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Soft-collinear Gravity and Soft Theorems

Soft-kollineare Gravitation und Soft Theorems

Patrick Hager

Abstract

In this thesis, we construct the soft-collinear Lagrangian for gravity systematically beyond lead-
ing power in the power-counting parameter and provide a set of minimal building blocks for the
N -jet operators. We find that the effective theory is covariant with respect to an emergent soft
background field that is obscured in the full theory. The emission of a soft gluon and graviton
from a non-radiative process is investigated and an operatorial version of the soft theorem is
obtained.

Zusammenfassung

In dieser Dissertation wird die soft-kollineare Lagrangedichte für Gravitation systematisch in
höhere Ordnungen im Entwicklungsparameter konstruiert und eine minimale Menge von Bausteinen
für die N -jet Operatoren präsentiert. Die effektive Theorie ist kovariant bezüglich eines emer-
genten soften Hintergrundfeldes, was nicht aus der vollen Theorie ersichtlich ist. Zusätzlich wird
die Emission eines soften Gluon bzw. Graviton betrachtet und eine operatorielle Darstellung des
Soft Theorems bestimmt.
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Introduction
Chapter 1

It would be difficult to pretend that the gravitational infrared divergence
problem is very urgent. My reasons for now attacking this question are:
(1) Because I can. [...] (2) Because something might go wrong and this would
be interesting. Unfortunately, nothing does go wrong.

— Steven Weinberg [1]

Soft physics, and the related infrared divergences, are among the oldest conceptual problems in
quantum field theory. Already in 1937, Bloch and Nordsieck [2] uncovered that in Quantum Me-
chanics and Quantum Electrodynamics (QED), soft photons break the perturbative expansion
as the radiative corrections and real emissions of soft photons lead to divergences.

This can be seen directly at the amplitude level. The emission of a photon with momentum
k from an external (massless) fermion leg carrying momentum p takes the form

eu(p)γµ /p+ /k

(p+ k)2 + i0A ,

where A denotes the rest of the amplitude. If the photon and fermion are on-shell, p2 = k2 = 0,
one finds that the denominator of the propagator takes the form

2p · k = Epωk(1 − cos θ) ,

where Ep = |p| and ωk = |k|. If either the fermion or the photon is soft, meaning Ep → 0
or ωk → 0, the denominator becomes small and the propagator diverges. The same is true for
the collinear limit θ → 0, when the photon is emitted in the same direction as the fermion.1
Physically, in these limits, the intermediate particle goes on-shell (p + k)2 → 0. This not only
holds for real-emission processes but also for virtual corrections, which cause further infrared
divergences. At this point, one can start to wonder if these real and virtual divergences are
related, as they have the same origin.

By investigating these divergences, Bloch and Nordsieck uncovered what is now known as
the eikonal approximation and performed the first true all-order computation in perturbative
QED [2], proving that real and virtual corrections cancel out by virtue of soft exponentiation,
and thus providing a proof that infrared-safe observables exist in QED. Since then, much has
been learnt about soft physics [3,4], and, more importantly, the focus has switched to Quantum
Chromodynamics (QCD) [5–7].

Some of the intuition and knowledge obtained from studying soft effects in QED did transfer
over to its non-Abelian counterpart, even though the naive cancellation is violated and a more
careful treatment is necessary, culminating in the Kinoshita-Lee-Nauenberg theorem [8–12].
However, in QED, no massless charged particles exist, and hence there are no true collinear
divergences. This is in contrast to QCD, where the massless gluon carries a colour charge and
collinear singularities pose a threat. The rigorous and systematic study of the singular structure
has led to the important ideas of factorisation and universality, which have proven valuable in
QCD. For an overview see [13,14].

1If the fermion is massive, the collinear divergence is controlled by the fermion mass as Ep(1 − |v| cos θ). In this
case, there are no true divergences but there can be large enhancements.
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1 Introduction

Compared to gauge theory, which is strongly connected with elementary particle physics,
gravity is often viewed as fundamentally different. It is usually formulated in terms of geometric
objects that encode deep ideas and intuition about the classical properties of space-time, very
distinct from the microscopic nature of quantum gauge theories. Despite this, the quantisation
of gravity has a long history [15–24], although it is not a story of great success. When viewed
as a quantum theory, the gravitational interactions are accompanied by a dimensionful coupling
that causes the theory to be non-renormalisable and invalid at high energies, corresponding to
short distances. This seems to rule out gravity as a fundamental quantum theory, unless it is
modified at high energies.

However, as a low-energy effective theory, gravity can be viewed as a perfectly consistent
quantum theory [25, 26]. For this low energy setting, corresponding to small curvatures, the
Einstein-Hilbert action is simply the theory of a massless spin-2 field on flat Minkowski space,2
very similar to a gauge theory. Its action can be constructed in an analogous way as the one for
a massless spin-1 field in gauge theory, based on locality and gauge-invariance. In gravity, this
gauge symmetry corresponds to invariance under local translations. From this point of view,
gravity and gauge theory seem to be quite similar in nature.

One example, where these similarities can be made more precise, is the soft theorem [1,27–29].
For single gauge-boson emission, the soft theorem, in this context also called the Low-Burnett-
Kroll (LBK) amplitude, states that the amplitude is universal up to next-to-leading power in
the soft expansion. It can be derived only from gauge-invariance and the form of the eikonal
factor, as we show in Section 1.1. The LBK amplitude takes the form

Arad = −g
n∑
i=1

tai u(pi)
(
pi · εa(k)
pi · k

+
kνε

a
µ(k)Jµνi
pi · k

)
Anr + O(k) ,

and relates the radiative amplitude Arad with an additional soft gauge boson emitted, to the
non-radiative amplitude Anr. Here, tai are the gauge generators, pi is the momentum of the
emitting particle, and u(p) is its polarisation vector. The soft gauge particle carries momentum
k and has the polarisation vector εaµ(k). In the subleading term, the angular momentum operator
Jµνi = Lµνi + Σµν

i appears.
In the following years, Weinberg [1] investigated soft and collinear divergences in gravity and

generalised the soft theorem to include gravitons. It was subsequently further generalised in the
late 1960s [30,31], where also a subleading term was identified. In the same article [1], Weinberg
also found diagrammatic cancellations for the collinear singularities in gravity—an important
result, crucial for the consistency of gravity. Unlike QCD, which is confining and hence there are
no asymptotic massless colour-charged states in Nature, gravity features a number of massless
charged particles, including photons and the graviton itself. The presence of collinear divergences
would either be a catastrophe or of vital interest. (Un)Fortunately, there are no such divergences.
With this clarification, the interest in soft and collinear gravity faded.

In 2014, however, the soft graviton theorem had a surprising spike in popularity. Motivated
by asymptotic symmetries and using spinor-helicity methods, the soft graviton amplitude was
reconsidered, and a third universal term was discovered [29]. The gravitational soft theorem is
thus expressed as

Arad = κ

2
∑
i

u(pi)
(
εµν(k)pµi pνi

pi · k
+ εµν(k)pµi kρJ

νρ
i

pi · k
+ 1

2
εµν(k)kρkσJρµi Jσνi

pi · k

)
Anr + O(k2) ,

and takes a remarkably similar form to the gauge-theory result—except for the presence of a
third term. This renewed interest in soft gravitons, soft theorems [32–37], and the gauge-theory
result, but it was shown that there are no further universal terms.

2Or some other classical background.
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1.1 Low-Burnett-Kroll Amplitude and Soft Theorem

This sparks the question: how can we understand why there are only two universal terms in
gauge theory, but three terms in gravity? In what way is the theorem affected by the gauge
symmetry, and how can we deduce its form from the underlying theory?

Unfortunately, neither the spinor-helicity formalism nor the conventional derivation provides
deep insights into these questions. In the spinor-helicity derivation [29], the third universal term
appears simply from the little-group scaling of the graviton amplitude. In the old-fashioned
derivation [33], the gravitational gauge-invariance can be used “twice” to yield this term. While
it seems clear that the underlying reason is the different structure of the gauge symmetry in
gravity, it is not so obvious how this can be made more transparent.

The existence of soft theorems shows that infrared effects can be viewed as universal long-
distance effects and are indeed independent of the underlying short-distance (hard) physics.

Another lesson learnt from the study of infrared divergences is that the conventional per-
turbative approach of quantum field theory is not suited for studying infrared effects. Often,
all-order computations and summations have to be performed to resolve the infrared problems,
which are cumbersome in standard perturbation theory.

These two points motivate an investigation of infrared effects using methods from effective
field theories (EFTs). They offer a convenient and systematic separation of the long- and short-
distance physics and provide the possibility to perform all-order computations using the pertur-
bative expansion of the effective theory, based on power-counting and not the coupling expansion.

One of the tools that emerged to study these effects systematically is soft-collinear effective
theory (SCET) [38–41]. SCET is one of the more complicated effective theories in high-energy
particle physics. Here, the dynamic degrees of freedom are energetic (“collinear”) and soft modes
of the full-theory particles, while hard modes are integrated out. This yields an expansion
around the classical light-cone of the energetic particle. In the Lagrangian construction, it was
understood early on [41,42] that gauge symmetry heavily constrains the form of the Lagrangian
and is essential in the all-order construction.

However, while SCET QCD is quite advanced and developed, soft-collinear gravity has not
received much attention, besides the leading-power construction [43] and a first construction of
the subleading collinear sector [44].

Moreover, while the subleading LBK amplitude has been investigated using SCET [36, 45],
the subleading terms of the soft graviton theorem have not yet been considered, and a direct
comparison between gauge-theory and gravity was not possible before, since the framework of
soft-collinear gravity did not exist.

Therefore, this thesis focuses on the investigation of the subleading soft-collinear interactions
in gravity as well as the systematic construction of the effective Lagrangian. With this tool at
hand, we examine the soft graviton emission using the SCET point of view, to see if the effective
theory can provide additional insights for the number or form of the universal terms.

1.1 Low-Burnett-Kroll Amplitude and Soft Theorem

In the following section, we review the classical derivation of both the LBK amplitude [27, 28]
as well as the soft theorem [33], pointing out how gauge symmetry constrains the subleading
terms.

Soft Photon Emission

Consider a generic scattering amplitude i → f with N external legs, which we take to be
scalar particles for simplicity. We are interested in the emission of an additional soft photon
with momentum k from this process, i → f + γ. Generically, there are two classes of diagrams
contributing to this process, as depicted in Fig. 1.1. For the leading-order in the soft momentum,
corresponding to O(1/k), only the emission from the external legs contributes as the intermediate

3



1 Introduction

p1

k

p2

pN

p3

Anr

p1

k

p2

pN

p3

Anr

Figure 1.1: The two classes of diagrams contributing to the single soft-emission process. The
first one corresponds to emissions off the external legs, which contribute already at
leading power O( 1

k ). The second class are emissions that originate from the hard
scattering and start to contribute at next-to-leading power O(k0).

propagator becomes singular. The second type of diagrams comes into effect at next-to-soft
power O(k0).

The emission from the external legs splits into the sum over the individual legs, where one
immediately finds the well-known spin-independent eikonal emission3 [1, 27,28]

Arad({pi}; k) =
N∑
i=1

eQi
pi · ε(k)
pi · k

Anr(p1, . . . , pi, . . . , pN ) . (1.1.1)

Using this result, one could now consider the emission of n soft photons and derive soft expo-
nentiation [1]. However, we do not proceed in this direction and instead consider the subleading
terms.

At the next-to-soft order, the emission from the hard vertex can contribute. We decompose
the amplitude as

Aµ
rad({pi}; k) =

N∑
i=1

eQi
pµi
pi · k

Anr(p1, . . . , pi + k, . . . , pN ) + Rµ({pi}; k) , (1.1.2)

where we stripped off the polarisation vector εµ(k) as Arad = εµAµ
rad and introduced the remain-

der term Rµ. Note that the first term reduces to the eikonal term (1.1.1) in the soft limit, but
can generate higher-order contributions when Taylor-expanding the non-radiative amplitude in
the small momentum k. The second term corresponds to the contributions from the second type
of diagrams in Fig. 1.1.

We can now constrain the terms appearing inside Rµ by performing a gauge transformation
εµ(k) → εµ(k) + kµα. Since the amplitude (1.1.2) must be gauge-invariant, this yields

0 =
N∑
i=1

eQiAnr(p1, . . . , pi + k, . . . , pN ) + kµRµ({pi}; k) . (1.1.3)

Expanding this result for small k, we find at O(k0)

0 =
N∑
i=1

eQiAnr(p1, . . . , pi, . . . , pN ) , (1.1.4)

which is satisfied if charge-conservation ∑iQi = 0 is applied. At the next order in k, we can
relate the derivative of Anr and the remainder term Rµ as

0 =
N∑
i=1

eQik
µ ∂

∂pµi
Anr({pi}) + kµRµ({pi}; 0) , (1.1.5)

3We consider all particles to be outgoing, so there are no relative signs between the legs.
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1.1 Low-Burnett-Kroll Amplitude and Soft Theorem

which fixes Rµ to be

Rµ({pi}; 0) = −
N∑
i=1

eQi
∂

∂piµ
Anr({pi}) . (1.1.6)

Inserting this result in (1.1.2), we see that the subleading term of the radiative amplitude Arad
is completely determined in terms of the non-radiative amplitude Anr and its derivative as

Aµ
rad({pi}; k) =

N∑
i=1

eQi

(
pµi
pi · k

kν
∂

∂pνi
Anr({pi}) − ∂

∂piµ
Anr({pi})

)
. (1.1.7)

We can now simplify the expression by introducing pi·k
pi·k in the second term, which yields

Arad({pi}; k) =
N∑
i=1

eQi
kµεν(k)
pi · k

(
pν

∂

∂piµ
− pµi

∂

∂piν

)
Anr({pi})

=
N∑
i=1

eQi
kνεµ(k)
pi · k

Lµνi Anr({pi}) , (1.1.8)

where we identified the orbital angular momentum operator Lµνi = pµi
∂

∂piν
− pνi

∂
∂piµ

in the last
line. For fields with non-zero spin, one finds in its place the full angular momentum operator
Jµνi = Lµνi + Σµν

i , where Σµν
i is the spin-operator in the given representation of the particle

i. Note that this term is manifestly gauge-invariant due to the antisymmetry of the angular
momentum Jµνi . Therefore, one has no further constraints that can be employed to completely
restrict the higher-order contributions.

In summary, the LBK theorem states that the amplitude for single soft photon emission takes
the form

Arad({pi}; k) =
N∑
i=1

eQi

(
pi · ε(k)
pi · k

+ kνεµ(k)
pi · k

Jµνi

)
Anr({pi}) + O(k) , (1.1.9)

where the higher-order terms are no longer universal. This statement can also be extended to
QCD [28], where one finds the same expression (replacing the charge Qi by the colour-generator
ta and the coupling e by g).

Soft Graviton Emission

Let us now investigate the same process in gravity, i.e. we consider the emission of a soft graviton
from the non-radiative N -scalar process. This derivation follows [32]. The contributing diagrams
take the same form as in Fig. 1.1. At the leading order, one finds that only the emissions from
the external legs are relevant, which again results in the spin-independent eikonal term [1]

Aµν
rad({pi}; k) = κ

2

n∑
i=1

pµi p
ν
i

pi · k
Anr({pi}) , (1.1.10)

where we employ the stripped amplitude Arad = εµνAµν
rad. At the subleading order, the emission

from the hard vertex can start to contribute, and we can split the amplitude like in (1.1.2) as

Aµν
rad({pi}; k) = κ

2

n∑
i=1

pµi p
ν
i

pi · k
Anr(p1, . . . , pi + k, . . . , pn) + Rµν({pi}; k) , (1.1.11)

where we introduced the (symmetric) remainder term Rµν . This amplitude must be gauge-
invariant under the transformations of the graviton-polarisation

εµν(k) → εµν(k) + kµαν + kναµ , (1.1.12)

5



1 Introduction

which gives the constraint

0 = kµAµν
rad({pi}; k)

= κ

2

n∑
i=1

pνi Anr(p1, . . . , pi + k, . . . , pn) + kµRµν({pi}; k) . (1.1.13)

We now expand this equation in small k to find relations between the remainder Rµν and the
derivative of the non-radiative amplitude. At leading-power, (1.1.13) implies

0 = κ

2

(
N∑
i=1

pνi

)
Anr({pi}) , (1.1.14)

which is valid if momentum-conservation ∑i p
ν
i = 0 is imposed. At next-to-leading power, we

obtain a relation between Rµν and the derivative of the non-radiative amplitude similar to
(1.1.5), which reads4

Rµν({pi}; 0) = −κ

2

N∑
i=1

pνi
∂

∂piµ
Anr({pi}) . (1.1.15)

Inserting this in the amplitude (1.1.11), we find that also in gravity, the next-to-leading order
O(k0) can be expressed in terms of the non-radiative amplitude as

A(1)µν
rad ({pi}; k) = κ

2

N∑
i=1

(
pµi p

ν
i

pi · k
kρ

∂

∂piρ
Anr({pi}) − pνi

∂

∂piµ
Anr({pi})

)
. (1.1.16)

Similar to the corresponding equation in gauge theory (1.1.8), one can combine both terms into
the orbital angular momentum as

A(1)
rad({pi}; k) = κ

2

N∑
i=1

(
kρεµν(k)
pi · k

pµi L
νρ
i Anr({pi})

)
. (1.1.17)

However, there is an important difference compared to the result (1.1.8) in gauge theory: the
subleading term (1.1.17) is not manifestly gauge-invariant. Performing a gauge transformation,
we find the condition

N∑
i=1

pνi
pi · k

(kµαν + kναµ) kρLµρi = 0 . (1.1.18)

The first term vanishes identically due to the antisymmetry of Lµνi . The second term, however,
yields

αµkρ

(
N∑
i=1

Lµρi

)
= 0 , (1.1.19)

which holds true if angular momentum conservation is imposed. It seems that we have not yet
completely exploited all constraints that gauge-invariance has to offer. This motivates us to go
one order beyond, to sub-subleading order in the soft momentum. The second-order O(k2) of
the constraint (1.1.13) reads

0 = κ

2

N∑
i=1

pνi
1
2k

ρkσ
∂

∂piρ

∂

∂piσ
Anr({pi}) + kµkρ

[
∂

∂kρ
Rµν

]
({pi}, 0) , (1.1.20)

4This relation comes multiplied by kµ, which we have dropped. Strictly speaking one has to be careful that one
does not miss any terms when doing this. However, here and in the next order in k it works out since there
are no gauge-invariant objects that could be missed [32].
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1.1 Low-Burnett-Kroll Amplitude and Soft Theorem

which fixes the symmetric combination of the first-derivative of the remainder term as[
∂Rµν

∂kρ
+ ∂Rρν

∂kµ

]
({pi}; 0) = −κ

2

N∑
i=1

pνi
∂2

∂piµ∂piρ
Anr({pi}) . (1.1.21)

Using this in the soft-emission amplitude, we can rewrite the sub-subleading term as

A(2)µν
rad ({pi}; k) = κ

2

N∑
i=1

pµi p
ν
i

pi · k
1
2k

ρkσ
∂2

∂piρ∂piσ
Anr({pi}) + kρ

[
∂Rµν

∂kρ

]
({pi}; 0)

= κ

2

N∑
i=1

(
pµi p

ν
i

pi · k
1
2k

ρkσ
∂2

∂piρ∂piσ
Anr({pi}) − 1

2kρp
ν
i

∂2

∂piµ∂piρ
Anr({pi})

)

+ 1
2kρ

[
∂Rµν

∂kρ
− ∂Rρν

∂kµ

]
({pi}; 0) (1.1.22)

= κ

2

N∑
i=1

pνi
pi · k

kρkσ
1
2L

µρ
i

∂

∂piσ
Anr({pi}) + 1

2kρ
[
∂Rµν

∂kρ
− ∂Rρν

∂kµ

]
({pi}; 0) ,

where the angular momentum Lµνi can be identified in the second line. Half of the sub-
subleading term has already been reduced to derivatives of the non-radiative amplitude. To
constrain the remaining terms, we use gauge-invariance again, but now with the second index
kνAµν

rad({pi}, k) = 0. Applying this to (1.1.22) yields the constraint

0 = κ

2

N∑
i=1

kρkσL
µρ
i

∂

∂piσ
Anr({pi}) + kρkν

[
∂Rµν

∂kρ
− ∂Rρν

∂kµ

]
({pi}; 0) , (1.1.23)

which determines the antisymmetric combination in terms of the non-radiative amplitude[
∂Rµν

∂kρ
− ∂Rρν

∂kµ

]
({pi}; 0) = −κ

2

N∑
i=1

Lµρi
∂

∂piν
Anr({pi}) . (1.1.24)

Using this relation in (1.1.22), we find

A(2)µν
rad = κ

2

N∑
i=1

(
pνi
pi · k

kρkσ
1
2L

µρ
i

∂

∂piσ
Anr({pi}) − 1

2kρL
µρ
i

∂

∂piν
Anr({pi})

)

= −κ

2

N∑
i=1

1
pi · k

kρL
µρ
i kσ

(
pνi

∂

∂piσ
− pσi

∂

∂piν

)
Anr({pi})

= −κ

2

N∑
i=1

1
2
kρkσ
pi · k

Lµρi L
νσ
i Anr({pi}) . (1.1.25)

Note that the notation is slightly misleading since the angular momentum operators do not act
on each other when computing the explicit amplitude. However, for an on-shell amplitude, it
does not matter if the angular momenta are taken to act on each other or not, the difference
between both versions vanishes using on-shell properties and equations of motion [32].

In summary, we find that for the soft graviton emission, one can determine three universal
terms using the constraints from gauge symmetry, which take the form

Aµν
rad = κ

2

N∑
i=1

(
pνi
pi · k

pµi + pνi
pi · k

kρJ
µρ
i + 1

2
1

pi · k
kρkσJ

µρ
i Jνσi

)
Anr({pi}) + O(k2) . (1.1.26)

In [32], it is explicitly verified that there are no further constraints due to the gauge symmetry,
and thus the soft emission at the next order O(k2) is not universal. While the actual derivation
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1 Introduction

is surprisingly simple5 it offers no real explanation as to why gravity has three universal terms
compared to the two in gauge theory, it just happens this way. In addition, it remains unclear
why the angular momentum appears, even twice in the sub-subleading term, and what the precise
relation between the gauge-theory and gravitational result is. In Chapter 7, we reconsider these
soft theorems both for gauge theory and gravity from the point of view of the soft-collinear
effective theory. This will provide a new explanation as well as some intuition for both the
number of universal terms as well as their form.

Outline. This thesis is organised as follows: we begin in Chapter 2 with the construction of
the soft-collinear effective theory for a self-interacting scalar field, introducing all the necessary
concepts and notation, as well as performing an example matching computation. Then, in
Chapter 3, we extend the discussion to include gauge symmetries and point out the necessary
steps required for deriving the effective action. In Chapter 4, we provide a quick review of
perturbative gravity, matter fields coupled to gravity, and the vierbein formalism for including
half-integer spin fields. Equipped with this knowledge, a theory describing purely-collinear
gravitons and matter fields is constructed in Chapter 5, where the first analogies to the gauge-
theory situation can be made. In Chapter 6, the full soft-collinear effective theory for gravitation
is derived for a scalar matter field, and the extension to higher-spin fields is briefly discussed.
The effective theory is then employed in Chapter 7 to derive the soft theorem for both gauge
theory and gravity at the Lagrangian level. A discussion of loop corrections for the gravitational
case is included. Finally, in Chapter 8, we change the focus and briefly examine an application of
these EFT concepts to the dynamics of a light (or massless) scalar field in a deSitter space-time.
In Chapter 9 we conclude.

This thesis is mainly based on the following publications and preprints

• M. Beneke, P. Hager and R. Szafron, Soft-collinear gravity beyond the leading power, JHEP
03 (2022) 080 [2112.04983]

• M. Beneke, P. Hager and R. Szafron, Gravitational soft theorem from emergent soft gauge
symmetries, JHEP 03 (2022) 199 [2110.02969]

• M. Beneke, P. Hager and A. F. Sanfilippo, Double copy for Lagrangians at trilinear order,
JHEP 02 (2022) 083 [2106.09054]

• M. Beneke, P. Hager and R. Szafron, Soft-Collinear Gravity and Soft Theorems, [2210.09336]

• M. Beneke, P. Hager and D. Schwienbacher, Soft-collinear gravity with fermionic matter,
[2212.02525]

and work yet to appear

• M. Beneke, P. Hager and A. F. Sanfilippo, in preparation

5If one is aware of the tricks and knows that there is a third universal term. Recall that it took almost fifty
years between [1] and [46] until the sub-subleading term was discovered.
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Scalar SCET
Chapter 2

Soft-collinear effective theory is the theory describing the interactions of collinear and soft par-
ticles with themselves. It is one of the most advanced and successful effective theories in high-
energy particle physics and has greatly contributed to pushing the accuracy of modern collider
experiments. Originally constructed in the context of QCD [38–41], it has since been extended
also to describe gravity [47, 48]. However, the theory contains many subtleties, especially when
featuring a gauge symmetry as in QCD or gravity. Thus, in this section, we present the con-
struction of SCET for one of the simplest possible situations: a self-interacting scalar theory.
This allows us to introduce the necessary concepts and notation without the additional com-
plexities that gauge symmetries require. Instead, one can start to build some intuition for the
basic principles of the construction. Later, in Chapter 3, we explain how gauge symmetries are
consistently implemented and in what shape they affect and constrain the form of the theory.
In this section, we are not interested in detailed applications of the theory, but rather in the
principles underlying the systematic all-order construction.

~P i

~P j

~P k

Figure 2.1: A prototypical process considered in SCET. The hard scattering at the origin creates
a number of energetic particles, depicted in blue. These are assigned to different
collinear sectors as indicated by the cones. Soft radiation, depicted in red, is emitted
isotropically either directly from the hard scattering or from the classical trajectory
of the energetic particles. It cannot resolve the internal structure of the cones.
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2 Scalar SCET

2.1 Power-counting

In SCET, we consider processes where a hard scattering of order Q creates multiple energetic
particles (jets). Each such jet is characterised by carrying a large momentum of order Q in the
direction of a light-like reference vector nµi−, i counting the number of distinct jets. In addition,
we allow for (ultra-)soft isotropic radiation. The situation is depicted in Fig. 2.1. Within the
sector corresponding to the direction nµi−, one introduces a second light-like reference vector nµi+,
such that

ni+ · ni− = 2 , n2
i± = 0 . (2.1.1)

These two vectors, in combination with the remaining two transverse directions, then constitute
a basis. A collinear momentum p can be decomposed in this basis as

pµ = ni+p
nµi−
2 + ni−p

nµi+
2 + pµ⊥ , (2.1.2)

where the subscript ⊥ is understood to be transverse to the nµi± vectors. We expand the theory in
the small parameter λ ∼ p⊥/(ni+p) ≪ 1, and the components of the collinear momentum-vector
scale as

(ni+p, p⊥, ni−p) ∼ (1, λ, λ2)Q . (2.1.3)

In the following, we set the hard scale Q = 1 as is conventional. This implies that collinear
momenta satisfy p2 ∼ λ2. The (ultra-)soft particles carry momenta k satisfying k2 ∼ λ4, and
these momenta are taken to be isotropic, hence kµ ∼ λ2. We assume that no other modes,
besides the hard modes that we integrate out, are relevant for the problem at hand.1 This
situation is usually denoted as SCETI .

2.2 Field Content

The theory aims to reproduce the soft and collinear limits of the full-theory scattering ampli-
tudes. The construction differs quite drastically from traditional effective theories, like the Fermi
theory of weak decay or the Standard Model Effective Theory. In these conventional approaches,
one is interested in the “light physics” up to some high energy scale Λ, and integrates out the
heavy fields present in the full theory. The low-energy effective theory then only contains the
light modes and higher-dimensional operators that reproduce the effects of the heavy modes.

In SCET, however, we wish to describe soft and collinear regions of all relevant particles in
the full theory. Hence, instead of integrating out heavy modes, one integrates out fluctuations
corresponding to certain regions of loop momenta, and the effective degrees of freedom are then
the left-over modes. These modes must have a definite scaling in the power-counting parameter
λ, e.g. ϕ ∼ λα, which allows one to label them as hard, soft, and i-collinear. We call this a
homogeneous scaling in λ. This means that the effective theory makes use of multiple fields
describing the same particle species, but with the different fluctuations representing different
kinematic regions.

The relevant modes for the effective theory are the soft and collinear modes. The hard region,
given by momenta scaling as pµ ∼ 1, is integrated out. Because of this, the theory is in general
non-local along the respective nµ+-directions. This is the effect of integrating out the hard modes
while having modes present in the effective theory that still depend on this hard scale. In SCET,
the collinear fields still have a dependence on the large scale via the large momentum component
n+p ∼ 1. The non-locality can be traced to operators featuring an arbitrary number of large
derivatives n+∂, which all scale as n+∂ ∼ 1, and can be added in principle at any order in λ.

1This also means that we ignore the possibility of Glauber modes. For details, see [49].
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2.2 Field Content

However, this tower of derivatives may be traded for the non-locality in the nµ+ direction, simply
by rewriting the derivatives as a translation, using

φ(x+ tn+) =
∞∑
k=0

tk

k! (n+∂)kφ(x) . (2.2.1)

Thus, instead of keeping infinite towers of derivatives (n+∂)m, one allows for non-localities in the
nµ+-direction of collinear objects. Often this non-locality also appears in the form of an inverse
derivative operator [40]

1
in+∂ + iε

f(xµ) = −i
∫ 0

−∞
ds f(xµ + snµ+) . (2.2.2)

Let us now turn our attention to the scalar theory. To be concrete, consider the action

S[φ] =
∫
d4x

1
2∂µφ(x) ∂µφ(x) − g3

3!φ
3(x) − g4

4!φ
4(x) . (2.2.3)

We split the full-theory field φ into its collinear and soft modes, integrating out the hard region.
In the EFT, this is manifested by introducing a collinear field φc (φci in case of multiple collinear
directions) and a soft field φs for the original full-theory field φ.

Our approach is based on the position-space formulation of SCET developed in [40, 41]. In
this formalism, we assign a scaling to the position argument of the fields, which is reciprocal to
the momenta. In the Fourier transform, we impose eip·x ∼ 1 and obtain the scaling for collinear
and purely-soft coordinates. Collinear fields depend on the coordinates

n−x ∼ 1 , x⊥ ∼ λ−1 , n+x ∼ λ−2 , (2.2.4)

and the λ-scaling reflects the characteristic distance over which the fields exhibit substantial
variations. For example, the soft field fluctuates only over large distances xs ∼ λ−2. It cannot
resolve the internal structures of a collinear jet, but only its large momentum and direction, as
well as its charge (in the case of gauge theory). Consequently, this scaling of x also determines
the scaling of derivatives when acting on collinear and soft fields. These scale precisely as
collinear and soft momenta, namely

n+∂φc(x) ∼ φc(x) , ∂⊥φc(x) ∼ λφc(x) , n−∂φc(x) ∼ λ2φc(x) , (2.2.5)

for collinear fields, and the isotropic

∂µφs(x) ∼ λ2φs(x) (2.2.6)

for soft fields.
Unlike in conventional effective theories, the power-counting of the fields is not linked to their

mass dimension, and the soft and collinear fields differ in their scaling. From their respective two-
point functions, one can determine the power-counting of collinear and soft fields themselves [40].
For the scalar field, we have

⟨0|T (φ(x)φ(y)) |0⟩ =
∫

d4p

(2π)4︸ ︷︷ ︸
∼λ4, λ8

e−ip(x−y)

︸ ︷︷ ︸
∼1

i

p2 + iε︸ ︷︷ ︸
∼λ−2, λ−4

, (2.2.7)

where we inserted the power-counting (2.1.3), namely p2 ∼ λ2, d4p ∼ λ4 for collinear, and
p2 ∼ λ4, d4p ∼ λ8 for soft momenta, respectively. One obtains the scaling

φc ∼ λ , φs ∼ λ2 , (2.2.8)

for collinear fields φc and soft fields φs.
Finally, we need to assign the power counting to the d4x measure in the effective action. If

collinear fields are present in the integral, we take the counting of the collinear coordinates and
assign d4x ∼ λ−4. For purely soft fields, only the soft coordinate is relevant and we assign λ−8.
Notably, if both soft and collinear fields are present, we have collinear counting d4x ∼ λ−4.
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2 Scalar SCET

2.3 Light-front Multipole Expansion
Due to the power-counting of their momenta (and thus coordinate arguments), products con-
taining both soft and collinear fields are not homogeneous in λ. In Fourier space, one finds, for
example,

φc(x)φs(x) =
∫

d4p

(2π)4
d4ks
(2π)4 e

−i(p+ks)·xφ̃c(p)φ̃s(ks) . (2.3.1)

Here, the product in the exponent is expanded as

(p+ ks) · x = 1
2 (n+p+ n+ks)︸ ︷︷ ︸

1+λ2

n−x+ (p⊥ + ks⊥)︸ ︷︷ ︸
λ+λ2

·x⊥ + 1
2 (n−p+ n−ks)︸ ︷︷ ︸

λ2+λ2

n+x , (2.3.2)

but unlike collinear momenta, we have kµs ∼ λ2 for all components. Thus, only the combination

n−p+ n−ks ∼ λ2 (2.3.3)

scales homogeneously as O(λ2), while the ks⊥ and n+ks components are suppressed with respect
to p⊥ and n+p. In an amplitude, this is taken care of by expanding away the suppressed soft
components in the interaction vertices, and expanding propagators where necessary.

In the position-space formalism, this is accounted for by a multipole expansion. First, one
expands the exponential in (2.3.1) as

e−i(p+ks)·x = e−i(p+n−ks
n+

2 )·x
(

1 + iks⊥ · x⊥ + 1
2 in+ksn−x+ . . .

)
, (2.3.4)

keeping only the homogeneous soft momentum n−ks in the exponent, and one rewrites this in
an operatorial fashion as

e−i(p+ks)·x = e−i(p+n−ks
n+

2 )·x
(

1 + x⊥ · ∂⊥ + 1
2n−xn+∂ + . . .

)
. (2.3.5)

Thus, the original interaction (2.3.1) contributes as

φc(x)φs(x) = φc(x)
(
φs(x−) + x⊥ · [∂φs] (x−) + 1

2n−x [n+∂φs] (x−) + . . .

)
, (2.3.6)

where xµ− = n+x
nµ

−
2 , and the square brackets indicate that the field is evaluated at x− after

derivatives are taken. Thus, the expansion in small momenta at the amplitude level is equivalent
to the so-called light-front multipole expansion [40,41]

φs(x) = φs(x−) + (x− x−)α [∂αφs] (x−) + 1
2(x− x−)α(x− x−)β [∂α∂βφs] (x−) + . . . , (2.3.7)

and we perform this for each soft field whenever it appears in a soft-collinear interaction. This
guarantees that each term in the Lagrangian is manifestly homogeneous in λ, and in turn, this
procedure generates an infinite tower of subleading soft-collinear interactions. In addition, one
immediately notices two features: first, the soft fields are evaluated at x−. This implies that in
the momentum-conserving delta-functions that are present in the effective vertices, soft momenta
only enter with the n−ks-component, and one sets the ks⊥ and n+ks components to zero. This
also leads to eikonal propagators for the collinear modes. Second, the coordinates x⊥ and n−x
appear explicitly in the interactions, which modifies the Feynman rules of the effective theory.
These coordinates lead to derivatives in momentum space that act on the momentum-conserving
delta functions.

Note that the multipole expansion can be cast into an integral form, where φs(x) is expressed
in terms of φs(x−) and its kinetic 1-form [∂µφ] (x−) as

φs(x) − φs(x−) =
∫ 1

0
ds (x− x−)µ [∂µφs] (y(s)) , (2.3.8)
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2.3 Light-front Multipole Expansion

ϕc

ϕs

p

k
A0

Figure 2.2: Soft scalar emission with momentum k, indicated by the dotted line, off an external
collinear leg with momentum p connected to the non-radiative amplitude A0.

where y(s) = x− + s(x − x−). Such identities also reappear later for the gauge and graviton
fields and control the expansion to all orders in λ.

As an explicit example, we show how this multipole expansion precisely reproduces the ex-
pansion in small soft momenta. This serves as a small invitation, the systematic construction is
explained in detail in the later Section 2.5. Consider a cubic interaction

Lint = −g3
3!φ

3(x) , (2.3.9)

and the emission of a soft scalar with momentum k from an external leg with momentum p, as
depicted in Fig. 2.2. For simplicity, we assume that the rest of the diagram, denoted by A0,
does not depend on external momenta. Then the full-theory result is given by

A = g3
1

(p+ k)2 + i0A0 . (2.3.10)

We choose the external states to be on-shell, p2 = k2 = 0, and can use

(p+ k)2 = 2p · k = n+p n−k︸ ︷︷ ︸
∼λ2

+2 p⊥ · k⊥︸ ︷︷ ︸
∼λ3

+n−p n+k︸ ︷︷ ︸
∼λ4

. (2.3.11)

Thus, the propagator containing a soft and a collinear momentum is expanded as

i

(p+ k)2 = i

p+k−

(
1 − 2p⊥ · k⊥

p+k−
− p−k+
k+p−

+ 4(p⊥ · k⊥)2

(p+k−)2

)
+ O(λ3) , (2.3.12)

where we introduced the short-hand notation n+p ≡ p+, and the λ-expansion of the amplitude
(2.3.10) is given by A = A(1) + A(2) + A(3) + O(λ4),2 where

A(1) = g3
1

p+k−
A0 , (2.3.13)

A(2) =
(

−2p⊥k⊥
p+k−

)(
g3

1
p+k−

A0

)
, (2.3.14)

A(3) =
(

−p−k+
p+k−

+ 4(p⊥ · k⊥)2

(p+k−)2

)(
g3

1
p+k−

A0

)
. (2.3.15)

In SCET, these results should be obtained directly from the Feynman rules of the homogeneous
Lagrangian. Namely, for the considered three-point interaction (2.3.9), the effective Lagrangian
contains an interaction

Lint ⊃ −g3
2 φ

2
c(x)φs(x) , (2.3.16)

2Here we assign g3 ∼ λ for consistency. Therefore, the first term in the soft emission is already suppressed by
O(λ), in contrast to the soft photon emission considered earlier.
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2 Scalar SCET

which yields after multipole expansion

L(1)
int = −g3

2 φ
2
cφs(x−) , (2.3.17)

L(2)
int = −g3

2 φ
2
cx
α
⊥ [∂αφs] (x−) , (2.3.18)

L(3)
int = −g3

4 φ
2
cn−x [n+∂φs] (x−) − g3

4 φ
2
cx
α
⊥x

β
⊥ [∂α∂βφs] (x−) , (2.3.19)

plus higher-order contributions. Recall that for soft fields, depending only on x−, the momentum
conserving delta-function only contains the n−k component of the soft momentum k. Thus,
whenever no explicit xµ is present, we use this to impose momentum conservation. The Feynman
rules are then given by

ϕc

ϕc

ϕs

p1

p2

k

= −ig3


0 , O(λ0)
1 , O(λ1)
−Xµ

⊥kµ , O(λ2)
1
2X

α
⊥X

β
⊥kαkβ − 1

2n−Xn+k , O(λ3)

(2.3.20)

where Xµ is defined as [50]

Xµ ≡ ∂µ
[
(2π)4δ(4)

(∑
pin −

∑
pout

)]
, (2.3.21)

and the derivative ∂ = ∂/∂pin or ∂ = −∂/∂pout acts on incoming or outgoing momenta inside
the delta function. If soft momenta k are present, one sets the k⊥ and n−k components to zero
inside the momentum-conserving δ-function after the derivative is taken.3

At O(λ), one immediately realises that the SCET momentum conservation leads to the eikonal
propagator of the internal line as∫

d4p̃

(2π)4
i

p̃2 (2π)4δ(4)
(
p̃− p− n−k

n+
2

)
= i

p+k−
, (2.3.22)

and one recovers A(1). For A(2), one needs to evaluate Xµ
⊥, the derivative acting on the delta-

function, as defined in (2.3.21). The explicit contribution reads

A(1) =
∫

d4p̃

(2π)4 ig3kµ
i

p̃2X
µ
⊥A0

= −g3kµ

∫
d4p̃

(2π)4
1
p̃2

∂

∂p̃µ
δ(4)(p̃− p− n−k

n+
2 )A0

= −g3kµ

∫
d4p̃

(2π)4

(
− ∂

∂p̃µ

1
p̃2 M0

)
δ(4)(p̃− p− n−k

n+
2 )

= −g3kµ
2pµ⊥

(p+k−)2 A0 , (2.3.23)

and we reproduce (2.3.14). This way, one explicitly sees how the multipole expansion (2.3.7)
reproduces the expansion in the soft momenta order by order in k. Thus, the only two in-
gredients required to construct the soft-collinear effective theory for interacting scalars are the
mode decomposition and the multipole expansion. Already here we see a new feature of SCET
compared to standard effective theories: the Lagrangian reproduces the soft emission from the
external leg. However, the underlying scattering A0 is not described by the effective interaction.
Instead, this scattering must be accounted for differently.

3In practice, one simply integrates by parts and sets the soft momenta to k− directly inside the δ-function.
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2.4 A Bird’s Eye Perspective on the EFT

2.4 A Bird’s Eye Perspective on the EFT
We are now ready to discuss the form and construction of the effective theory. First, we consider
the effects of momentum conservation and homogeneity, which lead to a first manifestation of
factorisation.

Recall that a collinear sector is characterised by its collinear momentum pi, where the large
component ni+pi ∼ 1 is of order of the hard scale. Thus, to generate particles of different
collinear sectors i, j with momenta pi, pj , one needs an underlying hard scattering to source
these. A collinear particle of momentum pi cannot source one with pj without a hard momentum
in the interaction vertex. This means that the physics within each collinear jet is described by
a collinear Lagrangian Li, which only features modes of sector i, as well as interactions with the
soft modes.

The effects of a hard scattering sourcing different collinear sectors and soft radiation are
allocated in the so-called N -jet operators. These operators are the only place where Wilson
coefficients appear, renormalisation takes place and a matching computation is necessary. In-
tuitively, one can think of the leading-order N -jet operators as the underlying non-radiative
scattering amplitude, to which radiative corrections are considered.

One can understand their appearance in two ways. On the formal side, they are the result
of integrating out hard modes. In conventional effective theories, integrating out heavy fields
gives rise to higher-dimensional operators that account for the effects of these heavy fields. In
complete analogy, one can think of these N -jet operators as the objects that mediate the effect
of the hard regions that one integrated out. On the physical side, these objects must exist since
one keeps all particles as valid external states in the effective theory, which can in general depend
on hard momenta n+P . Therefore, to describe scattering between such external particles, one
requires additional ingredients on top of the effective Lagrangian that can account for hard
momentum transfer. This is why these currents usually do not exist in a conventional EFT.
But formally, they can be thought of as an analogue to the higher-dimensional operators in such
EFTs.

The Lagrangians Li and Ls correspond to the full theory in different kinematic limits expanded
around certain backgrounds, and thus these are not renormalised by loop corrections. The
purely-collinear theory corresponds to the full theory (in light-cone gauge if gauge symmetries
are present), whereas the soft-collinear theory corresponds to the physics of a collinear fluctuation
on top of an emergent soft background. The purely-soft Lagrangian corresponds again to the full
theory, but with soft power counting. We make these statements more precise when we introduce
gauge symmetries in the later sections. Crucially, these Lagrangians are not renormalised and
exact to all orders in the couplings and in λ [40]. In Fig. 2.3, this factorisation into soft and
collinear is depicted at the example of SCET QCD, considered in Chapter 3.

This split into soft and collinear modes can be viewed as a Lagrangian-level implementation
of the method of regions [51]. Namely, the effective theory precisely reproduces the soft and
collinear contributions of loop integrals. The hard contributions are absorbed into matching
coefficients, which only appear in the N -jet operators that describe the (hard) interactions
where multiple collinear sectors are present.

Note that this allocation of operators is quite distinct from the conventional EFT setup.
Usually, one includes all higher-dimensional operators in the effective Lagrangian. Then, when
computing a process, one decides which operators contribute and calculates their effect. In
SCET, one can arrange the operators differently. In any given process, soft-collinear, purely-
soft and purely-collinear interactions will always be relevant and must be included, since these
can be added to the external legs. However, the kinematics of the process dictate what kind
of underlying N -jet operator is relevant. Thus, the split into N -jet operators – the choice of
which depends on the process at hand – and universal Lagrangian interactions – which always
contribute – arises quite naturally.

The strategy of construction is quite simple. First, one constructs the effective soft-collinear
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~pi

~pj

Li, ξci , Aci

Lj , ξcj , Acj

Ls, qs, As

N -jet operator

purely i-collinear

purely j-collinear

purely soft

soft-collinear
ni−As(xi−)

soft-collinear
nj−As(xj−)

Figure 2.3: The factorisation present in the SCET QCD construction due to momentum con-
servation. Hard momenta are required to source modes of different collinear sectors.
These objects are sorted into N -jet operators. The collinear sectors themselves
are described by collinear Lagrangians Li, which feature purely-collinear and soft-
collinear interactions. The soft field is described by a purely-soft Lagrangian Ls.
The appearance of ni−As(xi−) will be clear after Chapter 3.

and purely-soft Lagrangians. For the purely-scalar theory, this will turn out to be straightfor-
ward. Next, one investigates the possible building blocks that can appear in the N -jet operators,
to find a minimal basis. Once these objects are identified, one can perform hard matching to the
full theory and the construction is concluded. The result is the SCET Lagrangian and operator
basis to the desired order in λ.

2.5 The Effective Lagrangian
We can now proceed with the construction of the effective collinear and soft Lagrangians. For
the full theory, we consider the Lagrangian from (2.2.3), given by

L = 1
2∂µφ(x) ∂µφ(x) − g3

3!φ
3(x) − g4

4!φ
4(x) . (2.5.1)

As explained above, the SCET Lagrangian takes the form

LSCET =
∑
i

Li[φci , φs] + Lsoft[φs] , (2.5.2)

where Li is the soft-collinear Lagrangian containing only i-collinear and soft fields. There is
no Lagrangian containing multiple collinear fields, as these only enter in the N -jet operators
discussed further below. For the scalar theory, the full theory field is related to the EFT modes
simply as

φ(x) = φc(x) + φs(x) . (2.5.3)

We can interpret this split (2.5.3) as a collinear fluctuation on top of a soft background, and this
interpretation is justified by the following construction. For the scalar field, this interpretation
does not have any inherent advantage, but once we introduce gauge fields this intuition turns
out to be useful. The effective theory describing the soft and collinear scalar modes can now be
constructed in three steps:
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2.5 The Effective Lagrangian

(i) Introduce the decomposition (2.5.3) into the action (2.5.1). This yields a Lagrangian de-
scribing the collinear modes φc(x) and the soft modes φs(x), which is not yet homogeneous
in λ. This is due to the presence of terms like

∫
d4x φ2

c(x)φs(x), where the soft field is
evaluated at the collinear argument x. However, as explained in Section 2.3, the soft field
varies only over the large distance x−, thus it should appear as φs(x−) in soft-collinear
interactions.

(ii) To render each term manifestly homogeneous in λ, perform the multipole expansion (2.3.7)
of soft fields in the soft-collinear interaction terms. The resulting theory takes the form
of a collinear fluctuation φc(x) in a soft background φs(x−), with an infinite tower of
subleading terms controlled by the identity (2.3.8).

(iii) In the last step, expand these closed integrals and obtain a theory where each term has a
definite and homogeneous power-counting in λ.

In step (i), we perform the expansion about the soft background φs(x) by inserting (2.5.3) into
the action (2.5.1). In the following, we adopt the convention that the argument of collinear
modes is suppressed φc(x) ≡ φc, whereas for soft modes we keep it explicit. Inserting the
decomposition yields the Lagrangian

L = 1
2∂µφs(x)∂µφs(x) − g3

3!φ
3
s(x) − g4

4!φ
4
s(x)

+ 1
2∂µφc∂

µφc − g3
3!φ

3
c − g4

4!φ
4
c − g3

2 φ
2
cφs(x) − g4

6 φ
3
cφs(x) − g4

4 φ
2
cφ

2
s(x) . (2.5.4)

Note that the Lagrangian does not contain terms linear in φc, like φcφ2
s(x). These terms violate

momentum conservation since an energetic collinear particle cannot decay into purely soft ones.
This is consistent with the expansion about a soft background φs(x), as these linear terms are
proportional to the soft equation of motion and can be dropped. This emphasises the point
of view that already for a purely-scalar theory, the Lagrangian takes the form of a collinear
fluctuation on a soft background.

The Lagrangian can be split into a (soft-)collinear Lc and a purely-soft part Ls, where

Lc = 1
2∂µφc∂

µφc − g3
3!φ

3
c − g4

4!φ
4
c − g3

2 φ
2
cφs(x) − g4

6 φ
3
cφs(x) − g4

4 φ
2
cφ

2
s(x) , (2.5.5)

Ls = 1
2∂µφs∂

µφs − g3
3!φ

3
s − g4

4!φ
4
s . (2.5.6)

The purely soft theory is completely equivalent to the full theory of a (soft) scalar field φs. Since
only soft fields are present, we count the integral d4x ∼ λ−8, and the kinetic term is of order 1.
Thus, in the purely-soft Lagrangian (2.5.6), we suppress the argument of the soft fields, as no
multipole expansion is necessary.

The Lagrangian Lc contains a purely collinear part, which is simply the full-theory Lagrangian,
as well as interactions between soft and collinear modes. However, the soft-collinear Lagrangian
is not yet homogeneous in λ, since the soft fields must be multipole expanded about x−. This
is step (ii).

Performing this expansion and using the identities (2.3.8), one can express the all-order soft-
collinear scalar Lagrangian as

L(0)
c = 1

2∂µφc∂
µφc − g3

3!φ
3
c − g4

4!φ
4
c , (2.5.7)

Lc, sub = −g3
2 φ

2
cφs − g4

6 φ
3
cφs − g4

4 φ
2
cφ

2
s (2.5.8)

− g3
2 φ

2
c

∫ 1

0
ds (x− x−)µ [∂µφs] (y(s)) − g4

6 φ
3
c

∫ 1

0
ds (x− x−)µ [∂µφs] (y(s))
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− g4
2 φ

2
cφs

∫ 1

0
ds (x− x−)µ [∂µφs] (y(s)) − g4

4 φ
2
c

(∫ 1

0
ds (x− x−)µ [∂µφs] (y(s))

)2
.

Here, we dropped the argument for soft fields evaluated at x−, φs(x−) ≡ φs. Furthermore, we
assigned a scaling g3 ∼ λ to avoid a super-leading cubic interaction term.4

It is interesting to note the structure of the Lagrangian, as this is completely general and will
manifest itself in the same form also for gauge theory and gravity. The purely-collinear inter-
actions take the same form as the full theory. In fact, the purely collinear theory is completely
equivalent to the full theory. The soft-collinear interactions give rise to a leading term, where
φs(x−) appears, as well as an infinite tower of subleading terms. This theory corresponds to a
collinear fluctuation on top of a new soft background, in this case φs(x−), and subleading terms
expressed in terms of the kinetic 1-form ∂µφs. In gauge theory, this structure will re-appear
for the mode n−As(x−), with the field-strength tensor Fsµν in place of ∂µφs. In gravity, the
Riemann tensor appears instead.

The fact that both the purely-soft and purely-collinear Lagrangians are equivalent to the full
theory (2.5.1) is easy to understand: without any external sources, there are no other scales
present in either Lagrangian. Thus, without reference to any other scales, both theories are
of course equivalent to the full theory, as one could simply boost the theory to a reference
frame where all momenta scale homogeneously. It is the presence of other scales, either via soft-
collinear interactions or via N -jet operators describing sources, that allows one to distinguish
the soft and collinear modes, as one can now no longer boost to homogenise the momenta.

For practical computations, the structure presented in (2.5.8) is not useful, as it is not homo-
geneous in λ. If we expand the integrals in step (iii), the soft-collinear Lagrangian up to O(λ2)
is given by

Lc = L(0)
c + L(1)

c + L(2)
c , (2.5.9)

where

L(0)
c = 1

2∂µφc∂
µφc − g3

3!φ
3
c − g4

4!φ
4
c , (2.5.10)

L(1)
c = −g3

2 φ
2
cφs − g4

6 φ
3
cφs , (2.5.11)

L(2)
c = −g4

4 φ
2
cφ

2
s − g3

2 φ
2
cx
µ
⊥ [∂µφs] − g4

6 φ
3
cx
µ
⊥ [∂µφs] , (2.5.12)

Ls = 1
2∂µφs∂

µφs − g3
3!φ

3
s − g4

4!φ
4
s . (2.5.13)

The explicitly appearing xµ⊥, n−x due to the multipole expansion are a prominent feature of
SCET and lead to rather complicated Feynman rules. These explicit coordinates correspond
to the expansion of the suppressed components of soft momenta in soft-collinear vertices, as
demonstrated in Section 2.3. The advantage of this Lagrangian is that any term has a definite
power-counting in λ, and is thus homogeneous. This makes it straightforward to compute
contributions at a desired order in λ, and no further expansions of the scattering amplitudes
are necessary. In particular, this also holds for loop corrections. The systematic investigation
of loop corrections is one of the main advantages of the Lagrangian approach compared to the
explicit expansion of scattering amplitudes.

Note that this Lagrangian is constructed starting from a renormalised full-theory (2.2.3).
Therefore, the effective Lagrangian is not renormalised to any order in the couplings g3 and g4
and in λ [40]. The only place where renormalisation takes place is in the N -jet operators.

The Feynman rules for the effective theory are readily derived. The propagator of the collinear
and soft modes is the standard scalar propagator

i

p2 + iε
. (2.5.14)

4Strictly speaking, with this choice the interaction remains super-leading for the purely-soft sector and should
probably be integrated out. We will not worry about this in the following.
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2.5 The Effective Lagrangian

The purely-collinear and purely-soft vertices are only present at leading power,5 and one finds
the standard self-interaction

ϕc

ϕc

ϕc

p1

p2

p3

= −ig3


1 , O(λ0)
0 , O(λ1)
0 , O(λ2)

, (2.5.15)

ϕc

ϕc

ϕc

ϕc

p1

p2 p4

p3

= −ig4


1 , O(λ0)
0 , O(λ1)
0 , O(λ2)

, (2.5.16)

ϕs

ϕs

ϕs

k1

k2

k3

= −ig3


1 , O(λ0)
0 , O(λ1)
0 , O(λ2)

, (2.5.17)

ϕs

ϕs

ϕs

ϕs

k1

k2 k4

k3

= −ig4


1 , O(λ0)
0 , O(λ1)
0 , O(λ2)

(2.5.18)

In the soft-collinear sector, there are no leading-power interactions, and one obtains

ϕc

ϕc

ϕs

p1

p2

k

= −ig3


0 , O(λ0)
1 , O(λ)
−Xµ

⊥kµ , O(λ2)
, (2.5.19)

ϕc

ϕc

ϕs

ϕc

p1

p2 p3

k

= −ig4


0 , O(λ0)
1 , O(λ)
−Xµ

⊥kµ , O(λ2)
, (2.5.20)

5With the given choice, either the purely-soft cubic interaction is super-leading, or the g3 vertex should be
suppressed by λ2. Since we do not employ purely-soft cubic interactions in the following, we do not pursue
this discussion further at this point. A similar subtlety arises when considering mass terms within SCET.
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ϕc

ϕc

ϕs

ϕs

p1

p2 k2

k1

= −ig4


0 , O(λ0)
0 , O(λ)
1 , O(λ2)

. (2.5.21)

(2.5.22)

This is a crucial difference to both gauge theory and gravity. In the purely-scalar SCET, there are
only leading-power purely-collinear interactions and no leading-power soft-collinear interactions.
This is a first indication that there are no soft divergences in “pure matter” theories.

2.6 N-Jet Operators

As explained before, scattering processes which feature different collinear sectors are allocated to
theN -jet operators. These objects are necessary, as the Lagrangian Li only describes interactions
within the same collinear sector, and with the soft background field. Notably, there are no
interactions between different collinear sectors in the Lagrangian. These processes require a
hard momentum to source the different collinear sectors and are not part of the Lagrangian
interactions. Instead, the additional objects that describe such processes are the so-called N -jet
operators. For the scalar theory, the minimal N -jet operator basis is trivial. Later, we will see
how additional symmetries affect and constrain the operator basis.

A generic N -jet operator J in SCET takes the form of a light-ray operator [52]

J =
∫

[dt]N C̃(ti1 , ti2 , . . . )Js(0)
N∏
i=1

Ji(ti1 , ti2 , . . . ) , (2.6.1)

where [dt]N = ∏
ik dtik . Here, Ji denote the collinear and Js the soft building blocks, and

C̃(ti1 , ti2 , . . . ) is the hard matching coefficient. The collinear operators are non-local along
their respective collinear light-like direction nµi+, indicated by the displacement tik , due to their
dependence on the large collinear momentum ni+pi, which is of the order of the hard scale. Thus,
any field φci can in principle come with an arbitrary number of large derivatives (ni+∂)kφci ∼ φci .
We trade this expansion in infinitely many large derivatives in favour of a non-locality along the
light-cone, as explained in (2.2.1). This also eliminates any ni+∂ as possible building blocks in
the operator basis. In the end, we evaluate the operator at X = 0, where the hard scattering
takes.

At leading power, the elementary building blocks, denoted by JA0
i , are simply the collinear

scalar fields themselves,
JA0
i (ti) = φci(ti) ∼ λ . (2.6.2)

The first important observation is that additional O(1) objects, namely the derivatives ni+∂,
are already accounted for since the collinear operators are non-local along the nµi+-direction.
The derivative is then absorbed using integration by parts. Crucially, this shows that at a given
order in λ, there are only a finite number of operators.

There are three possible ways to construct subleading operators starting from these JA0:

(i) Adding derivatives i∂⊥ ∼ O(λ) or ini−∂ ∼ O(λ2) to the A0 currents. For the simple scalar
field, observe that the leading-power equation of motion reads

ni−∂φci = − ∂2
⊥

ni+∂
φci + g3

2
1

ni+∂
φ2
ci

+ g4
6

1
ni+∂

φ3
ci

+ O(λ) . (2.6.3)
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Therefore, one can trade ni−∂φci in favour of the leading-power collinear building blocks.
At next-to-leading power, the equation of motion receives corrections from the soft-collinear
interactions, and also soft building blocks will appear in the relation (2.6.3). In summary,
ni−∂ can be eliminated at all orders in favour of soft and collinear building blocks, so
derivative operators are characterised entirely by the number of ∂⊥ derivatives added. We
denote these types of operators by JAni , where n denotes the order in λ.

(ii) Adding more building blocks of the same collinear direction, as each block is itself of O(λ).
An operator consisting of two (three) fields is denoted by JBni (JCni ).

(iii) Adding g3 ∼ λ. This is specific to the scalar field with three-point interaction and will not
re-appear in either the gauge-theory or gravitational setting.

Similarly, the leading-power soft building block corresponds to the soft scalar field

Js(x) = φs(x) ∼ λ2 . (2.6.4)

Subleading soft building blocks can be obtained by combining multiple soft scalars or adding
derivatives. Since all soft derivatives have homogeneous counting in λ, there is no need to
distinguish different directions.

In addition to these elementary building blocks, we incorporate the subleading Lagrangian
interaction vertices by time-ordered product operators of the form

JTnφ (ti1) = i

∫
d4xT

{
JA0
φ (ti1),L(n)(x)

}
, (2.6.5)

and similar for subleading operators JT (n+m) formed with subleading currents JAm. Of course,
one can also form these products with B, C, . . . -type currents.

2.7 An Example Matching

To familiarise ourselves with the formalism, we consider a simple matching computation for
the theory described above. The process of interest is some hard scattering that creates four
energetic scalar particles, well-separated in angle. This is what we later call the “non-radiative”
hard matching, as we do not consider additional soft or collinear emissions. To perform the
matching, we first compute the scattering amplitude in the full theory. This amplitude is then
expanded in the power-counting parameter λ, and one decides based on the power-counting and
fields present in this amplitude which operators contribute in SCET to deduce the matching
coefficients from explicit matching. For the process at hand, we will find that the entire physics
can be encapsulated by A-type operators. In addition, they can all be related to the leading A0
operator.

2.7.1 Full-theory Computation

We consider the scattering process φφ → φφ with momenta p1, . . . , p4, all taken to be outgoing
and on-shell, i.e. p2

i = 0. These momenta are collinear but well-separated in angle, meaning
they belong to different collinear sectors with their own reference vectors n1−, . . . , n4−. The
contributing diagrams are given in Fig. 2.4, and are proportional to g4 and g2

3. The amplitude
is computed in a straightforward fashion as

A = −ig4 + (−ig3)2
(

i

(p1 + p2)2 + i

(p1 + p3)2 + i

(p1 + p4)2

)
. (2.7.1)
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ϕ1
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ϕ3

ϕ4
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ϕ1
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g3

g3
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ϕ3

ϕ4

g3

g3

Figure 2.4: Diagrams contributing to φφ → φφ. The first diagram is proportional to the four-
point interaction g4, while the remaining three stem from the three-point interaction
and are proportional to g2

3. The last diagram is the u-channel contribution where
the lines are crossed.

Since the momenta belong to different collinear sectors, the sum p1 + p2 is not homogeneous in
λ. We introduce their respective reference vectors and can decompose the Lorentz scalars in the
denominators as

pi · pj =
(
ni+pi

ni−
2 + pi⊥ + ni−pi

ni+
2

)
·
(
nj+pj

nj−
2 + pj⊥ + nj−pj

nj+
2

)
= ni−nj−

4 ni+pinj+pj︸ ︷︷ ︸
∼1

+ni− · pj⊥ni+pi + nj− · pi⊥nj+pj︸ ︷︷ ︸
∼λ

+ ni−nj+
4 nj−pjni+pi + nj−ni+

4 ni−pinj+pj + pi⊥ · pj⊥︸ ︷︷ ︸
∼λ2

+ 1
2nj+ · pi⊥nj−pj + 1

2ni+ · pj⊥ni−pi︸ ︷︷ ︸
∼λ3

+ ni+nj+
4 ni−pinj−pj︸ ︷︷ ︸

∼λ4

. (2.7.2)

Thus, we can expand the denominators appearing in the amplitude as

1
2pi · pj

= 2
ni−nj−

1
pi+pj+

(
1 − 2

ni−nj−

(
ni−pj⊥
pi+

+ nj−pi⊥
pj+

)

+
(

2
ni−nj−

)2(
ni−pj⊥
pi+

+ nj−pi⊥
pj+

)2

− 2
ni−nj−

(
ni−nj+

2
pj−
pj+

+ nj−ni+
2

pi−
pi+

+ 2pi⊥ · pj⊥
pi+pj+

))
+ O(λ3) , (2.7.3)

where we introduced the short-hand notation ni+pi ≡ pi+. The λ-expansion of the full amplitude
is then given to O(λ) by

A(0) = −ig4 − ig2
3

( 2
n1−n2−

1
p1+p2+

+ (2 ↔ 3) + (2 ↔ 4)
)
, (2.7.4)

A(1) = −ig2
3

( 2
n1−n2−

1
p1+p2+

(
− 2
n1−n2−

(
n1− · p2⊥
p1+

+ n2− · p1⊥
p2+

)))
+ (perm) . (2.7.5)

Note that all subleading corrections (only relevant for the g3-part) are related to the leading
amplitude and are proportional to pi⊥, via ni−pi = − p2

i⊥
ni+pi

. Thus, one could fix a reference
frame where all momenta are aligned with their respective reference vectors, i.e. pi⊥ = 0. Then
these subleading contributions identically vanish. One can exploit this property and deduce
these subleading parts from a symmetry of the effective Lagrangian, called reparameterisation
invariance (RPI) [53]. Then, one only has to perform the leading-order (LO) non-radiative
matching, and all subleading parts are fixed by constraints from this symmetry. This is due to
the fact that the full amplitude (2.7.1) depends on the Lorentz scalar pi · pj . In the effective
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theory, this scalar must be expanded in λ, and we break the Lorentz symmetry. However,
ultimately the effect of this UV Lorentz symmetry must still be present, and it re-appears in
the form of RPI.

2.7.2 SCET Matching
Next, we perform the non-radiative matching at O(1) and O(λ) in SCET. The leading-order
contribution in SCET must contain the four scalar fields. It is unique and given by the A0
operator

J A0 =
∫

[dt]4C̃({ti})φ1(t1)φ2(t2)φ3(t3)φ4(t4) . (2.7.6)

We can then match this to the LO-contribution of the full amplitude as

A(0) = ⟨p1, p2, p3, p4| J A0 |0⟩

=
∫

[dt]4ei
∑

j
nj+pjtj C̃A0(t1, . . . , t4) ≡ CA0(n1+p1, . . . , n4+p4) , (2.7.7)

and the leading-power momentum-space matching coefficient is determined to be

CA0(n1+p1, . . . n4+p4) = −ig4 − ig2
3

( 2
n1−n2−

1
p1+p2+

+ (2 ↔ 3) + (2 ↔ 4)
)
. (2.7.8)

To obtain the position-space version, we simply perform a Fourier transformation. For the
constant term, we find a δ-function, since∫ ∞

−∞
dti (−ig4) eini+pitiδ(ti) = −ig4 . (2.7.9)

For the terms proportional to (ni+p)−1, we use∫ ∞
−∞

dti
(
−ig2

3

)
eini+pitiθ(−ti) =

(
−ig2

3

) ∫ 0

−∞
dti e

ini+piti =
(
−ig2

3

) −i
ni+pi

. (2.7.10)

Therefore, the position-space matching coefficient reads

C̃A0(t1, . . . , t4) = −ig4δ(t1)δ(t2)δ(t3)δ(t4)

− ig2
3

( 2
n1−n2−

θ(−t1)θ(t2) + (2 ↔ 3) + (2 ↔ 4)
)
.

(2.7.11)

We see that (2.7.7) can be read as the simple statement that the momentum-space matching
coefficient corresponds to the non-radiative amplitude order-by-order in λ.

For the non-radiative process we consider here, there is no collinear splitting, and the only way
to construct a subleading operator is to attach a transverse derivative ∂⊥ ∼ λ to the fundamental
building block φci i.e. to replace

φci(tini+) → i∂µ⊥φci(tini+) (2.7.12)

for one Ji(ti). The corresponding N -jet operator, now O(λ) suppressed compared to the leading-
power (2.7.6), takes the form

J A1 =
∑
j

∫
[dt]4 C̃A1µ

j (t1, . . . , t4) JA1
j µ (tj)

(∏
i ̸=j

JA0
i (ti)

)
. (2.7.13)

Again, the matrix element of this operator must reproduce the scattering amplitude at O(λ),
which yields the condition

A(1) = ⟨p1, . . . , p4|J A1|0⟩ = −pµj⊥
∫

[dt]4 ei
∑

i
ni+pi tiC̃A1

j µ (t1, . . . t4)
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= −pµj⊥C
A1
j µ (n1+p1, . . . , n4+p4) , (2.7.14)

and CA1µ can be computed explicitly by comparing with (2.7.5). For example, the coefficient
that comes with i∂µ⊥φ2 is given by

CA1µ
2 = −ig2

3
2

n1−n2−

1
n1+p1n2+p2

(
2

n1−n2−

nµ1−
n1+p1

)
, (2.7.15)

and it seems to contain the leading-power coefficient CA0, which is sensible since this term stems
from the Taylor expansion of the full-theory amplitude.

Indeed, instead of performing the matching order-by-order in λ, one can exploit the fact that
for the non-radiative scattering captured by the A-type operators, the λ-expansion is entirely
due to the expansion of the scalar products inside A. Therefore, all subleading coefficients are
in principle already determined from the leading-power result using RPI constraints. For the
A1 current, this constraint reads [54]

CA1µ
j (n1+p1, . . . , nN+pN ) = −

∑
k ̸=j

2nµk−
nk−nj−

∂

∂ni+pi
CA0(n1+p1, . . . , nN+pN ) . (2.7.16)

Intuitively, if the Fourier transformation of the leading-power matching coefficient is simply
the non-radiative amplitude depending only the leading-power momenta ni+pi, nj+pj , then this
equation states that the A1 matching coefficient is simply the next term in the Taylor expansion
of the non-radiative amplitude. Since the hard matching coefficient in SCET can only depend
on the large components ni+pi, the equation (2.7.16) takes this somewhat cumbersome form.

In summary, the Fourier-transform of the hard matching coefficient CAn in the n-th power
suppressed N -jet operator J (n) corresponds, roughly speaking, to the n-th term in the Taylor
expansion of the non-radiative amplitude.

These results are important in the derivation of the soft theorems from the effective theory,
and we will come back to this later. The matching coefficients of the non-radiative amplitude
can be inferred to all orders from the leading-power matching, which corresponds to the full
theory in a special reference frame (where all pi are aligned with their reference vectors).6

6This statement holds as long as the λ-expansion of the non-radiative theory is entirely due to the expansion of
scalar products, and not due to additional higher-order contributions.
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Chapter 3

Now that we understand the basic principles underlying the SCET construction and formalism,
we are ready to incorporate gauge symmetries. This complicates the discussion for two reasons,
both of which are also present in gravity. First, the gauge symmetry itself must be modified.
One must implement the split into soft and collinear modes, then determine the relevant gauge
symmetry of each sector, and finally consistently modify these symmetries to respect the light-
front multipole expansion. Second, the gauge fields contain modes that are not suppressed in
the power counting. These components must be controlled to all orders in the power-counting
parameter to obtain a finite operator basis. These two problems are readily dealt with by
introducing a number of Wilson lines, which allow us to give closed expressions that hold to
all orders in the power-counting parameter λ. These expressions can then be expanded in λ
in a straightforward fashion and one obtains the effective Lagrangian where each term has a
manifestly homogeneous power-counting, and the emergent gauge symmetry of the effective
theory then also respects this counting. In the operator basis, the gauge symmetry allows us to
identify a set of minimal soft and collinear building blocks.

We will see that it is the covariance with respect to this emergent gauge symmetry, and the
constraints that follow from it, that ultimately give rise to the soft theorem from the EFT
perspective.

The position-space derivation of the SCET Lagrangian was first presented in [40], and in
full-generality featuring also non-Abelian symmetries in [41]. The following discussion follows
closely the exposition in [47] by the author in collaboration with M. Beneke and R. Szafron,
which expands on the previous derivations in a few key aspects related to the gauge symmetry
and gauge condition, which prove valuable when considering the generalisation to gravity. Most
of the results can already be found in [40,41,47] and [48].

3.1 Field Content

We begin our discussion with scalar QCD, the theory describing a scalar field ϕa in the funda-
mental representation of SU(N), and the corresponding gluon field Aµ.

The overall intuition from the previous purely-scalar consideration discussed in Section 2.4
still holds true, and most concepts can be carried over in a straightforward fashion.

Just as in the purely-scalar theory, we introduce collinear and soft modes for both fields, and
use the two-point function (2.2.7) to determine their power counting. For the scalar, one obtains
again the power counting (2.2.8)

ϕc ∼ λ, ϕs ∼ λ2 . (3.1.1)

For the gluon, one finds in a general gauge [40]

⟨0|T (Aµ(x)Aν(y)) |0⟩ =
∫

d4p

(2π)4 e
−ip(x−y) i

p2 + iε

[
−gµν + (1 − α)pµpν

p2

]
, (3.1.2)

which determines
n+Ac ∼ 1 , Ac⊥ ∼ λ , n−Ac ∼ λ2 , Asµ ∼ λ2 . (3.1.3)
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Note that the gluons, both soft and collinear, scale like the respective components of the mo-
mentum, i.e. Ac ∼ pc and As ∼ ks. This means that the purely-collinear and purely-soft
covariant derivatives, denoted by Dc and Ds, respectively, where Dc/s = ∂ − igAc/s, are ho-
mogeneous in the power-counting parameter λ, but the total soft-collinear covariant derivative,
D = ∂ − igAc − igAs, consisting of both soft and collinear fields, is not.

3.2 Gauge Symmetry
There is a major new feature that was not present in the previous discussion: QCD is invariant
under a SU(N) gauge symmetry. This leads to additional complications when constructing
the effective theory. Namely, the gauge symmetry is extended in a non-trivial fashion in the
effective Lagrangian: the collinear fields take the role of fluctuations on top of the underlying
soft background. This is a consistent way of implementing the desired soft and collinear physics.
This structure is imposed by momentum conservation, as we argue in the following.

First, the full-theory gluon field Aµ transforms under a gauge transformation as

Aµ → UAµU
† + i

g
U
[
∂µ , U

†
]
. (3.2.1)

This field is decomposed into soft and collinear modes as

Aµ(x) = Acµ(x) +Asµ(x) . (3.2.2)

Both of these gluon fields should acquire a gauge transformation, and the sum of both fields
must transform as the original full field. However, when performing a gauge transformation, the
transformation matrices themselves are either soft or collinear objects, meaning the position-
argument of the respective infinitesimal gauge parameter αc/s(x) has either soft or collinear
power-counting. One must ensure that the soft field does not transform under collinear gauge
transformations, else the resulting transformed field is no longer soft. In that case, the notions
of “soft” and “collinear” would not be gauge-invariant, which is problematic. On the other hand,
the collinear field can transform under soft gauge without problem.

A consistent solution is to impose the transformations

collinear: Ac → UcAcU
†
c + i

g
Uc
[
Ds , U

†
c

]
, ϕc → Ucϕc ,

As → As , ϕs → ϕs ,

soft: Ac → UsAcU
†
s , ϕc → Usϕc ,

As → UsAsU
†
s + i

g
Us
[
∂ , U †s

]
, ϕs → Usϕs .

(3.2.3)

Under collinear transformations, As does not transform. However, it appears in the form of
the soft-covariant derivative Dµ

s = ∂µ − igAµs in the collinear transformation. Conversely, under
a soft transformation, As has the standard transformation (3.2.1), and Ac has the covariant
transformation of a (non-gauge) matter field in the adjoint representation.1 Note that the x-
argument of the local transformations Uc and Us has the same scaling as the argument of collinear
and soft fields, respectively. This ensures that the scaling of the gauge fields (3.1.3) remains
unaltered by the gauge symmetry of the effective theory. One can verify that the transformation
(3.2.3) has the property that the full field, defined as (3.2.2), indeed transforms as a standard
gluon (3.2.1). Therefore we do not need to modify the naive decomposition (3.2.2) further.

In the purely-scalar theory, this line of reasoning led to the interpretation that the split
φ = φc + φs is a split into a collinear fluctuation on top of a soft background. Now, based on

1From the soft perspective, any collinear field, regardless if gauge or matter, has the same transformation,
depending only on its representation.

26



3.3 Multipole Expansion and Redefinitions

the transformations (3.2.3), we again see that the decomposition (3.2.2) can be interpreted as
the split into a collinear fluctuation on top of a soft background, and the gauge transformations
immediately follow from this identification: the fluctuation (collinear mode) comes with its own
gauge symmetry, covariant with respect to the non-trivial background configuration As (the
soft mode). The soft background has the standard gauge transformation, and each fluctuation
satisfies the homogeneous – non-gauge – matter transformation. Thus, momentum conservation
imposes this extended symmetry, consisting of the two separate soft-background and collinear-
fluctuation gauge symmetries, in the effective theory. In the case of multiple collinear modes,
each mode would be interpreted as a fluctuation and would come with its own i-collinear gauge
symmetry. However, all these collinear modes transform in the same way under the soft gauge
transformation.

The soft matter fields are slightly more involved. Just as for gauge fields, the soft matter field
cannot transform under collinear gauge transformations, as seen in (3.2.3). However, the naive
decomposition

ϕ(x) = ϕc(x) + ϕs(x) (3.2.4)

is inconsistent with the proposed transformations (3.2.3), as the sum on the right-hand side
does not transform like the full-theory scalar field on the left-hand side. Instead, one has to
implement the transformation using a combination of Wilson lines. Namely, one decomposes
the matter field as

ϕ = ϕc +WZ†ϕs , (3.2.5)

introducing the Wilson lines

WZ† = P exp
[
ig

∫ 0

−∞
ds n+A(x+ sn+)

]
P̄ exp

[
−ig

∫ 0

−∞
ds n+As(x+ sn+)

]
, (3.2.6)

where P (P̄ ) denotes (anti-)path-ordering. These Wilson lines transform as

collinear: Z† → Z† , W → Uc(x)W ,

soft: Z† → Z†U †s (x) , W → Us(x)W ,
(3.2.7)

where we used U(x− ∞n+) = 1, i.e. that the gauge transformation vanishes at infinity.
We can interpret the decomposition (3.2.5) as follows: The soft field ϕs(x) only transforms

under soft gauge transformation Us(x). The semi-infinite Wilson line Z†, only containing the
soft gluon field, moves this soft transformation from x to −∞n+, where we impose that the
transformation vanishes. Thus, the combination Z†ϕs(x) is gauge-invariant under both soft and
collinear transformations, since, by construction, a purely soft object does not have a collinear
transformation. On the other hand, W †, the full-theory Wilson line,2 can be used to render
the full-theory scalar field gauge-invariant. Thus, when multiplying Z†ϕs(x) with W , one re-
covers the object WZ†ϕs(x) that transforms like an ordinary full-theory scalar field. Therefore,
the right-hand side of the decomposition (3.2.5), combined with the proposed transformations
(3.2.3), does indeed transform like the full-theory scalar field on the left-hand side.

One realises that for gauge theories, already at this first level of the mode decompositions,
SCET requires non-local objects in order to implement consistent gauge transformations. These
and other related Wilson lines play a central role in the later constructions. For more details on
these, we refer to [40,41].

3.3 Multipole Expansion and Redefinitions
Now that we understand the field content and the gauge symmetries, we can start the construc-
tion of the effective theory. Just like in the scalar case, as explained in Section 2.4, the effective

2We call it full-theory since only the full-theory gluon field A = Ac + As appears.
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theory separates into soft-collinear Lagrangians Lci and the N -jet operators. We first discuss
how the effective Lagrangian is constructed, and later proceed with the analysis of a minimal
operator basis for the N -jets. The basic principles are the same ones as outlined in Section 2.5:
one inserts the field decompositions (3.2.2), (3.2.5) in the Lagrangian and then performs the
multipole expansion as introduced in Section 2.3. However, the gauge symmetry leads to addi-
tional subtleties with regard to the multipole expansion, which we explain and address in the
following sections.

3.3.1 Homogeneous Gauge Symmetry and Multipole Expansion
There is an immediate problem in the construction concerning the soft component of the gauge
transformations. From (3.2.3), one sees that collinear matter fields transform under the soft
gauge symmetry as

ϕc(x) → Us(x)ϕc(x) . (3.3.1)

This poses a potential problem when performing the light-front multipole expansion about x− =
n+x

n−
2 as explained in Section 2.3, since the soft gauge transformation Us(x) in (3.3.1) depends

on the collinear coordinate x, which has the wrong scaling for a soft field. This means that
Us(x) in (3.3.1) must also be multipole-expanded, and this in turn generates an infinite tower
of subleading terms in the power-counting parameter λ, since

Us(x)ϕc(x) = Us(x−)ϕc(x) + xα⊥ [∂αUs] (x−)ϕc(x) + O(λ2ϕc) . (3.3.2)

In other words, after multipole expansion, the proper soft transformation should only depend
on x−, i.e. the collinear scalar field should transform as

ϕc(x) → Us(x−)ϕc(x) , (3.3.3)

without any subleading corrections. This way, the soft gauge transformation is homogeneous in
λ and respects the soft multipole expansion.

The second problem, at first glance unrelated, concerns the transformation of the collinear
gluon under the collinear gauge symmetry,

Ac(x) → Uc(x)Ac(x)U †c (x) + i

g
Uc(x)

[
Ds(x) , U †c (x)

]
. (3.3.4)

Here, Ds(x) appears, i.e. the full soft field As(x). Even after consistently implementing the
multipole expansion, the transformation

Ac(x) → Uc(x)Ac(x)U †c (x) + i

g
Uc(x)

[
Ds(x−), U †c (x)

]
(3.3.5)

is still inhomogeneous in λ, due to the power-counting of the gluon components (3.1.3). Namely,
the gluon scales as

n−Ac + n−As ∼ λ2 , n+Ac + n+As ∼ 1 + λ2 , Ac⊥ +As⊥ ∼ λ+ λ2 , (3.3.6)

and only the n−As component is the one that has the same scaling as the respective collinear
component, while the remaining ones are subleading with respect to their collinear counterpart.
Thus, the homogeneous collinear gauge transformation of the gluon should take the form

Ac(x) → Uc(x)Ac(x)U †c (x) + i

g
Uc(x)

[
D̂s(x−) , U †c (x)

]
, (3.3.7)

where
D̂µ
s (x−) = ∂µ − n−As(x−)n

µ
+
2 , (3.3.8)
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and only n−As(x−) is present.
In summary, there are two issues one has to address: first, one needs to ensure that the soft

gauge transformation of collinear fields respects the multipole expansion – this guarantees a
soft gauge transformation homogeneous in the power-counting parameter λ. Second, one has to
effectively replace the soft background field As(x) by n−As(x−). These two steps are necessary
in order to construct manifestly homogeneous and gauge-covariant terms in λ, i.e. terms that
have a definite power-counting and are not related to subleading terms via gauge symmetry.

3.3.2 The Static Multipole Expansion and Fixed-point Gauge
In order to explain how these two problems can be addressed, we first give a simpler example,
to build some intuition. Namely, we consider the standard multipole expansion for an Abelian
gauge field. To be precise, we consider a (hard) Dirac matter field ψ(x),3 which transforms
under a U(1) gauge symmetry as

ψ(x) → U(x)ψ(x) = e−ieα(x)ψ(x) , (3.3.9)

coupled to a (soft) background vector potential Aµ(x) with the standard transformation

Aµ(x) → U(x)Aµ(x)U †(x) + i

e
U(x)

[
∂µU

†
]

(x) = Aµ(x) − ∂µα(x) , (3.3.10)

for the Abelian field with gauge parameter α(x). The Lagrangian of these fields is then

L = ψ̄(x)iγµ∂µψ(x) + eψ̄(x)γµAµ(x)ψ(x) . (3.3.11)

We are now interested in the limit where Aµ(x) is slowly varying compared to ψ(x). That is, we
assume a “soft” power-counting for Aµ(x) ∼ λ2 ≡ ε, ∂µA(x) ∼ ε2, and a hard power-counting
for the field ψ(x) ∼ 1 and the coordinate x ∼ 1. Thus, one needs to perform the multipole
expansion about x = 0 as

Aµ(x) = Aµ(0) + xα [∂αAµ](0) + 1
2x

αxβ [∂α∂βAµ] (0) + O(ε3Aµ) . (3.3.12)

In this expansion, one can also use the order in x as power-counting, since each term adds a
further power of ε, and we adopt this convention. Inserting the multipole-expansion (3.3.12) in
the Lagrangian, one obtains to second order in x, or equivalently to O(ε3),

L = L(0) + L(1) + L(2) + L(3) + O(x3) , (3.3.13)

where the superscript indicates the order in ε, and the individual terms are given by

L(0) = ψ̄iγµ∂µψ , (3.3.14)
L(1) = eψ̄γµAµψ , (3.3.15)
L(2) = eψ̄γµxα [∂αAµ]ψ , (3.3.16)

L(3) = eψ̄γµ
1
2x

αxβ [∂α∂βAµ]ψ . (3.3.17)

Here, we used the short-hand notation ψ ≡ ψ(x), Aµ ≡ Aµ(0), and derivatives of Aµ are taken
before setting x = 0, as indicated by the square brackets. The gauge transformation of ψ now
mixes different orders of x, or ε, respectively, since the parameter of the transformation still
depends on x, hence

ψ → U(x)ψ = U(0)ψ + xα [∂αU ](0)ψ + O(x2) . (3.3.18)
3We employ a Dirac field here simply because the Lagrangian is linear and thus less complicated.
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In other words, the gauge transformation is not homogeneous in the power counting and does
not respect the multipole expansion. The proper, homogeneous transformation of the matter
field would correspond to a global transformation

ψ(x) → U(0)ψ(x) . (3.3.19)

The matter field should effectively no longer have a gauge transformation, and one would expect
that the proper Lagrangian reflects this property, by consisting only of manifestly gauge-invariant
terms, and without explicit Aµ(0) appearing. Consequently, there should be a way to simplify
the Lagrangian.

One possibility is to employ the leading-power equation of motion

/∂ψ = 0 + O(λ) , (3.3.20)

to simplify the subleading Lagrangian.4 This is a standard operation in effective theories and
often leads to simpler forms of the Lagrangian.5 The term in L(1) (3.3.15) can be rewritten as

ψ̄ /A(0)ψ = ψ̄γµ [∂µxν ]Aν(0)ψ

= −xνAν(0)
(
(∂µψ̄)γµψ + ψ̄γµ∂µψ

)
= 0 . (3.3.21)

In L(2) in (3.3.16), we have

ψ̄γµxν [∂νAµ] (0)ψ = ψ̄γµxν [∂µxα] [∂νAα] (0)ψ
= −ψ̄γνxµ [∂νAµ] (0)ψ + (eom) . (3.3.22)

There is no contribution from the subleading part of (3.3.20)

/∂ψ = −e /A(0)ψ + O(x) , ψ̄
←
/∂ = −eψ̄ /A(0) + O(x) , (3.3.23)

where ψ̄
←
/∂ ≡ −(∂µψ̄)γµ, since the relative sign between ψ and ψ̄ leads to cancellation. Thus, we

can rewrite half of this term with the above identity (3.3.22) to obtain

ψ̄γµxν [∂νAµ] (0)ψ = 1
2 ψ̄γ

µxν [∂νAµ] (0)ψ − 1
2 ψ̄γ

νxµ [∂νAµ] (0)ψ

= 1
2 ψ̄γ

µxνFνµψ , (3.3.24)

where we introduced the field-strength tensor

Fµν ≡ [∂µAν ] (0) − [∂νAµ] (0) . (3.3.25)

Next, the expression in L(3) (3.3.17) can be rearranged in a similar fashion as

ψ̄γµxαxβ [∂α∂βAµ]ψ = ψ̄γµxαxβ [∂µxν ] [∂α∂βAν ]ψ
= −2ψ̄γµxνxα [∂α∂µAν ]ψ . (3.3.26)

Accordingly, we can split the term in L(3) as

L(2) = 1
2eψ̄γ

µxαxβ [∂α∂βAµ]ψ(2
3 + 1

3)

4Note that the relevant contribution of the subleading terms of this equation of motion up to O(λ3) vanishes
when inserted into the Lagrangian.

5Note that the application of equations of motion in the operator basis is not as straightforward in SCET. Here,
equation-of-motion operators can mix into physical ones under renormalisation [54]. However, this is only
relevant for the N -jet operators and not for this discussion.
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= 1
3eψ̄

(
γµxαxβ [∂α∂βAµ] − γµxνxα [∂α∂µAν ]

)
ψ

= 1
3eψ̄γ

µxνxα [∂αFνµ]ψ . (3.3.27)

To summarise, we find the Lagrangian terms

L(0) = ψ̄iγµ∂µψ , (3.3.28)
L(1) = 0 , (3.3.29)

L(2) = 1
2eFµνψ̄γ

µxνψ , (3.3.30)

L(3) = 1
3 [e∂αFνµ] ψ̄γµxνxαψ , (3.3.31)

where the field-strength tensor and its derivative are evaluated at x = 0 after the derivatives are
taken. Thus, the interactions with the background field can be completely expressed in terms of
the field-strength tensor Fµν and its derivatives. The couplings correspond to interactions with
the dipole, quadrupole, and higher-pole moments of the matter field.

The application of equations of motion is equivalent to a field redefinition starting with

ψ(x) → ψ̂(x) = ψ(x) − iexαAα(0)ψ(x) + O(x2) . (3.3.32)

This redefinition has an interesting effect on the gauge transformation. Namely, the redefined
field ψ̂ transforms as

ψ̂(x) → ψ(x) − ieα(0)ψ(x) − iexµ [∂µα] (0)ψ(x)
− iexαAα(0)ψ(x) + iexµ [∂µα] (0)ψ(x) + O(x2, α2)

= ψ̂(x) − ieα(0)ψ̂(x) + O(x2, α2) . (3.3.33)

Thus, the redefinition is actually responsible for homogenising the gauge transformation of the
matter field. We can systematically extend this to all orders by employing a Wilson line. Namely,
we desire an object that transports the gauge transformation of the matter field from point x
to point x = 0 in a straight line. This is achieved by the Wilson line

V (x) = P exp
(
ie

∫ x

0
dyµAµ(y)

)
= P exp

(
ie

∫ 1

0
ds xµAµ(sx)

)
, (3.3.34)

where P denotes path-ordering and is relevant if we generalise this to the non-Abelian situation.
In the Abelian case, the Wilson line is just given by the exponential itself. This object transforms
as

V (x) → U(x)V (x)U †(0) . (3.3.35)
Thus, we can redefine the matter field using this Wilson line as

ψ̂(x) ≡ V †(x)ψ(x) , (3.3.36)

which now has the desired transformation

ψ̂(x) → U(0)ψ̂(x) (3.3.37)

to all orders in x. When inserting this redefinition in the Lagrangian (3.3.11), one finds

L = ¯̂
ψiγµ∂µψ̂ + e

¯̂
ψ

(
V γµAµ(x)V † + i

e
V
[
∂µV

†
])
ψ̂ . (3.3.38)

The object in brackets in the second term is of special interest. This “dressed” gauge field

Ãµ(x) = V †Aµ(x)V + i

e
V †∂µV , (3.3.39)
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is a manifestly gauge-invariant object, that only transforms with a global transformation

Ãµ(x) → U(0)Ãµ(x)U †(0) , (3.3.40)

as can easily be seen by inserting (3.3.35) and using the standard photon transformation (3.3.10).
In fact, this object corresponds to the gauge field in fixed-point, or Fock-Schwinger gauge, namely
it satisfies

xµÃµ(x) = 0 . (3.3.41)

An interesting property of fixed-point gauge is that the gauge potential Ãµ(x) can be expressed
purely in terms of the field-strength tensor as

Ãν(x) =
∫ 1

0
ds sxµFµν(sx) . (3.3.42)

This identity holds even for non-Abelian theories, where the field-strength tensor has an addi-
tional commutator term. To prove this relation,6 write

Ãµ(x) =
∫ 1

0
ds

d

ds

(
sÃµ(sx)

)
=
∫ 1

0
ds

(
Ãµ(sx) + sxν

∂

∂(sx)ν Ãµ(sx)
)

(3.3.43)

=
∫ 1

0
ds

(
Ãµ(sx) − sxνFµν(sx) + sxν

∂

∂(sx)µ Ãν(sx) + igsxν
[
Ãµ , Ãν

]
(sx)

)
.

In the non-Abelian case, the gauge condition (3.3.41) eliminates the additional commutator
term, i.e. the last term in the second line of (3.3.43). Next, observe that after integration by
parts,

sxν
∂

∂(sx)µ Ãν(sx) = ∂

∂(sx)µ (sxνÃν(sx)) − Ãµ(sx) = −Ãµ(sx) , (3.3.44)

which cancels with the first term in the second line of (3.3.43). Hence one is left with (3.3.42).
One immediately notices that in fixed-point gauge (3.3.41), the Wilson line V (3.3.34) sim-

plifies to V (x) = 1. Thus, the Wilson line can be interpreted as a special gauge transformation
that moves the generic field configuration Aµ(x) to a configuration Ãµ(x) satisfying fixed-line
gauge, according to

Ãµ(x) = V †Aµ(x)V + i

g
V †∂µV . (3.3.45)

The field Ãµ(x) then transforms only with the global transformation U(0). By continuity, the
gauge condition (3.3.41) implies Ãµ(0) = 0, so one finds Ãµ(0) = 0 in (3.3.42).

Let us now apply the identity (3.3.42) in the Lagrangian (3.3.38). we obtain

L = ψ̄iγµ∂µψ + eψ̄γν
(∫ 1

0
ds sxµFµν(sx)

)
ψ , (3.3.46)

and find that the interactions can be expressed using the field-strength tensor to all orders in x.
The expansion of this integral in x yields∫ 1

0
ds sxµFµν(sx) = 1

2x
µFµν + 1

3x
µxα [∂αFµν ] + O(x3) , (3.3.47)

where the field-strength tensors on the right-hand side are evaluated at x = 0. Consequently,
we recover the Lagrangian (3.3.28) – (3.3.31), but to all orders in ε or x, in a closed form.

The circle now closes and we can start to appreciate the systematics behind the construction we
just uncovered: In order to homogenise the gauge symmetry, we use the Wilson line V defined
in (3.3.34) to transport the gauge transformation from point x to point x = 0. The matter

6We show this directly for the non-Abelian situation.
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field ψ(x) is redefined to ψ̂(x) according to (3.3.36) and now transforms with the homogeneous
U(0). Inserting this redefinition is then equivalent to “dressing” the gauge field, i.e. replacing
Aµ(x) → Ãµ(x). This dressed gauge field Ãµ corresponds to the gauge field in fixed-point gauge
(3.3.41). In this special gauge, we find that Ãµ(0) = 0, while the subleading terms in the
multipole expansion can be expressed in terms of the field-strength tensor as (3.3.42). Thus, the
Lagrangian expressed in terms of the redefined matter field ψ̂(x) no longer has a residual gauge
field, and all interactions are due to couplings of the dipole, quadrupole, and higher-pole terms
to the field-strength tensor and its derivatives. In other words, one obtains a Lagrangian where
each term is manifestly gauge-invariant by itself. However, let us stress that no gauge is fixed
in the Lagrangian itself. The gauge field still has the full transformation, but can only appear
inside the gauge-invariant combination Fµν(0).

We now wish to extend this construction to the more general situation, where we want to
keep a residual dynamic background field. This situation arises naturally in the SCET context,
as well as in non-relativistic QED and QCD. We consider the former case in detail, but the
construction works completely analogously also for the latter case.

3.3.3 Light-front Multipole Expansion and Fixed-line Gauge
We now generalise the previous discussion to the situation encountered in SCET. The appearing
fixed-line gauge was introduced for the first time in [41], and most of the results stated here can
also be found in this reference. However, here we provide a more detailed exposition since un-
derstanding the systematics will be paramount to the more involved gravitational construction.
The details can be found in [47].

In the following discussion, we focus purely on the soft gauge transformation and ignore the
collinear gauge symmetry for the moment. As field content, we now consider the soft gluon field
Asµ(x) and some collinear matter field ψc(x). The situation in SCET is in a sense more general
than the standard multipole expansion discussed in the last section. Here, one has to perform
a multipole expansion about the collinear light-cone coordinate xµ− = n+x

nµ
−
2 instead of x = 0.

Consequently, all soft fields have a left-over dependence on x− and are dynamic. Therefore, the
first step is to extend and adapt the previously introduced fixed-point gauge xµAµ(x) = 0 to
this new situation. The more general fixed-line gauge is defined by the condition [41]

(x− x−)µAsµ(x) = 0 . (3.3.48)

This gauge condition differs significantly from fixed-point gauge since it does not restrict the
n−As component at all. For the other components of the soft gluon, As⊥ and n+As, however,
the gauge condition (3.3.48) is equivalent to standard fixed-point gauge (3.3.41). For these
components, one can immediately derive the identities corresponding to (3.3.42), and one finds

n+As(x) =
∫ 1

0
ds s(x− x−)µnν+Fsµν(y(s)) , (3.3.49)

Asν⊥(x) =
∫ 1

0
ds s(x− x−)µFsµν⊥(y(s)) , (3.3.50)

where y(s) = x− + s(x − x−). Similar to fixed-point gauge, n+As(x−) = As⊥(x−) = 0. For
n−As, however, there is no constraint. Instead, one can treat this component in the same fashion
as the soft scalar field φs in the purely-scalar theory, where we found (2.3.8)

φs(x) − φs(x−) =
∫ 1

0
ds (x− x−)µ [∂µφs] (y(s)) , (3.3.51)

simply by rewriting the multipole expansion. The corresponding result for n−As then reads

n−As(x) − n−As(x−) =
∫
ds (x− x−)µnν−∂µAν(y(s)) . (3.3.52)
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Using fixed-line gauge, one can write this in a manifestly gauge-covariant fashion by completing
the right-hand side to the field-strength tensor

(x− x−)µnν−∂µAν(y(s)) = (x− x−)µnν−Fµν(y(s)) + (x− x−)µnν−∂νAµ(y(s))
− ig(x− x−)µnν− [Aµ , Aν ] (y(s))

= (x− x−)µnν−Fµν(y(s)) . (3.3.53)

The additional second and third term in the first equality vanish in fixed-line gauge, by noticing

(x− x−)µAµ(y(s)) = 1
s

(y(s) − y−(s))µAµ(y(s)) = 0 , (3.3.54)

which eliminates the commutator term, while for the other term, one has

(x− x−)µn−∂Aµ = n−∂ [(x− x−)µAµ] = 0 (3.3.55)

since [n−∂(y − y−)µ] = 0. Thus, one obtains the identity

n−As(x) − n−As(x−) =
∫ 1

0
ds (x− x−)µnν−Fsµν(y(s)) , (3.3.56)

where the kinetic 1-form ∂µφ of the scalar in (3.3.51) is replaced by the corresponding kinetic
2-form Fµν of the vector.

These identities now allow us to again rewrite Asµ(x) in terms of manifestly gauge-covariant
field-strength tensor. However, from (3.3.56), notice that there is a residual background field,
n−As(x−), which is homogeneous in λ and dynamic in the effective theory. Accordingly, we
rewrite n−As(x) in terms of the homogeneous soft background field n−As(x−), as well as a
tower of subleading terms proportional to the field-strength tensor and its derivatives. This
emergent residual background field is necessary to obtain a theory that is covariant with respect
to the homogeneous gauge symmetry consisting of transformations Us(x−).

Let us go back to the example of a charged fermion with Lagrangian (3.3.11) and generalise
the discussion from (3.3.12) – (3.3.46) to the expansion about x−. Performing the multipole
expansion about xµ−, we obtain the generalisation of (3.3.12),

Asµ(x) = Asµ(x−) + xα⊥ [∂αAsµ] (x−) + O(λ2Asµ) , (3.3.57)

where now the counting in λ is relevant, and not the power in x or ε. Just as before, we also
have to take into account the multipole expansion in the transformation of the matter fields

ψc(x) → Us(x)ψc(x) = Us(x−)ψc(x) + xα⊥ [∂αUs] (x−) + O(λ2Us) . (3.3.58)

Again, the soft transformation mixes different orders in λ, as the homogeneous transformation
would correspond to

ψ̂c(x) → Us(x−)ψ̂c(x) . (3.3.59)

Consequently, we can again construct a Wilson line, the analogue of V defined in (3.3.34), that
moves a general field configuration into fixed-line gauge. The corresponding Wilson line, now
denoted by R(x), is given by [41]

R(x) = P exp
(
ig

∫ 1

0
ds (x− x−)µAsµ (x+ s(x− x−))

)
, (3.3.60)

and is responsible for moving the gauge transformation from point x to x− in a straight line
along the directions orthogonal to x−. Under soft gauge symmetry, it transforms as

R(x) → Us(x)R(x)U †s (x−) . (3.3.61)
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Using it, the collinear field can be redefined as

ψ̂c(x) = R†(x)ψc(x) , (3.3.62)

and now transforms homogeneously with Us(x−),

ψ̂c(x) → Us(x−)ψ̂c(x) . (3.3.63)

As an example, we insert the redefinition (3.3.62) in the leading term

ψ̄c
/n+
2 n−Ds(x)ψc = ¯̂

ψc
/n+
2 R†n−Ds(x)Rψ̂c

= ¯̂
ψc
/n+
2

(
n−∂ + g

(
R†n−As(x)R+ i

g
R
[
n−∂R

†
]))

ψ̂c , (3.3.64)

where all fields are evaluated at x. To make use of the fixed-line gauge identities (3.3.49) –
(3.3.56), add and subtract the homogeneous background field n−As(x−), to find

ψ̄c
/n+
2 n−Ds(x)ψc = ¯̂

ψc
/n+
2
(
n−Ds(x−) +

[
R†in−Ds(x)R− in−Ds(x−)

])
ψ̂c . (3.3.65)

The object in square brackets in the second term

As(x) ≡ R†As(x)R+ i

g
R† [Ds , R] , (3.3.66)

is the analogue of the “dressed” field Ã(x) (3.3.39) of the previous section and can be seen to
satisfy fixed-line gauge

(x− x−) · As(x) = 0 . (3.3.67)

The identities (3.3.49) – (3.3.56) in fixed-line gauge can be promoted to the general case by un-
doing the transformation to fixed-line gauge with the gauge transformation U = R†, resulting
in [41]

R†in−Ds(x)R− in−Ds(x−) =
∫ 1

0
ds (x− x−)µnν−R†(y(s))gFsµν(y(s))R(y(s)) , (3.3.68)

R†iDsν⊥(x)R− i∂ν⊥ =
∫ 1

0
ds s(x− x−)µR†(y(s))gFsµν⊥(y(s))R(y(s)) , (3.3.69)

R†n+Ds(x)R− in+∂ =
∫ 1

0
ds s(x− x−)µnν+R†(y(s))gFsµν(y(s))R(y(s)) . (3.3.70)

They give closed all-order expressions for the soft fields. Once expanded in λ, they generate an
infinite tower of subleading terms. The Lagrangian expressed in terms of the hatted collinear
fields contains the homogeneous soft background field n−As(x−) in the covariant derivative
n−Ds(x−), as well as subleading interactions, expressed entirely in terms of Fsµν . Once the in-
tegrals are expanded in λ, these interactions will depend on Fsµν and its (covariant) derivatives
at x−. Again, let us stress that the gauge-field in the Lagrangian has the full gauge transfor-
mation and is not gauge-fixed. It is due to the redefinitions that only n−As(x−) appears inside
the covariant derivative while all other components are allocated to the field-strength tensor.

We now understand that fixed-line gauge and the R Wilson line can be employed to render
the matter transformation manifestly homogeneous in λ. But also the second problem explained
in Section 3.3.1, namely the collinear gauge transformation of the collinear gluon, is addressed
by this construction. To understand this, consider again the implication of the redefinitions like
(3.3.62) using R: we effectively obtain a theory that is covariant not with respect to the full
Asµ(x), but rather only the residual component n−As(x−). Therefore, the redefined collinear
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ppi

ni+A(k)

A ppi

ni+A(k1) ni+A(kn)
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ni+A(k1)
ni+A(kn)

A

Figure 3.1: Diagrams depicting the emission of a single and multiple ni+Ac gluons from a leg of
different collinearity in the full theory (first and second) and in the effective theory
(third). The dashed line indicates propagators that must be integrated out. The
third diagram is the corresponding one in the effective theory, where the gluons are
emitted via an effective operator.

gluon Âc that should be used in the effective theory corresponds to a fluctuation on top of a
background described by n−As(x−) and transforms as

collinear: Âc → UcÂcU
†
c + i

g
Uc
[
Ds(x−) , U †c

]
,

soft: Âc → Us(x−)ÂcU †s (x−) .
(3.3.71)

However, to relate this redefined Âc to the previous Ac, we require one additional ingredient.

3.3.4 Collinear Gluon emission: the Collinear Wilson Line
Besides its problematic collinear gauge transformation, which we now understand how to deal
with, the collinear gluon faces a second difficulty: it contains a component n+Ac that scales as
n+Ac ∼ 1, as seen in (3.1.3). In principle, this implies that to any given process, one can attach
an infinite number of emissions of n+Ac, and they all contribute to the same order in λ. That
is, it seems that there is no finite operator basis for the N -jet operators, and one would have
to perform infinitely many matching computations at each order in λ, which would render the
power-counting futile. However, this is not the case. Note that one can fix a gauge-condition
independently in each collinear sector. Thus, it is a valid choice to impose n+Ac ≡ 0 in each
sector, i.e. to fix the respective collinear light-cone gauge. In this gauge, only the physical
transverse components propagate, and so the first valid gluon building block is Ac⊥ ∼ λ. This is
an indication that the n+Ac component is a gauge artefact and can be controlled to all orders in
the expansion. But there is a second problem: if such a gluon is emitted from a leg of different
collinearity, the intermediate propagator is hard and must be integrated out. Both problems are
connected and solved by the same tool – the collinear Wilson line Wc.

For the next part of this discussion, we neglect the soft background by setting As ≡ 0 and
focus on the purely collinear theory, i.e. the interactions of collinear matter fields ψc(x) with
the collinear gluons Ac(x).

We show how the emission of these collinear gluons can be absorbed in an effective operator
that takes the form of a Wilson line, following [55]. The computation and results are very
similar to the derivation of eikonal exponentiation [1]. Consider a scattering process featuring
two energetic particles, i and j, where a gluon ni+Ac is emitted, as depicted in Fig. 3.1. If this
gluon is emitted from the i-collinear particle, the intermediate propagator is also i-collinear, and
the full process is captured by the SCET Lagrangian. However, emission of the gluon from the
j-collinear particle results in an off-shell intermediate propagator that must be integrated out.
Schematically, the amplitude takes the form

ui(pi)
i(/p+ /k)

(p+ k)2 + i0A({p})igtaγµ
(
ni+A

a(k)n−µ2

)
uj(p) . (3.3.72)

Note that since p and k are vectors of different collinear sectors, their product is indeed hard

(p+ k)2 = ni− · nj− nj+p ni+k + O(λ) . (3.3.73)
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To simplify the amplitude (3.3.72), we first expand the denominator, keeping only the leading
term. Then, we move the /n− all the way to the left, neglecting the subleading contributions and
using the Dirac equation for uj , as well as the projection ūi/ni− = 0.7 The simplified amplitude
is then schematically given by

ui(pi)
(

−gni+A(k)
ni+k

)
A({p})uj(p) . (3.3.74)

Extending this result to the emission of n gluons ni+A, with momenta k1, k2, . . . kn, one finds

ui(pi)
∑

perm

(−g)n
n!

(
ni+A(k1) . . . ni+A(kn)

[ni+k1][ni+(k1 + k2)] . . . [ni+(k1 + · · · + kn)]

)
A({p})uj(p) , (3.3.75)

where all permutations of the gluon emissions must be taken into account. The last step is to
perform the sum over the number of gluons. The result takes the form [55]

ui(pi)WciAuj(p) , (3.3.76)

where Wci is given by

Wci =
∑
n

∑
perm

(−g)n
n!

(
ni+A(k1) . . . ni+A(kn)

[ni+k1][ni+(k1 + k2)] . . . [ni+(k1 + · · · + kn)]

)
. (3.3.77)

This object is the momentum-space version of an i-collinear Wilson line Wci . In position space,
suppressing the index i, this semi-infinite Wilson line reads

Wc(x) = P exp
(
ig

∫ 0

−∞
ds n+Ac(x+ sn+)

)
, (3.3.78)

and is defined along a straight line in the nµ− direction going from point x to infinity, denoted
by x− ∞n+.

Under collinear gauge transformations, it behaves as

Wc(x) → Uc(x)Wc(x)U †c (x− ∞n+) , (3.3.79)

and we adopt the convention that the transformation falls off at infinity, resulting in

Wc(x) → Uc(x)Wc(x) . (3.3.80)

Moreover, this Wilson line has the defining property

in+DcWc = Wcin+∂ , (3.3.81)

or, applied directly to the gluon field,

W †c n+AcWc + i

g
W †c [n+∂Wc] = 0 . (3.3.82)

In other words, the Wilson line Wc can be thought of as the transformation that takes a general
gauge configuration Ac(x) and moves it to light-cone gauge, where n+Ac(x) = 0. This also
explains why it appears in the matching computation (3.3.76): if light-cone gauge is fixed,
Wc = 1 and no such emissions can take place. Accordingly, the Wilson line relates the amplitude
in light-cone gauge to the one in a general gauge, thereby controlling the appearance of n+Ac
to all orders.

7This property is explained in the later Section 3.7 and follows from the expansion of the Dirac equation. For
now, it is only important that this contribution vanishes and the result simplifies.
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Applying the Wilson line to the other gluon components, one obtains for example

Ac⊥ = W †cAc⊥Wc + i

g
W †c [∂⊥Wc] , (3.3.83)

which is manifestly gauge-invariant, i.e. Ac⊥ → Ac⊥. At the linear level,8 this object takes the
form

Acµ⊥ = Acµ⊥ − ∂µ⊥

n+∂
Ac+ + O(gAcµ⊥) . (3.3.84)

One can also define manifestly gauge-invariant matter fields χc as

χc = W †cψc . (3.3.85)

This gives us the possibility to control the large n+Ac component, by working in “covariant”
light-cone gauge, i.e. by working with general gauge fields Ac, but always dressed with the
collinear Wilson line Wc as in (3.3.83). Furthermore, since these objects Ac are manifestly
collinear gauge-invariant, by employing these fields in the operator basis one is automatically
collinear gauge-invariant in any direction, and there is no further need to check gauge-invariance
explicitly. Therefore, the purely-collinear theory strongly urges one to use the Wilson line Wc

and the collinear gauge-invariant objects whenever possible.

3.3.5 Field Redefinitions in the Soft-collinear Theory

Let us summarise the key insights of the past two sections. First, from the purely collinear
theory, we learned that we should employ the collinear Wilson line Wc to construct manifestly
collinear gauge-invariant building blocks. This controls the large components of the gluon n+Ac.
Second, we understood that the effective theory, once multipole expanded, should be formulated
as a theory that is covariant with respect to the emergent soft background described only
by n−As(x−), the homogeneous component of the soft gluon that lives only on the classical
trajectory of the energetic particles. In order to achieve this formulation, the Wilson line R(x)
(3.3.60) can be used to transport the gauge transformation.

However, recall that the collinear gluon has a non-trivial collinear gauge transformation once
we include the soft background as seen in (3.2.3), and, in particular,

n+Ac → Ucn+AcU
†
c + i

g
Uc
[
n+Ds(x), U †c

]
. (3.3.86)

Therefore, in the soft-collinear setting, the Wilson line Wc as defined in (3.3.78), using the
original gluon field Ac with transformation (3.2.3), does not have a good gauge transformation
either under soft or collinear, as the covariantly-transforming gluon would be n+Ac + n+As(x).
The Wilson line should always be defined in terms of Ac and the relevant soft background
field. However, from the previous discussion, we understand that the redefined matter fields are
covariant with respect to the emerging homogeneous background n−As(x−), so the redefined
collinear gluon Âc should transform as (3.3.71), where in particular

n+Âc → Ucn+ÂcU
†
c + i

g
Uc
[
n+∂U

†
c

]
(3.3.87)

has the standard transformation, without any reference to the background. Consequently, the
Wilson line Wc defined in terms of Âc as

Wc(x) = P exp
(
ig

∫ 0

−∞
ds n+Âc(x+ sn+)

)
(3.3.88)

8Which is exact in QED.

38



3.4 Constructing the Effective Lagrangian

has well-defined collinear and soft gauge transformations, as

Wc(x) coll.−−→ Uc(x)Wc(x) , Wc(x) soft−−→ Us(x−)Wc(x)U †s (x−) . (3.3.89)

We can now use this collinear Wilson line, in conjunction with the previously defined soft R(x)
(3.3.60) to redefine the collinear gluon and matter fields. To achieve the proper transformations
(3.3.71), one first fixes collinear light-cone gauge n+Ac = 0, eliminating the collinear gauge
transformation. Then, the redefined and the original gluon field are related according to their
soft gauge transformation as

Ac⊥ = R(x)Âc⊥R†(x) . (3.3.90)

Similarly, the matter fields are related as

ϕc(x) = R(x)ϕ̂c(x) . (3.3.91)

In collinear light-cone gauge, we have Âc = Âc, and one can reinstate the gluon field in a generic
gauge using the Wc Wilson line. Thus, the redefinition reads

A⊥c = R

(
W †c Âc⊥Wc + i

g
W †c [∂⊥ ,Wc]︸ ︷︷ ︸

=Â⊥c

)
R† , (3.3.92)

n−Ac = R

(
W †c n−ÂcW + i

g
W †c [n−Ds(x−) ,Wc]︸ ︷︷ ︸

=n−Âc

)
R† , (3.3.93)

where the object inside the brackets corresponds to the collinear-gauge-invariant building block
Âc. For the matter field, one can reinstate the collinear gauge transformation in a similar fashion
and one finds

ψc = RW †c ψ̂c . (3.3.94)

In summary, the effective theory should be expressed in terms of the homogeneously trans-
forming fields ϕ̂c, Âc, which are covariant with respect to the soft background described by
the component n−As(x−). The other components of As, as well as the subleading terms from
the multipole expansion, are expressed in terms of the field-strength tensor and its derivatives.
These fields are related to the original fields ϕc, Ac via the soft Wilson line R and the collinear
Wilson line Wc. Using the collinear Wilson lines Wc, one can further define manifestly collinear
gauge-invariant building blocks.

With these definitions out of the way, the effective Lagrangian can now be constructed in a
straightforward fashion, following closely the construction in the scalar case in Section 2.5.

3.4 Constructing the Effective Lagrangian
We are now in a position to construct the soft-collinear Lagrangian. The derivation is essentially
the same as in the purely-scalar case presented in Section 2.5, with the additional complication
of the gauge symmetry, as explained in the previous section. Consequently, there is an additional
step in the construction where we make use of the R and Wc Wilson lines to relate the original
fields Ac, ϕc, which are covariant with respect to the full As(x), to the redefined fields Âc, ϕ̂c,
which are now covariant with respect to n−As(x−). This derivation was first presented in [41]
and is also explained in detail in [47], which we follow closely, and consists of four steps:

(i) Like in the purely-scalar case, one introduces the decompositions given in (3.2.2), (3.2.5)
into the Lagrangian. This yields the theory of a collinear fluctuation on top of a soft
background As(x), each sector with its own gauge symmetry. However, the Lagrangian
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is not yet homogeneous in λ for two reasons: First, in soft-collinear interactions, like∫
d4xψc(x)ψs(x) . . ., the x argument of the soft field has a different power-counting than

the collinear measure d4x, and it should be evaluated at x−, which has the same scaling for
both soft and collinear fields. This problem was also present in the purely-scalar theory.
Second, there is a new problem. The soft gauge transformation is also evaluated at collinear
x, and it must be homogenised in λ.

(ii) Next, to render soft-collinear interactions homogeneous, we perform the multipole expan-
sion of the soft fields As(x) = As(x−) + O(λ). This way, each term is now, in principle,
manifestly homogeneous in λ. However, the soft gauge symmetry does not yet respect the
multipole expansion, namely, collinear fields still transform with the full transformation
Us(x) (3.2.3), but should only transform with the homogeneous Us(x−). Thus, the gauge
transformations still mix different orders in λ.

(iii) To remedy this, we redefine the collinear fields ϕc → ϕ̂c using the R Wilson line (3.3.60), so
that the soft gauge transformation Us of these fields respects the multipole expansion and
depends only on xµ−. At the same time, this also makes the transformation homogeneous
in λ. Expressed in these new fields, one finds a theory that is covariant with respect to the
homogeneous background field n−As(x−), which appears inside a new covariant derivative.
All other terms due to the multipole expansion and due to the other gluon components
are expressed in a manifestly gauge-covariant fashion in terms of the field-strength tensors,
using identities like (3.3.49) and (3.3.56). This yields a closed all-order expression of the
subleading Lagrangian.

(iv) As the final step, one can perform the λ expansion of this closed result to obtain the
Lagrangian order-by-order in λ. Each term is now homogeneous in λ, that is, it has a
definite scaling in λ and is covariant with respect to the homogeneous soft gauge symmetry
due to n−As(x−).

We first show how this construction works for the scalar QCD scenario, as presented in [47].
This procedure can be extended in a straightforward fashion to both fermionic [40, 41] and
vectorial matter [48], since the construction only depends on the representation under soft gauge
transformations.

3.4.1 Background-field Lagrangian

To begin, in step (i), we insert the decompositions (3.2.2), (3.2.5) into the scalar QCD Lagrangian
to obtain

L = 1
2 [n+Dϕc]† n−Dϕc + 1

2 [n−Dϕc]† n+Dϕc

+ [Dµ⊥ϕc]
†Dµ⊥ϕc + [Dsµϕs]†Dµ

s ϕs

+ 1
2 [n+Dϕc]† n−DWZ†ϕs + 1

2
[
n+DWZ†ϕs

]†
n−Dϕc

+ 1
2 [n−Dϕc]† n+DWZ†ϕs + 1

2
[
n−DWZ†ϕs

]†
n+Dϕc

+ [Dµ⊥ϕc]
†Dµ⊥WZ†ϕs +

[
Dµ⊥WZ†ϕs

]†
Dµ⊥ϕc , (3.4.1)

where Dµ = ∂µ− igAcµ− igAsµ(x). This Lagrangian is invariant under the full background-field
gauge symmetry (3.2.3) and describes a collinear fluctuation on top of a soft background As(x).
To render the terms in this Lagrangian homogeneous, we perform the multipole expansion of all
soft fields about xµ−, as in (2.3.7). At the same time, we can already employ the results from
Section 3.3.5 and introduce the redefined fields Âc, ϕ̂ (3.3.92), (3.3.94), which are covariant with
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respect to the homogeneous n−As(x−), that is, they transform with a gauge symmetry that
only depends on the parameter εs(x−) at x−. This means that in practice, steps (ii) and (iii)
are performed simultaneously.

Since the fields are covariant only to n−As(x−), it is useful to introduce the corresponding
soft-covariant derivative

Dsµ = ∂µ − ign−As(x−) n+µ
2 , (3.4.2)

as well as the gauge-covariant “dressed” combination (3.3.66)

As(x) ≡ R†As(x)R+ i

g
R† [Ds , R] , (3.4.3)

where Dsµ is the one in (3.4.2). This combination Aµ
s (x) corresponds to the manifestly gauge-

covariant part of the original field, which can be expressed in terms of the field-strength tensor
and its covariant derivatives using the identities (3.3.49) – (3.3.56). The full-theory gauge
potential As(x) splits into the homogeneous background field n−As(x−), which only appears
inside n−Ds(x−), and the gauge-covariant object As(x), which is expressed in terms of the
field-strength tensor Fsµν(x−) and its derivatives, as explained in detail following (3.3.64).

3.4.2 All-order Soft-collinear Lagrangian

We now discuss the technical implementation of steps (ii) and (iii) in detail. Since the computa-
tion of all terms in the Lagrangian is completely analogous, we explain in detail the derivation
for the case ϕs = 0 and give the final result containing all terms. We therefore focus only on the
first three terms of the Lagrangian (3.4.1).

We want to make use of the field redefinitions (3.3.92) – (3.3.94), this requires us to fix
collinear light-cone gauge for the unhatted fields. The Lagrangian (3.4.1), where we set ϕs = 0,
then reads

L = 1
2 [n+Ds(x)ϕc]† n−Dϕc + 1

2 [n−Dϕc]† n+Ds(x)ϕc + (Dµ⊥ϕc)†Dµ⊥ϕc , (3.4.4)

where Dµ = ∂µ − igAcµ − igAsµ(x), and here Dsµ(x) = ∂µ − igAsµ(x) still contains the full soft
gauge field. We now insert the redefinitions (3.3.92) – (3.3.94), and express the Lagrangian in
terms of the manifestly gauge-invariant χ̂c and Âc, which are defined in the very same equations.
We obtain

L = 1
2 [(n+∂ − ign+As(x)) χ̂c]†

(
n−Ds − ign−Âc − ign−As(x)

)
χ̂c + h.c.

+
[(
∂µ⊥ − igÂcµ⊥ − igAsµ⊥(x)

)
χ̂c
]† (

∂µ⊥ − igÂµ⊥
c − igAµ⊥

s (x)
)
χ̂c ,

(3.4.5)

where now Ds is defined with respect to the homogeneous background field n−As(x−) given in
(3.4.2). Next, use the fixed-line gauge identities (3.3.49) – (3.3.56) to eliminate As⊥(x), n+As(x)
and the subleading terms from the multipole expansion of n−As(x), which are all collected inside
As(x), in favour of the field-strength tensor. In addition, to simplify the notation, we introduce
the Noether currents jaµ

n+j
a = iχ̂†ct

an+
↔
∂ χ̂c ,

jaµ⊥
= iχ̂†ct

a
↔
Dcµ⊥χ̂c ,

n−j
a = iχ̂†ct

an−
↔
Dχ̂c ,

(3.4.6)

and the covariant derivatives
Dcµ⊥ = ∂µ⊥ − igÂcµ⊥ ,

n−D = n−Ds − ign−Âc .
(3.4.7)
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The left-right arrow indicates

iχ̂†ct
a
↔
Dcµ⊥χ̂c = i

(
χ̂†ct

aDcµ⊥χ̂c −
[
Dcµ⊥χ̂

†
c

]
taχ̂c

)
, (3.4.8)

with ta the colour generators in the representation of the scalar field. This yields the Lagrangian

L = L(0) + Lsub , (3.4.9)

where the leading-power terms are

L(0) = 1
2 [n+∂χ̂c]† n−Dsχ̂c + 1

2 [n−Dsχ̂c]† n+∂χ̂c + ∂µ⊥χ̂
†
c∂
µ⊥χ̂c

+ 1
2gn−Âa

cn+j
a + gÂa

cµ⊥
jaµ⊥ + g2Âa

cµ⊥
Âbµ⊥
c χ̂†ct

atbχ̂c

= 1
2 [n+∂χ̂c]† n−Dχ̂c + 1

2 [n−Dχ̂c]† n+∂χ̂c + [Dcµ⊥χ̂c]
†Dµ⊥

c χ̂c . (3.4.10)

The advantage of this construction is that the subleading terms are expressed to all orders in λ
in a closed form via the integrals. One finds

Lsub = 1
2gn+j

b
∫ 1

0
ds (x− x−)µnν−Rab(y(s))F asµν(y(s))

+ gjbν⊥

∫ 1

0
ds s(x− x−)µRab(y(s))F asµν⊥

(y(s))

+ 1
2gn−j

b
∫ 1

0
ds s(x− x−)µnν+Rab(y(s))F asµν(y(s))

+ 1
2g

2χ̂†c

{
ta , tb

}
χ̂c

∫ 1

0
ds (x− x−)µRda(y(s))nν−F dsµν(y(s))

×
∫ 1

0
ds′ s′(x− x−)αnβ+Reb(y(s′))F esαβ(y(s′))

+ 1
2g

2χ̂†c

{
ta , tb

}
χ̂c

∫ 1

0
ds s(x− x−)µRda(y(s))F dsµν(y(s))

× ηνβ⊥

∫ 1

0
ds′ s′(x− x−)αReb(y(s′))F esαβ(y(s′)) ,

(3.4.11)

where we introduced the adjoint R-Wilson line

Rab(x)tb = R†(x)taR(x) . (3.4.12)

A few comments are in order. First, L(0) contains all collinear interactions, as well as the soft-
collinear interactions mediated by the covariant derivative n−Ds(x−). It counts homogeneously
as O(λ0) and is the leading-power Lagrangian, as we show below. These leading soft-collinear
interactions are precisely the eikonal terms that one finds in the diagrammatic approach.

The subleading terms in Lsub are not homogeneous in λ. All these interactions stem from
the multipole expansion of the soft field. Using fixed-line gauge, we managed to re-express all
these terms, including the relatively-suppressed components As⊥(x) and n+As(x) (compared
to the respective collinear modes), in a closed form as an integral over the field-strength ten-
sor. Expanding these integrals yields an infinite tower of subleading soft-collinear interactions.
Therefore, we see that this Lagrangian (in conjunction with the N -jet operators) describes the
full soft-collinear physics to all orders in λ, even in a closed form. No additional conceptual
ingredients are necessary to describe these limits beyond subleading power, and the form of the
theory is completely determined by covariance with respect to the homogeneous soft background
gauge symmetry mediated by n−As(x−).

However, for practical computations, one should work with objects that have a homogeneous
scaling in λ. Hence, we expand the integrals in λ and determine the Lagrangian to O(λ2).
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3.4.3 Expansion in λ

In this last step (iv), we only need to expand the integrals appearing in (3.4.11). The leading-
power term (3.4.10), does not need any expansions and is already homogeneous in λ. Conse-
quently, the leading-power Lagrangian is given by

L(0) = 1
2
[
n+Dcϕ̂c

]†
n−Dϕ̂c + 1

2
[
n−Dϕ̂c

]†
n+Dcϕ̂c +

[
Dcµ⊥ ϕ̂c

]†
Dµ⊥
c ϕ̂c . (3.4.13)

For the integrals in (3.4.11), use the expansions [41]∫ 1

0
ds (x− x−)µnν−R†(y(s))gFsµν(y(s))R(y(s)) = xµ⊥n

ν
−gFsµν

+ 1
2n−xn

µ
+n

ν
−gFsµν + 1

2x
µ
⊥x⊥ρn

ν
− [Dρ

s , gFsµν ] + O(λ5) , (3.4.14)∫ 1

0
ds s(x− x−)µR†(y(s))gFsµν⊥(y(s))R(y(s)) = 1

2x
µ
⊥gFsµν⊥ + O(λ4) , (3.4.15)∫ 1

0
ds s(x− x−)µnν+R†(y(s))gFsµν(y(s))R(y(s)) = O(λ3) . (3.4.16)

Here, we do not need to expand all terms to a fixed order (e.g. O(λ4)), since the second and third
integral appear power-suppressed in the Lagrangian, starting at O(λ) and O(λ2), respectively.

The subleading terms (3.4.11) then yield up to O(λ2) the contributions

L(1)
χ = 1

2x
µ
⊥n

ν
−gF

a
sµνn+j

a , (3.4.17)

L(2)
χ = 1

4n−xn
µ
+n

ν
−gF

a
sµνn+j

a + 1
4x

µ
⊥x⊥ρn

ν
−tr ([Dρ

s , gFsµν ] ta)n+j
a + 1

2x
µ
⊥gF

a
sµν⊥

jaν⊥ . (3.4.18)

For any practical applications, the Noether current should also be expressed in terms of the
non-invariant fields ϕ̂c and Âc. The complete Lagrangian then reads

L(0) = 1
2
[
n+Dcϕ̂c

]†
n−Dϕ̂c + 1

2
[
n−Dϕ̂c

]†
n+Dcϕ̂c +

[
Dcµ⊥ ϕ̂c

]†
Dµ⊥
c ϕ̂c , (3.4.19)

L(1)
ϕc

= 1
2 ϕ̂
†
c

(
xµ⊥n

ν
−WcgFsµνW

†
c

)
in+Dcϕ̂c + h.c. , (3.4.20)

L(2)
ϕc

= 1
4 ϕ̂
†
c

(
n−xn

µ
+n

ν
−WcgFsµνW

†
c

)
in+Dcϕ̂c + 1

4 ϕ̂
†
c

(
xµ⊥n

ν
−x⊥ρWc [Dρ

s , gFsµν ]W †c
)
in+Dcϕ̂c

+ 1
2 ϕ̂
†
c

(
xµ⊥WcgFsµνW

†
c

)
iDν

c⊥ϕ̂c + h.c. (3.4.21)

The construction of the terms containing soft matter fields ϕs proceeds in complete analogy to
the previous discussion. The soft matter field gives rise to new contributions starting at O(λ),
which take the form

L(1)
ϕcϕs

= 1
2
[
n+Dcϕ̂c

]†
n−
←
DWcϕs +

[
Dµ⊥
c ϕ̂c

]† ←
Dcµ⊥Wcϕs + 1

2
[
n−Dϕ̂c

]†
n+
←
DcWcϕs + h.c. ,

(3.4.22)

L(2)
ϕcϕs

=
(1

2
[
in+Dcϕ̂c

]†
n−
←
D +

[
iDµ⊥

c ϕ̂c
]† ←
Dcµ⊥ + 1

2
[
in−Dϕ̂c

]†
n+
←
Dc

)
Wc x

ρ
⊥ [Dsρ⊥ϕs]

+
[
Dcµ⊥ ϕ̂c

]†
WcD

µ⊥
s ϕs + 1

2ϕ
†
sW
†
c (n+Dcn−D +Dcµ⊥D

µ⊥
c )Wcϕs + h.c. (3.4.23)

These Lagrangians completely describe the soft-collinear physics of scalar matter particles cou-
pled to Yang-Mills theory. Let us stress again that this Lagrangian is not renormalised and all
coefficients are exact to all orders in the coupling αs and the power-counting parameter λ [40]
since the starting point is already a renormalised theory.

To describe processes that feature more than one collinear direction, one must include the N -
jet operators that describe hard sources emitting multiple collinear particles. These operators
are explained in the next section.
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3.5 N-jet Operator Basis
The N -jet operators are introduced for the purely-scalar theory in Section 2.6. Most statements
directly generalise to the gauge-theoretic situation. However, we now need to account for the
gauge symmetry, which further constrains the form of the building blocks. Recall that these
operators are required to mediate interactions between different collinear sectors, which depend
on the underlying hard process, and are thus not part of the Lagrangian interactions. The
operator basis of these objects in the position-space formalism has been worked out in [50, 52]
and we state the most important results here.

A generic N -jet operator takes the same form as in the scalar case (2.6.1)

J =
∫

[dt]N C̃(ti1 , ti2 , . . . )Js(0)
N∏
i=1

Ji(ti1 , ti2 , . . . ) , (3.5.1)

where [dt]N = ∏
ik dtik . Here, Ji denote the collinear and Js the soft building blocks, and

C̃(ti1 , ti2 , . . . ) is the hard matching coefficient.
In gauge theory, a colour-neutral on-shell amplitude is gauge-invariant under the full gauge

symmetry (3.2.3). Therefore, when the matching is performed, the N -jet operator should be
gauge-invariant as well. The gauge symmetry of the full theory factorises into a product of N
collinear gauge symmetries, which only act on the respective collinear sector, and one collective
soft gauge background symmetry, under which all sectors transform in a similar fashion. To
ensure full-theory gauge-invariance, one must obtain an operator that is invariant under both
the collinear as well as the soft gauge transformations, possibly after taking into account on-shell
conditions and colour-neutrality.

For the collinear gauge symmetry, it is easiest to work in terms of manifestly gauge-invariant
operators, while for the soft we employ covariant objects. Consequently, one works with opera-
tors that transform as

Ji(x) col.−−→ Ji(x) , Ji(x) soft−−→ Us(xi−)Ji(x) , (3.5.2)

where the soft transformation depends on the representation of the building block, but, crucially,
for Ji at x is always evaluated along the collinear light-cone coordinate xi−. This can be achieved
by working in terms of the redefined scalar fields ϕ̂ci and Âci , and employing the gauge-invariant
building blocks constructed from them, i.e. the gauge-invariant scalar field χ̂ci (3.3.85) and
the gauge field Âci (3.3.83). This restricts the collinear building blocks to combinations of the
manifestly gauge-invariant fields and their derivatives. At O(λ), one has the building blocks

χ̂ci = W †ci
ϕ̂ci , gÂµ

ci⊥i
= W †ci

[
iDµ

ci⊥i
Wci

]
. (3.5.3)

As explained in Section 2.6, the possible O(1) building blocks that can be constructed by adding
ni+∂ are already accounted for by the non-locality. In gauge-theory, there is the additional O(1)
object ni+Âci . However, since we work with the manifestly gauge-invariant building blocks,
which are constructed using Wci , these building blocks are effectively evaluated in collinear
light-cone gauge and satisfy ni+Âci = 0. Therefore, there are no O(1) building blocks in the
operator basis, and at any given order in λ, there are only finitely many possible operators. In
summary, the elementary building blocks, denoted by JA0

i , are given by

JA0
i (ti) ∈

{
χ̂ci(tini+) , χ̂†ci

(tini+) , Âci⊥i
(tini+)

}
. (3.5.4)

As explained in Section 2.6, there are only two possible ways to construct subleading operators
from the building blocks JA0

i , either by adding power-suppressed derivatives or by adding more
collinear building blocks. In the scalar case, we managed to eliminate ni−∂ in favour of ∂2

⊥ and
other soft and collinear building blocks. In gauge-theory, one can similarly use the equations of
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motion to eliminate the soft-covariant ni−D as well as the power-suppressed ni−Âci in favour
of the A0-building blocks (3.5.4) and transverse derivatives thereof, plus additional purely-soft
building blocks. This is performed explicitly in the appendix of [52].

The soft building blocks are similarly constrained. Under gauge transformations, these oper-
ators must transform as

Js(x) col.−−→ Js(x) , Js(x) soft−−→ Us(x)Js(x) , (3.5.5)

where the soft transformation depends on the representation, as above. The collinear transfor-
mation does not give any constraints, since soft fields are invariant by definition. Hence the only
requirement is that Js is a soft gauge-covariant object, for example

ϕs(x) ∼ λ2 , Fsµν ∼ λ4 , iDµ
s ϕs(x) ∼ λ4 , (3.5.6)

where Dµ
s = i∂µ − igAµs (x) in the purely soft case. Let us stress again that the covariant

derivative n−Ds is not a valid building block, since it can be eliminated by collinear equations
of motion. Therefore, the first possible soft gluon building block is the field-strength tensor
Fsµν ∼ λ4, which appears at next-to-next-to-soft order.

For J to be gauge-invariant, one has to impose colour-neutrality. This means that the soft
transformations Us(0) of all collinear and soft building blocks together must combine to unity,∏

building blocks Us(0) = 1.

3.6 Soft Emission and the LBK Theorem
As an example application, we use the previously constructed effective Lagrangian and the
operator basis to derive and prove the LBK theorem from the EFT perspective. The derivation
amounts to a straightforward tree-level computation of a soft-emission process. However, it is
instructive to perform this computation in detail to familiarise oneself with the non-standard
SCET Feynman rules.

To set the stage, recall a main insight of the previous N -jet operator discussion: there are no
possible soft gluon building blocks until O(λ4), where the soft field-strength tensor Fsµν enters.
However, there are soft-collinear Lagrangian interactions starting already at leading power.
This means that any contribution to the emission of a soft gluon, starting from leading power
until next-to-next-to-leading power, must stem from the universal, that is process-independent,
Lagrangian interactions.9 Only at the sub-subleading level in the soft expansion, corresponding
to O(λ4), a soft building block can be added to the N -jet operator, and thus process-dependence
can enter via a new matching coefficient.

Let us emphasise that this statement already implies that soft emission is universal not just
at leading but also at next-to-soft order in gauge theory. Only at the third order in the soft
momentum, there exists a possibility to add process-dependent contributions, and consequently,
the soft theorem only contains two universal terms. Remarkably, this statement is manifest from
the Lagrangian and the possible building blocks, and no computation is necessary to prove the
universality of the soft theorem. The computation is only required to derive the precise form of
the soft theorem, not the fact that it holds true.

In other words, just from these considerations we already know that the soft-emission ampli-
tude Arad is related to the non-radiative amplitude A as

Arad = S(0) [A] + S(2) [A] + O(ks) , (3.6.1)

where S(0) and S(2) denote universal operators acting on the non-radiative amplitude.
9We will show below that there are no physical contributions at next-to-leading power. This can be under-

stood from counting soft momenta ks ∼ λ2: Next-to-soft corresponds to next-to-next-to-leading power in our
counting.
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Figure 3.2: Two diagram classes contributing to the soft emission process in SCET. The first
class represents Lagrangian insertions in the external legs via time-ordered product
operators. These contributions are independent of the underlying hard amplitude.
The second class stems from explicit soft building blocks Js added to the N -jet
operator. There are no soft gluon building blocks until O(λ4), and these diagrams
do not exist at O(λ0) or O(λ2).

Moreover, the Lagrangian interactions and the soft building blocks added directly to the N -
jet operators correspond to different classes of Feynman diagrams, as depicted in Fig. 3.2. The
Lagrangian interactions simply correspond to emission from the external legs, and thus only
depend on the properties of these legs, i.e. on the precise form of the soft-collinear interactions.
These interactions depend only on fundamental properties of the elementary particles, like spin,
charge (and representation), or the kinematics of the scattering. The second type, adding a soft
building block to the N -jet, corresponds to emissions directly from the hard vertex. Recall from
the conventional derivation in Section 1.1, that these diagrams contributed at next-to-soft order,
and one had to employ gauge-invariance to address these terms. Here, in the effective theory,
these diagrams are manifestly absent.

Furthermore, since the Lagrangian Li describes only a single collinear sector i, one can im-
mediately conclude that the soft theorem reduces to a sum over the different legs, where each
summand must be of the same form since it stems from the Lagrangian insertions. Therefore,
one can specify (3.6.1) as

Arad =
N∑
i=1

S
(0)
i [A] + S

(2)
i [A] + O(ks) , (3.6.2)

where all Si are of the same form. It is enough to compute the soft emission from a single leg
to determine Si, and we obtain the full soft emission amplitude by summing this contribution.

3.6.1 Assumptions and Relevant Operators

To derive the precise form of the soft theorem, we consider a process where a single soft gluon is
emitted from N energetic scalar particles. Therefore, we are only interested in contributions to
single-soft emission. To simplify the discussion, we will further assume that these N energetic
particles are well-separated in angle, i.e. that they can be assigned to different collinear sectors,
and no collinear splitting takes place.10 In addition, we use a special reference frame for the
radiative process: we choose a frame where each collinear reference vector is aligned with its
momentum, i.e. pµi = ni+pi

nµ
i−
2 and pi⊥ = ni−pi = 0. This choice is always possible, as long as

each energetic particle is in its own collinear sector.
Note that one cannot choose this reference frame simultaneously for both the radiative and

non-radiative computation, since the soft momentum kµ enters in the hard vertex, and thus
10This assumption is not necessary to derive the soft theorem, but it simplifies the computation drastically.

46



3.6 Soft Emission and the LBK Theorem

we can either choose to align pi + k or pi with ni+, but not both. Therefore, we compute the
non-radiative matching in a general reference frame with pi⊥ ̸= 0.

Next, we discuss the possible building blocks that contribute. At leading power, there is only
the operator

J (0) =
∫

[dt]N C̃A0(t1, . . . , tN )
∏
i

JA0
i (ti) , (3.6.3)

where the form of JA0
i depends on the specific process at hand. Since we assume that we

only have a single particle in each collinear direction, the subleading operators are completely
determined by inserting the subleading building blocks

O(λ1) : JA1µ
∂χ†

i

(ti) = i∂µi⊥χ
†
i (tini+) ,

O(λ2) : JA2µν
∂2χ†

i

(ti) = i∂µi⊥i∂
ν
i⊥χ
†
i (tini+) .

(3.6.4)

Throughout the computation, we employ the all-outgoing convention for our process. Accord-
ingly, the relevant building blocks are χ†ci

.
Note that the operator (3.6.3) contains a matching coefficient C̃A0, which is determined by

“non-radiative” matching, i.e. matching to the underlying N -jet process without soft radiation.
This non-radiative matching is precisely the one already performed in Section 2.7, now with
slightly different building blocks and in the context of QCD. It still holds that, intuitively, the
Fourier-transformed matching coefficient CAn is precisely the non-radiative amplitude order-by-
order in λ.

Since there are no available soft building blocks, all contributions to the emission must stem
from Lagrangian interactions, which we incorporate using time-ordered products that scale as

i

∫
d4x T{JAk(ti),L(n)

i (x)} ∼ O(λk+n) (3.6.5)

compared to the leading-power current JA0. Thanks to our choice of reference frame, there will
only be three non-vanishing contributions to O(λ2), stemming from∫

d4x T
{

J (0),L(0)
χ

}
, (3.6.6)∫

d4x T
{

J (0),L(2)
χ

}
, (3.6.7)∫

d4x T
{

J (1),L(1)
χ

}
, (3.6.8)

where J (1) contains one subleading building block from (3.6.4). All other relevant terms vanish
in our reference frame. Since we can relate J to the non-radiative amplitude, we immediately
see the structure of the soft theorem appearing, namely as some soft-collinear operator acting
on the non-radiative amplitude J .

3.6.2 Non-radiative Matching

We begin by performing the non-radiative matching. This section is in some sense a more
abstract version of the explicit matching performed in Section 2.7, and we keep the discussion
rather brief.

In the full theory, we denote the non-radiative amplitude for the process by A, and we need
to relate this to the hard matching coefficients C̃ of our operators by matching. In Section 2.7,
we already found that the N -jet operator can be thought of as the non-radiative amplitude, and
its subleading corrections then correspond to the Taylor-expansion in the subleading momenta.
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This result makes the following discussion look overly technical and somewhat inconvenient at
first glance, very reminiscent of the traditional derivation [27, 28], where one has to impose
momentum conservation to relate the non-radiative and radiative amplitude before performing
the expansion in the soft momenta. However, from the effective theory point of view, this is
just a standard matching computation, which then yields a rather trivial result. Since the soft
theorem is a tree-level statement, we will restrict the discussion to tree-level matching.

The full-theory amplitude A, which depends on the scalar products of momenta, must be
expanded in λ as

A = A(0) + A(1) + O(λ2) , (3.6.9)

with

A(0) = A
∣∣∣
pµ

i =ni+pi n
µ
i−/2

, (3.6.10)

A(1) = pµi⊥

(
∂

∂pµi⊥
A
)∣∣∣∣∣

pµ
i =ni+pi n

µ
i−/2

. (3.6.11)

At leading-power, the amplitude A(0) must be reproduced by the matrix element of the leading-
power N -jet operator (3.6.3), which yields the condition

A(0) = ⟨p1, . . . , pN | J (0) |0⟩

=
∫

[dt]N ei
∑

i
ni+pi tiC̃A0(t1, . . . tN ) ≡ CA0(n1+p1, . . . , nN+pN ) , (3.6.12)

where CA0({ni+pi}) is the Fourier-transformed matching coefficient.
At next-to-leading power, one can continue matching explicitly, or use the RPI constraints

[53,56] to determine the subleading matching coefficients. For CA1, it reads (2.7.16)

CA1µ
j (n1+p1, . . . , nN+pN ) = −

∑
k ̸=j

2nµk−
nk−nj−

∂

∂ni+pi
CA0(n1+p1, . . . , nN+pN ) . (3.6.13)

3.6.3 Soft Theorem Computation

Let us now calculate the soft factors explicitly. The relevant interaction terms contributing to
single soft emission are

L(0) ⊃ g

2n−A
a
s(x−)

(
ϕ†ct

ain+∂ϕc − in+∂ϕ
†
ct
aϕc
)
, (3.6.14)

L(1)
χ ⊃ 1

2x
µ
⊥n

ν
−gF

a
sµνn+j

a , (3.6.15)

L(2)
χ ⊃ 1

4n−xn
µ
+n

ν
−gF

a
sµνn+j

a + 1
4x

µ
⊥x⊥ρn

ν
−tr([∂ρgFsµν ] ta)n+j

a + 1
2x

µ
⊥gF

a
sµν⊥

jaν⊥ , (3.6.16)

where the Noether current reads
n+j

a = iϕ̂†ct
an+

↔
∂ ϕ̂c ,

jaµ⊥
= iϕ̂†ct

a
↔
∂µ⊥ ϕ̂c .

(3.6.17)

Here and in the following, we can replace the matter field ϕc with its gauge-invariant building
block χc, since they differ only by additional collinear gluon fields, which are irrelevant to the
process at hand. Consequently, we do not need to worry about ϕc appearing in the Lagrangian
but χc appearing in the operator basis. For our considerations, they are equivalent. The
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ϕc

Aa
sµ

p̃

p

k

CA0(p̃)

L(0)

Figure 3.3: Leading-power contribution to the emission of a soft gluon. CA0 denotes the (non-
radiative) leading-power matching coefficient and L(0) denotes the insertion of the
leading-power Lagrangian interaction.

corresponding Feynman rule for soft emission is given by

φ†
c

φc

Aµ,a
s

p2

p1

k

= igta


1
2(n+p1 + n+p2)nµ− , O(λ0)
−1

2X
α
⊥n

β
−(n+p1 + n+p2)(kαδµβ − kβδ

µ
α) , O(λ1)

Sαβ(p1, p2)1
2(kαδµβ − kβδ

µ
α) , O(λ2)

(3.6.18)
where we defined

Sαβ(p1, p2) ≡ −1
2n

α
+n

β
−(n+p1 + n+p2)n−X − (pβ1⊥ + pβ2⊥)Xα

⊥

+ 1
2n

β
−k

ρ(n+p1 + n+p2)Xα
⊥X⊥ρ , (3.6.19)

and X is given in (2.3.21)

Xµ ≡ ∂µ
[
(2π)4δ(4)

(∑
pin −

∑
pout

)]
, (3.6.20)

where the derivative ∂ = ∂/∂pin or ∂ = −∂/∂pout acts on incoming or outgoing momenta inside
the delta function. If soft momenta k are present, one sets the k⊥ and n−k components to zero
inside the δ-function after moving the derivative via integration by parts. Notably, we keep
the momentum-conserving δ-function of each vertex explicit as part of the Feynman rule. To
derive these Feynman rules (3.6.18), one simply replaces ∂µ = −ipµ for ingoing and ∂µ = ipµ for
outgoing momenta while the explicit xµ in the Lagrangian correspond to iXµ in the Feynman
rule.

Leading Power

At leading-power, we consider the diagram in Fig. 3.3. Explicitly, the amplitude reads11

M(0)
i =

∫
d4p̃

(2π)4 igt
a 1

2(ni+pi + ni+p̃)ni−ε(k) i

p̃2 + i0C
A0(p̃)(2π)4δ(4)

(
p̃− pi − ni−k

ni+
2

)
,

(3.6.21)

11In the following, we denote the amplitude computed using SCET by M(n), while we reserve A(n) for the full-
theory radiative result, to stress that this is really an independent calculation in the EFT and not simply
matching. In the end, we will find that both are indeed the same.
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ϕc

Aa
sµ

p̃

p

k

CA1(p̃)

L(0)

ϕc

Aa
sµ

p̃

p

k

CA0(p̃)

L(1)

Figure 3.4: The two diagrams contributing to soft-gluon emission at O(λ). The first one corre-
sponds to the leading-power emission from the subleading non-radiative amplitude,
and the second one to the subleading-power emission from the leading non-radiative
amplitude. In the first case, the subleading non-radiative amplitude is proportional
to an explicit p⊥ = 0, so the contribution trivially vanishes. In the second case, one
sees after evaluating the explicit X⊥ that the result is likewise proportional to p⊥
and vanishes in our reference frame.

where we abbreviated CA0(n1+p1, . . . , nN+pN ) to emphasise the relevant dependence on the
internal p̃. Since there are no explicit Xµ, one can directly perform the integral over p̃. The
momentum-conserving δ-function, in combination with our special reference frame, then yields
the replacement p̃µ = ni+pi

nµ
i−
2 + ni−k

nµ
i+
2 , which implies in particular

1
p̃2

∣∣∣∣
p̃=ni+pi

ni−
2 +ni−k

ni+
2

= 1
ni+pini−k

. (3.6.22)

Thus one obtains

M(0)
i = −gtani+pini−ε(k) 1

ni+pini−k
CA0({ni+pi})

= −gtani−
ni−ε(k)
ni−k

CA0({ni+pi}) . (3.6.23)

This is already the well-known eikonal term of soft emission, and it immediately follows from
the leading-power soft-collinear interactions.

Next-to-leading Power

By counting soft momenta, we expect the next independent contribution to appear at O(λ2) ∼
O(k) compared to the leading-power amplitude. However, in principle, there could be a contri-
bution that is related to the leading-power result by reparameterisation invariance. Recasting
the leading result as M = S

(0)
i A(0), a possible NLP contribution is of the form M = S

(0)
i A(1).

These types of terms are proportional to explicit p⊥, and thus are absent in our choice of refer-
ence frame. However, we can verify this explicitly by inserting the O(λ) Feynman rule. There
are two possible contributions, as depicted in Fig. 3.4. For the first diagram, note that CA1

µ

always appears in combination with p̃µ⊥. The leading-power interaction does not feature any
explicit X⊥, therefore this term immediately vanishes after imposing momentum conservation,
yielding p̃⊥ = p⊥ = 0. For the second diagram, we find

M(1) = −
∫

d4p̃

(2π)4 igt
a 1

2(ni+pi + ni+p̃)Xα
⊥n

β
−(kαεβ − kβεα) i

p̃2 + i0C
A0(p̃) . (3.6.24)
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ϕc

Aa
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p̃

p

k

CA0(p̃)

L(2)

ϕc

Aa
sµ

p̃

p

k

CA1(p̃)

L(1)

ϕc

Aa
sµ

p̃

p

k

CA2(p̃)
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Figure 3.5: The diagrams contributing to soft-gluon emission at O(λ2). The first one corresponds
to the leading-power non-radiative amplitude with sub-subleading Lagrangian inter-
action, the second one to the subleading amplitude with subleading interaction, while
the third one is the sub-subleading amplitude with leading-power interaction. The
third diagram again trivially vanishes, since it is proportional to pµ⊥pν⊥. The other
two diagrams have non-zero contributions. For the second one, this is due to explicit
dependence on X⊥ which can eliminate the p⊥ from the subleading amplitude.

The coefficient CA0 only depends on ni+p̃, so the transverse derivative inside X⊥, after integra-
tion by parts, can only act on the propagator. Here, one sees that

∂

∂p̃⊥µ

1
p̃2 = −

2p̃µ⊥
p̃4 , (3.6.25)

and after imposing momentum conservation, this term is proportional to p⊥ = 0. Therefore,
there is indeed no contribution at O(λ) in our reference frame, as anticipated.

Next-to-next-to-leading Power (Next-to-soft)

At O(λ2), corresponding to O(k) suppression, there are three diagrams, given in Fig. 3.5. The
third diagram, consisting of the leading-power emission from the sub-subleading non-radiative
amplitude A(2), corresponding to CA2, trivially vanishes in our reference frame, since the coeffi-
cient CA2

µν comes with p̃⊥µp̃⊥ν , and after momentum conservation the external p⊥ again vanish.
We cannot use this argument for the second diagram, where CA1

µ p̃µ⊥ appears since the subleading
Feynman rule contains X⊥, which can act on this transverse momentum and the diagram can
thus yield a non-vanishing contribution. We begin by evaluating the first diagram. Here, we
find

M(2)
A0 =

∫
d4p̃

(2π)4 igt
aSαβ(p, p̃)1

2(kαεβ − kβεα) i
p̃2C

A0(p̃) , (3.6.26)

where Sαβ is given in (3.6.19) and reads

Sαβ(p, p̃) = −1
2n

α
i+n

β
i−(ni+p+ ni+p̃)ni−X − (pβ⊥ + p̃β⊥)Xα

⊥

+ 1
2n

β
i−k

ρ(ni+p+ ni+p̃)Xα
⊥X⊥ρ . (3.6.27)

We consider the three summands of (3.6.27) individually. The first contribution is

M(2)
A0,1 = −1

4gt
a
∫

d4p̃

(2π)4 (kαεβ − kβεα)nαi+n
β
i−(ni+p+ ni+p̃)ni−X

1
p̃2C

A0(p̃) . (3.6.28)

In our kinematic situation, ni−X is defined as (see (2.3.21))

ni−X = (2π)4nµi−
∂

∂p̃µ
δ(4)(p̃− p− ni−k

ni+
2 ) . (3.6.29)
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We move the derivative by partial integration and then perform the p̃ integral over the δ-function.
This yields

M(2)
A0,1 = −1

4gt
a
∫

d4p̃

(2π)4 (kαεβ − kβεα)nαi+n
β
i−n

ρ
i−

∂

∂p̃ρ

[
(ni+p+ ni+p̃)

1
p̃2C

A0(p̃)
]

× (2π)4δ(4)(p̃− p− ni−k
ni+
2 ) . (3.6.30)

To evaluate the derivative, first observe that

nρi−
∂

∂p̃ρ
(ni+p̃

1
p̃2 ) = ni− · ni+

1
p̃2 + ni+p(−2)ni−p̃

p̃4

= 2
ni+pni−k

− 2ni+pni−k
(ni+pni−k)2 = 0 , (3.6.31)

where we used p̃ = ni+p
ni−

2 + ni−k
ni+

2 and ni+ · ni− = 2 in the last line. Therefore, ni−X (and
also X⊥) do not act on the combination ni+p̃

1
p̃2 .12 Thus we obtain two terms, one where the

derivative acts on CA0, and one where it acts on the propagator in the term proportional to
ni+p

1
p̃2 . This yields

M(2)
A0,1 = −1

2gt
anαi+n

β
i−(kαεβ − kβεα)ni+p

1
ni+p ni−k

[
ni− · ∂

∂p̃
CA0(p̃)

]
p̃=ni+p

ni−
2 +ni−k

ni+
2

+ 1
2gt

anαi+n
β
i−(kαεβ − kβεα) 1

ni+p ni−k
CA0(ni+p) . (3.6.32)

The second term in (3.6.27) yields a vanishing contribution, since

M(2)
A0,2 = 1

2gt
a
∫

d4p̃

(2π)4 (kαεβ − kβεα)(pβ⊥ + p̃β⊥)Xα
⊥

1
p̃2C

A0(p̃)

= −1
2gt

a(kαεβ − kβεα)ηαβ⊥
1

ni+p ni−k
CA0(ni+p) + (terms ∼ p⊥) , (3.6.33)

which vanishes by antisymmetry and by setting p⊥ = 0. Lastly, the third term in (3.6.27) yields
a non-vanishing contribution. First note that X⊥ does not act on ni+p̃, so we can already insert
ni+p̃ = ni+p.Then, we compute

M(2)
A0,3 = −1

2gt
a
∫

d4p̃

(2π)4 (kαεβ − kβεα)nβi−kρni+pXα
⊥X⊥ρ

1
p̃2C

A0(p̃)

= (kαεβ − kβεα)nβi−kα⊥
ni+p

(ni+p ni−k)2C
A0(ni+p) , (3.6.34)

where we used
∂

∂p̃⊥µ

∂

∂p̃⊥ν

1
p̃2 = −

2ηµν⊥
p̃4 + (terms ∼ p⊥) , (3.6.35)

as well as p⊥ = 0. Next, we use transversality and the on-shell condition

0 = kαεα = 1
2ni−kni+ε+ 1

2ni+kni−ε+ kα⊥εα , (3.6.36)

0 = k2 = ni−kni+k + kα⊥k⊥α , (3.6.37)

to rewrite the combination in (3.6.34) as

(kαεβ − kβεα)nβi−kα⊥ = (kα⊥k⊥αni−ε− ni−kk
α
⊥εα

12This combination is precisely the usual eikonal propagator, which only depends on ni−p̃. We will formalise and
exploit this observation in Chapter 7
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= (−ni−kni+kni−ε+ ni−k(1
2ni−kni+ε+ 1

2ni−kni+ε)

= −1
2ni−k(ni+kni−ε− ni−kni+ε) . (3.6.38)

Using this result, we find

M(2)
A0,3 = −1

2gt
anαi+n

β
i−(kαεβ − kβεα) 1

ni+p ni−k
CA0(ni+p) , (3.6.39)

which precisely cancels the last term in (3.6.32). In conclusion, we obtain for the contribution
from the first graph in Fig. 3.5 the amplitude

M(2)
A0 = −1

2gt
anαi+n

β
i−(kαεβ − kβεα) ni+p

ni+p ni−k

[
ni− · ∂

∂p̃
CA0(p̃)

]
p̃=ni+p

ni−
2 +ni−k

ni+
2

. (3.6.40)

We can now recast this into a more familiar form by introducing the orbital angular momentum
in the given reference frame as

Lµνi = 1
4n

[µ
i+n

ν]
i−ni+pin

α
i−

∂

∂pαi
+ 1

2ni+pin
[ν
i−

∂

∂pi⊥µ]

= 1
2n

[µ
i+n

ν]
i−ni+pi

∂

∂ni+pi
+ 1

2ni+pin
[ν
i−

∂

∂pi⊥µ]
, (3.6.41)

where we used nµi−
∂
∂pµ

i
= 2 ∂

∂ni+pi
. We see that (3.6.40) contains the first term of the angular

momentum (3.6.41), namely

M(2)
A0 = −1

2gt
anαi+n

β
i−(kαεβ − kβεα) ni+p

ni+p ni−k

[
ni− · ∂

∂p̃
CA0(p̃)

]
p̃=p

= −gta 1
2

kαεβ
ni+p ni−k

n
[α
i+n

β]
i−

[
L+−C

A0
]

= −gtakαεβ
p · k

n
[α
i+n

β]
i−

4 L+−[A] . (3.6.42)

Next, we consider the second diagram in Fig. 3.5, where the subleading interaction of O(λ)
is inserted in external legs of the subleading amplitude A(1). Since A(1) enters the diagram via
CA1µp̃⊥µ, and the O(λ) Feynman rule contains an X⊥, there can be a non-zero contribution
despite p⊥ = 0. Thus we compute

M(2)
A1 = −igta

∫
d4p̃

(2π)4 (kαεβ − kβεα)Xα
⊥n

β
i−ni+p

i

p̃2 (−p̃⊥µCA1µ(p̃)) . (3.6.43)

Since the external momenta satisfy p⊥ = 0, the only non-vanishing contribution arises when X⊥
acts on the explicit p̃⊥µ. The relevant term reads

M(2)
A1 = gta(kαεβ − kβεα)nβi−ni+p

1
ni+p ni−k

CA1α(p) . (3.6.44)

Identifying CA1α(p) with the derivative of the non-radiative amplitude,

CA1α(p) =
(

− ∂

∂p⊥α
A(1)

)
p=ni+p

ni−
2

, (3.6.45)

we see that this term can equally be rewritten using the angular momentum (3.6.41) as

M(2)
A1 = −gta kαεβ

ni+p ni−k
n

[β
i−ni+p

(
∂

∂p⊥α]
A(1)

)
p=ni+p

ni−
2
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= −gta k
αεβ

2p · k
1
2n

[β
i−L+α⊥][A] (3.6.46)

In summary, from (3.6.42) and (3.6.46), and summing over all legs, we find for the next-to-soft
term

M(2) = −g
N∑
i=1

tai
kαεβ(k)Lβαi

pi · k
A , (3.6.47)

and thus we reproduce the well-known Low-Burnett-Kroll amplitude

Arad = −g
N∑
i=1

tai

(
pi · ε(k)
pi · k

+
kνε

a
µ(k)Lµνi
pi · k

)
A . (3.6.48)

In conclusion, we see that the soft theorem follows from a straightforward computation of the
tree-level emission process in the effective theory. The universality of the leading and next-to-
soft term is an immediate consequence of the soft gauge symmetry, and the explicit form is
readily computed from the effective Feynman rules. This derivation can now be extended to
also include other matter fields besides scalar particles.

However, the derivation was slightly non-trivial and a number of accidental cancellations
occurred. This poses a simple question: Can the soft-collinear Lagrangian be recast in a form
that immediately yields the soft theorem as an emission vertex? The answer to this question is
yes, and it will be explained in detail in the later Chapter 7.

3.7 Extension to Dirac Fermions

In this section, we generalise the notions of the previous sections to also describe fermionic
matter. In the context of SCET, the effective theory was originally constructed with quarks in
mind. Therefore, the fermionic construction preceded the scalar one [40, 41]. Most concepts of
the previous discussion transfer over directly to the spinor fields.

The first difference compared to the scalar field is that the Dirac spinor describes four degrees
of freedom compared to one in the scalar case. The spinor field ψ(x) is a solution of the Dirac
equation

(i/∂ −m)ψ(x) = 0 . (3.7.1)

Setting m = 0 and going to momentum space, we can insert the power-counting of the collinear
momenta to find

0 = /pu(p) = 1
2n+p/n−ψ(p) + O(λ) , (3.7.2)

i.e. the leading-power equation of motion gives the condition

/n−u(p) = 0 , (3.7.3)

so some components of the spinor are projected out. One can make this observation manifest
by introducing the projection operators P± via

1 = P+ + P− =
/n−/n+

4 +
/n+/n−

4 . (3.7.4)

One can immediately verify that these objects are indeed projections and satisfy P 2
± = P±. The

full spinor field can be decomposed into two components with definite projection properties as

ξ = P+ψc =
/n−/n+

4 ψc , η = P−ψc =
/n+/n−

4 ψc , (3.7.5)

54



3.7 Extension to Dirac Fermions

and the power-counting follows from the two-point function [40]. For the first component ξ(x),
one finds

⟨0|T (ξ(x)ξ(0)) |0⟩ =
/n−/n+

4 ⟨0|T (ψc(x)ψc(0)) |0⟩
/n+/n−

4

=
∫

d4p

(2π)4 e
−ip(x−y) i

p2 + iε

/n+/n−
4 /p

/n+/n−
4 ∼ λ4 1

λ2 = λ2 . (3.7.6)

For the second component, the analogous computation yields

⟨0|T (η(x)η(0)) |0⟩ =
/n+/n−

4 ⟨0|T (ψc(x)ψc(0)) |0⟩
/n−/n+

4

=
∫

d4p

(2π)4 e
−ip(x−y) i

p2 + iε

/n−/n+
4 /p

/n−/n+
4 ∼ λ4λ2 1

λ2 = λ4 . (3.7.7)

Therefore, the second component η is subleading compared to the leading spinor ξ. The soft
quark scales as qs ∼ λ3. Inserting the spinor decomposition (3.7.5) into the Lagrangian and
using the projection properties, one finds

Lc = ψ̄ci /Dψc = (ξ̄ + η̄)
[
/n−
2 in+D +

/n+
2 in−D + i /D⊥

]
(ξ + η)

= ξ̄
/n+
2 in−Dξ + ξ̄i /D⊥η + η̄i /D⊥ξ + η̄

/n−
2 in+Dη . (3.7.8)

It is now convention to integrate out the subleading component η using its equation of motion

η = − 1
n+D

/n+
2
/D⊥ξ . (3.7.9)

This yields a Lagrangian of the form

Lc = ξ̄
/n+
2 in−Dξ + ξ̄i /D⊥

1
in+D

i /D
/n+
2 ξ , (3.7.10)

which forms the starting point of the EFT derivation. This is the main difference between
the scalar field and the Dirac spinor. Since both fields behave the same way under gauge
transformations, the redefinitions of the collinear fields can be directly transferred, and the
construction of the effective Lagrangian proceeds in the same way. The fermionic Lagrangian is
then given by [41]

L(0)
ξ = ξ

(
in−D + i /D⊥

1
in+D

i /D⊥

)
/n+
2 ξ + q̄i /Dsq + L(1)

ξ + L(2)
ξ + L(1)

ξq + L(2)
ξq , (3.7.11)

where the interaction terms read

L(1)
ξ = ξc

(
xµ⊥n

ν
−Wc gF

s
µνW

†
c

) /n+
2 ξc , (3.7.12)

L(2)
ξ = 1

2 ξc
(
n−x n

µ
+n

ν
−Wc gF

s
µνW

†
c + xµ⊥x⊥ρn

ν
−Wc

[
Dρ
s , gF

s
µν

]
W †c

) /n+
2 ξc

+ 1
2 ξc

(
i /D⊥

1
in+D

xµ⊥γ
ν
⊥Wc gF

s
µνW

†
c + xµ⊥γ

ν
⊥Wc gF

s
µνW

†
c

1
in+D

i /D⊥

)
/n+
2 ξc , (3.7.13)

L(1)
ξq = qW †c i /D⊥ξ − ξi

←
/D⊥Wcq , (3.7.14)

L(2)
ξq = qW †c

(
in−D + i /D⊥(in+D)−1i /D⊥

) /n+
2 ξ + q

←
Dµ
s x⊥µW

†
c i /D⊥ξ
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− ξ
/n+
2

(
in−

←
D + i

←
/D⊥

(
in+

←
D

)−1
i
←
/D⊥

)
Wcq − ξi

←
/D⊥Wcx⊥µD

µ
s q . (3.7.15)

In the operator basis, the collinear gauge-invariant spinor field is defined just like the scalar
field as (3.3.85)

χc = W−1
c ξ , (3.7.16)

where only the leading component ξ enters. However, Lorentz invariance (or RPI in the case of
SCET) imposes that the full spinor ψ = ξ+ η should appear in the amplitude and consequently
in the operator basis. This manifests itself in a different relation of the A1 current (2.7.16),
which now contains the effect of the subleading component

CA1µ
i (n1+p1, . . . , nN+pN ) =

[
−

γµi⊥
ni+pi

/ni+
2 −

∑
j ̸= i

2nµj−
ni− · nj−

∂

∂ni+pi

]
CA0(n1+p1, . . . , nN+pN )

≡ CA1µ
i, spin(n1+p1, . . . , nN+pN ) + CA1µ

i, orbit(n1+p1, . . . , nN+pN ) . (3.7.17)

This additional, spin-dependent term will be crucial in the derivation of the soft theorem for
fermionic fields in Section 7.3.
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Perturbative Gravity
Chapter 4

In this section, we introduce the underlying “full theory” of SCET gravity, perturbative gravity.
As a starting point, we discuss the Einstein-Hilbert action. The quantisation of this action has
a long history [15–24], and it turns out that this action is not renormalisable in the strict sense.
However, the action can be interpreted as the first term in an effective theory, where higher-order
terms, which correspond to higher-derivative terms, are necessary to render the gravitational
loops finite. In this way, one obtains a fully consistent quantum theory describing gravity at
energies way below the Planck scale. This construction of a low-energy effective theory of gravity
was pioneered by Donoghue in [25]. We introduce this approach and the necessary concepts,
and refer for further details to the excellent reviews [26,57].

Starting from the Einstein-Hilbert action, we investigate the gauge symmetries of gravitational
theories, treating them in the same fashion as in ordinary gauge theory. Then, we perform
the weak-field expansion, with emphasis on its effect on the full-theory gauge-invariance. At
this point, it is useful to compare this expanded theory, which forms the basis of the SCET
construction, to the situation encountered in gauge theory. Already at this level, one can
identify substantial differences between both theories, and anticipate what effect this may have
on the form of SCET gravity.

4.1 Gravitational Action
We consider a curved space-time described by the metric tensor gµν(x). Following general
relativity, the metric tensor gµν obeys the Einstein-Hilbert action1

SEH = − 2
κ2

∫
d4x

√
−gR , (4.1.1)

where κ2 = 32πGN , g is the metric determinant, and R is the Ricci scalar. It is obtained from
the Riemann tensor

Rµναβ = ∂αΓµβν − ∂βΓµαν + ΓµαλΓλβν − ΓµβλΓλαν , (4.1.2)

by contracting the indices as R = gαβRµαµβ . The Christoffel symbols Γµαβ are defined as

Γµαβ = 1
2g

µρ (−∂ρgαβ + ∂αgρβ + ∂βgρα) . (4.1.3)

This action is invariant under a large class of transformations, the diffeomorphism group.
These consist of coordinate transformations

xµ → yµ(x) , (4.1.4)

where yµ(x) is a general invertible function of x. From this transformation, one can define the
Jacobi matrices

Uµα (x) ≡ ∂yµ

∂xα
(x) , U β

ν (x) ≡ ∂xβ

∂yν
(x) , (4.1.5)

1We employ metric signature (+, −, −, −).
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which are inverse with respect to each other, i.e. they satisfy Uµα (x)U α
ν (x) = δµν .

Under such coordinate change, the metric tensor transforms as

gµν(x) → g′µν(y) = U α
µ (x)U β

ν (x)gαβ(x) , (4.1.6)

and one can explicitly verify that the Riemann tensor is indeed a tensor and that the Ricci scalar
is invariant R(x) → R′(y) = R(x). In addition, the measure d4x transforms, and one can identify
the invariant measure d4x

√
−g. Thus, the action (4.1.1) is invariant under diffeomorphisms.

To quantise this action, one would perform a weak-field expansion

gµν(x) = ḡµν(x) + κhµν(x) (4.1.7)

around some background ḡµν(x), identifying the fluctuation hµν as the graviton field. We explain
this in detail down below. In this expanded theory, the quantisation proceeds along the same
lines as in Yang-Mills, e.g. by performing gauge-fixing using a ghost Lagrangian. Then, from
the quadratic action, one obtains the free propagator, and higher-order terms are treated as
interactions. However, the coupling constant κ is dimensionful, as κ ∼

√
GN ∼ 1

MPl
. This

means that the theory of a spin-2 field is not renormalisable in the strict sense. Indeed, the local
divergences encountered at the one-loop level take the schematic form2 [24, 58]

δL = 1
16π2

2
4 − d

( 1
120R

2 + 7
20RµνR

µν
)
, (4.1.8)

and one immediately sees that they cannot be absorbed by renormalising the fields and couplings
in (4.1.1).

Instead, one can now view the Einstein-Hilbert action (4.1.1) as the first term of an effective
theory. At one-loop level (and beyond), this action is modified, and one would use

Sgrav,EFT = −
∫

d4x
√

−g
(

Λ + 2
κ2R− c1R

2 − c2RµνR
µν + . . .

)
. (4.1.9)

Here, we see that the additional terms R2 and RµνR
µν can be used to absorb the divergences

(4.1.8). We also introduced the cosmological constant Λ, which can be accommodated in the
standard action (4.1.1). Note that the Ricci scalar contains two derivatives, R ∼ ∂2. Therefore,
the new terms are higher-derivative terms R2 ∼ ∂4, and are consequently suppressed at low
energies. Equivalently, in situations of small curvature (characterised by small hµν), these higher-
order terms are suppressed compared to the leading R term. One can see that the effective theory
quite naturally takes the structure of a derivative expansion, and at higher loop levels, one has
to take into account more and more of these higher-order terms in the curvature.

From this perspective, the effective action (4.1.9) is a perfectly well-defined and predictive
effective quantum theory, with the expansion parameter being either a low-energy parameter
or, equivalently, small curvature. Crucially, for our purposes, the action has the same set
of gauge symmetries as the original Einstein-Hilbert action, the diffeomorphisms. Since the
SCET construction only depends on the underlying gauge symmetry, one can consider as “full
theory” the action (4.1.1), or its higher-order modification (4.1.9) up to any desired order. The
precise form of the SCET Lagrangian will change at higher orders, but the underlying all-order
construction will be the exact same.

4.2 Diffeomorphism Invariance
The diffeomorphism group in gravity can be thought of as the analogue of SU(N)-invariance in
Yang-Mills theory and is of special interest for constructing the soft-collinear effective theory.

2We regularise in d = 4 − 2ε dimensions.
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4.2 Diffeomorphism Invariance

However, in its conventional form as coordinate transformations, as introduced in (4.1.4),
the analogy is not very clear. This form can be viewed as passive transformations, where
the coordinates are transformed, and tensor fields change accordingly. For our purposes, it is
much more convenient to use an active point of view. That is, one reformulates the effect of
a diffeomorphism as a purely internal transformation of the fields, and never transforms the
coordinates directly.

To be precise, consider a local translation of the form

xµ → yµ(x) = xµ + εµ(x) , (4.2.1)

with some (not necessarily infinitesimal) vector field ε(x). A scalar field φ(x) transforms as

φ(x) → φ′(x′) = φ(x) . (4.2.2)

One can write the transformed scalar field φ′(x′) as

φ′(x′) = φ′(x+ ε(x)) =
[
Tεφ

′(x)
]
, (4.2.3)

where the translation operator Tε acting on some function f(x) is defined simply by the Taylor
expansion

Tεf(x) = f(x) + εα(x)∂αf(x) + 1
2ε

α(x)εβ(x)∂α∂βf(x) + O(ε3) . (4.2.4)

One can now evaluate the transformed scalar field φ′ at the old coordinate x, defining the active
transformation

φ(x) → φ′(x) = [U(x)φ(x)] , (4.2.5)

where U(x) is then simply the inverse of the translation operator (4.2.4). Expanding in ε, this
corresponds to

[U(x)φ(x)] = φ(x) − εα(x)∂αφ(x)

+ 1
2ε

α(x)εβ(x)∂α∂βφ(x) + εα(x)∂αεβ(x)∂βφ(x) + O(ε3) . (4.2.6)

Note that we labelled this operation by U(x) to stress the formal similarity with the SU(N)
gauge transformation. Indeed, by treating diffeomorphisms as active transformations, we are
able to treat these transformations as purely internal ones, and we can use most of the intuition
from the gauge theory side.

One can immediately notice two further points: first, the leading-order term of the transfor-
mation (4.2.6) is just the Lie-derivative of the scalar field

£εφ = −εα∂αφ . (4.2.7)

We will check below that this also holds for generic tensors, and one can easily verify that this
even holds for the expansion about non-trivial backgrounds. Second, and more importantly, one
sees that the inverse is not simply given by replacing ε → −ε in the definition of Tε. This is due
to our choice of translation (4.2.1) and accordingly taking Tε to be (4.2.4). If instead, we would
consider an infinitesimal transformation like

xµ → xµ + εµ(x) + 1
2ε

α∂αε
µ(x) + . . . , (4.2.8)

corresponding to
xµ → exp(εα∂α)xµ , (4.2.9)

this would be different, and the inverse would be defined as a translation with parameter −ε(x).
This is simply a choice one has to make at the beginning of the construction, and we opt for the
simpler form of the local translation (4.2.1).
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The metric tensor gµν(x) has the active transformation

gµν →
[
U(x)U α

µ (x)U β
ν (x)gαβ(x)

]
= gµν(x) − ∇µεν(x) − ∇νεµ(x) + O(ε2) , (4.2.10)

where ∇µ denotes the covariant derivative with respect to gµν . For a generic tensor field T ν
µ (x),

one finds analogously

T ν
µ (x) →

[
U(x)U ρ

µ (x)Uνσ (x)T σ
ρ (x)

]
= T ν

µ (x) − ∂µε
ρ(x)T ν

ρ (x) + ∂σε
ν(x)T σ

µ (x) − εα(x)∂αT ν
µ (x) + O(ε2) . (4.2.11)

Again, comparing this to the Lie derivative
LεT ν

µ = T ν
µ − εα∂αT

ν
µ − ∂µε

ρT ν
ρ + ∂σε

νT σ
µ , (4.2.12)

one notices that these are precisely the linear terms in the transformation (4.2.11).
In summary, when adopting the active point of view, one is able to treat diffeomorphisms as

purely internal transformations, that only act on the fields and not the coordinates, φ(x) →
φ′(x). This, in turn, looks formally very similar to gauge theory. Notably, at leading order in
the gauge-parameter ε, these active coordinate transformations correspond to the Lie derivative.
At higher orders, they can be systematically constructed from the Taylor expansion.

Gauge-invariant expressions are of course invariant, regardless if one considers active or pas-
sive transformations. Therefore, one can derive a set of useful properties of these translation
operators. These are given in Appendix A.

4.3 Weak-field Expansion
Next, we discuss the weak-field expansion and its effect on the gauge symmetry. For now, we
take as action the first term, (4.1.1), and for the matter part, we consider the minimally-coupled
scalar field3

Sφ =
∫
d4x

√
−g1

2g
µν∂µφ∂νφ . (4.3.1)

We perform the weak-field expansion (4.1.7) around flat-space, corresponding to ḡµν(x) = ηµν .
The expansion of the metric tensor

gµν(x) = ηµν + κhµν(x) (4.3.2)
is taken to be exact, that is, we do not consider any higher-order modifications in κ to (4.3.2).
All other functions of the metric tensor, however, are in general given as infinite series in
hµν , or κ, respectively. For example, the inverse metric tensor gµν(x) can be determined from
gµα(x)gαν(x) = δνµ to be

gµν = ηµν − hµν + hµαhνα − hµαhαβh
βν + O(h4) , (4.3.3)

while the metric determinant is given by
√

−g = 1 + 1
2h+ 1

8(h2 − 2hαβhαβ) + O(h3) . (4.3.4)

The action then turns into an infinite series in hµν , resp. κ:

S =
∞∑
k=0

κkS(k) , (4.3.5)

where the precise form of S(k) at higher orders depends on which terms one considers to be part
of the “full theory”, i.e. if one only considers Einstein-Hilbert (4.1.1), or also takes into account
higher-order Riemann terms as in (4.1.9).

3One could add to this action a self-interaction, e.g. − λ
4! φ

4. However, this does not affect the SCET construction
in any form, so we omit this term for now. We will add it back once we give the final Lagrangian.
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4.3 Weak-field Expansion

4.3.1 Einstein-Hilbert Action
Using these expansions in the Einstein-Hilbert action (4.1.1), we obtain to leading order in h
the quadratic Lagrangian

L(0)
EH = 1

2 (∂αhµν∂αhµν − ∂αh∂
αh− 2∂µhµν(∂αhαν − ∂νh)) . (4.3.6)

To quantise this theory, we must now add a gauge-fixing term. We consider a generalised de
Donder gauge ∂αhµα = ∂µh with parameter b by adding the gauge-fixing term

Sgf = b

∫
d4x

(
∂αh

α
µ − 1

2∂µh
)(
∂βh

βµ − 1
2∂

µh
)
. (4.3.7)

Following the standard Faddeev-Popov procedure, the gauge-fixing term also introduces a ghost
Lagrangian. However, like in the gauge theory situation, the ghost Lagrangian is not of interest
for the construction of SCET, and we omit its discussion here as well. However, in off-shell
computations, or scattering into unphysical polarisations, one has to keep in mind that ghosts
are present in gravity as well.

One can then compute the graviton propagator in standard fashion by inverting the bilinear
part, which yields

Dµν,αβ = ⟨0|T (hµν(x)hαβ(y))|0⟩ = i

∫ d4p

(2π)4
e−ip·(x−y)

p2 + i0
(
Pµν,αβ + 1 − b

b
Sµν,αβ) , (4.3.8)

where

Pµν,αβ = 1
2
(
ηµαηνβ + ηµβηνα − ηµνηαβ) , (4.3.9)

Sµν,αβ = 1
2p2 (ηµαpνpβ + ηµβpνpα + pµpαηνβ + pµpβηνα) . (4.3.10)

The self-interactions begin at the trilinear level, corresponding to O(κ) suppression, with the
Lagrangian κL(1) ≡ Lh3 , which reads

L(1) = −1
2h

αβ
(
h∂α∂βh+ 2∂µhµν∂νhαβ + ∂αhµν∂βh

µν + hαβ□h+ 2∂µhµα∂βh

+ ∂αhβµ∂
µh− h∂µ∂αhβµ − hµα□hµβ + 2∂µhβν∂νhµα + 4∂µ∂νhανhβν

)
− 1

4h∂µh∂
µh+ 1

4h∂αhµν∂
αhµν .

(4.3.11)

4.3.2 Scalar Action
Using the same expansions in the scalar action (4.3.1), one obtains the leading Lagrangian

L(0) = 1
2∂µφ∂

µφ , (4.3.12)

which is just a free scalar theory. Correspondingly, we find the standard propagator (2.2.7)

⟨0|T (φ(x)φ(y)) |0⟩ =
∫

d4p

(2π)4 e
−ip(x−y) i

p2 + iε
. (4.3.13)

At higher-order in hµν , we find the scalar-graviton interaction terms

L(1) = −1
2hµν

(
∂µφ∂νφ− ηµν

1
2∂αφ∂

αφ

)
, (4.3.14)

L(2) = 1
2

(
hµαhνα − 1

2hh
µν + 1

8(h2 − 2hαβhαβ)ηµν
)
∂µφ∂νφ . (4.3.15)
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4.3.3 Weak-field Gauge-invariance
In the weak-field expansion, we slightly change conventions and redefine the parameter of local
translations as

xµ → xµ + κεµ(x) . (4.3.16)

We use this choice so that the infinitesimal transformation of hµν , determined from (4.2.10), is
the simple shift

hµν(x) → hµν(x) − ∂µεν(x) − ∂νεµ(x) + O(ε2) . (4.3.17)

Note that this already implies that the gauge symmetry mixes different orders in κ. For the
graviton field hµν , which enters at O(κ) itself, the gauge symmetry corresponds to a linear shift,
plus non-linear higher order terms in κ. For matter fields, however, this rescaling results in

φ → φ− κεα∂αφ+ O(κ2) . (4.3.18)

This is a somewhat subtle feature of the weak-field expansion: once one performs the weak-field
expansion, one has to truncate the expanded action at some order in hµν . In turn, also the
diffeomorphisms must be expanded and truncated. This means that the expanded action is only
gauge-invariant order-by-order in h, and subleading gauge transformations are cancelled by the
leading gauge-transformations of the subleading Lagrangians.

For example, the leading scalar action (4.3.12) is gauge-invariant by itself, since the scalar
field does not have a leading-power gauge transformation. At O(κ), one has

δεφ = −κεα∂αφ , (4.3.19)

and in turn, the Lagrangian generates a subleading

δ(1)
ε L(0) = −κ

(
εα∂α

(1
2∂µφ∂

µφ

)
+ ∂µε

α∂αφ∂
µφ

)
. (4.3.20)

For the subleading Lagrangian (4.3.14), one only has to consider the linear shift of hµν , and one
finds

δ(0)
ε L(1) = κ∂µεν

(
∂µφ∂νφ− ηµν

1
2∂αφ∂

αφ

)
. (4.3.21)

Combining both terms, one obtains

δ(1)
ε L(0) + δ(0)

ε L(1) = −κ∂α
(
εα

1
2∂µφ∂

µφ

)
, (4.3.22)

which is a total derivative and thus the Lagrangian L(0) + L(1) is gauge-invariant up to O(κ).
This generalises also to L(2), where the sub-subleading gauge transformation of L(0) is relevant.

An immediate consequence of these truncated diffeomorphisms is that we cannot have objects
that are homogeneous in h – that is, are monomials in h – and gauge-invariant at the same time.
Gauge-covariant objects, such as the Riemann tensor, are represented as a series order-by-order
in h or κ. When working with a theory expanded in h, one finds that subleading terms, that is,
higher-order terms in h, appear in precise combinations to yield a gauge-invariant theory. This
is a generic feature of non-linearly realised symmetries.

4.4 The Vierbein Formalism
4.4.1 Spinors in Curved Space-time
A problem arises if one wants to consider half-integer representations of the Lorentz group in
curved space-times, like spinors. These correspond to representations of the covering group
SL(2,C), and have no direct corresponding representation in the diffeomorphism group GL(4)
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4.4 The Vierbein Formalism

[59]. Therefore, to properly implement such half-integer fields, one makes use of the vierbein
formalism. Intuitively, this is a literal implementation of the equivalence principle. Namely, one
introduces a local inertial frame ξaX , a = 0, 1, 2, 3 at every point X. These coordinates have the
property that the metric at point X corresponds to the flat-space Minkowski metric. To relate
these to the generic reference frame xµ, one defines the corresponding vierbein eaµ(X) as

eaµ(X) ≡
[
∂ξaX(x)
∂xµ

]
x=X

. (4.4.1)

The generic metric tensor gµν(x) can then be expressed as

gµν(x) = ηabe
a
µ(x)ebν(x) . (4.4.2)

Such a local inertial frame is not unique. At each point X, one can perform a Lorentz trans-
formation Λab(X) that leaves the decomposition (4.4.2) invariant since the Minkowski metric is
unchanged by Lorentz transformations. Therefore, the vierbein comes with its own local Lorentz
transformation (LLT), where it transforms as

eaµ(x) → Λab(x)ebµ(x) . (4.4.3)

In addition, the vierbein transforms under diffeomorphisms, in this context also called “General
Coordinate Transformations” (GCT), like a standard covariant tensor

eaµ(x) → e′aµ(x′) = ∂xν

∂x′µ
eaν(x) . (4.4.4)

In the following, we adopt the convention that Greek indices from the middle of the alphabet,
µ, ν, . . . are reserved for GCT tensors, while LLT indices are denoted by Latin ones a, b,m, n, . . .
In addition, we use Greek indices from the beginning of the alphabet, α, β, . . . to denote spinor-
indices. Note that while GCT indices are still raised and lowered with the full metric gµν , the
LLT indices are raised and lowered with the flat Minkowski metric ηab. It is useful to define the
inverse vierbein Eµa(x) which satisfies

Eµae
a
ν = δµν ,

Eµae
b
µ = δba . (4.4.5)

Tensors can be defined either as standard GCT tensors Tµα , which transform under diffeomor-
phisms according to their representation

Tµα (x) → ∂x′µ

∂xν
(x)∂x

β

x′α
(x)T νβ (x) , (4.4.6)

or as LLT tensors Tma , which transform under GCT as a scalar, and under LLT according to
their representation

Tma (x) → Λmn(x)Λ b
a (x)Tnb (x) . (4.4.7)

These two versions of the tensor T are related by the vierbein as

Tma (x) = emµ(x)Eαa(x)Tµα (x) . (4.4.8)

One can transform any GCT tensor field into a set of GCT scalars. This has the advantage that
one can now implement also half-integer representations of the Lorentz group, simply by defining
them in the local inertial frame. To promote these objects to a generic curved space-time, one
then ensures that the Lagrangian describing these objects is local Lorentz invariant and forms a
scalar. Once one arrives at a scalar Lagrangian, the invariant action is defined in the usual way
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by performing the integration d4x
√

−g. We explain this in detail at the example of the Dirac
fermion.

The Dirac spinor lives in the (1
2 , 0) ⊕ (0, 1

2) representation of the Lorentz group, where it has
a Lorentz transformation

ψα(x) → Dαβ(Λ)ψβ(x) . (4.4.9)

Here, Λ is the Lorentz transformation andDαβ(Λ) is the associated spinor transformation defined
by

Dαβ(Λ) = e−
i
2λabJ

ab
, (4.4.10)

where λab is the parameter of the infinitesimal Lorentz transformation and Jab = i
4

[
γa, γb

]
are

the generators of the Lorentz group for the Dirac representation. In curved space-times, this
transformation is now promoted to a local one, and the spinor field now transforms as

ψα(x) → Dαβ(Λ(x))ψβ(x) . (4.4.11)

The only difference is that now the Lorentz transformation corresponds to a local Λ(x). As in
gauge theory, a local Lorentz transformation poses a problem, since derivatives now also act
on the local parameter and are no longer covariant. Therefore, one defines a Lorentz-covariant
derivative

Dµψα ≡ ∂µψα − i [Ωµ]αβ ψβ . (4.4.12)

Here, we introduce the object [Ωµ]αβ as the gauge-field corresponding to local Lorentz transfor-
mations. It has the standard transformation of a gauge-connection

Ωµ(x) → D(Λ(x))ΩµD
−1(Λ(x)) − i [∂µD(Λ(x))]D−1(Λ(x)) , (4.4.13)

and can be defined in terms of the Lorentz generator Jab as

[Ωµ]αβ = 1
2
[
Jab
]
αβ

[ωµ]ab (x) . (4.4.14)

The coefficient [ωµ]ab is called the spin-connection. Using the spin-connection, one can con-
struct the gauge-field Ωµ for any Lorentz representation by contracting it with the appropriate
representation of the generator Jab. The spin-connection can be computed from the vierbein
as [59]

[ωµ]ab = gλνE
λ
a

(
∂µE

ν
b + ΓνµρE

ρ
b

)
. (4.4.15)

With the help of the Lorentz-covariant derivative (4.4.12), one can now define the Dirac action
in curved space-times.

One starts from the flat-space Dirac Lagrangian

Lψ = ψ̄iγµ∂µψ , (4.4.16)

where ψ̄ = ψ†γ0 as usual. One promotes the spinors to local Lorentz spinors, and changes the
derivative to the Lorentz-covariant derivative accordingly. Thus, one obtains

L′ψ = ψ̄iγµ (∂µ − iΩµ)ψ . (4.4.17)

Using the transformations (4.4.11) and (4.4.13), one finds for the transformation of the La-
grangian

ψ̄γaEµaDµψ → ψ̄D−1(Λ)γaΛ b
a E

µ
bD(Λ)Dµψ

= ψ̄
[
D−1(Λ)γaD(Λ)

]
Λ b
a E

µ
bDµψ

= ψ̄γaEµaDµψ , (4.4.18)
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where we used in the last line that

D(Λ)γaD−1(Λ) = Λabγb . (4.4.19)

Therefore, the Lagrangian is indeed a local Lorentz scalar. Under GCT transformations, the
spinor transforms like a scalar field4

ψ(x) → ψ′(x) = U(x)ψ(x) , (4.4.20)

while the spin-connection and vierbein transform like tensors according to their index position

Ωµ → U(x)U ν
µ (x)Ων(x) ,

Eµa(x) → U(x)Uµν (x)Eνa(x) . (4.4.21)

Since all GCT indices are contracted, the Lagrangian itself transforms as a scalar field, and
invariance follows from integration over d4x

√
−g. Consequently, one defines the Dirac action in

curved space-times as
Sψ =

∫
d4x

√
−g ψ̄iγµ (∂µ − iΩµ)ψ . (4.4.22)

This action is manifestly LLT and GCT invariant and describes a spin-1
2 field in curved space-

time. Note that in this approach, the gamma matrices γa fulfil the standard Clifford algebra in
the local inertial frame, {

γa, γb
}

= 2ηab . (4.4.23)

4.4.2 Weak-field Expansion
Next, we investigate how the vierbein and spin-connections are determined in the weak-field
expansion. We consider the expansion around flat space, where the metric tensor is given by

gµν(x) = ηµν + hµν . (4.4.24)

To determine the vierbein, we make the ansatz

e a
µ = δµa + φ a

µ , (4.4.25)

where φ a
µ denotes the vierbein fluctuation. From the metric condition (4.4.2)

e a
µ e

b
ν ηab = gµν(x) = ηµν + hµν , (4.4.26)

one can determine that the fluctuation φ satisfies to first order in h

φµν + φνµ = hµν + O(h2) , (4.4.27)

where φµν = ηµαδ
α
aφ

a
ν . Here, one notices a subtlety: in the weak field expansion, we seem

to mix the notions of LLT indices and GCT indices. Furthermore, the condition (4.4.27) only
constrains the symmetric part of φ, which corresponds to 10 degrees of freedom. The remaining
6 antisymmetric components are not constrained. These components are of course linked to the
local Lorentz symmetry. To see this directly, consider a parameterisation of the vierbein as

e a
µ (x) = Λ̂ab(x)ê b

µ (x) , (4.4.28)

where the hatted vierbein is gauge-fixed such that it is symmetric, i.e. one defines the 6 param-
eters of the local Lorentz transformation so that they precisely cancel out any antisymmetric

4We adopt the active point of view for the GCT transformations.
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component of the vierbein. Then, from the metric condition (4.4.27), one immediately deter-
mines the symmetric vierbein in terms of the metric fluctuation hµν as

ê a
µ = δaµ + 1

2h
a
µ − 1

8hµνh
νa + O(h3) . (4.4.29)

It is important to stress that the result (4.4.29) only holds in “symmetric” gauge. If one fixes
a different gauge, one can determine the non-vanishing antisymmetric components in terms of
hµν , and the weak-field expansion will be different. It is relevant to discuss this detail for one
subtlety: unlike in gauge theory, where fixing different gauges has no effect for e.g. matching
computations, the LLT gauge has an effect, since the asymptotic spinor states are also modified
by the gauge choice.

To see this, insert the relation (4.4.28) into the action (4.4.22) to obtain

L = ψ̄γaEµaDµψ

= ψ̄γaΛ̂ b
a Ê

µ
bDµψ

= ψ̄D−1(Λ̂)γbÊµbD(Λ̂)Dµψ

=
(
D(Λ̂)ψ

)
γaÊµaDµ

(
D(Λ̂)ψ

)
. (4.4.30)

One notices that the relevant spinor in this gauge is the gauge-fixed spinor D(Λ̂)ψ . This is the
object that one should use as asymptotic states, i.e. we define

ψ(x) = D−1(Λ̂)ψ̂(x) , (4.4.31)

and the spinor ψ̂(x) has the standard mode decomposition

ψ̂(x) =
∑
s

∫
d3p

(
ûs(p)eipxa(p)s + vs(p)e−ipxa†(p)s

)
, (4.4.32)

with polarisations

û 1
2
(0) = 1√

2


1
0
1
0

 . (4.4.33)

The important point is that these external spinors are defined only in the reference frame where
the vierbein takes the form ê a

µ . If one chooses a different vierbein, it is related to the hatted
one by a LLT Λ(x). This means that we change the local reference frame. Thus, following a
reasoning similar to (4.4.30), the spinors in this new frame are related to the hatted ones as

ψ(x) = D(Λ)ψ̂ , (4.4.34)

which also affects the external polarisations us(p). Therefore, if one performs matching compu-
tations for spinors in curved space-times, one has to ensure that one either fixes the same LLT
gauge in both the full theory and the EFT or that one accounts for the different spinors. From
now on, we will always fix the symmetric gauge unless otherwise specified, as this is the simplest
and most natural gauge choice.

To summarise, we give the weak-field expansion of the Dirac action and all relevant objects
in symmetric gauge. The vierbein and its inverse are given by

eaµ = δaµ + 1
2h

a
µ − 1

8h
aβhβµ + 1

16h
aβhβνh

ν
µ + O(h4) , (4.4.35)

Eµa = δµa − 1
2h

µ
a + 3

8h
µαhαa − 5

16haβh
βνhµν + O(h4) . (4.4.36)
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The spin-connection is determined from (4.4.15) to be

[ωµ]ab = − ∂[ahb]µ − 1
2
(
hν[a∂b]hµν − hν[a∂νhb]µ + 1

2h
ν
[a∂µhb]ν

)
(4.4.37)

+ 1
4
(
hν[ah

νλ∂µhb]λ + 3
2hν[ah

νλ∂b]hµλ − 3
2hν[ah

νλ∂λhb]µ + hν[ahλb]∂
λhνµ

)
+ O(h4) ,

(4.4.38)

where the antisymmetrisation only acts on Latin indices. Since we fix symmetric gauge, we can
freely change between Latin and Greek indices, and keep the Latin ones only for clarity. The
weak-field Dirac Lagrangian is then computed as

L = L(0) + κL(1) + O(κ2), (4.4.39)

where the individual terms are given by

L(0) = iψ̄γµ∂µψ , (4.4.40)

L(1) = i

4 ψ̄γ
µ {hαα, ∂µ}ψ − i

4 ψ̄γ
a {hµa, ∂µ}ψ + 1

2 ψ̄ {γµ,Ωµ}ψ . (4.4.41)

Here, {·, ·} denotes the anticommutator.

4.5 QCD and Gravity: a Comparison
At this point, it is instructive to compare gauge theory and gravity, to draw some conclusions
on how the EFT construction might differ in the gravitational case.

At first glance, there are four main differences:

(i) The full theory considered in gravity, defined by the action (4.1.9), is itself an effective
low-energy theory. Contrast this with Yang-Mills, where the full theory is a UV-complete,
renormalisable theory.

(ii) The graviton hµν is defined as the fluctuation around a non-vanishing background config-
uration ḡµν . Therefore, one has to perform a weak-field expansion of the original action
(4.1.9), and the full theory is defined as an infinite series in κ. This also affects the gauge
transformations, which must be truncated. At this stage, the weak-field expansion is not
motivated by the SCET power-counting, but by a small curvature expansion. In gauge
theory, Yang-Mills does not need to be expanded around a background configuration.5

(iii) Yang-Mills features purely internal gauge transformations of some non-Abelian group.
Therefore, these gauge transformations are not affected by the SCET kinematics, and
generators have no scaling in λ, T a ∼ O(λ0). In gravity, however, the gauge symmetry
consists of local translations. These translations are generated by momenta Pµ, which
have non-trivial scaling in λ. Moreover, soft and collinear momenta have different scaling.
Therefore, soft and collinear gauge transformations differ in their power-counting. In
gravity, it is therefore inevitable that gauge transformations mix different orders in λ.

(iv) In QCD, we encountered a large component n+Ac ∼ λ0. If uncontrolled, this would render
the power-counting meaningless, since there would not be a finite operator basis. The intro-
duction of a collinear Wilson and gauge-invariant building blocks alleviates this problem,
and only objects corresponding to the physical transverse gluons appear in the operator
basis. In gravity, the situation is even worse: looking at the two-point function (4.3.8),
one can anticipate h++ ∼ λ−1, one component is power-enhanced! This component must
be controlled, otherwise one can enhance subleading contributions by adding arbitrarily
many h++ to it.

5Unless one wants to consider more exotic situations, like instanton background.
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Let us expand on these points in more detail. The first point, the full theory being an effective
theory, is relevant for the high-energy behaviour of quantum gravity, and one would expect that
this should not have a great impact on the soft and collinear limits. Indeed, this problem is
more of a conceptual one: if one considers only the leading term R, i.e. pure Einstein-Hilbert,
one can perform the weak-field expansion to arbitrary order in κ, and construct SCET to any
order in λ from this. In principle, the SCET construction is even more general, since the SCET
Lagrangian is not renormalised. However, if one wants to compute some scattering process
involving quantum corrections, that is, loops, one needs to modify the full theory to account
for these loops. In the matching computation, this will also require a modification of the SCET
Lagrangian, since these higher-order terms in R are now part of the full theory.

It is important to stress that this does not affect the underlying construction in any form.
The soft-collinear effective theory is derived purely from gauge symmetry considerations, and
this gauge symmetry is not affected by the introduction of higher-order terms. Therefore, one
only needs to specify the full theory, i.e. the action (4.1.9) up to some loop order, and can then
use the construction presented below to construct the SCET up to this loop order. For the sake
of simplicity, we will only consider the easiest scenario, Einstein-Hilbert (4.1.1) below. But the
construction is completely general.

The second point is also not an actual problem. While the weak-field expansion is motivated
by a small curvature expansion at the moment, we will see in the following section that the SCET
power-counting also imposes a weak-field expansion. Intuitively this is clear since a purely-soft
or purely-collinear theory must be equivalent to the full theory, which is a weak-field expansion.
Therefore, our construction is in principle valid for any backgrounds and curvature regimes, as
long as the kinematic situation is valid. In particular, this implies that the SCET Lagrangian
is valid for trans-Planckian energies, as long as the momenta satisfy the SCET kinematics

Based on this explanation, we can also elaborate on point (iii). The λ-expansion is analogous
to the weak-field expansion and leads to a non-linear realisation of the original diffeomorphism
symmetry. Already in the full theory, we observed that an object cannot be diffeomorphism
invariant and homogeneous in κ at the same time. That is, objects are only gauge-invariant
order-by-order in the truncated diffeomorphisms.

Now, in SCET, we see that the gauge transformations are generated by an object that has
non-trivial λ-counting. We also know that the expansion in λ must share similarities to a weak-
field expansion and that the purely-soft and purely-collinear theories must be equivalent to the
full theory. The only sensible conclusion is that again, the gauge transformations are realised
non-linearly. Therefore, the gauge symmetry links different orders in λ. Again, any object
cannot be homogeneous in λ, i.e. have a definite scaling λα, and gauge-invariant at the same
time. But this feature is not surprising, it is directly inherited from the full theory, where it is
present in a slightly different fashion.

However, the soft-collinear interactions are different from the full theory. Here, the guiding
principle in QCD is to impose a homogeneous gauge transformation that respects the multipole
expansion. This led to the discovery of the homogeneous background field n−As(x−), and
we could construct the soft-collinear interactions by formulating the theory with respect to
this background field. In gravity, gauge transformations are inherently inhomogeneous in λ.
Therefore, simply imposing homogeneous transformations does not lead to a sensible result,
since we expect the “proper” EFT gauge symmetry to not be homogeneous, precisely because
the generators are not. Therefore, we have to carefully understand what it means to “respect
the multipole expansion” in the gravitational context.

Finally, point (iv), which seems to be the most distressing one, is surprisingly the point that
is closest to the gauge theory situation. One can define analogues of the Wilson lines Wc used
in QCD to control n+Ac. In gravity, these Wilson lines control the components h+µ. Recall
that collinear momenta scale as (n+P, P⊥, n−P ) ∼ (1, λ, λ2). It turns out that the enhanced
component h++ always comes with the suppressed momentum n−P ∼ λ2 to yield a contribution
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h++n−P ∼ λ. This can be made manifest by constructing the collinear Wilson line, and one
can verify explicitly that it is not possible to power-enhance operators. This Wilson line is then
an object of the form Wc = 1 + O(λ). One can understand this fact intuitively by recalling that
gravity does not have any collinear singularities. Indeed, this Wilson line shows that one cannot
construct gauge-invariant leading-power interactions between collinear matter (or gravitons)
with collinear gravitons. Surprisingly, the one aspect that seems the most different from gauge
theory is actually treated formally in the exact same fashion. It is the EFT power-counting
of the gauge charges that leads to a very different physical situation, but not the underlying
formalism.

Besides these differences, we will see that the construction of the soft-collinear interactions
proceeds along remarkably similar lines as in the gauge theory situation. Indeed, we will find that
at the formal level, the construction is identical, once the correct Wilson lines and redefinitions
are identified. Furthermore, most of the intuition developed for gauge theory still carries through
in the gravitational situation.
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Collinear Gravity
Chapter 5

As a first step, we introduce the purely-collinear theory. This means that we only consider the
collinear modes, expanded around a trivial background, and do not introduce soft modes. This
theory considered in isolation is of course quite trivial and should be equivalent to the full theory.
Regardless, already in this simple theory, we can make contact with some subtleties of SCET
gravity. First, we will see that the graviton field has a large component and one that is even
power-enhanced. To control these, the analogues of gravitational Wilson lines are motivated,
constructed, and introduced in the simpler setting of the purely-collinear theory. Then, we
make contact with the first iteration of gauge-invariant building blocks. In the end, we give the
purely-collinear Lagrangians for the matter theory and Einstein-Hilbert and verify that they are
indeed equivalent to the full theory.

5.1 Power-counting and Field Content
We consider the minimally-coupled scalar field (4.3.1) and the Einstein-Hilbert action (4.1.1),
where we use only a single collinear mode. For the scalar field, this is trivial, φfull = φc, while
for the graviton this implies1

gµν(x) = ηµν + hµν . (5.1.1)

For each collinear direction, we define the light-like reference vectors nµ± as usual and de-
compose the collinear momentum in this basis with the scaling (2.1.3), which we restate here
(n+p , p⊥ , n−p) ∼ (1 , λ , λ2) .

Inserting the decomposition (5.1.1) in the Einstein-Hilbert action (4.1.1) leads to an infinite
series in hµν . Recall that we also introduce a gauge-fixing term as explained in (4.3.7). At the
moment, we do not assume any weak-field expansion. From the bilinear terms of this theory,
one determines the two-point function (4.3.8), given by

⟨0|T (hµν(x)hαβ(y))|0⟩ = i

∫ d4p

(2π)4
e−ip·(x−y)

p2 + i0
(
Pµν,αβ + 1 − b

b
Sµν,αβ) , (5.1.2)

where

Pµν,αβ = 1
2
(
ηµαηνβ + ηµβηνα − ηµνηαβ) , (5.1.3)

Sµν,αβ = 1
2p2 (ηµαpνpβ + ηµβpνpα + pµpαηνβ + pµpβηνα) . (5.1.4)

Inserting the collinear scaling, notice that Pµν,αβ ∼ 1 always, since it does not depend on
momenta. The other combination, Sµν,αβ has non-trivial λ-scaling. For example, for the ++
and ⊥⊥ modes, one obtains [43]

S++,++ ∼ 1
λ2 , P++,++ = 0 ,

S⊥⊥,⊥⊥ ∼ 1 , P⊥⊥,⊥⊥ ∼ 1 . (5.1.5)
1We now work in units where κ = 1, and hµν denotes the collinear fluctuation from here.
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Then, the scaling of these modes is easily determined to be h++ ∼ λ−1, h⊥⊥ ∼ λ. In general,
one finds the scaling

hµν ∼ pµpν

λ
, (5.1.6)

which implies h ∼ λ for the trace. The scalar field scales as φc ∼ λ like before.
Notice that h++ ∼ λ−1 is power-counting enhanced, in addition to the large h+⊥ ∼ λ0. This

enhanced component is a new feature that was not present in gauge theory. However, there are
two things to observe. First, the full theory does not feature any collinear divergences. There-
fore, when viewed in isolation, the collinear Lagrangian cannot have leading-power interactions
between collinear gravitons and matter fields. Despite the super-leading nature of h++, any
possible contraction in the Lagrangian must be suppressed in λ. Indeed, any contraction of hµν
with a collinear vector from the same sector yields power-suppression, since we have

hµνVν = 1
2(hµ+V− + hµ−V+) + hµ⊥V⊥ ∼ λV µ , (5.1.7)

and thus the expansion in λ agrees with the weak-field expansion in the purely-collinear theory.
However, this argument does not work for N -jet operators, which feature multiple collinear

directions. Here, any contraction between an i-collinear graviton and a j-collinear vector has
the property

hµνi Vjν =
nµi−
2
ni−nj−

4 h+i+iV+j + O(λ0) ∼ O(λ−1) , (5.1.8)

which counts as O(λ−1). Therefore, if one were to add h++ to a suppressed operator, its power-
counting would reduce and it would contribute at an earlier order than anticipated. This is a
serious problem and cannot be a feature of a sensible EFT. Moreover, on the physical side, such
behaviour would cause collinear divergences, which are known to be absent in gravity [1, 60].

Notice the analogy to QCD: the collinear gluon scales like a collinear momentum, with large
component n+Ac ∼ 1. In the Lagrangian, however, derivatives only enter in a combination like
∂2 ∼ λ2, so each large n+Ac always comes with a small n−∂ or n−Ac, so that the combination
scales as λ2. In the gravitational Lagrangian, we observe the same feature. The power-counting
enhanced component always comes with a suppressed one.

In the N -jet, however, one could in principle add arbitrarily many n+Ac to any given operator.
However, we noticed that n+Ac = 0 in light-cone gauge, and introduced collinear semi-infinite
Wilson lines Wc that moved the fields to this light-cone gauge. This definition gave rise to
gauge-invariant building blocks, which correspond to the physical polarisations of the gluon. In
turn, the couplings of n+Ac are controlled by this Wilson line.

In gravity, we use the same intuition: first, notice that gravitational light-cone gauge can be
expressed as the condition h+µ = 0, thereby removing both the power-enhanced as well as the
O(1) component. The idea is now straightforward: Using the gravitational gauge symmetry, we
construct the analogues of the collinear Wilson lines, defining gauge-invariant building blocks.
Then, when employing only these building blocks in the N -jet operator basis, one can never add
explicit h++ or h+⊥ to the N -jet, and the power-counting is saved.

5.2 Gauge Symmetry

In this section, we focus on the gauge symmetry of the collinear sector. They are inherited from
the full theory, which is itself a weak-field expansion. Here, the diffeomorphisms are truncated
at some order in κ. We already know that in the purely-collinear theory, the expansion in the
parameter λ is equivalent to the weak-field expansion in κ, since any contraction of hµν with a
collinear vector (of the same sector) is power-suppressed. Therefore, power-counting alone will
allow us to truncate the diffeomorphisms at some order in λ.
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To define the λ-scaling of the gauge-parameter ε, we impose a homogeneous linear transfor-
mation for the collinear graviton

hµν → hµν − ∂µεν − ∂νεµ ∼ O(hµν) . (5.2.1)

This leads to the scaling
n+ε ∼ 1

λ
, n−ε ∼ λ , εµ⊥ ∼ 1 . (5.2.2)

When comparing this to the scaling of collinear coordinates

n+x ∼ 1
λ2 , n−x ∼ 1 , xα⊥ ∼ 1

λ
, (5.2.3)

notice that εµ scales as λxµ, consistent with the notion of a “small” translation, i.e. power-
suppressed compared to xµ. However, this λ-scaling also means that the gauge transformation
mixes different orders in λ, and must be truncated if we consider the theory only to some finite
order. For example, the scalar field transforms as (4.2.6)

φc → φc − εα∂αφc︸ ︷︷ ︸
∼λφc

+1
2 ε

αεβ∂α∂βφc︸ ︷︷ ︸
∼λ2φc

+O(λ3φc) , (5.2.4)

and we see that the λ-scaling indeed agrees with the κ-scaling encountered previously. The
collinear graviton inherits the non-linear transformation

hµν →
[
Uc
(
U α
cµ U β

cν (ηαβ + hαβ)
)]

− ηµν . (5.2.5)

Expanded to second order in λ, it reads

h′µν = hµν − ∂µεν − ∂νεµ − ∂µε
αhαν − ∂νε

αhαµ − εα∂αhµν

+ ∂µε
α∂αεν + ∂νε

α∂αεµ + ∂µεα∂νε
α + εα∂α(∂µεν + ∂µεν) + O(λ3) ,

(5.2.6)

which is also completely equivalent to the transformation in the weak-field expansion.
Again, notice that since the gauge transformation mixes different orders in λ, one cannot

construct an object that is simultaneously gauge-invariant and homogeneous in λ. We have to
make a choice on which feature to prioritise.

5.3 Collinear Wilson Line
In QCD, the collinear Wilson line Wc was constructed to control n+Ac to all orders in the
operator basis. In gravity, we wish to find a similar object. Unfortunately, we do not have a
notion of parallel transport for the coordinate transformations and the Lie derivative. Therefore,
there is no standard concept of a Wilson line we can employ.

Instead, we take the explicit route: we compute an inverse gauge transformation that renders
the fields gauge-invariant. The guiding principle is that this gauge transformation should move
an arbitrary field configuration to light-cone gauge.

Since we denote the gauge transformation (which is an inverse translation) by U(x), we define
for a local translation

y = x+ θc[h] (5.3.1)
the inverse gauge transformation as the translation

W−1
c = Tθc[h] . (5.3.2)

In addition, we denote the Jacobi matrices as

Wµ
α = ∂yµ

∂xα
, W α

µ = ∂xα

∂yµ
. (5.3.3)
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Here, θc[h] is a parameter that is to be determined.
Intuitively, the new coordinate (5.3.1) corresponds to the choice of a new reference frame

where we impose light-cone gauge hµ+ = 0. The metric tensor in this new gauge is given by2

ηµν + hµν(x) = Wα
µW

β
ν [W−1

c gαβ(x)] , (5.3.4)

where gαβ(x) = ηαβ + hαβ(x). Gauge transformations are inhomogeneous in λ, therefore we
anticipate that the parameter θc can be determined order by order in λ, and we introduce

θµc = θµ(0)
c + θµ(1)

c + . . . , (5.3.5)

where the superscript denotes the λ-counting relative to the leading term, which is denoted as
θ(0 for simplicity. Expanding the translation operator

W−1
c = Tθc = 1 + θαc ∂α + 1

2θ
α
c θ

β
c ∂α∂β + O(θ3

c ) , (5.3.6)

and inserting this in (5.3.4), one obtains the non-linear equation

hµν = hµν + ∂µθcν + ∂νθcµ + ∂µθ
α
c hαν + ∂νθ

α
c hαµ + θαc ∂αhµν + ∂µθ

α
c ∂νθcα + O(θ3

c , θ
2
ch) . (5.3.7)

To determine θc, impose hµ+ = 0 and work order-by-order in λ. At leading-power, since the
gauge transformation of hµν is defined to be homogeneous, one only needs to consider

hµν = hµν + ∂µθ
(0
cν + ∂νθ

(0
cµ + O(λ2) . (5.3.8)

For h++ = 0, one finds
0 = h++ + 2∂+θ

(0)
c+ , (5.3.9)

which yields3

θ
(0)
c+ = −1

2
1

n+∂
h++ . (5.3.11)

Inserting this in the condition for h+µ, one finds

0 = h+µ + ∂+θ
(0)
cµ + ∂µθ

(0)
c+ , (5.3.12)

which is solved by
θ(0)
cµ = − 1

n+∂

(
hµ+ − 1

2
∂µ
n+∂

h++

)
. (5.3.13)

One order higher, the non-linear terms become relevant and the computation becomes slightly
more involved. Regardless, one can still first compute θc+ from h++ = 0 and then insert this in
h+µ = 0. This results in

θ
(1)
c+ = −1

2
1

n+∂

(
2n+∂θ

(0)α
c hα+ + θ(0)α

c ∂αh++ + n+∂θ
(0)α
c n+∂θ

(0)
cα

)
, (5.3.14)

θ(1)
cµ = − 1

n+∂

(
∂µθ

(1)
c+ + ∂µθ

(0)α
c hα+ + n+∂θ

(0)α
c hαµ + θ(0)α

c ∂αhµ+

+ ∂µθ
(0)α
c n+∂θ

(0)
cα

)
. (5.3.15)

2Note the interchanged order compared to (4.2.10), since we consider an inverse gauge transformation.
3Recall that the inverse of in+∂ acting on a function f(xµ) is defined as

1
in+∂ + iϵ

f(xµ) = −i

∫ 0

−∞
ds f(xµ + snµ

+) . (5.3.10)

74



5.3 Collinear Wilson Line

At this point, it is instructive to explicitly compute hµν to the first order. Here, we find

hµν = hµν − ∂µ
n+∂

(
hν+ − 1

2
∂ν
n+∂

h++

)
− ∂ν
n+∂

(
hµ+ − 1

2
∂µ
n+∂

h++

)
+ O(λhµν) . (5.3.16)

Comparing this to QCD, we find that this looks remarkably similar to the gauge-invariant
collinear gluon field (3.3.84),

Acµ⊥ = 1
g
W †c [iDcµ⊥Wc] = Acµ⊥ − ∂µ⊥

n+∂
Ac+ + O(gAcµ⊥) , (5.3.17)

which indicates that the W−1
c we construced is indeed the correct object.

From the explicit result (5.3.13) – (5.3.15), we can determine its gauge transformation to be

θµ → θ(0)µ + θ(1)µ + εµ + θ(0)α [∂αεµ] + O(λ2) . (5.3.18)

Inserting this in the translation operator W−1
c , we find the transformation

W−1
c = 1 + θα∂α + 1

2θ
αθβ∂α∂β + . . .

→ 1 + θα∂α + εα∂α + θ(0)β∂βε
α∂α + 1

2θ
αθβ∂α∂β + εαθβ∂α∂β + . . .

=
(

1 + θα∂α + 1
2θ

αθβ∂α∂β + . . .

)
(1 + εα∂α + . . .)

= W−1
c U−1(x) . (5.3.19)

Here, we implicitly assumed that gauge transformations vanish at spatial −∞, which is used
when explicitly evaluating the inverse derivatives in the definition of θ.

Therefore, we find that the gravitational Wilson line transforms order-by-order as

W−1
c → W−1

c U−1(x) , (5.3.20)

just like its gauge-theory counterpart. We can now employ this object in the same form as in
QCD to construct gauge-invariant building blocks. Recall the scalar field transformation (4.2.5)

φ(x) → φ′(x) = U(x)φ(x) , (5.3.21)

where U(x) is the inverse translation operator. Therefore, to render a field gauge-invariant, we
apply W−1

c like a translation to define

χc =
[
W−1
c φ

]
, (5.3.22)

which is manifestly gauge-invariant. One can also explicitly verify that the metric tensor hµν
defined in (5.3.4) is manifestly gauge-invariant. This also gives us a recipe to render any tensor
field gauge-invariant: First, one applies W−1

c to remove the scalar-like transformation. Then,
for a tensor Tµα , one applies the Jacobi matrices as

Tµα = W µ
ν W β

α

[
W−1
c T νβ (x)

]
. (5.3.23)

The conceptual similarity to QCD is now immediate. In gauge theory, we employ W †c to fix
light-cone gauge. This object depends on the dynamical field Ac via n+Ac, and each field in
the full theory is redefined according to its gauge transformation. In gravity, the corresponding
object is given by the translation W−1

c , which similarly depends on hµν via h+µ. To define
gauge-invariant tensor fields, one applies the Wilson line according to the tensor representation.

There is an alternative way to derive this Wilson line, based on the geodesic equation. This
approach was first presented in [61] and also used in [62]. It is presented in detail in the
appendix of [47], including the proof that both parameters agree. In addition, similar to QCD
in Section 3.3.4, it is possible to find this object by considering the emission of hµ+-polarisations.
This is presented in the subsequent Section 5.5.
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5 Collinear Gravity

5.4 Manifestly Gauge-invariant Lagrangian
The purely-collinear Lagrangian is completely equivalent to the standard weak-field expansion
since the λ-expansion immediately leads to the κ-expansion. However, we can express the
Lagrangian in terms of the gauge-invariant building blocks. This yields

L(0) = 1
2∂µχc∂

µχc − λφ
4! χ

4
c , (5.4.1)

L(1) = −1
2hµν(∂

µχc∂
νχc − ηµν

1
2∂αχc∂

αχc) − 1
2h
λφ
4! χ

4
c , (5.4.2)

L(2) = 1
2

(
hµαhνα − 1

2hh
µν + 1

8(h2 − 2hαβhαβ)ηµν
)
∂µχc∂νχc

− 1
8(h2 − 2hαβhαβ)λφ4! χ

4
c (5.4.3)

up to O(λ2). For brevity, have not yet expanded out the contractions. Note however, that e.g.
for the first term in L(1), one finds

hµν∂
µχc∂

νχc = hµ⊥ν⊥∂
µ
⊥χc∂

ν
⊥χc + hµ⊥−∂

µ
⊥χcn+∂χc + 1

4h−−n+∂χcn+∂χc , (5.4.4)

since h+µ = 0. One can simplify this Lagrangian further by noting that the trace h and h−µ are
subleading and can be eliminated by their equations of motion, which read up to O(λ))

h = 1
2

(
hα⊥β⊥h

α⊥β⊥ − 1
∂2

+
(∂+hα⊥β⊥∂+h

α⊥β⊥)
)
, (5.4.5)

h−µ⊥ = −2∂
α⊥

∂+
hµ⊥α⊥ +

(
−∂µ⊥

∂3
+

(∂+hα⊥β⊥∂+h
α⊥β⊥) (5.4.6)

+ 1
∂2

+

(
−2∂2

+hµ⊥α⊥

∂β⊥

∂+
hα⊥β⊥ + 2hα⊥β⊥∂+∂α⊥hµ⊥β⊥ + ∂+hα⊥β⊥∂µ⊥h

α⊥β⊥
))

.

We do not perform this explicitly for the scalar Lagrangian, but only for the gravitational part.
The Einstein-Hilbert Lagrangian is given up to O(λ) by

L(0)
EH = 1

2∂µhα⊥β⊥∂
µhα⊥β⊥ , (5.4.7)

L(1)
EH = 1

2

(
hα⊥β⊥∂

2
+h

α⊥β⊥
∂ρ⊥∂σ⊥

∂2
+

hρ⊥σ⊥ − 2hα⊥β⊥∂+∂
ρ⊥hα⊥β⊥

∂σ⊥

∂+
hρ⊥σ⊥

+ hα⊥β⊥hρ⊥σ⊥∂
ρ⊥∂σ⊥hα⊥β⊥ − 2hα⊥σ⊥hβ⊥ρ⊥∂

ρ⊥∂σ⊥hα⊥β⊥

− 4hα⊥σ⊥∂+h
α⊥β⊥

∂ρ⊥∂σ⊥

∂+
hρ⊥β⊥

)
. (5.4.8)

Note that hµν is not homogeneous in λ, but is instead defined order-by-order as hµν = h
(1)
µν +

h
(2)
µν + . . . , where

h(1)
µν = hµν + ∂µθ

(0)
cν + ∂νθ

(0)
cµ , (5.4.9)

h(2)
µν = ∂µθ

(1)
cν + ∂νθ

(1)
cµ + ∂µθ

(0)α
c hαν + ∂νθ

(0)α
c hαµ + θ(0)α

c ∂αhµν + ∂µθ
(0)
cα ∂νθ

(0)α
c , (5.4.10)

and θc is defined according to (5.3.13) – (5.3.15). Each order is gauge-invariant under the trun-
cated diffeomorphisms at that order, but only the full infinite series hµν is gauge-invariant under
the full diffeomorphisms. Regardless, one can still consider the Lagrangian to be “homogeneous”
in λ, in the sense that each term as a well-defined leading piece that determines its scaling in
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5.5 Collinear Emission

λ. Furthermore, if one were to fix light-cone gauge, all subleading pieces would vanish, and the
Lagrangian would be manifestly homogeneous. For practical computations, it is convenient to
fix a standard covariant gauge, like de Donder gauge, and keep Wilson lines explicit if this is
necessary.

Furthermore, these Lagrangians are expressed manifestly in terms of the physical graviton
polarisations h⊥⊥. They show that there are no leading-power collinear graviton interactions,
and thus from Lagrangian interactions alone, it is not possible to obtain collinear divergences.
In the N -jet operators, one also employs the collinear Wilson line to render the fields manifestly
gauge-invariant. The leading and superleading graviton fields are contained in this collinear
Wilson line, which takes the form Wc ∼ 1 + O(λ), and there is no coupling to these components
at leading power. Therefore, additional emission of these leading-power collinear gravitons is
also suppressed at least by O(λ), and it is not possible to obtain collinear divergences.

Contrast this with QCD: here, the purely-collinear Lagrangian features leading-power inter-
actions. In addition, the collinear Wilson lines Wc used in the N -jet operators, multiplying
every field to yield a gauge-invariant building block, describe leading-power emissions of the
large gluon components n+Ac. Thus collinear emissions are not suppressed, and divergences are
possible.

In summary, we found that the purely-collinear theory is completely equivalent to the stan-
dard weak-field expansion since the λ-expansion agrees with the κ-expansion. By imposing
light-cone gauge, we constructed a collinear “Wilson line” W−1

c , which is the precise analogue
of the collinear Wilson line in gauge theory and has the same intuition as an inverse gauge
transformation that moves a field configuration to light-cone gauge. Using this Wilson line,
or light-cone gauge in general, we managed to write the Lagrangian in a form where only the
physical polarisation h⊥⊥ is present. The dangerous components h++ and h+⊥ are controlled
by the Wilson line. However, this Wilson line takes the form W−1

c ∼ 1 + O(λ), and one can
conclude from this property that there are no collinear divergences in gravity.

5.5 Collinear Emission
In this section, we compute the process φ1φ2 → φ3φ4h1, i.e. the emission of a 1-collinear
graviton off a four-scalar scattering, and check that it is indeed reproduced by the Lagrangian.
In addition, this serves as an explicit check that the collinear Wilson line indeed captures the
emission of the large components hµ+, similar to the matching computed in Section 3.3.4.

For simplicity, we only consider the five diagrams corresponding to the scalar four-point
interaction with graviton emission and not the ones where we have a graviton mediating the
interaction.

5.5.1 Full-theory Computation
Non-radiative Amplitude

The non-radiative amplitude is simply given by the four-point vertex

M = −iλs . (5.5.1)

The radiative amplitude consists of three different contributions: the emission directly from the
scattering via the five-point φ4h-vertex, the emission from the leg of the same collinearity, and
the emission from all other legs. We discuss these contributions in this order.

5-point Vertex

The 5-point vertex simply yields
M5 = − iκλs

2 h , (5.5.2)
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where h = hαα denotes the trace of the graviton polarisation tensor.

Emission off Leg 1

Here, we find the amplitude

M1 = −iλs
−i

(p1 + k)2
iκ

2
(
pµ1 (p1 + k)ν + pν1(p1 + k)µ − ηµνp1 · (p1 + k)hµν

= − iκλs
2

1
p1 · k

(pµpν + pµkν)hµν + iκλs
4 h , (5.5.3)

which is already homogeneous in λ and needs no further expansion.

Emission off Leg j

Next, consider the emission of the 1-collinear graviton with momentum k off a leg j ̸= 1 with
momentum p. In this case, the amplitude must be expanded in λ, as the intermediate propagator
becomes off-shell and must be integrated out in the effective theory. We employ the relations

1
p · k

= 4
n1−nj−pj+k1+

(
1 − 2

n1−nj−pj+k1+
(n1−pj⊥k1+ + nj−k1⊥pj+)

− 1
n1−nj−pj+k1+

(n1−nj+pj−k1+ + n1+nj−pj+k1− + 4k1⊥pj⊥) (5.5.4)

+ ( 2
n1−nj−pj+k1+

)2((n1−pj⊥)2 + 2n1−pj⊥nj−k1⊥ + (nj−k1⊥)2))+ O(λ3) ,

as well as4

hµνp
µpν = (n1−nj−

4 )2h++p
2
j+ + n1−nj−

4 h++pj+ni−pj⊥ + n1−nj−
4

n1−nj+
2 h++pj+pj−

+
(n1−pj⊥

2
)2
h++ + n1−nj−

2 h+ap
a
j⊥pj+ + n1−nj−

4 h+an
a
j−p

2
j+ (5.5.5)

+
naj−
2 h+apj+n1−pj⊥ + n1−nj−

4
n1+nj−

2 h+−p
2
j+ + hab

naj−n
b
j−

4 p2
j+ + O(λ2) ,

and

hµνp
µkν = n1−nj−

4 h+νk
νpj+ . (5.5.6)

Inserting these expansions and keeping terms to O(λ), we find the amplitude

Mj = iκλs
4 h− iκλs

2

(
kν
h+ν
k+

(5.5.7)

+ 2
(
h++
k+

nµ1−
2
(nj−µ

2 pj+ + pj⊥µ + nj+µ
2 pj−

)
+ h+a

k+

(naj−
2 pj+ + paj⊥

)
+ h+−

k+

n1+nj−
4 pj+

)
− h++

(k+)2

(
k+
nµ1−

2
(nj−µ

2 pj+ + pj⊥µ + nj+µ
2 pj−

)
+ kµ⊥

(nj−µ
2 pj+ + pj⊥µ

)
+ k−

n1+nj−
4 pj+

)

+ 1
n1−nj−pj+k+

naj−n
b
j−p

2
j+

(
hab −

(
ka
h+b
k+

− 1
2kakb

h++
(k+)2

)
−
(
kb
h+a
k+

− 1
2kbka

h++
(k+)2

)))
.

When summing the diagrams for j = 2, 3, 4, we use momentum conservation

p1 + p2 + p3 + p4 + k = 0 , (5.5.8)
4Latin indices denote transverse components.
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and find for the sum of the j ̸= 1 diagrams the result

∑
j ̸=1

Mj = − iκλs
2

(
−2h+µ

k+
pµ1 + h+µ

k+
kµ + h++

(k+)2k · p1

)
+3

4 iκλsh

+ iκλs
2

∑
j

(
naj−n

b
j−p

2
j+

n1−nj−pj+k+
hab

)
(5.5.9)

The full-theory amplitude, expanded in λ is then given by

M = − iκλs
2

(
1

p1 · k
(
pµ1p

1
ν + pµ1k

ν)hµν − h− 2h+µ
k+

pµ1 + kµ
h+µ
k+

+ k · p h++
(k+)2

+
∑
j ̸=1

(
naj−n

b
j−p

2
j+

n1−nj−pj+k+
hab

))

= −iκλs
2

(
1

p1 · k

((
pµ1p

ν
1 + pµ1k

ν)hµν − p1 · kpµ1
h+µ
k+

− p1 · kpν1
h+ν
k+

− p1 · kkµh+µ
k+

+ (p1 · k)2 h++
(k+)2 − h+ 2p1 · kkµh+µ

k+

)
+
∑
j ̸=1

(
naj−n

b
j−p

2
j+

n1−nj−pj+k+
hab

))

= − iκλs
2

(
1

p1 · k
(
pµ1p

ν
1 + pµ1k

ν)hµν − h +
∑
j ̸=1

(
naj−n

b
j−p

2
j+

n1−nj−pj+k+
hab

))
. (5.5.10)

As we can see, there is no direct appearance of h+µ once we rewrite it in terms of the gauge-
invariant combination h. This can be viewed as yet another explicit derivation of the collinear
Wilson line.

Inspecting the result closer, notice that the first two terms come with the collinear propagator
1

p1·k . This indicates that these terms are captured directly by the Lagrangian (5.4.1) – (5.4.3).
The third and fourth term combine momenta of different collinear sectors and require an ad-
ditional operator insertion of the gauge-invariant collinear graviton field h. Note that only the
transverse components of h appear in these terms.

At O(λ2), the full amplitude receives the additional corrections

iM (2) = − iκλs
2

∑
j ̸=1

(naj−pbj⊥
ni−nj−

hab
k+

+
naj−n

ν
j−

ni−nj−
ni+ν

ha−
k+

pj+

+ 2
ni−nj−

naj−k
ν

k+
haν − 2

ni−nj−

(
ni−pj⊥ + nj−k⊥pj+

k+

)naj−nbj−
ni−nj−

hab
k+

)
, (5.5.11)

which all take the form of a N -jet operator insertion. Note that here, h is the linear combination,
which reads

hµν = hµν − kµ
h+ν
k+

− kν
h+µ
k+

+ kµkν
h++
k2

+
. (5.5.12)

This is to be expected since the full-theory amplitude is linear in h.

5.5.2 Matching
The non-radiative amplitude is matched to the 4-jet operator

Jnr =
∫

dt1dt2dt3dt4C̃nr(t1, t2, t3, t4)χ1(t1n1+)χ2(t2n2+)χ3(t3n3+)χ4(t4n4+)

=
∫

dp1dp2dp3dp4 Cnr(p1, p2, p3, p4)χ̃1(p1)χ̃2(p2)χ̃3(p3)χ̃4(p4) , (5.5.13)
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where χi is the gauge-invariant building block (5.3.22) and the coefficient Cnr is determined by
evaluating the matrix element

⟨φ(q1)φ(q2)φ(q3)φ(q4)|J |0⟩ = (5.5.14)∫
dp1dp2dp3dp4C(p1, p2, p3, p4)δ(q1 − p1)δ(q2 − p2)δ(q3 − p3)δ(q4 − p4) .

Here, we employ the Fourier-transformation of the operators χ̃(Pi), defined as

J̃A0(Pi) =
∫

dt e−itPiJA0(t) , (5.5.15)

which depend only on the large collinear momentum ni+Pi. For brevity, we write these momenta
simply as pi. We find Cnr = −iλ, i.e. the non-radiative matching coefficient is simply the stripped
amplitude. The corresponding position-space coefficient is given by

C̃(t1, t2, t3, t4) =
∫

dp1dp2dp3dp4 e
−it1p1−it2p2−it3p3−it4p4C(p1, p2, p3, p4) , (5.5.16)

which is computed to be

C̃nr(t1, t2, t3, t4) = −iλδ(t1)δ(t2)δ(t3)δ(t4) . (5.5.17)

Next, we consider the time-ordered products of the subleading Lagrangian. Note that we have
to re-express the building block hµν in terms of the original graviton field hµν .

The contribution of the insertion of L(1) in (5.4.2) yields

⟨f |JA0|0⟩L(1) insertion = −iλs
∫
p̃

−i
2p̃ ( iκ2 )(pµ1 p̃ν + p̃µpν1 − ηµνp1 · p̃)h(0)

µν (k)δ(p̃− (p1 + k))

= − iκλs
2

1
p1 · k

h(0)
µν (k)(pµ1pν1 + pµ1k

ν) + iκλs
4 h , (5.5.18)

where
h(0)
µν (k) = hµν(k) − kµ

h+ν
k+

− kν
h+µ
k+

− kµkν
h++
(k+)2 (5.5.19)

is the linear gauge-invariant polarisation tensor. Note that since L(2) only contains terms ∼ h2φ2,
there is no contribution of T{JA0,L(2)} to this amplitude.

Subtracting (5.5.18) from the full amplitude, we are left with the remaining terms

Mrest = iκλs
4 h − iκλs

2
∑
j ̸=1

(
naj−n

b
j−

n1−nj−

pj+
k+

hab

)

− iκλs
2

∑
j ̸=1

(naj−pbj⊥
ni−nj−

hab
k+

+
naj−n

ν
j−

ni−nj−
ni+ν

ha−
k+

pj+

+ 2
ni−nj−

naj−k
ν

k+
haν − 2

ni−nj−

(
ni−pj⊥ + nj−k⊥pj+

k+

)naj−nbj−
ni−nj−

hab
k+

)
. (5.5.20)

These terms must now be matched to the possible A1 and B-type currents. The A1-currents
are obtained by adding a ∂⊥ to the current, while the B-type current carries an additional h(0)

µν

building block. For the B-type currents, we make use of momentum fractions x in the Fourier
transformation. In position space, the B-type current is then defined as

J B1
hχ =

∫
dt11dt12dt2dt3dt4 (5.5.21)

C̃ab(t11 , t12 , t2, t3, t4)hab(t11n1+)χ1(t12n1+)χ2(t2n2+)χ3(t3n3+)χ4(t4n4+) ,
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where latin indices a, b indicate that hab is purely transverse. As there are two fields in the
1-direction, we define the Fourier-transform as

JB1(P1, x) = P 2
1

∫
dt11dt12 e

−i(t11xP1+t12 x̄P2)JB1(t11 , t12) , (5.5.22)

where x̄ = 1 − x and x is the momentum fraction.
Computing the overlap of the B1-current with the state |h(k)φ(q)⟩, we find

⟨hµν(k+)φ(q+)|JB1
hφ (P, x)|0⟩ = P 2hµν(xP )δ(xP − k)δ(x̄P − q) , (5.5.23)

and we can now use

δ(xP − k+)δ(xP − q+) = 1
P
δ(P − (k+ + q+))δ(x− n+k

P
) , (5.5.24)

to find, omitting the overall momentum conservation,

⟨hµν(k+)φ(q+)|JB1
hφ (P, x)|0⟩ = Phµν(xP )δ(x− n+k

P
) . (5.5.25)

To reproduce the remaining terms in the amplitude (5.5.20), we require the following types
of B1 and B2 currents:

J B1
hχ =

∫
dt11dt12dt2dt3dt4 (5.5.26)

C̃ab(t11 , t12 , t2, t3, t4)hab(t11n1+)χ1(t12n1+)χ2(t2n2+)χ3(t3n3+)χ4(t4n4+) ,

J B2
(∂h)χ =

∫
dt11dt12dt2dt3dt4 (5.5.27)

C̃abc(t11 , t12 , t2, t3, t4)(i∂c⊥hab(t11n1+))χ1(t12n1+)χ2(t2n2+)χ3(t3n3+)χ4(t4n4+) ,

J B2
h−χ =

∫
dt11dt12dt2dt3dt4 (5.5.28)

C̃a(t11 , t12 , t2, t3, t4)ha−(t11n1+)χ1(t12n1+)χ2(t2n2+)χ3(t3n3+)χ4(t4n4+) ,

J B1,A1
hχ,χ2

=
∫

dt11dt12dt2dt3dt4 (5.5.29)

C̃ab(t11 , t12 , t2, t3, t4)hab(t11n1+)χ1(t12n1+)(i∂⊥bχ2(t2n2+))χ3(t3n3+)χ4(t4n4+) ,

where the 2 in the last current indicates the position of the derivative ∂⊥. Note that using the
equations of motion for hµν , we could eliminate hµ− and h in favour of hab. However, we choose
to keep these operators explicitly in the basis for now. We define the momentum fractions of the
1-direction so that φ carries x̄P . The momentum-space matching coefficients are then computed
as

CabJB1
hχ

(x) = − iκλs
2

4∑
j=2

naj−n
b
j−

n1−nj−

1
xP1

Pj + iκλs
4 ηab⊥ , (5.5.30)

CabcJB2
(∂h)χ

(x) = iκλs
2

4∑
j=2

2
n1−nj−

(
nc1−

naj−n
b
j−

n1−nj−

1
xP1

Pj −
naj−η

bc
⊥

xP1

)

+ iκλs
2

4∑
j=2

2
n1−nj−

ncj−
Pj
xP1

naj−n
b
j−

n1−nj−

1
xP1

P2 , (5.5.31)

CaJB2
h−χ

(x) = − iκλs
2

4∑
j=2

naj−n
ν
j−

n1−nj−
n1+ν

1
xP1

Pj + 1
ni−nj−

naj− , (5.5.32)

CaJB1,A1
hχ,χ2

(x) = − iκλs
2

naj−
n1−nj−

1
xP1

, (5.5.33)
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and the full amplitude for collinear graviton emission is indeed reproduced by the effective theory.
This explicit computation serves as a check that the collinear Wilson line Wc indeed also arises
from an explicit matching computation, as we also verified for QCD in Section 3.3.4. It can be
viewed as a third, independent derivation of the Wilson line, or as an explicit double-check of
our construction.
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Soft-collinear Gravity
Chapter 6

In this section, we present the full soft-collinear theory for gravity, the derivation of the effective
Lagrangian as well as a discussion of the N -jet operator basis. Conceptually, the construction
is very similar to the gauge-theory one presented in Chapter 3. However, on a technical level,
the various definitions and expressions used in the derivation differ quite drastically. The main
complication, similar to gauge-theory, arises after the multipole expansion of the soft fields
and consists of the identification of the “homogeneous” soft background field. Once the proper
background is identified, one can employ various Wilson lines to define redefined “homogeneously
transforming” fields. Then, inserting these fields and using the same manipulations as in the
gauge-theory case presented in Section 3.4 yields the full soft-collinear Lagrangian.

The derivation and construction follow closely [47] by the author in collaboration with M. Beneke
and R. Szafron, where it was performed for the first time.

6.1 Power-counting, Field Content and Gauge Symmetry
The first step is to define the field content. As usual, we include only the soft and collinear
modes of the full-theory fields in the effective theory. For the gravitational part, this means we
consider collinear gravitons hiµν , one for each collinear direction, and one soft graviton field sµν .
The split in the gravitational sector is implemented similarly to gauge theory (3.2.2) as a sum

gµν = ηµν + hµν + sµν ≡ gsµν + hµν . (6.1.1)

In the following construction, it is convenient to employ the soft metric tensor gsµν = ηµν + sµν ,
since the effective theory turns out to be covariant with respect to this soft background gsµν .
Therefore, one can employ geometric notions and intuition throughout the construction. In the
previous section, the scaling of the collinear graviton was determined as (5.1.6). From the same
two-point function (4.3.8), the scaling of the soft sµν is found to be homogeneous,

sµν ∼ λ2 . (6.1.2)

The gauge symmetry is affected in a non-trivial fashion by the split (6.1.1). Namely, the
original full-theory diffeomorphism symmetry is extended to a semi-direct product of a soft and
a collinear gauge symmetry. Since all fields have to be homogeneous in the power counting, one
has to ensure that a soft field never transforms under collinear gauge transformations. Else, the
soft field would turn collinear. Therefore, the original symmetry is now realised as two different
symmetries.

Under full diffeomorphisms, the metric tensor transforms as (4.2.11)

gµν → U
[
U α
µ U β

ν gαβ
]

= gµν − ∇µεν − ∇νεµ + O(ε2) ,
(6.1.3)

where ∇ is the standard covariant derivative with respect to the full metric tensor gµν .
Now we consider the split (6.1.1). The left-hand side only transforms under full diffeomor-

phisms. Therefore, if the right-hand side transforms under soft or collinear diffeomorphisms, the
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sum of the transformations must correspond to a full-theory one. One consistent way of imple-
menting the two separate symmetries – under the constraint that a soft field never transforms
under the collinear diffeomorphism – is to treat the soft field as a background, and the collinear
field as a fluctuation on top of this soft background.

Consider first the soft gauge transformations. Here, the soft background field should transform
like an ordinary metric tensor. For the fluctuation sµν , this implies that it should have the
standard inhomogeneous gauge transformation (5.2.6). Inserting this transformation in the split
(6.1.1) then implies the transformation for hµν . Combined, they read

hµν →
[
Us
(
U α
sµ U β

sν hαβ
)]

,

sµν →
[
UsU

α
sµ U β

sν (ηαβ + sαβ)
]

− ηµν .
(6.1.4)

Note that the collinear graviton hµν transforms like an ordinary rank-2 tensor field, and not
like a graviton, whereas the soft graviton sµν has indeed the standard inhomogeneous gauge
transformation. The soft transformation implies the standard transformation for the background
metric gsµν

gsµν →
[
Us
(
U α
sµ U β

sν gsαβ
)]

. (6.1.5)

In addition, there is also the collinear symmetry related to hµν . The soft graviton sµν must
not transform under this symmetry, otherwise, the homogeneous scaling would be violated –
the soft mode would acquire collinear fluctuations. Therefore, imposing sµν → sµν yields the
transformations

hµν →
[
Uc
(
U α
cµ U β

cν (gsαβ + hαβ)
)]

− gsµν ,

sµν → sµν ,

gsµν → gsµν ,

(6.1.6)

where we have also added the transformation of the soft background gsµν . Comparing this to
the standard graviton transformation in the weak-field expansion (5.2.6), one immediately sees
that the transformation (6.1.6) of hµν is covariant with respect to the background gsµν , which
appears instead of ηµν . Indeed, the transformations (6.1.4) and (6.1.6) simply implement a small
fluctuation hµν on top of a background gsµν . The small fluctuation comes with its own gauge
transformations, which we call collinear. Since the fluctuation is expanded around a non-trivial
background, the gauge transformations are covariant with respect to this background. These are,
however, on such small scales that the slowly-varying background is blind to them. Therefore, it
does not transform under this symmetry. That is the essence of (6.1.6). On the other hand, the
background has its own diffeomorphism symmetry, where it transforms in the standard fashion.
From the point of view of the background, the fluctuation then transforms as an ordinary tensor
field, the fluctuation is not special compared to any other matter field present in the theory.
This is the statement of (6.1.4).

One can compare the transformations to the ones encountered in the gauge-theory situation,
presented in (3.2.3). One immediately notices that the intuition is the same. Also in QCD,
the soft gluon acts as a background field to the collinear one. This is evident from the soft
gauge transformation (3.2.3), where the soft gluon has the standard (inhomogeneous) gauge
transformation, but the collinear one transforms like a matter field in the adjoint representation.
This is the same situation as depicted in (6.1.4) in gravity. For the collinear transformations
in QCD, the collinear gluon transformation is covariant with respect to the soft background
As, since the covariant derivative Ds appears in the inhomogeneous term instead of ∂. The soft
background is invariant. In gravity, we find conceptually the same in (6.1.6). The inhomogeneous
term in the graviton transformation (5.2.6) is characterised by ηµν , which changes to the soft
background gsµν in (6.1.6). In both gravity and QCD, the gauge symmetry is implemented
as a number of collinear fluctuations (with their own symmetry) on top of a soft background.
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Therefore, the intuition and concepts derived for the gauge symmetries in QCD should directly
transfer to the gravitational context.

As matter content, we consider the collinear and soft scalar fields φc ∼ λ and φs ∼ λ2. Under
diffeomorphisms, a scalar transforms as

φ → [Uφ]
= φ− εα∇αφ+ O(ε2) . (6.1.7)

Under a soft transformation, both fields should transform as ordinary matter fields, which implies

φc → [Usφc] ,
φs → [Usφs] .

(6.1.8)

Under a collinear one, however, the soft field cannot transform, and thus we have to impose

φc → [Ucφc] ,
φs → φs .

(6.1.9)

In QCD, the situation is the exact formal analogy. Here, we employed the Wilson line WZ† to
relate full-theory and EFT fields (3.2.5). In gravity, the analogue is to the “Wilson line” WZ−1

φ = φc +
[
WZ−1φs

]
. (6.1.10)

Here, W−1 and Z−1 are the standard gravitational “Wilson lines” encountered in the previous
section (5.3.6), but expressed in terms of the full graviton and the soft graviton field, respectively,
that is

W ≡ T−1
θ[gs+h] , Z−1 ≡ Tθ[gs] , (6.1.11)

where θ[gµν ] denotes the light-cone gauge parameter θ for a theory with metric tensor gµν . In
other words, the Wilson line W fixes light-cone gauge in the full theory, where the fluctuation is
defined as hfull, µν = hµν + sµν , while Z fixes light-cone gauge for the purely-soft theory sµ+ ≡ 0.
This is the exact formal counterpart to the gauge-theory situation (3.2.6).

In summary, the formal setup looks very similar to the QCD scenario. Two main issues arise
at this point, both of which are also encountered in gauge theory:

• The collinear graviton features large components h++ ∼ λ−1, h+⊥ ∼ 1, similar to the
collinear gluon n+Ac ∼ 1. To control these components, we make use of the collinear
Wilson line W−1

c of the previous section (5.3.6). This Wilson line needs to be modified to
account for the now non-trivial soft background.

• After performing the light-front multipole expansion, the soft gauge transformations (6.1.4)
and (6.1.8) of collinear graviton and matter field will mix different orders of the multipole
expansion. We need to identify the “homogeneous” background field that has a gauge
symmetry which respects the multipole expansion.

6.2 Inhomogeneities in λ

This second issue, the identification of the correct background field, is the main complication in
the gravitational setting compared to QCD. In gauge theory, it was straightforward to deduce
the form of the homogeneous background field n−As(x−). QCD SCET only has one source of
inhomogeneities in λ, namely the multipole expansion. The background field n−As(x−) is the
only homogeneous component of the full covariant derivative, and covariance with respect to
this field immediately leads to transformations that are homogeneous in λ.
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In gravity, this situation is more complicated. Here, we have not one but two sources of
inhomogeneities in λ. In addition to the light-front multipole expansion, the gravitational gauge
charges, namely the momenta Pµ – most notably the collinear momentum (n+P, P⊥, n−P ) ∼
(1, λ, λ2) – lead to gauge transformations that are inherently inhomogeneous in λ.

This second inhomogeneity already appears in both the full theory as well as the purely-
collinear one. It is related to performing the weak-field expansion, which imposes a truncation
of the gauge symmetry at some order in κ, correspondingly λ in the EFT. As a consequence,
one has to decide if one expresses objects in a manifestly gauge-invariant fashion, which is
inherently inhomogeneous in λ, or via manifestly homogeneous fields, which cannot be gauge-
invariant. This seems to be in stark contrast to QCD, where gauge-invariant objects are also
homogeneous in λ.

However, at the formal level, the situation is not as different as it seems. This is best explained
using the collinear Wilson line. In QCD, it is defined as (3.3.78), and one immediately sees that
it is inhomogeneous in the strong coupling g, but counts as O(λ0). In gravity, however, the
corresponding Wilson line takes the form (5.3.6). This object looks very similar to the gauge-
theory one and is also inhomogeneous in the coupling κ. However, now the gauge charges
have a scaling in λ, therefore the Wilson line is also inhomogeneous in λ. Hence this type of
inhomogeneity seems unavoidable in gravity, and it turns out that it poses no problem for the
EFT construction. If one forgets about the power-counting for a moment, the formal definitions
in terms of the couplings are very similar, and one can borrow much intuition.

In gravity, this simply implies that there are intricate relations between subleading terms in the
Lagrangian, which combine into geometric (gauge-covariant) objects, similar to RPI constraints
in standard SCET.

The first type of inhomogeneity, on the other hand, is the one that is also present in QCD. In
soft-collinear interactions, the soft fields gsµν(x), φs(x) can only depend on the large coordinate
xµ−. Therefore, the light-front multipole expansion (2.3.7) must be performed, e.g. for the metric
tensor

gsµν(x) = gsµν(x−) + xα⊥ [∂αgsµν ] (x−)

+ 1
2n−x [n+∂gsµν ] (x−) + 1

2x
α
⊥x

β
⊥ [∂α∂βgsµν ] (x−) + O(λ3gsµν) .

(6.2.1)

This means that any soft field generates an infinite tower of subleading interactions, which are
all of the same order in the coupling κ, and are not related to the non-linearities of gravity. This
also applies to the gauge transformations, and one has to ensure that the gauge symmetry of
the effective theory respects this multipole expansion.

However, due to the aforementioned inhomogeneous gauge symmetries, the tricky part is to
identify this new background field. Whereas in QCD one could simply impose the homogeneous
transformations Us(x−), in gravity it is a priori not clear what the precise form of these trans-
formations should be. For example, the naive diffeomorphism φc → Us(x−)φc is not the right
transformation, as this does not lead to homogeneously transforming tensor fields. For example,
the transverse derivative of a scalar field should intuitively transform like

∂⊥φc → Us(x−)U α
s⊥ (x−)∂αφc . (6.2.2)

However, with the above transformation, ∂ε(x−)
∂x⊥

= 0, so the Jacobian would not be generated,
and the derivative would not transform like a tensor T⊥ → Us(x−)U α

⊥ (x−)Tα. Therefore, the
identification of the homogeneous gauge symmetry is a non-trivial task in gravity.

6.3 Multipole Expansion and Normal Coordinates
In QCD, the guiding principle to modify the soft gauge symmetry is to find the transformation
that is homogeneous in λ, which corresponds to ϕc → Us(x−)ϕc. This transformation no longer
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mixes different orders in λ, and one can construct a Lagrangian where each term is manifestly
gauge-covariant and homogeneous. In gravity, however, the gauge transformations are inherently
inhomogeneous. Consequently, this is not a sensible approach, and we require a different guiding
principle.

The end result in QCD is a soft sector that is expressed in terms of a number of building
blocks that respect the multipole expansion, see (3.4.17) – (3.4.18). It features the soft-covariant
derivative n−Ds, which depends only on the homogeneous n−As(x−), and the field-strength
tensor Fsµν , as well as its (covariant) derivatives. Therefore, the aim is to find the analogous split
into a “homogeneous” background field and gauge-covariant objects in gravity. In QCD, these
fields can be identified by employing fixed-line gauge in the soft sector. In section Sections 3.3.2
and 3.3.3, we have seen explicitly how fixed-line gauge, and the simpler fixed-point version, follow
quite naturally in the context of a multipole expansion. Accordingly, we will first consider the
static multipole expansion in gravity and determine the analogue of fixed-point gauge. Only
then we generalise this result to the light-front situation and determine the “homogeneous”
background field. This circumvents the necessity for a homogeneous gauge transformation, as
we work directly with the multipole expansion, the gauge-fixing, and its residual symmetries.

6.3.1 Fixed-point Gauge and Riemann Normal Coordinates

Consider a theory consisting of a scalar matter field φ(x) and a metric field gµν(x). The metric
field is multipole expanded about x = 0 as

gµν(x) = gµν(0) + xα [∂αgµν ] (0) + 1
2x

αxβ [∂α∂βgµν ] (0) + O(x3) . (6.3.1)

In gauge theory, fixed-line gauge can be employed to render the subleading terms of this multipole
expansion manifestly gauge-invariant, by expressing the derivatives of the gauge field in terms
of the field-strength tensor. In gravity, a similar, well-known gauge condition exists, namely
Riemann normal coordinates (RNC). In these coordinates, the metric tensor is expressed as

g̃µν(x) = gµν(0) − 1
6x

αxβ(Rρανβ(0)gρµ(0) +Rραµβ(0)gρν(0)) + O(x3) , (6.3.2)

and the higher-order terms correspond to derivatives of the Riemann tensor. In addition, one
can always diagonalise the metric at the origin to obtain the standard result

ǧµν(x) = ηµν − 1
3x

αxβRαµβν(0) + O(x3) , (6.3.3)

where the metric tensor is expressed purely in terms of the flat-space Minkowski metric, the
Riemann tensor, and its derivatives.

It is instructive to compare this result to QCD. Note that in fixed-point gauge, the leading
term Aµ(0) = 0, and the first derivative term is rewritten via the field-strength tensor. In
contrast, gravity features a non-vanishing leading term gµν(0) or ηµν , depending on the reference
frame, then the first derivative is vanishing xα [∂αgµν ] (0) = 0 and the second derivative terms
are expressed via the Riemann tensor. Intuitively, one can understand this by comparing the
gluon field Aµ not with the metric tensor, but with the Christoffel symbol Γµαβ, which is the
analogue of the gauge field from a geometric perspective, as both fields are the respective gauge
connections. The RNC gauge condition applied to the Christoffel symbol reads

xαxβΓµαβ(x) = 0 , (6.3.4)

which is similar to the fixed-point condition xµAµ(x) = 0. In addition, the vanishing of the first-
derivative term of the metric tensor corresponds simply to Γµαβ(0) = 0, similar to Aµ(0) = 0.
Therefore, Riemann normal coordinates are the direct analogue of fixed-point gauge.
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Since these coordinates must be extended to the more general light-front situation, it is in-
structive to derive the standard RNC and the metric tensor in the same formalism that is used
in gauge theory in Section 3.3.3. In the following, we adopt the convention that a field which
has no explicit argument is evaluated at x = 0, e.g Γµαβ ≡ Γµαβ(0).

Riemann normal coordinates are defined such that in a small neighbourhood around the origin,
a geodesic yµ(s) satisfying yµ(0) = 0 and yµ(1) = xµ, i.e. passing through the origin at s = 0
and through point x at s = 1, is parametrised as a straight line

yµ(s) = sxµ . (6.3.5)

To derive the coordinate transformation, one now considers this geodesic yµ(s) in a generic
reference frame, where it is not straight, and employs the geodesic equation.

In this generic reference frame, parametrise the geodesic as

yµ(s) = sxµ + vµ(s) , (6.3.6)

where vµ(s) satisfies vµ(0) = 0, since both frames are taken to have coinciding origins. Here,
vµ(s) can be thought of as the displacement of both frames. Note that vµ(s) is in general
also x-dependent, but for convenience, we suppress this dependence. The geodesic satisfies the
geodesic equation

d2yµ(s)
ds2 + Γµαβ(y(s))dy

α(s)
ds

dyβ(s)
ds

= 0 . (6.3.7)

One now inserts (6.3.6), expands the equation in vµ(s), and solves it iteratively. Using

Γµαβ(sx+ v(s)) = Γµαβ(sx) + vρ(s)
[
∂ρΓµαβ

]
(sx) + O(s2) , (6.3.8)

one finds at leading order
dv(0)µ(s)
ds2 = −Γµαβ(sx)xαxβ , (6.3.9)

and its solution
v(0)µ(s) = −

∫ s

0
ds′

∫ s′

0
ds′′ xαxβ Γµαβ(xs′′) . (6.3.10)

To further evaluate this integral, one has to expand Γµαβ(xs′′) around x = 0 and integrate term
by term. Immediately, one sees that while this can be done to any desired order, there is in
general no closed expression for vµ(s). This general feature of gravity is in contrast to the QCD
situation, where closed formulas for fixed-point gauge could be obtained (3.3.42).

To relate the generic reference frame, denoted by x, to the RNC frame x̃, use (6.3.6) for s = 1.
The left-hand side corresponds to the generic reference frame, while xµ on the right-hand side
is the RNC coordinate. Both frames are displaced by vµ. One finds

xµ = x̃µ − 1
2 x̃

αx̃βΓµαβ + 1
6 x̃

αx̃βx̃ν
(
2ΓµατΓτβν −

[
∂νΓµαβ

])
+ O(x̃4) . (6.3.11)

The inverse can be computed order by order in x and is given by

x̃µ = xµ + 1
2x

αxβΓµαβ + 1
6x

αxβxν
(
ΓµατΓτβν +

[
∂νΓµαβ

])
+ O(x4) , (6.3.12)

which is the standard form of RNC.
To explicitly verify the form of the metric tensor (6.3.2), one computes

g̃µν(x̃) = ∂xα

∂x̃µ
(x)∂x

β

∂x̃ν
(x)gαβ(x) . (6.3.13)

Here, gµν(x) on the right-hand side must be multipole expanded

gµν(x) = gµν + xα [∂αgµν ] + 1
2x

αxβ [∂α∂βgµν ] + O(x3) . (6.3.14)
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Using metric compatibility ∇αgµν = 0, one can derive the relations

∂αgµν = Γλαµgλν + Γλανgλµ , (6.3.15)

∂β∂αgµν =
[
∂βΓλαµ

]
gλν + ΓλαµΓρβλgρν + ΓλαµΓρβνgρλ + (µ ↔ ν) . (6.3.16)

The explicit evaluation of (6.3.13) is now straightforward and directly leads to (6.3.2).
In the following construction, we want to employ the same formalism that is also used in

gauge theory. This means that an expression like (6.3.2) should not be computed explicitly
from a gauge transformation (6.3.13). Instead, it should be defined using the analogue of the R
Wilson line that was introduced in Section 3.3.3. Since we have access to the explicit coordinate
transformation, it is straightforward to derive the R Wilson line – it is simply the translation
to these coordinates.

This “Wilson line” can be thought of as the transformation that moves a generic field con-
figuration to Riemann normal coordinates. More importantly, it must also transport the gauge
transformation from a generic point x to the point x = 0, where only global transformations
remain. Therefore, once we construct the R Wilson line, we can redefine the matter fields
accordingly and find the “homogeneous” gauge transformations.

In the static example, similar to fixed-point gauge, we anticipate that the homogeneous gauge
transformations will be global transformations.

6.3.2 The R Wilson Line for Riemann Normal Coordinates
With the explicit coordinate transformations (6.3.11) and (6.3.12), we can define the analogue
of the R Wilson line. Recall from the collinear discussion in Section 5.3 that the “Wilson lines”
in gravity take the form of translation operators (5.3.6)

R−1
RNC(x) ≡ TθRNC(x) = 1 + θαRNC(x)∂α + 1

2θ
α
RNC(x) θβRNC(x)∂α∂β + O(θ3

RNC) . (6.3.17)

To construct such a Wilson line, one simply needs to determine the correct parameter, which
we denote by θRNC. This parameter is obtained from the explicit coordinate transformation
(6.3.11), interpreted as

xµ = [TθRNC x̃
µ] . (6.3.18)

Expanding the translation operator and comparing it with the explicit form in (6.3.11), one
obtains

θµRNC(x) ≡ −1
2x

αxβΓµαβ + 1
6x

αxβxν
(
2ΓµατΓτβν −

[
∂νΓµαβ

])
+ O(x4) . (6.3.19)

In addition, one requires the Jacobi-matrices

R α
µ (x) = ∂x̃α

∂xµ
(x) , Rµα(x) = ∂xµ

∂x̃α
(x) . (6.3.20)

The metric tensor in Riemann normal coordinates is then defined by transforming it with the
R Wilson line and Jacobians according to its representation, namely

g̃µν(x) ≡ Rαµ(x)Rβν(x)
[
R−1

RNC(x)gαβ(x)
]
. (6.3.21)

Note that R is the inverse of a gauge transformation, hence the “dressing” is inverse to a gauge
transformation (4.2.10). Replacing R with Wc, one sees that this is the same prescription that
yields the gauge-invariant building block in collinear gravity (5.3.4).

The interpretation of this object is the same as in gauge theory. Starting from a generic metric
field gµν , one constructs the Wilson line R[gµν ], which moves this field into a gauge corresponding
to Riemann normal coordinates. This gauge-transformed field is defined as (6.3.21) and satisfies
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the properties of a metric in RNC. If one were to start from RNC directly, note that R(x) = 1
and there is no redefinition.

To explicitly evaluate (6.3.21), one first determines

Rαµ(x) = δαµ − xρΓαρµ + xρxσ
(1

3ΓαµλΓλρσ + 2
3ΓαρλΓλσµ − 1

6
[
∂µΓαρσ

]
− 1

3
[
∂ρΓασµ

])
+ O(x3) , (6.3.22)

and using (6.3.15), one can check that (6.3.21) indeed agrees with (6.3.2).
The object g̃µν(x) as defined in (6.3.21) or explicitly (6.3.2) is expressed only in terms of the

metric at the origin, gµν(0) and the manifestly gauge-invariant Riemann tensor. Note that there
is still a residual gauge symmetry that respects this multipole expansion, namely the symmetry
transformations of the residual background metric gµν(0) These transformations correspond to
global transformations A α

µ ∈ GL(1, 3) and global translations εµ1, i.e.

xµ → A µ
α xα + εµ . (6.3.23)

One immediately verifies that also the Riemann tensor Rµναβ(0) transforms covariantly under
these transformations, and the object (6.3.21) indeed covariantly transforms under (6.3.23).

If one applies R(x) to a matter field, the effect is to change the gauge transformation from the
generic diffeomorphism evaluated at x to the new set of transformations (6.3.23) evaluated at
x = 0, similar to QCD where we move the gauge transformation from x to x = 0. Note, however,
that the transformations are not simply the ones where one takes the parameter ε(x) → ε(0).
Instead, they consist of two terms, one translation and one global linear transformation, as
we already anticipated. These transformations lead to homogeneous and non-trivial tensor
transformations since the global linear transformation is required for this.

Therefore, in gravity, the “homogeneous” residual gauge symmetry that respects the static
multipole expansion does not just consist of global translations, but also of global linear trans-
formations.

But one can achieve more than just this result. Note that the actual coordinate transforma-
tion (6.3.11) is non-trivial starting only at the second order in x. Consequently, there is still
the possibility to modify the linear level of these transformations. One can use such a linear
coordinate transformation to transform gµν(0) → ηµν at the origin, thereby simplifying the form
of the final metric tensor.

To compute this transformation, one can make use of the vierbein (4.4.2) in a global version.
Namely, one can write the metric at the origin via

gµν(0) = e α
µ e β

ν ηαβ , (6.3.24)

introducing the global “vierbein” e α
µ . Since the metric tensor is symmetric, gµν(0) is a symmetric

matrix and it can always be diagonalised as (6.3.24). This guarantees the existence of these
vierbeins. These objects have the same properties and expansions as the usual vierbein, and
one could think of this as introducing a “local inertial frame” at x = 0. However, this merely
amounts to rotating the coordinate system such that the metric takes the standard Minkowski
form. In the weak-field expansion, the vierbein is given by (4.4.29)

e α
µ = δαµ + 1

2h
α
µ − 1

8hµβh
βα + O(h3) . (6.3.25)

And one can modify the coordinate transformation (6.3.12) as x̌µ = e µ
ρ x̃

ρ, and find explicitly

x̌µ = e µ
ρ

(
xρ + 1

2x
αxβΓραβ + 1

6x
αxβxν

(
ΓρατΓτβν +

[
∂νΓραβ

]))
+ O(x4) . (6.3.26)

1Note that the Riemann normal coordinates are defined with respect to the origin at x = 0. Since we employ
the active point of view, where coordinates do not transform, we can still perform a translation of the field
without affecting the RNC. In the passive point of view, this simply amounts to also shifting the RNC to the
new origin.
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To obtain the new parameter θ̌µRNC(x), which now diagonalises the metric, one again inverts
(6.3.26) and reads it off. Here, one requires the inverse matrix Eµα , defined via

Eµβ e
β
α = δµα . (6.3.27)

The parameter θ̌µRNC(x) then reads

θ̌µRNC(x) = (Eµρ − δµρ )xρ − 1
2x

ρxσEαρE
β
σΓµαβ

+ 1
6x

ρxσxλEαρE
β
σE

ν
λ(2ΓµατΓτβν −

[
∂νΓµαβ

]
) + O(x4) .

(6.3.28)

Using the same definition (6.3.26) but now with the new parameter θ̌µRNC(x) yields a metric
tensor that satisfies the diagonalised (6.3.3) instead of (6.3.2).

It is now interesting to see how the residual transformation is affected. Before, we found that
using the old parameter (6.3.19) leads to a residual symmetry consisting of global linear transfor-
mations and global translations, the symmetries of gµν(0). Now, however, the Minkowski metric
appears in its place. Therefore, the residual symmetries are changed to be the symmetries of the
Minkowski metric, that is, global Poincaré transformations. one can again immediately verify
that (6.3.3) is indeed covariant under global Lorentz transformations and global translations.

In summary, Riemann normal coordinates are the direct analogue of fixed-point gauge in
QCD found in Section 3.3.2. In these coordinates, the metric tensor can be expressed in terms
of its value at the origin and manifestly gauge-invariant Riemann tensor terms. The gauge is
completely fixed, and the residual transformations correspond to global transformations, which
are the symmetries of the metric gµν(0) at the origin. One can modify the RNC at the linear level
(6.3.24) to change the value of gµν(0). A convenient choice is to fix this to be the Minkowski
metric ηµν . Then, the left-over global transformations correspond to its symmetries, namely
global Poincaré transformations.

Applied to matter fields, the R Wilson line (6.3.17) with the corresponding parameter (6.3.28)
moves the gauge transformations from generic diffeomorphisms at point x to global Poincaré
transformations at point x = 0. This is precisely the intuition one has from gauge theory fol-
lowing Section 3.3.2, where the V Wilson line moves the transformation from point x to point
x = 0. This residual transformation is the analogue of the homogeneous gauge transformation.
Crucially, already in this toy model, the residual gauge transformation of gravity is more com-
plicated than the gauge-theory analogue and does not just consist of global translations as one
might naively expect, replacing ε(x) → ε(0) as in QCD. However, starting from the normal
coordinates provides the gauge symmetry in a straightforward fashion, as they directly yield the
residual background field.

6.3.3 Fixed-line Normal Coordinates
The next step is to extend the previous discussion to the scenario relevant in SCET, the light-
front multipole expansion about xµ− = n+x

nµ
−
2 . For the metric tensor, this means that instead

of (6.3.14) one uses the expansion

gsµν(x) = gsµν(x−) + xα⊥ [∂αgsµν ] (x−) + 1
2n−x [n+∂gsµν ] (x−)

+ 1
2x

α
⊥x

β
⊥ [∂α∂βgsµν ] (x−) + O(λ3gsµν) . (6.3.29)

The main complication in this setting, similar to gauge theory, compare Section 3.3.3 is the
x− dependence of the fields in the expansion (6.3.29). The individual terms are now no longer
constants but are dynamical. In gauge theory, the generalisation of fixed-point gauge is fixed-line
gauge with condition (x−x−)µAµ(x) = 0, where the fixed-point condition is only applied in the
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directions transverse to x−. Along the direction of x−, there is an unconstrained background
field n−As(x−) with residual gauge symmetry. We can anticipate that there will be a similar
result in gravity.

Therefore, the plan is to construct the RNC also only in the direction transverse to x−.
The immediate generalisation of the RNC gauge condition (6.3.4) is to adapt the fixed-line
prescription as

(x− x−)α(x− x−)βΓµαβ(x) = 0 . (6.3.30)

Note that this is not a complete gauge-fixing, since the components Γµ−− are not constrained.
We denote these coordinates as fixed-line normal coordinates (FLNC). In the following, we derive
the relevant translation parameter θFLNC using the geodesic equation similar to the previous
section. To simplify the notation, we assume in the following that soft fields without argument
are evaluated at x−, i.e. gsµν(x−) ≡ gsµν .

Instead of the parameterisation (6.3.5), a more suitable choice for the light-front setting is

yµ(s) = xµ− + s(x− x−)µ + vµ(s) , (6.3.31)

where the geodesic is only straight in the directions transverse to xµ−, since these are the directions
where we want to construct the RNC.

Following the exact same steps and computations as in the previous sections, i.e. using the
geodesic equation (6.3.7) and solving for the displacement vµ(s) iteratively, one determines the
fixed-line analogue of (6.3.12) to be (6.3.12) is given by

x̃µ = xµ + 1
2(x− x−)α(x− x−)βΓµαβ (6.3.32)

+ 1
6(x− x−)α(x− x−)β(x− x−)ν

(
ΓµατΓτβν +

[
∂νΓµαβ

])
+ O((x− x−)4) .

Note the similarity to the RNC result (6.3.12), in particular if one restricts to the transverse
coordinates. This result is the equivalent of (6.3.12), and we have not yet performed a linear
transformation to simplify the leading-order term in (6.3.29). This coordinate transformation
will not change gsµν(x−), and it will only partially eliminate the first-derivative terms since Γµ−−
is not constrained by the gauge. Thus, there is a residual gauge symmetry, which is related to
the symmetries of gsµν(x−) as well as the Christoffel symbol. In order to cast this symmetry in
a more useful form, we will again add a linear transformation in the transverse direction (that
can now depend on x−) to simplify the residual leading term as much as possible.

In the same spirit as before, we introduce the “vierbein” e α
µ (x−) via

gsµν(x−) ≡ e α
µ (x−)e β

ν (x−)ηαβ , (6.3.33)

to diagonalise the metric tensor. This is the direct generalisation of the constant matrix e α
µ

used in (6.3.24), and is formally also equivalent to a vierbein. However, let us emphasize that we
do not introduce a local inertial frame, rather we perform a rotation of the coordinate system.
The weak-field expansion is the standard (4.4.29)

e α
µ = δαµ + 1

2s
α
µ − 1

8sµβs
βα + O(s3) . (6.3.34)

Just as in (6.3.26), we now use the vierbein to rotate the transverse components of the FLNC
coordinates x̃µ. The resulting new coordinate system x̌ is given by

x̌− = x̃− , x̌µ⊥ = e µ⊥
α x̃α , n−x̌ = n−ρe

ρ
α x̃α , (6.3.35)

where the x̃−-coordinate is unchanged since we only rotate the transverse directions.
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To determine the parameter θFLNC, use (6.3.32) to evaluate (6.3.35) to express x̌ in terms of
the original coordinate x. The relation between both coordinate systems then reads

xµ = x̌µ + (Eµα − δµα)(x̌− x̌−)α − 1
2(x̌− x̌−)ρ(x̌− x̌−)σEαρEβσΓµαβ (6.3.36)

+ 1
6(x̌− x̌−)ρ(x̌− x̌−)σ(x̌− x̌−)κEαρEβσEνκ(2ΓµαλΓλβν −

[
∂νΓµαβ

]
) + O(x̌3) ,

where the inverse “vierbein” Eµα(x−) is defined in the standard fashion (4.4.5)

Eµα(x−)e α
ν (x−) = δµν , (6.3.37)

and its weak-field expansion is similarly given by

Eµα = δµα − 1
2s

µ
α + 3

8s
µβsβα + O(s3) . (6.3.38)

From (6.3.36), the parameter θFLNC can be read off as

θµFLNC(x) = (Eµρ − δµρ )(x− x−)ρ − 1
2(x− x−)ρ(x− x−)σEαρEβσΓµαβ (6.3.39)

+ 1
6(x− x−)ρ(x− x−)σ(x− x−)λEαρEβσEνλ(2ΓµατΓτβν −

[
∂νΓµαβ

]
) + O(x4) .

Comparing this to (6.3.28), we again see a strong formal similarity. Basically, these coor-
dinates are the standard (rotated) RNC in the transverse directions, only the x− part differs.
However, note that each vierbein and field appearing in (6.3.39) depends on x− and thus lives
on the classical trajectory of the energetic particles, and is not constant like in (6.3.28). Further-
more, these coordinates will not completely fix the gauge of the metric tensor, as was already
anticipated from the gauge-fixing condition (6.3.30). Therefore, when evaluating the metric
tensor in these special coordinates, we will find a non-trivial residual background field.

The next step is to construct the R “Wilson line” just as before (6.3.17). The parameter is
given in (6.3.39), and the R Wilson line (6.3.17) is then defined as

R−1
FLNC(x) = TθFLNC(x) . (6.3.40)

The metric tensor in fixed-line gauge, denoted by ǧsµν(x), is then defined as in (6.3.21) as

ǧsµν(x) ≡ Rαµ(x)Rβν(x)
[
R−1

FLNC(x)gsαβ(x)
]
, (6.3.41)

where the Jacobian Rαµ is defined as in (6.3.20), using R−1
FLNC(x).

We now compute (6.3.41) explicitly to second order.
First, for the transverse components ǧsµ⊥ν⊥(x), determine the Jacobian Rαµ⊥

(x) (6.3.20) to
be

Rαµ⊥
(x) = Eαµ⊥

− (x− x−)ρEκµ⊥
EλρΓακλ

+ 1
6(x− x−)ρ(x− x−)σ

(
2Eκµ⊥

EλρE
ν
σ (2ΓαντΓτκλ − [∂νΓακλ])

+ EκρE
λ
σE

ν
µ⊥(2ΓαντΓτκλ − [∂νΓακλ])

)
+ O(x3) . (6.3.42)

Evaluating (6.3.41), we find

ǧsµ⊥ν⊥(x) = ηµ⊥ν⊥ − 1
3(x− x−)ρ(x− x−)σEαρEβσEκµ⊥

Eλν⊥
Rακβλ + O(x3) . (6.3.43)

Note here that the transverse components in FLNC basically correspond to the standard RNC
result (6.3.3). The main difference is that all objects still have residual dependence on x−, but
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the overall form (including the appearance of the constant Minkowski metric) is very similar.
The same also holds for the components ǧµ⊥+ and ǧ++. Note that the same situation occurs
in gauge theory with the components n+As and As⊥, which basically satisfy the fixed-point
identities.

If one index is contracted with nµ−, the results differ from the RNC result. For example,
consider

ǧsµ⊥−(x) = Rαµ⊥
(x)Rβ−(x)

[
R−1

FLNC(x)gsαβ(x)
]
. (6.3.44)

Here, the combination Rαµ⊥
(x)Rβ−(x) is found to be

Rαµ⊥
(x)Rβ−(x) = Eαµ⊥

nβ− − yρ
(
Eκµ⊥

EλρΓακλn
β
− − Eαµ⊥

∂−E
β
ρ

)
+ yρyσ

(1
6n

β
−

(
2Eκµ⊥

EλρE
ν
σ + EκρE

λ
σE

ν
µ⊥

)
(2ΓαντΓτκλ − [∂νΓακλ])

−∂−EβρEκµ⊥
EλσΓακλ − 1

2E
α
µ⊥
∂−(EκρEλσΓβκλ)

)
+ O(x3) , (6.3.45)

where we defined yρ ≡ (x− x−)ρ. The remaining factor
[
R−1

FLNC(x)gsαβ(x)
]

is computed as

[
R−1

FLNC(x)gsαβ(x)
]

= gsαβ + yρEκρ [∂κgsαβ] + 1
2y

ρyσEκρE
λ
σ [∂κ∂λgsαβ]

− 1
2y

ρyσEκρE
λ
σΓτκλ [∂τgsαβ] + . . . . (6.3.46)

Then one can simply multiply (6.3.45) and (6.3.46) and compute the result order by order in x.
For the leading term at O(x0), one finds

ǧ
(0)
sµ⊥−(x) = Eαµ⊥

gsα− = Eαµ⊥
e ρ
α e σ
− ηρσ = e−µ⊥

(6.3.47)

which is simply the “vierbein” e α
µ (x−) that diagonalises the metric tensor, as given in (6.3.33).

Next, at O(x), one can again use the identities (6.3.15) to manipulate the first-derivative
terms, like in the RNC scenario. Then, one obtains

ǧ
(1)
sµ⊥−(x) = yρ

(
Eαµ⊥

Eκρ [∂κgsα−] − Eκµ⊥
EλρΓακλgsα− + Eαµ⊥

[
∂−E

β
ρ

]
gsαβ

)
= yρ

(
Eαµ⊥

Eκρ(Γτκαgsτ− + Γτκ−gsτα) − Eκµ⊥
EλρΓακλgsα− + Eαµ⊥

[
∂−E

β
ρ

]
gsαβ

)
= yρ

(
Eαµ⊥

[
∂−E

β
ρ

]
gsαβ + Eαµ⊥

EκρΓβκ−gsβα
)

= −yα [Ω−]αµ⊥
. (6.3.48)

Here, we introduced a new object, the “spin-connection” [Ωµ]αβ. This object is defined like the
standard spin-connection (4.4.37), but constructed from the “vierbein” e α

µ (6.3.33) as

[Ωµ]αβ = e α
ν

[
∂µE

νβ
]

+ e α
ν ΓνσµEσβ . (6.3.49)

At the second order, one finds the result

ǧ
(2)
sµ⊥−(x) = −2

3y
αyβEκαE

λ
βE

ρ
µ⊥
nν−Rρκνλ . (6.3.50)

In summary, from (6.3.47), (6.3.48) and (6.3.50), one finds for the transverse-minus component
of the metric tensor in FLNC

ǧsµ⊥−(x) = e−µ⊥ − yα [Ω−]αµ⊥
− 2

3y
αyβEκαE

λ
βE

ρ
µ⊥
nν−Rρκνλ + O(x3) . (6.3.51)
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Performing the same computation for ǧs+−, one obtains

ǧs+−(x) = e−+ − yα [Ω−]α+ − 2
3y

αyβEκαE
λ
βE

ρ
+n

ν
−Rρκνλ + O(x3) . (6.3.52)

Finally, for ǧs−−(x) the same computation yields

ǧs−−(x) = gs−− − 2yρ [Ω−]ρα e
α
− − yρyσEκρE

λ
σn

µ
−n

ν
−Rµκνλ

+ yρyσ(
[
∂−E

µ
ρ

]
[∂−Eνσ ] gsµν + 2

[
∂−E

µ
ρ

]
EκσΓλκ−gsλµ

+ EκρE
λ
σΓαλ−Γβκ−gsαβ) + O(x3) , (6.3.53)

which one can rewrite as

ǧs−−(x) = (e α
− − yρ [Ω−] αρ )(e β

− − yσ [Ω−] β
σ )ηαβ − yαyβEκαE

λ
βn

µ
−n

ν
−Rµκνλ

+ O(x3) . (6.3.54)

In this form, the metric tensor g−− is decomposed as gs−− = e α
− e β

− ηαβ, and one can read off
the “residual vierbein”.

At this point one can compare the results (6.3.43), (6.3.51), (6.3.54) in the light-front setting to
the corresponding RNC result (6.3.3). As we noted before, the transverse components formally
satisfy the standard RNC identities, but now with x−-dependent functions instead of constants.
One can even express the leading term g⊥⊥(x−) = ηµν using the additonal linear transformation.
For the components where one index is contracted with nµ−, however, we see a non-trivial leading-
order and first-derivative term, while the second-order (and higher-order) terms are expressed
via the Riemann tensor. Basically, one can identify a non-vanishing “residual vierbein” that
contains the vierbein at x− as well as the spin-connection. It is useful to split the metric field
into this residual background field, which is denoted by ĝsµν , and a gauge-covariant part, that
contains the Riemann-tensor terms. This term is denoted by gsµν .2 Thus, we split

ǧsµν(x) ≡ ĝsµν(x) + gsµν(x) , (6.3.55)

where the residual background field can be determined from (6.3.43), (6.3.51) (6.3.52), and
(6.3.54) to be

ĝs+−(x) = e−+ − (x− x−)α [Ω−]α+ , (6.3.56)

ĝsµ⊥−(x) = e−µ⊥ − (x− x−)α [Ω−]αµ⊥
, (6.3.57)

ĝs−−(x) =
(
e α
− − (x− x−)ρ [Ω−] αρ

) (
e β
− − (x− x−)σ [Ω−] β

σ

)
ηαβ , (6.3.58)

ĝsµ⊥ν⊥(x) = ηµ⊥ν⊥ . (6.3.59)

We see that the residual background field has two independent contributions, e α
− (x−) and

[Ω−]αβ (x−). At first glance, one might conclude that the spin-connection [Ω−]αβ (x−) is con-
structed from the vierbein e α

− (x−), and these two objects are not independent. Note, however,
that in the effective theory, all soft objects must depend only on the light-cone variable x−.
Therefore, one has in particular ∂⊥e α

− (x−) = 0. Hence, the spin-connection, containing also
transverse derivatives of the vierbein, is an object that cannot be constructed from e α

− (x−), but
only from the vierbein evaluated at x. From the point of view of the effective theory, these two
objects should be treated as truly independent fields, which also come with their own separate
gauge symmetries, inherited from the full theory. In the soft weak-field expansion, these objects
are given by

e α
− = δα− + 1

2s
α
− − 1

8s−βs
βα + O(s3) , (6.3.60)

2This is the same split we performed in gauge theory, where the background corresponds to n−As(x−), and the
gauge-covariant part corresponds to As in (3.3.66).
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[Ω−]αβ = −1
2 ([∂αsβ−] − [∂βsα−]) + O(s2) . (6.3.61)

In the gauge-covariant part gsµν , only the Riemann tensor and its derivatives appear. This
result is very similar to the gauge-theory situation discussed in Section 3.4.3, where one obtains
the soft background field n−As(x−) as well as a tower of subleading terms that are expressed in
terms of the soft field-strength tensor F sµν . These terms are collected in the covariant expression
As (3.3.66), the analogue of gsµν .

This two-fold homogeneous background field is one of the most important results for the
construction of SCET gravity. Using background field methods similar to the gauge-theory case,
one can construct the effective Lagrangian to be covariant with respect to this background field
ĝsµν . Then, the soft gauge symmetry of this background automatically respects the multipole
expansion and is the analogue of the homogeneous gauge transformation in the gauge-theory
case. Crucially, with this background field, the effective theory is cast into a form very similar
to an ordinary gauge theory. In the following, we show how the residual background metric
ĝsµν naturally gives rise to a soft-covariant derivative which contains the two gauge-fields. On
the formal level, the soft-collinear sector of gravity is then analogous to gauge theory, where a
gauge-covariant derivative mediates the leading-power interactions, while the subleading terms
are expressed in terms of gauge-covariant building blocks.

6.3.4 Soft-covariant Derivative
In this section, we show how the residual background field ĝsµν in fixed-line normal coordinates
can be arranged into a soft-covariant derivative and determine its residual gauge symmetry.

The starting point is the split (6.3.55) of the metric tensor in fixed-line coordinates into
the residual background metric ĝsµν and the gauge-covariant Riemann-tensor terms gsµν . The
crucial observation is that the transverse components of the background metric are trivial, and
only ĝµ−s is non-trivial (6.3.56) – (6.3.59). This means that one index of the background metric
must be contracted with nµ− to generate soft interactions. This, in turn, allows one to arrange
this metric tensor as a covariant derivative. For example, consider the simple scalar expression

ĝµνs ∂µφc ∂νφc . (6.3.62)

Splitting the metric tensor into its light-cone components yields

ĝµνs ∂µφc ∂νφc = ĝµ−s ∂µφc n+∂φc + ηµν⊥ ∂µ⊥φc ∂ν⊥φc . (6.3.63)

Note that ĝµ−s always appears in combination with nν+. Therefore, one can define a soft-covariant
derivative n−Ds as

n−Ds ≡ ĝµ−s ∂µ (6.3.64)

= ∂− − 1
2s−µ∂

µ + 1
8s+−s−−∂+ + 1

16s−α⊥s
α⊥
− ∂+ + 1

2 [Ω−]µν Jµν + O(λ3) ,

where Jµν = (x − x−)µ∂ν − (x − x−)ν∂µ ≡ (x − x−)[µ∂ν] is the orbital Lorentz generator or
angular momentum.3 Note that this covariant derivative is substantially different from the one
encountered in gauge theory. First, it is a non-linear expression in the soft graviton sµν , due to
the weak-field expansion performed in gravity. Second, it depends on two independent objects,
one stemming from e α

− (x−), and the spin-connection term [Ω−]αβ (x−) proportional to (x−x−)
from the multipole expansion. These fields begin at O(λ2) and O(λ4), respectively. The first
field, the vierbein, couples to the linear momentum of the scalar field, and we see that the
leading-order interaction is simply

− 1
2s−µ∂

µ , (6.3.65)

3“Orbital” here means that there is no additional spin-dependent term.
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the minimal coupling of the soft graviton s−µ(x−) living on the collinear trajectory to the
collinear momentum ∂µ = −iPµ of the scalar particle. This term then receives higher-order
non-linear corrections as is usual in gravity. The second term, the spin-connection [Ω−]αβ (x−),
can be seen to couple to the orbital angular momentum Jµν along the light-cone of the scalar
particle. Note that this is not the full angular momentum, since only the transverse coordinates
(x−x−)µ appear in its definition. This angular momentum arises from combining the (x−x−)µ
from the multipole expansion with the ∂ν from the derivative of the scalar. This interaction
term

1
2 [Ω−]µν J

µν ≡ 1
2Ω− (6.3.66)

quite naturally fits the standard form of the spin-connection term, where one can absorb the
Lorentz generator in the definition of Ωµ.

Let us stress the importance of this result. Simply from identifying the residual background
metric in fixed-line gauge, one sees that the soft-collinear interactions can be arranged in a
covariant derivative consisting of two independent gauge-fields. This is very unusual, as a scalar
field does not feature any covariant derivatives in gravity. This covariant derivative controls the
leading interactions and the gauge fields couple to the linear momentum as well as the angular
momentum of the scalar field. Therefore, the relevant gauge charges for soft physics are not just
the linear momentum, but also the angular momentum. This is a feature we encountered very
early in the discussion already when discussing the soft theorem in Section 1.1. Here, one can
realise that the first two terms of the soft theorem actually correspond to this two-fold gauge
symmetry. This point will be expanded on in detail in the later Section 7.5.

For now, let us investigate the actual form of the residual symmetry of these fields. Since the
effective theory will be constructed to be covariant with respect to the residual metric tensor
ĝsµν , that is, this metric will be used to raise and lower indices, any generic tensors must be
defined to transform according to its residual symmetry.

To find these transformations, first weak-field expand the metric as

ĝsµν(x) = ηµν + ŝµν(x) , (6.3.67)

where ŝµν can be determined in terms of sµν by comparison with (6.3.56) – (6.3.59) in weak-field
expansion. The original soft graviton sµν(x) has the standard gauge transformation

sµν(x) → sµν(x) − ∂µεν(x) − ∂νεµ(x) + O(s2) . (6.3.68)

Therefore, one can simply insert the transformation (6.3.68) in (6.3.67) to find the transfor-
mations of the residual fluctuation ŝµν . As a concrete example, consider the linear terms of
ŝµ⊥−(x). For this component, one finds from (6.3.59), (6.3.60), (6.3.61)

ŝµ⊥−(x) = 1
2sµ⊥− + 1

2x
α
⊥

[
∂[αsµ⊥]−

]
+ 1

4n−x
[
∂[+sµ⊥]−

]
. (6.3.69)

Its transformation follows from inserting (6.3.68) and is given by

1
2sµ⊥− → 1

2sµ⊥− − 1
2∂µ⊥ε− − 1

2∂−εµ⊥

= 1
2sµ⊥− − ∂−εµ⊥ + 1

2 (∂−εµ⊥ − ∂µ⊥ε−)

= 1
2sµ⊥− − ∂−εµ⊥ + ω−µ⊥ , (6.3.70)

where we introduced the antisymmetric parameter

ωµν ≡ 1
2 (∂µεν − ∂νεµ) . (6.3.71)
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By performing the same steps also for the other components, including non-linear terms and the
spin-connection, one determines the infinitesimal gauge transformation of the residual metric
field ŝµ− as

ŝµ−(x) → ŝµ−(x) − ∂−εµ + ω−µ⊥ − ∂− ((x− x−)αωµα) + . . . . (6.3.72)

This transformation corresponds to a coordinate transformation

xµ → xµ + εµ(x−) + ωµν (x−)(x− x−)ν , (6.3.73)

and is generated by the independent parameters εµ(x−) and the antisymmetric ωµν(x−). The
first one corresponds to infinitesimal local translations, which are restricted to the classical
trajectory x−. The second parameter is also restricted to the collinear light-cone, and its corre-
sponding generator is the residual angular momentum Jµν = (x−x−)[µ∂ν]. This corresponds to
infinitesimal Lorentz transformations about (x− x−). In summary, the transformation (6.3.73)
describes an infinitesimal local Poincaré transformation that is restricted to the classical trajec-
tory of the energetic particles, i.e. all parameters can only depend on the light-cone component
xµ− = n+x

nµ
−
2 . This is the analogue of the homogeneous gauge theory Us(x−) in QCD that

respects the multipole expansion. Note, however, that due to the scaling of the gauge charges,
i.e. the momentum and angular momentum, this “homogeneous” gauge symmetry in gravity is
not homogeneous in λ. It mixes different orders. Therefore, also the corresponding covariant
derivative cannot be homogeneous and is instead defined as a non-linear object order-by-order
in λ.

To extend this beyond the infinitesimal level, one can employ the closed forms (6.3.56) –
(6.3.59) and perform the same calculations as above to find the (non-linear) transformation
to any desired order in λ. Here, also the non-linear terms in the weak-field expansions of the
vierbein e α

− (x−) (6.3.60) and spin-connection [Ω−]αβ (x−) (6.3.61) are relevant and must be
included. In addition, one has to use the full non-linear transformation of the fluctuation sµν(x)
from (6.1.4) to the desired order.

On a related note, let us also check the transformation of derivatives under these Poincaré
transformations. Since we only identified n−Ds, this implies that the other derivatives should
already transform covariantly, consistent with the idea that only the n−∂ derivative is sensitive to
the local nature of the gauge transformations. We again consider the infinitesimal transformation
(6.3.73),

φ′c(x) = φ(x) − εα∂αφ(x) − ωαβ (x− x−)β∂αφ(x) + O(ε2) . (6.3.74)

For the transverse components ∂⊥ and n+∂, one simply finds

∂µ⊥φ(x) → T−1
ε+ω [∂µ⊥φ(x)] − ωµ⊥α∂

αφ(x) + O(ε2) , (6.3.75)
∂+φ(x) → T−1

ε+ω [∂+φ(x)] − ω+α∂
αφ(x) + O(ε2) , (6.3.76)

where T−1
ε+ω is defined as the translation

T−1
ε+ω = 1 − εα∂α − ωαβ (x− x−)β∂α + O(ε2) . (6.3.77)

These correspond to the standard transformations of a derivative under infinitesimal Poincaré
transformations. The coordinate transformation is pulled in front of the derivative, and a rota-
tion of the derivative is generated. For n−∂, however, the transformation is not correct. This
derivative is sensitive to the dependence of the gauge parameters on x− and acts on these as
well. One obtains

n−∂φ(x) → T−1
ε+ω [n−∂φ(x)] − n−∂ε

α∂αφ(x) − n−∂ωαβ (x− x−)β∂αφ(x) + O(ε2) . (6.3.78)
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We already anticipated this result, since the effective theory contains the soft-covariant derivative
n−Ds (6.3.64). At the linear order, it is given by

n−Ds = ∂− − 1
2s−µ∂

µ − 1
4 [Ω−]µν Jµν + . . . , (6.3.79)

and its infinitesimal transformation is indeed

n−Dsφ(x) → T−1
ε+ω [n−Dsφ(x)] − ω−αD

α
s φ(x) , (6.3.80)

where Dα
s = nα

−
2 n+∂ + ∂α⊥ + nα

+
2 n−Ds. To check this, simply insert the transformation of ŝµν

from (6.3.72), which yields

1
2s−µ → 1

2s−µ − ∂−εµ + ω−µ + . . . , (6.3.81)

[Ω−]αβ → [Ω−]αβ − ∂−ωαβ + . . . (6.3.82)

Therefore, we see that the set of derivatives (n−Ds, ∂⊥, n+∂) indeed transform covariantly under
the local Poincaré transformations. This explicitly verifies that the effective theory only features
a non-trivial n−Ds, analogous to gauge theory and that the previous geometric intuition in the
construction of n−Ds is indeed correct.

There is one additional important remark to make regarding the gauge-invariance of the action.
The covariant derivative defined here is covariant in the sense that it transforms under these
local Poincaré transformations just like an ordinary derivative would transform under global
ones. This implies that a scalar object, e.g.

n−Dsφcn+∂φc + ∂µ⊥φc∂
µ⊥φc (6.3.83)

indeed transforms like a scalar field, namely as

n−Dsφcn+∂φc + ∂µ⊥φc∂
µ⊥φc → T−1

ε+ω [n−Dsφcn+∂φc + ∂µ⊥φc∂
µ⊥φc] , (6.3.84)

with the translation as defined in (6.3.77). Therefore, to render such a term manifestly gauge-
invariant, one requires in addition the presence of the invariant measure d4x

√
−ĝs. This is a

standard feature of gravity. The Lagrangian always transforms like a scalar field,4 and it is
only the action, which comes with the invariant measure, that is manifestly invariant under
diffeomorphisms.

In summary, when the theory is constructed to be covariant with respect to the residual metric
field ĝsµν , the soft graviton can only appear inside the Lagrangian via the covariant derivative
n−Ds or inside the Riemann tensor terms, and in the definition of gauge-invariant collinear
building blocks as we explain below (6.4.6), e.g. by raising or lowering indices with ĝsµν . In
addition, it appears via the metric determinant in front of the Lagrangian, but only once to
render it a scalar density. This already implies the soft-collinear factorisation of the effective
theory.

Let us summarise the key insights of this section:

• In gravity, the analogue of fixed-point gauge are Riemann normal coordinates. These
normal coordinates must be generalised to the fixed-line normal coordinates (6.3.39).

• Fixed-line normal coordinates are not a complete gauge-fixing. Instead, there is a residual
background field ĝsµν (6.3.56) – (6.3.59). This field contains two independent components,
the leading e−µ(x−) and the subleading [Ω−]αβ (x−), as given in (6.3.60) and (6.3.61).
These two gauge fields are the counterpart of the homogeneous background field n−As in
gauge theory.

4Or, if one uses √
gL as Lagrangian, like a scalar density.
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• Any further sub-subleading and higher-order terms are expressed via the manifestly gauge-
invariant Riemann tensor and can be constructed systematically to any desired order in
λ. These terms correspond to the field-strength tensor terms in gauge theory (3.3.49) –
(3.3.56), but cannot be expressed in a closed form.

• The residual symmetries of the “homogeneous” background field correspond to the effec-
tive gauge symmetry of SCET gravity. These symmetries correspond to local Poincaré
transformations that are restricted to the classical trajectory xµ− of the energetic particles.
The effective theory is constructed to be covariant with respect to this soft background
symmetry.

• The two gauge fields can be allocated into a soft-covariant derivative n−Ds (6.3.64).

• This restricts the appearance of the soft graviton: it can only appear inside the met-
ric determinant gs, inside the covariant derivative n−Ds, inside collinear gauge-invariant
building blocks to raise indices, and inside the Riemann tensor.

6.4 Redefinitions and Collinear Gauge-invariant Building Blocks
In the previous section, we discussed in detail the fixed-line normal coordinates. Here, we
encountered the analogue of the R Wilson line that moves a field in FLNC and the corresponding
residual metric field, which serves as background in the effective theory. In addition, we found
that this metric field can be arranged as a covariant derivative. We undertook this detour
in order to identify the set of homogeneous gauge transformations, i.e. the ones that respect
the multipole expansion. This is important since the final Lagrangian should be expressed in
terms of fields whose gauge transformation does not mix different orders in (x− x−). In gauge
theory, we redefine the collinear fields and express them in terms of ϕ̂c (3.3.94) and Âc (3.3.92),
which have homogeneous gauge transformations. These fields correspond to fields that transform
covariantly with respect to the residual soft background n−As(x−). Therefore, in gravity, we
want to introduce analogues of the hatted fields, which transform covariantly with respect to
the emergent background metric ĝsµν .

In gauge theory, these redefinitions use both the collinear Wilson line Wc, as well as the fixed-
line Wilson line R, and are explained in detail in Section 3.3.5. The collinear Wilson line Wc is
used to fix collinear light-cone gauge, and the R Wilson line then parallel transports the gauge
symmetry to x = x−.

In gravity, we already identified the analogue of Wc in the purely-collinear theory in Sec-
tion 5.3. Here, the main motivation was to control the large components hµ+ of the collinear
graviton field. Now in the soft-collinear setting, there is a small subtlety compared to the purely-
collinear situation. Since our residual background field ĝsµν has a non-vanishing component ĝs+−
(6.3.56), it will appear in the collinear gauge transformation of ĥ+−. This can already be seen
from the linear transformation

ĥ+− → ĥ+− − ∇̂+ε− − ∇̂−ε+ , (6.4.1)

and noting that
∇̂−ε+ = ∂−ε+ − Γ̂α+−εα (6.4.2)

is not a purely-collinear object. Here, the Christoffel symbol Γ̂µαβ is the one constructed from
the metric tensor ĝsµν+ĥµν , i.e. it is covariant with respect to the homogeneous soft background
ĝsµν .

Therefore, the soft background will appear in the collinear Wilson line W in gravity, unlike
in QCD, where only collinear fields n+Ac are present.5 This, however, only affects the relevant

5Note, however, that this is consistent with the notion of Wilson lines. They always have to be defined with
respect to the relevant background symmetry in order to transform covariantly.
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parameter θLC, while the formal definition of the Wilson line is the same (5.3.6), and it is again
constructed by explicitly fixing light-cone gauge – now with respect to the soft background. The
collinear Wilson line is thus given by

W−1
c = TθLC = 1 + θαLC∂α + O(λ2) , (6.4.3)

and the parameter θLC is determined to be

θµLC = − 1
(n+∂)2 Γ̂µ++ + 1

(n+∂)2

(
2Γ̂µτ+

1
n+∂

Γ̂τ++ + ∂νΓ̂µ++
1

(n+∂)2 Γ̂ν++

)
+ O(λ2) . (6.4.4)

If one sets ĝsµν = ηµν , one immediately recovers the purely-collinear result (5.3.13) – (5.3.15).
This Wilson line can now be employed to fix collinear light-cone gauge and define manifestly

gauge-invariant collinear fields. For our situation, we require the gauge-invariant scalar χ̂c and
graviton ĥµν . The scalar field is simply defined as

χ̂c =
[
W−1
c φ̂c

]
, (6.4.5)

and the gauge-invariant graviton as

ĥµν(x) = W ρ
µW

σ
ν

[
W−1
c (ĝsρσ(x) + ĥρσ(x))

]
− ĝsµν(x) . (6.4.6)

Note the formal equivalence of these objects to the purely-collinear ones (5.3.4). Only the
parameter inside Wc is constructed differently, now it is covariant with respect to ĝsµν instead
of ηµν .

Next, we employ the R Wilson line to relate the hatted fields to the original ones. This Wilson
line is also defined as a translation operator (6.3.40)

R−1 ≡ TθFLNC = 1 + θαFLNC∂α + O(λ2) , (6.4.7)

but with parameter θFLNC (6.3.39), which reads

θµFLNC = (Eµρ − δµρ )(x− x−)ρ − 1
2(x− x−)ρ(x− x−)σEαρEβσΓµαβ + . . . . (6.4.8)

To redefine the collinear fields, one dresses them with R and its Jacobians according to their
soft gauge transformation. For the scalar field, this reads

φc =
[
RW−1

c φ̂c
]
, (6.4.9)

while the graviton is redefined as

hµν =
[
RR α

µ R β
ν

(
W ρ

αW
σ
β

[
W−1
c (ĥρσ + ĝsρσ)

]
− ĝsαβ

)]
, (6.4.10)

In these equations, we take the original fields on the left-hand side to be gauge-fixed to light-cone
gauge. The hatted fields on the right-hand side are not gauge-fixed and have their “homoge-
neous” gauge transformation. Note that the objects on the right-hand side correspond to the
gauge-invariant building blocks, dressed by their appropriate R Wilson lines.

Now we have all the necessary ingredients and can construct the Lagrangian as well as the
N -jet operator basis of the effective theory.
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6.5 Effective Theory Construction
In the previous sections, we determined the field content and power-counting of the EFT fields.
In addition, we investigated fixed-line normal coordinates, the analogue of fixed-line gauge, in
order to identify the homogeneous gauge transformations in gravity, which respect the multipole
expansion and do not mix different orders in x. We found that these correspond to local
Poincaré transformations that are restricted to the classical trajectory of the energetic particles.
We used the residual background field ĝsµν to identify these transformations, and defined new
collinear fields φ̂c and ĥµν that transform covariantly with respect to this background. Then,
we constructed the Wilson lines W and R to relate these fields to the original ones. With these
ingredients at hand, it is now straightforward to construct the SCET Lagrangian.

As explained in the purely-scalar case Section 2.4, the effective theory again separates into
soft-collinear Lagrangians Lci and the N -jet operators. We first construct the effective action,
which follows closely the gauge-theory case.

The construction proceeds in the same four steps as in gauge-theory, Section 3.4:

(i) Introduce the split into soft and collinear modes in the full theory. We implement this by
performing a weak-field expansion

gµν(x) = gsµν(x) + hµν(x) , (6.5.1)

where hµν is the collinear graviton and gsµν is a dynamical soft background. This split
also duplicates the gauge symmetry. The background gsµν comes with the “soft” gauge
symmetry (6.1.4), and the fluctuation hµν has its own “collinear” transformations (6.1.6).

(ii) Perform the multipole expansion of soft fields in soft-collinear interactions to render these
homogeneous. However, collinear fields still transform under soft gauge symmetry with
the full Us(x), and therefore the soft gauge symmetry mixes different orders in (x− x−).

(iii) Redefine the collinear fields as φc → φ̂c using the R and W Wilson lines. The new fields are
defined to be covariant with respect to the emergent “homogeneous” background ĝsµν(x)
(6.3.56) – (6.3.59), and their soft gauge transformation respects the multipole expansion.
This gives rise to a soft-covariant derivative n−Ds (6.3.64), while all other subleading soft-
collinear interactions are expressed in a manifestly gauge-covariant fashion via the Riemann
tensor and its derivatives. Each term is manifestly gauge-covariant, but not homogeneous
in λ, due to the inhomogeneous nature of gravitational gauge symmetry.

(iv) Perform the λ-expansion. This yields the fully expanded Lagrangian that can be used to
perform practical computations

Note that this procedure is exactly the same as in gauge theory, including the necessary concepts
like the Wilson lines. Only their actual technical implementation differs in gravity. However,
unlike in gauge theory, one cannot give closed all-order results in step (iii) for the subleading
Lagrangians. Instead, the gravitational Lagrangian is only defined order-by-order in λ.

The following derivation was presented for the first time in [47] where it was performed by the
author in collaboration with M. Beneke and R. Szafron, and since this is now a straightforward
computation, we follow this exposition closely.

6.5.1 Background-field Lagrangian
In step (i), we insert the decomposition (6.1.1) of the full metric tensor into a collinear fluctuation
hµν on top of a soft background gsµν in the full theory. For the scalar field, we consider the
action

S =
∫

d4x
√

−g
(1

2g
µν∂µφ∂νφ− λφ

4! φ
4
)
. (6.5.2)
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The Lagrangian is then given by a series in hµν , which we denote by

L = Lφ + Lφh + Lφhh + O(h3) , (6.5.3)

where the subscripts denote the order of the respective term in h. The individual terms are
determined to be

Lφ = 1
2

√
−gsgµνs ∂µφ∂νφ−

√
−gs

λφ
4! φ

4 , (6.5.4)

Lφh = −1
2

√
−gs

(
gµαs gνβs hαβ − 1

2g
αβ
s hαβg

µν
s

)
∂µφ∂νφ− √

gs

(1
2g

αβ
s hαβ

)
λφ
4! φ

4 , (6.5.5)

Lφhh = 1
2

√
−gs

(
gµαs gνβs gρσs hαρhβσ − 1

2g
αβ
s hαβg

µρ
s gνσs hρσ

+1
8g

µν
s (gαβs hαβ)2 − 1

4g
µν
s gραs gσβs hρσhαβ

)
∂µφ∂νφ

−
√

−gs
(1

8(gαβs hαβ)2 − 1
4g

ρα
s gσβs hρσhαβ

)
λφ
4! φ

4 . (6.5.6)

Here, the scalar field is given by φ = φc + WZ−1φs Since we have not yet expanded the soft
background, soft gauge-invariance is manifest, since all fields transform covariantly with respect
to the background gsµν , which also contracts all appearing indices. To render the Lagrangian
a scalar density, it is multiplied by the soft metric determinant. The theory is only invariant
under collinear transformations order-by-order in hµν , similar to standard weak-field expansion
as explained in Section 4.3.3.

Next, in step (ii), we perform the light-front multipole expansion and redefine the collinear
fields according to (6.4.9) and (6.4.10) in step (iii). Since the following equations can get quite
lengthy, we focus on the details of individual terms to discuss the systematics of the construction.

6.5.2 Inserting the Redefinitions
Terms without Collinear Gravitons

To elucidate how the technical details of the construction work, we first consider the leading
term Lφ from (6.5.4),

1
2

√
−gsgµνs ∂µφc∂νφc , (6.5.7)

setting the soft scalar φs = 0 for simplicity. In this leading term, there are no explicit collinear
gravitons present, up to the possibility of explicit appearances of the Wilson line Wc. To simplify
the notation, gsµν(x), R(x) and collinear objects like φc(x) and Wc(x) are always understood to
be evaluated at x and we drop the argument. Soft fields that appear after multipole expansion
are evaluated on the light-cone xµ− if no argument is given. Throughout this derivation, we
employ the useful identities given in Appendix A.

The first step is to insert the redefinitions (6.4.9) and (6.4.10) in (6.5.7). This yields

1
2

√
−gsgµνs

[
∂µRW

−1
c φ̂c

] [
∂νRW

−1
c φ̂c

]
= 1

2
√

−gsgµνs RR α
µ R β

ν

[
∂αW

−1
c φ̂c

] [
∂βW

−1
c φ̂c

]
= 1

2 det(R)
[
R−1√

−gs
] [
R−1gµνs

]
R α
µ R β

ν

[
∂αW

−1
c φ̂c

] [
∂βW

−1
c φ̂c

]
. (6.5.8)

In the last line, we used the product rule and determinant identities (A.0.10), (A.0.14), integrated
by parts and dropped boundary terms. We use the same notation as in Appendix A and indicate
the determinant of [R]µα ≡ Rµα by the notation det(R). As before, derivatives act on all terms
inside the square brackets.
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To split off the gauge-covariant terms, introduce the residual background field ĝsµν , given in
(6.3.56) – (6.3.59), by adding and subtracting

1
2
√

−ĝsĝµνs
[
∂µW

−1
c φ̂c

] [
∂νW

−1
c φ̂c

]
. (6.5.9)

This yields
1
2
[
∂αW

−1
c φ̂c

] [
∂βW

−1
c φ̂c

] (√
−ĝsĝαβs

+ det(R)
[
R−1√

−gs
]
R α
µ R β

ν

[
R−1gµνs (x)

]
−
√

−ĝsĝαβs
)
.

(6.5.10)

This expression can be further simplified. First, write

R α
µ R β

ν

[
R−1gµνs (x)

]
= ηαβ − ηαρηβσ

(
RµρR

ν
σ

[
R−1sµν(x) + ηµν

]
− ηρσ

)
+ . . . (6.5.11)

The expression in round brackets on the right-hand side is the metric tensor in fixed-line gauge
ǧsµν (6.3.56) – (6.3.59). Furthermore, the right-hand side takes the form of a weak-field expan-
sion, in the sense

ηαβ − šαβ + . . . (6.5.12)

This identity thus simply expresses the weak-field expansion of the inverse metric in terms of the
metric ǧsµν with lowered indices, and the left-hand side is equivalent to this inverse metric ǧµνs (x).
Next, one can introduce the split into the residual background metric and the gauge-covariant
field (6.3.55) to rewrite (6.5.11) as

RµρR
ν
σ

[
R−1sµν(x) + ηµν

]
= ĝsρσ + gsρσ , (6.5.13)

The manifestly gauge-covariant part, which contains the Riemann tensor terms, is given by

gsµν(x) = −n+µn+ν
4 xα⊥x

β
⊥Rα−β− − n+µ

2
2
3x

α
⊥x

β
⊥Rαν⊥β− − n+ν

2
2
3x

α
⊥x

β
⊥Rαµ⊥β−

−
(
n+µn−ν

4 + n+νn−µ
4

) 2
3x

α
⊥x

β
⊥Rα+β− − 1

3x
α
⊥x

β
⊥Rαµ⊥βν⊥ (6.5.14)

− n−µ
2

1
3x

α
⊥x

β
⊥Rαν⊥β+ − n−ν

2
1
3x

α
⊥x

β
⊥Rαµ⊥β+ − n−µn−ν

4
1
3x

α
⊥x

β
⊥Rα+β+ + O(λ3) .

For the effective Lagrangian, only the component g−− will contribute to O(λ2), since the other
components are accompanied by (suppressed) collinear derivatives ∂⊥ and n−∂ and enter only
in higher order in λ.

By the same reasoning, the dressed object

det(R)
[
R−1√

−gs
]

(6.5.15)

in (6.5.10) is simply the metric determinant in fixed-line normal coordinates
√

−ǧsµν . We again
expand this around the residual metric determinant

√
ĝs as

det(R)R−1√
−gs =

√
−ĝs (1 − 1

6x
α
⊥x

β
⊥R

µ
αµβ + . . . ) . (6.5.16)

However, the Riemann-tensor terms from this expansion are not relevant for the following con-
struction and contribute only beyond O(λ2).

In summary, up to O(λ2), the leading term (6.5.7) of the full theory yields the effective
Lagrangian

Lφ = 1
2
[
∂αW

−1
c φ̂c

] [
∂βW

−1
c φ̂c

] (√
−ĝsĝαβs − 1

4
√

−ĝsnα+n
β
+x

µ
⊥x

ν
⊥Rµ−ν−

)
. (6.5.17)
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This term can be simplified further, since the collinear Wilson lines cancel out in terms that
only contain the residual metric ĝsµν and collinear fields, like the first term. They do not cancel
out if soft-covariant building blocks, like the Riemann tensor, are present. This is explained in
detail further down below. On the other hand, one can simply introduce the gauge-invariant
building blocks χ̂c = W−1

c φ̂c to write this term as

Lφ = 1
2 [∂αχ̂c] [∂βχ̂c]

(√
−ĝsĝαβs − 1

4
√

−ĝsnα+n
β
+x

µ
⊥x

ν
⊥Rµ−ν−

)
. (6.5.18)

Including Collinear Gravitons

Now that the construction is understood for the simplest case, we consider the terms that contain
additional explicit collinear gravitons in (6.5.5), (6.5.6), namely

Lφh = 1
2

√
−gs

(
−gµαs gνβs hαβ + 1

2g
αβ
s hαβg

µν
s

)
∂µφc∂νφc , (6.5.19)

Lφhh = 1
2

√
−gs

(
gµαs gνβs gρσs hαρhβσ − 1

2g
αβ
s hαβg

µρ
s gνσs hρσ + 1

8g
µν
s (gαβs hαβ)2

−1
4g

µν
s gραs gσβs hρσhαβ

)
∂µφc∂νφc . (6.5.20)

For brevity, we again leave out the scalar self-interaction, since these terms are only multiplied
by a metric determinant.

First, consider the O(h) term. We split this into two terms

Lφh = Lφh, 1 + Lφh, 2 , (6.5.21)

where

Lφh, 1 = −1
2

√
−gsgµαs gνβs hαβ∂µφc∂ν

Lφh, 2 = 1
4

√
−gsgαβs hαβg

µν
s ∂µφc∂ν , (6.5.22)

which we discuss separately for transparency. First, one introduces the redefined fields φ̂c (6.4.9)
and ĥµν (6.4.10). For the first term in (6.5.19), this yields

Lφh, 1 = −1
2

√
−gsgµαs gνβs

[
RR κ

α R λ
β

(
W ρ

κW
σ
λ

[
W−1
c (ĥρσ + ĝsρσ)

]
− ĝsκλ

)]
×
[
∂µ(RW−1

c φ̂c)
] [
∂ν(RW−1

c φ̂c)
]
, (6.5.23)

and using the same manipulations as before (integration by parts and the useful identities in
Appendix A), one obtains

Lφh, 1 = −1
2 det(R)

[
R−1√

−gs
]
R ρ
α R κ

µ

[
R−1gµαs

]
R σ
β R λ

ν

[
R−1gνβs

]
Mρσκλ , (6.5.24)

where we defined

Mρσκλ ≡
(
Wα

ρW
β
σ

[
W−1
c (ĥαβ + ĝsαβ)

]
− ĝsρσ

) [
∂κW

−1
c φ̂c

] [
∂λW

−1
c φ̂c

]
. (6.5.25)

Just as before, one adds and subtracts the residual background metric

− 1
2
√

−ĝsĝµαs ĝνβs Mαβµν , (6.5.26)

and performs the split into background field and manifestly gauge-covariant terms (6.5.13). This
results in

Lφh, 1 = −1
2
√

−ĝsĝµαs ĝνβs Mαβµν
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− 1
2

(
det(R)

[
R−1√

−gs
]
R ρ
α R κ

µ

[
R−1gµαs

]
R σ
β R λ

ν

[
R−1gνβs

]
−
√

−ĝsĝρκs ĝσλs
)

Mρσκλ . (6.5.27)

Here, one can neglect the second and third line in their entirety, since these terms contribute
only beyond O(λ2).

Performing the same steps for the second term in Lφh yields

Lφh, 2 = 1
4

√
gsg

αβ
s gµνs

[
RR κ

α R λ
β

(
W ρ

κW
σ
λ

[
W−1
c (ĥρσ + ĝsρσ)

]
− ĝsκλ

)]
×
[
∂µRW

−1
c φ̂c

] [
∂νRW

−1
c φ̂c

]
(6.5.28)

= 1
4 det(R)

[
R−1√

−gs
]
R ρ
α R σ

β

[
R−1gαβs

]
R κ
µ R λ

ν

[
R−1gµνs

]
Mρσκλ ,

where M is the same expression (6.5.25). Again, introduce the residual background field via
(6.5.26) to obtain

Lφh, 2 = 1
4
√

−ĝsĝαβs ĝµνs Mαβµν

+ 1
4

(
det(R)

[
R−1√

−gs
]
R ρ
α R σ

β

[
R−1gαβs

]
R κ
µ R λ

ν

[
R−1gµνs

]
−
√

−ĝs ĝρσs ĝκλs

)
Mρσκλ . (6.5.29)

In this expression, only the first line contributes to O(λ2), while the remaining terms are too
suppressed. Combining both results (6.5.27) and (6.5.29), expanding M and introducing the
gauge-invariant building blocks yields

Lφh = 1
2
√

−ĝs
(

−ĝµαs ĝνβs ĥαβ + 1
2 ĝ

αβ
s ĥαβ ĝ

µν
s

)
∂µχ̂c∂νχ̂c . (6.5.30)

For L(2) (6.5.20), the exact same computation gives

Lφhh = 1
2
√

−ĝs
(
ĝµαs ĝνβs ĝρσs ĥαρĥβσ − 1

2 ĝ
αβ
s ĥαβ ĝ

µρ
s ĝνσs hρσ + 1

8 ĝ
µν
s (ĝαβs ĥαβ)2

−1
4 ĝ

µν
s ĝραs gσβs ĥρσĥαβ

)
∂µχ̂c∂νχ̂c . (6.5.31)

Removing Collinear Wilson Lines

In the QCD Lagrangian (3.4.19) – (3.4.23), note that the collinear Wilson line Wc only appears
in the terms that contain the field-strength tensor, and not in the ones that contain the soft-
covariant derivative. This can be easily understood since the Wilson lines are constructed to be
covariant with respect to this residual background. They simply amount to a collinear gauge
transformation, and these terms are gauge-invariant. Therefore, the Wilson lines must cancel
out in the end. The same should be true in gravity, and we now explain in detail how this works.
Here, they should cancel out in all terms that are covariant with respect to ĝsµν , and stay in
terms that contain the gsµν field.

The terms that contain ĝsµν are precisely the respective leading terms in the multipole ex-
pansion, which enter at O((x − x−)0), that appear in every order in λ due to the weak-field
expansion in ĥµν . The first three terms are

Lφ|gsµν=0 = 1
2
√

−ĝsĝµνs
[
∂µW

−1
c φ̂c

] [
∂νW

−1
c φ̂c

]
, (6.5.32)
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Lφh|gsµν=0 =
(

−ĝµαs ĝνβs ĥαβ + 1
2 ĝ

αβ
s ĥαβ ĝ

µν
s

) [
∂µW

−1
c φ̂c

] [
∂νW

−1
c φ̂c

]
, (6.5.33)

Lφhh|gsµν=0 = 1
2
√

−ĝs
(
ĝµαs ĝνβs ĝρσs ĥαρĥβσ − 1

2 ĝ
αβ
s ĥαβ ĝ

µρ
s ĝνσs hρσ + 1

8 ĝ
µν
s (ĝαβs ĥαβ)2

−1
4 ĝ

µν
s ĝραs ĝσβs ĥρσĥαβ

) [
∂µW

−1
c φ̂c

] [
∂νW

−1
c φ̂c

]
. (6.5.34)

If summed to all orders in ĥµν , i.e. undoing the weak-field expansion, these terms Lφhi

∣∣∣
gsµν=0

formally sum to the closed form
∞∑
i=0

Lφhi

∣∣∣
gsµν=0

=
√

−ḡḡµν [∂µχ̂c] [∂νχ̂c] , (6.5.35)

where we introduced the metric tensor

ḡµν = ĝsµν + ĥµν . (6.5.36)

We can interpret this split as a fluctuation ĥµν on top of the soft background ĝsµν . The La-
grangian density (6.5.35) takes the standard form of a scalar field in a curved space-time de-
scribed by ḡµν , and therefore the theory is invariant under diffeomorphism. In particular, it is
invariant under the transformations of the fluctuations χ̂c and ĥµν . The important observation
is now that the dressings

χ̂c =
[
W−1
c φ̂c

]
, (6.5.37)

ĥµν = Wα
µW

β
ν

[
W−1
c

(
ĥαβ + ĝsαβ

)]
− ĝsµν , (6.5.38)

take the form of an inverse gauge transformation of the fields φ̂c and ĥµν by construction.
Therefore, in the terms considered here, the collinear Wilson lines simply amount to a gauge
transformation and cancel out precisely. Explicitly, one has

ḡµν = ĝsµν + ĥµν = Wα
µW

β
ν

[
W−1
c g̃αβ

]
, (6.5.39)

where g̃αβ = ĝsαβ + ĥαβ is the metric in an arbitrary (unfixed) gauge, with inverse

ḡµν = W µ
α W ν

β

[
W−1
c g̃αβ

]
. (6.5.40)

Insert this in the Lagrangian (6.5.35), to obtain

Lḡ = det(W )
[
W−1
c

√
−g̃
]
W µ
α W ν

β

[
W−1
c g̃αβ

] [
∂µW

−1
c φ̂c

] [
∂νW

−1
c φ̂c

]
= det(W )

[
W−1
c

√
−g̃
]
W µ
α W ν

β

[
W−1
c g̃αβ

]
W ρ

µ

[
W−1
c ∂ρφ̂c

]
W σ

ν

[
W−1
c ∂σφ̂c

]
= det(W )

[
W−1
c

√
−g̃g̃µν [∂µφ̂c] [∂νφ̂c]

]
=
√

−g̃g̃µν [∂µφ̂c] [∂νφ̂c] + t.d. , (6.5.41)

where we dropped a total derivative using the Wilson line identity (A.0.13).

6.5.3 The Soft-collinear Lagrangian

Simplifying the Lagrangian as much as possible, we find

Lφ = 1
2
√

−ĝsĝµνs ∂µφ̂c∂νφ̂c − 1
8
√

−ĝsxα⊥x
β
⊥Rα−β−(∂+W

−1
c φ̂c)2 −

√
−ĝs

λφ
4! φ̂

4
c , (6.5.42)
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Lφh = 1
2
√

−ĝs
(

−ĝµαs ĝνβs ĥαβ + 1
2 ĝ

αβ
s ĥαβ ĝ

µν
s

)
∂µφ̂c∂νφ̂c

−
√

−ĝs
(1

2 ĝ
αβ
s ĥαβ

)
λφ
4! φ̂

4
c , (6.5.43)

Lφhh = 1
2
√

−ĝs
(
ĝµαs ĝνβs ĝρσs ĥαρĥβσ − 1

2 ĝ
αβ
s ĥαβ ĝ

µρ
s ĝνσs ĥρσ + 1

8 ĝ
µν
s (ĝαβs ĥαβ)2

−1
4 ĝ

µν
s ĝραs ĝσβs ĥρσĥαβ

)
∂µφ̂c∂νφ̂c

−
√

−ĝs
(1

8(ĝαβs ĥαβ)2 − 1
4 ĝ

µα
s ĝνβs ĥµν ĥαβ

)
λφ
4! φ̂

4
c , (6.5.44)

where we have now added the scalar self-interaction. To simplify the structure even further,
introduce the soft-covariant derivative (6.3.64) and use the metric tensor ĝsµν to raise and lower
indices. The Lagrangians (6.5.42) – (6.5.44) are then given by

L =
√

−ĝs
(
L(0)
Ds

+ L(1)
Ds

+ L(2)
Ds

)
, (6.5.45)

where the superscript indicates the leading λ-counting of each term. Up to O(λ2), the individual
terms are given by

L(0)
Ds

= 1
2∂+φ̂cD−φ̂c + 1

2∂α⊥φ̂c∂
α⊥φ̂c − λφ

4! φ̂
4
c , (6.5.46)

L(1)
Ds

= −1
2 ĥ

µν∂µφ̂c∂νφ̂c + 1
4 ĥ

β⊥
β⊥

(∂+φ̂cD−φ̂c + ∂α⊥φ̂c∂
α⊥φ̂c) − 1

2 ĥ
α⊥

α⊥

λφ
4! φ̂

4
c , (6.5.47)

L(2)
Ds

= −1
8x

α
⊥x

β
⊥Rα−β−(∂+W

−1
c φ̂c)2 + 1

2 ĥ
µαĥ ν

α ∂µφ̂c∂νφ̂c − 1
4 ĥ

α⊥
α⊥
ĥµν∂µφ̂c∂νφ̂c

+ 1
16
(
(ĥα⊥

α⊥
)2 − 2ĥαβĥαβ

)
(∂+φ̂cD−φ̂c + ∂µ⊥φ̂c∂

µ⊥φ̂c)

−
(1

8(ĥα⊥
α⊥

)2 − 1
4 ĥ

µν ĥµν

)
λφ
4! φ̂

4
c . (6.5.48)

Here, we defined the graviton with raised indices as

ĥµν ≡ ĝµαs ĝνβs ĥαβ . (6.5.49)

Note that the background metric ĝµνs is not homogeneous and also has a λ-expansion.
This is the most concise and conceptually clear form the soft-collinear Lagrangian for a

collinear scalar field interacting with soft and collinear gravitons. It includes explicitly all terms
up to sub-subleading or next-to-soft order O(λ2), and the inhomogeneous objects, like the Rie-
mann tensor, the soft-covariant derivative or the collinear Wilson line, even implicitly contain
an infinite tower of further subleading terms.

The Lagrangian (6.5.46) – (6.5.48) has a strong formal similarity to the gauge-theory La-
grangian (3.4.19) – (3.4.21). In the soft sector, there is a soft-covariant derivative n−Ds which
contains not one but two independent soft gauge fields, one related to translations and one
related to Lorentz transformations, with corresponding charges momentum and angular mo-
mentum. This is the direct analogue of the soft-covariant derivative n−Ds in QCD, which
contains n−As(x−) coupling to the (colour) charge of the energetic fields.

Besides this derivative, the theory features an infinite tower of subleading terms where the
Riemann tensor couples to the quadrupole and higher-pole terms of the energetic particle. The
same structure also arises in gauge theory, where the field-strength tensor couples to the dipole
and higher-pole terms.

In the collinear sector, the two theories differ. Whereas QCD has a collinear-covariant deriva-
tive that gives rise to leading-power interactions, such an object is absent in gravity. Instead,
the collinear interactions start at subleading order O(λ). This feature, in combination with
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the absence of leading-power collinear graviton building blocks in the N -jet operator basis, im-
mediately implies the absence of collinear divergences in gravity as opposed to gauge theory.
This absence is crucial, as collinear divergences would cause inconsistencies if massless charged
particles are present. In gravity, such particles exist in Nature, like the photon or the graviton.
In QCD, on the other hand, there are no massless charged particles in the asymptotic states,
since QCD is confining.

Soft divergences, on the other hand, are present in both gauge theory and gravity. These
can be controlled using the soft decoupling transformation [43], which introduces a purely-soft
Wilson line in a form similar to Wc. It converts n−Ds → n−∂ and moves the leading-power
(and subleading-power) soft effects into the sources directly. This is a manifestation of soft
exponentiation [1].

If one is interested in a technical application of the effective theory, for example, if one wants to
compute a soft emission process or some loop corrections explicitly, the form (6.5.46) – (6.5.48)
is not suitable, since it must still be expanded. Therefore, we also provide the fully expanded
Lagrangian density, including self-interactions, the gravitational coupling κ, and the soft scalar
field down below. For brevity, it is expressed in collinear light-cone gauge h+µ = 0.

L(0) = 1
2∂+φ̂c∂−φ̂c + 1

2∂α⊥φ̂c∂
α⊥φ̂c − κ

8 s−−(∂+φ̂c)2 − λφ
4! φ̂

4
c , (6.5.50)

L(1) = −κ

8 [∂αs−− − ∂−sα−]xα⊥(∂+φ̂c)2 − κ

4 sµ⊥−∂
µ⊥φ̂c∂+φ̂c

− κ

2

(
ĥµ⊥ν⊥∂µ⊥φ̂c∂ν⊥φ̂c + ĥµ⊥−∂µ⊥φ̂c∂+φ̂c + 1

4 ĥ
−−(∂+φ̂c)2

)
+ κ

4 ĥ
α⊥

α⊥

(
∂+φ̂c∂−φ̂c − κ

4 s−−(∂+φ̂c)2 + ∂α⊥φ̂c∂
α⊥φ̂c

)
− κ

2 ĥ
α⊥
α⊥

λφ
4! φ̂

4
c , (6.5.51)

L(2) = − κ

16
[
∂[+s−]−

]
n−x(∂+φ̂c)2 − κ

4
[
∂[α⊥sµ⊥]−

]
xα⊥∂

µ⊥φ̂c∂+φ̂c

+ κ2

32s−−s+−(∂+φ̂c)2 + κ2

32s−α⊥s
α⊥
− (∂+φ̂c)2 − 1

8x
α
⊥x

β
⊥Rα−β−(∂+φ̂c)2

+ κ

8 s+−∂α⊥φ̂c∂
α⊥φ̂c − κ

4 s+−
λφ
4! φ̂

4
c

+ κ2

2

(
ĥµ⊥α⊥ ĥν⊥

α⊥
∂µ⊥φ̂c∂ν⊥φ̂c + ĥµ⊥α⊥ ĥα⊥−∂µ⊥φ̂c∂+φ̂c + 1

4 ĥ
−α⊥ ĥα⊥−(∂+φ̂c)2

)
− κ2

4 ĥ
α⊥

α⊥

(
ĥµ⊥ν⊥∂µ⊥φ̂c∂ν⊥φ̂c + ĥµ⊥−∂µ⊥φ̂c∂+φ̂c + 1

4 ĥ−−∂+φ̂c∂+φ̂c

)
+ κ2

16
(
(ĥα⊥
α⊥

)2 − 2ĥα⊥β⊥ ĥα⊥β⊥

)(
∂+φ̂c∂−φ̂c − κ

4 s−−(∂+φ̂c)2 + ∂µ⊥φ̂c∂
µ⊥φ̂c

)
+ κ2

4 ĥ
µ⊥α⊥sα⊥−∂+φ̂c∂µ⊥φ̂c + κ2

8 ĥ
−α⊥sα⊥−(∂+φ̂c)2

− κ2

8 ĥ
α⊥
α⊥
sµ⊥−∂+φ̂c∂

µ⊥φ̂c − κ2

16 ĥ
α⊥
α⊥

[
∂[µ⊥s−]−

]
xµ⊥(∂+φ̂c)2

− κ2λφ
4! φ̂c

4
(

(ĥα⊥
α⊥

)2 − 1
4 ĥ

α⊥β⊥ ĥα⊥β⊥

)
, (6.5.52)

L(1)
φs

= −λφ
3! φ̂

3
cφs , (6.5.53)

L(2)
φs

= κ

4 ĥ
α⊥
α⊥
∂+φ̂c∂−φs − λφ

4 φ̂c
2φ2

s − λφ
3!
κ

2 ĥ
α⊥
α⊥
φ̂3
cφs . (6.5.54)

Note that in this soft-collinear Lagrangian, the order in κ no longer agrees with the order in
λ like in the purely-collinear (and purely-soft) theories. Instead, each order in κ generates an
infinite tower of subleading terms in λ already due to the multipole expansion.

This result can be further simplified by employing the equations of motion for both the matter
and graviton fields, as performed in [63] below (112). This allows one to push many terms to
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O(λ3) and one obtains the simpler expressions

L(1) = −κ

8 [∂αs−− − ∂−sα−]xα⊥(∂+φ̂c)2 − κ

4 sµ⊥−∂
µ⊥φ̂c∂+φ̂c (6.5.55)

− κ

2

(
ĥµ⊥ν⊥∂µ⊥φ̂c∂ν⊥φ̂c + ĥµ⊥−∂µ⊥φ̂c∂+φ̂c + 1

4 ĥ
−−(∂+φ̂c)2

)
L(2) = − κ

16
[
∂[+s−]−

]
n−x(∂+φ̂c)2 − κ

4
[
∂[α⊥sµ⊥]−

]
xα⊥∂

µ⊥φ̂c∂+φ̂c

+ κ2

32s−−s+−(∂+φ̂c)2 + κ2

32s−α⊥s
α⊥
− (∂+φ̂c)2 − 1

8x
α
⊥x

β
⊥Rα−β−(∂+φ̂c)2

+ κ

8 s+−∂α⊥φ̂c∂
α⊥φ̂c − κ

4 s+−
λφ
4! φ̂

4
c

+ κ2

2

(
ĥµ⊥α⊥ ĥν⊥

α⊥
∂µ⊥φ̂c∂ν⊥φ̂c + ĥµ⊥α⊥ ĥα⊥−∂µ⊥φ̂c∂+φ̂c + 1

4 ĥ
−α⊥ ĥα⊥−(∂+φ̂c)2

)
+ κ2

4 ĥ
µ⊥α⊥sα⊥−∂+φ̂c∂µ⊥φ̂c + κ2

8 ĥ
−α⊥sα⊥−(∂+φ̂c)2 , (6.5.56)

L(1)
φs

= −λφ
3! φ̂

3
cφs , (6.5.57)

L(2)
φs

= −λφ
4 φ̂c

2φ2
s . (6.5.58)

6.5.4 Graviton Lagrangian
The soft-collinear graviton Lagrangian can be derived in the same fashion, albeit the individual
steps become more cumbersome and technical. The starting point is the Einstein-Hilbert action

SEH = −2
∫
d4x

√
−gR , (6.5.59)

where R denotes the Ricci scalar. The first step consists of inserting the decomposition (6.1.1)
of the metric tensor gµν into a soft background gsµν and a collinear fluctuation hµν . This yields

LEH = Ls + Lhh + Lhhh + O(h4) , (6.5.60)

where the term linear in the fluctuation, Lh, is absent as usual due to equations of motion. The
first term, Ls, contains only soft gravitons and is the purely-soft Lagrangian. Here, all fields
depend only on the soft coordinate xs and no multipole expansion is necessary.

The purely-collinear theory begins in Lhh, where the collinear kinetic term as well as the
leading-power soft-collinear interactions appear. This Lagrangian is determined to be

Lhh =
√

−gs
(1

2∇µhαβ∇µhαβ − 1
2∇µh∇µh+ ∇αh

αβ∇βh− ∇αh
αβ∇µh

µ
β

− 4Rαβhαµhβµ + 2Rαβµνhαµhβν +Rαβhh
αβ − 1

4R(h2 − 2hαβhαβ)
)
. (6.5.61)

This theory is covariant with respect to the soft background gsµν , which is used to raise and lower
indices. Therefore, the covariant derivative ∇µ as well as the purely-soft Ricci and Riemann
tensors Rαβ and Rαβµν are computed from gsµν . If one now performs a split gsµν = ηµν + sµν
in (6.5.61), one would find at leading order in this weak-field expansion, O(s0), precisely the
bilinear terms of the purely-collinear theory (5.4.7). The same holds true for the higher-order
Lagrangians as well. Once the λ expansion is performed, note that the Lagrangian will simplify
drastically, since the purely-soft tensors are strongly suppressed in λ.

Since we are interested in the graviton Lagrangian only to O(λ), we do not need to compute
the full trilinear Lagrangian Lhhh in this background field formalism. Instead, we can use the
full-theory result (4.3.11) and perform a minimal substitution, as explained below.
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6.5 Effective Theory Construction

Inserting the redefinitions of the collinear fields (6.4.10), and expressing the theory covariant
with respect to the residual background field ĝsµν , one finds

Lhh =
√

−ĝs
(1

2∇µĥαβ∇µĥαβ − 1
2∇µĥ∇µĥ + ∇αĥ

αβ∇β ĥ − ∇αĥ
αβ∇µĥ

µ
β

− 4Rαβ ĥαµĥβµ + 2Rαβµν ĥαµĥβν +Rαβ ĥĥ
αβ − 1

4R (ĥ2 − 2ĥαβ ĥαβ)
)
. (6.5.62)

This formulation is now covariant with respect to the residual metric ĝsµν , which is used to
raise and lower indices. Furthermore, the Riemann and Ricci tensors as well as the covariant
derivative ∇µ are now constructed from the residual metric. Furthermore, note that this theory
contains terms that are strongly suppressed in λ, despite appearing this early in the h-expansion.
For example, the last three terms contribute starting at O(λ4).

We now drop these three terms, as well as the contribution due to the covariant derivative,
since Γµαβ ∼ λ4. This yields the Lagrangian

Lhh =
√

−ĝs
(1

2 ĝ
µν
s ∂µĥαβ∂ν ĥ

αβ − 1
2 ĝ

µν
s ∂µĥ∂ν ĥ + ∂αĥ

αβ∂β ĥ − ∂αĥ
αβ∂µĥ

µ
β

)
+ O(λ3) , (6.5.63)

where indices are now contracted with the residual background metric ĝsµν . Next, we can
introduce the soft-covariant derivative n−Ds (6.3.64) to find

Lhh =
√

−ĝs
(1

2∂+ĥαβD−ĥ
αβ + 1

2∂µ⊥ ĥαβ∂
µ⊥ ĥαβ − 1

2∂+ĥD−ĥ − 1
2∂µ⊥ ĥ∂

µ⊥ ĥ

+ ∂αĥ
αβ∂β ĥ − ∂αĥ

αβ∂µĥ
µ
β

)
+ O(λ3) . (6.5.64)

For the trilinear Lagrangian Lhhh we can employ a trick to save some work. First, note that the
purely-collinear theory is equivalent to the full-theory result (4.3.11). Since the cubic interactions
already scale as O(λ3), we only need to take into account the additional leading-power soft-
collinear interactions in this Lagrangian. This is achieved by replacing all ∂− with the covariant
D−. Using this trick, one can avoid computing the full covariant expression with respect to a
generic background, where most terms will be power-suppressed. The expanded Lagrangians
homogeneous in λ and in collinear light-cone gauge are then given by

L(0)
EH = 1

2∂µĥα⊥β⊥∂
µĥα⊥β⊥ − 1

2∂µĥ∂
µĥ

+
(
∂α⊥ ĥ

α⊥β⊥∂β⊥ ĥ+ 1
2∂α⊥ ĥ

α⊥−∂+ĥ+ 1
2∂+ĥ

−β⊥∂β⊥ ĥ+ 1
4∂+ĥ−−∂+ĥ

)
−
(
∂α⊥ ĥ

α⊥µ⊥∂β⊥ ĥβ⊥µ⊥ + ∂+ĥ
−µ⊥∂β⊥ ĥβ⊥µ⊥ + 1

4∂+ĥ
−µ⊥∂+ĥ−µ⊥

)
− κ

8 s−−∂+ĥαβ∂+ĥ
αβ + κ

8 s−−∂+ĥ∂+ĥ , (6.5.65)

L(1)
EH = −κ

2 ĥ
αβ
(
ĥ∂α∂βĥ+ 2∂µĥµν∂ν ĥαβ + ∂αĥµν∂βĥ

µν + ĥαβ∂µ∂
µĥ+ 2∂µĥµα∂βĥ (6.5.66)

+ ∂αĥβµ∂
µĥ− ĥ∂µ∂αĥβµ − ĥµα∂ν∂

ν ĥµβ + 2∂µĥβν∂ν ĥµα + 4∂µ∂ν ĥαν ĥβν
)

− κ

4 ĥ∂µĥ∂
µĥ+ κ

4 ĥ∂αĥµν∂
αĥµν − κ

4 s−µ⊥∂
µ⊥ ĥαβ∂+ĥαβ + κ

4 s−µ⊥∂
µ⊥ ĥ∂+ĥ

− κ

8 [∂αs−− − ∂−sα−]xα⊥∂+ĥµν∂+ĥ
µν + κ

8 [∂αs−− − ∂−sα−]xα⊥∂+ĥ∂+ĥ

+ κ

2 ĥ
αβ(ĥαβs−−∂2

+ĥ− ĥµαs−−∂
2
+ĥµβ

)
+ κ

32 ĥs−−∂+ĥ∂+ĥ− κ

32 ĥs−−∂+ĥµν∂+ĥ
µν .

To keep the result somewhat compact, we did not split the result into light-cone components
and kept the four-vector notation in L(1)

EH. These Lagrangians could now be further simplified
by employing the graviton equations of motion to eliminate the trace ĥ as well as ĥµ−.
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6 Soft-collinear Gravity

6.6 Operator Basis
The minimal operator basis in the gravitational case is very similar to the gauge theory one
presented in Section 3.5, once a few subtleties regarding gauge-invariance are taken into account.
Therefore, we focus on the differences in the gravitational setting, provide a list of gauge-invariant
building blocks and refer to the relevant gauge-theory and scalar sections for the general details
of the N -jet operator in Sections 2.6 and 3.5.

The generic N -jet operator in gauge-theory (3.5.1) takes the form

J (0) =
∫

[dt]N C̃(ti1 , ti2 , . . . )Js(0)
N∏
i=1

Ji(ti1 , ti2 , . . . ) , (6.6.1)

where [dt]N = ∏
ik
dtik . We use the same conventions as before, so Ji are the i-collinear operators

and Js are soft gauge-covariant operators. All appearing operators must be invariant under the
collinear gauge symmetries and covariant under the soft one. The collinear gauge invariance is
achieved in a straightforward fashion by using the gauge-invariant building blocks in the collinear
current Ji, explicitly given down below in (6.6.3). Soft fields are automatically collinear gauge-
invariant. For soft gauge-covariance, the first subtlety appears. In gravity, the gauge symmetry
corresponds to diffeomorphisms. Therefore, any operator considered in gravitational scattering
should be defined in a manifestly translation-invariant form to be gauge-invariant. The N -jet
operators as defined in (6.6.1) are located at x = 0, however, and transform under translations.
Thus these objects are not yet gauge-invariant. To alleviate this problem, note that one can
translate the entire operator to point x and then integrate over all x. This yields the gauge-
invariant current

J =
∫
d4xTxJ (0)T−1

x . (6.6.2)

Once a matrix element including this current is evaluated, the translation operator Tx = eixp̂

and the space-time integral yield the momentum-conserving δ-function. Therefore, it is possible
to simply work in terms of the standard N -jet operator (6.6.1) evaluated at x = 0 and impose
momentum conservation by hand, in analogy to imposing colour-conservation in gauge-theory.

On a related note, one might wonder why there is no √
g in (6.6.2) to form the invariant

measure. This is related to the underlying hard physics. The situation that we consider is a
graviton propagating on top of flat Minkowski space with metric tensor ηµν . Correspondingly,
the soft gauge transformations are global transformations evaluated at x = 0, where the scat-
tering takes place. The invariant measure for this specific space-time is simply d4x, and simply
corresponds to hard momentum and angular momentum conservation. If one were to consider
a different space-time as fundamental, equipped with a non-trivial background metric, the in-
variant measure would change. If the current were put at x0 instead of x = 0, one would also
need to adapt the multipole expansion and expand about (x − (x0 + x−) instead of (x − x−).
Therefore, one would find precisely the same soft-collinear physics, irrespective of the point of
the hard scattering.

Finally, we explicitly provide the operators that can appear as building blocks in the N -jet
operator. For the collinear sector, we use the collinear gauge-invariant building blocks (6.4.5),
(6.4.6) given by

χ̂c =
[
W−1
c φ̂c

]
, ĥµν = Wα

µW
β
ν

[
W−1
c ĥαβ

]
+
(
Wα

µW
β
ν

[
W−1
c ĝsαβ

]
− ĝsµν

)
. (6.6.3)

Note that the scalar field counts as χ̂c ∼ O(λ). For the graviton, only the transverse components
h⊥⊥ ∼ O(λ), which correspond to the physical degrees of freedom, are relevant. To see this, first
note that the building blocks satisfy the light-cone gauge condition ĥµ+ = 0, which eliminates
the large components h++ ∼ O(λ−1) and h⊥+ ∼ O(λ0), similar to QCD. Next, note that we
can use the graviton equations of motion (5.4.6) to eliminate the power-suppressed components
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ĥ⊥− and ĥ−− order-by-order in λ in favour of the transverse components ĥ⊥⊥. In summary, the
collinear building blocks consist only of

JA0
i (ti) ∈

{
χ̂ci(tini+) , ĥi⊥⊥(tini+)

}
. (6.6.4)

Comparing this to QCD (3.5.4), one immediately sees the similarity. Also here, the gauge-
invariant scalar field and the physical polarisations of the gluon, Ac⊥ are the building blocks,
while n+Ac = 0 and n−Ac is eliminated using the equations of motion.

Subleading operators are constructed in the exact same fashion as in QCD, namely by (i)
adding transverse ∂⊥ derivatives and by (ii) combining multiple building blocks of the same
collinear sector.

Soft building blocks must be soft gauge-covariant. Similar to gauge theory, one can use the
collinear equations of motion of the matter and gluon fields to eliminate n−Ds in favour of the
other collinear and soft building blocks. Therefore, the first purely-soft building block one can
use corresponds to the Riemann tensor, which appears at next-to-next-to-soft order O(λ6).

6.7 Extension to Fermions
In this section, we give a quick summary of how to extend this construction to incorporate fields
with half-integer spin, at the example of the Dirac fermion. The full construction is explained
in detail in [64] and will be part of the upcoming [63] in collaboration with M. Beneke and
D. Schwienbacher.

The main complexity arises due to the additional local Lorentz symmetry, which results in
the introduction of two additional Wilson lines.

The local Lorentz symmetry features the spin-connection (4.4.37) which behaves like an ordi-
nary gauge field. This allows us to define a Wilson line in the standard way

W ≡ Pexp
[
i

∫ z

y
dxµΩµ(x(s))

]
, (6.7.1)

that transforms like an ordinary Wilson line under local Lorentz transformations

W → D (Λ(z))WD−1 (Λ(y)) . (6.7.2)

The first new Wilson line is the analogue of the R Wilson line and takes the form

Vs = Pexp
(

+i
∫ x2

x1
dyµ[RνµR−1Ωsµ](y)

)
, (6.7.3)

where Ωsµ is the soft spin connection, containing only soft fields. It transforms under a local
Lorentz transformation as

Vs −→
[
R−1Ds

]
(Λ(x2)) V̌s

[
R−1Ds

]
(Λ(x1)) . (6.7.4)

The condition

V −1
s

[
R−1ψ

]
−→ D (Λ(x−))V −1

s

[
R−1ψ

]
(6.7.5)

fixes the upper boundary as x2 = x, while for the lower boundary one requires

x µ
1 (x) + θ ρ

s ∂ρx
µ

1 (x) = x µ
− , (6.7.6)

which originates from the condition

[R−1ω ab
s (x1)] = ω ab

s (x1) + θ µ
s

∂x ρ
1

∂xµ
∂

∂x ρ
1
ω ab
s (x1) + . . .
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= ω ab
s (x µ

1 + θ ρ
s ∂ρx

µ
1 (x))

!= ω ab
s (x−) . (6.7.7)

This equation is solved by

x µ
1 (x) = x µ

− + 1
4 (x− x−)a s+

an
µ
− + O(λ4) . (6.7.8)

The soft LLT-Wilson line, acting on fermions, is then given by

Vs = Pexp
(

+i
∫ 1

0
ds (x− x1)µ [RνµR−1Ωsµ] (x1 + (x− x1) s) + O(λ2)

)
, (6.7.9)

where we use σab = i
4

[
γa, γb

]
. The soft vierbein in the corresponding fixed-line gauge is deter-

mined by evaluating

ě a
s µ(x) = V a

sb Rνµ

[
R−1e b

s ν(x)
]
, (6.7.10)

and by definition, it transforms under soft Lorentz transformations as

ě a
s µ(x) → Λ a

s b(x−)ě b
s µ(x) . (6.7.11)

In addition, for the fermionic case, we require a LLT Wilson line in order to define fields that
are not only GCT-invariant but also manifestly LLT-invariant. This Wilson line should be
diffeomorphism-invariant and thus we use the manifestly GCT-invariant quantity:

Ω̃µ(x) =
[
W ρ

µW
−1
c Ω̂ρ

]
(x) , (6.7.12)

as our spin-connection. We can then define the collinear LLT Wilson-line as

Vc(x) = Pexp
(

+i
∫ 0

−∞
ds′nµ+

[
W ρ

µW
−1
c Ω̂ρ

]
(x)
)
. (6.7.13)

Note that Ω̂ρ is constructed from êaµ = ê a
s µ+ Ê ρa

s êcρµ e.g. once again from the expansion of the
vierbein about a soft background. Like the GCT Wilson line before, this object is not purely-
collinear, since the soft background enters in the combination nµ+

[
W ρ

µW
−1
c Ω̂ρ

]
(x). According

to (6.7.2), this Wilson-line transforms under LLT as:

Vc(x) −→ [W−1
c D(Λ(x))]V (x)[W−1

c D−1](Λ(−∞) = [W−1
c D](Λ(x))V (x) . (6.7.14)

With these ingredients, one can perform redefinitions of LLT-tensors and construct the La-
grangian for half-integer fields. The main idea is to construct fields that are LLT-tensors but
transform with the homogeneous symmetry Λ(x−). Under GCT, these fields then correspond to
scalar fields, and we can employ the scalar construction of the previous sections. As the explicit
expressions are excessively long, we refer for the construction of the Dirac Lagrangian to [63,64].
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Soft Theorems in the Lagrangian
Chapter 7

As an application of the effective theory, we reconsider the soft theorems both in gauge theory
and gravity. In the explicit calculation in Section 3.6, we have seen a number of accidental
cancellations between the different contributions. This raises the question if the Feynman rules
corresponding to single-soft emission can be cast into a simpler form. This could give new
insights into the form and structure of the soft theorem.

In this section, we try to understand what the effective theory can tell us about the soft the-
orem. In particular: why there are two or three terms in gauge theory and gravity, respectively,
and no further terms? Why does the angular momentum operator appear in both theorems,
and what is its interpretation? To achieve this, we directly manipulate the interaction vertex
at the Lagrangian level, employing only standard EFT tools, like integration by parts or ap-
plications of equations of motion. This allows us to restate the content of the soft theorem in
terms of an operatorial statement. The following section is based closely on [48] by the author
in collaboration with M. Beneke and R. Szafron.

7.1 Summary of Non-radiative Matching
The non-radiative matching is discussed in detail in Section 3.6.2, and we can directly use the
results from there.

In summary, the non-radiative full-theory amplitude must be expanded in λ as

A = A(0) + A(1) + O(λ2) , (7.1.1)

where the individual terms are given by the Taylor-expansion

A(0) = A
∣∣∣
pµ

i =ni+pi n
µ
i−/2

, (7.1.2)

A(1) = pµi⊥

(
∂

∂pµi⊥
A
)∣∣∣∣∣

pµ
i =ni+pi n

µ
i−/2

. (7.1.3)

On the SCET side, this is matched to the N -jet operators. In order to simplify the notation, we
now denote the N -jet operators by Â(n), where n denotes the suppression in λ. At leading-power,
the matching condition then reads

A(0) = ⟨p1, . . . , pN |Â(0)|0⟩

=
∫

[dt]N ei
∑

i
ni+pi tiC̃A0(t1, . . . tN ) ≡ CA0(n1+p1, . . . , nN+pN ) . (7.1.4)

This intuitive notation indicates that the matrix element of the operator Â(n) reproduces the
n-th term A(n) in the Taylor expansion of full-theory amplitude A.

7.2 Scalar QCD
As the first example, we consider the emission of a soft gluon from scalar external legs. It is
crucial to recall that in SCET QCD, as discussed in Section 3.5, there are no purely-soft operators
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ϕc2

ϕcN

ϕc3

p1

p2

pN

p3

k

CAn

Figure 7.1: The two process-types contributing to single-soft emission in SCET. The first class
are insertions of the soft-collinear Lagrangian and corresponds to emissions from the
external legs. These processes are universal since they only depend on the properties
of the legs. The second type, emission directly from the hard vertex, corresponds to
the addition of a soft-covariant building block in the N -jet operator.

available to add to the N -jet operator until the field-strength tensor at O(λ4), corresponding to
next-to-next-to soft order. This type of emission corresponds to emission directly from the non-
radiative amplitude, depicted on the left in Fig. 7.1. Adding such a building block means that one
also modifies the matching coefficient, and thus this type of contribution is process-dependent,
as the value of this coefficient can only be determined by an explicit matching computation
to the soft-emission process. The absence of such a contribution implies that there are no
process-dependent terms at the leading and next-to-soft order, corresponding to O(λ0) to O(λ2).

Since these processes are absent in SCET, this means that all contributions to soft emission
must stem from Lagrangian insertions via time-ordered product operators.

i

∫
d4x T{JAk(ti),L(n)

i (x)} ∼ O(λk+n) . (7.2.1)

Intuitively, these contributions correspond to emissions from the external legs, as depicted on
the right in Fig. 7.1 This type of emission does not depend on the non-radiative amplitude,
but only on the properties of the leg (particle species, momentum, charge, spin, . . . ) where the
Lagrangian is inserted. In particular, this insertion does not come with an independent matching
coefficient and is completely determined already from non-radiative matching. These processes
start to contribute at leading-power via interactions through the soft-covariant derivative.

Let us stress that this simple property of the operator basis, which follows directly from soft
gauge-covariance, already implies universality of soft emissions at the leading and next-to-soft
order in gauge theory. No explicit computation is necessary to conclude that the LBK amplitude
has two universal terms that are independent of the hard source, it is a direct consequence of
the effective gauge symmetry.

7.2.1 General Assumptions and Basic Features
Having understood this we can begin with the derivation of the soft theorem at the Lagrangian
level. The assumptions are the same as in the previous explicit derivation in Section 3.6.1.
We are interested in a single soft-emission process, with only a single energetic particle in each
direction. Moreover, we consider for the radiative amplitude a coordinate system where each
reference vector nµi− is aligned with its corresponding momentum such that pi⊥ = 0 and

pµi = ni+pi
nµi−
2 . (7.2.2)

We want to derive the soft theorem directly from the Lagrangian. To this end, whenever we
manipulate the interaction vertex, we take it to be nested inside the relevant matrix element

⟨p, k| i
∫
d4x T

{
Â(n),L(k)

χ

}
|0⟩ , (7.2.3)
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i.e. inside the tree-level matrix element with single soft emission, no additional collinear emis-
sions, evaluated in the special reference frame where all external collinear particles satisfy
pi⊥ = 0. However, to safe space, we will not write down the matrix element explicitly, but
only manipulate the terms in L(i) under this assumption. Whenever we drop terms using this
understanding, we use the symbol =∧. For example, we can write external pµ =∧ ni+p

ni−
µ , as all

other components vanish in our reference frame.
Furthermore, since we consider only a single collinear particle and no additional collinear

emissions in each direction, we can again set the collinear Wilson lines Wc = 1 and do not need
to distinguish between the fields ϕc and the gauge-invariant building blocks χc.

Since we employ the all-outgoing convention and want ϕc particles in the external states, one
can always view χ†c as the external particle, where p⊥ = 0 applies, while χc might get contracted
with the Lagrangian and can carry internal momenta.

Finally, let us formalise the discovery of the eikonal propagator in (3.6.23), which we call the
“universal contraction” from now on.1 It is defined as∫

d4x ei
1
2n−k n+x⟨p| χ†c(0), χ†c(x) [in+∂χc(x)] |0⟩ = in+p

2p · k
= i

n−k
, (7.2.4)

and precisely corresponds to the eikonal propagator. Note the additional factor in+∂ acting on
the χc(x) field. This is the position-space analogue of the propagator ini+p̃

p̃2 , and ensures that
both n−x and xµ⊥ do not act on this term, as∫

d4x ei
1
2n−k n+x n−x ⟨p| χ†c(0), χ†c(x) [in+∂χc(x)] |0⟩ = 0, (7.2.5)∫

d4x ei
1
2n−k n+x xµ⊥ ⟨p| χ†c(0), χ†c(x) [in+∂χc(x)] |0⟩ = 0 . (7.2.6)

This is most easily checked in momentum space, where the explicit x turn into derivatives with
respect to the momentum p.

Most of the following manipulations boil down to re-arranging the Lagrangian to yield this
manifest form of the universal contraction and applying all derivatives to the external state
χ†c, where the simple kinematics apply. This ensures that the factors of x⊥ and n−x, which
correspond to derivatives with respect to momenta, only act on the non-radiative amplitude,
and not on the eikonal propagator, as we observe in the soft theorem.

7.2.2 The LBK Derivation
With all these notions and assumptions clarified, we can begin with manipulating the La-
grangians. For a single leg, there are three non-vanishing contributions to the soft-emission
amplitude, as computed in Section 3.6, corresponding to the time-ordered products∫

d4x T
{

Â(0),L(0)
χ

}
, (7.2.7)∫

d4x T
{

Â(0),L(2)
χ

}
, (7.2.8)∫

d4x T
{

Â(1),L(1)
χ

}
. (7.2.9)

The first one must give rise to the leading-power eikonal term, while the second and third one
must combine to yield the subleading term. This means that we also have to explicitly verify
that there is no O(λ) contribution from L(1). The relevant scalar-gluon interaction terms in the
Lagrangian are given by (3.6.14) – (3.6.16).

1This universal contraction arises differently for fields of integer and half-integer spin, due to different normalisa-
tion of the kinetic terms. In theories with a single-derivative kinetic term, it follows directly from the effective
propagator.
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Leading-power Contribution

The leading-power contribution stems from the time-ordered product (3.6.6). In the Lagrangian,
the relevant interaction term reads

L(0)
int = g

2n−As(x−)
(
ϕ†ct

ain+∂ϕc − in+∂ϕ
†
ct
aϕc
)
. (7.2.10)

Here, we first replace ϕc → χc and express the interaction in terms of the gauge-invariant
building block. This has an effect only on interactions featuring collinear gluons, so we can
neglect the additional contributions. Next, one integrates by parts in the second term to obtain
the universal contraction (7.2.4). one finds

L(0)
eikonal = gn−A

a
sχ
†
ct
ain+∂χc . (7.2.11)

This immediately reproduces the leading-power term in the soft theorem (3.6.23). Written in
this form, the structure of this term becomes manifest. The eikonal propagator stems from the
universal contraction (7.2.4), and the numerator is a simple consequence of the minimal coupling
to the homogeneous background field n−As(x−) via the soft-covariant derivative n−Ds in the
effective theory.

Next-to-soft Term

For the next-to-soft term, we require the sub- and subsubleading Lagrangian interactions from
L(1)
χ and L(2), which we write as

L(1)
χ = 1

2x
µ
⊥ n+ja n

ν
−gF

s a
µν , (7.2.12)

L(2)
χ =∧ L(2a)

χ + L(2b)
χ + L(2c)

χ , (7.2.13)

with

L(2a)
χ = 1

2x
ν
⊥j

µ⊥
a gF s aνµ , (7.2.14)

L(2b)
χ = 1

4n−xn
µ
+ n+ja n

ν
−gF

s a
µν , (7.2.15)

L(2c)
χ = 1

4x
µ
⊥x⊥ρ n+ja n

ν
− tr

([
Dρ
s , gF

s
µν

]
ta
)
. (7.2.16)

Here, we introduced the (linear) Noether current jµa (3.4.6)

jµa = χ†c t
a i∂µχc + [i∂µχc]† ta χc . (7.2.17)

First, we have to verify that L(1)
χ does not contribute at O(λ) via the time-ordered product

i

∫
d4x T

{
Â(0),L(1)

χ

}
=∧ 0 . (7.2.18)

In the explicit computation (3.6.24), this term was proportional to p⊥ and vanished as a conse-
quence of p⊥ = 0.

Indeed, rewriting the Lagrangian L(1)
χ using integration by parts, one obtains

L(1)
χ = χ†c x

µ
⊥n

ν
−gF

s
µνin+∂χc . (7.2.19)

Since the time time-ordered product with the A0 current (7.2.18) does not contain any transverse
momenta, and the x⊥ does not act on the universal contraction 7.2.6, one immediately finds that
this contribution must vanish. This agrees with the explicit result (3.6.24), where the derivative
of the eikonal propagator was evaluated explicitly.
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At the sub-subleading, or next-to-soft power, there are two possible contributions, from the
time-ordered products T{Â(0) ,L(2)

χ } and T{Â(1) ,L(1)
χ }, corresponding to (3.6.7) and (3.6.8).

These two terms must contribute very specifically to the soft theorem.
Notice that due to our choice of external momenta, the angular momentum in momentum

space simplifies to
Lµνi = 1

4n
[µ
i+n

ν]
i−ni+pin

α
i−
∂

pαi
+ 1

2ni+pin
[ν
i−

∂

∂pi⊥µ]
, (7.2.20)

which implies the position-space representation

Lµν = x[µ∂ν] = 1
4n

[µ
+n

ν]
− n− · xn+ · ∂︸ ︷︷ ︸
Lµν

+−

+ 1
2x

[µ
⊥n

ν]
− n+ · ∂︸ ︷︷ ︸
Lµν

⊥+

. (7.2.21)

Next, observe that the L⊥+ operator contains an explicit x⊥, or equivalently ∂
∂p⊥

. Therefore,
it must hit a ∂⊥ in order to yield a non-vanishing contribution. This implies that the mixed
transverse-longitudinal term must stem from L(1), as it contributes through the time-ordered
product (3.6.8) which contains ∂⊥.

On the other hand, the longitudinal term L+− contains only n−x, or equivalently, ∂
∂ni+p

.
Therefore, it must appear in a combination that does not contain external p⊥, since these
cannot be eliminated.

In summary, we find that the longitudinal angular momentum L+− must be located inside L(2),
where it contributes via (3.6.7), while the mixed-longitudinal term must be part of L(1), where
it appears via (3.6.8), since it requires the explicit ∂⊥ to yield a non-vanishing contribution.

Consider first L(2)
χ given in (7.2.14)–(7.2.16). Writing out the Noether current, we find

L(2a) = 1
2x

ν
⊥j

µ⊥
a igF s aνµ

[
ϕ̂†ct

a
↔
∂µ⊥ ϕ̂c

]
. (7.2.22)

First, integrate by parts to have ∂⊥ act on the external ϕ†c, where it can be dropped using the
kinematic assumption p⊥ = 0. This integration yields

L(2a)
χ = [i∂⊥µχc]†xν⊥gF sνµχc + 1

2 iχ
†
cη
µν
⊥ gF

s
νµχc , (7.2.23)

and as anticipated the first term can be dropped since it is proportional to the external p⊥ = 0.
Note that the second term also vanishes, since the antisymmetric F sνµ is contracted with the
symmetric ηµν⊥ . Thus we conclude

L(2a)
χ (x) =∧ 0 . (7.2.24)

For the second term, L(2b)
χ , we have

L(2b)
χ = 1

4n−xn
µ
+n

ν
−igF

s a
µν

[
ϕ̂†ct

an+
↔
∂ ϕ̂c

]
. (7.2.25)

First, we integrate n+∂ to obtain the universal contraction. This yields

L(2b)
χ = 1

2χ
†
c n−xn

µ
+n

ν
−gF

s
µνin+∂χc + 1

2 iχ
†
cn
µ
+n

ν
−gF

s
µνχc , (7.2.26)

where we notice that the first term already contains structures reminding of the longitudinal
angular momentum, contracted with the field-strength tensor. In fact, this first term

L(2b)
χ ⊃ 1

2χ
†
cigF

s
µν n−xn

µ
+n

ν
−n+∂χc = χ†cigF

s
µν L

µν
+−χc , (7.2.27)
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is precisely the full longitudinal component of the angular momentum. This means that the
second term in (7.2.26) is left-over and must cancel in the end.

This is alleviated by looking at the contribution from L(2c)
χ , which takes the form

L(2c)
χ = 1

4x
µ
⊥x⊥ρn

ν
−

[
∂ρigF asµν

] [
ϕ̂†ct

an+
↔
∂ ϕ̂c

]
. (7.2.28)

First, we split the xµ⊥x⊥ρ term into a traceless and a trace part, as

xµ⊥x⊥ρ = [xµ⊥x⊥ρ − 1
2x

2
⊥δ

µ
⊥ρ] + 1

2x
2
⊥δ

µ
⊥ρ . (7.2.29)

Note that the traceless term cannot contribute if the external p⊥ = 0, and it can be dropped.
This leaves us with

L(2c)
χ = 1

8x
2
⊥n

ν
−

[
∂µ⊥igF

a
sµν

] [
ϕ̂†ct

an+
↔
∂ ϕ̂c

]
. (7.2.30)

We would like to move the derivative away from the field-strength tensor, but this derivative
is evaluated before setting x = x− in the field-strength tensor, and moving it requires one to
be very careful with the coordinate arguments. Therefore, we first employ the leading (linear)
gluon equation of motion2

0 =∧ ∂µF aµν = ∂µ⊥F
a
sµν + 1

2n+∂n
µ
−Fsµν + 1

2n−∂n
µ
+F

a
sµν (7.2.31)

to rewrite the transverse derivative as

nν−∂
µ
⊥F

a
sµν =∧ −1

2n
ν
−n

µ
+n−∂F

a
sµν , (7.2.32)

where we used that nµ−nν−F asµν = 0 by symmetry. This yields

L(2c)
χ = − 1

16x
2
⊥n

ν
−n

µ
+

[
n−∂igF

a
sµν

] [
ϕ̂†ct

an+
↔
∂ ϕ̂c

]
, (7.2.33)

and now the n−∂ can be integrated by parts as usual, since the field-strength tensor is evaluated
at x−. This integration yields

L(2c)
χ = 1

16x
2
⊥n

ν
−n

µ
+igF

a
sµν

(
n−∂ϕ̂

†
ct
an+∂ϕ̂c+ ϕ̂†ct

an−∂n+∂ϕ̂c− n−∂n+∂ϕ̂
†
ct
aϕ̂c− n+∂ϕ̂

†
ct
an−∂ϕ̂c

)
=∧ 1

16x
2
⊥n

ν
−n

µ
+igF

a
sµν

(
+ϕ̂†ctan−∂n+∂ϕ̂c − n+∂ϕ̂

†
ct
an−∂ϕ̂c

)
=∧ 1

8x
2
⊥n

ν
−n

µ
+igF

a
sµν

(
ϕ̂†ct

an−∂n+∂ϕ̂c
)
, (7.2.34)

where we used that the external momentum n−p = 0, thus n−∂ϕ† =∧ 0 in the second line and
integrated by parts in the third line. Next, to simplify the n−∂, employ the leading-power
equation of motion of the collinear scalar field

n−∂n+∂ϕc =∧ −∂2
⊥ϕc , (7.2.35)

to obtain

L(2c)
χ =∧ −1

8x
2
⊥n

ν
−n

µ
+igF

a
sµν

[
ϕ̂†ct

a∂2
⊥ϕ̂c

]
=∧ −1

2n
ν
−n

µ
+igF

a
sµν

[
ϕ̂†ct

aϕ̂c
]
, (7.2.36)

2Using only the linear equation of motion is justified since we are not interested in higher-order terms in As,
which correspond to multi-gluon emission.
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where we integrated by parts the ∂2
⊥ as

x2
⊥∂

2
⊥ = ∂2

⊥x
2
⊥ + 4∂⊥ · x⊥ + 4 =∧ 4 , (7.2.37)

since ∂⊥ on the left of x⊥ yields an external p⊥ =∧ 0.
Observe that the term (7.2.36) precisely cancels out the second term in (7.2.26). This is

the Lagrangian manifestation of the intricate cancellations we found in the previous calculation
when employing the on-shell conditions (3.6.36). In the Lagrangian version, these correspond
to the equations of motion of matter and gauge particles.

To conclude, we find that the sub-subleading Lagrangian can be written as

L(2)
χ =∧ L(2)

orbital ≡ 1
2χ
†
c n−xn

µ
+n

ν
−gF

s
µν in+∂χc = igF s aµν χ

†
ct
a Lµν+− χc . (7.2.38)

and see that the sub-subleading Lagrangian precisely contains the longitudinal components of
the angular momentum operator.

Next, we investigate the subleading Lagrangian (7.2.12). At O(λ), it yielded a vanishing
contribution in the matrix element with the leading-power current, since one could set X⊥ = 0.
However, at the next-to-soft order, this term now appears in the time-ordered product with the
subleading current Â(1), which contains ∂⊥. This can lead to a non-vanishing contribution.

More precisely, the subleading Lagrangian is given by

L(1) = igF s aµν ϕ
†
ct
aLµν⊥+ϕc , (7.2.39)

and contains the transverse-longitudinal component of the angular momentum (7.2.21), with
explicit x⊥. There is a non-vanishing contribution in the time-ordered product when the trans-
verse derivative ∂⊥ in the subleading operator Â(1) acts on this explicit x⊥ in the Lagrangian.
The contribution from T

{
Â(1),L(1)

χ

}
is given by

i

∫
d4x T

{
Â(1),L(1)

χ

}
= i

∫
d4x T

{∫
dt C̃A1

ρ (t) i∂ρ⊥χ
†
c, χ
†
c

[
xµ⊥n

ν
−gF

s
µν

]
in+∂χc

}
= −gtai

kµε
a
ν(k)

n−k
n

[ν
−

∂

∂p⊥µ]
A(1) . (7.2.40)

It is easiest to directly verify this step in momentum-space, following (3.6.43). However, this
result can also be understood intuitively. First, note that the derivative ∂⊥ corresponds to the
internal momentum p̃, which satisfies p̃⊥ ̸= 0. The explicit x⊥ corresponds to a derivative with
respect to this internal momentum p̃, which is carried by the Fourier-transform of the scalar
χc, of ∂⊥ and of the matching coefficient C̃A1. However, the x⊥ does not act on the universal
contraction in+∂χc, since it does not depend on p̃⊥. Similarly, it does not act on CA1, since
this also only depends on ni+p̃. It can only act on ∂µ⊥, which yields simply δµρ . Then, the time-
ordered product can be evaluated in standard fashion. Finally, identify the coefficient CA1µ with
the derivative ∂

∂p⊥µ
A(1) of the non-radiative amplitude, using the explicit matching condition

(2.7.14)
A(1) = −pµj⊥C

A1
j µ (n1+p1, . . . , nN+pN ) . (7.2.41)

This immediately yields (7.2.40). In conclusion, we find an operatorial statement also at the
next-to-soft order, as

A(2)
rad =∧

∑
i

i

∫
d4x T

{
Â(1),L(1)

i, χ

}
+ i

∫
d4x T

{
Â(0),L(2)

i, orbital

}
= i

∑
i

∫
d4x T

{
Â, χ†ci

tai L
µν
i igF s aµν χci

}
. (7.2.42)
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where in the second line, we combined the source and Lagrangian terms using (7.2.18) and∫
d4x T

{
Â(1),L(2)

χ

}
=∧ 0 . The sum Â(0) + Â(1) = Â + O(λ2) corresponds the non-radiative

amplitude expanded up to order λ. This result (7.2.42) is completely equivalent to the soft
theorem and can be viewed as a new result. The amplitude for a single soft-emission process
is completely captured by the time-ordered product of the non-radiative amplitude with the
Lagrangian interaction vertices.

7.3 Extension to Fermions
Next, we investigate how the derivation changes if one considers fermionic matter instead. This
is interesting for two reasons: first, the Lagrangian is linear in the derivatives, not quadratic as
the scalar one. This has implications for the propagator of the fermion field, and we will see that
the universal contraction from before (7.2.4) now simply corresponds to the normal propagator,
simplifying the derivation. Second, the LBK amplitude features the full angular momentum,
not just the orbital part. Therefore, one should also be able to identify how the spin term arises
in this Lagrangian discussion.

7.3.1 General Properties
For details regarding the power-counting, Lagrangian discussion and non-radiative matching, we
refer to the previous Section 3.7. We summarise the key insights of this section: The light-cone
reference vectors can be used to construct projection operators. Then, the full-theory spinor
field is split as ψc = ξc + ηc, where ξc satisfies

/n−/n+
4 ξc = ξc , (7.3.1)

and ηc is subleading compared to ξc. Therefore, the effective theory only employs ξc while ηc is
integrated out. The component ξc has the universal contraction∫

d4xei
1
2n−k n+x ⟨p| ξc(0), ξc(x)

/n+
2 ξc(x) |0⟩ = ξc(p)

in+p

2p · k
= ξc(p)

/n+/n−
4

i

n−k
, (7.3.2)

which is the projection onto the ξc component of the standard propagator. In addition, during
matching computations, the full-theory spinor u(pi) must be expanded as

u(pi) = ξci
(pi)

(
1 − /pi⊥

ni+pi

/ni+
2

)
. (7.3.3)

This is the effect of the subleading spinor ηc, and leads to a modified RPI-relation for the A1
matching coefficient

CA1µ
i (n1+p1, . . . , nN+pN ) =

[
−

γµi⊥
ni+pi

/ni+
2 −

∑
j ̸= i

2nµj−
ni− · nj−

∂

∂ni+pi

]
CA0(n1+p1, . . . , nN+pN )

≡ CA1µ
i, spin(n1+p1, . . . , nN+pN ) + CA1µ

i, orbit(n1+p1, . . . , nN+pN ) , (7.3.4)

which now contains a spin-dependent term. This relation is highly relevant for the angular
momentum operator, analogous to the orbital part that was also critical in the scalar derivation.
We also perform this split for the subleading N -jet operator as

Â(1) = Â(1)
orbit + Â(1)

spin . (7.3.5)

The actual computation now proceeds along very similar lines as in the scalar case. In par-
ticular, the leading-power term follows immediately, without any computation. Therefore, we
restrict our discussion to the next-to-soft term, which is the more interesting contribution.

122



7.3 Extension to Fermions

Next-to-soft Term

The subleading Lagrangian takes the form [40]

L(1)
ξ = ξc

(
xµ⊥n

ν
−Wc gF

s
µνW

†
c

) /n+
2 ξc , (7.3.6)

L(2)
ξ = 1

2 ξc
(
n−x n

µ
+n

ν
−Wc gF

s
µνW

†
c + xµ⊥x⊥ρn

ν
−Wc

[
Dρ
s , gF

s
µν

]
W †c

) /n+
2 ξc (7.3.7)

+ 1
2 ξc

(
i /D⊥

1
in+D

xµ⊥γ
ν
⊥Wc gF

s
µνW

†
c + xµ⊥γ

ν
⊥Wc gF

s
µνW

†
c

1
in+D

i /D⊥

)
/n+
2 ξc .

As before, we split the subsubleading Lagrangian as

L(1)
ξ =∧ ξc

(
xµ⊥n

ν
− gF

s
µν

) /n+
2 ξc , (7.3.8)

L(2)
ξ =∧ L(2a)

ξ + L(2b)
ξ + L(2c)

ξ + L(2s)
ξ , (7.3.9)

where the labels follow the scalar decomposition (7.2.12)

L(2a)
ξ = ξcx

µ
⊥gF

s
µν

i∂ν⊥
in+∂

/n+
2 ξc ,

L(2b)
ξ = 1

2 ξc(n−x)nµ+nν− gF sµν
/n+
2 ξc ,

L(2c)
ξ = 1

2 ξcx
µ
⊥x⊥ρn

ν
−
[
Dρ
s , gF

s
µν

] /n+
2 ξc .

(7.3.10)

In addition to these terms, fermions feature a new spin-dependent term

L(2s)
ξ = ξcgΣµν

⊥ iF
s
µν

1
in+∂

/n+
2 ξc . (7.3.11)

Here, the spin operator Σµν is decomposed in analogy to the orbital angular momentum (7.2.21)
into its light-cone components as

Σµν = 1
4[γµ, γν ] =∧ 1

4
[
γµ⊥, γ

ν
⊥
]

︸ ︷︷ ︸
Σµν

⊥

+
(

−1
2
/n+
2 γ

[µ
⊥ n

ν]
−

)
︸ ︷︷ ︸

Σµν
⊥+

+
(

−1
4n

[µ
+n

ν]
−

)
︸ ︷︷ ︸

Σµν
+−

. (7.3.12)

Note that after =∧, a number of terms were dropped which vanish due to the projection property
(7.3.1) and the kinematics in the reference frame pµ⊥ = 0, similar to the terms in (7.2.21).

The derivation of the orbital part is completely analogous to the scalar case. One again finds
that L(2a) =∧ 0 after integration by parts, and that L(2b) is already in the correct form and
contains the longitudinal part of the orbital angular momentum L+− once it is evaluated in
a matrix element, similar to (7.2.38). However, there is one small difference compared to the
scalar case that is worth examining in more detail: the angular momentum term for the scalar
field comes in the form (7.2.38)

L(2)
orbital ≡ 1

2χ
†
c n−xn

µ
+n

ν
−gF

s
µν in+∂χc = igF s aµν χ

†
ct
a Lµν+− χc , (7.3.13)

where one can directly read off the angular momentum in the Lagrangian. In the fermionic
theory, however, (7.3.10) takes a different form

L(2b)
ξ = 1

2 ξc(n−x)nµ+nν− gF sµν
/n+
2 ξc = ξc igF

s
µνL

µν
+−

1
in+∂

/n+
2 ξc , (7.3.14)
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and one notices that to identify L+− directly, one needs to introduce an inverse derivative.
This is due to the different propagators and resulting universal contractions for the scalar and
spinor fields. Therefore, the angular momentum appearing in the LBK amplitude should not
be thought of in the same way as the charge appearing in the first term. It is not a “charge”
operator that appears in conjunction with the eikonal propagator. Rather, its appearance is
a consequence of the coupling to the antisymmetric field-strength tensor and the form of the
eikonal propagator, which combine into the orbital angular momentum. We will see below that
the spin part also manifestly appears in this “non-local” form.3

With this being said, note that L(2b) already completely reproduces the orbital angular mo-
mentum stemming from the time-ordered product of L(2) with J (0). Therefore, let us investigate
what happens to L(2c), which was required for some cancellations in the scalar case. It is given
by

L(2c)
ξ = 1

2 ξcx
µ
⊥x⊥ρn

ν
−
[
Dρ
s , gF

s
µν

] /n+
2 ξc . (7.3.15)

One can completely follow the manipulations of the scalar counterpart (7.2.28). First, one
simplifies xµ⊥x

ρ
⊥ by splitting these into a traceless and a trace part (7.2.29), dropping the traceless

combination. Next, one employs the gluon equations of motion (7.2.31) to change ∂⊥ into
n−∂ acting on the field-strength tensor. Finally, one integrates by part and uses the collinear
equations of motion to simplify the result. This culminates in

L(2c)
ξ =∧ −i12ξcn

µ
+n

ν
−gF

s
µν

1
in+∂

/n+
2 ξc , (7.3.16)

and one can see that this term precisely corresponds to the longitudinal components of the spin
operator Σ+− = −1

4n
[µ
+n

ν]
− contracted with the field-strength tensor.

The additional spin-dependent term L(2s) (7.3.11) already contains the purely-transversal
components Σ⊥ of the spin term. Therefore, the subsubleading Lagrangian of a fermion can be
recast in the form

L(2)
ξ =∧ L(2)

orbit + L(2)
spin , (7.3.17)

where

L(2)
orbit = igF sµνξcL

µν
+−

1
in+∂

/n+
2 ξc , (7.3.18)

L(2)
spin = igF sµνξc

(
Σµν
⊥ + Σµν

+−
) 1
in+∂

/n+
2 ξc . (7.3.19)

Observe that the orbital part is completely analogous to the corresponding scalar term (up to
the different form of the universal contraction), while the fermion now features explicit spin-
dependent terms, where the spin operator Σµν is manifest.

Similar to the scalar case, the mixed transverse-longitudinal components are missing. For the
orbital part, these terms cannot stem from the time-ordered product with the leading-power
Â(0), since these terms require explicit ∂⊥. The mixed transverse-longitudinal orbital part thus
follows from the Lagrangian L(1)

ξ (7.3.6) in combination with the orbital part of the A1 current
(7.3.4) in the exact same fashion as in the scalar case (7.2.40), and the orbital angular momentum
terms arise as

i

∫
d4x T

{
Â(1)

orbit,L
(1)
ξ

}
+ i

∫
d4x T

{
Â(0),L(2a)

ξ + L(2b)
ξ

}
= i

∫
d4x T

{
Âorbit, ξc

/n+
2 LµνigF sµν

1
in+∂

ξc

}
. (7.3.20)

3Later, we consider a vector field that has a similar universal contraction to the scalar (7.2.4). Here, we will see
that both the orbital and spin part appear without non-locality like in the scalar case, due to the different
propagator structure.
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The same is actually true for the spin-part: the transverse-longitudinal components vanish
when acting on ξc due to the projection property (7.3.1), and must act on the subleading spinor
ηc to yield a non-vanishing result. To see this, first note that the leading-power term of the
amplitude A(0) comes with external spinor ξc. Therefore, it inherits the projection property
(7.3.1), namely

ξcA(0) = ξc
/n+/n−

4 A(0) . (7.3.21)

Next, observe that the mixed transverse-longitudinal component Σµν
⊥+, as defined in (7.3.12), is

projected out by this condition, since

Σµν
⊥+

/n+/n−
4 ∝

/n+
2
/n+/n−

4 = 0 . (7.3.22)

Therefore, the component Σ⊥+ cannot appear in combination with A(0). However, the sublead-
ing amplitude A(1) contains one term that is proportional to the subleading spinor ηc, and since
this component has the opposite projection property

/n+/n−
4 ηc = ηc , (7.3.23)

the component Σ⊥+ can appear in conjunction with A(1), if this other projection is present.
This term with the other projection property is precisely the term that stems from the spin-
term in the A1 coefficient (7.3.4). We now show how the Lagrangian L(1)

ξ (7.3.6) gives rise to
the correct mixed-longitudinal terms in combination with the A1 matching coefficient. To this
end, we evaluate its time-ordered product with the spin-term of (7.3.4), where we find

T

{
L(1)
ξ ,−ξc

i
←
/∂⊥

in+
←
∂

/n+
2 CA0

}
=∧ T

{
ξc

(
xµ⊥n

ν
− gF

s
µν

) /n+
2

i/∂⊥
in+∂

ξc , ξc
/n+
2 CA0

}

=∧ T

{
giF sµνξc Σµν

⊥+
1

in+∂
ξc , ξc

/n+
2 CA0

}
. (7.3.24)

Note again that σ⊥+ does not vanish due to the additional /n+ in the contraction. This term is
the component of the full propagator that is proportional to the subleading spinor ηc, and the
mixed transverse-longitudinal component is not projected out. In summary, L(1)

ξ with the spin-
term of the A1-current (7.3.4) and L(2)

spin (7.3.19) with the leading-power current then reproduce
the full spin-term of the LBK amplitude as

i

∫
d4x T

{
Â(1)

spin,L
(1)
ξ

}
+ i

∫
d4x T

{
Â(0),L(2)

spin

}
=∧ i

∫
d4xξc(x) gF sµν

Σµν
⊥+

1
in+∂

ξc ξc
/n+
2 + (Σµν

+− + Σµν
⊥ ) 1

in+∂

/n+
2 ξc ξc

 CA0(n+p)

= i

∫
d4xξc(x) giF sµνΣµν

 1
in+∂

ξc ξc
/n+
2 + 1

in+∂

/n+
2 ξc ξc

 A . (7.3.25)

To rewrite this result, we identified the matching coefficient CA0 with the non-radiative ampli-
tude 7.1.4, using the kinematics to drop the subleading contributions in terms that do not contain
derivatives acting on the amplitude. One can write the full Σµν since the missing components
are projected out using (7.3.1) and (7.3.22). The term inside the bracket actually corresponds
to the full-spinor propagator, meaning that it contains components proportional to both the
leading ξc and subleading ηc spinor, due to the different position of /n+ in both terms. After
one evaluates the matrix element, this is simply the standard eikonal propagator without any
projection operator, as one finds in the LBK theorem (1.1.9).
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7.4 Extension to Vectorbosons
This section serves as a short summary of the derivation of the respective result for spin-1
fields. Here, aspects from both previous derivations, scalar as well as fermions, are relevant.
Namely, the universal contraction and generic form of the interactions look similar to the scalar
field, while the spin term arises in the same fashion as for the fermionic theory. This gives
an indication that the soft theorem can be derived for a generic spin-s field in a similar style
as for fermion and vector fields. In the following, we now consider a massive complex vector
field V µ

c , which forms some representation of SU(N), i.e. it couples to the gluon. This theory
should only be viewed as a convenient toy model, which is employed due to the strong formal
similarities to the scalar field considered before in Section 7.2, and should not be thought of as
a fundamental, UV complete theory. Most importantly, this vector field should come with its
own gauge symmetry to form a consistent theory. However, this gauge symmetry is not relevant
for the soft gluon emission, and it serves no purpose to construct the full consistent theory here.
Therefore, we assume that the theory is either gauge-fixed in some physical gauge, or that a
construction similar to the Wilson lines employed in the gauge-invariant building blocks (3.5.4)
is used, and we do not discuss the gauge symmetry further. One example of such a physical
gauge is light-cone gauge n+Vc = 0. Such a choice is convenient since here, one manifestly finds
that the large component n+Vc ∼ 1 is not relevant for the operator basis, and the transverse
components V⊥ scale as Vc⊥ ∼ λ like the matter fields ϕc and ξc from before. In addition, the
missing component n−Vc ∼ λ2 can be integrated out in the same fashion as the subleading
spinor ηc before, using the equation of motion

n−Vc = − 2
in+∂

i∂⊥αVαc⊥ + O(V2
c ) . (7.4.1)

Relevant for the following discussion is only the transformation of the vector field under the
action of the gauge group of the gluon. Therefore, in the following, we assume that the operator
basis employs the gauge-invariant building block Vc. The result is completely equivalent to any
other physical gauge-fixing, and working with the building block means that one does not need
to fix a gauge in the Lagrangian. The vector field and the building block are then related to
linear order as

Vcµ = Vcµ − ∂µ
n+Vc
n+∂

+ . . . . (7.4.2)

7.4.1 Basics and Non-radiative Matching
For the non-radiative matching, we can directly transfer the results of the previous sections.
The leading-power matching (7.1.4) corresponds to

A(0) = ε∗α1(p1) . . . ε∗αN
(pN )A(0)α1...αN

= ⟨p1, . . . , pN |Â(0)|0⟩

= ε̃∗c1α1⊥
(p1) . . . ε̃∗cNαN⊥

(pN )
∫

[dt]N η
α1β1
⊥ . . . ηαNβN

⊥

(
C̃A0

)
β1...βN

ei
∑

i
ni+pi ti

≡ ε̃∗c1α1⊥
(p1) . . . ε̃∗cNαN⊥

(pN )ηα1β1
⊥ . . . ηαNβN

⊥

(
CA0

)
β1...βN

. (7.4.3)

This situation looks very different to the previous conditions since only the ε⊥ appears. It
is actually surprisingly similar to the fermionic matching condition, but now the projections
are more explicit. First note that the full-theory amplitude A(0) carries the full polarisation
tensor εα, which has a full Lorentz index α = 0, . . . , 3. In the operator basis, however, one
employs the transverse components Vc⊥, which are restricted to transverse components only.
The corresponding polarisation tensor is denoted by ε̃ciαi⊥ , and is determined from (7.4.2) as

ε̃ciµ⊥(k) = εµ⊥(k) − kµ⊥

ni+ε(k)
ni+k

. (7.4.4)
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7.4 Extension to Vectorbosons

This should be viewed in spirit as equivalent to the leading-power spinor polarisation, which
differs from the full-theory one (4.4.31) by the projection property (7.3.1). The polarisation
(7.4.4) is the full-theory polarisation projected onto the transverse components. In addition,
one absorbs the n+εc polarisations in the same object. This does not affect the amplitude, since
it is in practice equivalent to a gauge transformation.

The stripped full-theory amplitude Aα1...αn itself is now also a Lorentz tensor, which has
one index for each external vectorial leg. Since the matching coefficients correspond to the
(stripped) amplitude, they must receive the Lorentz indices as well, as we indicate by the brack-
ets. At leading order, all indices must be transverse, but at subleading order, the contributions
of n−V will contribute, as one can check explicitly in (7.4.7) below. Therefore, it is a useful
choice to not restrict the indices of the coefficients like CA0 to be purely transverse. Instead,
we employ the convention that CA0 carries a full Lorentz index, and the contraction with the
effective polarisation tensor ε̃⊥ leads to a restriction onto transverse components. In summary,
the leading-power matching again states that the (stripped) full-theory amplitude simply corre-
sponds to the leading-power matching coefficient(

CA0
)
β1...βN

= A(0)
β1...βN

. (7.4.5)

For the subleading matching, one must be able to obtain the contributions due to n−Vc, in the
same way as for the subleading spinor in the fermionic case. Using the equations of motion
(7.4.1), one can relate the polarisation vectors as

ni−ε̃ci(k) = − 2
ni+k

kα⊥ε̃ciα⊥ , (7.4.6)

which is the analogue of the spinor relation (7.3.3). This condition then relates the subleading
matching coefficient to the leading-power one in the same way as in the fermionic case (7.3.4).
Namely, one finds

(
CA1µ
i

)
β1...βi...βN

=
[

−
ηµ⊥βi

ni+pi
nρi

+ −
∑
j ̸= i

ηρi
⊥βi

2nµj−
ni− · nj−

∂

∂ni+pi

] (
CA0

)
β1...ρi...βN

≡
(
CA1µ
i, spin

)
β1...βi...βN

+
(
CA1µ
i, orbit

)
β1...βi...βN

,

(7.4.7)

where one can again identify the orbital part, which is already present in the scalar coefficient
(2.7.16), as well as a spin-part, which is due to the subleading polarisation tensor. Note that
the Lorentz structure should be read as

(
CA1µ

)
...αi...

i∂⊥µVαi⊥
ci

, where the first µ is the one that
is contracted with the ∂⊥ in the current. Like for the fermion (7.3.5), we split this subleading
current into two terms Â(1)

orbit Â(1)
spin.

Since the vector field has a quadratic kinetic term, like the scalar field, the universal con-
traction is similar to the scalar 7.2.4 and again contains the large derivative n+∂. We define it
as ∫

d4xei
1
2n−k n+x⟨p| V †cα(0), V †cν(x) n+∂Vcβ(x) |0⟩ = ε∗ν(p)

−iηαβ
n−k

, (7.4.8)

where we assumed Feynman gauge for the Vc propagator for simplicity.
We now drastically simplify the notation by removing all Lorentz indices that will be con-

tracted with polarisation vectors. Only the ones relevant for the current constructions, e.g.
contractions of CA1µ∂⊥µ will be kept explicit, while we write

[
CA0

]α1...αN ≡ CA0 and under-
stand that this object is a rank N Lorentz tensor.
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7 Soft Theorems in the Lagrangian

7.4.2 Soft Theorem
The derivation of the soft theorem is now completely analogous to the scalar and fermionic case.
In order to shorten the Lagrangian expressions, it is convenient to introduce the (linear) Noether
current4 as

jaµ ≡
[
i∂µV

†
cα

]
taV α

c − V †cαt
ai∂µV

α
c + 2V †cαtai∂αVcµ − 2

[
i∂αV †cµ

]
taVcα . (7.4.9)

Comparing this to the scalar current (7.2.17), note that there are two new terms, namely the
last two, which will contribute to the spin term. The first two terms give rise to the orbital
angular momentum just as in the scalar case.

To construct the Lagrangian, one can follow the procedure outlined in Section 3.4 and one
obtains [48]

LV = L(0)
V + L(1)

V + L(2)
V , (7.4.10)

where the individual terms are given by

L(0)
V = −1

2 tr
(
(∂µVcν − ∂νVcµ)†(∂µV ν

c − ∂νV µ
c )
)

+ 1
2gn−A

a
sn+j

a + O(g2) , (7.4.11)

L(1)
V = 1

2x
µ
⊥ n+ja n

ν
−gF

s a
µν (7.4.12)

L(2)
V =∧ L(2a)

V + L(2b)
V + L(2c)

V . (7.4.13)

Here, we introduced the same Lagrangian decomposition as in the scalar and fermionic cases
(7.2.12), (7.2.13) and (7.3.8), (7.3.9), which read

L(2a)
V = 1

2x
ν
⊥j

µ⊥
a gF s aνµ , (7.4.14)

L(2b)
V = 1

4n−xn
µ
+ n+ja n

ν
−gF

s a
µν , (7.4.15)

L(2c)
V = 1

4x
µ
⊥x⊥ρ n+ja n

ν
− tr

([
Dρ
s , gF

s
µν

]
ta
)
. (7.4.16)

In the fermionic theory, there was an explicit spin-dependent term that contains Σµν
⊥ in the

Lagrangian, which seems to be absent here. However, note that in both the scalar and fermionic
theory, we found L(2a) =∧ 0, whereas in the vectorial theory this contribution is non-zero. Instead,
the spin-operator Σµν hides in this term. For spin-1 representations, it is defined as

(Σµν)αβ =
(
ηµαηνβ − ηµβηνα

)
. (7.4.17)

Therefore, we rewrite the term L(2a)
V as

L(2a)
V =∧ −igF s aµν V †cαtaVcβ

(
ηαµ⊥ ηβν⊥ − ηαν⊥ ηβµ⊥

)
= −igF s aµν V †cαtaVcβ(Σµν

⊥ )αβ . (7.4.18)

Here, we integrated by parts and used the equations of motion as well as the transversality
condition ∂µV

µ =∧ 0, and the spin-operator Σ for the vectorial representation is decomposed in
the light-cone components as

(Σµν)αβ =∧ ηαµ⊥ ηβν⊥ − ηαν⊥ ηβµ⊥︸ ︷︷ ︸
(Σµν

⊥ )αβ

+ 1
2η

α[µ
⊥ n

ν]
−n

β
+ − η

β[µ
⊥ n

ν]
−n

α
+︸ ︷︷ ︸

(Σµν
⊥+)αβ

+ n
[µ
+n

ν]
−

4 (nα−n
β
+ − nα+n

β
−)︸ ︷︷ ︸

(Σµν
+−)αβ

. (7.4.19)

Note that this again only contains the transverse, mixed transverse-longitudinal and longitudinal
components, since all other components will drop out using our kinematic assumptions and
projection properties of the operator basis.

4It is enough to consider the linear current since we are interested in tree-level single soft emission processes.
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Next, we consider the term L(2c)
V , where we follow the same computation as for the respective

scalar (7.2.36) and fermionic case (7.3.16) to obtain

L(2c)
V =∧ 1

2 igF
s a
+−V

†α
c taVcα . (7.4.20)

Like for the scalar case (7.3.16), this term cancels out a contribution in L(2b)
V , and one finds for

the sum

L(2b)
V + L(2c)

V =∧ −1
2n−xgF

s a
+−

(
V †cαt

ain+∂V
α
c

)
− 1

2 igF
s a
+−

(
V †c−t

aVc+ − V †c+t
aVc−

)
. (7.4.21)

Here, the first term has the same form as the respective orbital piece in the scalar derivation,
and it precisely yields the longitudinal component L+− of the orbital angular momentum. The
second term can be further manipulated as

−1
2 igF

s a
+−

(
n−V

†
c t
an+Vc − n+V

†
c t
an−Vc

)
= −1

4n
[µ
+n

ν]
−

(
nα−n

β
+ − nα+n

β
−

)
V †cαt

aVcβigF
s a
µν

= −(Σµν
+−)αβigF s aµν V †cαtaVcβ , (7.4.22)

and contains the longitudinal part of the spin term. In summary, the subsubleading Lagrangian
takes the form

L(2)
V =∧ −1

2n−xn
µ
+n

ν
−gF

s a
µν

(
V †cαt

ain+∂V
α
c

)
− igF s aµν V

†
cαt

aVcβ
(
(Σµν
⊥ )αβ + (Σµν

+−)αβ
)
. (7.4.23)

The first term corresponds to the longitudinal part of the orbital angular momentum like in the
scalar case (7.2.38), while the second term explicitly contains the longitudinal and transverse
parts of the spin angular momentum, as in the fermionic case (7.3.18).

As in the previous discussions, the transverse-longitudinal terms are missing, since they must
come with the A1 operator due to their kinematic and projection properties. To this end,
manipulate the subleading Lagrangian L(1)

V to yield

L(1)
V =∧ −xµ⊥n

ν
−gF

s a
µν V

†
cαt

ain+∂V
α
c − ignν−F

s a
µ⊥ν

(
V †µ⊥
c tan+Vc − n+V

†
c t
aV µ⊥

c

)
=∧ −xµ⊥n

ν
−gF

s a
µν V

†
cαt

ain+∂V
α
c , (7.4.24)

which now yields a non-vanishing time-ordered product with the A1 current, which contains an
explicit ∂⊥ and nµ+. Here, we dropped the second term in the first line of (7.4.24). It cannot
contribute in the time-ordered product T{Â(0),L(1)

V } with the leading-power current, since this
comes with polarisation tensor ε̃⊥ and the contraction with nµ+ vanishes. Furthermore, it does
not contain an explicit x⊥, so its time-ordered product with Â(1) is proportional to p⊥ =∧ 0.
Therefore, one can neglect the second term.

The first term, on the other hand, has a striking resemblance to the scalar L(1)
χ (7.2.12)

and fermionic L(1)
ξ (7.3.8) results, and indeed the time-ordered product with the orbital piece

Â(1)
orbit precisely reproduces the mixed transverse-longitudinal component of the orbital angular

momentum. The missing spin-term then arises similar to the fermionic result (7.3.24) from the
spin-term Â(1)

spin in the A1 current.
In summary, one can recast the vector Lagrangian in the same form as the scalar and fermionic

one, as
LV =∧ L(0)

kinetic + L(0)
eikonal + L(1)

V + L(2)
orbit + L(2)

spin , (7.4.25)

where the individual terms correspond to

L(0)
eikonal = −gn−Aan+V

†
cαt

ain+∂V
α
c , (7.4.26)
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L(1)
V = −igF s aµν V †cαtaL

µν
⊥+V

α
c (7.4.27)

L(2)
orbit = −igF s aµν V †cαtaL

µν
+−V

α
c (7.4.28)

L(2)
spin = −igF s aµν V †cαtaVcβ

(
(Σµν
⊥ )αβ + (Σµν

+−)αβ
)
. (7.4.29)

This result has a striking formal resemblance to the fermionic result (7.3.18), (7.3.19).
Combining both contributions from the A0 and A1 currents, the subleading soft-emission term

is given by

i

∫
d4x T

{
Â(1)

orbit + Â(1)
spin,L

(1)
V

}
+ i

∫
d4x T

{
Â(0),L(2)

orbit + L(2)
spin

}
= i

∫
d4x T

{
Â,−V †cα

(
ηαβLµν + (Σµν)αβ

)
igF s aµν Vβ

}
, (7.4.30)

and we recover the same structure as for the scalar (7.2.42) and fermionic (7.3.25) case. This
seems to suggest that this soft-theorem derivation at the operatorial level can be generalised in a
straightforward fashion to matter fields of arbitrary spin, simply by writing down the minimal-
coupling terms and performing the “linear SCET” construction, as we did for scalar, fermion
and vector fields. However, we will not pursue this idea further in the following.

7.5 Soft Graviton Theorem
As we have verified in gauge theory, the soft-emission interaction vertex in the Lagrangian can
be cast into a form that directly corresponds to the LBK amplitude, including the angular
momentum operator. We now wish to perform the analogous computation for the gravitational
Lagrangian, up to the next-to-next-to-soft order, i.e. the third term of the soft theorem.

The existence of three universal terms in gravity follows already from the soft gauge symmetry,
before performing any computations. Similar to gauge theory, the covariant derivative can be
eliminated by equations of motion [47,50], and the first valid soft-graviton building block is the
analogue of the field-strength, the Riemann tensor Rµναβ ∼ λ6, and thus there are three terms
that stem from the Lagrangian interaction. We will give an explicit derivation of all three terms,
including the next-to-next-to-soft one, and investigate in detail what the effective theory tells
us about the nature of these terms.

For a better comparison to the previous sections, we consider a complex scalar field coupled
to gravity. This merely changes a few symmetry factors and normalisations in the Lagrangian,
but allows us to directly transfer the notation of the previous section, including the universal
contraction (7.2.4) as well as the non-radiative matching to this section.

Schematically, up to second order in the multipole expansion, the single soft-emission terms
in the Lagrangian take the form

L = 1
2 [n+∂χc]† n−∂χc + 1

2 [n−∂χc]† n+∂χc +
[
∂µ⊥χ

†
c

]
∂µ⊥χc

− κ

4 s−µT
µ+ − κ

4
[
∂[µsν]−

]
(x− x−)µT ν+ − 1

8x
α
⊥x

β
⊥R

s
α−β−T++ + O(x3) ,

(7.5.1)

where Tµν denotes the standard energy-momentum tensor

Tµν = [∂µχc]† ∂νχc + [∂νχc]† ∂µχc − ηµν [∂αχc]† ∂αχc . (7.5.2)

This version of the Lagrangian is not homogeneous in λ, but it already resembles the form of
the soft theorem. As first observation, note that Tµ+ contains a n+∂ that forms the universal
contraction (7.2.4). Therefore, the first two interaction terms in the second line of (7.5.1)
correspond to eikonal terms in the soft theorem. The first interaction term, proportional to
sµ−∂

µ, is the one that corresponds to the leading term in the soft theorem

εµ− p
µ n+p

p · k
, (7.5.3)

130



7.5 Soft Graviton Theorem

and we note that the first pµ corresponds to the coupling ∂µ, while the second n+p is due to the
universal contraction inside Tµ+. The polarisation tensor εµν is the polarisation of sµ−(x−).

The second interaction term in (7.5.1) has a similar structure, but the “gauge field” is no
longer sµ− but rather ∂[µsν]−, and the coupling is no longer to the momentum via Tµ+, but to
the angular momentum density

J αβµ = (x− x−)αT βµ − (x− x−)βTαµ . (7.5.4)

This term corresponds to the subleading term of the soft theorem

kρεµ−J
ρµ n+p

p · k
. (7.5.5)

Here, note that the first combination kρεµ− can be viewed as the polarisation corresponding to
the gauge field ∂[µsν]−. The angular momentum Jρµ appears as a generator, like the momentum
pµ or the gauge-charge ta before, and the term comes with an eikonal propagator. Viewed
from this angle, one immediately realises that this term is structurally very different from the
subleading term in gauge theory. This was already anticipated in the classical derivation in
(1.1.19), since this term is not manifestly gauge-invariant. From the EFT, we see that this term
is simply the eikonal emission term for the second, independent gauge field ∂[µsν]−. Similar to
gauge theory, we will find that in the special reference frame, this term counts as O(λ2).

Let us stress that these first two terms should be viewed as the analogue of the eikonal term
in gauge theory, since these terms can be traced back to the two independent gauge fields in the
gravitational covariant derivative.

In the subsubleading Lagrangian, there are a number of Riemann tensor terms, similar to the
field-strength tensor terms in the subleading QCD Lagrangian. These terms yield the next-to-
next-to soft term

1
2εµνkρkσJ

ρµ J
σν

p · k
, (7.5.6)

which counts as O(λ4). In this term, we will find that one factor Jµν corresponds to the charge,
while the second angular momentum arises in the same way as in the subleading term in QCD:
In the following, we give an explicit derivation of these observations. The derivation proceeds in
the same way as in the gauge-theory section (7.2). We again consider the terms order-by-order
in the power-counting and manipulate the Lagrangian to yield the desired form.

However, since we are now interested in the next-to-next-to soft order, we require the non-
radiative matching in one order higher. The relevant A2-operator contains two transverse deriva-
tives5

JA2µν
∂2χ†

i

= i∂µi⊥i∂
ν
i⊥χ
†
i (tini+) , (7.5.7)

and simply corresponds to the second term of the Taylor expansion of the non-radiative ampli-
tude

A(2) = pµi⊥p
ν
i⊥

(
∂2

∂pµi⊥∂p
ν
i⊥

A
)∣∣∣∣∣

pµ
i =ni+pi n

µ
i−/2

. (7.5.8)

After identifying all matching coefficients with the respective terms in the Taylor series, one can
write the expansion of the non-radiative amplitude as

A = CA0(n+p) + pµi⊥C
A1
i, µ(n+p) + pµi⊥p

ν
i⊥C

A2
i, µν(n+p) + O(λ3) . (7.5.9)

Furthermore, we require the fully expanded form of the Lagrangian, where each term is
homogeneous in λ. In this form, the SCET gravity Lagrangian corresponds to a power-series [47]

L = Lkinetic + L(0) + L(1) + L(2) + L(3) + L(4) , (7.5.10)

5Note that n−∂ does not appear in the operator basis, since it can be expressed in terms of ∂⊥ via n−∂ = − ∂2
⊥

n+∂
.
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where the single-soft emission terms are given by

L(0) = −κ

8 s−−T++ , (7.5.11)

L(1) = −κ

4 s−µ⊥T
µ⊥

+ − κ

8
[
∂[µsν]−

]
nν−x

µ
⊥ T++ , (7.5.12)

L(2) = −κ

2
[
∂[µsν]−

]
xµ⊥T

ν⊥
+ − κ

16
[
∂[µsν]−

]
nµ+n

ν
−n−xT++

− 1
8x

α
⊥x

β
⊥R

s
α−β−T++ − κ

8 s+− T+− , (7.5.13)

L(3) = −1
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24x
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ν
⊥

[
∂νR

s
α−β−

]
T++

− 1
8
[
∂[µsν]−

]
nν+n−xT

µ⊥
+ − 1

8
[
∂[µsν]−

]
xµ⊥n

ν
+T+− − 1

3x
α
⊥x

β
⊥R

s
αµ⊥β−T

µ⊥
+ , (7.5.14)

L(4) = − 1
32(n−x)2Rs+−+−T++ − 1

24x
α
⊥n−xn

β
+x

ν
⊥

[
∂νR

s
α−β−

]
T++

− 1
48x

α
⊥x

β
⊥n−xn

ν
+

[
∂νR

s
α−β−

]
T++ − 1

96x
α
⊥x

β
⊥x

ρ
⊥x

σ
⊥

[
∂ρ∂σR

s
α−β−

]
T++

− 1
6x

α
⊥n−xn

β
+(Rsαµ⊥β− +Rsβµ⊥α−)Tµ⊥

+

− 1
16x

α
⊥x

β
⊥x

ν
⊥

[
∂νR

s
αµ⊥β−

]
Tµ⊥

+ − 1
6x

α
⊥x

β
⊥R

s
αµ⊥βν⊥

Tµ⊥ν⊥

+ 1
12x

α
⊥x

β
⊥R

s
α+β−T+− . (7.5.15)

7.5.1 Leading-power Term

The leading-power term stems from T
{

Â(0),L(0)
χ

}
, and can be read off directly from the La-

grangian after a single integration by parts to write the term proportional to the universal
contraction (7.2.4). It reads

L(0)
eikonal = κ

4 s−− χ
†
cn+∂ n+∂χc . (7.5.16)

It is instructive to compare this leading-power Lagrangian to the gauge-theory result (7.2.11),
where one sees that the colour generator ta is now replaced by a derivative n+∂, while the
second n+∂ is the one that corresponds to the universal contraction. Here we already see a
manifestation of the colour-kinematics duality [37,65,66], as the leading-power Lagrangians can
be obtained by replacing gta → κn+∂ in the Lagrangian. The operatorial statement then reads

A(0)
rad =∧ i

∫
d4x T

{
Â(0),L(0)

eikonal

}
(7.5.17)

= i

∫
d4x T

{
Â(0),−κ

4χ
†
c s−−in+∂ in+∂χc

}
. (7.5.18)

This expression yields the leading eikonal term, where n+∂s−−(x−) corresponds to ε−−n+p in
the soft theorem since the derivative only acts on the collinear field χc.

7.5.2 Next-to-soft Term
Next, we consider the subleading-power terms. First, note that there is no contribution at O(λ).
To see this, observe that the subleading Lagrangian L(1)

χ takes the form

L(1) = −κ

2 s−µ⊥

[
∂µ⊥χc

]†
n+∂χc − κ

4
[
∂[µsν]−

]
xµ⊥n

ν
− [n+∂χc]† n+∂χc , (7.5.19)

after integration by parts. For the time-ordered product with the leading-power current, one
then finds

T
{

Â(0),L(1)
χ

}
=∧ 0 , (7.5.20)
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since it depends on external p⊥ =∧ 0.
The subleading term of the soft theorem at next-to-soft order reads

κ

2
εµν(k) pµkρLνρ

p · k
A , (7.5.21)

and it must be reproduced by the two time-ordered products∫
d4x T

{
Â(0),L(2)

χ

}
, (7.5.22)∫

d4x T
{

Â(1),L(1)
χ

}
. (7.5.23)

Here, the angular momentum is the orbital piece which is given explicitly in (7.2.21).
Like in gauge theory (7.2.12), we decompose the Lagrangian into similar structures as

L(2a) = −κ

4 [∂µsν− − ∂νsµ−]xµ⊥
(
[∂ν⊥χc]† n+∂χc + [n+∂χc]† ∂ν⊥χc

)
, (7.5.24)

L(2b) = −κ

8 [∂µsν−]n[µ
+n

ν]
−n−x [n+∂χc]† n+∂χc , (7.5.25)

L(2c) = −1
4x

α
⊥x

β
⊥R

s
α−β− [n+∂χc]† n+∂χc , (7.5.26)

L(2d) = κ

4 s+− [∂α⊥χc]† ∂⊥αχc . (7.5.27)

As before, L(2a) vanishes on-shell. Observe that after integration by parts, one can set external
p⊥ = 0 and finds

L(2a) =∧ −κ

4
[
∂[µsν]−

]
ηµν⊥ χ

†
cn+∂χc =∧ 0 , (7.5.28)

since the symmetric η⊥ is contracted with antisymmetric ∂[µsν]−.
The next term L(2b) is already in the right form and one can identify the longitudinal com-

ponent of the orbital angular momentum

L(2b) =∧ κ

8 [∂µsν−]n[µ
+n

ν]
−χ
†
c [n+∂n−xn+∂χc] = κ

2 [∂µsν−]χ†c
←
Lµν+−n+∂χc . (7.5.29)

We will comment on the peculiar structure of this term below.
The next term, L(2c) can be manipulated using the same steps as in gauge theory. First, we

decompose the two x⊥ using (7.2.29) and drop the traceless term. This yields

L(2c) =∧ −1
8x

2
⊥η

αβ
⊥ Rsα⊥−β⊥−

[
n+∂χ

†
c

]
n+∂χc . (7.5.30)

Note that while we write the Riemann tensor here, the relevant contribution is only the term
linear in sµν . Next, note that one can rewrite ηαβ⊥ Rsα⊥−β⊥− = ηαβRsα−β− and then use the
leading-power, sourceless equation of motion Rs−− = 0 to find that this term vanishes. In
the amplitude, this is equivalent to using the transverse-traceless condition for the polarisation
tensor εµν .

In summary, one finds for the subleading Lagrangians L(1) and L(2)

L(1) =∧ κ

2 [∂µsν−]χ†c
←
Lµν+⊥n+∂χc , (7.5.31)

L(2)
orbital =∧ κ

2 [∂µsν−]χ†c
←
Lµν+−n+∂χc , (7.5.32)

where the orbital angular momentum is given in (7.2.21), and we defined the left-acting version
as ←

Lµν =
←
∂ [µxν] , (7.5.33)
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with the convention χ
←
∂ µ = − [∂µχ]. Observe that Lµν+− appears in the combination n+∂n−x,

i.e. as an operator acting to the left on the external field. One can interpret this term as a
minimal coupling of the gauge field ∂[µsν]− to the angular momentum Lµν+−, which appears with
the universal contraction (7.2.4) to yield another eikonal term. It does not appear in the same
combination as in gauge-theory (7.2.13), where the angular momentum contained a part of the
eikonal contraction. Instead, the angular momentum really appears as an analogue of the colour
generator ta and mimics the structure of the eikonal term. This is another manifestation of the
two independent gauge fields in SCET gravity – one encounters two eikonal terms in the soft
theorem.

Using these results, the operatorial statement of the subleading term then corresponds to

Â(2)
rad =∧ i

∫
d4x T

{
Â(1),L(1)

}
+ i

∫
d4x T

{
Â(0),L(2)

orbital

}
=
∫
d4x T

{
Â, κ2χ

†
c

←
Lµν [∂µsν−] in+∂χc

}
. (7.5.34)

7.5.3 Sub-subleading / Next-to-next-to-soft Term
At the sub-subleading order, we first have to consider a possible contribution at O(λ3), which
does not exist in the soft theorem in the special reference frame where p⊥ = 0. Such a term
would stem from either T {Â(0),L(3)}, T {Â(1),L(2)}, T {Â(2),L(1)} or T {Â(3),L(0)}. However,
it is easy to see that all these contributions are proportional to p⊥ = 0, and thus vanish.

Therefore, we can proceed to the discussion of the O(λ4) contribution, where the sub-subleading
term reads

κ

4
εµν(k)kρkσLρµLσν

p · k
A . (7.5.35)

First, there is a notational subtlety: In the final on-shell amplitude, the angular momentum
operators are taken to act only on the amplitude and not on each other [32]. Therefore, it is
useful to define a left- and right-acting angular momentum operator as

←
Lµρ

→
Lνσ ≡

(←
∂ [µxρ]

)(
x[ν
→
∂ σ]

)
. (7.5.36)

This will turn out to be the Lagrangian equivalent of angular momenta that only act on the am-
plitude. Decomposing this operator into its light-cone components, one finds four non-vanishing
terms

←
Lµρ

→
Lνσ = 1

16n
[µ
+n

ρ]
−n

[ν
+n

σ]
− n+

←
∂n−xn−xn+∂ + 1

4x
[µ
⊥n

ρ]
−x

[ν
⊥n

σ]
−n+

←
∂n+∂

+ 1
8n

[ν
+n

σ]
− x

[µ
⊥n

ρ]
−n+

←
∂n−xn+∂ + 1

8n
[µ
+n

ρ]
− x

[ν
⊥n

σ]
−n+

←
∂n−xn+∂ . (7.5.37)

These terms must appear in the Lagrangian, or in combinations of Lagrangian and subleading
currents. Next, we want to relate the expression in the amplitude (7.5.35) to the Riemann tensor
and the angular momentum operators. The linear part of the Riemann tensor reads

Rsµανβ = −κ

2 (kνkαεµβ + kµkβενα − kαkβεµν − kµkνεαβ) + O(ε2) , (7.5.38)

and one can use this to rewrite the polarisation tensor contracted with the angular momenta as

κεµν(k)kρkσ
←
Lρµ

→
Lσν = −1

8R
s
+−+−n+∂(n−x)2n+∂ − 1

2R
s
µ−+−n+∂x

µ
⊥n−xn+∂

− 1
2R

s
µ−ν−n+∂x

µ
⊥x

ν
⊥n+∂ . (7.5.39)

In this contraction, only three independent contributions remain, and we can distinguish them
from their explicit x-dependence. This dependence allows us to determine from which time-
ordered products the individual contributions arise:
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7.5 Soft Graviton Theorem

• The first term contains (n−x)2, and contains no explicit x⊥. Therefore, any time-ordered
product that comes with ∂⊥ will vanish due to p⊥ = 0. It must stem from T{Â(0) ,L(4)},
and therefore this first term must be part of L(4).

• The second term contains one x⊥. Therefore, it must appear in combination with one ∂⊥
in the current, otherwise, it yields a vanishing contribution. The second term can only
contribute through T{Â(1) ,L(3)}, and thus it must be part of L(3).

• The third term contains two factors of x⊥, and therefore it must come in combination
with precisely two transverse derivatives ∂⊥ to yield a non-vanishing contribution. It must
stem from T{Â(2) ,L(2)}, and thus appear in L(2).

In the subsequent explicit computation, we show how these terms arise in L(4) to L(2). To make
the derivation more accessible, we already introduce the result, so the reader knows what to
expect. We will find that the Lagrangians can be recast as

L(2)
orbital = 1

4R
s
αµβνχ

†
c

←
Lαµ⊥+L

βν
⊥+χc , (7.5.40)

L(3)
orbital = 1

2R
s
αµβνχ

†
c

←
Lαµ⊥+L

βν
+−χc (7.5.41)

L(4)
orbital = 1

4R
s
αµβνχ

†
c

←
Lµα+−L

νβ
+−χc , (7.5.42)

and therefore that also the sub-subleading term can be cast into an operatorial statement

Â(4) =∧ i

∫
d4x T

{
Â(2),L(2)

ξ

}
+ i

∫
d4x T

{
Â(1),L(3)

ξ

}
+ i

∫
d4x T

{
Â(0),L(4)

ξ

}
= i

∫
d4x T

{
Â, 1

4χ
†
c

←
Lµν

→
LαβRsµανβχc

}
=∧ i

∫
d4x T

{
Â, 1

4χ
†
cL

µνLαβRsµανβχc

}
. (7.5.43)

To get the last line, we made use of on-shell properties and equations of motion following [32]
to bring the angular momentum operators in the standard form.

Contribution from T {Â(0) ,L(4)}

We split the Lagrangian L(4) (7.5.15) into 5 different pieces, labelled by L(4a) through L(4f), and
discuss these pieces separately.

The first term reads

L(4a) = − 1
16(n−x)2Rs+−+− [n+∂χc]† n+∂χc , (7.5.44)

and this term is already the correct contribution to the longitudinal-longitudinal piece of the
sub-subleading term. Therefore, we must show in the following that all remaining terms of the
Lagrangian L(4) cancel out or vanish when p⊥ = 0.

The second piece L(4b) is given by

L(4b) = − 1
12x

α
⊥n−xn

β
+x

ν
⊥

[
∂νR

s
α−β−

]
[∂+χc]† ∂+χc

− 1
24x

α
⊥x

β
⊥n−xn

ν
+

[
∂νR

s
α−β−

]
[∂+χc]† ∂+χc . (7.5.45)

Again we decompose the two factors of x⊥ and drop the traceless combination. Next, we use
∂µRsµ−ν− = 0 as well as the property x2

⊥∂
2
⊥ = 4 + . . . to rewrite the first piece as

− 1
12n−xn

β
+x

α
⊥x

ν
⊥

[
∂νR

s
α−β−

]
[∂+χc]† ∂+χc = − 1

24x
2
⊥n−x

[
∂α⊥Rsα⊥−+−

]
[∂+χc]† ∂+χc
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= − 1
24 x

2
⊥n−x

[
∂αRsα−+− − 1

2∂−R
s
+−+−

]
[∂+χc]† ∂+χc

= 1
48n−x [∂−R+−+−] [∂+χc]† ∂+χc = − 1

48n−xR+−+− [∂+χc]† [∂−∂+χc]

= 1
48x

2
⊥n−xR+−+− [∂+χc]†

[
∂2
⊥χc

]
= 1

12n−xR+−+− [∂+χc]† χc , (7.5.46)

Doing the same for the second term yields

− 1
24x

α
⊥x

β
⊥n−x

[
∂+R

s
α−β−

]
[∂+χc]† ∂+χc = − 1

48x
2
⊥n−x

[
∂+R

s
−−
]
[∂+χc]† ∂+χc = 0 . (7.5.47)

Note that this term vanishes since the leading-power sourceless equation of motion reads Rs−− =
0. In summary, the first piece L(4b) contributes as

L(4b) =∧ 1
12n−xR

s
+−+− [∂+χc]† χc . (7.5.48)

The third part L(4c) is defined as

L(4c) = − 1
48x

α
⊥x

β
⊥x

ρ
⊥x

σ
⊥

[
∂ρ∂σR

s
α−β−

]
[n+∂χc]† n+∂χc . (7.5.49)

We now decompose the four factors of x⊥ as

xα⊥x
β
⊥x

ρ
⊥x

σ
⊥ =∧ 1

8x
4
⊥(ηαβ⊥ ηρσ⊥ + ηαρ⊥ η

βσ
⊥ + ηασ⊥ ηβρ⊥ ) , (7.5.50)

where we already dropped all non-contributing terms. This x4
⊥ term contributes as

x4
⊥∂

4
⊥ =∧ 64 + (∂⊥x⊥ . . . ) . (7.5.51)

In addition, we require the scalar equation of motion

n−∂χc =∧ − ∂2
⊥

n+∂
χc . (7.5.52)

Then, L(4c) simplifies to
L(4c) =∧ 1

12R
s
+−+− χ

†
cχc . (7.5.53)

The fourth term L(4d) is chosen to be

L(4d) = −1
6x

α
⊥n−xn

β
+(Rsαµ⊥β− +Rsβµ⊥α−)

(
[∂µ⊥χc]† ∂+χc + [n+∂χc]† ∂µ⊥χc

)
. (7.5.54)

Note that the first term in the bracket yields a vanishing contribution once pµ⊥ = 0 is employed.
The second term must be integrated by parts and reads

L(4d) = − 1
12n−xR

s
+−+− [n+∂χc]† χc , (7.5.55)

which cancels the contribution (7.5.48) from L(4b). The fifth term L(4e) reads

L(4e) = 1
12x

α
⊥x

β
⊥η

µν
⊥ R

s
µ⊥αν⊥β

[n+∂χc]† n−∂χc . (7.5.56)

Here, after decomposing the two factors of x⊥, using the scalar equations of motion and per-
forming an integration by parts, one obtains

L(4e) =∧ − 1
12R

s
+−+−χ

†
cχc , (7.5.57)
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which cancels the term (7.5.53) in L(4c). Finally, the remaining terms are denoted by L(4f) and
are given by

L(4f) = − 1
16x

α
⊥x

β
⊥x

ν
⊥

[
∂νR

s
αµ⊥β−

] (
[∂µ⊥χc]† n+∂χc + [n+∂χc]† ∂µ⊥χc

)
− 1

6x
α
⊥x

β
⊥R

s
αµ⊥βν⊥

[∂µ⊥χc]† ∂ν⊥χc + 1
6x

α
⊥x

β
⊥R

s
α+β−

[
∂µ⊥χ

†
c

]
∂µ⊥χc

+ 1
12x

α
⊥x

β
⊥R

sµ⊥
αµ⊥β

[∂ν⊥χc]
† ∂ν⊥χc . (7.5.58)

First note that the last three terms in (7.5.58) are proportional to p⊥ = 0, and thus yield no
contribution. The first term is also vanishing. One can see this by performing integration by
parts and decomposing the remaining x⊥ tensor structures. In short, one finds

L(4f) =∧ 0 . (7.5.59)

In summary, the time-ordered product T {Â(0) ,L(4)} is completely determined by the first term
L(4a) (7.5.44), where one finds

Â(4) ⊃ i

∫
d4x T

{
Â(0) ,

κ

16χ
†
cn+∂

(
(n−x)2Rs+−+−n+∂χc

)}
. (7.5.60)

Contribution from T {Â(1) ,L(3)}

The next term L(3) (7.5.14) must contribute via T {Â(1) ,L(3)} to yield a non-vanishing contri-
bution. Here, Â(1) contains one transverse derivative. This time, we decompose the Lagrangian
into three pieces.

The first part

L(3a) = −1
4x

α
⊥n−xn

β
+R

s
α−β− [n+∂χc]† n+∂χc , (7.5.61)

is already in the right form compared to the second term of (7.5.39). We have to verify that all
remaining terms cancel out. The second part is defined as

L(3b) = − 1
12x

α
⊥x

β
⊥x

ν
⊥

[
∂νR

s
α−β−

]
[n+∂χc]† n+∂χc

− 1
3x

α
⊥x

β
⊥R

s
αµ⊥β−

(
[∂µ⊥χc]† n+∂χc + [n+∂χc]† ∂µ⊥χc

)
, (7.5.62)

and it does not contribute to the time-ordered product. For the first term, one finds

− 1
12x

α
⊥x

β
⊥x

ν
⊥

[
∂νR

s
α−β−

]
CA1µ⊥ [n+∂χc]† [∂µ⊥n+∂χc] =∧ −1

6R
s
+−β⊥−C

A1β⊥ [n+∂χc]† χc ,
(7.5.63)

while the second one enters as

− 1
3x

α
⊥x

β
⊥R

s
αµ⊥β−C

A1ρ⊥ [n+∂χc]† [∂µ⊥∂ρ⊥χc] =∧ 1
6R

s
+−α⊥−C

A1α⊥ [n+∂χc]† χc , (7.5.64)

and both contributions cancel out. In short, L(3b) =∧ 0. All remaining terms in L(3) are easily
seen to vanish when setting p⊥ = 0. To summarise, L(3) has only one non-vanishing term
(7.5.61) which contributes as

Â(4) ⊃ i

∫
d4x T

{
Â(1) ,

1
4χ
†
cn+∂

(
xα⊥n−xn

β
+R

s
α−β−n+χc

)}
. (7.5.65)
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Contribution from T {Â(2) ,L(2)}

Finally, we consider L(2), which can only contribute via T {Â(2) ,L(2)}, where Â(2) contains two
transverse derivatives. There is only one non-vanishing contribution in L(2) (7.5.13), namely

L(2c) = −1
8x

α
⊥x

β
⊥R

s
α−β− [∂+χc]† ∂+χc . (7.5.66)

This term contains two factors of x⊥, which are eaten by the two transverse derivatives in Â(2).
All other terms in L(2) give a vanishing contribution once one sets p⊥ = 0.

In summary, by using only equations of motion, integration by parts and the reference frame
where p⊥ = 0, the single soft-emission Lagrangian terms simplify drastically and yield the simple
contributions

L(2)
orbital = 1

4R
s
αµβνχ

†
c

←
Lαµ⊥+L

βν
⊥+χc , (7.5.67)

L(3)
orbital = 1

2R
s
αµβνχ

†
c

←
Lαµ⊥+L

βν
+−χc (7.5.68)

L(4)
orbital = 1

4R
s
αµβνχ

†
c

←
Lµα+−L

νβ
+−χc . (7.5.69)

To summarise, we have explicitly derived an operatorial version of the soft theorem that
includes all three terms in gravity. The key insight of this derivation is that in gravity, there
are two eikonal terms (7.5.18) and (7.5.34) instead of the single eikonal term encountered in
gauge theory (7.2.11). These two terms can be traced back directly to the two soft gauge fields
sα−(x−) and ∂[αsβ]−(x−) which form the soft-covariant derivative in the effective theory. The
first gauge field sα−(x−) couples to the momentum Pµ, and its gauge symmetry is related to
the local translations along the collinear light-cone. The second one, ∂[αsβ]−(x−), couples to
the angular momentum density of the scalar field, and its gauge transformation corresponds to
local Lorentz transformations evaluated on the light-cone.

Similar to gauge theory, this covariant derivative is directly responsible for the eikonal terms.
Therefore, there are now two eikonal terms in the soft theorem. The first one takes the form

εµ−p
µn+p

p · k
, (7.5.70)

and the explicit momentum pµ appears instead of the gauge generator ta. The second gauge
field ∂[αsβ]−(x−) couples to the angular momentum density of the scalar field. This results in
the second eikonal term explicitly containing the angular momentum as

kρεµ−J
ρµ n+p

p · k
. (7.5.71)

Here, one notices that the first term is precisely the polarisation corresponding to the gauge
field ∂[αsβ]−(x−), while the angular momentum Jµν appears instead of the generator ta.

This also explains why the first two terms of the soft theorem are not manifestly gauge-
invariant by themselves. The eikonal term in gauge theory requires charge conservation. In
gravity, the analogue of charge conservation is momentum and angular momentum conservation
for the first and second gauge field, respectively. Therefore, the first term in the soft theorem is
gauge-invariant only after momentum conservation is imposed, and likewise for the second term.

Besides this covariant derivative, the remaining soft-collinear interactions are expressed via
the (gauge-invariant) Riemann tensor and its derivatives, evaluated at x−. The first term cor-
responds to the well-known coupling to the quadrupole moment. The Riemann tensor is also
the first possible soft gauge-invariant building block that can be used in the operator basis.
However, it contains two derivatives, one more than the field-strength tensor, and is therefore
suppressed by another power in the soft momentum. In the soft theorem, this manifests itself in
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the existence of a third, sub-subleading term, which can be expressed in terms of the Riemann
tensor due to the quadrupole interaction in the Lagrangian. This third term corresponds to the
second term in gauge theory, which stems from the dipole interaction. There are no further uni-
versal terms since the operators that contain a soft Riemann tensor can carry process-dependent
matching coefficients, i.e. they are not determined by matching to the non-radiative amplitude.

As a final remark, note that the two factors of angular momenta that appear in the sub-
subleading soft theorem have a different origin. One factor arises due to the coupling in the
Lagrangian, where the angular momentum density appears. The other factor is related to the
symmetries of the Riemann tensor and the eikonal propagator, in a similar fashion to the angular
momentum that appears in the subleading term in gauge theory due to the symmetries of F sµν .
Therefore, the form of all three terms of the gravitational soft theorem (as well as the two terms
in gauge theory) can be directly linked to the properties and structure of the soft-collinear
effective theory.

7.6 Loop Corrections to the Soft Theorem

While the soft theorem holds true for a generic non-radiative amplitude, it is only valid if the
soft emission is a tree-level process. For gauge theory, already the leading-order eikonal term
is affected by loop corrections. The gravitational corrections, however, have a very peculiar
form [33]: The leading term is not modified by loop corrections. The subleading term only
receives one-loop corrections, and the sub-subleading term is only affected by one- and two-loop
contributions. Higher-loop contributions cannot affect the soft theorem.

This was first observed in [33], where amplitude techniques were used to derive this result.
Since we now have access to the full soft-collinear effective theory of gravity, which in particular
describes soft and collinear loops to any order, it is an interesting question if the effective theory
provides any further insights into this curious feature. We shall see in the following that these
loop corrections are an immediate consequence of the power-counting in the effective theory.
This discussion is based on [48] and the upcoming [67].

In SCET, the loop corrections can arise from three different regions of loop momenta, the hard,
soft and collinear regions. Since the hard modes are already integrated out, these contributions
are part of the matching coefficients C̃X(ti) and thus of the non-radiative amplitude. Therefore,
a hard loop never affects the soft theorem and we can restrict our discussion to soft and collinear
loops, arising from the modes that are described by the effective Lagrangian.

There are two major differences between gravity and gauge-theory in both the soft and
collinear sector [47], and can ultimately be traced back to the fact that both the purely-collinear
as well as the purely-soft theory are equivalent to the full theory, which is a weak-field expansion
with dimensionful coupling.

i) There are no leading-power interactions in the purely-collinear sector. This is related to
the fact that the λ expansion precisely corresponds to the weak-field expansion and causes
the absence of collinear divergences. The first purely-collinear graviton-interaction appears
at O(λ).

ii) There are no leading-power interactions in the purely-soft sector. The weak-field expansion
agrees with the λ2 expansion, and the first purely-soft interaction vertices start at O(λ2).

Intuitively, this corresponds to the fact that collinear gravity is expanded in collinear momenta
p⊥ ∼ λ, while soft gravity is expanded in soft momenta ks ∼ λ2. Only soft-collinear interactions
exist at leading-power, mediated through the soft-covariant derivative. These leading-power
interactions are eikonal, and one can make use of soft exponentiation [1].
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Figure 7.2: Diagram classes providing collinear one-loop corrections to the soft emission process.
The loop must be attached either to the leg by collinear interactions, or to the
hard vertex by adding a collinear building block. Collinear interaction vertices and
building blocks are suppressed by at least O(λ), resulting in a suppression of λ2 for
each collinear loop.

Collinear Loops

We begin with the collinear sector. First, recall that there are no interactions between different
collinear sectors. Therefore, it is enough to consider loop corrections to a single i-collinear
leg. There are two ways to add such a collinear loop to the soft-emission process, depicted in
Fig. 7.2. One can connect both ends of the loop to the i-collinear leg, or one can attach one
end to the leg, and one leg to the hard source.6 In the first case, both ends must be connected
by a purely-collinear vertex, which is suppressed at least by O(λ). Alternatively, one can make
use of higher-point graviton vertex, but these also come with higher λ-suppression, since the
order in h agrees with the order in λ. In the second case, one must add another i-collinear
building block to the N -jet operator. These building blocks start at O(λ) with the transverse
graviton h⊥⊥. In addition, to connect the leg to the external line, one must again use a collinear
vertex. Therefore, such a process is also suppressed at least by O(λ2). To summarise, a collinear
one-loop contribution must be suppressed by at least O(λ2), and therefore it cannot modify the
leading-power term. It can, however, affect the subleading term. This discussion generalises
in a straightforward fashion to two loops and further. Ultimately, each added collinear loop
comes with a suppressing factor of O(λ2). In conclusion, the leading term can never be affected
by collinear loops the subleading term is collinear 1-loop exact and the sub-subleading term is
collinear 2-loop exact.

Soft Loops

Next, consider adding soft loops. These soft loops are more complicated since here the theory
contains a leading-power soft-collinear interaction. A soft loop can either be attached to a single
collinear leg, or it can connect two different legs. This connection can happen at O(λ0) using the

6If one attaches the collinear loop to the external soft graviton, the new intermediate graviton is a collinear one
and situation is the same as the first type.
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pi

pj

l

Figure 7.3: A soft loop connecting two different collinear legs. If the external legs are on-shell,
the integral is scaleless and vanishes.

leading-power vertex. However, all these contributions vanish unless the soft graviton is directly
connected to the soft graviton in the loop via a purely-soft interaction, which suppresses the
process by O(λ2).7 This is because of the eikonal interactions in the effective theory. Due to the
light-front multipole expansion, soft momenta kµ in soft-collinear interactions always appear as
ni−k

nµ
i+
2 in the momentum-conserving δ-function and yield the eikonal propagators of collinear

fields. For a soft loop connected to two different collinear legs, as depicted in Fig. 7.3, the
contribution schematically takes the form

I ∝
∫

ddl

(2π)d
1

p2
i + ni+pini−l + i0

1
p2
j − nj+pjnj−l + i0

1
l2 + i0 . (7.6.1)

If the external legs are on-shell (like for the soft theorem), we can further simplify p2
i = p2

j = 0
and find

I ∝
∫

ddl

(2π)d
1

l2 + i0
1

ni−l + i0
1

nj−l + i0 , (7.6.2)

which is a scaleless integral, and thus the contribution vanishes in dimensional regularisation.
Now consider adding the soft emission to one of the collinear legs. There are two correspond-
ing diagrams, one where the graviton is emitted before the loop, and one after, the first two
diagrams in Fig. 7.4. The sum of both contributions factorises using the eikonal identities, and
we can always consider the graviton outside of the loop, in the sense that the external graviton
momentum k only appears in one external eikonal propagator as

1
ni−l + i0 → 1

ni−(l + k) + i0 . (7.6.3)

However, from this object, one cannot form a soft invariant, and the loop integral (7.6.2) remains
scaleless even if k is present in a collinear propagator.

Only if the full soft momentum is injected into the loop integral (7.6.2) as

I ∝
∫

ddl

(2π)d
1

(l + k)2 + i0
1

ni−l + i0
1

nj−l + i0 , (7.6.4)

one finds that the contribution is no longer scaleless and thus non-vanishing in general.8 This
is the third type of diagram in Fig. 7.4. However, this requires a purely-soft vertex, since only
in these vertices one has full soft-momentum conservation δ(4)(lµ + kµ + . . . ).

7A similar discussion of soft loops in gauge theory can be found in the Appendix of [68].
8One can form a soft invariant as (ni−k)(nj−k) (ni+nj+).
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Figure 7.4: Diagram classes containing soft loops that contribute to the soft-emission process at
one-loop order. The first two diagrams appear at leading power in λ. Due to the
multipole expansion, these interactions factorise using the eikonal identities. The
loop is scaleless and vanishes. The third type of diagram is non-vanishing since the
soft momentum k is injected directly into the soft loop. This requires a purely-soft
vertex which gives at least λ2 suppression.
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Figure 7.5: Examples of soft two-loop diagrams. The first type is relevant if the vertices con-
necting to the collinear legs are O(λ0) or O(λ). In this case, one can use eikonal
identities to see that the loops are scaleless and vanish. The same is true for the
second type of diagrams. In the third class, all loops are connected to the soft emis-
sion via purely-soft vertices, either directly as depicted here, or via multiple vertices.
This type of diagram is non-vanishing but suppressed by at least λ4.

In conclusion, to find a non-vanishing contribution, the soft graviton must be connected to
the soft graviton in the loop via a purely-soft interaction. Therefore, soft one-loop corrections
cannot affect the leading-term of the soft theorem, but they can modify the subleading one.

Soft Two-loop Contribution

Next, let us proceed to two-loop corrections. For collinear two-loop contributions, we can use
the previous argument to see that they must come with at least O(λ4) suppression. Moreover,
we do not need to consider mixed soft-collinear loops, since collinear loops are always at least
O(λ2) suppressed, and a soft one-loop contribution is also suppressed by O(λ2).

Therefore, it remains to check the purely-soft two-loop corrections. There are a number of
different topologies that can contribute, as depicted in Fig. 7.5.

The simplest one is the situation where the loops are connected to the soft emission by two
purely-soft vertices, or by a purely-soft four-point vertex. These contributions are suppressed by
O(λ4) due to the soft power-counting, and such corrections can only modify the sub-subleading
factor as we claim. No further argument is needed.
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Therefore, the more interesting situation arises when the loops are connected to the energetic
lines using the leading-power interactions, as this is a two-loop correction that naively scales
only as O(λ2). These interactions are eikonal, and we can again use the eikonal identities to
argue that the loops factorise into a soft loop without soft emission, and a soft loop with soft
emission. More precisely, when summing over all permutations of these diagrams, we find that
the amplitude for soft graviton emission is multiplied by a factor corresponding to the eikonal
factor [1]

A({pi})
∞∏
n=1

(
N∑
i=1

κ

2
pµn
i pνn

j

pi · qn + iε

)
. (7.6.5)

This is soft exponentiation at work. In this factor (7.6.5), we now take one of the momenta as
the emitted graviton, while the others are connected into loops. Due to this factorisation, the
soft loops cannot depend on the external momentum k and are scaleless.

The next dangerous topology arises when the soft loops do not couple via the leading-power
interaction but via the O(λ)-interaction from L(1). This can in principle yield a contribution that
modifies the subleading factor at two-loop order. First, note that the interactions in L(1) come
either with a single p⊥ or a single x⊥. Therefore, by choosing a frame where pµ⊥ = 0, one can
eliminate all single-insertions of such vertices. Consequently, one must use the vertex twice to
construct an invariant object. This is now O(λ2) suppressed. If the second loop comes only with
leading-power interactions, we can construct a two-loop contribution that scales as O(λ2). This
takes the form of the first two diagrams in Fig. 7.5, where two leading-power vertices are replaced
by L(1). However, an explicit computation shows that for this two-graviton emission, summing
over all permutation again yields eikonal propagators, even for the subleading interaction vertex.
Therefore, the two loops again factorise and become scaleless.

In summary, any purely-soft loop is scaleless and vanishes unless the external soft momentum
is injected directly into the loop, i.e. unless all soft loops are connected by purely-soft interaction
vertices. Each such interaction vertex gives O(λ2) suppression, and therefore each soft loop, if
non-vanishing, comes effectively with a power-suppression by λ2.

Therefore, adding a loop, regardless if soft or collinear, always amounts to a suppression by
at least O(λ2). This implies that the leading term is not modified by loop corrections, while the
subleading term is one-loop exact, and the sub-subleading term is two-loop exact, as claimed in
the beginning of the section.

The argumentation solely relied on the EFT power-counting, which provides the suppression
of the interaction vertices, as well as the multipole expansion, which is responsible for the eikonal
propagators that were paramount in the previous discussion.
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Scalar Field in deSitter Space-time
Chapter 8

In this final section, we consider a different application of the EFT methodology, by investigating
the physics of a light (or massless) scalar field in deSitter space-time.

While QFT in Minkowski space is well-understood, and even infrared divergences pose no
conceptual problems anymore, the situation in deSitter space is quite different. This seems
surprising at first, since deSitter space is one of the maximally-symmetric space-times, and
one would naively expect that this is the simplest possible generalisation of flat-space QFT.
However, for light and massless fields, the correlation functions computed in deSitter space-time
suffer from large secular divergences at late times. Moreover, for free, massless scalar fields, a
deSitter-invariant vacuum state cannot be defined [69].

This section aims to be self-contained, so we provide a brief discussion of the properties of
deSitter space and a scalar field in this space-time. This is by now standard textbook material,
and we refer for details to the excellent [70–72]. Throughout this section, we employ the in-in
formalism when computing correlation functions, we mainly follow [73].

8.1 Basic Definitions and Mode Functions
DeSitter space is one of the maximally-symmetric Lorentzian manifolds. It corresponds to a
standard Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-time with positive spatial cur-
vature, and it arises naturally as the vacuum solution of the Einstein field equations with a
positive cosmological constant.

In planar coordinates, the metric tensor is defined via the line-element

ds2 = dt2 − a2(t)dx2 = a2(η)(dη2 − dx2) , (8.1.1)

where t denotes proper time, η is conformal time and the scale factor a is expressed in terms of
the (constant) Hubble parameter H as

a(t) = eHt , a(η) = − 1
Hη

. (8.1.2)

It is important to note that with this definition, the time coordinate has the standard range
t ∈ (−∞,∞), while conformal time is negative, η ∈ (−∞, 0]. In addition, note that this set of
coordinates only covers half of the deSitter space-time. However, this is enough for our purposes.
The half that is covered corresponds to the region between the big bang at t = −∞ and any
future point in time. The other half of the space-time would correspond to the region before the
big bang, passing through a singularity. This region is not of physical interest to us.

Next, consider a free, massive, minimally-coupled scalar field in deSitter space-time. The
action is given by (4.3.1) and reads

S0[ϕ] = 1
2

∫
d4x

√
−g

(
gµν∂µϕ∂νϕ−m2ϕ2

)
. (8.1.3)

Inserting the metric tensor (8.1.1), one obtains for the free action

S0[ϕ] = 1
2

∫
d4x a3(t)

(
ϕ̇2 − 1

a2(t)(∂iϕ)2 −m2ϕ2
)
, (8.1.4)
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where ϕ̇ ≡ ∂tϕ. The free equation of motion reads

ϕ̈+ 3Hϕ̇− ∂2
i

a2(t)ϕ+m2ϕ = 0 , (8.1.5)

and differs from the flat-space equation by the friction term 3Hϕ̇.
In FLRW space-times, it is convenient to work in conformal time and introduce a redefined

scalar field χ(η,x) as
ϕ(η,x) = χ(η,x)

a(η) . (8.1.6)

Expressed in terms of this field, the free action (8.1.4) reads

S0[χ] = 1
2

∫
d3x dη

(
∂µχ∂

µχ−
(
m2 − 2H2

)
a2(η)χ2

)
, (8.1.7)

and is formally equivalent to a free scalar field in flat space which has a time-dependent effective
mass term

m2
eff(η) = m2 − 2(a(η)H)2 . (8.1.8)

Super-horizon and Sub-horizon Modes

At this point, one can make an interesting observation: deSitter space comes with a physical
scale d ∼ 1

H , related to the space-time curvature R = 12H2. This scale can be used to define
two regions of momenta. The first one, k |η| > 1 is called sub-horizon. Modes in this region have
short wavelengths k → ∞ or are evaluated at early times |η| → ∞, and can be thought of as the
analogue to the hard region of momenta. Since the physical wavelength of these modes is shorter
than the curvature scale, these modes should not be affected by the gravitational background.
Indeed, inserting the redefined field χ in the equation of motion (8.1.5), one finds

χ′′k + k2
[
1 + 1

(kη)2

(
m2

H2 − 2
)]

χk = 0 . (8.1.9)

For the limit k |η| → ∞, one can drop the second term in the square bracket and the equation
simplifies to

χ′′k + k2χk = 0 . (8.1.10)
This is solved by standard plane-wave solutions χk ∼ eikη, and no trace of the gravitational
background can be found.

The second region k |η| < 1 is called super-horizon. These modes capture the long-wavelength
k → 0 or late-time η → 0 behaviour, and their evolution is strongly affected by the gravitational
background. It is more convenient to work in terms of the original field ϕk(t), where the equation
of motion (8.1.5) for k → 0 reads

ϕ̈k + 3Hϕ̇k +m2ϕ = 0 . (8.1.11)

Inserting the ansatz
ϕk(t) = (aH)−

3
2 +ν φk(t) , (8.1.12)

the equation of motion becomes

φ̈k + 2Hνφ̇k +
(
ν2 − 9

4 + m2

H2

)
φk = 0 . (8.1.13)

The parameter ν is determined to be

ν = ±

√
9
4 − m2

H2 , (8.1.14)
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and the equation of motion for the residual field φk simply reads

φ̈k + 2Hνφ̇k = 0 , (8.1.15)

i.e. one finds that φk(t) = φk is constant at leading power. For the case of a light mass, m2

H2 <
9
4 ,

note that the solution with +ν decays more slowly than the one with −ν as time increases. The
modes are usually called “growing” (+ν) and “decaying” (−ν), and the growing mode is the one
that dominates any late-time correlator.

Field Quantisation

The field quantisation now proceeds along very similar lines to the flat-space analogue. First,
one introduces a spatial mode decomposition χ(η,x) =

∫ d3k
(2π)3χk(η), then one determines the

mode functions χk(η) from the equation of motion. For deSitter space, the respective mode
functions are given by

χk(η) =
√
k |η| (AkJν(k |η|) +BkYν(k |η|)) , (8.1.16)

where k = |k| and ν is given in (8.1.14). The functions Jν(x) and Yν(x) are the Bessel functions
of the first and second kind, respectively, and the parameters Ak, Bk are determined by the
choice of a vacuum. In the following, we employ the standard Bunch-Davies vacuum [74],
which is defined by the condition that in the infinite past η → −∞, the mode functions should
approximate the flat-space modes as

lim
η→−∞

χk(η) = 1√
2k
eikη . (8.1.17)

This fixes the coefficients Ak, Bk, and one finds

χk(η) =
√
π |η|
2 H(2)

ν (k |η|) , (8.1.18)

where H(2)
ν (x) is the Hankel function of the second kind

H(2)
ν (x) = Jν(x) − iYν(x) . (8.1.19)

For the original scalar field ϕ(η,x), the mode functions correspond to

ϕk(η) =
√
πH |η|

3
2

2 (Jν(k |η|) − iYν(k |η|)) ≡
√
πH |η|

3
2

2 H(2)
ν (k |η|) . (8.1.20)

Of particular interest is the massless scalar field, where ν = 3
2 . Here, the mode functions take

the simple form
χk(η) = 1√

2k
e−ik|η|+iπ

(
1 − i

k |η|

)
. (8.1.21)

Next, one introduces creation and annihilation operators a†k, ak, as

ϕ(t,x) =
∫

d3k

(2π)3

(
eik·xϕk(t)ak + e−ik·xϕ∗k(t)a†k

)
, (8.1.22)

and imposes the equal-time canonical commutation relations

[ϕ(t,x), π(t,y)] = iδ(3)(x − y) , [ϕ(t,x), ϕ(t,y)] = [π(t,x), π(t,y)] = 0 , (8.1.23)

from which the commutation relations of the creation and annihilation operators follow[
ap, a

†
q

]
= (2π)3δ(3)(p − q) , [ap, aq] =

[
a†p, a

†
q

]
= 0 . (8.1.24)

147



8 Scalar Field in deSitter Space-time

Using the mode expansion and the commutation relations, one can compute the two-point
function (also called the Wightman function) G+(x, x′) analytically for generic ν as

G+(x, x′) = 1
a(η)a(η′)

√
π |η|

2

√
π|η′|

2

∫
d3k

(2π)3 e
ik·(x−x′)H(2)

ν (k |η|)H(2)∗
ν (k|η′|)

= H2

16π

1
4 − ν2

cosπν 2F1

(
3
2 + ν,+3

2 − ν; 2; 1 + (∆η − iε)2 − ∆x2

4ηη′

)
(8.1.25)

in terms of the hypergeometric function 2F1(a, b; c; z). However, a problem arises for the massless
field: here, as ν → 3

2 , the hypergeometric function is finite and 2F1 → 1, but the factor
1

cosπν → ∞, and thus the Wightman function is not well-defined.
This divergence can be traced back to the long-wavelength modes. Recall that the massless

mode functions (8.1.21) contain a term that is singular as k |η| → 0. In the computation of
G+(x, x′), this manifests itself as

G+(x, x′) = 1
a(η)a(η′)

√
π |η|

2

√
π|η′|

2

∫
d3k

(2π)3 e
ik·(x−x′)e−ik(|η|−|η′|)

× 1
2k

1 − i

k |η| + i
k|η′| + 1

k2|η||η′|

 . (8.1.26)

The last term in the integral leads to a logarithmic divergence, and thus the two-point function is
ill-defined. This signals that the massless, minimally coupled field, without any self-interactions,
does not have a deSitter-invariant vacuum state [69].

This seems to be disconcerting news at first. However, there are hints that a scalar field with
self-interaction dynamically cures this pathological behaviour [75–79]. For example, turning on
a λϕ4-interaction seems to generate a dynamical mass m2 ∼

√
λH2, proportional to

√
λ. This

indicates a non-perturbative effect.

8.2 IR Dynamics of deSitter: Approaches
The infrared structure and the dynamics of light and massless scalar field in deSitter space have
been studied in great detail, and multiple promising approaches have been identified [75–95].
These approaches provide key insights into the physics of super-horizon modes. In the following,
we try to familiarise ourselves with the underlying concepts of two such approaches in detail,
the stochastic inflation [75,76] and the Euclidean deSitter theory [77,78].

8.2.1 Stochastic Inflation
The most prevalent approach is the framework of stochastic inflation [75,76]. The main idea is
to treat the long-wavelength part, the super-horizon modes, as a classical stochastic field that
is susceptible to a noise term due to the effects of sub-horizon modes. We follow [76] for the
general derivation.

Consider a scalar field ϕ with action

S =
∫
dDx

√
−g

(1
2∂µϕ∂

µϕ− V (ϕ)
)
, (8.2.1)

where V (ϕ) is some potential, later taken to be λ
4ϕ

4, defined in D = d+ 1 dimensions.
We want to consider the long-wavelength (super-horizon) modes as a coarse-grained stochastic

variable which is sourced by the short-wavelength modes. These UV modes are taken to satisfy
a Gaussian noise term. This is achieved by splitting the field as

ϕ(t,x) = ϕ(t,x) + δϕ(t,x) (8.2.2)
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= ϕ̄(t,x) +
∫

ddk

(2π)d θ(k − εa(t)H)
(
ϕk(t)akeik·x + ϕ∗k(t)a†ke

−ik·x
)
. (8.2.3)

Here, ε ≪ 1 and ϕ̄(t,x) corresponds to the long-wavelength part. The short-wavelength modes
are split-off and treated as a perturbation δϕ(t,x). The sub-horizon modes ϕk(t) are assumed
to satisfy the free massless equation of motion

ϕ̈k(t) + 3Hϕ̇k(t) + k2

a2(t)ϕk(t) = 0 , (8.2.4)

which, in turn, generates purely Gaussian correlators.
From the equation of motion □ϕ+ V ′(ϕ) = 0, where ′ denotes the derivative with respect to

ϕ, and neglecting second time-derivatives as well as gradient terms of ϕ̄, one obtains a Langevin
equation for the long-wavelength part

˙̄ϕ(t,x) = − 1
3HV ′(ϕ̄) + f(t,x) , (8.2.5)

where f(t,x) is given by

f(t,x) = εa(t)H2
∫

ddk

(2π)d δ(k − εa(t)H)
(
ϕk(t)ake−ik·x + ϕ∗k(t)a†ke

ik·x
)
. (8.2.6)

This term is a Gaussian noise term and satisfies

⟨f(t,x)⟩ = 0 ,
〈
f(t,x)f(t′,x)

〉
= H3

4π2 δ(t− t′) . (8.2.7)

One can rescale the field and potential to rewrite the Langevin equation (8.2.5) as

φ̇+ V ′ = ξ , (8.2.8)

where ξ now satisfies ⟨ξ(t)ξ(t′)⟩ = δ(t− t′). The associated Fokker-Planck (FP) equation [96,97]
for the one-point probability distribution function (PDF) P (φ, t) reads

∂tP (φ, t) = ∂

∂φ

[
V ′(φ)P (φ, t)

]
+ ∂2

∂φ2P (φ, t) . (8.2.9)

This FP equation (8.2.9) can further be reduced to an eigenvalue problem. To see this, one
introduces the reduced PDF

P (φ, t) = e−V (φ)p(φ, t) , (8.2.10)
where the equilibrium solution e−V (φ) is factorised. Inserting (8.2.10) in (8.2.9), one obtains

∂

∂t
p(φ, t) = 1

2∆φp(φ, t) −W (φ)p(φ, t) , (8.2.11)

with the “potential” W (φ) = 1
2
(
(V ′(φ))2 − ∆φV (φ)

)
. Here, ∆φ ≡ ∂2

∂φ2 . By introducing a mode
decomposition

p(φ, t) =
∞∑
n=0

anΦn(φ)e−Λn(t−t0) , (8.2.12)

one can equivalently formulate (8.2.11) as an eigenvalue equation

− 1
2∆φΦn +WΦn = ΛnΦn . (8.2.13)

The Λn are the so-called relaxation eigenvalues. Note that the equilibrium solution, satisfying

∂

∂t
Peq(φ) = 0 , (8.2.14)
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8 Scalar Field in deSitter Space-time

always exists (for any sensible potential) and has the corresponding eigenvalue Λ0 = 0. The other
eigenvalues Λn for n ≥ 1 are positive. Thus any probability distribution P (φ, t) approaches the
equilibrium solution Peq(φ) as t → ∞.

For the specific case of the quartic interaction V (φ) = λ
4φ

4, one finds, after re-introducing all
constants, the equilibrium solution

Peq(φ) = 2
HΓ(1

4)

(
2π2λ

3

) 1
4

exp
[
−2λπ2φ4

3H4

]
. (8.2.15)

The other relaxation eigenvalues Λn for n ≥ 1 cannot be obtained analytically and must be
computed numerically.

The equal-time, equal-position two-point function of a massless mode in the soft limit can
then be computed using the equilibrium solution as

⟨ϕ̄2(t,x)⟩ = 2
HΓ(1

4)

(
2π2λ

3

) 1
4 ∫ ∞
−∞

dφ φ2 exp
(

−2λπ2φ4

3H4

)
=
√

3
2π2

Γ(3
4)

Γ(1
4)
H2
√
λ
, (8.2.16)

and one notices that this is a well-defined two-point function. The massless scalar field dynami-
cally generates a mass term due to the self-interaction. However, the two-point function depends
not on λ but

√
λ. This signals a non-perturbative origin of this dynamic mass term.

The key insight is that the pathological infrared behaviour is cured dynamically, in a non-
perturbative fashion. In this formalism, it is possible to define a two-point function, which now
contains a dynamic mass term, and correspondingly there is a deSitter-invariant vacuum state.

The main shortcoming of this approach is that the introduction of the stochastic noise term,
which, in EFT terms, should be an effect of integrating out hard modes, is rather ad-hoc, and
there is no consistent way to extend this discussion to higher powers beyond the white-noise
approximation. This calls for more systematic frameworks.

8.2.2 Euclidean deSitter

The generation of the dynamic mass term is a non-perturbative effect that arises due to the
dynamics of the soft modes. This notion can be made precise in Euclidean deSitter space, which
was first observed in [77] and later investigated systematically also at subleading order in [78].
For the O(N) model in the large-N limit, additional results and insights are available in [86–89].
The main difference to the Lorentzian counterpart is that the Euclidean version is a compact
space-time. This implies that the mode decomposition is not continuous but discrete, with
each mode carrying a quantised momentum. In particular, there is only a single zero mode.
Physically, this means that the infinite pile-up of soft modes is not possible. In the following, we
provide a quick introduction and show how the dynamic mass generation arises in this approach,
then discuss the main problems that still persist.

Lorentzian deSitter space in global coordinates is characterised by the line-element

ds2 = dt2 − 1
H2 cosh2(Ht)dΩ2

d−1 . (8.2.17)

To reach the Euclidean counterpart, one substitutes

t = − i

H

(
θ − π

2

)
, (8.2.18)

where θ is an angular variable and taken to be 2πi/H-periodic, which results in

ds2 = − 1
H2

(
dθ2 + sin2(θ)dΩ2

d−1

)
. (8.2.19)
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This is simply the metric of a sphere of radius 1/H, and thus it is a compact space-time.
Therefore, the mode expansion is discrete. Specifically, a scalar field defined on this sphere can
be expanded as

ϕ(x) =
∑
L

ϕ̃LYL(x) , (8.2.20)

where L = (L,Ld−1, . . . , L1) are the generalised angular momentum eigenvalues, YL are the
hyperspherical harmonics [98, 99], and we order the eigenvalues as L ≥ Ld−1 ≥ · · · ≥ L2 ≥ |L1|.
The sum over L is defined as

∑
L

=
∞∑
L=0

L∑
Ld−1=0

· · ·
L3∑
L2=0

L2∑
L1=−L2

. (8.2.21)

The action of the scalar field takes the form (8.1.3)

S =
∫
Sd
ddx

√
g

(
1
2g

µν∂µϕ∂νϕ+ m2

2 ϕ2 + λ

4!ϕ
4
)
, (8.2.22)

with corresponding equations of motion

1
√
g
∂µ [√ggµν∂νϕ] +m2ϕ2 + λ

6ϕ
3 = 0 . (8.2.23)

Next, note that the hyperspherical harmonics are the eigenfunctions of the hyperspherical Lapla-
cian, satisfying

1
√
g
∂µ [√ggµν∂νYL(x)] = −H2L(L+ d− 1)YL(x) , (8.2.24)

and are normalised as ∫
Sd
ddx

√
g Y ∗L(x)YL′(x) = 1

Hd
δLL′ . (8.2.25)

Inserting the mode decomposition (8.2.20) as well as (8.2.24), (8.2.25), one finds for the action

S[ϕ] = S0[ϕ] + Sint[ϕ] =
∑
L

H2L(L+ d− 1) +m2

Hd

∣∣∣ϕ̃L∣∣∣2 + Sint[ϕ] . (8.2.26)

The two-point function follows from its standard derivation and reads [78]

⟨ϕ(x)ϕ(y)⟩ =
∫

D[ϕ]ϕ(x)ϕ(y)−S0∫
D[ϕ]e−S0 =

∑
L

HdYL(x)Y ∗L(y)
H2L(L+ d− 1) +m2 . (8.2.27)

One can perform the sum over L to precisely recover the Wick-rotated version of (8.1.25)
[78, 100]. In the massless limit m → 0, the two-point function diverges, as expected. One can
immediately see that this is due to the contribution of the zero mode ϕ̃0 ≡ φ, while any other
mode with L ̸= 0 yields a finite contribution. It was observed by [77] that the zero mode must
be treated non-perturbatively. Namely, for a massless scalar field with quartic self-interaction,
the zero mode becomes strongly coupled and one needs to take into account an infinite number
of diagrams involving the zero mode at each order in the perturbative expansion. However, the
merit of Euclidean deSitter is that such a treatment is in fact possible. In [78], a systematic
framework was developed, which we introduce in the following.

The key insight is that the zero-mode interaction term λφ4 should be treated as part of the
“free” action in the path integral. Since the zero mode is constant, one can perform these integra-
tions analytically. Then, one finds that φ is of order λ− 1

4 , a clear indication of a non-perturbative
effect. This counting gives rise to a new perturbative expansion that is now organised in powers
of

√
λ, as one also finds in the stochastic approach [75,76].
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8 Scalar Field in deSitter Space-time

More precisely, one decomposes the field as

ϕ(x) = φ+ ϕ̂(x) , (8.2.28)

where φ is the (constant) zero mode and ϕ̂(x) are the modes with non-zero L. Next, one
explicitly treats the φ self-interaction as part of the free action, i.e. one replaces the naive free
action in (8.2.26) by

S0[ϕ] = λφ4 |Y0|2 +
∑
L ̸=0

L(L+ d− 1)
∣∣∣ϕ̃L∣∣∣2 . (8.2.29)

The generating functional then takes the form

ZJ0, Ĵ = exp
(

−Sint

[
δ

δJ0
,
δ

δĴ

])
Z0[J0]Ẑ[Ĵ ] , (8.2.30)

where the interaction terms consist of

Sint[φ, ϕ̂] = λ

4!

∫
ddx

√
g
(
ϕ̂4 + 4φϕ̂3 + 6φ2ϕ̂2

)
. (8.2.31)

It is convenient to introduce the short-hand notations

λ̃ ≡ Vdλ

4! , J̃0 ≡ VdJ0 , (8.2.32)

where Vd is the finite volume of the compact Euclidean deSitter space. It can be computed as

Vd =
∫
ddx

√
g = 2π d+1

2

Γ(d+1
2 )Hd

. (8.2.33)

The zero-mode generating functional only consists of the φ4 interaction term and the source and
can be computed analytically as

Z0[J0] = N0

∫
D[φ] exp

[
−
∫
ddx

√
g

(
λ

4!φ
4 + J0φ0

)]
= λ̃

1
4

2Γ(5
4)

∫ ∞
−∞

dφ exp
(
−λ̃φ4 − J̃0φ

)
= 0F2

(
1
2 ,

3
4; J̃4

0
256λ̃

)
+

Γ(3
4)J̃2

0

2Γ(1
4)

√
λ̃

0F2

(
5
4 ,

3
2; J̃4

0
256λ̃

)
. (8.2.34)

Again let us stress that the self-interaction term λφ4 in the zero-mode generating functional is
not expanded, and is thus treated non-perturbatively.

For the non-zero mode, one finds the more conventional generating functional

Ẑ[Ĵ ] = N̂

∫
D[ϕ̂] exp

[
−
∫
ddx

√
g

(1
2g

µν∂µϕ̂∂ν ϕ̂+ Ĵ ϕ̂

)]
= exp

(1
2

∫
ddx

∫
ddy

√
g(x)g(y)Ĵ(x)Ĝfree(x, y)Ĵ(y)

)
, (8.2.35)

where Ĝfree denotes the non-zero mode propagator.
With this non-perturbative treatment of the zero mode, one can again compute the two-point

function. Now, one finds

⟨ϕ(x)ϕ(y)⟩ = Hd−2Y 2
0

Γ( 1
4 )

Γ( 3
4 )

√
λ̃+m2

+
∑
L̸=0

HdYL(x)Y ∗L(y)
H2L(L+ d− 1) +m2 , (8.2.36)
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and in the massless limit this becomes finite, as

lim
m→0

⟨ϕ(x)ϕ(y)⟩ =
Hd−2Γ(3

4)
Γ(1

4)
√
λ̃

. (8.2.37)

This corresponds to a dynamical mass term

m2
dyn =

Γ(1
4)

Γ(3
4)

√√√√Γ(d+1
2 )

2π d+1
2

√
λ

4! , (8.2.38)

which depends on
√
λ, as was observed in the stochastic approach.

The main advantage of this formalism is that it is cast in the language of a standard QFT,
and, once the zero-mode is treated non-perturbatively, any object of interest has a well-defined
perturbative expansion in

√
λ, so the results can be extended to any desired order. However,

the form of the perturbative expansion is not yet suited to obtain the results of stochastic
inflation. In general, an infinite number of diagrams must be resummed to all orders to recover
the non-perturbative results, like the two-point function of stochastic inflation. In the large-N
limit, this problem is circumvented by the expansion in 1

N , which allows one to perform these
resummations [86–89]. For the case N = 1, however, it remains unclear how a systematic
resummation can be performed [101].

8.2.3 Schrödinger Formalism

A rather orthogonal approach [79] relies on the Schrödinger formalism of QFT [102–104]. In
this approach, one splits the field into a long-wavelength and a short-wavelength part similar
to the stochastic approach. This approach mimics the Euclidean approach in so far as the
long-wavelength modes are to be treated non-perturbatively The advantage of this framework is
that one can consistently compute higher-order corrections to the stochastic approach, and NLO
corrections to the Fokker-Planck equation were computed for the first time in this formalism [79],
and were verified by two independent computations using a hybrid open EFT [91, 92] and Soft
deSitter Effective Theory [94, 95]. However, the formalism is quite non-standard and it is not
a traditional effective field theory. In particular, the non-perturbative treatment of the long-
wavelength modes using wave-functional methods is very different from an EFT that treats the
soft modes. In addition, it requires a multitude of expansion parameters and this causes the
construction to seem somewhat ad-hoc.

8.3 Method of Regions in deSitter Space

It is clear that the pathological behaviour of the massless scalar field is due to the soft super-
horizon modes and their accumulation at late times. Ideally, if one is able to construct an
effective theory that describes the dynamics of these super-horizon modes, this effective theory
should also provide a way to directly obtain the previous results like the stochastic equation of
motion or the non-perturbative dynamical mass.

Therefore, we now approach this problem with the standard EFT mindset. Modern effective
theories, like SCET discussed earlier, rely on the fact that one can separate the contributions
of different modes to a scattering amplitude using the method of regions [51]. The effective
Lagrangian then describes the dynamics of modes that form only a part of these regions, while
the contributions due to other regions (usually the hard one) must arise from additional objects
that are fixed through a matching computation. A first step in this direction is to investigate
if the method of regions holds for correlators in deSitter space, and if the full-theory result is
completely reproduced by the sum of super- and sub-horizon contributions.
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8 Scalar Field in deSitter Space-time

As a simple example, we consider a self-interacting λϕ4 theory, and more specifically the
late-time limit aH → ∞ of the tree-level trispectrum ⟨ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)⟩, which can be
computed as

⟨ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)⟩ = i
λ

4!

∫ t

dt1 d
3x a3(t)

〈[
ϕ4(x, t1), ϕ(k1) . . . ϕ(k4)

]〉
, (8.3.1)

where all fields ϕ(k) are evaluated at time t and we have already split off the momentum-
conserving δ-function (2π)3δ(3)(∑ki) from the correlator.

For the tree-level computation, one can directly employ the massless mode functions using
(8.1.20) or (8.1.21), which take the form

ϕ(k, η) = H√
2k3

(1 − ikη)eikη . (8.3.2)

The trispectrum is then given by

⟨ϕ1 . . . ϕ4⟩ = λH4

8(k1k2k3k4)3

∫ η dη′

(η′)4 Im

e−ikt(η−η′)
4∏
j=1

(1 + ikjη)(1 − ikjη
′)

 , (8.3.3)

and is readily computed to be [94]

⟨. . . ⟩ = λH4

8(k1k2k3k4)3

[
1
3

(∑
i

k3
i

)(
log kt

aH
+ γE + 1

3 − 2
)

− k1k2k3k4
kt

− 1
9k

3
t

+ 2
∑
i<j<l

kikjkl + 1
3kt

∑ k2
i −

∑
i<j

kikj

 , (8.3.4)

where we defined the total momentum kt = k1 +k2 +k3 +k4, used η = − 1
aH and dropped terms

that vanish in the soft limit aH → ∞.
We now want to reproduce this result using the method of regions [51] applied to the time

integral. The basic procedure works as follows: we split the time integral
∫ η dη′ by introducing

a cut-off Λ as ∫ η

∞
dη′f(η′, η) =

∫ Λ

∞
dη1f(η′, η) +

∫ η

Λ
dη′f(η′, η) . (8.3.5)

The first integral corresponds to the “hard” region, where k|η′| ∼ 1 and should arise due to
the sub-horizon modes. The second integral lies in the “soft” region and should contain the
contributions of the super-horizon modes. Therefore, we now perform the respective expansions
of the integrands. Since we take the soft limit of the external momenta, the function f(η′, η)
should be expanded in the soft limit k |η| → 0 for both integrals, and we keep only the leading
terms.

In the first integral, one should use the asymptotic behaviour f(η′, η) as k|η′| → ∞, which
corresponds to the sub-horizon modes. In the second integral, η′ is soft, so one performs the
same soft expansion of f(η′, η) as for η previously. If the integrands are then homogeneous, one
can drop the explicit cut-off Λ and integrate over the entire range by introducing an analytic
regulator. This procedure of introducing an analytic regulator instead of an explicit Λ is justified
since adding the missing range of integration corresponds to a scaleless integral, which vanishes
when regulating analytically. However, now the previously finite integrals become divergent.
In the first integral, this leads to an infrared divergence, while the second integral will become
ultraviolet divergent. In the final result – the sum of both terms – these divergences must cancel
out and, if no other regions are present, one should recover the full result (8.3.4). We now verify
this explicitly.
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Hard Region

First, we consider the hard region of the trispectrum (8.3.3). We take the late-time limit for the
external variable η, as kjη → 0 for all k, and expand. For the η′ integration, we are interested
in the region kiη

′ ∼ 1, effectively setting η → 0 for the integration limit. This introduces
a divergence as η′ → 0, which we regulate using an analytic regulator α in the η′-integral.
Namely, we replace ∫ η

dη′(−η′)−4 →
∫ 0

dη′(−η′)−4(−η′µ̃)2α , (8.3.6)

where we introduced the factorisation scale µ̃ = µeγE . The correlator (8.3.3) is then modified as

⟨ϕ1 . . . ϕ4⟩|hard = λH4

8(k1k2k3k4)3 µ̃
2α
∫ 0 dη′

(−η′)4−2α Im

e−iktηeiktη′
4∏
j=1

(1 + ikjη)(1 − ikjη
′)

 .
(8.3.7)

The products inside the integral are evaluated as∏
j

(1 − ikjη
′) = 1 − iη′kt − (η′)2a+ i(η′)3b+ (η′)4c , (8.3.8)

∏
j

(1 + ikjη) = 1 + iktη − η2a− iη3b+ η4c , (8.3.9)

where we introduced

a =
∑
i<j

kikj , b =
∑
i<j<l

kikjkl , c = k1k2k3k4 . (8.3.10)

Keeping only the leading order for η → 0, and evaluating the time-integral using∫ 0
dxx−aeikx = −(−ik)a−1Γ(1 − a) , (8.3.11)

one finds

I = µ̃2α
∫ 0

dη′(η′)−4+2αeiktη′ (1 − iη′kt − (η′)2a+ i(η′)3b+ (η′)4c
)

= −µ̃2α
(

(−ikt)3−2α (Γ(−3 + 2α) + Γ(−2 + 2α)) − a(−ikt)1−2αΓ(−1 + 2α)

+ ib(−ikt)−2αΓ(2α) + ic

kt

)
. (8.3.12)

Expanding the Γ-functions in I for α → 0 yields

I = −µ̃2α
[
ik3
t (1 − 2α ln kt)

( 1
6α − 1

3γE + 4
9

)
+ iakt(1 − 2α ln kt)

(
− 1

2α + γE − 1
)

+ ib(1 − 2α ln kt)
( 1

2α − γE

)
+ ic

kt

]
+ O(α) . (8.3.13)

Since only the imaginary part enters the result, this simplifies to

ImI = µ̃2α
(1

3k
3
t − akt + b

)(
− 1

2α + ln kt + γE

)
−
(4

9k
3
t − akt + c

kt

)
. (8.3.14)

Inserting µ̃ and performing the α-expansion, one finds the scale µ in the logarithm while any
factors of γE are eliminated. This results in

ImI =
(1

3k
3
t − akt + b

)(
− 1

2α + ln kt
µ

)
−
(4

9k
3
t − akt + c

kt

)
. (8.3.15)
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Next, use
1
3k

3
t − akt + b = 1

3k
3
t − kt

∑
i<j

kikj +
∑
i<j<l

kikjkl = 1
3
∑
i

k3
i , (8.3.16)

to rewrite ImI as

ImI =
(

− 1
2α + ln kt

µ

)(∑
i

k3
i

)
− 1

9k
3
t − 1

3k
3
t + akt − c

kt
. (8.3.17)

One can add and subtract 2
3
∑
i k

3
i to re-arrange the finite parts as

−1
3k

3
t + akt + 2

3
∑
i

k3
i =

∑
i

k2
i − 1

3akt + 2b , (8.3.18)

where we used the relation
k3
t − 2akt = kt

∑
i

k2
i . (8.3.19)

Finally, one obtains

ImI =
(

1
3
∑
i

k3
i

)(
− 1

2α + ln kt
µ

− 2
)

− 1
9k

3
t + 1

3kt

∑
i

k2
i −

∑
i<j

kikj


+ 2

∑
i<j<l

kikjkl − k1k2k3k4
kt

. (8.3.20)

Keeping track of the prefactors, the contribution of the hard region to the trispectrum is

⟨ϕ1 . . . ϕ4⟩|hard = λH4

8(k1k2k3k4)3

[(
1
3
∑
i

k3
i

)(
− 1

2α + ln kt
µ

− 2
)

(8.3.21)

− 1
9k

3
t + 1

3kt

∑
i

k2
i −

∑
i<j

kikj

+ 2
∑
i<j<l

kikjkl − k1k2k3k4
kt

]
.

Soft Region

Next, we compute the soft region of the correlator (8.3.3). Again we start from the integral

I =
∫ η dη′

(η′)4 Im

e−ikt(η−η′)
4∏
j=1

(1 + ikjη)(1 − ikjη
′)

 , (8.3.22)

but this time we take both η and η′ to be soft, i.e. we directly expand the integrand for kη → 0
as well as kη′ → 0. This time, the integral will become UV divergent as |η| → ∞, and must
again be regularised. We choose the same analytic regulator (8.3.6) as for the hard region. The
integral then reads

I =
∫ η

dη′ (−η′)−4+2α(µ̃)2α Im
[
− i

3
∑
i

k3
i (η3 − η′

3) + O((kiη)4)
]
, (8.3.23)

and is readily computed as

I = −1
3
∑
i

k3
i

(
(−ηµ̃)2α

2α− 3 − (−ηµ̃)2α

2α

)
+ O(kη)

= 1
3
∑
i

k3
i

( 1
2α + ln µ

aH
+ γE + 1

3

)
+ O(α, kη) . (8.3.24)

The leading-order soft contribution to the trispectrum then amounts to

⟨ϕ1 . . . ϕ4⟩|soft = λH4

8(k1k2k3k4)3

[(
1
3
∑
i

k3
i

)( 1
2α + ln µ

aH
+ γE + 1

3

)]
. (8.3.25)
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Sum of Hard and Soft Regions

We now sum both regions to verify that we reproduce the full result. Indeed, taking the sum of
(8.3.21) and (8.3.25), one immediately notices that the poles in α as well as the dependence on
the factorisation scale µ precisely cancel. The sum of both terms reads

⟨ϕ(k1) . . .ϕ(k4)⟩|hard + ⟨ϕ(k1) . . . ϕ(k4)⟩|soft

= λH4

8(k1k2k3k4)3

[
1
3

(∑
i

k3
i

)(
log kt

aH
+ γE + 1

3 − 2
)

− k1k2k3k4
kt

− 1
9k

3
t

+ 2
∑
i<j<l

kikjkl + 1
3kt

∑ k2
i −

∑
i<j

kikj

 , (8.3.26)

which precisely agrees with (8.3.4). As we can see, we completely recover the full-theory result,
and all divergences cancel out. This computation verifies that the method of regions works for
the time-integrals in the computation of correlation functions in deSitter space. While it is not
checked explicitly in this work, it also seems to be consistent in multi-loop integrals including
momentum integrals [101].

8.4 Soft deSitter Effective Theory
Now that we have explicitly verified that the method of regions can be applied for correla-
tion functions in deSitter space, we can begin the effective theory derivation and present the
framework of Soft deSitter effective theory [94, 95]. The idea is to construct an effective theory
that contains only the long-wavelength super-horizon modes by integrating out the sub-horizon
modes. While the idea seems straightforward, we will see that this theory differs from an ordi-
nary flat-space EFT in some aspects. The more rigorous derivation presented in the following
differs from the original one in [94] and is part of a project by the author in collaboration with
M. Beneke and A. F. Sanfilippo that is still in active development [105].

8.4.1 Soft Modes
As we have discussed in Section 8.1, the long-wavelength part of the scalar field is described
by two modes, the growing and decaying modes. They are characterised by the parameter ν in
(8.1.14), and the super-horizon field can be decomposed as1 [94]

ϕs(t,x) = H
[
(a(t)H)−

3
2 +ν φ+(t,x) + (a(t)H)−

3
2−ν φ−(t,x)

]
. (8.4.1)

As hard scale we take the time-dependent cut-off Λ(t) = a(t)H, and the power-counting pa-
rameter is the momentum compared to this scale

λ ∼ k

aH
. (8.4.2)

The full-theory Lagrangian is the minimally-coupled scalar field (8.1.4) with a four-point inter-
action2

S[ϕ] =
∫
d3x

∫
dt
(1

2∂µϕ∂
µϕ− 1

2m
2ϕ2 − κ

4!ϕ
4
)
. (8.4.3)

Naively, the effective theory is now obtained by inserting the split

ϕ = ϕs + ϕh (8.4.4)
1In the following we define the time-parameter as t′ ≡ Ht, absorbing the factor H.
2We now denote the coupling constant by κ instead of λ in order to not confuse it with the power-counting

parameter.
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in the Lagrangian, and integrating out the hard mode ϕh. However, note that from the soft
limit of the equation of motion (8.1.15), the leading-order equations for φ± read

φ̇± = 0 . (8.4.5)

This means that the effective theory is described by a Lagrangian that contains first-order time
derivatives, compared to the second-order Lagrangian (8.4.3). In order to derive the correct
effective theory, we first have to understand this transition from a second-derivative theory
to a first-derivative theory. A similar transition takes place in the effective description of a
non-relativistic scalar field [106–108]. We consider this situation first.

8.4.2 Intuition from Non-relativistic Effective Theory
As it turns out, the effective theory describing soft modes of a scalar field in deSitter space-
time shares many formal similarities with the effective theory of a non-relativistic scalar field.
Intuitively, one can see this from the equation of motion (8.1.5) for the redefined field χ, which
looks like the one of a flat-space scalar field with time-dependent mass term meff(η) (8.1.8). For
the soft mode, the dynamics are heavily constrained by this mass term.

Therefore, we first consider the non-relativistic scalar field with constant mass term, then
generalise the construction to deSitter space. The most important step in this construction is
that we want to go from a second-order equation of motion, that contains second time derivatives,
to a first-order one, where only a single time-derivative is present. This transition contains some
subtleties and the construction is more transparent in the non-relativistic derivation.

In the following, we go over a systematic construction for the non-relativistic effective action
of a massive scalar field in Minkowski space-time. The discussion uses input from [106–108].

We consider a free real scalar field ϕ with action given by

Sϕ =
∫

d4x
1
2∂µϕ , ∂

µϕ− 1
2m

2ϕ2 . (8.4.6)

The free theory has the equation of motion

(□ +m2)ϕ(t,x) = 0 ⇒ ¨̃ϕ(t,p) + (p2 +m2)ϕ̃(t,p) = 0 , (8.4.7)

which is solved in momentum-space by plane waves of the form

ϕ̃(t,p) ∼ eipx , p2 = m2 . (8.4.8)

Non-relativistic Limit k → 0 and Ambiguities

We consider the non-relativistic limit, i.e. momenta pµ ∼ mvµ + kµ, where k ≪ m and v2 = 1,
e.g. vµ = δµ0 . In this limit, the plane-wave is dominated by modes e±imt, and we make the
ansatz

ϕ(x, t) = e−imtφ(x, t) + eimtφ∗(x, t) , (8.4.9)

where φ∗ is complex-conjugate to φ. The field φ should describe a slowly-varying mode, and
obey a first-order differential equation. However, the description contains too many degrees of
freedom, since we employ this 1 → 2 parameterisation ϕ → (φ,φ∗). This manifests itself in the
form of a gauge symmetry

φ(x, t) → φ(x, t) + ieimtψ(x, t) , (8.4.10)

with a real scalar field ψ(x, t), where we find

ϕ(x, t) = e−imtφ+ eimtφ∗
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→ e−imt(φ+ ieimtψ) + eimt(φ∗ − ie−imtψ∗)
= ϕ(x, t) + i(ψ − ψ∗)
= ϕ(x, t) , (8.4.11)

since ψ = ψ∗. To fix this gauge symmetry, we need to impose a constraint. To find a suitable
one, consider the equation of motion in the limit k → 0, which reads

ϕ̈+m2ϕ = 0 . (8.4.12)

Inserting the ansatz (8.4.9), we obtain

ϕ̈+m2ϕ = e−imt(φ̈− 2imφ̇−m2φ) + eimt(φ̈∗ + 2imφ̇∗ −m2φ∗) +m2(e−imtφ+ eimtφ∗)
= e−imt(φ̈− 2imφ̇) + eimt(φ̈∗ + 2imφ̇∗) , (8.4.13)

One possible constraint that gives first-order differential equations is to impose

eimtφ̇+ e−imtφ̇∗ = 0 , (8.4.14)

as this yields

ϕ̇ = −im(e−imtφ− eimtφ∗) ,
ϕ̈ = −im(e−imtφ̇− eimtφ̇∗) −m2(e−imtφ+ eimtφ) , (8.4.15)

and the equation of motion becomes

ϕ̈+m2ϕ = −im(e−imtφ̇− eimtφ̇) = 0 , (8.4.16)

or, using the condition again,

φ̇ = 0 + O
( 1
m

)
, (8.4.17)

as we would expect for the leading-order behaviour if the time-dependence is really dominated
by e−imt. We see that there is a choice of fixing the gauge symmetry that leads to a first-order
differential equation for φ and gives the correct leading behaviour in the limit k → 0.

Finite k and Rapidly-oscillating Modes

Next, we consider non-zero k, where the equation (8.4.12) takes the form

ϕ̈− ∂2ϕ+m2ϕ = 0 , (8.4.18)

or, inserting (8.4.9) and the constraint (8.4.14),

−ime−imtφ̇+ imeimtφ̇∗ − ∂2(e−imtφ+ eimtφ∗) = 0 . (8.4.19)

We can use the constraint again to eliminate the φ̇∗ term to get

−iφ̇− ∂2

2mφ− ∂2

2me2imtφ∗ = 0 . (8.4.20)

Ignoring the rapidly-oscillating term ∼ e2imt, we recover the leading-order Schrödinger equation
for φ. However, we want to remove these types of terms systematically.

To do this, we perform an expansion in Fourier modes

φ =
∑
n

enimtφn , (8.4.21)

159



8 Scalar Field in deSitter Space-time

φ∗ =
∑
n

e−nimtφ∗n , (8.4.22)

insert the expansion in (8.4.20) and contract it with a basis function ⟨en| from the left, extracting
the n-th mode, by defining it such that

⟨en|φ = φn , (8.4.23)

e.g. via using orthonormality of the Fourier modes with respect to the L2 inner product.
This leads us to the mode equation for φ∗

0 = i(−inmφ∗n + φ̇∗n) − ∂2

2mφ∗n − ∂2

2mφn−2

= −nmφ∗n + φ̇∗n − ∂2

2mφ∗n − ∂2

2mφn−2 . (8.4.24)

Power-counting

At this point, we have to discuss the power-counting. From the non-relativistic expansion, we
have the small 3-momenta k compared to the mass scale, so we have

λ = ∂2φ

m2 ≪ 1 . (8.4.25)

Next, the modes φ are assumed to be slowly varying in time, so we have additionally

ε = φ̇

mφ
≪ 1 . (8.4.26)

We now expand all modes in these two parameters, in the sense

φn = φ(1)
n + φ(2)

n + . . . , n ̸= 0 , (8.4.27)

where the expansion starts at O(λ, ε), since from the leading equation of motion

φ̇ = 0 , (8.4.28)

we find φ(0) = φ
(0)
0 , as it is constant. This now allows us to expand the modes φn, and use

(8.4.24) to eliminate φn systematically to only keep φ0 in the equation of motion.

Eliminating the Non-zero Modes

We begin with (8.4.24)

0 = −nmφ∗n + φ̇∗n − ∂2

2mφ∗n − ∂2

2mφn−2 . (8.4.29)

At O(λ0, ε0), only φ0 is non-vanishing, so the first correction is due to the n = 2 mode, where
we have

0 = −2mφ(1)∗
2 + φ̇

(1)∗
2 − ∂2

2mφ
(1)∗
2 − ∂2

2mφ
(0)
0

= −2mφ(1)∗
2 − ∂2

2mφ
(0)
0 + O(ε2, λ2) , (8.4.30)

and we find

φ
(1)∗
2 = − ∂2

4m2φ
(0)
0 . (8.4.31)
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We now insert this in (8.4.24) for n = 0, which reads

0 = −iφ̇0 − ∂2

2mφ0 − ∂2

2mφ
(1)∗
2

= −iφ̇0 − ∂2

2mφ0 + ∂4

8m3φ0 + O(ε2, λ2) , (8.4.32)

and we see that we recover the first relativistic correction of the kinetic energy. We can use
this approach to systematically compute the full non-relativistic equation of motion. Since the
theory is first-order in the time-derivative, we can then find the Lagrangian from the equation
of motion

−iφ̇0 = Dφ (8.4.33)

by introducing the conjugate momentum φ∗ and writing

L = φ∗(i∂t −D)φ . (8.4.34)

In this theory, as is usual for a first-derivative theory, we now obtain the equation of motion for
φ by varying the action with respect to φ∗.

Let us summarise the key insights of this derivation. We factorised the leading-order time-
dependence of the effective mode (8.4.9), and expressed the real scalar field ϕ in terms of two
variables φ,φ∗. This description now features one additional scalar degree of freedom, which
introduces an additional gauge symmetry. We employ (8.4.14) to fix it. In turn, the equation of
motion now becomes linear in the time-derivative. Using the Fourier decomposition, we managed
to systematically eliminate the rapidly-oscillating terms and recovered the full non-relativistic
expansion of the scalar equation of motion. Finally, the Lagrangian is obtained by multiplying
the equation of motion with the conjugate momentum φ∗.

8.4.3 Naive Derivation of the Soft deSitter Lagrangian
The previous derivation, while correct, made heavy use of concepts like “rapidly-oscillating
terms” that must be systematically eliminated using equations of motion. While this construc-
tion indeed works perfectly fine for the case of a non-relativistic scalar field, the deSitter scenario
is problematic, as we explain in the following.

In deSitter space, for massive fields with large mass, we have an additional expansion parame-
ter εH = H

m , and the discussion is similar to the non-relativistic case. However, we are interested
in the case of light masses, where ν =

√
9
4 − m2

H2 is no longer complex but a real number. This
means that the mode functions are not plane-wave exponentials eimt, but rather decaying so-
lutions e−αt. In this case, the IR behaviour is dominated by the growing and decaying modes,
and we introduce the analogue of Eq. (8.4.9) as

ϕ(x, t) = H
(
(aH)−αφ+ + (aH)−βφ−

)
, (8.4.35)

where α = 3
2 − ν and β = 3

2 + ν. We again have a 1 → 2 parameterisation, and we fix the gauge
by imposing the analogue of (8.4.14)

(aH)−αφ̇+ + (aH)−βφ̇− = 0 . (8.4.36)

This results in the time-derivatives

ϕ̇ = H
(
−α(aH)−αφ+ − β(aH)−βφ−

)
,

ϕ̈ = H
(
α2(aH)−αφ+ − α(aH)−αφ̇+ + β2(aH)−βφ− − β(aH)−βφ̇−

)
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= H
(
2ν(aH)−αφ̇+ + α2(aH)−αφ+ + β2(aH)−βφ− ,

)
(8.4.37)

and plugging these into the equation of motion for ϕ for k = 0,

ϕ̈+ 3ϕ̇+ m2

H2 , (8.4.38)

we find

0 = H
(
2ν(aH)−αφ̇+ + α2(aH)−αφ+ + β2(aH)−βφ−

)
+ 3H

(
−α(aH)−αφ+ − β(aH)−βφ−

)
+ m2

H2H
(
(aH)−αφ+ + (aH)−βφ−

)
= 2νφ̇+ , (8.4.39)

where we used α2 − 3α+ m2

H2 = 0 and β2 − 3β + m2

H2 = 0. This shows that for k = 0, we capture
the correct leading behaviour.

For finite momenta, the equations of motion read

0 = 2νφ̇+ − ∂2

(aH)2φ+ − ∂2

(aH)2 (aH)−2νφ− , (8.4.40)

0 = −2νφ̇− − ∂2

(aH)2φ− − ∂2

(aH)2 (aH)2νφ+ , (8.4.41)

and we see a similar mode mixing as in the non-relativistic case (8.4.20), but this time it appears
as (aH)−2ν . Note that (aH)−2ν ∼ e−νt, so it is equivalent to having a complex frequency νt
instead of imt in the exponent. The complex analogue of the Fourier transformation is the
Laplace transformation, where the functions are expanded in terms of exponentials as

f =
∑
n

e−nνtfn . (8.4.42)

We choose a modification of this, where we expand the field as

φ+ =
∑
n

(aH)−νnφ+,n , (8.4.43)

φ− =
∑
n

(aH)νnφ−,n . (8.4.44)

While these exponentials are also dense and form a basis of L2[0,∞], they are not orthogonal.
However, we can still construct bras and a suitable inner product ⟨en| to obtain

⟨en|φ+ = φ+,n , (8.4.45)

e.g. by using complex integration and the inverse Laplace transform. As these ⟨en| are just a
tool to help with the construction, no one forces us to use standard inner products, and we can
for now argue that this is a good mode expansion for our fields.

If we accept this expansion in modes with complex frequencies, we find similar behaviour
to the non-relativistic case. The leading contribution stems from n = 0 modes, and from the
equation for φ− we find for mode n

0 = −2ν(nνφ−,n + φ̇−,n) − ∂2

(aH)2φ−,n − ∂2

(aH)2φ+,n−2 . (8.4.46)

However, here we distinguish by hand that (aH)−2 is part of the gradient ∂2
i to form a deSitter-

covariant expression, and not part of the mode φ−,n. Strictly speaking, this is not justified at
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this point. However, we recover the correct equation of motion if we use this trick. Therefore,
this approach is not rigorous and should only be viewed as a “back of the envelope” derivation.

With this out of the way, let us proceed like in the non-relativistic case, by assuming that we
have small parameters

λ = ∂2

(aH)2 , ε = φ̇

φ
, (8.4.47)

for small momenta and slowly varying fields φ. We can then expand the modes

φn = φ(1)
n + φ(2)

n + . . . , (8.4.48)

where only φ0 contains the constant O(1) contribution. We can proceed to systematically remove
the non-zero modes by using their equations of motion.

We use the equation for φ− for n = 2, where we find

0 = −2ν(2νφ−,2 + φ̇−,2) − ∂2

(aH)2φ−,2 − ∂2

(aH)2φ+,0

4ν2φ−,2 = − ∂2

(aH)2φ+,0 . (8.4.49)

Inserting this in the equation for φ+,0 yields

0 = 2νφ̇+,0 − ∂2

(aH)2φ+,0 − ∂2

(aH)2φ−,2

= 2νφ̇+,0 − ∂2

(aH)2φ+,0 + ∂4

4ν2(aH)4φ+,0 + O(λ2) , (8.4.50)

which agrees with the equation of motion obtained in [94].
Again, we can use this to construct the Lagrangian as

L = φ−

(
−2νφ̇+ + ∂2

(aH)2φ+ − ∂4

4ν2(aH)4φ+

)
+ O(λ5) , (8.4.51)

which also agrees with [94]. Here, we introduced the conjugate momentum φ−, and the equation
of motion for φ+ is obtained by variation with respect to φ−. Note, however, that the modes
φ+ and φ− differ in their effective power-counting, as we explain later.

Let us stress that this derivation heavily relied on two assumptions that cannot be justified.
First, one had to assume that such expansion in complex modes is sensible, and second, one
has to pick out certain modes by hand, in order to find the correct scale-factors in front of the
derivatives. Therefore, we wish to find a more systematic and rigorous construction.

8.4.4 A Rigorous Derivation

As we have seen, the hand-wavy derivation of the previous section reproduces the Lagrangian
encountered in [94], using the same methods that yield the Lagrangian for a non-relativistic
scalar field. However, in this approach, the analogue of the rapidly-oscillating modes had to
be identified by hand and thus this should not be viewed as a rigorous derivation. In the
following section, we summarise how this construction can be made rigorous using the canonical
Hamiltonian formalism and non-local field redefinitions, following [101,106].
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The Non-relativistic Scalar Field

For the non-relativistic scalar field, the main issue is to consistently go from a single scalar field
ϕ to two fields φ,φ∗. This introduces a gauge symmetry in the naive derivation (8.4.10), that
must be fixed by imposing some constraint (8.4.14). However, in the end, we found that φ∗
takes the role of the conjugate momentum of the field φ. Therefore, in the canonical approach,
one considers the change of variables ϕ, π → φ,φ∗, where one explicitly includes the conjugate
momentum π. One begins with the ansatz

ϕ = 1√
2m

(
e−imtD(t)φ+ eimtD∗(t)φ∗

)
π = −i

√
m

2
(
e−imtP (t)φ− eimtP ∗(t)φ∗

)
. (8.4.52)

The old Hamiltonian H =
∫
d3x H expressed in terms of ϕ, π is linked to the new one, with

variables φ,φ∗ by a canonical transformation

H̃[φ,φ∗] = H[φ,φ∗] + ∂F

∂t
, (8.4.53)

such that
π[ϕ, φ] = ∂F

∂ϕ
, iφ∗[ϕ, φ] = −∂F

∂φ
. (8.4.54)

One can now determine F [φ, ϕ, t] to be [101,106]

F [φ, ϕ, t] = i

(
m

2 ϕ
P ∗

D∗
ϕ−

√
2me−imtϕ 1

D∗
φ+ 1

2e
−2imtφ

D

D∗
φ

)
. (8.4.55)

The new Hamiltonian is then given by

H̃ = m

4

(
e−2imtφD2

[
− i

m

∂

∂t

(
P

D

)
−
(
P

D

)2
+ 1 − ∂2

i

m2

]
φ

+ 2φ∗
[
P ∗P +D∗D

(
1 − ∂2

i

m2

)
− 2 − i

2m
(
P ∗Ḋ − Ṗ ∗D + ṖD∗ − PḊ∗

)]
φ

+e2imtφ∗D∗2
[
i

m

∂

∂t

(
P ∗

D∗

)
−
(
P ∗

D∗

)2
+ 1 − ∂2

i

m2

]
φ∗
)
. (8.4.56)

This Hamilton should take the form H̃ = φ∗Eφ, where only mixed terms survive. This is equiv-
alent to integrating out the rapidly-oscillating modes in the previous approach. The condition
leads to a differential equation for the combination f ≡ P

D that reads

− i

m

∂f

∂t
− f2 + 1 − ∂2

i

m2 = 0 , (8.4.57)

which has the solution

f(t) = −i

√
1 − ∂2

i

m2 tan

(mt+ C)

√
1 − ∂2

i

m2

 , C = const. (8.4.58)

This solution fixes the coefficients as

P

D
= P ∗

D∗
=

√
1 − ∂2

i

m2 . (8.4.59)
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It is possible for both P and D to have a residual time-dependence [101], but we do not entertain
this idea here. Instead, we fix

P =
[
1 − ∂2

i

m2

] 1
4

, D =
[
1 − ∂2

i

m2

]− 1
4

, (8.4.60)

and the Hamiltonian becomes

H̃ = mφ∗

√1 − ∂2
i

m2 − 1

φ . (8.4.61)

Expanding this closed expression for ∂2
i ≪ m2 precisely yields the non-relativistic expansion

that was computed before.

8.4.5 Application to deSitter Space

We now apply this canonical formalism to the light scalar field in deSitter space. The super-
horizon modes φ+, φ− take the role of φ,φ∗ in the non-relativistic derivation. We summarise
the explicit and very lengthy derivation in [101].

We begin by specifying the scalar field and its conjugate momentum as

ϕ = H
[
(aH)−αφ+ + (aH)−βφ−

]
,

π = −a3H
[
α(aH)−αφ+ + β(aH)−βφ−

]
, (8.4.62)

which incorporates the constraint (8.4.36). By enforcing the equation of motion of the conjugate
momentum

π̇ = a3H

(
∂2
i

(aH)2ϕ− m2

H2ϕ

)
, (8.4.63)

one finds
φ̇± = ± 1

2ν
∂2

(aH)2

(
φ± + (aH)∓2νφ∓

)
, (8.4.64)

where the mode-mixing is again present. We now wish to perform a canonical transformation
that removes these mode-mixing terms. Like in the flat-space scenario, we achieve this by
performing a non-local field redefinition. We begin with the more general definition

ϕ = H
[
(aH)−αD+φ+ + (aH)−βD−φ−

]
,

π = −a3H
[
α(aH)−αP+φ+ + β(aH)−βP−φ−

]
. (8.4.65)

This leads to a canonical transformation [101]

F [ϕ, φ+, t] = −α3β

2 ϕ
P−
D−

ϕ+ 2ν(aH)β
H2 ϕ

1
D−

φ+ − ν(aH)2ν

H
φ+

D+
D−

φ+ , (8.4.66)

bearing strong resemblance to the flat-space counterpart (8.4.54). One can now compute the
Hamiltonian expressed in terms of φ+, φ−, where one still needs to remove the additional “os-
cillating” terms to obtain a Hamiltonian of the form H = φ+(. . . )φ−. This yields a differential
equation for the combination f± ≡ −(3

2 ∓ ν) P±
D±

, which reads

f2
± + 3f± + ḟ± −

(
∂2

(aH)2 + ν2 − 9
4

)
= 0 . (8.4.67)
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This differential equation now has the lengthy solution [101]

f± = −1
2
C±Γ(1 − ν) [3I−ν(X) +X (I−1−ν(X) + I1−ν(X))]

C±Γ(1 − ν)I−ν(X) + i2νΓ(1 + ν)Iν(X)

+ i2νΓ(1 + ν) [3Iν(X) +X (Iν+1(X) + Iν−1(X))]
C±Γ(1 − ν)I−ν(X) + i2νΓ(1 + ν)Iν(X) , (8.4.68)

where X ≡
√

∂2

(aH)2 . Here, Iν(z) is the modified Bessel function of the first kind

Iν(z) = i−νJν(iz) . (8.4.69)

Like in the flat-space scenario, this combination does not uniquely fix D± and P±, and there is
still a residual freedom to add a function g±(X2, t). We will not pursue this further and fix the
function to yield the desired form of the Lagrangian density. After a cumbersome computation
[101], one then arrives at

D+(ν) = 0F1

(
1 − ν; X

2

4

)
, D−(ν) = 0F1

(
1 + ν; X

2

4

)
, (8.4.70)

as well as

P+(ν) = 0F1

(
−ν; X

2

4

)
+ βX2

4αν(ν − 1)0F1

(
2 − ν; X

2

4

)
,

P−(ν) = 0F1

(
ν; X

2

4

)
+ βX2

4αν(ν + 1)0F1

(
2 + ν; X

2

4

)
, (8.4.71)

expressed in terms of the confluent hypergeometric function

0F1 (a; z) =
∞∑
k=0

zk

k!(a)k
, (a)n =

n−1∏
k=0

(a− k) . (8.4.72)

Using these redefinitions, the final Lagrangian takes the form

L = −ν(φ̇+φ− − φ+φ̇−) + 2ν2φ+

[
1 −

√
1 + ∂2

(νaH)2

]
φ− . (8.4.73)

Performing the expansion for ∂2 ≪ (aH)2 precisely reproduces the Lagrangian (8.4.51) of the
light scalar field obtained in the naive derivation. This approach can be viewed as a rigorous
derivation of the free Soft deSitter action.

8.4.6 The Soft deSitter Lagrangian

Let us summarise the result of the previous section: the free Lagrangian describing the super-
horizon modes in a deSitter space-time takes the form (8.4.73). We can now expand this in the
small parameter ∂2/(aH)2 to obtain the free Lagrangian and subleading gradient terms. At the
leading order, we obtain the free action

Sfree =
∫
d3x dt − ν (φ̇+φ− − φ+φ̇−) . (8.4.74)

From this action, one can now assign a power-counting to the modes as

φ+ ∼ λα , φ− ∼ λβ . (8.4.75)
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In addition, we have to include the effect of the self-interaction terms. Since we integrate out
the hard modes, we expect that their effect is realised by an infinite tower of interaction terms,
organised by the power-counting parameter λ, and a generic term takes the form

Sint =
∫
d3x dt (aH)3−nα−nβ cn,m

n!m!φ
n
+φ

m
− , (8.4.76)

with generic integer n,m. There is one subtlety in these interactions, concerning terms of the
form

Lint,+ = (aH)3−nα φn+ . (8.4.77)

In the massless limit α → 0, these terms become super-leading as λ0 compared to the kinetic
term φ+φ̇− ∼ λ3, and it seems that these terms spoil the power-counting. However, these terms
are an artefact of our first-order formulation.

To be precise, note that the fields φ+ and φ− are conjugate variables in our formulation. This
manifests itself in the commutation relations [94]3

[φ+(t,x), φ−(t,y)] = i

2ν δ(x − y) . (8.4.78)

Therefore, in any correlation function, the super-leading interactions φn+ can only have an effect
if the correlator contains at least one φ−. Then, these interactions precisely produce leading-
power contributions. We will see their effect in action in Section 8.5, when we compute the
trispectrum.

At the moment it is unclear how one can reformulate the Lagrangian or the field basis to absorb
these super-leading interaction terms. In [94], a power-counting violating field redefinition was
suggested. However, in later computations [95], these redefinitions had to be reversed to yield
the correct results, so this approach does not seem promising.

Derivative Interactions

In principle, the effective Lagrangian can also contain derivative interactions, both time deriva-
tive and gradient terms, of the form

Lint ⊃ cn,m
n!m!

(
d

dt

)r ( ∂i
aH

)2s
((aH)αφ+)n

(
(aH)βφ−

)m
, (8.4.79)

where the time-derivative terms are not suppressed in the power-counting parameter λ. For these
terms, note that the equation of motion relates terms containing a single time derivative φ̇± to
terms containing spatial derivatives ∂2/(aH)2φ± plus higher-order corrections. Therefore, one
can eliminate all time-derivative terms in these interactions and trade them for gradient terms
that come with power-suppression. The most general interaction term then reads

Lint ⊃
csn,m
n!m!

(
∂i
aH

)2s
((aH)αφ+)n

(
(aH)βφ−

)m
. (8.4.80)

The precise structure of the subleading Lagrangian, as well as any symmetry relations between
the different terms due to the residual Lagrangian symmetries or RPI-like symmetries, is be-
yond the scope of this introductory chapter. Instead, we will only consider the leading-power
Lagrangian in the following, which is given by

L = −ν (φ̇+φ− − φ+φ̇−) − c4,0
4! (aH)4φ4

+ − c3,1
3! φ

3
+φ− + O(λ) . (8.4.81)

3We find a different sign here, because we employ the opposite sign-convention in the commutation relations of
creation and annihilation operators compared to [94].
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8.4.7 Gaussian Initial Conditions
Soft deSitter effective theory features a new type of matching conditions compared to conven-
tional EFT. The effective Lagrangian contains coefficients cn,m, which can be fixed in principle
already in a top-down approach by relating them to the full-theory interaction κϕ4 and sys-
tematically inserting redefinitions and taking care of the hard modes. This is similar to the
SCET Lagrangian, where all couplings are readily expressed in terms of the full-theory coupling
constants already during the Lagrangian construction. One might therefore wonder if a match-
ing computation is necessary, and if so, why. The reason why matching is required is formally
very similar to SCET. Here, we found that the effective theory contains new objects, the N -jet
operators, whose coefficients can only be determined by a matching computation.

In soft deSitter effective theory, there exist also a new class of objects, initial conditions for
the different correlation functions. The effective theory requires a matching computation to
specify these initial conditions, while the Lagrangian interactions then correspond to subleading
corrections of these correlations.

Physically, the Lagrangian describes only the evolution and dynamics of the soft modes,
which is in particular Gaussian. Therefore, any higher-point correlator immediately factorises
into Gaussian two-point correlations. However, the full theory has non-Gaussian correlations
due to hard interactions. This effect must be included by matching.

As an example, consider the two-point function. In the full theory, it is given by

⟨ϕ(t,x)ϕ(t,y)⟩ =
∫

d3k

(2π)3 e
ik·(x−y)⟨ϕ(t,k)ϕ(t,k)⟩ , (8.4.82)

and the momentum-space correlator can be computed in terms of the mode function (8.1.20) as

⟨ϕ(t,k)ϕ(t,k)⟩ = πH2

4(aH)3

∣∣∣∣H(2)
ν

(
k

aH

)∣∣∣∣2 . (8.4.83)

For small momenta k/aH → 0, the leading contributions to this correlation read

⟨ϕ(t,k)ϕ(t,k)⟩ ≈ πH2

4

[(2νΓ(ν)
π

)2 (aH)−2α

k2ν +
( 1

2νΓ(1 + ν) sin(πν)

)2 (aH)−2β

k−2ν

− 2 cot(πν)
πν

(aH)−3
]
. (8.4.84)

On the EFT side, the correlation function is given by inserting the decomposition (8.4.1)

⟨ϕ(t,k)ϕ(t,k)⟩ = H2
[
(aH)−2α⟨φ+(t,k)φ+(t,k)⟩ + (aH)−2β⟨φ−(t,k)φ−(t,k)⟩ (8.4.85)

+ (aH)−3 [⟨φ+(t,k)φ−(t,k)⟩ + ⟨φ−(t,k)φ+(t,k)⟩]
]
.

Comparing the coefficients of (aH)x, one finds the correlations

⟨φ+(t,k)φ+(t,k)⟩ = 22ν−2Γ(ν)2

π
k−2ν , (8.4.86)

⟨φ−(t,k)φ−(t,k)⟩ = π

2ν+2Γ(1 + ν)2 sin2(πν)k
2ν , (8.4.87)

⟨φ+(t,k)φ−(t,k)⟩ + ⟨φ−(t,k)φ+(t,k)⟩ = −cot(πν)
2ν , (8.4.88)

from which one can determine

⟨φ+(t,k)φ−(t,k)⟩ = −ieiπα

4ν cos(πβ) , (8.4.89)
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⟨φ−(t,k)φ+(t,k)⟩ = ieiπα

4ν cos(πβ) , (8.4.90)

compatible with the commutation relations

[φ+(t,x), φ−(t,y)] = i

2ν δ
(3)(x − y) . (8.4.91)

A similar computation is necessary for all other correlations, in principle at any loop order, if
the initial condition is corrected by hard loops. For the tree-level trispectrum, we compute this
explicitly below. For more details on this, we refer to the exposition in [94,95].

8.5 The Scalar Trispectrum in SdSET
As a final application for the effective theory, we perform the matching computation to the
tree-level trispectrum at O(κ). The full-theory result was computed in Section 8.3, where we
also explicitly obtained the hard and soft regions. The expectation is that the effective field
theory, using the Lagrangian interactions, precisely reproduces the soft region of the correlator,
while the hard region must be determined explicitly by a matching computation. Similar to the
two-point function, we can anticipate that the hard region will appear in the form of an initial
condition for the trispectrum.

Soft-deSitter Correlation

The relevant interaction Hamiltonian is given by

Hint =
∫
d3x

(
c4,0
4! (aH)3φ4

+ + c3,1
3! φ

3
+φ−

)
+ O(λ) , (8.5.1)

and the trispectrum in the effective theory takes the form

⟨ϕ1ϕ2ϕ3ϕ4⟩ = H4
(
⟨φ+,1φ+,2φ+,3φ+,4⟩ + (aH)−3 (⟨φ−,1φ+,2φ+,3φ+,4⟩ + perm)

)
+ O(λ) ,

(8.5.2)
where ϕi ≡ ϕ(t,xi), φ±,i ≡ φ±(t,xi). Here, we have included terms with a single φ− to account
for the super-leading interaction φ4

+. Only correlators with a single φ− are contributing, since
we can insert the super-leading interaction only once at O(κ). Perm denotes the permutations
of the φ− field.

For the first term, we have to evaluate

⟨φ+,1φ+,2φ+,3φ+,4⟩ = i

∫
d3x dt

(
µ̃

aH

)2α 〈[c3,1
3! φ

3
+(x)φ−(x), φ+,1φ+,2φ+,3φ+,4

]〉
, (8.5.3)

where we regularised the time integral using an analytic regulator and introduced the factorisa-
tion scale µ̃ = µeγE . The commutator is evaluated using the canonical commutation relations
(8.4.91). This yields∫

d3x
[
c3,1φ

3
+(x)φ−(x), φ+,1φ+,2φ+,3φ+,4

]
= − i

3c3,1
(
φ3

+(x1)φ+,2φ+,3φ+,4 + perm
)
, (8.5.4)

where perm denotes terms where the positions xi are permutated. The correlator is computed
in a straightforward fashion since the soft correlators are purely Gaussian and one can use

⟨φ3
+,1φ+,2φ+,3φ+,4⟩ = 3!⟨φ+,1φ+,2⟩⟨φ+,1φ+,3⟩⟨φ+,1φ+,4⟩ , (8.5.5)

which is readily evaluated using the initial condition (8.4.86)

⟨φ+,1φ+,2⟩ =
∫

d3k

(2π)3 e
ik·(x1−x2) 1

2k3
1
. (8.5.6)
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Thus, one finds for the momentum-space correlator

⟨φ+(t,k1)φ+(t,k2)φ+(t,k3)φ+(t,k4)⟩ = c3,1
8(k1k2k3k4)3

∑
i

k3
i

3

( 1
2α + log µ

aH
+ γE

)
, (8.5.7)

where ∑i k
3
i arises from pulling out the denominator (k1k2k3k4)−3 in each term.

The second contribution arises due to the superleading interaction in the Lagrangian, where
we find

(⟨φ−,1φ+,2φ+,3φ+,4⟩ + perm) = (aH)3 c4,0
24(k1k2k3k4)3

∑
i

k3
i

3 . (8.5.8)

The full Soft deSitter correlator then reads

⟨ϕ1ϕ2ϕ3ϕ4⟩ = H4
(

c3,1
8(k1k2k3k4)3

∑
i

k3
i

3

( 1
2α + log µ

aH
+ γE

)
+ c4,0

24(k1k2k3k4)3

∑
i

k3
i

3

)
(8.5.9)

Comparing this to the full-theory result (8.3.4), one finds that this is precisely the soft region
(8.3.25) with c3,1 = c4,0 = κ.

Initial Condition

Therefore, the hard region (8.3.21) is missing in the effective theory and must be implemented
by an initial condition for the four-point correlator. Specifically, it reads

⟨ϕ1ϕ2ϕ3ϕ4⟩IC = λH4

8(k1k2k3k4)3

[(
1
3
∑
i

k3
i

)(
− 1

2α + ln kt
µ

− 2
)

(8.5.10)

− 1
9k

3
t + 1

3kt

∑
i

k2
i −

∑
i<j

kikj

+ 2
∑
i<j<l

kikjkl − k1k2k3k4
kt

]
.

Note that these non-Gaussian initial conditions are not specific to SdSET but appear more
generally in inflationary effective field theories. These initial conditions can be implemented
directly in the Schwinger-Keldysh generating functional, where they correspond to new types of
operators with non-local interaction vertices. This form is useful for a systematic investigation of
subleading-power effects, and the construction is explained in detail in [109]. For our purposes,
the implementation as initial condition for each correlator is sufficient.

8.6 Conclusion
In this section, we have touched on the dynamics of a light scalar field in a deSitter space-time.
We have explained the pathological behaviour of the free, massless scalar field, where a two-point
function and corresponding vacuum state cannot be defined. Then, we have turned our attention
towards promising ideas that can partly resolve these problems for an interacting scalar field,
encountering non-perturbative physics. One of the most recent entries is Soft deSitter Effective
Theory [94,95], which aims to incorporate EFT methodology into this discussion. After verifying
that the method of regions can be applied to deSitter correlation functions, we have explained
in detail how the free action can be derived, and how it is related to the non-relativistic scalar
field, expanding on the discussion in [94]. Then, we have explicitly performed a matching
computation for the trispectrum, where we found that the Lagrangian precisely reproduces the
soft region of the time-integral, while the hard region must be included as a non-Gaussian initial
condition [94,95,109].

The next step in this program is to rigorously understand how the effective theory encodes
the non-perturbative effects, like dynamic mass generation. In [94,95], a trick is employed that
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relates the renormalisation group equations (RGE) of the effective theory to the Fokker-Planck
equation of stochastic inflation. However, it seems strange that the dynamics of a correlation
function follow from the RGE, and not from a quantum field theoretic object like the quantum
effective action. Moreover, the derivation presented in [94] lacks rigour and seems quite ad-hoc.
Therefore, this property needs to be investigated and must be well-understood before one can
truly claim that this effective theory resolves the infrared problems. This is part of an ongoing
investigation [105].
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Conclusion and Outlook
Chapter 9

In this thesis, we presented the systematic construction of the soft-collinear effective theory
of gravity beyond leading power. Starting from the simple example of a purely-scalar theory,
we explained how the soft-collinear effective theory can be obtained to any desired order in
the power-counting parameter and discussed the appearance, necessity and properties of the
N -jet operators, obtaining a minimal set of building blocks. We increased the complexity at
each step by first allowing for gauge symmetries, which needed to be modified to account for
the multipole expansion, and finally considering gravitational interactions. Throughout the
derivation, the guiding principle was the effective gauge symmetry which lies at the heart of
this discussion. By exploiting covariance with respect to an emergent homogeneous background
symmetry, the Lagrangian can be constructed to all orders in the power-counting parameter –
both in the case of gauge theory as well as gravity.

The key insight besides the technical details and the full effective Lagrangian is the new
intuition in the gravitational sector. We found that the soft-collinear effective theory is covariant
with respect to an emergent background field that contains not one but two independent gauge
fields, one linked to local translations – restricted to the classical trajectory of the energetic
particles – and one linked to local Lorentz transformations on this light-cone. The effective
theory can then be constructed in a straightforward fashion as long as each object is covariant
with respect to this background. The soft gauge symmetry also severely restricts the possible
operator basis of the N -jet operators, and immediately implies the soft theorem with three
universal terms in gravity, and two universal terms in gauge theory.

In the gravitational soft theorem itself, we found that the first two terms should be viewed as
eikonal terms and are related to the effective gauge fields. They are of the same origin as the
first (eikonal) term in gauge theory. The sub-subleading term, on the other hand, is the exact
analogue of the subleading term in gauge theory. In this way, the effective theory provided a new
interpretation and explanation for both the form and the number of universal terms in the soft
theorem, both in the case of gravity and gauge theory, linking them directly to the soft gauge
symmetry. We managed to identify these terms already at the Lagrangian level and restated
the soft theorem as an operatorial statement.

Since the soft theorem is only a tree-level process, we made use of the properties of the
effective theory to investigate its loop corrections. Using only the power-counting and eikonal
identities due to the multipole expansion, we found that in gravity, the leading-power term is
never affected by loop corrections, the next-to-leading power term is at most affected by one-
loop, and the next-to-next-to-leading power term at most by two-loop contributions, reproducing
the result in [32] in the effective theory.

Single soft-emission processes are the simplest type one can consider in SCET, and the effec-
tive theory automatically provides the rules to generalise these computations to multiple soft
emissions, even accounting for quantum corrections. This approach complements the insights
gained from spinor-helicty [29] or the double-copy [37, 65, 66] methods employed in the inves-
tigation of scattering amplitudes. It would be interesting to further explore the connection of
SCET to the large field of asymptotic symmetries [34, 46, 110–112]. Here, the soft theorems
follow from Ward identities of these asymptotic symmetries. It would be worthwhile to relate
these symmetries to the effective theory, strengthening the interconnections in this triangle of
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effective theories, scattering amplitudes and asymptotic symmetries.
The framework of SCET gravity now allows for a systematic investigation of soft and collinear

gravity beyond leading power. This is interesting in particular for the collinear sector, where in-
teractions begin at next-to-leading power. While the actual technical form of the Lagrangian as
well as most expressions are a lot more complicated and lengthy than the corresponding ones in
gauge-theory, the structure of interactions is, surprisingly, simpler than gauge theory. For exam-
ple, there are no leading-power collinear interactions and thus no collinear divergences in gravity.
Furthermore, both the purely-collinear and purely-soft interactions are power-suppressed when
considering higher-point interactions. This implies that gravitational loops, if they are not of
soft-collinear origin, are in general power-suppressed and thus there often are only a finite num-
ber of loop corrections to a given object. For example, the analogue of the collinear function
in gravity would be 1 at leading-power, since there are no interactions. However, at O(λ), it
is not possible to form any loops, since these require multiple collinear interactions and are
thus power-suppressed. Therefore, one can immediately conclude that the N -th order collinear
function is also N -loop exact. This is in stark contrast to gauge theory, where these objects are
modified by arbitrary loop corrections at any order.

Consequently, the effective theory provides a starting point for a systematic derivation of
factorisation theorems in gravity and comparing these with the results in QCD. While these
considerations are not as interesting for the phenomenological community, they could provide
new insights into the relation between gauge theory and gravity, and how these theories are
connected in the infrared.

To close this discussion, let us go back to the very beginning, where we quoted Weinberg [1]:
“It would be difficult to pretend that the gravitational infrared divergence problem is very urgent.
My reasons for now attacking this question are: (1) Because I can. [...] (2) Because something
might go wrong and this would be interesting. Unfortunately, nothing does go wrong.”
We attacked this problem with a similar motivation, because we could, well-knowing that
collinear divergences are absent and indeed nothing does go wrong in gravity, because noth-
ing can go wrong if low-energy gravity is a consistent quantum theory. However, the effective
theory has to take a very intricate form to incorporate leading-power soft interactions – which
are related to soft divergences – while not allowing collinear divergences. This form is con-
strained by the power-counting and the effective gauge symmetry, and while the purely-collinear
sector appears close in form to the usual weak-field gravity, the soft-collinear one emerges very
differently and closely resembles a gauge theory. This result, we would say, is interesting.
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A List of Useful
Gauge-transformation Identities

Appendix A
This appendix from [47] summarises a number of key identities that are used throughout the
derivation. These properties are derived from the corresponding properties one uses in the
passive point of view, where one considers the explicit action of the coordinate transformation
x → x+ ε(x). In the following, we denote ε(x) ≡ ε and U(x) ≡ U , suppressing the arguments.
We have

• the gauge transformation U (4.2.5),

U = 1 − εα∂α + 1
2ε

αεβ∂α∂β + εα∂αε
β∂β + O(ε3) , (A.0.1)

• its inverse U−1,
U−1 = 1 + εα∂α + 1

2ε
αεβ∂α∂β + O(ε3) , (A.0.2)

• the Jacobian matrix Uµα ,
Uµα = δµα + ∂αε

µ , (A.0.3)

• the inverse Jacobian matrix U µ
α ,

U µ
α = δµα − ∂αε

µ + ∂αε
β∂βε

µ + O(ε3) , (A.0.4)

• the Jacobian determinant det(U) of the Jacobian [U ]µα = Uµα ,

det(U) = 1 + ∂αε
α + 1

2∂αε
α∂βε

β − 1
2∂αε

β∂βε
α + O(ε3) , (A.0.5)

• the inverse Jacobian determinant det
(
U−1

)
,

det
(
U−1

)
= 1 − ∂αε

α + 1
2∂αε

α∂βε
β + 1

2∂αε
β∂βε

α + O(ε3) . (A.0.6)

These objects satisfy a number of useful identities, that we employ in the following.

• They are inverse with respect to each other, i.e.

UU−1 = 1 , UµαU
ν

µ = δνα , det(U) det
(
U−1

)
= 1 . (A.0.7)

• We can move translation and inverse translation past derivatives,

[∂µUϕ] = UU α
µ ∂αϕ , (A.0.8)[

∂µU
−1ϕ

]
= UαµU

−1∂αϕ , (A.0.9)

which is consistent with the gauge transformation of a covariant vector.
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• There is a “product rule” for the translation operator

[Uϕψ] = UϕψU−1 = UϕU−1UψU−1 = [Uϕ] [Uψ] , (A.0.10)

and the same holds for U−1.

• Scalar densities √
−gϕ are gauge-invariant up to total derivatives. These transform as∫

d4x
√

−gϕ →
∫
d4x

√
−gϕ . (A.0.11)

With the gauge transformation of the metric determinant
√

−g → U det
(
U−1

)√
−g , (A.0.12)

one can infer ∫
d4x U det

(
U−1

)√
−gϕ =

∫
d4x

√
−gϕ , (A.0.13)

which is the active point of view of the invariance (A.0.11).

• There is an integration by parts identity based on (A.0.11). Moving the inverse trans-
lation U(x) from one term to another via integration by parts, we generate U−1 and a
determinant, namely

ϕUψ = det(U)
[
U−1ϕ

]
ψ . (A.0.14)
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