θ

)
,

(22)

where tR,0 = 0.
The distribution of state Di,τ conditional on measurement and repair actions up to but not

including time τ is fully determined either by the time of the last repair before τ or by the last pipe
thickness measurement, whichever occurred last. Let τi be the larger of these times of last repair
and last measurement.

– If repair occurred at time τi,

Pr(Di,τ < dmax|Mi,0:τ−,θ) = F∆D,τ−τi|θ(dmax). (23)
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– If a measurement Mi,τi was obtained at time τi,

Pr(Di,τ < dmax|Mi,0:τ−,θ) = Pr(Di,τ < dmax|Mi,τi,θ) = F∆D,τ−τi|θ(dmax − (Wi,0 −Mi,τi)).
(24)

The distribution of state Di,τ after inspection at time τ , Mi,τ is simply the Dirac density in Mi,τ .

Pr(Di,τ < dmax|Mi,τ ,θ) = 1Wi,0−Mi,τ≤dmax , (25)

where 1Wi,0−Mi,τ≤dmax takes the value 1 if Wi,0 −Mi,τ ≤ dmax, 0 otherwise.

6.3. Likelihood and posterior distribution of deterioration parameters
Using the chain rule and the Markovian assumption, the likelihood L(θ;Mi,0:t−) can be com-

puted sequentially. For each t j ∈ Ii, we compute the time interval ∆t j = min(t j − tk, s.t. tk ∈
Ri and tk < t j) between inspection time t j and the time of last repair (0 if the pipe has never been
repaired). The likelihood describing measurements on pipe i is

L(θ;Mi,0:t−) = ∏
j∈Ii

f∆D,∆t j|θ(Wi,0 −Mi,t j). (26)

The rate parameter 1/β = 1/(µν2) of the Gamma process (see Section 5.1) is also Gamma dis-
tributed. Making use of the self-conjugacy of the Gamma distribution (Robert, 2007), the posterior
(filtered) distribution of Θ= µ can be obtained by updating the parameters of the inverse gamma
distribution with the (perfect) measurements M0:t− , such that Θ|M0:t− ∼ IGa(apost ,bpost), with

apost = a+
∑

N
i=1 ∑ j∈Ii ∆t j

ν2 , (27)

bpost = b+
∑

N
i=1 ∑ j∈Ii (Wi,0 −Mi,t j)

ν2 . (28)

6.4. Posterior distribution of pipe deterioration state
The scaled deterioration state at time t conditional on past history M0:t− , (Di,t −dM)/ξ , with

ξ =
bpost(t−τi)

apost
, follows the FisherSnedecor distribution with degrees of freedom 2(t−τi)

ν2 and 2apost

(Lawless and Crowder, 2004; Yuan, 2007; Yuan et al., 2021). The cdf of this distribution is denoted
by F2(t−τi)

ν2 ,2apost
(·). τi is defined as in Section 6.2 above as the larger of the times of last repair and

last measurement before the considered time t and dM = 0 if repair occurred at τi, dM =W0−Mi,τi

otherwise.
The posterior distribution of Di,t is characterized by its mean bpost(t−τi)

apost−1 + dM and its standard

deviation bpost(t−τi)
apost−1

√
(t−τi)

ν2 +apost−1
(t−τi)

ν2 (apost−2)
. The associated coefficient of variation is

c.o.v.(Di,t |M0:t−) =
1

1+ dM(apost−1)
bpost(t−τi)

√√√√ (t−τi)
ν2 +apost −1

(t−τi)
ν2 (apost −2)

. (29)
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The probability of pipe failure is

Pr(Di,t > dmax|M0:t−) = 1−F2(t−τi)
ν2 ,2apost

((dmax −dM)/ξ ) . (30)

The evolution of probability of pipe failure and expected value of pipe thickness and the re-
sulting system probability of failure and failure rate are depicted in Figure 7 for sample histories.

Pipe #1
Pipe #2

Pipe #1Inspection times for: Pipe #2

(a)

Pipe #1

Pipe #2
Prior mean deterioration

[mm] Pipe #1Wall thickness measurements:Pipe #2

(b)

(c) (d)

Figure 7: a) Filtered probability of pipe failure Pr(Di,t > dmax|M0:t−), for pipes number 1 and 2. Pipe inspection
times are indicated. b) Evolution of the predictive mean wall thinning Di for pipes number 1 and 2. Wall thickness
measurements are indicated for these two pipes. In the assumed deterioration model, the predicted mean deterioration
rate is the same for all pipes, hence the change of slope occurs also for non-inspected pipes. c) Filtered cumulative
probability of system failure Pr(Fcumu(t)|M0:t−) obtained with Equation (17). d) Failure rate computed with Equa-
tion (3).

6.5. Computation details
When the observation likelihood does not include measurement error, the integrand of Equa-

tion (18) has a closed form and a numerical integration is appropriate to evaluate Pr(Fcumu(t)|M0:t−).
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On the contrary, if a measurement error is included in Equation (15), the product of conditional
probabilities of pipe survival in Equation (18) is a product of integrals which do not have a closed
form. Equation (18) is an integral in high-dimensional space involving complex pdfs, for which
adapted integration methods must be considered; for instance a dynamic Bayesian network (DBN)
model where each random variable is discretized is suitable for performing Bayesian inference in
large systems (Luque and Straub, 2016; Bismut and Straub, 2021).

7. Numerical investigation: I&M planning at the beginning of service life.

We apply the framework to evaluate I&M strategies for the piping system in a new NPP
described in Section 2.1, at the beginning of its service life, with N = 480, W0 = 5.5[mm],
dmax = 2.2[mm] and T = 25yr.

7.1. Planning setup
The model used for simulating sample histories for evaluating strategies is described in Sec-

tion 5. Its prior parameters are summarized in Table 1. The costs are found in Table 2 below.

Table 1: Prior deterioration model parameters

Parameter Type Value / Distribution Unit
µ Random variable IGa(a,b) mm
ν Deterministic 2
a Deterministic 3
b Deterministic 0.06

W0 Deterministic 5.5 mm
Di(0) Deterministic 0 mm
dmax Deterministic 2.2 mm

Table 2: Cost model

Campaign cC 1
Pipe inspection cI 0.1
Preventive maintenance cPM 1
Corrective maintenance cCM 5
Discount rate r 0.05

The prior distribution parameters of µ in Table 1 result in a prior expected value of 0.03[mm/yr]
and a c.o.v. of 100%. The choice of this prior model is based on the analysis of historical events:
Lister et al. (1997) states that wear rates at 0.02[mm/yr] are "acceptable". There is however a high
variability in the wear rate. Indeed, wear rates between 0.07[mm/yr] and 0.2[mm/yr] have been
recorded (Lister et al., 1997; Hazra et al., 2020a). Usually, the reported wear rates in the literature
are obtained from "lead feeders", i.e., feeders which experience larger rate of degradation than an
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average feeder in the population, and are therefore not representative of the average degradation
rate. This high uncertainty in the prior FAC wear rate is here reflected in the high c.o.v. This may
be a pessimistic assumption about the state of knowledge about the deterioration process in NPP
piping systems. The probability that the mean wear rate exceeds 0.08[mm/yr] is 5%. The value of
ν = 2 is such that the probability of pipe failure at the end of service life is 4 ·10−2. The resulting
system failure rate for the non-maintained system is shown in Figure 8. The maximum failure rate
of 1.6 · 10−2 is reached at the end of the service life. It is clear that for any constraint p0 larger
than this value, the optimal strategy according to Equation (10) is to do nothing.

Figure 8: Failure rate for the non-maintained, non-inspected system. The levels {0.5,1.0,1.5,1.6} · 10−2 are also
indicated.

We investigate the following reliability criteria: p0 ∈ {0.1,0.5,1.0,1.5,5.0} ·10−2.

7.2. Constrained representative strategy SREP

To test the reliability-constrained strategy approach of Section 3, we construct a strategy SREP
representative of the current I&M practice.

7.2.1. Description of the strategy and associated FAC prediction model
(EPRI, 2013; Walker, 2017) provide guidelines for implementing I&M programs specifically

targeted to avoid FAC-related failures. The current approach to I&M of piping system typically
assumes deterministic prediction models for FAC. The inspection data is processed with basic sta-
tistical tools. Uncertainty is addressed in a semi-probabilistic manner, with safety factors applied
to the predicted wear rate.

The inspection plan follows the logic of inspecting critical pipes, which have a small predicted
remaining service life, as well as pipes that have not yet been inspected (EPRI, 2013; Walker,
2017). At each I&M campaign, 30% of pipes are inspected, here 140 pipes. As previously stated,
this I&M strategy does not allow for I&M campaigns outside of the fixed times. The maintenance
interval is fixed at 3 years. Preventive and corrective maintenance prescribed by the strategy are
only carried out on pipes which have been inspected.

The strategy is summarized below.
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Strategy SREP - 140 pipes are inspected at each campaign and ∆T = 3yr is fixed.
– The interval between I&M campaigns is ∆T = 3 yr.

– Pipe inspections: Inspect pipes that have been labeled ’of interest’ and those labeled
as ’critical’ for preventive maintenance at the previous I&M campaign. The two
groups of pipes are not necessarily mutually exclusive.

– Preventive maintenance: pipes that have been previously labeled critical and therefore
have just been inspected are considered. The pipes i for which the predicted thickness
at the next I&M campaign Wi,pred(t +∆T )<Waccept are repaired, at a unit cost cPM.

– Corrective maintenance: the predicted wall thickness Wi,pred(t+∆T ) at the next I&M
campaign at time t +∆T is computed for each inspected pipe (which has not been
already repaired during preventive maintenance) i. All pipes for which Wi,pred(t +
∆T )<Waccept are replaced now (at time t).

Planning for the next campaign

– Plan predictive maintenance for campaign at time t +∆T : Pipes for which Wi,pred(t +
2∆T )<Waccept <Wi,pred(t+∆T ) are labeled as ’critical’ for the next I&M campaign.

– Plan inspections for next campaign: a total of nI =140 pipes are selected for inspec-
tion. A proportion of 70%, i.e., 98 pipes, are selected in decreasing order of time to
last inspection, and the remaining 30%, i.e., 42 pipes, are selected according to their
estimated remaining service life (Equation (A.3)).

Wi,pred is computed using the FAC-predictive model (see Appendix A) and Waccept = W0 −
dmax.

7.2.2. Unconstrained vs constrained strategy
Figure 9a depicts samples of the evolution of the failure rate H following the unconstrained

strategy SREP. It is clear that for a fixed reliability level, say p0 = 1.5 · 10−2, many trajectories
exceed the threshold. On the other hand, for the trajectories that do comply with the criterion, it
is possible that some of the inspections or pipe replacements prescribed by the strategy are not
necessary to comply with the reliability criterion. Figure 9b shows samples of the evolution of the
failure rate following the constrained strategy. Only the histories which would have exceeded the
criterion are affected by the reliability constraint.

7.3. Heuristic investigated
For the reliability-based heuristic planning, we investigate the following Heuristic A. The se-

lection rule for pipe inspection is done by ranking the pipes according to their coefficient of varia-
tion of the wall thickness loss. This reflects the primary goal of an inspection, which is to reduce
the uncertainty about the state of the system. The PM pool is composed of pipes for which the
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Figure 9: a) Failure rate H(t,M0:t−), following unconstrained strategy SREP for 100 sample I&M histories. b) Failure
rate for 100 sample I&M histories following the strategy SREP constrained to p0 = 1.5 · 10−2. The histories are
interrupted when the constraint on the failure rate cannot be met (i.e., a major intervention is required).

probability of pipe failure exceeds a fixed threshold. PM and CM actions are furthermore carried
out as outlined in Figure 4.

Heuristic A - Parameters ∆T , nI , pth

– ∆T is the constant inspection interval. The only I&M opportunities are at the planned
inspection times.

– Pipe inspection at first campaign: nI pipes are randomly selected and inspected.

– Pipe inspection at next campaigns: nI is the number of pipes selected for inspection
(labeled ’of interest’) at each campaign, according to the prioritization rule (see point
below). To these pipes are added those that have been labeled as ’critical’ for pre-
ventive maintenance [at the previous I&M campaign]. An overlap between these two
groups is possible. Hence, there is a minimum of nI pipes inspected at each campaign.

Planning for the next campaign

– Pipes are selected for preventive maintenance at time t +∆T (labeled as ’critical’)
based on their probability of failure Pr(Di(t+∆T )> dmax|M0:t−) exceeding a thresh-
old pth.

– The pipes are prioritized for inspection as the ones with the highest coefficient of
variation of Di(t +∆T ), given by Equation (29).
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7.4. Computational cost
Each optimization was performed in parallel on a 2.2 GHz, 10 cores, 128 GB of RAM com-

puter and took in the order of 3.5 hours.

7.5. Results
We evaluate the expected costs of strategy SREP constrained to the reliability thresholds p0 and

we optimize the heuristic parameters.
First, we fix ∆T = 3[years] to match the I&M campaign interval specified by strategy SREP

above (see Section 7.2). The optimal parameter values obtained for Heuristic A for different
values of p0 are summarized in Table 3. The expected costs of the optimal strategies and of the
constrained strategy SREP are estimated with nMC = 2000 MC sample histories. The standard error
on the estimation of the expected cost is around 3−4%.

Table 3: Optimized heuristic parameters nI and pth of Heuristic A (see Section 7.3) for fixed ∆T = 3yr and associated
expected life-cycle I&M cost for different values of p0. The expected cost of the constrained strategy SREP, for which
the total number of inspected pipes per campaign is 140, is indicated for comparison. For p0 above 1.6 ·10−2, the best
I&M strategy is that which prescribes no inspections or replacements of pipes.

Optimal heuristic strategy (∆T = 3yr) Constrained strategy SREP
p0 (×10−2) Parameters Expected I&M cost Expected I&M cost

5.0 nI = 0, pth = 1 0 634.6
1.5 nI = 152, pth = 5.1 ·10−7 351.4 721.4
1.0 nI = 195, pth = 5.6 ·10−7 379.1 840.7
0.5 nI = 167, pth = 2.0 ·10−6 399.9 890.7
0.1 nI = 147, pth = 1.6 ·10−4 628.5 1137.6

We find that the more stringent the criterion is, the higher the expected cost of the optimized
I&M plan from Equation (11) and of the constrained strategy SREP. For p0 > 1.6 ·10−2, the non-
maintained system complies to the reliability level (see Figure 8), thus the optimal I&M costs is
0. For p0 < 1.6 ·10−2, we find that the preventive maintenance planning parameter pth increases
with decreasing value of p0.

Figure 10 shows the average annual number of pipe replacements during the service life for
the optimized heuristic strategy for p0 = 1.0 · 10−2, as an example. The peak at time t = 3yr is
due to corrective replacement (and eventual non-compliance of the plant) associated with a rate µ

sampled from the tail of the distribution (see Section 7.1 above), which can lead to early system
failure. This effect is also reflected in the higher failure rate of the non-maintained system in the
first years of service, as depicted in Figure 8. If the system does not fail in the early years, the
number of expected replacement is in the order of magnitude with what is observed in the industry,
i.e., that not more than 15 to 20 pipe are replaced, and that the replacements typically occur at the
mid-life of the reactor. In addition, we see that the expected number of preventive replacements is
in general higher than that of corrective replacements, which indicates that the optimized strategy
is efficient in planning preventive maintenance. The corresponding cost breakdown is displayed
in Figure 11.
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(a) p0 = 1.5 ·10−2

Corrective maintenance

Preventive maintenance

(b) p0 = 1.0 ·10−2

Figure 10: Average number of pipes preventively or correctively replaced, following the optimal heuristic strategy
found for a) p0 = 1.5 · 10−2 and b) p0 = 1.0 · 10−2. The initial peak of pipe maintenance is due to the early failure
stage identified on Figure 8.

(a) p0 = 1.5 ·10−2 (b) p0 = 1.0 ·10−2

Figure 11: Undiscounted annual breakdown of the life-cycle I&M costs, for the optimal heuristic strategy found for
a) p0 = 1.5 ·10−2 and b) p0 = 1.0 ·10−2.

We can compare these costs and actions with the constrained representative strategy SREP,
shown in Figure 12. This shows that this strategy does not efficiently plan for preventive mainte-
nance. This can also be due to the fact that the pipes inspected are not optimally selected to reduce
the uncertainty in the deterioration rate. The strategy SREP performs much worse than the opti-
mized heuristic strategies, but can be improved by adapting the selection rules as per the heuristic.

Heuristic A also allows one to vary the campaign interval ∆T . The resulting optimal heuristic
parameters are given in Table 4. The added freedom of varying parameter ∆T yields lower optimal
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Corrective maintenance

(a) (b)

Figure 12: a) Average number of pipes preventively or correctively replaced for constrained strategy SREP for p0 =
1.0 · 10−2. b) Undiscounted annual breakdown of the life-cycle I&M costs, for the optimal heuristic strategy found
for p0 = 1.0 ·10−2.

expected costs than those found in Table 3. We identify a clear trend on the optimal interval ∆T ,
which decreases with decreasing p0. This is not surprising, as a more stringent reliability criterion
will warrant more frequent inspections. The optimal value for pth follows the trend identified
above for fixed ∆T . For p0 = 1.5 · 10−2, we note that the strategy recommends to inspect in fact
almost all pipes once during the service life.

Table 4: Optimized heuristic parameters nI , pth and I&M campaign interval ∆T . For each value of p0, the obtained
optimal expected cost is lower than that calculated for fixed ∆T = 3yr in Table 3.

Optimal heuristic strategy (varying ∆T )
p0 (×10−2) Parameters Expected I&M cost

1.5 nI = 349, pth = 7.9 ·10−12, ∆T = 18 258.7
1.0 nI = 119, pth = 2.5 ·10−7, ∆T = 4 377.5
0.5 nI = 117, pth = 7.0 ·10−6, ∆T = 2 392.7
0.1 nI = 144, pth = 2.9 ·10−1, ∆T = 2 540.6

7.6. Sensitivity of expected cost to the heuristic parameters
Here, we investigate the shape of the expected life-cycle I&M cost function for Heuristic A

over the domain of parameters nI and pth, with fixed ∆T = 3yr, for p0 = 1.0 · 10−2. To do so,
we estimate the expected cost with Equation (9) and nMC = 1000 sample histories for heuristic
strategies defined by the pair (nI ,pth) on a 408-point grid over the domain pth ∈ [10−16,1] and
nI ∈ [0,480]. The estimation of the cost thus obtained at each points is not exact with a standard
error of 4−7%, hence, we fit a Gaussian process to the 408 estimated values to obtain a surrogate
of the cost function. The resulting Gaussian field provides the predicted expected cost at for each
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parameter value set. Figure 13a depicts the resulting Gaussian field and the predicted expected
life-cycle I&M cost for any pair (nI, pth).

(a) (b)

Figure 13: Expected I&M life-cycle cost as a function of pth and nI , parameters of Heuristic A, for p0 = 1.0 · 10−2.
The cost function is estimated by fitting a Gaussian process to values estimated with Equation (9) and nMC = 1000, at
408 grid points with coordinates pth ∈ {10−16,10−15, ...,100} and nI ∈ {20,40,60, ...,480}. (a) for the cost model of
Table 2; (b) with increased unit inspection cost cI = 0.5.

The surrogate of the expected cost function thus obtained confirms the location of the optimum
point found with the CE method (Table 3). It should be noted that finding the optimal heuristic
parameter values by fitting a Gaussian process to point estimates arranged in a grid here has 20
times the computation cost of the CE optimization method. A more efficient combination of the
two methods is suggested in Bismut and Straub (2021).

We observe that in the vicinity of the found optimum, the expected cost is not highly sensitive
to the number of pipes to be inspected at each campaign, nI . This can reflect two things: first,
the cost of pipe inspection is low compared to the cost of maintenance, therefore a variation of
the order of 50 pipes inspected does not significantly affect the expected cost; second, the optimal
number of inspected pipes is related to the amount of information that is provided by inspecting an
additional pipe, which is in turn related to the efficiency of the inspection rule. This low sensitivity
to the number of pipes inspected is also observed in Table 3.

It is also possible to see the effect of the cost parameters on the resulting expected cost function
and optimal heuristic parameters. We increase 5-fold the unit cost of inspection, such that cI = 0.5,
and the expected life-cycle costs are evaluated again by applying Equation (9) with the modified
cost parameters. A Gaussian process is fitted again to the 408 grid points. The resulting Gaussian
field is depicted in Figure 13b. The effect of a higher inspection cost can be seen in the lower
optimal parameter value of nI , and an increased sensitivity to nI and pth.

7.7. Effect of the prior
We investigate the sensitivity of the expected cost and optimal heuristic parameters to the

choice of the prior. More specifically, we modify the distribution of µ such that the c.o.v. is re-
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duced to 20% from 100%. The failure rate for the non-maintained system is depicted in Figure 14.
We note that the curve does not possess a bathtub curve shape as in Figure 8.

Figure 14: Failure rate for the non-maintained, non-inspected system, with a modified prior where the c.o.v of µ is
20%. The levels {0.1,1.0,5.0} ·10−2 are also indicated.

We evaluate strategy SREP and optimize the heuristic parameters with fixed ∆T = 3yr.

Table 5: Results for modified prior.

Optimal heuristic strategy Constrained strategy SREP
p0 (×10−2) Parameters Expected I&M cost Expected I&M cost

5.0 nI = 0, pth = 1 0 315.7
1.0 nI = 122, pth = 1.1 ·10−2 190 744.4
0.1 nI = 154, pth = 1.4 ·10−6 214.9 1773.4

The expected number of pipe replacement and expected annual life-cycle I&M cost for the
optimized strategy and the constrained strategy SREP are detailed in Figure 15. For p0 = 1 ·10−2,
we note that the optimal heuristic strategy does not plan for preventive maintenance, and relies
only on corrective maintenance to maintain the reliability level. This balance is likely to change
with a different cost model. It also shows that the heuristic chosen might not be appropriate for
this reliability level.

For lower p0 = 1.0 · 10−3, the heuristic strategy is efficient in collecting information about
the system and planning preventive maintenance. The constrained representative strategy SREP
performs noticeably worse. This can be attributed to the fact that it does not allow for more than
140 pipes to be inspected, regardless of the condition of the system, and therefore fails to reduce
the uncertainty about the state of the system.

8. Concluding remarks

In this paper, we propose a reliability-based planning framework to improve standard I&M
plans for nuclear feeder piping systems. This framework provides the means to assess the perfor-
mance of any given I&M strategy under a specified reliability constraint. It does not require the
consequences of failure to be explicitly quantified, which makes it suitable for applications in NPP
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(a) p0 = 1.0 ·10−2

Corrective maintenance Preventive maintenance

(b) p0 = 1.0 ·10−3

(c) p0 = 1.0 ·10−2 (d) p0 = 1.0 ·10−3

Figure 15: Top: Average number of pipes preventively or correctively replaced, following the optimal heuristic strat-
egy found for (a) p0 = 1.0 · 10−2 and (b) p0 = 1.0 · 10−3. The initial peak of pipe maintenance is due to the early
failure stage identified on Figure 8. Bottom: Undiscounted annual breakdown of the life-cycle I&M costs, for the
optimal heuristic strategy found for (c) p0 = 1.0 ·10−2 and (d) p0 = 1.0 ·10−3.

maintenance. Additionally, a heuristic description of the I&M strategies can be chosen and opti-
mized, which opens the possibility to explore different decision rules and to integrate regulatory
constraints. The framework includes a probabilistic predictive model for the deterioration process
at the pipe level, with which the piping system reliability can be evaluated over time, including all
the past inspection outcomes and maintenance actions.

The numerical application shows that integrating reliability computations in the decision pro-
cess leads to better decisions and lower life-cycle I&M expected cost, compared to a strategy based
on a deterministic prediction model.

This study shows that the choice of a cost model influences the outcome of strategy assessment
and optimization. Other aspects must be considered by the analyst for the implementation of this
reliability-based planning and optimizing framework in practice, such as the fact that the uncer-
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tainty in the model affects the outcome of the assessment and heuristic optimization. The values
of the prior model parameters can be calibrated based on expert knowledge and similar plant data.
This uncertainty in the model parameters can be also addressed through adaptive planning (Bis-
mut and Straub, 2021), whereby the heuristic I&M plan is modified as new information through
inspections and monitoring becomes available. The effect of information gain on the improved
strategy will be considered in future research.

The deterioration model can be altered to reflect various probabilistic dependence structures.
Here, the model for FAC assumes a constant mean deterioration rate µ across all pipes and enables
the evaluation of the system reliability at a low computational cost. Plant data suggest that there
are lead feeders in which the deterioration rate is higher than for other pipes (Hazra et al., 2020a).
This is likely due to geometry aspects, which are not considered here. A future improvement of
this framework will include the efficient modeling of pipe groups with correlated wear rates, and
will integrate uncertainty on the measurement data. Increasing the complexity of the deterioration
and observation models comes at a cost, since the generation of a sample I&M history requires the
system reliability to be evaluated at every time step. To ensure the efficient and fast computation
of the system reliability, a discretized hierarchical DBN model, as proposed by Luque and Straub
(2016), can be utilized to model correlated deterioration rates µ .

Finally, while the presented framework has been developed for a specific type of system and
a specific application, it can be extended to systems with different configurations, dependence
structures and deterioration processes.
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Appendix A. FAC-predictive model

For the representative strategy SREP described in Section 7.2.1, the pipe replacement criterion
is based on a simplified FAC-predictive model, in which the evolution of the wall thickness is
described by a linear model with a constant wear rate for each pipe, as recommended by EPRI
(2013).

The wear rate for pipe i is estimated as R̂i, based on the thickness measurements of this pipe.
For simplicity, it is assumed that the replacement pipe retains the estimated wear rate of the pipe
it replaces. For each inspected pipe i, this wear rate at time t is estimated by linear regression with
quadratic loss using all measurements on pipe i until time t (Hazra et al., 2020a). With initial wall
thickness Wi(0), the wear rate estimate R̂i(t) is

R̂i(t) =
∑ j∈I (t j − tR) · (Wi(0)−Mi(t j))

∑ j∈I (t j − tR)2 . (A.1)
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t j are the inspection times of pipe i up to and including time t, and tR is the time of last repair of
pipe i before time t j.

Wi,pred(t +∆t) is the predicted thickness at time t +∆t of pipe i, and is calculated for all pipes
inspected at time t:

Wi,pred(t +∆t) =Wi(τi)−SFi · R̂i(t) · (t +∆t − τi), (A.2)

τi < t being the time of last inspection or repair up to an including time t, and Wi(τi) = Mi(τi) if
the pipe is inspected but not repaired, Wi(τi) =W0 if it is repaired. As in Section 5.2, Mi(t) is the
measured wall thickness at time t.

A safety factor SFi = 1.1 is applied to the prediction wear rates R̂i(t) until the next I&M
campaign at time t +∆T . For the pipes for which the measured wall thickness at time t Mi(t) is
lower than the predicted wall thickness from the previous I&M campaign, Wpred(t), we postulate
that the safety factor is increased to SFi = 1.5. The choice of the safety factors affects the planning
of preventive maintenance and inspection. Here we have not chosen the factors in a particular way
that would optimize the strategy for the problem considered.

The remaining service life of the inspected pipes is calculated as

Ti,SL =
Mi(t)−Waccept

R̂i ·SFi
(A.3)
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