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Abstract

On-board forward-looking cameras are often used for environment perception for advanced driver

assistance systems and for autonomous driving. In order to determine geometric quantities

like the distance to a preceding car, calibration of these cameras is necessary. As forward-

looking cameras are normally mounted inside the car, an influence of the windshield on the

imaging geometry is imposed, which creates a special challenge for calibration. In addition,

it can be assumed that changing camera properties over vehicle lifetime lead to errors in the

determined geometric quantities. Therefore, methods for calibration of forward-looking cameras

are proposed and investigated in this thesis.

To investigate the influence of the windshield, test field calibration of a stereo camera system

is carried out. A flexible 3d test field is used and an approach for datum definition by free

adjustment for mono cameras is extended for the stereo camera system. The camera orientation

and their uncertainties are estimated by bundle adjustment.

To cope with changes in the camera properties during vehicle lifetime, a method for self-

calibration with reference points obtained from the road scene is proposed and investigated.

Remarkable points at the boundary of traffic signs serve as reference points. Their pixel and ob-

ject coordinates are obtained by means of semantic segmentation, boundary detection and depth

estimation. Thereby, scene knowledge is obtained by deep learning and the camera orientation is

estimated by bundle adjustment with reference points from traffic signs of three different shapes.

As alternative to self-calibration with reference points from traffic signs, a method for self-

calibration with reference points obtained from arbitrary objects in the road scene is proposed

and investigated. Some of these points, like those on moving cars, are inappropriate for cal-

ibration. By means of semantic segmentation, undesired image regions are excluded and the

matching of image points is improved. In addition, the vehicle trajectory obtained from GPS is

evaluated by a special vehicle movement model for better metric scaling.

The proposed methods are evaluated with image sequences showing a test field and road scenes

in a suburban and urban environment, respectively. The results of test field calibration show a

statistically significant influence of the windshield on the camera orientation parameters. Self-

calibration with traffic signs shows best results with triangular shaped traffic signs. The use of

semantic segmentation improves self-calibration with points from arbitrary objects.
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Kurzfassung

Zur Erfassung der Umgebung für Fahrerassistenzsysteme und zum autonomen Fahren werden

in modernen Fahrzeugen häufig Frontkameras eingesetzt. Um geometrische Größen wie beispiel-

sweise die Distanz zu einem vorausfahrenden Fahrzeug bestimmen zu können, müssen diese

Kameras kalibriert werden. Da Frontkameras in der Regel im Fahrzeuginneren hinter der Wind-

schutzscheibe montiert sind und die Windschutzscheibe die Abbildungsgeometrie beeinflusst,

ergibt sich für die Kalibrierung eine besondere Herausforderung. Weiter ist davon auszuge-

hen, dass sich über die Fahrzeuglebensdauer die Kameraeigenschaften verändern und zu Fehlern

bei der Bestimmung geometrischer Größen führen. Daher werden in dieser Arbeit Methoden

vorgeschlagen und untersucht, um die Kalibrierung von Frontkameras zu verbessern.

Zur Untersuchung des Einflusses der Windschutzscheibe wird eine Testfeldkalibrierung eines

Stereokamerasystems durchgeführt. Dazu wird ein Ansatz mit einem beweglichen 3D-Testfeld

verwendet und ein Verfahren zur Datumsdefinition per freier Ausgleichung für eine Monokamera

für das Stereokamerasystem erweitert. Die Kameraorientierung und deren Genauigkeiten werden

durch Bündelblockausgleichung geschätzt.

Um Veränderungen der Kameraeigenschaften während der Fahrzeuglebensdauer entgegen-

zuwirken, wird ein Verfahren zur Selbstkalibrierung mit Referenzpunkten aus der Straßenszene

vorgeschlagen und untersucht. Als Referenzpunkte dienen markante Punkte am Rahmen von

Verkehrszeichen, deren Pixel- und Objektkoordinaten mit Hilfe von semantischer Segmentierung,

Kantendetektion und Tiefenschätzung bestimmt werden. Dabei wird Wissen über die Szene

mittels Deep Learning gewonnen und Referenzpunkte von Verkehrszeichen dreier Formen zur

Schätzung der Kameraorientierung mittels Bündelblockausgleichung verwendet.

Alternativ zur Selbstkalibrierung mit Referenzpunkten von Verkehrszeichen wird ein Verfahren

vorgeschlagen, bei dem Referenzpunkte von beliebigen Punkten in der Straßenszene gewonnen

werden. Dabei treten auch Punkte wie auf bewegten Fahrzeugen auf, die für eine Kalibrierung

ungeeignet sind. Mit Hilfe von semantischer Segmentierung werden Bildbereiche ausgeschlossen

und die Zuordnung von Bildpunkten verbessert. Zusätzlich wird die per GPS aufgenommene

Fahrzeugtrajektorie für eine bessere metrische Skalierung durch ein spezielles Bewegungsmodell

für Fahrzeuge ausgewertet.

Zur Evaluierung der Verfahren werden Bildsequenzen eines Testfeldes und natürlicher Szenen

im vorstädtischen und städtischen Bereich verwendet. Die Ergebnisse der Testfeldkalibrierung

zeigen, dass die Windschutzscheibe einen statistisch signifikanten Einfluss auf die Orien-

tierungsparameter hat. Für die Selbstkalibrierung mittels Verkehrszeichen zeigt sich, dass sich

besonders dreieckförmige Verkehrszeichen eignen. Bei der Selbstkalibrierung mit beliebigen

Punkten verbessert die semantische Segmentierung das Kalibrierungsergebnis.
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1 Introduction

1.1 Automotive vision for assistance systems and autonomous

driving

Observing the road scene environment around a vehicle is important for many advanced driver

assistance systems and in particular on the way to autonomous driving. Different types of sensors

for environment perception may be installed in modern vehicles [Winner et al., 2015; Ziebinski

et al., 2016]. Ultrasonic, radar, LiDAR sensors or cameras are among the most common ones,

covering complementary the distance range from few centimeters up to a few hundred meters and

hence serve for applications like parking assistance, obstacle warning or adaptive cruise control

[Zhang et al., 2014; Hanel et al., 2018]. Among the mentioned sensors, cameras are cheap and

provide high-resolution data and hence are widely used in both mass-produced and research

vehicles [Rosebrock & Wahl, 2012; Houben, 2014; Janai et al., 2017; Borgmann et al., 2018].

Cameras in cars either work in the visible spectrum for daylight applications [Zhang et al.,

2014; Janai et al., 2017] or in the near-infrared and thermal infrared spectrum for night-time

applications [Dong et al., 2007; Ge et al., 2009; Herrmann et al., 2018]. For environment obser-

vation, especially forward-looking visible-spectrum cameras recording the upcoming driveway of

vehicles can be seen as most important, which are often installed in a mono camera or a stereo

camera setup [Dang et al., 2009; Enzweiler & Gavrila, 2009; Keller et al., 2011]. For both setups,

the image processing and computer vision tasks needed for the aforementioned applications are

similar: For instance, specific road scene objects like road markings, pedestrians or traffic signs

need to be detected and recognized [Scheller et al., 2007; Bertozzi et al., 2010] or geometric quan-

tities like the road width, the location, size or velocity of detected environment objects relative to

the ego-car need to be determined [Broggi et al., 2001; Bellino et al., 2005; Scheller et al., 2007;

Alvarez et al., 2014; Bhardwaj et al., 2018]. It may also be necessary to perform multi-sensor

fusion [Geiger et al., 2012; Heng et al., 2014; Guindel et al., 2017] or even to obtain an entire 3d

environment reconstruction [Janai et al., 2017]. For reliable use in cars, these tasks need to be

performed with high accuracy [Ribeiro et al., 2006; Dubey, 2016].

As special challenge for automotive vision, various constraints resulting from mass-production

processes, vehicle design or price requirements may limit the selection of cameras and lenses

[Broggi et al., 2001; Rosebrock & Wahl, 2012; Guindel et al., 2017; Muhovic & Pers, 2020]. As

one example, narrow-angle lenses and large stereo baselines up to one meter need to be chosen

for forward-looking cameras as they allow to detect and measure small road scene objects at

distances up to a few hundred meters [Stein et al., 2010], but their neat integration into vehicle

design with a geometrically-stable mounting is complicated [Mentzer et al., 2017; Muhovic &

Pers, 2020]. As another example, wide-angle or fisheye lenses can provide large fields of views

for surround-view cameras, but at the cost of large distortions [Rosebrock & Wahl, 2012; Häne

et al., 2017]. For research vehicles, other and additional challenges may arise, like the need to use

detachable cameras that can be placed at different positions and angles at the car from time to

time [Paula et al., 2014].
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1.2 Automotive camera calibration for reliable automotive vision

For safe operation of advanced driver assistance systems and especially to resolve the challenges

for automotive vision, automotive camera calibration is a key aspect [Broggi et al., 2001; Kluger

et al., 2017]. Valid camera calibration parameters, i.e. typically the interior, exterior and, in

the case of multi camera systems, the relative orientation, allow to localize the ego-car in its

environment with high reliability, allow to get a consistent representation of the 3d environment

around the car and allow to determine the mentioned geometric quantities even at a far range

[Marita et al., 2006; Hansen et al., 2012; Knorr, 2018; Muhovic & Pers, 2020].

Same as automotive vision, so is also automotive camera calibration in particular faced with

challenges. While for automotive forward-looking infrared cameras locations at the front bumper

are favorable due to their spectral working range [Bertozzi et al., 2010], visible-range cameras are

typically mounted inside the vehicle behind the windshield to protect them against environmental

influences [Broggi et al., 2001; Gehrig, 2005; Dang et al., 2009; Franke et al., 2013; Livyatan &

Berberian, 2017]. Hence as first challenge, in the presence of a glass windshield in the optical

path between the camera and objects in front of the car, the important collinearity assumption

is not fulfilled anymore due to refraction of the image rays at the air - glass transition [Maas,

2015b]. In particular at short distances in front of the vehicle and for vertically large objects,

ignoring the effect of windshield refraction may heavily influence distance measurements, for

instance [Lasaruk & Neralla, 2018; Verbiest et al., 2020]. This influence on the imaging geometry

is reported to be ”surprisingly large” [Lasaruk & Neralla, 2018; Verbiest et al., 2020]. Automotive

stereo camera systems are in particular affected, as even a small error of just a few seconds in

the relative orientation can remarkably alter the epipolar geometry and so decrease the quality

of 3d environment reconstruction, distance or velocity estimation, especially for objects far away

from the ego-car [Marita et al., 2006; Winner et al., 2015; Ling & Shen, 2016]. Additionally, the

often large stereo baselines in automotive stereo camera systems increase the effect of such errors

[Häne et al., 2017; Mentzer et al., 2017; Zabatani et al., 2017; Muhovic & Pers, 2020]. For the

reasons mentioned, it seems obvious that the windshield refraction should be considered especially

for high-quality test field calibration of automotive stereo camera systems [Geiger et al., 2012;

Fraser, 2013].

Other automotive-specific problems may arise from the conditions on the road. Hence as

second challenge, cameras must be operable over the entire vehicle lifetime, which requires the

estimated camera orientation parameters to stay reliable [Bertozzi et al., 2010]. Mechanical,

thermal and aging effects in the car could cause decalibration, i.e. changes in the geometry of the

camera that lead to a drift in the orientation parameters, thus making previous camera calibration

invalid and requiring re-calibration [Pflug et al., 2013; Gopaul et al., 2016; Mentzer et al., 2017;

Rehder et al., 2017]. It is reported that even moderate effects may cause remarkable changes in

the geometry [Broggi et al., 2001; Muhovic & Pers, 2020]. Vibrations in the vehicle from driving at

higher speed, bad road conditions or collisions are just a few examples for the many anticipatable

or not anticipatable sources for mechanical effects [Gopaul et al., 2016; Mentzer et al., 2017, 2019].

Ambient temperature variations or heating-up of cameras are just two sources for thermal effects

[Gopaul et al., 2016; Adamczyk et al., 2018]. Also environmental conditions on the road that

are different from production or research facilities where initial calibration has been done may

cause decalibration [Cannelle et al., 2012] and so impose an additional challenge that needs to be

resolved.

Therefore, solely calibrating automotive cameras once, often at the end of the production line

with test fields, is not considered as sufficient for reliable use over vehicle lifetime [Ruland et al.,

2010; Winner et al., 2015]. With even more emphasis, Bodis-Szomoru et al. [2008] and Heng

et al. [2014] see repeated validity checks of previously estimated camera orientation parameters
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or repeated re-calibration as indispensable. As solution, self-calibration of cameras carried out

while driving on the road can ensure the needed quality of calibration parameters to reliably

operate automotive vision applications over lifetime [Scheller et al., 2007; Musleh et al., 2014],

even without the need for any labor- and cost-intensive efforts for test field calibration [Mueller

& Wuensche, 2017; Knorr, 2018]. Therefore, reference points for calibration need to be obtained

from the road scene, wherefore often road markings shown in the lower image half are utilized.

As a result, the estimated parameters are only valid for this image half, motivating the use of

complementary road scene objects typically shown in the upper image half, like traffic signs. While

a certain type of objects typically occurs only in a small number and at certain locations of the

scene, may a high number of reference points at various locations be obtained alternatively from

arbitrary road scene objects. Though, the movement of objects like cars or reflective surfaces like

building windows may render reference points on these objects invalid. If such points are used for

calibration, a decrease in the quality of the estimated orientation parameters has to be expected,

wherefore it is desirable to exclude them.

1.3 Research questions

In this thesis, the following research questions on the two mentioned automotive-specific challenges

are addressed.

❑ How does a vehicle windshield in the optical path between a forward-looking on-board stereo

camera system and a calibration test field influence the parameter values, standard devia-

tions and correlations of the interior, relative and exterior orientation parameters estimated

by test field calibration based on bundle adjustment in a set of experimental cases covering

two kinds of test fields, different camera models and different parametrizations of stereo

constraints?

❑ Which types of traffic signs are most appropriate to derive reference points from by deep

learning-based computer vision for self-calibration with a sequence of road scene images

taken with a forward-looking on-board mono camera?

❑ How can semantic road scene knowledge and vehicle motion models be integrated into a

structure-from-motion pipeline to improve self-calibration of a forward-looking on-board

mono camera with a series of road scene images?

1.4 Contributions

The key contributions of this thesis are as follows.

First, a method for stereo camera calibration with test fields is proposed that allows to jointly

use reference points from two non-rigid 2d test fields as well as reference points from coded and

uncoded reference marks by establishing point associations based on multiple similarity trans-

formations. An existing approach for datum definition by free adjustment for mono cameras is

extended for stereo camera systems. Investigations on the influence of the vehicle windshield

on camera calibration are carried out with the proposed method. While in previous work the

presence of an influence is shown, special emphasis of the investigation is put on the uncertainties

and correlations of the estimated camera orientation parameters. Furthermore, the investigation

comprises comparative evaluation of experiments with two kinds of test fields, different stereo

constraints, camera models and bundle adjustment properties.
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Second, a method for camera self-calibration is proposed whereby reference information is

obtained from certain road scene objects. While in previous work often road markings are used,

the proposed method relies on remarkable points at the boundary of traffic signs. The pixel and

object coordinates of these points are calculated by exploiting scene knowledge. By utilizing deep

learning-based semantic segmentation, boundary detection and single image depth estimation to

obtain scene knowledge, the need for additional data sources like GPS or IMU for self-calibration

can be avoided. Furthermore, the effect of three different shapes of traffic signs, two methods

for semantic segmentation and two methods for depth estimation on the calibration results is

investigated with test data from urban and suburban road scenes.

Third, a method for camera self-calibration with reference points obtained from arbitrary

objects in the road scene is proposed. While in previous work only generic outlier removal has

been applied, scene knowledge is obtained from semantic segmentation used in the proposed

method to exclude points from automotive-specific undesired objects like moving cars or reflecting

windows. While other previous work either addresses only feature extraction or feature matching,

the proposed method (i) applies masks to exclude image parts with undesired semantic classes

during extraction of SIFT features and (ii) restricts feature matching to points belonging to

the same semantic class. Furthermore, while previous work considers only moving objects as

undesired, uses only synthetic images for testing or relies on visual SLAM, the proposed method

also considers semantic object classes with inappropriate surfaces (e.g. poor textures like tarmac,

reflecting surfaces like building windows) as undesired. Furthermore, it relies on a typically better

performing structure-from-motion approach for self-calibration. Additionally, a vehicle trajectory

obtained from GPS is refined by Kalman filtering with a special vehicle movement model for

a better metric scaling in the structure-from-motion approach. The method is evaluated with

real image sequences from suburban and urban scenes, whereby the effect of masks created from

different combinations of semantic classes, the benefits of restricting feature matching and filtering

with the vehicle motion model are investigated.

Parts of this thesis have been published in the following papers:

❑ [Hanel et al., 2016] Hanel A, Hoegner L, Stilla U (2016) Towards the influence of a car

windshield on depth calculation with a stereo camera system. International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B5: 461-468.

❑ [Hanel & Stilla, 2017] Hanel A, Stilla U (2017) Structure-from-motion for calibration of a

vehicle camera system with non-overlapping fields-of-view in an urban environment. Inter-

national Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

XLII-1/W1: 181-188.

❑ [Hanel & Stilla, 2018] Hanel A, Stilla U (2018) Iterative calibration of a vehicle camera

using traffic signs detected by a convolutional neural network. In: International Conference

on Vehicle Technology and Intelligent Transport Systems: 187-195.

❑ [Hanel et al., 2018] Hanel A, Kreuzpaintner D, Stilla U (2018) Evaluation of a traffic sign

detector by synthetic image data for advanced driver assistance systems. International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-

2: 425-432.

❑ [Hanel & Stilla, 2019a] Hanel A, Stilla U (2019a) Evaluation of iterative calibration of vehicle

cameras using reference information from traffic signs. In: Donnellan B, Klein C, Helfert

M, Gusikhin O (eds) Smart Cities, Green Technologies and Intelligent Transport Systems.:

Springer, CCIS, 992, 244-265.
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❑ [Hanel & Stilla, 2019b] Hanel A, Stilla U (2019b) Semantic road scene knowledge for robust

self-calibration of environment-observing vehicle cameras. International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W16: 103-110.

❑ [Hanel et al., 2019] Hanel A, Sudi P, Pfenninger S, Steinbach E, Stilla U (2019) Filter-based

pose estimation for electric vehicles relative to a ground-based charging platform using on-

board camera images. In: Kersten TP (ed) Wissenschaftlich-Technische Jahrestagung der

DGPF, 28, 54-67.

1.5 Structure of the thesis

An introduction into the relevant basics and definitions of camera calibration, adjustment theory

and computer vision are given in Chapter 2. The state of the art in automotive camera calibration

is discussed in Chapter 3. In Chapter 4, the method for test field calibration of a stereo camera

system for investigation of the windshield effect is described, while Chapter 5 addresses the

method for camera self-calibration with reference information derived from traffic signs. Chapter 6

comprises the method for camera calibration by semantic structure-from-motion. Descriptions of

the test datasets and experiments are given in Chapter 7. Results and discussion are covered in

Chapter 8. The thesis concludes with answers on the research questions and an outlook given in

Chapter 9.
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2 Basics and definitions

This chapter covers relevant basics of camera calibration, adjustment theory and computer vision,

beginning with geometric camera calibration (Subsection 2.1.1). In the following, the differences

of camera calibration in photogrammetry and computer vision (Subsection 2.1.2) as well as the

differences between test field and self-calibration (Subsection 2.1.3) are addressed. Afterwards,

camera and distortion models are introduced (Subsection 2.1.4). Important aspects of automotive

camera calibration (Subsection 2.1.5) and calibration algorithms (Subsection 2.1.6) are covered.

Then, basic aspects of adjustment theory are addressed (Subsections 2.2.1 and 2.2.2), followed

by details on the important collinearity equations and on the topic of datum definition (Subsec-

tions 2.2.3 and 2.2.4). In the last part of this Chapter, an introduction into the computer vision

topics of object detection and segmentation (Subsection 2.3.1) as well as of 3d reconstruction and

localization is given (Subsection 2.3.2).

2.1 Camera calibration

2.1.1 Geometric camera calibration

Geometric camera calibration is required to obtain accurate metric information from images

[Pollefeys & Van Gool, 1997; Remondino & Fraser, 2006; Luhmann et al., 2016] and aims at

determining the interior (IO), relative (RO) or exterior orientation (EO) parameters; the ap-

proaches proposed in this thesis address either one or more of these three parameter groups.

Various definitions for the terms relative orientation and exterior or extrinsic orientation can

be found in the literature: They can refer to the orientation between two cameras [Stein et al.,

2010; Mentzer et al., 2017], the orientation between cameras and other types of sensors [Domhof

et al., 2019] or the orientation between a camera and the vehicle [Broggi et al., 2001; Catala-Prat

et al., 2006]. In this thesis, relative orientation refers to the orientation between two cameras

and exterior orientation refers to the orientation of a camera in a higher-level coordinate system,

like an object or vehicle coordinate system. The term extrinsic orientation is not used. With

focus on the type of reference information, camera calibration can be categorized into (i) labora-

tory calibration, (ii) test field calibration and (iii) self-calibration [Luhmann et al., 2006; Kraus,

2007; Förstner & Wrobel, 2016]. Laboratory calibration relies on using optic measures, e.g. a

collimator, for calibration. Due to the required special laboratory equipment and the high effort,

this approach is feasible only if the required special conditions can be met and very high accu-

racy is demanded. Test field calibration relies on test fields with known reference information,

like points with known 3d object coordinates [Sturm & Maybank, 1999] or plumb lines [Brown,

1971], and typically a set of images showing this reference information to determine the desired

camera orientation parameters. Self-calibration relies either on test fields without a priori known

reference information or on a sufficient number of reference information that can be identified

from the scene [Luhmann et al., 2016]. Hereby, the object coordinates of the reference points

are obtained during calibration. Self-calibration is considered to be the most general and simple

approach [Luhmann et al., 2006; Förstner & Wrobel, 2016], and as an ”integral and routinely
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applied operation” within photogrammetry, especially ”in close-range measurement” [Remondino

& Fraser, 2006]. As confirmed by Fraser [2013], self-calibration with bundle adjustment can be

seen as the current norm in close-range photogrammetry. Nevertheless, stand-alone calibration

with test fields ”has again emerged as an important issue in close-range photogrammetry”, for

example in cases where the geometry of the image network does not provide enough support

for a robust estimation of the camera orientation parameters by self-calibration [Remondino &

Fraser, 2006]. Automotive calibration covered in this thesis is considered to belong to the field of

close-range photogrammetry due to the type of used cameras and the terrestrial imaging configu-

ration, in contrast to e.g. aerial photogrammetry. Both automotive test field and self-calibration

are addressed. In addition to the descriptions above, other kinds of categorization are known as

well [e.g Shih et al., 1996; Luhmann et al., 2006]; though, their discussion is out of the scope of

this thesis. Equally, radiometric camera calibration [e.g. Mo et al., 2017] addressing the relation

between image intensities and scene radiance [Li et al., 2017] is not covered in this thesis.

2.1.2 Camera calibration in photogrammetry and computer vision

Both the photogrammetry [e.g. Fraser, 1997; Remondino & Fraser, 2006; Luhmann et al., 2013]

and the computer vision (CV) community [e.g. Tsai, 1987; Maybank & Faugeras, 1992; Zhang,

2000] address camera calibration, but common differences in the approaches and objectives can be

identified. According to Fraser [1997], calibration in the CV community often focus on minimal

geometric information, i.e. the least-possible number of images or the least-possible number

of reference points, which may lead to scene-dependent solutions and highly correlated camera

orientation parameters [Fraser, 2013]. Simultaneous calibration during measurement campaigns

seems to be more common than a priori calibration to avoid decalibration caused by mechanical or

thermal effects [Fraser, 1997; Remondino & Fraser, 2006]. Furthermore, calibration approaches

from the CV community are often designed to be easy-to-use and fully automated, with error

analysis not being in the focus [Shih et al., 1996]. In contrast, calibration in the photogrammetry

community often concentrates on high quality [Luhmann et al., 2016] and on thorough result

analysis [Fraser, 1997]. High quality might be visible by high parameter accuracy, strong image

networks, high redundancy, a good initial guess and the use of complex Gauß-Markov optimization

[Börlin & Grussenmeyer, 2014; Luhmann et al., 2016]. Even though simultaneous calibration

approaches are used, photogrammetric calibration is often implemented as a priori calibration

[Börlin & Grussenmeyer, 2014]. As it will be reflected by the following chapters, this thesis relies

on aspects from both communities.

2.1.3 Test field calibration and self-calibration

Test field calibration relies on test fields providing a set of reference information, which is mostly

points represented by reference marks. The reference information has to be known prior to

calibration, hence the object coordinates of such points have to be determined by high-quality

photogrammetry or tacheometry, for instance. The image coordinates are obtained during cal-

ibration by image processing tailored to the appearance of the reference marks. In close-range

photogrammetry and computer vision, checkerboard patterns are a popular type of 2d test fields,

where the checkerboard corners serve as reference points [Luhmann et al., 2016]. Alternatively,

patterns of circular reference marks attached to bars or planes are popular as well [Vo et al., 2011;

Schneider et al., 2017]. Multiple images taken in a suitable imaging geometry are required for

calibration with 2d test fields, while at minimum a single image is sufficient for calibration with

3d test fields [Urban et al., 2015]. According to Luhmann et al. [2016], calibration with planar

sets of reference points can easily lead to undesired high correlations between interior and exterior

orientation parameters, wherefore 3d test fields are taken in the scope of this thesis.
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In contrast, self-calibration employs various single-image and multi-image constraints that

have to be extracted from the acquired scene [Ling & Shen, 2016]. Single-image constraints

may originate from homographies between object space and the image (e.g. planar checkerboard

test fields without known object coordinates) or from multiple vanishing points corresponding

to orthogonal directions (e.g. along the edges of a rectangular building) [Liebowitz, 2001], for

example. Multi-image constraints may originate from epipolar geometry (two images) [Maybank

& Faugeras, 1992] and can be modeled for planar point sets by homographies [Miksch et al., 2010],

or for non-planar sets by the essential matrix for cameras with known interior orientation [Bjork-

man & Eklundh, 2002] or the fundamental matrix for cameras without known interior orientation

[Faugeras et al., 1992]. Multi-image constraints may also rely on the trifocal tensor (three images)

[Armstrong et al., 1996; Hartley, 1997a] or bundle adjustment (typically more than three images)

[Fraser, 2013], for example. Other constraints may originate from projective geometry and allow

to determine the interior orientation parameters based on recovery of geometric items whose pro-

jections stay fixed throughout an image sequence [Pollefeys & Van Gool, 1997]; examples are the

image of the absolute conic [Faugeras et al., 1992] or the image of absolute dual quadric [Triggs,

1997]. While some methods assume all interior orientation parameters to be constant for success-

ful recovery [e.g. Faugeras et al., 1992], others allow that a subset of these parameters may have

varying values [Heyden & Astrom, 1997]. While some methods rely on certain motion patterns,

for example pure translational [e.g. Dron, 1993], pure rotational [e.g. Hartley, 1997b] or pure pla-

nar motion [e.g. Armstrong et al., 1996], others are prone to critical motion patterns that could

cause calibration to fail and hence need to be avoided [Hartley & Zisserman, 2003]. Within this

thesis, bundle adjustment is used for the proposed methods, as plenty of reference information

is available and there is no focus on calibration with a minimal geometric configuration. For all

methods, the interior and relative orientation are assumed to be constant during acquisition of

the calibration images.

2.1.4 Camera and distortion models

To model the imaging geometry, the theoretical assumption of an ideal central projection is

made. In reality, it is violated by perturbations caused by lens distortions, chromatic aberra-

tion or non-planarity of the sensor surface, for example [Fraser, 1997; Förstner & Wrobel, 2016;

Granshaw, 2020]. As insufficient modeling of the projection and perturbations are a typical source

for calibration errors [Heikkila, 2000], an appropriate camera and distortion model is important

for successful camera calibration. Various types of camera models are known: Probably most

common is the pinhole camera model [Brown, 1971; Heikkila, 2000] which can serve for calibra-

tion of cameras with narrow-angle or even wide-angle lenses, if accompanied by appropriate lens

distortion models [Kannala & Brandt, 2006]. Models for special cameras or lenses, like fisheye

lenses [Kannala & Brandt, 2006] or omnidirectional cameras [Scaramuzza et al., 2006] exist. As

such special cameras or lenses are not used by the proposed methods and experiments, further

details on them are not covered here. Common lens distortion models allow for correction of

radial-symmetric and tangential (decentering) distortion [Brown, 1971] as well as for affinity or

shear [El-Hakim, 1986]. According to Bergamasco et al. [2013], so-called specific camera models

as described up to here, provide easy-to-use, well-adapted models for certain cameras; however,

they bear a trade-off between considering all perturbating effects and a low number of parameters

that can be determined reliably during calibration. In contrast, so-called generic high-parameter

camera models [e.g. Kannala & Brandt, 2006] allow to easily consider various projections and dis-

tortions and hence are suitable for several types of cameras and lenses at the same time [Guo-Qing

Wei & Song De Ma, 1994; Rosebrock & Wahl, 2012]. As such generality is not needed for this

thesis, a standard pinhole camera model with different lens distortion models is taken, modeling
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either no distortions, modeling the typically stronger radial distortions or modeling both radial

and tangential distortions (Table 2.1).

Table 2.1: Camera and distortion models determine the vector of interior orientation parameters XI

used for camera calibration. f represents the focal length, c the principal point coordinates, k the radial
distortion and p the tangential distortion parameters, each in x- and y-direction of the image coordinate
system.

Name NONE RADIAL BOTH
XI

(
fx fy cx cy

) (
fx fy cx cy k1 k2

) (
fx fy cx cy k1 k2 p1 p2

)
In the vector XI of interior orientation parameters, fx and fy represent the focal length for the

x- and y-axis of the image coordinate system. Note that the focal length differs from the principal

distance depending on the camera focus [Granshaw, 2020]; as it is more common, the term focal

length is used in the further course. cx and cy represent the principal point coordinates in x- and

y-direction. k1 and k2 represent radial distortion parameters compensating for radial-symmetric

effects, and p1 and p2 represent tangential distortion parameters compensating for effects of lens

decentering. These models have been selected based on their common use [e.g. Förstner & Wrobel,

2016; Luhmann et al., 2016; Schönberger & Frahm, 2016; OpenCV, 2017; Polic et al., 2018].

Note that the described parametrization of the distortion models is taken from the computer

vision community, as to the author’s knowledge more work for automotive camera calibration

originates from this community. In the photogrammetry community, radial-symmetric distortion

parameters are often alternatively referred to as A1 etc., and tangential distortion parameters

as B1 etc. [Luhmann et al., 2016]. More important to acknowledge, there are different opinions

in the communities on the mathematical formulation of distortion models that could result in

small differences compared to the formulations used in this thesis, for example with regard to

the use of an additional radius of zero-crossing or with regard to the series expansion for radial-

symmetric distortion [Luhmann et al., 2006; Förstner & Wrobel, 2016]. Other perturbations

than lens distortions are not considered in this thesis. According to Luhmann et al. [2016], such

perturbations may be worth to consider in extended camera models designed for special cameras

or conditions.

2.1.5 Automotive camera calibration

Automotive camera calibration is used to estimate either the interior [Houben, 2014; Keivan &

Sibley, 2015; Hanel & Stilla, 2018], the exterior [Ruland et al., 2010; Heng et al., 2014] or in the

case of multi-camera systems the relative orientation. Other approaches aim at simultaneously

estimating two or more types of orientation [e.g. Heng et al., 2013]. Thereby, calibration provides

the mapping between images of automotive cameras and the road scene environment [Houben,

2014; Häne et al., 2017] and with a calibrated automotive camera, angle, distance or velocity

measurements between the ego-car and environment objects become possible. In this thesis,

the interior orientation is estimated by all proposed methods, and additionally the relative and

exterior orientation are estimated by one method. In the automotive domain as well as in the

proposed methods, calibration of on-board mono cameras [e.g. Miksch et al., 2010] or multi-

camera systems [e.g. Broggi et al., 2001] are addressed. As besides normal-angle lenses also wide-

angle and fisheye lenses are common for automotive cameras [Rosebrock & Wahl, 2012; Heng

et al., 2013], the remarkable lens distortions may not be neglected during calibration. Most work

on automotive camera calibration addresses forward-looking camera systems [e.g. Dang et al.,

2009; Hanel et al., 2016], while other addresses downward-looking camera systems [e.g. Pliefke,

2013]. Camera calibration in the automotive domain addresses also multi-sensor systems, like a

combination of camera and LiDAR or radar [Schöller et al., 2019; Geiger et al., 2012; Levinson

& Thrun, 2013; Schöller et al., 2019], or ”off-board” cameras, e.g. stationary road surveillance
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cameras [Ismail et al., 2010; Brown et al., 2015]. The later two kinds of cameras and systems are

not covered in this thesis.

Automotive camera calibration is done as either test field calibration [Broggi et al., 2001;

Geiger et al., 2012; Hanel et al., 2016; Cordts et al., 2016] or self-calibration [Stein et al., 2010;

Mueller & Wuensche, 2017; Rehder et al., 2017]. Both so-called ”offline” and ”online” calibration

are employed [Cannelle et al., 2012; Ishikawa et al., 2018] and used by the methods in this thesis.

Hereby, online calibration takes place in the area of application and typically relies on a high

number of reference points obtained while driving on the road [Cannelle et al., 2012; Dlugosz et al.,

2019]. In contrast, offline calibration does not take place in the area of application, i.e. often in a

factory [Dlugosz et al., 2019] or in research facilities [Geiger et al., 2012]. Test field calibration is

often used as initial calibration [e.g. Gil et al., 2018a; Lasaruk & Hachfeld, 2019], for example at

the end of camera production or at the end of the car production line is mass-production facilities

[Ruland et al., 2010; Winner et al., 2015; Lasaruk & Hachfeld, 2019]. Such initial calibration

enables or facilitates subsequent re-calibration [Houben, 2014]. As mechanical solutions to avoid

decalibration over time are difficult to realize [Lasaruk & Hachfeld, 2019], can single end-of-line

calibration or laboratory calibration not be seen as sufficient to provide and ensure calibration

parameters that are valid over vehicle lifetime. Repeated re-calibration, or continuous calibration

[Dang et al., 2009], can serve to overcome temporal decalibration by a validity check of previously

estimated calibration parameter values [Marita et al., 2006; Szczepanski, 2019] or by an update

to these values, if necessary [Broggi et al., 2001]. In particular, this is relevant for stereo cameras

[Winner et al., 2015]. Typically, repeated re-calibration is performed as online calibration, i.e.

the calibration parameters are estimated with reference information derived from the ego-car or

the road scene environment while driving the car on the road [Mueller & Wuensche, 2017; Knorr,

2018; Mentzer et al., 2019; Paone et al., 2019]. Mostly, online calibration is accomplished by

self-calibration [Bellino et al., 2005; Heng et al., 2013; Rehder et al., 2017; Zheng & Zhao, 2017],

which does also apply to two of the proposed methods.

Parallels between automotive camera calibration and camera calibration in close-range pho-

togrammetry or computer vision exist obviously with regard to the estimated parameters, i.e.

the interior, relative or exterior orientation parameters [Kruger et al., 2004; Scheller et al., 2007;

Winner et al., 2015; Gopaul et al., 2016]. Parallels exist also with regard to the use of similar

algorithms [Broggi et al., 2001; Heng et al., 2013; Lasaruk & Neralla, 2018]. Differences can be

mainly found in the use of automotive-specific test fields or road scene-specific reference infor-

mation, as it will be further discussed in Chapter 3. As specific property of automotive camera

calibration, special precautions have to be taken in particular for mass-produced cars due to the

limited computational power that is available. For example, global bundle adjustment processing

the entire available image sequence may be replaced by local bundle adjustment processing only

subsets of the image sequence [Rehder et al., 2017], the optimization may be performed in a

reduced-order setup [Dang et al., 2009] or computationally light-weight recursive approaches like

Kalman filtering may be utilized [Mueller & Wuensche, 2017]. But as the methods proposed in

this thesis are intended for and tested with a research setup, limitations in computational power

are not considered in the design of the calibration algorithms.

2.1.6 Calibration algorithms

Calibration can be realized by various types of algorithms. Classic approaches often incorporate

a two-step algorithm with an initial linear closed-form solution followed by refinement based

on non-linear optimization [e.g. Heikkila & Silven, 1997; Häne et al., 2017]. For example, a

linear solution can be obtained by direct linear transformation (DLT) [Abdel-Aziz & Karara,

1971]. Often linear solutions base on simplified models, e.g. without considering distortions.
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Optimization often utilizes in the first step geometrically meaningless and linear algebraic distance

measures derived from constraints that can be easily minimized [Zhang & Pless, 2004]. Geometric

distance measures, e.g. the re-projection error, are often used in the subsequent refinement

step to improve previously obtained results to achieve higher accuracy [Zhang & Pless, 2004;

Rodehorst et al., 2008; Dang et al., 2009]. Bundle adjustment as one of the most comprehensive

optimization approaches often forms the last step of a calibration algorithm [Liebowitz, 2001;

Hartley & Zisserman, 2003]. With bundle adjustment, high accuracy and low re-projection errors

down to a fraction of one pixel can be achieved [Rosebrock & Wahl, 2012], but at the cost of

larger processing times [Ling & Shen, 2016] compared to other algorithms or constraints and

at the need of a known initial guess [Okouneva, 2017]. According to Dang et al. [2009], the

accuracy achievable with other algorithms or constraints is not comparable to bundle adjustment.

Recursive algorithms, like the Kalman filter [Hansen et al., 2012], allow iteratively integrating new

measurements over time into the optimization process and therefore are particularly suitable for

continuous calibration [Dang et al., 2009]. Obviously, recently calibration approaches based on

deep learning have been published [Bogdan et al., 2018; Gil et al., 2019]. With deep learning,

beneficial properties similar to classic calibration approaches can be achieved, like single shot

calibration or no need for test fields [Bogdan et al., 2018; Hold-Geoffroy et al., 2018]. But as

deep learning for camera calibration is a new field of research, the approaches currently bear

certain problematic properties as well: As important aspect, generalization and robustness of the

approaches with regard to scenes that are different from the training data can be questionable [Gil

et al., 2019]. Bogdan et al. [2018] and Hold-Geoffroy et al. [2018] state that currently only low-

resolution images are supported, creating a training dataset with ground truth interior orientation

parameter values is necessary and that images with motion blur, overexposure or images taken

with rolling shutter cameras often show unreliable results. The same authors add that also images

taken in nadir direction may be problematic, in addition to the lower accuracy compared to classic

calibration approaches. Interestingly, Hold-Geoffroy et al. [2018] have revealed that their model

seems to learn ”semantically meaningful vanishing lines, making parallels with geometrically-

based auto-calibration techniques”. But as no advantage of deep learning is seen, the methods

proposed in this thesis rely on classic camera calibration with bundle adjustment, same as other

recent methods for automotive camera calibration [e.g. Okouneva, 2017; Lasaruk & Hachfeld,

2019].

2.2 Adjustment theory

Bundle adjustment is an optimization method to simultaneously estimate the interior, potentially

relative, and exterior orientation parameters as well as the 3d object coordinates of the reference

points as unknown parameters in a statistically optimal manner [Förstner & Wrobel, 2016]. Typ-

ical observations are pixel or image coordinates of the reference points for calibration that are

shown in multiple images and, depending on the calibration setup and mathematical model, addi-

tionally the object coordinates of the reference points. The functional basis of bundle adjustment

is typically defined by the collinearity equations. Especially in photogrammetry, the optimization

is realized by non-linear least squares adjustment with the Gauß-Markov or Gauß-Helmert model,

wherefore the basics will be described in this section.

2.2.1 Adjustment basics

Each mathematical model that is used to solve parameter estimation problems by non-linear least

squares consists of a functional and a stochastic model [Förstner & Wrobel, 2016]. The functional
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model of the first approach, called Gauß-Markov model, is defined in its basic unconstrained case

as

b1 + v̂b1 = f1(x̂) (2.1)

with b1 being observations, v̂b1 being their residuals, x being the unknown parameters, the

circumflex symbol (”hat”) denoting estimated quantities and f1(...) being one or more functions

relating the observations with the parameters. The functional model of the second approach,

called Gauß-Helmert model, is defined in its basic unconstrained case as

f1(b1 + v̂b1 , x̂) = 0 (2.2)

In the case of hard (crisp) constraints, additional dependencies between the parameters can be

modeled that are enforced strictly during optimization. Therefore, the respective functional model

is extended by

f2(x̂) = 0 (2.3)

with f2(...) being one or more constraining functions. In contrast, in the case of weak (soft)

constraints, where it is allowed that after optimization residuals greater than zero remain for

these constraints, the functional model is extended by fictional observations of type b1 and by

additional constraining functions of type f1(...). The influence of these constraints is controlled

by observation weights defined in the same way as observation weights for real observations.

Fictional observations may be the expected relative position or rotation between two cameras, for

example, and the corresponding constraining functions may calculate this position or rotation from

the exterior orientation parameters of both cameras that are modeled as unknown parameters.

As stochastic model for both the Gauß-Markov and Gauß-Helmert model, normally-distributed

observations with covariance matrixKbb = σ2
0 ·Qbb are assumed, with σ2

0 being the variance factor

a priori and Qbb being the weight coefficient matrix. The earlier controls the overall weight level

for all observations, while the later contains the variances of the observations on the main diagonal,

and the covariances between observations on the secondary diagonals and so allows to determine

weight ratios between different observations. Due to the common non-linearity of the functional

model, an initial guess has to be selected for the unknown parameters to start the iterative

estimation process with. In this iterative process, the unknown parameter values are updated

by minimizing a cost function based on the weighted linearized functional model. Typically,

first order Taylor series expansion is utilized for linearization. The process is stopped when a

convergence criterion has been met, for example if the updates of the unknown parameter values

fall below a given threshold. According to Förstner & Wrobel [2016], the prevalent estimation

problem guides the decision for one of the two models.

2.2.2 Uncertainty of observations and unknown parameters

The uncertainty of observations and estimated unknown parameter values plays an important

role to evaluate camera calibration. For optimization with the Gauß-Markov and Gauß-Helmert

model, uncertainties can be calculated after convergence and are typically described by the vari-

ance factor a posteriori, the covariance matrix of unknown parameters and the covariance matrix

of observations. The estimated standard deviations of the unknown parameters, which are an im-

portant aspect of evaluation in this thesis (Chapter 8), can be extracted from the corresponding

covariance matrix. Other measures, like correlation coefficients, can be obtained by calculation

using elements from these matrices. Uncertainty measures could be also obtained by other ap-

proaches, for example by error propagation [e.g. Hartley & Zisserman, 2003] or by Kalman filtering

[Kalman, 1960], but this is not done for this thesis.
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2.2.3 Collinearity equations

The collinearity equations are basic photogrammetric equations relating 2d pixel or image co-

ordinates of observed points, like reference points for camera calibration, with the interior and

exterior camera orientation as well as the 3d object coordinates of these points [Kraus, 2007].

The non-linear collinearity equations are often used as functional model for bundle adjustment

and are defined as

fx,i,j,k : xi,j,k = cx,j − fx,j · R1,1,j,k · (Xi−X0,j,k)+R2,1,j,k · (Yi−Y0,j,k)+R3,1,j,k · (Zi−Z0,j,k)
R1,3,j,k · (Xi−X0,j,k)+R2,3,j,k · (Yi−Y0,j,k)+R3,3,j,k · (Zi−Z0,j,k)

(2.4)

fy,i,j,k : yi,j,k = cy,j − fy,j · R1,2,j,k · (Xi−X0,j,k)+R2,2,j,k · (Yi−Y0,j,k)+R3,2,j,k · (Zi−Z0,j,k)
R1,3,j,k · (Xi−X0,j,k)+R2,3,j,k · (Yi−Y0,j,k)+R3,3,j,k · (Zi−Z0,j,k)

(2.5)

given for reference point i, for camera j and for image k. The collinearity equations can be

extended by the correction terms ∆x and ∆y, often used to model image distortions so that

x′i,j,k = xi,j,k +∆xi,j,k (2.6)

y′i,j,k = yi,j,k +∆yi,j,k (2.7)

with xi,j,k, yi,j,k describing the undistorted, but unobservable points and x′i,j,k, y
′
i,j,k describing

the distorted and observable points. Additionally, the object coordinates of the reference points

can be also modeled as observations to consider them with a realistic observation weight. Then,

for each reference point there will be three additional functional equations defined as

Xi + v̂Xi = X̂i (2.8)

Yi + v̂Yi = Ŷi (2.9)

Zi + v̂Zi = Ẑi (2.10)

withXi being theX component of the object coordinates of point i and so on. All together, the 3d

object coordinates of the reference points XP in the object coordinate system are parameterized

in this thesis by

XP =
(
XP,1 YP,1 ZP,1 ... XP,n YP,n ZP,n

)
(2.11)

and the exterior orientation XE for camera j and image k is parameterized by

XE,j,k =
(
X0,j,k Y0,j,k Z0,j,k θ0,j,k θ1,j,k θ2,j,k [θ3,j,k]

)
(2.12)

withX0, Y0 and Z0 describing the position of the projection center in the object coordinate system

and θp being one of the 3d rotation parameters describing the rotation from the object coordinate

system into the camera coordinate system. Hereby, p = 0...2 for Euler angle representation

or axis-angle representation and p = 0...3 for quaternion representation ([] indicates optional

parameters). R1,1,j,k etc. represent the elements of the 3x3 rotation matrix that can be obtained

from other rotation representations and vice versa. It should be acknowledged that parameterizing

3d rotations is faced with some challenges [e.g. Albl & Pajdla, 2014]. Using Euler angles is

faced with the risk of singularities. Using quaternions requires an additional parameter to fully

represent a rotation, i.e. 4 instead of 3; same for using rotation matrices with 9 parameters. Note,

these parameters are not fully independent from each other. fx,j , fy,j , cx,j , cy,j and the distortion

parameters used for ∆x and ∆y define the interior orientation XI for each camera j according

to Subsection 2.1.4. If applicable for the prevalent camera system, the relative orientation XR

between two cameras is parameterized the same way as XE . Note that there are slightly different

definitions of the collinearity equations in the literature, for example with regard to the order of

the rotation matrix elements, with regard to the sign of the focal length or with regard to the

symbols used for the orientation parameters [Förstner & Wrobel, 2016; Luhmann et al., 2016].

Note that superscripts (e.g. o denoting the object coordinate system, cf. Subsection 4.2.6) are

sometimes omitted for the sake of readability.
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2.2.4 Datum definition

Depending on the geometry of the adjustment problem and the given observations, there might

be a datum deficiency, which could make explicit datum definition necessary. From the point

of view of numerical mathematics, datum definition allows to obtain a unique solution during

optimization. Otherwise, the Jacobian matrix A, resulting from linearization of the functional

model and containing the partial derivatives of all function equations with regard to the unknown

parameters, would be singular, and as consequence the normal equation matrix N , derived from

the Jacobian matrix and necessary for solving the adjustment problem, could not be inverted

and so no solution be provided. From the point of view of network geometry, datum definition

means introducing additional information resolving the datum deficiency, i.e. the ambiguities in

the translation, rotation and scale of a network of points with regard to a higher-level coordinate

system. The type of observations and the dimensionality of the network determines which am-

biguities need to be resolved. Common approaches for datum definition in photogrammetry are

either using free adjustment or defining some points as fixed datum points [Luhmann et al., 2013].

The later can be modeled either as constants with error-free coordinates or as observations with

a realistic observation weight. Advantageous of free adjustment is that no undesired constraints

on the inner geometry of the network are imposed: If otherwise the number of fixed datum point

coordinates is higher than the datum deficiency, such undesired constraints may occur. Further-

more, according to Luhmann et al. [2013], free adjustment provides optimal precision compared

to unconstrained or overdetermined datum definition using fixed datum points.

Both error-free datum points and datum points with realistic weights can be modeled as

additional observations in the functional model of an adjustment. The stochastic model has

to be extended for the additional observations by unrealistically high or realistic observation

weights, respectively. Alternatively, error-free datum points can be modeled by removing their

object coordinates from the set of unknown parameters. Free adjustment can be modeled by

adding constraining functions to the functional model (cf. Subsection 2.2.1), which are derived

from the condition equations HT∆x̂ = 0. Hereby, H is a constraint matrix established by

partial derivatives of the condition equations with respect to the datum parameters [Förstner &

Wrobel, 2016] and ∆x describes the update of unknown parameters estimated in one optimization

iteration, i.e. the interior, if applicable relative, and exterior orientation parameters and the object

point coordinates in a bundle adjustment. Thus, H is defined for bundle adjustment with a mono

camera as

H =



∂∆XE,1,1

∂T
∂∆XE,1,1

∂S
∂∆XE,1,1

∂µ
...

...
...

∂∆XI,1

∂T
∂∆XI,1

∂S
∂∆XI,1

∂µ
...

...
...

∂∆XP,1

∂T
∂∆XP,1

∂S
∂∆XP,1

∂µ
...

...
...


(2.13)

with T covering the three 3d translation parameters, S covering the three rotation parameters

and µ covering the scale parameter of a similarity transformation. XP , XI and XE are defined

as in Subsections 2.1.4 and 2.2.3. As proposed by Polic et al. [2018] for large-scale camera

calibration, the condition equations describe differences of the estimated orientation parameter

values and object coordinates before and after applying a similarity transformation that links the

network to the higher-level coordinate system and so realizes the datum definition (denoted by

left superscript t(...)). By setting the right side of the condition equations to zero, it is ensured

that the translation, rotation and scale change applied to the network points are in total zero.
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Exemplarily, the mentioned differences for the three position parameters X0,1,1 of the exterior

orientation XE,1,1 for camera 1 and image 1 are defined as

∆X̂0,1,1 = X̂0,1,1 − tX̂0,1,1(qS) = X̂0,1,1 − (µR(S)X̂0,1,1 + T ) (2.14)

and the differences for the object coordinates XP,1 of point 1 as

∆X̂P,1 = X̂P,1 − tX̂P,1(qS) = X̂P,1 − (µR(S)X̂P,1 + T ) (2.15)

with qS = [T ,S, µ] and R being the rotation matrix corresponding to S. As the interior orien-

tation parameters are not affected by the described similarity transform, ∆X̂I,1 etc. are zero,

and their derivatives are zero as well. According to Polic et al. [2018], ∆θ̂1,1 etc. addressing

the rotation angles of the exterior orientation is not calculated analogue to Equations 2.14 and

2.15. Instead, its derivatives are obtained in a complex multi-step process from parts of the Ja-

cobian matrix A. As the method proposed by Polic et al. [2018] supports mono cameras only, it

needs to be extended in order to support the stereo camera system that is used to investigate the

windshield effects.

2.3 Computer vision on road scene images

For automotive applications, various computer vision tasks are performed on road scene images,

wherefore nowadays typically deep learning is employed. In the following, computer vision tasks

that are relevant for the proposed camera calibration methods are introduced.

2.3.1 Detection and segmentation

It is state of the art to evaluate road scene images taken with on-board cameras in vehicles by deep

learning methods for various computer vision tasks to get a better scene understanding. Relevant

tasks for this thesis are (i) object detection, (ii) semantic segmentation, (iii) instance segmentation

and panoptic segmentation, (iv) depth estimation and (v) edge or boundary detection. Object

detection [Girshick et al., 2014; Liu et al., 2016; Lin et al., 2017; Redmon & Farhadi, 2017; Ren

et al., 2017] aims at finding the position of individual objects belonging to a certain class in images.

Detected objects are typically marked by enclosing rectangles, which means that no pixel-level

object boundaries are obtained. Earlier methods for object detection typically divide an image

into smaller sub-images, which are then checked with high effort one after the other whether they

contain desired objects [e.g. Sermanet & LeCun, 2011; Houben et al., 2013; Benenson et al., 2015]

(sliding window approach). With such an approach the same object may be detected multiple

times in nearby sub-images, which needs to be resolved e.g. by post-processing [Hanel & Stilla,

2018, 2019a]. More recent methods evaluate an entire road scene image in one step [e.g. Zhu

et al., 2016; Janai et al., 2017] and so provide more consistent detections. Nevertheless, neither

pixel-accurate object boundaries nor scene knowledge for the entire image are obtained, which

both is relevant for the proposed methods. In contrast, semantic segmentation [Ronneberger

et al., 2015; Chen et al., 2016; Shelhamer et al., 2017; Badrinarayanan et al., 2017; Chen et al.,

2018b] aims at predicting a semantic image providing pixel-wise information about the semantic

class of objects shown in a given RGB image. Typically, the semantic class is determined for

every pixel [e.g. Chen et al., 2018b]. The resulting semantic image consists of multiple segments,

each belonging to one semantic class. Each segment can contain even more than one individual

object of this class, which may be a problem for certain applications [e.g. Liu et al., 2018].

Ideally, the boundaries of the segments match with object boundaries in the RGB image. For

semantic segmentation of road scene images, the classes represent common road scene objects like

vegetation, vehicle, building or road, whereby often the class definition from Cordts et al. [2016]



2.3. Computer vision on road scene images 31

is applied. Relevant in particular for automotive applications, Vertens et al. [2017] have proposed

to predict the motion status, i.e. whether an object is moving or standing, in addition to semantic

classes. Note that besides the image-based semantic segmentation addressed in this paragraph,

semantic segmentation could be performed on point clouds as well [Brostow et al., 2008; Charles

et al., 2017; Huang et al., 2019]. As a similar computer vision task, instance segmentation can

be seen as combination of object detection and semantic segmentation, as it targets at pixel-level

segments belonging to individual objects of specific classes [Hariharan et al., 2014; He et al.,

2017; Liu et al., 2018]. By instance segmentation, typically only image parts containing objects

of desired classes are considered in the resulting semantic images and no semantic information

is obtained for other image parts. As consequence, especially non-countable semantic classes

like road, sidewalk that are relevant for automotive applications might be neglected. For these

reasons, instance segmentation is not considered for the proposed methods. Recently, the topic

of panoptic segmentation as merge between semantic segmentation and instance segmentation

arose [Mohan & Valada, 2021], whereby typically fully-covered semantic images with segments

containing individual objects instead of object classes are obtained. Though it would be an

alternative to semantic segmentation that is worth to consider, panoptic segmentation is only

used for one experimental variation, as most experiments have been performed before its first

publication. As next task, single image depth estimation aims at providing disparity and depth

maps for given RGB images [Eigen et al., 2014; Garg et al., 2016; Laina et al., 2016]. By depth

maps, for each pixel the metric distance of the shown object from the camera is obtained, which is

used by one of the proposed methods. While e.g. with stereo cameras or RGB-D cameras, depth

maps are obtained by an geometry-based approach, typically machine learning is employed to

retrieve them from single images [Mertan et al., 2022]. The last task, edge detection, also called

boundary detection, aims at deriving certain types of edges [Marr & Hildreth, 1980; Bertasius

et al., 2015; Liu et al., 2019]. Such edge types may be low-level intensity changes in images till

high-level object boundaries [Deng et al., 2018]. For one of the calibration methods proposed

in this thesis, detecting edges that are object boundaries is required (cf. Chapter 5), wherefore

a boundary detection method that utilizes semantic information by deep learning to find the

boundaries of objects is used [Yu et al., 2017]. In contrast, classic edge detectors like the Canny

edge detector [Canny, 1986] do not employ semantic information and so they seem less applicable

to get specifically the boundaries of objects.

2.3.2 3d reconstruction and camera localization

A 3d reconstruction of the environment or camera localization can be obtained by approaches like

(i) visual odometry (VO), (ii) multi view stereo (MVS), (iii) visual simultaneous localization and

mapping (SLAM) or (iv) structure-from-motion (SfM) using data from different kinds of sensors,

like monocular cameras [Engel et al., 2014; Mur-Artal et al., 2015], stereo cameras [Wang et al.,

2017], RGB-D cameras [Henry et al., 2012; Nießner et al., 2013], or LiDAR [Jiang et al., 2016;

Graeter et al., 2018], for example. Visual odometry aims at camera localization only and does

not create an environment reconstruction at all [Guerrero et al., 2005; Nister et al., 2006]. In

contrast, MVS aims at obtaining an environment reconstruction for given camera orientations

[Labatut et al., 2007; Furukawa & Hernández, 2015]. Due to their objectives, these two kinds

of approaches are not considered as relevant for camera calibration within this thesis. Visual

SLAM can realize consistency between 3d reconstruction and camera orientations by constraining

the camera trajectories, for example by loop closures [Scaramuzza & Fraundorfer, 2011; Yousif

et al., 2015], but aims at real-time performance. In contrast, SfM typically doesn’t aim at real-

time performance, therefore allowing computationally expensive offline optimization (i.e. bundle

adjustment) to obtain global consistency in the 3d reconstruction. Therefore, SfM is seen as more

relevant for the self-calibration methods proposed in this thesis. These four kinds of approaches
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can be either indirect methods [Schönberger & Frahm, 2016; Mur-Artal & Tardós, 2017] relying on

feature descriptors like SIFT [Lowe, 1999], SURF [Bay et al., 2006] or ORB [Rublee et al., 2011],

or direct methods [Wang et al., 2017; Engel et al., 2018] comparing intensities between different

image patches. For the later ones, problems have been reported for auto exposure cameras and in

the case of vignetting [Bergmann et al., 2018], which both could play a role for on-board cameras.

Furthermore, the performance of direct methods may suffer in the case of large motions between

consecutive images [Younes et al., 2019], which could apply for images recorded at high vehicle

velocities. Therefore, indirect methods are used in this thesis. Comparing different descriptors for

indirect methods, Tareen & Saleem [2018] have reported in their comparative analysis of matching

performance that SIFT has shown the best accuracy despite its age. As consequence, in this thesis

SIFT is used for feature extraction for camera calibration by semantic structure-from-motion.
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3 State of the art

This chapter covers the state of the art in automotive camera calibration that is relevant for the

proposed methods. At first automotive test field calibration is addressed (Section 3.1), covering

the motivation to use test field calibration to investigate the influence of the windshield and also

covering two challenges with regard to the selection of the test fields. Furthermore, different

approaches to cope with the windshield effects are discussed. Then automotive self-calibration

is addressed (Section 3.2), whereby different types of reference information are described that

can be derived from road scene environments. In particular, the benefits and challenges of using

traffic signs and image features to derive the reference points for automotive self-calibration are

addressed. Finally, two important aspects for self-calibration with reference points from image

features are discussed: The approaches to obtain semantic scene knowledge and their integration

into the 3d reconstruction methods used for self-camera calibration.

3.1 Automotive test field calibration

First, the selection of the test fields for automotive camera calibration and, second, the windshield

refraction are addressed.

3.1.1 Test fields in automotive camera calibration

Automotive self-calibration depends on the availability of appropriate road scene-specific reference

information (e.g. lane markings) at the desired calibration locations. The estimated values of the

orientation parameters are more likely to be scene-dependent, highly correlated and only valid

for the part of the image area that is covered by reference points, like the lower image half for

lane markings [Fraser, 1997, 2013]. Thus, automotive self-calibration often requires additional

algorithmic steps, e.g. to remove outliers by point filtering, for a reliable calibration [Dang et al.,

2009; Lasaruk & Hachfeld, 2019]. In contrast, automotive test field calibration is robust to varying

imaging conditions and can be performed in a well-controlled environment [Geiger et al., 2012;

Rosebrock & Wahl, 2012], so that a high quality of the calibration results and comparability

between different calibration iterations can be expected. For these reasons, the investigation of

the windshield influence (see Chapter 4) is carried out by test field calibration.

Though, two aspects need to be considered when using test field calibration for this inves-

tigation. First, space restrictions, either induced by vehicle mass-production processes or by

limitations in research facilities, could constrain the position and orientation of test fields (Fig-

ure 3.1) used for calibration of vehicle cameras [Scheller et al., 2007; Bodis-Szomoru et al., 2008].

These constraints can occur in a way so that no sufficient coverage of all six degrees of free-

dom (DOF) may be achieved [Schöller et al., 2019; Muhovic & Pers, 2020], which could impose

a negative influence on camera calibration [Hastedt et al., 2016]. Stereo camera calibration is

affected by space restrictions in particular, as even more space is required to place test fields

covering both fields of view adequately [Kruger et al., 2004; Bodis-Szomoru et al., 2008; Lasaruk
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(a) (b) (c)

Figure 3.1: Test fields for automotive camera calibration. a) Classic 2d photogrammetric test field,
b) automotive-specific test field for forward-looking cameras [Hella Gutmann Solutions GmbH, 2019],
c) automotive-specific test field for surround-view cameras [Texa, 2022].

& Hachfeld, 2019]. Even for test field calibration with known precise object coordinates of the

reference points, an appropriate imaging geometry has to be ensured so that good precision and

low correlations between the estimated parameters can be expected [Mitishita et al., 2009; Fraser,

2013]. Therefore, the problem arises to select a test field for the investigation of the windshield

influence that allows a sufficient coverage of all DOFs.

Type: Regular vs.
automotive-specific

References:
Points vs. lines

Location: End of
production line vs. street

Car: Standing
vs. moving

Domain: Mass-
production vs. research

Orientation:
Upright vs. lying

Quantity: One
vs. more

Figure 3.2: Common characteristics of test fields in automotive camera calibration.

Second, a plenty of automotive-specific test fields exist for different types of vehicle cameras

[Marita et al., 2006; Scheller et al., 2007; Friel et al., 2012; Rosebrock & Wahl, 2012; Pliefke, 2013;

Hanel et al., 2016; Hella Gutmann Solutions GmbH, 2016; Thatcham Research and ADAS Repair

Group, 2016; Texa, 2017; Robert Bosch GmbH, 2018] (Figure 3.2): While forward-looking cameras

are typically calibrated with upright standing test fields, test fields lying on the ground are used

for surround-view systems mainly [Geiger et al., 2012; Pliefke, 2013]. Common automotive-specific

test fields may provide only a small number of reference points [Hella Gutmann Solutions GmbH,

2016; Texa, 2017]. As in addition to a sufficient coverage of the DOFs, obviously a large number of

reference points is desired for a good imaging geometry for camera calibration, also such aspects

as mentioned have to be taken into account when selecting the number and type of test fields for

the proposed method.

3.1.2 Windshield refraction in automotive camera calibration

One objective of this thesis is to investigate the influence of the vehicle windshield on automotive

test field calibration. The presence of such an influence has been addressed already in previous

work: Zou & Li [2015] state that windshield refraction is important for calibration of cameras

inside the car that observe test fields outside. Lasaruk & Neralla [2018] suggest that compensation

models for the windshield effects obtained for one windshield can be applied to other windshields of

the same model, while Dlugosz et al. [2019] believe that calibration is necessary for each individual

camera due to differences in the effects. The refractive effects can either be compensated implicitly

by using standard camera models or explicitly by using an extended camera model [Kahmen et al.,

2020]. In this thesis, an implicit solution is used so that potential effects of the windshield can

become visible as differences in the calibration results compared to calibration without windshield.

As stated by Verbiest et al. [2020], only few work has been published on the assessment of refractive
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effects: They have shown that differences in the values of the interior orientation parameters due

to windshield effects are larger for implicit than for explicit compensation. But to the best

of the author’s knowledge, none of the previous works has focused on assessing differences in

the uncertainties (standard deviations, correlations) of the camera orientation parameters due to

windshield effects. Therefore, special emphasis of the investigations carried out with the proposed

method for test field calibration is put on the uncertainties. A stereo camera system is used for

these investigations, as they are especially sensitive to calibration errors that could result from

windshield refraction, as already outlined in the previous chapters.

3.2 Automotive self-calibration

To ensure valid calibration parameters over vehicle lifetime, self-calibration is interesting as test

field calibration done while driving on the road is typically not realistic: The effort to provide test

fields at the desired calibration locations and time points on public roads would be infeasibly high

[Pagel & Willersinn, 2011; Schöller et al., 2019]. Furthermore, special test fields for use on the

road, like markers placed on the street surface [Marita et al., 2006; Bodis-Szomoru et al., 2008]

or on the vehicle hood [Broggi et al., 2001], may be applied in research settings only [Gil et al.,

2018b], same as returning to special calibration facilities from time to time [Dang et al., 2009; Hold

et al., 2009; Friel et al., 2012]. With regard to either geometric, temporal or stereo constraints

used for automotive self-calibration, the employed reference information obviously originates from

the ego-car or the road scene environment (Figure 3.3) as described in the following.

Vanishing pointsArtificial objects Motion patterns Road scene
objects Image features

Figure 3.3: Common types of reference information for automotive camera self-calibration.

3.2.1 Artificial objects and ego-car motion

Artificial objects, like special patterns of road markings, can not only be utilized for test field

calibration, but also for automotive self-calibration [Tan et al., 2011]. Same as for test field

calibration, the most prominent drawback is the required high manual effort to handle them

[Bhardwaj et al., 2018]. This applies also if only parts of the reference information should be

provided by artificial objects, for example if metric scale information should be obtained from

scale bars placed in the road scene [Scheller et al., 2007; Stein et al., 2010; Heng et al., 2015;

Knorr, 2018]. So, especially for mass-produced vehicles, such approaches can’t be seen as feasible.

Besides artificial objects, also ego-car motion can be used to derive reference information, either

by having knowledge about the motion or by demanding certain motion patterns to be performed;

for example, translation-only motion, i.e. driving straight, or doing a cornering maneuver [Miksch

et al., 2010; Houben, 2014; Paula et al., 2014; Lasaruk & Hachfeld, 2019]. Though, demanding

certain patterns seems also not to be feasible, as driving specified maneuvers may be challenging

for regular drivers without special instructions or training. In contrast, as modern vehicles are

equipped with many additional sensors, using wheel odometry [Heng et al., 2013; Okouneva,

2017], GPS or IMU [Gopaul et al., 2016; Mueller & Wuensche, 2017; Borgmann et al., 2018;

Hanel & Stilla, 2019b], or radar [Muhovic & Pers, 2020] may be the more feasible alternative to

provide reference information that originates from the motion of the ego-car. Therefore, vehicle

positions obtained from GPS are used in the proposed method for camera calibration by semantic

structure-from-motion to get metric scale information, which arises the need to appropriately
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integrate these positions into the structure-from-motion algorithm. As additional requirement,

the positions should match realistic vehicle motion patterns to get the best-possible scale.

3.2.2 Vanishing points

Vanishing points for calibration require orthogonal lines to model constraints for self-calibration

[Tan et al., 2011]. Such orthogonal lines may originate from different kinds of reference objects,

like a set of orthogonal lane markings [Alvarez et al., 2014], like buildings following the so-called

Manhattan directions [Lu et al., 2013], like vertically aligned light poles [Lu et al., 2013; Alvarez

et al., 2014] or like upright standing pedestrians [Corres et al., 2016]. Vanishing points may also

be derived from orthogonal moving directions of cars, e.g. at intersections [Alvarez et al., 2014].

Often not a single kind of objects is sufficient for full calibration, so e.g. two orthogonal lines from

lane markings need to be combined with a third line from vertical poles. Furthermore, cars or

pedestrians may occlude important lines needed. As consequence, relying on a set of orthogonal

lines limits calibration to scenes where the desired reference objects are available. Additionally,

inappropriate lines, e.g. along short edges like small window tiles, could lead to inaccurate

vanishing points or make it difficult to clearly identify orthogonal lines [Zhou et al., 2017]. Thus,

the complexity of the calibration algorithm increases and the applicability to unknown road

scenes decreases, as image processing needs to be tailored to the expected appearance of the

desired objects [Chang & Tsai, 2012].

3.2.3 Reference information from characteristics of road scene objects

Reference points for calibration may be derived from characteristic points at stationary road scene

objects like corner points of road markings [Catala-Prat et al., 2006; Ribeiro et al., 2006; Hold

et al., 2009] or traffic signs [Lamprecht et al., 2007; Hanel & Stilla, 2018; Lasaruk & Hachfeld,

2019]. Under special conditions, reference points can be derived even from moving objects, like

from tail lights of vehicles [Bhardwaj et al., 2018]. Also more complex reference information

than points may be utilized, like the characteristic shape of the road surface in the upcoming

driveway [Musleh et al., 2014]. For example, assuming a planar shape of the road surface allows

to define constraints for camera calibration based on depth values estimated with a stereo camera

system [Garcia, 2017; Muhovic & Pers, 2020]. Alternatively, Catala-Prat et al. [2006] suggest to

iteratively update the exterior orientation parameters until the characteristic parallelity of a pair

of road markings, transformed from perspective to orthographic projection, is fulfilled. Using such

characteristics of road scene objects for camera calibration is faced with several challenges. Road

markings or the road surface are typically shown in lower parts of a road scene image, wherefore

calibration will be valid only for these image parts with reference information [Luhmann et al.,

2006; Hanel & Stilla, 2018]. Furthermore, similar as for vanishing points, calibration utilizing

certain types of objects is restricted to roads where these objects are present [Bertozzi et al.,

2010; Pflug et al., 2013] and not occluded by other objects, which can easily happen for objects

on or low above the ground [Musleh et al., 2014; Häne et al., 2017]. Additionally, assumptions on

object-specific characteristics like straight and parallel road markings or a flat ground plane [Fung

et al., 2003; Catala-Prat et al., 2006; Paone et al., 2019] could be problematic for calibration, if the

real objects deviate from these assumptions. These challenges can be overcome by traffic signs (i)

that are typically shown in upper image parts to get calibration results that are, in combination

with e.g. road markings, valid for the entire image, (ii) that are frequently present on public

roads, (iii) that impose no further requirements on the scene, like a flat road, and (iv) that are

standardized by official regulations so that their shape and metric size are known what allows to

develop algorithms to identify characteristic points by image processing in order to use them as

reference points. While in their previous work Lamprecht et al. [2007] only theoretically define



3.2. Automotive self-calibration 37

several arbitrary points at traffic signs as reference points for calibration, simulate their object

coordinates for evaluation and assume the vehicle speed to be known, require Lasaruk & Hachfeld

[2019] the car to drive a cornering maneuver and just mention traffic signs as one of several

potential stationary objects that may be used for calibration. Hence, to the best knowledge of

the author, the challenge remains to develop an algorithm for camera self-calibration with traffic

signs covering the entire workflow from a sequence of real images until estimation of the camera

orientation parameters.

3.2.4 Reference points from image features

Reference points for calibration can be also obtained from arbitrary road scene objects using

image feature detectors and descriptors [Ruland et al., 2010; Cannelle et al., 2012; Livyatan &

Berberian, 2017; Okouneva, 2017; Hanel & Stilla, 2019b], wherefore no characteristics of the

objects have to be known or identified. Both histogram-based, like SIFT [Lowe, 1999], and binary

descriptors, like BRIEF [Calonder et al., 2012], as well as optical flow [Pflug et al., 2013] have

been utilized in previous work to get reference points for automotive self-calibration [Mentzer

et al., 2017]. To establish the constraints required for self-calibration, correspondences between

features points have to be obtained, either between points in images of different cameras in a

vehicle multi-camera system taken at the same time or between points in images of a vehicle

mono camera taken at different times [Ruland et al., 2010; Hansen et al., 2012; Heng et al., 2013;

Winner et al., 2015; Pekkucuksen & Batur, 2018]. Camera calibration with reference points from

image features can be beneficial in comparison to the previously described types of reference

information, as it can be expected that (i) a larger number of reference points and (ii) a better

distribution of them in the scene can be obtained leading to more reliable calibration results, as

well as (iii) that larger parts of the image are covered by reference points for which the estimated

orientation parameters are valid. Though, reliable vehicle camera self-calibration with reference

points from image features is faced with two key challenges with regard to (i) the static scene

assumption [Lasaruk & Hachfeld, 2019] and (ii) the textures of the road scene objects that need to

be resolved. First, intentional and unintentional movement of objects like vehicles or pedestrians,

or the movement of trees in the wind violates the static scene assumption and will alter the scene

geometry between images taken at different points in time [Dang et al., 2009; Hanel & Stilla,

2019b]. Furthermore, reference points on moving objects can be easily occluded at some time

points [Musleh et al., 2014], which arises the problem to detect moving objects in order to avoid

reference points on them for automotive self-calibration. Second, commonly the objects need to

have suitable textures for feature extraction and matching [Pflug et al., 2013]. Lack of sufficient

texture, e.g. poor-textured objects like sky, repetitive surfaces like at tarmac, reflecting surfaces

like at building windows or metallic car paint [Ruland et al., 2010] can lead to invalid reference

points. Hence, the problem arises to avoid reference points at such textures.

3.2.5 Semantic 3d reconstruction methods for automotive camera calibration

Automotive self-calibration relying on image features can be realized by 3d reconstruction and

localization methods like visual SLAM [e.g. Mur-Artal & Tardós, 2017] or structure-from-motion

[e.g. Schönberger & Frahm, 2016]. Thereby, the calibration parameters are estimated as side

product besides creating a 3d reconstruction of the road scene [Heng et al., 2014]. Beneficially,

even sparse 3d reconstructions provide - depending on the number of images - often several thou-

sand reference points, which has been reported to be an important factor for camera calibration

[Stamatopoulos & Fraser, 2014]. Additionally, the 3d reconstruction enables calibration of mul-

tiple cameras in the ego-car without overlapping fields of view and even calibration of cameras

in other cars [Leite et al., 2008; Heng et al., 2014]. Obviously, the mentioned challenges with
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moving objects and inappropriate textures (cf. Subsection 3.2.4) may be overcome by generic

outlier removal steps, e.g. based on RANSAC, that are often part of 3d reconstruction methods

[e.g. Schönberger & Frahm, 2016]. Though, generic outlier removal is not tailored to the men-

tioned kinds of road scene objects and so bears the risk to either consider a too small or too large

number of reference points as outliers, which both is negative for camera calibration. Therefore,

it is desired to apply a specific outlier removal tailored exactly to the problematic road scene

objects causing the mentioned challenges. In order to know whether such objects are present in

the scene and where they are shown in an image, scene knowledge needs to be obtained. For 3d

reconstruction and localization methods, scene knowledge may be obtained by (i) semantic object

databases, (ii) instance segmentation, (iii) object detection or (iv) semantic segmentation. First,

such pre-built semantic object databases that are linked to the images used for 3d reconstruction

based on matched image features [Civera et al., 2011] may not be available for the large variety

of types and appearances of road scene objects, wherefore this approach is not considered as suit-

able. Second, instance segmentation [Rünz & Agapito, 2017; Runz et al., 2018; Barsan et al., 2018;

Wang et al., 2018] and third, image-based object detection [Bao & Savarese, 2011; Sünderhauf

et al., 2017; Qi et al., 2018] provide scene knowledge typically for certain image parts and for

a small number of semantic classes only (cf. Section 2.3). As the image points of the reference

points for calibration may be located in all image parts and as enclosing rectangles resulting from

object detection do not match the object boundaries exactly (cf. Section 2.3 as well), also these

two approaches are not considered as suitable. Forth, as semantic segmentation typically provides

scene knowledge for the entire image [Stueckler et al., 2012; Yu et al., 2018], image points in all

image parts can be handled. Furthermore, semantic segmentation typically supports a larger set

of semantic classes covering typical road scene objects [Cordts et al., 2016]. For these two reasons,

semantic segmentation appears to be most suitable to obtain scene knowledge.

There are also several approaches how the scene knowledge from semantic segmentation can

be integrated into a 3d reconstruction and localization method. First, semantic segmentation

can be used for localization within an existing 3d reconstruction [Hirzer et al., 2017; Schönberger

et al., 2018] and, second, semantic segmentation can enrich a 3d reconstruction in post-processing

by assigning semantic information to the 3d points [Li & Belaroussi, 2016; Mahe et al., 2018; Runz

et al., 2018]. As it is desirable to use the scene knowledge already while the 3d reconstruction is

incrementally created to overcome the described challenges, such post-processing approaches are

not applicable. Third, scene knowledge can be also integrated during 3d reconstruction, e.g. for

feature tracking [Murali et al., 2017]. Though, these authors work with gray value images only

and aim at real-time performance, which is not desirable for camera calibration as it may have

negative influence on the quality of the calibration results. Furthermore, they assume sensors that

have been calibrated beforehand. More related to the mentioned challenges, Wang et al. [2018]

and Yu et al. [2018] use semantic segmentation to obtain knowledge on the presence of moving

objects in images in order to remove outliers to make 3d reconstruction more robust. While

their works underline the potential of moving objects to cause problems in 3d reconstruction,

they focus on moving objects only, but not on road scene objects with inappropriate textures.

Furthermore, they consider only a limited set of semantic classes that typically does not cover the

entire area of a road scene image, so that problematic points in uncovered parts of the image are

not handled. Last, Kaneko et al. [2018] propose to exclude image parts from feature extraction

based on scene knowledge obtained by image-based semantic segmentation. Though, they work

with visual SLAM, which typically aims at real-time capability, instead of structure-from-motion,

which is considered as better suitable for camera calibration (cf. Chapter 2). Furthermore, their

objective is to improve the mapping and localization performance, but not the results of camera

calibration. Finally, they test their method on synthetic images only, which leaves it open to show

the applicability on real images. Concluding from these findings, it remains unsolved yet to show
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the potential of semantic knowledge in a 3d reconstruction method to improve self-calibration

and to apply the developed workflow on real-world images. Furthermore, it is unsolved yet to

integrate the semantic knowledge in other steps of the 3d reconstruction method than feature

extraction, for example during feature matching.
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4 Camera calibration with test
fields through a vehicle
windshield

In this chapter, a method for stereo camera calibration with test fields is described that is used to

investigate the influence of a vehicle windshield on calibration. The investigation is carried out as

comparative analysis between two setups, one time with and the other time without a windshield

in the optical path between the cameras and test fields during calibration. First, the intended

calibration setup comprising a virtual 3d test field and a stereo camera system is introduced

(Section 4.1). Then, a detailed description of the calibration workflow from image acquisition

until estimation of the orientation parameters and their uncertainties follows (Section 4.2). Special

emphasis is put on the realization of the virtual 3d test field and on datum definition.

4.1 Calibration setup

The calibration setup comprises a virtual 3d test field that is created by two non-rigid 2d test

fields (Subsection 4.1.1), the stereo camera system with industrial cameras with approximately

parallel optical axes and a baseline that is typical for the automotive domain (Subsection 4.1.2)

and, in one setup, a vehicle.

4.1.1 Virtual 3d test field

This method is intended for a virtual 3d test field consisting of two independent, non-rigidly

coupled 2d test fields to provide the reference points for calibration. The virtual 3d test field can

be handled easier than a rigid 3d test field and hence, a good coverage of the six degrees of freedom

can be achieved without the cumbersome need to move the vehicle carrying the cameras, which is

anyways limited to the ground plane. Additionally, the risk of suffering from strong correlations

between the estimated interior and exterior orientation parameters is lower than when using a

single 2d test field [Luhmann et al., 2016]. Though, the disadvantage of the virtual 3d test field

is that the relative orientation between the two 2d test fields changes from one time point to the

next due to the missing rigidity. Hence, correspondences between the reference points on the two

test fields need to be established for each time point and a joint 3d object coordinate system

needs to be determined for calibration, as it will be described in a later section of this chapter.

This method is designed for different types of reference marks on the 2d test fields, therefore

benefiting from a lower risk that no reference points can be detected by image processing at all, for

example in the case of large distances from the camera or unfavorable scene illumination. One test

field should have a dense grid of circular marks, while the other should have a classic checkerboard

pattern. Both are cheap, allow easy and robust image processing, provide a sufficient number

of reference points and their pixel coordinates can be determined with high accuracy [Geiger
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et al., 2012; Lasaruk & Neralla, 2018]. While extracting pixel coordinates from circular marks

is always confronted with the problem of ellipse eccentricity [Heikkila & Silven, 1997; Heikkila,

2000], checkerboard patterns provide only a lower density of reference points. Coded and uncoded

circular marks as well as even and odd numbers of checkerboard squares, respectively, allow to

uniquely identify each reference point. Automotive-specific test fields are not seen as useful, as

they typically provide a lower number of reference information than classic photogrammetric test

fields (cf. Chapters 2, 3).

4.1.2 Stereo camera system

Figure 4.1: Stereo camera system behind the wind-
shield in a car. The cameras are mounted on a rigid
metal platform and have approximately parallel opti-
cal axes.

The method proposed in this chapter is in-

tended for environment-observing, forward-

looking stereo cameras, which are chosen for

their ability to perform accurate distance mea-

surements in the upcoming driveway of a vehi-

cle, which is in particular relevant for automo-

tive applications (cf. Section 1.1). Monochro-

matic industrial cameras with a geometric res-

olution similar to those used in other research

related to automotive applications, e.g. for

recording the Cityscapes dataset [Cordts et al.,

2016; Onsemi, 2017], are suitable in particular.

Such industrial cameras have several advan-

tages with regard to the geometric quality of

cameras and lenses that allow to avoid certain

sources of errors [e.g. Fraser, 2013]: They have

fixed focal length and fixed focus, they can be

rigidly attached to a stable platform and they

typically neither have a complex color filter ar-

ray in the sensor nor internal image pre-processing algorithms that may alter the raw images and

so potentially decrease the quality of the image points of the reference points. Furthermore,

the used cameras are capable of simultaneous image acquisition to avoid inconsistencies due to

movements of the test fields. The cameras are mounted in a standard stereo configuration for

automotive applications, i.e. with parallel optical axes and pixel coordinate axes [Bodis-Szomoru

et al., 2008] (Figure 4.1). The field of view is overlapping; this facilitates establishing cross-camera

correspondences between reference points on different test fields.

4.2 Calibration workflow

The calibration workflow consists of three major steps (red, blue, green areas in Figure 4.2), which

are performed for all images from the left and right stereo camera. High-quality object coordi-

nates of the reference points on the test fields are pre-determined once before camera calibration

(Subsection 4.2.1). First for each calibration, images sequences are acquired (Subsection 4.2.2).

The pixel coordinates of the reference points are extracted from these images and the points are

matched across all images (Subsection 4.2.3). The proposed method utilizes reference points from

image pairs, consisting of a left and right camera image taken at the same point in time, as well

as from independent images, i.e. from images where no reference points could be extracted from

the corresponding image of the other camera. Second, the pre-determined object coordinates of

the reference points are associated with the pixel coordinates. Special handling is required for

uncoded reference marks (Subsection 4.2.4) and for the virtual 3d test field (Subsection 4.2.5).
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Third, the final orientation parameters and their uncertainties are estimated by bundle adjustment

(Subsection 4.2.6), whereby datum definition is obtained by free adjustment (Subsection 4.2.7).
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Figure 4.2: Workflow for stereo camera calibration with test fields. Dashed parts are executed for the
without windshield setup only.

4.2.1 Preliminary steps

The 3d object coordinates of the reference points are pre-determined once before calibration:

For the test field with circular marks, a calibrated photogrammetric camera, a high-precision

reference cross and reference bar provide a metric-scaled Euclidean object coordinate system in an

independent measurement campaign without a windshield. Estimation of the object coordinates

is done by bundle adjustment. For the checkerboard test field, the object coordinates are obtained

by analytic calculations assuming a grid shape of the checkerboard squares and a known metric

size of the squares. Classic camera calibration with a single 2d test field is done separately for

each camera to obtain the initial guess for the interior orientation for bundle adjustment.

4.2.2 Image acquisition

In the setup with the car windshield as well as in the setup without the windshield, a sufficient

number of image pairs is taken with various positions and orientations of the virtual 3d test field

relative to the cameras so that the best-possible coverage of the six degrees of freedom can be
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achieved. To cope with problematic movements of the hand-held test fields, the images of both

cameras are acquired simultaneously. The largest-possible depth range is covered, which means

the closest test field position being right in front of the windshield and the most remote position

being defined by the ability of the image processing algorithms to extract the reference point

coordinates from the images.

4.2.3 Pixel coordinates extraction and point matching

The pixel coordinates of the image points of the reference points are extracted by image processing.

For circular marks, this is done by ellipse detection and shape fitting, for the checkerboard pattern

this is done by detection of the checkerboard corners, both using standard algorithms. In order

to obtain a 3d model of the reference points with initial object coordinates, the image points

are matched across cameras and time points. For coded circular marks, the matching degrades

to assignment based on the point numbers provided by the code of the reference marks. Points

of uncoded circular marks can be matched by point numbers as well. Therefore, unique point

numbers are obtained using the known exterior orientations of images that have been determined

using the reference points with coded marks. Point matching for the checkerboard test field

utilizes unique point numbers that can be assigned if the orientation of the checkerboard pattern

in an image is known, which is the case if one grid direction has an even and the other has an

odd number of corners.

(a) (b)

Figure 4.3: Example images from the Stereo image dataset showing the virtual 3d test field. a) With
windshield setup: Cameras in the car, b) without windshield setup: Cameras in the lab. The bonnet area
is masked (half-transparent dark overlay) so that reference point positions are comparable in both setups.

As in the with windshield setup, typical for forward-looking automotive cameras, a part of the

image always shows the bonnet (cf. Figure 4.3a) and so no points can be found in this part of the

image, the reference points in the without windshield setup are restricted to the non-bonnet part

of the image area to ensure comparability between the two setups. The restriction is implemented

by a bonnet mask (dark gray overlay in Figure 4.3b) applied to all images from this setup.

4.2.4 Object coordinates association for uncoded reference marks

In order to achieve the best-possible quality, the pre-determined high-quality object coordinates

instead of the initial object coordinates should be used for camera calibration. Therefore, the
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pre-determined object coordinates have to be associated to the pixel coordinates of the reference

points. This can be done easily for the reference points from the coded marks, as the same point

numbers from the codes are known when the pre-determined object coordinates are obtained

(Subsection 4.2.1) and when the pixel coordinates are extracted (Subsection 4.2.3). Likewise, the

link can be achieved easily for the reference points from the checkerboard pattern exploiting the

even and odd number of checkerboard squares. In contrast, for reference points from uncoded

marks, the first set of point numbers that is assigned while obtaining the pre-determined object

coordinates is different from the second set of point numbers that is assigned during pixel co-

ordinates extraction and point matching. To solve this problem, a two-folded approach using a

3d model coordinate system (MCS) is employed for reference points from uncoded marks: On

the one side, the initial object coordinates of the reference points in the MCS are linked to the

extracted pixel coordinates by the second set of point numbers. On the other side, the same

object coordinates in the MCS can be linked by geometric transformation to the pre-determined

object coordinates that are given in a pre-determined object coordinate system (PCS) with the

first set of point numbers.

First, the initial object coordinates of all reference points in the randomly-defined MCS are

taken from the 3d model of the reference points obtained by structure-from-motion using the

matched image points. Second, the MCS and PCS are associated to each other using the ref-

erence points from coded marks that have the same point numbers in both coordinate systems

by estimating a 3d Helmert transformation between the MCS and the PCS. Then, third, for all

reference points from uncoded marks, the initial object coordinates are projected from the MCS

into the PCS using the Helmert transformation and the geometrically closest point in the set of

pre-determined object coordinates is determined. With these closest points, the link between the

first and second set of point numbers is established and so the pre-determined object coordinates

are associated to the pixel coordinates for the uncoded reference marks. Forth and finally, the

pre-determined object coordinates are transformed from the PCS into the MCS in order to get a

consistent 3d model of the reference points in the MCS. At this stage, the 3d model covers the

pixel coordinates and uniquely associated high-quality pre-determined object coordinates of all

reference points in the MCS.

4.2.5 Object coordinates association for the virtual test field

In order to allow that reference information from both the test field with circular marks (TFa) and

the checkerboard test field (TFc) can be used together for calibration, their object coordinates have

to be in one common object coordinate system (Figure 4.4d). As the two 2d test fields are only

rigid to each other at one time point, but not from one time point to the next (cf. Figure 4.4a-c),

the relative orientation Pk between them depends on the time point k. Additionally, as the pre-

determined object coordinates are obtained independently (cf. Subsection 4.2.1) and so are given

in two independent coordinate systems PCSa and PCSc, defining a common object coordinate

system and especially incorporating the pre-determined object coordinates as described in the

previous subsection is not trivial if both test fields should be used jointly. To overcome this

problem, the following approach is employed: On the one hand, for the reference points from

TFa, a single set of reference point numbers that is valid for all time points is defined. On

the other hand, for the reference points from the other test field TFc, a separate set of point

numbers is defined for each time point. Thereby, TFc is treated as there would be actually k

independent test fields TFc,k, one for each time point k (Figure 4.4d). This causes that the

3d model created by structure-from-motion contains a single set of object coordinates (given in

the MCS) for TFa and separate sets for TFc,k. Thus, for TFa a single Helmert transformation

is estimated between PCSa and MCS, as described in the previous subsection. Additionally, for

TFc,k k separate Helmert transformations are estimated between PCSc and MCS. Having obtained
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the transformation parameters, the pre-determined object coordinates are projected into the MCS

the same way as described in the previous subsection.

t-1

Pt-1

TFa
TFc,t-1

(a)
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(b)
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Pt+1 TFc,t+1
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Figure 4.4: Top-down view on the virtual 3d test field (green, blue) and the object coordinate system (green)
at different points in time. a) - c) Real-world view with time-dependently varying relative orientations Pk

between the two non-rigid 2d test fields TFc,k (orange) and TFa (blue) for the time points k ∈ {t−1, t, t+1},
d) virtual view with all test fields TFc,k and TFa in the common model coordinate system used for
calibration.

4.2.6 Bundle adjustment

After having associated the object coordinates with the pixel coordinates, the 3d model is opti-

mized by bundle adjustment and hereby the final camera orientation parameters are estimated.

Stereo rig constraints are considered in the optimization by one of three stereo constraints, which

apply different formula and parametrizations for the relative XR and exterior orientation for

the slave camera XE,s. Bundle adjustment is selected for optimization due to a variety of ad-

vantageous properties for the envisaged investigations (cf. Chapters 2 and 3): Better expected

precision, simultaneous estimation of all desired parameters, error minimization with a meaning-

ful geometric constraint and a high redundancy. Typical disadvantages of bundle adjustment like

the high computational effort or the need for an initial guess do not play a role as no real-time

requirements need to be met in this research.

Optimization is done separately with three camera and distortion models for the sake of

comparison (cf. research questions in Section 1.3). Unlike suggested by Maas [2015a] for classic

multimedia photogrammetry, the refraction of the optical rays at the windshield is not handled

explicitly by extended geometric models. In contrast to the typically flat sheets of glass in

multimedia photogrammetry, the complex geometry of a curved vehicle windshield might be highly

difficult or even impossible to model accurately. Furthermore, it is an objective of the investigation

to show potential effects of the vehicle windshield in the estimated calibration parameter values

and their uncertainties.

The stereo constraints are defined as follows:

All stereo constraints

For all three stereo constraints, unknown parameters (X) in the bundle adjustment (cf. Sub-

section 2.2) are the interior orientation and distortion parameters as defined by the camera model

(cf. Subsection 2.1.4) and the object coordinates of the reference points. The functional equations

are as follows:

x′i,j,k + v̂x′
i,j,k

= fx,i,j,k(X̂) (4.1)

y′i,j,k + v̂y′i,j,k = fy,i,j,k(X̂) (4.2)

with fx,i,j,k and fy,i,j,k being the collinearity equations (cf. Subsection 2.2.3) given for reference

point i, for camera j and for time point k. Observations are the pixel coordinates x′i,j,k, y
′
i,j,k
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of all non-masked matched reference points from stereo image pairs as well as from independent

images. Depending on the parameter setting (cf. Subsection 7.2.1), also the corresponding object

coordinates are modeled as observations (cf. Subsection 2.2.3). The vector of object coordinates

XP (see also Section 2.2) is defined as

XP =
(
Xa,1...Xa,la ...Xc,1,1...Xc,k,lck

...Xc,o,lco

)
(4.3)

with Xa,la being the 3d object coordinates of point la on test field TFa and with Xc,k,lck
being the

object coordinates of point lck on test field TFc,k for time point k of in total o time points. The

interior orientation parameters are assumed to be constant over the time of image acquisition.

Relative and exterior orientation parameters depend on the stereo constraint, as explained in the

following.

Stereo constraint 0: Without relative orientation

No relative orientation is estimated, i.e. the two cameras are treated independently, i.e.

XR = {}. The vector of exterior orientation parameters XE comprises the exterior orientation

parameters XE,r,k and XE,s,k for both the reference camera (r) and the slave camera (s) (details

see Stereo constraint 1 ) for all images 1...n and 1...m, respectively:

XE =
(
XE,r,1...XE,r,nXE,s,1...XE,s,m

)
(4.4)

This stereo constraint represents the idea of not introducing any stereo rig constraints. Note the

superscript o indicating that the exterior orientation parameters are given in the object coordinate

system, the MCS, is omitted for visibility reasons. Either the left or the right stereo camera can

be assigned as reference camera.

Stereo constraint 1: Step-wise estimation of reference and slave camera orienta-

tion

XE,r,k and XR are defined as unknown parameters for bundle adjustment. XE,s,k is replaced

in the collinearity equations by a formula depending on XE,r,k and XR so that observations from

images of the slave camera do contribute to calibration, but no exterior orientation parameters

are estimated. Thereby, this stereo constraint represents the idea of avoiding contradictions in

the relative orientation by estimating the exterior orientations for only one camera, the reference

camera. As disadvantage, the estimated imaging geometry of the slave camera could deteriorate,

as contradictions may be become visible in the observations of this camera. The mentioned

formulae to calculate the exterior orientation parameters of the slave camera are defined as

oXE,s,k = oX̂E,r,k + R̂o
r,k · rX̂s

r (4.5)

Rs
o,k = R̂s

r · R̂r
o,k (4.6)

with rXs
r being the relative position between the reference camera and the slave camera given

in the reference camera coordinate system and with Rs
r describing the rotation from the camera

coordinate system of the reference camera r to the camera coordinate system of the slave camera

s. So, XR is defined as

XR =
(
rXs

r
rY s

r
rZs

r θsr,X θsr,Y θsr,Z
)T

(4.7)

with θsr,X being the x-component of the axis angle representation of the rotation from r to s, which

can be converted to Rs
r.

rXs
r is the x-component of the relative position, the y- and z-components

are defined accordingly. XR is assumed to be constant over the time the image sequences are

acquired.
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Stereo constraint 2: Simultaneous estimation of reference and slave camera ori-

entation

Both XE,r,k and XE,s,k are defined as unknown parameters for bundle adjustment. XR

is defined as in Stereo constraint 1, and is estimated by bundle adjustment as well. Though,

in contrast to constraint 1, the relative orientation constraints are modeled as separate regular

functional equations. The idea behind these additional equations is to ensure equality between

the estimated relative orientation parameters and the relative orientation parameters that are

calculated from the estimated exterior orientation parameters. Hereby, this stereo constraint

represents the idea that contradictions may be distributed better among all parameters than in

Stereo constraint 1. The separate functional equations are defined as

0+ v̂qs
r
= qsr − q̂sr (4.8)

0+ v̂rX
s
r
= rX

s
r − rX̂

s
r (4.9)

with rX
s
r being the calculated relative position obtained from the estimated exterior orientations

of r and s by
rX

s
r = R̂

r
o,k · oX̂E,s,k − R̂

r
o,k · oX̂E,r,k (4.10)

and with R
s
r describing the calculated relative orientation obtained from the estimated exterior

orientations by

R
s
r = R̂

s
o,k · R̂

o
r,k = R̂

s
o,k · (R̂

r
o,k)

−1 (4.11)

To be used in the functional equations, the rotation matrix is converted to quaternions qsr. Quater-

nions have been selected for the equations for their advantageous property of not being periodic,

as for example Euler angles are. So with an Euler angle of 0◦, the functional equations might have

zero residuals, but with the identical angle of 360◦, there might be large residuals. Note again,

as the relative orientation is given in the camera coordinate system of r, it does not change for

different time points.

4.2.7 Datum definition for bundle adjustment for stereo cameras

Datum definition bases on the approach of Polic et al. [2018] using free adjustment, wherefore

the H matrix to solve the singularity of the normal equation matrix N is required (see Subsec-

tion 2.2.4). For the proposed method, the H matrix defined by Polic et al. [2018] for a single

camera is extended by additional elements for the relative orientation to support stereo camera

systems.

Recall that the H matrix is derived from a similarity transform relating the inner geometry

of the network to a higher-level coordinate system (see Subsection 2.2.4). Thus, H is extended

as follows: As the relative rotation depends on the camera coordinate systems of r and s only,

it is independent from the similarity transformation, what is reflected by the equation ∆q̂sr =

q̂sr − tq̂sr(qS) = 0 with t(...) denoting the similarity-transformed values and qS denoting the seven

similarity transform parameters. Therefore, the corresponding partial derivatives of ∆q̂sr with

regard to the three types of datum parameters needed for H, namely translation T , rotation S

and scale µ, are zero as well:

∂∆q̂sr
∂T

= 0
∂∆q̂sr
∂S

= 0
∂∆q̂sr
∂µ

= 0 (4.12)

The difference of the relative position ∆rX̂
s
r is assumed to be

∆rX̂
s
r =

rX̂
s
r − t(rX̂

s
r) =

rX̂
s
r − µ · rX̂

s
r (4.13)
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This equation considers that µ is the only parameter from similarity transformation that can

influence the relative position. T and S are assumed to have no influence, as the relative position

is given in the camera coordinate system of the reference camera (cf. r(...)), but not in the

higher-level object coordinate system. This means that a translation or rotation of the imaging

network (3d points, 3d camera positions and rotations) in the object coordinate system during free

adjustment does not affect the relative position between the two cameras. If only µ is considered,

the partial derivatives of ∆rX̂
s
r are as follows:

∂∆rX̂
s
r

∂T
= 0

∂∆rX̂
s
r

∂S
= 0

∂∆rX̂
s
r

∂µ
= −I3x3 (4.14)





51

5 Camera calibration with traffic
signs

In this chapter, a method for camera self-calibration with reference points obtained from traffic

signs is described. As first workflow step (Figure 5.1), semantic segmentation, coarse boundary

detection and depth estimation are done for each recorded RGB image by deep learning (Sec-

tion 5.1). Coarse boundaries of the traffic signs that should be used as reference information

are obtained by coarse boundary detection. Second, traffic sign masks and auxiliary semantic

boundaries are extracted from the semantic images (Section 5.2). Third, fine boundaries of the
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Figure 5.1: Workflow for camera calibration with traffic signs.
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traffic signs are extracted using the coarse and the auxiliary semantic boundaries, as well as

the RGB images. Thereby, the pixel coordinates of the reference points, which are defined by

certain remarkable points along the traffic sign boundary, are calculated (Section 5.3). Forth,

using the depth image and the pixel coordinates, the object coordinates of the reference points

are calculated (Section 5.4). Fifth, for all images that should be used for calibration and for

all processed traffic signs, the pixel and object coordinates of the reference points are processed

by bundle adjustment. Thereby, the desired estimates of the interior orientation and distortion

parameters and the corresponding covariance matrices are obtained (Section 5.5). This method

is intended to be performed with an RGB image sequence recorded from a road scene with the

vehicle camera that should be calibrated. The length of the image sequence can be determined

by certain objectives, like parameter uncertainty.

5.1 Semantic segmentation, boundary detection and depth esti-

mation

By means of deep learning, image-based semantic segmentation, boundary detection and depth

estimation are performed for each acquired RGB image (Figure 5.2a). For semantic segmentation,

the same method as for camera calibration by semantic structure-from-motion is used (details see

Section 6.1). As most important property, the deep model needs to contain a semantic class for

traffic signs, thus a pre-trained model for road scene images is used. Output is a semantic image

corresponding to each RGB image (Figure 5.2b). For boundary detection, also a pre-trained

model suitable for road scene images is used. It produces separate grayscale images containing

the boundaries for one semantic class, whereof for the further workflow steps only the boundary

images for the class traffic sign are used (Figure 5.2c). As these boundaries follow the traffic

sign boundaries in the corresponding RGB image only roughly, they are further referred to as

coarse boundaries. For depth estimation, a method that is capable to provide metric depth

values, not only disparity values, is used. The depth values are provided by a so-called depth

map, i.e. an image where each pixel represents a depth value, i.e. the metric distance from

camera (Figure 5.2d). Advantageous, such depth maps are linked to the corresponding RGB

image and so for each pixel in the RGB image a depth value can be obtained easily. Additionally,

by relying on a deep model, depth estimation can be done with an image sequence from a mono

camera independent from other data sources. It does neither require stereo cameras nor other

vehicle sensors or receivers (e.g. GPS, IMU). It does also not require a geometric method like

structure-from-motion capable for image sequences of mono cameras, which might be problematic

for forward-looking cameras as the main movement is along the optical axis and so the image

(a) (b) (c) (d)

Figure 5.2: A RGB image acquired in a road scene and three images derived from it by deep learning.
a) RGB image, b) semantic image showing different classes of road scene objects, among them traffic signs
(yellow), c) coarse boundary image for class traffic sign, d) depth map.
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geometry might be bad especially in depth direction [Vedaldi et al., 2007]. For depth estimation,

also a pre-trained deep model for road scene images is used.

5.2 Masking and auxiliary semantic boundary extraction

Auxiliary semantic boundaries are extracted by contour detection [Suzuki & Abe, 1985] from

the semantic images for each segment belonging to the class traffic sign. Hereby, each auxiliary

semantic boundary is represented by a set of image points. Additionally, each segment belonging

to the class traffic sign is binarized to obtain a binary traffic sign mask. The mask contains value

1 for all pixels belonging to class traffic sign in the semantic image and value 0 otherwise. As there

might be multiple traffic signs visible in one RGB image, the mask may cover multiple segments.

Therefore, all but the largest traffic sign segment are removed from the traffic sign mask based

on the area enclosed by each auxiliary semantic boundary. This step relies on the idea, that the

largest traffic sign is best suitable to determine reference points and that small segments are more

likely to cause inaccurate reference point coordinates or are false positive traffic sign segments

and so should be omitted. With this traffic sign mask, the boundaries of all but the largest traffic

sign are removed from the coarse boundary image.

5.3 Fine boundary extraction and pixel coordinates calculation

As already mentioned, certain remarkable points along the traffic sign boundary should be used as

reference points for camera calibration. For triangular and rectangular traffic signs, these are the

three and four corner points, respectively. For circular traffic signs, shown in images as ellipses

[Elder, 2017], these are the two end points of the major axis. To determine the pixel coordinates

of these points precisely, fine boundaries of the traffic signs have to be extracted. As the semantic

segments do not follow the boundaries of traffic signs in the RGB image exactly, as one segment

may contain more than one traffic sign, and as also state of the art deep learning-based boundary

detection provides - to the knowledge of the author - only coarse boundaries (Figure 5.2c), classic

image processing is used to get fine boundaries. Furthermore, assuming that the same types of

shapes are used across different countries, a classic approach may be more generic and does not

require country-specific training data like a deep learning-based approach might do.

The process for fine boundary extraction is similar for the three supported shape types. In

addition to the shape, only traffic signs of certain colors are supported: Circular signs and rectan-

gular signs with blue background color (e.g. direction signs) and triangular signs with a red border

(e.g. yield sign). The orientation of the shape does not play a role (e.g. upwards- or downwards-

oriented triangle). For triangular traffic signs, the following major steps are employed: First,

lines are extracted from the coarse boundary image by Hough transformation, which at this point

contains the largest traffic sign only. Hereby it is assumed that among the extracted lines also the

lines belonging to the actual boundaries of the traffic sign in the RGB image are contained. Addi-

tionally, while the coarse boundaries might be curvy, Hough transform ensures that straight lines

are extracted, which corresponds better with actual traffic sign shapes. Second, all lines are asso-

ciated in every possible combination to triangle candidates based on their orientation so that the

sum of internal angles equals 180 degree. Third, the overlap between each triangle candidate and

the traffic sign mask is determined. Candidates whose overlap is below a user-defined threshold

are rejected. Candidates with an area smaller than an also user-defined minimal threshold are re-

jected as well. After thresholding, it is assumed that only triangle candidates remain that describe

the actual triangle well with small differences in the position of the corner points. Forth, building

on the assumption described in the previous sentence, the remaining triangle candidates are aver-

aged to an intermediate triangle by K-means clustering determining three clusters, whereby each
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cluster defines one corner of the intermediate triangle. Fifth, the image part corresponding to this

intermediate triangle is cropped from the RGB image. The boundary of this image part is dilated

by several pixels to ensure that the actual traffic sign in the RGB image is covered completely by

the cropped image. Sixth, based on lower and upper color thresholds applied in the HSV color

space to the cropped image, the remarkable red border of the triangular traffic sign is extracted.

Last, the steps one to five are repeated with the cropped and thresholded image containing the

red border only, for which it can be assumed that the outer edge of the red border matches the

boundary of the traffic sign precisely. As the red color is in typical road scene images distinctive

with regard to the local background on and near the traffic sign, it is considered as suitable for

extracting fine boundaries. The resulting corner coordinates are the final pixel coordinates of the

three reference points. For rectangles, the Hough lines are associated to rectangles, four instead

of three corner points are extracted and blue instead of red color is taken. For circular traffic

signs, RANSAC [Fischler & Bolles, 1981] is used to fit an ellipse to the coarse boundary image.

In addition to the area threshold, ellipse candidates with large eccentricity are discarded. As

according to Elder [2017], the diameter of a real-world circle corresponds with the major axis

of an ellipse in an image, the end points of the major axis are selected as reference points. As

with the described thresholds, bad-fitting boundaries are rejected, a preliminary shape detector

determining whether a traffic sign segment belongs to a triangle, rectangle or circle sign is not

necessary. At this stage of the workflow, there is a set of pixel coordinates of reference points for

all successfully processed images available.

5.4 Object coordinates calculation

First, an initial guess for the focal length is obtained, then the object coordinates for the reference

points are calculated. In the following, it is assumed that traffic signs in the object space are

parallel to the image plane. Due to the typically large distance between traffic signs and the

vehicle camera as well as the alignment of the signs towards the driver, this assumption is likely

to be approximately true. Additionally, it is assumed that the principal point is equal to the image

center. For the following bundle adjustment, a local object coordinate system is defined that is

equal to the camera coordinate system. It means that in this coordinate system, the camera has

the same exterior orientation for the entire image sequence. This definition can be interpreted

as calibration with a static camera and a moving test field, though in reality the traffic signs

are static and the camera-carrying vehicle is moving during image acquisition. Same as in the

previous subsection, the following descriptions address triangular traffic signs, but are analogue

for rectangle and circle signs.

The mentioned assumption about the principal point leads to the initial guess for the principal

point coordinates, which is (0, 0) in image coordinates and (h/2, w/2) in pixel coordinates with

h being the image height and w being the image width in pixels. The initial guess for the focal

length f (cf. Figure 5.3) is obtained using an intercept theorem: It relates the known metric size

of a traffic sign edge (A in the figure) and the known size of the same edge in the image (a) with

the known depth (D) of a traffic sign corner point (C) to calculate an unknown auxiliary term (d).

Furthermore, the angle at the projection center (O) between the lines of f and d is obtained from

the sine function with the Euclidean distance between the pixel coordinates of C and the principal

point as opposite leg and d as hypotenuse. Then, f can be calculated either from the inverse cosine

using d and the angle or from the inverse tangent using a and the angle. For these calculations,

the metric size of the edge is obtained from official regulations (cf. e.g. Department of Transport

- Ireland [2010]), the size of the edge in the image is equal to the Euclidean distance between the

pixel coordinates of the two corner points of this edge (Section 5.3) and the depth is obtained

from the depth map (Section 5.1). To keep errors in the initial guess for the focal length resulting
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Figure 5.3: Intercept theorem used to get an initial guess for the focal length f : The distances d and D
along the image ray defined by a traffic sign corner point (C) and the projection center (O), the pixel
size (a) and the metric size (A) of a traffic sign edge are set in relation with f . Note that the German
yield sign has rounded corners, but the reference points are defined by the imaginary corner points at the
intersection of two adjacent boundaries.

from deviations of the initial guess for the principal point from the actual principal point location

low, a corner point close to the optical axis should be chosen. Finally, with the pixel coordinates

of C, the initial guess for the focal length and the principal point coordinates, the image ray for

this reference point can be defined. With the depth value, a depth plane parallel to the image

plane can be defined. Then, the object coordinates of C, defined by the intersection of the image

ray with the depth plane, can be calculated. This calculation is repeated for all reference points

on all traffic signs and for all acquired images, resulting in a set of object coordinates matching

the previously calculated pixel coordinates.

5.5 Optimization

The next step is a global bundle adjustment, whereby the final interior and distortion parameters

are estimated using the pixel and object coordinates of all reference points as observations. As

the object coordinates of the reference points have metric scale, the estimated orientation pa-

rameters can be provided in metric units as well. For optimization, independent and identically

distributed observation weights are assumed [Luhmann et al., 2006] as there is no a priori infor-

mation available about the standard deviation of the pixel and object coordinates. The final step

after global bundle adjustment is uncertainty estimation following the approach from Polic et al.

[2018] (cf. Chapter 4). Thereby, the covariance matrix for the interior orientation and distortion

parameters is obtained. Note again that due to the lack of external reference, the estimated

uncertainty measures specify the precision instead of the accuracy.
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6 Camera calibration by semantic
structure-from-motion

In this chapter, a method for camera self-calibration using structure-from-motion (SfM) is pre-

sented that exploits road scene knowledge from semantic segmentation (Figure 6.1). As first step

of the workflow (Figure 6.2), semantic images are obtained by semantic segmentation for all RGB

images recorded in a road scene (Section 6.1). Second, for each semantic image an exclusion mask

is created that consists of segments belonging to critical semantic classes, which are undesired as

reference points for calibration and so the respective image parts should be excluded from feature

extraction for SfM. Additional fix-pixel masks covering undesired areas visible in the same part

in all images (esp. the ego-car bonnet) contribute to the exclusion masks as well (Section 6.2).

Third, a 3d point cloud of the road scene is obtained by indirect SfM using the recorded road

ti ti+j

(a)

ti ti+j

(b)

Figure 6.1: Examples of RGB and semantic images from two points in time (ti, ti+j) from a road scene
image sequence. a) RGB images, b) semantic images obtained by semantic segmentation represent different
classes of road scene objects, like vehicles (blue), road (purple) or vegetation (green).

scene images (Section 6.3). Besides for the exclusion masks, the semantic images are also used to

assign a semantic class to each extracted image feature in order to restrict matching to features of

the same semantic class. As the object points of the point cloud are derived from matched image

features and should serve as reference points for calibration, the purpose of excluding features

on critical objects and restricting the matching process is to avoid undesired quality loss in cali-

bration. After having obtained the point cloud for the entire image sequence by incremental 3d

reconstruction, the Euclidean 3d point cloud of the road scene is transformed by spatial similarity

transformation using filtered vehicle position data from GPS in order to incorporate a metric

scale into the point cloud (Section 6.4). Forth, a global bundle adjustment is performed to obtain

the final estimates for the image and object points as well as the interior and exterior camera

orientation parameters (Section 6.5). By uncertainty estimation, the covariance matrices for the

estimated parameters are obtained. The steps in the workflow are intended to be performed

with an RGB image sequence recorded from a road scene with the vehicle camera that should be

calibrated. The image sequence can cover a time span as desired by an application or a certain

objective, like parameter uncertainty, and recording can be repeated also as desired.
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Figure 6.2: Workflow of the proposed method for self-calibration of a vehicle camera by structure-from-
motion using scene knowledge obtained from semantic segmentation.

6.1 Semantic segmentation

Image-based semantic segmentation is applied to obtain semantic knowledge about the road scene.

Instance segmentation is not used in the proposed method, as image features may occur in all

image parts and instance segmentation often covers only certain classes shown in some image

parts (see Section 2.3). For segmentation, inference with a trained deep model is done for each

RGB image (Figure 6.1a) of the calibration image sequence, resulting in pixel-wise semantic

images (Figure 6.1b). A model is used that has been trained on road scene images with ground

truth annotations distinguishing common semantic classes for road scenes like road, vehicle or
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building. By using a model trained by a third party [e.g. Chen et al., 2018b], the need for own

time-intensive hyperparameter tuning and expensive high performance computing capabilities

required for large-scale training datasets is avoided (e.g. 370 GPUs as reported by Chen et al.

[2018a]). Furthermore, by using a model trained on appropriate third-party datasets, the often

costly need to acquire ground truth annotations for own image sequences can be avoided and the

risk of overfitting the model to own datasets is eliminated.

6.2 Exclusion mask creation

Semantic masking is applied during SfM in order to exclude image parts showing potentially

critical objects from feature extraction to avoid unreliable reference points for camera calibration.

Hence, features can be extracted only from image parts that are considered as non-critical. Hereby,

the approach is to identify potentially critical objects by their semantic class. The binary exclusion

masks used to implement semantic masking are derived from the semantic images, whereby one

intensity value is assigned to pixels belonging to semantic classes which are considered non-critical

and should be used for feature extraction (white color in Figure 6.3a). The other intensity value

is assigned to pixels belonging to semantic classes that are considered as critical and should not

be used for feature extraction (black color in Figure 6.3a). The list of critical semantic classes

has to be provided manually before calibration and can cover for example all moving objects

or objects with a reflecting surface; a comparison between different classes with regard to the

resulting distribution and frequency of reference points can be found in Hanel & Stilla [2019b].

ti ti+j

(a)

ti ti+j

(b)

Figure 6.3: Examples (corresponding to Figure 6.1) for exclusion masks and for semantic matching. a) Ex-
clusion masks for classes vehicle and ego-car. The masked area (black color) on the ego-car is obtained
by fix-pixel masking, while the masked area on the two other vehicles is obtained by semantic masking,
b) semantic matches that are only allowed between feature points of the same semantic class, e.g. traffic
signs (yellow) or sidewalk (pink).

In addition to semantic masking, critical objects shown in the same part of the image in the

entire image sequence, like the ego-car, are excluded by fix-pixel masking. Therefore, a mask

consisting of polygons defined by fix image points is manually determined before calibration and

added to the exclusion masks (Figure 6.3a). The ego-car is considered as critical object, as the

windshield or the bonnet can easily show reflections and lead to wrong feature correspondences.

6.3 Structure-from-motion

Semantic feature extraction

SIFT features [Lowe, 1999] are extracted from each image of the road scene image sequence using

the exclusion masks in order to obtain feature points only on such road scene objects that are not

considered as critical.
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Semantic feature matching

The idea of semantic feature matching is to perform matching only between features extracted

from image parts showing objects from the same semantic class in order to reduce obviously wrong

matches between objects of different types, like between vehicle and building. Before matching,

the semantic class is assigned to each extracted feature point by sampling at the feature location

in the corresponding semantic image. During matching, the semantic classes of both features

being the current match candidates are compared with each other and regular matching is done

only if they belong to the same semantic class (Figure 6.3b). Hereby, regular matching means

that a descriptor similarity measure decides whether the two candidates are accepted as match

or not. If the candidates are from different classes, processing continues with the next match

candidates. Semantic masking, fix-pixel masking and semantic matching can be applied during

the workflow either separately, in combination or even not.

3d reconstruction

Having feature correspondences established by feature extraction and matching, a sparse 3d point

cloud of the road scene is obtained iteratively by 3d reconstruction. The reconstruction is initial-

ized with a random image pair, then step-by-step the other images are registered, 3d coordinates

of object points calculated by triangulation and optimized by bundle adjustment. For the re-

construction, the same set of interior and distortion parameters is used for all images, assuming

that there have been no changes in these parameters while recording the image sequence. This

assumption has the beneficial effect that the point cloud is Euclidean already [Hartley, 1993] and

only lacking scale information to become metric Heyden & Astrom [1996].

6.4 Position filtering and camera trajectory refinement

The metric scale information is incorporated into the 3d point cloud using a similarity trans-

formation based on filtered and refined 3d camera positions, wherefore the fact is used that the

positions of the mono camera (obtained from the exterior orientations) in the point cloud can be

uniquely assigned to the vehicle positions obtained from GPS. Even though the datum point of

the vehicle positions is typically different from the camera position (e.g. the center of the front

axis), the distance between two camera positions and thus the metric scale is not influenced and

so the differences in the datum point definition can be neglected.

The initially calculated metric GPS positions of the vehicle are filtered by special vehicle

motion models [Schubert et al., 2008; Hanel et al., 2019], e.g. based on the Ackermann movement

model or on non-holonomic constraints [Scaramuzza et al., 2009; Ruland et al., 2010; Lee et al.,

2013]. By exploiting the fact that vehicle motion is restricted to certain degrees of freedom (e.g.

planar movement) it is intended to mitigate the effect of observation errors in the GPS positions in

order to get a smoother trajectory that is appropriate for vehicle motion patterns and to increase

the quality of the metric scale and so the quality of camera calibration subsequently. In the

first step of trajectory refinement, the initially calculated GPS vehicle positions are interpolated

to match the image acquisition time points. As the positions from GPS are typically available

with a remarkably higher frequency than the images, a linear interpolation is considered to be

sufficient. In the second step, Kalman filtering based on the vehicle motion model is applied to

the interpolated trajectory in order to get a filtered trajectory (details see Hanel et al. [2019]).

For numerical benefits in the subsequent optimization step, the center of the filtered trajectory

is placed in the origin of the object coordinate system of the 3d reconstruction. Finally, the

transformation parameters are calculated based on the filtered and refined vehicle trajectory. By

applying the transformation to the entire point cloud, the metric scale gets incorporated into it.
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6.5 Optimization

In the last step, the final interior orientation parameters are estimated by global bundle adjust-

ment covering all images of the sequence. The corresponding covariance matrices are obtained as

uncertainty measures afterwards. For details, see Section 5.5.
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7 Test data and experiments

This chapter covers descriptions of the datasets used and the experiments performed.

7.1 Datasets

The Stereo image dataset (Subsection 7.1.1) is used for stereo camera calibration with test fields

(Chapter 4). The Ettlingen sequence and the Munich sequence (Subsection 7.1.2) are used to test

the methods for self-calibration with traffic signs (Chapter 5) and for self-calibration by semantic

structure-from-motion (Chapter 6). The Fraunhofer calibration dataset (Subsection 7.1.3) is used

to provide a reference calibration to evaluate the self-calibration methods.

7.1.1 Stereo image dataset

The Stereo image dataset contains pairs of simultaneously taken stereo images showing two 2d

test fields, one with coded and uncoded reference marks from the manufacturer Aicon [Schneider

et al., 2017], the other with a classic checkerboard pattern (Figure 4.3). The points in the center of

the reference marks and the corner points of the checkerboard pattern define the reference points

for calibration. The dataset has been recorded by a pair of monochromatic industrial cameras

(Figure 4.1, specifications see Table 7.1). The baseline between the cameras is approximately

33 cm in length and is oriented approximately orthogonal to the optical axes of the cameras.

The relative orientation and base length are typical for automotive camera systems (e.g. 22 cm

[Cordts et al., 2016], 30 cm, 53 cm, 57 cm [Rehder et al., 2017]). Likewise, the chosen focal length

of 6 mm is typical for automotive cameras, e.g. Rehder et al. [2017] are using optics with focal

length values of 4 mm, 4.5 mm and 15 mm for their experiments. The dataset comprises two

image sequences, each around 30 images, one taken in a car with the windshield in front of the

cameras, the other taken in a lab without a windshield (cf. Figure 4.3).

Table 7.1: Specifications of cameras and optics used for the experiments.

Stereo image dataset Ettlingen, Munich and Fraunhofer datasets

Camera: SVS-VISTEK SVCam eco655MVGE Baumer VLG-20C.I.
Monochrome CCD Color CCD
2448 x 2050 px 1624 x 1228 px
3.45 x 3.45 µm 4.4 x 4.4 µm
Optics: VS Technology SV-0614H -
Focal length 6 mm -
Aperture 1.4 ∼ 16 -
SVS-Vistek GmbH [2020] Borgmann et al. [2018]
VS Technology [2015] Baumer GmbH [2019]
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7.1.2 Ettlingen and Munich datasets

The Ettlingen sequence (Figure 7.1a) consists of 300 RGB road scene images recorded by the multi-

sensor vehicle MODISSA [Borgmann et al., 2018] during a 30 second drive through a suburban

area. MODISSA (Figure 7.2a) is operated by the Fraunhofer Institute of Optronics, System

Technologies and Image Exploitation and is equipped with a range of different environment-

perceiving sensors, of which the on-board front-right forward-looking camera (specifications see

Table 7.1) is used to record the sequence. Additionally, the trajectory of MODISSA is recorded

with a GPS receiver; as the recording times of the GPS positions and images do not match, they

need to be synchronized to each other.

The Munich sequence (Figure 7.1b) consists of 504 road scene images and has been recorded

also by MODISSA during a 40 second drive through an urban area. Compared to the Ettlingen

sequence, the Munich sequence shows a larger number of traffic signs, especially at the two inter-

sections contained in the sequence. Furthermore, it contains more moving objects like cars and

pedestrians.

(a) (b)

Figure 7.1: Example images of the Ettlingen sequence andMunich sequence. a) Ettlingen sequence recorded
in a suburban environment, b) Munich sequence recorded in an urban environment.

7.1.3 Fraunhofer calibration dataset

The Fraunhofer calibration dataset consists of an image sequence (example see Figure 7.2b)

recorded at the Fraunhofer research facility with the same forward-looking on-board camera

of MODISSA as the Ettlingen sequence and the Munich sequence. The Fraunhofer calibration

dataset contains more than 1, 000 images showing a 3d calibration test field being moved and

rotated through the field of view of the camera. The test field has been constructed by three or-

thogonal planes forming an ”open cube” with checkerboard patterns on each plane. The checker-

board corners define the reference points for calibration. As according to Luhmann et al. [2016],

calibration with 2d test fields can be disadvantageous in terms of accuracy and correlations be-

tween parameters, a 3d shape has been selected over a 2d shape for the test field. The object

coordinates of the reference points have been determined analytically assuming a grid shape and

a known metric checkerboard square size.
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(a) (b)

Figure 7.2: Sensor setup and example image from a camera of the multi-sensor vehicle MODISSA.
a) MODISSA. The front-right camera named ”video camera” has been used to record the image sequences
for the Munich, Ettlingen and the Fraunhofer calibration dataset. Image adapted from Fraunhofer Insti-
tute of Optronics, System Technologies and Image Exploitation IOSB [2020], b) example image from the
Fraunhofer calibration dataset showing the 3d calibration test field that is rotated and moved in the field
of view of the camera of MODISSA.

7.2 Experiments

This section covers the description of the experiments performed to test the proposed methods,

including the definition of experimental cases that allow to investigate different aspects of the

methods and also including technical details on the implementation. First, the experiments for

the method for test field calibration are addressed (Subsection 7.2.1), followed by the experiments

for self-calibration with traffic signs (Subsection 7.2.2). Last, the experiments for self-calibration

by semantic structure-from-motion are explained (Subsection 7.2.3).

7.2.1 Camera calibration with test fields through a vehicle windshield

First, the experiments for stereo camera calibration with test fields are addressed.

Experimental cases and parameter settings

The calibration is performed with the Stereo image dataset for all possible combinations of ex-

perimental cases and parameter settings (Table 7.2). Hereby, experimental cases address major

evaluation aspects to answer the research questions: The feature types describe the type of refer-

ence marks used, either only from the test field with Aicon reference marks (feature type Aicon),

or only from the checkerboard test field (Checkerboard) or jointly from both test fields (Merged).

The camera models are used for calibration as defined in Subsection 2.1.4 and the stereo con-

straints are used as defined in Subsection 4.2.6. The two setups represent calibration with and

without the windshield. In addition to the experimental cases, parameter settings address minor

aspects with influence on camera calibration: The idea behind keeping the object coordinates

of the reference points fixed during optimization (3d points fixed) is that they have been pre-

determined with high accuracy, and allowing updates to them may undesirably cover effects from

the windshield, which otherwise could become visible in the estimated orientation parameter

values. Robust optimization could help to alleviate the influence of potential outliers in the

observations in bundle adjustment and has been introduced as consequence of preliminary eval-

uations (details see Subsection 8.2.5). As the relative orientation constraints in Stereo constraint

2 are defined as fictional observations with regular functional equations, they have observation
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Table 7.2: Experimental cases and parameter settings for stereo camera calibration with test fields.

Experimental cases Parameter settings

Setups Camera models Feature types Stereo 3d point Optimization Observation weights
constraints optimization mode real:fictional

with None Aicon 0 Adjustable Robust 1:10

without Radial Checkerboard 1 Fixed Non-robust
...

Both Merged 2 10:1

weights. Therefore, the grade how strict these constraints are enforced during bundle adjustment

can be modeled by different ratios of observation weights between these fictional and the real

observations (pixel coordinates and, if applicable, object coordinates). The left stereo camera is

defined as reference camera, the right one as slave camera (cf. Subsection 4.2.6). Finally, note

that a short nomenclature based on the initial letters is introduced for the experimental settings:

E.g. ”RM0” means that the Radial camera model, feature type Merged and Stereo constraint 0

are used.

Implementation and execution

The pixel coordinates of the Aicon reference marks are extracted with the software Aicon 3D Stu-

dio [Schneider et al., 2017]. The pixel coordinates of the checkerboard corners are extracted using

Matlab-internal routines. 3d reconstruction and bundle adjustment are done with the framework

COLMAP [Schönberger & Frahm, 2016] . Uncertainty estimation is done with the framework

USfM [Polic et al., 2018]. Note that COLMAP, VisualSFM [Wu, 2013] and other common 3d

reconstruction frameworks do not provide uncertainty information to the best knowledge of the

author and so a separate solution becomes necessary. All interior, relative and exterior orien-

tation parameters are set as adjustable during bundle adjustment. 3d points are set either as

adjustable or as fixed, cf. parameter settings. Observations for bundle adjustment are the pixel

and, also depending on the parameter settings, the object coordinates of the reference points.

Optimization is terminated when the convergence criterion has been met (change in the sum of

absolute residuals below a pre-defined threshold or after 10,000 iterations). COLMAP and USfM

have been adopted and extended to execute the proposed algorithm. The remaining steps of

the workflow are done by own Matlab or Octave routines. Calibration is performed separately

for both setups. The initial guess for the interior orientation and distortion values needed for

a Euclidean 3d reconstruction and non-linear optimization is obtained from a geometric camera

calibration having been performed beforehand separately for each camera. Interior orientation

and lens distortion are assumed to be constant over the entire image sequence, which is a common

assumption in the automotive domain, as regularly lenses with fixed focal length and focus setting

are used in vehicles [Gil et al., 2018b]. The initial guess for the relative orientation is obtained

from a geometric stereo calibration. Calibration is repeated 25 times for each experimental case

and parameter setting to alleviate potential non-deterministic effects (cf. second paragraph in

Section 8.2).

7.2.2 Camera calibration with traffic signs

Second, the experiments for camera calibration with traffic signs are addressed.

Experimental cases

The experimental cases (Table 7.3) cover all combinations of supported traffic sign shapes for the

most-promising semantic segmentation and depth estimation methods (cases 1 ...), which have
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been selected based on preliminary experiments (see Subsection 8.3.4). They also cover other less-

promising semantic segmentation and depth estimation methods, but only for the combination

with all three traffic sign shapes (cases 2 CRT and 3 CRT ).

Table 7.3: Experimental cases for camera calibration with traffic signs.

Case Traffic sign shapes Computer vision methods

1 C Circle Deeplabv3+, Monodepth2
1 R Rectangle Deeplabv3+, Monodepth2
1 T Triangle Deeplabv3+, Monodepth2
1 CR Circle, rectangle Deeplabv3+, Monodepth2
1 CT Circle, triangle Deeplabv3+, Monodepth2
1 RT Rectangle, triangle Deeplabv3+, Monodepth2
1 CRT Circle, rectangle, triangle Deeplabv3+, Monodepth2
2 CRT Circle, rectangle, triangle Deeplabv3+, struct2depth
3 CRT Circle, rectangle, triangle EfficientPS, Monodepth2

Implementation and execution

Camera calibration with traffic signs is tested with the Ettlingen and the Munich sequence. Se-

mantic segmentation is performed with either Deeplabv3+ [Chen et al., 2018b] or with EfficientPS

[Mohan & Valada, 2021]. Depth estimation is either performed with Monodepth2 [Godard et al.,

2019] or with struct2depth [Casser et al., 2019], which have been selected as they are recently

published methods for which the source code is available to the public. Deep models trained

(e.g. on the well-known road scene image dataset KITTI as done by Casser et al. [2019]) and

provided by the authors of these methods are used for the experiments. Fine tuning on the two

test datasets has not been done to avoid overfitting. Hence, it is possible to show with the ex-

periments that the proposed method does not only work with images used for training already,

which would not be realistic for an automotive application where future images will be acquired

in completely different road scenes and conditions. The Both camera model with radial and tan-

gential distortions is used (cf. Subsection 2.1.4), as it has shown best results in calibration with

test fields (see Subsection 9.1.1). A single set of interior orientation parameters is estimated for

each entire image sequence assuming no changes to the interior orientation during the few seconds

of data recording. Bundle adjustment and uncertainty estimation are done with COLMAP and

USfM.

Reference calibration

The proposed methods for calibration with traffic signs and semantic structure-from-motion are

evaluated against a reference calibration performed as high-quality test field calibration with the

Fraunhofer calibration dataset. The 3d object coordinates of the reference points are defined

in a coordinate system with the intersection point of the three planes as origin and with each

intersection line between two of the three planes as coordinate axis. The coordinate values are

calculated assuming an ideal grid shape of the reference points and using the known edge length of

one checkerboard square. Bundle adjustment is done with COLMAP and uncertainty estimation

with USfM as well. The relevant results of reference calibration are the estimated values and

standard deviations of the interior orientation and distortion parameters.
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7.2.3 Camera calibration by semantic structure-from-motion

Third, the experiments for camera calibration by semantic structure-from-motion are addressed.

For comparison of the proposed method with a high-quality reference calibration, the same ref-

erence calibration as for calibration with traffic signs is utilized. Several experimental cases are

defined covering different approaches to integrate semantic knowledge and a vehicle motion model.

Experimental cases

The experimental cases (Table 7.4) cover all combinations where in the workflow either no seman-

tic knowledge, only semantic feature extraction (SFE ), only semantic matching (SM ) or both are

used. They also cover all combinations where either no special vehicle motion model or where a

special vehicle motion model (VMM ) is applied to filter and refine the GPS positions of the vehi-

cle. For experimental cases with VMM, only the later part of the workflow is executed by taking

the 3d reconstruction from the corresponding experimental case without VMM and continuing

with the step of camera trajectory refinement (see Section 6.4). For semantic feature extraction,

10 different mask types (MT) are derived from semantic categories (Table 7.5). The semantic

categories consist of either a single or of multiple semantic classes following the Cityscapes class

definition [Cordts et al., 2016]: (i) vehicle: bicycle, bus, car, caravan, license plate, motorcycle,

trailer, train, truck, (ii) nature: terrain, vegetation, (iii) human: person, rider, (iv) construction:

bridge, building, fence, guard rail, tunnel, wall, (v) flat: parking, rail track, road, sidewalk, (vi)

object: pole, pole group, traffic light, traffic sign and (vii) the class sky forms its own category.

The only category not depending on semantic road scene knowledge is ego-car originating from

fix-pixel masking. As mask type 1 (MT1) is an empty mask, semantic feature extraction has no

effect (therefore, ”+ SFE” is not added to MT1 in Table 7.4) and so experimental cases with MT1

can be seen as baseline for comparisons between the mask types. Furthermore, in combination

with SM, MT1 defines the experimental case where only semantic feature matching is used.

Table 7.4: Experimental cases for calibration by semantic structure-from-motion. Semantic feature ex-
traction (SFE) is applied to all except the empty mask type 1 (MT1), which can be seen as baseline for
comparison with other mask types. Semantic matching (SM) and the vehicle motion model (VMM) are
applied in all four combinations.

Without vehicle motion model With vehicle motion model

Without
semantic
matching

MT1 MT1 + VMM
MT2 + SFE MT2 + SFE + VMM
...

...
MT10 + SFE MT10 + SFE + VMM

With
semantic
matching

MT1 + SM MT1 + SM + VMM
MT2 + SFE + SM MT2 + SFE + SM + VMM
...

...
MT10 + SFE + SM MT10 + SFE + SM + VMM

Implementation and execution

Calibration by semantic structure-from-motion is tested with the Ettlingen and the Munich se-

quence. Semantic segmentation is performed with the Deeplabv3+ network [Chen et al., 2018b],

which is, despite its age and the fast research progress in deep learning, still among the best

methods in the Cityscapes benchmark for semantic segmentation of road scene images [Cordts

et al., 2019]. A model for this network trained on the Cityscapes dataset [Cordts et al., 2016]
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Table 7.5: Mask types (MT) for semantic feature extraction.

Mask type Semantic categories

MT1 none (empty mask)
MT2 ego-car + vehicle
MT3 ego-car + nature
MT4 ego-car + sky
MT5 ego-car + human
MT6 ego-car + construction
MT7 ego-car + flat
MT8 ego-car + object
MT9 ego-car + all road users (human, vehicle)
M10 ego-car + all movable objects (human, sky, vegetation, vehicle)

and provided by the Deeplabv3+ developers is used; i.e, the model is not fitted specifically to the

test data, same as for calibration with traffic signs. Panoptic segmentation [Mohan & Valada,

2021] providing semantic information for each individual object, whereby multiple objects may

be covered in one segment in semantic segmentation, would have been an interesting alternative

for integrating semantic knowledge. But as the experiments have been carried out before pub-

lication, it could not have been considered. 3d reconstruction by structure-from-motion is done

with COLMAP [Schönberger & Frahm, 2016], which has shown best performance in a compari-

son with other structure-from-motion algorithms [Bianco et al., 2018]. The Both camera model

is used (cf. Subsection 2.1.4). A single set of interior orientation parameters is estimated for

each image sequence assuming no changes to the interior orientation during the few seconds of

data recording. COLMAP’s ”sequential feature matching” is applied considering the fact that

images recorded during driving are already in a temporarily sequential order. By this matching

algorithm, only the previous and next twenty images are considered. Integration of the filtered

vehicle positions as well as global bundle adjustment is also done by COLMAP. The uncertainty

measures are estimated by USfM [Polic et al., 2018]. Experiments where bundle adjustment did

not converge after a pre-defined number of optimization iterations are discarded and the workflow

is repeated from scratch. Preliminary empiric analysis has shown unfavorable initial image pairs

for 3d reconstruction obtained by random selection to cause that convergence is not achieved.

According to this analysis, the undesired effect of such experiments are residuals that are more

than hundred times larger than for a converging optimization with a better selection of the initial

image pair.
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8 Results and discussion

This chapter covers the results and discussions. First, the evaluation approaches with statistical

measures, deviation plots and statistical significance tests are described (Section 8.1). Second,

the evaluation of camera calibration with test fields through a vehicle windshield is addressed

(Section 8.2). Due to their high relevance for the evaluation of this method, residuals of the image

points are shown as plots besides numerical representation of other statistical measures. The

deviation plots and significance tests compare the interior, relative and exterior orientation in the

two calibration setups with and without the windshield with each other. Furthermore, correlations

among and between the interior and relative orientation parameters are shown and compared

between the two setups. Remarkable observations from these results are discussed. Third, the

evaluation of camera calibration with traffic signs is addressed (Section 8.3). Besides the statistical

measures, deviation plots and significance tests comparing the proposed method with a reference

calibration are shown. Potential factors influencing the calibration are discussed. Fourth, the

evaluation of camera calibration by semantic structure-from-motion is presented (Section 8.4),

which is analogue to the evaluation of calibration with traffic signs. Fifth and last, the three

proposed methods and their results are discussed in comparison with each other (Section 8.5).

8.1 Evaluation approaches

All proposed methods are evaluated with the following approaches: First, statistical measures like

the number of extracted features (#features), the number of image points (#image points) and

the number of object points (#object points) of the reference points give basic insights into the

image network and reference information used for calibration. Among these measures, large values

are desirable for camera calibration. Additionally, the mean values r̄x, r̄y and standard deviations

σrx , σry of the residuals of image points in x- and y-direction are shown. In contrast, small values

are desirable for these measures. Large mean residuals could be an indicator for systematic biases

in the observations, while large standard deviations could be an indicator for low precision of the

observations. The value range of the residuals should be equal in the x- and y-direction as large

differences could be an indicator for direction-dependent systematic effects, for instance due to

incomplete DOF coverage in self-calibration. Second, deviation plots of the estimated interior,

and if applicable, relative and exterior orientation parameter values and standard deviations

between the proposed method and a reference calibration are created. Objective of these plots

are visual analysis of differences between orientation parameters, experimental cases and test

sequences. Small deviations from reference calibration are desirable for the estimated parameter

values, which can be an indicator for a reliable calibration with the proposed methods. Either

negative or at least small positive deviations are desirable for the estimated standard deviations,

which can be an indicator that the proposed methods either have a better or a similar precision

as the reference calibration. Third, the statistical significance of the mentioned deviations is

assessed by hypothesis tests. The tests are complementary to the plots: While the tests allow for

conclusions on the relevance of deviations, the plots allow for conclusions on the direction and
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strength of deviations. Finally, remarkable observations from the plots, tables and tests about

the results are discussed. Such observations represent tendencies in the results that are valid for

a majority of experimental cases, orientation parameters, etc., despite that there might be single

experimental cases, parameters, etc. that show contradictory results.

One drawback of the presented evaluation is that the standard deviations of the orientation

parameters represent the inner accuracy only, also called precision. Hence, they indicate how

well the observations, the functional model and the estimated parameter values match with each

other [Luhmann et al., 2006, 2013]. But due to the lack of additional independent reference points

or reference lengths with higher accuracy than the observations, the standard deviations don’t

represent the outer accuracy, so they don’t indicate how well the estimated parameters coincide

with their actual values [Remondino et al., 2017]. As worst-case example, the estimated focal

length may be twice as large as the actual value due to a scale error that affects all observations,

but the estimated standard deviation of the focal length can be misleadingly small, if the functional

model, observations and estimated parameters still do match well due to the equal effect of

the scale error. Another drawback is that two contra-intuitive effects have to be acknowledged

when interpreting the results of the hypothesis tests on the estimated parameter values. First, if

the standard deviation of an estimated parameter is large, the hypothesis test on the deviation

between the estimated and the reference value may decide for non-significant even if the deviation

is so large that the estimated value will not be considered as reliable by visual inspection. Second,

if the standard deviation is small, the same hypothesis test may decide that the deviation is

significant, even if it is so small that the estimated value will be considered as visually reliable.

8.2 Camera calibration with test fields through a vehicle wind-

shield

For calibration with test fields, the evaluation is more comprehensive than described in the pre-

vious section as the influence of the windshield should be analyzed from different perspectives. It

comprises (i) statistical measures and residual plots (Subsection 8.2.1) and (ii) deviation plots be-

tween the setup with and without the windshield for the estimated interior and relative orientation

parameter values. Furthermore, it comprises deviation plots for the estimated standard devia-

tions of the interior, relative and exterior orientation parameters between the two setups (Sub-

section 8.2.2), (iii) statistical significance tests for the mentioned deviations (Subsection 8.2.3),

(iv) plots of the correlations among and between the interior, relative and exterior orientation

parameters (Subsection 8.2.4) and (v) a discussion of remarkable observations (Subsection 8.2.5).

Each experimental case was repeated in total 25 times (called experimental runs) to allevi-

ate the influence of non-deterministic effects, for example during optimization [Agarwal et al.,

2022]. If not stated otherwise, the data shown for each experimental case is the average over

all experimental runs. As optimization with the None camera model was not successful for the

without setup, no data is shown for this camera model; the lack of distortion parameters in only

this camera model might be a reason for the failing optimization. For each camera, the standard

deviations of the three position and three rotation parameters of the exterior orientation of all

images are averaged to a single standard deviation value for the position and a single standard

deviation value for the rotation, as the object coordinate systems in both setups are not identical

and so a comparison based on the three individual parameters would not be meaningful. For the

same reason, only the standard deviations of the exterior orientation parameters are considered

for evaluation, but not the orientation parameter values.

Outliers in the estimated parameters and standard deviations are removed prior to evaluation

based on the median absolute deviation (MAD). Classic outlier removal based on mean and stan-
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dard deviations (e.g. 3σ rule) is considered as not robust, as both mean and standard deviations

are sensitive to outliers [Leys et al., 2013]. As stringency threshold for the MAD, the value 10 is

selected, i.e. the chance for considering a parameter value or standard deviation as outlier can be

seen as small [Leys et al., 2013].

8.2.1 Statistics and residual plots

Statistical measures for both setups, all feature types and two camera models are shown in

Table 8.1. The number of images used for calibration (#images) is the sum over both cameras.

As it can be expected due to the combination of both test fields, the number of images, image and

object points of the reference points is highest for the feature type Merged in both setups. The

higher numbers for the feature type Aicon compared to Checkerboard correspond with a larger

number of images and with a larger number of reference marks on this test field. The higher

numbers of image and object points for the with windshield setup correspond with a higher

number of images in this setup from which reference points have been extracted successfully.

Table 8.1: Statistical measures for both setups and all experimental cases for calibration with test fields.
Measures shown for all feature types (A: Aicon, C: Checkerboard, M: Merged) and for two camera models
(B: Both, R: Radial). No distinction between stereo constraints, as the values are the same for all stereo
constraints.

Setup Experimental case #images #image points #object points

Without
windshield

RM 40 62,390 282
BM 40 62,390 312
RA 35 52,900 146
BA 35 52,900 146
RC 21 9,490 54
BC 21 9,490 54

With
windshield

RM 62 144,232 443
BM 62 144,232 419
RA 48 113,938 147
BA 48 113,938 146
RC 34 30,294 54
BC 34 30,294 58

Histogram plots of the residuals of the image points in x- and y-direction for both cameras

are shown separately for each setup (Figures 8.1, 8.2). The histograms are normalized over the

number of parameter settings and experimental runs, so that each histogram covers all images

taken for one camera in one experimental case. The horizontal axis of the histograms is limited

to the ±3.5σ interval, the tick marks match 1σ, 2σ and 3σ. As coherent observations for both

setups, it can be seen that the residuals are in average clearly larger for Stereo constraint 1 than

for the other two stereo constraints (larger scaling on horizontal axes). Between the other two

stereo constraints, no differences are visible (same scaling on horizontal axis) in either setup.

The steep curves for Stereo constraint 1 indicate the presence of a large number of outliers. For

both setups, the residuals are larger for camera model Both than for Radial (larger scaling).

Additionally, mean biases and negative skew can be seen especially for the Both camera model in

the with windshield setup. Skew is larger for the y-direction than for the x-direction (cf. especially

the first row in Figure 8.2). Remarkable differences between the two cameras can be only seen

in a few experimental cases (e.g. without windshield, RA1). Furthermore, residuals are larger for

the with windshield setup in all experimental cases (larger scaling on horizontal axis). While the

residuals in the with windshield setup are in a reasonable value range for Stereo constraints 0 and

2 (1σ ≤ 1px), this does not apply for Stereo constraint 1.
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Figure 8.1: Histograms for the residuals rx and ry in x- and y-direction for both the reference (r) and
slave (s) camera for the without windshield setup. Histograms given for all feature types (M: Merged,
A: Aicon, C: Checkerboard), for all stereo constraints (0 : no relative orientation, 1 : relative and exterior
orientation of one camera, 2 : relative and exterior orientation of both cameras) and for two camera models
(B: Both, R: Radial). Histograms normalized over parameter settings and experimental runs. Horizontal
axis with unit [px] and limited to the ±3.5σ interval.
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Figure 8.2: Histograms for the residuals rx and ry in x- and y-direction for both the reference and slave
camera for the with windshield setup. Histograms given for all feature types, for all stereo constraints
and for two camera models. Descriptions of the abbreviations see Figure 8.1. Histograms normalized over
parameter settings and experimental runs. Horizontal axis with unit [px] and limited to the ±3.5σ interval.
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8.2.2 Deviations of orientation parameters between the without and with
windshield setup

For each experimental case, relative deviations d of the estimated orientation parameter values

and standard deviations between both setups (wwo) are calculated. For instance, d is calculated

for the estimated parameter values (X) of the interior orientation (I ) as

dwwo,X,I =
X̂I,wo − X̂I,w

X̂I,wo

(8.1)

where X̂I,wo and X̂I,w are the vectors of estimated interior orientation parameter values in the

without windshield (wo) and with windshield (w) setup, respectively. As the without windshield

Figure 8.3: Relative deviations of focal length and principal point parameters between the with and without
windshield setup. Reference and slave camera, all feature types, all stereo constraints and two camera
models shown. Descriptions of the abbreviations see Figure 8.1. Vertical axis unit-free, invalid deviations
in medium gray, off-limit deviations in light gray.
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Figure 8.4: Relative deviations of radial and tangential distortion parameters between the with and without
windshield setup. Reference and slave camera, all feature types, all stereo constraints and two camera
models shown. Descriptions of the abbreviations see Figure 8.1. Vertical axis unit-free, invalid deviations
in medium gray, off-limit deviations in light gray.

setup represents regular camera calibration and thus can be seen as kind of reference, it serves

for normalization in the denominator. The deviations for the standard deviations dwwo,σX ,I

of the interior orientation parameters, the deviations dwwo,X,R and dwwo,σX ,R of the relative

and the deviations dwwo,σX ,E of the exterior orientation parameters are obtained accordingly.

Each deviation is averaged over all experimental runs and parameter settings. For the exterior

orientation, the deviations are additionally averaged over all images; the three rotation angles and

three position parameters are further averaged into a single parameter each time (σrot and σpos; cf.

second paragraph in Section 8.2). Note that for dwwo,X , an interpretation of positive and negative

deviations as better or worse is not possible. For dwwo,σX
, positive deviations can be interpreted

as that the standard deviations in the without setup are larger than in the with setup, hence the

with setup has a better precision; for negative deviations, the opposite applies. Experimental
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Figure 8.5: Relative deviations of relative orientation parameters between the with and without windshield
setup. All feature types, all stereo constraints and two camera models shown. Descriptions of the abbre-
viations see Figure 8.1. Vertical axis unit-free, invalid deviations in medium gray, off-limit deviations in
light gray.

cases with invalid values, i.e. where calibration was not successful or where parameters are not

supported (e.g. tangential distortion for camera model Radial), are shown as medium gray bars

in the deviation plots. The scaling of the vertical axis is chosen with regard to a trade-off between

visibility and expressiveness of the plots. Such off-limit deviations exceeding the plots contain

valid estimates and are displayed as light gray bars in the plots.

From the deviation plots of the interior orientation parameters, it can be seen that the devia-

tions are in tendency larger for the distortion parameters (Figure 8.4) than for the focal length or

principal point coordinates (Figure 8.3); note the different scaling of the vertical axes. The devi-

ations for the standard deviations dwwo,σX ,I are in tendency larger than the deviations dwwo,X,I

for the parameter values. The deviations are also larger for Stereo constraint 1 than for 0 and

2. For camera model Radial, the deviations for the distortion parameters are in tendency larger
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Figure 8.6: Relative deviations of averaged standard deviations of exterior orientation parameters between
the with and without windshield setup. Reference and slave camera, all feature types, all stereo constraints
and two camera models shown. Descriptions of the abbreviations see Figure 8.1. Vertical axis unit-free,
invalid deviations in medium gray, off-limit deviations in light gray.

than for camera model Both, what indicates that the images could contain tangential distortions

that are not modeled by Radial. Furthermore, for feature type Checkerboard and camera model

Radial, calibration was not successful for two experimental cases. In comparison between the

reference and slave camera, there are only a few parameters with visually larger deviations for

one camera (e.g. dwwo,X,fx large for r, small for s). From the deviation plots of the relative orien-

tation parameters (Figure 8.5; angles given as Euler angles) it can be observed that in tendency

dwwo,X,R are larger than dwwo,σX ,R. In general, the differences between the experimental cases

are large (many off-limit deviations, light gray color). dwwo,X,R are larger for Stereo constraint 2

than for 1, which seems reasonable as the definition of the constraints in 1 avoids contradictions.

For dwwo,σX ,R, the observation is the opposite. Furthermore, the deviations are larger for feature

type Merged than for Aicon. From the deviation plots of the exterior orientation parameters

(Figure 8.6), the only remarkable observation that can be made is that dwwo,σX ,E is larger for the

rotation than for the position parameters. Finally, for all three kinds of orientation parameters,

it can be observed that the precision is smaller in average for the without windshield setup.

8.2.3 Significance tests on deviations between the without and with windshield
setup

In contrast to visual observations made from plots, statistical tests (Table 8.2) do not depend

on subjective perception and thus are considered as complementary aspect for analysis of the

influence of the windshield. The tests are performed for the estimated parameter values and

standard deviations of the interior, relative and exterior orientation and evaluate whether there is

a statistically significant difference between the with and without setup. The selected significance

level is α = 0.05 for all tests. For the estimated parameter values, a two-tailed t-test with the

null hypothesis H0 and alternative hypothesis H1 is performed. The hypotheses are defined as

shown exemplarily for the interior orientation by

H0 : X̂I,wo = X̂I,w (8.2)

H1 : X̂I,wo ̸= X̂I,w (8.3)

whereby the mathematical items are defined as in Subsection 8.2.2. As the variances and redun-

dancies of X̂I,wo and X̂I,w are not equal, the hypothesis tests are carried out as Welch’s t-test
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[Welch, 1947]. For the estimated standard deviations, a two-tailed F-test is performed. The

hypotheses are defined as shown exemplarily for the interior orientation by

H0 : σ̂
2
X̂I,wo

= σ̂2
X̂I,w

(8.4)

H1 : σ̂
2
X̂I,wo

̸= σ̂2
X̂I,w

(8.5)

whereby σ̂X̂I,wo
and σ̂X̂I,w

are the vectors of the estimated standard deviations of the interior

orientation parameters in the without windshield (wo) and with windshield (w) setup, respectively.

Table 8.2: Results of significance tests between the with and without windshield setup for the interior,
relative and exterior orientation parameters for both cameras, all feature types, for all stereo constraints
and for two camera models. Invalid deviations in medium gray background color. Descriptions of the
abbreviations see Figure 8.1. Non-significant deviation for value 0, significant deviation otherwise.

BM0 BM1 BM2 BA0 BA1 BA2 BC0 BC1 BC2 RM0 RM1 RM2 RA0 RA1 RA2 RC0 RC1 RC2

fx,r
fy,r
cx,r 0 0 0
cy,r 0
k1,r 0 0
k2,r 0
p1,r 0
p2,r 0 0
fx,s 0 0
fy,s
cx,s 0 0 0
cy,s 0
k1,s 0 0
k2,s 0 0
p1,s
p2,s 0
κ
φ 0 0 0
ω
rXs

r
rY s

r 0 0 0 0 0
rZs

r 0 0 0

σfx,r 0 0
σfy,r 0 0
σcx,r 0 0
σcy,r 0 0
σk1,r 0 0 0 0
σk2,r 0 0 0 0 0 0
σp1,r 0
σp2,r 0
σfx,s 0 0
σfy,s 0 0
σcx,s 0 0
σcy,s 0 0
σk1,s 0 0 0
σk2,s 0 0 0 0 0
σp1,s 0
σp2,s 0
σκ 0 0 0 0 0
σφ 0 0 0 0 0
σω 0 0 0 0 0 0
σrXs

r
0

σrY s
r

0 0 0
σrZs

r
0 0 0 0

σrot,r 0 0 0 0 0 0 0 0 0 0
σpos,r 0 0 0 0 0 0
σrot,s 0 0 0 0 0 0 0 0 0 0 0 0
σpos,s 0 0 0 0 0 0
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Looking at the test results for the parameter values, the rate of statistically non-significant

deviations is highest for the principal point parameters, followed by the tangential distortions,

then by the radial distortions. The rate is lowest for the focal length parameters. For the

position parameters of the relative orientation, the rate is higher than for the rotation parameters.

Looking at the three feature types, Checkerboard has a higher rate of non-significant differences

than Aicon than Merged. Comparing the stereo constraints with each other, the rate of non-

significant deviations is highest for 0, followed by 2, while it is lowest for 1. Likewise, the rate

of non-significant differences is higher for camera model Both than for Radial. For neither of

these parameters and for neither of these experimental cases, more than one quarter of all valid

deviations is statistically non-significant, i.e. there is a statistical significance of the deviations

between the with and without setup in the majority of experimental cases.

Looking at the test results for the standard deviations, the rate of non-significant deviations

is higher for k than for f and c, which are equal, than for p. For the relative orientation, the rate

is higher for the position than for the rotation parameters, which is the opposite from the tests

on parameter values. In contrast, for the exterior orientation, the rate is higher for the rotation

parameters. For the three stereo constraints, now 1 shows the highest rate of non-significant

deviations, followed by 2, then by 0. The observations for the three feature types and the two

camera models are coherent with the tests on the deviations of the parameter values. Finally,

in contrast to the deviations on the parameter values, there are several parameters and experi-

mental cases where the rate of non-significant deviations is above one quarter. With feature type

Checkerboard, there is also one experimental case, where the majority of deviations is statistically

non-significant.

8.2.4 Correlations between orientation parameters

As large correlations between the estimated camera calibration parameters are not desired (cf.

Chapter 4), their values are analyzed in the following. Therefore, the correlations are plotted for

the Both (Figures 8.7, 8.9) and for the Radial (Figures 8.8, 8.10) camera model for each setup.

Hereby, for the sake of a meaningful visualization, the correlations are put into six correlation

groups (Table 8.3). Each group covers the correlations of all contributing orientation parameters

obtained by calibration with all parameter settings and experimental runs for the respective

camera model and setup. For instance, group I covers the interior orientation parameters, i.e.

the focal length, the principal point, the radial-symmetric distortion and the tangential distortion

parameters. The analysis addresses remarkable observations about the mean correlation, the

standard deviation and the value range of the correlations in each group.

Table 8.3: Correlation groups defined to evaluate the correlations among and between orientation param-
eters for camera calibration with test fields.

I : Among interior orientation IR: Between interior and relative orientation
R: Among relative orientation IE : Between interior and exterior orientation
E : Among exterior orientation RE : Between relative and exterior orientation

The mean correlations (plus sign in the four correlation figures) are between ±0.3 for all ex-

perimental cases and correlation groups for both setups. These small values indicate the absence

of systematic deficiencies in the imaging configuration. Remarkable differences in the mean cor-

relations between the experimental cases are not observed in the figures. Analysis of the standard

deviations of the correlations (1σ interval visualized by the black horizontal lines in the four cor-

relation figures) can give insights on how strong the correlations differ between the orientation

parameters, experimental runs and parameter settings within each group. For instance, a small

standard deviation indicates that the correlations are similar for all parameters, parameter set-
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Figure 8.7: Correlations among the interior (I), relative (R) and exterior (E) orientation parameters and
correlations between all pair-wise combinations (IR, IE, RE) for the Both camera model and the without
windshield setup for all feature types and all stereo constraints. The colored bars show the value range
from minimal to maximal correlation, the plus signs show the mean correlation and the two black lines
show the 1σ interval. Descriptions of the remaining abbreviations see Figure 8.1. Vertical axis normalized
to [−1, 1].

Figure 8.8: Correlations among the interior, relative and exterior orientation parameters and correlations
between all pair-wise combinations for the Radial camera model and the without windshield setup for
all feature types and all stereo constraints. The colored bars show the value range from minimal to
maximal correlation, the plus signs show the mean correlation and the two black lines show the 1σ interval.
Descriptions of the abbreviations see Figures 8.1 and 8.7. Vertical axis normalized to [−1, 1].

tings and runs. In the following, one group after the other is discussed. Looking at group I, the

standard deviations are in tendency smaller for 1 than for 0 and 2. They are visually remarkably

smaller for one camera model for some experimental cases and larger for others. The same ap-

plies with regard to the three feature types. Especially cases with feature type Both show larger

standard deviations for the without setup. Looking at group IR, the standard deviations are in

tendency smaller for 2 than for 1 and smaller for the with than for without windshield setup.

Looking at group IE, standard deviations are in tendency smaller for 1 than for 2 than for 0.

They are smaller for Radial than for Both. They are visually larger for Checkerboard, especially

with Radial. With regard to the setups, the standard deviations are larger for without. Looking

at group R, the same observation can be made for the stereo constraints as for IR. In tendency,

the standard deviations are larger for Both than for Radial, except for one experimental case, and
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Figure 8.9: Correlations among the interior, relative and exterior orientation parameters and correlations
between all pair-wise combinations for the Both camera model and the with windshield setup for all feature
types and all stereo constraints. The colored bars show the value range from minimal to maximal correla-
tion, the plus signs show the mean correlation and the two black lines show the 1σ interval. Descriptions
of the abbreviations see Figures 8.1 and 8.7. Vertical axis normalized to [−1, 1].

Figure 8.10: Correlations among the interior, relative and exterior orientation parameters and correlations
between all pair-wise combinations for the Radial camera model and the with windshield setup for all
feature types and all stereo constraints. The colored bars show the value range from minimal to maximal
correlation, the plus signs show the mean correlation and the two black lines show the 1σ interval. De-
scriptions of the abbreviations see Figures 8.1 and 8.7. Vertical axis normalized to [−1, 1].

they are larger for Checkerboard than for Aicon and Merged. The standard deviations are larger

for the without than for with windshield setup. Looking at group RE, Checkerboard and Aicon,

respectively, show visually larger standard deviations than the other two feature types for a few

experimental cases each, while Merged doesn’t. Looking at group E, the standard deviations are

in tendency smaller for 1 than for 0 and 2 ; comparing the later two, the standard deviations

are sometimes smaller for the one, sometimes for the other. With regard to the feature types

and camera models, Checkerboard shows larger standard deviations especially with camera model

Radial.

Analysis of the value ranges (minimal and maximal correlation values visualized by the lower

and upper end of the colored bars in the four correlation plots) can reveal additional insights

compared to the standard deviations, which only cover approx. 65% of all contributing correlation

values. For example, if the value range is not symmetric around the standard deviation in these
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figures, it may be an indicator for outliers or systematic effects in the correlations, similar to the

skew measure for histograms. With regard to the stereo constraints, deviations from symmetry

are observed in tendency more often and stronger for 1 than for 0 or 2. The same applies for

Merged and Aicon than for Checkerboard. For the without setup, such deviations are also observed

more often and stronger than for the with setup. Most deviations from symmetry occur for IE, R

and RE. Nevertheless, the mentioned deviations are visually interpreted smaller than 1σ, except

for group R, where the minimal correlation value is far below the lower end of the ±1σ interval.

8.2.5 Discussion

Several aspects need to be acknowledged with regard to the calibration setup that may influence

the comparability between the two setups or that could be a potential improvement, but at the

cost of a higher effort or a calibration setup that is practically less feasible. First, the advantage of

the virtual test field has not been fully exploited: The 2d test fields have been placed close to each

other in all images, but they could have been placed more distant from each other for some images,

or a larger number of test fields could have been used to achieve a better geometric configuration

[cf. Geiger et al., 2012]. Additionally, large-scale reference marks leading to a better detectability

at distant test field positions could have been used to increase depth coverage. Second, though

primary objective of image acquisition was to obtain a valid imaging configuration for calibration

[cf. Luhmann et al., 2006] for both setups, it was neither ensured that the number of images nor

the camera positions and orientations are exactly the same in the two setups. Furthermore, an

available spare windshield would have allowed to acquire the images for the with setup in the same

(laboratory) conditions as for the without setup, which has been done under different conditions

in a real car.

The used algorithm can be seen as quite complex for test field-based camera calibration and

could have been simplified at several steps, as the following aspects indicate. But as the calibration

parameters are estimated in a final bundle adjustment, an influence of the complex algorithm in

the preceding steps on the estimated parameters is not expected and the simplifications would

just be beneficial with regard to computational power or implementation effort. First, the use

of coded marks only could have facilitated feature matching and object coordinate association

by easy assignment based on their point numbers and could have allowed to get rid of structure-

from-motion as no temporary 3d object coordinates would have been required. Nevertheless, the

complexity of the algorithm seems not to be exceptional compared to other calibration frameworks,

as the user interface and manual of the software ”Aicon 3D Studio” with equal functionality let

assume. It appears that Aicon uses algorithms with similar complexity to handle point association

of uncoded marks between different images [Schneider et al., 2017]; additionally, as far as known,

this software does not support the automatic integration of pre-determined 3d coordinates for

uncoded marks, only for coded marks. Furthermore, own experiences made with this software in

previous work [Hanel et al., 2016] with the same dataset has shown that automatic assignment

for uncoded marks was wrong in many cases so that several images could not be registered and

therefore a lot of manual correction was required. In the presented evaluation, problems with point

association can be seen only at a minor extent in the with setup (higher number of estimated

3d points than reference marks available on the test fields in cases RA and OC in Table 8.1).

Second, the use of test fields at fixed positions [cf. Geiger et al., 2012] could have spared the

complex technical implementation of the virtual 3d test field.

Several aspects should also be acknowledged with regard to the evaluation. First, a Kolmogorov-

Smirnov test [Massey, 1951] for normality of the residuals has been done exemplarily for several ex-

perimental cases, but all of them failed, i.e. the distributions are seen as not normally-distributed.

As such analytical tests may discard normal distributions for large sample sizes - as present - for
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small deviations from normality already, the relevance of these test results should not be over-

estimated [Ghasemi & Zahediasl, 2012]: Visual analysis of distributions, e.g. by histograms or

quantile-quantile plots (Q-Q plots) can be seen as complementary alternative to analytical tests

[Ghasemi & Zahediasl, 2012]. As histograms allow the reader to inspect the distributions himself,

they have been chosen for visualization of the residuals (cf. Subsection 8.2.1). Additional Q-Q

plots, which are not shown in this thesis, have been created exemplarily for some experimental

cases assuming normal distribution one time and Laplacian distribution the other time. These

plots indicate a better fit (i.e. points closer to the identity line) of the residuals to the Laplacian

distribution than to the normal distribution. As this observation could be an indicator for the

presence of outliers, it motivated the implementation of a robust loss (cf. parameter settings)

for the cost function for least-squares optimization, which allows to handle outliers (that would

cause deviations from normal distribution) better than a regular cost function [Triggs et al.,

2000; Agarwal et al., 2022]. Second, only the evaluation metrics considered as most important

for answering the research questions are presented in this thesis. There are a plenty of other

common measures to evaluate camera calibration results like the number and average intersection

angle of image rays per point [Luhmann et al., 2006], which have been not considered. Third,

for the desirable assessment of the accuracy, no independent reference information was available.

Though some points on the test fields could have been excluded from calibration and so serve as

analytically independent reference information, they would still have been affected by the same

hardware-sided systematic effects (e.g. wrong metric scale) as other points on the same test field

and hence would not be entirely independent. Therefore, a completely independent reference

object (e.g. a third test field) with object coordinates determined with better accuracy than by

photogrammetry used for the proposed work (see Subsection 4.2.1) could be a solution to provide

completely independent reference information.

8.3 Camera calibration with traffic signs

For camera calibration with traffic signs, the evaluation comprises statistical measures, deviation

plots and hypothesis tests. All shown values are averages from 10 experimental runs.

8.3.1 Statistics

The following six statistical measures are presented: The number of image points and object

points of the reference points as well as the mean values and standard deviations of the residuals

of the image points in x- and y-direction. In contrast to the evaluation of camera calibration

with test fields (cf. Section 8.2), the residuals are described by numeric values assuming normal

distribution as no disturbing factors like a vehicle windshield play a role in this method.

Clearly more reference points for calibration can be extracted from the Munich sequence (Ta-

ble 8.5) in contrast to the Ettlingen sequence (Table 8.4). For some experimental cases (e.g. Et-

tlingen, 1 R), the number of reference points is even smaller than it can be expected from a single

image of a typical calibration test field. In such cases, it is questionable whether the calibration

parameters can be estimated reliably or whether outliers in the observations can be detected.

Looking at both sequences, the largest mean residuals have exponent −8. Based on this small

value and in comparison to a typical image measurement accuracy with an exponent of −1 (i.e.

0.1 px [Luhmann et al., 2016]), no bias in the pixel coordinates of the reference points can be

identified. For the x- and y-direction in either of the two sequences, the minimal and maximal

exponents of the standard deviations are equal up to differences of ±1. Therefore, systematic

scattering of the residuals that is stronger in one of the two directions does not become visible.



86 8. Results and discussion

Table 8.4: Statistical measures for calibration with traffic signs for the Ettlingen sequence for all experimen-
tal cases (C: circular traffic sign shape, R: rectangular shape, T: triangular shape; 1,2,3: different semantic
segmentation and depth estimation methods). r̄ represents the mean residuals of the image points in x-
and y-direction and σr represents the standard deviation of the residuals in x- and y-direction.

Experimental case #image points #object points r̄x [px] r̄y [px] σrx [px] σry [px]

1 C 13 13 −1.50 · 10−08 4.84 · 10−08 9.11 · 10−07 5.22 · 10−07

1 R 8 8 −3.25 · 10−08 −9.49 · 10−08 8.64 · 10−08 2.24 · 10−07

1 T 51 51 −2.84 · 10−10 5.87 · 10−10 4.93 · 10−08 9.59 · 10−09

1 CR 21 21 −1.61 · 10−08 8.56 · 10−09 1.23 · 10−07 1.49 · 10−07

1 CT 64 64 1.36 · 10−08 −8.22 · 10−09 2.04 · 10−07 2.71 · 10−07

1 RT 59 59 9.93 · 10−10 −2.72 · 10−09 1.56 · 10−08 7.70 · 10−08

1 CRT 72 72 −2.16 · 10−09 1.08 · 10−09 1.13 · 10−07 5.87 · 10−08

2 CRT 72 72 1.46 · 10−10 1.01 · 10−10 5.18 · 10−09 1.82 · 10−08

3 CRT 66 66 −7.05 · 10−09 1.18 · 10−09 7.80 · 10−07 1.53 · 10−07

Table 8.5: Statistical measures for calibration with traffic signs for theMunich sequence for all experimental
cases (C: circular traffic sign shape, R: rectangular shape, T: triangular shape; 1,2,3: different semantic
segmentation and depth estimation methods). r̄ represents the mean residuals of the image points in x-
and y-direction and σr represents the standard deviation of the residuals in x- and y-direction.

Experimental case #image points #object points r̄x [px] r̄y [px] σrx [px] σry [px]

1 C 68 68 2.91 · 10−08 2.14 · 10−08 2.80 · 10−07 2.11 · 10−07

1 R 78 78 1.06 · 10−07 4.49 · 10−09 6.81 · 10−07 2.38 · 10−08

1 T 82 82 1.76 · 10−11 1.02 · 10−11 1.27 · 10−10 7.15 · 10−11

1 CR 147 147 −2.53 · 10−07 −1.23 · 10−07 3.46 · 10−06 2.09 · 10−06

1 CT 149 149 −5.11 · 10−09 −1.51 · 10−08 1.40 · 10−06 4.47 · 10−07

1 RT 159 159 3.86 · 10−09 5.53 · 10−09 4.03 · 10−07 2.74 · 10−07

1 CRT 227 227 1.20 · 10−07 −3.15 · 10−07 7.23 · 10−06 8.78 · 10−06

2 CRT 228 228 −7.80 · 10−11 −9.05 · 10−11 5.23 · 10−09 1.24 · 10−08

3 CRT 26 26 −1.62 · 10−06 −1.54 · 10−06 1.57 · 10−06 2.98 · 10−06

8.3.2 Deviations of orientation parameters between the proposed and a refer-
ence calibration

The relative deviations dcr,X (Figure 8.11) for the estimated interior orientation parameter val-

ues are calculated between estimates from all experimental cases (index c) and the reference

calibration (index r) according to

dcr,X =
X̂I,c − X̂I,r

|X̂I,r|
(8.6)

with X̂I,c being the vector of estimated interior orientation parameter values in the experimental

case c and X̂I,r being the vector of interior orientation parameter values from reference calibra-

tion. The formula for the relative deviations of standard deviations dcr,σX
is defined analogue.

According to these formulae, a deviation of +1 can be interpreted as that the estimated value

is twice as large as the reference value, while a deviation of −0.5 can be interpreted as that the

estimated value is half of the reference value. For further details, see Section 8.1. Note the scaling

of the vertical axis in the deviation plots has been selected so that differences between the exper-

imental cases become clearly visible. Therefore, it became necessary to truncate extraordinary

large deviations, why the corresponding bars of such off-limit deviations are set to a light gray

color.

As tendency, in experimental cases with one traffic sign shape, dcr,X and dcr,σX
are smaller

for most interior orientation parameters when triangles (T ) are used than when rectangles (R) or
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Ettlingen sequence Munich sequence

Figure 8.11: Relative deviations of the estimated interior orientation parameter values and standard devi-
ations between camera calibration with traffic signs and reference calibration. The vertical axis is unit-free
due to relative deviations, off-limit deviations are colored in light gray. Descriptions of the abbreviations
see Table 8.4.
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circles (C) are used. In experimental cases with two shapes, dcr,X are smaller for CT than for

CR and RT . dcr,σX
are smallest for CT for the Munich and smallest for RT for the Ettlingen

sequence. As it can be seen, smallest deviations are often obtained for experimental cases with

triangle-shaped traffic signs. With all three shapes used, dcr,X is smallest for 1, while dcr,σX
is

smallest for 2. 1 and 2 share with Deeplabv3+ the same semantic segmentation method, while

3 relies on EfficientPS. Hence, it seems favorable to use Deeplabv3+. As small deviations in the

estimated parameters values are seen as more important than negative or small positive deviations

in the estimated standard deviations (→ limited expressiveness of precision, cf. Section 8.1), it has

been decided after preliminary experiments to perform the remaining experimental cases with one

or two shapes for 1, i.e. by using Monodepth2 as depth estimation and Deeplabv3+ as semantic

segmentation method. But as no further conclusions are expected, the experimental cases with

one or two shapes have not been performed for 2 or 3. In general, only a few negative values

can be observed for dcr,σX
, i.e. cases where the proposed method has better precision than the

reference calibration. Comparing the interior orientation and distortion parameters with each

other, the deviations are often lower for cx and cy than for fx and fy and lower for k1, k2 than for

p1, p2. The deviations for distortion parameters are often larger than for the interior orientation

parameters. Furthermore, dcr,σX
are often larger than dcr,X and the deviations are larger for the

Ettlingen than for the Munich sequence. Hence, there might be some degree of dependency on the

type of road scene. Finally, remarkable correlations between the number of image points in the

different experimental cases and the deviations do not become visible from the deviation plots.

Likewise, correlations between dcr,X and dcr,σX
do not become visible.

8.3.3 Significance tests on deviations between estimated and reference orien-
tation values

Intention of the hypothesis tests is to determine whether the deviations between the estimated

and the reference parameter values (cf. Subsection 8.3.2) are statistically significant or not. The

tests for parameter values are carried out with null hypothesis H0 and alternative hypothesis H1

defined as

H0 : X̂I,c = X̂I,r (8.7)

H1 : X̂I,c ̸= X̂I,r (8.8)

whereby the mathematical items are defined analogue to Subsection 8.3.2. Same as for calibration

with test fields (Subsection 8.2.3), the hypothesis tests are carried out as Welch’s t-test [Welch,

1947] as the variances and redundancies of X̂I,c and X̂I,r are not equal. The significance level

is set to the common value of α = 5%. Non-significant deviations are of particular interest as

they can be an indicator for reliable camera calibration with the proposed method. Tests on the

deviations of standard deviations are not carried out, as it is desirable that the proposed method

has better precision than the reference calibration and therefore a test on equality does not seem

reasonable.

The hypothesis tests (Table 8.6) show for the Ettlingen sequence that there is the same number

of non-significant deviations for k and p as for f and c. Non-significant deviations occur mostly

for 1 C and 1 CRT. The hypothesis tests show that there are also for the Munich sequence more

non-significant deviations for k and p than for c and f . Likewise, most non-significant deviations

can be observed for the experimental case 1 C and second-most for 1 CRT. Overall, more non-

significant deviations are obtained for the Munich sequence than for the Ettlingen sequence. In

tendency, experimental cases with circular traffic signs provide more non-significant deviations

than cases with triangular or rectangular signs, even though the plotted deviations for circular

traffic signs (Figure 8.11) are not remarkably smaller compared to the other traffic sign shapes.
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Table 8.6: Results of significance tests on the estimated interior orientation parameter values from calibra-
tion with traffic signs in comparison to the reference calibration for both test sequences for all experimental
cases (C: circular traffic sign shape, R: rectangular shape, T: triangular shape; 1,2,3: different semantic
segmentation and depth estimation methods). Non-significant deviation for value 0, significant deviation
otherwise.

Ettlingen sequence Munich sequence

Experimental case fx fy cx cy k1 k2 p1 p2 fx fy cx cy k1 k2 p1 p2

1 C 0 0 0 0 0 0 0 0
1 R
1 T
1 CR
1 CT 0 0
1 RT 0 0 0
1 CRT 0 0 0 0 0 0 0
2 CRT 0 0
3 CRT 0

8.3.4 Discussion

The experiments have shown that camera calibration with traffic signs has several major aspects

that may influence the quality of calibration: First, the traffic sign contour needs to be determined

precisely. Therefore, semantic segmentation with good boundary quality is necessary to detect

traffic signs (Figure 8.12a). Small, i.e. far away, or partly occluded traffic signs can give false

negative detections or have bad boundaries. Multiple signs next to each other might be identified

as a single one and so the boundary may be wrong as well (Figure 8.12b). Both aspects are prob-

(a) (b) (c)

Figure 8.12: Examples for semantic images for calibration with traffic signs. a) Ettlingen sequence, two
traffic sign segments with precise boundaries in the foreground, b) Munich sequence, multiple traffic signs
contained in one segment with a bad boundary of the signs, c) Munich sequence, a false positive traffic sign
detection (red rectangle) at a gray electric box at the edge of a sidewalk (cropped from the image in b).
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lematic, as missed signs can’t provide reference points and wrong boundaries can lead to wrong

reference point coordinates. In contrast, also false positive detections are undesired, as they will

provide invalid reference points (Figure 8.12c). In general, there might be remarkable differences

in the semantic images, thus careful selection of an appropriate method for semantic segmentation

is crucial (Figure 8.13a,b; note esp. the sidewalk in pink). After semantic segmentation providing

initial boundaries, robust image processing is necessary to determine the right shape of a detected

traffic sign (triangle, rectangle, circle) and then to precisely determine its boundary. Especially

problematic cases like mentioned above impose the risk of false or imprecise boundaries, wherefore

outlier removal at several steps has been proven in several experiments to be useful (e.g. based on

the minimal area of the traffic sign segment, minimal overlap between traffic sign boundaries and

semantic segments, maximal residual threshold during RANSAC, maximal color deviations of a

traffic sign between RGB image and governmental color regulations). Thereby, precise bound-

aries (examples see Figure 8.14a,b,d top row) can be obtained even for bad initial boundaries

from semantic segmentation.

Second, traffic signs have to be covered adequately by the deep models for depth estimation

to obtain accurate distance values between camera and signs, which is fulfilled for the proposed

method if at least a part of a traffic sign is visible in the depth image (Figure 8.13c). As observed

by visual analysis, the tested methods for depth estimation tend to miss small foreground objects

in contrast to large objects like trees or the road surface. Therefore, in some depth images, traffic

signs might be even missing completely (Figure 8.13d) and so the determined distance will be

wrong.

(a) (b) (c) (d)

Figure 8.13: Differences between two methods for semantic segmentation and depth estimation for the
Ettlingen sequence. a) Semantic segmentation with Deeplabv3+ [Chen et al., 2018b], b) panoptic segmen-
tation with EfficientPS [Mohan & Valada, 2021], c) depth estimation with monodepth2 [Godard et al.,
2019], d) depth estimation with struct2depth [Casser et al., 2019].

Third, experiments have shown that the used boundary detection method tends to produce

cluttered outer edges of the traffic sign boundaries because of other objects in the proximity of

traffic signs (Figure 8.14 bottom row, traffic sign boundaries in white color). Therefore, it became

necessary to use the non-cluttered inner edge for boundary extraction, which is displaced from

the desired actual boundary of the traffic sign and so an empirically determined offset is applied

for correction. Forth, the metric size of the traffic sign needs to be known for correct scaling of

the reference point coordinates in the object space. If, as for example in Germany, the size of a

sign depends on the prevalent speed limit, the size needs to be determined individually for each

street. For the test sequences, it was most feasible to determine the size manually from official
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regulations, but for large-scale use, this step needs to be automated, for example by querying

speed limit information from street maps. Especially the estimated focal length strongly depends

on depth estimation and the correct metric size of the traffic signs. Revealing systematic errors

in the size with the available data is hardly possible. Either additional data, e.g. positions

from GPS, could resolve this problem or large image sequences could alleviate the effect of such

errors. Fifth, it has to be acknowledged that many German traffic sign shapes (e.g. stop sign)

are not supported by the proposed method yet, in addition to traffic signs from other countries.

Achieving a desirably large set of reference points would therefore require high alignment effort

to the shapes of traffic signs in the desired area of application. Sixth, visual analysis of both test

image sequences has shown that reference points have been obtained mostly for images acquired

during the approach to an intersection, which can be an explanation for the higher number of

reference points in the urban Munich sequence. In contrast, there are many images taken driving

along straight street sections, where no traffic signs have been detected. Such images could be

excluded easily from processing (e.g. by a known vehicle position) to save computational power

and to reduce the risk of getting invalid reference points.

(a) (b) (c) (d)

Figure 8.14: Examples for RGB images with detected traffic signs and for boundary images from both test
sequences. Same images as in Figures 8.12 and 8.13. Coarse boundary images (bottom row) obtained by
CASENet [Yu et al., 2017]. The inner edge of the traffic sign boundary often represents the shape more
precisely, while the outer edge may be cluttered because of nearby objects. a) Remote traffic signs in the
Ettlingen sequence (cropped), b) close traffic signs in the Ettlingen sequence, c) remote traffic signs in the
Munich sequence (cropped), d) close traffic signs in the Munich sequence (cropped).

8.4 Camera calibration by semantic structure-from-motion

Also for camera calibration by semantic structure-from-motion, the evaluation comprises sta-

tistical measures, deviation plots and hypothesis tests. All shown values are averages from 10

experimental runs. Same as for evaluation of calibration with traffic signs (Section 8.3), analysis

is carried out in comparison among different experimental cases of the proposed method and with

regard to the reference calibration.

8.4.1 Statistics

For both the Ettlingen and the Munich sequence, the same statistical measures as for camera

calibration with traffic signs (Subsection 8.3.1) are presented. Additionally, the number of raw

matches (#matches) obtained by semantic matching between the extracted features is shown.
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Table 8.7: Statistical measures for calibration by semantic structure-from-motion for the Ettlingen sequence
for all experimental cases. r̄ represents the mean residuals of the image points in x- and y-direction and
σr represents the standard deviation of the residuals in x- and y-direction. As some experimental cases
cover only parts of the workflow, some cells are empty.

Experimental case #features #matches
#image
points

#object
points

r̄x [px] r̄y [px] σrx [px] σry [px]

MT1 3,481,185 4,686,271 4,394,528 123,925 −3.60 · 10−09 −6.39 · 10−09 5.88 · 10−01 5.71 · 10−01

MT2 + SFE 3,307,096 4,256,391 4,080,522 120,778 −6.16 · 10−09 −6.48 · 10−09 5.82 · 10−01 5.63 · 10−01

MT3 + SFE 823,901 1,330,282 1,230,210 48,992 −1.75 · 10−09 −2.27 · 10−09 6.06 · 10−01 5.75 · 10−01

MT4 + SFE 3,371,210 4,401,435 4,207,305 123,766 −5.27 · 10−09 −7.22 · 10−09 5.83 · 10−01 5.68 · 10−01

MT5 + SFE 3,386,609 4,479,131 4,280,607 124,160 −4.28 · 10−09 −5.87 · 10−09 5.88 · 10−01 5.71 · 10−01

MT6 + SFE 3,137,304 3,894,407 3,717,773 113,814 −3.54 · 10−09 −3.82 · 10−09 5.78 · 10−01 5.62 · 10−01

MT7 + SFE 2,943,201 4,015,788 3,881,496 89,134 −8.70 · 10−09 −8.96 · 10−10 5.86 · 10−01 5.87 · 10−01

MT8 + SFE 3,363,605 4,431,139 4,239,245 123,211 −4.33 · 10−09 −5.08 · 10−09 5.86 · 10−01 5.68 · 10−01

MT9 + SFE 3,304,884 4,252,997 4,077,714 120,917 −6.23 · 10−09 −6.60 · 10−09 5.80 · 10−01 5.61 · 10−01

MT10 + SFE 761,830 1,063,757 996,624 47,840 1.42 · 10−09 −7.35 · 10−10 5.77 · 10−01 5.25 · 10−01

MT1 + SM 4,575,547 4,241,815 120,594 −1.60 · 10−09 −1.86 · 10−09 5.86 · 10−01 5.78 · 10−01

MT2 + SFE + SM 4,158,305 3,954,721 117,004 −2.27 · 10−09 −3.61 · 10−09 5.80 · 10−01 5.68 · 10−01

MT3 + SFE + SM 1,276,044 1,158,731 47,686 −2.97 · 10−09 −4.99 · 10−10 6.11 · 10−01 5.91 · 10−01

MT4 + SFE + SM 4,300,194 4,073,125 120,150 −2.92 · 10−09 −3.76 · 10−09 5.85 · 10−01 5.76 · 10−01

MT5 + SFE + SM 4,367,409 4,133,949 120,787 −2.30 · 10−09 −2.93 · 10−09 5.88 · 10−01 5.79 · 10−01

MT6 + SFE + SM 3,866,257 3,663,835 110,661 −4.31 · 10−10 −8.18 · 10−11 5.79 · 10−01 5.70 · 10−01

MT7 + SFE + SM 3,923,154 3,768,316 89,889 −2.62 · 10−09 −1.78 · 10−09 5.87 · 10−01 5.91 · 10−01

MT8 + SFE + SM 4,326,927 4,102,854 119,282 −4.33 · 10−10 −6.05 · 10−10 5.88 · 10−01 5.76 · 10−01

MT9 + SFE + SM 4,155,999 3,952,470 116,820 −1.65 · 10−09 −2.32 · 10−09 5.78 · 10−01 5.68 · 10−01

MT10 + SFE + SM 1,017,090 937,896 45,423 1.74 · 10−08 9.97 · 10−09 5.78 · 10−01 5.39 · 10−01

MT1 + VMM −3.78 · 10−09 −7.65 · 10−09 5.88 · 10−01 5.71 · 10−01

MT2 + SFE + VMM −6.34 · 10−09 −7.48 · 10−09 5.82 · 10−01 5.63 · 10−01

MT3 + SFE +VMM −2.20 · 10−09 −4.10 · 10−09 6.06 · 10−01 5.75 · 10−01

MT4 + SFE +VMM −5.41 · 10−09 −8.60 · 10−09 5.83 · 10−01 5.68 · 10−01

MT5 + SFE +VMM −4.47 · 10−09 −6.86 · 10−09 5.88 · 10−01 5.71 · 10−01

MT6 + SFE +VMM −3.61 · 10−09 −4.14 · 10−09 5.78 · 10−01 5.62 · 10−01

MT7 + SFE +VMM −8.91 · 10−09 −1.80 · 10−09 5.86 · 10−01 5.87 · 10−01

MT8 + SFE +VMM −4.46 · 10−09 −6.06 · 10−09 5.86 · 10−01 5.68 · 10−01

MT9 + SFE +VMM −6.34 · 10−09 −7.99 · 10−09 5.80 · 10−01 5.61 · 10−01

MT10 + SFE +VMM 1.42 · 10−09 −1.24 · 10−09 5.77 · 10−01 5.25 · 10−01

MT1 + SM + VMM −1.96 · 10−09 −2.21 · 10−09 5.86 · 10−01 5.78 · 10−01

MT2 + SFE + SM + VMM −2.18 · 10−09 −4.20 · 10−09 5.80 · 10−01 5.68 · 10−01

MT3 + SFE + SM + VMM −2.91 · 10−09 −2.59 · 10−09 6.11 · 10−01 5.91 · 10−01

MT4 + SFE + SM + VMM −3.06 · 10−09 −4.43 · 10−09 5.85 · 10−01 5.76 · 10−01

MT5 + SFE + SM + VMM −2.25 · 10−09 −3.21 · 10−09 5.88 · 10−01 5.79 · 10−01

MT6 + SFE + SM + VMM −2.95 · 10−10 −4.08 · 10−10 5.79 · 10−01 5.70 · 10−01

MT7 + SFE + SM + VMM −2.70 · 10−09 −2.33 · 10−09 5.87 · 10−01 5.91 · 10−01

MT8 + SFE + SM + VMM −2.89 · 10−10 −6.92 · 10−10 5.88 · 10−01 5.76 · 10−01

MT9 + SFE + SM + VMM −1.54 · 10−09 −3.19 · 10−09 5.78 · 10−01 5.68 · 10−01

MT10 + SFE + SM + VMM 1.65 · 10−08 1.26 · 10−09 5.78 · 10−01 5.39 · 10−01

The number of image points (#image points) of the reference points represents the number of

geometrically verified matches, whereby verification is done during 3d reconstruction by robust

estimation of the homography, essential matrix or fundamental matrix between image pairs and

serves to determine sets of feature points leading to valid estimations [Schönberger & Frahm,

2016]. The number of objects points (#object points) of the reference points corresponds with

the number of 3d points of the sparse point cloud obtained by 3d reconstruction. The statistical

measures are shown for four groups of experiments, all with semantic feature extraction (SFE),

but 1) without semantic matching (SM) and without vehicle motion model (VMM), 2) with SM

only, 3) with VMM only and 4) with both SM and VMM. Each group covers 10 experimental

cases, one for each mask type. Obviously, for experimental cases with VMM only the residual

measures are shown as these cases cover only the later part of the workflow (cf. Subsection 7.2.3).

About the number of extracted features, feature matches, image and object points obtained

for the Ettlingen sequence, the following remarkable observations can be made (Table 8.7). First,
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Table 8.8: Statistical measures for calibration by semantic structure-from-motion for the Munich sequence
for all experimental cases. r̄ represents the mean residuals of the image points in x- and y-direction and
σr represents the standard deviation of the residuals in x- and y-direction. As some experimental cases
cover only parts of the workflow, some cells are empty.

Experimental case #features #matches
#image
points

#object
points

r̄x [px] r̄y [px] σrx [px] σry [px]

MT1 4,083,494 11,303,684 10,782,210 72,697 9.39 · 10−08 −9.68 · 10−08 6.47 · 10−01 6.68 · 10−01

MT2 + SFE 3,532,771 8,653,334 8,396,234 55,383 1.42 · 10−03 −6.40 · 10−04 6.34 · 10−01 6.70 · 10−01

MT3 + SFE 1,252,205 6,152,047 5,906,410 54,617 3.87 · 10−08 −2.57 · 10−07 6.55 · 10−01 6.39 · 10−01

MT4 + SFE 3,932,046 10,115,536 9,779,667 72,132 5.10 · 10−08 1.95 · 10−08 6.56 · 10−01 6.75 · 10−01

MT5 + SFE 3,944,494 10,344,861 10,006,369 71,962 6.99 · 10−08 2.31 · 10−08 6.53 · 10−01 6.71 · 10−01

MT6 + SFE 3,336,142 6,866,702 6,655,381 49,053 1.37 · 10−07 −1.60 · 10−07 6.66 · 10−01 7.12 · 10−01

MT7 + SFE 3,852,804 9,930,642 9,624,462 64,293 2.18 · 10−08 1.57 · 10−08 6.46 · 10−01 6.76 · 10−01

MT8 + SFE 3,904,666 10,094,971 9,759,739 71,468 1.68 · 10−07 3.16 · 10−08 6.57 · 10−01 6.74 · 10−01

MT9 + SFE 3,518,077 8,624,113 8,369,520 55,262 3.51 · 10−08 2.26 · 10−08 6.34 · 10−01 6.71 · 10−01

MT10 + SFE 801,547 4,173,223 4,024,506 36,580 1.10 · 10−07 4.10 · 10−08 6.19 · 10−01 6.01 · 10−01

MT1 + SM 11,206,896 10,628,034 78,600 −2.05 · 10−07 8.08 · 10−08 6.59 · 10−01 6.82 · 10−01

MT2 + SFE + SM 8,536,379 8,244,000 59,246 1.85 · 10−07 9.62 · 10−08 6.37 · 10−01 6.79 · 10−01

MT3 + SFE + SM 6,163,664 5,882,881 57,416 3.57 · 10−08 5.87 · 10−09 6.65 · 10−01 6.54 · 10−01

MT4 + SFE + SM 10,120,195 9,724,269 78,850 4.99 · 10−08 −9.05 · 10−10 6.63 · 10−01 6.86 · 10−01

MT5 + SFE + SM 10,322,060 9,922,048 78,779 1.31 · 10−07 −3.88 · 10−07 6.59 · 10−01 6.81 · 10−01

MT6 + SFE + SM 6,937,273 6,682,712 50,601 4.02 · 10−08 −6.78 · 10−08 6.75 · 10−01 7.23 · 10−01

MT7 + SFE + SM 9,925,907 9,565,555 71,939 1.11 · 10−07 7.49 · 10−08 6.58 · 10−01 6.89 · 10−01

MT8 + SFE + SM 10,104,901 9,711,579 76,648 −1.70 · 10−07 −2.06 · 10−08 6.67 · 10−01 6.87 · 10−01

MT9 + SFE + SM 8,502,832 8,215,449 58,385 1.84 · 10−07 6.19 · 10−08 6.34 · 10−01 6.73 · 10−01

MT10 + SFE + SM 4,132,805 3,971,187 38,071 1.44 · 10−07 3.43 · 10−09 6.19 · 10−01 6.10 · 10−01

MT1 + VMM 6.53 · 10−08 2.19 · 10−08 6.47 · 10−01 6.68 · 10−01

MT2 + SFE + VMM 1.81 · 10−03 −4.30 · 10−04 6.34 · 10−01 6.70 · 10−01

MT3 + SFE +VMM 1.83 · 10−07 8.96 · 10−08 6.56 · 10−01 6.40 · 10−01

MT4 + SFE +VMM 8.73 · 10−08 2.36 · 10−08 6.56 · 10−01 6.75 · 10−01

MT5 + SFE +VMM 5.11 · 10−08 2.00 · 10−08 6.52 · 10−01 6.71 · 10−01

MT6 + SFE +VMM 4.11 · 10−08 −1.78 · 10−09 6.64 · 10−01 7.10 · 10−01

MT7 + SFE +VMM 5.07 · 10−08 2.28 · 10−08 6.46 · 10−01 6.76 · 10−01

MT8 + SFE +VMM 6.95 · 10−08 3.54 · 10−08 6.57 · 10−01 6.74 · 10−01

MT9 + SFE +VMM 8.81 · 10−08 1.77 · 10−08 6.34 · 10−01 6.71 · 10−01

MT10 + SFE +VMM 2.25 · 10−08 7.53 · 10−09 6.19 · 10−01 6.01 · 10−01

MT1 + SM + VMM 3.82 · 10−08 1.61 · 10−08 6.59 · 10−01 6.82 · 10−01

MT2 + SFE + SM + VMM 1.12 · 10−07 1.40 · 10−08 6.37 · 10−01 6.79 · 10−01

MT3 + SFE + SM + VMM 2.63 · 10−08 7.14 · 10−09 6.64 · 10−01 6.53 · 10−01

MT4 + SFE + SM + VMM 5.21 · 10−08 1.62 · 10−08 6.64 · 10−01 6.86 · 10−01

MT5 + SFE + SM + VMM 1.11 · 10−06 −5.40 · 10−07 6.59 · 10−01 6.81 · 10−01

MT6 + SFE + SM + VMM 8.74 · 10−10 −1.44 · 10−09 6.76 · 10−01 7.24 · 10−01

MT7 + SFE + SM + VMM 5.12 · 10−08 2.79 · 10−08 6.58 · 10−01 6.88 · 10−01

MT8 + SFE + SM + VMM 5.93 · 10−08 −1.25 · 10−07 6.68 · 10−01 6.88 · 10−01

MT9 + SFE + SM + VMM 5.04 · 10−08 2.85 · 10−08 6.33 · 10−01 6.73 · 10−01

MT10 + SFE + SM + VMM 1.85 · 10−07 −3.59 · 10−08 6.19 · 10−01 6.10 · 10−01

experimental cases with mask type 1 provide the highest numbers of extracted features, feature

matches and verified matches. This fits to the expectation, as mask type 1 defines the baseline

calibration by using an empty mask and so not excluding any image area from feature extraction.

Second, for mask types 3 and 10, these numbers are clearly lower than for the other mask types

(less than 50%), independent whether SM is used or not. Third, comparing the groups SFE and

SFE + SM with each other, the number of matches, image and object points is lower for the later

one for most experimental cases, but the differences are smaller than between some mask types.

Forth, mask type 5 leads to the highest number of object points in all four groups, whereby the

differences to mask types 1, 4 and 8 are less than 1%. The mean residuals r̄x and r̄y share the

same exponent for most experimental cases, but the absolute values of r̄y are often larger than

the absolute values of r̄x. For any experimental case, the largest difference between r̄x and r̄y
is around one power of ten. Even though almost all mean residuals have a negative sign, the

largest exponent is −8, so both measures are below the typical image measurement accuracy
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of 0.1 px. Therefore, no indication is seen for the presence of a systematic mean bias in the

residuals. In contrast to the mean residuals, σrx is larger than σry for most experimental cases.

But as both kinds of measures have the same exponent in every experimental case, no direction-

dependent differences in the value ranges of the residuals are seen. Comparing the groups with

and without SM, the experimental cases in the later one have absolute values of r̄x and r̄y that

are approximately 2− 3 times larger. For the standard deviations of the residuals, the differences

are less and no tendency with regard to the use of SM can be observed. Comparing groups with

and without VMM, r̄x and r̄y tend to be larger for groups with VMM, but the differences are

typically smaller than one power of ten. σrx and σry are, within the shown decimal digits, exactly

the same. Comparing the mask types in different groups with each other, mask types 6, 8 and

10 provide the lowest r̄x in some groups, and mask types 6 and 10 provide the lowest r̄y. Mask

types 9 and 10 provide the lowest σrx in at least one group and mask type 10 provides the lowest

σry in all four groups.

For the Munich sequence (Table 8.8), the numbers of extracted features, feature matches,

image points and object points are often lowest for mask type 10. These measures are highest

for mask type 1 for all groups, except for the number of object points, which is highest for mask

type 4 for the group with SM only. In comparison between the groups without and with SM,

the number of matches and image points is lower for the later one for almost all experimental

cases. This observation is in accordance with the Ettlingen sequence. However, the number of

object points is higher for the SM groups, which is in opposite to the Ettlingen sequence. For

most experimental cases, the exponents of the mean residuals are −7 and −8 for the Munich

sequence, while they range in total from −3 to −10. Hence, the mean residuals are larger than for

the Ettlingen sequence, but still below the image measurement accuracy. In contrast to the other

sequence, the absolute values of r̄x are larger than those of r̄y and for most cases σry is larger

than σrx . Comparing the groups without and with SM with each other, r̄ is smaller when SM

is used for some experimental cases and larger for others. Comparing groups with and without

VMM, |r̄x| and |r̄y| are smaller for VMM for some cases and larger for others. σrx and σry are,

within the shown decimal digits, the same for almost all experimental cases. Comparing the mask

types among different groups with each other, mask types 3, 7 and 10 provide the lowest |r̄x| in
some groups, and mask types 4, 6 and 7 the lowest |r̄y|. Mask types 10 provides the lowest σrx
and σry in all groups. Finally, it can be concluded that observations on the use of SM, VMM and

the mask types are sometimes contrary between the two sequences, which can indicate that the

performance of the proposed method depends on the type of scene.

8.4.2 Deviations of orientation parameters between the proposed and a refer-
ence calibration

The same kind of deviations dcr,X for the estimated interior orientation parameter values and

dcr,σX
for the estimated standard deviations are plotted as for calibration with traffic signs (cf.

Subsection 8.3.2). Note the scaling of the vertical axis in the deviation plots has been selected

so that differences between the experimental cases become clearly visible. Therefore, it became

necessary to truncate extraordinary large deviations, which is why the corresponding bars of such

off-limit deviations are set to a light gray color.

For dcr,X (Figures 8.15, 8.16), the deviations are in tendency larger for the distortion param-

eters than for the focal length and the principal point coordinates. For the focal length and the

principal point coordinates, most deviations are between ±0.1, which means that the estimated

values deviate from reference calibration less than 10%. The y-components fy and cy show in

tendency larger deviations than the x-components fx and cx, respectively. This applies especially

for the Munich sequence, where the estimated values for fy deviate approx. 25% in the maximal
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Figure 8.15: Deviations of the interior orientation parameter values obtained by calibration by semantic
structure-from-motion from the reference calibration for the Ettlingen sequence for all experimental cases
(MT: mask types, SFE: semantic feature extraction, SM: semantic matching, VMM: vehicle motion model).
Vertical axis unit-free due to relative deviations, off-limit deviations in light gray.
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Figure 8.16: Deviations of the interior orientation parameter values obtained by calibration by semantic
structure-from-motion from the reference calibration for the Munich sequence for all experimental cases
(MT: mask types, SFE: semantic feature extraction, SM: semantic matching, VMM: vehicle motion model).
Vertical axis unit-free due to relative deviations, off-limit deviations in light gray.
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Figure 8.17: Deviations of the standard deviations of the interior orientation parameters obtained by
calibration by semantic structure-from-motion from the reference calibration for the Ettlingen sequence
for all experimental cases (MT: mask types, SFE: semantic feature extraction, SM: semantic matching,
VMM: vehicle motion model). Vertical axis unit-free due to relative deviations, off-limit deviations in light
gray.
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Figure 8.18: Deviations of the standard deviations of the interior orientation parameters obtained by
calibration by semantic structure-from-motion from the reference calibration for the Munich sequence
for all experimental cases (MT: mask types, SFE: semantic feature extraction, SM: semantic matching,
VMM: vehicle motion model). Vertical axis unit-free due to relative deviations, off-limit deviations in light
gray.
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case from reference calibration. In average over all interior orientation parameters, the deviations

are larger for the Munich sequence than for the Ettlingen sequence. Almost all deviations dcr,σX

(Figures 8.17, 8.18) are negative, hence, the precision of the proposed method can be considered

as better than the precision of the reference calibration. While for some parameters (e.g. σcy)

the precision of the proposed method is clearly better (dcr,σX
close to −1), it can be considered

as slightly better or similar to reference calibration for other parameters (esp. fy; dcr,σX
close

to 0). Ettlingen shows in average larger negative deviations dcr,σX
than Munich, hence a better

precision.

Between groups with or without VMM, remarkable differences are observed only in a single

experimental case (Munich, dcr,σX
, MT6 + SFE + SM). With regard to the use of SM, remarkable

differences are observed only in a few experimental cases for dcr,X : In some of them, experimental

cases with SM have smaller deviations than those without SM (e.g. Ettlingen, MT10), in other

cases they have larger ones (e.g. Ettlingen, MT2). Likewise for dcr,σX
, some experimental cases

show larger negative deviations (better precision) with SM (e.g. Munich, MT2), while others

show smaller negative deviations (worse precision) (e.g. Ettlingen, MT2 and MT9). Between

most mask types, there are no remarkable differences visible. In a few experimental cases, some

mask types (e.g. Ettlingen, MT7) show larger deviations dcr,X than the baseline with MT1, but

the visual differences are small. At the same time, other mask types show, averaged over all

interior orientation parameters, smaller deviations dcr,X than the baseline (e.g. Ettlingen, MT3

+ SFE, MT6 + SFE + SM). These differences with regard to the baseline are often large for

certain interior orientation parameters only (e.g. MT6 + SFE + SM, p1), while they are not

visible for other orientation parameters (same experimental case, fx). Hence, these observations

indicate a dependency of the effects of certain mask types on the specific orientation parameter.

8.4.3 Significance tests on deviations between estimated and reference orien-
tation values

The hypothesis tests are carried out for the values of the interior orientation parameters estimated

with calibration by semantic structure-from-motion in comparison to the reference calibration.

The tests are defined analogue to the tests for calibration with traffic signs (cf. Subsection 8.3.3).

Likewise, the key interest of the hypothesis tests is to determine which deviations between the

proposed method and reference calibration are non-significant in a statistical meaning, which can

be seen as indicator for reliable calibration. Due to the desired large negative values, there are

no tests for the standard deviations (cf. Subsection 8.4.2).

The test results (Table 8.9) for the Ettlingen sequence show that 7.5% of all deviations are

non-significant. The mask types with the highest rate of 12.5% non-significant deviations are 3

and 7. All other mask types have the same lower rate of 6.25%. For experimental cases with SM,

less deviations are non-significant (5%) than for experimental cases without SM (10%). Compar-

ing the groups with and without VMM, the rate of non-significant deviations is exactly the same

(7.5%). The test results for the Munich sequence show that approx. 3% of all deviations are

non-significant. The highest rate of approx. 15.6% non-significant deviations occur for mask type

6, followed by mask type 3 with 12.5%. For all other mask types, no deviation is statistically non-

significant. Deviations for experimental cases with VMM are non-significant in approximately

3.1% of the cases, while it is 2.5% for cases without VMM. The same rates apply for experimental

cases with and without SM, respectively. In contrast to the Ettlingen sequence, using seman-

tic matching and the vehicle motion model leads to a slightly higher number of non-significant

deviations for the Munich sequence.
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Table 8.9: Results of significance tests on the estimated interior orientation parameter values for calibration
by semantic structure-from-motion in comparison to the reference calibration for both test sequences
for all experimental cases (MT: mask types, SFE: semantic feature extraction, SM: semantic matching,
VMM: vehicle motion model). Non-significant deviation for value 0, significant deviation otherwise.

Ettlingen sequence Munich sequence

Experimental case fx fy cx cy k1 k2 p1 p2 fx fy cx cy k1 k2 p1 p2

MT1 0
MT2 + SFE 0
MT3 + SFE 0 0
MT4 + SFE 0
MT5 + SFE 0
MT6 + SFE 0
MT7 + SFE 0
MT8 + SFE 0
MT9 + SFE 0
MT10 + SFE

MT1 + SM
MT2 + SFE + SM
MT3 + SFE + SM 0 0
MT4 + SFE + SM
MT5 + SFE + SM
MT6 + SFE + SM 0 0
MT7 + SFE + SM 0
MT8 + SFE + SM
MT9 + SFE + SM
MT10 + SFE + SM 0

MT1 + VMM 0
MT2 + SFE + VMM 0
MT3 + SFE +VMM 0 0
MT4 + SFE +VMM 0
MT5 + SFE +VMM 0
MT6 + SFE +VMM 0
MT7 + SFE +VMM 0
MT8 + SFE +VMM 0
MT9 + SFE +VMM 0
MT10 + SFE +VMM

MT1 + SM + VMM
MT2 + SFE + SM + VMM
MT3 + SFE + SM + VMM 0 0
MT4 + SFE + SM + VMM
MT5 + SFE + SM + VMM
MT6 + SFE + SM + VMM 0 0 0
MT7 + SFE + SM + VMM 0
MT8 + SFE + SM + VMM
MT9 + SFE + SM + VMM
MT10 + SFE + SM + VMM 0

8.4.4 Discussion

Obviously, as first discussion aspect, the performance of semantic feature extraction or matching

depends on the quality of semantic segmentation. Certain problems may arise that could lead

to false semantic segmentation (Figure 8.19) and subsequently deteriorate the quality of camera
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calibration. First, relevant characteristics of the images used for calibration may deviate from

the images used for training the deep model for semantic segmentation. The images might be

acquired with a different camera, under different scene illumination, from a different type of road

scene, for instance. Fine tuning with calibration images could alleviate this problem, but would

make the method dependent on the availability of labeled calibration images so that they can

serve for supervised training. Second, rare or new objects like fast moving city scooters on side

walks may not be represented by any trained semantic class at all. Third, the used semantic

segmentation can’t distinguish standing from moving objects and hence features on standing

objects may be unnecessarily excluded. Forth, even unexpected classes might be relevant to

exclude them from feature extraction to get a robust 3d reconstruction and so should be covered

by semantic segmentation: As example, Kaneko et al. [2018] have found out in empirical studies

that the class sky besides the class car is most relevant.

(a) (b)

Figure 8.19: Examples for wrong classes from seman-
tic segmentation in the bottom right image quarter
(mix of light green, red, dark blue, pink). a) RGB
image, b) corresponding semantic image.

Second, in addition to the proposed ”se-

quential matching”, an ”exhaustive matching”

where the search for matches covers all pos-

sible combinations of images in the sequence

has been tested without success (colored far-

off-diagonals in Figure 8.20c). For some exper-

imental cases, a remarkable number of wrong

correspondences were established between im-

ages showing, for example, similar looking, but

different streets (Figure 8.21d). In contrast, se-

quential matching that considers only certain

intervals of images ordered by their acquisi-

tion time for matching does not suffer from

this problem (white far-off-diagonals in Fig-

ure 8.20a,b) and so reliable matches are obtained in general (Figure 8.21a). Additionally, some

images provide a lower number of matches compared to other images (yellow or green close to

main diagonal in Figure 8.20). Such images will contribute with only a comparably small number

of reference points and so they are more prone to have mismatches due to an insufficient number

of other matches for strong geometric verification. Furthermore, the experiments have proven

that inappropriate semantic masks or a missing fix-pixel mask for the ego-car can easily cause

invalid matches in practice (Figure 8.21b,c).

(a) (b) (c)

Figure 8.20: Match matrices for calibration by semantic structure-from-motion. Experimental case MT1,
without SM and without VMM. One image per matrix row and column. Red color for high number
of matches, blue for low. a) Sequential matching for the Munich sequence (504 images), b) sequential
matching for the Ettlingen sequence (300 images), c) exhaustive matching for the Ettlingen sequence.
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(a) (b)

(c) (d)

Figure 8.21: Various successfully matched image pairs with feature matches (green lines). a) Large number
of valid matches between temporarily close images b) invalid match due to missing ego-car mask (thick green
line), c) invalid match between different kinds of objects due to inappropriate semantic masks (thick green
line), d) invalid association between temporarily distant images with no overlap for exhaustive matching.

Third, the large time amount of several minutes needed for creating the large 3d reconstruc-

tions (examples see Figure 8.22) and for bundle adjustment, even on high performance laboratory

computers, may be a big challenge in cars with limited computational power. Real-time capabil-

ity, i.e. that each image can be processed until the next one is acquired, is currently not achieved.

Thus, selection of an appropriate sequence of the continuously recorded images for calibration be-

comes necessary. Besides the aspect of computational power, older images may not represent the

current interior orientation anymore and hence this is another reason that should be considered in

determining an appropriate calibration image sequence. Furthermore, bundle adjustment did not

converge in some experimental runs; the residuals of such runs may easily be one hundred times

as large as for converging runs, according to manual inspection. As far as analyzed, convergence

failed if bad initial image pairs were selected or in the case of a bad order for registering the

remaining images, which is both done randomly. Additionally, the origin of the object coordinate

system in which the GPS positions used for the metric scale are provided needs to be defined close

to the image positions so that the absolute values of the image positions and object coordinates

of the reference points are small. If the origin was placed far off the images and reference points,

convergence failed as well. Non-converging experimental runs were repeated.

Forth and last, the quality of camera calibration with the proposed method may suffer from

difficulties affecting the acquisition geometry. First, movement of the camera needed for SfM is

mainly along the optical axis due to the typical forward driving direction of a car, which could

result in a poor 3d reconstruction, especially for objects that are far away from the camera.

Second, the DOF coverage in the acquisition geometry is limited which could lead to poorly

estimated parameters or large correlations between them as the proposed method relies on self-

calibration [Luhmann et al., 2006]. For example, rigid camera mounting in the car allows no

rotation wrt. the reference points, except by some degrees due to pitch and roll caused by the car

suspension. Additionally, viewing angles on the reference points may be heavily restricted and

are often similar in different images. For instance, top-down or bottom-up views on the reference

points are not possible, obviously.
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(a) (b)

Figure 8.22: 3d reconstructions have typically several ten thousand points that need to be handled by bun-
dle adjustment to use them as reference for calibration. Top-down view. a) Munich sequence, b) Ettlingen
sequence.

8.5 Comparative discussion of the proposed methods

Comparing the algorithms of both methods for camera self-calibration with each other, the fol-

lowing observations can be made. First, it can be expected that calibration by semantic structure-

from-motion can be better generalized to unknown types of road scenes, which is important for the

applicability of automotive camera calibration is mass-produced cars. Experiments have proven

that image features, from which the reference points are obtained from, can be extracted from a

large manifold of object types that can be typically found in many different types of scenes. In

contrast, the appearance of traffic signs is a crucial factor for an algorithm to extract the refer-

ence point coordinates, thus the different appearance of traffic signs in different countries will be

a limiting factor for generalization. Furthermore, calibration with traffic signs relies on a larger

number of deep learning-based methods than calibration by semantic structure-from-motion, thus

the risk that one of the models performs bad in a new type of road scene is higher. Additionally,

experiments have shown that reference points from image features are distributed wider and more

equal across the image area than reference points from traffic signs that are mostly in the upper

image area. Thus, it can be expected that outliers resulting from a lack of generalization capabil-

ity can be detected better by calibration by semantic structure-from-motion. Second, calibration

by semantic structure-from-motion requires a lower number of additional information which may

be difficult to obtain and may be an additional source for errors. While this method only needs

the vehicle position that can be easily obtained from GPS, calibration with traffic signs needs

the speed limit in order to determine the speed-dependent metric size of the traffic signs. Even

though already two data sources are necessary to obtain the speed limit from GPS and a map,

even a third data source is needed to obtain the metric size of traffic signs e.g. from official

regulations for each country where this calibration method should be utilized. Third, the total

processing time of the experiments has shown that the computational effort for calibration by

semantic structure-from-motion is remarkably larger. Especially the incremental creation of the

3d point cloud requires more time than applying all deep models for calibration with traffic signs.

The results of both methods for camera self-calibration can be compared well with each other,

as both have been tested with the same datasets and both have been evaluated against the same

reference calibration. The results indicate major differences in the quality of both methods. First,

as it can be expected from the type of reference information, calibration by semantic structure-

from-motion provides a remarkably larger number of reference points (more than factor 100). In

tendency, the mean residuals of this method are slightly smaller (approx. one exponent), while
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the standard deviations of the residuals are remarkably larger (approx. six exponents). These

observations can be an indicator that the small amount of reference points in calibration by traffic

signs fit well to each other, but may contain certain outliers in the observations that can’t be

uncovered by other observations. Second, the deviations of the interior orientation parameter

values from reference calibration are remarkably smaller for calibration by semantic structure-

from-motion (cf. scaling of vertical axes in Figures 8.11, 8.15, 8.16). Likewise, the precision of

this method is remarkably better than the precision of calibration with traffic signs (cf. scaling

of the vertical axis in Figures 8.11, 8.17, 8.18). Again, these observations are not surprising when

comparing the number of reference points.

While the self-calibration methods are well suitable for doing camera calibration on the road,

the experiments have confirmed that they are not suitable for analyzing the influence of the

vehicle windshield. First, it is not possible to control the location and distribution of reference

points in the image which is important to get estimates for the orientation parameters that are

valid for the entire image area. Second, self-calibration has a larger number of error sources,

which may interfere with a potential effect of the windshield on the estimates. For example,

both erroneous vehicle positions from GPS and windshield refraction may contribute to a scale

error that leads to an error in the estimated focal length. Furthermore, the experiments have

revealed that pixel coordinates of the reference points extracted from traffic signs have worse

accuracy than pixel coordinates extracted from well-tested and subpixel-accurate algorithms for

circular reference marks or checkerboard patterns. Third and most important, it is practically not

feasible to obtain pre-determined high-quality object coordinates for the reference points for self-

calibration on the road which are needed to uncover a potential effect of the windshield, especially

in the case of the large amount of reference points from image features. In contrast, the high effort

for test field calibration shows that it can be used only under special conditions like in production

plants or in research facilities, but not during regular drives of a car on public roads. While there

are many differences between the proposed methods for self-calibration and test field calibration,

the algorithms still have certain aspects in common. Especially the feature matching and 3d

reconstruction steps of self-calibration by semantic structure-from-motion have several parallels

to the matching and 3d reconstruction steps of the proposed test field calibration. Additionally,

all proposed methods rely on bundle adjustment for final estimation of the orientation parameter

values.

The results of the self-calibration methods and the test field calibration method are difficult

to compare based on the estimated values, as different datasets have been used for the experi-

ments and as the objectives of the methods are different. Furthermore, the method for test field

calibration was not evaluated against a reference calibration. Therefore, only the residuals can

be compared with each other, whereby the mean residuals of test field calibration are in tendency

larger than the mean residuals of both self-calibration methods. Besides, the standard deviations

of the residuals are similar to calibration by semantic structure-from-motion (based on the ex-

ponent, cf. Figures 8.1 and 8.2, Tables 8.4, 8.5, 8.7 and 8.8), but remarkably larger than the

standard deviations for calibration with traffic signs. In general, it can be said that especially the

large deviations of the estimated interior orientation parameter values for calibration with traffic

signs from the reference calibration indicate a insufficient quality to analyze the influence of the

windshield, as the windshield effect may cause deviations that are even smaller.
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9 Conclusion

This chapter covers conclusions drawn from the work presented in this thesis (Section 9.1). Ad-

ditionally, it covers future perspectives how the work could be continued (Section 9.2).

9.1 Conclusions on the research questions

The following conclusions correspond with the three research questions (Section 1.3).

9.1.1 Camera calibration with test fields

Q: How does a vehicle windshield in the optical path between a forward-looking on-board stereo

camera system and a calibration test field influence the parameter values, standard deviations

and correlations of the interior, relative and exterior orientation parameters estimated by test

field calibration based on bundle adjustment in a set of experimental cases covering two kinds of

test fields, different camera models and different parametrizations of stereo constraints?

A: By the proposed method, reference points from uncoded and coded reference marks on two

kinds of non-rigid test fields have been jointly used to calibrate a stereo camera system. For the

investigation of the windshield influence, calibration has been carried out successfully with and

without a windshield in several experimental cases with different stereo constraints, camera mod-

els and reference points from either one or both test fields. This underlines the potential of test

field calibration for investigations under specific conditions. Analysis has shown larger absolute

residuals of the image points if a windshield is present, especially for experimental cases with a

stereo constraint that estimates only the relative and the exterior orientation of one camera (cf.

Stereo constraint 1 ). For most camera orientation parameters, statistically significant deviations

have been obtained between calibration with and without the vehicle windshield. Larger devia-

tions have been obtained for distortion parameters than for the focal length and principal point

coordinates. Larger deviations have been obtained also for the camera model considering only

radial distortions (cf. model Radial) instead of both radial and tangential distortions (Both).

For most experimental cases, the precision of the estimated interior, relative and exterior orien-

tation parameters has been better if no windshield was present. Correlation analysis has revealed

small mean correlations indicating the absence of systematic dependencies between the orienta-

tion parameters in the imaging configuration. Remarkably, larger correlations have been achieved

in average if no windshield was present. Calibration with a camera model without distortions

(None) has failed. Calibration has also failed for few experimental cases if only the checkerboard

test field together with a camera model considering only radial distortions was used. Finally, for

many experimental cases, less different values have been obtained between cases where no stereo

constraints are applied (Stereo constraint 0 ) and cases where the relative as well as the exterior

orientation of both cameras are estimated during calibration (Stereo constraint 2 ) compared to

cases with Stereo constraint 1. As conclusion from the previous statements, it can be recom-

mended to use the camera model with both radial and tangential distortions, to use both test
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fields (Merged) and stereo constraints where the radial and exterior orientation of both cameras

are estimated.

9.1.2 Camera calibration with traffic signs

Q: Which types of traffic signs are most appropriate to derive reference points from by deep

learning-based computer vision for self-calibration with a sequence of road scene images taken

with a forward-looking on-board mono camera?

A: By the proposed method, calibration has been carried out successfully with traffic signs

with triangle, rectangle or circle shape with different image sequences from road scenes, thereby

showing the potential to calibrate automotive cameras by self-calibration on the road without

a priori known reference information. Smaller deviations with regard to a reference calibration,

performed as test field calibration, have been mostly obtained for experimental cases involving

triangular traffic signs compared to rectangular or circular traffic signs. Smaller deviations have

been also obtained when using Deeplabv3+ for semantic segmentation compared to EfficientPS.

In few experimental cases with rectangular traffic signs, the number of reference points that has

been obtained is even lower than for single-image test field calibration and so calibration can’t

be considered as reliable in such cases. For the urban Munich sequence, a higher number of

reference points and smaller deviations have been obtained compared to the suburban Ettlingen

sequence. This can be interpreted as indicator that urban road scenes are more suitable for camera

calibration with traffic signs than suburban scenes.

9.1.3 Camera calibration by semantic structure-from-motion

Q: How can semantic road scene knowledge and vehicle motion models be integrated into a

structure-from-motion pipeline to improve self-calibration of a forward-looking on-board mono

camera with a series of road scene images?

A: By the proposed method, camera calibration has been carried out successfully with image

sequences from road scenes in different experimental cases using scene knowledge from seman-

tic segmentation to make feature extraction and feature matching in the structure-from-motion

pipeline more robust. Experimental evaluation has confirmed the theoretical expectation that

using scene knowledge by means of exclusion masks during feature extraction leads to a smaller

number of reference points compared to regular structure-from-motion, but also to smaller resid-

uals (absolute mean values, standard deviations). Analysis of the deviations from reference test

field calibration indicates a dependency of the estimated values and standard deviations of the

interior orientation parameters on the set of semantic classes considered for creating the exclusion

masks. Analysis supported by statistical significance tests has further revealed smaller deviations

from reference calibration for the Munich sequence if scene knowledge has been used during fea-

ture matching compared to when it has been used not. It has also shown smaller deviations for

the Munich sequence if a Kalman filter with a special vehicle motion model has been applied to

refine the vehicle trajectory from GPS in order to achieve better metric scaling in the structure-

from-motion pipeline. For calibration with the proposed method, generally a better precision of

the interior orientation parameters has been obtained compared to the reference calibration. In

comparison to self-calibration with traffic signs, both a remarkably higher number of reference

points and remarkably lower deviations have been obtained with this method.
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9.2 Future work

Based from the limitations of the proposed method, new possible directions for further investi-

gations on the windshield influence could emerge from a modified experimental setup. By using

a spare windshield in a lab environment instead of a real vehicle, the same test field orientations

and so the same number and distribution of reference points can be obtained to achieve a bet-

ter comparability between calibration with and without the windshield. Employing independent

reference information that is not used for calibration, like separate objects with known shapes,

would allow to determine the accuracy instead of only the precision of the estimated camera orien-

tation parameters and thus obviously increase the value of the evaluation [Luhmann et al., 2016].

Further research for self-calibration with traffic signs could emerge from improving the deep net-

works for semantic segmentation, depth estimation and boundary detection. More sophisticated

models that are currently published each year will very likely increase the performance of these

methods with beneficial effects on camera calibration. Additionally, specialized networks could

be employed in order to obtain a higher number of reference points. For example, classic image

processing steps applied after the deep networks in the proposed method to determine the pixel

and object coordinates of the reference points may be integrated into these networks. For the

same reason, it seems obvious to add support for other traffic sign shapes, especially unique ones

that can be easily identified in the images, like it is the case for the stop sign or the right of way

sign. For calibration by semantic structure-from-motion, further research could address even more

precise exclusion of undesired reference points by better scene knowledge: For example, it could

be determined which individual vehicles are currently in motion or which parts of a building have

problematic reflecting surfaces. Furthermore, a more sophisticated approach to select an initial

image pair for 3d reconstruction could avoid non-converging bundle adjustments. Finally, espe-

cially for use in mass-produced vehicles, it can be interesting to determine an appropriate small

number of images allowing calibration with sufficient quality. It can be also interesting to work

on reducing the computational complexity of the proposed method, especially with regard to the

global bundle adjustment. Thereby, it could be expected to better cope with limited hardware

resources in a vehicle.
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Mentzer N, Vayá G, Blume H, von Egloffstein N, Krueger L (2017) Self-calibration of wide baseline stereo
camera systems for automotive applications. In: Guillermo Payá-Vayá HB (ed) Towards a Common
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