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Abstract

In an assembly line, assembly tasks are performed at the stations to assemble

components on the product. At first, components need to be brought to the assembly

stations. Components are usually stored in a warehouse and are delivered to the

assembly stations by special vehicles that have limited space. In order to facilitate

the delivery, special containers are used during the delivery operations. The Assembly

Line Feeding Problem involves the selection of the most convenient container for each

component in terms of costs and space for storage. Improving this activity translates to

minimising the costs of operations that repeated over time would lead to considerable

savings. The assembly tasks have precedence constraints among each other and need

to be ordered while considering other constraints of the assembly line. This problem

is known as the Assembly Line Balancing Problem. Improving these activities means

reducing the working time, increasing productivity, and reducing costs. In order

to study these activities, we investigated three major problems: the routing and

scheduling decision for the delivery of components to the assembly line, the Assembly

Line Feeding Problem, and combining the Assembly Line Feeding Problem with the

Assembly Line Balancing Problem.

The first problem involves selecting a container for each component that is delivered

to the assembly line. We implemented an optimisation model to solve the Assembly

Line Feeding Problem, or line feeding mode selection. We applied an algorithm that

provides a decision tree to explain the reasons for the line feeding mode selection. This

decision tree identifies the attributes of the components that are most relevant for the

selection and provides clear rules of thumb for the selection. To deal with the issue of

infeasible instances that might occur due to the implementation of the decision tree,

we developed a repair approach that ensures that the feasibility of the instances is

restored and that the cost deviation from the optimal solution is minimal.

The second problem combines the decision of where the assembly tasks are performed

in a multi-manned assembly line, also known as Assembly Line Balancing Problem,

and the line feeding mode assigned to each component, also known as Assembly Line
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Feeding Problem. We proposed an optimisation model and a heuristic algorithm to

solve the combination of the two problems. We found that the combination of the

Assembly Line Balancing Problem and the Assembly Line Feeding Problem can lead

to a substantial cost reduction. We also performed a sensitivity analysis and find that

the space at the Border of Line, the total volume of components delivered, and the

total number of components delivered lead to an increase in the cost reduction due

to the implementation of the combined approach. We also implemented the heuristic

algorithm to a real application in the automotive sector and find that it leads to a cost

reduction of 36.87%.

The last problem considers the delivery of the components to the assembly line

performed by special vehicles. Congestion problems that occur in the delivery of

components consist of a loss of resources and hinder other production activities. In

order to deal with the congestion problems of these vehicles, we routed the vehicles and

schedule the delivery of the components. We proposed an optimisation model and a

heuristic algorithm to solve this problem. We compared three different facility layouts

that are commonly found in manufacturing environments. For each of these layouts,

we analysed the queue time and the congestion problems that the vehicles face. We

found that the process layout is the one that is most likely to lead to congestion among

the vehicles.

Keywords: part-feeding; manufacturing management; material handling;

optimisation; heuristic;
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Chapter 1

Introduction

1.1 Motivation

The problems that are discussed in this thesis involve the assembly and production

procedures of the automotive sectors. These problems are of great complexity because

they involve many elements. In an assembly line, there is a large number of components

that are delivered to the assembly line. In the most complex cases, there are more than

30 000 components are delivered to the assembly line. Around 15 000 components are

delivered to a decentralised warehouse and from there they are delivered to the assembly

line. A few hundred operators are involved in the delivery of the components from

the warehouses to the assembly or production stations. In these stations, operators

perform the productive or assembly operators. The assembly line is particularly long

for vehicles that are produced in large volumes. i.e. non-premium vehicles. In those

cases, the assembly line consists of more than 200 assembly stations where more

than 900 operators perform the assembly operations. The whole assembly line has

a daily production volume of about 250 vehicles (AUDI Brussels 2022). For premium

vehicles, the assembly line is usually shorter with not more than 50 assembly stations

where roughly 200 assembly operators work. The reason for this difference is that the

production volume is lower for premium vehicles, i.e. a few dozen vehicles produced in

a day. Regardless of the kind of vehicle produced, e.g. premium or non-premium,

the activities performed are quite complex. Thus, it is important to improve the

manufacturing procedures and achieve the highest efficiency in both the delivery of

the components and the assembly operations of the vehicles.

In the past century, the automotive sector produced millions of cars for millions of

families. Automotive vehicles that used to be a luxury at the beginning of the twentieth

century are now a commodity that million of people own. The automotive sector strives

1



Chapter 1 Introduction

always to introduce innovative items in its products or to make niche optionals available

to the masses, e.g. air conditioning and alloy rims, to meet the demand of customers

and encourage sales. Non-premium automotive brands introduce innovative concepts in

their manufacturing departments to provide products at affordable prices for customers.

Since these customers are price sensitive and are demanding cutting-edge products,

competition is very strong in the market. On the other hand, premium automotive

brands still promote innovation but deal with small production volumes that limit

the total profits that can be made. Although premium vehicles are sold at a high

price, the quality of the products and the low volumes require the highest efficiency

(Vitale and Giffi 2020a). Thus, all automotive companies strive very hard to achieve

better performance, increase profits, reduce costs, and pursue innovative concepts

in order to preserve or increase their market shares (Stellantis 2020; Volkswagen

Group 2020). This can only be achieved if the most cost-efficient practices are

implemented in a manufacturing environment so that unproductive activities and

costly operations can be eliminated or at least minimised. A large amount of care

is used to manage the activities that are performed in an assembly line since they are

repeatedly performed and can greatly affect the price of the final product. The costs of

a manufacturing environment can be greatly decreased if the manufacturing activities

are properly managed (Wesselhöft 2020). Past research investigated the problems of

a manufacturing environment. Nowadays, optimisation models and machine learning

techniques can also be implemented to identify the best practices for the manufacturing

environment. These techniques deal with some of the problems that managers must

solve in real life.

As described in Farrell et al. (2003), the automotive industry incurs in high production

costs compared to other environments, e.g. pharmaceutical and chemical. For instance,

the pharmaceutical industry incurs in high costs for research and development to

develop patents that last for years or decades for the production of medicine, medical

treatments, or medical equipment. On the other hand, the automotive industry does

not sustain these costs but rather deals with expensive production activities and high

material costs. Farrell et al. (2003) discuss a cost breakdown for the production of

automobiles. The production costs account for more than 65% of the total costs. These

include material costs, manufacturing costs, maintenance costs, and transportation

costs. Since the production costs have such a high percentage, reducing them is an

effective way to increase profits. By contrast, improving research and development

or warranty procedures of an automotive producer will only marginally affect the

2



1.1 Motivation

final costs. Thus, improving manufacturing operations can lead automotive firms to

realise high savings. One way to improve the manufacturing operations is to decrease

transportation and production costs. If this is done well this can also decrease the cost

of capital for the components since less stock needs to be stored in the manufacturing

environments. These costs are part of the material costs. To reduce all these costs,

a company needs to better organise its production activities so that they can be

performed as efficiently as possible. If the production activities are carefully organised,

unproductive operations are decreased and the costs can be minimised. Finally, a strong

competitive advantage can be gained by an automotive firm if these costs are reduced.

In the past, technological advances were a constant factor for the automotive industry

to the point that all automotive companies are used to them. Recently, customers are

more concerned about the environment and are demanding more sustainable vehicles,

i.e. a new generation of electric and hybrid vehicles (Anderson 2020). In the last

ten years, this event brought up a big change in the whole industry which increased

the complexity for producers (Freund et al. 2020). Manufacturers must produce a

larger variety of vehicles compared to a decade ago. From a practical point of view,

production environments that for a long time used to deal with few product models,

i.e. petrol, diesel oil, and Liquid Petroleum Gas (LPG) vehicles, were forced to switch

to large volumes of multiple variants of the same product model, i.e. regular, hybrid,

mild-hybrid, natural gas, and electric vehicles. Each of these models requires different

components and assembly operations (Elliott 2021; Küpper et al. 2020). For electric

vehicles, gear boxes and transmissions need to be adapted, batteries are changing,

and combustion engines are disappearing (Hehl et al. 2021). The increasing number

of models leads to a higher number of components delivered. This larger number of

components that are stored, delivered, and used in the assembly line leads also to higher

costs for all the activities related to them. If these activities are not carefully managed,

their costs could increase prohibitively. This leads to a higher level of complexity that

the logistics departments must face.

These challenges affect not only automotive firms but also their suppliers, Original

Equipment Manufacturers (OEMs), which must deliver a higher number of components

with a higher level of technology or at a lower price. Although the problems, the issues,

and the tools studied in this thesis focus on the automotive environment, they can

also be applied to improve the activities in its satellite industry. Indeed, these two

sectors deal with similar challenges and share common practices. Alternatively, other

manufacturing environments, although very different from the ones of the automotive

3



Chapter 1 Introduction

industry, could also benefit from the implementation of the tools described in this thesis.

For these reasons, the models and algorithms developed will be at first applied to an

automotive environment, but will also be implemented in other industries similar to

automotive. The approaches are generalised to include also other aspects and conditions

that might occur in environments different from the automotive industry.

In recent years, there is also a new digitalisation trend that allows companies to improve

their operations by reducing costs, increasing revenues, or improving profits. Traditional

productivity levers are widely exhausted and companies turn to Industry 4.0 to achieve

higher growth (Wee et al. 2015). Industry 4.0 consists of a set of technologies

for the workplace. These technologies consist of data, connectivity, computational

power, analytics, human-machine interactions, and digital-to-physical conversion. Due

to competition, individual companies need to carefully analyse new opportunities and

one of these opportunities is Industry 4.0. In 2015, Industry 4.0 was making up 19% of

the total revenues of German companies Wee et al. (2015). For this reason and other

similar situations, Industry 4.0 was in the past few years under scrutiny by companies

as a way to achieve growth. Companies that employed these technologies, e.g. Amazon

and Alibaba, were able to reach high values of revenues per employee (Simchi-Levi and

Simchi-Levi 2020). Further, these technologies allow companies to deal efficiently with

disruptions that are becoming more and more common (Van Alstyne and Parker 2021).

However, these examples operate in the e-commerce industry and the manufacturing

sector would like to reach the same results. To be able to achieve the same results,

manufacturing companies need to translate the digitalisation trend into a concrete set

of tools, applications, and guidelines. With Industry 4.0, there are two fields of study

that can provide these tools, techniques, and methodologies: optimisation techniques

and machine learning approaches. Companies are also struggling to find the right talent

to develop and maintain these technologies (Jarvis 2020; Ramachandran and Watson

2021). This thesis aims also to provide tools and insights useful for managers for the

implementation of Industry 4.0.

A first valid example is the containers that are used for delivering the components to

the assembly stations. Components are delivered to the assembly stations in specific

containers, also known as line feeding modes, to reduce the space required for storage

at the Border of Line (BoL) and facilitate the delivery operations. The Assembly

Line Feeding Problem (ALFP), also known as the part-feeding problem, involves the

decision on the line feeding mode to deliver each component and assign a container to

each component. This problem is usually solved with optimisation models that select
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the best line feeding mode for each component (Caputo, Pelagagge, and Salini 2015;

Limére, Van Landeghem, and Goetschalckx 2015). The computation times to solve an

instance of the ALFP with one of these optimisation models is short. However, they lack

clarity and do not provide a clear explanation for the line feeding mode selection of each

component. They identify the line feeding mode that is economically most convenient to

minimise the objective value. Therefore, managers would like to understand the reasons

for the line feeding mode selection and do not have a general rule that can be applied in

general so that they can autonomously perform such decisions, e.g. assign a line feeding

mode to each component. Without these guidelines, managers and practitioners must

rely daily on optimisation models for the ALFP. Relying on optimisation models in a

daily routine is, although useful, impractical.

Another example is integrating assembly line balancing and feeding decisions in a single

model. In a multi-manned assembly line, multiple workers perform assembly operations

at the workplaces of the same station. The Assembly Line Balancing Problem (ALBP)

involves the decision on how and in which order to perform the assembly operations in

an assembly line. At a later step, the Assembly Line Feeding Problem (ALFP) is solved

to select the line feeding mode of each component. When this occurs a high number

of components must be delivered with special containers that allow their storage in

a limited space. However, such containers require also costly additional operations

performed by workers in the warehouse. The sequential implementation of the ALBP

and the ALFP, that is common practice in an automotive environment, leads to the

minimisation of the ALBP costs with a sequential increase of the costs related to the

ALFP. Avoiding any consideration about the components while solving the ALBP could

also lead to the need to perform rebalancing activities at a later point. On the other

hand, the combination of these two problems can lead to savings in terms of costs. A

few articles in the literature aim to solve the JALBFP (Battini et al. 2017; Sternatz

2015). However, these articles consider only the possibility to deliver the components

directly from the warehouse or repacking them at the supermarket, a decentralised

storage area. Further, these articles do not consider the costs associated with the

delivery of components. Instead, they minimise the time of the activities or the number

of operators. There is a need to understand the savings that can be achieved from

implementing a joint model rather than a sequential one. To do this, a model that

studies the ALFP and the ALBP with a higher level of detail is needed. This model

should thoroughly consider the costs of the operations related to the ALFP and the

ALBP. With this approach, we can achieve a full comparison between the integrated
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and sequential models.

The last example is the issue of congestion problems that occur in the delivery of the

components to the assembly line. The Inventory Routing Problem (IRP) selects the

paths of the vehicles for the delivery of the components. Congestion problems occur

in these activities and a multitude of logistics and productive environments and hinder

production activities that are usually solved by the IRP (Bartlett et al. 2014; Roy,

Gupta, and De Koster 2015). During the delivery of the components, whenever a

vehicle meets another vehicle that is performing some delivery operations, it must wait

in a queue before it can continue the roundtrip since overtaking is forbidden due to safety

concerns. Not only do drivers spend time in queues, but also assembly operations at the

stations could suffer. These congestion problems are unproductive activities that can

disrupt the assembly operations performed in an assembly line. Congestion problems

are known to reduce productivity also in other environments (Kammoun, Rezg, and

Achour 2014). Other congestion problems that reduce the utilisation rate of vehicles

are discussed in Zhang, Betta, and Nagi (2009). Chiew and Qin (2009), Fanti (2002),

and Chiew (2012) investigate the problem of congestion for Automated Guided Vehicles

(AGV) in a manufacturing environment. However, the congestion problems caused by

regular vehicles are not investigated in the literature. Although the literature provides

numerous articles that discuss the effects, the causes, and the solutions to congestion

problems, the problem for the vehicles that travel in a manufacturing environment was

always neglected.

These are all valid examples of problems that are thoroughly investigated in the

literature. However, although the literature investigates some of the activities related

to them, some assumptions, e.g. a consider a limited number of line feeding modes

and only one operator per assembly station, prevent considering these problems. The

current state of the literature does not provide information on the consequences of

neglecting these problems. Investigating these problems and all related aspects will

explain the conditions under which they negatively affect manufacturing activities.

This investigation can explain the conditions when an alternative solution should be

introduced to avoid additional costs. On the other hand, there is also the possibility that

in certain environments and under certain conditions these problems will not affect the

production activities and the regular solution available in the literature will be sufficient

to solve these problems. Lately, with the course of digitalisation, optimisation models

and machine learning algorithms became useful tools to investigate the activities that

occur in a manufacturing environment. These tools can provide a valid solution for the

6



1.2 Research Questions

problems listed above so that the costs can be minimised while at the same time the

constraints of the problems are respected. Furthermore, comparing the solutions to the

new approach and the one usually implemented in a manufacturing environment can

show the benefit that can be obtained.

The general purpose of this thesis is to provide models and algorithms for the ALBP

and ALFP and consider also aspects that are neglected in the literature so that these

approaches can be applied to manufacturing environments or industries different from

the ones where these problems are most commonly encountered.

The specific objectives are:

1. develop optimisation models or heuristics that can provide exact and approximate

solutions for the ALFP and ALBP;

2. apply these techniques to solve real-life instances that occur in a regular

manufacturing environment;

3. generalise the problem and consider also those aspects of industries different from

the automotive one where the ALFP and ALBP can be encountered;

4. investigate the conditions that make optimisation models and heuristic algorithms

beneficial or necessary.

1.2 Research Questions

Based on the problems mentioned above, there is one research question for each

problem that is investigated. Regarding the kind of containers used for the delivery of

components to the assembly line, the research question is:

What are the attributes of the components that are most relevant in

the line feeding mode selection?

On the issues of selecting the right number of stations to perform the assembly

activities in an assembly line:

What is the most cost-efficient way to perform the assembly activities

and deliver the components to a multi-manned assembly line?

Eventually, on the issue of congestion problems that occur during delivery of

components to the assembly line:
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How can we reduce the congestion in the part feeding process?

1.3 Outline of the Thesis

Figure 1.1 depicts the structure of the thesis. The outline can be divided into two major

parts:

1. We provide a summary of the state of the art of the literature. In Chapter 2, we

wish to discuss all the literature for the topics that are discussed in this thesis. The

activities and operations that occur in a manufacturing environment are studied

in the literature and optimisation models are provided to improve them. However,

these models neglect factors or events that occur in other different manufacturing

environments. This leads to problems, unforeseen situations, or additional costs

that are not considered in the original approaches. We explain what is the current

status of the literature. We identify the gaps in the literature that require further

investigation or alternative solutions and explain how we aim to investigate these

gaps. Eventually, these considerations on the state of the art of the literature are

useful for the future research agenda.

2. Given the current literature, we implement and adapt existing methodologies to

solve the problems that were ignored or consider aspects that were neglected

also discussed in Section 1.1. Three manufacturing problems are discussed in the

chapters:

a) in Chapter 3, we improve the selection of containers for the delivery to the

assembly line. Components that are stored in a decentralised warehouse

must be delivered to the assembly line where space is scarce. It is important

to assign a container, line feeding mode, to each component to reduce costs

and ensure that these operations can be safely carried out. We provide an

optimisation model with a cost objective function to solve this problem.

Through the implementation of a machine learning algorithm, a decision

tree can be obtained. The decision tree selects a line feeding mode for each

component that needs to be delivered to the assembly stations. The decision

tree provided is trained with synthetically generated data from 4 companies

of different industries. The decision tree can clearly describe the attributes

of the components for the line feeding mode selection, i.e. the assignment
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Figure 1.1: Outline of the thesis.

9



Chapter 1 Introduction

of a container to each component, so that managers can better understand

which line feeding mode can be assigned to which component and why. This

is useful when a new assembly line is implemented or re-balancing activities

are performed;

b) in Chapter 4, we combine the decision on the tasks that should be

performed at each station, ALBP, and the line feeding mode assigned to

each component, ALFP. If these two problems are combinedly optimised, it

is possible to achieve a larger amount of savings. The combination of these

two problems is known as the Joint Assembly Line Balancing and Feeding

Problem (JALBFP). We provide an optimisation model and a heuristic that

can solve the JALBFP. We compare our model to a similar one found in

the literature. We explain how the implementation of the JALBFP leads to

a cost reduction compared to the sequential implementation of the ALBP

and the ALFP. We analyse the cost reduction that can be achieved through

the combined model. We perform a sensitivity analysis and explain that the

savings increase when there is a higher number of components, components

with a larger volume, and a shorter Length at the BoL. We also implement

the heuristic in a real-life instance;

c) in Chapter 5, we improve the delivery of the components to a production

area. Vehicles that are used for the delivery of the components might incur

in congestion problems and queue times that can reduce the efficiency of

the operations. We investigate how the routing and scheduling decisions

of the vehicles can be combined in the Inventory Routing and Scheduling

Problem (IRSP). We consider congestion problems that might occur in the

delivery of components. To do so, we schedule the delivery of the components

performed by the vehicles. We provide an optimisation model for the IRSP

and a heuristic that can solve real-life instances. Both these approaches

provide a timetable for the vehicles so that they can proceed to the delivery

of the components and avoid waiting times. We investigate the three most

common layouts of a production plant and find that the process layout is the

one that leads to the highest level of congestion problems.

Eventually, we will provide a conclusion to this thesis. This conclusion will include the

main contribution of the content of the thesis, the limitation of the methodology or the
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analysis, and the future research agenda. The future research agenda points out the

relevant questions that should be investigated.

1.4 List of the Articles

Three chapters of this thesis are related to three articles. These articles were either

published in the proceedings of a conference or a peer-review journal:

1. Zangaro F., Battini D., 2018. ”Integrating Routing and Scheduling Decisions

for Enhancing the Part Feeding in an Automotive Environment”, Twentieth

International Working Seminar on Production Economics, Innsbruck.

2. Zangaro, F., S. Minner, and D. Battini. 2021. “A Supervised Machine Learning

Approach for the Optimisation of the Assembly Line Feeding Mode Selection.”

International Journal of Production Research, 59 (16): 4881-4902.

3. Zangaro, F., S. Minner, and D. Battini. 2022. ”The Multi-manned Joint Assembly

Line Balancing and Feeding Problem.” International Journal of Production

Research. Advanced online publication. doi: 10.1080/00207543.2022.2103749.
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Chapter 2

Related Literature

This thesis discusses topics that can be found in an automotive environment. Since

these topics are connected, this chapter provides the whole literature review for the

problems discussed in later chapters:

1. the application of machine learning techniques for classifying or identifying

components in a manufacturing environment (Section 2.1 related to the topics

discussed in Chapter 3);

2. the delivery of the components that are usually performed in an assembly line by

solving the Assembly Line Feeding Problem (Section 2.2.1 related to the topics

discussed in Chapter 3);

3. all the assembly activities that are performed in an assembly environment (Section

2.2.2 related to the topics discussed in Chapter 4);

4. the inventory routing problem implemented to improve the in-house

transportation operations (Section 2.3 related to the topics discussed in Chapter

5).

2.1 Machine Learning for Classification Problems

Supervised Machine Learning is commonly applied to classification problems in the

manufacturing environment (Pham and Afify 2005). Nakasuka and Taketoshi (1992)

implement a machine learning model to develop decision trees that select the rule

for scheduling the operations in the production line. By using computer simulations,

the performance of the machine learning model is evaluated through computation

experiments. Camci, Chinnam, and Ellis (2008) make use of alternative Support
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Vector Machines (SVMs) model to monitor manufacturing processes that improve

production quality. They discuss how the model can learn from out-of-control samples

and it does not make any assumptions about the data distribution. Pinto, Lùıs, and

Moreira (2013) implement machine learning models such as K-Nearest Neighbor

(KNN), Neural Networks (NNs), and SVMs to visually identify and recognize objects in

a workplace for quality control purposes. Firstly, data is collected through a laser that

provides the ranges and dimensions of the objects. Then, the machine learning models

classify the objects based on the collected data, and their classification accuracy

is compared. They also perform a comparative analysis of the machine learning

algorithms to find the one with the best performance. Bertsimas and Dunn (2017)

provide a Mixed Integer Optimisation (MIO) formulation to develop optimal decision

trees. They compare this model with other heuristics and show that the new model

outperforms the Classification And Regression Tree (CART). The main contribution

of Chapter 3 is the assessment of the extent to which a machine learning approach can

be used for developing a decision tree for the ALFP.

2.2 The Assembly Line Activities

This section provides the contributions concerning the ALFP, the ALBP, and the

JALBFP.

2.2.1 Assembly Line Feeding Problem

As discussed in Battini et al. (2009), the ALFP is studied in the literature with an

optimisation model since the first model is described in Bozer and Leon (1992). Battini,

Boysen, and Emde (2013) introduce a classification framework for part supply in the

automotive industry by considering traveling kitting, stationary kitting, and sequencing

feeding modes, and Schmid and Limére (2019) classify the literature on the ALFP. For

the sake of clarity, we are going to divide the articles that discuss the ALFP that include

the sequencing line feeding mode and not. This line feeding mode consists of delivery

different variants of the same component to the same station. In the order that is

required for the assembly.
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Assembly Line Feeding Problem without Sequencing

Caputo and Pelagagge (2011) introduce a descriptive model that designs the delivery

system, describe the performance, and select the best line feeding mode between line

stocking, kitting, and just-in-time delivery. They provide a model that can enhance

the current performance of the line feeding activities and can be used to select the line

feeding modes when planning a new facility before it might even be operational. They

identify that the main disadvantage of kitting is the picking labour and line stocking

policies require more space at the BoL for the storage of many components. Eventually,

they also explain how the limited space at the BoL forces managers to rely on kitting as

a line feeding mode rather than line stocking which is more cost-efficient. Limére et al.

(2012) introduce a MILP that selects the best line feeding mode: kitting or line stocking.

Their case study shows that a combination of kitting and line stocking ensures that the

space at BoL is sufficient to store the components and avoid excessive costs. They

identify key attributes of components that are usually kitted: components that would

take up a large space at the BoL, small components, components that can be kitted in

multiple parts per kit, and components that are in pallets. To improve this work by

considering more than just constant travelled distances, Limére, Van Landeghem, and

Goetschalckx (2015) present a new model that is also tested on a synthetic dataset.

They explain how the kitting line feeding mode is assigned to a component not only

based on the component’s attribute but also on the attributes of the other components

that are kitted. They call this phenomenon “free rider”. The idea consists of the fact

that the first kitted component includes also the costs for a kitted container. All the

remaining components that are kitted in the same container will not have to bear this

cost and, thus, are called “free riders”. They explain that kitted components have

usually a lower volume, a high number of variants, are supplied on pallets, have a

low usage rate, and are usually batch picked. Caputo, Pelagagge, and Salini (2018)

develop a cost model for the line feeding mode selection. In a sensitivity analysis, the

relation between costs and volume per part and between weight and price per unit is

analysed. This tells us that kitting and just-in-time delivery are appropriate for small

containers containing few parts. Furthermore, they identify that labour costs and space

occupation costs are the main factors driving the direct costs of line feeding policies.

They suggest that the line feeding mode assignment depends also on economic issues

such as the hourly wage, the daily demand, and the cost per square metre. Boudella,

Sahin, and Dallery (2018) provide a mathematical model to assign Stock Keeping

Units (SKUs) to either a robot or an operator. A case study from the automotive
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sector is used to test the model. They find that component’s attributes and the space

floor can prevent the implementation of kitting automation. They identify the batch

size as an element that can affect the kitting system cycle time. Zennaro et al.

(2020) provide a mathematical model for the introduction of idle assembly islands in a

manufacturing environment where the operators perform the part feeding activities in

order to increase the production rate. Caputo, Pelagagge, and Salini (2021) provide

a cost model to compare manual picking operations and automation-assisted parts

retrieval for the kitting system. In order to test the cost function, a case study is

provided to demonstrate its capabilities. A classification framework is introduced and

a detailed planning and cost model is presented. However, they highlight how the

approaches work with the assumption that the kitting line feeding mode is already

assigned to the components.

Assembly Line Feeding Problem with Sequencing

Sali, Sahin, and Patchong (2015) provide a function that calculates the total costs of

the three line feeding modes: line stocking, kitting, and sequencing. An analysis is

performed to show which line feeding mode is convenient under what circumstances.

They also notice the “free rider” phenomenon (see Limére, Van Landeghem, and

Goetschalckx (2015)). Kitting is usually selected for small components with a lot

of variants. As well, the usage rate of components increases their likelihood of being

assigned to line stocking. Sali and Sahin (2016) use the previously developed cost

model as an objective function of an optimisation model to find the best line feeding

mode for each component and consider the constraints of the activities. They find that

a cost reduction of about 10% can be achieved if an optimisation model is implemented.

They also study the sensitivity of the costs regarding the kit container capacity and

the space at the BoL. They find that these two factors significantly affect the costs.

Baller et al. (2020) consider a model with nine different line feeding modes to reduce

the costs of the line feeding activities and analyse a case study. In this case study,

they implemented only some of the line feeding modes previously presented. They

suggest that the ALBP and the ALFP should be integrated to reach significant cost

reduction. As well, they highlight that flexibility of the length at the BoL can lead

to a significant cost reduction for the ALFP. Zangaro, Minner, and Battini (2021)

implement a MILP and use machine learning to train a decision tree for the line feeding

mode selection. The decision tree identifies the features that are most likely to play

an active role in the line feeding mode selection. They discuss the problems that can
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arise from the implementation of a classification tool in the ALFP. Schmid, Limére,

and Raa (2021) provide a mathematical model for the line feeding mode selection and

to select the stations where the components should be stored. This model is tested

by using artificially created data based on a case study with 3000 parts. They study

how the line feeding problem can be solved for each component and different variants

of the same component. They highlight that the variants of the same component

should not be assigned to a different line feeding mode. This is because it is not very

beneficial in terms of costs and it does not affect the line feeding mode selection but

it increases the complexity of the problem. Additionally, they suggest that more space

at the Border of Line (BoL) decreases the average costs. Müllerklein, Fontaine, and

Ostermeier (2022) discuss a mathematical model for the line feeding mode selection

and the production schedule. The study shows that the two problems combined lead to

remarkable savings. The model is tested with a case study of a mixed-model assembly

line. They suggest that the schedule type of the production activities should be taken

into consideration when solving the ALFP. They explain that the joint scheduling

and line feeding policy decision leads to only modest cost improvements compared to

solving sequentially the two problems.

Table 2.1 provides a comparison of the various streams in the literature and

Table 2.2 categorises the costs minimised in each article of the literature. For the sake

of clarity, we are going to describe the cost categories. Since the articles use different

names to describe the costs, we named the categories differently. These cost categories

do not relate to one specific line feeding mode. For more details, please refer to Section

3.2 and 4.2.1. Seven cost categories are considered:

� Replenishment costs are incurred to perform operations that consist in

replenishing the components in the decentralised storage area.

� Preparation costs consist of all the operations that take place in the decentralised

storage area to prepare the components or containers for the delivery.

� Transportation costs are incurred during the transfer of the containers from the

storage area to the assembly stations.

� Picking costs consist of costs for retrieving the components at the BoL.
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� Storage costs consist of the costs incurred for stocking the components at the BoL

or in the preparation area next to the storage area. Among the other costs, these

include the costs for the surface.

� Costs of capital account for the costs of inventory holding capital to stock the

components at the BoL.

� Equipment costs consist of the costs for the equipment used in the delivery.

Some of the articles discuss that these costs can be, in their case, neglected while

others suggest that a multiplying factor could be added to the cost function to account

for additional costs. For instance, one of the articles explains how the costs for the

equipment include also its capital holding costs. However, we do not include these

costs in our categorisation.

Some of the articles discussed in this section make some generalisations on the

attributes of the components that are assigned to a line feeding mode. However,

these assumptions are hard to visualise and explain. In Chapter 3, we provide an

optimisation model for the ALFP.

2.2.2 Assembly Line Balancing Problem

The Assembly Line Balancing Problem (ALBP) is first described in Salveson (1955).

Bowman (1960) provides a linear programming formulation for it. We refer the reader

to Boysen, Fliedner, and Scholl (2008) for a complete understanding of the background

and a description of the state of the art of the literature. The Simple Assembly Line

Balancing Problem Type 1 (SALBP-1) is a specific case of the ALBP where, given

a certain cycle time, either the number of the stations or the costs of the assembly

activities are minimised. For the sake of clarity, we are going to divide the articles that

deal with multi-manned assembly lines and not. The multi-manned assembly line is a

special kind of assembly line where there are multiple operators at each station. These

operators are performing different assembly operations in different parts of the product.
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Regular Assembly Line Balancing Problem

Thomopoulos (1970) uses mixed model line balancing algorithms that help with

loading the tasks to the stations more consistently. Scholl and Klein (1997) solve the

SALBP-1 and introduced SALOME, a modification of the branch-and-bound algorithm

that includes a new branching strategy and a bidirectional branching rule. This

branch-and-bound algorithm outperforms other algorithms (FABLE and EUREKA).

Boysen, Fliedner, and Scholl (2009) provide a modified approach for developing joint

precedence graphs for the Mixed Model ALBP (MMALBP). They discuss how the

probabilistic nature of the task duration is relevant to the resolution of the ALBP.

Nourmohammadi and Eskandari (2017) propose a MILP for the ALBP and for

the Supermarket Location Problem (SLP) which investigates the best location of

the supermarket along to assembly line. This approach can be used sequentially to

assign tasks to the assembly line and the location of the supermarket. The bi-level

mathematical model can optimise the assembly line for the ALBP while taking into

consideration the SLP.

Multi-manned Assembly Line Balancing Problem

Dimitriadis (2006) proposes a heuristic that is based on a Hoffmann procedure, i.e.

an enumeration procedure to assign the tasks to the workplaces, for the multi-manned

assembly line suggesting that if the product is large enough, multiple workplaces can

be implemented in the same station to shorten the assembly line. Dimitriadis (2006)

evaluate the approach provided by solving an instance of a real-world automotive

assembly line. Sternatz (2014) proposes an enhanced multi-step bidirectional approach,

called multi-Hoffmann heuristic, for multi-manned ALBP that considers multiple

product models and workplaces per station. Sternatz (2014) shows that the enhanced

multi-Hoffman heuristic is more efficient and effective compared to other heuristics

such as the Avalanche algorithm. Roshani and Giglio (2016) provide a mathematical

formulation and two Simulated Annealing heuristics for the multi-manned assembly

line. They find that the Indirect and Direct Simulated Annealing (ISA and DSA) can

find the optimal solution for the majority of small-sized problems. They implement

the simulated annealing approach to solve a real-life instance of a Greek automotive

manufacturer. They also use this approach to solve instances found in the literature.

For small-size instances, the approach can find the optimal solution. For medium- and

large-scale instances, it finds a solution with a shorter assembly line in 70% of the cases.
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Giglio et al. (2017) propose a mathematical model for the multi-manned assembly line

balancing problem with skilled workers that minimises the total operating costs of an

assembly line. They compare the mathematical model to the one presented in Moon,

Logendran, and Lee (2009) in the literature and they find that the total operating

costs can be decreased. This is because their model can find better results in terms

of computation times and the quality of the solution obtained. Martignago, Battäıa,

and Battini (2017) present a model for balancing a multi-manned assembly line to

minimise the total costs when different operator skills are involved at the same time

and apply this model to a real industrial case. They argue that their model can be

applied as a simulation tool to identify the best set of skills for training. Yilmaz

(2020) proposes a Mixed Integer Linear Programming (MILP) for the ALBP with a

bi-objective function that minimises the workload imbalance and the operational costs.

This model determines the cycle time and the number of parts that must be delivered to

an assembly line. Roshani et al. (2021) propose a MILP model that minimises the cycle

time for the multi-sided assembly line balancing problem. They propose a heuristic

to solve larger instances since the multi-sided Assembly Line Balancing Problem is

NP-hard. They apply their model to an assembly line of a car body. They show that

the proposed approach can solve middle- and large-scale instances more efficiently than

other approaches.

2.2.3 Joint Assembly Line Balancing and Feeding Problem

Battini et al. (2016) provide a MILP model for the JALBFP by minimising total

annual manufacturing costs. The authors consider only line stocking and kitting

and they did not solve a multi-manned problem. Battini et al. (2017) present a

model for the JALBFP that minimises the total number of workers by smoothing

the ergonomic workload between them. The authors do not consider multi-manned

assembly lines and costs linked to space and transportation. They discuss how the

joint model decreases the space needed for the storage of the components at the BoL.

They also argue that the production time decreases while the area of the supermarket

increases. They suggest that the idle time is lower in the solution of the joint model

compared to the sequential one, though they mention that the idle time might be

a misleading KPI for the problem. Sternatz (2015) extends Sternatz (2014) by

providing an improved version of the multi-Hoffmann approach for the multi-manned

JALBFP. This model minimises the total working time per order. However, it does

not consider an assignment of different line feeding modes to the components. In the
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computation experiment, 175 instances of 50 and 20 tasks of the data set provided by

Otto, Otto, and Scholl (2013) are solved. Sternatz (2015) explains how potential

savings can be achieved if the ALFP and the ALBP are solved jointly rather than

sequentially. Sternatz (2015) identifies that an average total cost reduction of 5%

can be achieved through the joint model compared to the sequential approach. It also

shows how the proposed model leads to a reduction in production time compared to

the model presented in Sternatz (2014). Wijnant, Schmid, and Limére (2018) explain

that the ALBP and the ALFP are interrelated. Indeed, they indicate that the decision

of the line feeding mode assigned to each component depends on which station this

component is needed and the tasks that are performed there. Calzavara et al. (2021)

provide a mathematical model for a regular assembly line with the assumption that a

task requires one component that can be delivered with two line feeding modes: line

stocking or kitting. The objective function minimises the costs of the assembly and line

feeding activities. They explain how the joint mode provided leads to a cost reduction

compared to the sequential approach. In the case studies, the cost reduction is due to

a more efficient space utilisation in the assembly line with a lower number of assembly

stations implemented. Zangaro. Minner, and Battini (2022) provide an optimisation

model and a heuristic to solve the multi-manned joint assembly line balancing and

feeding problem. To show how this model can be implemented in a real-world scenario,

a real instance is solved. They show that the costs for the line feeding activities are

higher when a sequential model is implemented. If these costs are considered in a joint

model, cost savings can be achieved. Table 2.3 provides a comparison of the various

studies discussed above, wherein we categorised them for the three problems (ALBP,

ALFP, and JALBFP), whether the objective function minimises costs, if they provide

an optimisation model, and include other details of the models. Table 2.4 provides the

cost categories and the line feeding modes of the articles that solve the multi-manned

JALBFP. Differently from Table 2.2, we consider also the assembly costs which include

the costs to perform the assembly tasks in the stations. While the ALBP is broadly

studied in the literature, the JALBFP is less investigated. All the more the JALBFP

is not studied with a high level of detail. The main contribution of Chapter 4 is the

assessment of a joint model for the ALBP and the ALFP.

23



Chapter 2 Related Literature

T
a
b
le

2
.3
:
C
o
m
p
a
rison

of
availab

le
literatu

re
on

th
e
A
L
B
P
,
A
L
F
P
,
an

d
J
A
L
B
F
P
.

P
rob

lem
s

M
eth

o
d
ology

L
evel

of
d
etail

A
L
B
P

A
L
F
P

J
A
L
B
F
P

C
ost

red
u
ction

O
p
tim

isation
m
o
d
el

M
u
lti-

m
an

n
ed

K
ittin

g
an

d
seq

u
en
cin

g

S
ch
oll

an
d
K
lein

(1997)
✓

✗
✗

✗
✓

✗
✗

D
im

itriad
is

(2006)
✓

✗
✗

✗
✗

✓
✗

S
tern

atz
(2014)

✓
✗

✗
✓

✗
✓

✗

R
osh

an
i
an

d
G
iglio

(2016)
✓

✗
✗

✗
✗

✓
✗

L
im
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2.3 Inventory Routing Problem

We divide the literature review into a taxonomy section and a section about the

articles that investigate the IRP.

2.3.1 Taxonomy on Traveling Problems

The Traveling Salesman Problem (TSP) studies how a vehicle can travel through the

cities in order to minimise the route without taking into consideration the capacity of

the vehicles. This problem is first described by (Robinson 1949). The (VRP) addresses

how goods can be delivered to the stations in order to minimise the delivery time

and considers the capacity of the vehicles. This problem is first described in Dantzig

and Ramser (1959) and inherits the Non Polynomial-hard (NP-hard) complexity

of the TSP. The IRP, as introduced by Bell et al. (1983), routes vehicles through

the stations by optimizing the part-feeding process. As described in Abdul Rahim

et al. (2014), the IRP is a combination of the Inventory Control Problem (ICP),

which involves the decision on the amount of components stored at the station, and

the VRP, which consists of developing routes for the delivery of components, also

known as references. The IRP plans the delivery of the references from a warehouse,

minimises the stocks and the delivery time, and considers the roundtrip time when

calculating the quantity that is delivered to the stations. Indeed, the IRP schedules

the delivery to the stations to calculate the quantity of the references that must be

delivered. The IRP inherits the NP-hard complexity from the VRP. Periodic IRPs

schedule the delivery of the references that is performed repeatedly over a certain time

period (Aksen et al. 2014). The Supermarket Scheduling Problems (SSP) consist

of scheduling the delivery operations correctly from the supermarket to the assembly

stations (Emde and Boysen 2011). In other words, the trips of the tow trains are

scheduled to minimise the stock at the stations and reduce the number of delivery

tours. In Chapter 5, we wish to solve a new problem that considers the delivery of

references, usually part of the IRP, and the scheduling of the delivery, usually part of

the SSP. However, combining the IRP and the SSP will lead to a new kind of problem

that has not yet been considered. While the IRP routes the tow trains to the stations

where they perform part-feeding operations, the SSP schedules such procedures to

minimise the stock at the stations. The IRSP encompasses the IRP and the SSP and

develops schedules and routes for the delivery of the references. Congestion problems
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are not solely related to the routes and the schedules of the delivery, but both these

factors combinedly. Implementing a regular two-index formulation of the IRP will not

allow tracking the congestion problems that might occur during the delivery. If we

wish to study congestion problems, we need to combine the route selection and the

schedule of the vehicles. For this reason, we need to define a new and more complex

problem and rely on a more complex formulation than for usual IRPs. The IRSP

inherits the NP-hard complexity from the IRP.

2.3.2 Inventory Routing Problem

The IRP is studied in the literature from different perspectives. Campbell and

Savelsbergh (2004) develop a two-step approach. Firstly, they develop an integer

programming approach for the scheduling, then, based on a heuristic, the routing

is adjusted. Coelho and Laporte (2013) provide a branch-and-cut formulation for

the IRP with multiple products and multiple vehicles that leads to exact solutions.

They evaluate the model proposed by introducing a set of benchmarking instances.

Andersson, Christiansen, and Desaulniers (2015) provide a decomposition approach

for the IRP that involves the distribution of liquid natural gas. This decomposition

approach generates the paths that are then solved with a branch-and-bound algorithm.

The periodic IRP develops a schedule for the delivery which is repeated identically

over time. In the numerical results, the new formulation is able to solve instances

obtained from the literature with lower computation times. Gaur and Fisher (2004)

provide a three-step approach to optimise the periodic delivery of references from

the warehouses to the stores of a supermarket chain. In this case, the scheduling

problem is solved sequentially after solving the routing problem. They discuss the

implementation of the approach in a supermarket chain, the challenges it faced, and

the benefits that it experienced. Aksen et al. (2012) develop two formulations to solve

a periodic IRP. This heuristic is used for routing the collection of waste vegetable oil in

order to minimise the total costs. These approaches are applied for instances with up

to 30 nodes. In their real-world implementation, they find that vehicle costs account

for the most to the objective function. They also argue that increasing the vehicle

capacity decreases the most the objective function. In order to solve larger instances

of the same problem, Aksen et al. (2014) present an Adaptive Large Neighbourhood

Search. They compare the Adaptive Large Neighbourhood Search (ALNS) that they

propose to a Mixed Integer Linear Programming (MILP) model and find that the
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ALNS outperforms the MILP for large-scale instances in terms of computation times

and solution quality. Bard and Nananukul (2009) develop a two-step approach for a

multiperiod IRP in a manufacturing supply chain that first solves the ICP by setting

the delivery quantity and then considers the VRP. They compare the computation

times of the proposed approach to the ones of other approaches found in the literature.

Fransen et al. (2020) solve with an extensive discrete-event simulation the routing

problem for Automatic Guided Vehicles (AGV) in a manufacturing environment. This

model aims to intervene when the deadlock is irreversible by rerouting the AGVs that

are waiting in the deadlock. Chiew and Qin (2009) present an algorithm that adapts a

bitonic merge sort algorithm for the routing and scheduling problem to avoid deadlocks

when AGVs are implemented. They compare their approach to the ones found in

the literature and discuss the possible applications. However, these papers focus on

deadlock issues that occur with AGVs when they turn, the problem of the delivery with

tow trains is different since it considers the congestion problem that occurs during the

delivery of the components with tow trains. Indeed, deadlocks between AGVs might

require, in the most extreme cases, human intervention to be solved since the operator

has to manually reroute the vehicles. When solving the problem of deadlocks that can

arise for AGV, the aim of the model provided by Chiew and Qin (2009) is to achieve

no deadlock at all since even one deadlock could result in the loss of a significant

amount of money. This problem is different from the one described in Chapter 5.

Although all these articles study the IRP, the congestion problems that arise for the

delivery of components in a manufacturing plant are not investigated in the literature.

Chapter 5 aims to fill the gap in the literature by providing a mathematical formulation

for the periodic IRSP. Through this model, we identify the degree of importance of

congestion in the part-feeding problem.
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Chapter 3

Assembly Line Feeding Problem from

a Supervised Machine Learning

Perspective

Based on

Zangaro, F., S. Minner, and D. Battini. 2021. “A supervised machine learning

approach for the optimisation of the assembly line feeding mode selection.”

International Journal of Production Research, 59 (16): 4881-4902.

The Assembly Line Feeding Problem (ALFP) involves the delivery of components to

the production area. Previous models minimse the delivery costs and optimally assign

each component to a line feeding mode between line stocking, kitting, and sequencing

but cannot provide easily comprehensible guidelines. We use the Classification And

Regression Tree (CART) algorithm to develop, in a supervised way, a decision tree

based on problems that are solved with a Mixed Integer Linear Programming (MILP)

model for training purposes. Based on selected attributes of the components and

the manufacturing environment, the decision tree suggests a line feeding mode for

every component. For a synthetically determined training and evaluation data set,

we find that the classification tree can predict the line feeding mode with an average

classification accuracy of 78.49%. After the decision tree is implemented and a line

feeding mode is selected for each component, an infeasible solution might occur. We

develop a repair approach that solves this problem with an average cost deviation from

the optimal solution of 0.38%.
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3.1 Introduction and Background

In a manufacturing environment, several production and assembly activities are

performed. After the production, the components are stored in warehouses, and

line feeding activities involve the delivery of these components to the assembly line.

The Assembly Line Feeding Problem (ALFP) is a classification problem where a line

feeding mode is assigned to each component (Battini et al. 2015). There are many

optimisation and heuristics that minimse the costs of the part feeding activities for

each component by comparing the modes or selecting the most appropriate one, e.g.

Caputo, Pelagagge, and Salini (2018), Limére, Van Landeghem, and Goetschalckx

(2015). However, these approaches are complicated, and they do not provide an

understanding of how the results were obtained.

Practitioners want to understand the guidelines that help with the selection of the

optimal line feeding model for new components in a supermarket. They need to

understand the attributes of the components that drive the selection. Furthermore,

suppliers can change the size, kind, and capacity of boxes on a daily basis. Operators

continue to deliver these components in the line feeding mode they originally selected,

since optimisation models are impractical for daily utilisation and there are no other

accessible decision support systems. Consequently, there is the need to develop a

method that provides easy-to-use guidelines for practitioners. Decision trees are a

powerful tool in these scenarios.

Our model enhances and extends an optimisation model adapted from Sali and Sahin

(2016) and the objective function previously presented in Sali, Sahin, and Patchong

(2015). In contrast to the original model, we consider stationary kits instead of the

traveling kit since the real data used in this work was provided by companies that

mostly implement stationary kits. We consider externally supplied sequencing as an

additional line feeding mode that was previously neglected, before introducing some

constraints to account for its implementation. Further, we consider the cost of capital

and the equipment costs that affect the line feeding activities.

Supervised machine learning algorithms and models proved to be very effective in

classification problems. We apply a supervised machine learning algorithm to the

ALFP. Since the model is supervised, it needs to learn from instances that are solved

with the optimisation model. Unlike previous machine learning algorithms that are

trained with features and classes of problems already available in the literature, our

model uses the results of an optimisation model for training, validating, and testing.
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An approach for developing decision trees is used and parameterized.

If this decision tree is used and a line feeding mode is selected for each component,

there is the possibility that an entire instance is infeasible due to joint capacity

constraints. Therefore, we develop a repair approach that assigns a line feeding mode

to certain components until a feasible solution is reached. To validate this method,

we define four main Key Performance Indicators (KPIs): classification accuracy, the

confusion matrix, the number of infeasible instances before the repair approach, and

the total cost deviation after the repair approach. The decision tree has a classification

accuracy of 78.49%. The repair approach can decrease the average cost deviation from

the optimal solution to 0.38%. Since machine learning processes are affected by the

quality of the data, our model is tested with data synthetically generated from data

sets that were collected from four companies: an automotive manufacturer, an Original

Equipment Manufacturer (OEM), a producer of electrical motor, and a producer of

naval equipment.

The remainder of this chapter is structured as follows: Section 3.2 describes the problem

and the general assumptions of the model, Section 3.3 provides the optimisation model,

the machine learning algorithm, and the repair approach, Section 4.4 describes our

KPIs, the data generation process, the results, and an exemplary application of the

decision tree, and Section 6 provides a summary and ideas for future research.

3.2 Problem Description and Assumptions

Components, also known as references, are usually stored in a special warehouse that

is known as supermarket and located near the assembly area. For each component,

there are several different variants that consist of similar objects. They might differ

in one or more attributes i.e. colour, texture, or material. For instance, a case that

is installed on an electronic appliance might come in different colours and materials.

During each assembly operation, only one variant is assembled to the product. Besides,

every component is delivered to only one assembly station.

All the wagons of the tugger train have an identical maximum capacity in terms

of volume (m3) that limits the amount of components that can be transported and

delivered.

There are four commonly implemented line feeding modes:

� Line Stocking employs a kanban call-sign or a consumption renewal method.
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Usually, each box contains multiple identical parts of the same object. Since

each component has its individual consumption rate, the number of boxes may

vary. According to Sali and Sahin (2016), the operator can load or unload several

boxes of the same component at once whenever this is possible. Components must

be identified during the picking operations.

� Stationary kit refers to the collection of the components needed to perform

the assembly operations of a single assembly station. This approach consists

of collecting different components from different repositories and placing them

together in a single kit container. As opposed to the traveling kit, which moves

along the assembly line, the stationary kit is delivered and remains at the

BoL of a station. If the weight and volume allow it, multiple components are

simultaneously retrieved by the picking operator.

� Sequencing means that different variants of the same component are collected

and placed inside a container in the same order as they will be consumed in

the assembly line. Each component has its own container where its variants are

placed in order. Sequenced parts are stored at the BoL.

� Externally supplied sequencing is similar to sequencing. All the different variants

of the same component are placed in the same order as they are needed in one

container. In contrast to sequencing, the preparation activities are not performed

at the production plant, but by the supplier. This happens if the component has

a high number of variants or if the component’s box is larger than a certain size

and you want to limit the total supermarket space.

Generally, components are placed into containers for all the four line feeding modes.

More specifically, for line stocking, stationary kitting, and sequencing (regular or

externally supplied), the objects to be processed are respectively boxes, kit containers,

and sequenced parts or parts. Figure 4.1 depicts the supermarket and the BoL.

We assume that the operations are subdivided into six main cost elements:

� Preparation before assembly is an operation that takes place in the supermarket.

The operator collects the components from the shelves and, if and where necessary,

loads them onto the appropriate container.

Since each component has its individual consumption rate, the number of

containers may vary between components. The number of kits and sequenced
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parts that are prepared between two deliveries is equal to the number of takts,

which is the number of products assembled in the same time interval. The operator

can load or unload several containers of the same component at once whenever

this is possible.

� Transportation involves the transfer of the containers that are already on the

tow train from the supermarket to the assembly line. In a milk-run, the tow

trains travel through the whole assembly line, regardless of the number of stations.

Kitted parts are placed on a cart that is attached to the tow train before departure.

We also assume that the traveling time is constant and not affected by delays and

queues.

� Picking at the BoL consists of retrieving the components at the BoL. Line stocked

components need to be identified before they can be picked at the BoL. Kitted

and sequenced parts do not require identification during the picking operations

as these line feeding modes are designed to be easily recognized. Containers are

stored at the BoL, where they can easily be retrieved by the assembly operators.

� Storage consists of stocking the components at the BoL or in the preparation

area next to the supermarket. There is an area near the supermarket where the

kitting and sequencing operations are performed. Furthermore, kit containers and

sequenced parts are stored in a buffer area near the supermarket before they are

attached to or loaded onto the tow trains.

� Cost of capital account for the costs of inventory holding capital for a stock of

the components at the BoL.

� Equipment costs consist of the costs for all the containers that are used in the

line feeding activities.

Table 3.1: Sets, indicis, parameters, and attributes of the component used in the model

Sets and Indicis of the model

Not. Definition Range

|Sk| Number of variants of a component k —

i Variant index i ∈ I
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I Set of variants of components —

k Component index k ∈ K

K Set of components to deliver —

n Station index n ∈ N

N Set of stations —

Sn Set of components assembled in a station n —

Sk Set of variants of a component k —

u Line feeding mode index u ∈ U

U Set of line feeding modes —

Parameters of the model

Not. Definition Unit

ζn Available length at workstations m

ξ Available depth at BoL m

ψ Preparation and delivery batch size pcs

ω Maximum volume occupied by a component with multiple

variants in the supermarket

m3

Asta Depth of a stationary kit container m

Bsta Length of a stationary kit container m

C0 Labour cost per time unit N
s

Cesc Purchasing costs for preparation activities externally

performed

N

Ckit Daily cost of the kit cart N
day

Cm2 Periodic rental cost per square meter N
day m2

Csh Daily cost of the shelf N
m3day

Csq Daily cost of the sequenced cart N
day

Cv Daily vehicle unit cost N
day vehicle

d Interspace between two consecutive end products on the

assembly line

m

D Distance travelled by the tow train in one roundtrip m

j Daily interest rate %

L Number of levels of the shelves used for line stocked

components at the BoL

—

Lseq Maximum number of variants for the sequenced kit pcs

M sta Weight capacity of a stationary kit container kg

v0 Speed of an operator m
s
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V Production volume in the production period pcs

V olsta Volume capacity of a stationary kit container m3

vt Speed of the tugger train m
s

T Production period s

Y Capacity of the tugger train m3

Time needed for

tgl A single movement of grasping boxes and loading them. s

tgsl A single movement of grasping line stocked parts for

assembly.

s

tgul A single movement of grasping boxes and unloading them. s

til A single operation of identification. s

tlk A single movement of loading a kit container on the train. s

tpak A single movement of picking during the assembly in kitting

mode.

s

tpas A single movement of picking during the assembly for the

sequencing mode.

s

tpk A single movement of picking variants during the

preparation in a kitting mode.

s

tps A single movement of picking and loading variants during

the preparation in a sequencing mode.

s

tuk A single movement of unloading a kit container from the

train.

s

tus A single movement of unloading the sequenced parts at

BoL.

s

Attributes of the components

Not. Definition Unit

θ′k Average number of sequenced parts of the variant i of

component k unloaded at once

pcs

θ′ki Average number of boxes of the variant i of component k

handled at once

boxes

θk Number of parts of the component k picked at once during

the assembly

pcs

θki Average number of parts of the variant i of component k

picked at once during the preparation

pcs

τki Usage rate of the variant i of component k pcs
s
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a′k Maximum number of boxes of the component k that can

be handled at once

boxes

ak Maximum number of parts of the component k that can be

handled at once

pcs

A′
k Depth of a box of a component k m

Ak Depth of a part of a component k m

B′
k Length of a box of a component k m

Bk Length of a part of a component k m

ck Bill of Material (BOM) coefficient of a component k pcs

hk Price of one single part of component k N

M ′
k Weight of a box of the component k kg

Mk Weight of a part of the component k kg

pk Number of parts per box of a component k pcs

rki Number of boxes of the variant i of the component k

consumed between two successive deliveries

boxes

V ol′k Volume of a box of the component k m3

V olk Volume of a part of the component k m3

The attributes written in italics are collected from company records. The attributes

underlined refer to the dimensions of 260 boxes listed in Hemminki, Leipala, and

Nevalainen (1998), which we assign if the dimensions of the boxes were missing in

the original record provided by the company based on their volumes. Each parameter
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Figure 3.1: Supermarket area and assembly line

or attribute is provided with an accurate value, a list, or a range. The lists are provided

in curly brackets. For the ranges, we provide the minimum and maximum value in

squared brackets. For the attributes that are calculated, the formulas are provided and

a detailed description is presented in Sali and Sahin (2016). The parameters are taken

from Sali and Sahin (2016), Limére, Van Landeghem, and Goetschalckx (2015), and

Caputo, Pelagagge, and Salini (2018).

Table 3.2: Data and ranges of the sets, parameters, and attributes of the components

Notation List, Range, Value, or Formula Unit

Sets

|Sk| [1, 5] —

I 5 —
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K {100;150;200} —

N {10;15;20} —

Parameters of the Model

ζn [8, 10] m

ξ [3, 5] m

ψ 1 pcs

ω 1 m3

Asta [0.4, 1] m

Bsta [0.3, 0.8] m

C0 0.0083 N
s

Cesc 125 N

Ckit [0.1, 0.4] N
day

Cm2 0.2 N
day m2

Csh 0.075 N
m3day

Csq [0.05, 0.2] N
day

Cv 22 N
day vehicle

d 1.5 m

D [200, 400] m

j 0.0137 %

L 3 —

Lseq 5 pcs

M sta [30, 60] kg

tgl [1.4, 2.1] s

tgsl [1.384, 2.076] s

tgul [1.4, 2.1] s

til [0.4, 0.6] s

tlk [1.04, 1.56] s

tpak [0.88, 1.32] s

tpas [1.04, 1.56] s

tpk [1.52, 2.28] s

tps [1.12, 1.68] s

tuk [1.04, 1.56] s

tus [1.12, 1.68] s

T 28800 s

v0 1 m
s
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V {16; 32; 36} pcs

V olsta [0.2, 0.7] m3

vt 1.38 m
s

Y 5.85 m3

Attributes of the Component

θ′k min(ak, ψck) pcs

θ′ki max(1,min(rki, a
′
k)) boxes

θk min(ak, ck) pcs

θki max(min(τkickψ, ak),min(ck, ak)) pcs

τki [0.02, 1.05] pcs
s

a′k [1, 2] boxes

ak [1, 10] pcs

A′
k Obtained from the literature m

or through field observations

Ak Obtained through field observations m

B′
k Obtained from the literature m

or through field observations

Bk Obtained through field observations m

ck [1, 5] pcs

hk [0.01, 50] N

Mk Obtained through field observations kg

M ′
k Obtained through field observations kg

pk Obtained through field observations pcs

V olk Obtained through field observations m3

V ol′k Obtained through field observations m3

rki
τkickψ
pk

boxes

These are the ranges used for the random generation of hk, ak, and a′k. For each

attribute, a random number based on the ranges of the attribute collected from

company records is assigned. If there are multiple ranges in the attributes obtained

from company records, the earliest one is accepted. These features are not part of the

training, validation, and testing sample because we want to avoid that any undesired

generated correlation affects the quality of the decision tree.
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3.3 Modeling

3.3.1 Optimisation Model

The following Mixed Integer Linear Programming (MILP) model assigns a line feeding

mode to each component. This model is a modified version of the one described in

Sali and Sahin (2016) and considers one additional line feeding mode that was not

originally presented. We describe the set and parameters, the decision variables, the

objective function, and the constraints.

All the sets, parameters, and attributes of the components we introduce in the model

are reported in Table 3.1. The depth and the length of the components (Ak and Bk)

and of the containers (A′
k, B

′
k, A

sta, and Bsta) are respectively considered for the depth

and the length at the BoL (ξ and ζ). To give the reader a clear understanding, some

of the attributes of the component and of the containers are depicted in Figure 3.2.

There is one primary binary decision variable xuk that refers to the line feeding modes

u of component k, with u = 1 for stationary kit, u = 2 for sequencing, u = 3 for

line stocking, and u = 4 for externally supplied sequencing. Further, there are two

auxiliary decision variables. N sta
n is the number of stationary kits used in the delivery

of components at station n, and m is the number of roundtrips performed by the

tugger trains when they deliver the components.

min Cprep + Ctr + CBoL + Cst + Chold + Ceq (3.1)

The objective function minimses the sum of all the costs for the line feeding procedures.

We enhance the objective function by considering additional elements of cost, i.e. Chold

and Ceq. Furthermore, we consider an additional line feeding mode. The costs of the

objective function are made up by the four line feeding modes and the six main cost

elements described in Section 3.2.
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Figure 3.2: Dimensions of the assembly line and attributes of the components
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Preparation Before Assembly

Cprep =
V C0

ψ2vt

∑︂
k∈K

x3k|Sk|B′
k⏞ ⏟⏟ ⏞

(3.2.1)

+
V C0

ψ2v0

∑︂
k∈K

(x1k + x2k)|Sk|B′
k⏞ ⏟⏟ ⏞

(3.2.2)

+

V C0

{︃∑︂
k∈K

∑︂
i∈Sk

[︃
x3k

τkick
pkθ′ki

tgl⏞ ⏟⏟ ⏞
(3.2.3)

+x1k
τkick
θki

tpk + x2k
τkick
θki

tps

]︃
⏞ ⏟⏟ ⏞

(3.2.4)

+

∑︂
n∈N

[︃
N sta
n tlk +N sta

n tuk

]︃
⏞ ⏟⏟ ⏞

(3.2.5)

+

∑︂
k∈K

∑︂
i∈Sk

[︃
x3k

τkick
pkθ′ki

tgul + (x2k + x4k)
τkick
θ′k

tus

]︃
⏞ ⏟⏟ ⏞

(3.2.6)

}︃
+ ψ

∑︂
k∈K

x4kCesc⏞ ⏟⏟ ⏞
(3.2.7)

(3.2)

The costs incurred in the preparation activities (Cprep) are considered in (3.2).

The total number of roundtrips (V
ψ
) is multiplied by the time needed to collect the

components from the supermarket. Since, for the line stocking mode, this operation is

performed on a tugger train, the speed of the tugger train (vt) is applied in (3.2.1). On

the other hand, the speed of the operator (v0) is used for the kitting and sequencing

mode since the operator walks in the picking area, see (3.2.2). This formula is divided

by 2 because we need to consider the U-shaped paths and the structure of the storage

area.

Then, the costs for retrieving the components from the shelves are calculated in (3.2.3)

and in (3.2.4). In the objective function and the constraints, we use the attributes of

the components rki, θ
′
ki, θki, θk and θ′k. For a detailed description of these attributes,

we refer the reader to Sali and Sahin (2016). The difference between line stocked

components in (3.2.3) and kitted and sequenced parts in (3.2.4) is the use of the number

of components per box (pk) and the average number of components k of variant i that

can be picked up at once (θki).

The stationary kits must be loaded onto and unloaded from the tugger train. The

loading and unloading operations of the stationary kits in (3.2.5) are proportional to

their numbers (N sta
n ). We use the loading time tlk and the unloading time tuk.

The boxes and sequenced parts must be unloaded from the tugger train. The unloading

operations of boxes and sequenced parts in (3.2.6) are calculated in the same way as

shown in (3.2.1) and in (3.2.2). We define the time for unloading operations of line
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stocked components tgul and the time for unloading operations of sequenced parts tus.

To obtain the duration of the operations, the time parameters (tt) are used in the

previous equations. To obtain the costs of these operations, the hourly labour cost

(C0) is multiplied by their duration.

For externally supplied sequenced parts components, there is a purchasing cost for

having this activity performed by the supplier as shown in (3.2.7). Externally supplied

sequenced parts do not need any preparation activity as they are delivered by the

supplier ready for delivery to the BoL.

Transportation

Ctr =
V D

ψvt
m(C0 +

Cv
T

) (3.3)

The tugger train must perform a milk-run to the assembly line to replenish the racks

at the stations. As shown in (3.3), the transportation cost (Ctr) is the same for all the

four line feeding modes. It is calculated by multiplying the number of milk-runs (m)

with the total number of roundtrips (V
ψ
), the labour cost (C0), the costs of the vehicle

(Cv

T
), and the distance travelled in one milk-run (D), and then divided by the speed of

the tugger train (vt).

Picking at the BoL

CBoL = V C0

∑︂
k∈K

∑︂
i∈Sk

x3kτkitil⏞ ⏟⏟ ⏞
(3.4.1)

+
V 2C0

v0

∑︂
k∈K

∑︂
i∈Sk

x3k
τkick
θk

(i− 1)B′
k⏞ ⏟⏟ ⏞

(3.4.2)

+

V C0

∑︂
k∈K

∑︂
i∈Sk

[︃
x3k

τkick
θk

tgsl + x1k
τkick
θk

tpak + (x2k + x4k)
τkick
θk

tpas

]︃
⏞ ⏟⏟ ⏞

(3.4.3)

(3.4)

The variants of components that are delivered under the line stocking mode must be

identified as described in (3.4.1). Sali and Sahin (2016) provide a detailed description

of how the time needed for identifying a variant i of a component k (til) is obtained.

For line stocked components, the operator must travel from the starting point to the

location of the box that is filled with a variant, see (3.4.2). The travelled distance is

obtained from (i − 1)B′
k. The number of trips made by the operator is considered in
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V τkick
θk

, and the speed of the operator (v0) is used for obtaining the traveling time. The

number of parts picked in one go during the assembly is encoded in θk.

The operator needs to retrieve the components from the containers as shown in

(3.4.3). The formula is similar to the one we used for retrieving the components in the

supermarket as shown in (3.2.3) and in (3.2.4).

The labour cost (C0) is used in the equations to obtain the costs for the working time.

Storage

Cst =
∑︂
k∈K

∑︂
i∈Sk

x3k⌈rki⌉A′
kB

′
k

Cm2

L⏞ ⏟⏟ ⏞
(3.5.1)

+

∑︂
n∈N

ψAstaBstaCm2

2
N sta
n⏞ ⏟⏟ ⏞

(3.5.2)

+2ψCm2

∑︂
k∈K

∑︂
i∈Sk

x2kτkickAkBk⏞ ⏟⏟ ⏞
(3.5.3)

+

∑︂
k∈K

(x1k + x2k + x3k)|Sk|A′
kB

′
k

Cm2

L⏞ ⏟⏟ ⏞
(3.5.4)

+
∑︂
k∈K

|Sk|V ol′kCshx3k⏞ ⏟⏟ ⏞
(3.5.5)

+

∑︂
k∈K

|Sk|V ol′kCsh(x1k + x2k + x3k)⏞ ⏟⏟ ⏞
(3.5.6)

(3.5)

The storage costs (Cst) are outlined in (3.5).

The dimensions of the boxes (A′
k and B

′
k) and the number of boxes (⌈rki⌉) are considered

to account for the space needed to store line stocked components at the BoL.

Kitted containers and sequenced parts must be stored in the preparation area close to

the supermarket in (3.5.2) and (3.5.3). The dimensions of the containers (Asta, Bsta)

and (Ak, Bk) are multiplied by their numbers. The space needed at the supermarket

is calculated in (3.5.4) for all the line feeding modes except for externally supplied

sequencing.

In all these elements of cost, the occupied space is multiplied by the rental cost per

square meter (C2
m).

To account for the shelves where the line stocked components are stored at the BoL,

their cost (Csh) is multiplied by the size of the box in (3.5.5). For all the line feeding

modes except externally supplied sequencing, the cost of the shelves at the supermarket
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(Csh) is multiplied by the volume of the box in (3.5.6).

Cost of Capital

Chold = V
∑︂
k∈K

∑︂
i∈Sk

[︂
x3k⌈τki⌉ckhkjpk⏞ ⏟⏟ ⏞

(3.6.1)

+(x1k + x2k + x4k)τkickhkj⏞ ⏟⏟ ⏞
(3.6.2)

]︂
(3.6)

The cost of capital (Chold) of the containers stored at the BoL are considered in (3.6).

The quantity of material that is kept at the BoL is multiplied by its value hk and by

the current daily interest rate j.

While the whole box that contains the component k is considered for the line stocked

components in (3.6.1), only the precise number of parts is calculated for the other line

feeding modes in (3.6.2).

Equipment Costs

Ceq = 2(
∑︂
n∈N

N sta
n )Ckit + 2

∑︂
k∈K

x2kCsq (3.7)

Some additional costs are incurred for the containers. Components that are kitted

or sequenced require some additional equipment. The number of kits and sequenced

components is multiplied by their costs (Ckit and Csq) in (3.7). Since we assume

that one container is used at the station and another container is used in the

supermarket, we multiply the number of containers by 2. The constraints are arranged

as consistency constraints, takt time constraints, layout constraints, transportation

capacity constraints, and variable definition.

Consistency Constraints ∑︂
u∈U

xuk = 1, ∀k ∈ K (3.8)

N sta
n ≥ x1k, ∀n ∈ N, ∀k ∈ Sn (3.9)

Only one of the line feeding modes between line stocking, stationary kitting, sequencing,

and externally supplied sequencing can be assigned to each component k. In (3.8), we

ensure that only one of the binary decision variables from the line feeding modes of a

component k is equal to 1 and the remaining ones are all equal to 0. If some components
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are kitted, at least one stationary kit must be prepared and used as described in (3.9).

The number of stationary kits depends on where they are located.

Takt Time Constraints

D

vt
+

1

2vt

∑︂
k∈K

x3k|Sk|B′
k + ψ

∑︂
k∈K

∑︂
i∈Sk

x3k
τkick
pkθ′ki

tgl+

ψ
∑︂
k∈K

∑︂
i∈Sk

x3k
τkick
pkθ′ki

tgul + ψ
∑︂
n∈N

N sta
n tlk+

ψ
∑︂
n∈N

N sta
n tuk + ψ

∑︂
k∈K

∑︂
i∈Sk

x2k
τkick
θ′k

tus+

ψ
∑︂
k∈K

∑︂
i∈Sk

x4k
τkick
θ′k

tus ≤
T ψ

V
(3.10)

1

2v0

∑︂
k∈K

x1k|Sk|B′
k + ψ

∑︂
k∈K

∑︂
i∈Sk

x1k
τkick
θki

tpk ≤
T ψ

V
(3.11)

1

2v0

∑︂
k∈K

x2k|Sk|B′
k + ψ

∑︂
k∈K

∑︂
i∈Sk

x2k
τkick
θki

tps ≤
T ψ

V
(3.12)

∑︂
k∈Sn

∑︂
i∈Sk

x3kτkitil +
2

v0

∑︂
k∈Sn

∑︂
i∈Sk

x3k
τkick
θk

(i− 1)B′
k+∑︂

k∈Sn

∑︂
i∈Sk

x3k
τkick
θk

tgsl +
∑︂
k∈Sn

∑︂
i∈Sk

x1k
τkick
θk

tpak+

∑︂
k∈Sn

∑︂
i∈Sk

(x2k + x4k)
τkick
θk

tpas ≤
T

V
, ∀n ∈ N (3.13)

The time needed for transporting the components must be lower than the time interval

between the deliveries to the stations in (3.10). The transportation time is the sum of:

� the traveling time for a milk-run;

� the traveling time needed in the preparation area to retrieve the line stocked

components ;

� the time it takes to load and unload the line stocked components onto and from

the tow train;

� the loading and unloading time of the stationary kits onto the tugger train;

� the unloading time of the sequenced parts from the tugger train;
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� the unloading time of the externally supplied sequenced parts from the tugger

train.

Since it is assumed that, if necessary, more than one tugger train can deliver the

components, the number of milk-runs m does not appear in the constraint. One

stationary kit is prepared between two consecutive deliveries to the stations. Therefore,

(3.11) sets the time the operator needs for preparing the stationary kit lower than or

equal to the time interval between deliveries. This time includes the traveling time in the

preparation area and the time needed for the picking activities in the preparation area.

The sequenced parts are prepared between two consecutive deliveries to the stations.

In the same way as described in (3.11), (3.12) sets the time the operator needs for

preparing the sequenced parts lower than or equal to the time that elapses between two

deliveries to the stations. It is not necessary to include such a constraint for externally

supplied sequenced parts since they are provided to the assembly line by the supplier

in the state that is desired for delivery. For each assembly station, (3.13) ensures that

the time needed for retrieving the components at the BoL is lower than or equal to the

takt time. This time is the sum of five elements:

� the time needed to identify a line stocked component;

� the traveling time at the BoL;

� the time needed to grasp a line stocked component;

� the picking time for a stationary kit ;

� the picking time for sequencing and for externally supplied sequencing

components.
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Layout Constraints

x3k|Sk|
B′
k

L
+N sta

n Bsta +
∑︂
k∈Sn

(x2k + x4k)Bk+ ≤ ζn, ∀n ∈ N (3.14)

x3k⌈rki⌉A′
k ≤ ξ, ∀k ∈ K, ∀i ∈ I (3.15)

x2kψAk ≤ ξ, ∀k ∈ K (3.16)

N sta
n Asta ≤ ξ, ∀n ∈ N (3.17)

x4k = 1, ∀k ∈ K : |Sk| ≥ Lseq (3.18)

x4k = 1, ∀k ∈ K : V ol′k > ω∧

|Sk| > 1 (3.19)

The available space in each workstation at the BoL must be big enough to hold all

the containers. Therefore, the BoL must be long enough to hold the length of the

line stocked components, stationary kits, sequenced components, and externally supplied

sequenced components in (3.14). This is obtained by the sum of:

� the length of the line stocked components divided by the number of levels of the

shelves;

� the length of the stationary kit ;

� the length of the sequenced and externally supplied sequenced components.

The box of each line stocked component cannot have a depth (A′
k) multiplied by the

number of boxes (⌈rki⌉) that is higher than the maximum depth available at the BoL (ξ),

as described in (3.15). The depth of each sequenced part and of the externally supplied

sequenced parts (Ak) multiplied by the delivery batch size (ψ) must be lower than the

depth available at the BoL (ξ), otherwise they cannot be stored there (3.16). Following

the procedure outlined in (3.16), the depth of the stationary kit must be lower than or

equal to the depth at the BoL (3.17). This constraint has been newly introduced as it

cannot be found in the original model presented by Sali and Sahin (2016), which is

due to the fact that the original paper only considers traveling kits. If a component has

more variants than the maximum limit Lseq, then this component is externally supplied

sequenced in (3.18). This is due to the limited size of the preparation area where the

sequencing activities occur. Since some components might have an enormous number

of variants, the preparation activities for sequenced components cannot be performed.
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Similarly, if a component’s box has a higher volume than the limit ω and more than

one variant, then it must be externally supplied sequenced in (3.19).

Transportation Capacity Constraints

x1kAk ≤ Asta, ∀k ∈ K (3.20)

x1kBk ≤ Bsta, ∀k ∈ K (3.21)

x2k ≤ (|Sk| − 1), ∀k ∈ K (3.22)

x3k = 1, ∀k ∈ K : V ol′k ≤ 0.0208 (3.23)

x1kckMk ≤M sta, ∀k ∈ K (3.24)

x1kckV olk ≤ V olsta, ∀k ∈ K (3.25)∑︂
k∈Sn

x1kckMk ≤ N sta
n M sta, ∀n ∈ N (3.26)∑︂

k∈Sn

x1kckV olk ≤ N sta
n V olsta, ∀n ∈ N (3.27)∑︂

k∈K

∑︂
i∈Sk

x2kckV olkτki +
∑︂
k∈K

∑︂
i∈Sk

x4kckV olkτki+∑︂
n∈N

N sta
n V olsta +

∑︂
k∈K

∑︂
i∈Sk

x3k
τkick
pk

V ol′k ≤
m

ψ
Y (3.28)

If a component is bigger than the kit container, then it cannot be delivered as kitting,

as in (3.20) and (3.21). Sequencing is a line feeding mode used for components

that have multiple variants. If a component has only one variant, then it cannot

be sequenced as described in (3.22). The National Institute for Occupational Safety

and Health (NIOSH) guidelines and International Organization for Standardization

(ISO) standards suggest an equation that can be used for ergonomically improving the

repeated lifting and carrying operations of boxes (ISO 11288-1:2003 2003; Waters,

Putz-Anderson, and Garg 1994). Through this equation, we can assert that the

appropriate size when it is necessary to transport a box manually is 0.0208 m3. In

(3.23), we enforce that line stocking is assigned to all those components that have a

volume lower than or equal to the recommended optimal size. The weight of each

component that is kitted, which consists of the weight of a single part (Mk) multiplied

by its bill of material (BOM) coefficient (ck), must not exceed the maximum weight

of the kitted containers (M sta). (3.24) refers to the stationary kit. The volume of

each component that is kitted, which consists of the volume of a single part (V olk)
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multiplied by its BOM coefficient (ck), must not exceed the maximum volume of the

kitting containers V olsta. (3.25) refers to the stationary kit. The total weight (3.26)

and volume (3.27) of components that are kitted must be lower than or equal to the

maximum available weight and volume of the stationary kit. To obtain the total weight

and volume of the kit containers, their number N sta
n is multiplied by the maximum

weight and volume of a single kit. The volume of the containers to be delivered must

be lower than or equal to the available volume of the tugger trains in (3.28). The

volume of a single tugger train (Y ) is multiplied by the number of milk runs (m) to

obtain the total available volume. The transported volume is the sum of four elements:

� the sum of the volumes of all variants of the sequenced component;

� the sum of the volumes of all variants of the externally supplied sequenced

component;

� the volume of the stationary kits ;

� the sum of the volumes of the line stocked components.

Variable Definition

xuk ∈ {0, 1}, ∀u ∈ U, ∀k ∈ K

N sta
n ∈ N,m ∈ N

(3.29)

The decision variables are defined in (3.29). While xuk is a binary decision variable, the

auxiliary decision variables are set as integer.

3.3.2 Supervised Machine Learning Process

Three sets of data are needed in the machine learning approach: the training sample, the

validation sample, and the testing sample. Since this is a Supervised Machine Learning

algorithm, the training sample is used for training the machine learning algorithm.

This sample is made up of P instances which are solved with the optimisation model.

After the instances are solved, each problem, along with its solution, is used for the

training phase of the machine learning approach. The four line feeding modes chosen

by the optimisation approach represent the four classes into which the components are

classified. The classification accuracy is calculated as the percentage of classes correctly

chosen by the machine learning algorithm.
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To develop a decision tree, a gini score is calculated. It was first described in Gini

(1912), this coefficient represents the degree of equality among the data, where 1

expresses total inequality and 0 total equality.

Gf = 1−
C∑︂
c=1

ψ2
fc (3.30)

Given a node f of a decision tree, the gini impurity score can be obtained from Equation

(3.30). ψfc encodes the number of instances (components) of class (line feeding mode)

c in the sample at node f divided by the total number of instances of the sample, i.e.

the total number of components of the sample at node f .

To train the decision tree, we implement the Classification And Regression Tree (CART)

(Breiman 1984) because this algorithm outperforms the Iterative Dichotomiser 3 (ID3).

The CART is also comparable in performance to the C4.5 algorithm (Gokgoz and Subasi

2015). Instead of implementing a gradient boosting algorithm that minimses the costs,

we choose the CART algorithm that maximizes the classification accuracy and we later

use a repair approach to ensure the feasibility of the instances and to reduce the cost

deviation from the optimal solution of the MILP.

At each node, rules that split the sample based on the values of the features are

generated. The rules are evaluated and the one that minimse the CART-objective

function is selected.

min
ml

m
Gl +

mr

m
Gr (3.31)

In the CART-objective function (3.31), m, ml, and mr are the number of instances of

the sample at a node at the sequent left node l and at the sequent right node r. Gl

and Gr are the gini impurity scores of the sequent left l and the right node r. In other

words, the rule that best splits the classes (line feeding modes) is selected.

After the rule has been generated, this leads to a splitting of the first node into two

nodes and of the sample into two subsamples. This process is iterated for each node

until the end of the tree is reached, i.e. until the maximum depth of the tree is reached

or the minimum sample for generating a node or leaf node is obtained. As a final step,

the newly generated tree is tested to increase the classification accuracy by pruning the

tree, i.e. eliminating one or several final nodes.

In a decision tree, each node represents a decision that must be made based on the

features of the component. After the system has moved along the nodes of the decision

tree, a leaf node is reached. This node represents the line feeding mode that must be
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assigned. For each node of the decision tree, there is a gini impurity score (Gini 1912).

As described in Bischl et al. (2016), hyperparameters are settings of a machine learning

process that are selected before the learning process begins. They can be tuned in such

a way that they develop a decision tree with the highest classification accuracy. James

et al. (2017) describe the use of the validation sample when it comes to tuning such

hyperparameters. In our case, the validation sample is made up of P ′ instances that are

solved with the optimisation model. To reach the highest classification accuracy on the

validation sample, we iteratively vary three hyperparameters : the maximum number of

levels of the decision tree, the minimum size of the sample to generate a node, and the

minimum size of the sample to generate a leaf node. This allows the generation of the

best decision tree for classifying the components.

For the testing sample, another set of P ′′ instances is solved with the optimisation

model. After the machine learning algorithm is trained with the training sample and

the hyperparameters are tuned with the validation sample, a test is made on the testing

sample with the same settings as before. The test determines the classification accuracy

of the model. As opposed to the training sample, only the features and not the classes

of the validation and testing samples are given to the model. The model will then

classify the components and return their classes.

To ensure that the results are meaningful, we apply the Leave-p Out Cross-validation

(Celisse and Robin 2008). In this approach, iterative experiments are performed.

During the experiments, the samples are permuted and used for the training, validation,

and testing phases. This becomes a Leave-2 Out Cross-validation Approach since two

samples are used for the training and validation phases, whereas only one sample is

used for the testing phase. The out-of-sample test is performed because we wish to

ensure that the model will perform well even with new data. On the other hand, we

always ensure that the outliers are part of the testing sample and not included in the

training sample or the validation sample.

To ensure that the model will perform well even in abnormal situations, we also generate

5% of instances where the four classes are abnormally present, i.e. one class occurs

at least 90% of the time in each instance. We call these instances outlier instances.

We implement Dixon’s Q-test, as originally described in Dixon (1950). Although the

original approach is preferable to other derived techniques, it is difficult to implement

because of the limited sample volume. This is why we rely on an approach that has

been tested on larger samples (Verma and Ruiz 2006). We select the outlier instances

with a critical Q-value of 99.5%.
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3.3.3 Repair Approach

As a result of the machine learning approach, each component is classified with a

line feeding mode that was selected from the decision tree. However, sometimes the

classification leads to an infeasible solution of an instance p. One component can affect

the line feeding selection of the others, and this can lead to a violation of the volume or

the space capacity. Therefore, even one single wrongly classified component can lead to

an infeasible solution. For example, one component’s box might be too large to be line

stocked or have too many components per box to be kitted. If an incorrect line feeding

mode is assigned to such a component, some of the constraints of the optimisation

model might be violated. On the other hand, a component that is assigned to an

incorrect line feeding mode might lead to a feasible solution but negatively affect the

overall costs. If only one component is kitted, then a feasible solution with higher costs

is a possibility because of the transportation costs of one nearly empty kit. Eventually,

a component that is assigned to an incorrect line feeding mode might make an instance

difficult to compare to others. If an instance is infeasible, it might have an objective

value that is lower than the optimum. This is because one or more constraints are

violated. Therefore, it is misleading to consider the objective value of an instance that

is not repaired, i.e. before the repair approach is applied. There are multiple benefits

of implementing a repair approach, ensuring the feasibility of the instances, ensuring

a low cost deviation, and ensuring that the instances are comparable. The repair

approach discussed in this section is applied for all instances regardless of their status.

Our repair approach ensures the feasibility of the solution for each instance. In order

to ensure the feasibility of an instance, we assign a line feeding mode to one component

that violates a constraint by using the MILP explained in Section 3.3.1. For constraints

that consider multiple line feeding modes (3.10 - 3.14), the component that generates

the highest value in the constraint is selected. This allows the identification of those

components that contribute towards violating a constraint.

After, it is possible that the cost deviation from the optimal solution of a feasible

instance is high. To reduce such cost deviation, we assign a line feeding mode to the

most expensive components by using the MILP previously explained. Since in the

objective function there are some fixed costs for some line feeding modes, we distribute

these fixed costs among all the components that are assigned to that container.

Although this approach is not common, a standard heuristic that employs techniques

such as the Nearest Neighbor Search is not a viable option for solving this problem

because of the high level of constraints and the high number of permutations of the
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line feeding mode. This can also be justified by the fact that in the literature the

ALFP is always solved with optimisation models. Figure 3.3 provides the flowchart of

the repair approach.

Figure 3.3: Flowchart of the repair approach
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3.4 Numerical Study

3.4.1 Key Performance Indicators

We use four KPIs for evaluation: the classification accuracy represents the percentage

of components that are assigned to the correct line feeding mode. The confusion

matrix analyses the classification accuracy for each class relative to the other classes.

For each line feeding mode ur, we calculate the percentage of components classified by

the decision tree in each line feeding mode uc. The value at row ur and at column uc

represents the percentage of components originally assigned to the line feeding mode

r by the optimisation model and by the classification tree to the line feeding mode

c. This allows the reader to understand what percentage of each line feeding mode is

classified in the other line feeding modes. The number of infeasible instances before the

repair approach represents the number of instances that become infeasible when the

components are assigned a line feeding mode from the decision tree. Although each

component has a certain line feeding mode, it is possible that all the K components

together lead to a problem p that is infeasible in its complexity. The total cost deviation

after the repair approach refers to the difference between the optimal value of the cost

function and the solution obtained from the repair approach, which ensures that each

instance p is feasible and that the cost deviation is low. This is the cost that can

be calculated from the objective function (3.1). As said before, it is not possible to

consider the cost deviation before an instance is repaired. This is because the instance

might be infeasible, i.e. some constraints might be violated. When this occurs, the

objective value might be lower than the optimal solution. This value might not bring

a valid mathematical meaning. Thus, it is not possible to consider the total costs of an

instance when only the classification of the decision tree is applied.

3.4.2 Data Generation

Our approach is tested with data that was obtained from the literature and collected

through field observation. We took the parameters in Table 3.1 from Sali and Sahin

(2016), Limére, Van Landeghem, and Goetschalckx (2015), and Caputo, Pelagagge,

and Salini (2018) in order to develop a general decision tree. These data refer to

operations and tools that are universally performed. Table 3.2 provides the values, the

lists, or the ranges.
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The training sample, the validation sample, and the testing sample are generated by

using an approach that is based on the Resample and Replacement principle (Efron

and Tibshirani 1993). This allows the generation of scenarios even when the observed

data’s statistical distribution cannot be estimated, is unknown, or lacks accuracy.

Given a population G of dimension α and size γ, a random sample µ1, µ2, . . . , µn of size

n is obtained. This is achieved by a selection of n random integer numbers between

1 and γ, each with a probability 1
γ
. Since this is an approach with replacement, the

integer numbers can be repeated. This will lead to µ1 = G1, µ2 = G2, . . . , µn = Gn.

Each element µn of the new sample has the same dimension α of the population G.

Firstly, the features in Table 3.1 that are written in italics are collected from documents

and records provided by four companies. The dimensions of the boxes underlined in

Table 3.1 are obtained from the literature. Hemminki, Leipala, and Nevalainen (1998)

describe an algorithm that optimally places boxes in a pallet where the sizes of the

boxes are not previously known. This work presents a list of 260 boxes with their

sizes. These box sizes are considered for the testing, validation, and training sample for

every set of data that does not already include them. We use the previously described

sampling technique to generate the instances for these features.

Subsequently, the remaining features are generated by assigning a random value to

the ranges described in Table 3.2. Since we want the features not provided in any

set of data (hk , ak, and a′k) to have realistic values, we generate random values

based on one or multiple features that were previously created with the Resample and

Replacement approach. The ranges are described in Table 3.3. These and all other

randomly generated features are not part of the training, validation and testing sample

of the decision tree because we want to avoid that high levels of correlation — that

might be an undesired byproduct of this process — lead to higher levels of accuracy

and unrealistic results. This process generates instances that are similar to the data

collected from the companies.

For the outlier instances, the generation process is the same as the one already

presented, and we always append these instances only to the testing sample.
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Table 3.3: Ranges used for the random generation of attributes of the components

Attributes obtained from company records Randomly generated attributes

pk (1000pcs; +∞) hk [0.01N; 1N]

[1pcs; 1000pcs] [1N; 50N]

M ′
k (8kg; +∞) a′k {1pc}

(0kg; 8kg] [1pc; 2pcs]

V olk (0.01m3; +∞) Mk (10kg; +∞) ak {1pc}
(0.001m3; 0.01m3] (5kg; 10kg] [1pc; 2pcs]

(0.0005m3; 0.001m3] (1kg; 5kg] [1pc; 3pcs]

(0; 0.0005m3] (0kg; 1kg] [1pc; 10pcs]

3.4.3 Results and Discussion

We used a computer with a 64-bit Operative system, 22 GB RAM, and a CPU with 2.10

GHz to perform the computational experiments. The data generator was implemented

with a combination of R Studio and Excel, while the optimisation model and the repair

approach were realised with Xpress-IVE version 8.5. The machine learning algorithm

was coded with Scikit-learn, which is a toolbox of Python 3.6.5 64 bit, and was executed

with Spyder 3.3.1.

For the computation times, we provide the validation time, which represents the time

needed for tuning the hyperparameters, and the learning time, which is the time needed

for the training and testing phases. The validation time is 14 minutes and the learning

time is 15 seconds. For the repair approach, we set the time Z for improving each

instance with 100, 150 and 200 components K, which equals to 3, 4, and 5 seconds.

The sets of data for this numerical case were synthetically generated by applying the

data generation approach described in Section 4.4.2 to data of four real-world industrial

scenarios. The first case comes from an automotive manufacturer of sports cars,

the second one comes from an OEM that produces components for the automotive

environment, the third from a company that produces electrical motors, and the fourth

from a manufacturer of components for nautical applications. We varied the number of

components K and the number of stations N .

As discussed in Sebban et al. (2000), the out-of-sample accuracy of decision trees

increases with the sample size. With the same analysis, we show in Figure 3.4, Figure

3.5, and Figure 3.6 how the KPIs are affected by the sample size.
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Figure 3.4: Classification accuracy by sample size

In Figure 3.4, the classification accuracy increases with the sample size. With a

sample size of 100 000 components, the classification accuracy reaches the asymptotic

limit. If the sample size increases further, the classification accuracy increases but only

slightly. Although these charts are, in the literature, designed to select the sample size

for the decision tree with the logarithmic scale, we rely on a linear scale in Figure 3.5

and Figure 3.6 so that we can refer to the instances solved. The classification accuracy

and the average cost deviation do not improve with a sample size larger than 100

instances, but rather remain constant. In other words, the classification accuracy and

the average cost deviation with 200 instances don’t show a high improvement from the

ones of 100 instances. On the other hand, the classification accuracy suffers slightly

when we only consider 25 instances. The number of insfeasible instances increases

with the sample size, but this is due to the higher number of instances of the testing

sample. Therefore, we identify a sample size of 100 instances as the one that preserves

the classification accuracy and avoids excessive computation times. Since we perform a

Leave-2 Out Cross Validation approach, each set is permuted and used for the training,

validation, and testing phases. One might argue that a sample P of only 100 instances

is quite small for a supervised machine learning approach. On the other hand, each

instance p consists of multiple components, and the training, validation, and testing

samples have a multitude of sets of data. Consequently, each sample has 540 000 rows,

each representing a component.
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Figure 3.5: Classification accuracy and number of infeasible instances before the repair
approach by sample size

Figure 3.7 presents the box plots of the occurrences with the percentages for the four

classes, i.e. the four line feeding modes, in the testing sample. The box plots reveal

that, for all four line feeding modes, the percentage has a median that is above 20% in

at least one case. The percentage of occurrence of the sequencing and stationary kit

are complementary since the components that are assigned to these line feeding modes

are similar, i.e. they require preparation activities and are delivered without the use

of the original box.
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Figure 3.6: Average cost deviation and maximum cost deviation after the repair approach
by sample size

For the hyperparameters of the decision tree, the minimum size of the sample to generate

a node is 50 components, the minimum size of the sample to generate a leaf node is 15

components, and the maximum number of levels in the decision tree is 14. The number

of levels of the decision tree refers to the maximum number of sequential nodes starting

from the root node. With these hyperparameters, the classification accuracy is 78.49%.
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Figure 3.7: Occurrences of the classes.

Figure 3.8 shows how the classification accuracy changes with the maximum levels
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Figure 3.8: Classification accuracy by maximum depth of the decision tree

of the decision tree. The results show that even a tree with a low depth can have a

classification accuracy of more than 70%. Table 3.4 presents the results of the decision

tree and the repair approach by using the number of infeasible instances before the repair

approach and the cost deviation from the optimal solution as previously described.

Deviating from Figure 3.5 and Figure 3.6, we set the sample size P to 100 instances

and provide the results when we variate the number of componentsK and of the stations

N for all four cases. The results reveal that there is a minimum number of infeasible

instances before the repair approach and that the cost deviation is low in all four cases.

The number of components K and the number of stations N do not affect the quality

of the results. There is no clear pattern that shows in which environment there is a

minimum cost deviation and number of infeasible instances. In all four cases, the results

indicate that we can predict the line feeding modes with a high degree of accuracy and

that the repair approach is effective.

The confusion matrix in Table 3.5 shows how the classes obtained from the optimisation

model are classified by the decision tree. The main diagonal of this square matrix

represents the correct classes. The confusion matrix shows that the accuracy for the

kitted components is lower than the ones for the other line feeding modes. Indeed, the

box plots in Figure 3.7 show that, in one case, there is a fairly low occurrence of kitted

components. Therefore, the occurrences of all four classes affect their classification

accuracies. Although our approach performs quite well for all the remaining three line

feeding modes and across all the four cases, this is a limitation of our approach.
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Table 3.4: Number of infeasible instances before the repair approach, average cost deviation,
and maximum cost deviation for a sample P of 100 instances

K Components 100 150 200
N Stations 10 15 20 10 15 20 10 15 20

Number of infeasible instances before the repair approach
Case 1 0 0 0 0 0 0 0 0 1
Case 2 0 0 0 0 1 0 1 0 1
Case 3 0 0 0 1 0 0 1 0 0
Case 4 0 0 0 0 0 0 1 1 1

Average cost deviation after the repair approach (%)
Case 1 0.12 0.13 0.14 0.15 0.16 0.13 0.16 0.13 0.14
Case 2 0.01 0.02 0.04 0.72 1.22 1.53 0.11 0.25 0.88
Case 3 0.81 0.76 0.68 0.57 0.46 0.18 0.43 0.23 0.18
Case 4 0.70 0.63 0.57 0.35 0.28 0.17 0.27 0.17 0.24

Maximum cost deviation after the repair approach (%)
Case 1 0.82 0.80 0.53 1.12 0.95 1.06 1.37 0.65 0.90
Case 2 0.19 0.22 0.26 1.41 2.44 2.85 0.82 1.36 2.26
Case 3 1.80 1.84 1.44 2.07 1.80 1.16 1.60 1.64 1.15
Case 4 1.93 1.20 1.28 1.71 1.93 1.11 1.49 1.10 1.77

3.4.4 Comparative Analysis of the Machine Learning Algorithms

Many machine learning approaches that are available can be implemented for

classification problems. We compare these machine learning approaches in order

to show that the decision tree is the machine learning approach that yields good

classification accuracy. Although not all of them can provide an explanation for the

classification, all of them can be used for classification problems. In this section, we

aim at comparing these machine learning algorithms to show which one leads to the

highest classification accuracy. The machine learning algorithms were all coded with

Scikit-learn, which is a toolbox of Python 3.6.5 64 bit, and was executed with Spyder

3.3.1.

Eight machine learning approaches, that can all be used for classification problems,

are compared:

� Decision tree is implemented as the approach explained in Section 3.3.2. The

algorithm applied CART described in Breiman (1984).

� Logistic regression is a technique that finds an application in machine learning.

Although the name suggests that the approach is used for regression problems,
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Table 3.5: Confusion matrix reporting the classification accuracy (%) by class for a sample
P of 100 instances

Line Feeding
Modes

u = 1 u = 2 u = 3 u = 4

u = 1 48.09 15.11 36.80 0.00
u = 2 20.11 57.87 22.03 0.00
u = 3 6.81 4.60 88.58 0.00
u = 4 0.00 0.00 0.00 100.00

it is frequently implemented in two-class classification problems. For a

multiclass problem, the method applied is the multinomial logistic regression.

This technique provides a classification of the data without a graphical

representation. To apply this classification technique, a different formulation

of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher 2008)

is applied. Logistic regression is based on a Sigmoid function that returns values

between 0 and 1 in (3.32).

f(x) =
1

1 + e−(x)
(3.32)

In this equation, we use a linear function α0 + α1x as in (3.33) where αn are the

coefficient known as predicted weights or estimators.

h(x) =
1

1 + e−(α0+α1x1)
(3.33)

Based on the value returned by the function and the threshold, the elements

are classified. The log-likelihood function (3.34) is maximized to calculate the

estimators αn through the limited memory Broyden–Fletcher–Goldfarb–Shanno

algorithm which is a variation of the homonymous algorithm (Fletcher 2008).

h(x) =
1

m

∑︂
i

[y log(h(x))] + (1− y)log[1− h(x))] (3.34)

This algorithm relies on a function’s gradient to maximize it. Differently from the

original version, the L-BFGS stores a limited number of vectors that represent

the Hessian matrixes.
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� Näıve Bayes is a machine learning technique that is based on Bayes theory with

a Näıve classifier which minimises the probability of a classification error. This

technique assumes that the features have a Gaussian likelihood, i.e. the value of

a feature does not depend on the value of any other feature (Chan, Golub, and

Leveque 1982). In other words, any feature contributes independently to the

assignment of an element to a class. There is a group of algorithms that can be

implemented for Näıve classification. The algorithm used for this machine learning

technique is detailed in Zhang (2004) and Zhang and Su (2008). Näıve Bayesian

is an approach that assumes that the likelihood of the features is Gaussian.

It assumes that the features have an independent Gaussian distribution. The

probability that the element belongs to class u given a feature xi in (3.35).

P (xi | u) =
1√︁
2πσ2

u

e
(− (xi−µu)2

2σ2
u

)
(3.35)

The parameters σy and µy depend on the class y and are calculated using the

maximum likelihood estimation.

� Nearest Centroid is a classification approach that is based on the idea that a

class is represented by its centroid, i.e. its mean. Unlike other machine learning

approaches described here, this technique can only be applied to classification

problems. In the training phase, the centroids are calculated based on the

euclidean distance between the points of the classes. Like in a Voronoi diagram,

a centroid is the average position of the elements of a class. During the training

phase, the centroid for each class u is calculated with the euclidean distance

between the elements of a class in (3.36).

µu =
q

|Cu|
∑︂
l

xl (3.36)

During the testing phase, the elements of the testing sample are assigned to the

class u with the nearest centroid in (3.37).

min|µu − xl| (3.37)

This model was described and applied in medical applications (Tibshirani,

Narasimhan, and Chu 2002). Rocchio algorithm is applicable for the Nearest

Centroid approach.

65



Chapter 3 Assembly Line Feeding Problem from a Supervised Machine Learning Perspective

� Random forest is a machine learning technique that relies on multiple decision

trees for the classification problem. This technique consists in developing multiple

decision trees each of them assigning a class to the data. The classification is then

based on the class that is assigned with the highest percentage, i.e. the class that

is assigned by the highest number of decision trees in the forest. Although each

decision tree that is part of the forest can have a graphical representation, the

approach does not provide a single decision tree that can be implemented in

all cases. Furthermore, it does not provide a single and universal graph. This

approach was originally described in Breiman (2001). Random forest is an

approach that aims at developing multiple decision trees (Breiman 2001). The

algorithm is similar to the one of the CART. However, a number of elements

is drawn from the training sample using resample and replacement to train

each random decision tree. Furthermore, another difference from the original

algorithm is that the classification of the random decision trees is averaged by

their probabilistic prediction.

� Support Vector Machine (SVM) consists of a multi-class version of the original

two-class algorithm (Knerr, Personnaz, and Dreyfus 1990). SVM employs

Support Vector Classification (SVC) for the classification problem (Cortes and

Vapnik 1995). During the training phase, the technique identifies vectors in the

hyperplane that divide the elements of the classes. In this case, the algorithm

builds a model that performs one-against-one classification for each pair of classes.

During the testing phase, the vectors of the hyperplane are used to classify the

components. SVM involves a different version of the original algorithm. Given

U classes, there are U (U−1)
2

models that are trained considering only two classes

and perform a one-versus-one classification for the elements of the sample. This

algorithm develops vectors that divide a hyperplane so that the training sample

is split in classes. These vectors are then used to classify the testing sample. To

identify the vectors, the primal problem is formulated (3.38).

min
wTw

2
+ C

∑︂
i

ζi

s.t. yi(w
Tϕ(xi) + b) ≥ 1− ζi (3.38)

ζi ≥ 0 ∀i ∈ 1, n
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In 3.38, xi are the training vectors and y ∈ {−1;+1}n is a vector. The aim is to

find the vector w and b so that the prediction of (wTϕ(xi) + b) is corrected in the

cases. In the primal problem, we are minimising the margin wTw
2

and the penalties

incurred for misclassification C
∑︁

i ζi. The dual problem of (3.38) is (3.39).

min
αTQα

2
− eTα

s.t. yTα = 0 (3.39)

0 ≥ ζi ≥ C∀i ∈ 1, n

In 3.39, Q = yiyjϕ(xi)
Tϕ(xj), e is a vector of ones, and αi are dual coefficient.

The solution of the decision function for a sample x is
∑︁
yiαiϕ(xi)

Tϕ(xj) + b.

� Stochastic gradient descent (SGD) is not itself a machine learning approach, but

it is rather an optimisation technique that is used to minimise the loss function.

By using gradient descent in machine learning, the misclassification is minimised

and penalties are applied. SGD received attention thanks to its ability to deal

efficiently with large-scale samples (Sra, Nowozin, andWright 2012). SGD is not a

specific machine learning model, but rather a methodology to find an approximate

solution to a minimisation function of a problem. This methodology is applied to

solve the log-likelihood function of the logistic regression. The stochastic gradient

calculates the gradient of the function and uses it to identify the global minimum.

In order to minimise the loss, the gradient of the loss function is calculated.

Since the function might require a long time to be optimised, the system wanders

randomly in order to reach the minimum, thus the name stochastic. This leads

to the ability of the technique to deal with large-scale samples in a reasonable

amount of time. In order to do so it moves randomly along the function hence

the name stochastic.

� K-Nearest Neighbor (KNN) is a machine learning technique that can be applied to

classification and regression problems. KNN is a variation of the Nearest Neighbor

approach where the user can select the value of the k nearest neighbor to consider.

During the testing phase, the components are assigned to a class based on the

most common class of the k nearest elements. The euclidean distance is calculated

to identify the nearest neighbors. In other words, if there are elements that are

very similar to each other, they will be assigned to the same class. K-Nearest

Neighbor relies on selecting k neighbors, with the number k provided by the
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Table 3.6: Comparison of the machine learning algorithms

Machine Learning
Approach and
Algorithm

Hyperparameters
Classification
Accuracy

Decision tree - CART Maximum Number of Level of the Decision Tree,
Minimum Size of the Sample to Create a Node,
Minimum Size of the Sample to Create a Leaf Node

78.50%

Logistic Regression -
L-BFGS

69.75%

Naive Bayes
Algorithm

32.42%

Nearest Centroid
Algorithm

Threshold for shrinking Centroids 4.60%

Random Forest
Algorithm

Maximum Number of Level of the Decision Tree,
Minimum Size of the Sample to Create a Node,
Number of Decision Trees

78.35%

Support Vector
Classifier

Maximum Number of Iterations, Tolerance, Penalty
Parameter of the Error Term

57.84%

Stochastic Gradient
Descent

66.15%

K-Nearest Neighbor
Algorithm

Leaf Size of the Tree, Number of Neighbors to Use 77.83%

user, elements for the classification problem. In the training phase, the algorithm

stores the training sample. In the testing phase, the algorithm identifies the k

elements of the training sample that are near the element to classify and assigns

their most common class. The algorithm uses the euclidean distance for the

continuous features and the Hamming distance for the discrete ones. The former

one is calculated as done for the centroids in the Nearest Centroid model, the

latter one is the difference in symbols between the discrete features, i.e. text, of

two elements.

In Table 3.6, we present the classification accuracy of the different algorithms together

with the hyperparameters that are tuned for each algorithm.

Although the Classification And Regression Tree (CART) Algorithm is the one that

outperforms the others, some other algorithms respond with an acceptable classification

accuracy (K-Nearest Neighbor Algorithm and Random Forest Algorithm). On the

other hand, these tools do not explain why a line feeding mode is assigned to each

component, or, if they explain it, they lack clarity and conciseness. Decision tree

learning provides clear reasons for assigning a line feeding mode, i.e. a class, to a
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component. Because of this, it is superior to other algorithms.

3.4.5 Application

Unlike previous models that do not disclose the reasons for selecting a line feeding mode,

a decision tree provides guidelines to practitioners who wish to better understand and

optimise the ALFP, for a new assembly line or for rebalancing operations of an existing

assembly line. Furthermore, a decision tree is simple and easy to interpret and allows

the user to make good decisions in different industries.

An extract of a tree is depicted in Figure 3.9. The nodes show the Gini ratio,

which measures the impurity of the node. As constraint (3.18), the root node of

the tree classifies the components to externally supplied sequencing if the number of

variants (|Sk|) is greater than or equal to the value of Lseq. Similarly, constraint (3.19)

ensures that if a component’s box has a volume higher than ω and more than one

component, then externally supplied sequencing is applied. Sequencing is not assigned

to components that have only one variant (|Sk|) as is enforced in constraint (3.22).

Constraint (3.23) ensures that components that have a box with a volume that is lower

than or equal to the recommended volume (0.0208m3), they are line stocked.

It is important to remember that there are also some components that are wrongly

classified. The radio dashboard is an example of a component that is wrongly classified.

In this case, the line feeding mode assigned by the decision tree is line stocking at leaf

node 5 instead of stationary kit. This can happen with multiple components, and this

might lead to an infeasible instance. When this occurs, the repair approach assigns a

line feeding mode to the component that violates the constraint. In order to reduce the

cost deviation, this process is repeated. In this case, we consider the costs of the line

feeding activities of each component. Since, for kitted components, there are also some

costs that depends on the number of kit containers as considered in (3.2.5),(3.5.2), and

(3.7), these costs are divided among all the components that are kitted and contribute

to the implementation of the kit container. Then, we select the component with the

highest costs and assign a line feeding mode.

Given that a component’s attributes are known, the user can start from the root node

and move along the branches until a leaf node — class and line feeding mode — is

reached. The decision tree can be applied in a real manufacturing environment that is

similar to the one we studied in this chapter. An example is described in Table 3.7. In

this example, the line feeding modes are assigned to three new components.
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Figure 3.9: Decision tree example
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3.4.6 Limitations

To explain the reasons for some of the decisions made, we would like to discuss the

limitation of the algorithms and models. The repair approach that we developed assigns

the optimal line feeding mode. Although this is an effective solution, it is not a common

approach. Usually, a standard heuristic is compared to an optimisation model. In our

case, due to the high number of constraints, this is not a viable solution. This is a

limitation of our model. Future research should provide a solution to this problem.

For instance, it should investigate the possibility of the tree to classify the components

without leading to infeasible instances. This could be done by allowing the tree to

consider multiple components, and if an instance becomes infeasible adjust the nodes

that lead to the line feeding mode selection. Also, future research should focus on more

elaborate techniques for the repair approach.

Another limitation consists of the parameter variation in the samples. Some of the

parameters vary from one instance to the other such as the depth of a stationary kit

container Asta and the volume capacity of a stationary kit container V olsta. Other

parameters, such as the interspace between two consecutive end products d and the

labour cost per time unit C0, remain the same for all the instances. The reason for

this decision is that these parameters are usually standard in the manufacturing sector.

Even in the literature (Limére, Van Landeghem, and Goetschalckx 2015; Limére et al.

2012; Müllerklein, Fontaine, and Ostermeier 2022; Sali and Sahin 2016; Sali, Sahin,

and Patchong 2015; Schmid, Limére, and Raa 2021), these parameters have similar

values. We selected these values according to the literature. For this reason, we do not

vary these parameters among the instances. On this issue, we need also to be pragmatic

to understand how to shape future research. If all the parameters in the model vary

with wide ranges, the classification accuracy of the machine learning algorithm might

decrease significantly.

An additional limitation is that the decision tree is developed using only attributes

of the components. We purposely avoid using other parameters for the creation of the

decision tree so that the classification depends only on the attributes of the components.

This is to give managers insights based on the attributes of the components to make

the best classification decision. Further, other parameters are randomly set in line

with the ones found in the literature. Although the values and ranges are realistic,

the randomness might lead to misleading assumptions. Though valuable insights can

be obtained from a classification based on other parameters, it is more beneficial for

managers to rely simply on the attributes of the components for this decision.
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3.5 Conclusion

An existing optimisation model for the ALFP was enhanced. We synthetically generated

the data to train, validate, and test the model. We used the CART algorithm to

develop the decision tree. The tool was used for classifying components to a line

feeding mode with a classification accuracy of 78.49%. We provided an example for the

real-world application of the tool. To deal with the problem of infeasible classifications,

we developed a repair approach that assigns the optimal line feeding modes. The cost

deviation from the optimal solution is on average 0.38%.

In this chapter, we decided to consider the stationary kit rather than the traveling kit

since the real data used in this work was provided by companies that implement the

former. Future research could also investigate the implementation of the traveling kit

instead of the stationary kit.

72



3.5 Conclusion

Table 3.7: Practical examples

Example of Line Stocked Component Example of Sequenced Component

Loudspeakers for cabin — Leaf Node 6 Silencer and tailpipe — Leaf Node 11

Correctly classified ✓ Correctly classified ✓

Attributes Measures Attributes Measure

A 0.5 m A 0.7 m
B 0.11 m B 0.35 m
A′ 0.3 m A′ 1.2 m
B′ 0.2 m B′ 0.8 m
V ol 0.00016 m3 V ol 0.085 m3

V ol′ 0.009 m3 V ol′ 0.64 m3

M 0.3 kg M 5 kg
M ′ 10 kg M ′ 25 kg
|S| 2 |S| 4
p 32 pieces p 4 pieces

Example of Kitted Component Example of Kitted Component

Wing Mirror — Leaf Node 7 Radio Dashboard — Leaf Node 5

Correctly classified ✓ Wrongly classified ✗

Attributes Measures Attributes Measures

A 0.4 m A 0.4 m
B 0.2 m B 0.5 m
A′ 1.2 m A′ 1.2 m
B′ 0.8 m B′ 1.2 m
V ol 0.014 m3 V ol 0.05 m3

V ol′ 0.58 m3 V ol′ 1 m3

M 2.5 kg M 3 kg
M ′ 43 kg M ′ 32 kg
|S| 4 |S| 1
p 16 pieces p 10 pieces
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Chapter 4

Integrating Assembly Line Balancing

and Feeding Decisions

Based on

Zangaro, F., S. Minner, and D. Battini. 2022. ”The Multi-manned Joint Assembly

Line Balancing and Feeding Problem.” International Journal of Production Research.

Advanced online publication. doi: 10.1080/00207543.2022.2103749.

The Joint Assembly Line Balancing and Feeding Problem (JALBFP) assigns a line

feeding mode to each component (Assembly Line Feeding Problem) and each task

to a workplace of a station (Assembly Line Balancing Problem). Current literature

offers numerous optimisation models that solve these problems sequentially. However,

only few optimisation models, provide a joint solution. To solve the JALBFP for

a multi-manned assembly line, we propose a Mixed Integer Linear Programming

(MILP) model and a heuristic that relies on the Adaptive Large Neighborhood Search

(ALNS) framework by considering multiple workplaces per station and three different

feeding policies: line stocking, travelling kitting and sequencing. The objective

function minimises the cost of the whole assembly system which considers supermarket,

transportation, assembly operations, and investment costs. Although the JALBFP

requires higher computation times, it leads to a higher total cost reduction compared

to the sequential approach. Through a numerical study, we validate the heuristic and

find that the average deviation to the MILP model is around 1%. We also compare the

solution of the JALBFP with that of the sequential approach and find an average total

cost reduction of 10.1% and a maximum total cost reduction of 43.8%.
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4.1 Introduction

In the automotive and machine tool manufacturing industry, more than one operator

works in the same station to assemble a complex product made up of hundreds of

different parts. These systems are called multi-manned assembly lines, since multiple

workers (one for each workplace at each assembly station) are introduced to assemble

the products, as opposed to a simple assembly line where only one operator works

at each station. A workplace is a space in the station where assembly activities can

be performed. When a new assembly line is constructed or rebalancing activities are

performed, there is, at first, the need to identify the number of stations and workplaces

where the assembly activities are performed. To do this, the Assembly Line Balancing

Problem (ALBP) is solved. The optimal solution for the ALBP reduces the number of

stations where the assembly activities are performed and minimises the investment cost

of the assembly stations and the operating costs for the operators at the workplaces. In

other words, it increases the space utilisation for the assembly activities but decreases

the space that is available for storage at the Border of Line (BoL). After the numbers

of stations and workplaces are selected, a line feeding mode must be assigned to each

component that must be delivered to the assembly stations. At this stage, the number

of stations and the space available at BoL cannot be increased and a high number of

components must be kitted or sequenced so that the space at BoL is enough to host all

components. The Assembly Line Feeding Problem (ALFP) assigns to each component a

line feeding mode between line stocking, kitting, and sequencing. It minimises the sum

of the investment costs for the line feeding activities, costs for the preparation activities

for the line feeding modes, and transportation costs. The sequential implementation of

the ALBP and the ALFP, as usually performed in a manufacturing environment, leads

to the minimisation of the costs of the assembly line balancing activities at first, with

a sequential increase of the line feeding activity costs. This leads to higher operational

costs for the line feeding activities. The combination of the ALBP and the ALFP is

the Joint Assembly Line Balancing and Feeding Problem (JALBFP). This problem

identifies the number of stations and workplaces to perform the assembly activities and

the line feeding mode of each component to achieve the global optimum of the sum of

all investment and operating costs in a multi-manned assembly line.

Only a few models in the literature solve the JALBFP (Battini et al. 2016, 2017;

Sternatz 2015). However, they focus the attention on direct and indirect line

feeding modes without considering the sequencing policy (Calzavara et al. 2021), by
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minimising total working times (Sternatz 2015) or the number of human operators

involved in the assembly system (Battini et al. 2016, 2017) without taking into

consideration the whole system costs. The major contribution of this chapter lies in

the methodology, the optimisation model, and the algorithm that solves the JALBFP

with a high level of detail. We present a Mixed Integer Linear Programming (MILP)

model and a heuristic that solves the JALBFP for multi-manned assembly lines with

a higher level of detail than previous models by considering different task times for

each product model, multiple workplaces per station (Sternatz 2014), the kitting and

sequencing line feeding mode, and by minimising the total system costs made up of

supermarket, transportation, investment, and assembly costs. We use the Adaptive

Large Neighborhood Search (ALNS) framework to solve large-scale instances of the

JALBFP since the ALBP part of the problem is NP-hard. It determines which tasks

should be performed at which station and how the components should be delivered

to the assembly line. At the same time, it ensures that the precedence between the

tasks is respected. This model is intended for a manufacturing environment where the

space at BoL is scarce, e.g. in the automotive industry. Our MILP model solves the

JALBFP with a cost objective function that considers multiple common operations

that are performed in an assembly system rather than only the costs of the assembly

operators or only some of the costs related to an assembly system. We validate the

heuristic with the MILP model and find that the average deviation is about 1%. The

JALBFP leads to average and maximum total cost reductions of 17.52% and 56.53%

compared to the sequential approach. We also analyse the conditions under which

total cost reduction is marginal (Wijnant, Schmid, and Limére 2018) and is higher in

order to understand when it is more convenient to solve the JALBFP rather than the

sequential approach. We use the heuristic to solve an instance of a real problem from

a company that assembles mini-buses.

The remaining text is structured as follows: Section 4.2 describes the MILP model,

Section 4.3 details the heuristic, Section 4.4 presents a numerical study, and Section 6

provides a summary and discussed the scope for future research.

4.2 Mathematical model

In this paragraph, we propose a new MILP model able to solve the JALBFP for

multi-manned assembly lines and different part feeding policies. The objective function

has been adapted from Sali and Sahin (2016).
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4.2.1 Problem Description

In a multi-manned assembly line, a product moves from one station to the other. For

each product, there are different product models N . In a multi-manned assembly line,

each station has multiple workplaces W , which are locations in the assembly station

where one operator performs assembly activities. Each task j, which is an operation

performed by one operator, has a certain time duration known as task time T jn that

depends on the activities performed on a product model n. The task time is always

lower than the cycle time C. There are precedences (πj) that define the tasks i that

should be performed before another task j. If a task i is a predecessor of a task j

(πj), it can only be initiated after the task j is completed even if it is performed in

the same station but at a different workplace. We do not require additional constraints

that enforce that two tasks should be simultaneously done by the operators or that

require that two tasks must be performed one directly after the other one. Each task j

requires a set of components ϕj that must be delivered to the same station where task

j is performed. The attributes of the components (V p, Mp, etc.) are characteristics

of one single component that are equal for all its parts regardless of the variants, and

the operators perform activities with a time duration tt (see Table 5.1) to deliver the

components. There is a cost C0 for the assembly operators that work in the assembly

station and C l for the logistic operators in charge of the transportation and picking

activities. The components must be delivered with a line feeding mode, i.e. line

stocking, kitting, or sequencing. Line stocking consists of delivering multiple identical

components in the same container as it is received at the warehouse. Sequencing

involves the delivery of different variants, i.e. parts of the same component that might

differ for some characteristics such as colour, texture, or material, in a single container.

A (traveling) kit is a container with different components that are assembled on a

single product that travels along the assembly line. While the tow trains that deliver

line stocked components travel from the warehouse to BoL (D𭟋B), sequenced and

kitted components are moved from the warehouse to the supermarket (D𭟋υ) and from

the supermarket to BoL (DυB). Sequenced and line stocked components are placed

at BoL while the kit container travels along the assembly line with the product. The

tow trains that deliver sequenced and kitted components from the supermarket to

BoL have a capacity in terms of containers Y . All assembly stations have a space at

BoL with length Ls, where sequenced and line stocked components must be stored.

The length L2 is equal for all sequenced containers. There is a maximum space that

can be occupied by a kit container S3, and a kit container has a maximum volume
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capacity V 3, a maximum weight capacity M3, and a length L3. There are fixed costs

for implementing the traveling kit and sequencing Cf and variable costs for each

component placed in the supermarket Cv. Each assembly station has a construction

cost Ct. The whole assembly system consists of the assembly line, the supermarket

and the activities that are performed to deliver the components. Figure 4.1 depicts the

operations that are performed in an assembly line.

We use five decision variables for the ALBP: the binary assignment of task j to the

workplace w at station s (xjws), the time of the beginning of a task j (tj), the binary

implementation of workplace w at station s (yws), the order of implementing task i

and task j (gij), and the binary implementation of station s (zs). For the ALFP, we

use four decision variables: the binary delivery of component p with line feeding mode

m to station s (upms). Each component is delivered to the assembly line with a line

feeding mode m. We index m = 1 for line stocked components, m = 2 for sequenced

parts, and m = 3 for kitted components. q2 and q3 are binary decision variables that

refer to the implementation of the sequencing and kitting line feeding modes while K

is the number of kit containers (integer).

Table 4.1: Sets of the model, attributes of the components, and parameters of the model.

Sets of the model

Not. Definition Set

πj Set of predecessors tasks of task j —

ϕj Set of parts p used for the task j —

J Set of tasks j, i = 1 . . . J ′

M Set of supply modes m = 1 . . .M ′

N Set of models of the final product n = 1 . . . N ′

P Sets of components p = 1 . . . P ′

S Set of assembly stations s, a = 1 . . . S ′

W Set of workplaces w = 1 . . .W ′

W j Set of workplaces where task j can be performed —

Attributes of the components

Not. Definition Unit

ιp Consumption rate of a component p %

λp Number of sequenced carts for a component p —

νp Number of boxes consumed for a component p —
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σp Capacity of a sequenced cart or a kit container for

a for a component p

—

τ p Capacity of a tow train for a component p —

Ξp Length of the supermarket for one component p m

cp Coefficient of BOM of a component p pcs

F p Number of parts per box of a component p pcs
box

Lp Length of a box of a component p m

Mp Weight of a part of a component p kg

rp Take rate of a component p %

Sp Surface space in the supermarket for a component

p

m2

V olp Volume of a part of a component p m3

V p Number of variants of a component p —

Parameters of the model

Not. Definition Unit

ϖj Minimum length at BoL to stock all components p

used for the task j

m

χ Number of years of the annuity years

ψ Multiple delivery of the components (used to repair

the solution of the ALBP for the ALFP)

—

ω Present value factor of an annuity —

C0 Labour cost per time unit of an assembly operator N
s

Cτ Transportation costs N

C Cycle time or takt time s

Ca Costs for the assembly operations N

Cf Fixed costs of purchasing the traveling kit and the

sequencing

N
m2

Ci
I Investment costs for the stations N

Ci
II Investment costs for the ALFP N

C l Labour cost per time unit of a logistic operator N
s

Ct Costs for constructing an assembly station N

Cu Supermarket costs N

Cv Annual logistic labour cost of an operator N
year

Cx Variable costs of constructing a supermarket N
yearm2
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D𭟋υ Distance between the warehouse and the

supermarket

m

D𭟋B Distance between the warehouse and BoL m

DυB Distance between the supermarket and BoL m

I Interest rate %

L2 Length of a sequenced cart m

L3 Length of a kitting container m

Ls Length of an assembly station m

M3 Weight capacity of a kitting container kg

S3 Space for kit containers m

T jn Task time of a task j for the product model n s

V Total annual production volume −
year

v0 Speed of an operator m
s

V 3 Volume capacity of a kitting container m3

vt Speed of the tow train m
s

Y Capacity of a tow train for kitted and sequence

containers from the supermarket to BoL

—

Time needed for

tak A single movement of picking variants during the

preparation in a kitting mode.

s

taks Additional operation of loading and unloading a

container of a component in kitting and sequencing

mode.

s

tas A single movement of picking and loading variants

during the preparation in a sequencing mode.

s

tgl A single movement of grasping boxesz and loading

and unloading them.

s

tluk A single movement of loading or unloading a kit

container from the train.

s

tlus A single movement of loading or unloading a

sequenced part from the train.

s

We use five decision variables for the ALBP: the binary assignment of task j to the

workplace w at station s (xjws), the time of the beginning of a task j (tj), the binary
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Figure 4.1: Graphical representation of a multi-manned assembly system with different part
feeding modes implemented in each station.
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implementation of workplace w at station s (yws), the order of implementing task i

and task j (gij), and the binary implementation of station s (zs). For the ALFP, we

use four decision variables: the binary delivery of component p with line feeding mode

m to station s (upms). Each component is delivered to the assembly line with a line

feeding mode m. We index m = 1 for line stocked components, m = 2 for sequenced

parts, and m = 3 for kitted components. q2 and q3 are binary decision variables that

refer to the implementation of the sequencing and kitting line feeding modes while K

is the number of kit containers (integer).

4.2.2 Objective Function

The objective function minimises the total costs of the assembly system made up of

investment and operational costs. The operational costs in (4.1.2) are the annual costs

incurred over the entire time of the assembly line utilisation, while the investment

costs in (4.1.1) are relevant at the moment of construction. The factor ω is used for

calculating the present value of the future expenses.

min Ctot = Ci
I + Ci

II⏞ ⏟⏟ ⏞
(4.1.1)

+ω(Cu + Cτ + Ca⏞ ⏟⏟ ⏞
(4.1.2)

) (4.1)

Assembly Operations (Ca) : There is a cost for the operators that perform the

assembly activities in each workplace. In (4.2), we multiply the number of implemented

workplaces with the labour assembly costs (C0), the cycle time (C), and the total

annual production volume(V ).

Ca = C0CV
∑︂
w∈W

∑︂
s∈S

yws (4.2)

Assembly Stations (Ci
I) : Each station has an investment cost that is not dependent

on the number of workplaces. These are the costs for all assembly stations. In (4.3),

we multiply the total number of implemented stations with the costs of an assembly

station Ct.

Ci
I = Ct

∑︂
s∈S

zs (4.3)
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Supermarket Costs (Cu) : Some activities are performed to place each component

in the right container to be delivered to the assembly line. To prepare the kitted

and sequenced containers, a roundtrip must be made with the tow train to collect

all components. For the sequenced components in (4.4.1), the number of sequenced

containers (λp) is calculated by dividing the consumption rate (ιp), which is the product

of the take rate (rp) and the coefficient of Bill Of Material (BOM) (cp), by the capacity

of a tow train for a component p (σp). This number is multiplied by the length of the

supermarket of one component p (Ξp). The sum over all components P and all stations

S, which is equal to the number of tow trains, is divided by the speed of the operator

(v0). Similarly, for kitting components in (4.4.2), the length of the supermarket is

multiplied by one component p (Ξp).

To collect both the sequenced and the kitted components, the consumption rate (ιp)

in (4.4.3) and (4.4.4) is used. However, we distinguish between the picking time for

sequenced components (tas) and the picking time for kitted components (tak).

Subsequently, some additional picking activities must be performed due to the

intermediate supermarket where the components are placed. For both the kitted and

the sequenced components in (4.4.5), the time needed for the additional activities

(taks) is multiplied by the number of boxes (νp). The number of boxes is equal to

the consumption rate (ιp) divided by the fill level of a component (F p).

Eventually, the containers must be loaded onto the tow train. This calculation is done

for line stocked components in (4.4.6), but, in this case, a time (tgl) is used. For

sequenced components in (4.4.7), the calculation is similar to what is done in (4.4.6).

However, for these components, the time for loading and unloading sequenced parts tlus

is used. For kitted components in (4.4.8), the time tluk is multiplied by the number of

kit containers K.

In all these computations, the annual costs for the logistic operations Cv are used, which

is the labour logistic cost (C l) multiplied by the total annual production volume (V ).

There is a cost for the floor space occupied for the storage of the kitted and sequenced

components that are placed in the supermarket. These costs are calculated by

multiplying the costs of a square metre (Cx) with the number of variants V p for the

surface space Sp in (4.4.9).
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Cu =
Cv

v0

{︃∑︂
p∈P

∑︂
s∈S

[︂
λpΞpup2s⏞ ⏟⏟ ⏞

(4.4.1)

+Ξpup3s⏞ ⏟⏟ ⏞
(4.4.2)

]︂}︃
+

Cv

{︃∑︂
p∈P

∑︂
s∈S

[︂
tasιpup2s⏞ ⏟⏟ ⏞

(4.4.3)

+ takιpup3s⏞ ⏟⏟ ⏞
(4.4.4)

+

taksνp(up2s + up3s)⏞ ⏟⏟ ⏞
(4.4.5)

+ tglνpup1s⏞ ⏟⏟ ⏞
(4.4.6)

+

tlusλpup2s⏞ ⏟⏟ ⏞
(4.4.7)

]︂
+Ktluk⏞ ⏟⏟ ⏞

(4.4.8)

}︃
+ Cx

∑︂
p∈P

∑︂
s∈S

SpV p(up2s + up3s)⏞ ⏟⏟ ⏞
(4.4.9)

(4.4)

Transportation Costs (Cτ ) : Transportation activities are performed to deliver the

components to the assembly line for all three line feeding modes (Battini et al. 2015).

While line stocked components are delivered directly to BoL from the warehouse, kitting

and sequenced components go through the supermarket. First, the kitted and sequenced

components are transported from the warehouse to the supermarket as in (4.5.1). The

calculation is similar to that in (4.4.5), and the number is divided by the capacity of a

tow train used for this operation (τ p). The time duration of the trip from the warehouse

to the supermarket is calculated by using the distance D𭟋υ.

After the kits and the sequenced components are transported to the supermarket, they

must be moved to BoL. In (4.5.2), the number of kit containers is multiplied by the

distance travelled DυB divided by the capacity in terms of containers of a tow train Y .

In (4.5.4), we use the number of kit containers K multiplied by the distance between

the supermarket and BoL (DυB) and divided by the capacity in terms of containers of a

tow train (Y ). Line stocked components must be delivered directly from the warehouse

to BoL. Similar to (4.5.1), we calculate the milk-runs for the boxes of line stocked

components in (4.5.3) with the distance between the warehouse and BoL (D𭟋B).

In all these computations, we use the annual logistic operation costs Cv divided by the

speed of the tow train (vt).
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Cτ =
Cv

vt

{︃∑︂
p∈P

∑︂
s∈S

[︂
D𭟋υ ν

p

τ p
(up2s + up3s)⏞ ⏟⏟ ⏞
(4.5.1)

+
DυB

Y

∑︂
p∈P

∑︂
s∈S

λpup2s⏞ ⏟⏟ ⏞
(4.5.2)

+

D𭟋B
∑︂
p∈P

∑︂
s∈S

νp

τ p
up1s⏞ ⏟⏟ ⏞

(4.5.3)

]︂
+
DυB

Y
K⏞ ⏟⏟ ⏞

(4.5.4)

}︃ (4.5)

Investment Costs for the ALFP (Ci
II) : Investment costs for the supermarket’s

equipment are necessary for the kitting and sequencing activities. The fixed cost (Cf )

is multiplied by the decision variables q2 and q3.

Ci
II = Cf (q2 + q3) (4.6)

4.2.3 Constraints

There are three types of constraints: Assembly Line Balancing constraints, Assembly

Line Feeding constraints, and variable domains.

Assembly Line Balancing Constraints:

∑︂
s∈S

∑︂
w∈W

xjws = 1, ∀j ∈ J (4.7)∑︂
j∈J

T jnxjws ≤ Cyws, ∀w ∈ W, s ∈ S,

n ∈ N (4.8)

yws ≤ zs, ∀w ∈ W, s ∈ S (4.9)∑︂
s∈S

s
∑︂
w∈W

xiws ≤
∑︂
s∈S

s
∑︂
w∈W

xjws, ∀j ∈ J, i ∈ πj (4.10)

tj ≥ ti + T in −M(1−
∑︂
w∈W

xjws)−M(1−
∑︂
w∈W

xiws), ∀j ∈ J, i ∈ πj,

s ∈ S, n ∈ N (4.11)
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tj + T jn ≤ C, ∀j ∈ J, n ∈ N (4.12)

tj ≥ ti + T in −M(1− xiws)−M(1− xjws)−M(1− gij), ∀j, i ∈ J, i ̸= j,

w ∈ W, s ∈ S,

n ∈ N (4.13)

ti ≥ tj + T jn −M(1− xiws)−M(1− xjws)−Mgji, ∀j, i ∈ J, i ̸= j,

w ∈ W, s ∈ S,

n ∈ N (4.14)

Constraints (4.7) enforce that each task j is performed in one assembly station s.

Constraints (4.8) guarantee that the sum of the duration of all tasks j for all models

n that are assigned to a workplace w at a station s must be lower than the cycle time.

These constraints also ensure that a task j can only be performed in a workplace w in

a station s, and only if that workplace w is implemented in station s. Constraints (4.9)

define that implementation of a workplace w at a station s can only take place if that

station s is implemented.

If a task i is a predecessor of a task j (πj), it can only be initiated after task j is

completed even if it is performed in the same station but at a different workplace. For

simplicity, we do not require additional constraints that enforce that two tasks should be

simultaneously done by the operators or that require that two tasks must be performed

one directly after the other one.

For the precedences between the tasks, we consider the starting time of the tasks that

have a precedence and are performed in the same station (Çil and Kizilay 2020; Naderi,

Azab, and Borooshan 2019; Roshani and Nezami 2017; Sahin and Kellegöz 2019). If a

task i should be performed before another task j, then the task i should be performed in

a previous or the same station of task j. To do this, constraints (4.10) ensure that if one

task i is a predecessor of another task j, then task i must be performed at a previous or

the same station where task j is performed. Additionally, a set of constraints known as

sequencing constraints that are described in Michels et al. (2019) must be introduced

to ensure that the scheduling is respected if tasks are performed at different workplaces.

These constraints ensure that in a station the time to perform the assembly tasks is

lower than the cycle time also by considering the precedence between the tasks that are

performed in a different workplace. To do this, constraints (4.11) are Big M constraints

and ensure that the starting time tj of each tasks j occurs after the completion of the

task i predecessor of j (πj). The Big M elements enforce constraints (4.11) only if the
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two tasks i and j are performed in the same station. Constraints (4.12) ensure that the

tasks are completed before cycle time C.

Two more sets of constraints must be introduced to satisfy the precedence of the tasks

(Michels et al. 2019; Naderi, Azab, and Borooshan 2019; Sahin and Kellegöz 2019).

Constraints (4.13) and (4.14) control the time of the beginning of the tasks that do

not have precedence restrictions. If task i is performed before task j, gij is equal to 1,

and 0 otherwise. Constraints (4.13) ensure that if two tasks are assigned to the same

station, then task j is performed only after task i is completed. Constraints (4.14)

ensure the same aspect when task i is performed after task j, i.e. gij is equal 0. If two

tasks are performed at the same station, one of the two must be performed before the

other. The binary decision variables gij ensure also that two tasks cannot be performed

simultaneously.

Assembly Line Feeding Constraints:

∑︂
m∈M

upms =
∑︂
j∈J

∑︂
w∈W

xjws, ∀p ∈ ϕj, s ∈ S (4.15)∑︂
p∈P

Ξpup1s +
∑︂
p∈P

L2up2s ≤ Ls, ∀s ∈ S (4.16)

KL3 ≤ S3 (4.17)∑︂
p∈P

∑︂
s∈S

cpup3sM
p ≤ KM3 (4.18)∑︂

p∈P

∑︂
s∈S

cpup3sV
p ≤ KV 3 (4.19)

qm ≥ upms, ∀s ∈ S, p ∈ P,m ∈ {2; 3} (4.20)∑︂
s∈S

∑︂
m∈M

upms = 1, ∀p ∈ P (4.21)

Constraints (4.15) force a component p supplied with any line feeding mode m to be

delivered to an assembly station s where task j is performed. Constraints (4.16) ensure

that a station s must be long enough to provide space for all line stocked components

and all sequenced parts. Constraint (4.17) guarantees that all kitting containers can be

stored in the kitting area. Constraints (4.18) and (4.19) set the number of kit containers

K for delivery. Constraints (4.20) enforce that q2 and q3 are equal to 1 if the sequencing

and kitting line feeding modes are used. Constraints (4.21) ensure that the components

are delivered to only one station with only one line feeding mode.
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Variable Domains:

Aside from the number of kit containers K which is an integer, all other decision

variables are binary.

K ∈ N, upms, xjws, yws, zs, q2, q3, gij ∈ {0, 1}, tj ∈ R+ (4.22)

∀p ∈ P,m ∈M, s ∈ S,w ∈ W, j ∈ J, i ∈ J

4.3 Adaptive Large Neighborhood Search Heuristic

We now describe the heuristic for solving large-scale instances based on the ALNS

framework. Large Neighborhood Search (LNS) is first presented by Shaw (1998).

Its main idea is to progressively improve an initial solution, generated from an

initialisation phase, by repeatedly removing elements from the solution (removal

operators) and inserting them back into it (insertion operators). Ropke and Pisinger

(2006) extend LNS with ALNS for the pickup and delivery problem with time windows,

which provides multiple removal and insertion operators that are selected based on

their achieved performances. Figure 5.3 shows the flowchart of the initialisation phase

and the algorithm of the heuristic approach.

The ALNS algorithm is divided into three elements:

1. The initialisation phase develops an initial feasible solution. We define as free

tasks the ones that have no predecessors or the predecessors of which are already

assigned to other stations. At each station, we assign the free tasks to a station

if the cycle time C and the space at BoL (ϖj) allow it. We also ensure that any

task begins after its predecessors that are assigned to the same station. If there

is no free task that can be assigned to a station, a new station is opened, and the

step continues with the remaining free tasks (see Figure 5.3).

2. The improvement phase enhances the initial solution that is generated. The

removal operator eliminates some tasks from the solution, while the insertion

operators introduce them back in the solution in a different position. There are

multiple removal operators:

� One random task is removed from the solution.

� Multiple random tasks are removed from the solution.

89



Chapter 4 Integrating Assembly Line Balancing and Feeding Decisions

initialisation phase;
store the current solution as the minimum solution;
while stopping criterion is TRUE do

use a removal operator;
use a repair operator;
calculate C ′

tot of the current solution;
if C ′

tot < Ctot then
store the current solution as the minimum solution;

Figure 4.2: Flow chart of the initialisation phase and algorithm of the heuristic.
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� One random workplace and all tasks that are assigned to this workplace are

removed from the solution.

� Multiple random workplaces and all tasks that are assigned to these

workplaces are removed from the solution.

� One random station and all tasks that are assigned to this station are

removed from the solution.

� Two random stations and all tasks that are assigned to these stations are

removed from the solution.

Typically, other removal operators (worst-distance, worst-time, or

proximity-based removal) that rely on the distances between the stations

are implemented in ALNS for a Vehicle Routing Problem (VRP). However, these

removal operators cannot be implemented for the JALBFP. There are four main

insertion operators:

� The removed element is introduced in a random station that is already open.

� The removed element is introduced in a new station.

� The removed element is exchanged with another element of the solution.

� The removed element is introduced in the best workplace based on the partial

solution.

The introduction or exchange with another task or station is performed if it does

not violate the precedence constraints. For instance, a task i at station si that is

a predecessor of another task j at station sj (π
j) cannot be inserted after station

sj. The stopping criterion requires at least η1 iterations and η′1 iterations after

the last feasible improved solution is found. During the improvement phase, the

operator that is most effective in decreasing the objective value is selected. In this

phase, there is, at first, a warm-up period of ψ iterations during which any random

removal and insertion operator can be selected. After the warm-up period, i.e.

the first ψ iterations, the algorithm selects at each iteration one removal operator

based on the success rate of each removal and insertion operator. To select the

operator that is used, we assign weights to the different operators and use a

roulette wheel selection principle. The weight wi is the number of successes of

the operator i divided by the total. The ALFP part of the problem, i.e. the

assignment of the components to a line feeding mode, is performed with the

optimisation model. During the improvement process, we restrict the solution to
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nodes that yield an objective value better than the one already obtained. We

do not pursue nodes that yield a worse objective value than the ones already

obtained because this solution will not be accepted.

3. The acceptance method is the condition used to evaluate the changes made by

the remove-insert operators. To identify a new solution, the algorithm accepts a

feasible solution with an objective value that is lower than the previous one.

4.4 Numerical study

4.4.1 Performance Measures

To compare the quality of the results for the sequential implementation of the ALBP

and ALFP, and the JALBFP, we define five performance measures:

� The computation time necessary to solve the MILP with a commercial solver and

the ALNS heuristic.

� The worker density, which is the number of operators in each station.

� The component density, which is the number of components delivered to each

station. The number of delivered components can be divided into the three line

feeding modes used for the delivery: line stocking, kitting, and sequencing.

� The idle time, which is the percentage of cycle time during which the operator

is idle and does not perform productive activities. Such unproductive activities

should be taken into consideration.

� The total cost reduction achieved through the implementation of the JALBFP

rather than the sequential approach.

Worker density and component density are measures that are taken into consideration

by managers and practitioners in the planning phase of an assembly line. Managers

consider the worker density and the component density as a comparison measure

between assembly lines.
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4.4.2 Data Generation

We obtain the task times and the precedence diagrams from instances in Otto, Otto,

and Scholl (2013) and use ‘less tricky’ and ‘tricky’ instances that contain 20 tasks

J ′ (small size) and ‘less tricky’ instances that contain 50 and 100 tasks J ′ (medium

and large scale). A limitation of the solution method proposed in this chapter is

that it is not able to solve instances that are classified as ‘tricky’, ’extremely tricky’,

and ’open’ or instances that have 1 000 tasks. Indeed, some of the instances with

100 and 1 000 tasks J , especially those marked as ‘tricky’, ’extremely tricky’, and

’open’, remain difficult to solve for the ALBP or remain unsolved (Akpinar, Elmi,

and Bektaş 2017; Álvarez-Miranda, Chace, and Pereira 2020; Cerqueus and Delorme

2019; Li, Kucukkoc, and Tang 2020). These instances contain the task times and

the precedence diagram for the assembly operations of products with one model. The

task times and the cycle times in these instances are reported in time unit (TU) with

10 TU being equal to 1 second. Because we consider N ′ models of a product, we

arrange the task times in the same way as N ′ instances from Otto, Otto, and Scholl

(2013). The task times T jn of a model n is the task time of task j of instance n. The

instances of Otto, Otto, and Scholl (2013) also provide the cycle time C. We select

the precedence diagram from the first instance of a group of N ′ instances. For the set

of workplaces W j where the task j can be performed, we assign a random number of

workplaces to those tasks that are at the first level on the precedence diagram with

the uniform distribution. Then, we assign one random workplace of the predecessor πj

to each remaining task j. Furthermore, we determine the number of components P ′

used in one task j based on the task time T jn.

For the attributes of the components, we implement an approach that is based on the

resample and replacement principle (Efron and Tibshirani 1993) and use data that

is provided by multiple companies and developed based on the authors’ experience.

Given a population F of dimension α and size γ, a random sample µ1, µ2, . . . , µn is

obtained. This is achieved by a selection of n random integer numbers between 1 and γ,

each with a probability of 1
γ
. Because this is an approach with replacement, the integer

numbers can be repeated. A repetition will lead to µ1 = F1, µ2 = F2, . . . , µn = Fn.

Each member of the new sample µn will have the same dimension α as the population

F . This approach allows the generation of scenarios even if the observed data’s

statistical distribution cannot be estimated, is unknown, or lacks accuracy. Table 4.2

provides the values, ranges, and sets of the parameters of the model.

The remaining parameters of the model in Table 4.2 are set following the authors’
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experience. As described in Sternatz (2015), we alter the distances between the

warehouse, supermarket, and BoL (D𭟋B, D𭟋υ, and DυB).

The remaining parameters of the model in Table 4.2 are set following the authors’

experience. As described in Sternatz (2015), we alter the distances between the

warehouse, supermarket, and BoL (D𭟋B, D𭟋υ, and DυB).

Table 4.2: Sets, ranges, and values of the sets of the model; parameters of the model; and
attributes of the components.

Sets of the model

Not. Set, Range, or Value Unit

J ′ {20; 100} —

M [1, 3] —

N ′ 5 —

W ′ 4 —

Attributes of the components

Not. Range Unit

ιp Calculated (rpcp) %

λp Calculated ( r
pcp

σp = ιp

σp ) —

νp Calculated ( r
pcp

F p = ιp

F p ) —

σp [1, 280] —

Ξp Calculated (LpV p) m

τ p [2, 50] —

cp [1, 20] pcs

F p [1, 12000] pcs
box

Lp [0.05, 4.5] m

Mp [0.001, 150] kg

rp [0.0001, 1] %

Sp [2, 14] m2

V p [1, 14] —

V olp [0.001, 8] m3

Parameters of the model

Not. Set, Range, or Value Unit

ϖj [0, 6.5] m

χ 5 years
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ω Calculated (
∑︁χ

ρ=1
1

(1+I)ρ
= 4.33) —

C0 0.014 N
s

C Obtained from Otto, Otto, and Scholl (2013) s

Cf 10 000 N
m2

C l 0.010 N
s

Ct 400 000 N

Cv Calculated (C lV ) N
year

Cx 150 N
yearm2

D𭟋υ {400; 880; 1700} m

D𭟋B {800; 1700; 3400} m

DυB {300; 750; 1500} m

I 0.05 %

L2 1 m

L3 3.5 m

Ls 8 m

M3 25 kg

S3 7 m

tak [28, 63] s

taks 81.1 s

tas [28, 63] s

tgl 16.5 s

T jn Obtained from Otto, Otto, and Scholl (2013) s

tluk 81.1 s

tlus 16.5 s

v0 0.9 m
s

V 3 3 m3

V 140 000 −
year

vt 1.94 m
s

Y 5 —

4.4.3 Real Application in the Automotive Sector

We solve a real instance provided by a company that assembles mini-buses to show how

the heuristic can be implemented in a real-world environment. This instance includes

80 tasks and 910 components that are delivered to the assembly line for a chassis of a
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mini-bus. The whole assembly process is divided in parts with 100 tasks or less.

Figure 4.3: Precedence diagram of the task for the assembly of a mini-bus. The circles
represent the tasks and the average execution time is written in red.

One might argue that the whole assembly system that is part of a manufacturing

environment or an automotive environment is composed of some hundreds of different

tasks and thousands of components and that considering only 80 tasks is not a realistic

problem.
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Figure 4.4: Schema of the solution of the JALBFP and the sequential approach for the
first part of the assembly line. The line feeding mode encoded in red requires
only minimal preparation activities. The line feeding modes encoded in green
(sequencing and kitting) require more extensive preparation activities at the
supermarket.
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Figure 4.5: Schema of the solution of the JALBFP and the sequential approach for the
second part of the assembly line. The line feeding mode encoded in red requires
only minimal preparation activities. The line feeding modes encoded in green
(sequencing and kitting) require more extensive preparation activities at the
supermarket.
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Although the whole assembly system is indeed made up of a hundred of different

tasks, it is usually divided into multiple sections, each of them consisting of around

one hundred tasks, a few hundred components, and few dozens of stations (Sternatz

2015). In other words, the whole assembly system is divided in multiple sections

each one consisting of some tasks, their precedences, and their components. Indeed,

due to the precedences between the tasks it is not necessary to consider the tasks

that are on the opposite side of the precedence diagram since they realistically cannot

be performed in the same station or neighboring ones. This is done to reduce the

complexity of the problem while preserving its realistic settings (Sternatz 2015). This

assumption avoids considering problems that might be difficult to solve in a reasonable

amount of time. The JALBFP is then solved for each section of the assembly system

to find the optimal structure of the assembly line, i.e. the optimal number of stations

and the optimal line feeding mode for the components. After, the sections of the

problem are combined to obtain the final structure of the assembly line. Usually, an

assembly line is not built for all its length in a straight line, but rather in segments

that are sections of the assembly line with a supermarket located in the proximity

where the segment’s components are stored. The distance between the warehouse and

the supermarket (D𭟋υ), the supermarket and the BoL (DυB), and the warehouse and

the BoL (D𭟋B) are 880, 750, and 1700 meters. The cycle time C is set to 320 seconds

and the total annual production volume V is 20 000 units. The precedence diagram

between the tasks and the average duration of the tasks are depicted in Figure 4.3, i.e.

the precedences between the tasks.

Figure 4.4 and 4.5 depict the assignment of the tasks to the workplaces of the

stations and the assignment of the components to the three line feeding modes. The

implementation of the JALBFP rather than the sequential approach leads to savings

36.87% in costs. This percentage is in line with the savings that are achieved in Section

4.4.4.

Figure 4.4 and 4.5 can provide a clear explanation for the difference in the costs

allocated by the solutions of the JALBFP and the sequential approach. All the tasks

are assigned to the stations while following the precedences and time constraints

in the JALBFP and the sequential approach. We can see that while the JALBFP

leads to implementing one workplace for the majority of the stations, it is common

for the sequential approach to implement multiple workplaces in the stations. The

sequential approach leads to a shorter assembly line than the one obtained from the
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implementation of the JALBFP just as in this case where the 3 fewer stations are

implemented. From the ALFP point of view, we can see that more components are

assigned to kitting and sequencing in the sequential approach rather than line stocking

which is the line feeding mode that is most commonly implemented in the JALBFP.

The lower number of stations of the solution of the sequential approach leads to the

components being delivered with line feeding modes that require less space at the BoL.

The sequential implementation involves solving at first the ALBP and then the ALFP.

At first, the ALBP minimises the number of stations as can be seen in Figure 4.4 and

4.5 where the sequential approach leads to a lower number of stations compared to

the JALBFP. After the ALBP, the ALFP optimises the delivery of the components

by assigning a line feeding mode to each component. Three line feeding modes can

be assigned. Kitting and sequencing require longer preparation activities and occupy

little space at the BoL while line stocking needs less effort for the preparation activities

but more space for storage at the BoL. After the ALBP is solved and the number of

stations is identified, it is not possible to increase the number of stations so that all

the components can be delivered with the cheapest line feeding mode that requires

more space at the BoL. As a result, a high number of components must be delivered

with more expensive line feeding modes that require little space at the BoL such as

kitting and sequencing so that all the components can be placed at the BoL. For

this reason, there is a large difference in the number of components that are assigned

to the three line feeding modes in Figure 4.4 and 4.5. This also explains why the

sequential approach leads to higher costs for the preparation activities performed at

the supermarket and for the delivery of the components to the stations compared to

the JALBFP (later shown and discussed in Figure 4.7 and Figure 4.8). The reason that

makes sequencing and kitting more expensive than line stocking is that these two line

feeding modes require more preparation activities. On the other hand, the JALBFP

optimises in a combined way the ALBP and the ALFP. The model implements a higher

number of stations so that there is enough space at the BoL for all the components to

be delivered with the cheapest line feeding mode, i.e. line stocking. For this reason,

the JALBFP leads to a higher number of stations as it can be seen in Figure 4.4 and

4.5. With a higher number of stations, there is enough space so that the majority of

the components can be assigned to line stocking rather than sequencing and kitting.

For this reason, the JALBFP assigns a higher number of components to line stocking

rather than kitting and sequencing.
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4.4.4 Results

The computations are performed on an 8-core server (Intel Xeon(R) Platinum 8160

CPU 2.10GHz) with 45 GB of RAM. The MILP model and ALNS heuristic are realised

using Xpress-IVE version 8.5. The data generation part is performed using R (coded

with RStudio of the Anaconda distribution).

Comparison with Sternatz (2015)

We compare the results of the MILP model provided in Section 4.2 with that of

Sternatz (2015). Since Sternatz (2015) does not provide the data used for the

experiments, we assume that ∆L1 and ∆L3, having the same value, do not contribute

to the objective function, and linki,j is neglected. In Sternatz (2015), the optimisation

model considers the implementation of homogeneous containers, i.e. what we refer to

as line stocking, and mixed containers, i.e. kitting, that can be implemented in each

assembly station and does not consider sequencing. Table 4.3 provides the computation

times, total cost reduction, and total working time increase obtained through the

implementation of our model rather than the one of Sternatz (2015).

Table 4.3: Comparison between our MILP model and that of Sternatz (2015) for 56 instances
with 20 tasks J ′.

Computation times [s]
Total cost

reduction [%]

Total working

time increase [%]

Our model Sternatz

Maximum 6988.52 2175.72 86.47 -1.14

3rd quartile 3901.7 322.11 84.86 -9.19

Median 1688.35 81.89 84.33 -14.28

Average 2374.69 310.82 83.85 -18.02

1st quartile 780.28 57.81 83.24 -27.3

Minimum 288.39 19.13 77.84 -48.62

While our model minimises the total costs of the whole assembly system (as explained

in Section 4.2), Sternatz’s model minimises the total working time of the whole

manufacturing system as the sum of the assembly time activities and the part feeding

activities to produce one product unit ( hours
product

). The total working time is the sum of
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the time for the part feeding operations and the cycle time multiplied by the number

of workplaces. This time can be considered the labour costs of some operations that

are performed in an assembly system. Our model has higher computations times and

always leads to a cost reduction compared to the solution from the model proposed

by Sternatz (2015). This total cost reduction is achieved by an optimal mix of the

feeding policies which considers not only kitting but also sequencing. For the total

working time, neither model consistently leads to an increase or reduction. However,

the total working time increases for some instances with respect to Sternaz but the

total costs for the whole system always decrease.

Validation of the Heuristic

Before we validate the heuristic, we tune its parameters to ensure that it is effective.

In other words, we select the minimum number of iterations η1 and the number of

iterations performed after the last feasible improved solution is found η′1 to ensure that

the algorithm is effective when solving the JALBFP. Solving the JALBFP requires

more time than solving the sequential approach. Solving the sequential approach

consists in solving the ALBP and the ALFP. Both these problems are a specific version,

subproblem, of the JALBFP with the relaxation of some constraints and without some

elements in the objective function. For this reason, we tune the parameters, η1 and

η′1, to solve the JALBFP and we are going to apply these parameters also to solve the

sequential approach. One might argue that the values for η1 and η
′
1 should be different

when solving the JALBFP and the sequential approach. However, the JALBFP is more

difficult to solve than the sequential implementation of the ALBP and the ALFP. For

this reason, we select the values for these two parameters for the problem that is more

difficult to solve and apply them also to the other one. Although this might lead to

higher computation times for the sequential approach, it cannot prevent the sequential

approach from finding the best solution. In other words, since the heuristic is effective

when solving the JALBFP with these two parameters, it will be also effective in solving

the sequential approach. We tune the parameters of the ALNS heuristic by comparing

it to the MILP model detailed in Section 4.2. We run the MILP and the heuristic

to solve 42 ‘less tricky’ and 27 ‘tricky’ instances of 20 tasks J ′. Figure 4.6 provides

the computation times before the heuristic stops and the deviation between the results

obtained from the optimisation model and the heuristic.
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Figure 4.6: Average computation times and cost deviation with the tuning of the parameters
η1 and η′1 of the ALNS heuristic.

With a low value of η1, 50 or 100, the algorithm is not effective in decreasing the

deviation since on average it might even reach values above 10%. This is because

during the first 50 or 100 iterations, the algorithm is not able to find an improved

solution and it stops prematurely. On the other hand, when η1 is equal to 200 or 300,

the deviation decreases significantly. However, we need also to select the right η′1, and

this might lead to having high computation times. When η′1 is equal to 25 or 50, the

effectiveness of the algorithm in the quality of the solution, the deviation, decreases.
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This is because the algorithm requires more than 25 or 50 iterations to find a better

solution after the last one is found. A combination of a high value of η1, e.g. 300, and

η′1, e.g. 125, leads to the best results for the deviation but prohibitive computation

times. For this reason, we select η1 equal to 200 and η′1 to 100. With this value, the

average deviation is around 1% and the average computation time is lower than the

maximum and around 350 seconds.

We validate the ALNS heuristic by comparing it to the MILP model detailed in

Section 4.2. For the JALBFP and the sequential approach, we compare the MILP

model and the heuristic explained in Sections 4.2 and 4.3. For the sequential approach,

the objective function considers only the costs of the ALBP activities (Ci
I + ωCa).

We run the MILP model with a time limit of 7 200 seconds for the instances from

the set of Otto, Otto, and Scholl (2013) and selected 75 ‘less tricky’ and 72 ‘tricky’

instances that contain 20 tasks J ′. To reduce computation times, the value for Big M

in constraints (4.11, 4.13, and 4.14) is set as low as possible but large enough to avoid

problems with the optimisation model, e.g. just a little higher than the cycle time

C. The MILP model is not able to solve instances with 50 or more tasks from the

same data set. To test the joint model, we vary the Total volume of components
Total task time

and the
Number of components

Total task time
between 0.0005 and 0.0020 m3

s
and between 0.015 and 0.030 1

s
and

variable distances between the warehouse, supermarket, and assembly line (D𭟋B, D𭟋υ,

and DυB). In Table 4.4, we provide the deviations between the MILP model and the

heuristic. The maximum number of assembly stations S ′ is set to 15 stations, but the

solution of all instances for the JALBFP and the sequential approach implements no

more than 10 stations. For the ALNS algorithm, η (the minimum number of iterations)

and η1 (the number of iterations performed after the last improved solution is found)

are empirically set to 200 and 100 to avoid excessive computation times and to ensure

that the algorithm renders good solutions. We replicate the heuristic 30 times for

each instance in order to ensure that the results are consistent. For each measure, we

provide the results obtained.

104



4.4 Numerical study

Table 4.4: Deviation between optimisation model and the heuristic for 147 instances with
20 tasks J ′.

Deviation [%]

JALBFP
Sequential

approach

Maximum 10.75 7.89

3rd quartile 0.78 0.0

Median 0.23 0.0

Average 1.0 0.95

1st quartile 0.0 0.0

Minimum 0.0 0.0

The deviation between the optimal solution and the ALNS algorithm has a maximum

of 13.52%, but the median and the average of about 1%. This shows that the ALNS

algorithm is effective at solving the JALBFP and the sequential approach in a large

majority of the cases, but there are few instances where the ALNS algorithm yields

a higher deviation. The results show that the computation times for the heuristic

are lower than those of the MILP model for both the average and the median. The

minimum computation time is higher than those of the MILP model, but it yields an

average time for both the JALBFP and the sequential approach. This is because the

ALNS algorithm requires at least a certain amount of time to be effective, but it takes

more time with instances that are difficult to solve.

Comparison Between the JALBFP and the Sequential Approach

To show the benefits of implementing the JALBFP and the sequential approach, we

solve 54 large ‘less tricky’ instances and 18 large ’tricky’ instances with 100 tasks J ′

and 102 medium ‘less tricky’ and 39 medium ’tricky’ instances with 50 tasks J ′ from

the set of Otto, Otto, and Scholl (2013) with the ALNS algorithm described in Section

4.3. The heuristic is not able to solve any very large-scale instances (with 1 000 tasks

J) in a reasonable amount of time. One could argue that a heuristic should be able to

solve instances with few hundreds tasks. However, there are two issues to consider in

this argument.

First, our heuristic relies on a MILP for the ALFP. This is because to this day no

approach employs a metaheuristic or heuristic to solve the ALFP. Therefore, in an
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instance with few hundreds tasks there would be thousands of components that need to

be assigned a line feeding mode. The line feeding mode selection for these components

relies on a MILP with long computation times.

Second, solving instances with few hundreds tasks is not possible in a reasonable

amount of time. Our algorithm solves instances that are composed of 20, 50, and 100

tasks. Of course, solving an instance of 100 tasks needs more time than an instance

of 20 tasks because 100 tasks could be arranged differently in the stations, i.e. there

are more combinations for the assignment of the tasks to the stations with 100 tasks

rather than 20 tasks. For this reason, the stopping criterion of the ALNS is to perform

at least η1 iterations and to continue for η′1 iterations after the last feasible improved

solution is found. With few hundreds tasks, the computation time increases because

there is a higher number of combinations of the assignment of the tasks to the stations

and the algorithm could require more time to find a better solution compared to when

there are only 20 tasks. For this reason the computation time for a very large-scale

instance with few hundreds tasks becomes prohibitive.

In the sequential approach, we first solve the ALBP without any ALFP constraints

(4.15-4.21) and with an objective function that considers only the assembly costs

(Ci
I + ωCa). Then, we solve the ALFP with the solution obtained from the ALBP,

i.e. the assignment of the tasks to the workplaces and stations. Since the solution

from the ALBP could be infeasible with the introduction of the ALFP constraints,

i.e. there is not enough space at the BoL to store the components, we introduce the

parameter ψ which represents the possibility to perform multiple deliveries to the BoL.

The parameter ψ divides the space, weight, and volume of the components that are

delivered in constraints (4.16), (4.18), and (4.19). The parameter ψ is also introduced

as a multiplier in the objective function (4.4.8), (4.5.2), (4.5.3), and (4.5.4) of the

ALFP to account for the costs of the multiple deliveries. The ratio Number of components
Total task time

is equal to the one found in a manufacturing environment. The maximum number of

assembly stations S ′ is set to 50, but the solution of all instances for the JALBFP and

the sequential approach implements no more than 30 stations.

Table 4.5 provides the worker densities, the component densities, idle times,

computation times, and total cost reductions for the solutions obtained from the

JALBFP and the sequential approach, i.e. the sequential implementation of the ALBP

and the ALFP.
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Table 4.5: Worker densities, component densities, idle times, computation times, and total
cost reductions of the heuristic for 54 large ‘less tricky’ instances and 18 large
’tricky’ instances with 100 tasks J ′ and 102 medium ‘less tricky’ instances and 39
medium ’tricky’ instances with 50 tasks J ′.

Worker density Component density Idle time [%]

JALBFP
Sequential

approach
JALBFP

Sequential

approach
JALBFP

Sequential

approach

Maximum 1.71 2.62 34.0 55.0 0.63 0.63

3rd quartile 1.37 2.0 26.15 37.78 0.57 0.57

Median 1.18 1.75 24.38 33.75 0.55 0.55

Average 1.23 1.67 24.49 32.9 0.54 0.55

1st quartile 1.08 1.3 22.73 27.27 0.51 0.53

Minimum 1.0 1.0 16.92 17.37 0.43 0.47

Computation time [s]
Total cost

reduction [%]

JALBFP
Sequential

approach

Maximum 96650.16 13683.9 43.82

3rd quartile 12109.02 2231.81 11.97

Median 5894.74 1434.67 8.33

Average 11095.87 2237.44 10.07

1st quartile 3066.24 770.88 5.08

Minimum 953.0 22.85 0.32

The results show that the sequential approach leads to worker densities that are higher

than the ones in the JALBFP. The reason for this is that the sequential approach is

performed by implementing the ALBP as a first step, which aims at decreasing the

costs of the assembly stations. This leads to fewer stations.

Similarly, the component densities are lower for the JALBFP than those with the

sequential model.

We also analyse the idle times, i.e. the percentage of cycle time spent in non-productive

activities. In this case, there is no clear difference between the two approaches. This

shows that minimising the idle time to solve the JALBFP does not guarantee that the

solution would be optimal.

The computation times of the JALBFP are higher than the ones of the sequential

approach. Although in some cases the JALBFP has long computation times,

this is a problem that is solved at a tactical level. The average computation time

is lower than 1 hour, which is reasonable for a problem that is solved at the tactical level.
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(4.7.1)

(4.7.2)

(4.7.3)

(4.7.1) (4.7.2)

(4.7.3)

Figure 4.7: Costs of the JALBFP and the sequential approach for one instance with 100
tasks J ′ and variable distances (D𭟋B, D𭟋υ, and DυB). The costs in blue refer
to the ALFP activities while the costs in orange refer to the ALBP activities.
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The most relevant result is that solving the JALBFP leads to a total cost reduction

compared to the sequential approach. The average total cost reduction is 17.52%. The

ALFP affects the operating costs of an assembly line, and in some cases, the total cost

reduction reaches 56.53%.

We analyse the causes of the total cost reduction for one instance with variable

distances (D𭟋B, D𭟋υ, and DυB). In Figures 4.7 and 4.8, we compare the solutions

found by the heuristic for both the JALBFP and the sequential approach.

In Figure 4.7, the pie charts show the percentages of the costs. The sequential approach

consistently leads to supermarket costs that are higher than those for the JALBFP.

At the same time, the transportation costs are expectedly higher with the maximum

distances between the assembly line and the warehouse and the supermarket (4.7 -

4.8.3). Figure 4.7 also shows the stacked charts for the costs of the JALBFP and

the sequential approach of one instance with 100 tasks J ′. These are costs that are

incurred over a period of 5 years of operating an assembly line. The costs for the

JALBFP are lower than those for the sequential approach with all distances. Here,

the transportation costs (Cτ ) and supermarket costs (Cu) are consistently higher for

the sequential approach than for the JALBFP. Both costs increase with the maximum

distances between the warehouse and assembly line (4.7 - 4.8.3). In contrast, the

investment costs for the assembly line increase in the JALBFP. In Figure 4.7, we

can see that the supermarket and transportation costs are higher for the sequential

approach than for the JALBFP.

Figure 4.8 provides the details of the assembly line with variable distances (D𭟋B, D𭟋υ,

and DυB). It can be observed that there is consistently a higher number of stations in

the JALBFP. In contrast, there is a higher number of components that are kitted or

sequenced in the sequential approach. The lower number of stations for the sequential

approach explains why the investment costs for the assembly line activities are lower.

This is because the sequential approach consists of the sequential implementation

of the ALBP and the ALFP. To begin with, the ALBP minimises the number of

stations. Then, the ALFP must assign certain components to the kit and sequencing

line feeding mode because of the low space and the low number of stations. In other

words, the aim of first minimising the number of stations leads to higher preparation

and transportation costs.
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(4.8.1) (4.8.2) (4.8.3)

Figure 4.8: Details of the assembly line for the JALBFP and the sequential approach for
one instance with 100 tasks J ′ and variable distances (D𭟋B, D𭟋υ, and DυB).
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For the preparation activities that are performed to deliver the components with the

line feeding modes, we can see that the sequential approach consistently leads to a

higher value of man-hour per day. This means that a higher number of operators must

perform these activities in the sequential approach rather than the JALBFP.

Sensitivity Analysis

We perform a sensitivity analysis to better understand in which situation solving the

JALBFP is economically more convenient than using the sequential approach.

We solve the large ‘less tricky’ instances from the set of Otto, Otto, and Scholl (2013)

that contain 100 tasks J ′ using the ALNS algorithm described in Section 4.3. The

number of components P ′, the volume of components delivered to the stations, and the

length at the BoL Ls, i.e. where the components are stored, vary to show how they

affect the total cost reduction. We include some extreme cases where there is a high

number and a high volume of components that are delivered to the assembly stations.

Figure 4.9 depicts the total cost reduction that can be achieved when these measures

vary.

We use linear regression to show the relationship between the measures and the total

cost reduction. The total cost reduction decreases with the number of components

delivered to the stations. Similarly, the total cost reduction decreases with the total

volume of components delivered to the stations. When there is a lower number of

components or components with a lower volume, these components can all be line

stocked. For this reason, the total cost reduction between the JALBFP and the

sequential approach decreases with a lower volume of components. In contrast, a

different behaviour can be seen when the length at the BoL increases. As we increase

this length, there is more space to store the line stocked components at the BoL of the

stations. For this reason, the total cost reduction decreases with the increase of the

length at BoL. In other words, a longer BoL also means the possibility to line stock

the components.
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Figure 4.9: Total cost reduction of the JALBFP vs. the sequential approach for 15 instances
with 100 tasks J ′ with varying length at BoL (Ls), Total volume of components

Total task time , and
Number of components

Total task time .

4.5 Conclusion

Herein, a MILP model and an ALNS are proposed to solve the multi-manned JALBFP

by considering different task times for each product model, multiple workplaces per

station, the kitting and sequencing line feeding mode, and a cost objective function that

considers all the operations performed in an assembly system. The major contribution

of this model consists of the optimisation model and the heuristic that have a high level

of detail compared to previous models in the literature. Unlike previous models that

consider the ALFP and the ALBP in a sequential approach, the proposed algorithms

solve them in a combined way. We compare our MILP model to that of Sternatz

(2015) and find that it always leads to lower total costs. We validate the ALNS

112



4.5 Conclusion

algorithm and we find that the average deviation is around 1%. Our approach can be

used for balancing operations of a new assembly line or for rebalancing operations of

an existing assembly line. We show that there is an average and maximum total cost

reduction of 17.52% and 56.53% if the JALBFP, rather than the sequential approach,

is implemented. In the sensitivity analysis, we show the condition when the total

cost reduction between the JALBFP and the sequential approach decreases. We also

provide an example of the application of the model to a real-world problem of a

company that assembles mini-buses. The ALNS algorithm is already able to solve

large-scale instances with 100 tasks and ’tricky’ instances with 50 tasks and this is

a step ahead of what is done in Sternatz (2015) and Calzavara et al. (2021). A

limitation of our model is that is not able to solve instances with few hundreds tasks

J ′ of ’tricky’, ’extremely tricky’, or ’open’ instances. Future research could try to solve

’extremely tricky’ and ’open’ instances as well as instances with few hundreds tasks.

Sternatz (2015) and Battini et al. (2017) provide a model for the JALBFP. These

articles consider the direct and indirect line feeding mode. The direct line feeding

mode consists in deliverying components directly from the warehouse to the assembly

line. The indirect line feeling mode consists in deliverying the components at first

to a warehouse where preparation activities are performed before the components

are delivered to the assembly line. In other words, the indirect line rewind mode

encompasses the sequencing and the (traveling) kit. Further, these articles minimise

the number of assembly and logistic operators and the time to perform the operations.

The model and algorithm provided in this chapter consider the JALBFP with a higher

level of detail. We consider three line feeding modes, namely line stocking, sequencing,

and traveling kit. We also minimise the costs of the assembly and logistic operations.

Thanks to the higher level of detail, we can understand the actual implications of

solving the JALBFP rather than the sequential approach. With these approaches, we

can understand the amount of savings that can be generated from this switch.

The algorithm proposed in this chapter shows one limitation that can be better

investigated in future research. The approach provided is affected by the size of the

instances solved. This is because, we rely on the MILP model for the line feeding mode

selection. Further research should investigate new methods to solve the JALBFP.

This can be done by applying existing methodologies, adjusting existing algorithms, or

developing new ones. Future research should provide an algorithm to solve instances

of the JALBFP regardless of their size. Further research should investigate the

performance of the model and the algorithm and the savings of JALBFP model when
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solving instances with different characteristics (order strength and peak, two measures

that encode the shape of the precedence diagram). A sensitivity analysis on this

subject could help explain under which circumstances the JALBFP can be more easily

solved or is more economically convenient. Future research should also investigate how

a very large-scale instance (more than 200 tasks) can be divided into multiple smaller

instances. Not only the number of tasks, but also the kind of tasks and the number

of components could play a role in the results of the model and algorithm. This is

necessary to understand how these smaller instances should be conceived for the ALBP

and JALBFP.
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Chapter 5

Routing and Scheduling Activities for

the Delivery of the Components

Based on

Zangaro F., Battini D., 2018. ”Integrating Routing and Scheduling Decisions for

Enhancing the Part Feeding in an Automotive Environment”, Twentieth International

Working Seminar on Production Economics

In an automotive environment, part-feeding procedures involve the delivering

references that are stored in a supermarket to the stations. The part-feeding procedures

involve a high number of tow trains that travel through a limited network of roads. This

leads to congestion problems that can disrupt the delivery of references. To solve these

congestion problems, we define the Inventory Routing and Scheduling Problem (IRSP).

A Mixed Integer Linear Programming (MILP) model is provided for the IRSP in order

to integrate the tow-train routing into the schedules of the delivery, which includes

an arrival, serving or waiting, and departure time for each station. This approach

minimises the delivery time to the stations by considering also congestion problems.

For real-life implementation, a heuristic that is based on a Large Neighbourhood Search

(LNS) is provided. We find that the deviation between the objective value of the

optimisation model and the heuristic is lower than 2%. A numerical case is outlined

to discuss the benefits and performance. We find that congestion problems can lead

to an increase in the delivery time of 16.5%. Based on the literature, we consider

the congestion problem that occur in three different layouts that are common in a

manufacturing environment: product line layout, fixed product layout, and process

layout. We study in which layout congestion problems occur more commonly and we

find that the process layout causes the largest amount of congestion problems.
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5.1 Introduction

The part-feeding process is a complex problem because it concerns many elements

and factors. This process is important in the automotive industry and its satellite

environments. It involves the delivery of references from the supermarket to the

assembly stations. A great number of resources and operators are involved in these

processes. Therefore, automotive companies strive for improvements in order to achieve

higher productivity and lower costs.

It has been shown that congestion and traffic problems can affect the logistic practices

of many transportation environments (Johnson 2001; Roy, Gupta, and De Koster

2015). Consequently, congestion issues can also affect a wide range of operations such

as the part-feeding process.

The part-feeding process involves the transport of components, also known as

references, from the supermarket, where they are stored, to the assembly stations,

where they are needed for the assembly operations, see Figure 5.1. These delivery

operations are of great importance for the assembly or production activities carried

out at the stations. Tow trains, which are vehicles composed of an engine and a few

wagons, are used for such delivery practices. In a production plant, roads are of limited

size and scarce (Battini et al. 2015). Due to high traffic and safety issues, overtaking

operations are often forbidden. Therefore, when a train is loaded or unloaded at a

station, other arriving trains must wait in line. A large amount of time might be

lost due to queues. Such congestion problems might lead to low utilisation rates and

stock-out situations. To account for these problems, a higher number of tow trains

might be used for performing these operations, which then causes more queues. We

define this problem as the periodic Inventory Routing and Scheduling Problem (IRSP)

that aims at routing and scheduling the delivery of references to the assembly stations

by considering the congestion problems and the queue time. In order to minimise the

time spent on delivering activities, the IRSP considers the traveling time of the vehicles

and the consumption rate of the stations. This ensures that each station receives the

references in time so that no stockout situation occurs. At the same time, congestion

problems for the train drivers are avoided. Figure 5.1 provides a map of a production

plant and an example of the delivery schedules of the tow train that are periodically

performed.

In this chapter, we provide a mathematical formulation and a heuristic to solve the

periodic IRSP. This formulation considers congestion situations that can occur during
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the delivery of the components to the production or assembly area. The formulation

reduces congestion problems so that the least amount of time is spent by operators

in queues and the delivery of components. Through this formulation, congestion

problems in the delivery of components can be reduced so that operators do not waste

time in such unproductive activities on the assembly line. A clear schedule is provided

to the drivers of the tow trains and, when possible, congestion problems are avoided.

This schedule might include a waiting time at the supermarket before delivering the

components. During this time, the drivers can perform some picking activities in the

supermarket if the schedule allows it. The formulation schedules the periodic delivery

of the minimum amount of components to stations so that the production activities

can be performed. To show that the heuristic is effective, its results are validated

with the ones of the optimisation model, and we find that the average and median

deviation is lower than 2%. We find that solving the IRSP rather than the IRP leads

to an average time deviation, i.e. a reduction of the roundtrip time, of 16.5%. We also

perform a study with different layouts (Tompkins et al. 2010) to identify those layouts

where the congestion problems are more frequent and where the implementation of

the IRSP is most beneficial. In the sensitivity analysis, we implement the IRSP for

three common layouts that can be found in a manufacturing environment, product

line layout, fixed product layout, and process layout. This analysis shows which layout

is more likely to yield higher savings in terms of time. This explains when it is more

convenient to solve the IRSP rather than the Inventory Routing Problem (IRP). This

could also justify, when possible, a change of layout in favour of one that causes less

congestion problems.

The rest of this chapter is organized as follows: Section 5.2 describes the part-feeding

problem, Section 5.3 describes the mathematical formulation of the mixed integer

linear optimisation approach and the heuristic, Section 5.4 validates and implements

the heuristic, and Section 5.5 provides a summary to the chapter.

5.2 Problem Description

The supermarket concept is commonly implemented in the automotive industry

(Battini, Boysen, and Emde 2013). References, i.e. components, are stored in

cardboard boxes or plastic containers of different dimensions. Three line feeding

modes are implemented for the delivery of the components: line stocking, kitting, and
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sequencing. Line stocking consists of the delivery in a single box of multiple identical

parts of the same component.

Figure 5.1: Map of a production plant and delivery schedule of the tow trains.

Kitting is a container with different components that must be delivered at the same

station. Sequencing consists of delivering different variants of the same component in

the same container in the same order as they are needed in the assembly operations.

Picking activities, which are necessary for kitting and sequencing, consist of collecting

the references from their boxes so that they can be placed in the right container. These

picking activities are the most human-intensive operations performed in a warehouse

since the operators must travel to different locations of the supermarket to collect all
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the components. The picking activities performed in a warehouse account for more

than 50% of its expenses (Richards 2014; Setayesh et al. 2022; Tompkins et al.

2010). The picking activities are performed by logistic operators that work at the

supermarket but they can also be supported by additional workers. To decrease the

costs of the picking activities, idle operators could support these operations. Potential

savings can be achieved if the idle operators can spend some time performing these

activities. Though, the idle operators must do this promptly to return to their primary

operations if required. For delivering the components, operators use tow trains (or

tugger trains), which are vehicles usually composed of an electrically powered engine

and a few wagons that perform the delivery procedures (Battini et al. 2015). All the

tow trains available in a plant are generally utilised for the part-feeding process. This

is because there is a need to balance the workload among all the available tow trains.

Firstly, the operators unload at the warehouse all empty containers or boxes that they

had previously collected from the stations. These containers are then disposed of or

returned to the supplier. The operators load the full containers and boxes on the tow

trains before departing the supermarket. As soon as all the containers are loaded, the

tow trains can proceed to deliver them to the assembly stations based on the schedule

assigned to them. We assume that the departure order of the tow trains does not affect

the arrival at the stations. To reach different locations of the production plant, tow

trains use a few small roads. These roads are limited in dimension and number to

use as much space as possible for productive or assembly operations in a plant, and

the network of roads might, in some cases and based on the layout of the production

plant, be quite intricate. While a tow train drives towards its destination, it passes

other stations. Because of this, it is important to notice that there is a difference

between serving and visiting a station. A train can visit many different stations when

it is traveling in the production area. In this case, no reference is delivered to these

stations, but still a train arrives and departs. On the other hand, a station is served

when a train delivers some references. If a tugger train serves a station, it must stop to

perform delivery operations. We assume that all the stations have a consumption rate

higher than 0, and, thus, must be served. At the same time, we assume that each station

must be served by one vehicle only. We assume that the delivery time is independent

of the kind of container used, i.e. a box, a sequencing container, or a kitting container.

We also assume that the delivery time of the containers include the delivery of the full

containers from the tow train and the retrieval of the empty ones from the racks at the

stations. In such operations, the filled containers are unloaded from the tow trains, and
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the empty containers are loaded onto them. Due to the limited size of the roads, the

restricted space, and for reasons of safety, overtaking operations are forbidden to tow

trains. Therefore, any tow train that encounters another one while performing delivery

procedures must wait in queues. We assume that a train that is visiting a station must

wait in queue if it arrives anytime while that station is being served. This occurs even

if the visiting train arrives at the same time as the serving train.

Figure 5.2: Part feeding activities performed in an assembly or production plant.

This situation can occur more than once in a tow train’s delivery trip and it might also

occur in the replenishment process at the supermarket. If these congestion problems are

avoided, a larger amount of time can be spent by operators in the supermarket while

performing picking activities. Through the routing and the scheduling of tow trains,

we can avoid two tow trains meeting while one of them is performing the delivery of
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components. In the most extreme scenarios, one tow train can wait at the supermarket

and help with the picking activities to avoid congestion problems. On the other hand,

if congestion problems cannot be avoided, they can be at least minimised. After a

tow train performed all its delivery operations to all the stations that were assigned

to it, it returns to the supermarket for the refilling operations. If there is some spare

time between two consecutive roundtrips, the driver helps the logistic operators in the

supermarket to perform the picking activities. If a train is delayed in its delivery trip,

it must deliver, in the next roundtrip, a larger amount of references to the stations to

replenish the depleted safety stock during its next roundtrip. This side effect leads to

an unstable and unreliable length of roundtrip.

5.3 Mathematical Model

This section provides an explanation of the Mixed Integer Linear Programming (MILP)

model and the heuristic. Although the MILP model aims at reaching the optimal

solution, it cannot solve any real-life problem in anything shorter than a prohibitive

computational time. Because of this, a heuristic is provided. This approach aims at

finding near-optimal solutions based on a Large Neighbourhood Search (LNS).

The result of these approaches is a delivery schedule that includes an arrival, a serving,

and a departure time for each station. This schedule consists of a list of all the stations

that are served and visited by each train. If a train serves a station, there is an arrival

time, a delivery time, and a departure time. On the other hand, if a train visits a

station, an arrival time, a queue time, and a departure time are provided. Since the

approaches consider also the stations that are visited, the tow trains can travel only

through adjacent stations. i.e. nodes of the network that are next to each other. The

delivery schedules are repeated continuously for as long as the stations are supplied

with references.

5.3.1 Mixed Integer Programming Model

This model is a three-index formulation that solves the IRSP. Although other two-index

formulations have also been implemented for VRP, it is not possible to develop a

two-index model for the IRSP because it is necessary to understand which train serves

and visits which location. A two-index formulation only allows the development of

routes for the trains, but it neglects how these routes are assigned to the trains. There
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are N stations served by a single supermarket. Each station is served by one of the

K trains. cnm is the distance between station n and station m. The demand rate dn

is measured in cubic meters per minute for each station n, and the demand rate fn

in boxes per minute. All the racks of each station n have a maximum load of Ln in

cubic meters. Matrix anm is 1 if there is a direct road from station n to station m.

The unloading and loading times of a box are equivalent and encoded in s, which is

measured in minutes for each box. Each vehicle k has a maximum capacity load Mk

that is measured in cubic meters.

Table 5.1: Sets, parameters, and decision variables.

Sets of the model

Not. Definition

k, h Indicis of tow trains for the delivery

K = 1, . . . , K ′ Set of tow trains for the delivery

n,m Indicis of stations for the delivery of the components

N = 0, . . . , N ′ Set of stations for the delivery of the

components, n = 0 denotes the supermarket

Parameters of the model

Not. Definition

anm
Direct roads between station n and station m

(binary, equal to 1 if that is the case, 0 otherwise)

cnm Travel times between stations n and m

dn Consumption rate of station n in volume

fn Consumption rate of station n in boxes

Ln Maximum stock at station n

Mk Maximum loading volume for train k

s Loading and unloading time per box at a station

Decision variables

Not. Definition

bkn

Variable that encodes if train h which serves station n arrives

to it before than the departure of the train k (binary, equal to 1

if that is the case, 0 otherwise)
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ekn

Variable that encodes if train h which serves station n

departs from it later than the arrival of the train k (binary,

equal to 1 if that is the case, 0 otherwise)

qkn Departure time of train k from station n

rkn Resupply quantity at station n delivered by train k (integer)

tk Roundtrip time of train k

ukn Arrival time of train k at station n

vkn Loading volume when train k leaves station n

wkn Waiting time of train k at station n

xnmk
Indicator if train k travels from station n to m

(binary, equal to 1 if that is the case, 0 otherwise)

ykn
Indicator if train k serves station n

(binary, equal to 1 if that is the case, 0 otherwise)

Objective Function

min Ttot =
∑︂
k∈K

(tk − qk0) (5.1)

The objective function (5.1) considers the traveling time of all the vehicles Ttot after the

departure from the supermarket. This time is the sum of the roundtrip time tk of all

the vehicles K ′. In order to calculate the time spent while delivering the components

and not at the supermarket before departure, we deduct the time of the departure from

the supermarket qk0.

Constraints

We divide the constraints into routing constraints, timing constraints, loading

constraints, valid inequalities, and variable definition.

Routing Constraints These constraints refer to the route taken by the tow trains in

the delivery of the components to the stations.

∑︂
k∈K

ykn = 1, ∀n ∈ N (5.2)

ykn ≥ rkn
M

, ∀n ∈ N, k ∈ K (5.3)
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ykn ≤
∑︂
m∈N

xnmk, ∀n ∈ N, k ∈ K (5.4)∑︂
m∈N

xmnk =
∑︂
m∈N

xnmk, ∀k ∈ K,n ∈ N, m ̸= n, amn, anm = 1 (5.5)∑︂
n∈N

x0nk = 1, ∀k ∈ K (5.6)

Constraints (5.2) enforce that each station n is served by one train. Constraints (5.3)

ensure that if a container rkn is delivered to a station n by train k, then this train must

serve it, i.e. ykn equal 1. Constraints (5.4) ensure that if a station n is served by a train

k (ykn equal 1) then the train must travel to that station. The supermarket (n = 0)

is not considered in this set of constraints. Constraints (5.5) ensure that each train

k that visits a station n traveling from a station must depart from it to visit another

adjacent station. This is possible only if n and m are adjacent stations, i.e. amn and

anm is equal to 1. This is done for all the stations and the supermarket (n = 0). In a

production plant, all the available vehicles are used to deliver the components to the

stations. Constraints (5.6) ensure that all the vehicles K ′ depart from the supermarket

for the delivery of the components to the stations N ′.

Timing Constraints These constraints refer to the time needed by the tow trains to

travel and deliver the components. Similarly to an IRP, we need to calculate the time

necessary for the delivery of the component to calculate the quantity that is delivered

to the stations.

ukn ≥ qkm + cmn − (1− xmnk)M⏞ ⏟⏟ ⏞
5.7.1

, ∀k ∈ K,m, n ∈ N,m ̸= n, a0n = 1 (5.7)

ukn ≥ c0n − (1− x0nk)M⏞ ⏟⏟ ⏞
5.8.1

, ∀k ∈ K,n ∈ N, a0n = 1 (5.8)

uk0 ≥ cn0 + qkn − (1− xn0k)M⏞ ⏟⏟ ⏞
5.9.1

, ∀n ∈ N, k ∈ K (5.9)

qkn ≥ ukn + srkn⏞⏟⏟⏞
5.10.1

− (1− ykn)M⏞ ⏟⏟ ⏞
5.10.2

, ∀k ∈ K,n ∈ N (5.10)

qkn ≥ ukn + wkn − (ykn)M⏞ ⏟⏟ ⏞
5.11.1

, ∀k ∈ K,n ∈ N (5.11)
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tk ≥ uk0 + s
∑︂
n∈N

rkn⏞ ⏟⏟ ⏞
5.12.1

, ∀k ∈ K (5.12)

Constraints (5.7) express the timing of the arrivals of the trains at the stations by

including the travel time. This is possible only if a train travels to station n as expressed

in (5.7.1). The supermarket is a specific node of the network (n = 0). Constraints (5.8)

and (5.9) set the arrival time of the first station after the supermarket and the arrival

at the supermarket after the delivery of the references. Element (5.8.1) and (5.9.1)

calculate the departure and arrival time from and to the supermarket (n = 0) only if

the vehicle travels to that node. Constraints (5.10) calculate the departure time from

the stations when they are served by a train. The delivery time is the same for all

the containers that are used for the delivery, e.g. line stocking, kitting, and stationary

kitting. In (5.10.1), we consider the time to unload the containers. This occurs only

if station n is served in (5.10.2). While constraints (5.10) consider the delivery time

at the stations when they are served, i.e. ykn is equal to 1, constraints (5.11) consider

the waiting time when they are visited, i.e. ykn is equal to 0 in (5.11.1). Constraints

(5.11) are not part of the formulation of a regular IRP model since waiting times are

neglected. In constraints (5.12), the roundtrip time of a tow train tk is determined by

the arrival time at the supermarket uk0 plus the loading time at the supermarket in

(5.12.1). We assume that the replenishment activities that occur in the supermarket

are done after the delivery to the stations.

Loading Constraints These constraints refer to the load and the delivery of

components on the tow trains.

rkn ≥ fnth − (1− ykn)M⏞ ⏟⏟ ⏞
5.13.1

, ∀n ∈ N, h, k ∈ K (5.13)

∑︂
n∈N

(dnrkn) ≤Mk, ∀k ∈ K (5.14)∑︂
k∈K

(dnrkn) ≤ Ln, ∀n ∈ N (5.15)

vkm ≥ vkn − dmrkm⏞ ⏟⏟ ⏞
5.16.1

− (1− xnmk)M⏞ ⏟⏟ ⏞
5.16.2

, ∀k ∈ K,n ∈ N,m ∈ N (5.16)
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(qkn − uhn − α)

M⏞ ⏟⏟ ⏞
5.17.1

− (1− ykn)⏞ ⏟⏟ ⏞
5.17.2

≤ ehn, ∀n ∈ N, k, h ∈ K (5.17)

(α + qhn − ukn)

M⏞ ⏟⏟ ⏞
5.18.1

− (1− ykn)⏞ ⏟⏟ ⏞
5.18.2

≤ bhn, ∀n ∈ N, h, k ∈ K (5.18)

whn ≤ (qkn − uhn)⏞ ⏟⏟ ⏞
5.19.1

− (yhn)M⏞ ⏟⏟ ⏞
5.19.2

− (1− ykn)M⏞ ⏟⏟ ⏞
5.19.3

− (1− ehn)M⏞ ⏟⏟ ⏞
5.19.4

− (1− bhn)M⏞ ⏟⏟ ⏞
5.19.5

, ∀k, h ∈ K,n ∈ N (5.19)

vk0 =
∑︂
n∈N

dnrkn, ∀k ∈ K (5.20)

Constraints (5.13) determine the number of boxes rkm for each tow train (integer) by

considering the longest of all roundtrip times. We use the maximum roundtrip time of

the vehicles th so that the routes are periodic (see Figure 5.1). The big M in (5.13.1)

ensures that containers are delivered only to a station that is served (ykn). The total

load of a train (
∑︁N

n=1 dnrkn) is limited to the maximum capacity of a train Mk in

constraints (5.14), and the total quantity delivered to a station (
∑︁K

k=1 dnrkn) cannot

exceed its capacity Ln in constraints (5.15). Constraints (5.16) determine the load vkn

of a vehicle k along the route. The quantity delivered at each station is subtracted from

the current load of the vehicle in (5.16.1). This occurs only if the train travels to the

stationm in (5.16.2). This set of constraints avoids also short cycles. Constraints (5.17)

and (5.18) calculate the possibility that a train must queue during visiting a station,

encoded in decision variables ehm and bhm. These variables are necessary in order to

understand if other trains that visit a station arrive earlier or later than the train that

serves it. We need these variables to correctly calculate the waiting time when a tow

train meets another one that delivers references to a station. In constraints (5.17), if

a train k that serves a station n departs after a visiting train h, ehn becomes equal to

1. This is done in (5.17.1) by considering the departure time of the train k and the

arrival time of the train h. This occurs if the train k serves a station n in (5.17.2).

Constraints (5.18) ensure that bhn is equal to 1 if a visiting train h departs from the

station n after the arrival of the serving train k. The elements (5.18.1) and (5.18.2) are

similar to what is done in (5.17.1) and in (5.17.2). We assume that if the visiting and

the serving train arrive at the station at the same time, the visiting train must wait.

We use α as a lower order term that ensures that ekn and bkn are equal to 1 for such

situations. Constraints (5.19) compute the waiting time whn for a station n for all the
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trains h that do not serve it. (5.19.1) consists of the time between the departure of

the serving train k and the arrival of the visiting train h. (5.19.2) and (5.19.3) are big

M terms that ensure that the train h and k are the visiting and the serving vehicles.

(5.19.4) and (5.19.5) ensure that ehn and bhn are equal to 1 if a vehicle must wait in a

queue. Constraints (5.20) ensure that the total load vkn of a vehicle k is assigned to it

after it departs from the supermarket (n = 0).

Valid Inequalities ∑︂
k∈K

rkn ≥ 1, ∀n ∈ N (5.21)

Constraints (5.21) force at least one container rkn to be delivered to the stations that

are served by a train.

Variable Definition

xnmk, ekn, bkn ∈ {0, 1},

rkn,∈ N+, vkn, ukn, qkn, wkn, tk ∈ R+,

∀k ∈ K,n ∈ N,m ∈ N (5.22)

Constraints (5.22) define the decision variables.

5.3.2 Heuristic Algorithm

Since the optimisation model yields excessive computation times to solve large-scale

instances, we introduce a heuristic to solve larger instances. This algorithm relies on

an LNS that was first introduced by Shaw (1998). This algorithm improves an initial

solution by using iteratively removal and insertion operators. This algorithm is divided

into three elements: the initialisation phase, the improvement phase that contains the

removal and insertion operators, and the acceptance method. The heuristic can get

stuck in a local minimum solution. To avoid this problem, the LNS framework is

combined with an Iterated Local Search (ILS) that was described in Lourenço, Martin,

and Stützle (2019). The ILS framework suggests that the algorithm LNS should be

iterated to ensure to achieve the global optimum and avoid accepting a local minimum.

The framework implemented in this algorithm is similar to the one of the ILS. In the

heuristic, we define two additional parameters that are used in the notation:
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� λk traveling time of vehicle k for the delivery of the components ([minute]). This

time is the sum of all the time spent in traveling activities from the supermarket

to the assembly stations and back.

� gk consumption rate of the stations served by train k ([ box
minute

]). This is the sum

of the consumption rates of all the stations served by vehicle k.

Initialisation Phase

The initialisation phase generates a first feasible solution for the delivery of the

components to the stations. In the improvement phase, this solution will be improved.

Therefore, this phase only aims at developing a solution that is feasible even if the

objective value of this solution is far from the optimum. We define as free stations

those stations that are not already assigned to a vehicle.

tk = λk + 2sgktk (5.23)

For each vehicle k, it is possible to calculate the roundtrip time which depends on the

traveling time λk and the demands of containers of all the stations served by a train

k gk. This roundtrip time can be obtained from equation (5.23). It does not consider

any delay time due to congestion problems.

tk =
λk

(1− 2sgk)
(5.24)

Equation (5.23) can be elaborated and thus equation (5.24) is obtained. Through this

equation, it is possible to identify infeasible delivery routes when the term 2sgk assumes

a value higher than 1. Thus, if a free station, increases 2sgk more than the value of 1

it is not added to the route of the vehicle k.

rkn ≥ ⌈fnth⌉ (5.25)

Although equation (5.23) describes the roundtrip of each vehicle k, this time does not

include the time the tow trains spend waiting in queues. Thus, it is necessary to

estimate the total roundtrip time to understand the quantity that must be delivered to

the stations. The quantity that must be delivered at each station n by each vehicle k

can be estimated from the maximum roundtrip time of the K vehicles and is obtained

from equation (5.25). We iteratively develop a delivery schedule until we can estimate
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the number of containers rkn that can be delivered and that can satisfy equation (5.25).

At each iteration, we consider if equation (5.25) is valid. If this does not occur, we must

increase the number of containers rkn delivered to station n by train k. This schedule

consists of a departure time from the supermarket, a traveling time to the stations, and

a delivery time or a queue time.

Improvement Phase

The improvement phase enhances the initial solution by finding one that has a lower

objective value. There are multiple removal and insertion operators. A removal operator

removes an element from the route of a vehicle:

� Random Removal (RR): a station is randomly removed from the solution. This

operator makes the search general so that it can select also stations that are not

selected by other operators.

� Worst-distance Removal (WDR): the station that is farthest away from the

previous one served by a vehicle is removed from the solution. This helps identify

one of the stations that most increases the value of the objective function.

� Worst-station Removal (WSR): the station that requires the most time to be

served is removed from the solution. Differently from the WDR operator that

considers the travel time, the serving time is considered in this operator. This

helps identify one of the stations that most increases the value of the objective

function.

� Best-distance Removal (BDR): the station that is closest to the previous one

served by a vehicle is removed from the solution. Congestion problems might also

occur if two close stations are served by the same vehicle. This operator identifies

such situations.

� Best-station Removal (BSR): the station that requires the least time to be served

is removed from the solution.

� Multiple Random Removal (MRR): multiple random stations are removed from

the solution.

� Zone Random Removal (ZRR): multiple random stations that are served by the

same vehicle are removed from the solution.
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An insertion operator inserts the element back into the solution in a different route:

� Closest Insertion (CI): the element is inserted in the vehicle that serves the closest

station to the one removed. This operator reduces the objective value by reducing

the traveling time of the operators.

� Random Insertion (RI): the element removed is inserted in a random vehicle. This

operator is intended to be used to avoid waiting times.

� Workload Insertion (WI): the element is inserted in the vehicle that serves the

lowest number of stations. In the IRP, a vehicle might have a high roundtrip

time because it serves a lot of stations. This leads to a large amount of references

to be delivered, which in turn increases also the roundtrip time. This operator

addresses this issue.

� Exchange Insertion (EI): the element is exchanged with another element in a

random vehicle. In other words, two elements from two vehicles are exchanged.

The heuristic selects one removal and one insertion operator in order to decrease the

objective value. Any removal operator, insertion operator, and element are selected

to ensure that the new solution is feasible. For instance, we cannot remove a single

station s from a vehicle k if that vehicle serves only that station s so that constraints

are not violated. To evaluate a solution after each removal and repair operation, we

develop a delivery schedule as it was done for the initialisation phase. In this heuristic,

we consider the minimum solution and the local solution. The former is the solution

with the minimum objective value that is obtained so far, the latter is a solution that

is momentarily accepted with the aim to move away from the local minimum. In order

to avoid the heuristic getting stuck in a local minimum, the algorithm can perform

up to θ iterations where the local solution, i.e. a less than optimum solution, can be

accepted. During these θ iterations, the solutions are stored as a local solution. If after

θ iterations a new minimum solution is found, then this solution is stored as the new

minimum solution. Otherwise, the algorithm restarts from the last minimum solution

that is found. The stopping criteria are to perform at least ϕ iterations which do not

include the θ iterations performed to identify a local solution. Figure 5.3 provides the

heuristic.
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Acceptance Method

The acceptance method is the criterion used to accept a solution. In the improvement

phase, we differentiate between a local solution and the minimum solution. A local

solution is accepted if it is a feasible one. On the other hand, a minimum solution

requires the feasibility of the solution and an objective value that is lower than the

previous one.

5.4 Numerical Study

In the numerical study, we first provide some Key Performance Indicators (KPIs) to

quantify the quality of the results. Then, we describe the data generation process.

Eventually, we validate the heuristic and we present the results that are obtained.

5.4.1 Key Performance Indicators

In order to evaluate and compare the solutions obtained by the optimisation model and

the heuristic, we define five KPIs:

� The computation time is the time needed to solve the instances. For the

optimisation model, this is the time to obtain the optimal solution. For the

heuristic, this is the time after which the algorithm stops, i.e. the time to perform

α iterations.

� The total roundtrip time is the sum of the roundtrip times of all the trains K.

This is the value of the objective function of the optimisation model and the

heuristic (see Section 5.3). In this case, this is the deviation between the heuristic

and the optimisation model. It is also possible to calculate the total roundtrip

time obtained with the IRP compared to the IRSP. The time deviation is the

increase in the objective value due to the implementation of the IRSP.

� The queue time is the time spent by the tow trains while in a queue. The lower the

queue time the more amount of time can be spent on other productive activities.

The difference between the queue time and the total roundtrip time is that the

first one is the time spent specifically by drivers on waiting activities. The total

roundtrip time consists of the time of traveling time, delivery time, replenishment
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initialisation phase;
store the current solution as the minimum solution;
store the current solution as the local solution;
while stopping criteria is TRUE do

retrieve the minimum solution;
for i < θ do

use a removal operator;
use a repair operator;
store the current solution as the local solution;
calculate T ′

tot of the current solution;
if T ′

tot < Ttot then
store the current solution as the minimum solution;

Figure 5.3: Flow chart of the initialisation phase and algorithm of the heuristic.

132



5.4 Numerical Study

time, and the queue time. A higher total roundtrip time might also be caused by

a larger amount of references delivered to the stations.

� The volume stored at the stations is the quantity of reference kept at the stations.

Usually, the higher the consumption rate and the farther a station from the

supermarket is, the larger amount of references must be stored there. A lower

amount of references is more desirable since it means more space available at the

station for assembly or production activities.

� The number of containers stored at the stations is the quantity of containers that

are delivered by the tow trains at the stations. The times spent on unloading,

loading, and replenishing operations are dependent on the number of containers.

It is also possible that there is a station where a small number of large containers

are delivered.

5.4.2 Data Generation

There is no data available in the literature on the distances between the stations (ann

and cnn) of a manufacturing area. Thus, we collected this information from one company

that produces components for the automotive industry. This company employed the

process layout in a production plant. We use the data of this network to generate

multiple instances for the experiments described in this section. All the instances

solved in this section are related to at least one of three layouts that are common in

a production environment: the process layout, fixed product layout, and product line

layout (Tompkins et al. 2010). Although there might be other kinds of layouts that

are less frequently employed, these three layouts represent the networks of roads that

can be often found in a productive environment. The distances between the stations

(cnm) of the three layouts are synthetically generated based on the data collected from

the company. In order to generate these distances, we employ the Descriptive Sampling

technique. This approach was first described in Saliby (1980), Saliby (1990), and Saliby

and Ray (1993). For these values, we sample the values based on the probability of

occurrence of the distances in the range (see Saliby (1990)). As explained in Saliby

(1990), we also perform a random permutation to assign the distances to the stations.

The distances of the roads that connect the supermarket to other stations, c0m and

cm0, have a different range compared to the ones that connect two stations. For

these distances, we sample these values using Monte-Carlo sampling. In the model

and heuristic provided in this chapter, we consider direct roads, i.e. roads that connect
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two neighbouring stations. Further, we must make sense of the network of roads. When

considering the roads that connect the supermarket to station n, c0n, and the station

n to station m, cnm, the distance from the supermarket to station m, c0m must be

equal to the sum of the other two. This is because in many manufacturing plants the

supermarket cannot be located right next to the assembly stations. In the optimisation

model, we consider the arrival and departure times (ukn and qkn) for all the stations and

the supermarket (n = 0). If a vehicle can travel multiple times through some stations,

the index n in the set N must represent these stations, and this increases the complexity

of the problem. To maintain reasonable computation times, we consider only layouts

that allow the vehicles to travel only once through the stations. The company also

provided the remaining parameters of the models. The consumption rates (dn and

fn) are randomly generated using Monte-Carlo sampling. We draw a value uniformly

distributed between ranges obtained from the company and based also on the author’s

experience. The ranges, values, and sets of the parameters of the model can be seen

in Table 5.2. For the three layouts, we vary the number of stations that are served

by the tow trains N ′, the number of tow trains used K ′, the delivery time per box s,

and the demand of the stations (dn and fn). The maximum stock Ln at the station n

and the maximum loading volume Mk are set following the author’s experience and are

assumed to be equal for all the stations n and vehicles k.

Table 5.2: Ranges of the parameters of the model.

Parameters of the model

Not. Unit Range

cnm minute [0.15, 0.45]

c0m ∧ cn0 minute [3.8, 4.2]

dn
m3

minute
[0.02, 0.04]

fn
box

minute
[0.03, 0.22]

Ln m3 0.5

Mk m3 21

s minute
box

[0.2, 0.5]

5.4.3 Results

In this section, we first validate the heuristic by comparing its performance with the

optimisation model. Then, we apply the heuristic to three large-scale instances. This
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shows the magnitude of congestion problems in a manufacturing environment. The

computations were performed on a personal computer with an Intel (R) Core(TM)

i7-10750H CPU @2.60GHz with 32 GB of RAM (31.8 usable) and a 64-bit Windows

10. The optimisation model was realised with Xpress-IVE version 8.5, and the heuristic

was realised with Python 3.8.5 64-bit coded with Spyder 4.1.5 part of the Anaconda

distribution.

Validation of the Heuristic Algorithm

We validate the heuristic explained in Section 5.3.2 by comparing it to the optimisation

model detailed in Section 5.3.1 for the IRSP and the IRP. For the IRSP, the model

and the algorithm are compared as they are presented. For the IRP, the models do

not consider any congestion problem that might occur as it is usually done for regular

IRPs. In order to do this, constraints (5.17 — 5.19) are omitted from the formulation.

In constraints (5.11), the waiting time for all vehicles and all stations wkn is equal

to 0. We solve 144 instances with a variable number of stations N ′ between 12 and

21. We vary the consumption rate of the stations dn and fn and the delivery time

per container s. We solve 144 instances to validate the heuristic. In Table 5.3, we

provide the computation times and the deviation between the optimisation model

and the heuristic. These two KPIs can better describe the comparison between the

optimisation model and the heuristic.

Table 5.3: Computation times of the optimisation model and the heuristic and deviation
between them for 144 instances.

Computation Times [s] Deviation

[%]

IRSP IRP IRSP IRP

Optimisation

Model

Heuristic

Algorithm

Optimisation

Model

Heuristic

Algorithm

Maximum 1800.06 14.58 139.7 14.53 9.82 4.76

3rd quartile 191.07 12.98 7.59 12.95 2.54 1.07

Median 5.1 8.62 1.24 8.81 1.05 0.0

Average 274.53 9.7 6.72 9.76 1.8 0.75

1st quartile 3.09 7.13 0.8 7.33 0.0 0.0

Minimum 2.06 5.84 0.43 6.03 0.0 0.0

The results show that the heuristic can find a near-optimal solution in a shorter amount
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of time than the optimisation model. On the other hand, the optimisation model is

able to solve the IRSP and the IRP in a shorter period of time in the minimum case.

This is because the heuristic requires at least some time to improve the initial solution.

For some instances of the IRSP, the computation times might become prohibitive. The

computation times are higher for the IRSP than for the IRP for the optimisation model.

The reason for this is that to solve the IRSP, it is necessary to have a higher number of

decision variables (ekn, bkn, and wkn) to account for the congestion problems. On the

other hand, the heuristic requires the same amount of time for both the IRSP and the

IRP. The deviation between the optimisation model and the heuristic is quite low for

the IRP since the maximum is lower than 5%. On the other hand, the deviation for

IRSP is higher but still lower than 10%.

Comparison between the IRSP and the IRP

We solve 54 large-scale instances with a variable number of vehicles used for the delivery

of the components and a number of stations N ′ that lies between 45 and 60. We use the

heuristic to solve such large-scale instances. For the IRSP, we implement the heuristic

as it is described in Section 5.3.2. For the IRP, we avoid any consideration about the

congestion problems that might occur. Therefore, for the IRP, when we run the heuristic

in Section 5.3.2, we do not consider if a station is being served when another train visits

it. Then, a new schedule is developed for the IRSP (i.e. by considering congestion

problems) with the solution obtained from the heuristic for the IRP. This shows the

effects of congestion problems on the delivery route of the vehicles. Table 5.4 provides

all the KPIs described in Section 5.4.1 in order to have a fair comparison between

the IRP and the IRSP. The results show that there is a lower number of containers

stored at the station, volume stored at the stations, and a lower queue time for the

IRSP compared to the IRP. This is because the IRSP model can forecast the waiting

time of the vehicles, and can reduce the total roundtrip time. Since the maximum

roundtrip time decreases, so does the amount of components stored at the stations.

The maximum queue time decreases as well although in average the decrease is only

marginal. One additional benefit that is obtained from the implementation of the IRSP

is that although the queue time is not equal to zero, the model can predict that a delay

will occur. Thus, the safety stock and the quantity of components stored at the stations

can be adapted based also on the queue time. The decrease in the roundtrip time and

the queue time come also with the benefit that the drivers of the tow trains can support

the picking activities at the supermarket between one roundtrip and the other. In the
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objective function (5.1), we minimise the traveling time after the departure from the

supermarket. With the IRSP, the queue time decreases and the drivers can spend more

time at the supermarket before the departure.

Table 5.4: Containers stored at the stations, volume stored at the stations, queue time,
computation times, and time deviation of the optimisation model and the heuristic
for 54 large-scale instances. The time deviation refers to the increase of the
objective value due to the implementation of the IRP rather than the IRSP.

Containers stored [#] Volume stored [m3] Queue time [%]

IRSP IRP IRSP IRP IRSP IRP

Maximum 810 810 27.62 27.62 47.72 55.7

3rd quartile 348.5 513.0 12.34 17.85 28.93 34.57

Median 172.5 241.5 6.12 8.55 10.55 10.5

Average 271.76 328.04 9.47 11.42 15.21 16.8

1st quartile 106.0 116.75 3.76 4.11 0.34 0.36

Minimum 49 49 1.75 1.75 0.0 0.0

Computation Times [s] Time Deviation [%]

IRSP IRP

Maximum 108.86 110.92 78.02

3rd quartile 95.64 96.03 24.1

Median 70.31 69.17 8.78

Average 72.45 71.22 16.5

1st quartile 52.14 51.37 0.08

Minimum 45.31 44.81 0.0

This time can be allocated to support the picking activities. When scheduling the

delivery with a regular IRP, the amount of time spent in queues is unknown and the

managers must rely on rules of thumb to predict how much time will be wasted on

queues. The computation times are equal between the optimisation model and the

heuristic. This is because the heuristic must develop a schedule for both the IRP and

the IRSP. The time deviation shows that the total roundtrip time can be decreased,

on average, by 16.5% with the implementation of the IRSP rather than the IRP. This

is because the IRP develops only basic schedules that avoid any considerations on

congestion problems and time spent by vehicles queuing. In other words, the IRP

develops schedules that include congestion problems and increases the roundtrip time.

For this reason, the IRP can only decrease the traveling, loading, and unloading time

and cannot identify the queuing time of the vehicles. Also here, we see the benefit

that the 16.5% of the roundtrip time can instead be spent on picking activities by the

operators. This means not only reducing the queue time of the drivers but also as a
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benefit for the logistic operations.

Sensitivity Analysis of the Layout Types

Three major layouts are common in a production environment: the process layout,

fixed product layout, and product line layout (Tompkins et al. 2010). The fixed

product layout is usually implemented for the assembly of products that cannot be

moved, e.g. aeroplanes or sophisticated large machinery. Due to the size or the

precision required for the assembly, the product must remain still and all assembly

operations are carried out around it. The product line layout is usually implemented

for the assembly of cars or products in high volumes, e.g. laptops and bikes. In this

case, the assembly activities are carried out on the side of the product. The process

layout consists of grouping equipment and machinery that perform similar operations.

This is because these tools might require similar spare parts and lubricants. The

product family layout which is also listed in Tompkins et al. (2010) employs a network

similar to the one found on the process layout. One could argue that only the product

line layout is found in the automotive sector and that this comparison is not beneficial.

Indeed, the product line layout is commonly implemented in the automotive sector,

but it is also true that the other two layouts are implemented in its satellite industry.

For instance, the fixed product layout is implemented for the assembly of engines of

vehicles since most of the components are small and the engine must be still to ensure

high efficiency. Also, companies that produce car components employ the process

layout to improve efficiency. For instance, some OEMs employ the process layout for

the production of car seats, exhaustion systems, and lighting system. This is because

each process requires similar equipment and operations.

We solve 18 large-scale instances for each of these three layouts in order to understand

which of them leads to higher congestion problems. For each layout, we solve 3

instances with 45 assembly stations N ′ and 3 instances with 60 assembly stations N ′.

Figure 5.4 depicts the networks of the roads that are implemented in the three layouts.

For the IRSP, we implement the heuristic as it is described in Section 5.3.2. For the

IRP, we avoid any consideration about the congestion problems that might occur

during the delivery and solve the instances with the heuristic in Section 5.3.2.
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(5.4.1)

(5.4.2)

(5.4.3)

Figure 5.4: Networks of the roads that are employed in a product line layout (1), fixed
product layout (2), and process layout (3).
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Then, a new schedule is developed for the IRSP (i.e. by considering congestion

problems) with the solution obtained from the heuristic for the IRP. Table 5.5 provides

the number of components stored at the stations, the volume of components stored at

the stations, and the cost deviation.

Figure 5.5: Improved process layout

The results show that the fixed product layout leads to a minimum difference between

the IRSP and the IRP for the containers stored at the stations, the volume stored

at the stations, and the time deviation. On the other hand, the process layout is

the one where there is a maximum difference between the IRSP and the IRP in the

containers stored at the stations, the volume stored at the stations, and the time

deviation. Eventually, the product line layout has a difference between the IRSP and

the IRP for the containers stored at the stations, the volume stored at the stations, and

the time deviation that lies between the fixed product layout and the process layout.

Thus, we can expect that those companies that employ a process layout, e.g. OEMs

that produce components for the automotive sector, are more likely to suffer from

congestion problems.
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Table 5.5: Container stored, volume stored, and time deviation of the optimisation model
and the heuristic for 18 large-scale instances of three main layouts.

Containers stored [#] Volume stored [m3] Time deviation [%]

IRSP IRP IRSP IRP

Product line layout

Maximum 810 810 27.62 27.62 69.21

3rd quartile 524.75 633.0 18.09 21.63 25.69

Median 245.5 388.5 8.69 13.74 12.85

Average 329.11 414.11 11.46 14.35 17.83

1st quartile 152.5 203.75 5.42 7.24 2.51

Minimum 98 98 3.44 3.44 0.0

Fixed product layout

Maximum 795 556 26.99 19.59 12.1

3rd quartile 204.25 204.25 7.3 7.3 0.23

Median 94.5 98.0 3.39 3.44 0.07

Average 175.0 168.33 6.14 5.97 1.52

1st quartile 67.0 67.0 2.4 2.4 0.0

Minimum 49 49 1.75 1.75 0.0

Process layout

Maximum 810 810 27.62 27.62 78.02

3rd quartile 498.5 631.5 17.48 21.56 46.22

Median 190.5 344.0 6.73 12.22 22.0

Average 311.17 401.67 10.82 13.93 30.17

1st quartile 120.75 183.25 4.33 6.48 9.03

Minimum 71 71 2.6 2.6 0.0

Congestion problems are less likely to occur in the environments for the assembly of

engines that employs a fixed product layout. An additional insight for managers is to

choose, where possible, a layout that reduces congestion problems. As well, modifying

the network of roads might also be beneficial in reducing congestion problems. For

instance, the process layout proposed in Figure 5.5 could be a valid substitute for the

process layout in Figure 5.4.3. Notice that the internal roads are not needed anymore.

Though, this new layout can be implemented only if the tow train stops and the station

racks are relocated. Although reorganising the layout might not always be possible, by

doing this the space available for productive operations would increase, and the layout

would cause fewer congestion problems.
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5.5 Conclusion

In this chapter, we discuss congestion problems that occur in a manufacturing

environment during the part feeding practices. The periodic IRSP was defined. An

optimisation model was developed for the IRSP. This model includes a balancing

constraint and an additional objective function. Due to the long computation times

of the optimisation model, a heuristic for solving problems in real-life scenarios was

developed. The results of the heuristic are validated compared to the results of the

optimisation model and we find the average deviation is lower than 2%. We find that

the average time reduction that can be achieved if congestion problems are considered

is 16.5% for large-scale instances. This time can be spent by drivers at the supermarket

helping or supporting the picking activities. We perform a sensitivity analysis where

we analyse the congestion problems that can occur in different manufacturing layouts.

Through this analysis, we find that congestion problems are most likely to occur and

affect the delivery schedule in the process layout.

A limitation of our model is that the optimisation model contains many Big-M

constraints. This makes the current formulation one with a weak relaxation that is

hard to solve. To limit this problem, we set the values of the Big-M large enough to

ensure that the constraints are valid and no solution is mistakenly eliminated. At the

same time, we set the values of Big-M small enough to ensure that the relaxation of the

MILP is as small as possible. Although this helps the solver find the optimal solution,

other formulations could be implemented to solve the IRSP. Further research can also

provide additional formulations to solve the problem with a lower level of detail. A

lower level of detail can be beneficial in reducing the number of Big-M constraints.

Although considering the IRSP from the deterministic point of view decreases the

complexity of the problem, the real problem and its results are limited and subject

to stochastic issues that might occur in real life. Therefore, a stochastic optimisation

model can be developed for the IRSP. This would allow the development of models that

adapt better to real-life situations.
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Conclusion

6.1 Summary of Insights

In the manufacturing sector, assembly environments are common. In many assembly

environments, components are delivered to the assembly stations so that the assembly

operations can be performed. These are expensive activities that are performed

continuously that can negatively affect the costs of the final product. A large amount

of money can be saved by companies if these activities can be improved. Through

optimisation tools and machine learning techniques, we investigated these activities to

improve their implementation.

In Chapter 3, we proposed an optimisation model for the ALFP. The optimisation

model selects the most appropriate line feeding mode for each component to minimise

the total costs for the delivery of all the components. We used a CART algorithm

to develop a decision tree that allows to identify the attributes of the components

that affect the selection of the line feeding mode. This decision tree can explain the

decision for the line feeding mode selection and predict with a classification accuracy

of 78.49% the line feeding modes of the components. We trained the decision tree

with data synthetically generated from data obtained from multiple companies from

different industries. Although a line feeding mode is assigned by the decision tree to

each component based on its attributes, there is the possibility that the constraints of

the optimisation model are violated. We developed a repair approach that ensures that

the solution obtained from the implementation of the decision tree is feasible and that

reduces the cost deviation from the optimal solution. We found that the average cost

deviation after the repair approach is 0.38%.

In Chapter 4, we studied the JALBFP which is a combination of the ALBP and the

ALFP. This problem jointly considers how the tasks are assigned to the stations and
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which line feeding mode is assigned to the components. Companies usually solve the

ALBP during the planning stage of an assembly line and the ALFP when the assembly

line is operated and the components must be assigned to a line feeding mode. We

developed an optimisation model and a heuristic algorithm that relies on an ALNS

for the JALBFP. We validated the results obtained from the heuristic algorithm and

the optimisation model. We found that the JALBFP leads to an average total cost

reduction of 13.84% compared to a sequential approach that is usually implemented

in a productive environment. We found that the reason for the total cost reduction

is that the sequential approach has higher transportation and supermarket costs. In a

sensitivity analysis, we found that a higher number of components, a higher total volume

of the components, and a lower space at the BoL lead to a higher cost reduction.

In Chapter 5, we studied the delivery of the components to an assembly line performed

with tow trains. Companies usually employ a model for the IRP that routes the vehicles

to the stations without any consideration of congestion problems that might occur. We

proposed an optimisation model and a heuristic algorithm for the IRSP that combines

the IRP with the SSP so that congestion problems and routing decisions can be jointly

considered. These approaches can be used to avoid congestion problems and queues that

might occur during the delivery of the components. We proposed a numerical study

based on data obtained from a company. We found that congestion problems could

lead to an increase in the delivery time of 16.5% if standard routing approaches are

implemented for the delivery of the components. In the numerical study, we proposed

a sensitivity analysis to identify the layout that is most likely to lead to congestion

problems and find that the process layout is the one that is most likely to lead to

congestion problems.

6.2 Agenda for Future Research

For the ALFP in Chapter 3, we developed an optimisation model that considers the

stationary kit as a line feeding mode rather than the traveling kit. This decision

was made because we wanted to consider realistic cases for the training, validation,

and testing samples of the decision tree and therefore we could only consider the line

feeding modes that were implemented in those industrial environments. A limitation

of this work is that we considered the stationary kit as a line feeding mode, but other

industrial environments could implement the traveling kit. A decision tree could be

implemented to provide some guidelines on which line feeding mode between the two
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is more suitable for each industry or plant based on their attributes. This could

provide a clear answer on the conditions that make one of the two line feeding modes

most appropriate and economically convenient based on the space and environment.

Alternatively, future research should consider the traveling kit rather than the stationary

one in the development of a decision tree. This can provide valuable insights into the

implementation of traveling kits.

For the JALBFP, the model explained in Chapter 4 combines the ALBP and the

ALFP. In order to be able to solve large-scale instances, a heuristic algorithm was

presented. Our formulation considered already a high level of detail for a multi-manned

assembly line and it is not possible to consider also the ergonomic workload of the

assembly operations. Future research should investigate the ergonomic implications of

this problem by considering the energy expenditure of the assembly and line feeding

activities or the fatigue level. The ergonomic limits to this problem should be considered

to avoid uncomfortable situations for the workers through the use of constraints or

through the use of an objective function that minimises the workload. In other words,

ergonomic consideration can help assign the tasks to the stations so that the ergonomic

workload of the operations in the assembly line and the line feeding mode selection are

feasible for the operator. Considering the ergonomic workload of the operations could

help to more realistically plan a multi-manned assembly line and the operations that

are performed there.

In Chapter 5, we developed an optimisation model and a heuristic algorithm to solve the

IRSP. One of the limitations of this work is that the model and the algorithm analyse

the problem from a deterministic point of view. Future research should investigate the

delivery of the components from a stochastic point of view. Specifically, this study

should consider stochastic traveling times for the tow trains, stochastic consumption

rates for the station, and stochastic loading and unloading times. With this technique,

a more realistic schedule for the delivery of the components can be developed. On the

other hand, the heuristic algorithm that was developed allows already to recreate the

delivery of the references. The new heuristic algorithm should consider stochastic times

in the delivery but can preserve the scheduling technique described in Section 5.3.2.
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