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Abstract—When we allow Unmanned Aerial Vehicles (UAVs)
to perform their missions autonomously in the near future, we
need to ensure their safe behavior. To generate relevant test
cases that can reveal potential faults in the tested UAVs, we
propose to leverage scenario-based testing from the automotive
domain. For a systematic application of this methodology, we
present StellaUAV, a tool for testing the safe behavior of UAVs
with scenario-based testing. With our proposed tool, we can
describe relevant test situations, generate test cases for these
situations that can reveal potential faults in the tested UAV, and
evaluate the performance of different optimization algorithms
and their combinations. To demonstrate its applicability, we
apply StellaUAV to generate test cases for various situations
and discover several safety distance violations of the tested
exemplary UAV in the presence of dynamic obstacles. These
experimental results indicate that the given system under test
can handle situations with only static obstacles rather well,
while it encounters problems when facing dynamic ones. Further,
we detect that a combination of optimization algorithms can
find safety distance violations for a logical scenario that the
widely used algorithm NSGAII deemed safe for the tested system.
Overall, our results show that StellaUAV can effectively detect
potential faults in the tested UAV.

Index Terms—unmanned aerial vehicles, scenario-based test-
ing, test case generation, safety

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are used in various use
cases such as monitoring areas, delivering packages, or search
& rescue operations [1], [2], [3]. As an industrial example,
Zipline has effectively supplied medicine in Rwanda with
UAVs since 2016 [4]. As autonomously operating UAVs are
on the rise and will perform most of these use cases in the
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future, we need to ensure that they behave safely and do not
harm anybody or anything while operating.

When testing the safe behavior of autonomously operating
UAVs, we need to inspect their behavior in various situations
and ensure that they behave safely, even in the most chal-
lenging situations, called worst-case situations. To tackle these
challenges, we propose to leverage scenario-based testing [5]
from the automotive domain, where the method has provided
valuable insights into the safe behavior of autonomous cars [6],
[7], [8]. In scenario-based testing, we test the System Under
Test (SUT) in typical situations that it might encounter in the
real world. An example of such a typical situation for a UAV
is the following: the UAV has the mission to autonomously
fly to a target point in foggy conditions and light rain while
avoiding two dynamic obstacles. For each of these situations,
we then search for challenging situations for the SUT to
find test cases that can reveal potential faults in the SUT.
Note that we cannot apply the concepts from the automotive
domain without modifications and extensions. This adaptation
is needed as the environment of cars is structured in a much
more rigid and fine-grained way: by geometric constraints such
as possibly curved streets, lanes, and crossings; by temporal
constraints imposed by the movements of other vehicles; and
by regulations such as traffic rules. This information helps
define and restrict the search space for relevant test cases
for autonomous cars. Without this additional information,
specifying test situations and the UAVs’ safe behavior is more
challenging, as spelled out in [9]. Moreover, we focus on mis-
sions for UAVs, whereas one concentrates on maneuvers for
autonomous cars, which present more fine-grained descriptions
of the systems’ expected behavior. Thus, we need to define
different test situations and adapt the methodology to find
challenging situations for UAVs. For the systematic application
of scenario-based testing, we need a tool that enables us to (A)
define typical situations in which we aim to test the UAVs’
behavior, (B) generate test cases that represent worst-case
situations for the SUT, and (C) evaluate the quality of the
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generated test cases.
In related work, the authors of [10] and [11] present

frameworks focusing on testing the reliability of UAVs and
path planning algorithms. The authors of [12] concentrate on
generating test cases based on belief state machines and min-
imizing test suites for testing the reliability of cyber-physical
systems. In contrast with these works, we focus on testing the
safe behavior of UAVs as another essential aspect of testing
these autonomously operating cyber-physical systems. Further,
we can not directly apply tools from the automotive domain
[13], [14] to test the safe behavior of UAVs since different
situations are challenging for these two kinds of systems. In
[15], the authors provide a framework for testing the stability
of a controller for UAVs with metamorphic and model-based
testing. When applying the presented methodology, one needs
to define correct and complete metamorphic relations, which
is a challenging task in practice. In contrast, our focus is on
scenario-based testing and the definition of relevant typical
situations for the entire SUT. The authors of [16] apply fault-
injection methods to test the safe behavior of their UAV
autopilot system in their framework. However, such fault-
injection techniques assume that we already know all relevant
faults, which is not the case when testing the safe behavior
of UAVs. In contrast with their work, we aim to also find
unknown faults in our systems by searching for challenging
situations for the SUT. To summarize, existing tools and
frameworks focus on testing the reliability of UAVs or the safe
behavior of autonomous cars. To the best of our knowledge,
there is no tool for testing the safe behavior of UAVs with
scenario-based testing that allows for the specification of test
scenarios for UAVs and the evaluation of their safe behavior.

The contribution of this paper is StellaUAV, a tool for
testing the safe behavior of autonomously operating UAVs
using scenario-based testing. With StellaUAV, we can specify
test scenarios and generate worst-case situations for each of
them with the help of optimization algorithms. As StellaUAV
uses implementations of various such algorithms, we can
further compare the test cases created by different algorithms
with StellaUAV. Using StellaUAV, we have found that the
results of different optimization algorithms differ by as much
as 20%, a result of the heuristic nature of these algorithms and
a hint to the practitioner that, in general, it is not sufficient to
rely on just one such algorithm.

Organization. In Section II, we demonstrate the process
of testing the safe behavior of UAVs with scenario-based
testing. Section III describes the methodology, and Section IV
presents the architecture of StellaUAV. In Section V, we
show experimental results of applying StellaUAV. Section VI
discusses related work; Section VII concludes.

II. SCENARIO-BASED TESTING

When applying scenario-based testing to assess a UAV’s
safe behavior, we distinguish between logical and concrete
scenarios, as proposed by the authors of [17]. Logical sce-
narios describe typical situations in which we aim to test the
UAV’s behavior. We describe these logical scenarios with n

TABLE I
EXAMPLE OF A LOGICAL SCENARIO FOR TESTING THE SAFE BEHAVIOR OF

UAVS WITH MODERATE AMBIENT TEMPERATURE, LIGHT RAINFALL,
MODERATE CLOUD COVERAGE, AND FOG.

Parameter P Value Range (Min, Max)
p1 temperature [◦C] (10.0, 30.0)
p2 precipitation [cm/h] (0.1, 0.25)
p3 cloud coverage [%] (10.0, 50.0)
p4 reduced visibility [m] (200.0, 1000.0)

TABLE II
TWO EXEMPLARY CONCRETE SCENARIOS FOR THE LOGICAL SCENARIO

PRESENTED IN TABLE I.

Parameter P Test Case 1 Test Case 2
p1 temperature [◦C] 15.2 27.1
p2 precipitation [cm/h] 0.21 0.13
p3 cloud coverage [%] 44.8 31.9
p4 reduced visibility [m] 430.0 873.5

parameters P = {p1, p2, . . . , pn} and their respective parame-
ter ranges. Table I contains an exemplary logical scenario that
describes the UAV’s environment with light rain, moderate
ambient temperature, medium cloud coverage, and fog. In this
example, parameter p1 represents the ambient temperature in
degrees Celsius in the presented logical scenario. Parameter p2
specifies the range for the light rainfall in centimeters per hour,
and p3 describes the moderate cloud coverage between 10%
and 50%. Finally, p4 introduces fog that affects the visibility of
the UAV in the logical scenario with reduced visibility of 200.0
to 1000.0 meters. Table I presents a simplified, incomplete, and
exemplary logical scenario that we may enrich with additional
parameters, such as the wind force and direction or parameters
of the included obstacles. By selecting concrete values from
the ranges of each parameter, we create a concrete scenario
that represents a test case for our SUT. Table II presents two
concrete scenarios that instantiate the logical scenario defined
in Table I. In the first exemplary concrete scenario, we, e.g., set
the ambient temperature to 15.2 degrees Celsius, the rainfall
to 0.21 centimeters per hour, the cloud coverage to 44.8%, and
the reduced visibility to 430.0 meters. The derivation of such
concrete scenarios is the purpose of the test case generation
procedure described below.

Let us now turn our attention to the general process of
testing the safe behavior of UAVs with scenario-based testing.
As depicted in Fig. 1, we first define the test situations for the
SUT as logical scenarios 1 . As explained above, we define
these logical scenarios with parameters that describe the UAV
and its environment. Next, we need to ensure that the derived
list of logical scenarios represents all relevant test situations
5 to enable certification of these systems. How to achieve

this goal is a very active research area in the scenario-based
testing community [18], [19], [20]. Even if we cannot be sure
that we have defined a complete list of logical scenarios, we
still need to gain an intuition if our list is representative of
relevant test situations for the SUT. Once we are sufficiently
satisfied with the completeness of the list of logical scenarios
for testing the SUT, we proceed to generate test cases for each
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Fig. 1. Methodology of testing the safe behavior of UAVs with scenario-based
testing. Our tool provides a solution for the highlighted activities.

of them 6 . Otherwise, we return to step 1 and collect more
logical scenarios before creating test cases. Finally, we need to
ensure that the UAV behaves safely in all instances of a logical
scenario 9 to achieve a thorough safety argumentation about
the UAV’s behavior. As it is infeasible to test all instances of a
logical scenario, we instead aim to derive the most challenging
ones and inspect the UAV’s safe behavior in these. We can find
these challenging concrete scenarios by casting the test case
generation problem as an optimization problem, as we explain
below.

One way to identify logical scenarios for testing the safe
behavior of UAVs is based on “mental models” 2 that reflect
experts’ intuition about challenging and relevant situations for
UAVs. This intuition stems from literature, specifications, and
experts’ knowledge of challenging situations for the SUT, as
presented in [17], [21]. The use of these (implicit) mental
models arguably is the predominant approach for manually
deriving logical scenarios today. As we cannot easily state
whether a manually derived list of logical scenarios presents
all relevant logical scenarios for a SUT, literature suggests
applying data-driven approaches to complement the manually
derived logical scenarios 3 . One example of these approaches
is [22], which applies clustering techniques to collected real-
world data of the SUT. With these techniques, we automat-
ically group the gathered concrete scenarios from the real
world that show similar behavior. These clusters of concrete
scenarios represent potential relevant logical scenarios for the
SUT. The manual and the data-driven methods both yield a
list of logical scenarios 4 to test the SUT.

In the test case generation step 6 , we aim to create
“good” test cases as introduced in [23] instead of randomly
sampling the search space for test cases. These “good” test
cases represent challenging worst-case situations for the SUT
and, thus, can reveal potential faults in the SUT. We can detect
unsafe behaviors of an incorrect system in such “good” test
cases while a correct system presents a safe behavior by, e.g.,
keeping specified safety distances to all obstacles. The search
for “good” test cases can then be formulated as an optimization
problem with the goal of, for instance, minimizing the distance
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Fig. 2. The three fundamental use cases of StellaUAV as a tool for testing
the safe behavior of UAVs with scenario-based testing.

to obstacles in the scenario and hopefully going below an
acceptable safety margin. Optimization algorithms 7 such as
Non-dominated Sorting Genetic Algorithm II (NSGAII) [24]
or Particle Swarm Optimization (PSO) [25] perform this search
and derive “good” test cases 8 for the SUT, including the
worst-case situation for the tested logical scenario, as a result.

In this work, we present a tool for testing the safe behavior
of UAVs with scenario-based testing. Thus, we focus on
the test case generation step 6 . Further, the tool provides
implementations of various optimization algorithms and their
combinations to allow for their evaluation in step 9 .

III. METHODOLOGY

In this section, we describe the fundamental use cases of
our tool StellaUAV and present the methodology we apply
for each of them. The three essential use cases of StellaUAV
are: (A) describing relevant logical scenarios for the SUT, (B)
generating “good” test cases that depict worst-case situations
for the SUT, and (C) evaluating the performance of various
optimization algorithms for our use case. Fig. 2 presents an
overview of these use cases and their relationship.

A. Describing Logical Scenarios

Before we can evaluate the behavior of a UAV in a logical
scenario, we first need to describe the characteristics of this
logical scenario. Remember that logical scenarios are defined
by parameters and their ranges, e.g., p1 as the ambient
temperature with a range of 10.0 to 30.0 degrees Celsius.
We propose to use the JavaScript Object Notation (JSON)
format to provide a machine-readable description of a logical
scenario. We selected JSON since it offers a simple syntax,
has easy and fast parsing possibilities, and has the option to
present various data types. In addition, the JSON syntax allows
us to specify a general schema that all logical scenarios need to
comply with. In such a JSON schema, we can define necessary
and optional dimensions of logical scenarios and possible
parameter values such as cold, moderate, or hot temperature.
Note that such categories are system-specific and that we need
to define the corresponding value ranges for each of these
categories specifically for the SUT. Such a system-specific
description enables us to search for challenging situations for
our SUT since, e.g., the cold temperature might be represented
by a temperature of 5.0 to 10.0 degrees Celsius for UAVs
operating near the ground and a temperature of −10.0 to 0.0
degrees Celsius for UAVs flying in high altitudes.
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Fig. 3. Exemplary worlds that we can simulate with StellaUAV with different
landforms, surface natures, and obstacles of various sizes and forms.

StellaUAV provides a JSON schema that includes various
landforms, surface natures, obstacle kinds, obstacle sizes,
obstacle forms, wind forces, and reduced visibilities. Fig. 3
presents examples of simulation worlds built with StellaUAV
with these options. In each logical scenario, StellaUAV auto-
matically sets the mission of the UAV to fly to a specified
waypoint dependent on the landform in which it operates.
Fig. 4 shows an example of a logical scenario specified in
JSON for StellaUAV. All chosen parameter values represent
parameter ranges, e.g., moderate wind force stands for a wind
force of 4.0 − 8.0 kilometers per hour, and medium-sized
obstacles for obstacles of a size of 5.0−10.0 meters. We need
to define these value ranges manually and system-specifically
as different situations present challenging situations for various
kinds of UAVs. If necessary, the list of parameters can be
extended by the user.

B. Generating “Good” Test Cases

To evaluate the safe behavior of UAVs, we aim to find
challenging situations in the provided logical scenarios. In
order to do so, StellaUAV first derives the search space for
each logical scenario. We define the dimensions of this search
space with the logical scenario’s parameters P and their
corresponding value ranges. In addition, we include the initial
obstacle positions and their velocities in the search space in
StellaUAV. To find “good” test cases in this search space,
we specify a fitness function f that encodes the notion of
challenging situations. StellaUAV uses the fitness function
described in [9], which is used to minimize the difference
between the minimal distance d(cs, t) that the UAV keeps in

{
"name": "Test Scenario #1",
"system": {

"UAVs": [{"maneuvers": ["move to waypoint"]}]
},
"environment": {

"flight area": {
"landform": "flat",
"surface nature": "land"

},
"obstacles": [

{
"kind": "dynamic",
"size": "medium",
"form": "sphere"

},
{

"kind": "static",
"size": "large",
"form": "cuboid"

}
],
"weather": {

"wind force": "moderate",
"reduced visibility": "heavy_fog",
"lighting": "normal",
"temperature": "moderate",
"precipitation": "none",
"lightning": "none",
"cloud cover": "none"

}
}

}

Fig. 4. Example of a logical scenario specified in JSON.

a concrete scenario cs to any of the obstacles at time t ∈ T
and a specified safety distance s(cs, t):

f(cs) = min({t ∈ T : d(cs, t)− s(cs, t)}) (1)

This fitness function provides an automatic oracle about the
safe behavior of the UAV: If the fitness function evaluates
to a negative value, the UAV violated the specified safety
distance. Otherwise, the UAV exhibited safe behavior in the
evaluated concrete scenario as it kept a sufficient distance from
all obstacles: ∀t ∈ T : d(cs, t) ≥ s(cs, t). After the definition
of the search space and the fitness function, the tool searches
for “good” test cases following the process depicted in Fig. 5.

The input to the test case generation step 6 from Fig. 1 is
a logical scenario I in which we aim to evaluate the UAV’s
behavior and an optimization algorithm II to perform the
search for “good” test cases. The optimization algorithm first
picks an initial set of concrete scenarios from the search space
to evaluate the UAV’s behavior. In step III , the tool builds
for each concrete scenario the simulation environment IV
for the applied simulator according to the parameter values
of each concrete scenario. In step V , StellaUAV starts the
simulation in the built environment, positions the SUT VI in
it, and sends the SUT on its mission to fly to the specified
destination point using an external interface (the MAVSDK-
Python library). Note that we define the mission as part of the
evaluated logical scenario. Throughout the simulation, the tool



PreP
rin

t
Start

End

6

I II

III

Optimization 
Algorithm

Logical 
Scenario

Test Case 
Generation

Test Cases

Simulation Run & 
Data Collection

V

Environment 
Building

Fitness Function 
Evaluation

Control flow
Data flow Resource

Activity

Worst-Case 
Situation

SUT

Simulation

IV

Environment

VI

VII

VIII IX

Fig. 5. A detailed look at the test case generation process of the tool
StellaUAV, which describes step 6 in Fig. 1.

collects data about the position of the SUT and the obstacles.
Finally, after the simulation has finished, StellaUAV computes
the fitness value of the evaluated concrete scenarios VII . In this
step, the tool applies (1) to calculate the remaining distance
until the SUT violates the specified safety distance at each time
step. For this computation, StellaUAV calculates the minimal
distance that the SUT keeps to any obstacle at each time
step and compares it with the specified safety distance. After
assessing the initial set of concrete scenarios, the selected
optimization algorithm generates additional concrete scenarios
with the goal to create “better” test cases that depict worst-case
situations for the SUT. Results from the test case generation
step are the created test cases VIII and the worst-case situation
found in the evaluations IX . The behavior of the SUT in this
worst-case situation shows us its safe or unsafe behavior in
the provided logical scenario.

To ensure the realism of the generated test cases, StellaUAV
checks whether the created concrete scenarios represent in-
stances of the evaluated logical scenarios. The tool assigns
a poor fitness value to a concrete scenario that does not
conform to the logical scenario as it, e.g., does not perform
the specified mission. Secondly, we exclude concrete scenarios
with dynamic obstacles with very high velocities to enable
the SUT to cope reasonably with these obstacles. If the
obstacles move too fast and the SUT cannot react to them, we
cannot blame the SUT when violating any safety distances.
Thus, we need to ensure that the SUT can theoretically keep
the specified safety distance and test whether it does so. In
StellaUAV, we prevent these unavoidable situations by limiting
the velocity of the dynamic obstacles and not placing them
next to the starting or landing area. Finally, note that we
use approximations of real-world obstacles and include only
specific environmental effects due to the limitations of our
simulation setup that we will discuss in the next section,
which limits the representativeness of real-world situations.
Nonetheless, we depict various relevant environmental effects
for UAVs, such as wind and fog, and include static and
dynamic obstacles.

C. Evaluating Optimization Algorithms

If the presented test case generation procedure results in an
unsafe behavior of the tested UAV, we need to fix the corre-
sponding fault to develop a safely behaving UAV. However, if
the UAV shows a safe behavior in all test cases we derived
for a logical scenario — even in the most challenging one
— there are two potential causes for this behavior: (1) the
UAV indeed always behaves safely in the provided logical
scenario, even in the most challenging situation; or (2) due to
its heuristic nature, the optimization algorithm did not discover
the most challenging situation. In the second case, we hence
do not know whether the UAV will behave safely in this
missing worst-case situation. Thus, to build a thorough safety
argumentation about the UAV’s behavior, we need to assess the
quality of the generated test cases. We propose to evaluate this
quality by applying various optimization algorithms to gain an
understanding of the most suitable one for finding worst-case
situations for the SUT.

StellaUAV allows for such considerations by providing
various optimization algorithms for generating “good” test
cases, namely NSGAII, PSO, and BO and their collaborative
combinations, as explained in [26]. In these collaborative
combinations, the optimization algorithms share information
between sequential executions of the different algorithms.
Roughly, the best solutions found by one algorithm are used as
initial solution candidates for another algorithm, as suggested
by related work on seeding strategies [27], [28], [29]. In
addition, we add to the initial candidates of the succeeding
optimization algorithm random candidates from the areas of
the search space in which the algorithm combination produced
the fewest candidates so far. StellaUAV uses permutations
of three-fold combinations of the optimization algorithms
NSGAII, PSO, and BO without repeating the same algorithm
in two subsequent executions. The resulting worst-case situa-
tion of a combination is the concrete scenario with the lowest
fitness value found in all algorithms of this combination. When
evaluating the performance of various optimization algorithms
and their combinations, we encourage test engineers to per-
form several runs of each algorithm for a specific logical
scenario to gain reliable results.

IV. ARCHITECTURE

Fig. 6 depicts the architecture of StellaUAV and highlights
connections with the presented methodology in Fig. 5 by
referencing essential steps. StellaUAV consists of four main
packages that implement the optimization process, the opti-
mization algorithms, the forms of the obstacles, and additional
utility classes. In the optimization process package, StellaUAV
includes classes to build the simulation world in the simulator
Gazebo [30], formulate the search problem as a FloatProblem
of the jmetalpy framework [31], and communicate with the
UAV, the SUT, via the MAVSDK-Python library [32]. The
open-source simulator Gazebo offers the possibility to simulate
various systems such as UAVs, submarines, and robots in envi-
ronments with different landforms, obstacles, and environmen-
tal effects. The simulator further presents an extensive set of
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Fig. 6. The architecture of our tool StellaUAV for testing the safe behavior of UAVs. To visualize the connections of the implementation with the methodology,
we additionally present steps from Fig. 5. Finally, we highlight third-party libraries and frameworks in gray.

sensors and plugins to enrich the features of the environment.
We specify the simulation environment IV in Gazebo in a
.world file. We generate this file in the WorldBuilder class of
StellaUAV III . Currently, StellaUAV includes the landform,
the water level, the obstacles with their behavior, the wind
force from one direction, and fog to reduce the visibility of
the UAV in this file. To include additional elements in the
simulation environment, we only need to extend the adapt()
function of the WorldBuilder class. In the UAVProblem class,
we define the search problem by specifying the search space
and the fitness function. An optimization algorithm calls the
evaluate() function of this class to simulate the UAV in the
chosen concrete scenario and implemented simulator V and
evaluate its fitness value VII . The Drone class connects to
the simulated UAV VI via MAVSDK to upload and start
its mission. MAVSDK provides APIs for controlling and
communicating with MAVLink systems, such as UAVs, by
supplying them with missions or movement controls.

We implement the various optimization algorithms II
used in StellaUAV in the optimization algorithms package, in
which all algorithm implementations inherit from the abstract
BaseAlgorithm class. For the implementation of NSGAII
and an enhanced version of PSO, called Speed-constraint
Multi-objective PSO, we use the jmetalpy framework [31].
This framework provides implementations of various multi-
objective optimization algorithms and for describing search
problems that these algorithms evaluate. For the imple-
mentation of Bayesian Optimization (BO), we apply the
BayesianOptimization framework [33], which presents an im-
plementation of this algorithm that models the fitness function
with a Gaussian process. We can easily extend the list of
optimization algorithms by adding an implementation of the

new algorithm that inherits from the BaseAlgorithm class and
includes methods to define and run the chosen optimization
algorithm.

In the obstacle forms package, StellaUAV includes different
forms of obstacles used in the simulations. As we currently
use approximations of real-world obstacles, the tool provides
implementations of cuboid, spherical, and cylindrical obstacles
that inherit from the abstract ObstacleForm class. To add new
obstacle forms, we can extend this ObstacleForm class by
implementing methods for computing the distance to these
new obstacle forms and updating their position.

Finally, StellaUAV includes utility classes in the util pack-
age. This package incorporates a class for converting the
JSON files we use to describe specific logical scenarios I
into parameter ranges, which specify the search space. It fur-
ther contains the class HandleRecordedData that assesses the
UAV’s behavior in the simulation by inspecting the recorded
data of the simulation and computing the SUT’s distance to
the obstacles during the flight. The DockerSimulation class
runs the simulation in a Docker container and copies the log
files to the host system. The AlgorithmCombinationRun class
implements sequential combinations of the optimization algo-
rithms. Finally, the class GUIEvaluation implements a GUI
for the parameter selection of the tool, including the logical
scenarios to evaluate, the maximum number of evaluations
to perform per optimization algorithm, the size parameter of
the algorithm, and the optimization algorithms to use for the
evaluation of the safe behavior of the SUT.

Limitations and Extensibility. StellaUAV currently uses
the open-source simulator Gazebo to represent the simulation
world. The capabilities of this simulator limit the environmen-
tal effects we can depict in the tested logical scenarios. Gazebo
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can display different landforms, surface natures, obstacles,
wind forces, and various degrees of fogginess. However, it
lacks the possibility to model, e.g., rain, ambient temperature,
or cloudiness. To extend StellaUAV with another simulator,
we need to adapt the step in which we build the simulation
world in the class WorldBuilder III and launch this other
simulator instead of Gazebo in the roslaunch files. StellaUAV
tests the safe behavior of UAVs by generating “good” test
cases for the SUT VI . As a prerequisite, the tested UAV
must provide the possibility to communicate via the Robot
Operating System (ROS) [34] and MAVSDK to use StellaUAV.
To change the SUT in StellaUAV, we need to adapt the
roslaunch files to launch the new SUT and the script for
running the simulation of this new SUT. Note that no further
changes to the source code are necessary to apply another
SUT. In our experiments, we test the PX4 autopilot [35],
which we explain in more detail in Section V-A. Note that
we demonstrate our methodology with Software-in-the-Loop
testing in this work but can also apply it for Model-in-the-
Loop or Hardware-in-the-Loop testing. Finally, note that the
user needs to specify the logical scenarios in which they aim
to test the SUT and the optimization algorithm with its size
parameter and a maximum number of evaluations to search
for worst-case situations.

V. EVALUATION

In this section, we present logical scenarios for testing the
safe behavior of the PX4 autopilot [35] in a Software-in-the-
Loop simulation and generate “good” test cases for them with
StellaUAV and various optimization algorithms. We provide
the source code for our tool StellaUAV in [36]. This source
code also allows replicating the presented experiments in this
section.

A. System Under Test

In our experiments, we investigate the safe behavior of the
obstacle detection and avoidance extension of the open-source
PX4 autopilot [35] in StellaUAV. Note that a large open-source
community works on this autopilot and that the authors of this
work did not implement it by themselves. The used version
of the PX4 autopilot autonomously plans its trajectory after
receiving a mission such as flying to a specified waypoint.
When encountering static or dynamic obstacles, the autopilot
can adapt its trajectory to avoid these obstacles. In addition,
it adjusts its planned trajectory based on other environmental
effects such as moderate wind conditions. Finally, the PX4
autopilot tries to keep a defined safety distance from all
obstacles, which is set to 1.0 meters in its specification.
When assessing the UAV’s safe behavior, StellaUAV executes
the PX4 autopilot software, simulates its environment with
Gazebo in the derived concrete scenarios, and analyzes the
recorded simulation data. Finally, we run each simulation in
a Docker container to enable the parallel execution of several
simulations and decrease unwanted side effects.

B. Logical Scenarios

Before we apply optimization algorithms to generate “good”
test cases for testing the safe behavior of UAVs, we need to
define the logical scenarios in which we aim to evaluate the be-
havior of our SUT. As described in Section II, we derive these
logical scenarios manually from literature, specifications, and
experts’ knowledge of challenging situations; or automatically
by, e.g., clustering real-world data. Further, we emphasize the
need for a system-specific definition of the relevant parameters
P and corresponding value ranges of these logical scenarios
in Section III-A. In the experiments described in this paper,
we manually derive logical scenarios from experts’ knowledge
and literature that describe the UAV’s environment. To this
end, we first collect relevant parameters and all reasonable
value ranges, e.g., for the parameter wind, we gather the
value ranges none, light, moderate, and strong that represent
appropriate value ranges for our SUT. For example, light wind
conditions might be winds of 1.0 − 4.0 kilometers per hour.
We use the following relevant parameters and value ranges in
our experiments: landform (flat, depression, elevation, steep
transition), surface nature (land, water, mixture), obstacle
kinds (static, dynamic), obstacle sizes (small, medium, large),
obstacle shapes (cuboid, sphere, cylinder), wind force (none,
light, moderate, strong), and reduced visibility (none, fog,
heavy fog, thick fog). We are aware that these characteristics
do not represent all relevant parameters for testing the safe
behavior of UAVs but that we need to limit ourselves to these
due to the limitations of our simulation setup, as discussed in
Section IV.

After collecting relevant parameters and their reasonable
value ranges, we can select specific logical scenarios based
on a defect hypothesis about what constitutes challenging
situations for our SUT. However, defining such a defect
hypothesis is still an open research challenge. For simplicity of
presentation and the purpose of this paper, we select specific
logical scenarios for our experiments based on the simple
defect hypothesis that a pair-wise combination of the value
ranges [37] is sufficient to provoke all relevant failures in the
SUT. However, we are aware that we might miss faults in the
SUT if this defect hypothesis is inadequate and, e.g., several
faults only occur when combining the value ranges in a triple-
wise manner. Table III presents the resulting logical scenarios
for testing the safe behavior of UAVs in our experiments. Note
that these logical scenarios solely represent situations based
on the used defect hypothesis and, thus, do not represent a
complete list of relevant logical scenarios for testing our SUT.
For manually finding such a comprehensive list, we need to
ensure that we know all parameters of relevant situations for
the SUT and apply a correct defect hypothesis that presents
all challenging situations for the SUT.

C. “Good” Test Cases

When generating “good” test cases for testing the safe
behavior of UAVs for the provided logical scenarios, we
need to define the search space and the fitness function. The
parameters P of each logical scenario present the dimensions
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TABLE III
LOGICAL SCENARIOS FOR TESTING THE SAFE BEHAVIOR OF UAVS THAT FOCUS ON THE ENVIRONMENT-RELATED DIMENSIONS. THE KIND OF THE

OBSTACLES O IS EITHER STATIC ST OR DYNAMIC DY, THEIR SIZE IS EITHER SMALL S, MEDIUM M, OR LARGE L, AND THEIR FORM IS EITHER A CUBOID
CU, A SPHERE SP, OR A CYLINDER CY.

# Landform Nature # O Obstacle Kinds Obstacle Sizes Obstacle Forms Wind Red. Visibility
1 flat mixture 4 DY DY DY DY S S S S CY SP CY CY strong thick fog
2 depression land 3 ST ST ST – L M M – SP CY CU – light heavy fog
3 elevation water 1 DY – – – M – – – CU – – – moderate fog
4 steep transition mixture 4 ST DY ST ST M L L M CU CU SP CU none none
5 flat land 2 ST ST – – S L – – CY CU – – strong none
6 elevation water 4 DY ST DY ST L M L L SP SP CY SP none fog
7 depression water 4 DY DY DY DY M L M M CY CY CU SP moderate heavy fog
8 steep transition land 4 ST ST ST DY L S S L CU CY SP CY moderate thick fog
9 flat water 4 DY DY ST DY S M M S SP CU SP CU light fog

10 flat mixture 1 ST – – – L – – – SP – – – none thick fog
11 steep transition land 1 DY – – – S – – – CY – – – strong heavy fog
12 depression land 4 ST ST DY ST M S L S CU SP CU CU strong heavy fog
13 elevation mixture 4 ST ST ST ST S M S M CY CY CU CY light fog
14 steep transition water 3 ST DY DY – M S S – SP SP CY – moderate none
15 flat land 4 ST DY DY ST M L M L CU CU CY SP light thick fog
16 depression mixture 1 DY – – – S – – – CU – – – light none
17 depression land 2 DY DY – – L S – – CY CY – – none fog
18 depression water 4 ST ST ST DY L L L M SP CY CY CY strong none
19 elevation mixture 4 DY DY DY ST S S M L CY CU SP CU moderate heavy fog
20 elevation land 4 ST DY ST DY L L S S CY CU CU SP none none
21 flat mixture 3 DY ST ST – S L L – CY SP SP – strong fog
22 steep transition water 2 ST ST – – M M – – CU SP – – light thick fog
23 flat land 4 DY ST DY ST S S M M SP SP CY CY none heavy fog
24 steep transition mixture 4 DY ST DY DY S M M L SP SP CU SP strong none
25 flat land 4 ST DY DY DY L M L S CU CY CU CU moderate thick fog
26 depression water 4 ST ST DY ST S S L M CY CU SP SP light thick fog
27 depression land 4 DY DY DY DY S M S L CY SP CY CU light heavy fog
28 elevation mixture 2 DY ST – – S M – – SP SP – – moderate thick fog
29 elevation water 3 DY ST DY – L S S – CU CU CY – strong thick fog
30 steep transition water 4 DY DY DY DY M L M S CU CU CY CY light fog
31 flat land 2 DY DY – – M M – – SP CY – – moderate heavy fog
32 steep transition mixture 3 DY ST ST – L L S – SP SP CU – none none

of our search space. For the fitness function, let us assume
the existence of regulations that allow us to specify a safety
distance that the UAV should keep to all obstacles. To test
the safe behavior of our SUT, we then use the fitness function
described in Equation (1) above. That function minimizes the
remaining distance between the SUT and any obstacles before
violating the specified safety distance. For simplicity’s sake,
we use a fixed safety distance s(cs, t) = 1.0 meters in our
experiments, which is the default value of the corresponding
parameter in the PX4 autopilot. Using this fitness function as
an optimization goal, we search for challenging situations for
the UAV in which the UAV comes close to obstacles. If the
fitness value of a concrete scenario is negative, we know that
the UAV behaved unsafely and violated the specified safety
distance.

1) Experimental Setup: In these first experiments, we aim
to show the general applicability of StellaUAV for generating
“good” test cases. Thus, we first restrict ourselves to the
widely used optimization algorithm NSGAII [6], [9], [38] and
perform only three repetitions of our experiments. We will,
however, present additional experimental results in the subse-
quent subsection for all optimization algorithms of StellaUAV.
We use the implementation of the jMetalPy framework for
NSGAII and search for “good” test cases for 500 evaluations

for each logical scenario, as proposed in [39]. Following the
suggestion of the authors of [8], we use the default settings
of jmetalpy and utilize SBX Crossover, Binary Tournament
Selection, and polynomial mutation operators. We apply a
crossover rate of 0.9 and a mutation rate of 1/NV with
NV denoting the number of variables in the search space to
find the best candidates for the subsequent population after
evaluating the 100 candidates of each population. Since the
applied optimization algorithm uses a heuristic search for
finding “good” test cases, the results are not deterministic.
Therefore, we repeat our search for “good” test cases several
times for each logical scenario to gain more reliable results,
as proposed by the authors of [40], [41]. Finally, note that the
dynamic obstacles in our experiments perform only the simple
maneuver of moving in a straight line between two points. We
are currently working on expanding our tool to present options
for more complex trajectories of dynamic obstacles.

2) Results: Table IV displays the results of the experiments
for generating “good” test cases for testing the safe behavior
of UAVs. We repeat our search for “good” test cases three
times for each logical scenario. We have set the optimization
algorithm to create 500 concrete scenario instances in each
run, and each concrete scenario represents one test case. The
table shows the number of test cases in which the SUT violates
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TABLE IV
THE NUMBER OF SAFETY DISTANCE VIOLATIONS THAT WE DISCOVER IN OUR EXPERIMENTS FOR EACH LOGICAL SCENARIO IN THREE RUNS. FURTHER,

WE DEPICT THE AVERAGE AND MEDIAN VALUE OF ALL RUNS.

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Run 1 104 0 97 12 0 112 18 34 209 0 37 9 0 10 128 7
Run 2 116 0 69 22 0 163 7 25 222 0 31 18 0 12 124 18
Run 3 61 0 16 5 0 151 14 25 234 0 31 2 0 14 133 37
Average 94 0 61 13 0 142 13 28 222 0 33 10 0 12 128 21
Median 104 0 69 12 0 151 14 25 222 0 31 9 0 12 128 18
Scenario 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Run 1 58 6 198 153 23 0 177 24 123 36 12 167 61 38 229 126
Run 2 17 3 211 180 1 0 177 39 185 132 8 180 53 42 260 140
Run 3 50 1 169 135 10 0 143 10 149 83 6 160 12 20 239 111
Average 42 3 193 156 11 0 166 24 152 84 9 169 42 33 243 126
Median 50 3 198 153 10 0 177 24 149 83 8 167 53 38 239 126

the specified safety distance of 1.0 meters for each logical
scenario and each of these three runs.

3) Discussion: In our search for “good” test cases, we
create challenging situations for the SUT in which a safely
behaving UAV still keeps the specified safety distance. In
our experiments, the SUT behaves safely in this way in five
logical scenarios and violates the specified safety distance in
the remaining twenty-seven. An inspection of the challenging
situations that force the UAV to exhibit unsafe behavior
reveals that all these situations include dynamic obstacles.
Symmetrically, those situations in which the SUT exhibits
safe behavior contain only static obstacles. These observations
indicate that the SUT can handle situations with only static
obstacles rather well, while it has problems when encountering
dynamic ones. Finally, the experimental results show the fault
detection effectiveness of our tool StellaUAV.

4) Threats to Validity: In our experiments, we generate
“good” test cases for one system and test its safe behavior
in logical scenarios relevant to this system. Thus, the results
might not generalize to other UAVs and their relevant logical
scenarios. To decrease threats to external validity, we test the
SUT in 32 different logical scenarios that represent various
challenging situations for the SUT. However, we do not claim
to present a complete list of relevant logical scenarios with the
presented ones. To decrease the bias of our experiments, we
base our tool on existing libraries and test the safe behavior
of an open-source UAV instead of implementing our own.
Finally, we run all simulations of the UAV in isolated Docker
containers to reduce unwanted side effects.

D. Optimization Algorithms

In the above experiments, we discovered that the tested
PX4 autopilot shows a presumably safe behavior for logical
scenarios with only static obstacles. However, as the applied
heuristic optimization algorithm might not find the global
optimum, i.e., the worst-case situation for a given logical
scenario, we need to investigate the performance of various
algorithms for testing the safe behavior of UAVs in these
logical scenarios. In a further set of experiments, we thus,
focus on five logical scenarios with only static obstacles. We
use logical scenarios 2, 5, 13, and 22 from Table III and one

with one static cuboid obstacle in a depression landform with
moderate wind and fog in our experiments to depict a decent
mix of various environmental effects in the evaluated logical
scenarios with only static obstacles.

1) Experimental Setup: We evaluate the performance of
the optimization algorithms and their sequential combinations
mentioned in Section III-C: NSGAII (abbreviates as N), PSO
(P), and BO (B) alone; then, the combinations NPN, NPB,
NBN, NBP, PNP, PNB, PBN, PBP, BNP, BNB, BPN, BPB.
We follow the suggestion of [39] and run 500 evaluations for
each evaluated algorithm, as in the previous experiments. We
set the population size of NSGAII, the swarm size of PSO, and
the size of the set of initial candidates for BO to an equal value
of 50 to enable a fair comparison. As we aim to investigate the
performance of various optimization algorithms in this second
set of experiments, we execute more than three runs this time
to more reliably explore their performance, as proposed by the
authors of [40], [41]. Note that even though we perform fifteen
runs for each algorithm and logical scenario, we do not execute
30 runs as proposed by the authors of [40] due to limited
computation time and power: 15 algorithm combinations times
5 logical scenarios times 500 evaluations times 2 minutes for
each simulation results in 52 days per run. In our experiments,
we focus on the median of the detected best fitness values
over all runs for each optimization algorithm, which depicts
the average performance of the algorithms and a common
objective for such evaluations [42], [43]. Thus, an optimization
algorithm with a lower median value of the found minimal
fitness values overall runs shows a better performance than
one with a higher median value.

2) Results: In Table V, we present the performance of the
optimization algorithms compared to NSGAII, which litera-
ture widely applies and has shown insightful results when
generating “good” test cases for various autonomous systems
[6], [8], [9], [38]. To understand the significance of these
results, we also provide the results of a Mann-Whitney U test
and Vargha and Delaney’s A12 measure [44]. Two algorithms
perform significantly differently for a 95% confidence interval
if the resulting P-value of a Mann-Whitney U test is smaller
than 0.05. The authors of [44] further present guidelines for
interpreting the effect size of their A12 measure by classifying
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it as negligible, small, medium, or large depending on the
reached value.

3) Discussion: The combination PNP shows the best per-
formance with an increase of 20% compared to NSGAII,
which is significant for a 95% confidence interval and has
a small effect size. Thus, the results of our experiments
indicate that the sequential combination PNP is a reasonable
choice for reliably generating “good” test cases for testing
the safe behavior of our SUT. With PNP, we even discover a
safety distance violation in a logical scenario with only static
obstacles that NSGAII did not detect. Thus, we found a worst-
case situation with PNP in which the SUT behaves unsafely,
whereas NSGAII only discovered challenging situations in
which the SUT behaved safely, which suggested that the SUT
behaves safely in this logical scenario. Furthermore, even
though the algorithm combination PNP performed best in our
case study, this still does not ensure finding all worst-case
situations. Indeed, when inspecting the discovered worst-case
situations of the algorithms during all runs, we noticed that
PNP still misses several worst-case situations detected by other
optimization algorithms for some of the logical scenarios. This
finding indicates that we need to perform multiple runs and
execute multiple optimization algorithms and combinations
for all logical scenarios when testing the safe behavior of
autonomous systems with scenario-based testing to gain re-
liable results. Note that this crucial problem is not limited to
testing UAVs but also applies to other autonomous systems.
We feel that this insight and its consequences are currently
not considered in the scenario-based testing community.

4) Threats to Validity: In our experiments, we assess the
performance of different optimization algorithms for creating
worst-case situations for the PX4 autopilot only. Thus, the
resulting performance values of the algorithms might not
generalize to other UAVs. Nevertheless, we present the general
problem of finding all worst-case situations when using these
algorithms for detecting “good” test cases for autonomous
systems. In addition, we perform several runs to gain more
robust results, even though we do not perform 30 runs, as
proposed by the authors of [40], due to limited computation
time and power. To decrease the bias of our experiments,
StellaUAV uses existing open-source libraries to execute the
optimization algorithms and tests an open-source UAV. In
addition, StellaUAV runs all simulations in Docker containers
to reduce the threats from confounding variables.

VI. RELATED WORK

Several frameworks for testing autonomous systems have
been described in the literature. The authors of [10] and [11]
present frameworks that focus on testing the reliability of
UAVs and path planning algorithms with metamorphic testing.
The authors of [12] focus on generating test cases for testing
the reliability of cyber-physical systems and minimizing the
resulting test suites based on their cost, effectiveness, and
uncertainty. In their test case creation, they consider the
uncertainty of cyber-physical systems and base their process
on belief state machines. In contrast to their works, our

framework focuses on testing the safe behavior of UAVs as
another essential aspect of testing these autonomous systems.
In the automotive domain, the authors of [13] and [14] present
tools for testing the safe behavior of autonomous cars that
use fuzzing techniques to find safety distance violations or to
cover relevant behaviors of the SUT. Since different situations
are challenging for autonomous cars and UAVs, a direct
application of the methodology and tools from the automotive
domain for testing the safe behavior of UAVs is not possible.
In [15], the authors use metamorphic and model-based testing
to evaluate their self-implemented AI controller for UAVs.
Their framework concentrates on assessing the stability of the
UAV’s behaviors and presents one methodology for testing
the safe behavior of UAVs. However, it requires the definition
of correct and complete metamorphic relations, which is not
easily accomplished. Thus, we decided to instead focus on
scenario-based testing and finding worst-case situations for
relevant logical scenarios, as the definition of these logical
scenarios is more intuitive and more often performed. The
authors of [16] focus on developing a UAV simulation model
and a Hardware-in-the-Loop simulation test platform to ensure
the credibility of their simulation. They apply fault injection to
test the safe behavior of their UAV autopilot system. However,
such fault-injection techniques assume that we already know
all relevant faults and only need to detect them if they are
present in our tested systems. In contrast to their work, we
aim to find additional faults that we do not know beforehand
by searching for challenging situations for the SUT.

In sum, tools and frameworks in the literature address
testing the reliability of UAVs, testing autonomous cars, and
testing the safe behavior of UAVs with metamorphic testing
or fault-injection techniques. In contrast, our tool allows us to
assess the safe behavior of UAVs as another crucial aspect of
testing UAVs and apply scenario-based testing to test typical
test situations.

VII. CONCLUSION

When testing the safe behavior of UAVs with scenario-based
testing, we face the following challenges: (A) defining logical
scenarios in which we aim to test the behavior of our SUT, (B)
generating “good” test cases that can reveal potential faults in
the SUT, and (C) evaluating the quality of the generated test
cases. In this work, we present a tool, StellaUAV, for testing
the safe behavior of an autonomously operating open-source
UAV with scenario-based testing that tackles the presented
challenges. StellaUAV provides the option to specify various
relevant logical scenarios for the SUT in a JSON format,
including different landforms, surface natures, obstacles, wind
forces, and reduced visibilities. In addition, StellaUAV uses
optimization algorithms to generate “good” test cases that rep-
resent worst-case situations for the SUT. Finally, the tool offers
the possibility to execute various optimization algorithms and
their sequential combinations to enable an evaluation of the
quality of their generated test cases.

To demonstrate the applicability of the tool, we present
derived logical scenarios for our SUT that are selected on
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TABLE V
PERFORMANCE OF THE OPTIMIZATION ALGORITHMS COMPARED TO NSGAII, WHERE POSITIVE VALUES INDICATE BETTER PERFORMANCE. BELOW, WE

PRESENT THE P-VALUE OF A MANN-WHITNEY-U TEST FOR THIS COMPARISON AND ITS VARGHA AND DELANEY’S A12 MEASURE. WE HIGHLIGHT
SIGNIFICANT DIFFERENCES FOR A 95% CONFIDENCE INTERVAL IN THE P-VALUES AND ALL EFFECT SIZES FOR THE A12 MEASURE THAT ARE NOT

NEGLIGIBLE.

NSGAII PSO BO NPN NPB NBN NBP PNP PNB PBN PBP BNP BNB BPN BPB
Performance Base -2% -21% +10% -12% +12% +5% +20% +5% +16% +9% +11% -5% +8% -11%

P-value Base 0.20 0.00 0.17 0.34 0.40 0.48 0.01 0.32 0.11 0.17 0.22 0.26 0.33 0.04
A12 Base 0.46 0.26 0.55 0.49 0.52 0.51 0.57 0.53 0.56 0.54 0.51 0.44 0.50 0.39

the simple defect hypothesis that a pair-wise combination
of dimensions is sufficient to provoke all relevant failures
in the SUT. We chose this defect hypothesis for simplicity
of presentation and are aware that it does not necessarily
represent an adequate defect hypothesis for all relevant logical
scenarios related to testing the safe behavior of UAVs. For
each of the derived logical scenarios, we generate worst-
case situations with our tool StellaUAV. In our experiments,
we discover various safety distance violations of the given
SUT for all logical scenarios that include dynamic obstacles.
These results indicate that the SUT can handle logical sce-
narios with static obstacles rather well, while it encounters
problems when facing dynamic ones. As the optimization
algorithms are heuristics, we evaluate the performance of
various optimization algorithms for several logical scenarios.
These experiments indicate that one of the combinations
performs 20% better than NSGAII and that we need to ex-
ecute multiple optimization algorithms to increase the chance
of finding worst-case situations. In fact, a combination of
algorithms found safety distance violations that NSGAII alone
did not detect. Finally, the experiments show how StellaUAV
effectively generates “good” test cases that can reveal potential
faults in the SUT.

In future work, we will investigate more complex defect
hypotheses for deriving logical scenarios for our SUT that
describe all challenging situations for this system. In addition,
we aim to extend our tool to incorporate further types of
obstacles, more environmental effects, and more complex
maneuvers for the dynamic obstacles to investigate the UAV’s
behavior more thoroughly.
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