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partial least squares-driven polynomial chaos expansion (PLS-PCE) to render such problems feasible. Standalone surrogate6
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representation and the surrogate model constructed therein. The approach is gradient-free and thus can be directly applied12
to black box-type models. We demonstrate the performance of this approach with a series of low- (2 dimensions) to high-13
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small probabilities of failure.16
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1. Introduction and previous work. An important challenge in the design, analysis and mainte-20

nance of engineering systems is the management of the associated uncertainties. It is common practice to21

analyse engineering systems by employing computational models that aim at representing the physical pro-22

cesses relevant to the system in consideration. These computational models take the form of an input-output23

mapping. Therein, uncertainty is represented by equipping the model input with an appropriate probabilistic24

model. Undesirable system responses are defined through a limit-state function (LSF). Reliability analysis25

is concerned with quantifying the probability of failure, which can be expressed as a d-fold integral of the26

input probability mass over the failure domain defined by non-positive values of the LSF, where d is the27

number of uncertain model inputs (see Section 2). In engineering, target failure probabilities are typically28

small; hence, reliability analysis requires the estimation of rare event probabilities. Reliability analysis ap-29

proaches can be categorized into approximation (e.g. the first- and second-order reliability methods FORM30

and SORM [66, 27, 18]) and simulation methods. If the LSF is only weakly nonlinear and the input dimension31

of the model is moderate, FORM and SORM perform well even for small failure probabilities. The simplest32

simulation method is the Monte Carlo method [54]. The Monte Carlo method performs well independent33

of the problem input dimension, however its performance deteriorates as the failure probability decreases34

if the computational budget is fixed. Various techniques such as importance sampling (IS) [13, 24, 2] and35

line-sampling [30, 39] have been proposed to mitigate this dependence on the magnitude of the failure proba-36

bility. More recently, sequential MC methods such as subset simulation [3] and IS-based sequential methods37

[41, 42, 83, 61, 68, 60] have been used successfully to efficiently solve high-dimensional reliability problems38

with small failure probabilties. If the computational model is expensive and a hierarchy of increasingly coarse39

and cheap models is accessible, multilevel and multi-fidelity [63] MC methods can help alleviate computational40

cost by performing most model evaluations on the cheaper models (e.g., a discretized differential equation41

with coarser resolution). In [79], multilevel MC is combined with subset simulation and recently [82] have42

introduced multilevel sequential IS based on the sequential IS approach in [61]. All of the above-mentioned43

approaches are designed to work with the probabilistic computational model directly. However, often this44

model encompasses a numerical solver for (sets of) partial differential equations such that a model evaluation45

is computationally expensive.46

47
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This has increasingly lead researchers to turn towards surrogate model-based reliability methods. Such48

methods attempt to approximate the expensive computational model with a cheap surrogate model, whose49

coefficients are identified based on a set of original model evaluations: the training set. [25] uses a polynomial50

response surface method for performing reliability analysis as early as 1989. [28] proposes an improved ver-51

sion of the response surface method. Since then, a variety of surrogate modelling techniques has been applied52

in the context of reliability analysis such as artificial neural networks [57, 34, 71], support vector machines53

[33, 12, 11], Gaussian process regression-based models [22, 21] and projection to polynomial bases including54

polynomial chaos expansions (PCE) [47, 45, 44, 73] and low-rank tensor approximations [38].55

56

Static, global surrogate models suffer from a decrease in accuracy in the tails of the model response dis-57

tribution such that they are of limited use for reliability analysis. In this context, static refers to surrogate58

models that are constructed based on a fixed training set and global refers to surrogate models that are59

trained and evaluated on the entire input space (as opposed to locally con- and re-fined models). Thus, one60

can distinguish two strategies to overcome this limitation:61

• Locality : Surrogate models are coupled with sequential sampling techniques which serve to focus the62

training set and accuracy in the relevant regions around the failure hypersurface [56, 12, 11, 6, 58].63

• Adaptivity (in the training set): The training set is augmented with points that are most informative64

with respect to the failure probability estimate according to an ’in-fill criterion’. The refined surrogate65

model is then used to estimate the probability of failure with a sampling method and a large number66

of cheap samples. Such procedures are summarized under the terms active learning (AL) or optimal67

experimental design. AL in combination with crude Monte Carlo have been applied in reliability-68

based optimization and reliability analysis in [22, 53, 8, 65]. [71] investigates the performance of69

splines and neural networks in combination with directional sampling and IS and [21, 14] combine70

Gaussian process models with IS. [70] proposes a crude Monte Carlo procedure relying on a Gaussian71

process surrogate model with PCE-based mean trend (PCE-Kriging) along with a novel termination72

criterion for the AL.73

Often, both AL and sequential sampling techniques are combined using various combinations of in-fill criteria74

and sequential sampling techniques such as adaptive IS [5] and subset simulation [12, 32, 6, 11]. [52] turns75

away from surrogate models that naturally provide a measure of prediction uncertainty such as Gaussian76

processes or support vector machines and demonstrate how an AL algorithm can be realized with PCE using77

a bootstrap estimator of the PCE prediction uncertainty.78

79

In spite of a plethora of existing approaches to surrogate-assisted reliability analysis, the literature on high-80

dimensional problems (d ≥ 100) in this context is scarce. [36, 46] propose to perform reliability analysis with81

a static, global Kriging model constructed in a low-dimensional linear subspace of the original model input82

space, which is identified by the active subspaces method [16] and autoencoders, respectively. Both [36, 46]83

apply their methods to moderate-dimensional problems with up to d = 20 and d = 40 input variables, respec-84

tively. [55] uses sliced inverse regression to identify a linear low-dimensional subspace and construct a static,85

global PCE in this space based on which they perform reliability analysis directly. [89] develops these ideas86

further by combining the active subspace-Kriging model with an AL approach and applies this combination87

to a high-dimensional analytical problem of d = 300 that posesses a perfectly linear low-dimensional structure.88

89

In this work, we propose an importance sampler based on a dimensionality-reducing surrogate model termed90

partial least squares-driven PCE (PLS-PCE) [59] to efficiently solve high-dimensional reliability problems with91

underlying computationally expensive, nonlinear models and small target probabilities (O(10−9)). Similar to92

sliced inverse regression and active subspaces, PLS-PCE achieves dimensionality reduction by identifying a93

low-dimensional linear subspace of the original input space. Our method is based on [58] but introduces AL94

to refine the PLS-PCE approximation in each sequence of the IS procedure. In [58], PLS-PCE models are95

reconstructed in each level of a sequential importance sampling (SIS) scheme that is used to gradually shift96

the importance density towards the optimal importance density. In this work, we augment this approach97

with two novel contributions to rare event simulation of computationally expensive, potentially (but not98

necessarily) high-dimensional and nonlinear models:99

1. We demonstrate how to perform active learning with PCE models by deriving an in-fill criterion100

from large-sample properties of the PCE coefficient estimates.101
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2. We use projection to linear subspaces to construct efficient surrogate models for high-dimensional102

problems and include the subspace estimation error in the in-fill criterion. This means, we are not103

only learning the surrogate model but also the subspace itself.104

Using AL in the context of PLS-PCE-based SIS provides effective error control and benefits from the local105

confinement of the learning procedure of each subspace/surrogate model combination to the support of the106

current importance density. Constructing local variance estimates for polynomial models in the way we pro-107

pose here creates new possibilities to design goal-oriented surrogate modelling approaches that are driven by108

adaptive sampling based on such models (where so far, Gaussian processes were the dominant tool).109

110

In Section 2, we set up the reliability problem and discuss the crude Monte Carlo sampler of the proba-111

bility of failure. Section 3 reviews IS and a variant of SIS [61] that is at the base of our approach. Section 4112

introduces PLS-PCE models and their construction. Subsection 5.2 details the theoretical foundations of113

active learning of PLS-PCE models within SIS and summarizes our approach. In Section 6, we present com-114

prehensive investigations of the method’s performance in two engineering examples and provide a detailed115

discussion of the results. Conclusions are given in Section 7.116

2. Reliability analysis. Consider a system represented by the computational model Y : DX → R with
d-dimensional continuous random input vector X : Ω→ DX ⊆ Rd, where Ω is the sample space of X and by
FX(x), we denote its joint cumulative distribution function (CDF). Y maps to the system response Y = Y(x)
with the model input x ∈ DX . Based on the response Y , unacceptable system states are defined by means
of the limit-state function (LSF) g̃(Y ). Defining g(x) = g̃ ◦ Y(x) and introducing the convention

g(x) =

{
≤ 0,Failure

> 0,Safety,

the failure event of the system is defined as F = {x ∈ DX : g(x) ≤ 0}. The probability of failure is given by117

[19]118

(2.1) p = P(F) =

∫

DX

I[g(x) ≤ 0]fX(x)dx = EfX [I(g(X) ≤ 0)] ,119

where fX(x) = ∂dF/(∂x1 . . . ∂xd)|x is the joint probability density function (PDF) of X and the indicator120

function I[·] equals 1 if the condition in the argument is true and 0 otherwise. Without loss of generality,121

one may formulate an equivalent reliability problem with respect to the standard-normal probability space122

using the random vector U : Ω → Rd. Given an isoprobabilistic transformation T : DX → Rd, such that123

U = T (X), see, e.g., [29, 48], and defining G(U) = g(T−1(U)), one can write (2.1) as124

(2.2) p =

∫

Rd

I[G (u) ≤ 0]ϕd (u) du = Eϕd
[I(G(U) ≤ 0)] ,125

where ϕd denotes the d-dimensional independent standard-normal PDF. The crude Monte Carlo estimate of126

(2.2) is127

(2.3) p̂MC =
1

n

n∑

k=1

I[G(uk) ≤ 0], uk
i.i.d.∼ ϕd,128

where uk
i.i.d.∼ ϕd means that {uk}nk=1 are n samples that are independent and identically distributed ac-129

cording to ϕd. This estimate is unbiased and has coefficient of variation (CoV)130

(2.4) δMC =

√
1− p
np

.131

The number of samples required to compute p̂MC at a prescribed CoV δ0 reads132

(2.5) n0 =
1− p
δ2
0p

p�1≈ 1

δ2
0p
.133

Therefore, crude Monte Carlo is inefficient for estimating rare event probabilities as, by definition, p� 1 and134

thus n0 becomes large.135
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3. Sequential importance sampling for rare event estimation. Variance reduction techniques136

can be used to reduce the CoV of the probability estimate at a fixed budget of samples compared to crude137

Monte Carlo. One of the most commonly used variance reduction methods is the IS method. Let h be a138

density, such that h (u) > 0 whenever G (u) ≤ 0. Then, one can rewrite (2.2)139

(3.1) p =

∫

Rd

I(G (u) ≤ 0)

ω(u)︷ ︸︸ ︷
ϕd (u)

h (u)
h (u) du = Eh [I(G(U) ≤ 0)ω(U)] ,140

which leads to the (unbiased) importance sampling estimator141

(3.2) p̂IS =
1

n

n∑

k=1

I[G(uk) ≤ 0]ω(uk), uk
i.i.d.∼ h.142

The efficiency of IS depends intimately on the choice of the IS density h and numerous techniques to construct143

it have been put forward. There exists an optimal importance density h∗ in the sense that it leads to144

V[p̂IS] = 0:145

(3.3) h∗ (u) =
1

p
I[G (u) ≤ 0]ϕd (u) .146

While this result is not immediately useful in estimating p as it requires knowledge of p, it can be used to147

guide the selection of a suitable IS function h.148

149

The SIS method proposed in [61] selects the IS density sequentially starting from a known distribution150

h0 that is easy to sample from. It relies on a sequence of distributions {hi (u)}Mi=0,151

(3.4) hi (u) =
ηi (u)

pi
, i = 1, . . . ,M,152

where {ηi (u)}Mi=0 are non-normalized versions of {hi (u)}Mi=0 and {pi}Mi=0 are the respective normalizing153

constants. The goal is to arrive at hM , which is sufficiently close to h∗ based on some criterion, and perform154

importance sampling with hM . To this end, it is necessary to estimate pM and obtain samples from hM .155

Based on the likelihood ratio of two succeeding non-normalized distributions ωi (u) = ηi (u) /ηi−1 (u), we156

have157

(3.5) si =
pi
pi−1

=

∫

Rd

ηi (u)

ηi−1 (u)
hi−1 (u) du = Ehi−1

[ωi (u)] .158

Therefore, an estimate of pM is given by159

(3.6) p̂M =

M∏

i=1

ŝi with ŝi =
1

n

n∑

k=1

ωi
(
uk
)
, uk

i.i.d.∼ hi−1.160

Samples from hi can be obtained using Markov Chain Monte Carlo (MCMC) methods given samples from161

hi−1. More precisely, [61] proposes a resample-move scheme in which Markov chain seeds are obtained as162

samples from hi−1 that are then reweighted (resampled with weights) according to ωi (u). In this way, the163

seed samples are already approximately distributed according to the stationary distribution of the Markov164

chain hi and long burn-in periods can be avoided. We adopt an adaptive conditional MCMC sampler (aCS)165

to perform the move step due to its robust performance in high-dimensional settings. Details can be found166

in [61].167

168

The hi are chosen as smooth approximations of h∗ using the standard-normal CDF Φ(·) (compare Fig. 1):169

(3.7) hi (u) =
1

pi
Φ

(
−G (u)

σi

)
ϕd (u) =

1

pi
ηi (u) ,170
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Safe Domain Failure

'd

h2

h1

h3

Domain

Fig. 1: Smooth approximations to the indicator function I(g(u) ≤ 0) (left) and importance densities hi (u) ∝
Φ (−G (u) /σi)ϕd (u) based on this approximation (right).

where pi = Eϕd
[Φ(−G(U)/σi)] is a normalizing constant and σi is the smoothing parameter. Prescribing171

σ0 > σ1 > · · · > σM ensures that the sequence {hi (u)}Mi=0 approaches h∗. In each level, to avoid degeneration172

of the weights ωi (meaning ωi assuming values close to 0 at all current samples), hi−1 (u) and hi (u) cannot173

be too different in the sense that they share no support regions on which both have considerable probability174

mass. This is avoided by prescribing an upper bound for the estimated coefficient of variation of the weights175

δ̂w,i = ĈOV[ωi(U)], which provides a criterion for determining σi:176

(3.8) σi = arg min
σ∈[0,σi−1]

(
δ̂ω,i(σ)− δtarget

)2

.177

[61] recommends δtarget = 1.5. The algorithm terminates when hi is close enough to h∗ in the sense that178

(3.9) ĈOV
[
h∗(U)

hi(U)

]
= ĈOV

[
ϕd(U)I(G(U) ≤ 0)

ϕd(U)Φ(−G(U)/σi)

]
= ĈOV

[
I(G(U) ≤ 0)

Φ(−G (u) /σi)

]
≤ δtarget.179

The final estimate of P(F) reads180

(3.10) p̂SIS = p̂M Êϕd

[
I(G(U) ≤ 0)

ηM (U)

]
=

(
M∏

i=1

ŝi

)
1

n

n∑

k=1

I(G(uk) ≤ 0)

Φ(−G(uk)/σM )
, uk

i.i.d.∼ hM .181

Algorithm 3.1 summarizes the complete SIS-aCS procedure.182

4. Partial least squares-based polynomial chaos expansions.183

4.1. Polynomial Chaos Expansions. Polynomial chaos expansions (PCEs) are a tool for forward184

modelling the relationship between an input X and an output Y = Y(X). With H, we denote the Hilbert185

space of functions that are square-integrable with respect to fX , i.e., {v : EfX [v(X)2] < ∞}. H admits an186

inner product of two functions v, w ∈ H:187

(4.1) 〈v, w〉H = EfX(x)[v(X)w(X)] =

∫

Rd

v(x)w(x)fX(x)dx.188

Let {vj(X), j ∈ N} be a complete and orthonormal basis of H so that 〈vj , v`〉H = δj` and let Y ∈ H. Then,189

(4.2) Y(X) =

∞∑

j=0

bjvj(X),190

where the coefficients bj are defined by projecting Y on the basis:191

(4.3) bj = 〈Y, vj〉H, j ∈ N.192
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Algorithm 3.1 SIS-aCS [61]

1: Input LSF G (u), target CoV δtarget, samples per level n, input dimension d, burn-in period b, max.
iterations imax

2:

3: Set i = 0, σ0 =∞, h0 (u) = ϕd (u)

4: Sample U0 = {uk, k = 1, . . . , n} ∈ Rn×d . uk
i.i.d.∼ h0 (u)

5: Compute G0 = G(U0) ∈ Rn×1

6: for i← 1, imax do
7: i← i+ 1
8: Compute σi according to (3.8)
9: Compute weights ωi = {Φ [−Gi−1/σi] /Φ [−Gi−1/σi−1] , k = 1, . . . , n} ∈ Rn×1

10: Compute ŝi according to (3.6).
11: Ui−1 ← draw weighted resample from Ui−1 with weights ωi . sample with replacement
12: (Ui,Gi) = MCMC-aCS(Ui−1,Gi−1,b) . Details on MCMC-aCS in [61]
13: if (3.9) then
14: break
15: Set M ← i

16: Estimate failure probability p̂SIS =
(∏M

i=1 ŝi

)
1
n

∑n
k=1

I(Gk
M≤0)

Φ(−Gk
M/σM)

. (3.10)

17: return UM ,GM , p̂SIS.

Since Y ∈ H, the truncation193

(4.4) Ŷn(X) =

n∑

j=0

bjvj(X)194

asymptotically converges to Y as n → ∞ in the mean square sense. [87] demonstrates how to construct195

complete orthonormal bases of H as polynomial families for various standard input distribution types. In196

particular, if FX(x) = Φd(x), where Φd denotes the d-variate independent standard-normal CDF, the ten-197

sorized, normalized probabilist’s Hermite polynomials198

(4.5) Ψk(U) =

d∏

i=1

ψkj (Uj)199

form a complete orthonormal basis of H. {ψj(U), j ∈ N} are the univariate, normalized (probabilist’s)200

Hermite polynomials and k = (k1, . . . , kd) ∈ Nd. By means of the isoprobabilistic transformation T : X → U201

introduced in the previous section, we define PCEs in standard-normal space for the remainder of the paper.202

The PCE of maximum total order p reads203

(4.6) Ŷp(U) =
∑

|k|≤p
bkΨk(U).204

The total number of basis functions in the PCE, P , depends on the input dimension d and the maximum205

total polynomial order p:206

(4.7) P =

(
d+ p

p

)
.207

The projection in (4.3) can be transformed into an equivalent ordinary least squares (OLS) problem [7].208

PCEs become computationally intractable if d is large, i.e., they cannot be used for problems with high-209

dimensional input due to the sheer number of basis functions and corresponding coefficients. In particular,210

the computation is rendered infeasible by the necessary number of operations to compute the set of P multi-211

indices and the necessary number of model evaluations to obtain meaningful estimates of the coefficients.212

Solution strategies to overcome these limitations (at least partially) include a hyperbolic truncation of the213
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index set (this means to replace the condition on the `1-norm in (4.6), |k| ≤ p, with one on a general `q-norm214

of |k|α = (
∑d
i=1 p

q
i )

1/q ≤ p with q < 1) or enforcing a maximum interaction order (i.e., a maximum number215

of non-zero entries in k) [9]. These approaches result in more parsimonious models and allow for PCEs216

to be applied in higher-dimensional problems, however do so at the cost of decreased model expressivity.217

Sparsity-inducing solvers have been proposed to relax the dimensionality constraint imposed by the size of218

the regression problem. Approaches may be based on a variety of solvers for the `1-regularized least squares219

problem such as least-angle regression (LARS) that is used for PCEs in [10], compressive sensing [88] and220

orthogonal matching pursuit [62, 76, 20] as well as sparse Bayesian learning methods [75, 35, 69, 78]. For a221

comprehensive overview, the reader is referred to the recent literature review and benchmark study [51, 50].222

4.2. Basis adaptation via partial least squares. In order to obtain a parsimonious yet expressive223

model, we turn to low-dimensional model representations rather than sparse solutions to the full-dimensional224

model. To achieve this, the PCE representation is rotated onto a new basis defined by the variablesZ = QTU ,225

where Q ∈ Rd×d and QTQ = I, with I denoting the identity matrix. This has first been proposed in [74].226

The PCE with respect to the novel basis reads227

(4.8) ŶQ
p (U) =

∑

|k|≤p
akΨk(Z) =

∑

|k|≤p
akΨk

(
QTU

)
.228

With U a standard-normal random vector and Q an orthogonal matrix, Z is a standard-normal random229

vector. Therefore, both original and transformed input space possess the same PCE basis, namely the230

probabilist’s Hermite polynomials. Merely, a new set of coefficients ak enters the formulation in the adapted231

basis. The columns of Q define linear combinations of the original input. We seek to choose Q such that232

most of the relevant information to construct an accurate surrogate Y is captured in the first m directions,233

where m < d leads to dimensionality reduction. We retain only these first m columns of Q in the matrix Qm234

and define a corresponding PCE of reduced dimension as235

(4.9) ŶQm
p (U) =

∑

|k|≤p
akΨk

(
QT
mU

)
,236

where k ∈ Nm. [74] computes the basis adaptation Qm by evaluating first- or second-order PCE coeffi-237

cients only with a sparse-grid numerical quadrature. [77] couples this approach with compressive sensing to238

simultaneously identify Qm and the PCE coefficients in the subspace. In [59], we show that important direc-239

tions can be identified efficiently based on a set of original function evaluations via partial least squares (PLS).240

241

PLS establishes a linear relationship between variables U and Y based on nE observations of both quantities242

[85]. By UE ∈ RnE×d, we denote the matrix of nE observations of U and by YE ∈ RnE×1 we denote the243

corresponding vector of scalar responses. PLS sequentially identifies m latent components {tj}mj=1, where244

tj ∈ RnE×1 such that they have maximum covariance with YE . After determining each tj , PLS assumes245

a linear relationship between tj and YE and evaluates the corresponding coefficient aj of tj by OLS. After246

each iteration, the matrices UE and YE are deflated by the contribution of the j-th PLS-component. Com-247

ponents are extracted until a certain error criterion is met, which can be formulated, e.g., through the norm248

of the residual response vector or via cross-validation. Dimensionality-reducing regression methods such als249

PLS-based regression are known to shrink the regression coefficients towards zero to produce biased estimates250

in exchange for reducing the estimator variances (bias-variance-tradeoff). In this way, these dimensionality-251

reducing methods are able to produce smaller overall mean squared estimation errors. (see, e.g., [17] for PLS).252

253

The nonlinear version of PLS in turn relaxes the assumption of a linear relationship between latent compo-254

nent and the response. A number of nonlinear PLS algorithms have been proposed [67]. Here we employ the255

approach of Refs. [84, 4] that introduces an additional loop into the algorithm for running a Newton-Raphson256

procedure iterating between the current latent component and the response. Ultimately, we are interested257

in computing the orthogonal transformation matrix Qm in (4.9). PLS produces two different matrices R258

and W that are suitable to this end, which motivates two different flavors of PLS-PCE. In PLS-PCE-R as259

proposed in [59] (see Subsection 4.3), each nonlinear relationship between the {tj}mj=1 and the response is260

modelled as a univariate PCE. The coefficients of these univarate PCEs are computed simultaneously with261

the latent structure and the resulting model is a sum of univariate PCEs. Alternatively, the univariate PCEs262
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are discarded after the PLS-PCE algorithm terminates and a multivariate (sparse) PCE is constructed in the263

subspace formed by the so-called weights {wj}mj=1 leading to PLS-PCE-W (see Subsection 4.4).264

4.3. PLS-PCE-R. PLS-PCE-R identifies m latent components and for each component, it returns265

the direction rj and the univariate PCE along this direction. The univariate PCEs are defined by their266

polynomial orders {qj}mj=1 and the associated coefficient vectors {aj}mj=1. The polynomial order is identified267

with leave-one-out cross validation [15]. For each (j-th) latent component, the nonlinear PLS iteration is268

repeated for different polynomial orders and qj is chosen as the order minimizing the leave-one-out error.269

The PLS-PCE-R model reads270

(4.10) Ŷ(u) = â0 +

m∑

j=1

(
â
qj
j

)T
ψqj

[
rT
j (u− µU)

]
,271

where â0 = Ê[Y], ψqj (U) is a vector function assembling the evaluations of the one-dimensional Hermite272

polynomials up to order qj and µU is the columnwise sample mean of UE . The model structure is illustrated273

in Fig. 2. The PLS directions rj can be evaluated in terms of the PLS weights wj and loads pj through the274

following recursive relation [31]275

(4.11)
r1 = w1

rj = wj − rj−1

(
pT
j−1wj

)
.

276

R = [r1, . . . , rm] ∈ Rd×m is a matrix collecting all PLS directions. R is not necessarily orthogonal, i.e., in277

general RTR 6= I. However, in [59] it is shown that RTR ≈ I when nE is large and UT
EUE is diagonal, which278

is the case if UE is drawn from ϕd. In this case, (4.10) is equivalent to a PCE of the form (4.9), where only279

main effects in the latent components are considered.280

4.4. PLS-PCE-W. PLS-PCE-W defines W as basis of the subspace rather than R, where W =281

[w1, . . . ,wm] ∈ Rd×m. Within linear PLS, the columns of W form an orthogonal basis. Within nonlinear282

PLS, the Newton-Raphson step may introduce deviations from orthogonality, which are however negligible in283

all tested examples. The univariate PCEs obtained through the Newton-Raphson step will be optimal with284

respect to R, not W. Thus, in PLS-PCE-W these univariate polynomials are discarded once W is identified285

and a multivariate (sparse) PCE is constructed in the subspace defined by W using least-angle regression and286

a hyperbolic truncation scheme for the multivariate PCE basis as proposed by [10]. In this way PLS-PCE-287

W achieves more flexibility compared to PLS-PCE-R by including interactions of the latent components in288

exchange for a departure from optimality in the match between latent component and surrogate model. In289

analogy to (4.9), the PLS-PCE-W model reads290

(4.12) Ŷ(u) = â0 +
∑

k∈α
âkΨk

[
WT (u− µU)

]
,291

where α ∈ NP×d is the multi-index set, which indicates the polynomial orders of the d univariate polynomials292

in each of the P multivariate polynomials as obtained with LARS. Both PLS-PCE-R and PLS-PCE-W are293

summarized in Algorithm 4.1. In the following, we will use the PLS-PCE-W model as we observed a superior294

performance for this model compared to PLS-PCE-R models in the context of the proposed approach.295

5. Learning PLS-PCE models in each SIS level.296

5.1. The sequential subspace importance sampler. We recently proposed to reconstruct low-297

dimensional PLS-PCE-W models in each level of SIS to improve the tractability of high-dimensional reli-298

ability analysis with computationally expensive models [58]. We term this approach sequential subspace299

importance sampling or SSIS. The efficiency of SIS benefits from surrogate modelling through a considerable300

reduction of required model evaluations. The PLS-PCE model alone, being a global surrogate model, is a301

relatively limited tool for reliability analysis. Combining it with SIS provides the means to sequentially move302

the training set towards relevant regions in the input space and thereby renders difficult reliability problems303

accessible to surrogate modelling. At the i-th SSIS level, a new local training set is sampled from the current304

importance density hi through a resampling step on the N available samples from hi. The new local training305

set is appended to the global training set comprising earlier designs from levels 1 through i− 1. Based on the306
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(a) PLS-PCE-R
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(b) PLS-PCE-W

Fig. 2: Structure of two different PLS-PCE models, where ΨW
j = Ψαj

as defined in (4.12) and ΨR
j =

(â
qj
j )Tψqj as seen from (4.10). Essential differences exist in the choice of the reduced space basis (layer 2)

and the modelling of cross-terms when mapping from reduced to feature space (layers 2 & 3) with PLS-PCE-
W (b).

updated global training set, a new PLS-PCE model is constructed and SIS is rerun for i+ 1 levels from h0 to307

obtain samples for the next local training set. Due to this restart, it is sensible to let previously used local308

training sets remain in the global training set such that the i-th surrogate model accurately predicts the LSF309

output along the entire path of samples moving from the nominal distribution h0 to hi. The restart itself310

incurs no additional LSF evaluations and serves to stabilize the method: Without restart, the computation311

of σi+1 according to (3.8) is based on two different surrogate models: the most recent model constructed312

in level i appears in the numerator of the sample CoV of the weights and the model constructed in level313

i− 1 appears in the denominator. These models may however be too different from one another to admit a314

solution in (3.8), i.e., to achieve the prescribed CoV δtarget between two subsequent IS densities.315

316

In an additional step, before propagating the intermediate importance density to the next level of the SSIS317

algorithm, we introduce AL. This ensures a prescribed surrogate model accuracy in regions of high probability318

mass of the current sampling density. In turn, this refined surrogate model is used to propagate samples to319

the next level. When the underlying SIS algorithm reaches convergence, a final AL procedure, performed over320

samples of the final importance density, ensures that the probability of failure is estimated with a surrogate321

model that captures the failure hypersurface well. This approach is termed adaptive sequential subspace322

importance sampling or ASSIS.323

324

Active learning has emerged in the late 1980s as a subfield of machine learning [72] and was known in325

the statistical theory of regression as optimal experimental design since the early 1970s [26]. At its heart is326

the idea that supervised learning algorithms can perform better if allowed to choose their training data. We327

consider a ’pool-based sampling’ variant of active learning, in which a large pool of unlabeled data points328

are made available to the algorithm. Within SIS, one has n samples from hi available in the i-th level. The329

algorithm then selects nadd points that are labeled (i.e. for which the LSF is evaluated) and added to the330

training set based on a measure of information gain. This measure typically takes the form of a learning331

This manuscript is for review purposes only.



10 M. EHRE, I. PAPAIOANNOU, B. SUDRET AND D. STRAUB

Algorithm 4.1 PCE-driven PLS algorithm [59]

1: Input Input matrix UE and output vector YE , maximum polynomial order p
2:

3: Set E = UE − µU, F = YE − µY, εw = 10−3, εy = 10−3, j = 1
4: repeat
5: Compute weight w0

j = ETF/‖ETF‖
6: for q ← 1, p do
7: Set wq

j = w0
j

8: repeat
9: Compute score tqj = Ewq

j

10: Fit a 1D PCE of order q âqj ← fit
[
F = (aqj)

Tψq(t
q
j) + ε

]

11: Set M̂q
j(t) = (âqj)

Tψq(t
q
j)(t)

12: Compute the error e = F− (âqj)
Tψq(t

q
j)

13: Compute ∆wq
j = (ATA)−1ATe with A = ∇w(âqj)

Tψq(Ew)

14: Set wq
j ← wq

j + ∆wq
j

15: Normalize wq
j ← wq

j/‖wq
j‖

16: until ‖∆wq
j‖ is smaller than εw

17: Evaluate the relative leave-one-out error εqLOO as in [10]
18: Set {qj , âqjj ,w

qj
j } as the triple {q, âqj ,wq

j} with the smallest εqLOO
19: Compute score: t

qj
j = Ew

qj
j

20: Compute load: p
qj
j = ETt

qj
j /((t

qj
j )Tt

qj
j )

21: Deflate: E← E− tqjj (p
qj
j )T, F← F− (â

qj
j )Tψqj (t

qj
j )

22: j ← j + 1
23: until change in ‖F‖ is smaller than εy
24: Compute R = [r1, r2, . . . , rm] according to (4.11) . For the R-based version of PLS-PCE

25: Build Ŷ(u) according to (4.10)
26: Gather W = [w1,w2, . . . ,wm] . For the W -based version of PLS-PCE

27: Build Ŷ(u) according to (4.12) and [10]

28: return R/W, Ŷ(u)

function L that is maximized over the sample pool to perform selection. The learning function employed in332

the context of SSIS is discussed in Subsection 5.2.333

334

The probability of failure estimator for SSIS/ASSIS is analogous to (3.10) with the difference that SIS335

is performed with an LSF approximation Ĝ that is based on the final surrogate model:336

(5.1) p̂ =

(
M∏

i=1

ŝi

)
1

n

n∑

k=1

I(Ĝ
(
uk
)
≤ 0)ϕd

(
uk
)

ηM (uk)
, uk

i.i.d.∼ hM .337

The ratio of normalizing constants {ŝi}Mi=1 are estimated as338

(5.2) ŝi =
1

n

n∑

k=1

ω̂i
(
uk
)

=
1

n

n∑

k=1

Φ(−Ĝ
(
uk
)
/σi)

Φ(−Ĝ (uk) /σi−1)
, uk

i.i.d.∼ hi.339

The SSIS/ASSIS algorithms are stopped based on a similar criterion as for SIS given in (3.9):340

(5.3) ĈOV

[
I(Ĝ(U) ≤ 0)

Φ(−Ĝ (U) /σi)

]
≤ δtarget.341

Fig. 3 depicts flow diagrams of the SSIS and ASSIS algorithms.342
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5.2. Active learning of low-dimensional model representations. In the context of SSIS, the343

learning function L should express the prediction uncertainty at each sample of the current IS density for a344

given PLS-PCE-W surrogate. This prediction uncertainty is due to the estimation of both the subspace and345

the surrogate model with a finite-sized training set. We describe this uncertainty with the variance of the346

LSF based on the surrogate model conditional on u, V[Ĝ|U = u]. Note that, whenever the distribution with347

respect to which E[·] or V[·] are evaluated is not made explicit as a subscript, it is implicitly assumed as the348

distribution of the argument. For example, V[Ĝ|U = u] = VfĜ|u [Ĝ|U = u].349

350

Let ξ0 = a ∈ RP×1 and ξj = wj ∈ Rd×1, j = 1, . . . ,m, such that ξ = [ξT
0 , ξ

T
1 . . . , ξ

T
m]T ∈ R(md+P )×1351

is the collection of all md+ P model parameters. Further, let ξ? denote their corresponding point estimates352

returned by Algorithm 4.1. The first-order expansion of V̂[Ĝ|u] around ξ? reads353

(5.4) σ̂2
Ĝ

(u) = V̂[Ĝ|u] ≈
[
∂Ĝ

∂ξ

]T

ξ=ξ?

Σ̂ξξ

[
∂Ĝ

∂ξ

]

ξ=ξ?

,354

where Σ̂ξξ is an estimate of the parameter covariance matrix. Next, we neglect the pairwise cross-covariance355

of PCE coefficients a and the subspace components wj and consider356

(5.5) σ̂2
Ĝ

(u) = V̂[Ĝ|u] ≈
m∑

j=0

[
∂Ĝ(u, ξ)

∂ξj

]T

ξj=ξ?j

Σ̂ξjξj

[
∂Ĝ(u, ξ)

∂ξj

]

ξj=ξ?

357

This significantly reduces the number of Σξξ-entries that have to be estimated, namely from P 2+2Pmd+m2d2358

to P 2 + md2. More importantly, the coefficients of the PCE, ξ0, are obtained with linear regression while359

the subspace, {ξj}mj=1, is obtained in the inner loop of Algorithm 4.1 with nonlinear regression. Due to this360

sequential estimation of the {ξj}mj=0, there is no straightforward way of obtaining an estimate of the full361

covariance matrix. In particular, we are not aware of such an estimate for the parameters of nonlinear PLS.362

Hence, this simplification is not only convenient but also necessary in practice. We do observe, however,363

that the off-diagonal elements of the estimated component-wise cross-covariance matrices Σ̂ξjξj are several364

orders of magnitude smaller compared to the the main diagonal elements. This indicates that the model365

uncertainty estimate is dominated by parameter variances. In fact, in a more radical approach that remains366

unexplored in this work, one may consider parameter variances only (i.e., only P + md entries of the full367

covariance matrix are retained). Such an approach is, e.g., used in [64]. Under some regularity conditions,368

the estimator ξ∗j is consistent [86] and converges in distribution to a multivariate Gaussian distribution with369

mean ξj and covariance Σξjξj . In analogy with linear regression, an estimate of Σξjξj is given through370

(5.6) Σ̂ξjξj = σ̂2
ε

(
AT
j Aj

)−1
371

with372

(5.7) Aj =

[
∂Ŷ(u, ξ)

∂ξj

]

ξ=ξ?

u=UE

∈ RnE×d and σ̂2
ε =

1

nE −md− P

nE∑

k=1

[
Yk
E − Ŷ(Uk

E)
]2
.373

σ̂2
ε is the standard estimator for the error variance of the surrogate model. Aj is the gradient of the surrogate374

model Y with respect to the model parameters evaluated at each of the nE points in the training set UE . A0375

is merely the design matrix and does not require the computation of any derivatives. Note that computing376

the gradients {Aj}mj=0 does not require any model evaluations. For j = 0, it is377

(5.8)
∂Ŷ(u, ξ)

∂ξ0
=
[
Ψi

(
WT (u− µU)

)]P−1

i=1
with W = [ξ1, ξ2, . . . , ξm] .378
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For j > 0 and recalling z = WT(u− µU), we have379

∂Ψk(z)

∂ξj
=

∂

∂wj
Ψk(WT(u− µU))

= (u− µU)
∂Ψk(zj)

∂zj

= (u− µU)




m∏

i=1
i 6=j

ψki(w
T
i u)



∂ψkj (wT

j u)

∂zj

= (u− µU)




m∏

i=1
i 6=j

ψki(w
T
i u)



√
kjψkj−1(wT

j u).

(5.9)380

In the last equality, we have used the following expression for derivatives of univariate normalized Hermite381

polynomials:382

(5.10)
dψn(x)

dx
=
√
nψn−1(x).383

∂Ŷ(u, ξ)/∂ξj for j > 0 follows as384

(5.11)
∂Ŷ(u, ξ)

∂ξj
=
∂Ŷ(z)

∂wj
=
∑

k∈α
âk
∂Ψk(z)

∂ξj
, j > 0.385

The partial derivative ∂Ĝ/∂ξj in (5.5) can be evaluated using the chain rule of differentiation, which yields386

(5.12)
∂Ĝ

∂ξj
=
∂Ĝ

∂Ŷ
∂Ŷ
∂ξj

.387

The first term on the right-hand side is typically easy to compute and often equals ±1 (the sign is irrelevant388

as the gradient enters the quadratic form in (5.5)) if the LSF returns the difference between the model out-389

put and a prescribed threshold. In this case, the first factor on the right-hand side of (5.12) drops out. If,390

however, the LSF is not continuously differentiable with respect to the model, we may construct a surrogate391

model of G directly by using a training set containing LSF evaluations rather than model evaluations in392

Algorithm 4.1. The second term on the right-hand side can be obtained reusing the gradients from the Aj393

in (5.7) that — in this case — are not evaluated at the training set and thus are functions of u.394

395

When setting up the learning function, there is a distinction to be made between an intermediate SIS level396

and the final SIS level: In the intermediate level, the goal is to accurately estimate the ratios of normalizing397

constants and to propagate the samples to the next level. In the final level, the goal is to build the probability398

of failure estimator and thus to accurately approximate the true limit-state hypersurface. With this in mind,399

the learning functions for adapting the surrogate models in levels i = 1, . . . ,M , and after the final level are400

readily stated as401

(5.13) LG (u) =

{
σĜ(u), intermediate SIS level

σĜ(u)/|Ĝ(u)|, after final SIS level.
402

After the final level, SIS has converged and we are using samples from the final biasing density hM to refit a403

surrogate model that captures the failure hypersurface well. The learning function in this case is defined in404

the spirit of the learning function put forward in [22]. The denominator penalizes samples whose image under405

Ĝ is far away from 0 assuming that therefore they are themselves far away from the failure hypersurface.406

Such samples are unlikely to be misclassified as safe if located in the failure domain or vice versa. In all407

previous levels of SIS, there is no failure hypersurface to be approximated but only importance weights and408
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the resulting ratio of normalizing constants. Here, the denominator in the learning function is dropped as409

there is no benefit to penalizing samples with large absolute image values under Ĝ.410

411

In each AL iteration, the pool is searched for one or several points maximizing L (u). If nadd > 1 new412

points are added per AL iteration, the current sample pool is transformed to the low-dimensional subspace413

defined by W in order to identify nadd clusters (e.g., with k-means). Clustering in the subspace circum-414

vents the performance deterioration most clustering methods experience in high dimensions [40]. The point415

maximising (5.13) in each cluster is added to the training set. In this way, the algorithm avoids a local con-416

centration of the training set in a single region and is also able to handle problems with multiple disconnected417

failure domains as long as these are contained in the subspace.418

419

The active learning is terminated based on the maximum local standard deviation relative to the target420

average in the intermediate levels or based on the relative change of the probability of failure estimate after421

the final level:422

(5.14)





max
k=1,...,n

(
σĜ(uk)

Ê[Ĝ(U)]

)
≤ εAL, intermediate SIS level

p̂−p̂last
p̂ ≤ εAL, after final SIS level



 ,423

where appropriate choices for εAL lie in [10−2, 10−1]. p̂ and p̂last denote the probability of failure estimate424

based on the current and the last training set within the AL loop. The probability of failure is estimated425

with a surrogate model-based run of SIS-aCS in each AL iteration. This causes no additional cost in terms of426

original model evaluations and ensures a reliable evaluation of the criterion even for extremely small failure427

probabilities. The active learning procedure is detailed in Algorithm 5.1 and the complete method is detailed428

in Algorithm 5.2.

Algorithm 5.1 Active Learning

1: Input LSF G (u), AL error level εAL, # of AL clusters nadd, Polynomial order p, training set {UE ,GE},
2: Sample pool Upool

3:

4: while true do . Active learning loop
5: Run [W, Ĝ] = PLS-PCE(UE ,GE , p, ′W′) . Algorithm 4.1
6: if (5.14) then
7: break
8: Identify nadd clusters among UpoolW . Clustering performed in the subspace defined by W
9: for each cluster do

10: Ucluster = {u ∈ Upool : u ∈ cluster}
11: Evaluate u? = argmax[L(Ucluster)] according to (5.5)–(5.7), (5.12), and (5.13).
12: Append UE ← [UE ,u?]
13: Append GE ← [GE , G(u?)]
14: Remove u? from Upool

15: return UE , GE , Ĝ.

429

6. Numerical experiments.430

6.1. Error measures. In the following, we examine a series of examples of low to high input dimen-431

sionality characterized by varying degrees of nonlinearity of the LSF and varying number of disconnected432

failure regions. The computational cost of each approach is measured with the total number of required calls433

to the underlying computational model. The accuracy of the estimator is measured in terms of relative bias434

and CoV435

relative Bias =
p− E[p̂]

p
(6.1)436

CoV =

√
V[p̂]

E[p̂]
,(6.2)437

438
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Algorithm 5.2 ASSIS (with PLS-PCE-W)

1: Input LSF G (u), Target CoV δtarget, Samples per level n, Input dimension d, training set size nE , AL
error

2: level εAL, # of AL clusters nadd, Polynomial order p,
3:

4: Set i = 0, σi =∞, hi (u) = ϕd (u)
5: Initialize UE = [·], GE = [·]
6: Sample U0 = {uk}nk=1 ∈ Rn×d . uk

i.i.d.∼ hi (u)
7: while true do . Sequential importance sampling loop
8: i← i+ 1

9: Sample Utmp = {uk}nEk=1 ∈ RnE×d . uk
i.i.d.∼ hi (u)

10: Compute Gtmp = G(Utmp) ∈ RnE×1

11: Append UE ← [UE ,Utmp]
12: Append GE ← [GE ,Gtmp]
13: if i > 1 then

14: Run Ĝ = PLS-PCE(UE ,GE , p, ′W′) . Algorithm 4.1

15: Run Ui−1,Gi−1 = SIS-aCS(Ĝ, δtarget, n, d, i− 1) . Algorithm 3.1

16: Run UE ,GE , Ĝ = Active Learning(G (u), εAL, nadd, p, UE ,GE , Ui−1) . Algorithm 5.1

17: Compute Gi−1 = Ĝ(Ui−1) ∈ Rn×1

18: Compute σi according to (3.8)
19: Compute ω̂i and ŝi according to (5.2)
20: Ui−1,Gi−1 ← resample from Ui−1,Gi−1 with weights ω̂i(Ui−1) . sample with replacement
21: Run Ui,Gi = SIS-aCS(Ui−1,Gi−1) . Perform a single MCMC step
22: if (5.3) then
23: Set M ← i

24: Run UE ,GE , Ĝ = Active Learning(G (u), εAL, nadd, p, UE ,GE , Ui−1) . Algorithm 5.1
25: break

26: Run (UM ,GM , p̂ASSIS) = SIS-aCS(ĜM , δtarget, n, d,M) . Algorithm 3.1
27: return M,UM ,GM , p̂ASSIS.

provide δtarget, n, b, d, p, nE
set i = 1

sample training set: UE ∼ h0(u)
evaluate GE = G(UE)

construct surrogate
Ĝ = PLS-PCE(UE ,GE , p)

run i steps of SIS w/ Ĝ

Ui = SIS-aCS(Ĝ, δtarget, n, d, b, i)

Eq. (5.3)

resample
Utmp from Ui,

append
(Utmp, G(Utmp)) to E

p̂SSISno yes

i→ i+ 1

(a) SSIS

provide δtarget, n, b, d, p, , nE , εAL, nadd
set i = 1

sample training set: UE ∼ h0(u)
evaluate GE = G(UE)

construct surrogate
Ĝ = PLS-PCE(UE ,GE , p)

if i > 1: run i-1 steps of SIS w/ Ĝ

Ui-1 = SIS-aCS(Ĝ, δtarget, n, d, b, i-1)
set Upool = Ui-1

run i-th step of SIS using Ĝ
Ui = SIS-aCS(Ĝ, δtarget, n, d, b, i)

Eq. (5.3)

resample
Utmp from Ui,

append
(Utmp, G(Utmp)) to E

get nadd clusters cj in Upool

u?
j = argmax[L(Upool ∩ cj)]
add (u?, G(u?)) to E
remove u? from Upool

reconstruct surrogate
Ĝ = PLS-PCE(UE ,GE , p)

Eq. (5.14)

Eq. (5.3) p̂ASSIS

no

no yes

yes

no yes

i→ i+ 1

(b) ASSIS

Fig. 3: Comparison of SIS-PLS-PCE with (right) and without (left) active learning.
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Table 1: Low- to medium-dimensional investigated benchmark problems.

Problem Failure probability Inputs Input Variables Properties References

Hat 1.037 · 10−4 2 standard-normal Strongly nonlinear [70]

Cantilever 3.94 · 10−6 2 Gaussian Strongly nonlinear [6]

4-Branch 5.60 · 10−9 2 standard-normal Multiple failure regions; [6, 81]

(acc. to [6]) extremely rare event

Borehole 1 · 10−5 8 Log-normal, Strongly nonlinear, No underlying [1]

(276.7 m3

year
) Uniform low-dimensional structure

Truss 1.6 · 10−3 10 Log-normal, mildly nonlinear [43]

(0.12m) Gumbel

Rare Truss 1.02 · 10−8 10 Log-normal, Extremely rare event; [43]

(0.18m) Gumbel nonlinear (modified)

Quadratic 6.62 · 10−6 10 standard-normal Strongly nonlinear; Underlying [24, 80]

(κ = 5) low-dimensional structure

Quadratic 6.62 · 10−6 100 standard-normal Strongly nonlinear; Underlying [24, 80]

(κ = 5) low-dimensional structure

where p is the known exact probability of failure or a reference solution computed with a large number of439

samples as reported in the corresponding references in Table 1. Further, we compute the relative root mean440

squared error (RMSE) of the probability of any failure estimate p̂, which combines bias and variability of the441

estimator as442

(6.3) relative RMSE =

√
E[(p− p̂)2]

p2
=

√
relative Bias2 +

(
E[p̂]

p

)2

CoV2
443

The expectation and variance operators in the above equations are approximated by repeating each analysis444

100 times. Additionally, the relative estimation error is defined as445

(6.4) relative error =
p̂

p
.446

6.2. Low- and medium-dimensional examples. The subspace importance sampler is designed to447

tackle high-dimensional problems, yet its performance should not deteriorate as the problem dimension de-448

creases. We first investigate its performance in eight examplatory problems with dimension 2 ≤ d ≤ 100.449

We demonstrate how both SSIS and ASSIS cope with multiple failure domains, strong nonlinearities and450

extremely small target failure probabilities. In the interest of brevity, the examples are listed in Table 1451

along with the problem dimension, target probability of failure and key characteristics of the problem. The452

references provided in Table 1 may be consulted for detailed descriptions of the problem setups.453

454

We solve the example problems with SIS-aCS with n = 2 · 103 samples per level and a burn-in period455

of b = 5 samples within each MCMC chain. As suggested in [61], we choose δtarget = 1.5 for the exit criterion456

(3.9) for SIS-aCS as well as our surrogate-based samplers. We compare this reference to SSIS and ASSIS457

for which we use an initial sample size of nE = 5d. All underlying PLS-PCE-W models are computed with458

a maximum number of subspace directions of m = 10 and a maximum total polynomial degree of |q|`q ≤ 7,459

where q = 0.75. To achieve a fair comparison between ASSIS and SSIS, we first run ASSIS and then SSIS460

with nE for the latter chosen such that both methods use an approximately equal number of LSF evaluations.461

For both SSIS and ASSIS, we choose n = 104 with a burn-in period of b = 30. For ASSIS, we set εAL = 0.1.462
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Within SSIS/ASSIS many samples per level and long burn-in periods are affordable as sampling is performed463

with the surrogate model. For ASSIS we select nadd = 1 unless prior knowledge of the problem structure464

suggests otherwise (the only exception in the set of examples considered here is the 4-branch function for465

which we select nadd = 4 as it features four relevant failure regions in the input space). Fig. 4 displays the466

performance of SIS, SSIS and ASSIS for the examples in Table 1 in terms of the error measures defined in467

(6.1)–(6.3) and the total number of LSF evaluations (with the original model).
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Fig. 4: Low- and medium-dimensional examples: accuracy and cost comparison. Cost error bars include ±
2 standard deviations.

468
469

For all showcased examples, ASSIS yields equally or more accurate estimates compared to SSIS at equal cost.470

It also either matches or outperforms SIS at significantly reduced costs. Except for the easiest problems,471

i.e., those featuring well-behaved (truss) or low-dimensional (2D hat) LSFs associated with comparatively472

large failure probabilities, the in-level adaptivity of ASSIS leads to significant bias correction (Fig. 4, bottom473

right) and variance reduction (Fig. 4, top right).474

475

[61] discusses the choice of the MCMC sampler for SIS and find that aCS as employed here is outper-476

formed by a Gaussian mixture proposal in low-dimensional problems, while the latter is the preferred choice477

as the problem dimension grows. Our method is designed for the solution of high-dimensional reliability478

problems and we thus consistently use aCS.479

480

Comparing the truss and the rare truss models, the additional number of SIS levels required in the solu-481

tion of the latter evidently leads to a deterioration of the SSIS estimate (Fig. 4, top left). This is due to482

single runs (less than 10 %) among the 100 repetitions in which the sampled training sets lead to extreme483

outliers in the failure probability estimates (Fig. 5). While this effect vanishes when increasing the number484

of samples in the training set, ASSIS offers a more cost-effective alternative to avoid such outliers by actively485
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learning an informative augmentation of adverse training sets. In this way, subspace identification and surro-486

gate modelling errors cannot propagate and accumulate across the levels of SIS as they are controlled by the487

AL procedure. In fact, the phenomenon of rather rare but all the more severe outliers deteriorating the error488

mean and variability is a problem SSIS is facing not only in the rare truss example but also in the cantilever489

and both quadratic examples. Conversely, it is seen that in the 4-branch example, SSIS consistently and490

considerably overestimates the probability of failure while ASSIS captures the probability of failure rather491

well.492

493

The two quadratic LSF models with 10 and 100 input dimensions demonstrate how the required num-
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Fig. 5: Low- and medium-dimensional examples: violin plots of the relative error along with means, inter-
quartile ranges (IQR) and outliers. For the sake of clarity, kernel density estimates are computed after
excluding outliers based on the relative distance to the data median.

494

ber of LSF evaluations depends on the problem dimension in both surrogate-based approaches. This is due495

to the fact that the PLS-PCE model requires at least d (often more) samples to identify a suitable subspace.496

Thus, as described above, we choose nE as a multiple of d. Since the surrogate-free version of SIS-aCS does497

not possess such a dependence on a problem dimension at all, the ratio of computational cost associated498

with SIS and ASSIS decreases as d increases. This observation also indicates that if d grows large enough,499

SIS-aCS will outperform any surrogate-based approach. This is expected for cases with d = O(105) and500

above; therefore, this observation is of little practical relevance for most engineering models, where ASSIS501

will likely be the most cost-effective choice.502

6.3. High-dimensional example: Steel plate. We consider a modified version of the example given503

in [80, 49], which consists of a low-carbon steel plate of length 0.32 m, width 0.32 m, thickness t = 0.01 m,504

and a hole of radius 0.02 m located at the center. The Poisson ratio is set to ν = 0.29 and the density of the505

plate is ρ = 7850 kg/m3. The horizontal and vertical displacements are constrained at the left edge. The506

plate is subjected to a random surface load that acts on the right narrow plate side. The load is modelled as507

a log-normal random variable with mean µq = 60 MPa and σq = 12 MPa. The Young’s modulus E(x, y) is508

considered uncertain and spatially variable. It is described by a homogeneous random field with lognormal509

marginal distribution, mean value µE = 2 × 105 MPa and standard deviation σE = 3 × 104 MPa. The510

autocorrelation function of the underlying Gaussian field lnE is modeled by the isotropic exponential model511

(6.5) ρlnE(∆x,∆y) = exp

{
−
√

∆x2 + ∆y2

lE

}
512
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Fig. 6: Left: FE-mesh of 2D-plate model with control node of the first principal stress σ1 .

with correlation length llnE = 0.04m. The Gaussian random field lnE is discretized by a Karhunen-Loève-513

expansion (KLE) with dE = 868, which yields a mean error variance of 7.5% and reads514

(6.6) E(x, y) = exp

{
µlnE + σlnE

dE∑

i=1

√
λEi ϕ

E
i (x, y)ξi

}
.515

µlnE and σlnE are the parameters of the log-normal marginal distribution of E, {λqi , ϕEi } are the eigenpairs516

of the correlation kernel in (6.5) and ξ ∈ Rd×1 is a standard-normal random vector. The most influential517

eigenfunctions (based on a global output-oriented sensitivity analysis of the plate model performed in [23])518

are shown in Fig. 6 on the right.519

520

The stress (σ(x, y) = [σx(x, y), σy(x, y), τxy(x, y)]T ), strain (ε(x, y) = [εx(x, y), εy(x, y), γxy(x, y)]T ) and dis-521

placement (u(x, y) = [ux(x, y), uy(x, y)]T ) fields of the plate are given through elasticity theory, namely the522

Cauchy-Navier equations [37]. Given the configuration of the plate, the model can be simplified under the523

plane stress hypothesis, which yields524

(6.7) G(x, y)∇2u(x, y) +
E(x, y)

2(1− ν)
∇(∇ · u(x, y)) + b = 0.525

Therein, G(x, y) := E(x, y)/(2(1 + ν)) is the shear modulus, and b = [bx, by]T is the vector of body forces
acting on the plate. (6.7) is discretized with a finite-element method. That is, the spatial domain of the plate
is discretized into 282 eight-noded quadrilateral elements, as shown in Fig. 6. In a grid independence study,
the plate’s probability of failure was found to slightly increase with decreasing mesh element size, which is
likely due to the reduction of averaging effects when integrating higher-order KL-terms. However, for the
purpose of testing ASSIS, the model is sufficiently accurate and features two important properties: 1. It
possesses a low-dimensional structure that can be exploited with dimensionality-reducing surrogates. 2. It
is truly high-dimensional in the sense that the solution does not only depend on a small subset of the input
variables (i.e., the low-dimensional structure is not a trivial subspace of the original input space). The LSF
is defined by means of a threshold for the the first principal plane stress

σ1 = 0.5(σx + σy) +
√

[0.5(σx + σy)]2 + τ2
xy
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Table 2: Accuracy and cost of SIS, SSIS & ASSIS for the plate example based on 100 repetitions of the
analysis. The reference pref = 4.23 · 10−6 is computed with 100 repeated runs of subset simulation with 104

samples per level with CoV = 0.0119 for the mean estimate.

Method E[p] relative RMSE CoV relative bias avg. # LSF evaluations

SIS-aCS 3.88 · 10−6 0.576 0.625 0.083 17000

SSIS 3.99 · 10−6 0.061 0.021 0.058 1300

ASSIS 4.10 · 10−6 0.036 0.021 0.030 1318

evaluated at node 11 (see green marker Fig. 6, left). Node 11 indicates a location where maximum plane526

stresses occur frequently in this example. The LSF reads527

(6.8) g(U) = σthreshold − σ1(U),528

where σthreshold = 450 MPa. The target probability of failure is determined to p = 4.23 · 10−6 with529

CoV = 0.0119 as the average of 100 repeated runs of subset simulation [3] with 104 samples per level.530

531

SIS-aCS is run with n = 2 · 103 samples per level and a burn-in period of b = 5 samples within each532

MCMC chain. SSIS and ASSIS are run with n = 105 samples per SIS level, a burn-in period b = 30 and an533

AL threshold of εAL = 0.1. In the first level nE = 900 and in each additional level only nE = 100 samples534

are added in the initial sampling phase. Table 2 lists the average estimated probabilities of failure along535

with error measures and average number of required LSF evaluations. It is seen that both SSIS and ASSIS536

alleviate computational cost by more than an order of magnitude while at the same time reducing the relative537

RMSE by at least an order of magnitude. The decomposition of the RMSE in CoV and relative bias reveals538

that this is mostly due to variance reduction as SIS-aCS already yields a small bias.539

540

A parameter study of important ’tweakable’ parameters of ASSIS is depicted in Fig. 7. Parameters that are541

not subject to a parametric study are chosen as above, with the exception of n = 104 instead of n = 105.542

The estimation error and computational cost of ASSIS is analyzed for varying active learning threshold εAL,543

number of samples in the training set nE , the number of samples per SIS level n and the target CoV δtarget544

used for the SIS procedure. The scaling of 10% between the initial training set and all subsequent training545

samples is kept constant.546

547

The parameters εAL and nE describe the behaviour of the surrogate modelling and active learning pro-548

cedures while n and δtarget describe SIS itself. Fig. 7 shows that increasing the target coefficient of variation549

leads to a reduced number of levels in the SIS procedure, which is directly associated with a reduction in550

computational cost. The reduction is relatively small here as most of the samples are added in the first level.551

By design, the number of required samples remains unaffected by varying the number of samples per SIS level,552

while the estimation error depends reciprocally on it. Conversely, and also by design, the computational cost553

depends monotonically on the choice of nE . If a majority of the used original LSF evaluations are added dur-554

ing an AL procedure, this relationship may be nonlinear. For the plate example, however, the initially drawn555

training samples at each level makes up for the majority of used original LSF evaluations, hence the linear556

dependency. The estimation errors decrease slightly with increasing training set size, although the effect is557

limited as high accuracy is already achieved with the first training set of the lowest investigated size.The fact558

that the subspace does not change significantly with increasing SIS level leaves little to be learned by adding559

more LSF evaluations to the training set. This is also the reason for the competitive performance of SSIS560

in this example. The estimation errors (as well as the computational cost in this case) remain unaffected by561

varying AL thresholds εAL, which is in line with the observation that a large fraction of the computational562

budget is spent on sampling the initial training set rather than the AL-based training set augmentation.563

7. Concluding remarks. This paper proposes a method for the cost-efficient solution of high-dimensional564

reliability problems. We build on a recently introduced dimensionality reducing surrogate modelling tech-565

nique termed partial least squares-driven polynomial chaos expansion (PLS-PCE) [59] and previous work, in566
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Fig. 7: Steel plate reliability using ASSIS: parameter influence studies. Top: Error measures as defined in
(6.1)–(6.3) for ASSIS (green lines w/ markers). Bottom: Computational cost in terms of total number of
limit-state function evaluations with the true computational model (left y-axis; black solid lines with diamond
markers) and number of SIS levels to convergence (right y-axis; blue star markers). Top left: CoV of a subset
simulation reference run with n = 104 samples per level (red triangle marker). Bottom left: total number of
required limit-state function evaluations of a subset simulation reference run with n = 104 samples per level
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which we use PLS-PCE surrogates to reconstruct biasing densities within a sequential importance sampling567

scheme [58] (sequential subspace importance sampling: SSIS). We refine this approach by devising an active568

learning procedure in each SIS level, which serves to effectively control the estimation error introduced by569

the surrogate-based importance density reconstructions. The learning procedure, i.e., the selection of new570

points for the training set , is driven by an estimate of both the subspace and surrogate model estimation571

error. This criterion can be generally used in polynomial chaos expansion-based active learning procedures.572

573

We showcase the performance of SSIS and ASSIS in nine example applications with input dimensional-574

ity ranging from d = 2 to 869. The examples feature different typical caveats for reliability methods such as575

multiple failure domains, strongly nonlinear limit-state functions and extremely small target probabilities of576

failure. Depending on the example, we achieve a cost reduction of one to over two orders of magnitude with577

ASSIS compared to the reference method (sequential importance sampling with the original model) at equal578

or lower estimation errors. It is shown that SSIS is susceptible to the randomness of the initial training set579

occasionally producing outliers if the training set is adverse. The active learning procedure (ASSIS) remedies580

this drawback and stabilizes the estimator by augmenting potentially adverse training sets with informative581

additional samples.582

583

The million dollar question, as with any surrogate model, is on the method’s ability to generalize. Certainly,584

there exist examples that do not possess a suitable linear subspace as required by PLS-PCE modelling.585

Further, cases of model misspecification may arise if the computational model cannot be represented with586

PCEs (e.g., if it is a rational function). Then, the probability of failure estimate produced by ASSIS will587

be neither consistent nor unbiased. However, by means of coupling PLS-PCE with sequential importance588
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sampling, both requirements are relaxed somewhat as only a locally accurate surrogate model is required to589

propagate samples from one intermediate biasing density to the next. Hence, ASSIS can still be expected to590

perform well if the computational model may be represented in terms of a sequence of local linear subspaces591

on which the model can be approximated well with polynomials. Relaxing the orthogonality or even the592

linearity assumption on the latent space transformation likely bears potential to improve the performance593

of dimensionality-reduced PCEs. Doing so will require methods to track the appropriate PCE basis upon594

determining the law of the transformed input random vector (as these will not be standard-normal if the595

latent space transformation is no longer subject to the orthogonality constraint).596
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