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Abstract—In the next generation of networks, the high data rate
and large bandwidth offered by Light-Fidelity (LiFi) are expected
to be fully exploited to satisfy the diverse Quality of Service (QoS)
requirements of users. LiFi networks are expected to provide
full data coverage while also satisfying illumination requirements
in indoor environments. Thus, the optimized placement of LiFi
Access Points (APs) is of utmost importance. Extending the
commonly applied 2D placement, we include the height of the
AP, which is an important factor to consider due to the short
range of LiFi and limited Field of View (FoV) of the receivers. To
this end, we propose a 3D LiFi Access Point placement framework
that formulates the placement as a multi-objective optimization
problem minimizing the number of APs and maximizing the sum
rate while providing a guaranteed minimum rate and illumination
level. Since the exact positions of users are unknown during
network planning and change dynamically after deployment, the
probability distribution of user occurrence is considered in the
optimization. This results in the network performance being
maximized in areas where users are likely to be present. This
optimization problem is solved with the proposed multi-objective
genetic algorithm. The framework is evaluated with simulations
and the results show that the height of the AP greatly influences
the network performance. We conclude that a free choice of the
height of each AP results in an average rate that is significantly
better than the rate achievable when all APs are placed at the
same height.

Index Terms—LiFi, Placement, 3D, NSGA, Multi-Objective
Optimization

I. INTRODUCTION

The number of machine-to-machine connections is forecast
to reach 14.7 billion by 2023 and these connections are
expected to support indoor applications like home automa-
tion, security, and video applications like Telemedicine and
Augmented Reality (AR) [1]. These applications contribute to
the exponentially increasing data traffic that requires higher
bandwidth and lower latency. Recently, Light-Fidelity (LiFi)
has emerged as a wireless access technology operating on the
visible light and infra-red spectrum [2] with great potential to
serve these high bandwidth needs. Since LiFi can be operated
with existing infrastructure like off-the-shelf Light Emitting
Diodes (LEDs) and does not interfere with Radio Frequency
(RF) technologies, it is a promising solution for indoor wireless
applications.

The LiFi channel degrades rapidly with distance which re-
stricts the communication to a short-range. Therefore, LiFi cells
are typically deployed in an ultra-dense fashion. In such a net-
work, the placement of the LiFi Access Points (APs) or LEDs
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gains importance to be able to provide optimal communication
coverage as well as illumination in the indoor environment.
In the rest of this work, the terms LiFi AP and LED are used
interchangeably. Although multiple works analyze the coverage
of a LiFi cell, they do not consider optimizing the number of
APs. Placing a larger number of LEDs might ensure sufficient
illumination but the communication network suffers due to
interference in the overlap regions of the coverage area of
the cells. Furthermore, a larger number of cells increases the
number of handovers. However, a smaller number of LEDs
would cause outage areas and may not be able to satisfy
the network requirements of the users or illuminate the entire
area. While some existing works do consider optimizing the
placement of LiFi APs for various objectives like minimizing
the number of APs or maximizing the throughput of the
network, they do not consider optimizing for both objectives
simultaneously. Multi-Objective Optimization (MOO) is impor-
tant since the two objectives are contradictory and need to be
solved simultaneously for optimal placement.

While optimizing for the position of the APs, the height of
each access point from the user plane is an important factor
since this influences the range of communication as well as
the Signal to Interference and Noise Ratio (SINR) at the user
device. This highly influences the network performance. The
expected distribution of the users in an indoor environment
is another important factor that has an impact on the system
performance and must be considered while optimizing the
placement for network performance.

A. Related Work

In [3], the authors consider an LED array with a fixed number
of LEDs and derive the optimal x,y position of each LED to
minimize power consumption under data rate, and illumination
constraints. The authors in [4] consider a variable number
of LEDs and minimize this number to find the optimal 2D
placement along the x and y coordinates. In our work, we
also consider the height of the AP as a variable since this is
an important factor that influences the network performance.
Reference [4] also takes the expected user distribution in a
room into account. However, they do not optimize the system
for network performance in terms of throughput. Reference [5]
places importance on the network performance and optimizes
the placement towards maximizing the average throughput.
Moreover, they factor in the stationary distribution of users in
a room following the Random Waypoint mobility model. This



model can, however, be unrealistic in many indoor scenarios.
We, on the other hand, analyze our model for multiple indoor
scenarios with varying user distributions. The authors also
assume that users in a certain region would be served by a
dedicated AP. This raises issues in regions of interference and is
oblivious to the device orientation of the users. The orientation
of user devices is important in LiFi communication since each
receiver has a Field of View (FoV) outside of which no signal
is received. All works mentioned so far do not optimize the
number of APs and the position simultaneously, thus differing
from our work. They also do not consider the height to be a
variable. Works like [6] and [7] propose a solution for the 3D
placement of Unmanned Aerial Vehicles (UAVs) towards the
goal of wireless communication resource allocation. For their
application, they assume the position of users is known. This is
an invalid assumption for our problem since the optimization of
LED placement should happen in the network planning stage
before deployment in an environment with users.

B. Contribution

We examine the network planning of a LiFi communication
and illumination network in an indoor environment and frame
an optimization problem with multiple objectives of minimizing
the number of APs, thus minimizing the cost, and maximiz-
ing the sum rate while constraining the minimum guaranteed
achievable rate and minimum illumination level. Furthermore,
we factor in the expected user distribution while calculating
expected rates. Among the optimization variables, is the height
of each AP which we allow to be either freely placed (3D free-
height) or constrained such that all APs have the same height
which is then freely selected (3D fixed-height). We consider
both options to emphasize the impact of the height of an AP on
the network performance. To solve this 3D placement problem,
we propose a solution method employing a genetic MOO
algorithm. Finally, we evaluate the solutions found for varying
system parameters and scenarios and establish the validity of
our optimization framework.

The rest of the paper is organized as follows. The system
model considered is first introduced in Section II. The following
Section III, details the 3D placement optimization problem
formulation. Section IV describes the solution to this problem
using the proposed algorithm and the results of this solution
are analyzed in Section V. The paper is then concluded in
Section VI which summarizes the important contributions of
this work.

II. SYSTEM MODEL
A. Network Architecture

This work considers an indoor LiFi network with a maxi-
mum of M’ APs. The LiFi APs are LEDs operating on the
visible light spectrum that are mounted above the user plane
facing downwards as represented in Fig. 1. Thus, they enable
illumination and data transmission simultaneously. The three-
dimensional coordinates of each AP is denoted by (z,y, 2);.
The maximum height of the APs is denoted by z and

maxdim
this is the height of the ceiling in the indoor environment. The
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Fig. 1. Architecture of a LiFi communication and illumination network

minimum height is denoted by z%. .. and this is assumed to

be at least one meter above the user plane to avoid saturating
the receivers. Since all the APs operate at the same frequency,
this results in co-channel interference in the areas of overlap of
the coverage of the LiFi cells. The region where we expect to
find users is called the user plane and this plane is quantized
into grids with a spacing of 0.25 m. Each position on this grid
is represented with the coordinates (z, 3, z),, and there are MY
such positions. We expect each user in such a position to be
equipped with a LiFi photodiode receiver for downlink traffic.
The orientation of these receivers is denoted by (Y, 0 0%),
which represents the Yaw, Pitch, and Roll angles of the device.
If this value is (0,0,0) then the user device is parallel to
the floor facing the the LED. Since the exact positions of
the users are not known and dynamically changing, each user
grid position € MV is associated with a weight P, that is
proportional to the expected probability of occurrence of a user
in that position. The user is expected to be able to connect
to the AP with the highest offered SINR. This adds another
degree of freedom to our model since there are no dedicated
APs for the users based on distance. With this information, the
3D placement of the LiFi APs is then optimized in the network
planning phase and then the LiFi-enabled LEDs are deployed
in the indoor environment.

B. LiFi Channel Model

The channel model for LiFi described in [8] forms the basis
for the model in our work as well. The LiFi channel highly
depends on the LED and user positions in three dimensions
and the orientation of the user device. The distribution of the
LiFi SINR on the user plane at a height of 1.4 m from the
floor, in a simple room where 4 LEDs are placed in a lattice
grid format on the ceiling at 3 m is depicted in Fig. 2. The link
data rate between a user u and an AP [ is calculated using the
modified Shannon formula [9] as

B
Rj; = = logy(1+ 3-SINR,), (1)

where By, is the LiFi modulation bandwidth of an LED and
SINR, is the LiFi SINR at user u. The maximum rate that
can be offered by a LiFi AP is assumed to be 250 Mbps.
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Fig. 2. LiFi SINR in a regular room with 4 LEDs placed in a lattice grid

C. Hlumination Model

The LiFi LEDs, operating on the visible light spectrum, are
also responsible for the illumination in an environment. The
illuminance grid need not necessarily be the same as the user
grid and this grid position is denoted by (z,y, z), with a total
of MV grid positions. The illuminance at a grid position v
provided by a single AP [ is given by

1+3

LJJ = IO(ZI - ZU)erl(H(xvyaz)v - (xayaz)l”g)in2 ) (2)

where I in lux is the illuminance at the center of the LED, m is
the Lambertian order of the LED, and ||(x, ¥y, 2), — (, ¥, 2):||3
is the Euclidean distance between the AP and user position in
three dimensions. The total illuminance at a grid position v
provided by all APs is the sum of the individual values given

by
IF=>Y"1I,. 3)
l

D. Scenarios

For the evaluation of our optimization model, we consider
common application areas for LiFi networks which are multiple
indoor environments with varying sizes and user distributions
as depicted in Fig. 3.

III. PROBLEM FORMULATION

This section describes the 3D placement optimization prob-
lem formulation. To this end, the optimization variables are the
quantity and three-dimensional positions of APs. The goal of
our optimization problem is to find the 3D placement of LEDs
that minimizes the cost or number of APs and maximizes the
sum rate on the user plane weighted by the user occurrence
probability P,. The optimization problem is constrained by
the minimum guaranteed rate requirement RL . at all user
grid positions. This ensures coverage reliability everywhere
on the user plane. Since, at the planning stage, the exact
number of users is unknown, we do not consider the wireless
resource sharing. In contrast, we target the performance on the
entire plane. We assume that a user will be associated to and
served by the AP that offers the highest SINR. The other APs
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Fig. 3. Floor plans of and user distributions in indoor scenarios

act as interferers. To make the model generalizable to future
generations of technology with potentially higher capacities,
we include constraints on the rate in terms of a ratio of the
maximum supported rate rather than using absolute rates. So
the normalized rate ratio at a user w is given by

RL = —v | @)

where RE s the maximum offered capacity, in bits per sec-
ond, of the generation of LiFi technology considered. Another
role of the LEDs is to provide the required level of illumination
in the room 1. tL,Wes n- Therefore, we also constrain the minimum
illumination level along a plane. This could be at the floor level
or on the level of desks in a work area. Hence, the illumination
grid is separated from the user plane.

Given a certain maximum number of available LiFi APs M
for placing, the optimization problem can be formulated as
follows,

ML

1: , 5
f ” ?zl)r,l,a, Z o o)
2: max RL P,, 6
f (z,y,2)1, o Z )
C1l: RL > Rthresh Vu=1,.MY, — (7)
C2: IE>1h .0 Yo=1,.MY (8
o € {0,1}, ©)]

where u denotes the user grid and v the illumination grid.
The objective function described in (5) corresponds to the cost
minimization objective and the one in (6) corresponds to the



sum rate maximization objective of the 3D placement problem.
The constraint in (7) places a requirement on the minimum
guaranteed rate at every position on the user grid as a ratio
of the maximum supported rate. The constraint in (8) places
a requirement on the minimum illumination level applicable
at every position on the illumination grid. The optimization
variable «; is the AP existence which is a binary variable with
a value of 1 if that AP is placed and O if not. In order to
emphasize the importance of the height of the AP, we consider
two different height models in the optimization.

A. 3D free-height

This model allows the height of each of the APs to be a
real number freely selected from within the bounds. So the AP
position variable is,

we 0,2k, wel0yk,]  vi=1.MF
21 € [’%ﬁindim? ZflrILamdim] vl = 1, ML

B. 3D fixed-height

This model constrains all the heights of the APs to be the
same but this value is a real number freely selected from within
the bounds. So the AP position variable is,

T € [O,ZCC[[“”] , YL € [O7y§zm] Vil = 1, ...]\/[L7

z =2 Vi=1,..M¥~,
L L L
FANIS [Zmindimvzmazdim] .

IV. 3D PLACEMENT ALGORITHM

The optimization problem described in Section III is a
MOO problem. Such problems typically involve more than one
objective function that conflict and there exists no one unique
result but the optimal result is a set of solutions that provide
the best trade-off between the objective functions called the
Pareto-optimal [10] solutions. In single-objective optimization
problems, the superiority of a candidate solution over others
is computed by comparing the value of the objective functions
evaluated with the candidate solutions. But in MOO problems,
the superiority of a solution is decided by its dominance. All
solutions in the feasible space that are non-dominated belong to
the Pareto-optimal front. Our optimization problem is an Mixed
Integer Nonlinear Programming (MINLP) problem since it has
both integer «; and real (x,y, z); variables. Typically, MINLP
problems are mathematically intractable.

To solve this MINLP, we propose a genetic algorithm.
Genetic Algorithms (GAs) or Evolutionary algorithms are meta-
heuristic algorithms that operate on a set of candidate solutions
and select the fittest candidates from each generation and these
are reproduced to create the candidates for the next generation.
A common and powerful MOO algorithm based on the genetic
algorithm is the Non-dominated Sorting Genetic Algorithm
(NSGA-II) [11] which classifies the solutions into multiple non-
dominated sets. The proposed solution method consists of the
following components.

1) Population: The population is composed of all possible
solutions. The algorithm starts with an initial population
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Fig. 4. An exemplary Pareto-front for the 3D Placement Optimization

that is randomly sampled from integer and real values
within the bounds described by the optimization prob-
lem. We set the initial population size to 100 candidate
solutions.

2) Selection: The individuals that will be carried to the next
generation are selected by their fronts. The individuals
are grouped into fronts by their fitness values which are
decided by evaluating the objective functions with these
individuals. The fronts are then ranked according to their
level of non-domination. The best individuals are then
selected by comparing their rank and a second metric
called the crowding distance which is decided by the
density of solutions around each candidate individual.

3) Crossover: The selected individuals are then combined
using Simulated Binary Crossover (SBX) [12] operator to
produce offsprings that will form a part of the population
for the next generation. The offsprings respect the bounds
for the variables set in Section III.

Generally, in metaheuristics, constraints can be added to the
objective function as a penalty. The individuals are made
undesirable if they violate constraints since the value of the
objective function, and hence the fitness of the individual, is
penalized. The algorithm converges when the constraints are
satisfied and the solutions belong to the Pareto-optimal front.
The optimization terminates when the algorithm converges.

An exemplary run with two solutions in the Pareto-front are
shown in Fig. 4. The objective space is defined by the two
objective functions which are minimizing the number of APs
and maximizing the weighted normalized sum rate which can
also be formulated as a minimization of the negative of the sum
rate. In order to select a unique solution from the Pareto front,
a Multi-criteria decision-making method is employed. The two
objectives are given weights according to their importance. We
set these weights to be 0.8 for the cost minimization objective
and 0.2 for the rate maximization objective since we want
to place more importance on the number of access points
used. Then each solution in the Pareto front is assigned a
pseudo weight corresponding to its normalized distance to the
worst solution of each objective function. The solution that has
pseudo weights closest to the objective weights is considered
to be the optimal solution.



TABLE I
SIMULATION PARAMETERS

TABLE 11
SCENARIO PARAMETERS

Parameter Abbreviation Value
Power of a LiFi LED Py, 5W
Half power beam width 01/2 60°
Physical area of the receiver » 1074 m?
FoV of the receiver FoV 90°
Noise spectral density Np, 10721 A2Hz 1
Modulation bandwidth of LED By, 20 MHz
Maximum supported Rate RE & 250 Mbps
Illumination constant Iy 0.73 x 012 x 012
g o free-heigh = — Lattice -+ Optimized Free |
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Fig. 5. Results for varying placement models in a Regular room

V. EVALUATIONS AND DISCUSSIONS

The 3D placement optimization problem is solved using the
NSGA-II algorithm described in Section IV and the extensive
evaluations performed are described in this section. The simu-
lation parameters are detailed in Table I.

To validate the need for the optimization we consider a few
baseline scenarios where the LEDs are placed in a deterministic
pattern on the ceiling. One such pattern is the lattice grid pattern
with 4 LEDs as shown in Fig. 2. We also consider the same
lattice grid pattern with 5 and 6 LEDs for comparison. The
placement is optimized for the regular 5 m x 5 m room scenario
with a rate ratio requirement of 0.01 and an illumination
requirement of 300 lux. The average rate in Mbps in the room
after placement is shown in Fig. 5a along with the values for
the deterministic models. The average rate is plotted with error
bars representing the 95% confidence intervals. Increasing the
number of access points in the deterministic model only leads
to a lowering of the rate due to higher interference. This result
clearly shows the need for optimization as the average rate
achievable is much higher as compared to the deterministic
models. Looking into this result in more detail, we split the
results obtained into 4 rate groups and plot the area of the
room covered with the rate range of each group. This result for
the different strategies is shown in Fig. 5b. The deterministic
scenarios result in areas where the rate achieved is lower than
5 Mbps while the optimized scenarios do not result in such low
values of rate. The optimized placement also results in much
larger areas for data rates higher than 25 Mbps.

The scenarios considered for the rest of the evaluations
are summarized in Table II with two different illumination
requirements at work desks and elsewhere. The pitch angle ©F
of the user is either 0° or 28° for sitting and standing users

Scenario Size thresh L (L. 2k
Regular Smx5m 0.01 300 lux (2.5 m, 3.5 m)
Office 6mx35m 0.01 500, 200 lux (2.5 m, 3.5 m)
Museum 85mx55m 0.01 200 lux 25 m,3.5m)
Conference 9.5 m x 7.5 m 0.01 500, 200 lux (2.5 m, 3.5 m)
Corridor 30mx 2.5 m 0.01 300 lux (2.5 m, 3.5 m)
150 150+
125+ 125+
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(a) fixed-height Model (b) free-height Model

Fig. 6. 3D Positions of APs and Rate coverage in a regular room

respectively. The pitch angle of 28° is the typical measured
value for standing users [13].

Looking further into the results comparing free and fixed
height models for the regular scenario in Fig. 6, we see that
the fixed-height model has placed all APs very close to the
ceiling in an attempt to maximize the rate. However, the free-
height model was able to leverage the height difference among
the APs to minimize the interference regions and achieve a
higher rate.

Fig. 7a shows the average rate achieved in Mbps for various
minimum rate requirements in a regular room. In all cases the
free-height model performs better than the fixed-height model.
This behavior is also confirmed with t-tests, the results of which
are in Table III. The ratio of 0.03 corresponds to an absolute
rate of 7.5 Mbps. In Fig. 7b, it is clear that by increasing the
minimum rate requirement further, the free-height model is still
able to provide this coverage resulting in a negligible outage
area. Whereas, the fixed-height model struggles with this. Even
with a minimum requirement of 12.5 Mbps, the free-height
system is still able to provide almost full coverage with the
average being much higher at 87 Mbps. This demonstrates
the role the height of the AP has to play in the network
performance.

We then move on to analyzing the effect of the user occur-
rence probabilities in an indoor environment. For this purpose,
the regular room is adapted such that half the user plane has
a low probability of 0.2 and the other half with a higher
weight of 0.8. To avoid any unwanted artifacts in the results
we also consider another scenario where the user plane is
flipped, starting with a probability of 0.8 and ending with 0.2.
Then, the average rate achieved in each of these probability
groups is displayed in Fig. 8. We see that our proposed 3D
Placement framework always maximizes the rate in the areas
where the users are more likely to be present. This illustrates the
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TABLE III
RESULTS OF TWO-SIDED T-TEST FOR A SIGNIFICANCE LEVEL OF 0.05 TO
DEMONSTRATE THAT THE AVERAGE RATE ACHIEVABLE BY THE FREE
HEIGHT MODEL IS SIGNIFICANTLY GREATER THAT THAT OF FIXED HEIGHT

Rate Req. t-value p-value

0.01 8.812 6.270e-16
0.02 10.821 9.746e-22
0.03 12.490 8.827e-27

importance of considering user occurrence probabilities while
optimizing the LED placement.

To see the planning that would be needed for various indoor
scenarios we optimize the 3D placement for all considered
scenarios and plot the number of APs needed and the average
rate achievable in such a room. The parameters of the scenarios
are given in Table II and the results are shown in Fig. 9. These
results show that the number of APs placed is very similar for
the free-height and fixed-height model but the free-height model
still achieves a higher average rate. This clearly demonstrates
the importance of the height of an AP and the need to consider
this while optimizing the placement. Thus, the Optimized 3D
placement framework proposed can be used to plan the LiFi
network for any indoor scenario with various user distribution
patterns.

VI. CONCLUSION

This work analyses the LiFi AP 3D Placement problem with
the objectives of minimizing the number of APs placed as well
as maximizing the user occurrence probability-weighted sum
rate. The analysis is performed for both the free-height as well
as fixed-height models. The placement problem is formulated
as a multi-objective optimization problem with constraints on
the minimum achievable data rate of each user position and
minimum illumination level. This is then solved using the
proposed NSGA-II-based algorithm. Simultaneously solving
for the conflicting objectives is shown to be a necessity for
optimized network performance. The proposed optimization
framework is extensively evaluated using simulations and the
results show that the height of each AP, greatly influences the
network performance. Furthermore, we conclude that a free
selection of the height of each AP provides an average rate
that is significantly more than when all the APs are placed at
the same height. Finally, we also see clearly that, considering
the expected user distribution while evaluating the sum rate
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objective, maximizes the network performance in areas where
the user is likely to be.

REFERENCES

[1] U. Cisco, “Cisco annual internet report (2018-2023) white paper,” 2020.

[2] H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” Journal of
Lightwave Technology, vol. 34, no. 6, pp. 1533-1544, 2016.

[31 Y. Yang, Z. Zhu, C. Guo, and C. Feng, “Power efficient LED place-
ment algorithm for indoor visible light communication,” Optics Express,
vol. 28, no. 24, pp. 36 389-36402, 2020.

[4] A. M. Vegni and M. Biagi, “Optimal LED placement in indoor VLC
networks,” Optics express, vol. 27, no. 6, pp. 8504-8519, 2019.

[5] M. A. Dastgheib, H. Beyranvand, and J. A. Salehi, “Optimal placement
of access points in cellular visible light communication networks: An
adaptive gradient projection method,” IEEE Transactions on Wireless
Communications, vol. 19, no. 10, pp. 6813-6825, 2020.

[6] C. Pan, J. Yi, C. Yin, J. Yu, and X. Li, “Joint 3D UAV placement and
resource allocation in software-defined cellular networks with wireless
backhaul,” IEEE Access, vol. 7, pp. 104279-104293, 2019.

[7]1 I Uluturk, I. Uysal, and K.-C. Chen, “Efficient 3D placement of access
points in an aerial wireless network,” in 2019 16th IEEE Annual Con-
sumer Communications & Networking Conference (CCNC). 1EEE, 2019,
pp. 1-7.

[8] Y. Wang, X. Wu, and H. Haas, “Load balancing game with shadowing ef-
fect for indoor hybrid LiFi/RF networks,” IEEE Transactions on Wireless
Communications, vol. 16, no. 4, pp. 2366-2378, 2017.

[9] X. Wu and H. Haas, “Load balancing for hybrid LiFi and WiFi networks:

To tackle user mobility and light-path blockage,” IEEE Transactions on

Communications, vol. 68, no. 3, pp. 1675-1683, 2019.

R. Marler and J. Arora, “Review of multi-objective optimization concepts

and methods for engineering,” lowa City, IA: University of lowa, Optimal

Design Laboratory, 2003.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE transactions on evo-

lutionary computation, vol. 6, no. 2, pp. 182-197, 2002.

K. Deb, R. B. Agrawal et al., “Simulated binary crossover for continuous

search space,” Complex systems, vol. 9, no. 2, pp. 115-148, 1995.

M. D. Soltani, A. A. Purwita, Z. Zeng, H. Haas, and M. Safari, “Modeling

the random orientation of mobile devices: Measurement, analysis and

LiFi use case,” IEEE Transactions on Communications, vol. 67, no. 3,

pp- 2157-2172, 2018.

[10]

(1]

[12]

[13]



