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Abstract. Light has many properties that vision sensors can passively
measure. Colour-band separated wavelength and intensity are arguably
the most commonly used for monocular 6D object pose estimation. This
paper explores how complementary polarisation information, i.e. the ori-
entation of light wave oscillations, influences the accuracy of pose pre-
dictions. A hybrid model that leverages physical priors jointly with a
data-driven learning strategy is designed and carefully tested on objects
with different levels of photometric complexity. Our design significantly
improves the pose accuracy compared to state-of-the-art photometric
approaches and enables object pose estimation for highly reflective and
transparent objects. A new multi-modal instance-level 6D object pose
dataset with highly accurate pose annotations for multiple objects with
varying photometric complexity is introduced as a benchmark.

1 Introduction

”Fiat lux”.1 Light has always fascinated humanity. It is not only the inherent
centre of attention for many of the most significant scientific discoveries in the
last century but also plays a crucial role in society and even sets the basis for
religions. Typical light sensors in computer vision send or receive pulses and
waves for which the wavelength and energy are measured to retrieve colour
and intensity within a specified spectrum. However, intensity and wavelength
are not the only properties of an electromagnetic (EM) wave. The oscillation
direction of the EM-field relative to the light ray defines its polarisation. Most
natural light sources such as the sun, a lamp or a candle emit unpolarised light,
which means that the light wave oscillates in a multitude of directions. Light
becomes perfectly or partially polarised when a wave is reflected off an object.
Polarisation, therefore, carries information on surface structure, material and
reflection angle, which can complement passively retrieved texture information
from a scene [28]. These additional measurements are particularly interesting
for photometrically challenging objects with metallic, reflective or transparent
materials, which pose challenges to vision pipelines and effectively hamper their
use for automation.

1 Latin for ”let there be light”.
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Fig. 1. PPP-Net. Our Polarimetric Pose Prediction Pipeline utilises the RGBP im-
ages - a quadruple of four differently polarised RGB images - to compute AOLP/DOLP
and polarised normal maps through our physical model. The polarised information and
the physical cues are individually encoded and fused in our hybrid model. The decoder
predicts object mask, normal map and NOCS, and finally the 6D object pose is pre-
dicted by Patch-PnP [52].

While robust pipelines [21,39,9,12] have been designed for 6D pose estimation
and texture-less [23,13] objects have been successfully predicted, photometrically
challenging objects with reflectance and partial transparency have just recently
become the focus of research [37]. These objects pose challenges to RGB-D sens-
ing, and the field still lacks methods to cope with these problems. To address
these limitations, we move beyond previous methods based on light intensity
and exploit the polarisation properties of light as an additional prior for surface
normals. This allows us to build a hybrid method combining a physical model
with a data-driven learning approach to facilitate 6D pose estimation. We show
that this not only supports pose estimation for photometrically challenging ob-
jects but also improves the pose accuracy for classical objects. To this end, our
core contributions are 2:

1. We propose polarisation as a new modality for object pose estimation
and explore its advantages over previous modalities.

2. We design a hybrid pipeline for instance-level 6D pose estimation that
leverages polarisation cues through a combination of physical model
with learning, which shows significant improvement for photometrically
challenging objects with high reflectance and translucency.

3. We construct the first polarimetric instance-level 6D object pose es-
timation dataset with highly accurate annotations.

2 Dataset and code publicly available at: https://daoyig.github.io/PPPNet/.

https://daoyig.github.io/PPPNet/
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2 Related Work

2.1 Polarimetric Imaging

Polarisation for 2D. Polarisation cues provide valuable complementary in-
formation for various tasks in 2D computer vision that involve photometrically
challenging objects. This has inspired a series of works on semantic [58] and
instance [28] segmentation for reflective and transparent objects. The absence of
strong glare behind specific polarisation filters further helps to remove reflections
from images [34]. While one polarisation camera can already provide significant
improvements compared to photometric acquisition setups, multispectral polari-
metric light fields [26] boost the performance even more.
Polarisation for 3D. Due to the inherent connection of polarisation with the
object’s surface, previous works on shape from polarisation (SfP) investigated
the estimation of surface normals and depth from polarimetric data. However,
intrinsic model ambiguities constrained setups in early works. Classical methods
leverage an orthographic camera model and restrict the investigations to lab sce-
narios with controlled environment conditions [16,3,56,46]. Yu et al. [56] math-
ematically connect polarisation intensity with surface height and optimise for
depth in a controlled scenario, while Atkinson et al. [3] recover surface orientation
for fully diffuse surfaces. While these methods rely on monocular polarisation,
more than one view can be combined with physical models for SfP [2,10], which
can also be leveraged for self-supervision [50]. Some works also explore the use
of complementary photometric stereo [1] and hybrid RGB+P approaches [61],
which complement each other and allow for metrically accurate depth estimates
if the light direction is known. If an initial depth map exists, polarimetric cues
can further refine the measurements [27]. Furthermore, the polarimetric sensing
model helps estimate the relative transformation of a moving polarisation sen-
sor [11] assuming the scene is fully diffuse. Data-driven approaches can mitigate
any assumptions on surface properties, light direction and object shapes. Ba et
al. [4] estimate surface normals by presenting a set of plausible cues to a neural
network which uses these ambiguous cues for SfP. We take inspiration from this
approach to complement our pose estimation pipeline with physical priors. In
contrast to these works, we are interested in the object poses in an unconstrained
setup without further assuming the reflection properties or lighting. The insights
of previous works enable, for the first time, to design a pipeline which addresses
pose prediction for photometrically challenging objects.

2.2 6D Pose Prediction

Monocular RGB. Methods that predict 6D pose from a single image can be
separated into three main categories: the ones that directly optimise for the pose,
learn a pose embedding, or establish correspondences between the 3D model
and the 2D image. Works that leverage pose parameterisation either directly
regress the 6D pose [55,35,39,33] or discretise the regression task and solve for
classification [30,9]. Networks trained this way directly predict pose parameters
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in the form of SE (3) elements given the parameterisation used for training.
Pose parameterisation can also be implicitly learnt [60]. The second branch of
methods [54,49,48] utilises this to learn an implicit space to encode the pose
from which the predictions can be decoded. The latest and also currently best-
performing methods follow a two-stage approach. A network is used to predict
2D-3D correspondences between image and 3D model, which are used by a con-
secutive RANSAC/PnP pipeline that optimises the displacement robustly. Some
methods in this field use sparse correspondences [43,41,47,25], while others es-
tablish dense 2D-3D pairs [57,40,36,22]. While these methods typically learn the
correspondences alone, some works learn the task end-to-end [24,52,12]. RGB-
D and Refinement. Since the task of monocular pose estimation from RGB is
an inherently ill-posed problem, depth maps serve as a geometrical rescue. The
spatial cue given by the depth map can be leveraged to establish point pairs for
pose estimation [14] which can be further improved with RGB [6]. In general,
the pose can be recovered from depth or combined RGB-D, and most RGB-
only methods (e.g. [49,36,40,33]) benefit from a depth-driven refinement using
ICP [5] or indirect multi-view cues [33]. The complementary information of RGB
and depth has also inspired the seminal work DenseFusion [51] in which deeply
encoded features from both modalities are fused. FFB6D [18] further improves
this through a tight coupling strategy with cross-modal information exchanges in
multiple feature layers combined with a keypoint extraction [19] that leverages
geometry and texture cues. These works, however, crucially depend on input
quality, and depth-sensing suffers in photometrically challenging regions, where
polarisation cues for depth could expedite the pose prediction. To the best of
our knowledge, this has not been proposed yet.
Photometric Challenges. The field of 6D pose estimation usually tests on
well-established datasets with RGB-D input [21,7,55,29]. Photometrically chal-
lenging objects such as texture-less and reflective industrial parts are also part
of publically available datasets [23,13]. While most of these datasets are care-
fully annotated for the pose, polarisation input is unavailable. Transparency is a
further challenge addressed already in the pioneering work of Saxena et al. [45]
where the robotic grasp point of objects is determined from RGB stereo with-
out a 3D model. Philipps et al. [42] demonstrate how transparent objects with
rotation symmetry can be reconstructed from two views using an edge detec-
tor and contour fitting. More recently, KeyPose [38] investigates instance and
category level pose prediction from RGB stereo. Since their depth sensor fails
on transparent objects, they leverage an opaque-transparent object pair to es-
tablish ground truth depth. ClearGrasp [44] constitutes an RGB-D method that
can be used on transparent objects. The recently available StereOBJ-1M dataset
includes transparent, reflective and translucent objects with variations in illumi-
nation and symmetry using a binocular stereo RGB camera for pose estimation.
However, none of these datasets comprised RGBP data.
To this end, the next natural step connects the shape cues from polarisation to
recover object geometry in challenging environments. We further ask the ques-
tion of how to do so by starting with a look into polarimetric image formation.
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3 Polarimetric Pose Prediction

In contrast to RGBP sensors (see Fig. 2), RGB-D sensors enjoy wide use in the
pose estimation field. Their cost-efficiency and tight integration in many devices
present many possibilities in the vision field, but their design also comes with a
few drawbacks.

3.1 Photometric Challenges for RGB-D

Commercial depth sensors typically use active illumination either by projecting
a pattern (e.g. Intel RealSense D series) or using time-of-flight (ToF) measure-
ments (e.g. Kinect v2 / Azure Kinect, Intel RealSense L series). While the former
triangulates depth using stereo vision principles on projected or scene textures,
the latter measures the roundtrip time of a light pulse that reflects from the
scene. Since the measurement principle is photometric, both suffer on photo-
metrically challenging surfaces where reflections artificially extend the roundtrip
time of photons and translucent objects deteriorate the projected pattern to the
extent that makes depth estimation infeasible. Fig. 3 illustrates such an exam-
ple for a set of common household objects. The semi-transparent vase becomes
almost invisible to the used ToF sensor (RealSense L515). The reflections on
both cutlery can lead to incorrect depth estimates significantly further than the
correct value, while strong reflections at boundaries invalidate pixel distances.

3.2 Surface Normals from Polarisation

Before working with RGBP data, we introduce some physics behind polarimetric
imaging. Natural light and most artificially emitted light is unpolarised, meaning
that the electromagnetic wave oscillates along all planes perpendicular to the
direction of propagation of light [15]. When unpolarised light passes through a
linear polariser or is reflected at Brewster’s angle from a surface, it becomes
perfectly polarised. How fast light travels through the material and how much of
it is reflected is determined by the refractive index. It also determines Brewster’s
angle of that medium. When light is reflected at the same angle to the surface
normal as the incident ray, we speak of specular reflection. The remaining part

Unpolarized Light

Object Surface

Re�ected
Light

CFAPFSensor
Refracted

Light

Fig. 2. Polarisation Camera. When unpolarised light hits a surface, the refracted
and reflected parts are partially polarised. A polarisation sensor captures the reflected
light. In front of every pixel are four polarisation filters (PF) arranged at angles 0◦,
45◦, 90◦, 135◦. The colour filter array (CFA) separates light into different wavebands.
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Fig. 3. Depth Artifacts. A depth sensor miscalculates depth values for typical
household objects. Reflective boundaries (1,3) invalidate pixels, while strong reflections
(2,3) lead to incorrect values too far away. Semi-transparent objects (4) become partly
invisible to the depth sensor, which measures the distance to the objects behind.

penetrates the object as refracted light. As the light wave traverses through
the medium, it becomes partially polarised. Following this, it escapes from the
object and creates diffuse reflection. For all real physical objects, the resulting
reflection is a combination of specular and diffuse reflection, where the ratio
largely depends on the refractive index and the angle of the incident light, as
exemplified in Fig. 4.

Light reaches the sensor with a specific intensity I and wavelength λ. The
sensor’s colour filter array then separates the incoming light into RGB wave-
bands, as illustrated in Fig. 2. The incoming light also has a degree of linear
polarisation (DOLP) ρ and a direction (angle) of polarisation (AOLP) ϕ. The
measured intensity behind a polariser with an angle φpol ∈ {0◦, 45◦, 90◦, 135◦}
depends on these parameters and the unpolarised intensity Iun [28]:

Iφpol
= Iun · (1 + ρ cos(2(ϕ− φpol))). (1)

We find φ and ρ from the over-determined system of linear equations in Eq. 1 us-
ing linear least squares. Depending on the surface properties, AOLP is calculated
as: {

ϕd[π] = α for diffuse reflection
ϕs[π] = α− π

2 for specular reflection
, (2)

where [π] indicates the π-ambiguity and α is the azimuth angle of the surface
normal n. We can further relate the viewing angle θ ∈ [0, π/2] to the degree

P0 DOLPP1 P2 P3

Fig. 4. DOLP. Polarisation changes for the reflection of diffuse light on a translucent
surface. Note the indicated differences in the polarimetric image quadruplet that di-
rectly relate to the surface normal. The degree of linear polarisation (DOLP) for the
translucent and reflective surfaces is considerably higher than for the rest of the image.
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of polarisation by considering Fresnel coefficients thus DOLP is similarly given
by [3]: 

ρd = (η−1/η)2 sin2(θ)

2+2η2−(η+1/η)2 sin2(θ)+4 cos(θ)
√

η2−sin2(θ)

ρs =
2 sin2(θ) cos(θ)

√
η2−sin2(θ)

η2−sin2(θ)−η2 sin2(θ)+2 sin4(θ)

, (3)

with the refractive index of the observed object material η. Solving Eq. 3 for θ,
we retrieve three solutions θd, θs1, θs2, one for the diffuse case and two for the
specular case. For each of the cases, we can now find the 3D orientation of the
surface by calculating the surface normals:

n = (cosα sin θ, sinα sin θ, cos θ)
T
. (4)

We use these plausible normals nd,ns1,ns2 as physical priors per pixel to guide
our neural network to estimate the 6D object pose.

3.3 Hybrid Polarimetric Pose Prediction Model

This section presents our Polarimetric Pose Prediction Network, short PPP-
Net. Given polarimetric images at four angles I0, I45, I90, I135, together with the
calculated AOLP ϕ, DOLP ρ, and normal maps Nd, Ns1, Ns2 as physical priors,
we aim to utilise a network to learn a pose P = [R|t] transforms a target object
from the object frame to the camera frame given a 3D CAD model of the object.
Network Architecture. Our network architecture is depicted in Fig. 1. The
first part of the network consists of two encoders with disjoint responsibilities.
The first encodes joint polarisation information from native polarimetric im-
ages and the calculated AOLP/DOLP maps. The second one processes physical
priors, i.e. the physical normals calculated from polarimetric images using the
physical model. In both cases, we zoom in to a region of interest (ROI) of size
256× 256 pixels. Then, the encoding is fused and passed to a decoder. The de-
coder receives the directly combined encoded information from both encoders
enhanced by information from skip connections from different hierarchical levels
of the encoders. Subsequently, it decodes an object mask, normal map, and a
3-channel dense correspondence map (NOCS) which creates a correspondence
between each pixel and its normalised 3D coordinate. The predicted normal
map and NOCS concatenated with corresponding 2D pixel coordinates are con-
secutively fed into a pose estimator as in [52]. The pose estimator comprises
convolutional layers and fully connected layers and outputs the final estimated
3D rotation and translation.
Pose Parametrisation. Inspired by recent works [60,36,52] we parameterise
the rotation as allocentric continuous 6D representation. Similarly, for transla-
tion we use a scale-invariant representation [36,52,12].
The continuous 6D representation R6d for rotation comes from the first two
columns of an original rotation matrix R [60] and we further turn it into allocen-
tric representation [52,12]. The allocentric representation is viewpoint-independent,
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and as such, it is favoured by our network, which only perceives the ROI of a
target object. By reducing the scene to the zoomed-in ROI, we concentrate on
the most relevant information in the image, i.e. our target object, which can
facilitate improvement in the pose estimation. To overcome the limitations of a
direct translation vector regression, we estimate the scale-invariant translation
composed of relative differences between projected object centroids and the de-
tected bounding box center location with respect to the bounding box size. The
latter is given by δx, δy and the relative zoomed-in depth, δz, where:

δx = (ox − bx)/bw

δy = (oy − by)/bh

δz = tz/r

, (5)

with (ox, oy) and (bx, by) being the projected object centroids and bounding
box center coordinates. The size of the bounding box (bw, bh) is also used for
calculating the zoomed-in ratio r = sout/sin where sin = max(bw, bh) and sout
is the size of the output. Note that we can recover both the rotation matrix and
translation vector with known camera intrinsics K [32,36].

Object Normal Map. The surface normal map contains the surface orienta-
tion at each discrete pixel coordinate and thus encodes the shape of an object.
Inspired by the previous works in SfP [4], we take a data-driven approach to
retrieve the surface normal map. To better encode the geometric cue from the
input physical priors apart from the polarisation cue, we do not concatenate
the physical normals with the polarised images as Ba et al. [4], but encode
them separately into two ResNet encoders. The decoder then learns to produce
object shape encoded by the surface normal map. The estimated normals are L2-
normalised to unit length. As shown in Tab. 1, with the given physical normals
as shape prior, we can achieve high-quality normal map prediction, bringing a
performance boost for the pose estimator.

Dense Correspondence Map. NOCS stores normalised 3D object coordi-
nates given associated poses. This explicitly models correspondences between
object 3D coordinates and projected 2D pixel locations. As shown by Wang
et al. [52], this representation helps a consecutive differentiable pose estimator
achieve higher accuracy than RANSAC/PnP.

3.4 Learning Objectives

The overall objective is composed of both geometrical features learning and pose
optimisation, as: L = Lpose + Lgeo, with:

Lpose = LR + Lcenter + Lz (6)

Lgeo = Lmask + Lnormals + Lxyz. (7)
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Specifically, we employ separate loss terms for given ground truth rotation R,
(δx, δy) and δz as: 

LR = avg
x∈M

∥Rx− R̂x∥1

Lcenter = ∥(δx − δ̂x, δy − δ̂y)∥1
Lz = ∥δz − δ̂z∥1

, (8)

where •̂ denotes prediction. For symmetrical objects, the rotation loss is calcu-
lated based on the smallest loss from all possible ground-truth rotations under
symmetry.
To learn the intermediate geometrical features, we employ L1 losses for a mask
and dense correspondences map learning and a cosine similarity loss for surface
normal estimation: 

Lmask = ∥M− M̂∥1
Lxyz = M⊙ ∥Mxyz − M̂xyz∥1
Lnormal = 1− ⟨n, n̂⟩

(9)

where ⊙ indicates the Hadamard product of element-wise multiplication, and
⟨•, •⟩ denotes the dot product.

4 Polarimetric Data Acquisition

We propose the first benchmark for 6D pose estimation through physical cues
from polarimetric images for photometrically challenging objects. The objects in
the dataset are chosen to cover a broad spectrum of photometric difficulties to
yield scientifically meaningful insights: from matte to reflective and transparent.

We follow the same data acquisition and annotation process as PhoCaL [53],
which is a category-level pose estimation dataset that comprises 60 household
objects with high-quality 3D models scanned by a structured light 3D stereo
scanner (EinScan-SP 3D Scanner, SHINING 3D Tech. Co., Ltd., Hangzhou,
China). The scanning accuracy of the device is≤ 0.05 mm which generates highly
accurate models. We select the models cup, teapot, can, fork, knife, bottle, because
of their increasing photometric complexity, as illustrated in Fig. 5. The last three
models do not include texture due to their surface structure. Therefore we used
a vanishing 3D scanning spray that made the surface temporarily opaque. To
acquire RGB-D images, we use a direct Time-of-Flight (dToF) camera, Intel
RealSense LiDAR Camera L515 (Intel, Santa Clara, California, USA), which
captures RGB and Depth data at 640x480 pixel resolution.

RGBP data is acquired using the polarisation camera Phoenix 5.0 MP PHX
050S1-QC comprising a Sony IMX264MYR CMOS (Color) Polarsens sensor (LU-
CID Vision Labs, Inc., Richmond B.C, Canada) through a Universe Compact
C-Mount 5MP 2/3” 6mm f/2.0 lens (Universe, New York, USA) at 612x512
pixel resolution. Demosaicing is performed as part of the typical image signal
processor (ISP) hardware pipeline, which is usually closed source (also for the
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commercial camera used here). Both cameras are mounted jointly to a KUKA
iiwa (KUKA Roboter GmbH, Augsburg, Germany) 7 DoF robotic arm that guar-
antees a positional reproducibility of ±0.1 mm. Intrinsic and extrinsic calibration
is performed following a standard pinhole camera model [59] with five distortion
coefficients [20]. For pose annotation, we leverage a mechanical pose annotation
method proposed in PhoCal [53] where a robot manipulator is used to tip the
object of interest and extract a point cloud. This point cloud is consecutively
aligned to the 3D model using ICP [5] to allow for highly accurate pose labels
even for photometrically challenging objects. We plan a robot trajectory and use
this setup to acquire four scenes with four different trajectories each and utilise
a total of 8740 image sets for the dataset.

5 Experimental Results

The motivation of our proposed pipeline is to show the advantage of leveraging
pixelwise physical priors from polarised light (RGBP) for accurate 6D pose esti-
mation of photometrically challenging objects - for which RGB-only and RGB-D
methods often fail. For this purpose, we train and test PPP-Net with different
modalities first on two exemplary objects with very different levels of photo-
metric complexity, i.e. a plastic cup, and a photometrically very challenging,
reflective and textureless stainless steel cutlery fork. As detailed later, we find
that polarimetric information yields significant performance gain for photomet-
rically challenging objects.

5.1 Experiments Setup

Implementation Details. We initially refine an off-the-shelf detector Mask
RCNN [17] directly on the polarised images I0 to provide useful object crops on
our data (as is needed for the RGB-only benchmark and ours). We follow a sim-
ilar training/testing split strategy as commonly used for the public datasets [8]
and employ ≈ 10% of the RGBP images for training and 90% for testing. We
train our network end-to-end with Adam optimiser [31] for 200 epochs. The
initial learning rate is set to 1e-4, halved every 50 epochs. As the depth sen-
sor has a different field of view and is placed beneath the polarisation camera
on a customised camera rig, the RGB-D benchmark split differs from the RGB
training/testing split.

Fig. 5. 3D Models. Objects with increasing photometric complexity (left to right).
Three objects have no texture due to reflection (cutlery) or transparency (bottle).
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Table 1. PPP-Net Modalities Evaluation. Different combinations of input and
output modalities are used for training to study their influence on pose estimation
accuracy ADD for objects with different photometric complexity. Where applicable,
metrics for estimated normals are reported. Results for other objects in Supp. Mat.

Object
Photo.
Chall.

Input Modalities Output Variants Normal Metrics Pose Metric
RGB Polar RGB Physical N Normals NOCS mean↓ med.↓ 11.25◦↑ 22.5◦↑ 30◦↑ ADD

Cup

✓ ✓ - - - - - 91.1
✓ ✓ - - - - - 91.3
✓ ✓ ✓ 7.3 5.5 86.2 96.1 97.9 91.3
✓ ✓ ✓ ✓ 4.5 3.5 94.7 99.1 99.6 97.2

Fork ††

✓ ✓ - - - - - 85.4
✓ ✓ - - - - - 86.1
✓ ✓ ✓ 11.0 7.3 72.6 90.7 93.9 92.9
✓ ✓ ✓ ✓ 6.5 4.3 87.6 95.9 97.6 95.9

Evaluation Metrics. To establish our proposed novel 6D pose estimation ap-
proach, we report the pose estimation accuracy per object as the commonly used
average distance (ADD), and its equivalent for symmetrical objects (ADD-S) [21]
for different benchmarks. For the surface normal estimation, we calculate mean
and median errors (in degrees) and the percentage of pixels where the estimated
normals vary less than 11.25◦, 22.5◦ and 30◦ from the ground truth.

5.2 PPP-Net Evaluation

Here, we perform a series of experiments to study the influence of the input
modality on the pose estimation accuracy (see Tab. 1 for quantitative results,
Fig. 6 for qualitative improvement of NOCS), where we specifically analyse the
influence of polarimetric image information for the task of 6D pose estimation.
To identify the direct influence of polarisation imaging for the task of accurate
object pose estimation, we first establish an RGB-only baseline by neglecting
our contributions of PPP-Net. To compute the unpolarised RGB image, we
average over polarimetric images at complementary angles and use this as input
for an RGB-only network. As shown in the first two rows in Tab. 1 for each object

(a) (b) (c) (d) (e)

Fig. 6. Visualization of ablations on NOCS. The quality of the geometrical rep-
resentations improves when incorporating physical priors. The NOCS prediction from
left to right follows the same order as the ablation experiments in Tab.1: (a) unpo-
larised RGB input, with NOCS output; (b) polarisation input, with NOCS output; (c)
polarisation input, NOCS and normals output; (d) ours: full model with polarisation
and physical priors input, NOCS and normals output; (e) GT NOCS.
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Table 2. Benchmark comparisons. We compare our method against recent RGB-
D (FFB6D [18]) and RGB-only (GDR-Net [52]) methods on a variety of objects with
different level of photometric challenges (†), and depth map quality (good: + to low:−)
which serves as input for FFB6D. RGB-D and RGB-only comparisons are trained and
tested on different splits due to different field of view of depth camera (see Sec. 5 for
details). We report the Average Recall of ADD(-S).

Object
Photo.
Chall.

Properties Depth
Quality

RGB-D Split RGB Split
Reflective Metallic Textureless Transparent Symmetric FFB6D Ours GDR Ours

Cup (+) 99.4 98.1 96.7 97.2
Teapot † (*) ++ 86.8 94.2 99.0 99.9

Can † * * - 80.4 99.7 96.5 98.4
Fork †† * * * -- 37.0 72.4 86.6 95.9
Knife †† * * * --- 36.7 87.2 92.6 96.4

Bottle † † † * * * * None 61.5 93.6 94.4 97.5

Mean 67.0 90.9 94.3 97.6

(RGB against Polar RGB), the polarisation modality yields more considerable
accuracy gains for the photometrically challenging object fork as compared to
cup.

The accuracy of the pose estimator can be further improved when the net-
work is guided to extract additional shape information of the object, which is
implicitly encoded in the polarisation images (Tab. 1: 2nd to 3rd row). However,
the quality of the output normals is limited. With the input of physically-induced
normals from polarisation images, the network is provided with a plausible prior
to encode shape information directly. Thus, it yields a much better normals
prediction, significantly improving the pose performance (Tab. 1: 3rd to 4th
row). The comparison of NOCS prediction shown in Fig. 6 reveals the fact that,
given polarisation and direct shape cues, the network is guided to establish a
more accurate and delicate geometrical representation, which is aligned with the
quantitative improvement.

5.3 Comparison with established Benchmarks

The input modality experiments already demonstrate the robust capabilities
of polarimetric imaging inputs for PPP-Net to successfully learn reliable 6D
pose prediction with high accuracy for photometrically challenging objects. The
depth map of an RGB-D sensor can also provide geometric information that can
be utilised for the task of 6D object pose estimation. We compare our method
against FFB6D [18], which has a unique design that learns to combine appear-
ance and depth information as well as local and global information from the two
individual modalities.

We train FFB6D on our data for each object individually and report the
best ADD(-S) metric for all objects in Tab. 2. The photometric challenge that
each object constitutes is summarised in Tab. 2 and detailed by its properties
(compare with Fig. 5). The objects are categorised into three classes based on
the depth map quality of the depth sensor (also compare Fig. 3). We observe that
objects with good depth maps and minor photometric challenges achieve high
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ADD values for FFB6D [18]. The increase in photometric complexity (and worse
depth map quality) correlates with a decrease in ADD for challenging objects.
The transparent Bottle object is an exception to this pattern. The depth map
is completely invalid (compare Fig. 3), but FFB6D still achieves high ADD.
We hypothesise that the network successfully learns to ignore the depth map
input from early training onward (see Sec. 6 for details). PPP-Net achieves
comparable results for easy objects and outperforms the strong benchmark for
photometrically complex objects. Our method does not suffer from reduced ADD
due to noisy or inaccurate depth maps but instead leverages the orthogonal
surface information from RGBP data.

As PPP-Net profits vastly from physical priors from polarisation, we thor-
oughly investigate to which extent this additional information impacts the im-
provement of estimated poses, especially for photometrically challenging objects,
by comparing the results also against the monocular RGB-only method GDR-
Net [52]. We observe that while using polarimetric information slightly improves
pose estimation accuracy for non-challenging objects, we can achieve superior
performance for items with inconsistent photometric information due to reflec-
tion or transparency. In Tab. 2 the accuracy gain of PPP-Net against GDR-Net
increases proportionally to the photometric complexity since our physical priors
provide additional information about the geometry of an object.

6 Discussion

Limitations of current geometric methods. As mentioned earlier, we pos-
tulate that the RGB-D method ignores invalid depth data already in the early
stages of training (e.g. for the transparent bottle) and eventually learns to ignore
noisy or corrupted depth information. To prove this assumption, we perform
attacks on the input depth map for the FFB6D [18] encoder to analyse which
parts of input modalities the network relies on when making a prediction. For
this purpose, we add small Gaussian noise to the depth-related feature embed-
ding in the bottleneck of the network and compare the ADD under this attack.
We observe that the relative decrease is smaller for photometrically challenging
objects as compared to objects with accurate depth maps (27% drop in ADD for
knife and 63% for cup). These findings suggest that the network indeed ignores
the geometrical cues of inaccurate depth inputs.
Benefits of Polarisation. We have shown that physical priors can signifi-
cantly improve 6D pose estimation results for photometrically challenging ob-
jects. RGB-only methods do not incorporate any geometric information and
therefore show worse results in scenarios with objects of little texture. Methods
which try to leverage geometric priors from RGB-D [18] often cannot reliably
recover the 6D pose of such objects, as the depth map is usually degenerated and
corrupt. Our PPP-Net, as the first RGBP 6D object pose estimation method,
successfully achieves learning accurate poses even for very challenging objects
by extracting geometric information from physical priors. Qualitative results are
shown in Figs. 1 and 7, and additionally in the supplementary material. An-
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other benefit of using RGBP lies in the sensor itself: as the polarisation filter is
directly integrated on the same sensor as the Bayer filter, both modalities are
intrinsically calibrated, and the image can be acquired passively, paving the way
to sensor integration on low-energy and mobile devices. RGB-D cameras, on the
contrary, often require energy-expensive active illumination and extrinsic cali-
bration, which prevents simple integration and introduces additional uncertainty
to the final RGB-D image.
Limitations. Our physical model requires the knowledge of the refractive index
to compute the physical priors reliably. To explore the potential of the physical
model, unlike prior works [46,4] which fixed the refractive index to η = 1.5 for
all experiments, we use physically plausible values according to the materials
(we approximate the refractive index by using the look-up table provided by
https://refractiveindex.info/). This means one needs to manually choose
such parameters, which would limit the performance of the physical model when
using objects with unknown composite materials. Moreover, substantial changes
in texture also affect the reflection of light and thus DOLP calculation which, in
turn, influences our physical priors.

7 Conclusion

We have presented PPP-Net, the first learning-based 6D object pose estima-
tion pipeline, which leverages geometric information from polarisation images
through physical cues. Our method outperforms current state-of-the-art RGB-
D and RGB methods for photometrically challenging objects and demonstrates
at par performance for ordinary objects. Extensive ablations show the impor-
tance of complementary polarisation information for accurate pose estimation -
specifically for objects without texture, i.e. reflective or transparent surfaces.

Fig. 7. Qualitative Results. Input image with 2D detections are shown. Predicted
and GT 6D poses are illustrated by blue and green bounding boxes, respectively.

https://refractiveindex.info/
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PPP-Net – Appendix

A1 Physical Priors

We use physical priors as inputs in our network to improve the estimated 6D
pose of an object. These priors form relations between polarisation properties
and azimuth and zenith angle of the surface normal, which serve as geometric
cues orthogonal to color information. We calculate the physical priors under the
assumption of either specular or diffuse reflection. To recover the azimuth and
zenith angle of the surface normal, we present the calculation for solving the
unknowns of Eq. A1.

A polarimetric camera registers intensity behind four linear polarisers with
angles 0◦, 45◦, 90◦, 135◦, which depends on unpolarised intensity Iun, degree of
polarisation ρ, and angle of polarisation ϕ:

Iφpol
= Iun · (1 + ρ cos(2(ϕ− φpol))). (A1)

Eq. A1 can be re-written as:

Iφpol
=

 1
cos 2φpol

sin 2φpol

T

︸ ︷︷ ︸
βTβTβT

 Iun
ρ cos 2ϕ
ρ sin 2ϕ


︸ ︷︷ ︸

xxx

. (A2)

For all angles φpol ∈ {0◦, 45◦, 90◦, 135◦}, we get a linear equation system for

each pixel location with Iφpol
∈ IR4×1Iφpol
∈ IR4×1Iφpol
∈ IR4×1, β ∈ IR3×4β ∈ IR3×4β ∈ IR3×4 and x ∈ IR3×1x ∈ IR3×1x ∈ IR3×1. After solving

this over-determined linear equation system using least squares, we find unpo-
larised intensity, degree of polarisation and angle of polarisation:

Iun = x1

ρ =
√
x2
2 + x2

3

ϕ =
1

2
arctan

x3

x2

. (A3)

The azimuth angle can be found using Eq.2. Then, we can estimate the
azimuth angle θ from Eq.3 by linear interpolation. Both models take in the
same value for the refractive index η, since it is an intrinsic property of the
material and it does not depend on the reflection model. The values used for our
objects can be seen in Tab. A1.

A2 Additional Experiments and Ablation Studies

Runtime Analysis. On a desktop PC with an Intel i7 4.20GHz CPU and an
NVIDIA 2080 GPU, given a 512 × 612 pixel image, our network takes ca. 64
ms for a single object, including 40 ms for detection, and 13 ms to calculate the
physical priors with our non-optimized implementation.
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Table A1. Refractive Indices. Refractive indices per object with certain material
used for the physical model of PPP-Net.

Object Material Refractive Index

Teapot ceramic 1.54
Can aluminium composite 1.35
Fork stainless steel 2.75
Knife stainless steel 2.75
Bottle glass 1.52
Cup plastics 1.50

A2.1 Ablations on Modalities

Ablations on Input Modalities. Tab. A2 is an extension to Tab.1 in the
main paper and summarises the quantitative evaluation for different modalities
for PPP-Net for all objects under consideration in the dataset.

Table A2. PPP-Net Input Modalities Evaluation. Different combinations of
input and output modalities are used for training to study their influence on pose
estimation accuracy ADD(-S) for objects with different photometric complexity. Where
applicable, metrics for estimated normals are reported as well.

Object
Photo.
Chall.

Input Modalities Output Variants Normal Metrics Pose Metric
RGB Polar RGB Physical N Normals NOCS mean↓ med.↓ 11.25◦↑ 22.5◦↑ 30◦↑ ADD(-S)

Cup

✓ ✓ - - - - - 91.1
✓ ✓ - - - - - 91.3
✓ ✓ ✓ 7.3 5.5 86.2 96.1 97.9 91.3
✓ ✓ ✓ ✓ 4.5 3.5 94.7 99.1 99.6 97.2

Teapot †

✓ ✓ - - - - - 97.8
✓ ✓ - - - - - 99.5
✓ ✓ ✓ 7.9 5.4 82.5 94.5 97.1 99.2
✓ ✓ ✓ ✓ 5.3 4.0 91.6 98.7 99.5 99.9

Can †

✓ ✓ - - - - - 91.8
✓ ✓ - - - - - 93.2
✓ ✓ ✓ 5.7 3.9 90.0 97.0 98.6 96.7
✓ ✓ ✓ ✓ 6.0 4.5 89.0 97.3 98.9 98.4

Fork ††

✓ ✓ - - - - - 85.4
✓ ✓ - - - - - 86.1
✓ ✓ ✓ 11.0 7.3 72.6 90.7 93.9 92.9
✓ ✓ ✓ ✓ 6.5 4.3 87.6 95.9 97.6 95.9

Knife ††

✓ ✓ - - - - - 84.1
✓ ✓ - - - - - 88.0
✓ ✓ ✓ 12.2 8.0 68.7 88.5 92.4 89.4
✓ ✓ ✓ ✓ 6.8 5.4 88.2 97.3 98.6 96.4

Bottle † † †

✓ ✓ - - - - - 90.5
✓ ✓ - - - - - 93.5
✓ ✓ ✓ 5.6 4.7 92.9 99.0 99.6 94.7
✓ ✓ ✓ ✓ 5.4 4.5 92.1 99.0 99.6 97.5

Ablations on Output Modalities. 6D pose estimation mainly depends on
accurate correspondences prediction by NOCS regression as reported in the ab-
lation in Tab. A3. The ADD drops significantly for the model without (w/o)
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NOCS output before Patch-PnP, i.e. only shape information is utilised for pose
prediction. Still, as proven by the ablations in the paper, the auxiliary explicit
prediction of object-centric shape information as normals map benefits 6D pose
estimation as the network is more strongly guided towards extracting physical
shape priors from the input.

Table A3. PPP-Net Output Ablation. With and without NOCS output.

Object Pose Metric (ADD)

Teapot w/ 99.9 w/o 72.7

Fork w/ 95.9 w/o 79.3

A2.2 Ablations on Network Architecture

Tab. A4 indicates naively concatenating geometric priors and RGBP images for
direct input to the network (as in [5]) results in inferior normal prediction quality,
and also leads to less improvement on pose estimation results (compare concat
against ours in Tab. A4). This holds true for all objects, whereas photometri-
cally more challenging objects show a larger relative improvement. These results
confirm the importance of our design choices of PPP-Net to employ a dedicated
encoder for the physics-based derived geometric priors, and its positive effect on
6D object pose estimation results. We thus propose a careful integration design
of such physical priors into established principles of 6D object pose estimation
within our novel hybrid encoder. We deliberately choose a simple general archi-
tecture for PPP-Net for best comparison and evaluation against SOTA, and to
show that even such simplistic encoders can achieve significant accuracy for 6D
pose prediction with the physical priors from polarisation as inputs.

Table A4. Fusion Ablation. Naive concatenation against our proposed fusion strat-
egy of RGB and physical priors in PPP-Net.

Object Fusion
Input Modalities Output Variants Normal Metrics Pose Metric

Polar RGB Physical N Normals NOCS mean↓ med.↓ 11.25◦ ↑ 22.5◦↑ 30◦↑ ADD

Cup concat ✓ ✓ ✓ ✓ 6.0 4.9 91.1 98.1 99.1 93.6
Cup ours ✓ ✓ ✓ ✓ 4.5 3.5 94.7 99.1 99.6 97.2

Teapot concat ✓ ✓ ✓ ✓ 7.4 5.7 83.4 96.3 98.4 97.3
Teapot ours ✓ ✓ ✓ ✓ 5.3 4.0 91.6 98.7 99.5 99.9

Can concat ✓ ✓ ✓ ✓ 8.5 6.4 81.8 95.1 97.5 92.2
Can ours ✓ ✓ ✓ ✓ 6.0 4.5 89.0 97.3 98.9 98.4

Fork concat ✓ ✓ ✓ ✓ 10.7 7.8 70.0 91.8 95.0 87.6
Fork ours ✓ ✓ ✓ ✓ 6.5 4.3 87.6 95.9 97.6 95.9

Knife concat ✓ ✓ ✓ ✓ 10.8 8.5 67.1 92.8 96.2 86.1
Knife ours ✓ ✓ ✓ ✓ 6.8 5.4 88.2 97.3 98.6 96.4

Bottle concat ✓ ✓ ✓ ✓ 7.6 6.0 86.5 94.8 96.4 93.1
Bottle ours ✓ ✓ ✓ ✓ 5.4 4.5 92.1 99.0 99.6 97.5
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A2.3 Other Ablations

Ablation on Detector. We train an object detector using Faster R-CNN
without additional modification of polarimetric inputs. It is not affected by the
photometric challenges of the objects, as indicated by similar results in Tab. A5
when training/testing PPP-Net with the GT bounding box and the predicted
ones.

Table A5. BBox Ablations.

Configuration Cup Teapot Can Fork Knife Bottle

Train with GT BBox/Test with pred BBox 97.2 99.9 98.4 95.9 96.4 97.5

Train/Test with GT BBox 99.0 99.9 99.0 96.1 97.6 97.5

Ablation on Refractive Index. As mentioned, the prior knowledge of the
refractive index of materials in the scene is one limitation of our model. To
analyse the impact of incorrect indices, we report pose accuracy results when
trained/tested with minor (1.54 vs. 1.5) and large deviations (2.75 vs. 1.5) of the
correct index in Tab. A6. The results in the 2nd row highlight that our model still
performs well when providing incorrect refractive indices during inference. This
indicates that the model is robust enough to extract relevant features. When
training and testing with very different indices, we see a slight decrease in ADD
(cf. fork, knife).

Table A6. Refractive Index Ablation.

Object Cup Teapot Can Fork Knife Bottle
Refractive Index 1.50 1.54 1.35 2.75 2.75 1.52

Train/Test with correct index 97.2 99.9 98.4 95.9 96.4 97.5
Train with correct index,

test with incorrect (1.5)
97.2 99.9 98.3 95.8 96.2 97.5

Train/Test with incorrect index (1.5) 97.2 99.9 98.0 93.5 90.1 97.5

Ablation on Photometric Complexity. Recent RGB-D pipelines (to which
we compare) try to overcome photometric challenges, e.g. textureless objects,
by incorporating depth information. Correct depth information is essential here,
but depth sensors suffer specifically in these areas. On the contrary, the physical
properties encoded in the polarimetric images, which are leveraged by PPP-
Net, preserve object-centric shape information also for very challenging (e.g.
reflective, transparent) objects. We train and test CosyPose [33] on our data
using single-view mode without ICP refinement or additional 1 million synthetic
data as when training on T-LESS [23], which ensures the same settings for all
benchmarking experiments. We outperform CosyPose for every object in Tab. A7
with significant improvement for photometrically challenging objects.
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Table A7. CosyPose [33] Benchmarking.

Methods Cup Teapot Can Fork Knife Bottle Mean

CosyPose [33] 88.5 94.3 91.0 83.0 89.5 79.6 87.7

Ours 97.2 99.9 98.4 95.9 96.4 97.5 97.6

A3 Qualitative Visualizations

In Fig. A1, we visualise the 6D pose by overlaying the image with the corre-
sponding transformed 3D bounding box. For better visualization we cropped
the images and zoomed into the area of interest.

Fig.A1. Qualitative Results. Predicted and GT 6D poses are illustrated by blue
and green bounding boxes, respectively.

A4 Instance-level Polarimetric Object Pose Dataset

Fig. A2 illustrates our scene settings as well as the pose annotation quality.
We cover a wide range of variety in the background, illumination, as well as
object settings. And our pose annotations are accurate for all objects, including
the challenging reflective and transparent ones. High accuracy of annotations
is achieved with the process described in [53], which involves tipping multiple
times the surface of objects with a calibrated tool tip attached to a robotic arm
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and subsequent ICP alignment with the pre-scanned 3D mesh of the object (see
Sec.4 for more details). We provide 6D pose annotations for all objects in the
scene, but here only consider the objects introduced in Fig. 5 which cover a wide
range of photometric complexity. Fig. A2 shows the superimposed 3D meshes of
these objects with high accuracy.

Fig.A2. Dataset and Annotation Examples. The figure shows one polarisation
image together with the rendered models.

Camera Alignment. The extrinsic calibration, which is derived by an hand-
eye calibration against the robotic end-effector with high accuracy, is used for
aligning different camera modalities. The alignment of cameras is only limited
by their form factors. To reduce this effect and to bring the optical centers of all
cameras as close to another as possible, we design a custom rig. However, small
changes in the viewpoint of each camera cannot be completely avoided.
Dataset Comparison. Tab. A8 gives an overview of different dataset charac-
teristics.
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Table A8. Dataset Comparison.

Dataset
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YCB-V [55] ✓ ✓ ✓ ✓ 92
T-LESS [23] ✓ ✓ ✓ ✓ 20
Linemod [21] ✓ ✓ ✓ ✓ 15

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 20
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