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Abstract

On-board forward-looking cameras are often used for environment perception for advanced driver
assistance systems and for autonomous driving. In order to determine geometric quantities
like the distance to a preceding car, calibration of these cameras is necessary. As forward-
looking cameras are normally mounted inside the car, an influence of the windshield on the
imaging geometry is imposed, which creates a special challenge for calibration. In addition,
it can be assumed that changing camera properties over vehicle lifetime lead to errors in the
determined geometric quantities. Therefore, methods for calibration of forward-looking cameras
are proposed and investigated in this thesis.

To investigate the influence of the windshield, test field calibration of a stereo camera system
is carried out. A flexible 3d test field is used and an approach for datum definition by free
adjustment for mono cameras is extended for the stereo camera system. The camera orientation
and their uncertainties are estimated by bundle adjustment.

To cope with changes in the camera properties during vehicle lifetime, a method for self-
calibration with reference points obtained from the road scene is proposed and investigated.
Remarkable points at the boundary of traffic signs serve as reference points. Their pixel and ob-
ject coordinates are obtained by means of semantic segmentation, boundary detection and depth
estimation. Thereby, scene knowledge is obtained by deep learning and the camera orientation is
estimated by bundle adjustment with reference points from traffic signs of three different shapes.

As alternative to self-calibration with reference points from traffic signs, a method for self-
calibration with reference points obtained from arbitrary objects in the road scene is proposed
and investigated. Some of these points, like those on moving cars, are inappropriate for cal-
ibration. By means of semantic segmentation, undesired image regions are excluded and the
matching of image points is improved. In addition, the vehicle trajectory obtained from GPS is
evaluated by a special vehicle movement model for better metric scaling.

The proposed methods are evaluated with image sequences showing a test field and road scenes
in a suburban and urban environment, respectively. The results of test field calibration show a
statistically significant influence of the windshield on the camera orientation parameters. Self-
calibration with traffic signs shows best results with triangular shaped traffic signs. The use of
semantic segmentation improves self-calibration with points from arbitrary objects.






Kurzfassung

Zur Erfassung der Umgebung fiir Fahrerassistenzsysteme und zum autonomen Fahren werden
in modernen Fahrzeugen haufig Frontkameras eingesetzt. Um geometrische Grofien wie beispiel-
sweise die Distanz zu einem vorausfahrenden Fahrzeug bestimmen zu kénnen, miissen diese
Kameras kalibriert werden. Da Frontkameras in der Regel im Fahrzeuginneren hinter der Wind-
schutzscheibe montiert sind und die Windschutzscheibe die Abbildungsgeometrie beeinflusst,
ergibt sich fiir die Kalibrierung eine besondere Herausforderung. Weiter ist davon auszuge-
hen, dass sich Uber die Fahrzeuglebensdauer die Kameraeigenschaften verdndern und zu Fehlern
bei der Bestimmung geometrischer Gréflen fithren. Daher werden in dieser Arbeit Methoden
vorgeschlagen und untersucht, um die Kalibrierung von Frontkameras zu verbessern.

Zur Untersuchung des Einflusses der Windschutzscheibe wird eine Testfeldkalibrierung eines
Stereokamerasystems durchgefiihrt. Dazu wird ein Ansatz mit einem beweglichen 3D-Testfeld
verwendet und ein Verfahren zur Datumsdefinition per freier Ausgleichung fiir eine Monokamera
fiir das Stereokamerasystem erweitert. Die Kameraorientierung und deren Genauigkeiten werden
durch Biindelblockausgleichung geschatzt.

Um Verdnderungen der Kameraeigenschaften wéahrend der Fahrzeuglebensdauer entgegen-
zuwirken, wird ein Verfahren zur Selbstkalibrierung mit Referenzpunkten aus der Straflenszene
vorgeschlagen und untersucht. Als Referenzpunkte dienen markante Punkte am Rahmen von
Verkehrszeichen, deren Pixel- und Objektkoordinaten mit Hilfe von semantischer Segmentierung,
Kantendetektion und Tiefenschétzung bestimmt werden. Dabei wird Wissen iiber die Szene
mittels Deep Learning gewonnen und Referenzpunkte von Verkehrszeichen dreier Formen zur
Schatzung der Kameraorientierung mittels Biindelblockausgleichung verwendet.

Alternativ zur Selbstkalibrierung mit Referenzpunkten von Verkehrszeichen wird ein Verfahren
vorgeschlagen, bei dem Referenzpunkte von beliebigen Punkten in der Straflenszene gewonnen
werden. Dabei treten auch Punkte wie auf bewegten Fahrzeugen auf, die fiir eine Kalibrierung
ungeeignet sind. Mit Hilfe von semantischer Segmentierung werden Bildbereiche ausgeschlossen
und die Zuordnung von Bildpunkten verbessert. Zusétzlich wird die per GPS aufgenommene
Fahrzeugtrajektorie fiir eine bessere metrische Skalierung durch ein spezielles Bewegungsmodell
fiir Fahrzeuge ausgewertet.

Zur Evaluierung der Verfahren werden Bildsequenzen eines Testfeldes und natiirlicher Szenen
im vorstadtischen und stadtischen Bereich verwendet. Die Ergebnisse der Testfeldkalibrierung
zeigen, dass die Windschutzscheibe einen statistisch signifikanten Einfluss auf die Orien-
tierungsparameter hat. Fiir die Selbstkalibrierung mittels Verkehrszeichen zeigt sich, dass sich
besonders dreieckférmige Verkehrszeichen eignen. Bei der Selbstkalibrierung mit beliebigen
Punkten verbessert die semantische Segmentierung das Kalibrierungsergebnis.
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1 Introduction

1.1 Automotive vision for assistance systems and autonomous
driving

Observing the road scene environment around a vehicle is important for many advanced driver
assistance systems and in particular on the way to autonomous driving. Different types of sensors
for environment perception may be installed in modern vehicles [Winner et al., 2015; Ziebinski
et al., 2016]. Ultrasonic, radar, LiDAR sensors or cameras are among the most common ones,
covering complementary the distance range from few centimeters up to a few hundred meters and
hence serve for applications like parking assistance, obstacle warning or adaptive cruise control
[Zhang et al., 2014; Hanel et al., 2018]. Among the mentioned sensors, cameras are cheap and
provide high-resolution data and hence are widely used in both mass-produced and research
vehicles [Rosebrock & Wahl, 2012; Houben, 2014; Janai et al., 2017; Borgmann et al., 2018].

Cameras in cars either work in the visible spectrum for daylight applications [Zhang et al.,
2014; Janai et al., 2017] or in the near-infrared and thermal infrared spectrum for night-time
applications [Dong et al., 2007; Ge et al., 2009; Herrmann et al., 2018]. For environment obser-
vation, especially forward-looking visible-spectrum cameras recording the upcoming driveway of
vehicles can be seen as most important, which are often installed in a mono camera or a stereo
camera setup [Dang et al., 2009; Enzweiler & Gavrila, 2009; Keller et al., 2011]. For both setups,
the image processing and computer vision tasks needed for the aforementioned applications are
similar: For instance, specific road scene objects like road markings, pedestrians or traffic signs
need to be detected and recognized [Scheller et al., 2007; Bertozzi et al., 2010] or geometric quan-
tities like the road width, the location, size or velocity of detected environment objects relative to
the ego-car need to be determined [Broggi et al., 2001; Bellino et al., 2005; Scheller et al., 2007;
Alvarez et al., 2014; Bhardwaj et al., 2018]. It may also be necessary to perform multi-sensor
fusion [Geiger et al., 2012; Heng et al., 2014; Guindel et al., 2017] or even to obtain an entire 3d
environment reconstruction [Janai et al., 2017]. For reliable use in cars, these tasks need to be
performed with high accuracy [Ribeiro et al., 2006; Dubey, 2016].

As special challenge for automotive vision, various constraints resulting from mass-production
processes, vehicle design or price requirements may limit the selection of cameras and lenses
[Broggi et al., 2001; Rosebrock & Wahl, 2012; Guindel et al., 2017; Muhovic & Pers, 2020]. As
one example, narrow-angle lenses and large stereo baselines up to one meter need to be chosen
for forward-looking cameras as they allow to detect and measure small road scene objects at
distances up to a few hundred meters [Stein et al., 2010], but their neat integration into vehicle
design with a geometrically-stable mounting is complicated [Mentzer et al., 2017; Muhovic &
Pers, 2020]. As another example, wide-angle or fisheye lenses can provide large fields of views
for surround-view cameras, but at the cost of large distortions [Rosebrock & Wahl, 2012; Héne
et al., 2017]. For research vehicles, other and additional challenges may arise, like the need to use
detachable cameras that can be placed at different positions and angles at the car from time to
time [Paula et al., 2014].
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1.2 Automotive camera calibration for reliable automotive vision

For safe operation of advanced driver assistance systems and especially to resolve the challenges
for automotive vision, automotive camera calibration is a key aspect [Broggi et al., 2001; Kluger
et al., 2017]. Valid camera calibration parameters, i.e. typically the interior, exterior and, in
the case of multi camera systems, the relative orientation, allow to localize the ego-car in its
environment with high reliability, allow to get a consistent representation of the 3d environment
around the car and allow to determine the mentioned geometric quantities even at a far range
[Marita et al., 2006; Hansen et al., 2012; Knorr, 2018; Muhovic & Pers, 2020].

Same as automotive vision, so is also automotive camera calibration in particular faced with
challenges. While for automotive forward-looking infrared cameras locations at the front bumper
are favorable due to their spectral working range [Bertozzi et al., 2010], visible-range cameras are
typically mounted inside the vehicle behind the windshield to protect them against environmental
influences [Broggi et al., 2001; Gehrig, 2005; Dang et al., 2009; Franke et al., 2013; Livyatan &
Berberian, 2017]. Hence as first challenge, in the presence of a glass windshield in the optical
path between the camera and objects in front of the car, the important collinearity assumption
is not fulfilled anymore due to refraction of the image rays at the air - glass transition [Maas,
2015b]. In particular at short distances in front of the vehicle and for vertically large objects,
ignoring the effect of windshield refraction may heavily influence distance measurements, for
instance [Lasaruk & Neralla, 2018; Verbiest et al., 2020]. This influence on the imaging geometry
is reported to be "surprisingly large” [Lasaruk & Neralla, 2018; Verbiest et al., 2020]. Automotive
stereo camera systems are in particular affected, as even a small error of just a few seconds in
the relative orientation can remarkably alter the epipolar geometry and so decrease the quality
of 3d environment reconstruction, distance or velocity estimation, especially for objects far away
from the ego-car [Marita et al., 2006; Winner et al., 2015; Ling & Shen, 2016]. Additionally, the
often large stereo baselines in automotive stereo camera systems increase the effect of such errors
[Hane et al., 2017; Mentzer et al., 2017; Zabatani et al., 2017; Muhovic & Pers, 2020]. For the
reasons mentioned, it seems obvious that the windshield refraction should be considered especially
for high-quality test field calibration of automotive stereo camera systems [Geiger et al., 2012;
Fraser, 2013].

Other automotive-specific problems may arise from the conditions on the road. Hence as
second challenge, cameras must be operable over the entire vehicle lifetime, which requires the
estimated camera orientation parameters to stay reliable [Bertozzi et al., 2010]. Mechanical,
thermal and aging effects in the car could cause decalibration, i.e. changes in the geometry of the
camera that lead to a drift in the orientation parameters, thus making previous camera calibration
invalid and requiring re-calibration [Pflug et al., 2013; Gopaul et al., 2016; Mentzer et al., 2017;
Rehder et al., 2017]. It is reported that even moderate effects may cause remarkable changes in
the geometry [Broggi et al., 2001; Muhovic & Pers, 2020]. Vibrations in the vehicle from driving at
higher speed, bad road conditions or collisions are just a few examples for the many anticipatable
or not anticipatable sources for mechanical effects [Gopaul et al., 2016; Mentzer et al., 2017, 2019].
Ambient temperature variations or heating-up of cameras are just two sources for thermal effects
[Gopaul et al., 2016; Adamczyk et al., 2018]. Also environmental conditions on the road that
are different from production or research facilities where initial calibration has been done may
cause decalibration [Cannelle et al., 2012] and so impose an additional challenge that needs to be
resolved.

Therefore, solely calibrating automotive cameras once, often at the end of the production line
with test fields, is not considered as sufficient for reliable use over vehicle lifetime [Ruland et al.,
2010; Winner et al., 2015]. With even more emphasis, Bodis-Szomoru et al. [2008] and Heng
et al. [2014] see repeated validity checks of previously estimated camera orientation parameters
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or repeated re-calibration as indispensable. As solution, self-calibration of cameras carried out
while driving on the road can ensure the needed quality of calibration parameters to reliably
operate automotive vision applications over lifetime [Scheller et al., 2007; Musleh et al., 2014],
even without the need for any labor- and cost-intensive efforts for test field calibration [Mueller
& Wuensche, 2017; Knorr, 2018]. Therefore, reference points for calibration need to be obtained
from the road scene, wherefore often road markings shown in the lower image half are utilized.
As a result, the estimated parameters are only valid for this image half, motivating the use of
complementary road scene objects typically shown in the upper image half, like traffic signs. While
a certain type of objects typically occurs only in a small number and at certain locations of the
scene, may a high number of reference points at various locations be obtained alternatively from
arbitrary road scene objects. Though, the movement of objects like cars or reflective surfaces like
building windows may render reference points on these objects invalid. If such points are used for
calibration, a decrease in the quality of the estimated orientation parameters has to be expected,
wherefore it is desirable to exclude them.

1.3 Research questions

In this thesis, the following research questions on the two mentioned automotive-specific challenges
are addressed.

Q How does a vehicle windshield in the optical path between a forward-looking on-board stereo
camera system and a calibration test field influence the parameter values, standard devia-
tions and correlations of the interior, relative and exterior orientation parameters estimated
by test field calibration based on bundle adjustment in a set of experimental cases covering
two kinds of test fields, different camera models and different parametrizations of stereo
constraints?

Q Which types of traffic signs are most appropriate to derive reference points from by deep
learning-based computer vision for self-calibration with a sequence of road scene images
taken with a forward-looking on-board mono camera?

Q How can semantic road scene knowledge and vehicle motion models be integrated into a
structure-from-motion pipeline to improve self-calibration of a forward-looking on-board
mono camera with a series of road scene images?

1.4 Contributions

The key contributions of this thesis are as follows.

First, a method for stereo camera calibration with test fields is proposed that allows to jointly
use reference points from two non-rigid 2d test fields as well as reference points from coded and
uncoded reference marks by establishing point associations based on multiple similarity trans-
formations. An existing approach for datum definition by free adjustment for mono cameras is
extended for stereo camera systems. Investigations on the influence of the vehicle windshield
on camera calibration are carried out with the proposed method. While in previous work the
presence of an influence is shown, special emphasis of the investigation is put on the uncertainties
and correlations of the estimated camera orientation parameters. Furthermore, the investigation
comprises comparative evaluation of experiments with two kinds of test fields, different stereo
constraints, camera models and bundle adjustment properties.
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Second, a method for camera self-calibration is proposed whereby reference information is
obtained from certain road scene objects. While in previous work often road markings are used,
the proposed method relies on remarkable points at the boundary of traffic signs. The pixel and
object coordinates of these points are calculated by exploiting scene knowledge. By utilizing deep
learning-based semantic segmentation, boundary detection and single image depth estimation to
obtain scene knowledge, the need for additional data sources like GPS or IMU for self-calibration
can be avoided. Furthermore, the effect of three different shapes of traffic signs, two methods
for semantic segmentation and two methods for depth estimation on the calibration results is
investigated with test data from urban and suburban road scenes.

Third, a method for camera self-calibration with reference points obtained from arbitrary
objects in the road scene is proposed. While in previous work only generic outlier removal has
been applied, scene knowledge is obtained from semantic segmentation used in the proposed
method to exclude points from automotive-specific undesired objects like moving cars or reflecting
windows. While other previous work either addresses only feature extraction or feature matching,
the proposed method (i) applies masks to exclude image parts with undesired semantic classes
during extraction of SIFT features and (ii) restricts feature matching to points belonging to
the same semantic class. Furthermore, while previous work considers only moving objects as
undesired, uses only synthetic images for testing or relies on visual SLAM, the proposed method
also considers semantic object classes with inappropriate surfaces (e.g. poor textures like tarmac,
reflecting surfaces like building windows) as undesired. Furthermore, it relies on a typically better
performing structure-from-motion approach for self-calibration. Additionally, a vehicle trajectory
obtained from GPS is refined by Kalman filtering with a special vehicle movement model for
a better metric scaling in the structure-from-motion approach. The method is evaluated with
real image sequences from suburban and urban scenes, whereby the effect of masks created from
different combinations of semantic classes, the benefits of restricting feature matching and filtering
with the vehicle motion model are investigated.

Parts of this thesis have been published in the following papers:

O [Hanel et al., 2016] Hanel A, Hoegner L, Stilla U (2016) Towards the influence of a car
windshield on depth calculation with a stereo camera system. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B5: 461-468.

0 [Hanel & Stilla, 2017] Hanel A, Stilla U (2017) Structure-from-motion for calibration of a
vehicle camera system with non-overlapping fields-of-view in an urban environment. Inter-

national Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XLII-1/W1: 181-188.

O [Hanel & Stilla, 2018] Hanel A, Stilla U (2018) Iterative calibration of a vehicle camera
using traffic signs detected by a convolutional neural network. In: International Conference
on Vehicle Technology and Intelligent Transport Systems: 187-195.

Q [Hanel et al., 2018] Hanel A, Kreuzpaintner D, Stilla U (2018) Evaluation of a traffic sign
detector by synthetic image data for advanced driver assistance systems. International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-
2: 425-432.

O [Hanel & Stilla, 2019a] Hanel A, Stilla U (2019a) Evaluation of iterative calibration of vehicle
cameras using reference information from traffic signs. In: Donnellan B, Klein C, Helfert
M, Gusikhin O (eds) Smart Cities, Green Technologies and Intelligent Transport Systems.:
Springer, CCIS, 992, 244-265.
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O [Hanel & Stilla, 2019b] Hanel A, Stilla U (2019b) Semantic road scene knowledge for robust
self-calibration of environment-observing vehicle cameras. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W16: 103-110.

Q [Hanel et al., 2019] Hanel A, Sudi P, Pfenninger S, Steinbach E, Stilla U (2019) Filter-based
pose estimation for electric vehicles relative to a ground-based charging platform using on-
board camera images. In: Kersten TP (ed) Wissenschaftlich-Technische Jahrestagung der
DGPF, 28, 54-67.

1.5 Structure of the thesis

An introduction into the relevant basics and definitions of camera calibration, adjustment theory
and computer vision are given in Chapter 2. The state of the art in automotive camera calibration
is discussed in Chapter 3. In Chapter 4, the method for test field calibration of a stereo camera
system for investigation of the windshield effect is described, while Chapter 5 addresses the
method for camera self-calibration with reference information derived from traffic signs. Chapter 6
comprises the method for camera calibration by semantic structure-from-motion. Descriptions of
the test datasets and experiments are given in Chapter 7. Results and discussion are covered in
Chapter 8. The thesis concludes with answers on the research questions and an outlook given in
Chapter 9.






21

2 Basics and definitions

This chapter covers relevant basics of camera calibration, adjustment theory and computer vision,
beginning with geometric camera calibration (Subsection 2.1.1). In the following, the differences
of camera calibration in photogrammetry and computer vision (Subsection 2.1.2) as well as the
differences between test field and self-calibration (Subsection 2.1.3) are addressed. Afterwards,
camera and distortion models are introduced (Subsection 2.1.4). Important aspects of automotive
camera calibration (Subsection 2.1.5) and calibration algorithms (Subsection 2.1.6) are covered.
Then, basic aspects of adjustment theory are addressed (Subsections 2.2.1 and 2.2.2), followed
by details on the important collinearity equations and on the topic of datum definition (Subsec-
tions 2.2.3 and 2.2.4). In the last part of this Chapter, an introduction into the computer vision
topics of object detection and segmentation (Subsection 2.3.1) as well as of 3d reconstruction and
localization is given (Subsection 2.3.2).

2.1 Camera calibration

2.1.1 Geometric camera calibration

Geometric camera calibration is required to obtain accurate metric information from images
[Pollefeys & Van Gool, 1997; Remondino & Fraser, 2006; Luhmann et al., 2016] and aims at
determining the interior (IO), relative (RO) or exterior orientation (EQ) parameters; the ap-
proaches proposed in this thesis address either one or more of these three parameter groups.
Various definitions for the terms relative orientation and exterior or extrinsic orientation can
be found in the literature: They can refer to the orientation between two cameras [Stein et al.,
2010; Mentzer et al., 2017], the orientation between cameras and other types of sensors [Domhof
et al., 2019] or the orientation between a camera and the vehicle [Broggi et al., 2001; Catala-Prat
et al., 2006]. In this thesis, relative orientation refers to the orientation between two cameras
and exterior orientation refers to the orientation of a camera in a higher-level coordinate system,
like an object or wvehicle coordinate system. The term extrinsic orientation is not used. With
focus on the type of reference information, camera calibration can be categorized into (i) labora-
tory calibration, (ii) test field calibration and (iii) self-calibration [Luhmann et al., 2006; Kraus,
2007; Forstner & Wrobel, 2016]. Laboratory calibration relies on using optic measures, e.g. a
collimator, for calibration. Due to the required special laboratory equipment and the high effort,
this approach is feasible only if the required special conditions can be met and very high accu-
racy is demanded. Test field calibration relies on test fields with known reference information,
like points with known 3d object coordinates [Sturm & Maybank, 1999] or plumb lines [Brown,
1971], and typically a set of images showing this reference information to determine the desired
camera orientation parameters. Self-calibration relies either on test fields without a priori known
reference information or on a sufficient number of reference information that can be identified
from the scene [Luhmann et al., 2016]. Hereby, the object coordinates of the reference points
are obtained during calibration. Self-calibration is considered to be the most general and simple
approach [Luhmann et al., 2006; Forstner & Wrobel, 2016], and as an ”integral and routinely
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applied operation” within photogrammetry, especially ”in close-range measurement” [Remondino
& Fraser, 2006]. As confirmed by Fraser [2013], self-calibration with bundle adjustment can be
seen as the current norm in close-range photogrammetry. Nevertheless, stand-alone calibration
with test fields "has again emerged as an important issue in close-range photogrammetry”, for
example in cases where the geometry of the image network does not provide enough support
for a robust estimation of the camera orientation parameters by self-calibration [Remondino &
Fraser, 2006]. Automotive calibration covered in this thesis is considered to belong to the field of
close-range photogrammetry due to the type of used cameras and the terrestrial imaging configu-
ration, in contrast to e.g. aerial photogrammetry. Both automotive test field and self-calibration
are addressed. In addition to the descriptions above, other kinds of categorization are known as
well [e.g Shih et al., 1996; Luhmann et al., 2006]; though, their discussion is out of the scope of
this thesis. Equally, radiometric camera calibration [e.g. Mo et al., 2017] addressing the relation
between image intensities and scene radiance [Li et al., 2017] is not covered in this thesis.

2.1.2 Camera calibration in photogrammetry and computer vision

Both the photogrammetry [e.g. Fraser, 1997; Remondino & Fraser, 2006; Luhmann et al., 2013]
and the computer vision (CV) community [e.g. Tsai, 1987; Maybank & Faugeras, 1992; Zhang,
2000] address camera calibration, but common differences in the approaches and objectives can be
identified. According to Fraser [1997], calibration in the CV community often focus on minimal
geometric information, i.e. the least-possible number of images or the least-possible number
of reference points, which may lead to scene-dependent solutions and highly correlated camera
orientation parameters [Fraser, 2013]. Simultaneous calibration during measurement campaigns
seems to be more common than a priori calibration to avoid decalibration caused by mechanical or
thermal effects [Fraser, 1997; Remondino & Fraser, 2006]. Furthermore, calibration approaches
from the CV community are often designed to be easy-to-use and fully automated, with error
analysis not being in the focus [Shih et al., 1996]. In contrast, calibration in the photogrammetry
community often concentrates on high quality [Luhmann et al., 2016] and on thorough result
analysis [Fraser, 1997]. High quality might be visible by high parameter accuracy, strong image
networks, high redundancy, a good initial guess and the use of complex Gaul-Markov optimization
[Borlin & Grussenmeyer, 2014; Luhmann et al., 2016]. Even though simultaneous calibration
approaches are used, photogrammetric calibration is often implemented as a priori calibration
[Borlin & Grussenmeyer, 2014]. As it will be reflected by the following chapters, this thesis relies
on aspects from both communities.

2.1.3 Test field calibration and self-calibration

Test field calibration relies on test fields providing a set of reference information, which is mostly
points represented by reference marks. The reference information has to be known prior to
calibration, hence the object coordinates of such points have to be determined by high-quality
photogrammetry or tacheometry, for instance. The image coordinates are obtained during cal-
ibration by image processing tailored to the appearance of the reference marks. In close-range
photogrammetry and computer vision, checkerboard patterns are a popular type of 2d test fields,
where the checkerboard corners serve as reference points [Luhmann et al., 2016]. Alternatively,
patterns of circular reference marks attached to bars or planes are popular as well [Vo et al., 2011;
Schneider et al., 2017]. Multiple images taken in a suitable imaging geometry are required for
calibration with 2d test fields, while at minimum a single image is sufficient for calibration with
3d test fields [Urban et al., 2015]. According to Luhmann et al. [2016], calibration with planar
sets of reference points can easily lead to undesired high correlations between interior and exterior
orientation parameters, wherefore 3d test fields are taken in the scope of this thesis.
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In contrast, self-calibration employs various single-image and multi-image constraints that
have to be extracted from the acquired scene [Ling & Shen, 2016]. Single-image constraints
may originate from homographies between object space and the image (e.g. planar checkerboard
test fields without known object coordinates) or from multiple vanishing points corresponding
to orthogonal directions (e.g. along the edges of a rectangular building) [Liebowitz, 2001], for
example. Multi-image constraints may originate from epipolar geometry (two images) [Maybank
& Faugeras, 1992] and can be modeled for planar point sets by homographies [Miksch et al., 2010],
or for non-planar sets by the essential matrix for cameras with known interior orientation [Bjork-
man & Eklundh, 2002] or the fundamental matrix for cameras without known interior orientation
[Faugeras et al., 1992]. Multi-image constraints may also rely on the trifocal tensor (three images)
[Armstrong et al., 1996; Hartley, 1997a] or bundle adjustment (typically more than three images)
[Fraser, 2013], for example. Other constraints may originate from projective geometry and allow
to determine the interior orientation parameters based on recovery of geometric items whose pro-
jections stay fixed throughout an image sequence [Pollefeys & Van Gool, 1997]; examples are the
image of the absolute conic [Faugeras et al., 1992] or the image of absolute dual quadric [Triggs,
1997]. While some methods assume all interior orientation parameters to be constant for success-
ful recovery [e.g. Faugeras et al., 1992], others allow that a subset of these parameters may have
varying values [Heyden & Astrom, 1997]. While some methods rely on certain motion patterns,
for example pure translational [e.g. Dron, 1993], pure rotational [e.g. Hartley, 1997b] or pure pla-
nar motion [e.g. Armstrong et al., 1996], others are prone to critical motion patterns that could
cause calibration to fail and hence need to be avoided [Hartley & Zisserman, 2003]. Within this
thesis, bundle adjustment is used for the proposed methods, as plenty of reference information
is available and there is no focus on calibration with a minimal geometric configuration. For all
methods, the interior and relative orientation are assumed to be constant during acquisition of
the calibration images.

2.1.4 Camera and distortion models

To model the imaging geometry, the theoretical assumption of an ideal central projection is
made. In reality, it is violated by perturbations caused by lens distortions, chromatic aberra-
tion or non-planarity of the sensor surface, for example [Fraser, 1997; Forstner & Wrobel, 2016;
Granshaw, 2020]. As insufficient modeling of the projection and perturbations are a typical source
for calibration errors [Heikkila, 2000], an appropriate camera and distortion model is important
for successful camera calibration. Various types of camera models are known: Probably most
common is the pinhole camera model [Brown, 1971; Heikkila, 2000] which can serve for calibra-
tion of cameras with narrow-angle or even wide-angle lenses, if accompanied by appropriate lens
distortion models [Kannala & Brandt, 2006]. Models for special cameras or lenses, like fisheye
lenses [Kannala & Brandt, 2006] or omnidirectional cameras [Scaramuzza et al., 2006] exist. As
such special cameras or lenses are not used by the proposed methods and experiments, further
details on them are not covered here. Common lens distortion models allow for correction of
radial-symmetric and tangential (decentering) distortion [Brown, 1971] as well as for affinity or
shear [El-Hakim, 1986]. According to Bergamasco et al. [2013], so-called specific camera models
as described up to here, provide easy-to-use, well-adapted models for certain cameras; however,
they bear a trade-off between considering all perturbating effects and a low number of parameters
that can be determined reliably during calibration. In contrast, so-called generic high-parameter
camera models [e.g. Kannala & Brandt, 2006] allow to easily consider various projections and dis-
tortions and hence are suitable for several types of cameras and lenses at the same time [Guo-Qing
Wei & Song De Ma, 1994; Rosebrock & Wahl, 2012]. As such generality is not needed for this
thesis, a standard pinhole camera model with different lens distortion models is taken, modeling
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either no distortions, modeling the typically stronger radial distortions or modeling both radial
and tangential distortions (Table 2.1).

Table 2.1: Camera and distortion models determine the vector of interior orientation parameters X
used for camera calibration. f represents the focal length, ¢ the principal point coordinates, k the radial
distortion and p the tangential distortion parameters, each in z- and y-direction of the image coordinate
system.

Name NONE RADIAL BOTH
X7 (f:z: fy Cyx Cy) (fx fy Cr Cy kq k2) (fx fy Cx Cy k1 ko p1 p2)

In the vector X1 of interior orientation parameters, f, and f, represent the focal length for the
x- and y-axis of the image coordinate system. Note that the focal length differs from the principal
distance depending on the camera focus [Granshaw, 2020]; as it is more common, the term focal
length is used in the further course. ¢, and ¢, represent the principal point coordinates in z- and
y-direction. ki and ko represent radial distortion parameters compensating for radial-symmetric
effects, and p; and po represent tangential distortion parameters compensating for effects of lens
decentering. These models have been selected based on their common use [e.g. Forstner & Wrobel,
2016; Luhmann et al., 2016; Schénberger & Frahm, 2016; OpenCV, 2017; Polic et al., 2018].
Note that the described parametrization of the distortion models is taken from the computer
vision community, as to the author’s knowledge more work for automotive camera calibration
originates from this community. In the photogrammetry community, radial-symmetric distortion
parameters are often alternatively referred to as A; etc., and tangential distortion parameters
as Bj etc. [Luhmann et al., 2016]. More important to acknowledge, there are different opinions
in the communities on the mathematical formulation of distortion models that could result in
small differences compared to the formulations used in this thesis, for example with regard to
the use of an additional radius of zero-crossing or with regard to the series expansion for radial-
symmetric distortion [Luhmann et al., 2006; Forstner & Wrobel, 2016]. Other perturbations
than lens distortions are not considered in this thesis. According to Luhmann et al. [2016], such
perturbations may be worth to consider in extended camera models designed for special cameras
or conditions.

2.1.5 Automotive camera calibration

Automotive camera calibration is used to estimate either the interior [Houben, 2014; Keivan &
Sibley, 2015; Hanel & Stilla, 2018], the exterior [Ruland et al., 2010; Heng et al., 2014] or in the
case of multi-camera systems the relative orientation. Other approaches aim at simultaneously
estimating two or more types of orientation [e.g. Heng et al., 2013]. Thereby, calibration provides
the mapping between images of automotive cameras and the road scene environment [Houben,
2014; Héne et al., 2017] and with a calibrated automotive camera, angle, distance or velocity
measurements between the ego-car and environment objects become possible. In this thesis,
the interior orientation is estimated by all proposed methods, and additionally the relative and
exterior orientation are estimated by one method. In the automotive domain as well as in the
proposed methods, calibration of on-board mono cameras [e.g. Miksch et al., 2010] or multi-
camera systems [e.g. Broggi et al., 2001] are addressed. As besides normal-angle lenses also wide-
angle and fisheye lenses are common for automotive cameras [Rosebrock & Wahl, 2012; Heng
et al., 2013], the remarkable lens distortions may not be neglected during calibration. Most work
on automotive camera calibration addresses forward-looking camera systems [e.g. Dang et al.,
2009; Hanel et al., 2016], while other addresses downward-looking camera systems [e.g. Pliefke,
2013]. Camera calibration in the automotive domain addresses also multi-sensor systems, like a
combination of camera and LiDAR or radar [Scholler et al., 2019; Geiger et al., 2012; Levinson
& Thrun, 2013; Scholler et al., 2019], or ”off-board” cameras, e.g. stationary road surveillance
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cameras [Ismail et al., 2010; Brown et al., 2015]. The later two kinds of cameras and systems are
not covered in this thesis.

Automotive camera calibration is done as either test field calibration [Broggi et al., 2001;
Geiger et al., 2012; Hanel et al., 2016; Cordts et al., 2016] or self-calibration [Stein et al., 2010;
Mueller & Wuensche, 2017; Rehder et al., 2017]. Both so-called ”offline” and ”online” calibration
are employed [Cannelle et al., 2012; Ishikawa et al., 2018] and used by the methods in this thesis.
Hereby, online calibration takes place in the area of application and typically relies on a high
number of reference points obtained while driving on the road [Cannelle et al., 2012; Dlugosz et al.,
2019]. In contrast, offline calibration does not take place in the area of application, i.e. often in a
factory [Dlugosz et al., 2019] or in research facilities [Geiger et al., 2012]. Test field calibration is
often used as initial calibration [e.g. Gil et al., 2018a; Lasaruk & Hachfeld, 2019], for example at
the end of camera production or at the end of the car production line is mass-production facilities
[Ruland et al., 2010; Winner et al., 2015; Lasaruk & Hachfeld, 2019]. Such initial calibration
enables or facilitates subsequent re-calibration [Houben, 2014]. As mechanical solutions to avoid
decalibration over time are difficult to realize [Lasaruk & Hachfeld, 2019], can single end-of-line
calibration or laboratory calibration not be seen as sufficient to provide and ensure calibration
parameters that are valid over vehicle lifetime. Repeated re-calibration, or continuous calibration
[Dang et al., 2009], can serve to overcome temporal decalibration by a validity check of previously
estimated calibration parameter values [Marita et al., 2006; Szczepanski, 2019] or by an update
to these values, if necessary [Broggi et al., 2001]. In particular, this is relevant for stereo cameras
[Winner et al., 2015]. Typically, repeated re-calibration is performed as online calibration, i.e.
the calibration parameters are estimated with reference information derived from the ego-car or
the road scene environment while driving the car on the road [Mueller & Wuensche, 2017; Knorr,
2018; Mentzer et al., 2019; Paone et al., 2019]. Mostly, online calibration is accomplished by
self-calibration [Bellino et al., 2005; Heng et al., 2013; Rehder et al., 2017; Zheng & Zhao, 2017],
which does also apply to two of the proposed methods.

Parallels between automotive camera calibration and camera calibration in close-range pho-
togrammetry or computer vision exist obviously with regard to the estimated parameters, i.e.
the interior, relative or exterior orientation parameters [Kruger et al., 2004; Scheller et al., 2007;
Winner et al., 2015; Gopaul et al., 2016]. Parallels exist also with regard to the use of similar
algorithms [Broggi et al., 2001; Heng et al., 2013; Lasaruk & Neralla, 2018]. Differences can be
mainly found in the use of automotive-specific test fields or road scene-specific reference infor-
mation, as it will be further discussed in Chapter 3. As specific property of automotive camera
calibration, special precautions have to be taken in particular for mass-produced cars due to the
limited computational power that is available. For example, global bundle adjustment processing
the entire available image sequence may be replaced by local bundle adjustment processing only
subsets of the image sequence [Rehder et al., 2017], the optimization may be performed in a
reduced-order setup [Dang et al., 2009] or computationally light-weight recursive approaches like
Kalman filtering may be utilized [Mueller & Wuensche, 2017]. But as the methods proposed in
this thesis are intended for and tested with a research setup, limitations in computational power
are not considered in the design of the calibration algorithms.

2.1.6 Calibration algorithms

Calibration can be realized by various types of algorithms. Classic approaches often incorporate
a two-step algorithm with an initial linear closed-form solution followed by refinement based
on non-linear optimization [e.g. Heikkila & Silven, 1997; Héne et al., 2017]. For example, a
linear solution can be obtained by direct linear transformation (DLT) [Abdel-Aziz & Karara,
1971]. Often linear solutions base on simplified models, e.g. without considering distortions.
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Optimization often utilizes in the first step geometrically meaningless and linear algebraic distance
measures derived from constraints that can be easily minimized [Zhang & Pless, 2004]. Geometric
distance measures, e.g. the re-projection error, are often used in the subsequent refinement
step to improve previously obtained results to achieve higher accuracy [Zhang & Pless, 2004;
Rodehorst et al., 2008; Dang et al., 2009]. Bundle adjustment as one of the most comprehensive
optimization approaches often forms the last step of a calibration algorithm [Liebowitz, 2001;
Hartley & Zisserman, 2003]. With bundle adjustment, high accuracy and low re-projection errors
down to a fraction of one pixel can be achieved [Rosebrock & Wahl, 2012], but at the cost of
larger processing times [Ling & Shen, 2016] compared to other algorithms or constraints and
at the need of a known initial guess [Okouneva, 2017]. According to Dang et al. [2009], the
accuracy achievable with other algorithms or constraints is not comparable to bundle adjustment.
Recursive algorithms, like the Kalman filter [Hansen et al., 2012], allow iteratively integrating new
measurements over time into the optimization process and therefore are particularly suitable for
continuous calibration [Dang et al., 2009]. Obviously, recently calibration approaches based on
deep learning have been published [Bogdan et al., 2018; Gil et al., 2019]. With deep learning,
beneficial properties similar to classic calibration approaches can be achieved, like single shot
calibration or no need for test fields [Bogdan et al., 2018; Hold-Geoffroy et al., 2018]. But as
deep learning for camera calibration is a new field of research, the approaches currently bear
certain problematic properties as well: As important aspect, generalization and robustness of the
approaches with regard to scenes that are different from the training data can be questionable [Gil
et al., 2019]. Bogdan et al. [2018] and Hold-Geoffroy et al. [2018] state that currently only low-
resolution images are supported, creating a training dataset with ground truth interior orientation
parameter values is necessary and that images with motion blur, overexposure or images taken
with rolling shutter cameras often show unreliable results. The same authors add that also images
taken in nadir direction may be problematic, in addition to the lower accuracy compared to classic
calibration approaches. Interestingly, Hold-Geoffroy et al. [2018] have revealed that their model
seems to learn ”semantically meaningful vanishing lines, making parallels with geometrically-
based auto-calibration techniques”. But as no advantage of deep learning is seen, the methods
proposed in this thesis rely on classic camera calibration with bundle adjustment, same as other
recent methods for automotive camera calibration [e.g. Okouneva, 2017; Lasaruk & Hachfeld,
2019].

2.2 Adjustment theory

Bundle adjustment is an optimization method to simultaneously estimate the interior, potentially
relative, and exterior orientation parameters as well as the 3d object coordinates of the reference
points as unknown parameters in a statistically optimal manner [Forstner & Wrobel, 2016]. Typ-
ical observations are pixel or image coordinates of the reference points for calibration that are
shown in multiple images and, depending on the calibration setup and mathematical model, addi-
tionally the object coordinates of the reference points. The functional basis of bundle adjustment
is typically defined by the collinearity equations. Especially in photogrammetry, the optimization
is realized by non-linear least squares adjustment with the Gaufl-Markov or Gaufl-Helmert model,
wherefore the basics will be described in this section.

2.2.1 Adjustment basics

Each mathematical model that is used to solve parameter estimation problems by non-linear least
squares consists of a functional and a stochastic model [Forstner & Wrobel, 2016]. The functional
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model of the first approach, called Gauf-Markov model, is defined in its basic unconstrained case
as

b + ’fJbl = fl(ﬁ:) (2.1)

with b; being observations, vy, being their residuals,  being the unknown parameters, the
circumflex symbol ("hat”) denoting estimated quantities and f1(...) being one or more functions
relating the observations with the parameters. The functional model of the second approach,
called Gauf}-Helmert model, is defined in its basic unconstrained case as

fl(bl + @bl,i) =0 (2.2)

In the case of hard (crisp) constraints, additional dependencies between the parameters can be
modeled that are enforced strictly during optimization. Therefore, the respective functional model
is extended by

fa(®) =0 (2.3)

with fa(...) being one or more constraining functions. In contrast, in the case of weak (soft)
constraints, where it is allowed that after optimization residuals greater than zero remain for
these constraints, the functional model is extended by fictional observations of type by and by
additional constraining functions of type fi(...). The influence of these constraints is controlled
by observation weights defined in the same way as observation weights for real observations.
Fictional observations may be the expected relative position or rotation between two cameras, for
example, and the corresponding constraining functions may calculate this position or rotation from
the exterior orientation parameters of both cameras that are modeled as unknown parameters.
As stochastic model for both the GauBB-Markov and Gauf3-Helmert model, normally-distributed
observations with covariance matrix Ky, = 0(2) - Qpp are assumed, with ag being the variance factor
a priori and Qp, being the weight coefficient matrix. The earlier controls the overall weight level
for all observations, while the later contains the variances of the observations on the main diagonal,
and the covariances between observations on the secondary diagonals and so allows to determine
weight ratios between different observations. Due to the common non-linearity of the functional
model, an initial guess has to be selected for the unknown parameters to start the iterative
estimation process with. In this iterative process, the unknown parameter values are updated
by minimizing a cost function based on the weighted linearized functional model. Typically,
first order Taylor series expansion is utilized for linearization. The process is stopped when a
convergence criterion has been met, for example if the updates of the unknown parameter values
fall below a given threshold. According to Forstner & Wrobel [2016], the prevalent estimation
problem guides the decision for one of the two models.

2.2.2 Uncertainty of observations and unknown parameters

The uncertainty of observations and estimated unknown parameter values plays an important
role to evaluate camera calibration. For optimization with the Gau-Markov and Gaufl-Helmert
model, uncertainties can be calculated after convergence and are typically described by the vari-
ance factor a posteriori, the covariance matrix of unknown parameters and the covariance matrix
of observations. The estimated standard deviations of the unknown parameters, which are an im-
portant aspect of evaluation in this thesis (Chapter 8), can be extracted from the corresponding
covariance matrix. Other measures, like correlation coefficients, can be obtained by calculation
using elements from these matrices. Uncertainty measures could be also obtained by other ap-
proaches, for example by error propagation [e.g. Hartley & Zisserman, 2003] or by Kalman filtering
[Kalman, 1960], but this is not done for this thesis.
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2.2.3 Collinearity equations

The collinearity equations are basic photogrammetric equations relating 2d pixel or image co-
ordinates of observed points, like reference points for camera calibration, with the interior and
exterior camera orientation as well as the 3d object coordinates of these points [Kraus, 2007].
The non-linear collinearity equations are often used as functional model for bundle adjustment
and are defined as

Faoiik i Tiik = Coi— foi- Ri,jge (Xi—Xo,j6)+ Rk - (Yi—Yo,5,6)+ R0,k (Zi—Z0,5,k)
0,k - isgk Z,J T R34k (Xi—Xo,5,k)+R2,3,5,k * Yi—Y0 j,k6)+R3,3,5,k * (Zi—Z0,5,1)

Foiik Viin=Cyi— Fui- Rk (Xi=Xo,jk)+R2,2,50 * (Vi—=Yo,5,6)+Rs.2,5,k * (Zi—Z0,j,k) (2.5)
yigik - Yiojk Y] Y5J  Rizk (Xi—Xojk)+tR23 5k (Yi—Y0jx)+R3,35% (Zi—Zoj k) ’

(2.4)

given for reference point 4, for camera j and for image k. The collinearity equations can be
extended by the correction terms Ax and Ay, often used to model image distortions so that

Tk = Tijk + ATk (2.6)
Yijk = Yigk T Abijk (2.7)

with @; j 5, ¥ij, describing the undistorted, but unobservable points and ! ik Yl ik describing
the distorted and observable points. Additionally, the object coordinates of the reference points
can be also modeled as observations to consider them with a realistic observation weight. Then,

for each reference point there will be three additional functional equations defined as

Y; + oy, = Y; (2.9)

with X; being the X component of the object coordinates of point ¢ and so on. All together, the 3d
object coordinates of the reference points X p in the object coordinate system are parameterized
in this thesis by

Xp=(Xp1 Yp1 Zpi ... Xpn Ypu Zpp) (2.11)

and the exterior orientation X g for camera j and image k is parameterized by

Xgje=(Xojr Yok Zojk G0k Orjk O2jk [0351]) (2.12)

with Xg, Yp and Z describing the position of the projection center in the object coordinate system
and 0, being one of the 3d rotation parameters describing the rotation from the object coordinate
system into the camera coordinate system. Hereby, p = 0...2 for Euler angle representation
or axis-angle representation and p = 0...3 for quaternion representation ([] indicates optional
parameters). Ry 1 ;i etc. represent the elements of the 3x3 rotation matrix that can be obtained
from other rotation representations and vice versa. It should be acknowledged that parameterizing
3d rotations is faced with some challenges [e.g. Albl & Pajdla, 2014]. Using Euler angles is
faced with the risk of singularities. Using quaternions requires an additional parameter to fully
represent a rotation, i.e. 4 instead of 3; same for using rotation matrices with 9 parameters. Note,
these parameters are not fully independent from each other. f; ;, fy j, ¢z, ¢y; and the distortion
parameters used for Az and Ay define the interior orientation X for each camera j according
to Subsection 2.1.4. If applicable for the prevalent camera system, the relative orientation X
between two cameras is parameterized the same way as X p. Note that there are slightly different
definitions of the collinearity equations in the literature, for example with regard to the order of
the rotation matrix elements, with regard to the sign of the focal length or with regard to the
symbols used for the orientation parameters [Forstner & Wrobel, 2016; Luhmann et al., 2016].
Note that superscripts (e.g. o denoting the object coordinate system, cf. Subsection 4.2.6) are
sometimes omitted for the sake of readability.
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2.2.4 Datum definition

Depending on the geometry of the adjustment problem and the given observations, there might
be a datum deficiency, which could make explicit datum definition necessary. From the point
of view of numerical mathematics, datum definition allows to obtain a unique solution during
optimization. Otherwise, the Jacobian matrix A, resulting from linearization of the functional
model and containing the partial derivatives of all function equations with regard to the unknown
parameters, would be singular, and as consequence the normal equation matrix IV, derived from
the Jacobian matrix and necessary for solving the adjustment problem, could not be inverted
and so no solution be provided. From the point of view of network geometry, datum definition
means introducing additional information resolving the datum deficiency, i.e. the ambiguities in
the translation, rotation and scale of a network of points with regard to a higher-level coordinate
system. The type of observations and the dimensionality of the network determines which am-
biguities need to be resolved. Common approaches for datum definition in photogrammetry are
either using free adjustment or defining some points as fixed datum points [Luhmann et al., 2013].
The later can be modeled either as constants with error-free coordinates or as observations with
a realistic observation weight. Advantageous of free adjustment is that no undesired constraints
on the inner geometry of the network are imposed: If otherwise the number of fixed datum point
coordinates is higher than the datum deficiency, such undesired constraints may occur. Further-
more, according to Luhmann et al. [2013], free adjustment provides optimal precision compared
to unconstrained or overdetermined datum definition using fixed datum points.

Both error-free datum points and datum points with realistic weights can be modeled as
additional observations in the functional model of an adjustment. The stochastic model has
to be extended for the additional observations by unrealistically high or realistic observation
weights, respectively. Alternatively, error-free datum points can be modeled by removing their
object coordinates from the set of unknown parameters. Free adjustment can be modeled by
adding constraining functions to the functional model (cf. Subsection 2.2.1), which are derived
from the condition equations HT Az = 0. Hereby, H is a constraint matrix established by
partial derivatives of the condition equations with respect to the datum parameters [Forstner &
Wrobel, 2016] and Az describes the update of unknown parameters estimated in one optimization
iteration, i.e. the interior, if applicable relative, and exterior orientation parameters and the object
point coordinates in a bundle adjustment. Thus, H is defined for bundle adjustment with a mono
camera as

_8AXE’171 8AXE,1,1 8AXE71,1-
T a5 B
OAX |, OAX |, OAX ],
H=| T o3 on (2.13)
0AX p OAX p 1 OAX p 4
T 95 Em

with T covering the three 3d translation parameters, S covering the three rotation parameters
and p covering the scale parameter of a similarity transformation. X p, X and X g are defined
as in Subsections 2.1.4 and 2.2.3. As proposed by Polic et al. [2018] for large-scale camera
calibration, the condition equations describe differences of the estimated orientation parameter
values and object coordinates before and after applying a similarity transformation that links the
network to the higher-level coordinate system and so realizes the datum definition (denoted by
left superscript (...)). By setting the right side of the condition equations to zero, it is ensured
that the translation, rotation and scale change applied to the network points are in total zero.
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Exemplarily, the mentioned differences for the three position parameters X 11 of the exterior
orientation X ;1,1 for camera 1 and image 1 are defined as

AXo11 = Xo11—"Xo11(gs) = Xo11 — (hR(S) X011+ T) (2.14)
and the differences for the object coordinates X p; of point 1 as
AXp1=Xp1—"'Xpi(gs) = Xp1 — (nR(S)Xp1 +T) (2.15)

with gg = [T, S, p] and R being the rotation matrix corresponding to S. As the interior orien-
tation parameters are not affected by the described similarity transform, AX 11 etc. are zero,
and their derivatives are zero as well. According to Polic et al. [2018], Aém etc. addressing
the rotation angles of the exterior orientation is not calculated analogue to Equations 2.14 and
2.15. Instead, its derivatives are obtained in a complex multi-step process from parts of the Ja-
cobian matrix A. As the method proposed by Polic et al. [2018] supports mono cameras only, it
needs to be extended in order to support the stereo camera system that is used to investigate the
windshield effects.

2.3 Computer vision on road scene images

For automotive applications, various computer vision tasks are performed on road scene images,
wherefore nowadays typically deep learning is employed. In the following, computer vision tasks
that are relevant for the proposed camera calibration methods are introduced.

2.3.1 Detection and segmentation

It is state of the art to evaluate road scene images taken with on-board cameras in vehicles by deep
learning methods for various computer vision tasks to get a better scene understanding. Relevant
tasks for this thesis are (i) object detection, (ii) semantic segmentation, (iii) instance segmentation
and panoptic segmentation, (iv) depth estimation and (v) edge or boundary detection. Object
detection [Girshick et al., 2014; Liu et al., 2016; Lin et al., 2017; Redmon & Farhadi, 2017; Ren
et al., 2017] aims at finding the position of individual objects belonging to a certain class in images.
Detected objects are typically marked by enclosing rectangles, which means that no pixel-level
object boundaries are obtained. Earlier methods for object detection typically divide an image
into smaller sub-images, which are then checked with high effort one after the other whether they
contain desired objects [e.g. Sermanet & LeCun, 2011; Houben et al., 2013; Benenson et al., 2015]
(sliding window approach). With such an approach the same object may be detected multiple
times in nearby sub-images, which needs to be resolved e.g. by post-processing [Hanel & Stilla,
2018, 2019a]. More recent methods evaluate an entire road scene image in one step [e.g. Zhu
et al., 2016; Janai et al., 2017] and so provide more consistent detections. Nevertheless, neither
pixel-accurate object boundaries nor scene knowledge for the entire image are obtained, which
both is relevant for the proposed methods. In contrast, semantic segmentation [Ronneberger
et al., 2015; Chen et al., 2016; Shelhamer et al., 2017; Badrinarayanan et al., 2017; Chen et al.,
2018b] aims at predicting a semantic image providing pixel-wise information about the semantic
class of objects shown in a given RGB image. Typically, the semantic class is determined for
every pixel [e.g. Chen et al., 2018b]. The resulting semantic image consists of multiple segments,
each belonging to one semantic class. Each segment can contain even more than one individual
object of this class, which may be a problem for certain applications [e.g. Liu et al., 2018].
Ideally, the boundaries of the segments match with object boundaries in the RGB image. For
semantic segmentation of road scene images, the classes represent common road scene objects like
vegetation, vehicle, building or road, whereby often the class definition from Cordts et al. [2016]
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is applied. Relevant in particular for automotive applications, Vertens et al. [2017] have proposed
to predict the motion status, i.e. whether an object is moving or standing, in addition to semantic
classes. Note that besides the image-based semantic segmentation addressed in this paragraph,
semantic segmentation could be performed on point clouds as well [Brostow et al., 2008; Charles
et al., 2017; Huang et al., 2019]. As a similar computer vision task, instance segmentation can
be seen as combination of object detection and semantic segmentation, as it targets at pixel-level
segments belonging to individual objects of specific classes [Hariharan et al., 2014; He et al.,
2017; Liu et al., 2018]. By instance segmentation, typically only image parts containing objects
of desired classes are considered in the resulting semantic images and no semantic information
is obtained for other image parts. As consequence, especially non-countable semantic classes
like road, sidewalk that are relevant for automotive applications might be neglected. For these
reasons, instance segmentation is not considered for the proposed methods. Recently, the topic
of panoptic segmentation as merge between semantic segmentation and instance segmentation
arose [Mohan & Valada, 2021], whereby typically fully-covered semantic images with segments
containing individual objects instead of object classes are obtained. Though it would be an
alternative to semantic segmentation that is worth to consider, panoptic segmentation is only
used for one experimental variation, as most experiments have been performed before its first
publication. As next task, single image depth estimation aims at providing disparity and depth
maps for given RGB images [Eigen et al., 2014; Garg et al., 2016; Laina et al., 2016]. By depth
maps, for each pixel the metric distance of the shown object from the camera is obtained, which is
used by one of the proposed methods. While e.g. with stereo cameras or RGB-D cameras, depth
maps are obtained by an geometry-based approach, typically machine learning is employed to
retrieve them from single images [Mertan et al., 2022]. The last task, edge detection, also called
boundary detection, aims at deriving certain types of edges [Marr & Hildreth, 1980; Bertasius
et al., 2015; Liu et al., 2019]. Such edge types may be low-level intensity changes in images till
high-level object boundaries [Deng et al., 2018]. For one of the calibration methods proposed
in this thesis, detecting edges that are object boundaries is required (cf. Chapter 5), wherefore
a boundary detection method that utilizes semantic information by deep learning to find the
boundaries of objects is used [Yu et al., 2017]. In contrast, classic edge detectors like the Canny
edge detector [Canny, 1986] do not employ semantic information and so they seem less applicable
to get specifically the boundaries of objects.

2.3.2 3d reconstruction and camera localization

A 3d reconstruction of the environment or camera localization can be obtained by approaches like
(i) visual odometry (VO), (ii) multi view stereo (MVS), (iii) visual simultaneous localization and
mapping (SLAM) or (iv) structure-from-motion (SfM) using data from different kinds of sensors,
like monocular cameras [Engel et al., 2014; Mur-Artal et al., 2015], stereo cameras [Wang et al.,
2017], RGB-D cameras [Henry et al., 2012; Nieiner et al., 2013], or LiDAR [Jiang et al., 2016;
Graeter et al., 2018], for example. Visual odometry aims at camera localization only and does
not create an environment reconstruction at all [Guerrero et al., 2005; Nister et al., 2006]. In
contrast, MVS aims at obtaining an environment reconstruction for given camera orientations
[Labatut et al., 2007; Furukawa & Hernéndez, 2015]. Due to their objectives, these two kinds
of approaches are not considered as relevant for camera calibration within this thesis. Visual
SLAM can realize consistency between 3d reconstruction and camera orientations by constraining
the camera trajectories, for example by loop closures [Scaramuzza & Fraundorfer, 2011; Yousif
et al., 2015], but aims at real-time performance. In contrast, SEM typically doesn’t aim at real-
time performance, therefore allowing computationally expensive offline optimization (i.e. bundle
adjustment) to obtain global consistency in the 3d reconstruction. Therefore, SfM is seen as more
relevant for the self-calibration methods proposed in this thesis. These four kinds of approaches
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can be either indirect methods [Schénberger & Frahm, 2016; Mur-Artal & Tardds, 2017] relying on
feature descriptors like SIFT [Lowe, 1999], SURF [Bay et al., 2006] or ORB [Rublee et al., 2011],
or direct methods [Wang et al., 2017; Engel et al., 2018] comparing intensities between different
image patches. For the later ones, problems have been reported for auto exposure cameras and in
the case of vignetting [Bergmann et al., 2018], which both could play a role for on-board cameras.
Furthermore, the performance of direct methods may suffer in the case of large motions between
consecutive images [Younes et al., 2019], which could apply for images recorded at high vehicle
velocities. Therefore, indirect methods are used in this thesis. Comparing different descriptors for
indirect methods, Tareen & Saleem [2018] have reported in their comparative analysis of matching
performance that SIFT has shown the best accuracy despite its age. As consequence, in this thesis
SIFT is used for feature extraction for camera calibration by semantic structure-from-motion.
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3 State of the art

This chapter covers the state of the art in automotive camera calibration that is relevant for the
proposed methods. At first automotive test field calibration is addressed (Section 3.1), covering
the motivation to use test field calibration to investigate the influence of the windshield and also
covering two challenges with regard to the selection of the test fields. Furthermore, different
approaches to cope with the windshield effects are discussed. Then automotive self-calibration
is addressed (Section 3.2), whereby different types of reference information are described that
can be derived from road scene environments. In particular, the benefits and challenges of using
traffic signs and image features to derive the reference points for automotive self-calibration are
addressed. Finally, two important aspects for self-calibration with reference points from image
features are discussed: The approaches to obtain semantic scene knowledge and their integration
into the 3d reconstruction methods used for self-camera calibration.

3.1 Automotive test field calibration

First, the selection of the test fields for automotive camera calibration and, second, the windshield
refraction are addressed.

3.1.1 Test fields in automotive camera calibration

Automotive self-calibration depends on the availability of appropriate road scene-specific reference
information (e.g. lane markings) at the desired calibration locations. The estimated values of the
orientation parameters are more likely to be scene-dependent, highly correlated and only valid
for the part of the image area that is covered by reference points, like the lower image half for
lane markings [Fraser, 1997, 2013]. Thus, automotive self-calibration often requires additional
algorithmic steps, e.g. to remove outliers by point filtering, for a reliable calibration [Dang et al.,
2009; Lasaruk & Hachfeld, 2019]. In contrast, automotive test field calibration is robust to varying
imaging conditions and can be performed in a well-controlled environment [Geiger et al., 2012;
Rosebrock & Wahl, 2012], so that a high quality of the calibration results and comparability
between different calibration iterations can be expected. For these reasons, the investigation of
the windshield influence (see Chapter 4) is carried out by test field calibration.

Though, two aspects need to be considered when using test field calibration for this inves-
tigation. First, space restrictions, either induced by vehicle mass-production processes or by
limitations in research facilities, could constrain the position and orientation of test fields (Fig-
ure 3.1) used for calibration of vehicle cameras [Scheller et al., 2007; Bodis-Szomoru et al., 2008].
These constraints can occur in a way so that no sufficient coverage of all six degrees of free-
dom (DOF) may be achieved [Schéller et al., 2019; Muhovic & Pers, 2020], which could impose
a negative influence on camera calibration [Hastedt et al., 2016]. Stereo camera calibration is
affected by space restrictions in particular, as even more space is required to place test fields
covering both fields of view adequately [Kruger et al., 2004; Bodis-Szomoru et al., 2008; Lasaruk
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Figure 3.1: Test fields for automotive camera calibration. a) Classic 2d photogrammetric test field,
b) automotive-specific test field for forward-looking cameras [Hella Gutmann Solutions GmbH, 2019],
¢) automotive-specific test field for surround-view cameras [Texa, 2022].

& Hachfeld, 2019]. Even for test field calibration with known precise object coordinates of the
reference points, an appropriate imaging geometry has to be ensured so that good precision and
low correlations between the estimated parameters can be expected [Mitishita et al., 2009; Fraser,
2013]. Therefore, the problem arises to select a test field for the investigation of the windshield
influence that allows a sufficient coverage of all DOFs.

Type: Regular vs. Domain: Mass- Location: End of Orientation: Car: Standing Quantity: One References:
automotive-specific| [production vs. research| [ production line vs. street | [Upright vs. lying vs. moving Vs. more Points vs. lines

Figure 3.2: Common characteristics of test fields in automotive camera calibration.

Second, a plenty of automotive-specific test fields exist for different types of vehicle cameras
[Marita et al., 2006; Scheller et al., 2007; Friel et al., 2012; Rosebrock & Wahl, 2012; Pliefke, 2013;
Hanel et al., 2016; Hella Gutmann Solutions GmbH, 2016; Thatcham Research and ADAS Repair
Group, 2016; Texa, 2017; Robert Bosch GmbH, 2018] (Figure 3.2): While forward-looking cameras
are typically calibrated with upright standing test fields, test fields lying on the ground are used
for surround-view systems mainly [Geiger et al., 2012; Pliefke, 2013]. Common automotive-specific
test fields may provide only a small number of reference points [Hella Gutmann Solutions GmbH,
2016; Texa, 2017]. As in addition to a sufficient coverage of the DOFs, obviously a large number of
reference points is desired for a good imaging geometry for camera calibration, also such aspects
as mentioned have to be taken into account when selecting the number and type of test fields for
the proposed method.

3.1.2 Windshield refraction in automotive camera calibration

One objective of this thesis is to investigate the influence of the vehicle windshield on automotive
test field calibration. The presence of such an influence has been addressed already in previous
work: Zou & Li [2015] state that windshield refraction is important for calibration of cameras
inside the car that observe test fields outside. Lasaruk & Neralla [2018] suggest that compensation
models for the windshield effects obtained for one windshield can be applied to other windshields of
the same model, while Dlugosz et al. [2019] believe that calibration is necessary for each individual
camera due to differences in the effects. The refractive effects can either be compensated implicitly
by using standard camera models or explicitly by using an extended camera model [Kahmen et al.,
2020]. In this thesis, an implicit solution is used so that potential effects of the windshield can
become visible as differences in the calibration results compared to calibration without windshield.
As stated by Verbiest et al. [2020], only few work has been published on the assessment of refractive
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effects: They have shown that differences in the values of the interior orientation parameters due
to windshield effects are larger for implicit than for explicit compensation. But to the best
of the author’s knowledge, none of the previous works has focused on assessing differences in
the uncertainties (standard deviations, correlations) of the camera orientation parameters due to
windshield effects. Therefore, special emphasis of the investigations carried out with the proposed
method for test field calibration is put on the uncertainties. A stereo camera system is used for
these investigations, as they are especially sensitive to calibration errors that could result from
windshield refraction, as already outlined in the previous chapters.

3.2 Automotive self-calibration

To ensure valid calibration parameters over vehicle lifetime, self-calibration is interesting as test
field calibration done while driving on the road is typically not realistic: The effort to provide test
fields at the desired calibration locations and time points on public roads would be infeasibly high
[Pagel & Willersinn, 2011; Schéller et al., 2019]. Furthermore, special test fields for use on the
road, like markers placed on the street surface [Marita et al., 2006; Bodis-Szomoru et al., 2008]
or on the vehicle hood [Broggi et al., 2001], may be applied in research settings only [Gil et al.,
2018b], same as returning to special calibration facilities from time to time [Dang et al., 2009; Hold
et al., 2009; Friel et al., 2012]. With regard to either geometric, temporal or stereo constraints
used for automotive self-calibration, the employed reference information obviously originates from
the ego-car or the road scene environment (Figure 3.3) as described in the following.

Road scene

Artificial objects Motion patterns Vanishing points objects

Image features

Figure 3.3: Common types of reference information for automotive camera self-calibration.

3.2.1 Artificial objects and ego-car motion

Artificial objects, like special patterns of road markings, can not only be utilized for test field
calibration, but also for automotive self-calibration [Tan et al., 2011]. Same as for test field
calibration, the most prominent drawback is the required high manual effort to handle them
[Bhardwaj et al., 2018]. This applies also if only parts of the reference information should be
provided by artificial objects, for example if metric scale information should be obtained from
scale bars placed in the road scene [Scheller et al., 2007; Stein et al., 2010; Heng et al., 2015;
Knorr, 2018]. So, especially for mass-produced vehicles, such approaches can’t be seen as feasible.
Besides artificial objects, also ego-car motion can be used to derive reference information, either
by having knowledge about the motion or by demanding certain motion patterns to be performed;
for example, translation-only motion, i.e. driving straight, or doing a cornering maneuver [Miksch
et al., 2010; Houben, 2014; Paula et al., 2014; Lasaruk & Hachfeld, 2019]. Though, demanding
certain patterns seems also not to be feasible, as driving specified maneuvers may be challenging
for regular drivers without special instructions or training. In contrast, as modern vehicles are
equipped with many additional sensors, using wheel odometry [Heng et al., 2013; Okouneva,
2017], GPS or IMU [Gopaul et al., 2016; Mueller & Wuensche, 2017; Borgmann et al., 2018;
Hanel & Stilla, 2019b], or radar [Muhovic & Pers, 2020] may be the more feasible alternative to
provide reference information that originates from the motion of the ego-car. Therefore, vehicle
positions obtained from GPS are used in the proposed method for camera calibration by semantic
structure-from-motion to get metric scale information, which arises the need to appropriately
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integrate these positions into the structure-from-motion algorithm. As additional requirement,
the positions should match realistic vehicle motion patterns to get the best-possible scale.

3.2.2 Vanishing points

Vanishing points for calibration require orthogonal lines to model constraints for self-calibration
[Tan et al., 2011]. Such orthogonal lines may originate from different kinds of reference objects,
like a set of orthogonal lane markings [Alvarez et al., 2014], like buildings following the so-called
Manhattan directions [Lu et al., 2013], like vertically aligned light poles [Lu et al., 2013; Alvarez
et al., 2014] or like upright standing pedestrians [Corres et al., 2016]. Vanishing points may also
be derived from orthogonal moving directions of cars, e.g. at intersections [Alvarez et al., 2014].
Often not a single kind of objects is sufficient for full calibration, so e.g. two orthogonal lines from
lane markings need to be combined with a third line from vertical poles. Furthermore, cars or
pedestrians may occlude important lines needed. As consequence, relying on a set of orthogonal
lines limits calibration to scenes where the desired reference objects are available. Additionally,
inappropriate lines, e.g. along short edges like small window tiles, could lead to inaccurate
vanishing points or make it difficult to clearly identify orthogonal lines [Zhou et al., 2017]. Thus,
the complexity of the calibration algorithm increases and the applicability to unknown road
scenes decreases, as image processing needs to be tailored to the expected appearance of the
desired objects [Chang & Tsai, 2012].

3.2.3 Reference information from characteristics of road scene objects

Reference points for calibration may be derived from characteristic points at stationary road scene
objects like corner points of road markings [Catala-Prat et al., 2006; Ribeiro et al., 2006; Hold
et al., 2009] or traffic signs [Lamprecht et al., 2007; Hanel & Stilla, 2018; Lasaruk & Hachfeld,
2019]. Under special conditions, reference points can be derived even from moving objects, like
from tail lights of vehicles [Bhardwaj et al., 2018]. Also more complex reference information
than points may be utilized, like the characteristic shape of the road surface in the upcoming
driveway [Musleh et al., 2014]. For example, assuming a planar shape of the road surface allows
to define constraints for camera calibration based on depth values estimated with a stereo camera
system [Garcia, 2017; Muhovic & Pers, 2020]. Alternatively, Catala-Prat et al. [2006] suggest to
iteratively update the exterior orientation parameters until the characteristic parallelity of a pair
of road markings, transformed from perspective to orthographic projection, is fulfilled. Using such
characteristics of road scene objects for camera calibration is faced with several challenges. Road
markings or the road surface are typically shown in lower parts of a road scene image, wherefore
calibration will be valid only for these image parts with reference information [Luhmann et al.,
2006; Hanel & Stilla, 2018]. Furthermore, similar as for vanishing points, calibration utilizing
certain types of objects is restricted to roads where these objects are present [Bertozzi et al.,
2010; Pflug et al., 2013] and not occluded by other objects, which can easily happen for objects
on or low above the ground [Musleh et al., 2014; Héne et al., 2017]. Additionally, assumptions on
object-specific characteristics like straight and parallel road markings or a flat ground plane [Fung
et al., 2003; Catala-Prat et al., 2006; Paone et al., 2019] could be problematic for calibration, if the
real objects deviate from these assumptions. These challenges can be overcome by traffic signs (i)
that are typically shown in upper image parts to get calibration results that are, in combination
with e.g. road markings, valid for the entire image, (ii) that are frequently present on public
roads, (iii) that impose no further requirements on the scene, like a flat road, and (iv) that are
standardized by official regulations so that their shape and metric size are known what allows to
develop algorithms to identify characteristic points by image processing in order to use them as
reference points. While in their previous work Lamprecht et al. [2007] only theoretically define
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several arbitrary points at traffic signs as reference points for calibration, simulate their object
coordinates for evaluation and assume the vehicle speed to be known, require Lasaruk & Hachfeld
[2019] the car to drive a cornering maneuver and just mention traffic signs as one of several
potential stationary objects that may be used for calibration. Hence, to the best knowledge of
the author, the challenge remains to develop an algorithm for camera self-calibration with traffic
signs covering the entire workflow from a sequence of real images until estimation of the camera
orientation parameters.

3.2.4 Reference points from image features

Reference points for calibration can be also obtained from arbitrary road scene objects using
image feature detectors and descriptors [Ruland et al., 2010; Cannelle et al., 2012; Livyatan &
Berberian, 2017; Okouneva, 2017; Hanel & Stilla, 2019b], wherefore no characteristics of the
objects have to be known or identified. Both histogram-based, like SIF'T [Lowe, 1999], and binary
descriptors, like BRIEF [Calonder et al., 2012], as well as optical flow [Pflug et al., 2013] have
been utilized in previous work to get reference points for automotive self-calibration [Mentzer
et al., 2017]. To establish the constraints required for self-calibration, correspondences between
features points have to be obtained, either between points in images of different cameras in a
vehicle multi-camera system taken at the same time or between points in images of a vehicle
mono camera taken at different times [Ruland et al., 2010; Hansen et al., 2012; Heng et al., 2013;
Winner et al., 2015; Pekkucuksen & Batur, 2018]. Camera calibration with reference points from
image features can be beneficial in comparison to the previously described types of reference
information, as it can be expected that (i) a larger number of reference points and (ii) a better
distribution of them in the scene can be obtained leading to more reliable calibration results, as
well as (iii) that larger parts of the image are covered by reference points for which the estimated
orientation parameters are valid. Though, reliable vehicle camera self-calibration with reference
points from image features is faced with two key challenges with regard to (i) the static scene
assumption [Lasaruk & Hachfeld, 2019] and (ii) the textures of the road scene objects that need to
be resolved. First, intentional and unintentional movement of objects like vehicles or pedestrians,
or the movement of trees in the wind violates the static scene assumption and will alter the scene
geometry between images taken at different points in time [Dang et al., 2009; Hanel & Stilla,
2019b]. Furthermore, reference points on moving objects can be easily occluded at some time
points [Musleh et al., 2014], which arises the problem to detect moving objects in order to avoid
reference points on them for automotive self-calibration. Second, commonly the objects need to
have suitable textures for feature extraction and matching [Pflug et al., 2013]. Lack of sufficient
texture, e.g. poor-textured objects like sky, repetitive surfaces like at tarmac, reflecting surfaces
like at building windows or metallic car paint [Ruland et al., 2010] can lead to invalid reference
points. Hence, the problem arises to avoid reference points at such textures.

3.2.5 Semantic 3d reconstruction methods for automotive camera calibration

Automotive self-calibration relying on image features can be realized by 3d reconstruction and
localization methods like visual SLAM [e.g. Mur-Artal & Tardéds, 2017] or structure-from-motion
[e.g. Schonberger & Frahm, 2016]. Thereby, the calibration parameters are estimated as side
product besides creating a 3d reconstruction of the road scene [Heng et al., 2014]. Beneficially,
even sparse 3d reconstructions provide - depending on the number of images - often several thou-
sand reference points, which has been reported to be an important factor for camera calibration
[Stamatopoulos & Fraser, 2014]. Additionally, the 3d reconstruction enables calibration of mul-
tiple cameras in the ego-car without overlapping fields of view and even calibration of cameras
in other cars [Leite et al., 2008; Heng et al., 2014]. Obviously, the mentioned challenges with
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moving objects and inappropriate textures (cf. Subsection 3.2.4) may be overcome by generic
outlier removal steps, e.g. based on RANSAC, that are often part of 3d reconstruction methods
[e.g. Schonberger & Frahm, 2016]. Though, generic outlier removal is not tailored to the men-
tioned kinds of road scene objects and so bears the risk to either consider a too small or too large
number of reference points as outliers, which both is negative for camera calibration. Therefore,
it is desired to apply a specific outlier removal tailored exactly to the problematic road scene
objects causing the mentioned challenges. In order to know whether such objects are present in
the scene and where they are shown in an image, scene knowledge needs to be obtained. For 3d
reconstruction and localization methods, scene knowledge may be obtained by (i) semantic object
databases, (ii) instance segmentation, (iii) object detection or (iv) semantic segmentation. First,
such pre-built semantic object databases that are linked to the images used for 3d reconstruction
based on matched image features [Civera et al., 2011] may not be available for the large variety
of types and appearances of road scene objects, wherefore this approach is not considered as suit-
able. Second, instance segmentation [Riinz & Agapito, 2017; Runz et al., 2018; Barsan et al., 2018;
Wang et al., 2018] and third, image-based object detection [Bao & Savarese, 2011; Stinderhauf
et al., 2017; Qi et al., 2018] provide scene knowledge typically for certain image parts and for
a small number of semantic classes only (cf. Section 2.3). As the image points of the reference
points for calibration may be located in all image parts and as enclosing rectangles resulting from
object detection do not match the object boundaries exactly (cf. Section 2.3 as well), also these
two approaches are not considered as suitable. Forth, as semantic segmentation typically provides
scene knowledge for the entire image [Stueckler et al., 2012; Yu et al., 2018], image points in all
image parts can be handled. Furthermore, semantic segmentation typically supports a larger set
of semantic classes covering typical road scene objects [Cordts et al., 2016]. For these two reasons,
semantic segmentation appears to be most suitable to obtain scene knowledge.

There are also several approaches how the scene knowledge from semantic segmentation can
be integrated into a 3d reconstruction and localization method. First, semantic segmentation
can be used for localization within an existing 3d reconstruction [Hirzer et al., 2017; Schénberger
et al., 2018] and, second, semantic segmentation can enrich a 3d reconstruction in post-processing
by assigning semantic information to the 3d points [Li & Belaroussi, 2016; Mahe et al., 2018; Runz
et al., 2018]. As it is desirable to use the scene knowledge already while the 3d reconstruction is
incrementally created to overcome the described challenges, such post-processing approaches are
not applicable. Third, scene knowledge can be also integrated during 3d reconstruction, e.g. for
feature tracking [Murali et al., 2017]. Though, these authors work with gray value images only
and aim at real-time performance, which is not desirable for camera calibration as it may have
negative influence on the quality of the calibration results. Furthermore, they assume sensors that
have been calibrated beforehand. More related to the mentioned challenges, Wang et al. [2018]
and Yu et al. [2018] use semantic segmentation to obtain knowledge on the presence of moving
objects in images in order to remove outliers to make 3d reconstruction more robust. While
their works underline the potential of moving objects to cause problems in 3d reconstruction,
they focus on moving objects only, but not on road scene objects with inappropriate textures.
Furthermore, they consider only a limited set of semantic classes that typically does not cover the
entire area of a road scene image, so that problematic points in uncovered parts of the image are
not handled. Last, Kaneko et al. [2018] propose to exclude image parts from feature extraction
based on scene knowledge obtained by image-based semantic segmentation. Though, they work
with visual SLAM, which typically aims at real-time capability, instead of structure-from-motion,
which is considered as better suitable for camera calibration (cf. Chapter 2). Furthermore, their
objective is to improve the mapping and localization performance, but not the results of camera
calibration. Finally, they test their method on synthetic images only, which leaves it open to show
the applicability on real images. Concluding from these findings, it remains unsolved yet to show
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the potential of semantic knowledge in a 3d reconstruction method to improve self-calibration
and to apply the developed workflow on real-world images. Furthermore, it is unsolved yet to
integrate the semantic knowledge in other steps of the 3d reconstruction method than feature
extraction, for example during feature matching.
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4 Camera calibration with test
fields through a vehicle
windshield

In this chapter, a method for stereo camera calibration with test fields is described that is used to
investigate the influence of a vehicle windshield on calibration. The investigation is carried out as
comparative analysis between two setups, one time with and the other time without a windshield
in the optical path between the cameras and test fields during calibration. First, the intended
calibration setup comprising a virtual 3d test field and a stereo camera system is introduced
(Section 4.1). Then, a detailed description of the calibration workflow from image acquisition
until estimation of the orientation parameters and their uncertainties follows (Section 4.2). Special
emphasis is put on the realization of the virtual 3d test field and on datum definition.

4.1 Calibration setup

The calibration setup comprises a virtual 3d test field that is created by two non-rigid 2d test
fields (Subsection 4.1.1), the stereo camera system with industrial cameras with approximately
parallel optical axes and a baseline that is typical for the automotive domain (Subsection 4.1.2)
and, in one setup, a vehicle.

4.1.1 Virtual 3d test field

This method is intended for a virtual 3d test field consisting of two independent, non-rigidly
coupled 2d test fields to provide the reference points for calibration. The virtual 3d test field can
be handled easier than a rigid 3d test field and hence, a good coverage of the six degrees of freedom
can be achieved without the cumbersome need to move the vehicle carrying the cameras, which is
anyways limited to the ground plane. Additionally, the risk of suffering from strong correlations
between the estimated interior and exterior orientation parameters is lower than when using a
single 2d test field [Luhmann et al., 2016]. Though, the disadvantage of the virtual 3d test field
is that the relative orientation between the two 2d test fields changes from one time point to the
next due to the missing rigidity. Hence, correspondences between the reference points on the two
test fields need to be established for each time point and a joint 3d object coordinate system
needs to be determined for calibration, as it will be described in a later section of this chapter.

This method is designed for different types of reference marks on the 2d test fields, therefore
benefiting from a lower risk that no reference points can be detected by image processing at all, for
example in the case of large distances from the camera or unfavorable scene illumination. One test
field should have a dense grid of circular marks, while the other should have a classic checkerboard
pattern. Both are cheap, allow easy and robust image processing, provide a sufficient number
of reference points and their pixel coordinates can be determined with high accuracy [Geiger
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et al., 2012; Lasaruk & Neralla, 2018]. While extracting pixel coordinates from circular marks
is always confronted with the problem of ellipse eccentricity [Heikkila & Silven, 1997; Heikkila,
2000], checkerboard patterns provide only a lower density of reference points. Coded and uncoded
circular marks as well as even and odd numbers of checkerboard squares, respectively, allow to
uniquely identify each reference point. Automotive-specific test fields are not seen as useful, as
they typically provide a lower number of reference information than classic photogrammetric test
fields (cf. Chapters 2, 3).

4.1.2 Stereo camera system

The method proposed in this chapter is in-
tended for environment-observing, forward-
looking stereo cameras, which are chosen for
their ability to perform accurate distance mea-
surements in the upcoming driveway of a vehi-
cle, which is in particular relevant for automo-
tive applications (cf. Section 1.1). Monochro-
matic industrial cameras with a geometric res-
olution similar to those used in other research
related to automotive applications, e.g. for
recording the Cityscapes dataset [Cordts et al.,
2016; Onsemi, 2017], are suitable in particular.
Such industrial cameras have several advan-
tages with regard to the geometric quality of
cameras and lenses that allow to avoid certain

Figure 4.1: Stereo camera system behind the wind-
sources of errors [e.g. Fraser, 2013]: They have ghield in a car. The cameras are mounted on a rigid
fixed focal length and fixed focus, they can be metal platform and have approximately parallel opti-
rigidly attached to a stable platform and they cal axes.

typically neither have a complex color filter ar-

ray in the sensor nor internal image pre-processing algorithms that may alter the raw images and
so potentially decrease the quality of the image points of the reference points. Furthermore,
the used cameras are capable of simultaneous image acquisition to avoid inconsistencies due to
movements of the test fields. The cameras are mounted in a standard stereo configuration for
automotive applications, i.e. with parallel optical axes and pixel coordinate axes [Bodis-Szomoru
et al., 2008] (Figure 4.1). The field of view is overlapping; this facilitates establishing cross-camera
correspondences between reference points on different test fields.

4.2 Calibration workflow

The calibration workflow consists of three major steps (red, blue, green areas in Figure 4.2), which
are performed for all images from the left and right stereo camera. High-quality object coordi-
nates of the reference points on the test fields are pre-determined once before camera calibration
(Subsection 4.2.1). First for each calibration, images sequences are acquired (Subsection 4.2.2).
The pixel coordinates of the reference points are extracted from these images and the points are
matched across all images (Subsection 4.2.3). The proposed method utilizes reference points from
image pairs, consisting of a left and right camera image taken at the same point in time, as well
as from independent images, i.e. from images where no reference points could be extracted from
the corresponding image of the other camera. Second, the pre-determined object coordinates of
the reference points are associated with the pixel coordinates. Special handling is required for
uncoded reference marks (Subsection 4.2.4) and for the virtual 3d test field (Subsection 4.2.5).



4.2. Calibration workflow 43

Third, the final orientation parameters and their uncertainties are estimated by bundle adjustment
(Subsection 4.2.6), whereby datum definition is obtained by free adjustment (Subsection 4.2.7).
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Figure 4.2: Workflow for stereo camera calibration with test fields. Dashed parts are executed for the
without windshield setup only.

4.2.1 Preliminary steps

The 3d object coordinates of the reference points are pre-determined once before calibration:
For the test field with circular marks, a calibrated photogrammetric camera, a high-precision
reference cross and reference bar provide a metric-scaled Euclidean object coordinate system in an
independent measurement campaign without a windshield. Estimation of the object coordinates
is done by bundle adjustment. For the checkerboard test field, the object coordinates are obtained
by analytic calculations assuming a grid shape of the checkerboard squares and a known metric
size of the squares. Classic camera calibration with a single 2d test field is done separately for
each camera to obtain the initial guess for the interior orientation for bundle adjustment.

4.2.2 Image acquisition

In the setup with the car windshield as well as in the setup without the windshield, a sufficient
number of image pairs is taken with various positions and orientations of the virtual 3d test field
relative to the cameras so that the best-possible coverage of the six degrees of freedom can be
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achieved. To cope with problematic movements of the hand-held test fields, the images of both
cameras are acquired simultaneously. The largest-possible depth range is covered, which means
the closest test field position being right in front of the windshield and the most remote position
being defined by the ability of the image processing algorithms to extract the reference point
coordinates from the images.

4.2.3 Pixel coordinates extraction and point matching

The pixel coordinates of the image points of the reference points are extracted by image processing.
For circular marks, this is done by ellipse detection and shape fitting, for the checkerboard pattern
this is done by detection of the checkerboard corners, both using standard algorithms. In order
to obtain a 3d model of the reference points with initial object coordinates, the image points
are matched across cameras and time points. For coded circular marks, the matching degrades
to assignment based on the point numbers provided by the code of the reference marks. Points
of uncoded circular marks can be matched by point numbers as well. Therefore, unique point
numbers are obtained using the known exterior orientations of images that have been determined
using the reference points with coded marks. Point matching for the checkerboard test field
utilizes unique point numbers that can be assigned if the orientation of the checkerboard pattern
in an image is known, which is the case if one grid direction has an even and the other has an
odd number of corners.

: iy
Boooo@oooaopg

(a) (b)

Figure 4.3: Example images from the Stereo image dataset showing the virtual 3d test field. a) With
windshield setup: Cameras in the car, b) without windshield setup: Cameras in the lab. The bonnet area
is masked (half-transparent dark overlay) so that reference point positions are comparable in both setups.

As in the with windshield setup, typical for forward-looking automotive cameras, a part of the
image always shows the bonnet (cf. Figure 4.3a) and so no points can be found in this part of the
image, the reference points in the without windshield setup are restricted to the non-bonnet part
of the image area to ensure comparability between the two setups. The restriction is implemented
by a bonnet mask (dark gray overlay in Figure 4.3b) applied to all images from this setup.

4.2.4 Object coordinates association for uncoded reference marks

In order to achieve the best-possible quality, the pre-determined high-quality object coordinates
instead of the initial object coordinates should be used for camera calibration. Therefore, the
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pre-determined object coordinates have to be associated to the pixel coordinates of the reference
points. This can be done easily for the reference points from the coded marks, as the same point
numbers from the codes are known when the pre-determined object coordinates are obtained
(Subsection 4.2.1) and when the pixel coordinates are extracted (Subsection 4.2.3). Likewise, the
link can be achieved easily for the reference points from the checkerboard pattern exploiting the
even and odd number of checkerboard squares. In contrast, for reference points from uncoded
marks, the first set of point numbers that is assigned while obtaining the pre-determined object
coordinates is different from the second set of point numbers that is assigned during pixel co-
ordinates extraction and point matching. To solve this problem, a two-folded approach using a
3d model coordinate system (MCS) is employed for reference points from uncoded marks: On
the one side, the initial object coordinates of the reference points in the MCS are linked to the
extracted pixel coordinates by the second set of point numbers. On the other side, the same
object coordinates in the MCS can be linked by geometric transformation to the pre-determined
object coordinates that are given in a pre-determined object coordinate system (PCS) with the
first set of point numbers.

First, the initial object coordinates of all reference points in the randomly-defined MCS are
taken from the 3d model of the reference points obtained by structure-from-motion using the
matched image points. Second, the MCS and PCS are associated to each other using the ref-
erence points from coded marks that have the same point numbers in both coordinate systems
by estimating a 3d Helmert transformation between the MCS and the PCS. Then, third, for all
reference points from uncoded marks, the initial object coordinates are projected from the MCS
into the PCS using the Helmert transformation and the geometrically closest point in the set of
pre-determined object coordinates is determined. With these closest points, the link between the
first and second set of point numbers is established and so the pre-determined object coordinates
are associated to the pixel coordinates for the uncoded reference marks. Forth and finally, the
pre-determined object coordinates are transformed from the PCS into the MCS in order to get a
consistent 3d model of the reference points in the MCS. At this stage, the 3d model covers the
pixel coordinates and uniquely associated high-quality pre-determined object coordinates of all
reference points in the MCS.

4.2.5 Object coordinates association for the virtual test field

In order to allow that reference information from both the test field with circular marks (T'F,) and
the checkerboard test field (T'F.) can be used together for calibration, their object coordinates have
to be in one common object coordinate system (Figure 4.4d). As the two 2d test fields are only
rigid to each other at one time point, but not from one time point to the next (cf. Figure 4.4a-c),
the relative orientation P, between them depends on the time point k. Additionally, as the pre-
determined object coordinates are obtained independently (cf. Subsection 4.2.1) and so are given
in two independent coordinate systems PCS, and PCS,., defining a common object coordinate
system and especially incorporating the pre-determined object coordinates as described in the
previous subsection is not trivial if both test fields should be used jointly. To overcome this
problem, the following approach is employed: On the one hand, for the reference points from
TF,, a single set of reference point numbers that is valid for all time points is defined. On
the other hand, for the reference points from the other test field TF,, a separate set of point
numbers is defined for each time point. Thereby, TF, is treated as there would be actually k
independent test fields TF, one for each time point k (Figure 4.4d). This causes that the
3d model created by structure-from-motion contains a single set of object coordinates (given in
the MCS) for T'F;, and separate sets for TF ;. Thus, for TF, a single Helmert transformation
is estimated between PCS, and MCS, as described in the previous subsection. Additionally, for
TF,}, k separate Helmert transformations are estimated between PCS, and MCS. Having obtained
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the transformation parameters, the pre-determined object coordinates are projected into the MCS
the same way as described in the previous subsection.

t-1 t t+1 e
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Figure 4.4: Top-down view on the virtual 3d test field (green, blue) and the object coordinate system (green)
at different points in time. a) - ¢) Real-world view with time-dependently varying relative orientations Py
between the two non-rigid 2d test fields T'F j, (orange) and T'F,, (blue) for the time points k € {t—1,¢,t+1},
d) virtual view with all test fields TF, ) and TF, in the common model coordinate system used for
calibration.

4.2.6 Bundle adjustment

After having associated the object coordinates with the pixel coordinates, the 3d model is opti-
mized by bundle adjustment and hereby the final camera orientation parameters are estimated.
Stereo rig constraints are considered in the optimization by one of three stereo constraints, which
apply different formula and parametrizations for the relative X p and exterior orientation for
the slave camera X g . Bundle adjustment is selected for optimization due to a variety of ad-
vantageous properties for the envisaged investigations (cf. Chapters 2 and 3): Better expected
precision, simultaneous estimation of all desired parameters, error minimization with a meaning-
ful geometric constraint and a high redundancy. Typical disadvantages of bundle adjustment like
the high computational effort or the need for an initial guess do not play a role as no real-time
requirements need to be met in this research.

Optimization is done separately with three camera and distortion models for the sake of
comparison (cf. research questions in Section 1.3). Unlike suggested by Maas [2015a] for classic
multimedia photogrammetry, the refraction of the optical rays at the windshield is not handled
explicitly by extended geometric models. In contrast to the typically flat sheets of glass in
multimedia photogrammetry, the complex geometry of a curved vehicle windshield might be highly
difficult or even impossible to model accurately. Furthermore, it is an objective of the investigation
to show potential effects of the vehicle windshield in the estimated calibration parameter values
and their uncertainties.

The stereo constraints are defined as follows:
All stereo constraints

For all three stereo constraints, unknown parameters (X) in the bundle adjustment (cf. Sub-
section 2.2) are the interior orientation and distortion parameters as defined by the camera model
(cf. Subsection 2.1.4) and the object coordinates of the reference points. The functional equations
are as follows:

g T 00 = Jaigik(X) (4.1)
Yigk + 0y, = Fyigr(X) (4.2)

with f;;r and fy;;r being the collinearity equations (cf. Subsection 2.2.3) given for reference
point ¢, for camera j and for time point k. Observations are the pixel coordinates ks Y, ik
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of all non-masked matched reference points from stereo image pairs as well as from independent
images. Depending on the parameter setting (cf. Subsection 7.2.1), also the corresponding object
coordinates are modeled as observations (cf. Subsection 2.2.3). The vector of object coordinates
Xp (see also Section 2.2) is defined as

Xp = (Xa,l...Xa,la...XC,M...XQ,@Z%...XC,O,ZCO> (4.3)

with X ,;, being the 3d object coordinates of point [, on test field T'F;, and with Xc,k,l% being the
object coordinates of point [., on test field T'F,  for time point k of in total o time points. The
interior orientation parameters are assumed to be constant over the time of image acquisition.
Relative and exterior orientation parameters depend on the stereo constraint, as explained in the
following.

Stereo constraint 0: Without relative orientation

No relative orientation is estimated, i.e. the two cameras are treated independently, i.e.
X r = {}. The vector of exterior orientation parameters X p comprises the exterior orientation
parameters X g, and X g 5, for both the reference camera () and the slave camera (s) (details
see Stereo constraint 1) for all images 1...n and 1...m, respectively:

Xe=(Xpr--XernXpsi-XEsm) (4.4)

This stereo constraint represents the idea of not introducing any stereo rig constraints. Note the
superscript o indicating that the exterior orientation parameters are given in the object coordinate
system, the MCS, is omitted for visibility reasons. Either the left or the right stereo camera can
be assigned as reference camera.

Stereo constraint 1: Step-wise estimation of reference and slave camera orienta-
tion

X g, and X g are defined as unknown parameters for bundle adjustment. X g g ;. is replaced
in the collinearity equations by a formula depending on X ;. and X i so that observations from
images of the slave camera do contribute to calibration, but no exterior orientation parameters
are estimated. Thereby, this stereo constraint represents the idea of avoiding contradictions in
the relative orientation by estimating the exterior orientations for only one camera, the reference
camera. As disadvantage, the estimated imaging geometry of the slave camera could deteriorate,
as contradictions may be become visible in the observations of this camera. The mentioned
formulae to calculate the exterior orientation parameters of the slave camera are defined as

°Xpsk="Xpr+ R, "X: (4.5)
sp=R Ry, (4.6)

-
with "X being the relative position between the reference camera and the slave camera given
in the reference camera coordinate system and with R; describing the rotation from the camera
coordinate system of the reference camera r to the camera coordinate system of the slave camera
s. So, X g is defined as
T

Xn=(X; "V} "Z 6 6y 65,) (4.7)
with 67 + being the z-component of the axis angle representation of the rotation from r to s, which
can be converted to R;. "X is the z-component of the relative position, the y- and z-components
are defined accordingly. X g is assumed to be constant over the time the image sequences are
acquired.
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Stereo constraint 2: Simultaneous estimation of reference and slave camera ori-
entation

Both X g, and Xg g are defined as unknown parameters for bundle adjustment. Xg
is defined as in Stereo constraint 1, and is estimated by bundle adjustment as well. Though,
in contrast to constraint 1, the relative orientation constraints are modeled as separate regular
functional equations. The idea behind these additional equations is to ensure equality between
the estimated relative orientation parameters and the relative orientation parameters that are
calculated from the estimated exterior orientation parameters. Hereby, this stereo constraint
represents the idea that contradictions may be distributed better among all parameters than in
Stereo constraint 1. The separate functional equations are defined as

0+ 65 =74 (1.8)
0+ b ="X, —"X, (4.9)
with ’"Yﬁ being the calculated relative position obtained from the estimated exterior orientations

of r and s by
e o
"X, =R, Xpsr— Ry "Xprk (4.10)

and with R describing the calculated relative orientation obtained from the estimated exterior
orientations by

R, = Rf,,k : R:,k = RZk : (Rz,k)fl (4.11)
To be used in the functional equations, the rotation matrix is converted to quaternions g;. Quater-
nions have been selected for the equations for their advantageous property of not being periodic,
as for example Euler angles are. So with an Euler angle of 0°, the functional equations might have
zero residuals, but with the identical angle of 360°, there might be large residuals. Note again,
as the relative orientation is given in the camera coordinate system of r, it does not change for
different time points.

4.2.7 Datum definition for bundle adjustment for stereo cameras

Datum definition bases on the approach of Polic et al. [2018] using free adjustment, wherefore
the H matrix to solve the singularity of the normal equation matrix IN is required (see Subsec-
tion 2.2.4). For the proposed method, the H matrix defined by Polic et al. [2018] for a single
camera is extended by additional elements for the relative orientation to support stereo camera
systems.

Recall that the H matrix is derived from a similarity transform relating the inner geometry
of the network to a higher-level coordinate system (see Subsection 2.2.4). Thus, H is extended
as follows: As the relative rotation depends on the camera coordinate systems of r and s only,
it is independent from the similarity transformation, what is reflected by the equation Aqg; =
q; —'q’(qs) = 0 with !(...) denoting the similarity-transformed values and gg denoting the seven
similarity transform parameters. Therefore, the corresponding partial derivatives of Agq; with
regard to the three types of datum parameters needed for H, namely translation T, rotation S
and scale p, are zero as well:

oAa; _  0Aw _, 044 _
or S o

0 (4.12)

The difference of the relative position A" X 78, is assumed to be

-8

AX, =X, (X)) ="X] - p'X, (4.13)
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This equation considers that p is the only parameter from similarity transformation that can
influence the relative position. T and S are assumed to have no influence, as the relative position
is given in the camera coordinate system of the reference camera (cf. "(...)), but not in the
higher-level object coordinate system. This means that a translation or rotation of the imaging
network (3d points, 3d camera positions and rotations) in the object coordinate system during free
adjustment does not affect the relative position between the two cameras. If only u is considered,
the partial derivatives of A” X i are as follows:

A" X, A" X, A" X,

— =0 —— =0 ——L = —TI3,3 (4.14)
oT oS ou
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5 Camera calibration with traffic
signs

In this chapter, a method for camera self-calibration with reference points obtained from traffic
signs is described. As first workflow step (Figure 5.1), semantic segmentation, coarse boundary
detection and depth estimation are done for each recorded RGB image by deep learning (Sec-
tion 5.1). Coarse boundaries of the traffic signs that should be used as reference information
are obtained by coarse boundary detection. Second, traffic sign masks and auxiliary semantic

boundaries are extracted from the semantic images (Section 5.2). Third, fine boundaries of the
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Figure 5.1: Workflow for camera calibration with traffic signs.
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traffic signs are extracted using the coarse and the auxiliary semantic boundaries, as well as
the RGB images. Thereby, the pixel coordinates of the reference points, which are defined by
certain remarkable points along the traffic sign boundary, are calculated (Section 5.3). Forth,
using the depth image and the pixel coordinates, the object coordinates of the reference points
are calculated (Section 5.4). Fifth, for all images that should be used for calibration and for
all processed traffic signs, the pixel and object coordinates of the reference points are processed
by bundle adjustment. Thereby, the desired estimates of the interior orientation and distortion
parameters and the corresponding covariance matrices are obtained (Section 5.5). This method
is intended to be performed with an RGB image sequence recorded from a road scene with the
vehicle camera that should be calibrated. The length of the image sequence can be determined
by certain objectives, like parameter uncertainty.

5.1 Semantic segmentation, boundary detection and depth esti-
mation

By means of deep learning, image-based semantic segmentation, boundary detection and depth
estimation are performed for each acquired RGB image (Figure 5.2a). For semantic segmentation,
the same method as for camera calibration by semantic structure-from-motion is used (details see
Section 6.1). As most important property, the deep model needs to contain a semantic class for
traffic signs, thus a pre-trained model for road scene images is used. Output is a semantic image
corresponding to each RGB image (Figure 5.2b). For boundary detection, also a pre-trained
model suitable for road scene images is used. It produces separate grayscale images containing
the boundaries for one semantic class, whereof for the further workflow steps only the boundary
images for the class traffic sign are used (Figure 5.2c). As these boundaries follow the traffic
sign boundaries in the corresponding RGB image only roughly, they are further referred to as
coarse boundaries. For depth estimation, a method that is capable to provide metric depth
values, not only disparity values, is used. The depth values are provided by a so-called depth
map, i.e. an image where each pixel represents a depth value, i.e. the metric distance from
camera (Figure 5.2d). Advantageous, such depth maps are linked to the corresponding RGB
image and so for each pixel in the RGB image a depth value can be obtained easily. Additionally,
by relying on a deep model, depth estimation can be done with an image sequence from a mono
camera independent from other data sources. It does neither require stereo cameras nor other
vehicle sensors or receivers (e.g. GPS, IMU). It does also not require a geometric method like
structure-from-motion capable for image sequences of mono cameras, which might be problematic
for forward-looking cameras as the main movement is along the optical axis and so the image

() (d)

Figure 5.2: A RGB image acquired in a road scene and three images derived from it by deep learning.
a) RGB image, b) semantic image showing different classes of road scene objects, among them traffic signs
(vellow), c) coarse boundary image for class traffic sign, d) depth map.
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geometry might be bad especially in depth direction [Vedaldi et al., 2007]. For depth estimation,
also a pre-trained deep model for road scene images is used.

5.2 Masking and auxiliary semantic boundary extraction

Auxiliary semantic boundaries are extracted by contour detection [Suzuki & Abe, 1985] from
the semantic images for each segment belonging to the class traffic sign. Hereby, each auxiliary
semantic boundary is represented by a set of image points. Additionally, each segment belonging
to the class traffic sign is binarized to obtain a binary traffic sign mask. The mask contains value
1 for all pixels belonging to class traffic sign in the semantic image and value 0 otherwise. As there
might be multiple traffic signs visible in one RGB image, the mask may cover multiple segments.
Therefore, all but the largest traffic sign segment are removed from the traffic sign mask based
on the area enclosed by each auxiliary semantic boundary. This step relies on the idea, that the
largest traffic sign is best suitable to determine reference points and that small segments are more
likely to cause inaccurate reference point coordinates or are false positive traffic sign segments
and so should be omitted. With this traffic sign mask, the boundaries of all but the largest traffic
sign are removed from the coarse boundary image.

5.3 Fine boundary extraction and pixel coordinates calculation

As already mentioned, certain remarkable points along the traffic sign boundary should be used as
reference points for camera calibration. For triangular and rectangular traffic signs, these are the
three and four corner points, respectively. For circular traffic signs, shown in images as ellipses
[Elder, 2017], these are the two end points of the major axis. To determine the pixel coordinates
of these points precisely, fine boundaries of the traffic signs have to be extracted. As the semantic
segments do not follow the boundaries of traffic signs in the RGB image exactly, as one segment
may contain more than one traffic sign, and as also state of the art deep learning-based boundary
detection provides - to the knowledge of the author - only coarse boundaries (Figure 5.2¢), classic
image processing is used to get fine boundaries. Furthermore, assuming that the same types of
shapes are used across different countries, a classic approach may be more generic and does not
require country-specific training data like a deep learning-based approach might do.

The process for fine boundary extraction is similar for the three supported shape types. In
addition to the shape, only traffic signs of certain colors are supported: Circular signs and rectan-
gular signs with blue background color (e.g. direction signs) and triangular signs with a red border
(e.g. yield sign). The orientation of the shape does not play a role (e.g. upwards- or downwards-
oriented triangle). For triangular traffic signs, the following major steps are employed: First,
lines are extracted from the coarse boundary image by Hough transformation, which at this point
contains the largest traffic sign only. Hereby it is assumed that among the extracted lines also the
lines belonging to the actual boundaries of the traffic sign in the RGB image are contained. Addi-
tionally, while the coarse boundaries might be curvy, Hough transform ensures that straight lines
are extracted, which corresponds better with actual traffic sign shapes. Second, all lines are asso-
ciated in every possible combination to triangle candidates based on their orientation so that the
sum of internal angles equals 180 degree. Third, the overlap between each triangle candidate and
the traffic sign mask is determined. Candidates whose overlap is below a user-defined threshold
are rejected. Candidates with an area smaller than an also user-defined minimal threshold are re-
jected as well. After thresholding, it is assumed that only triangle candidates remain that describe
the actual triangle well with small differences in the position of the corner points. Forth, building
on the assumption described in the previous sentence, the remaining triangle candidates are aver-
aged to an intermediate triangle by K-means clustering determining three clusters, whereby each
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cluster defines one corner of the intermediate triangle. Fifth, the image part corresponding to this
intermediate triangle is cropped from the RGB image. The boundary of this image part is dilated
by several pixels to ensure that the actual traffic sign in the RGB image is covered completely by
the cropped image. Sixth, based on lower and upper color thresholds applied in the HSV color
space to the cropped image, the remarkable red border of the triangular traffic sign is extracted.
Last, the steps one to five are repeated with the cropped and thresholded image containing the
red border only, for which it can be assumed that the outer edge of the red border matches the
boundary of the traffic sign precisely. As the red color is in typical road scene images distinctive
with regard to the local background on and near the traffic sign, it is considered as suitable for
extracting fine boundaries. The resulting corner coordinates are the final pixel coordinates of the
three reference points. For rectangles, the Hough lines are associated to rectangles, four instead
of three corner points are extracted and blue instead of red color is taken. For circular traffic
signs, RANSAC [Fischler & Bolles, 1981] is used to fit an ellipse to the coarse boundary image.
In addition to the area threshold, ellipse candidates with large eccentricity are discarded. As
according to Elder [2017], the diameter of a real-world circle corresponds with the major axis
of an ellipse in an image, the end points of the major axis are selected as reference points. As
with the described thresholds, bad-fitting boundaries are rejected, a preliminary shape detector
determining whether a traffic sign segment belongs to a triangle, rectangle or circle sign is not
necessary. At this stage of the workflow, there is a set of pixel coordinates of reference points for
all successfully processed images available.

5.4 Object coordinates calculation

First, an initial guess for the focal length is obtained, then the object coordinates for the reference
points are calculated. In the following, it is assumed that traffic signs in the object space are
parallel to the image plane. Due to the typically large distance between traffic signs and the
vehicle camera as well as the alignment of the signs towards the driver, this assumption is likely
to be approximately true. Additionally, it is assumed that the principal point is equal to the image
center. For the following bundle adjustment, a local object coordinate system is defined that is
equal to the camera coordinate system. It means that in this coordinate system, the camera has
the same exterior orientation for the entire image sequence. This definition can be interpreted
as calibration with a static camera and a moving test field, though in reality the traffic signs
are static and the camera-carrying vehicle is moving during image acquisition. Same as in the
previous subsection, the following descriptions address triangular traffic signs, but are analogue
for rectangle and circle signs.

The mentioned assumption about the principal point leads to the initial guess for the principal
point coordinates, which is (0,0) in image coordinates and (h/2,w/2) in pixel coordinates with
h being the image height and w being the image width in pixels. The initial guess for the focal
length f (cf. Figure 5.3) is obtained using an intercept theorem: It relates the known metric size
of a traffic sign edge (A in the figure) and the known size of the same edge in the image (a) with
the known depth (D) of a traffic sign corner point (C) to calculate an unknown auxiliary term (d).
Furthermore, the angle at the projection center (O) between the lines of f and d is obtained from
the sine function with the Euclidean distance between the pixel coordinates of C' and the principal
point as opposite leg and d as hypotenuse. Then, f can be calculated either from the inverse cosine
using d and the angle or from the inverse tangent using a and the angle. For these calculations,
the metric size of the edge is obtained from official regulations (cf. e.g. Department of Transport
- Ireland [2010]), the size of the edge in the image is equal to the Euclidean distance between the
pixel coordinates of the two corner points of this edge (Section 5.3) and the depth is obtained
from the depth map (Section 5.1). To keep errors in the initial guess for the focal length resulting
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Figure 5.3: Intercept theorem used to get an initial guess for the focal length f: The distances d and D
along the image ray defined by a traffic sign corner point (C') and the projection center (O), the pixel
size (a) and the metric size (A) of a traffic sign edge are set in relation with f. Note that the German
yield sign has rounded corners, but the reference points are defined by the imaginary corner points at the
intersection of two adjacent boundaries.

from deviations of the initial guess for the principal point from the actual principal point location
low, a corner point close to the optical axis should be chosen. Finally, with the pixel coordinates
of C, the initial guess for the focal length and the principal point coordinates, the image ray for
this reference point can be defined. With the depth value, a depth plane parallel to the image
plane can be defined. Then, the object coordinates of C, defined by the intersection of the image
ray with the depth plane, can be calculated. This calculation is repeated for all reference points
on all traffic signs and for all acquired images, resulting in a set of object coordinates matching
the previously calculated pixel coordinates.

5.5 Optimization

The next step is a global bundle adjustment, whereby the final interior and distortion parameters
are estimated using the pixel and object coordinates of all reference points as observations. As
the object coordinates of the reference points have metric scale, the estimated orientation pa-
rameters can be provided in metric units as well. For optimization, independent and identically
distributed observation weights are assumed [Luhmann et al., 2006] as there is no a priori infor-
mation available about the standard deviation of the pixel and object coordinates. The final step
after global bundle adjustment is uncertainty estimation following the approach from Polic et al.
[2018] (cf. Chapter 4). Thereby, the covariance matrix for the interior orientation and distortion
parameters is obtained. Note again that due to the lack of external reference, the estimated
uncertainty measures specify the precision instead of the accuracy.
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6 Camera calibration by semantic
structure-from-motion

In this chapter, a method for camera self-calibration using structure-from-motion (SfM) is pre-
sented that exploits road scene knowledge from semantic segmentation (Figure 6.1). As first step
of the workflow (Figure 6.2), semantic images are obtained by semantic segmentation for all RGB
images recorded in a road scene (Section 6.1). Second, for each semantic image an exclusion mask
is created that consists of segments belonging to critical semantic classes, which are undesired as
reference points for calibration and so the respective image parts should be excluded from feature
extraction for SfM. Additional fix-pixel masks covering undesired areas visible in the same part
in all images (esp. the ego-car bonnet) contribute to the exclusion masks as well (Section 6.2).
Third, a 3d point cloud of the road scene is obtained by indirect SfM using the recorded road

Figure 6.1: Examples of RGB and semantic images from two points in time (¢;, t;+;) from a road scene
image sequence. a) RGB images, b) semantic images obtained by semantic segmentation represent different
classes of road scene objects, like vehicles (blue), road (purple) or vegetation (green).

scene images (Section 6.3). Besides for the exclusion masks, the semantic images are also used to
assign a semantic class to each extracted image feature in order to restrict matching to features of
the same semantic class. As the object points of the point cloud are derived from matched image
features and should serve as reference points for calibration, the purpose of excluding features
on critical objects and restricting the matching process is to avoid undesired quality loss in cali-
bration. After having obtained the point cloud for the entire image sequence by incremental 3d
reconstruction, the Euclidean 3d point cloud of the road scene is transformed by spatial similarity
transformation using filtered vehicle position data from GPS in order to incorporate a metric
scale into the point cloud (Section 6.4). Forth, a global bundle adjustment is performed to obtain
the final estimates for the image and object points as well as the interior and exterior camera
orientation parameters (Section 6.5). By uncertainty estimation, the covariance matrices for the
estimated parameters are obtained. The steps in the workflow are intended to be performed
with an RGB image sequence recorded from a road scene with the vehicle camera that should be
calibrated. The image sequence can cover a time span as desired by an application or a certain
objective, like parameter uncertainty, and recording can be repeated also as desired.
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Figure 6.2: Workflow of the proposed method for self-calibration of a vehicle camera by structure-from-
motion using scene knowledge obtained from semantic segmentation.

6.1 Semantic segmentation

Image-based semantic segmentation is applied to obtain semantic knowledge about the road scene.
Instance segmentation is not used in the proposed method, as image features may occur in all
image parts and instance segmentation often covers only certain classes shown in some image
parts (see Section 2.3). For segmentation, inference with a trained deep model is done for each
RGB image (Figure 6.1a) of the calibration image sequence, resulting in pixel-wise semantic
images (Figure 6.1b). A model is used that has been trained on road scene images with ground
truth annotations distinguishing common semantic classes for road scenes like road, vehicle or
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building. By using a model trained by a third party [e.g. Chen et al., 2018b], the need for own
time-intensive hyperparameter tuning and expensive high performance computing capabilities
required for large-scale training datasets is avoided (e.g. 370 GPUs as reported by Chen et al.
[2018a]). Furthermore, by using a model trained on appropriate third-party datasets, the often
costly need to acquire ground truth annotations for own image sequences can be avoided and the
risk of overfitting the model to own datasets is eliminated.

6.2 Exclusion mask creation

Semantic masking is applied during SfM in order to exclude image parts showing potentially
critical objects from feature extraction to avoid unreliable reference points for camera calibration.
Hence, features can be extracted only from image parts that are considered as non-critical. Hereby,
the approach is to identify potentially critical objects by their semantic class. The binary exclusion
masks used to implement semantic masking are derived from the semantic images, whereby one
intensity value is assigned to pixels belonging to semantic classes which are considered non-critical
and should be used for feature extraction (white color in Figure 6.3a). The other intensity value
is assigned to pixels belonging to semantic classes that are considered as critical and should not
be used for feature extraction (black color in Figure 6.3a). The list of critical semantic classes
has to be provided manually before calibration and can cover for example all moving objects
or objects with a reflecting surface; a comparison between different classes with regard to the
resulting distribution and frequency of reference points can be found in Hanel & Stilla [2019b].

i+

(a)

Figure 6.3: Examples (corresponding to Figure 6.1) for exclusion masks and for semantic matching. a) Ex-
clusion masks for classes vehicle and ego-car. The masked area (black color) on the ego-car is obtained
by fix-pixel masking, while the masked area on the two other vehicles is obtained by semantic masking,
b) semantic matches that are only allowed between feature points of the same semantic class, e.g. traffic
signs (yellow) or sidewalk (pink).

In addition to semantic masking, critical objects shown in the same part of the image in the
entire image sequence, like the ego-car, are excluded by fix-pixel masking. Therefore, a mask
consisting of polygons defined by fix image points is manually determined before calibration and
added to the exclusion masks (Figure 6.3a). The ego-car is considered as critical object, as the
windshield or the bonnet can easily show reflections and lead to wrong feature correspondences.

6.3 Structure-from-motion

Semantic feature extraction

SIFT features [Lowe, 1999] are extracted from each image of the road scene image sequence using
the exclusion masks in order to obtain feature points only on such road scene objects that are not
considered as critical.
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Semantic feature matching

The idea of semantic feature matching is to perform matching only between features extracted
from image parts showing objects from the same semantic class in order to reduce obviously wrong
matches between objects of different types, like between vehicle and building. Before matching,
the semantic class is assigned to each extracted feature point by sampling at the feature location
in the corresponding semantic image. During matching, the semantic classes of both features
being the current match candidates are compared with each other and regular matching is done
only if they belong to the same semantic class (Figure 6.3b). Hereby, regular matching means
that a descriptor similarity measure decides whether the two candidates are accepted as match
or not. If the candidates are from different classes, processing continues with the next match
candidates. Semantic masking, fix-pixel masking and semantic matching can be applied during
the workflow either separately, in combination or even not.

3d reconstruction

Having feature correspondences established by feature extraction and matching, a sparse 3d point
cloud of the road scene is obtained iteratively by 3d reconstruction. The reconstruction is initial-
ized with a random image pair, then step-by-step the other images are registered, 3d coordinates
of object points calculated by triangulation and optimized by bundle adjustment. For the re-
construction, the same set of interior and distortion parameters is used for all images, assuming
that there have been no changes in these parameters while recording the image sequence. This
assumption has the beneficial effect that the point cloud is Euclidean already [Hartley, 1993] and
only lacking scale information to become metric Heyden & Astrom [1996].

6.4 Position filtering and camera trajectory refinement

The metric scale information is incorporated into the 3d point cloud using a similarity trans-
formation based on filtered and refined 3d camera positions, wherefore the fact is used that the
positions of the mono camera (obtained from the exterior orientations) in the point cloud can be
uniquely assigned to the vehicle positions obtained from GPS. Even though the datum point of
the vehicle positions is typically different from the camera position (e.g. the center of the front
axis), the distance between two camera positions and thus the metric scale is not influenced and
so the differences in the datum point definition can be neglected.

The initially calculated metric GPS positions of the vehicle are filtered by special vehicle
motion models [Schubert et al., 2008; Hanel et al., 2019], e.g. based on the Ackermann movement
model or on non-holonomic constraints [Scaramuzza et al., 2009; Ruland et al., 2010; Lee et al.,
2013]. By exploiting the fact that vehicle motion is restricted to certain degrees of freedom (e.g.
planar movement) it is intended to mitigate the effect of observation errors in the GPS positions in
order to get a smoother trajectory that is appropriate for vehicle motion patterns and to increase
the quality of the metric scale and so the quality of camera calibration subsequently. In the
first step of trajectory refinement, the initially calculated GPS vehicle positions are interpolated
to match the image acquisition time points. As the positions from GPS are typically available
with a remarkably higher frequency than the images, a linear interpolation is considered to be
sufficient. In the second step, Kalman filtering based on the vehicle motion model is applied to
the interpolated trajectory in order to get a filtered trajectory (details see Hanel et al. [2019]).
For numerical benefits in the subsequent optimization step, the center of the filtered trajectory
is placed in the origin of the object coordinate system of the 3d reconstruction. Finally, the
transformation parameters are calculated based on the filtered and refined vehicle trajectory. By
applying the transformation to the entire point cloud, the metric scale gets incorporated into it.
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6.5 Optimization

In the last step, the final interior orientation parameters are estimated by global bundle adjust-
ment covering all images of the sequence. The corresponding covariance matrices are obtained as
uncertainty measures afterwards. For details, see Section 5.5.
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7 Test data and experiments

This chapter covers descriptions of the datasets used and the experiments performed.

7.1 Datasets

The Stereo image dataset (Subsection 7.1.1) is used for stereo camera calibration with test fields
(Chapter 4). The Ettlingen sequence and the Munich sequence (Subsection 7.1.2) are used to test
the methods for self-calibration with traffic signs (Chapter 5) and for self-calibration by semantic
structure-from-motion (Chapter 6). The Fraunhofer calibration dataset (Subsection 7.1.3) is used
to provide a reference calibration to evaluate the self-calibration methods.

7.1.1 Stereo image dataset

The Stereo image dataset contains pairs of simultaneously taken stereo images showing two 2d
test fields, one with coded and uncoded reference marks from the manufacturer Aicon [Schneider
et al., 2017], the other with a classic checkerboard pattern (Figure 4.3). The points in the center of
the reference marks and the corner points of the checkerboard pattern define the reference points
for calibration. The dataset has been recorded by a pair of monochromatic industrial cameras
(Figure 4.1, specifications see Table 7.1). The baseline between the cameras is approximately
33 cm in length and is oriented approximately orthogonal to the optical axes of the cameras.
The relative orientation and base length are typical for automotive camera systems (e.g. 22 cm
[Cordts et al., 2016], 30 cm, 53 cm, 57 cm [Rehder et al., 2017]). Likewise, the chosen focal length
of 6 mm is typical for automotive cameras, e.g. Rehder et al. [2017] are using optics with focal
length values of 4 mm, 4.5 mm and 15 mm for their experiments. The dataset comprises two
image sequences, each around 30 images, one taken in a car with the windshield in front of the
cameras, the other taken in a lab without a windshield (cf. Figure 4.3).

Table 7.1: Specifications of cameras and optics used for the experiments.

Stereo image dataset Ettlingen, Munich and Fraunhofer datasets
Camera: SVS-VISTEK SVCam eco655MVGE Baumer VLG-20C.I.

Monochrome CCD Color CCD

2448 x 2050 px 1624 x 1228 px

3.45 x 3.45 pm 4.4 x 4.4 um

Optics: VS Technology SV-0614H -

Focal length 6 mm -

Aperture 1.4 ~ 16 -

SVS-Vistek GmbH [2020] Borgmann et al. [2018]
VS Technology [2015] Baumer GmbH [2019]
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7.1.2 Ettlingen and Munich datasets

The Ettlingen sequence (Figure 7.1a) consists of 300 RGB road scene images recorded by the multi-
sensor vehicle MODISSA [Borgmann et al., 2018] during a 30 second drive through a suburban
area. MODISSA (Figure 7.2a) is operated by the Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation and is equipped with a range of different environment-
perceiving sensors, of which the on-board front-right forward-looking camera (specifications see
Table 7.1) is used to record the sequence. Additionally, the trajectory of MODISSA is recorded
with a GPS receiver; as the recording times of the GPS positions and images do not match, they
need to be synchronized to each other.

The Munich sequence (Figure 7.1b) consists of 504 road scene images and has been recorded
also by MODISSA during a 40 second drive through an urban area. Compared to the Ettlingen
sequence, the Munich sequence shows a larger number of traffic signs, especially at the two inter-
sections contained in the sequence. Furthermore, it contains more moving objects like cars and
pedestrians.

(b)

Figure 7.1: Example images of the Ettlingen sequence and Munich sequence. a) Ettlingen sequence recorded
in a suburban environment, b) Munich sequence recorded in an urban environment.

7.1.3 Fraunhofer calibration dataset

The Fraunhofer calibration dataset consists of an image sequence (example see Figure 7.2b)
recorded at the Fraunhofer research facility with the same forward-looking on-board camera
of MODISSA as the Fttlingen sequence and the Munich sequence. The Fraunhofer calibration
dataset contains more than 1,000 images showing a 3d calibration test field being moved and
rotated through the field of view of the camera. The test field has been constructed by three or-
thogonal planes forming an ”open cube” with checkerboard patterns on each plane. The checker-
board corners define the reference points for calibration. As according to Luhmann et al. [2016],
calibration with 2d test fields can be disadvantageous in terms of accuracy and correlations be-
tween parameters, a 3d shape has been selected over a 2d shape for the test field. The object
coordinates of the reference points have been determined analytically assuming a grid shape and
a known metric checkerboard square size.
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Figure 7.2: Sensor setup and example image from a camera of the multi-sensor vehicle MODISSA.
a) MODISSA. The front-right camera named ”video camera” has been used to record the image sequences
for the Munich, Ettlingen and the Fraunhofer calibration dataset. Image adapted from Fraunhofer Insti-
tute of Optronics, System Technologies and Image Exploitation IOSB [2020], b) example image from the
Fraunhofer calibration dataset showing the 3d calibration test field that is rotated and moved in the field
of view of the camera of MODISSA.

7.2 Experiments

This section covers the description of the experiments performed to test the proposed methods,
including the definition of experimental cases that allow to investigate different aspects of the
methods and also including technical details on the implementation. First, the experiments for
the method for test field calibration are addressed (Subsection 7.2.1), followed by the experiments
for self-calibration with traffic signs (Subsection 7.2.2). Last, the experiments for self-calibration
by semantic structure-from-motion are explained (Subsection 7.2.3).

7.2.1 Camera calibration with test fields through a vehicle windshield

First, the experiments for stereo camera calibration with test fields are addressed.

Experimental cases and parameter settings

The calibration is performed with the Stereo image dataset for all possible combinations of ex-
perimental cases and parameter settings (Table 7.2). Hereby, experimental cases address major
evaluation aspects to answer the research questions: The feature types describe the type of refer-
ence marks used, either only from the test field with Aicon reference marks (feature type Aicon),
or only from the checkerboard test field (Checkerboard) or jointly from both test fields (Merged).
The camera models are used for calibration as defined in Subsection 2.1.4 and the stereo con-
straints are used as defined in Subsection 4.2.6. The two setups represent calibration with and
without the windshield. In addition to the experimental cases, parameter settings address minor
aspects with influence on camera calibration: The idea behind keeping the object coordinates
of the reference points fixed during optimization (3d points fized) is that they have been pre-
determined with high accuracy, and allowing updates to them may undesirably cover effects from
the windshield, which otherwise could become visible in the estimated orientation parameter
values. Robust optimization could help to alleviate the influence of potential outliers in the
observations in bundle adjustment and has been introduced as consequence of preliminary eval-
uations (details see Subsection 8.2.5). As the relative orientation constraints in Stereo constraint
2 are defined as fictional observations with regular functional equations, they have observation
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Table 7.2: Experimental cases and parameter settings for stereo camera calibration with test fields.

Experimental cases Parameter settings
Setups Camera models Feature types Stereo 3d point Optimization Observation weights
constraints | optimization mode real:fictional
with None Aicon 0 Adjustable Robust 1:10
without Radial Checkerboard 1 Fized Non-robust :
Both Merged 2 10:1

weights. Therefore, the grade how strict these constraints are enforced during bundle adjustment
can be modeled by different ratios of observation weights between these fictional and the real
observations (pixel coordinates and, if applicable, object coordinates). The left stereo camera is
defined as reference camera, the right one as slave camera (cf. Subsection 4.2.6). Finally, note
that a short nomenclature based on the initial letters is introduced for the experimental settings:
E.g. 7RM0” means that the Radial camera model, feature type Merged and Stereo constraint 0
are used.

Implementation and execution

The pixel coordinates of the Aicon reference marks are extracted with the software Aicon 3D Stu-
dio [Schneider et al., 2017]. The pixel coordinates of the checkerboard corners are extracted using
Matlab-internal routines. 3d reconstruction and bundle adjustment are done with the framework
COLMAP [Schonberger & Frahm, 2016] . Uncertainty estimation is done with the framework
USEM [Polic et al., 2018]. Note that COLMAP, VisualSFM [Wu, 2013] and other common 3d
reconstruction frameworks do not provide uncertainty information to the best knowledge of the
author and so a separate solution becomes necessary. All interior, relative and exterior orien-
tation parameters are set as adjustable during bundle adjustment. 3d points are set either as
adjustable or as fixed, cf. parameter settings. Observations for bundle adjustment are the pixel
and, also depending on the parameter settings, the object coordinates of the reference points.
Optimization is terminated when the convergence criterion has been met (change in the sum of
absolute residuals below a pre-defined threshold or after 10,000 iterations). COLMAP and USfM
have been adopted and extended to execute the proposed algorithm. The remaining steps of
the workflow are done by own Matlab or Octave routines. Calibration is performed separately
for both setups. The initial guess for the interior orientation and distortion values needed for
a Fuclidean 3d reconstruction and non-linear optimization is obtained from a geometric camera
calibration having been performed beforehand separately for each camera. Interior orientation
and lens distortion are assumed to be constant over the entire image sequence, which is a common
assumption in the automotive domain, as regularly lenses with fixed focal length and focus setting
are used in vehicles [Gil et al., 2018b]. The initial guess for the relative orientation is obtained
from a geometric stereo calibration. Calibration is repeated 25 times for each experimental case
and parameter setting to alleviate potential non-deterministic effects (cf. second paragraph in
Section 8.2).

7.2.2 Camera calibration with traffic signs

Second, the experiments for camera calibration with traffic signs are addressed.

Experimental cases

The experimental cases (Table 7.3) cover all combinations of supported traffic sign shapes for the
most-promising semantic segmentation and depth estimation methods (cases 1 ...), which have
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been selected based on preliminary experiments (see Subsection 8.3.4). They also cover other less-
promising semantic segmentation and depth estimation methods, but only for the combination

with all three traffic sign shapes (cases 2 CRT and 3 CRT).

Table 7.3: Experimental cases for camera calibration with traffic signs.

Case Traffic sign shapes Computer vision methods
1C Circle Deeplabv3+, Monodepth2
1R Rectangle Deeplabv3+, Monodepth?2
1T Triangle Deeplabv3+, Monodepth2
1 CR  Circle, rectangle Deeplabv3+, Monodepth2
1 CT  Circle, triangle Deeplabv3+, Monodepth2
1 RT Rectangle, triangle Deeplabv3+, Monodepth?2
1 CRT Circle, rectangle, triangle Deeplabv3+, Monodepth2
2 CRT Circle, rectangle, triangle Deeplabv3+, struct2depth
3 CRT Circle, rectangle, triangle EfficientPS, Monodepth2

Implementation and execution

Camera calibration with traffic signs is tested with the Ettlingen and the Munich sequence. Se-
mantic segmentation is performed with either Deeplabv3+ [Chen et al., 2018b] or with EfficientPS
[Mohan & Valada, 2021]. Depth estimation is either performed with Monodepth2 [Godard et al.,
2019] or with struct2depth [Casser et al., 2019], which have been selected as they are recently
published methods for which the source code is available to the public. Deep models trained
(e.g. on the well-known road scene image dataset KITTI as done by Casser et al. [2019]) and
provided by the authors of these methods are used for the experiments. Fine tuning on the two
test datasets has not been done to avoid overfitting. Hence, it is possible to show with the ex-
periments that the proposed method does not only work with images used for training already,
which would not be realistic for an automotive application where future images will be acquired
in completely different road scenes and conditions. The Both camera model with radial and tan-
gential distortions is used (cf. Subsection 2.1.4), as it has shown best results in calibration with
test fields (see Subsection 9.1.1). A single set of interior orientation parameters is estimated for
each entire image sequence assuming no changes to the interior orientation during the few seconds
of data recording. Bundle adjustment and uncertainty estimation are done with COLMAP and
USEM.

Reference calibration

The proposed methods for calibration with traffic signs and semantic structure-from-motion are
evaluated against a reference calibration performed as high-quality test field calibration with the
Fraunhofer calibration dataset. The 3d object coordinates of the reference points are defined
in a coordinate system with the intersection point of the three planes as origin and with each
intersection line between two of the three planes as coordinate axis. The coordinate values are
calculated assuming an ideal grid shape of the reference points and using the known edge length of
one checkerboard square. Bundle adjustment is done with COLMAP and uncertainty estimation
with USfM as well. The relevant results of reference calibration are the estimated values and
standard deviations of the interior orientation and distortion parameters.
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7.2.3 Camera calibration by semantic structure-from-motion

Third, the experiments for camera calibration by semantic structure-from-motion are addressed.
For comparison of the proposed method with a high-quality reference calibration, the same ref-
erence calibration as for calibration with traffic signs is utilized. Several experimental cases are
defined covering different approaches to integrate semantic knowledge and a vehicle motion model.

Experimental cases

The experimental cases (Table 7.4) cover all combinations where in the workflow either no seman-
tic knowledge, only semantic feature extraction (SFE), only semantic matching (SM) or both are
used. They also cover all combinations where either no special vehicle motion model or where a
special vehicle motion model (VMM) is applied to filter and refine the GPS positions of the vehi-
cle. For experimental cases with VMM, only the later part of the workflow is executed by taking
the 3d reconstruction from the corresponding experimental case without VMM and continuing
with the step of camera trajectory refinement (see Section 6.4). For semantic feature extraction,
10 different mask types (MT) are derived from semantic categories (Table 7.5). The semantic
categories consist of either a single or of multiple semantic classes following the Cityscapes class
definition [Cordts et al., 2016]: (i) vehicle: bicycle, bus, car, caravan, license plate, motorcycle,
trailer, train, truck, (i) nature: terrain, vegetation, (iii) human: person, rider, (iv) construction:
bridge, building, fence, guard rail, tunnel, wall, (v) flat: parking, rail track, road, sidewalk, (vi)
object: pole, pole group, traffic light, traffic sign and (vii) the class sky forms its own category.
The only category not depending on semantic road scene knowledge is ego-car originating from
fix-pixel masking. As mask type 1 (MT1) is an empty mask, semantic feature extraction has no
effect (therefore, ”+ SFE” is not added to MT1 in Table 7.4) and so experimental cases with MT1
can be seen as baseline for comparisons between the mask types. Furthermore, in combination
with SM, MT1 defines the experimental case where only semantic feature matching is used.

Table 7.4: Experimental cases for calibration by semantic structure-from-motion. Semantic feature ex-
traction (SFE) is applied to all except the empty mask type 1 (MT1), which can be seen as baseline for
comparison with other mask types. Semantic matching (SM) and the vehicle motion model (VMM) are
applied in all four combinations.

Without vehicle motion model With vehicle motion model

Without MT1 MT1 + VMM
. MT2 + SFE MT2 + SFE + VMM
semantic
matching :
MT10 + SFE MT10 + SFE + VMM
With MT1 + SM MT1 + SM + VMM
. MT2 + SFE + SM MT2 + SFE + SM + VMM
semantic
matching :
MT10 + SFE + SM MT10 + SFE 4+ SM + VMM

Implementation and execution

Calibration by semantic structure-from-motion is tested with the Ettlingen and the Munich se-
quence. Semantic segmentation is performed with the Deeplabv3+ network [Chen et al., 2018b],
which is, despite its age and the fast research progress in deep learning, still among the best
methods in the Cityscapes benchmark for semantic segmentation of road scene images [Cordts
et al., 2019]. A model for this network trained on the Cityscapes dataset [Cordts et al., 2016]
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Table 7.5: Mask types (MT) for semantic feature extraction.

Mask type Semantic categories

MT1 none (empty mask)

MT?2 ego-car + wehicle

MT3 ego-car + nature

MT4 ego-car + sky

MT5 ego-car + human

MT6 ego-car + construction

MT7 ego-car + flat

MTS ego-car + object

MT9 ego-car + all road users (human, vehicle)

M10 ego-car + all movable objects (human, sky, vegetation, vehicle)

and provided by the Deeplabv3+ developers is used; i.e, the model is not fitted specifically to the
test data, same as for calibration with traffic signs. Panoptic segmentation [Mohan & Valada,
2021] providing semantic information for each individual object, whereby multiple objects may
be covered in one segment in semantic segmentation, would have been an interesting alternative
for integrating semantic knowledge. But as the experiments have been carried out before pub-
lication, it could not have been considered. 3d reconstruction by structure-from-motion is done
with COLMAP [Schonberger & Frahm, 2016], which has shown best performance in a compari-
son with other structure-from-motion algorithms [Bianco et al., 2018]. The Both camera model
is used (cf. Subsection 2.1.4). A single set of interior orientation parameters is estimated for
each image sequence assuming no changes to the interior orientation during the few seconds of
data recording. COLMAP’s "sequential feature matching” is applied considering the fact that
images recorded during driving are already in a temporarily sequential order. By this matching
algorithm, only the previous and next twenty images are considered. Integration of the filtered
vehicle positions as well as global bundle adjustment is also done by COLMAP. The uncertainty
measures are estimated by USIM [Polic et al., 2018]. Experiments where bundle adjustment did
not converge after a pre-defined number of optimization iterations are discarded and the workflow
is repeated from scratch. Preliminary empiric analysis has shown unfavorable initial image pairs
for 3d reconstruction obtained by random selection to cause that convergence is not achieved.
According to this analysis, the undesired effect of such experiments are residuals that are more
than hundred times larger than for a converging optimization with a better selection of the initial
image pair.
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8 Results and discussion

This chapter covers the results and discussions. First, the evaluation approaches with statistical
measures, deviation plots and statistical significance tests are described (Section 8.1). Second,
the evaluation of camera calibration with test fields through a vehicle windshield is addressed
(Section 8.2). Due to their high relevance for the evaluation of this method, residuals of the image
points are shown as plots besides numerical representation of other statistical measures. The
deviation plots and significance tests compare the interior, relative and exterior orientation in the
two calibration setups with and without the windshield with each other. Furthermore, correlations
among and between the interior and relative orientation parameters are shown and compared
between the two setups. Remarkable observations from these results are discussed. Third, the
evaluation of camera calibration with traffic signs is addressed (Section 8.3). Besides the statistical
measures, deviation plots and significance tests comparing the proposed method with a reference
calibration are shown. Potential factors influencing the calibration are discussed. Fourth, the
evaluation of camera calibration by semantic structure-from-motion is presented (Section 8.4),
which is analogue to the evaluation of calibration with traffic signs. Fifth and last, the three
proposed methods and their results are discussed in comparison with each other (Section 8.5).

8.1 Evaluation approaches

All proposed methods are evaluated with the following approaches: First, statistical measures like
the number of extracted features (#features), the number of image points (#image points) and
the number of object points (#object points) of the reference points give basic insights into the
image network and reference information used for calibration. Among these measures, large values
are desirable for camera calibration. Additionally, the mean values 7, 7, and standard deviations
Or,, Or, Of the residuals of image points in z- and y-direction are shown. In contrast, small values
are desirable for these measures. Large mean residuals could be an indicator for systematic biases
in the observations, while large standard deviations could be an indicator for low precision of the
observations. The value range of the residuals should be equal in the z- and y-direction as large
differences could be an indicator for direction-dependent systematic effects, for instance due to
incomplete DOF coverage in self-calibration. Second, deviation plots of the estimated interior,
and if applicable, relative and exterior orientation parameter values and standard deviations
between the proposed method and a reference calibration are created. Objective of these plots
are visual analysis of differences between orientation parameters, experimental cases and test
sequences. Small deviations from reference calibration are desirable for the estimated parameter
values, which can be an indicator for a reliable calibration with the proposed methods. Either
negative or at least small positive deviations are desirable for the estimated standard deviations,
which can be an indicator that the proposed methods either have a better or a similar precision
as the reference calibration. Third, the statistical significance of the mentioned deviations is
assessed by hypothesis tests. The tests are complementary to the plots: While the tests allow for
conclusions on the relevance of deviations, the plots allow for conclusions on the direction and
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strength of deviations. Finally, remarkable observations from the plots, tables and tests about
the results are discussed. Such observations represent tendencies in the results that are valid for
a majority of experimental cases, orientation parameters, etc., despite that there might be single
experimental cases, parameters, etc. that show contradictory results.

One drawback of the presented evaluation is that the standard deviations of the orientation
parameters represent the inner accuracy only, also called precision. Hence, they indicate how
well the observations, the functional model and the estimated parameter values match with each
other [Luhmann et al., 2006, 2013]. But due to the lack of additional independent reference points
or reference lengths with higher accuracy than the observations, the standard deviations don’t
represent the outer accuracy, so they don’t indicate how well the estimated parameters coincide
with their actual values [Remondino et al., 2017]. As worst-case example, the estimated focal
length may be twice as large as the actual value due to a scale error that affects all observations,
but the estimated standard deviation of the focal length can be misleadingly small, if the functional
model, observations and estimated parameters still do match well due to the equal effect of
the scale error. Another drawback is that two contra-intuitive effects have to be acknowledged
when interpreting the results of the hypothesis tests on the estimated parameter values. First, if
the standard deviation of an estimated parameter is large, the hypothesis test on the deviation
between the estimated and the reference value may decide for non-significant even if the deviation
is so large that the estimated value will not be considered as reliable by visual inspection. Second,
if the standard deviation is small, the same hypothesis test may decide that the deviation is
significant, even if it is so small that the estimated value will be considered as visually reliable.

8.2 Camera calibration with test fields through a vehicle wind-
shield

For calibration with test fields, the evaluation is more comprehensive than described in the pre-
vious section as the influence of the windshield should be analyzed from different perspectives. It
comprises (i) statistical measures and residual plots (Subsection 8.2.1) and (ii) deviation plots be-
tween the setup with and without the windshield for the estimated interior and relative orientation
parameter values. Furthermore, it comprises deviation plots for the estimated standard devia-
tions of the interior, relative and exterior orientation parameters between the two setups (Sub-
section 8.2.2), (iii) statistical significance tests for the mentioned deviations (Subsection 8.2.3),
(iv) plots of the correlations among and between the interior, relative and exterior orientation
parameters (Subsection 8.2.4) and (v) a discussion of remarkable observations (Subsection 8.2.5).

Each experimental case was repeated in total 25 times (called experimental runs) to allevi-
ate the influence of non-deterministic effects, for example during optimization [Agarwal et al.,
2022]. If not stated otherwise, the data shown for each experimental case is the average over
all experimental runs. As optimization with the None camera model was not successful for the
without setup, no data is shown for this camera model; the lack of distortion parameters in only
this camera model might be a reason for the failing optimization. For each ca