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Abstract

The Higgs boson provides a unique tool to study the physics of the Standard Model, as
well as to search for manifestations of physics beyond it. The first part of this thesis is
devoted to precision in the Higgs sector, where we perform a phenomenological analysis
of ZZ production at the Large Hadron Collider (LHC) using the recently developed
MiNNLOPS method for the matching of fixed-order QCD calculations to a parton
shower. In the second part of this thesis, we explore a number of phenomenological
directions to search for physics beyond the Standard Model. Within the context of the
Standard Model effective field theory, we probe possible modifications of the trilinear
Higgs coupling via off-shell Higgs production at the LHC, and use of a variety of non-
Higgs observables to constrain dipole-type operators that modify the bottom-Higgs and
charm-Higgs dynamics. Finally, we perform a sensitivity study for the high-luminosity
upgrade of the LHC and other future collider options in constraining Higgs-portal
interactions.
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Chapter 1

Introduction

A decade ago, on the 4th of July 2012, theoretical and experimental physicists gathered
in the CERN auditorium for the empirical confirmation of a 48 year-old theoretical
prediction: a new fundamental scalar particle with approximately the properties of the
Higgs boson as predicted by the Standard Model (SM) of elementary particle physics.
The implications of its discovery by the ATLAS [1] and CMS [2] collaborations at the
Large Hadron Collider (LHC), in itself a tremendous success for the SM, are still being
understood today. In fact, while this introduction was being written, the LHC com-
menced its third large round of data taking merely one day after the celebrations of the
ten-year anniversary of the Higgs-boson discovery. After having undergone significant
updates over the last three years to increase not only the energy of the colliding beams
(reaching a world-record collision energy of 13.6 TeV) but also their intensity (aiming
to obtain around 300 fb−1 of integrated luminosity at the end of Run 3), the world’s
largest particle accelerator is ready for a new physics season.

In this endeavour, the Higgs boson will undoubtedly be again at the center of atten-
tion. The reasons for this are manifold, but foremost is that its discovery constitutes
the first direct evidence that the Universe is pervaded by a fundamental scalar field, the
Higgs field, whose profound consequences directly relate to some of most fundamental
aspects of nature. Remarkably, the Higgs field has a non-vanishing expectation value
in the vacuum, which plays a crucial role in explaining the origin of particle masses. Its
non-zero vacuum expectation value was acquired during an electroweak (EW) phase
transition in the early Universe, which could be connected with the observed matter-
antimatter asymmetry. Moreover, the (in-)stability of the EW vacuum itself is related
to the precise value of the measured Higgs-boson mass and possibly has far-reaching
implications for cosmological models of inflation. Theoretically, the Higgs field ensures
the SM to be a consistent quantum field theory as its excitations, i.e. the Higgs bosons,
restore the perturbative unitarity of the SM that would otherwise be violated by lon-
gitudinal gauge-boson scattering. And lastly, being the only known elementary scalar
field, the Higgs field could serve as a portal to other, hidden sectors possibly related to
dark matter (DM). In light of this multitude of profound features, it perhaps does not
come as a surprise that the theoretical path to the Higgs discovery has been one paved
with Nobel Prizes.

The central theoretical principle that eventually led to the celebrated discovery at
the LHC is that of a spontaneously broken symmetry. First proposed within the context
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Figure 1.1: Examples of leading-order Feynman diagrams contributing to Higgs production at the
LHC in gluon-gluon fusion (a), vector-boson fusion (b), Higgsstrahlung (c), and associated production
with a top-quark pair (d).

of non-relativistic theories of superconductivity [3–5], the concept of a spontaneously
broken symmetry is that of one that remains exact in the underlying dynamics but
appears broken in observed phenomena as a consequence of an asymmetric vacuum.
The idea was introduced into particle physics by Nambu in 1960 [6], where he hypoth-
esized the generation of nucleon masses via the spontaneous breaking of global chiral
symmetry in the strong interaction, along with the existence of an additional (almost)
massless particle which he identified as the pion. Around the same time, Goldstone
had conjectured that the appearance of massless spin-zero bosons is a general conse-
quence of the spontaneous breaking of a continuous symmetry [7]. Proofs of Goldstone’s
theorem were derived shortly after [8], and the aforementioned massless particles be-
came known as Goldstone bosons. However, Brout and Englert [9], Higgs [10, 11] and
Guralnik, Hagen and Kibble [12], independently put forward the idea that the Gold-
stone theorem can be evaded for spontaneously broken local gauge symmetries, where
the would-be Goldstone bosons are absorbed as the helicity-zero states of the vector
bosons associated to the local gauge symmetry, which thereby acquire mass. This is
known as the Brout-Englert-Higgs (BEH) mechanism, which furthermore predicts the
existence of a new massive spin-zero particle — the Higgs boson.

The BEH mechanism however started receiving its deserved attention only after it
was shown to fit beautifully into a unified theory of EW interactions [13–15] capable of
making clear-cut predictions [16, 17]. Importantly, it was also shown able to generate
fermion masses through their Yukawa interactions with the Higgs field. Together with
the emergence of quantum chromodynamics (QCD) as a mathematically consistent
theory of the strong interaction [18–22], this ushered in an era in which the SM was
confirmed time after time in many different experimental measurements, culminating in

– 6 –



Decay channel h→ bb̄ h→W+W− h→ τ+τ− h→ ZZ h→ γγ

Branching ratio 58% 21% 6.3% 2.6% 0.23%

Table 1.1: Branching ratios for the SM Higgs boson with a mass of 125 GeV. Values taken from [23].

the Higgs-boson discovery at the LHC. With it came a wealth of possible directions for
further study, partially owing to the fact that the mass of the observed scalar particle
with around 125 GeV turned out to be particularly fortunate for the experimental
exploration of its properties, which has been one of the main goals of the physics
progamme at the LHC ever since.

In Figure 1.1, we show leading-order Feynman diagrams for the four most relevant
production modes of Higgs bosons at the LHC. The dominant channel is gluon-gluon
fusion (ggF), which proceeds mainly through a top-quark loop and contributes roughly
90% to the total inclusive cross section. While it starts to contribute at O(α2

s), with
αs = g2

s/ (4π) being the strong coupling constant, it is enhanced by the large gluon
luminosity at the LHC and benefits from a large top-quark Yukawa coupling. Not
unimportantly, the QCD corrections to this process are also large, a point that will
be discussed in detail in Chapter 4. The production mode with the second-largest
cross section is vector-boson fusion (VBF), which makes up about 7% of the total
cross section and has the characteristic signature of two back-to-back hard jets in the
forward and backward regions of the detector. The remaining portion of the total Higgs
production cross section is mostly attributed to the associated production with a vector
boson (V h, V = W,Z), i.e. Higgsstrahlung, and the associated production with a top-
quark pair (tt̄h). While the latter provides direct access to the top-Yukawa coupling,
both contributions are smaller compared to the aforementioned production modes due
to the energy burden that comes with producing a vector boson or top-quark pair in
the final state.

The sensitivity of a particular channel to its corresponding Higgs signal depends
not only on the Higgs production cross section, but also on the amount of non-Higgs
background in the final state, the selection efficiency and the branching ratio for the
specific decay mode of the Higgs. For a Higgs boson with a mass of 125 GeV, the
branching ratios for the five main decay channels are given in Table 1.1. While the
h→ bb̄ channel yields the largest branching ratio, its detection is complicated by large
backgrounds from multi-jet production in the dominant ggF production mode. In the
case of h→W+W−, theW bosons decay either hadronically (W → qq̄′) or leptonically
(W → `ν`), where the sensitivity is diminished by large QCD backgrounds and the
presence of neutrinos, respectively. Because of the fact that also the h → τ+τ− mode
suffers from large backgrounds, the most sensitive channels are instead the h → ZZ

and h → γγ channels, despite their small branching ratios. The ZZ case, where the
two Z bosons decay into four leptons, is often called the golden channel owing to its
clean experimental signature and will be studied in different contexts in Chapters 4,
6 and 8. Table 1.1 nicely illustrates the point made before that, phenomenologically,
we have been quite fortunate with the particular value nature has chosen for the Higgs
mass as it enables us to study its properties using a wide range of production and decay
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Figure 1.2: Cross section for inclusive Higgs production in gluon-gluon fusion. SM predictions at 13
TeV including QCD and EW corrections at various orders are compared to ATLAS [29] and CMS [30]
results using the full set Run 2 data. Figure taken from [31].

modes at the LHC.
In this regard, precision is key. The couplings of the scalar resonance to the EW

gauge bosons and third-generation fermions have been tested extensively, showing
agreement with those of the SM Higgs boson at the level of about (5 − 20)% [24, 25].
However, as nicely put in [26]: would we consider the theory of electromagnetism es-
tablished if we had only verified the strength of its interaction to an accuracy of, say,
10%? Certainly not. In addition, thus far only upper limits have been achieved on
its couplings to quarks and leptons of the first and second generation.1 The experi-
mental exploration of the Higgs sector has in that sense only just begun. However,
the additional data from LHC Run 3 and the subsequently scheduled high-luminosity
upgrade of the LHC (HL-LHC), together with innovative analysis techniques and accu-
rate theoretical calculations, are expected to reduce the uncertainties on the observed
Higgs-boson couplings to the level of a few percent [28].

To match the precision already currently achieved on the experimental side, but
also in the future, there are essentially two broad directions for improving the accuracy
of theoretical predictions. On the one hand, including more terms in the perturba-
tive calculations of hard-scattering processes will reduce the uncertainties associated
to missing higher orders. With the LHC being a hadronic machine, the dominant cor-
rections are of QCD type. This is particularly true for Higgs production in ggF as it is
purely a quantum process originating from a two-gluon initial state. Figure 1.2 shows
that not only the theoretical uncertainties on the inclusive ggF cross section, displayed
as yellow bands around the predicted values, are reduced by including higher-order
QCD or EW corrections,2 but also that the addition of their contributions is crucial
to accurately describe the data. On the other hand, the development of novel compu-

1The first evidence for the Higgs decay into a muon pair, at the level of 3σ, was presented in [27].
2As the NLO central value lies well outside the uncertainty bands of the LO prediction, the LO uncertainty

in Figure 1.2 is significantly underestimated.
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tational techniques allows us to model also more exclusive final states with improved
accuracy. This is important, because studying more differential observables allows us
to test the SM in more detail as one can compare not only the normalisation but also
the shape of the distribution to the SM expectation.

Naturally, a lot of ongoing work aims to combine the best of both worlds by match-
ing the best-available fixed-order QCD calculations to a parton-shower (PS) algorithm
designed to simulate QCD radiation in the soft-collinear approximation. These match-
ing frameworks are embedded in dedicated Monte-Carlo event generators to obtain
hadron-level simulated events, which is crucial for comparison to experiment. This
is the subject of the first part of this thesis, and a more comprehensive introduction
to the topic and discussion of the relevant aspects of collider theory are provided in
Chapters 2 and 3, respectively. In particular, Chapter 3 reviews some of the leading
matching methods developed in the last two decades, starting from the well-known
Powheg [32, 33] framework for matching next-to-leading order (NLO) QCD calcula-
tions to a PS (i.e. NLO+PS), up to the recently developed MiNNLOPS method [34, 35]
for the matching of next-to-next-to leading order (NNLO) QCD calculations to a PS
(NNLO+PS). We apply MiNNLOPS to ZZ production at the LHC in Chapter 4,
obtaining NNLO+PS accurate results for the qq̄ → ZZ process. In addition, we con-
struct an event generator for the loop-induced ggF channel, where we match NLO QCD
accurate fixed-order results to a PS using the Powheg method. The two implemen-
tations are then combined to perform a comprehensive phenomenological study of ZZ
production at the LHC.

Even though ten years of increasingly precise measurements and predictions at the
LHC, in addition to the precision measurements performed by collider experiments be-
fore it [36], have thus far shown a pattern consistent with the SM picture, it is widely
believed that the SM is not the end of the story. There are well-known issues, both
theoretical and observational, for which the SM fails to provide a satisfactory explana-
tion. For instance, the observed neutrino oscillations [37, 38] are in contradiction with
the SM as it is not possible to generate neutrino masses in a gauge-invariant way via
the BEH mechanism due to the absence of right-handed neutrinos. In addition, cosmo-
logical observations imply a DM abundance of about 26% of the total energy budget
of the Universe [39], for which the SM does not provide a viable particle candidate.
Moreover, the absence of antimatter in the Universe indicates additional sources that
violate combined charge-conjugation and parity (CP) symmetry, beyond the amount
of CP violation generated by the Kobayashi-Maskawa mechanism [40] within the SM.
On the theoretical side, the SM lacks a deeper explanation for the observed pattern
of particle masses, i.e. it does not provide any insight into the seemingly arbitrary ar-
rangement of Yukawa couplings in the Higgs sector. Additionally, the Higgs mass itself
is not protected from large quantum corrections, which causes a hierarchy problem in
the presence of heavy new physics unless a large degree of fine tuning keeps the Higgs
mass at the EW scale or it is stabilised by some unknown mechanism or symmetry.

It is not unlikely that most, if not all, of the major open questions mentioned above
are linked in one way or the other to the Higgs boson, which therefore provides a
powerful tool not only to study the physics of the SM but also to probe the landscape
beyond the SM (BSM). The second part of this thesis contains, following a more detailed
motivation in Chapter 5, three phenomenological studies that are directly or indirectly
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Chapter 1. Introduction

related to the Higgs boson, in the presence of BSM physics.
In Chapter 6, we explore the possibility of BSM effects modifying the Higgs po-

tential. The Higgs potential in the SM is parametrised by two parameters only: the
vacuum expectation value (v ≈ 246 GeV) of the Higgs field and the strength of the (tri-
linear and quartic) self-interactions of the Higgs boson, which are parametrised by the
same parameter λ, given by λ = m2

h/(2v
2) ≈ 0.13 for a Higgs mass of mh = 125 GeV.

However, many BSM scenarios allow for deviations of the Higgs self-couplings with
respect to their SM predictions [41]. Measuring or constraining λ therefore presents a
unique window into the mechanism of EW symmetry breaking in addition to providing
a way to probe the existence of new physics. We study the effects of a modified trilinear
Higgs coupling in the context of the SM effective field theory (SMEFT), assuming that
the SM is the low-energy effective realisation of some unknown ultraviolet (UV) theory.
Possible contributions from higher-dimensional SMEFT operators to the trilinear Higgs
coupling are analysed in off-shell Higgs production at the LHC, where our calculation
of the gg → h∗ → ZZ → 4` process includes two-loop corrections to ggF Higgs pro-
duction and one-loop corrections to the Higgs propagator and its decay. Employing
a matrix-element based kinematic discriminant to separate the Higgs signal from the
quark-antiquark annihilation and gluon continuum backgrounds, we then determine
the reach of LHC Run 3 and the HL-LHC in constraining the relevant SMEFT Wilson
coefficients, and compare our results to the projected indirect limits one expects to ob-
tain from inclusive measurements of single-Higgs production processes at future LHC
runs.

The SMEFT furthermore provides a consistent framework to parametrise other
types of anomalous interactions, such as BSM physics modifying the bottom-Higgs
and charm-Higgs dynamics. The dimension-six mixed-chirality operators within the
SMEFT that can lead to modifications to the h→ bb̄ and h→ cc̄ partial decay widths
are either of Yukawa or dipole type. Upon EW symmetry breaking, the latter type of
operators induce anomalous interactions between a quark pair, one or two gluons and
possibly a Higgs boson. With it come opportunities to study their effects using different
Higgs and non-Higgs probes, which is the subject of Chapter 7. After a short review
of the existing limits on the bottom and charm chromodipole operators from Higgs
physics, we use a variety of experimental information from non-Higgs probes in order
to constrain the associated Wilson coefficients. Our analysis includes collider measure-
ments of the angular distribution of unflavoured dijet production, the invariant-mass
distribution of b-tagged jets and the transverse-momentum spectrum of a Z boson pro-
duced in association with b-jets, as well as measurements of flavour decays and and the
neutron electric dipole moment.

We return to Higgs production in ggF in Chapter 8, where instead of including
higher-dimensional SMEFT operators, we consider relevant and marginal operators of
the form |H|2O with H the SM Higgs doublet and O itself a gauge-invariant operator
with a mass dimension of two or lower. The possibility of sizeable Higgs-portal couplings
to |H|2 can be motivated by the aforementioned observed DM abundance as well the
hierarchy problem of the Higgs sector. For instance, in the simplest case where O = φ2

with φ being a real scalar that is a singlet under SM gauge group but odd under
a Z2 symmetry, φ constitutes a suitable DM candidate. Furthermore, extensions of
the SM where the hierarchy problem is addressed by the addition of real scalar top

– 10 –



partners (such as the minimal supersymmetric SM, hyperbolic Higgs or tripled top
model) likewise imply Higgs-portal interactions of the form |H|2O. We employ the
same strategy as in Chapter 6 in order to determine reach of the HL-LHC, high-energy
LHC (HE-LHC) and Future Circular Collider (FCC) in constraining new physics that
couples to |H|2. In addition, we provide an independent analysis of the relevant Higgs-
portal effects in double-Higgs production.

We conclude in Chapter 9, where we summarise our main results and comment on
possible directions for future study.

This thesis is largely based on the following publications:

[42]

[43]

[44]

[45]

U. Haisch and G. Koole, Probing Higgs portals with matrix-element based
kinematic discriminants in ZZ → 4` production, JHEP 04 (2022) 166,
[2201.09711].

U. Haisch and G. Koole, Off-shell Higgs production at the LHC as a probe of the
trilinear Higgs coupling, JHEP 02 (2022) 030, [2111.12589].

L. Buonocore, G. Koole, D. Lombardi, L. Rottoli, M. Wiesemann and
G. Zanderighi, ZZ production at nNNLO+PS with MiNNLOPS , JHEP 01 (2022)
072, [2108.05337].

U. Haisch and G. Koole, Beautiful and charming chromodipole moments, JHEP
09 (2021) 133, [2106.01289].
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Chapter 2

Introduction & motivation

Detailed and precise predictions for scattering processes are the backbone of large
parts of high-energy collider phenomenology. Combined with accurate measurements
including increasingly more data, progress in this direction will allow us to test the
properties and interactions of the SM particle content with unprecedented scrutiny,
allowing us to further improve the sensitivity to deviations from the SM picture.

To reliably compare data to theory, we however need comprehensive simulations
(performed by Monte-Carlo event generators) that model the complex final states pro-
duced in high-energy collisions. The underlying reason for this is simple: for an accurate
description of a physical process we need to understand the physics at all distance or
energy scales that are relevant for the process of interest. In the case of a proton-
proton collider such as the LHC, the relevant distances span roughly three orders of
magnitude between the size of the protons, about 10−15m, and the hard-scattering in-
teractions that take place on distance scales as low as or even below 10−18m. In units
of energy, accurate theory predictions for LHC cross sections should therefore include
all relevant physical effects ranging from the hadronic scale of around 1 GeV up into
the TeV regime. Clearly, obtaining such predictions constitutes an immensely involved
task that requires carefully put together technological solutions. In fact, these problems
would be unsurmountable if the underlying theory of the strong interaction, QCD, was
not asymptotically free and susceptible to hard-scattering factorisation theorems — see
Appendix A for more details on asymptotic freedom and other basic aspects of QCD.
Before returning to the importance of having event generators that simulate collider
events as accurately as possible, let us first discuss where the theoretical uncertainties
arise that we aim to reduce. A more detailed account of the relevant aspects of collider
theory will be provided in the next chapter.

In calculations of hadronic cross sections, hard-scattering factorisation theorems al-
low us to separate long-distance from short-distance behavior, thereby enabling the
application of perturbative methods. For instance, in the case of inclusive Higgs pro-
duction in proton-proton collisions, i.e.H+X production whereX denotes any number
of additional partons, the total cross section can be written as

σ (H +X) =
∑

i,j

∫
dx1fi/p

(
x1, µ

2
F

) ∫
dx2fj/p

(
x2, µ

2
F

)
σ̂ij→H+X

(
ŝ, µ2

F, µ
2
R

)

+O (ΛQCD/Q) ,

(2.1)
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which is valid up to power corrections of O (ΛQCD/Q) where Q denotes the scale of the
hard scattering and ΛQCD ≈ 0.2 GeV characterises the scale at which perturbative QCD
breaks down. We have furthermore defined the partonic centre-of-mass energy squared
as ŝ = x1x2s with s the centre-of-mass energy of the hadrons squared, while µF and µR

denote the factorisation and renormalisation scales, respectively. The parton densities
fi(j)/p

(
x1(2), µ

2
F

)
, often referred to as parton distribution functions (PDFs), describe

the probability of finding the parton i(j) in the proton with longitudinal momentum
fraction x1(2). PDFs are universal and non-perturbative, meaning that the same PDFs
appear in all processes (provided the same factorisation scheme is employed) and that
QCD at energies near the proton mass is really a theory of the strong interaction.
The behavior of the parton densities with respect to a changing factorisation scale µF

1

is governed by evolution equations such as the Dokshitzer–Gribov–Lipatov–Altarelli–
Parisi (DGLAP) equations [48–50]

d

d lnµ2
F

fi/p
(
x, µ2

F

)
=
∑

j

∫ 1

x

dz

z

αs
2π
Pij(z)fj/p

(x
z
, µ2

F

)
, (2.2)

which can be viewed as the analog of the QCD β function describing the running
of αs (see Appendix A). While the parton densities themselves have to be determined
from experiment, their evolution (2.2) can be calculated perturbatively. Similarly to the
case of the β function, the splitting functions Pij appearing in (2.2) can be expanded in
powers of αs with the current state of the art including contributions up to the next-to-
next-to-leading order (NNLO) [51, 52]. The more terms are included in the perturbative
expansion of Pij , the milder the µF-dependence of the ensuing cross section.

The last part of (2.1) concerns the hard-scattering interactions, often thought of as
the core of the process as it usually determines its signature property (think for example
of jets with high transverse momentum, di-lepton pairs or highly-virtual photons). The
hard-scattering dynamics is described by the partonic cross section σ̂, and takes places
at energy scales Q � ΛQCD. Thanks to asymptotic freedom, we have αs(Q) � 1 and
therefore σ̂ is calculable with a theoretical accuracy that can be improved by including
higher-order terms in its perturbative expansion

σ̂ = σ̂LO

(
1 +

(αs
2π

)
δNLO +

(αs
2π

)2
δNNLO + . . .

)
. (2.3)

Here σ̂LO denotes the leading-order contribution and δNLO and δNNLO indicate the NLO
and NNLO corrections, respectively. As mentioned before, αs is renormalisation-scale
dependent in order to deal with the UV divergences that appear beyond tree level
(Appendix A). Similar to the case of the aforementioned unphysical factorisation scale,
the dependence of the total cross section on the unphysical renormalisation scale de-
creases the more terms are included in the perturbative series for the partonic cross
section (2.3). In principle, if one could include infinitely many terms in the perturbative
series, the scale dependencies would compensate each other completely. Hence, varying
the factorisation and renormalisation scales in the total cross section after truncating

1To be able to describe the gluons within the proton, which is especially relevant for Higgs production
at the LHC, one needs to regularise the collinear divergences coming from initial-state emissions. This is
done by introducing a factorisation scale µF that acts as an infrared cutoff, putting the divergences in the
non-perturbative PDFs — see Section 3.1.4.
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Chapter 2. Introduction & motivation

the perturbative series at a given order is commonly used to estimate the theoretical
uncertainties associated to missing higher-order terms. In practical applications one
usually sets µF = µR ∼ Q with Q the typical hard scale of the process — e.g. in the
case of (2.1) one could choose the invariant mass of the Higgs — and varies the scales
around this central value by a factor of two in each direction.

Thus far we have considered the simple case of fully-inclusive Higgs production,
i.e. we did not specify anything about the final state — as indicated by the label X
in (2.1). However, to maximally exploit the data being harnessed at the LHC and at
future colliders, it is crucial to study more exclusive observables as well. This means
we are generally interested in processes with a specified number of identified additional
particles or a restricted phase space for X, or both. These less inclusive measurements
may however be affected by extra dynamics and in order to adequately describe them
we will need further predictive techniques. The problem here stems from the fact that
while perturbative QCD deals with partons, the final states measured in QCD processes
consist of hadrons. Between the hard scattering interactions and the measured final
states, the highly-energetic partons first fragment (shower) into many further partons
before transitioning into hadrons. Showering and hadronisation effects are negligible for
very inclusive observables since they do not significantly change the overall probability
of the hard scattering. Distinguishing between partons and hadrons in the final state
therefore makes little to no difference for fully-inclusive observables. In contrast, in the
case of exclusive observables such as differential distributions of individual hadrons, it
is crucial to account for showering and hadronisation effects. This prompts the need for
dedicated computer simulations — it is the raison d’être for Monte-Carlo (MC) event
generators.

MC event generators address both issues of hadron formation and the modeling of
the evolution of QCD final states from short to long distances in a rather generic way.
Because of their applicability to many different inclusive and exclusive observables,
they have become indispensable tools for high-energy particle physics phenomenology.
In Figure 2.1, we show a pictorial interpretation of the simulation of a hadron-hadron
collision performed by such a MC generator. The red blob represents the hard scatter-
ing subprocess, which serves as the starting point of a PS algorithm. The PS algorithm
subsequently dresses the hard partons with initial- and final-state radiation in the soft
and collinear approximations, using a probabilistic Markov process. This radiation is
represented by the red tree-like structure in Figure 2.1. With each of these emissions,
which are ordered using a suitable ordering variable, the highly-accelerated partons
are decelerated. A PS simulation is therefore typically formulated as an evolution in
momentum transfer starting from a hard-scattering scale Q � ΛQCD down to a cutoff
scale Q0 ≈ 1 GeV where the partons become confined inside hadrons. Importantly,
it includes also a non-emission probability at each iteration by introducing a so-called
Sudakov form factor, resulting in a finite cross section in which large logarithmic con-
tributions that could potentially spoil the convergence of the perturbative series are
resummed to all orders in QCD. This is explained in considerably more detail in Sec-
tions 3.2 and 3.3. Finally, around energy scales of 1 GeV, the partons form color-neutral
hadronic final states (represented by the light-green blobs in Figure 2.1). Since the PS
predominantly generates radiation that is collinear to the original hard partons, the
hadronic final state mostly consists of collimated bundles of hadrons called jets.
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Figure 3: Sketch of a hadron-hadron collision as simulated by a Monte-Carlo event generator. The red
blob in the center represents the hard collision, surrounded by a tree-like structure representing
Bremsstrahlung as simulated by parton showers. The purple blob indicates a secondary hard
scattering event. Parton-to-hadron transitions are represented by light green blobs, dark
green blobs indicate hadron decays, while yellow lines signal soft photon radiation.

At hadron colliders, multiple scattering and rescattering e↵ects arise, which must be simulated by Monte-
Carlo event generators in order to reflect the full complexity of the event structure. This will be discussed
in Sec. 5. Eventually we need to convert the full partonic final state into a set of color-neutral hadrons,
which is the topic of Sec. 6. The interplay of all these e↵ects makes for the full simulation of hadron-hadron
collisions. This is sketched in Fig. 3.

2 The hard scattering

Event simulation in parton-shower Monte-Carlo event generators starts with the computation of the hard-
scattering cross section at some given order in perturbation theory. Traditionally, this calculation was
performed at leading order (LO), but nowadays, with next-to-leading-order (NLO) calculations completely
automated, it is often done at NLO. Computing the hard cross section at NLO requires a dedicated
matching to the parton shower, which will be discussed in Sec. 4. For now we focus on the evaluation of
the di↵erential cross sections and the related phase-space integrals.

The basis for our calculations is the factorization formula, Eq. (1.1). We rewrite it here, in order to
simplify the discussions in the following sections. The full initial and final state in a 2 ! (n � 2)
reaction can be identified by a set of n particles, which is denoted by {~a} = {a1, . . . , an}. Their flavors

and momenta are similarly specified as {~f } = {f1, . . . , fn} and {~p} = {p1, . . . , pn}. The di↵erential
cross section at leading order is a sum over all flavor configurations, and it depends only on the parton
momenta:

d�(LO)({~p}) =
X

{~f }

d�(B)
n ({~a}) , where d�(B)

n ({~a}) = d�̄n({~p}) Bn({~a}) . (2.1)

Each individual term in the sum consists of the di↵erential phase-space element, d�n, the squared matrix

6

Figure 2.1: Pictorial interpretation of a hadron-hadron collision simulated by a MC event generator.
The central red blob represents the hard collision, while the red tree-like structure around it represents
QCD radiation simulated by the PS algorithm. Transitions from partons to hadrons are shown as light
green blobs, while the dark green blobs indicate hadron decays. Lastly, the purple blob represents a
second hard-scattering event and the yellow lines indicate soft photon radiation. Figure taken from [53].

It should at this point be clear that obtaining exclusive descriptions of hadronic
collision events at the LHC is a highly non-trivial task. However, we still do not
have the full picture as other effects, such as multi-parton interactions (MPI) — see
e.g. the purple blob in Figure 2.1 — or electroweak interactions, could play a non-
negligible role in experiment. They are usually labelled as part of the underlying event.
Moreover, the complexity increases further if one includes higher orders in the expansion
of the partonic cross section (2.3). When attempting to connect perturbative QCD
calculations of the hard-scattering process beyond leading order with a PS algorithm,
issues of double-counting real emissions could for instance arise. The procedure of
combining fixed-order QCD calculations with a parton shower is called matching and
plays a central role in the results presented in Chapter 4. Let us therefore give a short
overview of the progress made in this direction over the last decades.

The first working proposals for the matching of NLO QCD calculations to a PS,
MC@NLO [54–56] and later Powheg [32, 33], appeared about two decades ago. The
Powheg method is described in more detail in Section 3.4.1. For multi-jet NLO+PS
calculations, a method for obtaining good scale choices a priori, called Multi-scale im-
proved NLO (MiNLO), was proposed in [57]. This method was later improved to
MiNLO′ [58, 59], achieving formal NLO accuracy for colour singlet plus zero and one
jet simultaneously — more details on this topic can be found in Section 3.4.2. The
remarkable progress in NNLO QCD calculations2 triggered considerable advancements

2By now all 2→ 1 and 2→ 2 colour-singlet processes are available at NNLO QCD [60–93] (see e.g. [94] for
a review), and even first such calculations for 2→ 3 processes are emerging [95–98].
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Chapter 2. Introduction & motivation

in the matching of NNLO QCD corrections and parton showers. The first NNLO+PS
method developed was based on MiNLO′, and achieves NNLO QCD accuracy through
a reweighting of MiNLO′ events. This method was successfully employed for relatively
simple processes, such as Higgs production [59], Drell-Yan production [99] and associ-
ated Higgs production [100, 101], i.e. to processes that from a QCD point of view are
just 2→ 1 processes. The same method was then also employed forW+W− production,
including the decay of the W -bosons [102]. This paper showed explicitly the limita-
tions of the NNLO+PS method, because in practice the multi-differential reweighting
can not easily be applied to more complicated processes, without making certain as-
sumptions or approximations. About ten years ago, two more NNLO+PS methods
were proposed: the UNNLOPS method, which has only been applied to Higgs [103]
and Drell-Yan production [104], and the Geneva method [105, 106]. The latter was
subsequently modified, as far as the interface to the shower is concerned, and applied
to Drell-Yan [107], Higgsstrahlung [108], photon pair production [109], hadronic Higgs
decays [110], ZZ production [111], and Wγ production [112]. Recently, the Geneva
method was reformulated using the transverse momentum of the colour singlet rather
than the jettiness variable and applied to Drell-Yan [113].

Three years ago, the MiNNLOPS method was proposed [34, 35], whose underlying
idea is very similar to the MiNLO′ approach. The MiNNLOPS method exploits the
close connection to transverse-momentum resummation to include the relevant loga-
rithmically enhanced and constant terms to reach NNLO accuracy — more details on
MiNNLOPS are provided in Section 3.4.3. This method was first used to reproduce
known results for Higgs production and Drell-Yan [34, 35] and it was applied more re-
cently to Zγ [114] and W+W− production [115]. Remarkably, although it was the last
NNLO+PS method to appear, MiNNLOPS was the first to be extended and applied
to the production of a coloured final state, namely top-quark pair production [116].
In Chapter 4, we will use the MiNNLOPS method to obtain NNLO+PS results for
ZZ production, while also presenting a NLO+PS generator for the loop-induced gluon
contribution. Their combination, which is dubbed nNNLO+PS, constitutes the first of
its kind.

Now that we have an idea of the complexity of LHC events and the status of the
tools that simulate such events, one could ask what physics insights we expect to gain
from modeling these complex hadron-hadron collisions — and the elaborate final states
they produce — more and more precisely. There are many answers to this question,
a significant number of which are at the heart of the Higgs programme at the LHC
(and possible future colliders), as was discussed in Chapter 1. Although its discovery
completed the observation of the SM particle content, the Higgs has opened up many
exciting avenues that remain to be fully explored. Key outstanding questions related
for example to the Higgs potential (i.e. the nature of electroweak symmetry breaking),
the Higgs mass hierarchy problem or Higgs portals to hidden sectors are the subject of
ongoing research — they are studied in more detail in Part II of this thesis. However,
they all have in common that not only the experimental uncertainties but also the
systematics related to theoretical limitations play a crucial role in addressing them. In
fact, the experimental measurements are becoming so precise that in some cases theory
uncertainties could actually hinder exploiting the full potential of the LHC. Moreover,
combined with the prospect of a considerable increase in statistics during the upcoming
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high-luminosity phase of the LHC, this is clearly calling for a continued improvement
of theory predictions.

The remainder of Part I of this thesis is structured as follows. The aim of the chapter
hereafter is to explicate some of the aspects of collider theory that are most relevant
for the interpretation of the precision calculations presented in Chapter 4. We will
start with a discussion of the relevant aspects of perturbative QCD in Section 3.1
and resummation (Section 3.2), which leads us to a discussion of parton showers (Sec-
tion 3.3), embedded in modern parton-shower MC methods in order to match them to
the best-available fixed-order calculations. We will work our way up from MC frame-
works designed for the matching (and merging) of NLO QCD calculations to a parton
shower such as Powheg (Section 3.4.1) and the MiNLO and MiNLO′ methods (Sec-
tion 3.4.2), to the recently proposed MiNNLOPS method (Section 3.4.3), designed for
the matching of NNLO QCD calculations to parton shower, which is currently the
state of the art. The MiNNLOPS method is applied to vector-boson pair production
processes in Chapter 4, presenting a comprehensive phenomenological analysis of ZZ
production at the LHC.
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Chapter 3

Collider phenomenology in the
precision era

3.1 Perturbative QCD

Short-distance quantities are perturbatively calculable in QCD thanks to asymptotic
freedom, with partonic cross sections for hard-scattering reactions at hadron colliders
being examples of such quantities. The collinear factorisation theorem [117] in turn dis-
entangles these short-distance cross sections from the long-distance, non-perturbative
effects, enabling the use of perturbative QCD methods to predict processes at the LHC.
Here, we will discuss in some detail the anatomy of perturbative QCD computations
beyond the LO, whilst introducing some of the notation1 used in the remainder of this
chapter. This section does not aim to provide a complete treatment of perturbative
QCD, but rather to introduce the ingredients necessary for the interpretation of the
results presented in Chapter 4. Basic aspects of QCD such as its defining Lagrangian,
renormalisation and asymptotic freedom are relegated to Appendix A.

3.1.1 Preliminaries

The leading-order cross section for the production of an n-particle final state with
four-momenta pi (i = 1, . . . , n) originating from two initial-state particles with four-
momenta k1 and k2 can be written compactly as

σLO =

∫
dΦnLB (Φn) , (3.1)

where we have defined the set of variables Φn = {k1, k2; p1, . . . , pn} and B (Φn) denotes
the relevant leading-order squared matrix elements

B (Φn) =
∣∣∣M(0) (Φn)

∣∣∣
2
, (3.2)

which are assumed to include spin and colour sums and averages as well as the ap-
propriate flux factor. In the case of hadronic collisions, the parton luminosity L =

fi/A
(
x1, µ

2
F

)
fj/B

(
x2, µ

2
F

)
depends on the momentum-fractions of the incoming par-

tons, defined via
k1 = x1K1 , k2 = x2K2 , (3.3)

1The notation used throughout this chapter follows closely that of [33, 34].
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3.1. Perturbative QCD

with K1,2 the four-momenta of the incoming hadrons. The total cross section is ob-
tained by integrating over the momentum fractions and phase space, i.e. the integral
over dΦn = dx1dx2dΦn where dΦn is the n-body phase space in four dimensions,

dΦn (q; p1, . . . , pn) = (2π)4δ4

(
q −

n∑

i=1

pi

)
n∏

i=1

d4pi
(2π)3

δ
(
p2
i −m2

i

)
θ
(
p0
i

)
︸ ︷︷ ︸

δ+(p2
i−m2

i )

= (2π)4δ4

(
q −

n∑

i=1

pi

)
n∏

i=1

d3pi
(2π)32p0

i

,

(3.4)

with q = k1 + k2.
At NLO, the generic structure of the total cross section is

σNLO =

∫
dΦnL

[
B (Φn) + Vb (Φn) + G (Φn)

]
+

∫
dΦn+1LR (Φn+1) , (3.5)

where we have introducedΦn+1 = {k1, k2; p1, . . . , pn+1} and the real and virtual correc-
tions are denoted as R (Φn+1) and Vb (Φn), respectively. The counterterms associated
to initial-state collinear singularities in the case of hadronic initial states are contained
in G (Φn).

In general, higher-order QCD calculations involve real-emission contributions and
virtual-loop corrections, which foster different types of singularities. UV divergences,
appearing only in virtual contributions, are removed through renormalisation (see Ap-
pendix A). Infrared (IR) divergences corresponding to the low-momentum (soft) and
small-angle (collinear) limits of QCD matrix elements appear both in real and virtual
corrections. They however cancel in the total cross section by virtue of the Kinoshita–
Lee–Nauenberg (KLN) theorem [118, 119].2 IR divergencies are not only important to
understand the structure of events but also determine which observables are calculable
within perturbative QCD.

3.1.2 Soft and collinear limits

To illustrate the behavior of QCD matrix elements in the soft and collinear limits, we
review in some detail the simple case of e+e− annihilation into a quark-antiquark pair,
mediated by a virtual photon. Although here the absence of hadrons in the initial state
considerably simplifies the calculation3 and we do not consider contributions mediated
by a Z boson, our treatment will suffice to introduce the relevant aspects of QCD in
the IR regime. Initial-state radiation in the case of hadronic initial states is discussed
in Section 3.1.4.

We thus consider the process e+ (k2) e− (k1) → q (p1) q̄ (p2), for which diagrams
contributing at the leading and next-to-leading order in QCD are shown in Figure 3.1.
The leading-order matrix element reads

Mqq̄ (Φ2) =
e2Qq δAB

q2
[u (p1) γµv (p2)] [v (k2) γµu (k1)] , (3.6)

2Except those coming from initial-state radiation in hadronic collisions because we cannot sum over degen-
erate states for partons in the proton, see Section 3.1.3 and 3.1.4.

3The PDFs in L could be replaced by delta functions: f
(
xa, µ2

F

)
→ δ (1− xa), and also G (Φn) is zero.
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Figure 3.1: Schematic diagrams for e+ (k2) e− (k1)→ q (p1) q̄ (p2) at LO (a) and at NLO where (b)
and (c) depict the real corrections and (d) shows a virtual correction.

where we defined Φ2 = {q; p1, p2} with q = k1 + k2 = p1 + p2, Qq is the fractional
electric charge of the quarks and δAB ensures that the quark and antiquark have the
same colour. The spin-averaged and colour-summed squared matrix element follows to
be4

Bqq̄ (Φ2) = Nc
1

4
|Mqq̄ (Φ2)|2 = Nc

(
e2Qq

)2 (
1 + cos2 θ

)
, (3.7)

where θ is the centre-of-mass scattering angle of the final-state quark and Nc = 3

denotes the number of colours. Including the flux factor 1/(2ŝ) — where ŝ = q2 —
and integrating over the two-particle phase space dΦ2 (q; p1, p2) = 1/

(
32π2

)
sin θdθdφ

gives the familiar parton-model total cross section for e+e− annihiliation

σqq̄ =
4α2π

3ŝ
NcQ

2
q , (3.8)

with α = e2/(4π) the fine-structure constant.
TheO (αs) correction obtained by attaching a gluon emission with four-momentum k

to either of the final-state quarks, i.e. the process e+ (k2) e− (k1) → q (p1) q̄ (p2) g (k)

for which the diagrams are shown in Figure 3.1 (b) and (c), corresponds to the following
matrix elements

M(1)
qq̄g (Φ3) = gs t

A

[
u (p1) /ε∗

(
/p1

+ /k
)

2p1 · k
γµv (p2)

] (
e2Qq

)2

q2
[v (k2) γµu (k1)] , (3.9)

M(2)
qq̄g (Φ3) = −gs tA

[
u (p1) γµ

(
/p2

+ /k
)

2p2 · k
/ε∗v (p2)

] (
e2Qq

)2

q2
[v (k2) γµu (k1)] , (3.10)

where Φ3 = {q; p1, k, p2} with q = k1 +k2 = p1 +p2 +k and ε is the polarisation vector
of the gluon. Both matrix elements diverge when their propagators go on shell. To
make the soft and collinear singular structures apparent, we write the denominators of
the propagators in (3.9) and (3.10) in terms of the quark energies Ei (i = 1, 2), the
gluon energy ω and the angle θ in the rest-frame of the virtual photon

2pi · k =

{
2E1ω (1− cos θ) , (i = 1)

2E2ω (1 + cos θ) , (i = 2)
. (3.11)

We observe two types of singular limits: the soft-gluon limit ω → 0, where both
propagators diverge, and the collinear limits θ → 0 and θ → π, in which either of
the two propagators diverges. Importantly, the soft and collinear singular regions are
insensitive to the details of the hard process, i.e. they are a general property of QCD
matrix elements.

4Fermion masses are neglected since we are assuming a high-energy process.
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3.1. Perturbative QCD

Soft limit —– The soft limit k � p1,2 (or equivalently ω → 0) is considered only for
gluons since the soft limit for quarks, albeit kinematically possible for massless quarks,
does not result in any divergent contributions. In the soft-gluon limit the real matrix
elements in (3.9) and (3.10) simplify, adding up to

Mqq̄g (Φ3) ==
soft

gs t
A

[
u (p1) γµ

(
p1 · ε∗
p1 · k

− p2 · ε∗
p2 · k

)
v (p2)

]
Lµ , (3.12)

where we made use of the massless Dirac equations u (p1) /p1
= 0 and /p2

v (p2) = 0

and the relation /A/B = 2 (A ·B) − /B /A. We have furthermore introduced Lµ =(
e2Qq

)2
/q2 [v (k2) γµu (k1)] to ease notation. Squaring (3.12) and performing the

colour and polarisation sums results in a real correction which factorises into a Born
piece and an eikonal factor

Rqq̄g (Φ3) ==
soft

Bqq̄ (Φ2)

︸ ︷︷ ︸
Born ME sq.

g2
sCF

2p1 · p2

(p1 · k) (p2 · k)︸ ︷︷ ︸
eikonal factor

,
(3.13)

where CF = 4/3 is the QCD colour factor (see Appendix A). Similarly, the phase space
in this limit splits into a qq̄ piece and a radiation piece

dΦ3 (q; p1, k, p2) ==
soft

dΦ2 (q; p1, p2)× dΦrad (k) , dΦrad (k) =
d3k

(2π)32ω
, (3.14)

which allows one to write the total cross section for e+ (k2) e− (k1)→ q (p1) q̄ (p2) g (k)

in the soft limit as follows

σqq̄g ==
soft

∫
dΦ2Bqq̄ (Φ2)

︸ ︷︷ ︸
σqq̄

×
∫

d3k

(2π)32ω
g2
sCF

2p1 · p2

(p1 · k) (p2 · k)︸ ︷︷ ︸
S

. (3.15)

One observes that in the soft limit the cross section factorises into a hard piece, indi-
cated as σqq̄, and a soft-gluon emission piece, denoted as S. Using (3.11), the latter
boils down to the following structure

S =
2αsCF

π

∫ ∞

0

dω

ω

∫ π

0

dθ

sin θ

∫ 2π

0

dφ

2π
, (3.16)

where αs = g2
s/(4π) and we have included the integration limits in the notation to make

the IR divergences, for ω → 0 (soft) and for θ → 0 and θ → π (collinear), explicit.

Collinear limits —– The limits in which the gluon becomes parallel to either the
quark or the antiquark in the final state, i.e. p1 ‖ k and p2 ‖ k for Figure 3.1 (b)
and (c), respectively, correspond to θ → {0, π}. To study the behavior of the real
matrix element in the case of θ → 0 it will be convenient to use the so-called Sudakov
parameterisation

pµ1 = zpµ + kµ⊥ −
k2
⊥
z

nµ

2p · n , kµ = (1− z) pµ − kµ⊥ −
k2
⊥

1− z
nµ

2p · n , (3.17)

where pµ is a light-like (p2 = 0) momentum that points in the collinear direction, nµ

is an auxiliary light-like vector and kµ⊥ is transverse to both pµ and nµ, i.e. p · k⊥ =
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n·k⊥ = 0. We have furthermore defined the gluon’s energy fraction as z = E1/ (E1 + ω).
The two-particle invariant masses follow to be

2p1 · k = − k2
⊥

z (1− z) , (3.18)

where the collinear limit now corresponds to k⊥ → 0. We insert the parametrisa-
tion (3.17), in which we neglect the terms ∝ k⊥, k

2
⊥ to keep only the most singular

contribution, into the real matrix element given in (3.9), square it and sum over polar-
isations to obtain

Rqq̄g (Φ3) ==
θ→0

Bqq̄ (Φ2)

︸ ︷︷ ︸
Born ME sq.

g2
s

p1 · k
CF

1 + z2

(1− z)︸ ︷︷ ︸
P̂qq(z)

, (3.19)

where Φ3 and Φ2 are given by {q; p1, k, p2} and {q; p1 +k, p2}, respectively, and P̂qq (z)

is the unregularised Altarelli–Parisi splitting function. Of course, in the case where the
gluon is emitted from the outgoing anti-quark, in which the collinear limit corresponds
to θ → π, one obtains an expression that is very similar to (3.19). The phase space in
the collinear limit θ → 0 factorises analogously to the soft case (3.14). In the case of
head-on collisions, i.e. in the frame where also (3.11) is valid we have explicitly that
p1 = (E1, 0, 0, E1), p2 = (E2, 0, 0,−E2) and k = ω (1, sin θ sinφ, sin θ cosφ, cos θ). We
can therefore use k⊥ = |k⊥| = ω sin θ to write the radation phase-space element dΦrad

in terms of {z, k⊥} as follows

dΦrad =
d3k

(2π)32ω
=

1

8π2
dcos θωdω =

1

(4π)2dk
2
⊥

dω√
ω2 − k2

⊥

≈ 1

(4π)2dk
2
⊥
dω

ω

=
1

(4π)2

(
−1

z

)
dz

(1− z)dk
2
⊥ ,

(3.20)

where we assumed the collinear (logarithmic) approximation in which k2
⊥ � ω2. We

add that imposing also the soft limit (z2 → 1) in this case further simplifies the phase-
space element to

dΦrad =
1

(4π)2

dz

(1− z)dk
2
⊥ . (3.21)

Combining (3.18), (3.19) and (3.20) finally allows us to write the total cross section for
the process e+ (k2) e− (k1)→ q (p1) q̄ (p2) g (k) in the collinear limit p1 ‖ k as

σqq̄g ==
θ→0

αs
2π

∫
dk2
⊥

k2
⊥

∫
dzP̂qq (z) ×

∫
dΦ2Bqq̄ (Φ2)

︸ ︷︷ ︸
σqq̄

. (3.22)

We observe that, similar to the soft limit, the cross section factorises into a hard
piece (σqq̄) and a universal piece describing the quark-gluon splitting. The expres-
sion (3.22) contains a collinear divergence at k⊥ → 0 and a soft divergence inside
Pqq (z) for z → 1. However, we know that these divergences should cancel against
those coming from the virtual correction — e.g. Figure 3.1 (d) — when combined in
the total cross section, making it IR safe.
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3.1.3 Infrared safety

Theorems such as the KLN theorem5 state that in a theory with massless fields, suitably
defined inclusive quantities are free of soft and collinear divergences: they cancel when
summing over all degenerate initial and final states. To see this explicitly in the case
of e+e− annihilation, we need to calculate the virtual correction, for which a diagram
is shown in Figure 3.1 (d). We will turn these divergences into something traceable
using dimensional regularisation, where the phase space dΦn is evaluated in d = 4− 2ε

dimensions, i.e.

g2
s

∫
d4k

(2π)4
−→ g2

sµ
2ε

∫
ddk

(2π)d
,

dΦn (q; p1, . . . , pn) −→ (2π)n−d(n−1)δd

(
q −

n∑

i=1

pi

)
n∏

j=1

ddpj δ+

(
p2
j −m2

j

)
,

(3.23)

where µ is the renormalisation scale, which has unit mass and is there to keep the
coupling gs dimensionless for all ε. The calculation of the real and virtual corrections
in dimensional regularisation is straightforward but not very informative, so we simply
give the results [121]

σqq̄g = σqq̄ ×
αs
2π

CF
1

Γ (1− ε)

(
4πµ2

ŝ

)ε [
2

ε2
+

3

ε
+

19

2
− π2 +O (ε)

]
,

σqq̄(g) = σqq̄ ×
αs
2π

CF
1

Γ (1− ε)

(
4πµ2

ŝ

)ε [
− 2

ε2
− 3

ε
− 8 + π2 +O (ε)

]
,

(3.24)

where σqq̄(g) denotes the virtual contribution and the strong coupling αs is understood
to be evaluated at the renormalisation scale µ. The situation where the gluon is both
soft and collinear is captured by the 1/ε2 terms, while the cases where the gluon is
either soft or collinear appear as 1/ε poles. From (3.24) it is evident that the soft and
collinear divergences cancel when combining the real and virtual contributions in the
total NLO cross section, and upon taking the physical limit ε → 0 one obtains the
simple finite result

σqq̄g + σqq̄(g) = σqq̄ ×
(

1 +
αs
π

+O
(
α2
s

))
. (3.25)

In fact, the KLN theorem guarantees a finite result at every order in perturbation
theory. The above result (3.25) can for example be improved to NNLO QCD, by
writing the total hadronic cross section σhad as

σhad = σqq̄ ×
(

1 +
(αs

2π

)
δNLO +

(αs
2π

)2
δNNLO +O

(
α3
s

))
. (3.26)

Here, the NLO and NNLO corrections in the MS scheme6 with renormalisation scale
µ2 = ŝ are given by [122, 123]

δNLO =
3

2
CF ,

δNNLO =
1

4

[
−3

2
C2

F + CFCA

(
123

2
− 44ζ3

)
+ CFTRnf (−22 + 16ζ3)

]
,

(3.27)

5Its quantum-electrodynamics analog is called the Bloch–Nordsieck theorem [120] and dates back to 1937.
6At O

(
α2
s

)
and higher, the coefficients δNnLO (n ≥ 2) generally have a µ2-dependence due to uncanceled

UV divergences, i.e. they are renormalisation-scheme dependent. For the N3LO corrections, see e.g. [122].
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where CA = 3, TR = 1/2, nf denotes the number of light quark flavours and ζ3 is
shorthand notation for the Riemann zeta function ζ (3) ≈ 1.202.

The cancellation of IR divergences in (3.25) and (3.26) can be understood more
intuitively as explained in [124] (page 550). The underlying hard process (e+e− → qq̄)
takes place on very small time scales: the quark-antiquark pair is created in a time
1/
√
ŝ since the virtual photon is off-shell by an amount q2 = ŝ. The collinear gluon

emissions and virtual corrections involving soft gluons on the other hand take place
over a much longer time scale and can therefore not affect the overall probability that a
quark-antiquark pair was produced, but only affect the properties of the final state into
which the qq̄ system will evolve. Therefore, the only perturbative corrections that can
affect the total cross section are those that have large real or virtual gluon momenta
of O

(√
ŝ
)
.

As mentioned in Chapter 2, the measured final state (into which the qq̄ system will
evolve) will consist of hadrons rather than partons. Fully inclusive observables such as
the total cross section unfortunately tell us nothing about the kinematic distribution of
hadrons in the final state. We would therefore like to have a more exclusive description
of the final state, while maintaining IR safety. To this end, let us define more precisely
what is meant by an IR observable. The expectation value of an observable O (Φn)

(recall Φn = {k1, k2; p1, . . . , pn}) at NLO can be written as

〈O〉 =

∫
dΦn

[
B (Φn) + Vb (Φn)

]
O (Φn) +

∫
dΦn+1R (Φn+1)O (Φn+1) , (3.28)

where compared to (3.5) we have set G (Φn) to zero and removed the luminosities L
for simplicity (i.e. we assumed non-hadronic initial states). The observable O is said
to be IR (and collinear) safe if it satisfies the following criteria

lim
pi→0
On+1 (k1, k2; p1, . . . , pi, . . . , pn+1) = On (k1, k2; p1, . . . , pi−1, pi+1, . . . , pn) ,

lim
pi‖pj
On+1 (k1, k2; p1, . . . , pi, pj , . . . , pn+1) = On (k1, k2; p1, . . . , pi + pj , . . . , pn) ,

(3.29)

which mean that the observable should not be changed by the addition of partons in the
final state that go unresolved, i.e. which are either soft or collinear to another parton.
In the context of jets, IR safety corresponds to the jet structure being preserved when
soft or collinear partons are added to the final state. The observable O in (3.29) — in
this context often written as J — is then referred to as the jet or measurement function,
which is defined according to a jet algorithm. The first formulation of hadronic jets
was proposed for e+e− annihilation by Sterman and Weinberg [125], but now jets are
usually defined using either the kT [126, 127] or anti-kT [128] clustering algorithms, the
latter of which is used in Chapter 4. The kT algorithm is briefly discussed in the context
of MiNLO′ in Section 3.4.2. Other examples of IR-safe observables are event-shape
variables such as thrust (T ) or the C-parameter, defined as

T = max
n

(∑
i |pi · n|∑
i |pi|

)
, C =

3

2

(∑
i,j |pi| |pj | sin2 θij
(∑

i |pi|
)2

)
, (3.30)

respectively. Here, pi denotes the three-momentum of particle i and θij denotes the
angle between partons i and j, with the sums running over all particles. After maximi-
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Figure 3.2: Schematic diagrams for the process q (k1) q̄ (k2) → F at LO (a) and at NLO where
(b) – (e) depict real corrections while (f) shows a virtual correction. Consult the main text for further
details.

sation, the unit vector n defines the thrust axis — see e.g. [123] and references therein
for more details on event shapes in e+e− annihilation.

3.1.4 Initial-state radiation

As mentioned before, the case of e+e− annihilation provides a simple example because
no QCD radiation is emitted from the initial-state leptons. Consequently, we only con-
sidered collinear limits between the final-state gluon and (anti-)quark, i.e. situations
where the (q → qg) splitting occurs after the hard process. In this case the corre-
sponding divergences cancel according to the KLN theorem when summing over all
degenerate final states. When dealing with hadronic collisions, initial-state radiation
(ISR) of soft and/or collinear gluons leads to additional divergences that do not (all)
cancel against those coming from the virtual contributions.

To see this explicitly, we consider the production of a colourless n-particle final
state F through quark-antiquark annihilation, i.e. q (k1) q̄ (k2) → F . Diagrams con-
tributing at LO and NLO are shown in Figure 3.2, where we specify neither the final
state F nor the interaction vertex, as indicated by the grey blob. The calculation of
the squared matrix elements, phase spaces and cross sections in the soft and collinear
limits proceeds in a very similar fashion as for e+e− annihilation discussed in the pre-
vious section. Instead of repeating the exercise, we will here discuss the differences
between the IR limits of ISR and final-state radation (FSR). We denote the generic LO
partonic cross section that follows from Figure 3.2 (a) alone as σ̂B. Focusing on the
real correction in Figure 3.2 (b) — the situation for (c) is completely analogous — we
decompose the four-momentum of the gluon as k = (1− z) k1, with z = E1/(E1 + ω).
Crucially, the momentum of the quark entering the hard interaction, i.e. after the split-
ting, is modified to zk1. In the soft limit ω � Ei, (i = 1, 2), the partonic cross section
factorises to

σ̂R (k1, k2) ==
soft

2αsCF

π

∫
dω

ω

∫
dθ

sin θ
× σ̂B (zk1, k2) , (3.31)
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where θ is the angle between the initial-state quark and the gluon. Taking also the
small-angle (collinear) limit, we can rewrite the singular part of (3.31) in terms of z
and k⊥ as follows

2αsCF

π

∫
dω

ω

∫
dθ

sin θ
==
θ�1

=
αsCF

π

∫
dz

1− z

∫
dk2
⊥

k2
⊥
, (3.32)

where the soft and collinear divergences correspond to z → 1 and k⊥ → 0, respectively.
In contrast to the case of FSR, the cancellation of divergences against those coming
from virtual diagrams, such as the one depicted in Figure 3.2 (f), is not complete:

σ̂R + σ̂V =
αsCF

π

∫
dz

1− z

∫
dk2
⊥

k2
⊥

[
σ̂B (zk1, k2)− σ̂B (k1, k2)

]
. (3.33)

We observe that while the soft divergence (z → 1) still cancels, the collinear one (k⊥ →
0) does not, signaling that the implicit assumption of perturbative QCD being valid
down to k⊥ = 0 is not correct. Instead of computing the real and virtual contributions
explicitly in order to cancel the soft divergence, as in (3.33), it will be convenient to
introduce the plus prescription

∫ 1

0

dz [f (z)]+ g (z) =

∫ 1

0

dzf (z) [g (z)− g (1)] . (3.34)

In the collinear limit k ‖ k1, where the partonic cross section factorises similar to (3.22)
as follows

σ̂R+V
qq (k1, k2) ==

k‖k1

αs
2π

∫
dk2
⊥

k2
⊥

∫
dzPqq (z)× σ̂B (zk1, k2) , (3.35)

the soft divergence is regularised via the plus prescription for the splitting function
Pqq (z), defined as

Pqq (z) = CF

[
1 + z2

(1− z)

]

+

= CF

[
1 + z2

(1− z)+

+
3

2
δ (1− z)

]
. (3.36)

For completeness, the explicit expressions for the remaining regularised leading-order
splitting functions are given by [49]

Pqg (z) = TR

[
z2 + (1− z)2

]
,

Pgq (z) = CF

[
1 + (1− z)2

z

]
,

Pgg (z) = 2CA

[
z

(1− z)+

+
1− z
z

+ z (1− z)
]

+ δ (1− z) (11CA − 4nf TR)

6
.

(3.37)

The NLO and NNLO corrections to (3.37) have been calculated in [129, 130] and
[51, 52], respectively. The diagrams in Figure 3.2 (d) and (e), which contain initial-
state splittings of the form g → qq̄, also contribute to the q (k1) q̄ (k2)→ F process at
NLO. Focusing again on the case k ‖ k1 in (d), we have

σ̂R
qg (k1, k2) ==

k‖k1

αs
2π

∫
dk2
⊥

k2
⊥

∫
dzPqg (z)× σ̂B (zk1, k2) , (3.38)
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the difference being that the splitting function Pqg (z), defined in (3.37), does not
contain a divergence at z → 1, which should be the case since there is no virtual
diagram to cancel it. It however still contains a collinear divergence for k⊥ → 0, same
as for (3.35), and these collinear divergences are not cancelled by virtual contributions.

The solution to this problem is based on collinear factorisation, which was already
briefly mentioned in Chapter 2. We recall that the partonic cross section is not observ-
able, but the total hadronic cross section is. The latter can be written as a convolution
of the partonic cross section with the corresponding PDFs. The corresponding intu-
itive picture, called the (naive) parton model, describes the hadron at high energies as
a collection of quasi-free partons (quarks and gluons), which each carry a fraction of
the hadron’s four-momentum. The distribution of the momentum of a hadron H over
its constituent partons i is parametrised by parton distribution functions f (0)

i/H
(xi) that

only depend on the momentum fractions xi. This naive picture holds fairly well for
tree-level processes, but needs some revision when considering perturbative corrections.
In particular, to deal with the aforementioned initial-state collinear divergences, one
introduces an arbitrary factorisation scale µF and redefines the bare PDFs in such a
way that the ensuing cross section is finite.

Working again in dimensional regularisation, we write the collinearly divergent in-
tegrals in (3.35) and (3.38) as follows

∫ ŝ

0

dk2
⊥

k2
⊥
→ − 1

Γ (1− ε)
1

ε

(
4πµ2

ŝ

)ε
= −1

ε
+ γE − ln (4π) + ln

ŝ

µ2
+O (ε) , (3.39)

where the constant terms in the MS scheme are absorbed in the MS scale µ2 →
µ2eγE/ (4π), and we have cut off the integral at ŝ since we are considering the collinear
regions. The collinear divergences, now appearing as 1/ε poles, are absorbed in the
non-perturbative PDFs via a redefinition of their bare quantities. For instance, in the
case of an incoming proton with gluon radiation off one of its constituent quarks, we
have [131]

fq/p
(
x, µ2

F

)
= f

(0)
q/p

(x)

+
αs
2π

∫ 1

x

dz

z
f

(0)
q/p

(z)

[ −1

Γ (1− ε)
1

ε

(
4πµ2

µ2
F

)ε
Pqq

(x
z

)
+ Cqq

(x
z

)]
,

(3.40)

where the coefficient function Cqq (x/z) defines the factorisation scheme, with the com-
mon choice being the MS scheme, in which

CMS
qq (x) = 0 . (3.41)

The evolution of the parton densities with respect to a changing scale µ2 is governed
by the DGLAP equation [48–50], cf. (2.2), which is a matrix in flavour space since the
proton contains both gluons and quarks. Explicitly, we have

d

d lnµ2

(
fq/p

(
x, µ2

)

fg/p
(
x, µ2

)
)

=
αs
(
µ2
)

2π

∑

q,q̄

∫ 1

x

dz

z

(
Pqq
(
x
z

)
Pqg

(
x
z

)

Pgq
(
x
z

)
Pgg

(
x
z

)
)(

fq/p
(
z, µ2

)

fg/p
(
z, µ2

)
)
,

(3.42)
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where the sum runs over 2nf quark and anti-quark flavours. Finally, the above consid-
erations allow us to write the total hadronic cross section up to power corrections of
O (ΛQCD/Q) at NLO as follows

σNLO (K1,K2) =
∑

i,j

∫
dx1fi/p

(
x1, µ

2
F

) ∫
dx2fj/p

(
x2, µ

2
F

)
σ̂NLO
ij (x1K1, x2K2) ,

(3.43)
where Ki are the momenta of the incoming protons — see (3.3) — and the partonic
cross sections read

σ̂NLO
qq (k1, k2) = σ̂B (k1, k2) +

αs
2π

∫
dzPqq (z) ln

ŝ

µ2

[
σ̂B (zk1, k2) + σ̂B (k1, zk2)

]

+Rqq (k1, k2) ,

σ̂NLO
qg (k1, k2) =

αs
2π

∫
dzPqg (z) ln

ŝ

µ2
σ̂B (zk1, k2) +Rqg (k1, k2) ,

(3.44)

where Rqq and Rqg denote the NLO pieces that are finite in the soft and collinear limits.
The partonic cross sections (and hence also the total hadronic cross section) are finite
since all the IR divergences (1/ε poles) are either cancelled or absorbed in the PDFs.
Thus in general, well-defined observables should either be IR (and collinear) safe or
collinearly factorisable.

3.2 Resummation

Fixed-order perturbative calculations of QCD processes in many cases contain loga-
rithmic terms. For instance, we have seen that the partonic cross sections described
in Section 3.1.4 — see (3.44) — contribute terms ∝ ln

(
ŝ/µ2

)
to the total hadronic

cross section at NLO. These terms can potentially spoil the convergence of the per-
turbative expansion when the combination αs ln

(
ŝ/µ2

)
becomes of order one or even

larger. Their effect can however be minimised by choosing µ '
√
ŝ, which in the case

of inclusive observables is sufficient as only logarithms of the form ln
(
ŝ/µ2

)
appear in

their theoretical expressions. However, experimental measurements often probe only a
restricted part of the full phase space, vetoing a significant part of the real emissions
in the soft and collinear regions. As a result, the cancellation between the real and
virtual corrections is only partial since the latter is not subject to the constraint.

Below, we will show in more detail how this incomplete cancellation leads to large
logarithms to accompany each order of αs, but in a nutshell the problem can be under-
stood as follows: vetoing real emissions with transverse momentum above a cutoff kcut

will gives rise to logarithms αs ln2 (µ/kcut). The virtual corrections on the other hand
are not sensitive to the constraint and contain logarithms of the form αs ln2 (Q/µ) with
Q =

√
ŝ the hard scale. Combining the two results in Sudakov logarithms of the form

αs ln2 (Q/kcut), which become problematic when kcut � Q. This observation holds in
general: any observable V sensitive to soft and collinear radiation, measured at some
value v, will involve terms of the type αns Lk with L = ln (Q/v) and k ≤ 2n to all n
orders in the perturbative expansion. Fixed-order perturbative calculations are there-
fore only reliable for inclusive observables or away from the soft and collinear regions
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of phase space. The bulk of events is however typically in the region where v � Q,
where one needs to carry out an all-order re-organisation, or resummation, of these
logarithmically-enhanced terms in order to restore the predictivity of the perturbative
treatment.

3.2.1 Large logarithms

The differential study of many LHC processes beyond the leading order in αs, e.g. Higgs
production or Drell–Yan, is not only of phenomenological importance, but also al-
lows for a more in-depth study of non-trivial aspects of QCD. However, similarly to
case where experimental constraints on emissions in the final state induce large loga-
rithms, differential observables are also plagued by large logarithmic terms when they
are probed at scales that differ significantly from the hard scale Q. To see more pre-
cisely how these logarithms arise, recall that both ISR and FSR of soft-collinear gluons
factorises — cf. (3.15) and (3.16) or (3.31) and (3.32) — resulting in contributions to
the partonic cross section of the form

σ̂R = σ̂B αsCF

π

∫
dω

ω

∫
dk2
⊥

k2
⊥
. (3.45)

Cutting the integration over ω at ω = k⊥ from below and at ω = Q from above
respectively manifests the collinear and soft approximations and allows one to write
the k⊥-differential partonic cross section as follows

dσ̂R

dk2
⊥

= σ̂B αsCF

π

1

k2
⊥

∫ Q

k⊥

dω

ω
= σ̂B αsCF

2π

1

k2
⊥

ln
Q2

k2
⊥
. (3.46)

Including the virtual contribution introduces a plus prescription on the singular part
such that the cumulant Σ̂ (or integrated contribution) is finite,

dσ̂R+V

dk2
⊥

= σ̂B αsCF

2π

[
1

k2
⊥

ln
Q2

k2
⊥

]

+

⇒ Σ̂
(
Q2
)

=
1

σ̂B

∫ Q2

0

dk2
⊥
dσ̂R+V

dk2
⊥

= 1 +O (αs) ,

(3.47)
where the O (αs) part, being free of large logarithms, will be neglected for now. Since
the virtual contribution is concentrated at k2

⊥ = 0, we can decompose the integral as
follows

Σ̂
(
Q2
)

=
1

σ̂B

[∫ p2
T

0

dk2
⊥
dσ̂R+V

dk2
⊥

+

∫ Q2

p2
T

dk2
⊥
dσ̂R

dk2
⊥

]
= Σ̂

(
p2

T

)
+

1

σ̂B

∫ Q2

p2
T

dk2
⊥
dσ̂R

dk2
⊥
,

(3.48)

where pT is the maximally allowed total transverse momentum of the Born final state,
such that

Σ̂
(
p2

T

)
≈ 1− αsCF

2π
ln2 Q

2

p2
T

. (3.49)

The above result is correct in the so-called double leading logarithmic approximation
(DLLA), since we only kept logarithmic terms that scale as αsL2 (with L = lnQ2/p2

T),
which become problematically large when pT � Q. From here, it is straightforward to
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show that in the case of n soft-collinear gluon emissions whose transverse momenta are
strongly ordered, i.e.

k⊥,1 � k⊥,2 � · · · � k⊥,n . pT � Q , (3.50)

we have

Σ̂
(
p2

T

)
=

∞∑

n=0

1

n!

[
−αsCF

2π
ln2 Q

2

p2
T

]n
= exp

[
−αsCF

2π
ln2 Q

2

p2
T

]
, (3.51)

where the factor of 1/n! stems from the fact that gluons are indistinguishable. From
(3.51), one finds the normalised differential cross section with respect to p2

T in the
DLLA as follows

1

σ̂B

dσ̂

dp2
T

=
d

dp2
T

Σ̂
(
p2

T

)
=
αsCF

π

1

p2
T

ln
Q2

p2
T

exp

[
−αsCF

2π
ln2 Q

2

p2
T

]
. (3.52)

Remarkably, the double leading logarithms to all orders in αs have been resummed
in the expression (3.52) by means of exponentiation. The exponent is called the Su-
dakov form factor [132], which encodes the probability of not emitting a gluon with
a transverse momentum larger than pT. Beyond the DDLA, fixed-order perturbative
descriptions of differential distributions in the small-pT regions generally require the
resummation of large logarithms of the form

1

p2
T

αns lnm
Q2

p2
T

with m ≤ 2n− 1 , (3.53)

appearing at every order in αs. The logarithmic accuracy of a resummed prediction
is commonly defined at the level of the logarithm of the cumulative cross section, or,
equivalently, from the argument of the exponent appearing in the Sudakov form factor
in (3.52), where one refers to the dominant terms proportional to αns Ln+1 as leading
logarithms (LL), to terms of the type αns Ln as next-to-leading logarithms (NLL), to
terms of the type αns Ln−1 as next-to-next-to-leading logarithms (NNLL), and so on.

One furthermore observes that the Sudakov form factor forces the cross section to
tend to zero in the pT → 0 limit, which is in fact misleading. A small value for pT

does not imply that all emitted gluons are soft, but merely that the vectorial sum of
their transverse momenta is small. Contributions from multiple soft-gluon emission
with k⊥,i ∼ pT and

∑
i k⊥,i = pT are therefore relevant, but not included in the

unphysically strong Sudakov suppression in (3.52). A more adequate treatment of the
small-pT distribution requires imposing the conservation of transverse momentum in
multiple-gluon emission, which is usually performed in impact-parameter space.

3.2.2 Small-pT resummation in impact-parameter space

It was shown in [133] that the resummation of soft-gluon effects is most naturally
performed using the impact-parameter formalism, which was fully formalised by Collins,
Soper and Sterman [134] in terms of perturbative coefficients. In the b-space method,
one introduces a two-dimensional impact parameter b, which is the Fourier transform
of pT, and imposes momentum conservation on the total transverse momentum of n
soft-gluon emissions as follows

δ2

(
n∑

i=1

k⊥,i − pT

)
=

∫
d2b

(2π)2 e
−ib·pT

n∏

i=1

eib·k⊥,i , (3.54)
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allowing the resummed differential partonic cross section in (3.52) in b-space to be
written as [135–137]

1

σ̂B

dσ̂

dp2
T

' 1

2

∫ ∞

0

bdbJ0 (bpT) exp [−S (b,Q)]

=
d

dp2
T

pT

∫ ∞

0

dbJ1 (bpT) exp [−S (b,Q)] ,

(3.55)

where in the second line we used identity xJ0 (x) = d (xJ1 (x)) /dx relating the Bessel
functions of the first kind. The exponent exp (−S) denotes the Sudakov form factor in
b-space, which will be further discussed below. First, we write the hadronic cumulative
cross section Σ, differential in the Born phase space ΦF, that follows from (3.55) by
including a luminosity factor Lb as follows

dΣ (pT)

dΦF

= pT

∫ ∞

0

dbJ1 (bpT) exp [−S (b,Q)]Lb (b,Q) , (3.56)

where the Sudakov form factor is independent of the specific hard-scattering process,
allowing us to put the derivative with respect to ΦF in the definition of Lb — see (3.61).
The function S (b,Q) has the following integral representation

S (b,Q) =

∫ Q2

b20/b
2

dq2

q2

[
A (αs (q)) ln

Q2

q2
+B (αs (q))

]
, (3.57)

where b0 = 2e−γE and the functions A (αs) and B (αs) can be expanded in a perturba-
tive series, i.e.

A (αs) =

∞∑

i=1

(αs
2π

)i
A(i) , B (αs) =

∞∑

i=1

(αs
2π

)i
B(i) . (3.58)

The first terms in the expansions (3.58) are independent of the specific hard process,
but do depend on the incoming partons. Defining Cq = CF and Cg = CA, the explicit
expressions for A(i) up to i = 3 are given by [138]

A
(1)
q,g = 2Cq,g ,

A
(2)
q,g = 2Cq,g

[
CA

(
67

18
− π2

6

)
− 10

9
TRnf

]
,

A
(3)
q,g = 2Cq,g

{
C2

A

[
245

24
− 67

9

π2

6
+

11

6
ζ3 +

11

5

(
π2

6

)2
]

+ CFnf

[
−55

24
+ 2ζ3

]

+ CAnf

[
−209

108
+

10

9

π2

6
− 7

3
ζ3

]
+ n2

f

[
− 1

27

]}
.

(3.59)

The B(i) terms can be identified with the quark or gluon anomalous dimensions γ(i)
q,g,

and for i = 1 we have

B
(1)
q,g = − 2γ

(1)
q,g =

{
−3CF , (quark)

−4πβ0 , (gluon)
, (3.60)

where β0 is defined in (A.20). Higher-order B(i) terms (i ≥ 2) generally depend on the
hard process — the B(2) terms have for instance been determined for Drell–Yan and
Higgs production in [139, 140].

– 33 –



Chapter 3. Collider phenomenology in the precision era

3.2.3 A prelude to MiNNLOPS

Transverse-momentum resummation plays a central role in the MiNNLOPS method [34,
35], which will be discussed in more detail in Section 3.4.3. The aim of this section
is to connect our discussion of small-pT resummation in b-space to MiNNLOPS, with
an emphasis on the resummation formulae upon which it is built. To this end, we
proceed along the lines of Appendix E of [34] and the result of what follows will serve
as the starting point of our discussion of the MiNNLOPS method in Section 3.4.3.
We note that while the more detailed derivation presented in the main text of [34]
employs transverse-momentum resummation directly in momentum space [141, 142],
the result shown below is equivalent up to the accuracy required by MiNNLOPS, as
also mentioned in Appendix E of said article.

The b-space expression for the hadronic cumulative cross section, differential with
respect the Born phase space, was already derived in the previous section — see (3.56).
Very symbolically, the luminosity factor Lb for MiNNLOPS that up to NNLO includes
the squared hard-virtual matrix elements (H) for the production of F and the con-
volution of the collinear coefficient functions (C) with the PDFs (f) can be written
as7

Lb (b0/b) ∼
∑

a,b

d|MF|2
dΦF

∑

i,j

(
Cia ⊗ fi

)
H̄ (b0/b)

(
Cjb ⊗ fj

)
, (3.61)

withMF denoting the Born matrix element and H̄ being identical to its momentum-
space analog H, defined as

H (Q) = 1 +

(
αs (Q)

2π

)
H(1) +

(
αs (Q)

2π

)2

H(2) , (3.62)

except for an extra term CF16/3πβ0ζ3 present in the H(2) terms of the latter —
see [142] for more details. We have furthermore used shorthand notation for the convo-
lution between two functions, defined as (f⊗g)(z) =

∫ 1
z dx/xf(x)g(z/x). A systematic

expansion of (3.57) — see e.g. [143] — in the notation of [34] is given by

S (b0/b) = −Lg1 (λb)− g2 (λb)−
αs
π
g3 (λb) , (3.63)

where L = ln (Qb/b0), λb = αs (Q) β0L and

g3 = g3 +
2ζ3

(
A(1)

)2

2πβ0

λb
1− 2λb

. (3.64)

The coefficient functions g1, g2 and g3, which are equivalent in momentum space and

7A more detailed and correct definition of the luminosity factor, squared hard-virtual matrix elements and
collinear coefficient functions will be given in Section 3.4.3.
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impact-parameter space, are given by8

g1 (λ) =
A(1)

πβ0

2λ+ ln (1− 2λ)

2λ
,

g2 (λ) =
1

2πβ0
ln (1− 2λ)B(1) − A(2)

4π2β2
0

2λ+ (1− 2λ) ln (1− 2λ)

1− 2λ

−A(1) β1

4πβ3
0

ln (1− 2λ) ((2λ− 1)− 2)− 4λ

1− 2λ
,

g3 (λ) =B(1) β1

2β2
0

2λ+ ln (1− 2λ)

1− 2λ
− 1

2πβ0

λ

1− 2λ
B̃(2) − A(3)

4π2β2
0

λ2

(1− 2λ)2

+A(2) β1

4πβ3
0

2λ (3λ− 1) + (4λ− 1) ln (1− 2λ)

(1− 2λ)2

+A(1)

(
λ
(
β0β2 (1− 3λ) + β2

1λ
)

β4
0 (1− 2λ)2

+
(1− 2λ) ln (1− 2λ)

(
β0β2 (1− 2λ) + 2β2

1λ
)

2β4
0 (1− 2λ)2

+
β2

1

4β4
0

(1− 4λ) ln2 (1− 2λ)

(1− 2λ)2

)
,

(3.65)

where
B̃(2) = B(2) + 2ζ3

(
A(1)

)2
+ 2πβ0H

(1) , (3.66)

is indeed process-dependent and the other coefficients A(i) and B(i) have been given
in (3.59) and (3.60). With the above definitions at hand, one could show that the
integrand in (3.56) can be expanded around b = b0/pT to obtain [34, 144]

dΣ (pT)

dΦF

≈ e−S(pT)

{
L (pT)

(
1− ζ3

4
S′′ (pT)S′ (pT) +

ζ3

12
S′′′ (pT)

)

− ζ3

4

αs (pT)

π
S′′ (pT)P ⊗ L (pT)

}
+O

(
α3
s (Q)

)
,

(3.67)

where P denotes the regularised splitting function. The above result is accurate at
O
(
α2
s

)
up to sub-leading logarithms (i.e. terms beyond NNLL). The terms proportional

to S′′ and S′′′ can be absorbed into the resummation coefficients by making the following
substitutions [34]

B(2) → B̃(2) ,

H(2) → H̃(2) = H(2) + 2ζ3A
(1)B(1) ,

C(2) (z)→ C̃(2) (z) = C(2) (z)− 2ζ3A
(1)P (0) (z) .

(3.68)

and by using

S′′′ (pT) = 32A(1)πβ0

(αs
2π

)2
+O

(
α3
s

)
, (3.69)

8The explicit expressions for the coefficients of the QCD β function are given in (A.20).
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in combination with the replacement

H̄(2) → H(2) = H̄(2) +
8

3
ζ3A

(1)πβ0 . (3.70)

The above considerations finally allow one to write the differential cross section in pT

and ΦF compactly as

dΣ (pT)

dΦFdpT
=

d

dpT

{
e−S(pT)L (pT)

}
+Rf (pT) +O

(
α3
s

)
, (3.71)

where Rf contains terms that are not singular in the pT → 0 limit. The above re-
sult (3.71) is the starting point for a derivation of the central ingredient of MiNNLOPS,
the B̄ function — see Section 3.4.3. As we will see, the MiNNLOPS B̄ function gener-
ates the first radiation, while the generation of the second radiation is done according
to the Powheg method discussed in Section 3.4.1. The remaining emissions are sub-
sequently generated in a parton shower simulation, which is the subject of the next
section.

3.3 Parton shower simulations

The analytic resummation techniques discussed in the previous section are crucial for
an accurate description of spectra in regions dominated by soft and collinear QCD
radiation. While for specific processes and observables analytic resummation calcu-
lations are available (NLL for most; up to N3LL in some cases), a generic way of
achieving resummation for any observable, at least at LL accuracy, is extremely desir-
able from a collider-phenomenology point of view. This is achieved by dedicated parton
shower algorithms embedded in event-generator frameworks such as Pythia [145, 146],
Herwig [147, 148] and Sherpa [149, 150]. The aim of a PS algorithm is, as already
mentioned in Chapter 2, to connect the perturbative and non-perturbative descriptions
of hadronic collisions, thereby enabling a PS MC generator to simulate hadron-level
events, which is crucial for comparison to experiment.

The starting point of any PS algorithm is the probability for a parton to split (or
branch) into further partons. Figure 3.3 shows, schematically, the branching of a parton
a into partons b and c, where a is either incoming (a) or outgoing (b) with respect to the
hard process, described byMn. While Figure 3.3 shows specifically a g → qq̄ splitting,
the discussion here applies to any QCD splitting. Furthermore, θ denotes the angle
between partons b and c andMn+1 is the matrix element describing the hard reaction
and parton branching combined. In the collinear region, it is convenient to parametrise
the phase space Φrad in terms of a hardness scale t, the energy fraction z of the emitter
after the emission, and the azimuthal angle φ of splitting, which is averaged over. The
differential branching probability for Figure 3.3 (b) in this region is given by9

dPFSR
a→bc (Φrad)→ dPFSR

a→bc (t, z) =
dt

t

αs(t)

2π
dzP̂a→bc (z) , (3.72)

where P̂ denotes the unregularised splitting function. The scale t, generally used as
the ordering variable of the shower, is a key distinguishing feature of different parton

9One can easily derive it from the QCD Feynman rules — e.g. Figure A.1 in Appendix A — and by averaging
over quark helicities and/or gluon polarisations. See for instance [122].

– 36 –



3.3. Parton shower simulations
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Figure 3.3: Parton branching of (a) incoming and (b) outgoing partons, in the case of a g → qq̄
splitting. See the main text for further explanations.

showers — it may for instance be chosen as the virtuality (early versions of Pythia,
Sherpa), the energy-weighted emission angle (Herwig) or the transverse momentum
(newer versions of Pythia, Sherpa), provided the correct corresponding splitting ker-
nels are employed. In the case of g → gg and q → qg splittings, the soft divergence
(z → 1) was previously regularised via the plus prescription for the corresponding
splitting function, cf. (3.36) and (3.37). In the parton-shower approach, instead, the
splitting function is kept unregularised and the soft integral is performed over the
kinematically allowed range of z, i.e.

dPFSR
a→bc (t) =

dt

t

αs(t)

2π

∫ zmax(t)

zmin(t)

dzP̂a→bc (z) . (3.73)

At this point, unitarity would be violated as we have effectively removed all unresolved
splittings and virtual corrections. The solution is to include a probability not to branch,
which in the infinitesimal step dt should naturally be 1 − dPFSR

a (t). In the case of
multiple branchings between an initial scale t1 and a final lower scale t2, this amounts
to the following Sudakov form factor.

∆FSR
a→bc(t1, t2) = exp

(
−
∫ t1

t2

dPFSR
a→bc (t)

)
. (3.74)

With each branching the scale is evolved downwards, creating a cascade of partons that
evolves forwards in physical time. This so-called forward evolution is the basis of FSR
algorithms, but in the case of ISR (i.e. Figure 3.3 (a)), the progression from high to
low scales corresponds to a backward evolution in time. A crucial feature of backwards
evolution in the case of ISR is that it solves the issue of matching the kinematics of the
initial-state partons and the hard process. First, the PDFs are evolved to the hard scale
using the DGLAP equations (2.2). Subsequently, the incoming showers are constructed
backwards in time with a branching probability at each step given by

dP ISR
b/a (t, x) =

dt

t

αs(t)

2π

∫ zmax(t)

zmin(t)

dzP̂b/a (z)
fa (x/z, t)

zfb (x, t)
, (3.75)

with z = x/x′ defined as the ratio of momentum fractions x(′). The corresponding
Sudakov form factor is similar to (3.74).
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The interpretation of Sudakov form factors in terms of naive parton-branching prob-
abilities allows one to construct a probabilistic PS algorithm suitable for computer im-
plementation. In a nutshell, starting from (3.74) with an initial scale Q, the first and
second emissions are found by solving the equations10

∆ (Q, t1) = R1 , ∆ (t1, t2) =
∆ (t1, Q)

∆ (t2, Q)
= R2 , . . . , (3.76)

where we eased notation by dropping the label ‘FSR’ for timelike branching and the
sum over all possible parton splittings a → bc is implicit. Furthermore, Ri denote
pseudorandom numbers distributed uniformly on the interval [0, 1]. This process is
repeated until the scale falls below an IR cutoff scale Q0 of around 1 GeV.11 Below this
scale one enters the non-perturbative regime and one has to revert to hadronisation
models. The result of the PS approach is a Markov chain of parton emissions, i.e. a
parton cascade or shower, embedded in a an event generator that generates multiple
emissions using the MC method. More detailed discussions of the MC implementation
of PS algorithms are for instance given in [53, 122, 138, 145, 151, 152].

We add that while the above branching formalism takes collinear enhancements
into account to all orders in perturbation theory, enhancements due to coherent soft-
gluon emission should be incorporated as well in order to obtain a realistic picture.
This leads to an ordering of successive parton emissions in terms of decreasing angles,
called angular ordering. Shower algorithms using either emission angle (θ) or transverse
momentum (pT) as an ordering variable exhibit the correct angular-ordered behavior
without any additional requirements on the allowed emissions [145, 153].

In order to arrive at a formula for the SMC cross section, we first define the combined
splitting kernels and Sudakov form factors for emissions off an n-body state as Kn (Φrad)

and ∆n (t1, t2), respectively, which in the case of splittings as described in (3.72) would
amount to

Kn (Φrad) dΦrad =
∑

{a;b,c}∈n

dPFSR
a→bc ,

∆n (t1, t2) =
∏

{a;b,c}∈n

∆FSR
a→bc (t1, t2) .

(3.77)

This yields the radiation pattern up to the first emission, given by the SMC, as

dσSMC (ΦFJ) = dΦFB (ΦF)

{
∆n (Q,Q0) +

∫ Q

Q0

dΦradKn (Φrad) ∆n (Q, t)

}
, (3.78)

where we have included the luminosity factor in the definition of the Born contribution,
i.e. B (ΦF) = L (ΦF)B (ΦF), to ease notation. Subsequent radiation is modeled by
iterating the terms in the curly brackets in an appropriate fashion.

The PS method, as described above, provides only an approximation of the higher-
order real corrections in soft and collinear approximations, and estimates the contribu-
tions from higher-order virtual corrections through unitarity conditions. As a result,

10The Sudakov form factors in (3.76) contain integrated splitting kernels, which are often not known analyt-
ically. The PS therefore solves these equations numerically using the the so-called (Sudakov) veto algorithm —
consult e.g. [145] for more details.

11Typically of a few ΛQCD, for instance in Chapter 4 a cutoff of 0.89 GeV is used.
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the parton shower by construction fails to account for any higher-order effects impacting
on the total cross section, and is typically not suited to describe the more complicated
pattern of hard emissions. Hence, these regions are best described in fixed-order per-
turbation theory including the full matrix elements. However, the PS does provide a
much better description of emissions in the soft and collinear regions of phase space,
by resumming the associated large logarithms via its Sudakov form factor. Logically,
a lot of ongoing work aims to combine the best of both worlds, by matching the best-
available fixed-order calculations with the all-order resummation of the PS, embedded
in MC event generators. However, some intricacies arise when attempting to match
fixed-order perturbative calculations beyond the leading order in QCD with the all-
order PS approach, and some of the frameworks developed for precisely that purpose
are discussed in the coming sections.

3.4 Matching and merging

Because of their flexibility in generating exclusive event samples, parton-shower MC
(SMC) event generators have become invaluable for both theorists and experimentalists.
In their simplest form, SMCs start from a LO description of the hard process, and
subsequently dress the hard partons with soft-collinear radiation as simulated by the
PS (i.e. LO+PS). Over the last two decades, the central goal in the development of
SMCs has been to improve upon this simple picture. The first advancements were made
in the direction of merging LO multi-jet matrix elements of different jet multiplicities
with a PS, including pioneering work by groups such as Catani, Krauss, Kuhn and
Webber (CKKW) [154] — for a detailed comparison of different LO merging schemes,
see e.g. [155].

Whilst describing experimental data acceptably well, the LO multi-jet merging ap-
proach can never reach formal NLO accuracy since it does not include virtual correc-
tions. Full NLO QCD computations are however known to perform better at describing
hard emissions and total emission rates compared to LO SMCs. Therefore, methods
that aim to match full NLO QCD matrix elements to a PS appeared shortly after,
with the foremost examples being the MC@NLO method, developed in [54–56], and
the Powheg method [32, 33]. The goal of any NLO+PS approach is to achieve NLO
accuracy for inclusive observables, such as the total emission rate, while maintaining
the (leading) logarithmic accuracy of the PS. This demands that the hardest emission
is generated exactly, such that it exhibits the correct behavior also away from the soft
and collinear regions, while integrated quantities maintain NLO accuracy also in the
soft and collinear regions. Naturally, the next step forward was to merge NLO+PS
matched simulations for multi-jet cross sections — see e.g. [53] and references therein.
A generalisation of the CKKW method to NLO, MiNLO, was proposed in [57] in order
to obtain good scale choices in an NLO multi-jet computation a priori. MiNLO was
later improved to MiNLO′ [58, 59], achieving NLO accuracy for both F and FJ, where
F is a colour-singlet final state and J denotes one jet.

However, in some cases where the NLO corrections are still large, as is for example
the case in Higgs-boson production, the inclusion of the full NNLO QCD corrections is
mandatory for an accurate description of events and reliable scale uncertainties. More-
over, the impressively small uncertainties on the experimental side, which for most LHC
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F FJ FJJ F(≥3J)

Powheg NLO LO PS PS

MiNLO′ NLO NLO LO PS

MiNNLOPS NNLO NLO LO PS

Table 3.1: Formal accuracies for the inclusive production of a system F of colour-singlet particles in
association with a (non-)zero number of jets J, achieved by the matching frameworks MiNLO′ and
MiNNLOPS, compared to a NLO+PS F+0-jet implementation in Powheg.

production processes today are at the order of a few percent [156],12 further motivate
the construction of event generators in which NNLO QCD computations are matched
to a PS. As mentioned in Chapter 2, the first NNLO+PS method achieved NNLO
QCD accuracy through a reweighting of MiNLO′ events [59, 99–102]. Since then, three
more NNLO+PS methods have been proposed: the UNNLOPS method [157, 158], the
Geneva method [105, 106],13 and the MiNNLOPS method [34, 35, 114]. The latter
is used in the next Chapter to obtain NNLO+PS accurate results for ZZ production,
and combined with a NLO+PS implementation of the loop-induced ggF contribution
within the Powheg framework. Therefore, we first discuss the Powheg method in
the section hereafter, before turning our attention to MiNLO(′) and MiNNLOPS in
Sections 3.4.2 and 3.4.3, respectively. A brief comparison of the accuracies reached by
these methods for different jet multiplicities is provided in Table 3.1.

3.4.1 The Powheg method

The challenge of matching full NLO matrix elements to parton showers is essentially
that of avoiding double-counting real emissions, as the shower approximates them al-
ready. Here, we introduce a solution to this issue as provided by the Powheg (Positive
Weight Hardest Emission Generator) method, proposed in [32]. We aim to provide a
synoptic explanation of the method, and refer the reader to [33] for a detailed and
comprehensive review. The general strategy is, as the name suggests, to generate the
hardest (e.g. highest pT) emission first, before feeding the event to a SMC generator
to generate subsequent softer radiation. To this end, a crucial role is played by the
ordering variable for the shower. Transverse-momentum ordered showers always gen-
erate the hardest emission first, which Powheg then replaces with the exact result.
For showers ordered in the emission angle, this is not always the case and one needs to
revert to so-called truncated showers to restore soft coherence. Below, we discuss the
general formalism of Powheg.

We start with the SMC approximation of the cross section for the production of a
colourless final state F, up to the first emission, given in (3.78) and write the corre-

12These uncertainties are expected to improve further in the coming years, especially after the high-luminosity
upgrade of the LHC.

13Recently, the Geneva method was reformulated using the transverse momentum of the colour singlet rather
than the jettiness variable and applied to Drell-Yan [113].
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sponding expression for the expectation value of an IR-safe observable as

〈O〉SMC =

∫
dΦFB (ΦF)

{
∆n (Q,Q0)O (ΦF)

+

∫ Q

Q0

dΦradKn (Φrad) ∆n (Q, t)O (ΦF,Φrad)

}
,

(3.79)

which, after expanding the expression up to αs, reads

〈O〉SMC =

∫
dΦFB (ΦF)

{
O (ΦF)

+

∫
dΦradKn (Φrad)

[
O (ΦF,Φrad)−O (ΦF)

]
+O

(
α2
s

)
}
,

(3.80)

where the integration limits {Q0, Q} are omitted for clarity. The full NLO QCD ana-
log14 can be written as

〈O〉 =

∫
dΦF

[
B (ΦF) + Vb (ΦF)

]
O (ΦF) +

∫
dΦFJR (ΦFJ)O (ΦFJ) , (3.81)

where we used the subscript b to indicate that V is IR divergent (but UV finite) and
similar to the Born case we have included the luminosity factors for the real and virtual
corrections also in the definition of the corresponding contributions, i.e. R (ΦFJ) =

L (ΦFJ)R (ΦFJ) and Vb (ΦF) = L (ΦF)Vb (ΦF), to ease notation. The IR divergences
from the real and virtual contributions in (3.81) cancel upon integration when combined
in inclusive observables. However, from a numerical point of view it is preferable to
cancel them prior to integration. The subtraction method is one way to achieve this.
In the subtraction method, one parametrises the full real-emission phase space ΦFJ,
similarly the SMC case, in terms of the underlying Born (ΦF) and radiation (Φrad)
phase spaces. Here we will simply assume the mapping

{ΦFJ} ⇒ {ΦF,Φrad} . (3.82)

One furthermore includes a set of real counterterms C (ΦF,Φrad), and reorganises the
integrals in (3.81) into the form

〈O〉 =

∫
dΦF

[
B (ΦF) + V (ΦF)

]
O (ΦF)

+

∫
dΦFdΦrad

[
R (ΦF,Φrad)O (ΦF,Φrad)− C (ΦF,Φrad)O (ΦF)

]
,

(3.83)

where
V (ΦF) = Vb (ΦF) +

∫
dΦradC (ΦF,Φrad) . (3.84)

By a suitable choice of the counterterms C (ΦF,Φrad), the integral of the radiation
variables in V (ΦF) can be performed analytically. A detailed discussion of subtraction
schemes such as Frixione, Kunszt and Signer (FKS) subtraction [159, 160] and Catani

14Here we neglect the counterterms G (ΦF) associated with initial-state collinear singularities to keep the
discussion illustrative, see [33] for the more detailed expressions.
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and Seymour (CS) subtraction [161], in the context of Powheg, is given in [33]. Fur-
thermore, in (3.83) the soft and collinear divergences in R (ΦF,Φrad) cancel because in
the soft or collinear limit O (ΦF,Φrad) = O (ΦF) (IR safety), and C (ΦF,Φrad) has the
same singularity structure as R (ΦF,Φrad).

The characteristic step of Powheg is then to define the function

B̄pwg (ΦF) = B (ΦF) + V (ΦF) +

∫
dΦrad

[
R (ΦF,Φrad)− C (ΦF,Φrad)

]
, (3.85)

which can be viewed as describing the Born-level configurations, modified by a local
K-factor, defined as R (ΦF,Φrad) /B (ΦF). One furthermore introduces the Powheg
Sudakov form factor

∆pwg (ΦF, pT) = exp

[
−
∫
dΦrad

R (ΦF,Φrad)

B (ΦF)
θ
(
kT (ΦF,Φrad)− pT

)]
, (3.86)

where kT (ΦF,Φrad) describes the transverse momentum of the emitted particle. The
expected value of O in (3.83), which is accurate at the NLO in QCD, upon using the
definition of B̄pwg (ΦF) in (3.85), takes the form

〈O〉 =

∫
dΦFB̄pwg (ΦF)O (ΦF)

+

∫
dΦFdΦradR (ΦF,Φrad)

[
O (ΦF,Φrad)−O (ΦF)

]
.

(3.87)

By comparing (3.87) to the SMC approximation (3.80), one observes that NLO ac-
curacy is achieved (schematically) via the replacements B (ΦF) → B̄pwg (ΦF) and
B (ΦF)Kn (Φrad) → R (ΦF,Φrad). Therefore, by combining the B̄pwg (ΦF) terms in
(3.85) with the first-order correct SMC radiation pattern (3.80), one obtains a simu-
lation which is correct to the first order in αs for both the inclusive cross section and
for the emission of the hardest parton. The corresponding Powheg differential cross
section for the generation of the hardest event is then given by

dσ = dΦFB̄pwg (ΦF)

{
∆pwg (ΦF, p

min
T ) + ∆pwg (ΦF, kT)

R (ΦF,Φrad)

B (ΦF)
dΦrad

}
, (3.88)

where we have dropped the argument (ΦF,Φrad) of kT for brevity. The cross section
(3.88) has the following properties [33]:

3 At large kT it coincides with the exact NLO cross section up to NNLO terms.

3 It reproduces NLO-accurate expectation values of IR-safe observables and thus
also its integral around the small kT region has NLO accuracy.

3 At small kT it performs as good as SMC generators, meaning it preserves the
(leading) logarithmic accuracy of the PS.

Finally, the Powheg result for the all-order emission probability follows to be

〈O〉pwg =

∫
dΦFB̄pwg (ΦF)

{
∆pwg (ΦF, p

min
T )O (ΦF)

+

∫
dΦrad∆pwg (ΦF, kT)

R (ΦF,Φrad)

B (ΦF)
θ
(
kT − pmin

T

)
O (ΦF,Φrad)

}
.

(3.89)
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We add that the discussion presented here is a simplified explanation of the Powheg
method. In particular, one should keep track of different flavour structures, which
always give rise to different events, and one generally distinguishes between contribu-
tions to the real cross section that are either singular or finite in the small-pT region,
i.e. R (ΦF,Φrad) = Rs (ΦF,Φrad) + Rf (ΦF,Φrad). The first point could be addressed
by including a sum over the different Born flavour structures, while the second issue
is solved by replacing R (ΦF,Φrad) by Rs (ΦF,Φrad) everywhere in (3.89) and adding a
term

∫
dΦFJRf (ΦFJ) to it. The expression corresponding to (3.89) in full generality is

given in equation (4.20) of [33].

3.4.2 MiNLO and MiNLO′

While Powheg provides a general formalism for matching NLO matrix elements to
a PS based on the subtraction method, attempts to merge LO multi-jet matrix ele-
ments to parton showers generally rely on phase-space slicing methods. Essentially,
the underlying idea of such merging methods is to decompose the emission phase space
into a hard regime and a soft regime, which are associated with the production of a
hard jet and its evolution, respectively. The hard regime is described by the full ma-
trix elements, while the soft regime is left to the PS and the separation between the
two is parametrised by a jet resolution criterion Qcut, which is typically related to the
transverse momentum. Naively, one could think that from a formal-accuracy point of
view it is desirable to choose Qcut as low as possible, i.e. near the cutoff scale of the PS
(around 1 GeV). However, as we have seen before, this could induce large logarithms of
the form lnQ/Qcut with Q the hard scale. Therefore, an adequate procedure for choos-
ing the unphysical scales — as we will see, the renormalisation and factorisation scales
are closely related — is crucial in multi-jet calculations. At LO, the CKKW method
provides such a procedure for obtaining good scale choices a priori, where Qcut is indeed
chosen as the kT-jet measure from the kT (or Durham) jet algorithm [126, 127].

The MiNLO method, proposed in [57], can most easily be understood as the NLO
extension of the CKKW procedure, including Sudakov weights to suppress large loga-
rithms. It is therefore particularly useful in the context of interfacing NLO calculations
to a PS, for example in the context of Powheg, leading to a considerable improve-
ment in reliability near the Sudakov regions. Thus, using Powheg in combination
with MiNLO extends the validity of an NLO computation with jets in the final state
in regions where jets become unresolved. The formal accuracy of MiNLO was fur-
ther investigated in [58], finding that by including also the NNLL coefficients in the
resummation formula, formal NLO accuracy both for F and FJ is achieved simulta-
neously, a method which was dubbed MiNLO′. Moreover, the authors found that
via a simple reweighting procedure, an NNLO+PS generator can be constructed from
MiNLO′, constituting the first of its kind. This set the stage for the development of
the MiNNLOPS method, which will be discussed in detail in the next section.

The general idea of MiNLO is thus to adopt the CKKW formalism to NLO to obtain
good scale choices a priori in a multi-jet NLO computation. The MiNLO procedure
for the production of a generic colourless final state F in association with n jets is
characterised by the following steps [57, 154]:

n Use the kT-clustering algorithm to reconstruct the most-likely branch-
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ing history. One defines a test variable yĩj = 2min
{
E2
i , E

2
j

}
(1− cos θij) /Q

2,
where Ei(j) is the energy of the particle i(j), θij the angle between the momenta of
objects i and j, and Q the hard scale. The test variable yĩj is then compared to the
jet resolution variable ycut to determine wether i and j are resolved (yĩj > ycut) or
not resolved (yĩj < ycut). In the latter case, the pair is clustered with a combined
four-momentum of pĩj = pi + pj , provided the clustering is consistent with the
flavour structure. This process is repeated recursively until the minimum value is
above ycut, creating a tree-like branching (or fake parton-shower emission) history.
The remaining system of particles is called the primary system, to which the scale
Q is assigned.

n At each splitting, evaluate αs at the nodal scale (local pT) of the split-
ting. During the clustering of the event, the respective flavours and momenta
define a splitting kernel and the corresponding kinematics at each vertex, or node,
i (i = 1, . . . , n) within the branching history, from which the nodal scales qi are
determined, which are identified with the local relative transverse momentum
value (pT,i) at which the clustering has taken place. The branching history thus
leads to a sequence of scales, q1 < q2 < . . . < qn−1 < qn. The strong cou-
plings associated with each node are evaluated at the corresponding nodal scale,
i.e. αs (µi) = αs (KRqi), where KR is a normalisation factor that can be used to
probe scale variations. One furthermore sets q1 = Qcut.

n Set µR in the virtual corrections to the geometric average of the nodal
scales and µF to the softest scale. We have n strong coupling constants
evaluated at different nodal scales, and m couplings associated with the primary
system, which are evaluated at µQ = KRQ. The µR-dependence of the virtual
corrections is then chosen as the geometrical average µ̄R = [(µQ)m

∏n
i=1 µi]

1
m+n .

The factorization scale µF is assigned the scale KFq1, where KF is a normalisation
factor for the factorization scale.

n Include Sudakov form factors for Born and virtual terms, and for real
terms after first branching. For each internal line within the branching history
one includes a Sudakov weight, which is given by ∆ (Qcut, qi) /∆ (Qcut, qj) between
nodes i and j, where qj < qi and the Sudakov form factor is defined in (3.90).
External lines that join at the first node, i.e. at scale q1, will be associated with
a Sudakov factor of ∆ (Qcut, q1) = 1 since q1 = Qcut.

n Subtract the NLO bit that resides in the CKKW Sudakov of the Born.
The Sudakov form factors included in the previous step induce higher-order effects,
of which some are already accounted for by the NLO calculation. They should
therefore be compensated for to avoid double-counting. This is done by modifying
the Born term by a factor which subtracts the first order in the αs-expansion of
the analytic Sudakov form factors. The explicit form of this factor can be read
off from (3.92).

The scale choices are now connected with the inclusion of Sudakov form factors, ob-
taining smooth CKKW behavior in the singular regions for processes with multiple
scales — hence the name Multi-scale Improved NLO. The MiNLO(′) Sudakov form
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factor is defined as
∆ (pT, Q) = exp

[
−S̃ (pT, Q)

]
, (3.90)

with

S̃ (pT, Q) ≡ S̃ (pT) = 2

∫ Q

pT

dq

q

[
A
(
αs (q)

)
ln
Q2

q2
+B

(
αs (q)

)]
. (3.91)

The functions A and B have a perturbative expansion in terms of constant coefficients,
as shown in (3.58), with the explicit expressions for the coefficients A(1−3) and B(1)

given in (3.59) and (3.60), respectively. The expansion of the Sudakov form factor to
the first order in αs is given by

∆ (pT, Q) = 1 + ∆(1) (pT, Q) +O
(
α2
s

)

= 1− αs (pT)

2π

(
1

2
A(1) ln2 Q

2

p2
T

+B(1) ln
Q2

p2
T

)

︸ ︷︷ ︸
≡[S̃(pT)]

(1)

+O
(
α2
s

)
. (3.92)

In MiNLO, only the coefficients A(1), A(2), and B(1) are used in the expansion of
the Sudakov form factor. However, by a careful investigation of the accuracy of the
procedure, the authors of [58] found that by including the B(2) coefficient and setting
the scale of the power of αs entering the virtual corrections (µ̄R), ∆(1) and the real
corrections equal to pT, spurious α3/2

s terms are avoided and full NLO accuracy is
maintained also for the F+0-jet configuration.

In practice, the improvement that MiNLO′ provides in the context of Powheg
could be summarised by considering the B̄ function of the latter — cf. (3.85) — for a
colourless final state F in association with one jet J,

B̄pwg (ΦFJ) =
αs (µR)

2π

{
B (ΦFJ)+

αs
2π

[
V (ΦFJ, µR) +

∫
dΦradR (ΦFJ,Φrad)

]}
, (3.93)

where the subtraction terms are not written explicitly, and modifying it in the following
way

B̄MiNLO′ (ΦFJ) =
αs (pT)

2π

{
e−S̃(pT)

[
B (ΦFJ)

(
1 +

αs (pT)

2π

[
S̃ (pT)

](1)
)

+
αs
2π
V (ΦFJ, µ̄R)

]
+
αs
2π

∫
dΦradR (ΦFJ,Φrad) e−S̃(pT)

}
,

(3.94)

where µ̄R = µF = pT and the strong couplings multiplying the real and virtual correc-
tions are also evaluated at pT, with pT being the transverse momentum of F. Below,
we will absorb the powers of αs that appear in (3.94) into the contributions B, V and
R for brevity, after which B̄MiNLO′ takes the simple form

B̄MiNLO′ (ΦFJ) = e−S̃(pT)

[
B (ΦFJ)

(
1 +

αs (pT)

2π

[
S̃ (pT)

](1)
)

+ V (ΦFJ)

]

+

∫
dΦradR (ΦFJ,Φrad) e−S̃(pT) .

(3.95)
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Finally, the MiNLO′ formula for an arbitrary IR-safe observable O, embedded in the
Powheg method follows to be [34]

〈O〉MiNLO′ =

∫
dΦFJ

∫
dΦradB̄MiNLO′ (ΦFJ)

[
∆pwg (ΦFJ, p

min
T )O (ΦFJ)

+ ∆pwg (ΦFJ, kT)
R (ΦFJ,Φrad)

B (ΦFJ)
O (ΦFJ,Φrad)

]
,

(3.96)

where we have omitted the factor θ
(
kT−pmin

T

)
to ease notation and kT now corresponds

to the transverse momentum of the secondary emission, associated with the radiation
phase space Φrad. It will be convenient to expand (3.96) in αs, which yields

〈O〉MiNLO′ =

∫
dΦFJ

{
e−S̃(pT)

[
B (ΦFJ)

(
1 +

αs (pT)

2π

[
S̃ (pT)

](1)
)

+ V (ΦFJ)

]

+

∫
dΦrade

−S̃(pT)R (ΦFJ,Φrad)O (ΦFJ,Φrad)

}
+O

(
α3
s

)
,

(3.97)

up to terms that are of N3LO. We emphasize that the result of the MiNLO′ procedure,
i.e. the merging of F and FJ, is achieved without introducing an unphysical merging
scale ad hoc — such a scale formally spoils the NLO accuracy of merged samples in some
regions of phase space [162]. It was further argued in [58] that it is not only possible to
improve MiNLO′ to higher jet multiplicities,15 but that it can also straightforwardly
be turned into an NNLO+PS generator through a reweighting procedure. However,
this constitutes a multi-dimensional reweighting in the Born phase space which is nu-
merically highly demanding, especially for more complicated processes or when aiming
for high precision. Therefore, already from a computational point of view, it is highly
desirable to construct a NNLO+PS generator that includes the NNLO QCD correc-
tions directly during event generation. In the next section, we discuss the method that
addresses this issue called MiNNLOPS.

3.4.3 The MiNNLOPS method

In this section, we discuss the method already anticipated in Section 3.2.3 and the
previous section: MiNNLOPS. The MiNNLOPS method is designed for the matching
of NNLO QCD calculations to a PS without any computationally intensive reweighting
procedure. It has been formulated in [34], optimised for 2→ 1 processes in [35] and later
extended to generic colour-singlet processes in [114] and to heavy-quark pair production
in [116].

Before we detail some of its technicalities, let us first give a brief outline of the
method. MiNNLOPS includes NNLO corrections in the event generation of a sys-
tem F of colour-singlet particles, and involves essentially three steps: in the first one
(Step I) F is generated in association with one light parton at NLO according to the
Powheg method, inclusively over the radiation of a second light parton. The sec-
ond step (Step II) characterises the MiNNLOPS approach, and it corrects the limit in

15The MiNLO′ procedure was extended numerically to higher jet multiplicities in [163], where in particular
the case of Higgs production in association with up to two jets was worked out.
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which the light partons become unresolved by supplementing the appropriate Sudakov
form factor and higher-order terms, such that the simulation remains finite as well as
NNLO accurate for inclusive F production. In the third step (Step III), the kinematics
of the second radiated parton (accounted for inclusively in Step I) is generated through
the Powheg method to preserve the NLO accuracy of the F+1-jet cross section, and
subsequent radiation is included through the parton shower. In these three steps all
emissions are appropriately ordered (when using a pT-ordered shower) and the applied
Sudakov matches the leading logarithms resummed by the PS. Thus, the MiNNLOPS

approach preserves the (LL) accuracy of the PS.
We now discuss in more detail the anatomy of MiNNLOPS, starting, as promised,

from the transverse-momentum resummation formula given in (3.71). Adopting the
notation of [34],16 the cross section for the production of a generic colour-singlet system
F of invariant mass Q and transverse momentum pT in hadronic collisions, differential
in pT and ΦF, reads

dσ

dΦFdpT
=

d

dpT

{
e−S̃(pT)L (ΦF, pT)

}
+Rf (ΦF, pT) , (3.98)

where Rf (ΦF, pT) denotes the terms that are non-singular in the small-pT limit and
the function S̃ (pT), defined in (3.91), in the case of MiNNLOPS includes the following
perturbative coefficients

A (αs) =
(αs

2π

)
A(1) +

(αs
2π

)2
A(2) +

(αs
2π

)3
A(3) ,

B̃ (αs) =
(αs

2π

)
B(1) +

(αs
2π

)2
B̃(2) ,

(3.99)

where B̃(2) is defined in (3.66). The explicit expressions for the coefficients A(1−3) and
B(1) are given in (3.59) and (3.60), respectively, while B(2) for Drell–Yan and Higgs
production can for instance be found in Appendix B of [34]. The luminosity factor
L (ΦF, pT) in (3.98) for the first emission with momentum kT,1 is given by [34]

L (ΦF, kT,1) =
∑

c,c′

d|MF (ΦF) |2
dΦF

∑

i,j

{(
C̃

[a]
ci ⊗ f

[a]
i

)
H̃ (kT,1)

(
C̃

[b]
c′j ⊗ f

[b]
j

)

+
(
G

[a]
ci ⊗ f

[a]
i

)
H̃ (kT,1)

(
G

[b]
c′j ⊗ f

[b]
j

)}
,

(3.100)

whereMF denotes the Born matrix element and the labels a and b indicate the initial-
state legs. The squared hard-virtual matrix elements H, related to H̃ in (3.68), are
evaluated at the scale kT,1 instead of Q, in line with the MiNLO′ procedure, i.e. we
have

H (Q)→ H (kT,1) =
αs (kT,1)

2π
H(1) +

(
αs (kT,1)

2π

)2

H(2) + . . . (3.101)

The coefficient functions C and G appearing in (3.100), which respectively deal with
initial-state collinear singularities for quarks and gluons, admit the following perturba-

16Compared to (3.71), the cumulative cross section Σ is denoted as σ and S → S̃ to emphasize that it contains
the coefficient B̃(2), defined in (3.66).
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tive expansions

C [a/b] (z) = δ (1− z) +
αs (kT,1)

2π
C(1) (z) +

(
αs (kT,1)

2π

)2

C(2) (z) + . . . ,

G[a/b] (z) =
αs (kT,1)

2π
G(1) (z) + . . . ,

(3.102)

where C̃ is related to C in (3.68). We add that the definitions presented above derive
from the momentum-space formulation of pT-resummation presented in [142], which
includes corrections up to N3LL and NNLO. The result of said formulation, restricted
to the single-radiation case with momentum kT,1, presented in a more compact form
in [34], is the starting point for MiNNLOPS shown in (3.98). It also contains the
regularised splitting kernels P (z) upon integration over pT, given by

P (z) = P (0) (z) +
αs (kT,i)

2π
P (1) (z) +

(
αs (kT,i)

2π

)2

P (2) (z) + . . . (3.103)

In order to make contact with the MiNLO′ procedure, we emphasize that ΦF on
the left-hand side of (3.98) is defined via the projection of ΦFJ and ΦFJJ onto ΦF,
which in [34] is denoted as ΦF,res with the label “res” to indicate that the projection
depends on how the recoil of F is defined in the resummation approach. We then
notice that integrating the MiNLO′ result in (3.97) for an observable of the type
O (Φ) = δ (ΦF,res −ΦF) δ (pT (Φ)− pT), where Φ = ΦFJ or Φ = ΦFJJ, results in the
following differential cross section [34]

dσ

dΦFdpT
= e−S̃(pT)

{
αs (pT)

2π

[
dσFJ

dΦFdpT

](1)(
1 +

αs (pT)

2π

[
S̃ (pT)

](1)
)

+

(
αs (pT)

2π

)2 [
dσFJ

dΦFdpT

](2)
}
,

(3.104)

where [X](i) denotes the coefficient of the ith term in the perturbative expansion of the
quantity X. To demonstrate the connection to the pT-resummation formula in (3.98),
we cast the latter into the form

dσ

dΦFdpT
= e−S̃(pT)

{
D (pT) +

Rf (pT)

e−S̃(pT)

}
, (3.105)

with

D (pT) ≡ dL (pT)

dpT
− dS̃ (pT)

dpT
. (3.106)

One could show that expanding (3.105) in αs and keeping all terms up to O
(
α2
s

)
yields

precisely the MiNLO′ result shown in (3.104). The above considerations furthermore
expose what is needed to reach NNLO accuracy for the fully differential cross section
for F, obtained upon integration over pT. To see this more clearly, we estimate the size
of each contribution to the total integral of (3.105) between the IR scale Λ and Q to
be (see Appendix C of [58] for a derivation) of order

∫ Q

Λ

dpT
1

pT
αms (pT) ln

Q

pT
e−S̃(pT) ≈ O

(
α
m−n+1

2
s (Q)

)
. (3.107)
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Then, in order for the integral to be NLO accurate, one thus has to include all terms
up to order α2

s — which agrees with (3.104). Moreover, NNLO accuracy is reached
upon inclusion of all terms of up to order α3

s, i.e.

dσ

dΦFdpT
= e−S̃(pT)

{
αs (pT)

2π

[
dσFJ

dΦFdpT

](1)(
1 +

αs (pT)

2π

[
S̃ (pT)

](1)
)

+

(
αs (pT)

2π

)2 [
dσFJ

dΦFdpT

](2)

+

(
αs (pT)

2π

)3
(
D (pT)− αs (pT)

2π
[D (pT)](1)

−
(
αs (pT)

2π

)2

[D (pT)](2)

)
F corr (ΦFJ) +Rf -terms of O

(
α3
s

)
}
,

(3.108)

where the regular (Rf ) terms of O
(
α3
s

)
can safely be neglected as they do not produce

NNLO contributions upon integration over pT — essentially because they do not contain
the 1/pT factor in (3.107). Note also that one could either truncate the third term
in (3.108) at the third order [34]

D (pT)−αs (pT)

2π
[D (pT)](1)−

(
αs (pT)

2π

)2

[D (pT)](2) =

(
αs (pT)

2π

)3

[D (pT)](3)+O(α4
s) ,

(3.109)
or keep the terms of O(α4

s) and higher [35], which are beyond accuracy, in order to
preserve the total derivative in (3.105). We employ the latter option in Chapter 4.
Finally, F corr in (3.108) determines the appropriate function to spread the NNLO
corrections in the FJ phase space, which is necessary to include those corrections in the
context of an FJ Powheg calculation — see Section 3 of [34] for details. As described
in Step III above, the generation of the second radiation is done according the the
Powheg method,17 after which one obtains the master formula for the MiNNLOPS

method

dσ

dΦFJ

= B̄MiNNLOPS
(ΦFJ)

{
∆pwg (ΦFJ, p

min
T )O (ΦFJ)

+ ∆pwg (ΦFJ, kT)
R (ΦFJ,Φrad)

B (ΦFJ)
O (ΦFJ,Φrad)

}
,

(3.110)

where ∆pwg is the Powheg Sudakov form factor, ΦFJ is the phase space of the FJ
system, Φrad and kT are the phase space and the transverse momentum of the second
radiation, respectively, and B (ΦFJ) and R (ΦFJ,Φrad) denote the squared tree-level
matrix elements for FJ and FJJ production, respectively. The MiNNLOPS B̄ function

17In Chapter 4, a default cutoff of pmin
T = Λpwg =

√
0.8GeV is used
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is given by

B̄MiNNLOPS
(ΦFJ) = e−S̃(pT)

{
αs (pT)

2π

[
dσFJ

dΦFdpT

](1)(
1 +

αs (pT)

2π

[
S̃ (pT)

](1)
)

+

(
αs (pT)

2π

)2 [
dσFJ

dΦFdpT

](2)

+ F corr (ΦFJ)

[
D (pT)

− αs (pT)

2π
[D (pT)](1) −

(
αs (pT)

2π

)2

[D (pT)](2)

]}
,

(3.111)

which contains the same contributions to generate the first emission (and inclusively
the second emission) as in a standard FJ Powheg calculation, described in Step I
above, but it is modified according to the MiNNLOPS procedure in order to reach
NNLO accuracy for inclusive F production, as discussed in Step II above. Note that in
the MiNNLOPS approach the renormalisation and factorisation scales are evaluated,
similarly to MiNLO′, as µR ∼ µF ∼ pT, where pT is the transverse momentum of F
and regular contributions at order α3

s (pT) are, as mentioned, of subleading nature.
We summarise our discussion of MiNNLOPS by reminding the reader that the

benefits of the MiNNLOPS approach reside in the following features:

3 It provides the possibility to include NNLO corrections on-the-fly, without the
need of any a-posteriori reweighting. This considerably reduces the computational
costs for obtaining NNLO+PS accurate results.

3 Since it is based on the MiNLO′ method for obtaining good scale-choices a priori,
it is not necessary to introduce a merging scale or unphysical boundaries to par-
tition the phase space into different regions according to the number of resolved
emissions.

3 When using a pT-ordered shower, the matching performed by MiNNLOPS pre-
serves the logarithmic accuracy of the parton shower, which is in general far from
trivial.

By now, MiNNLOPS has been applied to the production of colour-singlet systems
such as Zγ [114, 164], W+W− [115], ZZ [44], V H including the h → bb̄ decay at
NNLO+PS [165, 166]. It was furthermore extended to deal with the production of
massive coloured final states in [116, 167], where it was applied to top-quark pair
production, which was the first NNLO+PS result for LHC processes with coulored
final states. In the next chapter, we present the aforementioned application of the
MiNNLOPS method to ZZ production, in combination with a NLO+PS computation
for the loop-induced ggF channel that opens up at NNLO.
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Chapter 4

ZZ production at nNNLO+PS
with MiNNLOPS

Proton-proton collisions in which a pair of vector bosons is produced provide some of
the most relevant signatures in precision measurements, which have evolved to one of
the cornerstones of the rich physics programme at the LHC. The accurate determination
of production rates and distributions provides a valuable path towards the observation
of deviations from the predictions made by the SM of particle physics. Observing or
constraining anomalous interactions among SM particles is one of the central goals of
such analyses.

Through diboson signatures, the couplings among three vector bosons (triple-gauge
couplings) are directly accessible, which are altered in various BSM theories. Therefore,
the observation of small deviations from the expected rates or shapes of distributions
would be a clear sign of new physics. Similarly, measurements at high transverse
momentum of some of the particles produced in diboson processes provide constraints
on the mass range of possible heavy Z ′ bosons. Apart from that, vector-boson pair
final states constitute an irreducible background to on- and off-shell Higgs cross-section
measurements, when the Higgs boson decays to four leptons. These measurements are
important for the extraction of the Higgs couplings and for constraints on the Higgs
width [168–178]. Furthermore, modern fits of parton distribution functions (PDFs)
have started to include more and more LHC data. For instance NNPDF3.1 [179]
already includes top-pair production and the transverse momentum of the Drell-Yan
pair. Upcoming fits will also include direct photon, dijet and single top production.
It is clear that a further step would be the inclusion of diboson production and other
processes with more final-state particles such as three jets, provided the accuracy of
theory predictions, both at the level of higher-order QCD and electroweak corrections,
is sufficient. It is therefore crucial to have theoretical predictions for vector-boson
production processes at the best possible accuracy.

While the cross section for ZZ production is smaller than the ones for W±Z or
W+W− production, experimentally the decay to four charged leptons provides the
cleanest signature of the massive diboson processes, since the final state does not in-
volve any missing transverse momentum. Accordingly, experimental measurements
already reach a remarkable level of precision. In particular, both ATLAS and CMS
collaborations have performed measurements of the ZZ production cross sections at
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5.02 TeV [180], 7 TeV [181–185], 8 TeV [184–190] and 13 TeV [190–195] and used these
measurements to test the SM and constrain triple-gauge couplings.

The first NLO QCD corrections to Z-boson pair production started to appear about
thirty years ago [196–200]. NLO QCD calculations were later consistently matched with
fully exclusive PS MC programs using the Powheg [201, 202] or MC@NLOmethod [203].
EW effects at NLO were also computed first in the on-shell approximation [204, 205] and
later keeping off-shell and spin-correlation effects [206, 207]. The combination of NLO
QCD and NLO EW corrections was presented in [208] and recently also their matching
to parton showers was performed [209]. Likewise, in the case of polarized Z bosons
NLO QCD and NLO EW corrections have been combined very recently [210]. NNLO
QCD corrections have been computed for on-shell [79, 81] and off-shell ZZ produc-
tion [80, 82], and their combination with NLO EW effects was presented in [211]. The
loop-induced gg → ZZ process starts contributing only at O(α2

s), but it is enhanced
by the gluon PDF. Since higher-order corrections to this process can be formulated as
a gauge-invariant set of contributions and their impact was expected to be important,
NLO QCD corrections to gg → ZZ production have also been computed in the recent
years [172, 212–214]. The leading order matching of the loop-induced ggF process was
presented in [215], while NLO+PS predictions were first obtained neglecting the quark
channels [216] and very recently also including the full NLO QCD corrections with
quark-gluon and quark-antiquark channels and the Higgs resonance [217].

The remarkable progress in NNLOQCD calculations triggered considerable advance-
ments in the matching of NNLO QCD corrections and parton showers, as detailed in
Chapter 2 and Section 3.4. In this chapter, we employ the MiNNLOPS method to
include NNLO QCD corrections for ZZ production in the Powheg framework. Ad-
ditionally, we present a NLO+PS Powheg calculation for the loop-induced gg → ZZ

process. When combined, these predictions, dubbed nNNLO+PS, become the most
advanced theoretical predictions for ZZ production at the LHC, since they include
the highest perturbative accuracy in QCD available to date. Spin correlations, in-
terferences and off-shell effects are included by considering all contributions to the
four-lepton final state. Moreover, the matching to the parton shower renders it pos-
sible to achieve a fully exclusive description at the level of hadronic events. In the
future, the NNLO+PS predictions of our MiNNLOPS ZZ generator could be com-
pared to those recently obtained in the Geneva framework [111]. In Section 4.1, we
discuss in detail the calculation and implementation of the MiNNLOPS method for the
qq̄-initiated process and the Powheg implementation for the loop-induced gg-initiated
process. We also show how to avoid that the two-loop amplitudes, whose numerical
evaluation is very time-consuming, slow down our code in a considerable way. Our
phenomenological results for both cross sections and distributions in ZZ production
are discussed in Section 4.2, where we present a comparison between showered, fixed-
order, and analytically resummed results at high accuracy for various observables as
well as a comparison of our nNNLO+PS predictions to recent LHC data from CMS. A
summary is presented in Section 4.3.
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Figure 4.1: Sample Feynman diagrams for ZZ production with four charged leptons in the final state.
Panels (a) and (b): tree-level diagrams of the quark annihilation (qq̄) channel; Panel (c): loop-induced
diagram in the ggF (gg) channel.

4.1 Outline of the calculation

4.1.1 Description of the process

We study the process

pp→ `+`−`(′)+`(′)− (4.1)

for any combination of charged leptons `, `′ ∈ {e, µ, τ}. While at the matrix-element
level our calculation is based on the different-flavour channel ` 6= `′, at the event-
generation level arbitrary combinations of charged leptons can be considered, both
with different flavours ` 6= `′ and with same flavours ` = `′ (in the latter case interfer-
ence effects when exchanging the charged leptons, which are typically at the (1− 2)%

level [80], are neglected). Moreover, lepton masses are included via reshuffling of the
momenta in the event generation. For simplicity and without loss of generality we
consider only the process pp→ e+e−µ+µ− here, which we will refer to as ZZ produc-
tion in the following. By including all resonant and non-resonant topologies leading to
this process, off-shell effects, interferences and spin correlations are taken into account.
Sample diagrams are shown in Figure 4.1 and they include:

(a) tree-level double-resonant t-channel ZZ production in the qq̄ channel;

(b) tree-level single-resonant s-channel Drell–Yan topologies in the qq̄ channel;

(c) loop-induced ZZ production in the gg channel.

The loop-induced gg contribution, including also the single-resonant Higgs mediated
diagrams, proceeds through a quark loop and enters the cross section at O(α2

s), i.e. it
is part of the NNLO QCD corrections. Since this contribution is enhanced by the
large gluon-gluon luminosity at LHC energies, it yields a relatively large fraction of
the NNLO corrections [83, 84]. Moreover, it is known that at NLO QCD [212, 214],
i.e. O(α3

s), its relative correction is very sizable (about a factor of two). It is likely
that these corrections constitute the most significant contribution to ZZ production
at O(α3

s), since the O(α3
s) corrections to the qq̄ channel are not expected to be of the

same size as those at the previous order.
We include the most accurate currently available information in QCD perturbation

theory for both the qq̄-initiated and the loop-induced gg-initiated process, and match
them consistently with a parton shower. Thus, we calculate NNLO+PS predictions
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in the qq̄ channel by means of the MiNNLOPS method [34, 35, 114] and NLO+PS
predictions in the loop-induced gg channel using the Powheg approach [32, 33, 218].
Full top-quark mass effects are included everywhere, except for the two-loop amplitudes.
For the qq̄ channel they are expected to be small in the relevant phase-space regions,
while for the loop-induced gg contribution we have included them approximately via
reweighting in the two-loop correction (cf. Section 4.1.3). We stress that to avoid
any overlap, our MiNNLOPS implementation of the NNLO+PS calculation in the qq̄
channel does not include the loop-induced gg-initiated contribution. In this way, all
loop-induced gg contributions are correctly accounted for when combining the former
with our NLO+PS predictions for the gg channel. Our ensuing result is dubbed as
nNNLO+PS, as the NLO corrections to the loop-induced ggF contribution are ofO(α3

s).
These corrections are separately gauge-invariant and constitute the most significant
N3LO corrections, as pointed out before.

4.1.2 MiNNLOPS for qq̄ → ZZ production

In this section we present the implementation of a NNLO+PS generator for ZZ pro-
duction in the qq̄ channel by means of the MiNNLOPS method. The MiNNLOPS

method is described in detail in Section 3.4.3. In the following we provide some infor-
mation on our implementation of a MiNNLOPS generator for ZZ production in the qq̄
channel within the Powheg-Box-Res framework [219]. Our NLO+PS generator for
the loop-induced gg channel is discussed in the next section. We stress that, while we
distinguish these processes as qq̄ and gg, in their higher-order corrections of course all
the relevant partonic initial states are consistently included, with the exception of the
gg loop-induced partonic channel in the NNLO corrections to the qq̄ process, since this
contribution is already accounted for by our NLO+PS generator for the loop-induced
gg channel.

Since no implementation for ZZ+jet production was available in Powheg-Box to
date, the first step was to implement this process in the Powheg-Box-Res framework.
We have implemented all relevant flavour channels and, in addition, adapted the routine
build_resonance_histories of Powheg-Box-Res such that it is capable of auto-
matically constructing the correct resonance histories. The tree-level single and double
real matrix elements for e+e−µ+µ−+1, 2-jet production and the one-loop amplitude
for e+e−µ+µ−+1-jet production are evaluated through OpenLoops [220–222].

In a second step, we have employed the MiNNLOPS method to obtain NNLO+PS
predictions for ZZ production in the qq̄ channel. In particular, we made use of the
implementation of the MiNNLOPS method that was developed and applied to Zγ

production in [114]. The respective tree-level and one-loop qq̄ → e+e−µ+µ− amplitudes
are also evaluated through OpenLoops, while the two-loop helicity amplitudes have
been obtained by extending the interface to Matrix [223] developed in [114] to ZZ
production. The evaluation of the two-loop coefficients in this implementation relies
on the code VVamp [224] and is based on the calculation of [225].

As discussed in [115] for W+W− production, the evaluation of the two-loop helicity
amplitudes for massive diboson processes is particularly demanding from a computa-
tional point of view. In [115] this problem was circumvented by constructing a set
of interpolation grids for the two-loop coefficients that achieves their fast on-the-fly
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evaluation. In this work we pursue a different strategy: we exploit the possibility of
reweighting the events at the generation level (i.e. stage 4 in Powheg-Box) to in-
clude the two-loop contribution. In combination with a suitable caching system of
the two-loop amplitude that we implemented this allows us to omit the evaluation
of the two-loop contribution entirely in the calculation up to stage 4, where it needs
to be evaluated only once per event.1 To be more precise, we have implemented a
new flag (run_mode), which is accessible from the Powheg input file, and allows the
user to switch between four different ways of running the code. Either the full cal-
culation is performed including the two-loop contributions throughout (run_mode 1),
or one completely drops the NNLO corrections provided by MiNNLOPS, specifically
the terms

(
D −D(1) −D(2)

)
× F corr in (3.111), thus effectively reproducing MiNLO′

predictions (run_mode 2). Alternatively, the evaluation of two-loop amplitude can be
omitted only in the grid setup, i.e. stage 1 in Powheg-Box, (run_mode 3), or com-
pletely (run_mode 4). For all results presented in this manuscript we run the code
with the last option run_mode 4, i.e. without evaluating the computationally expensive
two-loop amplitude. In this way, also the generation of the events is faster. However,
once an event has been accepted, it is reweighted such that the two-loop contribution
is included by resetting the run_mode keyword in the event reweight information of the
Powheg input file.

As a result the two-loop amplitude is evaluated only once for each event, consider-
ably improving the efficiency of the code. Moreover, following the same logic we can
also compute MiNLO′ weights in parallel to the generation of MiNNLOPS ones using
the appropriate setting for run_mode in the event reweight information. We have first
validated our implementation in an inclusive setup, requiring only a suitable Z-mass
window for the opposite-charge same-flavour dilepton pairs. Here we compared the in-
clusive cross section at the Les Houches event (LHE) level obtained at stage 4 with the
one computed at stage 2 when including the two-loop contribution, finding excellent
agreement. Another very robust cross-check of the reweighting procedure is provided
by the comparison of the MiNLO′ results obtained directly or through reweighting,
which also agree perfectly. Our calculation involves the evaluation of several convo-
lutions with the PDFs, for which we employ hoppet [226]. The evaluation of the
polylogarithms entering the collinear coefficient functions is done through the hplog
package [227].

Finally, let us summarise some of the most relevant (non-standard) settings that
we have used to produce NNLO+PS accurate ZZ events in the qq̄ channel. For more
detailed information on those settings we refer to [35, 116]. To avoid spurious con-
tributions from higher-order logarithmic terms at large pT, we replace the logarithm
L = lnQ/pT, where we set Q = m4`, with a modified logarithm L̃ which is identical
to L below pT = Q/2 and smoothly vanishes at pT equal or larger than Q [116]. As
far as the renormalization and factorization scales are concerned, we use the standard
MiNNLOPS scale setting at small pT [35],

µR = KRQe
−L̃ , µF = KFQe

−L̃ , (4.2)

1Note that in order for the caching to work properly and not having to reevaluate the two-loop amplitude
for every scale variation in the event reweighting, we have set the parameter rwl_group_events 1 in the input
file, which ensures that the events are reweighted one-by-one instead of in batches.
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where KR,F are scale variation parameters varied between 1/2 and 2. In the NLO
ZZ+jet cross section at large pT the scale setting is changed to [35]

µR = KR pT , µF = KF pT , (4.3)

by activating the option largeptscales 1. The Landau singularity is regulated by
freezing the strong coupling and the PDFs for scales below 0.8GeV. Finally, as recom-
mended for processes with jets in the final state, we turn on the option doublefsr 1
of the Powheg-Box, see [228] for details. For the parton-shower we have used the
standard settings, also for the recoil scheme (namely a global recoil scheme for initial
state radiation, with SpaceShower:dipoleRecoil 0).

4.1.3 NLO+PS for gg → ZZ production

As discussed before, the leading-order contribution to the loop-induced ggF process
enters the ZZ cross section at O(α2

s). Thus, it constitutes a NNLO correction relative
to the LO part of the qq̄ channel, but it is significantly enhanced by the large gluon-
gluon luminosities. It is therefore mandatory to include also the NLO corrections to the
loop-induced ggF contribution in any precision study of ZZ production that compares
theory and data.

We have implemented a NLO+PS generator for loop-induced ZZ production in
the gg channel within the Powheg-Box-Res framework. Note that in addition to
continuum ZZ production as shown in Figure 4.1 (c) we also include the contribution
mediated by a Higgs boson (or a single Z boson). The calculation of these loop-
induced processes is effectively of similar complexity as a NNLO calculation, as far
as the amplitude evaluation is concerned. Despite that, the matching to the parton
shower through the Powheg method, which is essentially automated in Powheg-Box-
Res, can be applied to loop-induced processes as well, without any further conceptual
issues. However such an NLO calculation requires the evaluation of both one-loop and
two-loop helicity amplitudes and the process at hand is numerically substantially more
demanding than a tree-level one, since the evaluation time of the one-loop and two-loop
amplitudes is much slower and the stability of the one-loop matrix elements with one
emitted real parton is challenged in the IR regions. To cope with these numerical issues,
we have implemented and exploited a number of handles within Powheg-Box-Res,
which will be discussed below.

For the implementation in Powheg-Box-Res, we have specified the relevant flavour
channels and hard-coded also the resonance channels of the process, as the automatic
determination of the latter via the already mentioned routine build_resonance_histor
ies is not available yet for loop-induced processes. At NLO, all relevant partonic chan-
nels, namely gg, gq, qg, qq̄ and the charge-conjugated ones, are included. To unam-
biguously define the NLO corrections to the loop-induced ggF process for each of those
initial states, we follow the approach introduced in [214] and include all diagrams that
involve a closed fermion loop with at least one vector boson attached. The one-loop
amplitudes with zero and one jet are evaluated through OpenLoops [220–222]. For
this purpose, we have adapted the OpenLoops interface in Powheg-Box-Res de-
veloped in [229] to deal with loop-induced processes. As a cross-check, we have also
interfaced Recola to Powheg-Box-Res and found full agreement for all one-loop
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Figure 4.2: Sample Feynman diagram for a qq̄-initiated regular contribution to the loop-induced gg
channel at O(α3

s).

amplitudes. For the two-loop helicity gg → `+`−`(′)+`(′)− amplitudes we exploit their
implementation within Matrix [223], which is based on the evaluation of the two-loop
coefficients through VVamp [225] from their calculation in [230]. To this end, we have
extended the interface of Powheg-Box-Res to Matrix developed in [114] to include
the gg → `+`−`(′)+`(′)− two-loop amplitudes. Also here the evaluation of the two-loop
coefficients through VVamp is very slow, lasting from a few seconds to several tens of
seconds. Since this leads to a severe bottleneck in the calculation and especially in the
event generation, we have implemented a caching system for the two-loop corrections
and we include them only through event reweighting. This is very similar in spirit to
the way the two-loop hard function is included in the MiNNLOPS generator in the
qq̄ channel, as described in the previous section. Our calculation includes the full top-
quark mass effects, except for the two-loop gg → `+`−`(′)+`(′)− amplitudes, where they
are not known to date.2 Instead, we follow the same approach as [214] and include them
approximately through a reweighting of the massless two-loop amplitude with the ratio
of the one-loop result including massive loops to the one with only massless loops. Since
here we are interested in the ZZ signal region, such reweighting is expected to work
extremely well. In fact, [217] recently confirmed that using an asymptotic expansion
in the top-quark mass leads to practically identical results as using such reweighting,
as long as one sticks to the validity range of the expansion itself.

Very recently, [217] presented a completely independent NLO+PS generator for
loop-induced ZZ production in the gg channel within the Powheg-Box-Res frame-
work. We have compared our calculation to theirs both at the level of individual phase-
space points and of the integrated cross sections, and we have found perfect agreement
when applying the same approximation for the two-loop virtual corrections.3 Since,
although developed independently, the two calculations are essentially interchangeable
(both developed in Powheg-Box-Res using OpenLoops and VVamp), we advocate
that it is equivalent to use either code and combine the results subsequently with our
MiNNLOPS generator in the qq̄ channel to obtain nNNLO+PS accurate results.

To better control the numerical stability of the calculation we have implemented
settings similar to those reported in [217]: in particular we apply small (0.5GeV)
generation cuts on the transverse momentum of the four-lepton system and of each Z
boson. Moreover, we exploit the stability system of OpenLoops and set the parameter
stability_kill2 0.01 to remove the remaining unstable points. We have further

2For the case of on-shell gg → ZZ production the full top-quark mass dependence was recently calculated
in [231, 232].

3We would like to thank the authors of [217] for providing the gg4l code and in particular Jonas Lindert for
very helpful correspondence.
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modified the code in such a way that, whenever the real-emission contribution is set
to zero by one of the previous stability checks, also the respective counter terms are
set to zero. Finally, we use withdamp 0 in order not to split the real cross section into
a singular and a remnant contribution as the considerably small value of the latter
leads to numerical issues when generating events. The same is true for the regular
contribution that contains only the qq̄ channel (see Figure 4.2 for a sample diagram):
after verifying that it is completely negligible, we have turned it off for all results
obtained in this paper.

Since in the upcoming section we study phenomenological results for the full pp→
e+e−µ+µ− process, we show some plots for the loop-induced gg channel separately in
Figure 4.3, both at LO and at NLO. The settings and inputs that we use here correspond
to those introduced in Section 4.2.1 in the inclusive setup (setup-inclusive) with
just a Z-mass window applied between 60GeV and 120GeV. The renormalization and
factorization scales are set to µR = µF =

√
m2

4` + p2
T,4`, where m4` and pT,4` are the

invariant mass and the transverse momentum of the four-lepton system, respectively.
Furthermore, the uncertainty bands are obtained through a standard seven-point scale
variation, and we employ the Pythia8 parton shower [146] with the A14 tune [233] (see
Section 4.2.1 for further details) to obtain the showered results presented in Figure 4.3.
For the genuine NLO-accurate quantities shown in Figure 4.3, namely m4` and the
rapidity of the four-lepton system (y4`), we find results that are completely in line
with the findings of previous fixed-order calculations [212, 214], which is expected since
shower effects are negligible for those observables, as one can see from the LHE results.
In particular, NLO corrections are sizable and increase the value of the inclusive cross
section by almost a factor of two, with scale uncertainties at the level of 10-15%. In
certain phase-space regions, like in the tail of the m4` distribution, the NLO corrections
can even become significantly larger than a factor of two. However, in those regions the
relative impact of the loop-induced gg contribution is reduced. When looking at the
transverse-momentum spectrum of the four-lepton system (pT,4`) and of the leading
jet (pT,j1) in Figure 4.3, the importance of matching to the parton shower becomes
clear:4 at LO only the parton shower fills those distributions and at NLO it still provides
a substantial correction. In fact, in a fixed-order calculation both observables would
diverge, and therefore be unphysical, at small transverse momenta. It is interesting
to notice that the LO+PS result is actually higher than the NLO+PS one in the
intermediate pT,4` region before it falls off steeply. This region is completely filled by
the shower, whose starting scale by default is set to m4` in the LO calculation. The
fact that m4` is on average relatively large explains why the shower fills the spectrum
even at such high transverse momenta.

4Note that, compared to the LO+PS results quoted for gg → ZZ, predictions at higher accuracy in the
presence of an additional radiated jet, possibly including zero- and one-jet merging, have been presented in
[234–236].
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Figure 4.3: Predictions for ZZ production in the loop-induced gg channel at LO+PS and NLO+PS.
For reference also the LHE-level central result at NLO is plotted. Shown are the distributions in the
invariant mass, rapidity and transverse momentum of the four-lepton system, and in the transverse
momentum of the leading jet.
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4.2 Phenomenological results

In this section we present phenomenological results for the process pp → e+e−µ+µ−.
After discussing our setup in Section 4.2.1, we compare our MiNNLOPS predictions
for integrated cross sections (Section 4.2.2) and at the differential level against fixed-
order predictions at NNLO accuracy and MiNLO′ results (Section 4.2.3), and against
experimental data from the CMS experiment [195] (Section 4.2.3.2).

4.2.1 Input parameters and setup

We consider proton–proton collisions at the LHC with a center-of-mass energy of 13TeV
and present predictions for pp → e+e−µ+µ− production. We use the complex-mass
scheme [237] throughout and set the EW inputs to their PDG [23] values: GF =

1.16639 × 10−5 GeV−2, mW = 80.385 GeV, ΓW = 2.0854 GeV, mZ = 91.1876 GeV,
ΓZ = 2.4952 GeV, mh = 125 GeV and Γh = 0.00407 GeV. We set the on-shell top-
quark mass to mt = 173.2 GeV, and Γt = 1.347878 GeV is used. We determine the
other EW parameters in the Gµ scheme with the EW coupling αGµ =

√
2/πGµ|(m2

W −
iΓWmW ) sin2 θW | and the EWmixing angle cos2 θW = (m2

W−iΓWmW )/(m2
Z−iΓZmZ).

We use the NNPDF3.1 [179] NNLO set with αs = 0.118 via the lhapdf interface [238]
for all our predictions. For MiNLO′ and MiNNLOPS, the PDFs are read by lhapdf
and evolved internally by hoppet [226] as described in [34]. The central factorization
and renormalization scales are set as discussed in Section 4.1.2 for the MiNNLOPS

ZZ generator in the qq̄ channel and as given in Section 4.1.3 for the loop-induced gg
channel. Scale uncertainties are estimated by varying µF and µR around their central
value by a factor of two in each direction, while keeping the minimal and maximal
values with the constraint 0.5 ≤ µR/µF ≤ 2.

By combining the MiNNLOPS qq̄ results and loop-induced gg results at (N)LO+PS,
we obtain predictions for ZZ production at (n)NNLO accuracy matched to parton
showers. For all (n)NNLO+PS predictions presented in this work we make use of
the Pythia8 parton shower [146] with the A14 tune [233] (py8tune 21 in the input
card). To validate our calculation and to show where shower effects are crucial, we
compare (n)NNLO+PS predictions obtained with MiNNLOPS and (n)NNLO fixed-
order predictions obtained with Matrix [223]. Additionally, we consider the inclusion
of NLO EW effects. In the Matrix predictions we set µR = µF = m4`, and we construct
the scale-uncertainty bands with the same canonical seven-point scale variation used
for our MiNLO′ and MiNNLOPS results.

Moreover, we compare our predictions with recent results from the CMS collabora-

setup-inclusive setup-fiducial

Z-mass window 60GeV< mZ1
,mZ2

< 120GeV 60GeV< mZ1
,mZ2

< 120GeV

lepton cuts m`+`− > 4 GeV

pT,`1 > 20 GeV, pT,`2 > 10 GeV,

pT,`3,4 > 5 GeV, |η`| < 2.5,

m`+`− > 4 GeV

Table 4.1: Inclusive and fiducial cuts used to the define the setup-inclusive and setup-fiducial
phase space regions [195]. See text for more details.
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tion [195] within the fiducial volume defined in Table 4.1, denoted as setup-fiducial.
Note that the reconstructed Z bosons Z1 and Z2 are identified by selecting the opposite-
sign same-flavour (OSSF) lepton pair with an invariant mass closest to the Z-boson
mass as Z1 and identifying the remaining OSSF lepton pair with Z2. Since here we
only consider the different-flavour channel (e+e−µ+µ−), the two Z bosons are unam-
biguously reconstructed and this procedure only selects which lepton pair is called Z1

and which Z2. Note that in the different-flavour channel the additional m`+`− > 4GeV
cut in Table 4.1 has no effect. Besides the fiducial setup, we also consider an inclusive
setup (dubbed setup-inclusive), where we only require a Z-mass window between
60GeV and 120GeV for the two resonances.

In order to provide the most realistic comparison to experimental data, our final
predictions include effects from hadronization and multi-particle interactions (MPI).
We also include QED showering effects as provided by Pythia8. In order to prevent
charged resonances to radiate photons and photons to branch into lepton- or quark-
pairs, we set the two flags TimeShower:QEDshowerByOther and TimeShower:QEDshower
ByGamma to off. Finally, we define dressed leptons by adding to the four-momentum of
a lepton the four-momenta of all photons within a distance ∆Rγ` =

√
∆φ2

γ` + ∆η2
γ` <

0.1.

4.2.2 Integrated cross sections

We start the discussion of our results by first considering integrated cross sections. In
Table 4.2 we report predictions both in the inclusive and in the fiducial setup intro-
duced above for various perturbative calculations. Specifically, we consider MiNLO′

predictions, and a number of predictions including NNLO corrections, both at fixed or-
der and matched to parton showers through MiNNLOPS: besides the complete NNLO
predictions (that include the LO loop-induced gg contribution), we provide the NNLO
corrections to the qq̄ channel (dubbed NNLOqq̄) and nNNLO cross sections (as defined
before). For completeness, we also quote nNNLO predictions combined with NLO EW
corrections, computed at fixed-order with Matrix, either using an additive or multi-
plicative scheme. In the latter predictions we also take into account the photon-induced
contribution at LO and beyond.5 In order to compare our predictions to fixed-order re-
sults, all MiNNLOPS (and MiNLO′) results of Table 4.2 are obtained at parton level,
without including hadronization, MPI or photon radiation effects. We have checked
explicitly that those effects have a negligible impact on the integrated cross sections.

The MiNNLOPS prediction and the NNLO result are in excellent agreement with
each other both in the inclusive and in the fiducial setup. The perturbative uncertainty
at (n)NNLO(+PS) is at the (2−3)% level. In particular, despite the fact that the loop-
induced gg process at LO (NLO) contributes only about (6− 8)%

(
(10− 15)%

)
to the

NNLO (nNNLO) cross section, the uncertainties of the (n)NNLO results are domi-
nated by the gluon-initiated contribution. The NLO correction for the loop-induced gg
channel is particularly sizable, almost doubling the LO contribution entering at α2

s, as
discussed in Section 4.1.3. Accordingly, the nNNLO central prediction is not included
in the NNLO uncertainty band.

5We used the NNPDF31_nnlo_as_0118_luxqed [239–241] PDF set to compute fixed-order predictions which
include EW corrections, and verified that the (n)NNLO prediction is modified at the few permille level with
respect to the prediction obtained with NNPDF31_nnlo_as_0118.
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σ(pp→ e+e−µ+µ−) [fb] setup-inclusive setup-fiducial

NLO (Matrix) 32.50(1)+1.9%
−1.6% 16.49(1)+1.9%

−1.6%

MiNLO′ 31.42(3)+6.3%
−5.0% 16.38(2)+6.0%

−5.0%

NNLOqq̄ (Matrix) 34.42(4)+1.0%
−1.0% 17.45(3)+1.0%

−1.0%

NNLO (Matrix) 36.57(4)+2.4%
−2.1% 18.84(3)+2.5%

−2.1%

nNNLO (Matrix) 38.31(4)+2.2%
−2.0% 19.96(3)+2.6%

−2.3%

nNNLO+NLOEW (Matrix) 36.43(7)+2.6%
−2.4% 19.00(4)+2.7%

−2.4%

nNNLO×NLOEW (Matrix) 35.63(7)+2.5%
−2.3% 18.58(4)+2.6%

−2.3%

NNLOqq̄+PS (MiNNLOPS) 34.36(3)+0.8%
−1.0% 17.45(3)+0.9%

−1.0%

NNLO+PS (MiNNLOPS) 36.50(3)+1.9%
−2.0% 18.90(3)+2.5%

−2.0%

nNNLO+PS (MiNNLOPS) 38.35(3)+2.1%
−2.0% 20.04(3)+2.5%

−2.0%

Extracted from CMS 13 TeV 39.4± 0.7(stat)

±1.1(syst)± 0.9(theo)± 0.7(lumi)

20.3± 0.4(stat)

±0.6(syst)± 0.4(lumi)

Table 4.2: Integrated cross sections at various perturbative orders in both the setup-inclusive and
setup-fiducial region. In brackets we report the statistical uncertainties, while scale uncertainties
are reported in percentages. We also report the inclusive and fiducial cross sections measured by
the CMS experiment in [195]. Since the measured inclusive cross section corresponds to on-shell
pp → ZZ production, we have multiplied the measured cross section by a branching fraction of
BR(Z → `+`−) = 0.03366, as quoted in [195], for each Z boson and by a factor of two to compare
with our predictions for pp → e+e−µ+µ− production. For the measured fiducial cross section the
CMS analysis includes both different-flavour (e+e−µ+µ−) and same-flavour (e+e−e+e−, µ+µ−µ+µ−)
decay channels of the two Z bosons. We have therefore divided the measured fiducial cross section by
a factor of two to compare with our pp→ e+e−µ+µ− predictions.

The MiNLO′ result is (8 − 10)% smaller than the MiNNLOPS result. Its uncer-
tainty band, which is considerably larger than the MiNNLOPS one, does not contain
the central (n)NNLO+PS prediction, because scale variations cannot account for the
additional loop-induced gg process entering at NNLO. We also note that the MiNLO′

uncertainty band is larger than the NLO one, and it includes the NLO result. On the
contrary, the NLO uncertainty band is very small and neither MiNLO′ nor the NNLO
central results lie inside it.

Notwithstanding the excellent agreement between the nNNLO(+PS) result and the
fiducial cross section measured by CMS, the theoretical predictions should be supple-
mented with EW corrections. Their inclusion, using either an additive or multiplicative
scheme [211], has a non-negligible impact on the nNNLO result and reduces the cross
section by about (4 − 6)% in the fiducial region, slightly deteriorating the agreement
with the experimental measurement. We note that EW effects include photon-initiated
processes. These have a negligible impact in the fiducial setup, where the leading
lepton has a transverse momentum larger than 20 GeV, and all leptons have a trans-
verse momentum larger than 5 GeV. On the contrary, in the inclusive setup, without a
minimal transverse momentum, the photon-initiated contribution features a collinear
divergence. To avoid this divergence, the CMS analysis [195] imposed a transverse
momentum cut of 5 GeV on the leptons in the evaluation of the photon-induced com-
ponent. With this cut, they showed that the photon-induced contribution is less than

– 62 –



4.2. Phenomenological results

1% of the total cross section. For this reason, we set the photon-induced component to
zero for the nNNLO+NLOEW and nNNLO×NLOEW results in the inclusive case.

4.2.3 Differential distributions

In this section we present our results for differential distributions. We start by compar-
ing the nNNLO+PS predictions obtained with MiNNLOPS against MiNLO′ and fixed-
order nNNLO predictions in the setup-inclusive, and subsequently move to consider
the setup-fiducial and we compare our MiNNLOPS predictions at nNNLO+PS with
the data collected and analyzed by the CMS experiment [195].

4.2.3.1 Comparison against theoretical predictions

In Figure 4.4 we compare nNNLO+PS predictions for MiNNLOPS with MiNLO′ and
nNNLO predictions at fixed order for four different distributions which are non-zero
at LO. In particular, we consider the invariant mass of the e+e− pair (me+e−), the
invariant mass (m4`) and the rapidity of the diboson system (y4`), and the rapidity (yZ1)
of the Z boson whose invariant mass is closer to mZ . We remind the reader that both
the MiNNLOPS and the MiNLO′ predictions are obtained at parton level, without
including hadronization, MPI or photon radiation effects. We observe a very good
agreement between the nNNLO+PS and the nNNLO predictions, both for the central
values and for the scale-variation bands. The latter are at the few-percent level across
the whole range shown in the plots, becoming larger (about ±5%) at high m4`. Minor
differences are visible in the tails of the distributions, in particular at large m4`, where
the nNNLO-accurate MiNNLOPS and fixed-order predictions however still overlap.
Indeed, in the large invariant-mass region scale choices and terms beyond accuracy
become increasingly important, as it was recently pointed out for W+W− production
in [115] and extensively discussed for tt̄ production [242, 243]. The MiNLO′ result is in
all cases about (15−20)% smaller than the nNNLO results, which provides mostly flat
corrections to the distributions under consideration, increasing slightly only at large
m4`. We stress that the relatively flat QCD corrections are a feature of the chosen
distributions (in the inclusive setup) that does not apply in general, as we shall see
below. Although the MiNLO′ uncertainty is a factor of 3 larger than the MiNNLOPS

and nNNLO ones, the MiNLO′ predictions do not overlap with the nNNLO-accurate
results. This is not unexpected since a large part of the difference is caused by the loop-
induced gg contribution. Since the latter is missing in the MiNLO′ predictions, the
MiNLO′ scale variation can not account for this new production process, which instead
enters the nNNLO results. From the second ratio panel we can appreciate the effect of
the loop-induced gg contribution both at LO (comparing NNLO+PS to NNLOqq̄+PS)
and at NLO (comparing nNNLO+PS to NNLOqq̄+PS). It is clear from the plots that
due to the gluon flux the impact of the loop-induced gg process is more prominent in
certain phase-space regions. The LO (NLO) corrections, which inclusively amount to
(6− 8)%

(
(10− 15)%

)
as pointed out before, contribute more significantly in the bulk

region of the distributions, i.e. at the Z resonance in me+e− as well as for small m4`

and central rapidities.
In Figure 4.5 we show the same comparison for the transverse momentum of the

µ+µ− pair (pT,µ+µ−) and the transverse momentum of the leading jet (pT,j1) above
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Figure 4.4: Comparison between selected distributions computed with Matrix, MiNNLOPS and
MiNLO′. Upper panel: invariant mass of the e+e− pair (left) and of the ZZ pair (right); lower panel:
rapidity of Z1 (left) and of the ZZ pair (right).
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Figure 4.5: Same as Figure 4.4, for the transverse momentum of the µ+µ− pair (left) and of the
leading jet (right).

30GeV. The latter was constructed using the anti-kT algorithm [128] with a jet radius of
R = 0.4 as implemented in FastJet [244]. While pT,µ+µ− is already defined at LO, pT,j1

receives its first contribution only at NLO and its accuracy is thus effectively reduced
by one perturbative order. The MiNNLOPS and the nNNLO results for pT,µ+µ− are in
good agreement with each other in the whole range shown here. The MiNLO′ result is
more than 20% smaller at low values of the transverse momentum, while it agrees with
the other two predictions at large values of pT,µ+µ− . Hence, this distribution shows
that in general QCD corrections are not uniformly distributed in phase space. By and
large, the three predictions for the transverse momentum of the leading jet display
a good agreement, especially in the tail of the distribution. The level of agreement
between nNNLO and MiNNLOPS is expected as both predictions are effectively nNLO
accurate at large pT,j1 . The residual scale uncertainties are at the (5− 10)% level and
they are larger than those in the other distributions, which is a direct consequence of
the lower accuracy of the predictions for this distribution. Looking at the effect of
loop-induced gg contribution in the second ratio panel, we observe a rather peculiar
behaviour with the nNNLO+PS corrections being negative with respect to NNLO+PS
for pT,j1& 80GeV. However, this is completely in line with the results presented in
Figure 4.3 and it is a consequence of the fact that the NNLO+PS predictions include
only a LO+PS calculation for the loop-induced gg process, which is not expected to
describe the high pT,j1 range as it is filled entirely by the parton shower, which has no
accuracy in this region. This further underlines the need for including NLO corrections
to the loop-induced gg process. Indeed, after including the NLO corrections, the loop-
induced gg contribution reduces to 5% (and less) at high pT,j1 (comparing nNNLO to
NNLOqq̄+PS), which is more reasonable.

In Figure 4.6 we show an analogous comparison for the transverse-momentum spec-
trum of the electron (pT,e−) and of the leading lepton (pT,`1). For the pT,e− distribution
we observe excellent agreement over the whole range between the MiNNLOPS and
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Figure 4.6: Same as Figure 4.4, for the transverse momentum of the electron (left) and of the leading
lepton (right).

the nNNLO results, which is fully expected since this distribution should be affected
very mildly by resummation/shower effects. We have explicitly checked that a similar
level of agreement is obtained when considering the same comparison at NNLOqq̄ ac-
curacy, as opposed to the Geneva calculation in [111], where differences between the
Geneva and fixed-order results are observed for pT,e− > 40GeV. When comparing the
MiNNLOPS and the MiNLO′ predictions for the pT,e− spectrum we observe that the
effect of both the NNLOqq̄ corrections and the loop-induced gg contribution is partic-
ularly pronounced in the bulk region of the distribution, where the MiNLO′ result is
more than 20% smaller than the nNNLO result. On the other hand, the transverse
momentum of the leading lepton is subject to shower effects, especially at low pT,`1 ,
and indeed we observe a difference between the Matrix results and the MiNNLOPS

predictions below 40GeV, which become increasingly larger the more steeply the dis-
tribution falls when pT,`1 approaches zero. Above this value, the shower effects are
less pronounced and the two predictions are in good agreement. By comparing the
nNNLO+PS predictions to the NNLO+PS and NNLOqq̄+PS results we can see that
the impact of the loop-induced gg contribution is particularly relevant below 40 GeV,
and it is also predominantly responsible for the relatively large shower effects that we
observe. In fact, we have checked that for the NNLOqq̄+PS result the relative impact of
the shower is smaller than for the NLO+PS result in the gg channel, which is expected
considering the higher perturbative accuracy (and thereby logarithmic terms) already
included at fixed order in the qq̄ channel.

Finally, in Figure 4.7 we show predictions for the transverse momentum of the di-
boson pair (pT,4`). In this case, we also show the NNLO+N3LL result obtained with
Matrix+RadISH [245], which interfaces Matrix [223] to the RadISH resummation
formalism [141, 142], using µR = µF = m4` and Qres = m4`/2 for the resummation scale.
Since Matrix+RadISH does not include the contribution stemming from the loop-
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Figure 4.7: Same as Figure 4.4, for the transverse momentum of the ZZ pair for two different ranges
of pT,4`. In both plots, we also show the NNLO+N3LL result computed with Matrix+RadISH [245].

induced gg channel, we perform this comparison by considering only the qq̄-initiated
process, i.e. at the NNLOqq̄(+PS) level. At small values of the ZZ transverse momen-
tum we observe an excellent agreement between the NNLO+N3LL and the MiNNLOPS

result, especially considering the lower accuracy of the parton shower in that region;
MiNNLOPS is between 5% and 8% larger than the NNLO+N3LL prediction below 10
GeV and has a larger uncertainty band reflecting its lower accuracy. On the other hand,
the MiNLO′ result is O(10%) smaller than the NNLO+N3LL and the MiNNLOPS

predictions and its uncertainty band does not overlap with either of the more accu-
rate results below 40GeV. Fixed-order calculations actually lead to unphysical results
in the small-pT,4` region due to large logarithmic corrections, which need to be re-
summed to all orders. Indeed, the NNLO result diverges at low transverse momentum,
and its prediction differs significantly from the ones including resummation effects. At
larger values of pT,4` the NNLO result is instead in agreement with the NNLO+N3LL,
MiNLO′ and MiNNLOPS predictions, as one may expect since all of them have the
same formal accuracy in the tail of the distribution.

In conclusion, we observe overall a very good agreement between MiNNLOPS, fixed-
order, and analytically resummed results across a variety of distributions, which pro-
vides a robust validation of our calculation. The MiNLO′ result, despite the consid-
erably larger uncertainty bands, rarely overlaps with the (n)NNLO(+PS) predictions,
thus highlighting the importance of higher-order corrections to this process. Moreover,
certain observables require the resummation of large logarithmic contributions, which
renders the matching to the parton shower mandatory.

4.2.3.2 Comparison against data

In this section we compare our MiNNLOPS predictions at nNNLO+PS to the CMS
measurement presented in [195] in the setup-fiducial defined in Table 4.1. We have
generated the events and estimated the theoretical uncertainties as described in Sec-
tion 4.2.1. We note that in order to compare against data our predictions include MPI
and hadronization effects, as well as QED corrections in the shower approximation.

The comparison between MiNNLOPS predictions and experimental data is pre-
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sented in Figure 4.8. Altogether, we show predictions for six observables: the invariant
mass and the transverse momentum of the diboson pair (m4` and pT,4`), the sum of
the four individual transverse-momentum distributions of each final-state lepton (which
corresponds to the average of the lepton transverse-momentum distributions), the sum
of the two distributions of the transverse momentum of the reconstructed Z bosons
(which analogously corresponds to the average of the Z transverse-momentum distri-
butions), and the separation between the two Z bosons in the azimuthal angle (∆φZ1,Z2)
and in the η–φ plane (∆RZ1,Z2). In all cases, except for ∆φZ1,Z2 that has a kinematical
endpoint at ∆φ = π, the last bin shown in the figures also includes the contribution of
the overflow.

By and large, we observe a quite remarkable agreement between our predictions
and the experimental data. The invariant mass is well described at low m4`, but
there is a tendency of the data to undershoot the prediction at large m4`, with the
last bin being almost two standard deviations away. In this region EW corrections
are known to be important and they are only partly included here through the QED
shower. Below, we discuss how the inclusion of the NLO EW corrections at fixed
order improves the agreement with data in this region. The transverse-momentum
distribution of the ZZ pair is also well described, except for a two-sigma deviation
in the last bin, with a remarkable agreement for pT,4` values below ∼ 100GeV, where
the all-order corrections provided by the shower are particularly important. The two
averaged distributions of pT,`i and pT,Zi also compare very well to MiNNLOPS, with
deviations in the tail of the distributions only. In the last bins the experimental data
are about two standard deviations away from the theoretical predictions, which can
again be related to the missing EW corrections, as discussed below. The ∆φZ1,Z2 and
the ∆RZ1,Z2 distributions are also very well described by MiNNLOPS, with the data
fluctuating (within one sigma, except for one bin with a two-sigma deviation) around
the central theoretical prediction across the whole plotted range.

The comparison at the level of integrated cross section in Section 4.2.2 showed that
the inclusion of NLO EW effects has a small, but non-negligible impact in the fiducial
setup. Since in our comparison with data we include QED effects via parton-shower
matching, one may wonder whether the proper inclusion of NLO EW effects in a MC
context, see e.g. [209, 246], would further improve the agreement with the data, espe-
cially in the tails of distributions where EW logarithms are important. A possible way
to assess the impact of the EW corrections beyond the parton shower approximation is
to apply to the MiNNLOPS predictions a differential K-factor correction for the NLO
EW corrections that is computed at fixed order accuracy.

We have done this exercise turning off the QED shower in the MiNNLOPS predic-
tions to avoid double counting. The central rescaled prediction is shown in the lower
ratio panels in Figure 4.8. We adopt as our default a factor K(×)

NLOEW, defined using
the multiplicative scheme nNNLO×NLOEW [211], which includes an estimate of mixed
higher-order corrections, divided by the nNNLO result. Note that for distributions
starting at NLO QCD we do not perform this additional comparison, since one would
need to compute the EW corrections to the ZZ+1-jet process. We find that the inclu-
sion of NLO EW corrections within this approximation improves the agreement with
the experimental data for the tails of the m4` and the averaged pT,Zi distributions,
where the effects of Sudakov logarithms are expected to be visible. For the averaged
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Figure 4.8: Comparison between the MiNNLOPS predictions and the CMS data of [195] based on a
137 fb−1 13TeV analysis for various observables. The MiNNLOPS predictions include hadronization
and MPI effects, as well as QED effects as provided by the Pythia8 parton shower. See text for more
details.
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pT,`i distribution their impact is a bit milder, also because the distribution extends to
lower values, and there is no significant improvement compared to data. Furthermore,
we would like to add some comments on the effects of the QED shower below the
m4` ∼ 2mZ threshold (where QED effects are expected to be sizable) in light of its
limited accuracy. First of all, we verified that its effect is below 10% in the first bin of
the m4` distribution in Figure 4.8, but it can become as large as 35% when considering
the setup-inclusive for the same bin instead. Moreover, we notice from Figure 4.8
that the approximation of the QED shower in that region is in good agreement with
the result including NLO EW effects. This is not unexpected, because logarithmic
contributions due to EW Sudakov effects are small in that region and the first emission
is the most relevant one for dressed leptons. We note that a full inclusion of NLO
EW effects in our MiNNLOPS predictions with a complete and consistent matching to
QCD and QED, is left for future work.

4.3 Summary

Let us summarise our main results for Z-boson pair production at the LHC. We have
matched NNLO QCD predictions for the qq̄-initiated process to parton showers using
the MiNNLOPS method, and furthermore included the loop-induced gg-initiated pro-
cess, which contributes at O(α2

s), in the Powheg-Box-Res framework at NLO QCD
accuracy matched to parton showers. When combined, the ensuing nNNLO+PS results
constitute the most accurate theoretical predictions for this process to date.

We have performed an extensive comparison of our MiNNLOPS predictions against
(n)NNLO fixed-order results and the analytic resummation in the transverse momen-
tum of the four-lepton system. We found excellent agreement with fixed-order pre-
dictions in phase-space regions where shower effects are expected to be small. As
expected, for distributions that have a singularity at fixed order the MiNNLOPS pre-
dictions feature the appropriate Sudakov damping close to the singularity and yield
physical results. In particular, the comparison to the NNLO+N3LL pT,4` spectrum
showed quite a remarkable agreement. Moreover, we have shown that MiNNLOPS

corrections are at the level of (15−20)% with respect to MiNLO′, and that the match-
ing to the parton shower is crucial for observables sensitive to soft-gluon effects. It is
interesting to notice that we do not observe the mild tension in the pT,e− distribution
observed in [111] when comparing NNLOqq̄+PS to fixed-order predictions, which moti-
vates a more comprehensive comparison between Geneva and MiNNLOPS predictions
in the future.

We have compared our nNNLO+PS predictions against 13 TeV CMS data of [195]
and found excellent agreement both at the level of production rates and shapes of kine-
matical distributions, with nNNLO+PS predictions and CMS data agreeing on almost
all bins within one sigma. In the few bins where the differences are at the two-sigma
level we have shown that the inclusion of NLO EW corrections removes those differences
in most instances. Our final results have missing higher-order uncertainties that are
of the order of 2% both for inclusive and fiducial cross sections. These uncertainties6

6We note that we consider here only uncertainties associated to scale variation. In particular we have omitted
PDF uncertainties, those related to missing interference effects in the case of identical leptons in the final state,
and those intrinsic to the approximations in the event simulation (e.g. related to the QED shower).
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are of similar size as the current precision of experimental results, which will further
decrease in the future. It is then clear that theoretical predictions with an accuracy
comparable to that of the results presented in this work are mandatory to fully exploit
ZZ cross section measurements at the LHC. This is particularly the case when using
ZZ production data for off-shell Higgs cross section measurements in the h→ 4` chan-
nel to put bounds on the Higgs-boson width, or when constraining the coefficients of
effective-field-theory operators or anomalous triple-gauge couplings. It is interesting
to note that, even though the loop-induced gg contribution is only about 10% of the
total cross section, its uncertainty dominates our final predictions. It is unlikely that a
three-loop calculation for this process will become available in the near future. Still, the
theoretical precision can be further improved if one imposes fiducial cuts that suppress
the loop-induced ggF contribution. For instance, when requiring a large invariant mass
of the lepton system or when considering high-pT leptons, as done in BSM searches,
the ggF contribution becomes less important since the gluon PDFs decrease strongly at
large x values. On the other hand, electroweak effects become more important in these
regions. The approximate combination considered here, which already increases the
agreement with the experimental data in the high-energy tails, needs to be improved
by combining highest-order QCD and QED corrections consistently in parton-shower
simulations in the future.

Since the evaluation of the two-loop contributions is numerically highly demanding,
we made full use of the reweighting facility of Powheg and introduced the possibility
to evaluate the two-loop contributions only at the very end of the event generation,
considerably speeding up the calculation. The code used for our simulations will be
publicly available within Powheg-Box-Res.7 We are confident that this will be valu-
able for upcoming experimental measurements of ZZ production at the LHC, which
require an accurate and fully exclusive simulation of hadron-level events, including
all-order, non-perturbative, and QED effects.

7https://powhegbox.mib.infn.it/
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Chapter 5

Introduction & motivation

The observed resonance around 125 GeV at the LHC [1, 2] with approximately the
properties of the SM Higgs boson not only provides a wealth of possibilities to study
the SM in detail, but also provides a unique tool for searches of manifestations of new
physics, i.e. physics beyond the SM. Without any direct discoveries of new BSM states
at the LHC, in addition to an absence of statistically significant global deviations from
the SM predictions, an effective-field-theory (EFT) paradigm has emerged in which
effects of possible BSM physics can be studied systematically using existing collider
measurements while reserving the possibility to remain agnostic about the specific UV
completion of the theory. In fact, it could very well be that the lack of significant
deviations from the SM picture is mostly due to a large degree of decoupling between
the SM physics around the EW scale and the BSM dynamics at much higher energy
scales, motivating the use of EFTs to search for physics beyond the SM indirectly.

At the heart of any EFT approach lies the concept of decoupling [247], or the idea
that the physics at very small distances should in general not affect the dynamics on
much larger scales, up to a certain accuracy. In situations with a sufficient degree
of decoupling, i.e. with sufficiently separated scales, one can use the ratio of these
scales as an expansion parameter to obtain an effective description of the physics at
the macroscopic level rather than having to consider the full microscopic theory that
underlies it. This is very useful in particle physics, in particular in the search of
BSM dynamics where the potential BSM states are too heavy to be produced on shell.
Such heavy new particles can still contribute to low-energy scattering processes by
appearing as virtual intermediate states in tree-level or loop-level diagrams. Recall
that in quantum field theory, scattering amplitudes are expressed in terms of correlation
functions which exhibit non-analytic behavior (i.e. poles and branch cuts) when the
kinematics allow for internal propagators ∝ 1/(p2 −m2 + iε) to go on shell (p2 = m2).
However, when a virtual particle with mass M is too heavy to be produced on shell
(p2 �M2), its contributions to the amplitude are purely analytic and can therefore be
Taylor expanded, e.g. the tree-level internal propagators for such heavy intermediate
states can be written as

1

p2 −M2
= − 1

M2

{
1 +

p2

M2
+O

(
p4

M4

)}
. (5.1)

The expanded non-local correlation functions will thus resemble an infinite set (or
tower) of local operators that consist purely of light fields.
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In fact, the expansion in terms of local operators can already be achieved at the
level of the Lagrangian, after integrating out the heavy degrees of freedom (i.e. those
associated to the scale M) from the generating functional of correlation functions.
The result is an EFT that includes in addition to the original low-energy Lagrangian
a series of local operators, built purely out of (products of) light degrees of freedom
and derivatives, that obey the symmetries of the low-energy theory such as Lorentz
or gauge invariance. They are accompanied by Wilson coefficients parametrising the
short-distance physics. This constitutes a so-called top-down EFT approach as it starts
from a specific theory in the UV and integrates out the heavy fields to obtain a low-
energy effective description. The projection or matching of the UV model onto the
EFT framework fixes the EFT parameters (i.e. the Wilson coefficients), which can be
done using perturbation theory when the UV completion is weakly-coupled.

It is also possible to define the EFT dynamics without knowing a priori the exact de-
tails of the underlying theory. Starting at a low (accessible) energy scale, one augments
the low-energy Lagrangian by a set of higher-dimensional local operators, assembled
from the low-energy degrees of freedom. The additional operators must respect the
symmetries of the low-energy theory, and are suppressed by a cutoff scale Λ that re-
sembles the massM in (5.1). The associated Wilson coefficients have to determined by
experiment. Such bottom-up EFT approaches are powerful tools because they provide
a systematic way of classifying BSM scenarios in a rather model-independent fashion.

The SMEFT [248–250] is an example of such a bottom-up EFT, where the SM is
viewed as the low-energy realisation of some unknown UV-complete theory. It will be
used throughout Chapters 6 and 7. In the SMEFT, the renormalisable SM Lagrangian
is extended by a series of higher-dimensional operators invariant under the SM gauge
group SU(3)c × SU(2)L × U(1)Y , in the following way

LSMEFT = LSM +

∞∑

n=5

∑

i

c
(n)
i

Λn−4
O(n)
i , (5.2)

where O(n)
i denote the local operators with mass dimension n ≥ 5 and c

(n)
i are their

corresponding dimensionless Wilson coefficients which are suppressed by powers of the
cutoff scale Λ. The idea is that extensions to the SM will involve particles that are at
least heavier than then measured Higgs vacuum expectation value (v ≈ 246 GeV), and
the SMEFT constructed in this way is a consistent IR limit of such extensions, only
limited by the assumptions that Λ > v and the existence of a SM-like Higgs doublet (see
e.g. [250] for a more detailed discussion). We add that the scale Λ in (5.2) for Wilson
coefficients with a magnitude of one does not necessarily correspond to the mass M
of a heavy particle that has been integrated out, but will rather be a combination of
M and its coupling constant in the UV. Moreover, if the operators are expected to
be SM-coupling- and/or loop-suppressed, it will be more useful to adopt a different
normalisation (cf. (6.9) or the discussion in Section 7.3).

At the dimension-five level, the SMEFT adds merely one operator to the SM La-
grangian, which violations lepton-number conservation [251] but allows for the genera-
tion of neutrino masses. Chapters 6 and 7 of this thesis are however rely on the SMEFT
at dimension six, for which the first complete and non-redundant operator basis was
presented in [249]. While efforts are being made to obtain a general fit of the many

– 75 –



Chapter 5. Introduction & motivation

dimension-six SMEFT operators, e.g. 63 in the case of [249], to the available exper-
imental data (see for example [252, 253] for some recent results), requiring absolute
model-independence can in practice impede the extraction of meaningful results due to
the large number of free parameters in the fit. In Chapters 6 and 7 we will therefore
consider only a subset of the full dimension-six operator basis, the choices of which we
will further motivate in the relevant sections.

Also the in Chapter 1 mentioned hierarchy problem of the Higgs sector can be un-
derstood from an EFT perspective. A nice intuitive explanation, adopted from [254],
is based on the same dimensional analysis that leads to the suppression of higher-
dimensional operators. The Λ-suppression in (5.2) follows immediately from the re-
quirement of a dimensionless action in a four-dimensional spacetime and could explain
the fact that so far any significant effects due to higher-dimensional operators have
escaped detection. Applying the same logic to the only dimension-two operator in the
Lagrangian, the Higgs mass, then yields an enhancement by two powers of Λ, i.e.

cΛ2 |H|2 , (5.3)

where c is a numerical coefficient and H the SM Higgs doublet. Since we have measured
the Higgs mass to be mh = 125 GeV and therefore µ2 = m2

h/2 = (89 GeV)2 in the SM,
it follows that when new dynamics is suppressed by a large cutoff scale, for instance in
a Grand Unified Theory (GUT) associated with a scale ΛGUT ∼ 1016 GeV, an enormous
hierarchy appears as

µ2

Λ2
GUT

=
(89 GeV)2

(1016 GeV)2
∼ 10−28 . (5.4)

The unnaturally small ratio in (5.4) is what reflects the hierarchy problem in this
context, which boils down to the issue that by virtue of the same dimensional analysis
that requires the higher-dimensional operators to be suppressed by powers of the scale
of heavy new physics, we would expect a Higgs mass that is different from the observed
value by many orders of magnitude. The problem moreover manifests itself beyond
tree level, when heavy states perturb the Higgs mass via loop contributions to its
self-energy, which exhibit a strong sensitivity to Λ. This is most easily made explicit
using a cutoff-based regularistation scheme where the suppression scale Λ enters as
the regulator of the (quadratic) UV divergences, but holds also when using a mass-
independent regularisation scheme like dimensional regularistation. It follows that a
miraculous cancellation has to occur within the renormalisation procedure in order to
correctly predict the Higgs mass around the EW scale, and hence the hierarchy or
naturalness problem is phrased in terms of a fine-tuning issue.

Assuming the SM to be valid up to a cutoff scale Λ, the degree of tuning can be
understood more quantitatively as follows. The SM particle with the largest coupling
to the Higgs is the top quark, which at one loop generates a correction to the Higgs
mass of

δµ2 = −3y2
t Λ2

8π2
|H|2 , (5.5)

where yt =
√

2mt/v denotes the top-Yukawa coupling constant. We can quantify the
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fine-tuning of the Higgs mass as follows

∆ =

∣∣∣∣
δµ2

µ2

∣∣∣∣ =

∣∣∣∣
3y2

t Λ2

8π2

1

µ2

∣∣∣∣ ≈





1 , Λ = 500 GeV
4 , Λ = 1 TeV
100 , Λ = 5 TeV

. (5.6)

Thus, to have a degree of tuning at the order of one requires new physics at the TeV
scale. Solutions to the hierarchy problem that have received a lot of attention include
supersymmetric models and composite-Higgs models, where the dimension-two Higgs
mass term is either protected by a new symmetry or even absent (see e.g. [254, 255]
for extensive reviews of such scenarios).

Instead of considering a specific theory implementation, one can adopt a more
bottom-up approach and ask how we can probe a large class of possible solutions
from a phenomenological point of view (as done in [256]). An appealing possibility is
to focus on theories where the large top-quark corrections to the Higgs are cancelled
by the addition of neutral (i.e. uncharged under the SM group) scalar top partners,
achieving so-called neutral naturalness. This motivates us to look in Chapter 8 for
generic Higgs-portal interactions of the form

cφ |H|2φ2 , (5.7)

where φ is a real scalar that is a singlet under the SM gauge group. Notice that the
aforementioned cancellation requirement fixes the coefficient to |cφ| = 2Nc/

√
Nr y

2
t with

Nc = 3 the number of colours and Nr the number of scalar top partners, assuming the
scalar partners to be approximately degenerate in mass.

The remainder of Part II of this thesis is structured as follows. In Chapter 6, we
study modifications of the trilinear Higgs coupling within the context of the SMEFT.
After a discussion of the mechanism of electroweak symmetry breaking (EWSB) in
the SM (Section 6.1.1) and in the presence of dimension-six operators in the SMEFT
(Section 6.1.2), we analyse in Section 6.2 the sensitivity to such operators in off-shell
Higgs production at the LHC. We compare our results to projections of future single-
Higgs cross-section measurements in Section 6.3 and provide a summary and outlook
in Section 6.4. Subsequently, in Chapter 7 we turn our attention to the SMEFT
dimension-six operators that lead to modifications of the bottom-Higgs and charm-
Higgs dynamics. We provide a short review of the limits on these operators that were
previously obtained in Higgs physics (Section 7.1), after which in Section 7.2 we analyse
a variety of non-Higgs observables to constrain the associated Wilson coefficients. A
discussion of our results in provided in Section 7.3. Finally, in Chapter 8 we study
Higgs-portal couplings to |H|2. Motivated the connections DM and models of neutral
naturalness (cf. Section 8.1), we perform a sensitivity study for the HL-LHC, high-
energy LHC (HE-LHC) and Future Circular Collider (FCC) to Higgs-portal interactions
contributing to off-shell Higgs production in the ZZ → 4` decay channel (Section 8.2)
and finish with a discussion of our results in Section 8.3.
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Chapter 6

The trilinear Higgs coupling

In the pursuit of observing or constraining deviations from the SM picture, measuring
the couplings of the Higgs boson to the other bosons, fermions and itself lies at the
heart of the physics programme at the LHC. The couplings of the scalar resonance to
EW gauge bosons and third-generation fermions have been tested extensively, showing
agreement with those of the SM Higgs boson at the level of (5 − 20)% [24, 25]. The
strength of these couplings will be further scrutinised at the high-luminosity option of
the LHC and possible future colliders. In contrast to the couplings of the Higgs boson
to EW gauge bosons and third-generation fermions, the Higgs couplings to light matter
fields and its self-interactions are largely unexplored at present (cf. for example [257]
for an overview).

In this chapter, we study possible modifications of the trilinear Higgs self-interaction
originating from local dimension-six operators within the SMEFT. First, in Section 6.1
we provide a brief review of the mechanism of EWSB in the SM, introduce the effective
interactions that are relevant for the computations performed in Section 6.2 and show
explicitly how they modify the trilinear Higgs coupling. In Section 6.2, we investigate
the LHC Run 3 and the HL-LHC sensitivity to these modifications from off-shell Higgs
production in the ggF channel, considering decays to four charged leptons, i.e. h∗ →
ZZ → 4`. Within the context of the SMEFT, we study the effects of a modified trilinear
Higgs coupling through a shape analysis of differential distributions. We compare our
results to the limits one expects to obtain from inclusive single-Higgs production cross-
section measurements at future LHC runs in Section 6.3. Finally, we provide a brief
summary and outlook in Section 6.4.

6.1 Electroweak symmetry breaking

6.1.1 Standard Model

In the SM, the minimal realisation of electroweak symmetry is achieved by introducing
one complex Higgs doublet field. The renormalisability of the SM requires its La-
grangian density, and thus also the terms that describe the potential energy associated
to the Higgs field, to have a mass dimension of four. From there, it follows that the
most general form of the Higgs potential in the SM is given by

VSM = −µ2H†H + λ
(
H†H

)2
, (6.1)
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where the Higgs field H is a weak isospin doublet, defined as

H =

(
H+

H0

)
. (6.2)

Notice that the SM Higgs potential (6.1) is fully parametrised by the two parameters µ
and λ, which have a mass dimension of one and zero, respectively. The vacuum, which
corresponds to the ground state of the potential (i.e. the configuration with minimum
energy), is found by minimising (6.1). This will give rise to the notion of a vacuum
expectation value (VEV) for the Higgs field as a combination of µ and λ. In order for
the potential to be bounded from below we must require λ > 0, after which we are left
with two possibilities depending on the sign of µ2. For µ2 < 0, the potential has a simple
parabolic shape with a minimum located at zero, while for µ2 > 0, minimising (6.1)
gives rise to an infinite number of degenerate minima

〈H†H〉 ≡ v2

2
=
µ2

2λ
, (6.3)

where the Higgs VEV, denoted as v, is the value of H that minimises the potential.
Any choice for v will spontaneously break the SU(2)L × U(1)Y electroweak symmetry
and hence generate masses for the weak gauge bosons. This is often referred to as
the Brout–Englert–Higgs mechanism [9–11]. Since the photon should remain massless,
only the neutral component of H should acquire a non-zero VEV. Hence, without loss
of generality,1 we choose the the vacuum state of the Higgs field as

〈H〉 =
1√
2

(
0

v

)
. (6.4)

After EWSB, we can expand the Higgs field about its VEV in order to study the fluctu-
ations around this new minimum. To this end, we introduce the following reparametri-
sation of the Higgs field

H = U−1 (ξ)

(
0

(v + h) /
√

2

)
, with U (ξ) = exp

(
− i
v

∑

i

τiξ
i

)
, (6.5)

where τi denote the three SU(2)L generators and ξi and h are four real scalar fields,
which all of course have a vacuum expectation value of zero. One could expect the
three phase fields ξi to be the massless Goldstone bosons as postulated by the Gold-
stone theorem [7, 8] for any spontaneously-broken continuous symmetry. However, in
a theory where these would-be Goldstone bosons have the same quantum numbers as
the long-range vector fields, these modes instead provide the extra longitudinal degrees
of freedom needed to turn the massless gauge bosons into massive particles. This is
most easily understood by performing a gauge transformation2 in such a way that the
physical Higgs field h is the only remaining dynamical field entering the Higgs doublet,
i.e.

H → 1√
2

(
0

v + h

)
, (6.6)

1We can always make a SU(2)L rotation such that the only H0-component of H acquires a real VEV.
2See for instance [122] for the explicit transformations.
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which is called unitary gauge. In this gauge the Lagrangian becomes simply that
of a massive gauge boson and it is therefore often said that in unitary gauge, the
would-be Goldstone boson is eaten by the gauge boson via the Higgs mechanism. By
plugging (6.6) into the scalar potential in (6.1) and using the definition of the Higgs
VEV given in (6.3), one obtains the following SM Higgs potential after EWSB

VSM =
m2
h

2
h2 + vλh3 +

λ

4
h4 , (6.7)

where we have omitted constant terms and identified the Higgs mass as mh =
√

2λv2.
Notice that in the SM the trilinear and the quartic Higgs self-couplings are described
by the same parameter λ.

6.1.2 Dimension-six SMEFT

To allow for a model-independent analysis, we work in the framework of the SMEFT
to parametrise the possible BSM physics entering the trilinear Higgs coupling. We
consider only the subset of dimension-six CP-even operators in the so-called Strongly
Interacting Light Higgs (SILH) basis [258] that are build purely from SM Higgs doublets
H and derivatives:

O6 = −λ |H|6 , OH =
1

2

(
∂µ|H|2

)2
, OT =

1

2

(
H†

↔
DµH

)2
, (6.8)

where we have used the short-hand notation H†
↔
Dµ H = H†DµH − (DµH)†H. We

thus implicitly assume that the couplings of the Higgs boson to EW gauge boson and
fermions are SM-like and focus our attention on the self-interactions contained in (6.17).
Note that the redundant operators OR = |H|2 |DµH|2 and OD = |D2H|2 do not appear
in (6.8) as they can be removed in the full SILH basis via an appropriate redefinition
of the Higgs field or equivalently its equations of motion [259]. Furthermore, as the
operator OT does not modify the trilinear Higgs coupling and is moreover severely
constrained through measurements of the ρ parameter describing the degree of custodial
symmetry violation [23], it is irrelevant for the purpose of this work.

Within these restrictions, it is sufficient to supplement the SM Lagrangian with the
effective operators O6 and OH only, resulting in the following effective Lagrangian

L = LSM +
∑

i=6,H

c̄i
v2
Oi , (6.9)

where c̄i are Wilson coefficients understood to be evaluated at the EW scale, i.e. µ =

O(v). Including the operator O6 in the Higgs potential results in the following form
before EWSB

VSMEFT = −µ2H†H + λ̃
(
H†H

)2
+
λc̄6

v2

(
H†H

)3
, (6.10)

where we have used the notation λ̃ to distinguish it from the SM coupling λ. By
minimising the potential, we find the following relation for VEV of the Higgs field

〈H†H〉 ≡ v2

2
=

2µ2

3 c̄6λ+ 4λ̃
, (6.11)
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where one observes that the SM result (6.3) is retrieved by setting c̄6 to zero and λ̃→ λ,
as should be the case. We proceed along the lines of the SM case and apply the EWSB
procedure by substituting H with its expansion around the VEV in unitary gauge.
This yields, neglecting terms of O

(
h5
)
and higher, in the broken phase

VSMEFT =
v2

2

(
3 c̄6λ+ 2λ̃

)
ĥ2 +

(
λ̃+

5

2
c̄6λ

)
vĥ3 +

1

4

(
λ̃+

15

2
c̄6λ

)
ĥ4 , (6.12)

where we have written ĥ to indicate that our result is not yet canonically normalised,
as will be explained below. The Higgs mass can be read off from the first term in (6.12),
which in turn provides the following definition for λ̃

λ̃ =
m2
h

2v2
− 3

2
c̄6λ = λ

(
1− 3

2
c̄6

)
, (6.13)

where we have used the SM relation λ = m2
h/(2v

2). The above consideration allow us
to write the potential (6.12) in the following simple form

VSMEFT =
m2
h

2
ĥ2 + λ (1 + c̄6) vĥ3 +

λ

4
(1 + 6 c̄6) ĥ4 . (6.14)

The last step is to perform the canonical normalisation, which is necessary to have a
well-defined propagator for the physical Higgs field h.3 The dimension-six operator OH
contributes to the kinetic term of the Higgs field, which together with the SM term
yields a factor of (1 + c̄H) multiplying the kinetic term for ĥ. The kinetic term for the
canonically normalised physical Higgs field h is then obtained via the simple rescaling

ĥ→ h =
(

1 + c̄H

) 1
2
ĥ . (6.15)

The effect of OH therefore represents a universal shift of all couplings of the Higgs
boson. Hence, the trilinear and quartic self-couplings of the physical Higgs field h

including effects of both O6 and OH are given by

L ⊃ −λ
(

1 + c̄6 −
3

2
c̄H

)
vh3 − λ

4

(
1 + 6 c̄6 − 2 c̄H

)
h4 . (6.16)

6.2 Off-shell Higgs production as a probe of the trilinear
Higgs coupling

As shown in Section 6.1.1, the trilinear and quartic couplings of the physical Higgs field
h in the SM are parametrised by the scalar potential

VSM =
m2
h

2
h2 + λvh3 +

κ

4
h4 , (6.17)

where mh ' 125 GeV and v ' 246 GeV are the Higgs mass and VEV, respectively, and
the trilinear (λ) and quartic (κ) Higgs couplings obey the relation

λ = κ =
m2
h

2v2
' 0.13 . (6.18)

3The canonical rescaling corresponds to a finite wave-function renormalisation which ensures that the
residuum of the Higgs propagator is one [260].
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The SM potential is thus fully determined by only two parameters, namely v and λ.
However, many BSM scenarios allow for deviations of the Higgs self-couplings with
respect to their SM predictions (a comprehensive collection of such theories can be
found in the white paper [41]) and, consequently, could imply a departure from the
SM relation (6.18). Measuring or constraining the Higgs self-couplings is therefore
essential to our understanding of the mechanism of EWSB and furthermore provides a
way to probe the existence of new physics.

The aforementioned relatively loose constraints on the Higgs self-interactions are
due to the smallness of the cross sections of double-Higgs and triple-Higgs production,
the go-to observables for testing the Higgs potential because of their direct sensitivity
to trilinear and quartic Higgs couplings. As the triple-Higgs cross section is O(0.1 fb)

for pp collisions at a centre-of-mass energy of
√
s = 14 TeV even at the end of HL-

LHC, having an integrated luminosity of 3 ab−1 at hand, the quartic Higgs coupling
will remain unexplored (cf. [261–270] for the prospects to determine the quartic Higgs
coupling at future colliders). The HL-LHC prospects for double-Higgs production are
considerably better but still remain challenging as the cross section is O(33 fb) in pp
collisions at

√
s = 14 TeV. As a result, only O(1) determinations of the trilinear Higgs

coupling from double-Higgs production seem to be possible at the LHC — see [271, 272]
for the latest prospect studies by ATLAS and CMS. With this in mind, other methods
of constraining the trilinear Higgs coupling have been proposed in recent years. The
indirect approach first outlined in [273], where the sensitivity to the trilinear Higgs
coupling arises from loop corrections to the process e+e− → Zh, was later extended
to the Higgs production and decay modes relevant at the LHC [274–279], at lepton
colliders [280, 281] and to EW precision observables [282, 283].

Analyses of the constraints on the trilinear Higgs coupling including indirect probes
have been presented in [277, 284–286] and recently also by ATLAS and CMS [24, 287–
289]. Generally, the direct constraints on λ obtained through double-Higgs production
were shown to furnish the most stringent bounds, but indirect constraints from single-
Higgs production processes have the potential to be competitive or could fulfil at least
a complementary role. As already pointed out in the works [257, 275, 276], including
measurements of differential distributions of single-Higgs processes could turn out to be
crucial due to their non-trivial dependence on λ. This point was further investigated
in the article [277], where it was found that the associated production of the Higgs
together with a EW gauge boson (V h) or a top-antitop pair (tt̄h) provide additional
sensitivity to λ at the differential level.

In this section, we examine the constraints on the trilinear Higgs coupling that
originate from off-shell Higgs production in proton-proton (pp) collisions. BSM effects
entering the trilinear Higgs coupling are parametrised within the SMEFT as discussed
in Section 6.1.2, which, upon EWSB and canonical normalisation of the Higgs kinetic
term, can be summarised as

(
cf. (6.16)

)

L ⊃ −λc3vh
3 , (6.19)

where

c3 = 1 + c̄6 −
3

2
c̄H . (6.20)
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Notice that while the sensitivity to the Higgs trilinear coupling in the process gg →
h∗ → ZZ → 4` arises through NLO EW corrections, the Wilson coefficient c̄H ap-
pears already at the Born level as it not only modifies the Higgs trilinear coupling,
but also causes a universal shift of all couplings of the Higgs boson. We therefore in-
clude c̄H at LO in our numerical analysis (Section 6.2.2), while parametrising the NLO
corrections involving insertions of the Higgs trilinear coupling (Section 6.2.1) solely
via the Wilson coefficient c̄6. Including c̄H also at NLO would require taking into
account all SM NLO EW effects, but this has a negligible effect on the extraction of
c̄6 [277, 281]. Effects coming from higher-dimensional pure Higgs operators such as
O8 = −λc̄8/v

4 |H|4 are not considered, but could in principle be implemented by shift-
ing the correction factor in (6.20) in an appropriate manner, for example by 2 c̄8 in the
case of O8.

6.2.1 Description of the gg → h∗ → ZZ calculation

In this section we describe the calculation of the O(λ) corrections to the process gg →
h∗ → ZZ that arise in the context of (6.9). The corrections associated to insertions of
the operator O6 are illustrated in Figure 6.1. They fall into three classes: (i) corrections
to ggF Higgs production, (ii) corrections to the Higgs propagator and (iii) corrections
to the Higgs decay. In the following, we will discuss separately each of these three
ingredients as well as their implementation in our MC code.

6.2.1.1 Higgs production

The O(λ) corrections to ggF Higgs production receive contributions from both two-loop
topologies (see the upper Feynman diagram in Figure 6.1) as well as from the wave-
function renormalisation of the Higgs boson field. The relevant renormalised vertex
that describes the process g(p1) + g(p2)→ h(p1 + p2) can be written as [278]

Γ̂µνggh (p1, p2) = −αsδ
a1a2

πv

(
ηµν p1 · p2 − pν1 pµ2

)
[
δZh

2
F1 +

λc̄6

(4π)2
F2

]
, (6.21)

where a1 and a2 are colour indices and ηµν = diag (1,−1,−1,−1) is the Minkowski
metric. In addition,

δZh = Nh c̄6 (c̄6 + 2) , Nh =
λ

(4π)2

(
9− 2

√
3π
)
' −1.54 · 10−3 , (6.22)

is the one-loop correction to the Higgs boson wave function associated to insertions of
the operator O6 [274, 275] and

F1 =
m2
t

m2
h

[
2−

(
m2
h − 4m2

t

)
C0

(
ŝ, 0, 0,m2

t ,m
2
t ,m

2
t

) ]
, (6.23)

represents the one-loop triangle diagram with internal top quarks and mt is the top-
quark mass. Here ŝ = 2p1 · p2 and the C0 function denotes a three-point Passarino–
Veltman scalar integral for which our definition follows the conventions used in the
LoopTools package [290]. The non-factorisable two-loop form factor F2 has been cal-
culated analytically in [275, 278] using the method of asymptotic expansions, which in
this case is valid up to energies

√
ŝ ' mt. To cover the full off-shell range of interest up
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Figure 6.1: Representative Feynman diagrams that lead to a O(λ) correction to the process gg →
h∗ → ZZ. The black boxes denote insertions of the operator O6 introduced in (6.8). Consult the main
text for further details.

to
√
ŝ = 1 TeV, we employ the numerical results for the non-factorisable two-loop form

factor F2 presented in [267, 268] in our numerical analysis performed in Section 6.2.2.

6.2.1.2 Higgs propagator

The Higgs propagator also receives corrections from insertions of the operator O6 (see
the centre graph in Figure 6.1). The resulting renormalised contribution to the self-
energy of the Higgs takes the form

Σ̂(ŝ) = Σ(ŝ) +
(
ŝ−m2

h

)
δZh − δm2

h , (6.24)

where the one-loop corrections to the Higgs wave function has already been given
in (6.22) and the bare Higgs self-energy and the mass counterterm in the on-shell
scheme are given by the following expressions

Σ(ŝ) =
λc̄6

(4π)2
(c̄6 + 2) 9m2

hB0

(
ŝ,m2

h,m
2
h

)
,

δm2
h =

λc̄6

(4π)2
(c̄6 + 2) 9m2

hB0

(
m2
h,m

2
h,m

2
h

)
.

(6.25)

Here the B0 functions are two-point Passarino-Veltman scalar integrals defined as
in [290].
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6.2.1.3 Higgs decay

The full O(λ) correction to the Higgs decay h→ ZZ receives a two-loop contribution
(see the lower diagram in Figure 6.1) as well as a counterterm contribution involving
Higgs wave-function renormalisation. In the notation of [276], the relevant renormalised
vertex describing the h(p1 + p2)→ Z(p1)Z(p2) transition reads

Γ̂µνhZZ (p1, p2) =
2m2

Z

v

[
ηµνG1 + pν1 p

µ
2 G2

]
, (6.26)

wheremZ denotes the Z-boson mass. The O(λ) corrections to the one-loop form factors
G1 and G2 are given by

G1 =
δZh

2
− λc̄6

(4π)2

{
12
[
m2
ZC0

(
(p1 + p2)2, p2

1, p
2
2,m

2
h,m

2
h,m

2
Z

)

− C00

(
(p1 + p2)2, p2

1, p
2
2,m

2
h,m

2
h,m

2
Z

) ]
+ 3B0

(
(p1 + p2)2,m2

h,m
2
h

)
}
,

G2 =
λc̄6

(4π)2
12
[
C1

(
(p1 + p2)2, p2

1, p
2
2,m

2
h,m

2
h,m

2
Z

)

+ C11

(
(p1 + p2)2, p2

1, p
2
2,m

2
h,m

2
h,m

2
Z

)
+ C12

(
(p1 + p2)2, p2

1, p
2
2,m

2
h,m

2
h,m

2
Z

) ]
,

(6.27)

and the tensor coefficients C1, C00 and C11 of the three-point Passarino-Veltman inte-
grals are defined as in the publications [276, 290].

6.2.1.4 MC implementation

The three different types of O(λ) corrections affect not only the overall size of the
gg → h∗ → ZZ → 4` cross section, but also modify the shape of kinematic distributions
such as the four-lepton invariant mass m4`. In order to be able to predict gg → h∗ →
ZZ → 4` we have implemented the c̄6 corrections arising from ggF Higgs production,
the Higgs propagator and the Higgs decay to Z bosons into version 8.0 of MCFM [291].
Our implementation includes all contributions up to O(λ2) that arise from squaring
the full gg → h∗ → ZZ matrix element (ME) which comprises both the BSM graphs
depicted in Figure 6.1 as well as the LO SM Feynman diagram shown on the left-
hand side of Figure 6.2. We also note that the contribution to the wave-function
renormalisation constant (6.22) coming from the propagator corrections atO(λ) exactly
cancels against those of the vertices when combined to obtain the full BSM contribution
to the off-shell gg → h∗ → ZZ amplitude. This cancellation is expected since in
the considered process the Higgs propagates on an internal line. It can be explicitly
seen by comparing the δZh part of (8.3), which contributes as (−δZh) times the LO
SM amplitude since it is part of the second-order correction in the geometric series
expansion of the propagator, with the δZh-dependent parts of the vertex contributions
in (6.21) and (6.27), which each gives a contribution proportional to δZh/2 times the LO
SM amplitude. Notice that as a result of this cancellation the only O(λ) contributions
quadratic in the Wilson coefficient c̄6 arise from (6.25) with the bare self-energy Σ(ŝ)

being the only ŝ-dependent correction of this type.
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Figure 6.2: SM contributions to pp → ZZ. The left, centre and right Feynman diagram represents
a LO contribution to the gg → h∗ → ZZ, gg → ZZ and qq̄ → ZZ channel, respectively. In the case
of the left graph there are also contributions involving bottom quarks. These diagrams are included
in our analysis. See the text for additional details.

6.2.2 Numerical analysis

In this section, we study the impact of the O(λ) corrections to the gg → h∗ → ZZ → 4`

process on the m4` spectrum and a ME kinematic discriminant to be defined later.
Following a brief discussion of the impact of QCD corrections, these results are then
used to perform a sensitivity study of the two-dimensional constraints on the Wilson
coefficients c̄6 and c̄H that can be obtained at LHC Run 3 and the HL-LHC from
measurements of pp → ZZ → 4`. The bounds from Higgs off-shell measurements
are compared to the limits that are expected to arise from a combination of inclusive
single-Higgs measurements at the end of LHC Run 3 as well as the HL-LHC era in the
next section.

6.2.2.1 Modifications of differential distributions

In Figure 6.3 we show m4` distributions for the Higgs channel alone (left panel) and
for the Higgs channel, the gluon continuum background and their interference com-
bined (right panel) at LO in QCD. An example of a one-loop Feynman diagram
that contributes to the SM gg → ZZ background is shown in the centre of Fig-
ure 6.2. We restrict ourselves to the off-shell region by considering a mass window of
220 GeV < m4` < 1000 GeV. The leptons (` = e, µ) are required to be measured in the
pseudorapidity range |η`| < 2.5 and the lepton with the highest transverse momentum
(pT ) must satisfy pT,`1 > 20 GeV while the second, third and fourth lepton in pT order is
required to obey pT,`2 > 15 GeV, pT,`3 > 10 GeV and pT,`4 > 6 GeV, respectively. The
lepton pair with the mass closest to the Z-boson mass is referred to as the leading dilep-
ton pair and its invariant mass is required to be within 50 GeV < m12 < 106 GeV, while
the subleading lepton pair must be in the range of 50 GeV < m34 < 115 GeV. Similar
cuts are employed in the ATLAS and CMS analyses [292–298]. The input parame-
ters used throughout our work are given by GF = 1/(

√
2v2) = 1.16639 · 10−5 GeV−2,

mZ = 91.1876 GeV, mh = 125 GeV and mt = 173 GeV. The shown spectra assume
pp collisions at

√
s = 14 TeV and employ NNPDF40_nlo_as_01180 parton distribution

functions (PDFs) [299] with the renormalisation and factorisation scales µR and µF
dynamically, i.e. for each event, set to m4`. Our predictions include both the different-
flavour (i.e. e+e−µ+µ−) and the same-flavour (i.e. 2e+2e− and 2µ+2µ−) decay channels
of the two Z bosons.

Two features of the distributions shown on the left-hand side of Figure 6.3 deserve a
further discussion. First, below the two-Higgs production threshold at m4` = 2mh the
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Figure 6.3: Left: m4` distributions for the Higgs signal in the SM (dashed black) and including the
O(λ) corrections calculated in Section 6.2.1 assuming c̄6 = 10 (solid red) and c̄6 = 20 (solid blue).
Right: m4` spectra including the Higgs signal, the continuum background and their interference in
the SM (dashed black). The results for the two BSM scenarios corresponding to c̄6 = 20 (solid red)
and c̄6 = 30 (solid blue) are also displayed. All distributions are obtained at LO in QCD assuming
pp collisions at

√
s = 14 TeV. The lower panels show the ratios between the distributions and the

corresponding SM predictions. Consult the main text for further details.

BSM gg → h∗ → ZZ → 4` spectra are both visibly smaller that the SM prediction.
This feature can be understood by noting that for sufficiently large values of the Wilson
coefficient c̄6 the terms (6.25) provide the dominant O(λ) corrections. In fact, the
Higgs propagator corrections necessarily reduce the real part of gg → h∗ → ZZ → 4`

amplitude for m4` < 2mh, and this destructive interference can be so pronounced that
the BSM contribution almost exactly cancels the SM contribution. Second, above the
two-Higgs production threshold the bare Higgs self-energy Σ(ŝ) develops an imaginary
part because both internal Higgs lines in the propagator correction (see the centre
graph in Figure 6.1) can go on their mass shell. As a result the BSM gg → h∗ →
ZZ → 4` spectra can be larger than the SM prediction for m4` > 2mh. Notice that
the two aforementioned features are clearly visible in the case of the BSM distribution
corresponding to c̄6 = 20, while for c̄6 = 10 the spectrum is not enhanced above the
two-Higgs production threshold because the O(λ) corrections to Higgs production and
decay (see the upper and lower graph in Figure 6.1) are numerically relevant in this
case and tend to cancel the effect of the Higgs propagator.

Our results for the gg → ZZ → 4` distributions including the Higgs signal, the
continuum background and their interference are displayed in the right panel of Fig-
ure 6.3. In the vicinity of the two-Higgs production threshold m4` = 2mh one observes
a plateau-like structure in both BSM spectra. This feature arise from the combination
of the modified Higgs signal and the interference of the BSM signal with the contin-
uum SM background. This atypical shape change provides a genuine probe of loop
corrections to the Higgs propagator involving light virtual particles. Such corrections
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arise in the case at hand from the insertions of the operator O6 but they can also ap-
pear in ultraviolet (UV) complete models of BSM physics (see for instance [300–303]).
Both BSM spectra also show an enhancement in the m4` tail. Notice that the ob-
served shape change is qualitatively different from the relative modifications that arise
from tree-level insertions of dimension-six SMEFT operators which typically show a
roughly quadratic growth with m4` (see for example [301, 304]). Similar statements
apply to the case when the SM Higgs boson width is rescaled in such a way that the
pp→ h∗ → ZZ → 4` cross section close to the Higgs peak is unchanged [168, 169, 305].
See Appendix B for a detailed discussion.

We have seen that the inclusion of the O(λ) corrections to the pp→ h∗ → ZZ → 4`

amplitude associated to insertions of the SMEFT operator O6 lead to phenomenologi-
cally relevant kinematic features in the m4` distribution. The analysis sensitivity to the
Higgs channel, especially in the off-peak region, has been shown to benefit considerably
from the use of ME-based kinematic discriminants (see for instance [169, 292–298, 306–
308]) to separate the gg → h∗ → ZZ → 4` signal from the main SM background coming
from ZZ production in qq̄-annihilation. A relevant Feynman diagram that contributes
to the qq̄ → ZZ background at LO in QCD is displayed on the right in Figure 6.2.
Being sensitive not only to m4` but to another seven variables such as the invari-
ant masses of the two opposite-sign lepton pairs (for details consult [306–308]), the
ME-based discriminants fully exploit the event kinematics. In practice, the ME-based
discriminants are often embedded in a multivariate discriminant based on a boosted
decision tree (BDT) algorithm, but as it turns out in the case of the four-lepton final
state the sensitivity of the BDT analysis improves only very little with respect to the
ME-based discriminant alone (for example in the case of the analysis [293] the improve-
ment amounts to a mere 2%). In the following, we restrict ourselves to an approach
with only a ME-based discriminant, which we define as follows [293, 294, 296, 298]

DS = log10

(
Ph

Pgg + c · Pqq̄

)
. (6.28)

Here Ph denotes the squared ME for the gg → h∗ → ZZ → 4` process, Pgg is the
squared ME for all gg-initiated channels (including the Higgs channel, the continuum
background and their interference) and Pqq̄ is the squared ME for the qq̄ → ZZ → 4`

process. Following the publications [293, 294, 296, 298] the constant c is set to 0.1 to
balance the qq̄- and gg-initiated contributions. We add that in the SM more than 99%
of the pp → ZZ → 4` cross section fall into the range of −4.5 < DS < 0.5 [293]. The
kinematic discriminant (6.28) thus presents a null test for BSM models that lead to
events with DS < −4.5 or DS > 0.5.

To illustrate the discriminating power of the variable DS we show in the left panel of
Figure 6.4 the normalised SM distributions at LO in QCD for the three contributions
corresponding to the MEs that enter (6.28). The discriminant DS , which is calculated
for every event in the simulation, is implemented in MCFM which uses the gg-initiated
MEs provided in [169]. One observes that the distribution corresponding to qq̄ →
ZZ → 4` peaks at DS ' −3, while the gg → h∗ → ZZ → 4` spectrum is shifted to
higher DS featuring a maximum at around DS ' −0.5. An enhancement of the gg →
h∗ → ZZ → 4` amplitude in the off-shell region will hence lead to a DS distribution
of the full pp → ZZ → 4` process that is shifted to the right compared to the SM
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Figure 6.4: Left: Normalised DS distributions in the SM for the Higgs signal (solid green),
all gg-initiated channels combined (dashed black) and the qq̄-initiated background (solid orange).
Right: Normalised DS distributions for the gg-initiated contributions in the SM (dashed black) and
for c̄6 = 10 (solid red), c̄6 = 20 (solid blue) and c̄6 = 30 (solid green). See the main text for further
explanations.

spectrum. For BSM scenarios that predict an enhancement in the tail of the m4`

distribution, one thus expects to find an excess of events for DS & −1. As discussed in
Appendix B, this is precisely what happens if the Higgs boson couplings and its total
decay width are modified according to (B.1).

In the case of the O(λ) corrections to off-shell Higgs production resulting from
the insertions of the SMEFT operator O6, the modifications of the normalised DS

distributions are more intricate. For the full gg → ZZ → 4` contribution this is
shown on the right-hand side of Figure 6.4. One observes that in the case of c̄6 = 10

the BSM spectrum is shifted to lower values compared to the SM result. This is a
simple consequence of the fact that for c̄6 = 10 the gg → h∗ → ZZ → 4` amplitude
and therefore Ph in (6.28) is reduced for m4` values below the two-Higgs production
threshold (cf. the left panel in Figure 6.3). For c̄6 = 20 one instead sees that the DS

distribution has two maxima: one at DS ' −5 and another one at DS ' −3. The
peak at DS ' −5 (DS ' −3) is associated to kinematic configurations that lead to
a reduction (an enhancement) of Ph for m4` < 2mh (m4` > 2mh) — see again the
left plot in Figure 6.3. Finally, for c̄6 = 30 the BSM contributions always enhance
Ph and hence the DS distribution is shifted to larger values. Notice that the sharp
cut-off of the SM distribution at DS ' −3.5, makes (6.28) more sensitive to kinematic
configurations that reduce Ph rather than enhance it. In fact, this feature turns out
to be the key element that allows to set powerful constraints on BSM scenarios with
c̄6 6= 0 by means of the ME-based discriminant DS .

6.2.2.2 Impact of QCD corrections

In the following we discuss the possible impact of higher-order QCD corrections to
the pp → ZZ → 4` cross section differential in the ME-based kinematic distribution
introduced in (6.28). In fact, as the ggF contribution to pp → ZZ → 4` is loop-
induced (see the centre graph in Figure 6.2), it enters the ZZ production cross section
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at O(α2
s), i.e. at the next-to-next-to-leading order (NNLO) in QCD. State-of-the-art

predictions for four-lepton production at the LHC, obtained at NNLO in QCD [79–
81, 214] and matched to parton shower [44, 217], are reaching an impressive accuracy
of O(2%) for inclusive cross sections and O(5%) in the case of differential distributions.

While a precision phenomenological study of ZZ production a la [44, 79–81, 172,
212, 214, 217] including theO(λ) corrections associated to the insertions ofO6 is beyond
the scope of this work, we wish to assess at least approximately the impact of higher-
order QCD corrections on our analysis, in particular the effects on the DS spectra. To
this purpose we proceed in the following way. We first calculate for each production
channel the so-called K-factor defined as the ratio between the fiducial cross section
at a given order in QCD and the corresponding LO QCD prediction. In the case of
the gg-initiated contribution we employ the results of the recent work [44], where one
of us reported NLO QCD corrections to the corresponding four-lepton invariant mass
spectrum (see Figure 2 of that article). One observes that the ratio between the NLO
and LO ggF predictions is essentially flat in the region of interest for this work, i.e. for
values of the invariant mass within 220 GeV < m4` < 1000 GeV. By averaging over
the ratio of the NLO and LO m4` spectra within the aforementioned m4` window we
find KNLO

gg = 1.83, which is in line with the previous works [172, 212, 214]. In the case
of the qq̄-initiated contribution we utilise the LO and NNLO QCD results obtained
in [214] using MATRIX [223]. The relevant K-factor again turns out to be basically flat
in m4`, with a central value of KNNLO

qq̄ = 1.55, which is in accordance with [79].
The aforementioned K-factors are listed in Table 6.1, along with the scale uncer-

tainties in each production channel at the relevant order in QCD. They are then used
to obtain a QCD-improved prediction for the DS distributions, in the following way:

(
dσ(pp→ ZZ → 4`)

dDS

)

improved

= KNLO
gg

(
dσ(gg → ZZ → 4`)

dDS

)

LO

+KNNLO
qq̄

(
dσ(qq̄ → ZZ → 4`)

dDS

)

LO

.

(6.29)

Here the label LO indicates that both the cross sections as well as the ME-based
discriminant DS are calculated at LO in QCD. Clearly, (6.29) only captures part of the
higher-order QCD corrections to the dσ/dDS spectra, namely those that are associated
to the differential cross sections dσ, but ignores beyond-LO effects to dDS . To improve
upon this approximation one would need to extend the calculation of the ME-based
discriminant (6.28) to the NLO in QCD. While achieving NLO accuracy is in principle
possible for ME-based discriminants [309–311], the actual calculations are in practice
complicated by the fact that they require the use of modified jet algorithms to map
resolved and unresolved parton configurations onto the proper MEs — see also [312]
for a discussion of this point. Since NLO and NNLO QCD corrections to the shapes
of kinematic distributions in pp → ZZ → 4` are small and often indistinguishable
when compared to the associated theoretical uncertainties, it is expected that the LO
discriminant DS as defined in (6.28) maintains its discriminating power beyond the
well-defined LO. This renders the procedure (6.29) a pragmatic and simple approach
to incorporate higher-order QCD effects.

In the left plot of Figure 6.5 we compare the DS spectrum for pp→ ZZ → 4` in the
SM obtained at LO to the QCD-improved DS spectrum (6.29). One observes a close
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σLO
gg σNLO

gg σLO
qq̄ σNNLO

qq̄

Korder
i 1 1.83 1 1.55

∆scale
i

+27.7%
−20.5%

+14.8%
−13.4%

+5.5%
−6.4%

+1.1%
−1.2%

Table 6.1: QCD K-factors, defined as Korder
i = σorder

i /σLO
i , for the channels i = gg, qq̄ at different

orders in QCD along with the associated relative scale uncertainties ∆scale
i for each channel and QCD

order. The numbers for the gg-initiated channel are obtained utilising results presented in [44], while
the results for the qq̄-initiated channel are taken from [214]. Consult the main text for further details.

to flat K-factor of around 1.6 between the LO and the improved prediction of the DS

spectrum for pp→ ZZ → 4`. The uncertainty bands represent the scale uncertainties
obtained by applying the numerical values listed in Table 6.1 to the relevant the LO
and QCD-improved spectra. We observe that the inclusion of higher-order QCD cor-
rections reduces the scale uncertainties by a factor of about 3 from roughly (7 − 8)%

to about (2 − 3)%, in line with recent precision SM phenomenological studies. How-
ever, the fact that the central value of the improved prediction lies well outside the LO
uncertainty bands in all bins demonstrates that at LO, scale variations do not provide
a reliable way to estimate the size of higher-order QCD effects. In fact, similar issues
are known to occur also beyond LO, for example in the case of inclusive ggF Higgs
production (see [313–315] for the corresponding state-of-the-art SM calculations) or
even for four-lepton production [44], where the loop-induced gg contribution entering
at NNLO is unaccounted for by the NLO scale uncertainties. With this in mind and
given that the kinematic discriminant DS is only LO accurate, we wish to take a rather
conservative approach and estimate the theoretical uncertainties to be half of the rela-
tive difference between the QCD-improved and the LO predictions, which corresponds
to a relative uncertainty of about 30%.

On the right-hand side of Figure 6.5 we compare two BSM DS distributions to the
SM prediction, where the scale uncertainties quoted in Table 6.1 and the aforementioned
conservative estimate are shown in the lower panel as the solid green and dot-dashed
green bands around the SM spectrum, respectively. The depicted spectra have all been
obtained using (6.29). In accordance with the general discussion in Section 6.2.2.1, one
observes that the BSM spectra deviate most significantly from the SM distribution for
DS . −3.5, while for DS & −3.5 the deviations are generically small. In fact, for the
two choices of c̄6 shown in the figure the resulting modifications of the DS spectrum for
DS & −3.5 lie well within our conservative theoretical uncertainty band. Furthermore,
since the deviations for DS . −3.5 are associated to the modification of the off-shell
Higgs production cross section in the region m4` < 2mh, they will lead to a detectable
change in events for a sufficiently large |c̄6|. For instance, for c̄6 = 10 (c̄6 = 15) the
shift in the pp → ZZ → 4` cross section restricted to DS < −3.5 amounts to around
0.4 fb (1.2 fb) compared to the SM. This corresponds to around 1200 (3700) additional
pp → ZZ → 4` events at the HL-LHC. Notice finally that the relative modifications
of the DS spectrum due to insertions of O6 are much larger than the shifts seen in the
m4` distribution (cf. the right panel in Figure 6.3). The ME-based discriminant (6.28)
therefore provides a significantly better sensitivity to BSM models with c̄6 6= 0 than

– 91 –



Chapter 6. The trilinear Higgs coupling

0

1

2

3

4

5

6

7

dσ
/d
D
S
[f
b]

-4 -3 -2 -1 0
0.5

1.0

1.5

2.0

DS

R

0

1

2

3

4

5

6

7

dσ
/d
D
S
[f
b]

-4 -3 -2 -1 0

1

10

DS

R

Figure 6.5: Left: DS distributions for the pp→ ZZ → 4` process in the SM obtained at LO (dashed
black) and the QCD-improved prediction (dashed green). The lower panel shows the ratio to the LO
SM prediction and the uncertainty bands been obtained using the scale variations from Table 6.1.
Right: DS spectra for pp → ZZ → 4` production in the SM (dashed green) and for c̄6 = 10 (solid
red) and c̄6 = 15 (solid blue). The thin green band corresponds to the scale uncertainties of the QCD-
improved SM predictions for DS , while the wide green band represents half of the relative difference
between the QCD-improved and the LO SM predictions for ME-based discriminant. The lower panel
shows the ratio of the BSM and SM predictions including the aforementioned uncertainty bands. All
distributions assume pp collisions at

√
s = 14 TeV and the improved SM as well as the BSM predictions

have been obtained by means of (6.29). Additional explanations can be found in the main text.

the m4` spectrum.

6.2.2.3 Constraints on Wilson coefficients c̄6 and c̄H

Below we determine the constraints on the Wilson coefficients c̄6 and c̄H that future
LHC runs may be able to set. In the case of the constraints arising from off-shell Higgs
production, we utilise the QCD-improved DS predictions obtained by (6.29), assum-
ing a detection efficiency of 99% (95%) for muons (electrons) that satisfy the event
selections described at the beginning of Section 6.2.2.1. These efficiencies correspond
to those reported in the latest ATLAS analysis of off-shell Higgs production [298].
The statistical uncertainties of the computed DS distributions are determined per bin
assuming Poisson statistics, i.e. taking the statistical error to be

√
Ni with Ni the

number of events in a given bin i. The largest systematic uncertainties in our analysis
arise from the theoretical uncertainties on the gg → h∗ → ZZ → 4` signal process,
the gg → ZZ → 4` and qq̄ → ZZ → 4` background processes and the interfer-
ence between the gg-initiated signal and background. For the theoretical uncertainties
on the improved DS prediction (6.29) we take the conservative estimate discussed in
Section 6.2.2.2, in which we assume also PDF uncertainties at the level of ±5% are
included. In our LHC Run 3 analysis we will thus use a total theoretical uncertainty of
±30% when determining the bounds on c̄6 and c̄H . Anticipating theoretical advances
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in the case of the HL-LHC we assume that the theoretical uncertainties due to scale
variations and PDFs are reduced to ±15% which does not seem unrealistic. In fact,
similar assumptions are made in the HL-LHC studies [294, 295]. Compared to the
theoretical uncertainties the experimental uncertainties of systematic origin are close
to negligible as they amount to O(2%) (see for example [316]). We will thus ignore the
experimental systematics in what follows.

The total number of events in bin i depends on the Wilson coefficients c̄6 and c̄H in
the following way

Ni(c̄6, c̄H) = Ni(c̄6)− 2 c̄HNi(0) , (6.30)

where Ni(c̄6) denotes the number of events which we calculate using MCFM correcting
them by QCD effects (6.29) and lepton efficiencies. Notice that Ni(0) corresponds to
the SM expectation of events. The significance Zi is calculated as a Poisson ratio of
likelihoods modified to incorporate systematic uncertainties on the background using
the Asimov approximation [317, 318]:

Zi =

{
2

[
(si + bi) ln

[
(si + bi)

(
bi + σ2

bi

)

b2i + (si + bi)σ2
bi

]
− b2i
σ2
bi

ln

(
1 +

siσ
2
bi

bi(bi + σ2
bi

)

)] }1/2

.

(6.31)
Here si (bi) represents the expected number of signal (background) events in bin i and
σbi denotes the standard deviation that characterises the systematic uncertainties of the
associated background. To set bounds on c̄6 and c̄H we assume that the central values
of a future measurements of the DS distribution will line up with the SM predictions.
We hence employ

si = Ni(c̄6, c̄H)−Ni(0, 0) , bi = Ni(0, 0) , σbi = ∆iNi(0, 0) , (6.32)

where ∆i denotes the relative total systematic uncertainty in bin i. We will employ
bin-independent systematic uncertainties of ∆i = 0.3 and ∆i = 0.15 at LHC Run 3 and
HL-LHC, respectively. The total significance Z is obtained by adding the individual Zi
values in quadrature. Parameter regions with a total significance of Z >

√
2erf−1 (CL)

are said to be excluded at a given confidence level CL. Here erf−1(z) denotes the inverse
error function. In our numerical analysis, we include 29 bins of equal size of 0.2 that
cover the range −5.1 < DS < 0.5.

Before deriving the projected bounds on the Wilson coefficient c̄6 from off-shell
Higgs production, we recall that the currently best LHC 95% CL limit reads [289]

c̄6 ∈ [−3.3, 9.3] , (LHC Run 2) . (6.33)

See also [285, 286]. The bound (6.33) has been obtained from a combination of ten
double-Higgs and single-Higgs production measurements performed by the ATLAS col-
laboration. Assuming c̄H = 0 and employing the fit strategy described above, we find
the following 95% CL bounds from future hypothetical measurements of off-shell Higgs
production:

c̄6 ∈ [−8.2, 10.2] , (LHC Run 3) , c̄6 ∈ [−6.3, 8.4] , (HL-LHC) . (6.34)

The quoted limits for LHC Run 3 (HL-LHC) correspond to a full integrated luminosity
300 fb−1 (3 ab−1) obtained at

√
s = 14 TeV. To illustrate how the sensitivity of our
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fit to values of |c̄6| = O(10) arises, we show in the upper panel of Figure 6.6 the
QCD-improved predictions for the DS spectrum within the SM and two BSM models.
The uncertainty bands around the SM prediction reflect the total uncertainties that
are obtained by adding in quadrature the statistical and systematic uncertainties in
each bin. From the figure it is evident that for both c̄6 = −8 and c̄6 = 11, the DS

spectrum in enhanced over the SM background within the range −4.5 . DS . −3.5.
In this range the total uncertainties are largely dominated by the theory uncertainties
with the statistically errors playing only a minor role. This feature allows to set limits
like (6.34) that are competitive with (6.33) using solely off-shell Higgs production in
the ggF channel.

In the lower panel of Figure 6.6 we furthermore show the 68% CL (dashed) and
95% CL (solid) constraints in the c̄6– c̄H plane that derive from our fit employing
LHC Run 3 (blue) and HL-LHC (red) data. One observes that the bounds on c̄H
are essentially independent of the precise value of c̄6 if the latter Wilson coefficient is
sufficiently small. In the case of c̄6 = 0, we obtain at 95% CL for instance

c̄H ∈ [−7.0, 6.4] · 10−2 , (LHC Run 3) , c̄H ∈ [−3.3, 3.1] · 10−2 , (HL-LHC) .

(6.35)

We emphasise that non-zero values of c̄H do not change the shape of the DS spectrum
but only its normalisation

(
cf. (6.30)

)
. This feature explains the approximate c̄6 -

independence of the the exclusion contours in the c̄6–c̄H plane for small c̄6. Notice
finally that the bounds on c̄H are significantly more stringent than those on c̄6. This
is expected because the SMEFT operator OH changes the prediction for pp → h∗ →
ZZ → 4` already at LO (i.e. one loop) while the corrections due to O6 start at NLO
(i.e. two loops).
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Figure 6.6: Upper panels: QCD-improved DS distributions for pp → ZZ → 4`. The SM spec-
trum (dashed green) and BSM predictions for c̄6 = −8 (solid red) and c̄6 = 11 (solid blue) are
shown. The uncertainty bands around the SM spectrum indicate the total uncertainties expected at
LHC Run 3 and HL-LHC. Lower panel: Projected 68% and 95% CL constraints in the c̄6– c̄H plane
at LHC Run 3 (dashed and solid blue) and HL-LHC (dashed and solid red). The black star represents
the SM prediction. For additional details see main text.
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6.3 Comparison to bounds from inclusive single-Higgs pro-
duction

To further demonstrate the benefits of off-shell Higgs production in setting bounds on
the Higgs trilinear coupling, we compare the results obtained in the previous section
to the projected constraints one expects to obtain from inclusive single-Higgs measure-
ments at future LHC runs. In the inclusive case the O(λ) corrections to the various
Higgs production and decay channels can be written in terms of c̄6 and c̄H as

δσi(c̄6, c̄H) = c̄6

(
Nh

(
c̄6 + 2

)
+ Cσi1

)
− c̄H , δBRf (c̄6) =

c̄6

(
C

Γf
1 − CΓh

1

)

1 + c̄6C
Γh
1

, (6.36)

where Nh has been defined already in (6.22) and CΓh
1 = 0.23 · 10−2 [275, 276, 278].

Notice that the Wilson coefficient c̄H leads to a universal correction to all Higgs decay
channels. Therefore it leaves the Higgs branching ratios unchanged. The calculations
needed to obtain the process-dependent factors Cσi1 and C

Γf
1 have been performed

in [274–279]. In our numerical analysis of the inclusive single-Higgs observables we
include ggF, Wh, Zh, vector-boson fusion (VBF) and tt̄h production and consider
the Higgs-boson branching ratios to pairs of photons (γγ), EW bosons (W+W−, ZZ),
bottom quarks (bb̄) and tau leptons (τ+τ−). The associated Cσi1 and CΓf

1 coefficients
are collected in Table 6.2.

In terms of (6.36), keeping only terms linear in λ, the Higgs signal strengths for
production in channel i and decay in channel f can be written as

µfi (c̄6, c̄H) = 1 + δσi(c̄6, c̄H) + δBRf (c̄6) , (6.37)

which we use to build the following χ2 function:

χ2(c̄6, c̄H) =
∑

i,f

(
µfi (c̄6, c̄H)− 1

)2
(
∆f
i

)2 . (6.38)

Here we have assumed that the central values of the future measurements of the Higgs
signal strengths will coincide with the corresponding SM predictions. The variables
∆f
i encode the relative total uncertainties obtained by combining the theoretical and

statistical uncertainties associated to µfi . We collect the values of the ∆f
i used in

our LHC Run 3 and HL-LHC analyses in Table 6.3. Notice that the LHC Run 3 num-
bers are obtained by combing the current theoretical and the statistical uncertainties in
quadrature, while the HL-LHC numbers assume that all theory uncertainties are halved
with respect to our current understanding of the relevant signals and backgrounds. The
latter assumption corresponds to the scenario S2 in the ATLAS paper [319]. The al-
lowed CL regions are then obtained by minimising (6.38) and determining the solutions
to ∆χ2 = χ2 − χ2

min < 2Q−1(1/2, 1 − CL) with Q−1(a, z) the regularised incomplete
gamma function.

In the left (right) panel of Figure 6.7 we show the projected 68% and 95% CL
constraints in the c̄6–c̄H plane for the LHC Run 3 (HL-LHC). One observes that the
LHC Run 3 fit to the 15 inclusive single-Higgs observable listed in Table 6.3 shows a
pronounced flat direction in the c̄6–c̄H plane. To understand this feature one first has
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ggF Wh Zh VBF tt̄h

Cσi1 0.66 · 10−2 1.03 · 10−2 1.18 · 10−2 0.64 · 10−2 3.47 · 10−2

γγ W+W− ZZ bb̄ τ+τ−

C
Γf
1 0.49 · 10−2 0.73 · 10−2 0.83 · 10−2 0.67 · 10−5 0.33 · 10−5

Table 6.2: Values of the process-dependent coefficients Cσi1 and CΓf
1 . The numbers are directly taken

or obtained from [275, 276, 278] and the coefficients Cσi1 correspond to pp collisions at
√
s = 14 TeV.

production, decay LHC Run 3 HL-LHC

ggF, h→ γγ 0.13 0.036

ggF, h→W+W− 0.13 0.044

ggF, h→ ZZ 0.12 0.039

Wh, h→ γγ 0.48 0.138

Wh, h→ bb̄ 0.57 0.100

Zh, h→ γγ 0.85 0.157

Zh, h→ bb̄ 0.29 0.052

V h, h→ ZZ 0.35 0.182

VBF, h→ γγ 0.47 0.089

VBF, h→W+W− 0.21 0.066

VBF, h→ ZZ 0.36 0.118

VBF, h→ τ+τ− 0.21 0.078

tt̄h, h→ γγ 0.38 0.074

tt̄h, h→ ZZ 0.49 0.193

Table 6.3: Relative total uncertainties ∆f
i on the Higgs signal strengths defined in (6.37). The quoted

LHC Run 3 and HL-LHC numbers are taken from [320] and [319], respectively. Further information
can be found in the main text.

to realise that only the process-independent coefficients Cσi1 and CΓf
1 are able to break

flat directions in the inclusive fit. The relatively large coefficient Cσtt̄h1 (cf. Table 6.2)
plays a particularly important role in this respect. Given the large total uncertainties
of tt̄h, h→ γγ, ZZ at LHC Run 3, the constraining power of the tt̄h channels and thus
the impact of Cσtt̄h1 is however limited. As a result, the inclusive LHC Run 3 exclusions
are mainly determined by the ggF channels that have a flat direction for c̄6 and c̄H
satisfying µfggF ' δσggF(c̄6, c̄H) ' 0. The situation is visibly improved in the inclusive
HL-LHC fit, mostly because the total uncertainties of the tt̄h channels are expected to
be significantly reduced. From both panels in Figure 6.7 it is however also evident that
the flat direction in the inclusive fit is strongly broken by the constraints arising from
off-shell Higgs production.

From the above it should be clear that inclusive single-Higgs and off-shell Higgs mea-
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Figure 6.7: Projected 68% and 95% CL constraints in the c̄6– c̄H plane for the LHC Run 3 (left)
and and HL-LHC (right) assuming integrated luminosities of 300 fb−1 and 3 ab−1, respectively, and
pp collisions at

√
s = 14 TeV. The constraints from inclusive single-Higgs probes (left: green regions,

right: blue regions) are compared to the off-shell Higgs constraints (left: blue regions, right: orange
regions). The combinations of all constraints are also shown as red contours. The black stars represent
the SM point. See main text for further explanations.

– 98 –



6.4. Summary and outlook

surements should therefore be combined if one wants to exploit the full potential of the
LHC in constraining the trilinear Higgs coupling through indirect probes. Performing
such a combined analysis, we find for c̄H = 0 the following 95% CL limits

c̄6 ∈ [−5.8, 9.5] , (LHC Run 3) , c̄6 ∈ [−2.3, 4.6] , (HL-LHC) , (6.39)

while for c̄6 = 0 we obtain

c̄H ∈ [−6.0, 5.6] · 10−2 , (LHC Run 3) , c̄H ∈ [−2.3, 2.3] · 10−2 , (HL-LHC) .

(6.40)

We add that the bounds (6.39) and (6.40) depend in a non-negligible way on the
assumed total uncertainties. In this respect one should remember that in the case
of the constraints arising from off-shell Higgs production in ggF production we have
assumed total systematic uncertainties of ±30% and ±15% in our LHC Run 3 and HL-
LHC fit, respectively. We believe that these are conservative uncertainties — results for
two additional more aggressive assumptions about the systematic uncertainties entering
the HL-LHC off-shell Higgs analysis can be found in Appendix C. In fact, given the
steady progress in the calculation of massive higher-loop corrections to pp→ ZZ → 4`

(see [231, 232] for the latest theoretical developments) and in view of the fact that it is
theoretically known of how to achieve NLO accuracy for ME-based discriminants [309–
311], it should be possible to put our naive estimates of theoretical uncertainties on more
solid grounds. As can be seen from the upper panel in Figure 6.6, any improvement
of our theoretical understanding of the DS distribution for DS . −3.5 will notably
increase the sensitive of off-shell Higgs measurements to modifications of the trilinear
Higgs coupling.

6.4 Summary and outlook

In this chapter, we have studied the constraints on the trilinear Higgs coupling that
originate from Higgs production in pp collisions at future LHC runs. To keep the dis-
cussion model-independent we have worked in the context of the SMEFT in which
the renormalisable SM interactions are augmented by the dimension-six operators O6

and OH
(
cf. (6.8)

)
. Our computation of the O6 contributions to off-shell Higgs pro-

duction, i.e. the gg → h∗ → ZZ → 4` process, includes two-loop corrections to ggF
Higgs production and one-loop corrections to the Higgs propagator as well as the decay
h∗ → ZZ. The resulting scattering amplitudes have been implemented into MCFM where
they can be combined with the SM MEs for gg → h∗ → ZZ → 4`, gg → ZZ → 4` and
qq̄ → ZZ → 4` to obtain differential distributions for the full pp→ ZZ → 4` process,
including the corrections due to insertions of the SMEFT operator O6.

Using our MC implementation, we have then studied the shape differences in the
four-lepton invariant mass m4` distribution and the ME-based kinematic discriminant
DS defined in (6.28) that are induced by modifications of the trilinear Higgs coupling.
We found that the inclusion of BSM effects leads to phenomenologically relevant kine-
matic features in both spectra. In fact, the discriminant DS turns out to provide
particularly powerful constraints on the Wilson coefficient c̄6 of the pure-Higgs opera-
tor O6. The stringent constraints on c̄6 arise because BSM scenarios with c̄6 6= 0 can
lead to DS < −4.5, which provides a null test since 99% of the pp→ ZZ → 4` events in
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the SM fall into the range −4.5 < DS < 0.5. We have also assessed the possible impact
of higher-order QCD correction to DS , arguing that (6.28) maintains its discriminating
power beyond the well-defined LO.

To demonstrate the benefits of off-shell Higgs production in setting bounds on the
Higgs trilinear coupling, we have determined the constraints on the Wilson coefficients
c̄6 and c̄H that the LHC with 300 fb−1 and 3 ab−1 of integrated luminosity at

√
s =

14 TeV may be able to set. We have then compared the obtained LHC Run 3 and
HL-LHC bounds to the projected constraints that a combination of inclusive single-
Higgs measurements is expected to provide. Our analysis shows that ggF off-shell
Higgs production allow to put constraints on the trilinear Higgs coupling that are not
only competitive with but also complementary to the exclusion limits obtained from
inclusive single-Higgs production. Specifically, we found that future studies of the DS

distribution in pp→ ZZ → 4` production should help to remove flat directions in the
c̄6– c̄H plane that remain unresolved in fits that incorporate only inclusive single-Higgs
measurements. By combining all single-Higgs boson measurement we find that at the
LHC Run 3 (HL-LHC) it might be possible to constrain modifications of the trilinear
Higgs coupling as parameterised by (6.20) to the 95% CL range c3 ∈ [−4.0, 6.1] (c3 ∈
[−1.7, 5.7]). Additional HL-LHC projections that employ two different assumptions
about the systematic uncertainties entering our off-shell Higgs analysis can be found
in Appendix C.

The studies performed in this chapter can be extended in several ways. First, to
strengthen the constraints on the trilinear Higgs coupling derived in our work, one
should also include in the projections measurements of double-Higgs production as
well as EW precision observables. See [285, 286, 289] for such global analyses based
on LHC Run 2 data. Second, the ME-based discriminant DS might also be a powerful
tool to constrain BSM effects in pp → ZZ → 4` that arise in the context of Higgs
portal models [301–303], see Chapter 8. Given the limited direct LHC reach in such
models [321, 322], we show in Chapter 8 that investigating the indirect sensitivity
that off-shell Higgs production can provide is a worthwhile exercise. Third, since any
improvement of our theoretical understanding of the DS distribution (6.28) will have
a tangible impact on the sensitivity of off-shell Higgs measurements to modifications
of the trilinear Higgs coupling, we believe that theoretical activity in this direction is
important. Since many ingredients (if not all) are already available in the literature on
pp→ ZZ → 4` production [44, 79–81, 172, 212, 214, 217, 231, 232, 309–311] achieving
such a goal is certainly possible.
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Chapter 7

Beautiful and charming
chromodipole moments

The contributions from the chromoelectric dipole moment (CEDM) and anomalous
chromomagnetic dipole moment (CMDM) for a generic quark field q are contained in
the following dimension-five effective Lagrangian [323]

L = − gs
2

(
µ̃q + iγ5 d̃q

)
q̄σµν t

AqGA,µν , (7.1)

where µ̃q and d̃q are the CMDM and CEDM, respectively. Furthermore, gs denotes
the QCD coupling, tA are the SU(3) colour generators, GAµν is the gluon field strength
tensor and σµν = i/2(γµγν − γνγµ) with γµ the usual Dirac matrices. The operators
in (7.1) are however not gauge invariant under the full SM gauge group, which frustrates
their use within linear EFT formalisms such as the SMEFT. The corresponding gauge-
invariant chromodipole operators within in the SMEFT include the Higgs field as an
active degree of freedom (i.e. they are of dimension six). In this chapter, we restrict
ourselves to the case of the bottom quarks — sometimes called beauty quarks — and
charm quarks, for which the dimension-six chromodipole operators within the SMEFT
are given by

ObG = gs q̄3σµν t
Ad3HGA,µν + h.c. ,

OcG = gs q̄2σµν t
Au2H̃GA,µν + h.c. ,

(7.2)

where the symbol qf denotes left-handed quark doublets of flavour f , while uf and df
are the right-handed up- and down-type quark singlets,H denotes the SM Higgs doublet
and the shorthand notation H̃i = εij

(
Hj

)∗ with εij totally antisymmetric and ε12 = 1

has been used. By expanding (7.2), one obtains the following parametrisations for the
bottom and charm CMDM and CEDM within the SMEFT

µ̃b(c) = −
√

2v

Λ2
Re
(
Cb(c)G

)
, d̃b(c) = −

√
2v

Λ2
Im
(
Cb(c)G

)
, (7.3)

where Λ denotes the suppression scale and CbG and CcG are the Wilson coefficients
associated to the bottom and charm chromodipole operators, respectively.

The aim of this chapter is to constrain the dipole operators in (7.2) — which are
related to the bottom and charm CMDM and CEDM by means of (7.3). First, we
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review in Section 7.1 the existing limits obtained from observables that involve the
Higgs boson. In Section 7.2, we derive direct and indirect bounds on ObG and OcG
using a variety of experimental measurements of processes that do not directly involve
the Higgs boson. A summary and brief discussion is provided in Section 7.3.

7.1 Review of constraints from Higgs physics

The presence of the Higgs field H in the operators in (7.2) induces, upon EWSB,
dipole-type interactions involving the physical Higgs boson, such as the ones shown
in Figure 7.1. This opens up the possibility of studying their contributions to the
CMDM and CEDM of heavy quarks in processes involving a Higgs boson. In this
regard, bottom quarks play an important role since BR(h → bb̄) is with around 58%
the largest branching ratio of the SM Higgs boson. Due to the large backgrounds from
multi-jet production in the dominant ggF Higgs production mode, the most sensitive
production channels for detecting h → bb̄ decays are the associated production of a
Higgs boson and a W or Z boson (V h), where the leptonic decay of the vector boson
enables efficient triggering. In fact, the h → bb̄ decay mode has been observed by
both the ATLAS and the CMS collaborations at LHC Run II [324, 325], and these
measurements constrain the bb̄ signal strength in V h production to be SM-like within
about 25% at the level of one standard deviation.

BSM physics modifying the bottom-Higgs dynamics is therefore only weakly con-
strained by existing LHC measurements with even looser limits applying in the charm-
Higgs case [326–332]. In the context of the SMEFT the dimension-six mixed-chirality
operators that can lead to modifications of the h→ bb̄ and h→ cc̄ partial decay widths
are either of Yukawa or dipole type. While the Yukawa-type operators change the
rates at LO in QCD, the chromodipole operators (7.2) start to contribute at the NLO
level [333]. Their effect on Higgs observables have been studied in [166, 323, 334]. In
this section, we briefly review the resulting constraints.

By generating pp → bb̄h events for the HL-LHC with
√
s = 14 TeV for different

values of CbG and performing a fit to the different MC samples, the authors of [323]
obtain the following CbG-dependence for the bb̄h signal strength

µbb̄h = 1− 9.76× 10−2 Re
(
CbG

)
+ 1.49× 10−1

∣∣CbG
∣∣2 , (7.4)

where there is no linear term in Im
(
CbG

)
since odd powers of the CEDM would violate

time-reversal symmetry (T )1 and here terms beyond O(C2
bG) are neglected. Requiring

the BSM effects to remain within two standard deviations of the NLO inclusive cross-
section σSM

(
pp→ bb̄h

)
= (5.8± 1.0)× 102 fb [335] yields for the two benchmark cases

where CbG is either purely real or purely imaginary the following limits2

Re
(
CbG

)
∈ [−1.2, 1.9] ,

∣∣Im
(
CbG

)∣∣ < 1.5 , (7.5)

where Λ = 1 TeV is assumed. The above limits translate to
∣∣Re
(
CbG

)∣∣
Λ2

<

(
1

730 GeV

)2

,

∣∣Im
(
CbG

)∣∣
Λ2

<

(
1

810 GeV

)2

. (7.6)

1T -odd interactions are considered for the top-quark case in [323].
2We add that at the 1σ level, one finds Re

(
CbG

)
∈ [−0.8, 1.5] and

∣∣Im(
CbG

)∣∣ < 1.1, which translate to the
bounds quoted in (16) of [323] upon using (7.3) with a suppression scale of Λ = 3 TeV.
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g

g
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b̄

b

Figure 7.1: Tree-level diagrams generated by the bottom-quark chromodipole operator (7.2), whose
insertions are indicated by the red squares, involving a Higgs boson.

We add that significantly stronger bounds on Im
(
CqG

)
arise in the context of the neu-

tron electric dipole moment, see for instance (7.36) and (7.40). The inclusive approach
outlined above is improved in [334], where the sensitivity to the chromodipole opera-
tor ObG is studied for Higgs plus dijet searches in combination with the two-photon
decay channel of the Higgs. It is shown that by identifying at least one jet as a bot-
tom quark (b-tagging) and applying cuts on the di-photon transverse momentum, the
process pp→ bb̄h→ bb̄γγ furnishes a significantly better bound on |CbG| of

|CbG|
Λ2

<

(
1

2.4 TeV

)2

. (7.7)

at the end of the HL-LHC (i.e. with
√
s = 14 teV and 3 ab−1 of integrated luminosity).

The article [323] furthermore considers inclusive Higgs production as a probe of CcG,
where they find

σ (pp→ h) = 5.58− 0.034Re
(
CcG

)
+ 0.07 |CcG|2 pb , (7.8)

at 14 TeV. The authors then compare their fit, neglecting the SM contribution of 5.58
pb, directly to the NLO inclusive ggF cross-section σ (pp→ h) = 49.97+7.3

−7.0 pb [336].
The resulting bounds at the 2σ level for Λ = 1 TeV read3

Re
(
CcG

)
∈ [−14.2, 14.7] ,

∣∣Im
(
CcG

)∣∣ < 14.4 , (7.9)

which correspond to
∣∣Re
(
CcG

)∣∣
Λ2

<

(
1

260 GeV

)2

,

∣∣Im
(
CcG

)∣∣
Λ2

<

(
1

260 GeV

)2

. (7.10)

Since the above result for the inclusive ggF Higgs-production cross section is rather
outdated, we have repeated the procedure described above employing σ (pp→ h) =
49.87+0.32%

−2.61%
pb [313] which includes QCD corrections up to the N3LO in the large top-

mass limit. This yields an improvement of the bounds shown in (7.9) by about a factor
of two. However, clearly the limits originating from inclusive Higgs production are not
competitive with pp→ bb̄h, a finding that is also confirmed by [334]. One might find this
surprising since earlier studies of the top-quark chromomagnetic dipole using inclusive
Higgs production have shown to furnish the most constraining results [334, 337, 338].
However, the suppression coming from the chirality flip needed to obtain a non-zero

3The bounds quoted in (22) of [323] can be found by applying (7.3) with for Λ = 3 TeV to the 1σ constraints
Re

(
CbG

)
∈ [−9.8, 10.5] and

∣∣Im(
CbG

)∣∣ < 10.2.
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result in the case of ggF Higgs production proceeding through a quark loop is much
more severe in the case of the bottom quark compared to the top-quark case, spoiling
much of the sensitivity to insertions of the bottom-quark chromodipole operator.

Finally, we note that more recently, [166] studies the process pp→ Zh→ bb̄`+`− at
NNLO QCD within the SMEFT, including up to N3LO corrections due to the opera-
tor ObG. It is shown that these corrections enhance the impact of ObG by about 60%
compared to its contributions at the previous order. In particular, the bb̄ and bb̄j invari-
ant masses are identified as kinematic distributions that are sensitive to ObG, as well
as the transverse momentum of the Z boson and the bb̄ pair. While these transverse-
momentum observables by themselves are shown to exhibit only a limited constraining
power at the LHC, it is noted that an implementation of the aforementioned observ-
ables into a multivariate discriminant

(
a la (6.28)

)
may enhance the overall sensitivity

to ObG. A comparison to existing or future differential LHC data is however left for
future work.

A summary of the constraints on CqG (q = b, c) discussed here is given in Table 7.2.
In the next section, we derive direct in and indirect limits on the bottom and charm
chromodipole operators from observables that do not involve a Higgs boson.

7.2 Bottom and charm chromodipole operators in non-
Higgs observables

In contrast to the SMEFT Yukawa-type operators that can only be constrained by
processes involving a Higgs or Higgses both real or virtual, the operators (7.2) can also
be bounded by measurements of observables that involve bottom (charm) quarks and
possibly other particles but no Higgs boson. The goal of this section is to derive bounds
on the Wilson coefficients of the operators ObG and OcG using existing measurements
of both low- and high-energy observables of the latter type.

7.2.1 Constraints from dijet angular distributions

Jet physics has previously been used to put constraints on SMEFT operators [339–
344]. In this section we will exploit searches for unflavoured jet pairs to constrain the
magnitudes of the Wilson coefficients of the operators introduced in (7.2). For the case
of the bottom-quark chromodipole operator ObG, examples of contributing Feynman
diagrams are shown in Figure 7.2. The relevant collider searches look either for res-
onances in the dijet spectrum or analyse the angular distribution of dijet production
(see [345–348] for recent LHC results).

The quantity of interest in our case is the jet angular distribution, i.e. the differ-
ential cross section for a pair of jets with invariant mass Mjj produced at an angle θ̂
to the beam direction in the jet-jet centre-of-mass (CM) frame. Compared to resonance
searches, the dijet angular distribution has the salient advantage that it also allows to
constrain broad s-channel resonances or modifications in the spectrum due to the pres-
ence of higher-dimensional operators in a rather model-independent fashion. This is
due to the fact that the dominant channels in QCD dijet production have the familiar
Rutherford scattering behaviour dσ/d cos θ̂ ∝ 1/ sin4

(
θ̂/2
)
at small angle θ̂, which is

characteristic for t-channel exchange of a massless spin-one boson. In order to remove
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Figure 7.2: Tree-level diagrams leading to a correction to dijet production. The red squares denote
the insertion of the bottom-quark chromomagnetic dipole moment.

the Rutherford singularity, one usually considers the dijet cross sections differential in

χ =
1 + cos θ̂

1− cos θ̂
. (7.11)

In the small angle limit, i.e. χ → ∞, the partonic differential QCD cross section then
behaves as dσ/dχ ∝ const. Relative to the QCD background, the production of a
heavy resonance or an effective operator leads to additional hard scattering and hence
more jets perpendicular to the beam. In turn one expects a deviation from the QCD
prediction in form of an enhanced activity of high-energetic jets in the central region
of the detector. If the angular distributions receive contributions from the presence of
a heavy degree of freedom or an operator, one should see an excess of events in dσ/dχ
for χ→ 1 and large Mjj with respect to the (almost) flat QCD spectrum.

By calculating the partonic differential cross section for the interference of the ef-
fective operator ObG with the SM and with itself, we find the following expressions
(
dσ(gg → bb̄)

dχ

)

bG

=
πα2

s

2M2
jj

[
4− χ+ 4χ2

3χ (1 + χ)2

v2

Λ2
ybRe

(
CbG

)
+

7M2
jj

3 (1 + χ)2

v2

Λ4
|CbG|2

]
,

(
dσ(gb→ gb)

dχ

)

bG

=
πα2

s

2M2
jj

×
[

8
(
4 + 9χ+ 9χ2

)

9χ (1 + χ)3

v2

Λ2
ybRe

(
CbG

)
+

56M2
jj

9 (1 + χ)3

v2

Λ4
|CbG|2

]
,

(7.12)

where yb =
√

2mb/v is the bottom-quark Yukawa coupling with mb the bottom-quark
mass. The result for the differential cross section for the process gb̄ → gb̄ is identical
to the one for gb → gb, and the results for the case of the operator OcG are simply
obtained from the above expressions by replacing b everywhere by c. Notice that the
first terms in (7.12) which arise from the interference with the SM are suppressed by
one power of yb which provides the chirality flip needed to obtain a non-zero result.
The second terms which are due to the interference of the operator ObG with itself
are instead enhanced by two powers of the jet-jet invariant mass Mjj . As a result
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Figure 7.3: Normalised χ distribution in the three highest mass bins studied in the CMS anal-
ysis [345]. Unfolded data from [345] are compared to the SM prediction including NLO QCD and
EW corrections (black dotted line). The error bars represent statistical and experimental systematic
uncertainties combined in quadrature. Theoretical uncertainties are indicated as a grey band. Also
shown is the prediction for v2/Λ2CbG = 0.5 (red line). The lower panels show the ratio of the unfolded
data distributions and the NLO predictions as well as the new-physics distributions. See main text
for more details.
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Figure 7.4: As Figure 7.3 but for the four lower mass bins considered in the CMS analysis [345].
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the quadratic term will in practice always provide the dominant contribution to the
dijet spectrum. Given that in addition the gluon-quark initiated channels are strongly
suppressed by heavy-quark PDFs this means that the limit that we derive below holds
to very good approximation for both ObG and OcG.

In terms of the partonic differential cross sections (7.12), the contribution to the
double differential cross section for a pair of jets with invariant mass Mjj produced at
χ that is due to ObG, can be written in the following way

(
d2σ

dM2
jj dχ

)

bG

=
M2
jj

s

∑

{ij}

ffij
(
M2
jj/s, µF

) (dσ(ij → f)

dχ

)

bG

, (7.13)

where

ffij (τ, µF ) =
1

s

2

1 + δij

∫ 1

τ

dx

x
fi/p(x, µF ) fj/p(τ/x, µF ) , (7.14)

are the so-called parton luminosities, the sum runs over all pairs of incoming partons
{ij} and s denotes the squared CM energy of the collider. The parton luminosities
are obtained from a convolution of the universal non-perturbative PDFs fi/p(x, µF ),
which describe the probability of finding the parton i in the proton with longitudinal
momentum fraction x. The variable µF that enters (7.13) and (7.14) denotes the
factorisation scale.

In Figures 7.3 and 7.4 the measured normalised χ distribution for the seven different
mass bins unfolded to particle level are compared to the corresponding SM predictions
including both QCD and EW corrections at the NLO. The data and the SM predic-
tions are both taken from the CMS analysis [345]. For comparison the normalised χ
distributions assuming v2/Λ2CbG = 0.5 are also shown. The new-physics distributions
are obtained at LO using CT14nnlo_as_0118 PDFs [349] with renormalisation and fac-
torisation scale set to Mjj . These PDFs have also been used in [345] and are accessed
through ManeParse [350]. The normalised χ distributions are then multiplied by a bin-
wiseK-factor to obtain a reshaped spectrum that includes effects originating from NLO
QCD and EW corrections, additional non-perturbative QCD effects and the detector
resolution. The K-factor is obtained by calculating the ratio between the central value
of the CMS SM prediction and our LO SM prediction. Notice that applying the same
rescaling factor to both the QCD and new-physics results is based on the assumption
that the effects of the MC shower and the event detection depend only on the invariant
mass Mjj of the dijet final state, but not on the precise form of the new-physics signal.
To determine to which extend this assumption is justified would require to perform a
dedicated simulation of including NLO QCD and EW corrections, parton showering
and detector effects. However, such an analysis is beyond the scope of this work.

To find the 95% confidence level (CL) limit on the magnitude of the Wilson co-
efficient of the dipole operator ObG, we perform a χ2 fit to the normalised angular
distribution in all seven dijet invariant mass bins, including both experimental and
theoretical uncertainties. Minimising the χ2 and requiring ∆χ2 = χ2 − χ2

min = 3.84

leads to ∣∣CbG
∣∣

Λ2
<

(
1

380 GeV

)2

. (7.15)

The same bound applies approximately also in the case of OcG. Notice that since the
bounds (7.36) and (7.40) are significantly stronger than the latter limit, the exclu-
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Figure 7.5: Left: Normalised dijet invariant mass distributions for the category with two b-jets
as measured by ATLAS in [346]. The black dotted line is the central value of the background fit
performed by ATLAS, the grey band indicates the associated uncertainties and the red curve shows
the new-physics prediction assuming v2/Λ2CbG = 0.05. Right: Ratio of the data and the new-physics
prediction v2/Λ2CbG = 0.05 to the central value of the background fit. The colour coding resembles
the one used in the left panel. Consult the main text for further details.

sion (7.15) is in fact a bound on the real part of the Wilson coefficients CbG and CcG.
We add that non-zero values v2/Λ2 |CbG| ' 0.3 of the Wilson coefficient are, in fact,
preferred by the data, and that the most sensitive bins in our χ2 fit are the three bins
of [345] that cover the range 2.4 TeV < Mjj < 4.2 TeV of invariant dijet masses. Notice
finally that analyses of the jet-jet angular distribution in dijet production can also be
used to put constraints on the chromodipole operators involving light quarks. Since the
focus of this work lies on deriving constraints on the chromodipole operators involving
bottom and charm quarks, we however do not entertain this possibility here.

7.2.2 Constraints from searches for b-jet pairs

In addition to using data for unflavoured dijet production, one can also exploit the
measurements of mass distributions of jet pairs with one or two jets identified as
b-jets [346, 351–353] to constrain the Wilson coefficient of the operator ObG — see
also [334] for an earlier study.

To calculate the differential cross sections for the production of b-jet pairs we
have used a FeynRules 2 [354] implementation of the operator ObG in the UFO for-
mat [355]. The generation and showering of the samples has been performed at LO
with MC@NLO [356] and PYTHIA 8.2 [146], respectively, using NNPDF31_nlo_as_0118
PDFs [179] and working in the four-flavour scheme. The background distribution was
corrected to the NLO prediction using the matrix elements calculated in [357] as im-
plemented in MCFM [358]. Hadronic jets are built using the anti-kt algorithm [128] with
a radius parameter of R = 0.4, as implemented in FastJet [244]. We furthermore rely
on DELPHES 3 [359] as a fast detector simulation and on CheckMATE 2 [360]. Our event
selection follows the ATLAS analysis [346] which is based on 139 fb−1 of dijet data
collected at 13 TeV CM energy. We require at least two jets (j) with a transverse mo-
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mentum pT (j) satisfying pT (j) > 150 GeV and the azimuthal angle difference ∆φ(j1j2)

between the two leading jets j1 and j2 must fulfill |∆φ(j1j2)| > 1.0. The two leading jets
must be b-tagged and their pseudorapidities must satisfy |η(j)| < 2.0. The b-tagging
algorithm is taken from the ATLAS publication [361], and in accordance with [346]
a b-tagging working point is chosen that yields a b-tagging efficiency of 77%, a c-jet
rejection of 5 and a light-flavour jet rejection of 110. Furthermore, to suppress the
QCD background a selection cut of |y∗| < 0.8 is imposed, where y∗ =

(
y(j1)− y(j2)

)
/2

with y(j1) and y(j2) the rapidities of the leading and subleading jet, respectively. Both
the QCD background and the new-physics samples are generated binned in pT (j) and
the resulting dijet mass distributions are fit to the parametric function

f(x) = p1 (1− x)p2 xp3+p4 lnx , (7.16)

where x = Mjj/
√
s and pi with i = 1, 2, 3, 4 are the four fitting parameters. Given the

data-driven background estimate, the ATLAS measurement [346] is not a measurement
of the absolute cross section of dijet production, making it insensitive to small overall
shifts in the bb̄ production rates. The ATLAS analysis is however sensitive to the shape
of the dijet mass distribution, which can be determined in normalised rates.

In Figure 7.5 we show the results for the normalised invariant dijet mass spectra
requiring two b-jets. The black dotted line in the left plot denotes the central values
of the background fit performed by ATLAS in [346], while the red curve shows our
new-physics prediction for v2/Λ2CbG = 0.05. The grey band indicates the uncertain-
ties associated to the background prediction as provided in [346]. On the right-hand
side the ratio of the data and the new-physics prediction to the central value of the
background fit is displayed. One observes that the contributions associated to ObG lead
to an enhancement in the tail of the Mjj distribution with respect to the background
prediction.

By performing a ∆χ2 fit to the normalised spectra over the whole range of invariant
dijet masses covered in the ATLAS study [346], i.e. 1133 GeV < Mjj < 4595 GeV, we
obtain the following 95% CL limit

∣∣CbG
∣∣

Λ2
<

(
1

1.6 TeV

)2

. (7.17)

This bound is by a factor of about 2.5 better than the estimate that has been given
in [334] based on the CMS dijet measurement [351]. Let us remark that adding an
additional uncertainty of 10% to the background prediction obtained in [346] would
lead to a slightly weaker bound than (7.17) of approximately 1/(1.5 TeV)2. Since the
unnormalised two b-tagged MC distribution and the data are found to agree within
around 10% in the mass range 1 TeV < Mjj < 5 TeV [352], we believe that the latter
bound is very robust. Notice finally that searches for jet pairs with one or two jets
identified as c-jets could be used to set a bound on the Wilson coefficient |CcG

∣∣ similar
to (7.17). To our knowledge dijet searches that employ c-tagging have however not
been performed at the LHC to date.

7.2.3 Constraints from Z-boson production in association with b-jets

Inclusive and differential measurements of Z-boson production in association with b-jets
have been performed at the LHC by both the ATLAS and CMS collaborations [362–
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Figure 7.6: Examples of Feynman diagrams leading to a bb̄ `+`− signature at the LHC. The red
squares denote the insertion of the bottom-quark chromomagnetic dipole moment. Graphs with a
virtual photon γ∗ also contribute but are not shown explicitly.

368]. These measurements provide not only an important role in improving our quan-
titative understanding of perturbative QCD (see e.g. [369]), but can also be exploited
to search for BSM physics [370]. In this section we will consider the measurements
performed in [367] to set bounds on the Wilson coefficient of the operator ObG.

We calculate the contribution of the operator ObG to pp → bb̄Z/γ∗ → bb̄ `+`− at
LO using MC@NLO together with PYTHIA 8.2 and NNPDF31_nlo_as_0118 PDFs. The
computation is performed in the four-flavour scheme. Relevant Feynman diagrams are
shown in Figure 7.6. To be able compare our results to an existing analysis we employ
the event selections of the recent ATLAS measurement [367] which is based on 35.6 fb−1

of 13 TeV LHC data. Electrons must satisfy the tight likelihood requirement [371], and
are required to have a transverse momentum and pseudorapidity of pT (e) > 27 GeV

and |η(e)| < 2.47, respectively. Electron candidates in the transition region between
the barrel and endcap electromagnetic calorimeters, i.e. 1.37 < |η(e)| < 1.52, are
excluded. Muons must satisfy medium identification criteria [372] and have to pass
the requirements pT (µ) > 27 GeV and |η(µ)| < 2.5. Jets are reconstructed using the
anti-kt algorithm with radius parameter R = 0.4, and a b-tagging algorithm is applied
with a b-tagging efficiency of 70% and misidentification rates of 8.3% of 0.26% for
c-jets and a light-flavour jets, respectively. Events are required to have exactly two
same-flavour (` = e, µ) opposite-sign leptons with a dilepton invariant mass in the
range 76 GeV < M`+`− < 106 GeV. To suppress the background from tt̄ events with
dileptonic decays, events with pT (`+`−) < 150 GeV must also have missing transverse
energy of Emiss

T < 60 GeV. Events passing the above selection are then assigned to two
signal regions depending on the number of identified b-jets, and we concentrate in the
following on the signal region with at least two b-jets. The object and event selection
used in our analysis are implemented into CheckMATE 2 which uses DELPHES 3 as a fast
detector simulation.

Several differential observables for the pp → bb̄Z/γ∗ → bb̄ `+`− process have been
considered in the article [367]. Here we focus on the transverse momentum of the
Z-boson

(
pT (Z)

)
. In Figure 7.7 we display results for the pT (Z) spectrum requiring

two or more b-jets. The black dotted line and the grey band in the left panel are
the SM prediction with its uncertainty, while the red curve shows our new-physics
prediction assuming v2/Λ2CbG = 0.07. The used SM numbers correspond to those
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Figure 7.7: Left: pT (Z) distributions for the category with two b-jets. The black dotted line
is the central value of the SM prediction provided by ATLAS [367], the grey band indicates the
associated uncertainties and the red curve shows the new-physics prediction assuming v2/Λ2CbG =
0.07. Right: Ratio between the SM and the BSM prediction v2/Λ2CbG = 0.07 and the measurement.
The colour coding resembles the one employed on the left-hand side.

referred to as Sherpa 5FNS (NLO) in [367]. They have been obtained by ATLAS
using the Sherpa v2.2.1 generator [373]. From the two panels it is evident that the
relative effect of a non-zero contribution due to ObG grows with transverse momentum
and as a result the BSM prediction differs most visibly in the highest bin with pT (Z) >

350 GeV.
Considering all seven bins of the ATLAS study [367] in a ∆χ2 fit, we obtain

∣∣CbG
∣∣

Λ2
<

(
1

980 GeV

)2

, (7.18)

at 95% CL. We stress that this bound depends in a notable fashion on the system-
atic experimental and theoretical uncertainties that plague pp→ bb̄Z/γ∗ → bb̄ `+`− at
high pT (Z). In the bin with pT (Z) > 350 GeV the experimental (theoretical) uncer-
tainty used in our analysis amounts to about 20% (35%). Reducing the theoretical un-
certainty by a factor of 2 would improve the limit (7.18) to approximately 1/(1.1 TeV)2.
In view of the recent progress [369] in the calculation of Z-boson production in asso-
ciation with b-jets at next-to-next-to-leading order accuracy in QCD including finite
heavy-quark mass effects, such a reduction of uncertainties does not seem unreasonable.

7.2.4 Constraints from flavour physics

In order to derive a bound on the real part of the Wilson coefficients of the charm-quark
dipole operator, let us consider the following effective interaction

Leff ⊃ −µ̃c(mh)
gs(mh)

2
c̄σµνT

acGa,µν , (7.19)

where the initial condition µ̃c(mh) of the charm-quark chromomagnetic dipole moment
in the terms of the relevant Wilson coefficient multiplying the operators in (7.2) is given

– 112 –



7.2. Bottom and charm chromodipole operators in non-Higgs observables

by

µ̃c(mh) = −
√

2v

Λ2
Re
(
CcG

)
. (7.20)

One-loop Feynman diagrams involving a W -boson exchange generate the chromomag-
netic dipole operator

Q8 =
gs

(4π)2
mb s̄LσµνT

abRG
a,µν , (7.21)

which appears in the ∆B = 1 Lagrangian L = −4GF /
√

2V ∗tsVtbC8Q8 with GF '
1/
(√

2v2
)
the Fermi constant and Vij the elements of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix. The corresponding matching correction reads [374, 375]

δC8(mh) =
m̄c(mh)

2

V ∗csVcb
V ∗tsVtb

µ̃c(mh) , (7.22)

where m̄c(mh) denotes the charm-quark MS mass evaluated at the Higgs-boson mass
threshold. In terms of the shift δC8(mh), the ratio between the branching ratio of
B → Xsγ and its SM prediction can be written as [376]

RXs =
BR (B → Xsγ)

BR (B → Xsγ)SM

= 1− 0.59δC8(mh) . (7.23)

Combining the SM calculation of B → Xsγ with the present world average, one
gets [377]

RXs = 0.97± 0.08 , (7.24)

if uncertainties are added in quadrature. Using now that V ∗csVcb ' −V ∗tsVtb to high
accuracy and employing mc(mh) ' 0.87 GeV, one obtains from (7.20) to (7.24) the
following 95% CL limit ∣∣Re

(
CcG

)∣∣
Λ2

<

(
1

25 GeV

)2

. (7.25)

We add that a bound that is weaker than (7.25) by a factor of around 4 is obtained
by confronting the SM prediction BR (B → Xsg)SM ' 5 · 10−3 [378, 379], with the
corresponding experimental limit that reads BR (B → Xsg) . 10% [380]. An even
weaker bound follows from the isospin asymmetry in B → K∗γ [381–383]. The above
estimate shows clearly that indirect probes of the chromodipole operators through
flavour-physics observables cannot compete with the constraints arising from dijets.
Notice that this is particularly true for the case of ObG where a matching correction
to Q8 first arises at the two-loop level leading to a further suppression of (7.22) by a
factor of the order of (4π)2. We finally remark that CP violation in the ∆C = 1 sector —
for instance in the form of the difference ∆ACP between the two direct CP asymmetries
in D → K+K− and D → π+π− — also does not provide relevant bounds on Im

(
CbG

)

due to the strong CKM and loop suppression.

7.2.5 Constraints from nEDM

Searches for EDMs are known to place stringent constraints on any new-physics scenario
with additional sources of CP violation (see [374, 375, 384–405] for reviews and recent
discussions). To derive a bound on the imaginary part of the Wilson coefficient of the
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Figure 7.8: One-loop diagrams leading to a correction to the Weinberg operator at the bottom-quark
threshold. The red squares denote the insertion of the bottom-quark chromoelectric dipole moment.

bottom-quark dipole operator appearing in (7.2), we consider the following effective
interactions

Leff ⊃ −d̃b(mh)
igs(mh)

2
b̄σµνT

aγ5bG
a,µν − w(mh)

1

3
fabcGaµσG

b,σ
ν G̃c,µν , (7.26)

where G̃a,µν = 1/2 εµναβGaαβ is the dual field-strength tensor of QCD with εµναβ the
fully antisymmetric Levi-Civita tensor (ε0123 = 1).

In the presence of the two dimension-six SMEFT operators (7.2) the initial condition
d̃b(mh) of the bottom-quark chromoelectric dipole moment is given by

d̃b(mh) = −
√

2v

Λ2
Im
(
CbG

)
, (7.27)

while the initial condition w(mh) of the Weinberg operator [406] vanishes. The bottom-
quark chromoelectric dipole moment has the following QCD running

d̃b(mb) =

(
αs(mh)

αs(mb)

) γ
d̃

2γαs

d̃b(mh) , (7.28)

where γαs denotes the LO anomalous dimension (or beta function) of the strong cou-
pling constant and γd̃ is the LO anomalous dimension of the bottom-quark chromo-
electric dipole moment. Explicitly, one has

γαs = 11− 2

3
Nf , γd̃ =

4

3
, (7.29)

where the expression for γαs can be found in any textbook on QCD and the result for
γd̃ has first been presented in [407]. Notice that in (7.28) the number of active flavours
is Nf = 5 and that one could in principle resum large logarithms in the latter equation
up to the next-to-next-to-leading logarithmic level because the self-mixing of the dipole
operators is known up to the three-loop order [408]. Given the sizeable uncertainties of
the hadronic matrix elements of the Weinberg operator and the chromoelectric dipole
operators of light quarks

(
cf. the discussion before (7.33)

)
using only the leading-

logarithmic (LL) result (7.28) is however fully justified.
At the bottom-quark mass threshold one integrates out the bottom quark. The

corresponding Feynman diagrams are shown in Figure 7.8. This gives a finite matching
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correction to the Weinberg operator [409–411]

δw(mb) =
g3
s(mb)

32π2

d̃b(mb)

m̄b(mb)
. (7.30)

Between the bottom-mass scale and the hadronic scale µH ' 1 GeV the Weinberg
operator mixes into itself and into the chromoelectric and electric dipole operators
involving up and down quarks. As it turns out, the contributions from electric dipole
operators are numerically very small and we thus neglect it in what follows. The LO
anomalous dimensions describing the self-mixing of the Weinberg operator and the
mixing of the Weinberg operator in the chromoelectric dipole operators, respectively,
are [410, 412, 413]

γw = 3 + 2Nf , γwd̃ = −6 . (7.31)

Resumming LL corrections in the four- and the three-flavour theory, we obtain

w(µH) ' 0.71δw(mb) , d̃q(µH) ' 0.14m̄q(µH)δw(mb) , (7.32)

where q = u, d. The numerical factors in (7.32) correspond to the following values
αs(mb) ' 0.21, αs(mc) ' 0.32 and αs(µH) ' 0.36 of the QCD coupling constant.

Estimates of the hadronic matrix elements of the Weinberg operator and the chro-
momagnetic dipole operators of the up and down quark are presently plagued by
uncertainties of 50% — see for instance [384, 414–420]. Adopting the QCD sum-
rule estimates [414, 418] for the relevant hadronic matrix elements and employing
m̄u(µH) ' 2.5 ·10−3 GeV and m̄d(µH) ' 5.4 ·10−3 GeV [23], the nEDM can be written
as

dn
e
'
(
− 1.77 (1± 0.5) + 0.10 (1± 0.5)

)
· 10−2 GeV δw(mb) , (7.33)

where the first and the second term corresponds to the contribution from the Weinberg
operator and the chromomagnetic dipole operators, respectively. Combining the above
uncertainties in such a way that our prediction provides a lower absolute limit on the
actual size of the ObG correction to the nEDM, we find

∣∣∣∣
dn
e

∣∣∣∣ ' 1.5 · 10−22 cm

(
1 TeV

Λ

)2 ∣∣Im
(
CbG

)∣∣ . (7.34)

Here we have employed αs(mh) ' 0.11 and m̄b(mb) ' 4.2 GeV [23] to obtain the nu-
merical result. The current best experimental nEDM result [421] imposes the following
90% CL bound ∣∣∣∣

dn
e

∣∣∣∣ < 1.8 · 10−26 cm . (7.35)

From (7.34) and (7.35) it follows that
∣∣Im

(
CbG

)∣∣
Λ2

<

(
1

90 TeV

)2

. (7.36)

In the case of the charm-quark dipole operator entering (7.2), the derivation of the
bound on the imaginary part of CcG follows the steps described above with minor
modifications. The first modification is that from the initial scale mh the charm-quark
chromomagnetic dipole moment d̃c runs to the charm-quark threshold mc in the five-

– 115 –



Chapter 7. Beautiful and charming chromodipole moments

Observable Wilson coefficient 95% CL bound Scale

Dijet angular distributions
∣∣CbG

∣∣,
∣∣CcG

∣∣ 6.8 380 GeV

Two b-tagged jets
∣∣CbG

∣∣ 0.36 1.6 TeV

Z-boson production with two b-jets
∣∣CbG

∣∣ 1.04 980 GeV

Inclusive radiative B decay
∣∣Re

(
CcG

)∣∣ 1600 25 GeV

Searches for nEDM
∣∣Im

(
CbG

)∣∣ 1.2 · 10−4 90 TeV

Searches for nEDM
∣∣Im

(
CcG

)∣∣ 1.3 · 10−5 275 TeV

Table 7.1: Summary of the constraints on the Wilson coefficients of the operators ObG and OcG
derived in this thesis. The given 95% CL bounds correspond to Λ = 1 TeV, while the numbers quoted
for the suppression scale assume a purely real or imaginary Wilson coefficient with a magnitude of 1.
See text for further explanations.

and four-flavour theory. Second the renormalisation group flow below mc where the
Weinberg operator is generated — see (7.30) — proceeds only in the three-flavour
theory, leading to

w(µH) ' 0.94δw(mc) , d̃q(µH) ' 0.04m̄q(µH)δw(mc) . (7.37)

Notice that given the smaller scale separation between mc and µH compared to mb and
µH the renormalisation group effects in (7.37) are notably smaller than those in (7.32).
Instead of (7.33) one then finds the following expression

dn
e
'
(
− 2.34 (1± 0.5) + 0.03 (1± 0.5)

)
· 10−2 GeV δw(mc) , (7.38)

which is fully dominated by the contribution from the Weinberg operator. This leads
to ∣∣∣∣

dn
e

∣∣∣∣ ' 1.4 · 10−21 cm

(
1 TeV

Λ

)2 ∣∣Im
(
CcG

)∣∣ , (7.39)

where we have used m̄c(mc) ' 1.3 GeV [23]. Combining (7.35) and (7.39) we finally
obtain ∣∣Im

(
CcG

)∣∣
Λ2

<

(
1

275 TeV

)2

. (7.40)

7.3 Discussion

In Table 7.1 we summarise the limits on the Wilson coefficients of the operators ObG
and OcG that we have derived in this section, while summarising the existing HL-
LHC projected limits from Higgs physics in Table 7.2. Let us first discuss the the
former bounds. For what concerns the magnitudes of CbG and CcG, one sees that
searches for dijets final states provide bounds on the Wilson coefficients of order one
assuming a suppression scale Λ of 1 TeV. In fact, the nominal strongest limit derives
at present from the ATLAS search for b-jet pairs performed in [346]. This search
probes dijet invariant masses in the range 1133 GeV < Mjj < 4595 GeV, which pushes
the Wilson coefficient to

∣∣CbG
∣∣ & 4π, if one requires Λ & 5 TeV to cover the whole
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Process Wilson coefficient 2σ bound Scale

pp→ bb̄h [323]
Re
(
CbG

)
[−1.2, 1.9] 810 GeV

∣∣Im
(
CbG

)∣∣ 1.5 730 GeV

pp→ bb̄h→ bb̄γγ [334]
∣∣CbG

∣∣ 0.17 2.4 TeV

pp→ h [323]
Re
(
CcG

)
[−14.2, 14.7] 260 GeV

∣∣Im
(
CcG

)∣∣ 14.4 260 GeV

Table 7.2: Summary of the constraints on the Wilson coefficients of the operators ObG and OcG from
Higgs physics at HL-LHC with

√
s = 14 TeV and 3 ab−1 of integrated luminosity, derived in [323, 334].

The given 2σ bounds correspond to Λ = 1 TeV, while the numbers quoted for the suppression scale
assume a Wilson coefficient with a magnitude of 1. See the main text for further details.

range of tested jet-jet invariant masses. Similar statements apply to the constraints
following from the CMS measurement of the dijet angular distributions [345]. On
general grounds, the limits (7.15) and (7.17) therefore only constrain strongly-coupled
UV completions — for related discussions of the applicability of the SMEFT to dijet
searches see [339–344]. The situation is better in the case of the bound on CbG that we
have derived from the recent ATLAS measurement [367] of pp → bb̄Z/γ∗ → bb̄ `+`−,
because the energy scales tested by this measurement are all below 1 TeV. Notice that
pp → bb̄Z/γ∗ → bb̄ `+`− measurements are systematically limited at the LHC but
the prospects of reducing the systematic uncertainties due to an improved theoretical
understanding are quite good (cf. [369]). These two features taken together make Z-
boson production in association with b-jets in our opinion a key process to search and to
constrain the chromomagnetic bottom-quark dipole operator at upcoming LHC runs.
Furthermore, as can be learnt from Table 7.1 as well as the discussion at the end
of Section 7.2.4, flavour physics does not provide a meaningful bound on either the
operator ObG or the operator OcG.

From Table 7.1 it is also clear that in contrast to
∣∣CbG

∣∣ and
∣∣CcG

∣∣, the imaginary
parts of both Wilson coefficients are severely constrained by searches for a nEDM. In
the case of a purely imaginary Wilson coefficient CbG (CcG) of 1, scales as high as
90 TeV (275 TeV) are excluded at 90% CL by these indirect searches. Notice that in
weakly-coupled UV complete theories the Wilson coefficients of chromodipole operators
are typically both Yukawa- and loop-suppressed — see [166] for a more detailed dis-
cussion of this point. Assuming that CbG = yb/(4π)2 and CcG = yc/(4π)2 the bounds
(7.36) and (7.40) imply Λ > 960 GeV and Λ > 1.5 TeV, respectively. This numerical
example shows that nEDM searches, unlike the studied collider constraints, are able
to test weakly-coupled TeV-scale new-physics models. Making effects of bottom-quark
and charm-quark chromodipole operators observable at the LHC therefore generically
requires a mechanism that suppresses new sources of CP-violation beyond the SM.

A direct comparison of the collider limits shown in Table 7.1 and Table 7.2 is not fully
justified since they correspond to different colliders (a 13 TeV machine with 35.6 fb−1

of integrated luminosity versus the HL-LHC at 14 TeV with 3 ab−1). However, some
general remarks are in order. We observe that the best collider constraints are obtained
by pressing the b-tagging button, where pp→ bb̄Z/γ∗ → bb̄ `+`− and pp→ bb̄h→ bb̄γγ
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can play a crucial role in constraining ObG in the future. This further emphasizes
that due to the non-factorisable nature of the corrections involving ObG, exploiting
differential LHC data seems a worthwhile exercise, a point which is also made in [166,
334]. In fact, it might also be possible to constrain ObG at future lepton colliders
through an analysis of event-shape variables in h→ bb̄— see for instance [422]. Finally,
we add that a generic UV theory will most likely produce a set of higher-dimensional
operators, rather than ObG or OcG alone. However, the unique kinematic structures in
differential observables due to the chromodipole operators would presumably remain
unchanged, motivating their further study not only now but also at future LHC runs.
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Chapter 8

Higgs portals

The discovery of a new fundamental scalar particle [1, 2] has opened up many new
avenues in the pursuit of physics beyond the SM, as we have seen for instance in
Chapters 6 and 7. There, we parametrised possible BSM effects via effective operators
within the framework of the SMEFT, allowing generally for rather model-independent
constraints on their associated Wilson coefficients. There are indeed both experimental
and theoretical arguments that suggest that the Higgs boson may provide a window
into BSM physics. It was already mentioned in Chapter 6 that experimentally the
Higgs sector is far less explored and constrained compared to the gauge or fermionic
sector of the SM [24, 423]. Theoretically, the SM Higgs doublet H plays a special role
not only in BSM searches framed within the SMEFT, but also because it allows to write
down relevant and marginal operators of the form |H|2O with O itself a gauge-invariant
operator with a mass dimension of two or lower. Interactions of the latter type, since
they provide a unique window into an otherwise hidden sector, are commonly referred
to as Higgs portals.

This chapter is structured as follows. After a short motivation in Section 8.1, we
investigate in Section 8.2 the sensitivity of future hadron collider measurements of off-
shell Higgs production in the pp→ ZZ → 4` channel to Higgs portal interactions of the
form mentioned above. In Section 8.3, we compare our main results of Section 8.2 to the
limits one expects to obtain from other single- and double-Higgs probes, and provide a
short outlook. A discussion of the impact that different assumptions on the systematic
uncertainties in our ME-based search strategy have on the projected constraints is
relegated to Appendix D, while further details of the relevant loop calculations and their
implementation in the MC code for our double-Higgs analysis are given in Appendix E.

8.1 Motivation

The simplest and most studied case of an operator of the form |H|2O is the case
where O = φ2, with φ begin a real scalar that is a singlet under the SM gauge group
but odd under a Z2 symmetry [424–428]. The corresponding interaction Lagrangian
reads

LHφ = −cφ |H|2φ2 . (8.1)

Notice that the Z2 symmetry acts on the real scalar field as φ→ −φ, which guarantees
the stability of φ making it a suitable dark DM candidate. See for instance [429–431]
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for recent reviews of the ensuing DM phenomenology. In particular, under the assump-
tion that φ is a relic of standard thermal freeze-out production DM direct detection
experiments are known to foster stringent constraints on DM portals of the form (8.1)
— see for example [431] and references therein. In theories with a non-thermal cosmo-
logical history, a real scalar φ can however be shown to be a viable DM candidate for a
wide range of Higgs portal realisations while evading existing experimental limits [432].
This opens up the possibility to probe (8.1) at high-energy colliders.

Another motivation for the existence of sizeable Higgs portal couplings to |H|2 is
provided by the hierarchy problem of the Higgs-boson mass. In fact, in models where
the hierarchy problem is addressed by the addition of Nr real scalar top partners φi
the relevant interaction Lagrangian can be written as [256]

LHφi = −2Nc

Nr
y2
t |H|2

Nr∑

i=1

φ2
i , (8.2)

where Nc = 3 is the number of colours in QCD and yt =
√

2mt/v ' 0.94 is the
top-quark Yukawa coupling with mt ' 163 GeV the top-quark MS mass. Well-known
cases where (8.2) is a proxy for the resulting Higgs portal interactions are stops in the
minimal supersymmetric SM (MSSM) and singlet scalar top partners in the hyperbolic
Higgs [433] or tripled top model [434], if one assumes that these particles are approxi-
mately degenerate in mass. Notice that in such a case the interactions (8.1) and (8.2)
are equivalent from the perspective of collider phenomenology if |cφ| = 2Nc/

√
Nr y

2
t . In

the case of the MSSM, the hyperbolic Higgs and the tripled top model where Nr = 12,
a light Higgs boson is therefore natural if one effectively has a Higgs portal of the
form (8.1) with coupling strength |cφ| ≤

√
3y2

t ' 1.5.

8.2 Higgs portal effects in gg → h∗ → ZZ

The level of difficulty to discover or to exclude Higgs portals of the form (8.1) and (8.2)
at high-energy colliders depends mainly on the mass mφ of the new states that couple
to |H|2. While in the case ofmφ < mh/2 ' 62.5 GeV the decays of the Higgs boson into
invisible [435–439] or undetected [423, 431] final states provide stringent constraints on
the effective coupling strength of the Higgs portals, obtaining relevant constraints above
the kinematic threshold mφ > mh/2 turns out to be significantly more challenging.
In fact, only two categories of collider measurements are known that provide sensitivity
to Higgs portals above the kinematic threshold: firstly, pair-production of the new
scalars in off-shell Higgs processes such as the VBF, the tt̄h and the ggF channel [321,
322, 440–450], and secondly, studies of the virtual effects that these particles produce
when exchanged in loop diagrams that contribute to processes such as associated Zh,
double-Higgs and gg → h∗ → ZZ production [302, 303, 451–455]. The existing analyses
have considered a wide range of future high-energy hadron as well as lepton colliders,
including the HL-LHC, HE-LHC, FCC, the International Linear Collider (ILC), the
Compact Linear Collider (CLIC) and a muon collider.

In this section, we investigate the sensitivity of future hadron collider measurements
of off-shell Higgs production in the pp → ZZ → 4` channel to Higgs portal interac-
tions such as (8.1) and (8.2). Compared to earlier studies of this Higgs production
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process [302, 303, 449] that relied on the four-lepton invariant mass (m4`) spectrum
alone to separate signal from background, we instead employ a ME based kinematic
discriminant in our work. Being sensitive not only to m4` but also to another seven
variables such as the invariant masses of the two opposite-sign lepton pairs (for details
consult the articles [306–308]), ME-based discriminants fully exploit the event kine-
matics. As in our recent study [43], we find that the use of a ME method leads to a
significantly improved coverage of the BSM parameter space, i.e. cφ and mφ in the case
of (8.1), than a shape analysis of the m4` distribution. Motivated by this finding, we
analyse in detail the HL-LHC, HE-LHC and FCC potential of the proposed method
in constraining BSM physics that couples to the operator |H|2. In Section 8.2.1 we
briefly discuss the calculation of the loop corrections to pp → ZZ → 4` production
arising from (8.1). The MC implementation and aforementioned ME-based kinematic
discriminant are discussed in Section 8.2.2 where we also explain how higher-order QCD
corrections are taken into account in our study. The numerical analysis of the HL-LHC
reach is performed in Section 8.2.3 and contains a comparison between the sensitivities
obtained from a shape analysis of the m4` spectrum and the proposed ME method.
Finally, in Section 8.2.4 we present our HE-LHC and FCC projections.

8.2.1 Description of the calculation

At the one-loop level the gg → h∗ → ZZ process receives contributions from Feynman
graphs such as the one displayed in Figure 8.1 that contains a modified Higgs propagator
with insertions of the Higgs portal operator (8.1). The corresponding renormalised
contribution to the self-energy of the Higgs takes the form

Σ̂(ŝ) = Σ(ŝ) +
(
ŝ−m2

h

)
δZh − δm2

h , (8.3)

where the bare Higgs self-energy, the one-loop corrections to the Higgs wave function
and the mass counterterm in the on-shell scheme are given by the following expressions

Σ(ŝ) =
1

(4π)2

[
cφA0(m2

φ) + 2v2 |cφ|2B0

(
ŝ,m2

φ,m
2
φ

) ]
,

δZh = −2v2 |cφ|2
(4π)2

d

dŝ
B0

(
ŝ,m2

φ,m
2
φ

)∣∣∣∣
ŝ=m2

h

,

δm2
h =

1

(4π)2

[
cφA0(m2

φ) + 2v2 |cφ|2B0

(
m2
h,m

2
φ,m

2
φ

) ]
.

(8.4)

Here ŝ = p2 with p the external four-momentum entering the Higgs propagator and
the A0 and B0 functions are one- and two-point Passarino-Veltman scalar integrals
defined as in [290, 456]. The expression in (8.4) can be easily generalised to other
Higgs portals of the form (8.1). For instance, in the case of LHΦ = −cΦ |H|2 |Φ|2
with Φ a complex scalar field one just has to make the substitutions cφ → cΦ/

√
2

and mφ → mΦ.
Notice that the contribution to the Higgs wave-function renormalisation constant δZh

coming from the propagator corrections exactly cancels against those of the vertices
when combined to obtain the full BSM contribution to the off-shell gg → h∗ → ZZ

amplitude. Similarly, the tadpole contribution proportional to A0(m2
φ) also cancels
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g

g

Z

Z

t

t

t
h

φ

φ

h

Figure 8.1: Example of a one-loop correction to gg → h∗ → ZZ production with insertions of the
Higgs portal operator (8.1) indicated by the black boxes. Also diagrams with tadpoles or counterterms
contribute but are not shown explicitly. Consult the main text for further details.

in the difference Σ(ŝ) − δm2
h. In contrast, the Higgs wave-function renormalisation

constant δZh does not drop out in the on-shell Higgs signal strengths µfi for production
in channel i and decay in channel f . In terms of the inclusive Higgs production cross
sections σi and the Higgs branching ratios BRf , these quantities take the form

µfi =
σi

σSM
i

BRf

BRSM
f

= 1 + δZh , (8.5)

i.e. they receive a universal correction proportional to the Higgs wave-function renor-
malisation constant as given in (8.4). This feature allows to set indirect constraints on
Higgs portal models by precision measurements of Higgs properties [452], which will be
discussed in Section 8.3.

8.2.2 MC implementation

The Higgs propagator corrections (8.3) and the relevant vertex counterterms have been
implemented into version 8.0 of the event generator MCFM [291] to obtain kinematic
distributions for pp→ ZZ → 4` such as the m4` spectrum. In addition, our MC code
is also able to calculate the following ME-based kinematic discriminant

(
cf. (6.28)

)

DS = log10

(
Ph

Pgg + c · Pqq̄

)
. (8.6)

Here Ph denotes the squared ME for the gg → h∗ → ZZ → 4` process, Pgg is the
squared ME for all gg-initiated channels (including the Higgs channel, the continuum
background and their interference) and Pqq̄ is the squared ME for the qq̄ → ZZ → 4`

process. Like in [293, 296, 298] the constant c is set to 0.1 to balance the qq̄- and gg-
initiated contributions. We stress that in the SM more than 99% of the pp→ ZZ → 4`

cross section falls into the range of −4.5 < DS < 0.5 [293]. For BSM models that
predict events with DS < −4.5 or DS > 0.5 the variable DS therefore presents a null
test.

Currently, calculations of higher-order QCD corrections to four-lepton production
via qq̄ annihilation include the full NNLO corrections and top-quark mass effects [79–
82]. NLO corrections to the loop-induced gg channel have been computed by now as
well [172, 212–214], while for inclusive Higgs production the precision has been pushed
to the N3LO in the heavy top-quark limit [313]. As the gg → ZZ process starts
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contributing only at O(α2
s), it is part of the NNLO QCD corrections to ZZ production

and NLO corrections to this channel formally contribute at N3LO. Lastly, NLO EW
corrections could in principle play an important role as well. Within the SM they were
combined with NNLO QCD effects for ZZ production in the work [457]. However, it
has been shown in the paper [277] that including NLO EW effects in the SM has only
a very minor effect on the sensitivity of indirect single-Higgs analyses to modifications
of the trilinear Higgs coupling. We expect a similar pattern to arise in the context
of the Higgs portal models studied here. A dedicated simulation of four-lepton events
including both higher-order QCD as well as EW corrections both in and beyond the
SM, consistently matched to a parton shower and including detector effects is clearly
beyond the scope of the present article and therefore left for future work.

In order to include higher-order QCD corrections in our pp → ZZ → 4` analysis,
we proceed along the lines of Section 6.2.2.2 — see also [43]. For the two relevant
production channels we calculate the so-called K-factor defined as the ratio between
the fiducial cross section at a given order in QCD and the corresponding LO QCD
prediction. In the case of the gg-initiated contribution we utilise the results of [44].
The ratio between the NLO and LO ggF predictions turns out to be essentially flat
in m4` and by averaging we find KNLO

gg = 1.83. This number agrees with the K-factors
reported in [172, 212, 214]. In the case of the qq̄-initiated contribution we use the
NNLO results obtained in [214]. The relevant K-factor again turns out to be basically
flat in m4` with a central value of KNNLO

qq̄ = 1.55. This finding is in accordance
with [79]. The quoted K-factors are then used to obtain a QCD-improved prediction
for the pp→ ZZ → 4` cross section differential in the variable O as follows

(
cf. (6.29)

)
:

dσpp
dO

= KNLO
gg

(
dσgg
dO

)

LO

+KNNLO
qq̄

(
dσqq̄
dO

)

LO

. (8.7)

Notice that (8.7) is accurate in the case of the m4` spectrum. For the DS distribu-
tion one observes [43] a close to flat K-factor of around 1.6 between the LO and the
improved prediction (8.7). It is furthermore found that the inclusion of higher-order
QCD corrections reduces the scale uncertainties by a factor of about 3 from (7− 8)%

to (2− 3)%. The fact that the central value of the improved DS spectrum lies outside
the LO uncertainty bands demonstrates that the scale variations of (8.7) do not provide
a reliable way to estimate the size of higher-order QCD effects. In view of this and
given that the discriminant DS as defined in (8.6) is only LO accurate, we will make
different assumptions on the systematic uncertainties entering our ME-based search
strategy, a point we will discuss in more detail in our numerical analyses presented in
Sections 8.2.3 and 8.2.4 as well as in Appendix D. A similar approach is also used in the
projections [294, 295] that estimate the HL-LHC reach in constraining off-shell Higgs
boson production and the Higgs boson total width in pp→ ZZ → 4`.

8.2.3 HL-LHC analysis

In our pp → ZZ → 4` analysis we consider the window 140 GeV < m4` < 600 GeV of
four-lepton invariant masses. The charged leptons are required to be in the pseudo-
rapidity range |η`| < 2.5 and the lepton with the highest transverse momentum (pT )
must satisfy pT,`1 > 20 GeV while the second, third and fourth lepton in pT order is
required to obey pT,`2 > 15 GeV, pT,`3 > 10 GeV and pT,`4 > 6 GeV, respectively. The
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Figure 8.2: m4` spectra in the SM (dashed black) as well as for three Higgs portal model sce-
narios (8.1) assuming cφ = 3 and mφ = 70 GeV (solid red), mφ = 100 GeV (solid blue) and
mφ = 150 GeV (solid green). The left (right) plot shows results for gg → ZZ → 4` (pp → ZZ → 4`)
production. All distributions correspond to QCD-improved predictions and LHC collisions at a centre-
of-mass energy of

√
s = 14 TeV. The lower panels depict the ratios between the BSM distributions

and the corresponding SM predictions.

lepton pair with the mass closest to the Z-boson mass is referred to as the leading
dilepton pair and its invariant mass is required to be within 50 GeV < m12 < 106 GeV,
while the subleading lepton pair must be in the range of 50 GeV < m34 < 115 GeV.
Notice that the ATLAS and CMS analyses [292–298] employ similar cuts. We assume
a detection efficiency of 99% (95%) for muons (electrons) that satisfy the event selec-
tions. These efficiencies correspond to those reported in the latest ATLAS analysis
of off-shell Higgs production [298]. As input parameters we use GF = 1/(

√
2v2) =

1.16639 · 10−5 GeV−2, mZ = 91.1876 GeV, mh = 125 GeV and mt = 173 GeV. We
employ NNPDF40_nlo_as_01180 parton distribution functions (PDFs) [299] with the
renormalisation and factorisation scales µR and µF set to m4` on an event-by-event
basis. Both the different-flavour e+e−µ+µ− and the same-flavour 2e+2e− and 2µ+2µ−

decay channels of the two Z bosons are included throughout our work.
In Figure 8.2 we show our predictions for the m4` distributions in the SM (dashed

black) and three Higgs portal models (8.1). The displayed BSM benchmarks corre-
spond to scalar masses of mφ = 70 GeV (solid red), mφ = 100 GeV (solid blue) and
mφ = 150 GeV (solid green) assuming in all cases a coupling strength of cφ = 3. Notice
that the chosen value of cφ is safely below the limit |cφ| < 4π following from pertur-
bative tree-level unitarity (see for instance [449]). In the left panel the QCD-improved
predictions for gg → ZZ → 4` production including the Higgs signal, the continuum
background and their interference are given. Two features of the shown BSM spectra
deserve a further discussion. First, one observes peak-like structures in the distributions
slightly above the threshold m4` = 2mφ of two-scalar production. Second, both spec-
tra show an enhancement at large m4` because in the limit of partonic centre-of-mass
energies ŝ → ∞ the correction simplifies to Σ(ŝ) − δm2

h ' −v2|cφ|2/(8π2) ln
(
ŝ/m2

h

)
.
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Figure 8.3: As Figure 8.2 but for the QCD-improved ME-based discriminant DS as defined in (8.6)
and (8.7). Furthermore, instead of mφ = 70 GeV a mass of mφ = 200 GeV is employed. For additional
explanations see main text.

This behaviour is easily derived from (8.4). Notice furthermore that the gg → h∗ →
ZZ → 4` amplitudes interfere destructively with the gg → ZZ → 4` matrix elements
so that the overall sign of the correction Σ(ŝ) − δm2

h is effectively flipped. One also
sees that for the three chosen sets of Higgs portal parameters the relative corrections
in the spectra amount to less than 15% over the whole range of m4` values of interest.
The same features are also observed in the right panel of Figure 8.2 which shows the
corresponding predictions for pp→ ZZ → 4` production. Notice that in this case the
relative modification are smaller by a factor of roughly 10 than for gg → ZZ → 4` due
to the addition of the qq̄ → ZZ → 4` channel which receives no BSM correction.

To illustrate the discriminating power of the ME-based kinematic variable intro-
duced in (8.6) we present in Figure 8.3 the results for the DS spectra in the SM and
beyond. The shown predictions have been obtained by means of (8.7) and the choices
for the Higgs portal model parameters are those from before, apart from mφ = 70 GeV

which is replaced by mφ = 200 GeV. One observes that compared to the SM spectrum
the BSM distributions are shifted to lower values of DS . This is a simple consequence
of the fact that the correction Σ(ŝ) − δm2

h tends to reduce the gg → h∗ → ZZ → 4`

amplitude and thus Ph in (8.6). As a result of the sharp cut-off of the SM distribution
at DS ' −3.5, the relative BSM effects in the DS spectra for gg → ZZ → 4` turn
out to be large, easily exceeding 100% for the chosen benchmark values of cφ and mφ.
As illustrated in the right panel of Figure 8.3, adding the qq̄ → ZZ → 4` channel to
the predictions for the DS distributions notably reduces the relative size of the Higgs
portal corrections. Still assuming cφ = 3, the BSM effects reach the level of around
200%, 10% and 5% in the case of mφ = 100 GeV, mφ = 150 GeV and mφ = 200 GeV,
respectively.

By comparing the relative modifications in the right panels of Figures 8.2 and 8.3 it
should be already clear that the four-lepton invariant mass m4` has a much weaker dis-

– 125 –



Chapter 8. Higgs portals

criminating power than the variable DS in constraining interactions of the form (8.1).
In order to make this statement quantitative we perform a shape analysis of both
the m4` and DS spectrum following the method outlined in Section 6.2.2.3. Specif-
ically, the significance Zi is calculated as a Poisson ratio of likelihoods modified to
incorporate systematic uncertainties on the background using the Asimov approxima-
tion [317]

(
cf. (6.31)

)
:

Zi =

{
2

[
(si + bi) ln

[
(si + bi)

(
bi + σ2

bi

)

b2i + (si + bi)σ2
bi

]
− b2i
σ2
bi

ln

(
1 +

siσ
2
bi

bi(bi + σ2
bi

)

)] }1/2

. (8.8)

Here si (bi) represents the expected number of signal (background) events in bin i of
the m4` or DS spectrum and σbi denotes the standard deviation that characterises the
systematic uncertainties of the associated background in that bin. To set bounds on cφ
as a function of mφ we assume that the central values of a future measurements of the
two relevant distributions will line up with the SM predictions. We hence employ

si = Ni(cφ)−Ni(0) , bi = Ni(0) , σbi = ∆iNi(0) . (8.9)

The total significance Z is obtained by adding the individual Zi values in quadrature.
Parameter regions with a total significance of Z >

√
2erf−1 (CL) are said to be ex-

cluded at a given confidence level CL. Here erf−1(z) denotes the inverse error function.
In our shape analyses, we consider 23 bins of size of 20 GeV with four-lepton invariant
masses in the range 140 GeV < m4` < 600 GeV and 27 bins of equal size of 0.2 that
cover the range −4.9 < DS < 0.5 in the case of m4` and DS , respectively.

A crucial ingredient in our analysis will turn out to be the systematic uncertain-
ties σbi on the background as parametrised by the parameters ∆i in (8.9). In the case
of the HL-LHC shape fits, we will employ the two different choices ∆i = ∆ = 8%

and ∆i = ∆ = 4% of bin-independent systematic uncertainties. These choices can
be motivated by recalling that the systematic uncertainties that ATLAS quotes in the
HL-LHC study [319] for the on-shell gg → h → ZZ signal strength amount to 5.0%

and 3.9% in the baseline scenario S1 and S2 for the expected total systematic uncer-
tainties. The corresponding systematic uncertainties quoted in the CMS work [295]
are 7.3% and 4.1%. Since the dominant Higgs portal corrections in DS are associated
to kinematic configurations with m4` around 2mφ, we believe that for not too heavy φ,
theoretical predictions of the DS spectra will reach an accuracy that is very similar to
the systematics that is expected to be achievable at the HL-LHC in the case of on-
shell gg → h→ ZZ production. Notice that the BSM effects in the m4` spectrum also
receive important corrections in the region m4` > 2mt as can be seen from the plots
in Figure 8.2. Given the limitations (cf. [44, 217, 458]) of the state-of-the-art SM pre-
dictions of pp→ ZZ production for kinematic configurations above the two top-quark
threshold, achieving the assumed systematic uncertainties of ∆ = 8% and ∆ = 4%

is certainly more challenging in the case of the m4` distribution. The steady progress
of perturbative QCD calculations, in particular the exact evaluations of the two-loop
on-shell amplitudes for gg → ZZ involving top quarks [231, 232] makes us, however,
confident that systematic uncertainties in the ballpark of 10% or below are attainable
till 3 ab−1 of data are collected at the HL-LHC.

The plot in Figure 8.4 displays the results of our binned-likelihood analysis when
applied to the m4` (green lines) and the DS (blue lines) distribution. Given the strong
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Figure 8.4: 95% CL limits on |cφ| as a function of mφ derived from the binned-likelihood analysis
of the m4` (green lines) and the DS (blue lines) spectrum at the HL-LHC. The solid (dashed) curves
are obtained assuming a systematic uncertainty of ∆ = 8% (∆ = 4%). See main text for additional
details.

constraints on cφ from on-shell Higgs boson decays into invisible [435–439] or unde-
tected [423, 431] final states, we only consider mφ values above the Higgs threshold
at mh/2. The shown 95% CL limits correspond to our HL-LHC projections assuming
the full expected integrated luminosity of 3 ab−1 at

√
s = 14 TeV. The solid (dashed)

exclusion lines have been obtained for a systematic uncertainty of ∆ = 8% (∆ = 4%).
As anticipated, the exclusions that derive from the binned-likelihood analysis of them4`

spectrum are significantly weaker than those that follow from the DS distribution. It is
also evident from the figure that the size of the assumed systematic uncertainties plays
a non-negligible role in the extraction of the 95% CL limits in the mφ–|cφ| plane, in
particular, if the m4` spectrum is used to discriminate between the BSM signal and the
SM background. We elaborate on this point further in Appendix D. In this context,
we also add that our bounds following from the binned-likelihood analysis of the m4`

distribution agree roughly with the HL-LHC limits presented in [302, 303] if one takes
into account that these articles have considered the complex Higgs portal |H|2|Φ|2.
A thorough comparison with the latter results is however not possible because a dis-
cussion of systematic uncertainties is missing in the works [302, 303]. Notice finally
that the bounds on |cφ| that follow from our DS likelihood-analysis have a non-trivial
behaviour for mφ . 100 GeV. This feature is related to the interference between the
BSM signal and the SM background.

8.2.4 HE-LHC and FCC analyses

In the following we repeat the numerical analysis performed at the end of the last
section for the HE-LHC and the FCC. In the case of the HE-LHC (FCC) we assume
a centre-of-mass energy of

√
s = 27 TeV (

√
s = 100 TeV) and an integrated luminos-

ity of 15 ab−1 (30 ab−1). Apart from the m4` window which we enlarge to 1000 GeV

(1500 GeV) at the HE-LHC (FCC), the selection cuts and detection efficiencies in our
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Figure 8.5: 95% CL limits on |cφ| as a function of mφ derived from the binned-likelihood analysis
of the ME-based kinematic discriminant DS . The red and orange exclusions illustrate our HE-LHC
and FCC projections, respectively. The systematic uncertainties that have been assumed to obtain
the different bounds are shown next to the lines and vary between ∆ = 4% and ∆ = 1%. Further
details are given in the main text.

HE-LHC and FCC pp → ZZ → 4` analyses resemble the ones spelled out at the
beginning of Section 8.2.3. Possible reductions of the statistical uncertainties due to
improvements in the HE-LHC and FCC detectors such as extended pseudorapidity cov-
erages [459, 460] are not considered in our numerical analysis. We also take the values
of the K-factors quoted in Section 8.2.2 that have been obtained for LHC collisions to
calculate QCD-improved predictions for the kinematic variable DS a la (8.7). In view
of the fact that the assumed systematic uncertainties largely determine the HE-LHC
and FCC reach in constraining Higgs portal interactions of the form (8.1), we believe
that these simplifications are fully justified. Moreover, since we have seen at the end
of the last section that the ME-based kinematic discriminant DS offers a significantly
better sensitivity compared to m4`, we will below only consider the former observable
when determining the disfavoured regions in the mφ–|cφ| plane.

The HE-LHC and FCC results of our shape fit to the DS distribution are displayed
in Figure 8.5. Like in the case of the HL-LHC we show results assuming different base-
line scenarios for the assumed systematic uncertainties. In the case of the HE-LHC we
employ ∆ = 4% and ∆ = 2%, while in our FCC analysis we use ∆ = 2% and ∆ = 1%.
These systematic uncertainties can be motivated by noticing that the systematic un-
certainties at the HE-LHC should be at least as small as those expected ultimately at
the HL-LHC and that the FCC has a target precision of 1.8% for the pp → ZZ → 4`

channel [461]. Envisaging further theoretical and experimental progress a final sys-
tematic uncertainty of 1% at the FCC does therefore not seem inconceivable. From
the different curves one again sees that the size of the assumed systematic uncertain-
ties plays a notable role in determining the collider reach. Numerically, we find that
halving the systematic uncertainties at the HE-LHC (FCC) leads to improvements of
the 95% CL bounds on |cφ| of around 25% (30%) at mφ ' 100 GeV and about 20%
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(25%) at mφ ' 250 GeV. The gain in statistical power of the FCC compared to the
HE-LHC is however also visible from the figure with the FCC bound at mφ ' 250 GeV

being better by roughly 25% than that of the HE-LHC assuming the same systematic
uncertainties of ∆ = 2%. This trend continues at higher values of the real scalar mass
reaching up to almost 35% at mφ ' 400 GeV.

8.3 Discussion

In Figure 8.6 we compare the HL-LHC reach of different search strategies in themφ–|cφ|
plane. The solid blue exclusion line corresponds to the 95% CL limits that derives from
the proposed binned-likelihood analysis of the ME-based kinematic discriminant DS

assuming a systematic uncertainty of ∆ = 4%. The solid green line instead indicates
the bound obtained in [321] from a study of off-shell Higgs production in the VBF
channel. This analysis assumes a systematic uncertainty of ∆ = 1%. At the HL-
LHC, measurements of the global Higgs signal strength µh are expected to reach an
accuracy of ∆ = 2.4% in the baseline scenario S2 for the expected total systematic
uncertainties [319]. Utilising the quoted precision together with (8.4) and (8.5) leads
at 95% CL to the solid red line. Another process that is sensitive to Higgs portal
interactions of the form (8.1) is double-Higgs production as previously demonstrated
in [321, 444, 453–455]. The 95% CL bound κλ ∈ [0.18, 3.6] on the modifications κλ =

λ/λSM with λSM = m2
h/(2v

2) ' 0.13 of the trilinear Higgs coupling as found by the
CMS projection [272] implies µhh ∈ [0.7, 1.8] on the signal strength in double-Higgs
production at the HL-LHC. By implementing the full one-loop corrections due to (8.1)
into MCFM and imposing the latter bound we obtain the solid and dashed orange lines.
Consult Appendix E for further details. Finally, the dashed black line corresponds to
the naturalness bound |cφ| =

√
3y2
t = 1.5 discussed in Section 8.1.

From Figure 8.6 it is evident that for mφ . 90 GeV the VBF and µh projections
provide nominally the best constraints at the HL-LHC. In the case of mφ & 90 GeV,
on the other hand, double-Higgs production at the HL-LHC typically allows to set
the most stringent constraints on the parameters appearing in (8.1). Notice also that
the DS constraint provides the best sensitivity for 90 GeV . mφ . 120 GeV and
stronger constraints than VBF and µh for mφ & 90 GeV. The fact that the constraints
that stem from double-Higgs production are not symmetric under cφ ↔ −cφ is readily
understood by noting that the Higgs portal corrections to the gg → hh amplitude
involve both terms proportional to c3

φ and c2
φ. In fact, integrating out the real scalar φ

leads to the following one-loop modification of the trilinear Higgs coupling (see for
instance [321, 462]):

κλ ' 1 +
v2c2

φ

12π2m2
φ

(
v2cφ
m2
h

− 7

12

)
, (8.10)

where the terms in brackets interfere destructively (constructively) for cφ > 0 (cφ <
0). We add that the numerical value of the second term in brackets depends on the
definition and the kinematics of the trilinear Higgs vertex and that the value in (8.10)
is obtained from the full one-loop form factor (E.2) assuming two on-shell external
Higgs bosons. The intricate dependence of the gg → hh amplitude on mφ and cφ also
leads in the case of cφ > 0 to the island of disfavoured parameters starting at mφ '
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Figure 8.6: Comparison of the HL-LHC reach of different search strategies in themφ–|cφ| plane. The
solid blue, solid green and solid red line correspond to the 95% CL limits that derive from our binned-
likelihood analysis of the ME-based kinematic discriminant DS , the VBF analysis performed in [321]
and a hypothetical measurement of the global Higgs signal strength µh, respectively. If applicable the
assumed systematic uncertainties or accuracies are indicated. The parameter spaces above the coloured
lines are disfavoured. The region bounded by the solid (dashed) orange line follows from imposing that
the signal strength in double-Higgs production obeys µhh /∈ [0.7, 1.8] for cφ > 0 (cφ < 0). The dotted
black line corresponds to the bound |cφ| =

√
3y2
t = 1.5 that derives from naturalness arguments in

models of neutral naturalness. For more details see main text.

145 GeV and cφ ' 1.7. This point is discussed in more detail in Appendix E. Notice
furthermore that all constraints shown in Figure 8.6 depend in a non-negligible way
on the assumed systematic uncertainties or accuracies. Finally, the VBF limit only
applies if the new degrees of freedom produced in h∗ → φφ are collider stable and thus
lead to a missing transverse energy (Emiss

T ) signal at the HL-LHC. In view of these
caveats one can conclude that to fully exploit the HL-LHC potential in probing Higgs
portal interactions of the form (8.1) one should consider all direct and indirect probes
displayed in Figure 8.6. But even in such a case one sees that at the HL-LHC only
theories compatible with the naturalness bound can be explored if the new particles that
cancel the quadratic sensitivity of the Higgs mass are not heavier than mφ ' 110 GeV.

In the case of the HE-LHC and the FCC the sensitivity of the different search
strategies to the Higgs portal parameters is shown in the two panels of Figure 8.7. The
displayed DS constraints assume systematic uncertainties of ∆ = 2% and ∆ = 1%,
while the VBF limits taken from [321] include only statistical uncertainties. In the
case of the global Higgs signal strength µh, we employ ∆ = 2% and ∆ = 1% [461].
The 95% CL bounds on modifications of the trilinear Higgs coupling at the HE-LHC
and the FCC are expected to be κλ ∈ [0.7, 1.3] and κλ ∈ [0.9, 1.1], respectively. See
for example [28, 267, 463] for detailed discussions. The corresponding two-sided limits
on the signal strength in double-Higgs production are µhh ∈ [0.80, 1.24] and µhh ∈
[0.93, 1.07]. In addition, we show in the case of the FCC the exclusion that follows
from an extraction of the Zh cross section σZh with an accuracy of ∆ = 0.2% as
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Figure 8.7: Comparison of the HE-LHC (upper panel) and FCC (lower panel) reach of different
search strategies in the mφ–|cφ| plane. Besides the constraints shown in Figure 8.6 also the 95% CL
limit that follows from a precision measurement of the Zh production cross section σZh is displayed in
the case of the FCC as a solid magenta line. The colour coding and meaning of the other constraints
resembles those in the former figure. Consult the main text for additional explanations.
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a solid magenta line. Such a precision measurement should be possible at the e+e−

predecessor of the FCC running at a centre-of-mass energy of
√
s = 240 GeV with an

integrated luminosity of 5 ab−1 [464]. The overall picture observed at the HE-LHC is
very similar to that seen at the HL-LHC. Nominal the strongest constraint arises for
mφ . 170 GeV (mφ & 170 GeV) from VBF off-shell Higgs (double-Higgs) production,
but the DS constraint also provides complementary sensitivity in particular for higher
values of mφ. In the case of the FCC, one furthermore observes that a high precision
measurement of σZh can provide additional relevant bounds in the mφ–|cφ| plane.
The combination of all constraints shown in the panels of Figure 8.7 should allow
to probe natural BSM theories of the form (8.2) if the new particles that cancel the
quadratic sensitivity of the Higgs mass appear below approximately mφ ' 200 GeV

(mφ ' 300 GeV) at the HE-LHC (FCC).
We add that the potential of CLIC and a muon collider in constraining Higgs portal

interactions of the form (8.1) through VBF off-shell Higgs production has been studied
in the article [321]. See also [440–442, 446] for similar analyses concerning the reach of
future lepton colliders. While CLIC is not expected to improve the FCC bounds shown
in the lower panel of Figure 8.7 even when running at a centre-of-mass energy of

√
s =

3 TeV and collecting 3 ab−1 of data, a muon collider with
√
s = 6 TeV and 6 ab−1

(
√
s = 14 TeV and 14 ab−1) should allow to test natural theories of neutral naturalness

up to mφ ' 500 GeV (mφ ' 900 GeV) thereby exceeding (significantly) the FCC reach.
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Chapter 9

Conclusions and outlook

In the absence of unequivocal evidence of physics beyond the SM, either via the dis-
covery of a new state or in the form of a statistically significant global deviation from
the SM predictions, there are essentially two broad directions of ongoing exploration at
the LHC. On the one hand, precise SM predictions combined with accurate measure-
ments including increasingly more data allow us to test the properties and interactions
of the SM particle content with unprecedented scrutiny, thereby further improving the
sensitivity to deviations from the SM picture. On the other hand, an EFT paradigm
has emerged in which phenomenological studies probe BSM effects indirectly via their
low-energy imprints on known collider processes, even in situations where the specific
UV completion from which these imprints descent is unknown. It is however evident
that the Higgs boson must have a special role in both of these approaches, offering a
powerful tool to study manifestations of the SM as well as providing a unique window
into possible BSM effects. It will therefore remain one of the cornerstones of the rich
physics programme at the LHC. In this thesis, we have presented a number of phe-
nomenological studies, originally published in [42–45], that contribute either directly
or indirectly to our understanding of the Higgs sector in and beyond the SM.

In Part I we studied precision Higgs phenomenology within the SM, in particular
ZZ production at the LHC in Chapter 4. To this end, we employed the recently
developed MiNNLOPS method to match NNLO QCD predictions for the qq̄-initiated
process to a PS. Using MiNNLOPS has the benefits of being able to include NNLO
QCD corrections on-the-fly (i.e. without any computationally intensive a-posteriori
reweighting), not needing to introduce any merging scale or unphysical boundaries to
separate the phase space into different regions corresponding to the number of jets,
and furthermore preserves the leading-logarithmic accuracy of the PS when using a
pT-ordered shower. In addition, we included the loop-induced gg-initiated process,
which contributes at O(α2

s) and higher, at NLO QCD accuracy matched to PS within
the Powheg-Box-Res framework (Section 4.1.3). Upon combination, the ensuing
nNNLO+PS results constitute the most accurate theoretical predictions for this process
to date. Our code is publicly available within the Powheg-Box-Res.

We have compared our MiNNLOPS predictions for ZZ production at the theoreti-
cal level against both fixed-order and analytically resummed results, finding excellent
agreement with fixed-order predictions in phase-space regions where shower effects are
expected to be small, in addition to a quite remarkable agreement with the analytically-
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resummed NNLO+N3LL pT,4` spectrum considering the lower logarithmic accuracy of
the PS. In the latter case, fixed-order calculations actually lead to unphysical results in
the small-pT,4` region due to large logarithmic corrections, which need to be resummed
to all orders. In most cases, we observe an overall reduction of the uncertainties due
to scale variation by about a factor of three between the NLO+PS accurate MiNLO′

results and our MiNNLOPS results, underlining the importance of including (n)NNLO
QCD corrections. In particular, the NLO QCD corrections to the loop-induced gg

channel, which are formally part of the N3LO corrections to ZZ production, have a
non-negligible impact, especially for small m4` and central rapidities. We have fur-
thermore compared our nNNLO+PS results to 13 TeV CMS data [195], finding an
agreement on almost all bins within one sigma. In the few bins where the differences
are at the two-sigma level we have shown that the inclusion of NLO EW corrections,
albeit approximately by means of a multiplicative K-factor, removes those differences
in most instances.

With the disclaimer that the quoted uncertainties capture merely those associated
to missing higher orders, in particular that PDF uncertainties and uncertainties related
to missing interference effects in the case of identical leptons in the final state are not
included, our final results are accurate at the level of 2% both for inclusive and fiducial
cross sections. These are similar in size as the current uncertainties on the experimental
side, which will however further improve when new data from LHC Run 3 and the HL-
LHC becomes available. We therefore conclude that theoretical predictions with an
accuracy comparable to that of the results presented in this work are mandatory to
fully exploit ZZ cross-section measurements at the LHC.

Our work can be extended in serval ways. First, an obvious improvement is to com-
bine highest-order QCD and QED corrections consistently in PS simulations. Second,
a comprehensive comparison between available NNLO+PS generators is desirable, in
particular in light of the small differences between MiNNLOPS and Geneva observed
in the pT,e− spectrum. And finally, another interesting direction for future efforts is to
implement the amplitudes associated to the subset of SMEFT operators relevant for
ZZ production into MiNNLOPS (and Powheg for gg → ZZ). In fact, since NLO+PS
implementations within the SMEFT for Drell-Yan and EW Higgs production [465, 466]
and WZ, WW production [467, 468] are already available within the Powheg-Box,
and even the first NNLO+PS event generators within the SMEFT are starting to
emerge [166], it seems worthwhile to further exploit the benefits of the MiNNLOPS

methodology in this direction.
The overarching topic of Part II is Higgs physics beyond the SM. In Chapter 6, we

studied the constraints on modifications of the trilinear Higgs coupling that originate
from Higgs production in pp collisions at the LHC Run 3 and HL-LHC. To this end,
we have augmented the renormalisable SM interactions by the dimension-six operators
O6 and OH

(
cf. (6.8)

)
within the SMEFT, accompanied by their associated Wilson

coefficients c̄6 and c̄H . While the operator O6 induces non-trivial kinematic shape-
changes to the differentialm4` spectrum through its NLO EW corrections to the process
gg → h∗ → ZZ → 4`, the operator OH constitutes an overall shift of the cross
section as a result of requiring a canonically normalised physical Higgs field h. We
have made use of a discriminant DS which turned out to be particularly powerful in
constraining BSM scenarios with c̄6 6= 0 because they can lead to DS < −4.5 while

– 136 –



99 % of the pp→ ZZ → 4` events in the SM fall into the range −4.5 < DS < 0.5, which
thus provides a null test. Partially owing to this feature, we have demonstrated our
method to be complementary as well as competitive to inclusive single-Higgs probes
in constraining the parameter space spanned by c̄6 and c̄H . A combination of our
work and inclusive single-Higgs boson probes allowed us to constrain their combination
c3 = 1 + c̄6 − 3/2 c̄H to the 95% CL range c3 ∈ [−4.0, 6.1] (c3 ∈ [−1.7, 5.7]) at the
LHC Run 3 (HL-LHC).

A straightforward way of improving the constraints on the trilinear Higgs coupling
derived in our work would be to include also projections of measurements for double-
Higgs production as well as EW precision observables, which has for instance been
done based on LHC Run 2 data in [285, 286, 289]. Furthermore, we have implemented
the aforementioned discriminant DS in our MC code using LO matrix elements for the
pp → ZZ → 4` process, for which many theoretical improvements [44, 79–81, 172,
212, 214, 217, 231, 232, 309–311] are available in the literature. We hence believe that
improving the theoretical understanding of the DS distribution is certainly possible,
which will have a tangible impact on the sensitivity of off-shell Higgs measurements to
modifications of the trilinear Higgs coupling.

In Chapter 7, we focussed on potential BSM effects that modify the bottom-Higgs
and charm-Higgs dynamics, in the form the chromodipole operators ObG and OcG
within the SMEFT, cf. (7.2). While a short review of the limits on the corresponding
Wilson coefficients (CbG and CcG) from Higgs physics is provided in Section 7.1 (cf. Ta-
ble 7.2), the effects of ObG and OcG can also be studied in processes that do not involve
a Higgs boson. The main results of our work are the limits on CbG and CcG, derived
from non-Higgs observables, presented in Table 7.1. While the nominal strongest col-
lider bound on |CbG| is obtained from an analysis of Mjj distributions for two b-tagged
jets within the experimentally probed region of 1133 GeV < Mjj < 4595 GeV [346],
requiring its suppression scale Λ to be above said range results in a magnitude of CbG
larger than 4π, thus constraining only strongly-coupled UV completions.

This leads us to classify the process pp→ bb̄Z/γ∗ → bb̄`+`− as the most promising
non-Higgs collider probe. Using the pT spectrum of the Z boson up to 1 TeV, we showed
that the production of a Z boson in association with two b-jets should be able to exclude
effects due to ObG for Λ < 980 GeV assuming a Wilson coefficient with a magnitude
of one. In fact, since the prospects of reducing the systematic uncertainties due to an
improved theoretical understanding are quite good (cf. [369]), it is not unlikely that
this bound will be pushed above 1 TeV in the future. However, the coefficients CbG and
CcG are typically both Yukawa- and loop-suppressed in weakly-coupled TeV-scale new-
physics models, in which case we showed that only nEDM searches are able to test such
scenarios. Making effects of bottom-quark and charm-quark chromodipole operators
observable at the LHC therefore generically requires a mechanism that suppresses new
sources of CP-violation beyond the SM.

In the final chapter of Part II, we considered the possibility of a Higgs portal in the
form of the operator |H|2, and explored the sensitivity of future hadron-collider mea-
surements of ZZ → 4` production in constraining interactions of the type cφ|H|2φ2,
with φ a real scalar field and cφ parametrising the strength of the Higgs-portal in-
teraction. Using a similar strategy as presented in Chapter 6 by employing the same
kinematic discriminant DS , we showed that the reach of the HL-LHC can be signif-
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icantly enhanced compared to studies that are based on measurements of the m4`

spectrum alone (cf. Figure 8.4 and Appendix D). We have also analysed the poten-
tial of the HE-LHC and the FCC in constraining new physics that couples to |H|2,
finding for instance that, using our analysis strategy, it should be able to test models
of neutral naturalness that imply a condition |cφ| =

√
3y2
t = 1.5 that derives from

naturalness arguments, up to values for the scalar mass of mφ = 280 GeV at the FCC
with an assumed systematic uncertainty of 1% (cf. Figure 8.5). We have compared our
HL-LHC, HE-LHC and FCC results to the projected limits that were obtained from
off-shell Higgs production in VBF [321], as well as to those that could achieved using
inclusive single-Higgs production, double-Higgs production and in the case of the FCC
also Zh production at a leptonic predecessor of the FCC. In general, we find that the
constraints obtained from our ZZ → 4` analysis turn out to be both competitive with
and complementary to the projected limits obtained using other search techniques.

The possible improvement associated to the theoretical understanding of the kine-
matic discriminant DS mentioned above will naturally have a similarly beneficial ef-
fect here as well. Other interesting avenues for exploring Higgs portals are provided
by future lepton colliders (see e.g. [440–442, 446]). For instance, a future muon col-
lider with

√
s = 6 TeV and 6 ab−1 (

√
s = 14 TeV and 14 ab−1) should allow to test

the aforementioned class of theories of neutral naturalness up to mφ ' 500 GeV

(mφ ' 900 GeV), thereby exceeding significantly the FCC reach.
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Appendix A

Fundamentals of QCD

This appendix aims to provide a short description of some of the basic aspects of
quantum chromodynamics (QCD), for more detailed and complete treatments of QCD
the reader is referred to standard textbooks such as [122, 124, 138, 469–471].

Definition of the theory —– QCD is a non-Abelian gauge theory (or Yang–Mills
theory) with gauge group SU(3). The bare Lagrangian density L0

QCD that defines the
theory is given by

L0
QCD = ψ̄0

a

(
i /D −m0

ψ

)
ab
ψ0
b −

1

4

(
G0A
µν

)2
+ Lgauge-fixing + Lghost , (A.1)

where spinor and flavour indices are not written explicitly, and the superscript 0 is
used to indicate bare quantities. The Dirac fields ψa with color index a = 1, 2, 3

denote the quark fields, while the gauge fields GAµ with color index A = 1, . . . , 8 are
called gluon fields. The covariant derivative and gluon field strength appearing in the
gauge-invariant part of (A.1) are defined as follows

Dµψ0 ≡
(
∂µ + ig0

s t
AG0A

µ

)
ψ0 ,

G0A
µν ≡ ∂µG0A

ν − ∂νG0A
µ − g0

sfABCG
0B
µ G0C

ν ,
(A.2)

with gs the strong coupling constant, tA the SU(3) generators and the fully antisym-
metric structure constants fABC defined via the relation [tA, tB] = ifABC tC . The
Casimir operators CF and CA and normalisation TR that appear often in computations
performed in SU(3) are given by

∑

A

tAab t
A
bc = CFδac ⇒ CF =

N2
c − 1

2Nc
=

4

3
, (A.3)

∑

A,B

fABCfABD = CAδ
CD ⇒ CA = Nc = 3 , (A.4)

Tr [tA, tB] = TRδAB ⇒ TR =
1

2
. (A.5)

When quantising QCD, choosing a covariant gauge with gauge parameter ξ as follows

Lgauge-fixing = − 1

2ξ0

(
∂µG0A

µ

)2
, (A.6)
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solves the issue of defining a Feynman propagator for the gluon field. However, for
non-Abelian theories one also has to add the following terms

Lghost = ∂µ η̄
0
A∂

µη0
A + g0

s ∂
µ η̄0

BfABCG
0A
µ η0

C , (A.7)

which contain the Faddeev-Poppov [472] ghost fields ηA in order to cancel the un-
physical longitudinal degrees of freedom that would otherwise propagate when using a
covariant gauge-fixing procedure. The above considerations allow one to write down
the basic QCD Feynman rules, listed in Figure A.1, that follow from (A.1).

Renormalisation —– As is the case for most relativistic quantum field theories, UV
divergencies appear also in QCD when considering interactions beyond tree level. How-
ever, as the Lagrangian for a non-Abelian gauge theory contains no terms with a mass
dimension higher than four, QCD is renormalisable, meaning its UV divergencies can
be removed by adding a finite number of counterterms. In the counterterm approach,
the renormalised QCD Lagrangian LQCD can written as the sum of three parts corre-
sponding to the free theory, the (possibly divergent) interactions and a counterterm
Lagrangian

LQCD = Lfree
QCD + Lint

QCD + Lct
QCD , (A.8)

where, suppressing the colour labels of the quark fields, the three individual parts are
given by the following expressions

Lfree
QCD = ψ̄

(
i/∂ −mψ

)
ψ − 1

4

(
∂µG

A
ν − ∂νGAµ

)2 − 1

2ξ

(
∂µGAµ

)2
+ ∂µ η̄A∂

µηA ,

Lint
QCD = − gsµε ψ̄ tA /GAψ + gsµ

εfABCG
BµGCν∂µG

A
ν −

g2
sµ

2ε

4

(
fABCG

B
µ G

C
ν

)2

+ gsµ
ε∂µ η̄BfABCG

A
µ ηC ,

Lct
QCD = (Z2 − 1) ψ̄ i/∂ψ + (Z2Zm − 1) ψ̄mψψ − gsµε

(
ZgZ2Z

1/2
3 − 1

)
ψ̄tA /G

A
ψ

+ gsµ
ε
(
Z

3/2
3 Zg − 1

)
fABCG

BµGCν∂µG
A
ν −

g2
sµ

2ε

4

(
Z2

3Z
2
g − 1

) (
fABCG

B
µ G

C
ν

)2

+
(
Z̄ − 1

)
∂µ η̄A∂

µηA + gsµ
ε
(
Z̄Z

1/2
3 Zg − 1

)
∂µ η̄BfABCG

A
µ ηC .

(A.9)

Here, we introduced the renormalisation scale µ, which is the unit of mass for dimen-
sional regularisation, in order to keep gs dimensionless for all ε. We used the freedom to
not only renormalise the strong coupling g0

s and quark masses m0
ψ, but also the (wave

functions of) the fields in the theory and the gauge parameter ξ0. The renormalisation
constants used in the above expressions are given by

G0A
µ = Z

1/2
3 GAµ , ψ0

a = Z
1/2
2 ψa , η0

A = Z̄1/2ηA , (A.10)

g0
s = Zggsµ

ε , ξ0 = Z3ξ , m0
ψ = Zmmψ . (A.11)

The counterterm Lagrangian in (A.9) has its own associated Feynman rules. The three-
and four-point counterterm vertices can be read off from Figure A.1, and making the
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Gluon propagator
µ

A

ν

B
(
−gµν + (1− ξ) pµpν

p2 + iε

) −iδAB
p2 + iε

Quark propagator
a

f

b

f ′ i(/p + mf )abδff ′

p2 −m2
f + iε

Ghost propagator A B iδAB

p2 + iε

Three-gluon vertex
α

A

β

B

γ

C

p1

p2

p3

−g0
sfABC

[
gαβ(p1 − p2)γ

+gβγ(p2 − p3)α + gγα(p3 − p1)β
]

Four-gluon vertex

α

A

β

B

γ

C

δ

D

−i(g0
s)2
[
fABEfCDE(gαγgβδ − gαδgβγ)

+fACEfBDE(gαβgγδ − gαδgγβ)

+fADEfBCE(gαβgδγ − gαγgδβ)
]

Quark-gluon vertex
µ

A

a

f

b

f ′

− ig0
s (γµ)ff ′

(
tA
)
ab

Ghost-gluon vertex
µ

A

B

C
p

g0
sfABC p

µ

Figure A.1: Basic QCD Feynman rules.
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Gluon propagator
µ

A

ν

B
i (Z3 − 1)

(
−gµν p2 + pµpν

)
δAB

Quark propagator
a

f

b

f ′
i
(
/p (Z2 − 1)− (Z2Zm − 1)mψ

)
ab
δff ′

Ghost propagator A B
i
(
Z̄ − 1

)
p2δAB

Figure A.2: Feynman rules for the two-point counterterms in QCD.

following substitutions

Three-gluon vertex: g0
s → g0

sZ
3/2
3 Zg − gsµε ,

Four-gluon vertex: (g0
s)

2 → (g0
s)

2Z2
3Z

2
g − g2

sµ
2ε ,

Quark-gluon vertex: g0
s → g0

sZ2Z
1/2
3 Zg − gsµε ,

Ghost-gluon vertex: g0
s → g0

s Z̄Z
1/2
3 Zg − gsµε .

(A.12)

The two-point counterterm vertices are given in Figure A.2. Finally, we add that
(A.9) holds to all orders in perturbation theory, but in practice one determines the
renormalisation constants order-by-order, i.e. expanding Zi = 1+δi+. . . , and requiring
the Green functions to be finite at the given order. Explicit expressions at one loop are
for instance derived in [124, 469].

The β function and asymptotic freedom —– The renormalised QCD coupling,
defined via the relation g0

s = gsµ
εZg, deserves a further discussion since it is intimately

related to the renormalisation-group (RG) invariance and asymptotic freedom of the
theory. In fact, RG invariance means nothing more than that the complete theory
should not depend on the renormalisation scale µ. The value of µ can be freely chosen,
as long as the values of the renormalised parameters in theory are changed in such a
way that the complete theory remains invariant. One obtains the µ-dependence of the
renormalised coupling gs by requiring

dg0
s

d lnµ
= εαs + β (αs) + 2

αs
Zg

dZg
dαs

β (αs) = 0 , (A.13)

where we have introduced αs = g2
s/(4π) and the QCD β function, defined as

β (αs) ≡
dαs
d lnµ2

=
gs
4π

dgs
d lnµ

. (A.14)

The explicit expression for the renormalisation constant Zg at one loop is

Zg = 1− αsSε
4πε

(
11

6
CA −

2

3
TRnf

)
+O(α2

s) , (A.15)

where nf is the number of quark flavours and the symbol Sε is a subtraction-scheme
dependent factor, which for instance in the MS scheme is defined as Sε = (4π)ε/Γ(1−ε)
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with Γ the gamma function. We will set Sε to 1 (minimal subtraction) for notational
clarity hereafter. Solving (A.13) for β (αs) using (A.15) and expanding in powers of
αs, we find at the physical space-time dimension (ε = 0) the following expression for
the β function

β (αs) = −
(

11− 2

3
nf

)
α2
s

4π
+O(α3

s) = −β0α
2
s +O(α3

s) . (A.16)

Here one observes that β0 is positive for nf ≤ 16, so that (A.16) and (A.14) can be
combined to obtain the scale-dependence (or running) of αs

αs
(
µ2
)

=
1

β0 ln (µ2/Λ2)
, (A.17)

where the integration constant Λ, which has receives mass dimension of one via dimen-
sional transmutation, is around 200 MeV for QCD [23]. Below said value one enters
the non-perturbative regime. For any observable that depends on an energy scale Q,
one could show that

αs
(
Q2
)

=
αs
(
µ2
)

1 + β0 ln (Q2/µ2)αs (µ2)
, (A.18)

where, since β0 is positive (for nf ≤ 16), the coupling tends to zero as the energy is
increased. QCD is therefore asymptotically free, which is a crucial feature of the theory
as it makes QCD susceptible to perturbative methods at sufficiently high energies.

For completeness, we report the β function and the coefficients β0, β1 and β2 in the
conventions of [34], given by

β (αs) = −β0α
2
s − β1α

3
s − β2α

4
s +O

(
α5
s

)
, (A.19)

where

β0 =
11CA − 2nf

12π
,

β1 =
17C2

A − 5CAnf − 3CFnf
24π2

,

β2 =
2857C3

A +
(
54C2

F − 615CACF − 1415C2
A

)
nf + (66CF + 79CA)n2

f

3456π3
.

(A.20)
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Appendix B

Higgs width effects

In this appendix we illustrates how rescalings of the form

gSM
hXX → ξ1/4 gSM

hXX , ΓSM
h → ξΓSM

h , (B.1)

with gSM
hXX and ΓSM

h denoting the couplings and total decay width of the SM Higgs
boson, respectively, modify the kinematic distributions in off-shell ggF Higgs produc-
tion. Notice that (B.1) leaves the total Higgs production cross sections in all channels
unchanged compared to their SM values. This is however not true for the off-shell
Higgs cross sections that are essentially independent of ΓSM

h and are thus modified if
the Higgs couplings gSM

hXX are rescaled as in (B.1). By measuring the total number of
off-shell Higgs events one can therefore place indirect limits on the total width of the
Higgs boson [168, 169, 292–298, 305].

In Figure B.1 we show our results for the m4` distributions in the gg → ZZ → 4`

channel (left) and the DS spectrum of pp → ZZ → 4` (right) for two different rescal-
ings (B.1). The choice ξ = 3 and ξ = 1.5 thereby corresponds approximately to the
present LHC Run 2 [296, 297] and the projected HL-LHC [294, 295] sensitivity, re-
spectively. From the left plot one sees that compared to the SM the BSM predictions
have larger off-shell Higgs cross sections with the relative difference between the spectra
growing roughly linearly with m4`. Notice that the observed shape changes are qual-
itatively different from the relative modifications that occur in the case of the O(λ)

corrections associated to insertions of the operator O6 as shown on the right-hand side
in Figure 6.3. From the right plot in Figure B.1 one furthermore observes that com-
pared to the SM the BSM distributions of the ME-based discriminant are enhanced
for DS & −1. Since they do not feature the enhancements for DS . −3.5, the shown
DS spectra are hence distinct from the distributions that are displayed on the right in
Figure 6.5, which correspond to the spectra resulting from insertions of the SMEFT
operator O6. Notice that in contrast to the O(λ) corrections, the effects of (B.1) lead
solely to enhancements in the tail of the m4` distribution. In this case extra care is
required in estimating the systematic uncertainties, because the NLO QCD corrections
to the gg-induced channel included approximately by means of (6.29) implicitly assume
an asymptotic expansion in the top-quark mass (cf. [44, 217]) of the relevant two-loop
gg → ZZ amplitudes. This expansion fails above the top-quark threshold, i.e. for four-
lepton invariant masses m4` > 2mt, which introduces compared to the case discussed
in Section 6.2.2.2 an additional systematic uncertainty. To account for this issue, we
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Figure B.1: Left: m4` distributions for the gg-initiated contributions in the SM (dashed black), for
Γh = 1.5 · ΓSM

h (solid red) and for Γh = 3 · ΓSM
h (solid blue). Right: DS distributions for the pp →

ZZ → 4` process in the SM (dashed black), for Γh = 1.5 · ΓSM
h (solid red) and for Γh = 3 · ΓSM

h (solid
blue). All distributions are obtained using (B.1), are LO QCD accurate and assume pp collisions at√
s = 14 TeV. The lower panels show the ratios between the BSM and SM predictions.

instead of ±15% assume an enlarged total theoretical uncertainty of ±25%. Employing
this uncertainty estimate and performing a shape-fit to the DS spectrum following the
procedure outlined in Section 6.2.2.3, we obtain for 3 ab−1 of HL-LHC data the 95% CL
bound Γh < 1.49 · ΓSM

h . This finding is in line with the limits reported in [294, 295]
which validates the used fitting approach.
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Appendix C

Additional HL-LHC projections

A crucial ingredient in the shape fit to the DS distribution described in Section 6.2.2.3
are the systematic uncertainties σbi on the background as parametrised by the parame-
ters ∆i in (8.9). In this appendix we present results for two additional more aggressive
assumptions about the systematic uncertainties entering the HL-LHC off-shell Higgs
analysis. Specifically, we will employ the two different choices ∆i = 0.08 and ∆i = 0.04

of bin-independent systematic uncertainties. These choices can be motivated by recall-
ing that the systematic uncertainties that ATLAS quotes in the HL-LHC study [319]
for the on-shell gg → h→ ZZ signal strength amount to 5.0% and 3.9% in the baseline
scenario S1 and S2 for the expected total systematic uncertainties. The corresponding
systematic uncertainties quoted in the CMS work [295] are 7.3% and 4.1%. Since the
O(λ) corrections to DS considered in this work are associated to kinematic configura-
tions withm4` not far above 2mZ , it seems not unreasonable that theoretical predictions
of the DS spectra can reach an accuracy that is very similar to the systematics that
is expected to be achievable at the HL-LHC in the case of on-shell gg → h → ZZ

production.
In the left (right) panel of Figure C.1 we show the projected 68% and 95% CL HL-

LHC constraints in the c̄6–c̄H plane assuming ∆i = 0.08 (∆i = 0.04). The constraints
from inclusive single-Higgs probes (blue regions) are compared to the off-shell Higgs
constraints (orange regions). Their combinations (red contours) are also displayed.
From a combined analysis of inclusive single-Higgs and off-shell Higgs probes, we find
for c̄H = 0 the following 95% CL limits

c̄6 ∈ [−2.3, 4.5] , (HL-LHC, ∆i = 0.08) ,

c̄6 ∈ [−2.2, 4.3] , (HL-LHC, ∆i = 0.04) ,
(C.1)

while for c̄6 = 0 we obtain

c̄H ∈ [−1.6, 1.6] · 10−2 , (HL-LHC, ∆i = 0.08) ,

c̄H ∈ [−1.0, 1.0] · 10−2 , (HL-LHC,∆i = 0.04) .
(C.2)

By comparing the HL-LHC limits given in (6.39) and (6.40) to the above results, one
observes that a reduction of systematic uncertainties has only a minor impact in the case
of c̄6, while it has a noticeable impact on the resulting bounds on c̄H . The limits (C.1)
and (C.2) can also be translated into constraints on the modifications of the trilinear
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Figure C.1: Projected 68% and 95% CL constraints in the c̄6– c̄H plane for the HL-LHC assuming
3 ab−1 of data collected at

√
s = 14 TeV. The constraints from inclusive single-Higgs probes (blue

regions) are compared to the off-shell Higgs constraints (orange regions). The left (right) off-shell
Higgs constraints employ a bin-independent systematic uncertainty of ∆i = 0.08 (∆i = 0.04) in the
shape fit to the DS distribution. The combinations of all constraints are also shown as red contours.
The black stars represent the SM point. For additional details see the main text.

Higgs coupling as parameterised by (6.20). The corresponding 95% CL ranges read
c3 ∈ [−1.4, 5.6] and c3 ∈ [−1.2, 5.4], respectively, which again represent only minor
improvements compared to the HL-LHC bound derived in Section 6.3.
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Appendix D

Systematic uncertainties in the m4`
and DS analyses

In this appendix we discuss in more detail the prospects of the in Section 8.2 proposed
binned-likelihood analyses of the m4` and DS spectra for the HL-LHC, the HE-LHC
and the FCC. In particular, we examine how different assumptions on the systematic
uncertainties affect the resulting constraints on the parameter space of the Higgs portal
model (8.1).

In Table D.1, we report the 95% CL limits on |cφ| derived from the binned-likelihood
analysis of the m4` spectra in the case of the HL-LHC, HE-LHC and FCC, for three
benchmark values mφ = 100 GeV, mφ = 150 GeV and mφ = 200 GeV of the scalar
mass. Different assumed values for the systematic uncertainty ∆ are indicated, except
in cases where the ensuing 95% CL limit exceeds the bound |cφ| < 4π following from
perturbative tree-level unitarity [449]. First of all, from Table D.1 it is evident that
the assumed systematic uncertainty plays a crucial role in determining the sensitivity
with which one can probe |cφ|, with an improvement on the 95% CL limit of about a

HL-LHC HE-LHC FCC

∆ mφ = mφ = mφ = mφ = mφ = mφ = mφ = mφ = mφ =

100 GeV 150 GeV 200 GeV 100 GeV 150 GeV 200 GeV 100 GeV 150 GeV 200 GeV

50 % - - - - - - 11.5 - -

20 % 12.0 - - 10.0 - - 8.5 10.3 -

8 % 8.9 11.3 - 7.4 9.3 11.4 6.2 7.9 9.7

4 % 7.4 9.7 11.7 5.9 7.7 9.5 4.8 6.4 8.1

2 % 6.1 8.7 11.1 4.7 6.4 8.3 3.6 5.1 6.7

1 % 5.2 8.3 10.8 3.7 5.6 7.6 2.8 4.0 5.4

Table D.1: 95% CL limits on |cφ| derived from the binned-likelihood analysis of the m4` spectra
in the case of the HL-LHC, HE-LHC and FCC. The limits are displayed for different values of the
assumed systematic uncertainty, ∆ = {0.5, 0.2, 0.1, 0.08, 0.04, 0.02, 0.01}, and for three benchmark
values mφ = 100 GeV, mφ = 150 GeV and mφ = 200 GeV of the scalar mass. Values for the 95% CL
limits that exceed the bound |cφ| < 4π following from perturbative tree-level unitarity [449] are
omitted.
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Figure D.1: 95% CL limits on |cφ| derived from the binned-likelihood analysis of the DS spectra
as a function of the assumed systematic uncertainty ∆. The bounds for the HL-LHC (solid lines),
the HE-LHC (dashed lines) and the FCC (dotted lines) are displayed for the three benchmark values
mφ = 100 GeV (blue), mφ = 150 GeV (red) and mφ = 200 GeV (green) of the scalar mass. The dotted
black line corresponds to the condition |cφ| =

√
3y2
t = 1.5 that derives from naturalness arguments in

models of neutral naturalness. See main text for additional details.

factor of four between an assumed ∆ of 50% and 1% at FCC and mφ = 100 GeV. Still,
we observe that even at the FCC, assuming a systematic uncertainty of a mere 1%,
it is not possible to exclude the neutral-naturalness models discussed in Section 8.1,
i.e. that lead to the condition condition |cφ| =

√
3y2
t = 1.5, using only the four-lepton

invariant mass.
In Figure D.1, we show the projected 95% CL limits on |cφ| derived from our DS

analysis as a function of the assumed systematic uncertainty ∆ for the three afore-
mentioned colliders. The presented limits are obtained using the benchmark numerical
values for the scalar masses indicated in the figure that vary between 100 GeV ≤
mφ ≤ 200 GeV. Figure D.1 further illustrates the point already made in Sections 8.2.3
and 8.2.4, that the assumptions on the systematic uncertainties ∆ play a crucial role in
constraining the mφ–|cφ| parameter space by using the DS distribution as a kinematic
discriminant. In particular, one observes that the enhanced statistical power provided
by the HE-LHC and the FCC, which results from the increased centre-of-mass energy
and integrated luminosity of these machines compared to the HL-LHC, can only be
fully exploited if systematic uncertainties are under control. For instance, in the case
ofmφ = 100 GeV the sensitivity gain between the HL-LHC and the FCC is around 17%
for ∆ = 20%, while for ∆ = 1% the improvement amounts to about 41%. Similar num-
bers of approximately 26% and 51% are found for mφ = 150 GeV and mφ = 200 GeV,
implying that the gain in sensitivity between different colliders is to first approximation
mass-independent for the low values of mφ considered in the figure.
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Details of the double-Higgs
calculation

At the one-loop level the gg → hh process receives contributions from virtual φ ex-
change in propagator and vertex diagrams as well as counterterm contributions associ-
ated to wave-function, mass and tadpole renormalisation. Corresponding Feynman di-
agrams are shown in Figures E.1 and E.2, respectively — consult for instance [453, 455]
for further details.

In the on-shell scheme the combined corrections involving the Wilson coefficient cφ

h

h

h

φ

φ

φ

h

h

h

φ

φ

h

h

h

φ

h

h

h

φ
φ

h

h

h

φ

φ h

h

h

φ

φ

Figure E.1: Diagrams representing a one-loop correction to the hhh vertex and Higgs propagator
involving φ, which contribute to the gg → hh process at NLO.

h

h

h

h

h

h

Figure E.2: Counter-term diagrams contributing to the gg → hh process at NLO, corresponding to
wave-function, mass and tadpole renormalisation.

– 151 –



Appendix E. Details of the double-Higgs calculation

-2 -1 0 1 2
0.7

0.8

0.9

1.0

1.1

1.2

1.3

Figure E.3: The signal strength for double-Higgs production (µhh) at the FCC as a function of
the Wilson coefficient cφ for three values of the scalar mass: mφ = 70 GeV (dashed blue), mφ =
130 GeV (dashed red) and mφ = 450 GeV (dashed green). The regions excluded by the projected
experimental constraint µhh ∈ [0.93, 1.07] are shown in orange. For further explanations see main
text.

can be written as a finite shift:

λ→ λ
[
1 + δ(ŝ)

]
. (E.1)

Here λ = m2
h/(2v

2) is the tree-level expression for the trilinear Higgs coupling in the
SM and the ŝ-dependent form factor is given by

δ(ŝ) = −
v2c2

φ

24π2m2
h

(
1 +

3m2
h

ŝ−m2
h

)[
B0

(
ŝ,m2

φ,m
2
φ

)
−B0

(
m2
h,m

2
φ,m

2
φ

) ]

−
v4c3

φ

6π2m2
h

C0

(
m2
h,m

2
h, ŝ,m

2
φ,m

2
φ,m

2
φ

)
−
v2c2

φ

8π2

d

dŝ
B0

(
ŝ,m2

φ,m
2
φ

)∣∣∣∣
ŝ=m2

h

,

(E.2)

with the A0, B0 and C0 functions are one-, two-, and three-point Passarino-Veltman
scalar integrals defined as in [290, 456]. Our result (E.2) agrees with [453, 455], after
fixing a sign error in (12) of [455]. Notice that after integrating out the scalar field φ
by expanding the on-shell form factor δ(2m2

h) up to the first power in m2
h/m

2
φ, one

recovers the approximate correction for κλ as given in (8.10).
To obtain predictions for double-Higgs production we have implemented the analytic

results (E.2) at the amplitude level into MCFM. We then perform sensitivity scans in the
parameters cφ and mφ, using the setup discussed at the beginning of Section 8.2.3, but
fixing the renormalisation and factorisation scales µR and µF to the value 2mh. In
Figure E.3 we show results for the signal strength µhh in double-Higgs production for
three different values of mφ as a function of cφ. The displayed curves correspond to
the results obtained at the FCC. Two feature of the shown predictions deserve some
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comments. First, due to the c3
φ and c2

φ dependence of (E.2) the signal strengths µhh
are not symmetric under cφ ↔ −cφ. Second, the functional form of µhh depends also
sensitively on the mass mφ. For low φ masses as illustrated by the choice mφ = 70 GeV

in the figure, the signal strength µhh has two minima, one at around cφ ' −1.1 and
another one at cφ ' 1.0. This feature leads to the orange exclusions in the lower plot
in Figure 8.7 at |cφ| ' 1. For larger values of mφ the signal strengths µhh have instead
only a single minimum at positive values of cφ. Notice that if the value of µhh at this
minimum is incompatible with the experimental allowed range, such as happens to be
the case for example for mφ = 130 GeV at the FCC, increasing/decreasing the value
of cφ will always result in µhh values that are consistent with experiment. This feature
leads to the orange exclusions shown in the plots of Figures 8.6 and 8.7 that are relevant
for cφ > 0 and separated by a funnel of viable solutions.
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