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Abstract

Model Order Reduction (MOR) aims to generate a compact and faster representation
of complex Full Order Models (FOMs). This representation is known as a Reduced
Order Model (ROM). Among different MOR approaches, non-intrusive MOR attracts
much attention in industry for its easy implementation and solver-independent
feature. Plenty of existing research focuses on improving the ROM’s performance in
the online phase. However, reducing costs in the offline phase is also considerably
important for the application of MOR.

In this dissertation, the requirement for disk storage and memory space is reduced
by tackling two critical problems in the ROM construction phase: how to improve
the quality of training data and how to use as few training data as possible. A
new FOM-snapshot-sampling method called Joint Space Sampling (JSS) is proposed
to improve the training data quality. Compared to conventional approaches, the
training data generated by JSS do not only have a good distribution in the parameter
space but also have a good distribution in the reduced solution space. Given the
high-quality snapshots, to minimize the number of the training data needed for
constructing the ROM, the creation process is designed with a greedy framework.
The ROM created in each iteration will be validated, and the validation results will
be used to decide the acceptance of the ROM. Traditional case-dependent validation
is replaced by novel case-independent validation to improve the generalizability of
the ROM validation. The proposed case-independent validation is based on the
theory of Probably Approximately Correct (PAC) Learning, and there is no need to
assume potential use cases for the validation. The concept of Active Learning (AL)
is employed to accelerate the convergence of the iteration. In sum, a novel MOR
method based on JSS and AL is developed and named Active-Learning-based Model
Order Reduction (AL-MOR). Many different Machine-Learning-based MOR methods
can be integrated into the AL-MOR method.

The effectiveness of the AL-MOR method is shown with numerical experiments.
Within different test cases of the numerical experiments, we verify the theories,
compare different methods and demonstrate the great potential of the proposed
AL-MOR method in real engineering use cases.
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Kurzfassung

Modellordnungsreduktion (MOR) zielt darauf ab, eine kompaktere und schnellere
Darstellung des komplexen „Full Order Models“ (FOM) zu erzeugen. Diese Dar-
stellung wird als reduziertes Ordnungsmodell (ROM) bezeichnet. Unter den ver-
schiedenen MOR Ansätzen hat das non-intrusive MOR besondere Bedeutung für die
Industrie wegen seiner einfachen Implementierung und Unabhängigkeit vom Löser.
Ein großer Teil der existierenden Forschung ist darauf ausgerichtet, das ROM in der
Online-Phase zu verbessern. Aber für die Anwendung von MOR ist es auch sehr
wichtig, die Kosten in der Offline-Phase zu reduzieren.

In dieser Dissertation wird der Aufwand für Platten- und Hauptspeicher reduziert
durch die Behandlung zweier kritischer Probleme während der ROM - Konstrukti-
onsphase: Verbesserung der Qualität bei gleichzeitiger Beschränkung des Umfangs
der Trainingsdaten. Eine neue FOM-Snapshot Sampling-Methode, genannt „Joint
Space Sampling“ (JSS), wird vorgeschlagen, um die Qualität der Trainingsdaten zu
verbessern. Verglichen mit konventionellen Ansätzen haben die durch JSS generierten
Trainingsdaten nicht nur eine gute Verteilung im originalen Parameterraum, sondern
auch eine gute Verteilung im reduzierten Lösungsraum. Bei gegebenen Snapshots ho-
her Qualität wird für den Prozess der Datengenerierung ein Greedy Ansatz gewählt,
um die Anzahl der Trainingsdaten zur Generierung des ROMs zu minimieren. Das
in jeder Iteration erzeugte ROM wird validiert, und auf Basis der Resultate wird über
die Akzeptanz des ROMs entschieden. Die traditionelle fallabhängige Validierung
wird ersetzt durch eine fallunabhängige Validierung, um die Verallgemeinerbarkeit
der ROM Validierung zu verbessern. Die vorgeschlagene fallunabhängige Validierung
basiert auf der Theorie des „Probably Approximately Correct (PAC)“ Lernens, und
dort werden mögliche Use Cases für die Validierung nicht benötigt. Das Konzept des
Aktiven Lernens („Active Learning (AL)“) wird eingesetzt, um die Konvergenz der
Greedy Iteration zu beschleunigen. Zusammengefasst wird eine neue MOR Methode
basierend auf JSS und AL entwickelt und „Active-Learning-based Model Order Re-
duction“ (AL-MOR) genannt. Viele unterschiedliche MOR Methoden basierend auf
maschinellem Lernen können in die AL-MOR Methode integriert werden.

Die Effektivität der AL-MOR Methode wird in numerischen Experimenten gezeigt.
In verschiedenen Testfällen dieser numerischen Experimente verifizieren wir die
Theorien, vergleichen die verschiedenen Methoden und demonstrieren das große Po-
tential der vorgeschlagenen AL-MOR Methode in realen technischen Anwendungen.

iv



Kurzfassung

v



Contents

Acknowledgments ii

Abstract iii

Kurzfassung iv

List of Figures x

List of Tables xvi

I. Preliminaries 1

1. Introduction 2
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Gap analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Thesis contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4. Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II. Theoretical Background 7

2. Projection-Based MOR 8
2.1. Moment Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. Balanced Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. POD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1. Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2. Defining the parameter space . . . . . . . . . . . . . . . . . . . . 11
2.3.3. Collecting snapshots . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4. Singular Value Decomposition . . . . . . . . . . . . . . . . . . . 12
2.3.5. Projection and evaluation . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi



Contents

3. MOR for Nonlinear Problems 18
3.1. Hyper-reduction: DEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1. Algorithm of DEIM . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2. Assemble the ROM . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2. Black-box ROM identification: Artificial Neural Networks . . . . . . . 22
3.2.1. Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2. Runge-Kutta Neural Network . . . . . . . . . . . . . . . . . . . 24
3.2.3. Training Artificial Neural Networks . . . . . . . . . . . . . . . . 25

3.3. Glass-box ROM identification: Operator Inference . . . . . . . . . . . . 28
3.3.1. Hypothetical governing equation . . . . . . . . . . . . . . . . . . 29
3.3.2. Lifting the governing equation . . . . . . . . . . . . . . . . . . . 30
3.3.3. Inferring operators . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. Concept of Active Learning 36
4.1. Query strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1. Query synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2. Stream-based selective sampling . . . . . . . . . . . . . . . . . . 37
4.1.3. Pool-based sampling . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2. Active selection strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1. Maximum Mean Square Error . . . . . . . . . . . . . . . . . . . 38
4.2.2. Query by Committee . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3. Batch query for active selection . . . . . . . . . . . . . . . . . . . . . . . 39
4.4. Passive selection strategy (Passive Learning) . . . . . . . . . . . . . . . 40
4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

III. Active-Learning-based Model Order Reduction 42

5. ROM Size Determination 43
5.1. ROM size determination based on singular value scree plot . . . . . . 43
5.2. Improved ROM size determination based on projection error . . . . . 45

6. Advanced Strategies for Snapshot Collection 50
6.1. Dynamic Parameter Sampling . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2. Joint Space Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1. Reduced solution space estimation . . . . . . . . . . . . . . . . . 54
6.2.2. Loosening and trimming the reduced solution space . . . . . . 56
6.2.3. One-step snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vii



Contents

6.3. ROM validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.1. Case-dependent validation . . . . . . . . . . . . . . . . . . . . . 62
6.3.2. Case-independent validation . . . . . . . . . . . . . . . . . . . . 63

6.4. Snapshot selection based on the concept of Active Learning . . . . . . 66
6.4.1. Snapshot selection based on active selection . . . . . . . . . . . 67

6.4.1.1. Snapshot selection based on the Maximum Mean Squared
Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4.1.2. Agreement ratio . . . . . . . . . . . . . . . . . . . . . . 71
6.4.1.3. Snapshot selection based on Query by Committee . . 73
6.4.1.4. Algorithm for MOR based on active selection . . . . . 75

6.4.2. Snapshot selection based on passive selection . . . . . . . . . . 77
6.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

IV. Experiments, discussions and conclusions 81

7. Numerical Experiments 82
7.1. Model I: thermal block with non-constant material property . . . . . . 82

7.1.1. Constructing the reduced space . . . . . . . . . . . . . . . . . . 84
7.1.2. Application of DEIM . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.3. Application of the ANN . . . . . . . . . . . . . . . . . . . . . . . 88
7.1.4. Application of Operator Inference . . . . . . . . . . . . . . . . . 89
7.1.5. Study on data sampling strategies . . . . . . . . . . . . . . . . . 90
7.1.6. Study on snapshot selection strategies . . . . . . . . . . . . . . . 92
7.1.7. Case-dependent validation results . . . . . . . . . . . . . . . . . 95

7.1.7.1. Test Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.1.7.2. Test Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.8. Experiment discussions and conclusions . . . . . . . . . . . . . 111
7.2. Model II: 3-D numerical model of a vacuum furnace . . . . . . . . . . 112

7.2.1. Constructing the reduced space . . . . . . . . . . . . . . . . . . 114
7.2.2. Application of DEIM . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2.3. Application of the ANN . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.4. Application of Operator Inference . . . . . . . . . . . . . . . . . 116
7.2.5. Study on data sampling strategies . . . . . . . . . . . . . . . . . 117
7.2.6. Study on snapshot selection strategies . . . . . . . . . . . . . . . 119
7.2.7. Case-dependent validation results . . . . . . . . . . . . . . . . . 121

7.2.7.1. 3-stage heating . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.7.2. Failed heating . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.8. Experiment discussions and conclusions . . . . . . . . . . . . . 129
7.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

viii



Contents

8. Conclusions and Outlook 133

A. Appendix 137
A.1. Proof of Chernoff’s bound . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography 142

ix



List of Figures

1.1. The circle for analyzing the applicability of non-intrusive MOR in
industry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. The famous MOR rabbit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Data dimension reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3. Explanation for why a purely-POD-based ROM becomes slow treating

nonlinearity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1. Explanation for DEIM’s acceleration dealing with nonlinearity in FOMs 19
3.2. The structure of a multilayer perceptron. . . . . . . . . . . . . . . . . . 23
3.3. Picture of the structure of EENN and RKNN. . . . . . . . . . . . . . . . 25
3.4. The convergence in the error contours with different learning rates. . 29

4.1. A demonstration for different query strategies in the MOR context. . . 37

5.1. A scree plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2. An example for the curve of emean

proj . . . . . . . . . . . . . . . . . . . . . . 46
5.3. An example for the curve of the mean projection error (red) and

the curve (blue) of the corresponding profile likelihood. Two local
maximums are found in the blue curve, while the ROM size qbest,2
corresponding to the second local maximum has a mean projection
error smaller than emean

tol and should therefore be selected as the optimal
ROM size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1. An example showing the disadvantage of using DPS for sampling the
snapshots. The red curves are produced by the IVPs with parameters:
k(t) ≡ 1, a(t) ≡ 2 (upper) and k(t) ≡ 0.1, a(t) ≡ 1 (lower). The
yellow dashed curve is produced by the IVP with parameters: k(t) ≡
0.55, a(t) ≡ 1.5. The blue curves are sampled by DPS. The width of
the band formed by the blue trajectories grows fast from Nsim = 1 to
Nsim = 10 but reaches the saturation point at Nsim = 10. The growth
then becomes invisible from Nsim = 10 to Nsim = 100. . . . . . . . . . . 53

6.2. Comparison between the FOM states sampled in different ways. . . . 55

x



List of Figures

6.3. An example for the original hyper-cubic joint space J where Nr = 2
and Nu = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4. An example for the joint space J ∗ after being loosened and trimmed
where Nr = 2 and Nu = 1. The original cubic space is first loosened
to the larger cubic space (black lines), then trimmed to the polyhedral
space (red lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5. The distribution of the one-step snapshots in the solution space. Com-
pared to the DPS-collected snapshots, the one-step snapshots have a
relatively uniform distribution in the solution space. Compared to the
SPS method, the parameters sampled by the JSS method have more
diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.6. The flowchart of AL-MOR. . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.7. The curve of αref. The expected agreement ratio increases with the

number of performed iterations. However, unless a large amount of
training snapshots are needed (more than 90% of the data pool), the
expected agreement ratio of random selection is lower than 50%. . . . 72

6.8. Two situations where it is difficult to predict the Reduced Order Model
(ROM) error generated by an input J. Left: overfitting occurs. Right:
underfitting occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.9. The distance from a point to a point set is defined as the shortest
distance between this point and any point in the point set. Blue point:
the point. Black points in shade: the point set. Solid line: distance
from the point to the point set. . . . . . . . . . . . . . . . . . . . . . . . 78

7.1. Model I: the thermal block. . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2. The thermal conductivity of the material. . . . . . . . . . . . . . . . . . 83
7.3. The curves for eproj(q) and l(q). The red dashed lines in 7.3a and

7.3b stand for emean
tol = 1% and emax

tol = 1.5%. The green dashed lines
mark the q maximizing l(q). The blue dashed lines mark the minimum
q satisfying eproj(q) ≤ etol. The optimal ROM size is selected to be
Nr = 19 for this FOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4. Explanation to DEIM DOFs and their coupled DOFs. The yellow DOF
in m(T) is selected by the DEIM algorithm. The green entries are
non-zero entries in the corresponding row in the matrix K. The blue
DOFs in T are all DOFs coupled to the DOF selected by the DEIM
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.5. The ReLU function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xi



List of Figures

7.6. The PAC scores of the ANN-ROMs change with the extension of the
training data. The snapshot increment ∆s = 300. The JSS-ANN has
the lowest ROM error τ∗ at the investigated confidence level, while the
DPS-ANN takes the second place and the SPS-ANN is the worst. . . . 91

7.7. The PAC scores of the OpInf-ROMs change with the extension of the
training data. The snapshot increment ∆s = 25. The JSS-OpInf is the
best ROM, which has the lowest ROM error τ∗ at the investigated
confidence level. The DPS-OpInf and the SPS-OpInf have similar τ∗

at the investigated confidence level, but the SPS-OpInf has higher
observed confidence p(τ∗design) for the desired accuracy. Therefore, the
SPS-OpInf is considered to be better than the DPS-OpInf. . . . . . . . 91

7.8. The curves of the agreement ratio α in the first 10 iterations for the
ROMs. The error estimators are fitted using the 2944 samples in PAC
validation. For both ROMs, we see a clear trend: at the beginning, α is
higher. But with the ROMs being refined, α drops quickly. . . . . . . . 93

7.9. 97%-confident τ∗ of the ROMs trained by five different methods. All
methods draw samples from the same initial data pool, which is create
by JSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.10. Virtual sensor positions in the thermal block. p1 = (1, 5), p2 = (5, 1),
p3 = (9, 5) and p4 = (5, 9). . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.11. The temperature boundary conditions used in Test Case 1. . . . . . . . 96
7.12. The comparison between the solution trajectories of the FOM, DEIM,

and ANN-based ROMs at: p1 = (1, 5), p2 = (5, 1), p3 = (9, 5) and
p4 = (5, 9) in Test Case 1 of the thermal block model. Nr = 19, Nm =
50, Ns = 3000. With the same amount of data, the prediction accuracy
of the AL-ANN is the closest to the intrusive hyper-reduction method
DEIM. The DPS-ANN can catch the main trend but its accuracy is
much worse. The SPS-ANN has the worst performance. . . . . . . . . 98

7.13. The comparison between the error fields of (1) DEIM: upper-left (2)
AL-ANN: upper-right (3) DPS-ANN: lower-left (4) SPS-ANN: lower-
right, at: t = 2, in Test Case 1 of the thermal block model. The error
field of DEIM and AL-ANN has similar error magnitude. In the error
field of DPS-ANN, some bright areas are observed, where the ROM
has relatively large error. The error field of SPS-ANN is much brighter
in general compared to other error fields, which means SPS-ANN has
the worst prediction throughout the whole geometry. . . . . . . . . . . 99

7.14. The comparison between the error fields of (1) DEIM: left (2) AL-ANN:
right, at: t = 2, in Test Case 1 of the thermal block model. . . . . . . . 100

xii



List of Figures

7.15. The comparison between the solution trajectories of the FOM, DEIM,
and OpInf-based ROMs at: p1 = (1, 5), p2 = (5, 1), p3 = (9, 5) and
p4 = (5, 9) in Test Case 1 of the thermal block model. Nr = 19, Nm =
50, Ns = 250. With the same amount of data, the OpInf-based ROM’s
predictions at the virtual sensor positions match the FOM solutions
very well. This fact applies to the OpInf-based ROMs trained in all the
approaches, i.e., AL approach ( 7.15b), DPS approach ( 7.15c) and SPS
approach ( 7.15d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.16. The comparison between the error fields of (1) DEIM: upper-left (2)
AL-OpInf: upper-right (3) DPS-OpInf: lower-left (4) SPS-OpInf: lower-
right, at: t = 2, in Test Case 1 of the thermal block model. Despite that
the error field of DPS-OpInf ROM has some bright areas, the predic-
tion errors for all types of the ROMs are in a comparable level. The
consistently good performance is enabled by the physics knowledge
used for making the hypothetical form of the governing equation. . . 102

7.17. The comparison between the error fields of (1) DEIM: left (2) AL-OpInf:
right, at: t = 2, in Test Case 1 of the thermal block model. . . . . . . . 103

7.18. The comparison between the solution trajectories of the FOM, DEIM,
and ANN-based ROMs at: p1 = (1, 5), p2 = (5, 1), p3 = (9, 5) and
p4 = (5, 9) in Test Case 2 of the thermal block model. Nr = 19, Nm =
50, Ns = 3000. With the same amount of data, the prediction accuracy
of the AL-ANN in 7.18b and the SPS-ANN in 7.18d are both close to
the intrusive hyper-reduction method DEIM and can be considered as
accurate prediction. The DPS-ANN in 7.18c has the largest deviation
to the FOM solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.19. The comparison between the error fields of (1) DEIM: upper-left (2)
AL-ANN: upper-right (3) DPS-ANN: lower-left (4) SPS-ANN: lower-
right, at: t = 2, in Test Case 2 of the thermal block model. The error
field of DEIM, AL-ANN and SPS-ANN has similar error magnitudes.
The error field of DPS-ANN is much brighter in general compared to
the other error fields, which means DPS-ANN has the worst prediction
throughout the whole geometry. . . . . . . . . . . . . . . . . . . . . . . 106

7.20. The comparison between the error fields of (1) DEIM: left (2) AL-ANN:
right, at: t = 2, in Test Case 2 of the thermal block model. . . . . . . . 107

7.21. The comparison between the solution trajectories of the FOM, DEIM,
and ANN-based ROMs at: p1 = (1, 5), p2 = (5, 1), p3 = (9, 5) and
p4 = (5, 9) in Test Case 2 of the thermal block model. Nr = 19, Nm =
50, Ns = 250. At the investigated points, the OpInf-ROMs trained by
the SPS data ( 7.21d), the DPS data ( 7.21b) and the AL data ( 7.21b) all
have similar performances to the DEIM. . . . . . . . . . . . . . . . . . . 108

xiii



List of Figures

7.22. The comparison between the error fields of (1) DEIM: upper-left (2)
AL-OpInf: upper-right (3) DPS-OpInf: lower-left (4) SPS-OpInf: lower-
right, at: t = 2, in Test Case 2 of the thermal block model. Similar to
Figure 7.16, among all the error fields, the DPS-OpInf is the brightest
but still comparable to the others. The bright areas in the error field
of DPS-OpInf are close to the high-temperature boundary conditions,
which means the DPS data lack of observation in this temperature
range. Despite of this, the prediction errors for different ROMs can be
still considered to have similar magnitudes. . . . . . . . . . . . . . . . . 109

7.23. The comparison between the error fields of (1) DEIM: left (2) AL-OpInf:
right, at: t = 2, in Test Case 2 of the thermal block model. . . . . . . . 110

7.24. The 3D model used for simulating the vacuum furnace. Brown: work-
zone, red: heaters, blue: protection shield, gray: outer case. . . . . . . 113

7.25. The curves for eproj(q) and l(q). The red dashed lines in 7.3a and
7.3b stand for emean

tol = 1% and emax
tol = 1.5%. The green dashed lines

mark the q maximizing l(q). The blue dashed lines mark the minimum
q satisfying eproj(q) ≤ etol. The optimal ROM size is selected to be
Nr = 22 for the FOM of the vacuum furnace. . . . . . . . . . . . . . . . 115

7.26. The PAC scores of the ANN-ROMs change with the extension of the
training data. The snapshot increment ∆s = 2000. Both PAC scores of
the JSS-ANN are the best, followed by the DPS-ANN. The SPS-ANN is
the worst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.27. The PAC scores of the OpInf-ROMs change with the extension of the
training data. The snapshot increment ∆s = 500. Both PAC scores of
the JSS-OpInf are the best, followed by the DPS-OpInf. The SPS-OpInf
is the worst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.28. The curves for the agreement ratio α in the first 10 iterations for the
ROMs. The error estimators are fitted using the 2944 samples in the
PAC validator. For the ANN-ROM, αRBF and αGPR firstly decrease then
increase. For the OpInf-ROM, αRBF and αGPR generally decrease with
the iteration proceeding. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.29. 97%-confident τ∗ of the ROMs trained by five different methods. All
methods draw samples from the same initial data pool, which is create
by JSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.30. Left: the virtual sensor positions. Right: the 3-stage heating profile in
the first use case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xiv



List of Figures

7.31. The comparison between the solution trajectories of the FOM, DEIM,
and ANN-based ROMs in the 3-stage heating. Nr = 22, Nm =
100, Ns = 16000. At the virtual-sensor positions, the prediction made
by the AL-ANN is the best and comparable to the prediction by the
DEIM. The second place is taken by the DPS-ANN while the SPS-ANN
is the worst one. However, both of their accuracy are significantly
worse than the AL-ANN’s. . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.32. The comparison between the solution trajectories of the FOM, DEIM,
and OpInf-based ROMs in the 3-stage heating. Nr = 22, Nm =
100, Ns = 5000. At the virtual-sensor positions, the predictions made
by the AL-OpInf and DPS-OpInf are comparably good and their quality
is close to the prediction by the DEIM-ROM. The SPS-OpInf is the worst.124

7.33. The virtual sensor positions and heating profile in the second use case. 125
7.34. The comparison between the solution trajectories of the FOM, DEIM

and ANN-based ROMs in the failed heating. Nr = 22, Nm = 100, Ns =
16000. At the virtual-sensor positions, the predictions made by the AL-
ANN have the highest accuracy and are comparably good to the DEIM-
ROM. The DPS-ANN’s prediction diverges from the FOM solution,
and the SPS-ANN predicts the temperature comparison incorrectly. . 127

7.35. The comparison between the solution trajectories of the FOM, DEIM
and OpInf-ROMs in the failed heating. Nr = 22, Nm = 100, Ns = 5000.
At the virtual-sensor positions, the AL-OpInf and DPS-OpInf can
predict with the similar accuracy, which is acceptably lower than the
DEIM. However, the SPS-OpInf’s prediction has terrible accuracy. . . 128

8.1. The software architecture of the ROM creator based on the AL-MOR
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xv



List of Tables

7.1. The statistical measures for eabs in Test Case 1 of the thermal block
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2. The statistical measures for eabs in Test Case 2 of the thermal block
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3. The statistical measures for eabs in the 3-stage heating. . . . . . . . . . 122
7.4. The statistical measures for eabs in the failed heating. . . . . . . . . . . 126

xvi



Part I.

Preliminaries

1



1. Introduction

1.1. Motivation

With the fast development of computing hardware, more and more complex nu-
merical models can be used for simulation in industry. Such simulation can be an
alternative to physical prototyping and reduce the cost of entire project. However,
most applications of numerical simulation are still concentrated in the design and
engineering phases of the lifecycle. The limited application is due to the requirement
for high-performance hardware for solving complex models. Moreover, the solution
of such a model also needs a long time to be completed, which becomes a barrier
to deploying numerical models into so-called edge devices in factories. Therefore,
how to enable running a simpler model of good quality is a question worthy of
consideration. By answering it, the numerical simulation can be brought into the
operation phase and becomes the so-called real-time simulation [1]. This is a key
part of Digital Twin (DT) [2, 3]. A DT running next to the operated machine can
enable novel industrial solutions such as model-based predictive maintenance or
model-based optimization.

The enabler to this change is known under the umbrella term Model Order Re-
duction (MOR) [4, 5, 6, 7, 8]. The lifetime of a Reduced Order Model (ROM) can be
split into an offline phase and an online phase. During the offline phase, we prepare
the ROM with different methods. During the online phase, the prepared ROM can
run in real-time and only requires minimal computational resources from the device.
Among the broad range of MOR techniques, the projection-based MOR is widely
studied by previous research. Just as its name implies, this kind of MOR method
focuses on seeking a low-dimensional subspace and projecting the Full Order Model
(FOM) onto the subspace. The representation of the original model in the subspace is
the ROM.

Different projection-based MOR techniques have different approaches to construct-
ing the subspace. They can be roughly split into two classes: model-driven methods
and data-driven methods. The former requires the knowledge of FOM, such as gov-
erning equations, involved system matrices, etc. MOR methods such as the Krylov
Subspace Method [9, 10], the Balanced-truncation Method [11] can be classified into
this group.
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1. Introduction

The construction of the reduced space in the data-driven methods is based on
simulation data, such as input parameters and simulation results, obtained from the
communication with simulators. As a representative, Proper Orthogonal Decomposi-
tion (POD) [12] is popular, and it has another well-known name Principal Component
Analysis (PCA) [13] in Data Science.

A special sub-class of the data-driven MOR is non-intrusive MOR. Non-intrusive
MOR methods remove the need for FOM equations or a modifiable numerical code
[14]. This goal is usually achieved by data-driven techniques in system identification
or Machine Learning (ML). An advantage of these MOR methods is no intrusion into
numerical solvers, leading to their easier implementation in industrial applications.
Examples of non-intrusive MOR methods include, such as Operator Inference (OpInf)
[15] and Dynamic Mode Decomposition [16]. Besides, Artificial-Neural-Network-
based (ANN-based) methods also have their places. Multilayer Perceptron (MLP)
[17, 18], Recurrent Neural Network (RNN) [19, 20, 21, 22], Long-Short-Term Memory
(LSTM) [23], Deep Learning [24], and Extreme Learning Machine [25] have already
been investigated for this purpose.

However, one of the bottleneck problems for non-intrusive MOR is data resource.
Compared to intrusive data-driven MOR, non-intrusive MOR relies more on the
provided data. For intrusive methods, one can use greedy sampling methods [26, 27],
which adaptively choose samples by finding the location at which the estimate of
the ROM error is maximized [28]. However, these intrusive methods still require the
access to the FOM solver. By contrast, in [29], the authors proposed an non-intrusive
way for the Radial Basis Function (RBF)-based MOR method. In [30], the authors
designed an active selection strategy to improve the quality of the snapshot matrix
for inferring reduced operators. These non-intrusive methods have proven their
effectiveness for specific problems/MOR methods.

Besides, in the world of ML, the concept of Active Learning (AL) [31] was proposed
to facilitate the construction of ML models, where ML models are allowed to select
training data actively based on the current knowledge learned by models. The family
of AL has many members, which are generalized strategy for actively constructing
ML models. Nevertheless, the application of corresponding methods is quite limited
for MOR. In this thesis, inspired by the concept of AL, a novel method named Active-
Learning-based Model Order Reduction (AL-MOR) is proposed for constructing
ROMs.

1.2. Gap analysis

In reality, most engineering problems are often governed by nonlinear physics. The
nonlinearity can come from physics, material properties or even external loads.
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Additionally, it is difficult to get access to the internal space of commercial simulation
software. Therefore, the non-intrusive MOR methods that can deal with generalized
nonlinear FOMs are strongly demanded by industry. Based on this requirement,
many different non-intrusive MOR methods have been developed recently. These
methods usually intend to construct ROMs based on the data of FOMs. Since these
data are essentially inputs and outputs of the FOMs, which are always available for
software users at all levels, the principle of non-intrusiveness is preserved.

Figure 1.1.: The circle for analyzing the applicability of non-intrusive MOR in indus-
try.

Based on our experience, we can create a circle for analyzing the applicability
of non-intrusive MOR in industry. As shown in Figure 1.1, ROM quality is the
main factor deciding if a ROM can be applied in industry. The information used
to construct the ROM, as described before, is mainly the FOM data. The FOM data
are therefore the major influence on the quality of the non-intrusive ROM. Usually,
we can evaluate the FOM data in two aspects: quality and quantity, which are also
concerned in other ML-related applications, e.g., [32, 33]. However, compared to
other ML applications, the training data in our MOR context is obtained directly from
the FOM solver. Therefore, we hardly have issues like mislabeling, data corruption,
etc. The quality we care about is mainly data diversity/distribution. Besides data
quality, the quantity of the FOM data directly decides how much computational
resource is needed for constructing the ROM. Although the ROM’s performance in
the online phase is important, successful deployment of the ROM in real industrial
use cases also requires that the computational resource and time budget in the offline
phase should be acceptable. This can be considered as a limitation added to the step
of generating FOM data. The three parts, ROM quality, FOM data, and Applicability,
form a "deadlock" as Figure 1.1 and make the deployment of non-intrusive MOR in
industry difficult.
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There are two keys to breaking this deadlock. The first key is developing physics-
informed MOR. In other research, using physics-informed ML to learn the governing
equations of physics/engineering problems [34, 35, 36] also has potential to be applied
to a MOR problem. By using physics-informed methods, the resulting ROMs are
restricted by physics knowledge, and their model flexibility is therefore reduced. The
reduction of the model flexibility eventually leads to a fact that less training data are
needed for the ROMs.

The other key is improving the efficiency of snapshot collection, which will be
the main focus of this thesis. By improving the efficiency of snapshot collection, we
expect that with the same amount of training data, we can construct a ROM which
has similar performance to an intrusive ROM and can enable accurate real-time
simulation in industry.

1.3. Thesis contribution

To further improve the conventional approaches, an AL-MOR method is developed in
this thesis. The proposed method can be combined with different non-intrusive MOR
methods and significantly improve their performance. In this work, three existing
data-driven MOR methods, the Discrete Empirical Interpolation Method (DEIM) [37],
the Runge-Kutta Neural Network (RKNN) [38] and OpInf [15] will be introduced.
The selected MOR methods are representative of different MOR sub-classes. The
DEIM is a typical intrusive data-driven method, while the others are purely non-
intrusive. It will be used as another reference in comparison apart from FOMs to
show how good a ROM can be with the availability of intrusiveness. Among the other
non-intrusive methods, the RKNN is based on Artificial Neural Network (ANN) and
belongs to the black-box method. OpInf is a glass-box method, where limited physics
knowledge will be used for ROM construction. We will enhance the non-intrusive
methods, the RKNN and OpInf, with our AL-MOR method. We will compare the
enhanced non-intrusive ROMs with the FOMs and the intrusive ROMs built with the
DEIM. The advantages and disadvantages of each method can be investigated clearly.
Through this research, the following contributions are made:

1. To get rid of determining ROM sizes manually, we improve the ROM size
determination method proposed in [39]. The modified method is summarized
in an algorithm which automatizes the determination process and makes ROM
size determination more strategical.

2. In conventional data-driven MOR methods, while sampling training data for
constructing ROMs, we only care about the diversity of sampled FOM pa-
rameters and assume the diversity of sampled FOM states is guaranteed by
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the parameter diversity. However, in this thesis, we prove the independence
between the parameter sample diversity and the state sample diversity using
real numerical examples.

3. To increase the diversity of sampled FOM states, we propose a novel sampling
strategy, named Joint Space Sampling (JSS). In this method, we create a joint
space consisting of a reduced solution space for sampling model states and a
parameter space for sampling model parameters. Sampling in such a joint space
can produce training data with better distribution of both FOM states and FOM
parameters.

4. We propose a case-independent ROM validation method based on the Proba-
bly Approximately Correct (PAC) learning theory. Using this method, we can
determine the accuracy and the corresponding confidence of ROMs without de-
signing specific use cases. The validation result is free from the bias introduced
by manual generation of test cases.

5. To accelerate the construction of ROMs, we employ the concept of AL. To
select samples actively, we test different sample selection methods, including
the Maximum Mean Squared Error (MMSE), Query by Committee (QBC) and
Passive Learning (PL) based on the Farthest Point Sampling (FPS) method.
Their efficiency and accuracy are analyzed by numerical experiments.

1.4. Overview of the thesis

This thesis is organized with seven chapters. In chapter 1, some background informa-
tion is given to clarify the motivation of this research. The research questions which
will be addressed in this thesis are also raised. In chapter 2, we will introduce the
concepts and the theories of three projection-based MOR methods. Among them, we
will focus on POD, which will be the approach to constructing reduced space for all
FOMs in this work. In chapter 3, we introduce advanced methods helping with reduc-
ing nonlinear FOMs. In chapter 4, the concept of AL and some popular AL methods
are introduced. In chapter 5, a method determining the optimal size of reduced space
is proposed. In chapter 6, we propose a novel sampling method JSS. Furthermore, we
integrate the AL methods introduced in chapter 4 into the MOR context and design
an AL-MOR method. Besides the selection strategies, different ways of validating
ROMs are introduced. In chapter 7, we test different MOR approaches with a series
of numerical experiments. The evaluation of their performances is given. Finally, in
chapter 8, some discussion about the research results will be given, and we will also
conclude our research.
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2. Projection-Based MOR

Model Order Reduction (MOR) aims to reduce the complexity of a numerical model.
To continue the discussion, the model’s complexity here is defined as the size of the
numerical model. The numerical model is the discrete form of its corresponding
physics problem. Typically, each physics quantity at each degree of freedom (DOF)
will have a contribution to the model size. When the original system is meshed with a
fine grid leading to a large number of DOFs, the resulting numerical model will also
have much complexity, and solving it becomes slow and computationally intensive.

Figure 2.1.: The famous MOR rabbit.

We can take the rabbit model example (Figure 2.1) from [40] to illustrate the idea of
MOR. It is a good illustration, however, here we must clarify some information. MOR
does not simply discard some DOFs while keeping the others or mesh the problem
with a very coarse grid. Such a simple reduction strategy will remarkably reduce the
accuracy of the simulation. It is possible, however, to use MOR to find other low-
dimensional representations that can actually preserve much of the accuracy of Full
Order Models (FOMs). The most popular way is the so-called projection-based MOR.
With this kind of MOR methods, we will first create a reduced space by defining
a reduced basis. Then using the reduced basis, we can project the FOM onto the
reduced space. In such a space, the important information of the FOM is retained,
while the trivial information is discarded.

There are different ways to construct the reduced basis. In this chapter, we will
introduce three common projection-based MOR methods: (1) Moment Matching (2)
Balanced Truncation (3) Proper Orthogonal Decomposition (POD). Among them, we
will focus on POD which is data-driven and more suitable to the scope of this thesis.
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2.1. Moment Matching

Assuming we have a Linear Time Invariant (LTI) system:

Eẏ = Ay + Bu(t), (2.1)

where E, A ∈ RN×N, B ∈ RN×Nu , y ∈ RN, and u(t) ∈ RNu .
The transfer function of this system is:

G(s) = (sE− A)−1B. (2.2)

If we choose the expansion point as s = 0 and the resulting Tayler Series of Equa-
tion 2.2 is:

G(s) = −A−1B− (A−1E)A−1Bs− (A−1E)2A−1Bs2 − · · · − (A−1E)i A−1Bsi. (2.3)

We define:
Mi = (A−1E)i A−1B (2.4)

as the ith moment of the LTI system.
We define a projection-based Reduced Order Model (ROM), which is the FOM’s

projection in a reduced space using the left reduced basis W ∈ RN×Nr and the right
reduced basis V ∈ RN×Nr :

W TEV ẋ = W T AV x + W TBu(t), (2.5)

where W TEV = Er, W T AV = Ar ∈ RNr×Nr , W TB = Br ∈ RNr×Nu , and x ∈ RNr .
Similarly, we can define the ith moment of the ROM:

M̌i = (A−1
r Er)

i A−1
r Br. (2.6)

By enforcing the first Nr moments of the ROM to match the first Nr moments of the
FOM, i.e.:

(A−1E)0A−1B =[(W T AV)−1W TEV ]0(W T AV)−1W TB,

(A−1E)1A−1B =[(W T AV)−1W TEV ]1(W T AV)−1W TB,
...

(A−1E)Nr A−1B =[(W T AV)−1W TEV ]Nr(W T AV)−1W TB.

(2.7)

Equation 2.7 can be solved by Arnoldi algorithm [41, 4], and the result is:

V =
[
A−1B A−1EA−1B . . . (A−1E)Nr/Nu−1A−1B

]
. (2.8)

Let
W TV = 1, (2.9)

and we will get the left reduced basis W . The basis V and W construct a Krylov
subspace. Such a method is also called one-sided Krylov subspace method.

The original Moment Matching method has good performance especially for the
LTI system. Later, its variants [42, 43] can also deal with other complex systems.
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2.2. Balanced Truncation

We consider a state space system:{
Eẏ = Ay + Bu(t)
z = Cy

. (2.10)

Besides the notation introduced in the previous section, here C ∈ Rp×N is an ob-
servation matrix and z ∈ Rp is the observed state. As the start point of Balanced
Truncation method [44, 45], we list two Lyapunov equations:

APET + EPAT = −BBT,

ATQE + ETQA = −CTC.
(2.11)

The matrix P and Q solved from Equation 2.11 is the controllability and observability
Gramians of Equation 2.10, respectively. The method of Balanced Truncation, aims
to remove the states that are hard to control or observe. The controllability and
observability Gramians of the resulting ROM are expected to be equal and both are
diagonal.

Normally, for computational efficiency, we will first compute two factors PC and
QC such that [45]:

P ≈ PCPT
C ,

Q ≈ QCQT
C.

(2.12)

Then we apply Singular Value Decomposition (SVD) to PT
C QC:

PT
C QC =

[
U1 U2

] [Σ1 0
0 Σ2

] [
ΥT

1
ΥT

2

]
. (2.13)

The left reduced basis and the right reduced basis are:

W = QCΥ1Σ−1/2
1 (2.14)

and:
V = PCU1Σ−1/2

1 , (2.15)

where Σ−1/2
1 = diag

(
1√
σ1

, 1√
σ2

, . . . 1√
σNr

)
. Finally, the ROM is:{

W TEVẏr = W T AVyr + W TBu(t),
z = CVyr.

(2.16)

The advantages of the Balanced Truncation method are the stability of the ROM and
the availability of an a priori error bound [46].
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2.3. POD

POD is a universal method that can construct the reduced space for most types of
full order problems without the intrusiveness to original full order problems. As it is
a data-driven method, the FOM can be treated as a black box, and only its input and
output data are necessary for analysis.

The workflow of POD consists of 3 steps. The first step is defining a parameter
space for the FOM. Secondly, several FOM simulations will be performed with
different parameter combinations in the parameter space. The solutions of these
simulations are so-called snapshots. Finally, SVD will be applied to the snapshots to
construct the reduced basis of the subspace.

2.3.1. Problem formulation

For POD, we can assume a more generalized FOM governing differential equation,
which should have the form:

dy(t)
dt

= f (y(t); µ) (2.17)

or for simplicity:
ẏ = f (y; µ), (2.18)

where y ∈ RN is the state vector of the FOM, or FOM state in short. N is the FOM
size. f is the right hand side (RHS) of the equation, and it can be arbitrary function of
y configured by system parameters µ ∈ RNu . Nu is the number of system parameters
of the FOM.

The aim of POD is to find a low-dimensional space, where we can describe physics
of the original FOM with a reduced governing equation:

ẋ = fr(x; µ), (2.19)

where x ∈ RNr , and Nr � N is called the size of the ROM.

2.3.2. Defining the parameter space

The parameter space is a multi-dimensional space defining the range of all the system
parameters. Each dimension of the parameter space stands for a controllable parame-
ter of the FOM. A simple way to define the parameter space is a hyper-cubic space
whose upper/lower limit of each dimension is defined by their maximum/minimum
values of the parameters:

M = [µ1,min, µ1,max]× [µ2,min, µ2,max]× ...× [µNu,min, µNu,max]. (2.20)
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We can use a multivariate sampling method such as Latin Hypercube Sampling [47],
Hammersley Sampling, Halton Sampling [48] or Sobol Sampling [49] to sample a set
(M) of parameter combinations fromM:

M = {µ1, µ2, ..., µNsim}, (2.21)

and they are the samples from the parameter space which can be used to create Nsim
full order problems.

2.3.3. Collecting snapshots

As introduced before, snapshots are nothing but a set of FOM states as solutions to
full order problems. To increase the diversity of the sampled snapshots, we will excite
the FOM with different system parameters collected in the predefined parameter
spaceM. The Nsim parameter configurations in M can be assigned to the FOM and
Nsim full order Initial Value Problem (IVP)s are constructed correspondingly. In these
simulations, the input parameters will be time-independent (constant):

µ(i)(t) ≡ µ(i). (2.22)

These simulations can produce Nsim FOM solutions. If we define the time span for
the FOM simulation is (t0, tend] and assume there are K steps in the simulation, we
will have Ns = Nsim × (K + 1) FOM state vectors in total, which are the so-called
snapshots. The collection strategy using the parameters described in Equation 2.22
will be called Static Parameter Sampling (SPS) in this thesis, which is probably the
most widely used snapshot collection strategy nowadays.

Snapshots have a great impact on the accuracy of ROMs. Especially the quantity
and quality of snapshots. On the one hand, more snapshots are always good for
constructing ROMs. On the other hand, snapshots are generated by FOMs whose
solutions are complicated and slow. Therefore, the strategy of collecting snapshots
must be carefully designed to reduce the workload during the offline phase of MOR.
Snapshots generated by different collection strategies could have very different quality,
which will further influence the reduction steps. In section 6.1 and section 6.2, two
different strategies for snapshot collection will be introduced.

2.3.4. Singular Value Decomposition

If we place all the state vectors in a matrix column-wise, a snapshot matrix is obtained,
which takes the form:

Y =
[
y10 y11 . . . y1K . . . yNsim0 yNsim1 . . . yNsimK

]
, (2.23)
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where yij means y(t = tj) in the ith simulation, and tj = t0 + j · δt, j = 0, 1, 2, ..., K.
The next step is finding a set of orthonormal basis vectors V =

[
v1 v2 . . . vNr

]
∈

RN×Nr , which should minimize the error:

‖Y − VV TY‖2
2. (2.24)

The interpretation to Equation 2.24 is that we first project the snapshots onto the
reduced space and then do the back-projection. This error describes how much
information can be retrieved after reduction. The orthonormal basis V to minimize
Equation 2.24 can be computed by applying truncated SVD to Y :

Y = VΣW T. (2.25)

The left singular vector V ∈ RN×Nr is then used as the reduced basis for MOR.
The smaller Nr is, the more compact the ROM is. It also corresponds to how many
singular values are truncated in SVD. Due to the truncation, the information stored
in the discarded singular vectors is lost. Therefore, a smaller ROM always has a
larger projection error compared to a bigger ROM. For MOR, determination of the
size of the ROM is essentially making a trade-off between computational efficiency
and simulation accuracy. In [50], the author gives a quite complete review of the
methods of determining the number of POD modes (or POD components in the
language of this thesis). To quantitatively evaluate the quality of the reduction basis,
Equation 2.24 can be used to compute the projection error. In section 4.2, we will
introduce a way to determine the ROM size based on the projection error.

There is another interpretation for POD which also generates its name Principal
Component Analysis (PCA) in the field of Data Science. Understanding this inter-
pretation can help us understand why POD can reduce the dimension of data. The
example in Figure 2.2 shows the concept of PCA.

In Figure 2.2a, we use natural coordinate system to describe the positions of two
data points. To clarify the position of each point without confusion, we need a p
coordinate and a q coordinate. However, by re-defining coordinate system properly,
as shown in Figure 2.2b, to describe the position of each point, only the axle ξ is
needed and the other axle ψ can be discarded. Here, the coordinate ξi is the so-called
principal component.

If we define the coordinates in the natural coordinate system as:

d1 =

[
p1
q1

]
, d2 =

[
p2
q2

]
. (2.26)

Their coordinates in the new coordinate system is:

d∗1 =

[
ξ1
ψ1

]
, d∗2 =

[
ξ2
ψ2

]
. (2.27)
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2. Projection-Based MOR

(a) Data described by two coordinates. (b) Data described by one coordinate.

Figure 2.2.: Data dimension reduction.

We prescribe the new coordinate to be orthogonal. To use as few axis as possible, we
need to maximize the squared deviation of ξi:

maximize ξ2
1 + ξ2

2. (2.28)

If we define the orthonormal basis of the new coordinate system to be:

e1 =

[
e11
e12

]
, e2 =

[
e21
e22

]
, (2.29)

such that ξi = di · e1. Then Equation 2.28 can be re-written as:

maximize ξ2
1 + ξ2

2 = maximize eT
1

[
p2

1 + p2
2 p1q1 + p2q2

p1q1 + p2q2 q2
1 + q2

2

]
e1. (2.30)

If we denote D = [d1, d2], Equation 2.30 is equivalent to:

maximize eT
1 DDTe1. (2.31)

Then we apply Eigenvalue Decomposition to DDT get:

DDT = UΣUT. (2.32)

Substituting Equation 2.32 into Equation 2.31 yields:

maximize eT
1 UΣUTe1

m
maximize (UTe1)

TΣ(UTe1).

(2.33)
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Since U is an orthonormal matrix and the norm of e1 is 1, if we define n = UTe1 and
n = [n1 n2]

T, Equation 2.33 can be reformulated as:

maximize [n1 n2]

[
σ1 0
0 σ2

]
[n1 n2]

T

m
maximize σ1n2

1 + σ2n2
2

n2
1 + n2

2 = 1
σ1 > σ2

.

(2.34)

Solving Equation 2.34 gives us n1 = 1, n2 = 0 and e1 = U[1 0]T. Here we see, we have
selected the first column of U which corresponds to the largest eigenvalue of DDT.
Since Eigenvalue Decomposition to DDT is equivalent to SVD of D, the reduced basis
obtained in this way is the same as the one we get from the least-approximation-error
theory.

2.3.5. Projection and evaluation

Following the previous sections, the reduced basis V has been derived from SVD of
the snapshot matrix of the full order system. Using the reduced basis, the full order
system state y can be transformed into the reduced order system state x by x = V Ty.
Now we substitute this transformation into Equation 2.18 and can get:

V TV ẋ =V T f (V x; µ)

m
ẋ =V T f (V x; µ).

(2.35)

In the RHS of Equation 2.35, if the function f (·) is a linear function of y, then we can
re-write Equation 2.35 into:

ẋ = V TFlin(µ)V x + V T fµ(µ)

= Flin,r(µ)x + V T fµ(µ).
(2.36)

In Equation 2.36, Flin,r is the reduced linear operator and can be prepared during the
offline phase. Since normally Nu � N, evaluating V T fµ(µ) is also inexpensive. The
solution of such a ROM is therefore fast and computationally inexpensive.

However, if we consider an arbitrary function f (·), as shown in Figure 2.3, during
the online phase, the evaluation of such function requires: (1) lifting the reduced state
back to the full order space, i.e. V x (2) evaluating the function in the full space, i.e
f (V x; µ) (3) projecting the result back to the reduced space, i.e. V T f (V x; µ).
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2. Projection-Based MOR

Figure 2.3.: Explanation for why a purely-POD-based ROM becomes slow treating
nonlinearity.
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The extra operations have high-order complexity and thus will consume additional
time in the online phase, which is the main reason why POD can not be directly
applied to the system with nonlinearity. To solve this problem, this thesis continues
study of methods in two directions: (1) study of an intrusive method, i.e. Discrete
Empirical Interpolation Method (DEIM), which has access to all system matrices and
tries to find an approximation for nonlinear terms (2) study of non-intrusive MOR
methods where no system matrix is available for reduction and ROM identification is
therefore further needed.

2.4. Summary

In this section, three typical projection-based MOR methods are introduced. They are
Moment Matching, Balanced Truncation and POD. Moment Matching and Balanced
Truncation are system-theory-based methods which require detailed information
of FOMs. The POD method is a data-driven method without invasion into FOMs,
which matches the scope of this thesis best. Two different interpretations of the
concept behind POD are introduced. One is the least-approximation-error principle,
and the other is the maximum-deviation principle. FOM snapshots are the most
important ingredient of POD. The conventional snapshot collection strategy SPS
is also introduced. With the POD reduced basis in hands, how to project a FOM
onto the reduced space is presented. In this discussion, we find that projecting a
linear FOM onto the reduced space is straightforward. However, we can not directly
project a FOM with nonlinearity onto the reduced space. As a result, evaluating a
purely-POD-based ROM will be slow in the online phase.
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In chapter 2, we have already introduced several methods which can build a reduced
space where the most crucial information of Full Order Models (FOMs) is well
preserved. At the end of chapter 2, a problem is brought up: once a reduced
space is constructed, the linear terms of the FOM can be projected onto the reduced
space using the reduced basis, and their projection will be the linear terms of the
Reduced Order Model (ROM). However, simply projecting the nonlinear terms onto
the reduced space will not give us desired performance boost in the online phase.
The nonlinearity in the FOM therefore becomes a big challenge [51].

If we look at physics in real engineering problems, we will find that many of
them have nonlinear effects. Therefore, special treatment which can enable effective
reduction for nonlinearity in FOMs is required. There are different ways to achieve
this goal, and two important ways are hyper-reduction [52, 53] and ROM identification.
Hyper-reduction aims at significantly reducing costs of evaluating reduced nonlinear
terms by computing them only at a few, selected elements or nodes of the FOM
and cheaply approximating the missing information [54]. Among them, the Discrete
Empirical Interpolation Method (DEIM) [37] and Missing Point Estimation [55] are
well-known.

Besides hyper-reduction, ROM identification is another way to reduce nonlinear
problems. Model identification or also called system identification refers to the
process of going from observed data to a mathematical model [56]. Within the scope
of data-driven Model Order Reduction (MOR), a more detailed definition can be
given: after the reduced space is constructed by some means, e.g., Proper Orthogonal
Decomposition (POD), the data obtained from the FOM can be projected onto the
reduced space. Their projection becomes the reduced expression of the data. The
data in the reduced expression can be considered as the output of a latent ROM.
The process of finding a model which can reproduce the same output with the
corresponding input is considered ROM identification.

In this chapter, the popular hyper-reduction method DEIM will be introduced.
As an intrusive method, it makes use of detailed information of FOMs. We also
introduce two ROM identification methods: the Artificial Neural Network (ANN)
and Operator Inference (OpInf). They are non-intrusive and perfectly fit into the
scope of this thesis.
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3. MOR for Nonlinear Problems

3.1. Hyper-reduction: DEIM

Discrete Empirical Interpolation Method, as its name implies, it is a discrete variant
of the Empirical Interpolation Method [57, 58]. DEIM can remarkably reduce the
complexity of evaluating nonlinear components in FOMs. Previous research [37]
shows that if the dimension of DEIM operators is selected optimally, the approxi-
mation error can be nearly negligible. A wide range of DEIM’s applications can be
found, such as fluid dynamics [59, 60], material mechanics [61], cardiac mechanics
[62], etc. Also, many DEIM-based variants, such as [63, 64, 65], have been proposed
with enhanced capability for dealing with different types of nonlinear effects.

Figure 3.1.: Explanation for DEIM’s acceleration dealing with nonlinearity in FOMs

With Figure 2.3, we have already explained why a purely-POD-based ROM becomes
slow when the FOM has nonlinear components. To prevent the solution of ROM
from evaluating complex nonlinear terms in the full space during the online phase,
DEIM constructs a new subspace whose dimension is lower than the dimension of the
full space. The subspace construction is completed during the offline phase. While
evaluating the ROM, the nonlinear terms will be evaluated in this subspace, where
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only a subset of degree of freedoms (DOFs) are selected as the points to evaluate the
nonlinear terms in the governing equations. These points are called interpolation
points. Then the global evaluation will be approximated by interpolating linearly
from these interpolation points. This process is graphically shown in Figure 3.1.

3.1.1. Algorithm of DEIM

Recalling the governing equation Equation 2.18 defined in section 2.3:

ẏ = f (y; µ), (3.1)

and for simplicity, we assume that the right hand side (RHS) function f is a nonlinear
function.

As the basic assumption of DEIM, we approximate the RHS of Equation 3.1 by:

f (·) ≈ Hc(·), (3.2)

where H = [h1, h2, ..., hm] ∈ RN×m is the basis of the DEIM space and c(·) is the
DEIM coefficients. m DOFs in the approximation Hc(·) are selected to have exactly
the same value as the corresponding DOFs in f (·):

PT f (·) = PT Hc(·), (3.3)

where the matrix P ∈ RN×m selects m DOFs from the both sides of Equation 3.2. We
construct the matrix P as:

P = [pd1 pd2 ... pdm ], (3.4)

where pdi = [0 0 ... 1 ... 0 0]T is a column vector whose entries are all zeros except the
di-th entry is one, and di is the i-th interpolation point which needs to be determined
later by the algorithm.

If Equation 3.3 is substituted into Equation 3.2, one can obtain:

f (·) ≈ H(PT H)−1PT f (·). (3.5)

There are two crucial ingredients needed for DEIM’s approximation: the DEIM
space basis H and m interpolation points D = {d1, d2, ..., dm} where we enforce the
ROM to have the same evaluation as the FOM.

In Equation 2.23, the snapshots of the state vector are collected. We can further use
them to compute the snapshot matrix of the nonlinear contribution

F = [ f10 f11 ... fNsimK], (3.6)

where fij = f (yij). In other words, DEIM does not need additional simulation results
but just substituting the snapshots of the FOM into the nonlinear function. This
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substitution can provide us the snapshots of the nonlinear contribution. Applying
truncated Singular Value Decomposition (SVD) to F will generate a set of space basis
vectors H = {h1, h2, ..., hm}, and they are the DEIM space basis that we are seeking
for.

The determination of the other ingredient D can be completed using an iterative
algorithm. The core concept of the algorithm is that in each iteration, the DOF that
generates the worst approximation should be forced to match the exact solution in
the next iteration. Meanwhile, the selection of DEIM space basis H will be performed
as well. This procedure can be summarized by Algorithm 1.

Algorithm 1 DEIM algorithm

Initialization:
d1 = max(abs(h1)), D = {}
P = [pd1 ], H = [h1]
i = 2
while i ≤ m do

ci = (PT H)−1PThi
ri = hi − Hci
di = max(|ri|), D = D ∪ {di}
P = hstack(P, pdi) and H = hstack(H, hi)
i ++;

end while
return P, H, D

In Algorithm 1, max(·) means select the maximum entry. The function hstack(·)
stands for "stacking matrices or vectors in sequence horizontally", and in Algorithm 1,
it is just appending the new column vector to the current matrix.

3.1.2. Assemble the ROM

In section 3.1.1, the necessary components for assembling the DEIM-ROM are pre-
pared. If Equation 3.5 is substituted into Equation 3.1, the approximation to Equa-
tion 3.1 can be written as:

ẏ = H(PT H)−1PT f (·). (3.7)

Its projection in the reduced space is:

ẋ = V H(PT H)−1PT f (V x; µ). (3.8)
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Since the matrix P is essentially a selective matrix which contains only zeros and
ones, the ultimately reduced form of Equation 3.8 is:

ẋ = V H(PT H)−1 f (PTV x; µ). (3.9)

In Equation 3.9, the components which can be pre-computed in the offline phase
are V T H(PT H)−1 and PTV .

It is observed that PTV ∈ Rm×Nr . Therefore, through DEIM hyper-reduction, the
evaluation of the nonlinear function f (·) is performed in a subspace whose dimension
is m. Thus, a conclusion can be drawn that the efficiency of a DEIM-ROM depends
on m. If m � N, the evaluation of the DEIM-ROM during the online phase will
require much less computational effort. However, the accuracy of the DEIM-ROM is
also determined by m. Therefore, making a trade-off between the efficiency and the
accuracy is a necessary step in the construction of a DEIM-ROM. When nonlinearity
is complex and strong, a bigger m should be chosen to ensure an acceptable accuracy
of the resulting DEIM-ROM. Recently, there is some research focusing on different
variants of DEIM, which can help DEIM overcome the difficulty of reducing complex
nonlinear components. For this kind of variants, readers please refer to [63, 66, 61].

3.2. Black-box ROM identification: Artificial Neural
Networks

An ANN is a simplified mathematical model of a human brain [67]. It is famous of
its universal approximation [68], i.e. a properly designed ANN can approximate any
nonlinear functions. This property allows using an ANN to represent an unknown
ROM.

3.2.1. Multilayer Perceptron

Although there are plenty of network architectures, almost all of them have such a
basic unit:

zout = A(wzin + b), (3.10)

where zin is the input to the unit and zout is the output from the unit. The coefficients
w and b are called weights and bias respectively. The activation function A(·) enables
the unit output to have nonlinear relationship with the input. Such a unit is regarded
as a "vanilla" neural net and called as single layer perceptron [69]. However, such a
single layer is not able to simulate arbitrary mathematical functions. To enhance the
approximation ability, usually multiple layers are concatenated as in Figure 3.2, and
the output of a former layer naturally becomes the input to its next layer.
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Figure 3.2.: The structure of a multilayer perceptron.

In Figure 3.2, the input layer and all hidden layers are the nonlinear layer described
by Equation 3.10. Normally, the output layer has no nonlinear activation function.
Therefore, its layer equation can be written as:

zout = wzin + b. (3.11)

A Multilayer Perceptron (MLP) must have one input layer and one output layer.
According to universal approximation theorem, a standard multilayer network with
as few as a single hidden layer and arbitrary bounded and nonconstant activation
function is a universal approximator [70]. This means, a 3-layer MLP can already be
a universal approximator. However, this conclusion only cares about the depth of
the network. The width, i.e. the number of neurons in each layer, also has a large
influence on the approximation [71]. Therefore, a good design of the width and depth
is important for a MLP.

A properly designed MLP can certainly learn the evolution of the latent ROM.
Using the MLP transfer function N , this can be written as:

xi+1 = N (xi, µi). (3.12)

However, such a simple surrogate model has many disadvantages in practice. For
example, if the FOM snapshots are collected on a non-uniform time grid, such a
learning approach is very likely to fail. Because such a model can only learn the
mapping between two consecutive states, which does not have a consistent pattern
on a non-uniform time grid. Therefore, inspired by this consideration, in [38], we
propose to learn the RHS of a ROM.
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3.2.2. Runge-Kutta Neural Network

Previously, we found that the direct projection of the FOM governing equation onto
the reduced space has a form of:

ẋ = V T f (V x; µ), (3.13)

and we can further summarize Equation 3.13 as:

ẋ = N(x; µ). (3.14)

The RHS function N(·) defines the system’s evolution in the reduced space. Thus,
we can also use a MLP to learn the RHS of the reduced governing equation and
integrate the surrogate reduced equation with a numerical integration scheme. In
[38], we propose to integrate such a surrogate reduced governing equation by the
Runge-Kutta (RK) method [72]. In numerical computation, the RK method is widely
used to integrate the differential equations numerically. In the RK method, the update
of the state vector x is:

k0 = 0,
k1 = δtN (xi, µi),
k2 = δtN (xi + c2k1, µi),
...
kn = δtN (xi + cnkn−1, µi),

xi+1 = xi +
n

∑
j=1

hjkj,

(3.15)

where xi stands for the reduced state at the time ti. The coefficients c and h are
different for different RK methods.

n determines the order of the RK method. For n = 1, Equation 3.15 reduces to the
1st-order Runge-Kutta (RK1) method, which is equivalent to Explicit Euler Integration
[72]. In practice, the most popular RK method is the 4th-order Runge-Kutta (RK4)
method:

k1 = δtN (xi, µi),

k2 = δtN (xi +
1
2

k1, µi),

k3 = δtN (xi +
1
2

k2, µi),

k4 = δtN (xi + k3, µi),

xi+1 = xi +
1
6

k1 +
1
3

k2 +
1
3

k3 +
1
6

k4,

(3.16)
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which has a good balance between the integration accuracy and speed.
Two network structures can be designed based on RK1 and RK4 integration. They

are called Explicit Euler Neural Network (EENN) and Runge-Kutta Neural Network
(RKNN).

(a) EENN, n = 1

(b) RKNN, n = 4

Figure 3.3.: Picture of the structure of EENN and RKNN.

Looking at Figure 3.3, it is observed that the structure of EENN and RKNN both
have a skip connection, i.e. a path directly connects the original input to the output.
This is also called residual structure [73]. Compared with a fully-connected structure,
the residual structure can prevent deep networks from network degradation, which
becomes a natural advantage of using numerical-integration-guided architecture.

3.2.3. Training Artificial Neural Networks

Once the network structure is determined, the next step will be training the ANN.
The ANN is initialized with some default weights w and bias b. The parameters need
to be updated during the training. Before training, we project the snapshot matrix Y
onto the reduced space by:

X = V TY , (3.17)

where X ∈ RNs×Nr is the reduced snapshot matrix. Here we see, compared to the
full order snapshots, the reduced snapshots only contain the trajectories of the Nr
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required POD components. This feature makes the ROM trained from such a dataset
more compact, and less computational resources are needed during the training. By
slicing and concatenating properly, we can construct the training datasets:

Xin = [x10 ... x1K−1 ... xNsim0 ... xNsimK−1],
Xout = [x11 ... x1K ... xNsim1 ... xNsimK],
Uin = [µ10 ... µ1K−1 ... µNsim0 ... µNsimK−1].

(3.18)

They are collection of reduced states at time ti, reduced states at time ti+1, and system
parameters at time ti, respectively. Using them, we can perform the training of the
ANN.

Algorithm 2 Training of an EENN

Require: Xin, Uin, Xout
1: while training do
2: X̂out = Xin + δtN ([Xin, Uin])
3: loss = MSE(X̂out, Xout)
4: Use backpropagation to update the weights w and bias b of the network
5: end while

Algorithm 3 Training of a RKNN

Require: Xin, Uin, Xout, δt
1: while training do
2: k1 = δtN ([Xin, Uin])
3: k2 = δtN ([Xin +

k1
2 , Uin])

4: k3 = δtN ([Xin +
k2
2 , Uin])

5: k4 = δtN ([Xin + k3, Uin])
6: X̂out = Xin +

1
6(k1 + 2k2 + 2k3 + k4)

7: loss = MSE(X̂out, Xout)
8: Use backpropagation to update the weights w and bias b of the network
9: end while

Algorithm 2 and Algorithm 3 describe the training process of an EENN and a
RKNN, and similar methods can be used to train networks that are based on different
Runge-Kutta schemes. We also use mini-batch method [74] to achieve better training
result. During the training process, the aim is to reduce the difference between the
predicted new states X̂out and the reference new states Xout. The metric quantifies the
difference is called loss function. In Algorithm 2 and Algorithm 3, we use a popular
loss function named Mean Squared Error (MSE):

MSE(X̂out, Xout) = Mean(‖X̂out − Xout‖2
2). (3.19)
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Besides this, there are other loss functions such as the Mean Absolute Error [75],
the Smooth Mean Absolute Error [76], etc. Since predicting trajectories of ROMs is
essentially a regression problem, standard MSE can satisfy our needs.

In each iteration, the loss will be computed by the selected loss function. Then
backpropagation [77] is used to update the network parameters. Without loss of
generality, an ANN with only input layer is used to explain the backpropagation:

1. Compute:
loss = MSE(X̂out, Xout). (3.20)

2. Compute the derivative with respect to w using the chain rule:

∂loss
∂w

=
MSE(X̂out, Xout)

∂X̂out

∂N
∂(wXin + b)

∂(wXin + b)
∂w

,

∂loss
∂b

=
MSE(X̂out, Xout)

∂X̂out

∂N
∂(wXin + b)

∂(wXin + b)
∂b

.
(3.21)

3. Update the parameters:

wnew = α
∂loss
∂w

+ w,

bnew = α
∂loss

∂b
+ b,

(3.22)

where α is called learning rate, and it is one of the hyper-parameters that usually need
to be determined before the training starts. Selecting an appropriate learning rate is
challenging. If we pick a learning rate that is too small, we risk taking too long during
the training process. But if we pick a learning rate that is too big, we will mostly likely
start diverging away from the minimum [78]. Therefore, choosing an appropriate
learning rate is very crucial for training an ANN. Another important question is
when to stop the training iteration. To tackle both problems, Early Stopping [79]
combined with learning rate decay [80] can be employed as shown in Algorithm 4.

The basic concept of Algorithm 4 is dynamically tuning the learning rate based
on the test loss trend. First, all training data will be split into training datasets and
test datasets. The MSE loss computed with the former datasets is called training loss
and with the latter datasets is called test loss. The initial learning rate is assigned
with a relatively big value, e.g. 10−3. When the training starts, both the training loss
and the test loss should drop in the early stage. Gradually, it will be observed that
the test loss stops dropping but starts to increase. This indicates that the ANN is
overfitting with the current learning rate. In this case, the learning rate will be scaled
by a ratio 1/d. If the test loss cannot keep decreasing with the new learning rate,
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Algorithm 4 Early Stopping combined with learning rate decay

Require: ptol, qtol, d, lr, Xout, Xin, Uin
1: Split Xout, Xin, Uin into Xout,train, Xin,train, Uin,train and Xout,test, Xin,test, Uin,test
2: p = 0, losstest,best = +∞
3: while p ≤ ptol do
4: q = 0
5: while q ≤ qtol do
6: Train the network with the learning rate lr and the dataset

Xout,train, Xin,train, Uin,train
7: Use the network to compute the prediction X̂out,test with Xin,test and Uin,test
8: Compute the test error losstest = MSE(X̂out, test, Xout,test)
9: if losstest < losstest,best then

10: q = 0, losstest,best = losstest
11: else
12: q ++
13: end if
14: end while
15: lr = lr/d, p ++
16: end while

the training process is stopped. The parameters ptol and qtol are two tolerances of
the algorithm. By using this approach, the initial learning rate can be selected less
carefully. In Figure 3.4, we visualize error convergence with different choices of the
learning rate.

After training the ANN, the final parameters and the network architecture can
be saved and reused. There are plenty of mature platforms that can facilitate the
implementation of ANN, e.g. Pytorch [81], TensorFlow [82], scikit-learn [83], etc. In
this thesis, Pytorch and scikit-learn are used.

3.3. Glass-box ROM identification: Operator Inference

OpInf is a data-driven and physics-informed MOR method. Unlike other black-
box MOR methods, OpInf is considered as a glass-box method [84], where some
knowledge about full order systems is incorporated for constructing ROMs. A
hypothetical form with undetermined operators is prescribed for the ROM with the
help of the known knowledge. From abundant solution data of the FOM, OpInf can
infer the undetermined operators and produce the ROM in the offline phase. This
process is similar to another model identification method called Sparse Identification
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(a) Convergence is difficult when the learning
rate is too large.

(b) Successful convergence with the adaptive
learning rate.

Figure 3.4.: The convergence in the error contours with different learning rates.

of Nonlinear Dynamics (SINDy) [85].

3.3.1. Hypothetical governing equation

A basic assumption applied by OpInf is that the ROM is driven by an Ordinary
Differential Equation (ODE) which takes the form of:

dx
dt

= F1x + FBµ + FC + F2x⊗ x + FNµ⊗ x, (3.23)

where x is the state vector of the ROM, F1, F2, FB, FC and FN are operators to be
determined. The operation ⊗ is the Kronecker product:

x⊗ x =


x1
x2
...

xNr

⊗


x1
x2
...

xNr

 =



x1x1
x1x2

...
x1xNr

x2x2
x2x3

...
xNr xNr


. (3.24)

As we see, a hypothesis taken by OpInf is that the RHS in the reduced space can be
represented by polynomial terms up to 2nd order. Because the projection from the
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high-dimensional space onto the low-dimensional space is a linear projection, this
implies that the RHS of the governing equation of the FOM can be represented by
polynomial terms up to 2nd order.

3.3.2. Lifting the governing equation

The previous prerequisite might be considered as applying a hard restriction to the
full order system, and any nonlinearity higher than 2nd order in the FOM cannot
be approximated. However, if we re-write the governing equations in some certain
way, the governing equations of most engineering problems can be converted in to a
quadratic form, which is called lifting in this thesis or is also called Transform and
Learn in [86].

Without loss of generality, we can define the governing equation of the FOM as:

ẏ = Ay +
n

∑
i=1

fi(y; µ), (3.25)

where fi is an arbitrary function. As introduced in [87], we can define a new state
variable s as:

s =

s1(y)
...

sn(y)

 . (3.26)

Then we have:

ṡ =

ṡ1(y)
...

ṡn(y)

 =


∂s1
∂y

∂y
∂t

...
∂sn
∂y

∂y
∂t

 . (3.27)

Substituting Equation 3.25 into Equation 3.27 yields:

ṡ =


∂s1
∂y Ay + ∑n

i=1
∂s1
∂y fi

...
∂sn
∂y Ay + ∑n

i=1
∂sn
∂y fi

 . (3.28)

If the RHS of Equation 3.28 is in a quadratic form, then OpInf can be directly applied
to it. The definition of the new state s is problem-specific and therefore needs human
interactions. We will introduce an example next. For more examples of defining new
state variables, readers can refer to [87].
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Example The FOM equation is:

ẏ = Ay + sin(y) + Bu, (3.29)

where u is a vector containing input parameters. If we define

s =

s1
s2
s3

 =

 y
sin(y)
cos(y)

 , (3.30)

Equation 3.29 can be transformed into:

ṡ1 = As1 + s2 + Bu,
ṡ2 = s3(As1 + s2 + Bu),
ṡ3 = −s2(As1 + s2 + Bu).

(3.31)

The RHS of Equation 3.31 consists of polynomial terms of s and the highest term is
quadratic.

We should be informed that due to different FOMs and different choices of auxiliary
variables, Equation 3.23 might be different. But it is important that the highest order
for the reduced state should not be higher than quadratic. This can prevent the ROM
from dimensionality explosion. Taking a cubic term as an example, if we have a cubic
term in the lifted FOM governing equation, this would mean that in the reduced
governing equation, we expect to have such a term:

x⊗ x⊗ x =


x1
x2
...

xNr

⊗


x1
x2
...

xNr

⊗


x1
x2
...

xNr

 . (3.32)

The complexity of computing such a term is O(N3
r ), which can become really large

even for moderate values of Nr. Such computational complexity defeats the purpose
of dimensionality reduction.

3.3.3. Inferring operators

In section 3.3.2, we have introduced how to transform FOM equations whose RHS
cannot be described by polynomial terms up to quadratic. After transformation, the
governing equation for lifted state s is in a quadratic form.
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We can construct the snapshot matrix for the lifted state s:

S = [s10 s11 ... sNsimK]

=




s1(y10)
s2(y10)

...
sn(y10)




s1(y11)
s2(y11)

...
sn(y11)

 ...


s1(yNsimK)
s2(yNsimK)

...
sn(yNsimK)


 .

(3.33)

To construct the reduced space for the lifted state s, we need some tricks in applying
POD. Since each auxiliary variable essentially represents a different physics quantity,
directly applying POD to the lifted snapshot matrix will cause a problem that only
the information of those auxiliary variables whose magnitudes are large is preserved.
The resulting reduced space will have large projection errors for variables whose
magnitudes are relatively small. To tackle this problem, we need to construct a
reduced space for each auxiliary variable individually and use all the reduced spaces
to create a common space for the lifted state. We first denote:

S1 =
[
s1(y10) s1(y11) . . . s1(yNsimK)

]
,

S2 =
[
s2(y10) s2(y11) . . . s2(yNsimK)

]
,

...
Sn =

[
sn(y10) sn(y11) . . . sn(yNsimK)

]
,

(3.34)

which are snapshot matrices for the corresponding auxiliary variables.
Then we apply POD to the snapshot matrices individually:

V1 = POD(S1),
V2 = POD(S2),

...
Vn = POD(Sn).

(3.35)

The basis for the common reduced space is:

V =


V1

V2
. . .

Vn

 , (3.36)

and we can use V to transform between the lifted state s and its reduced state ω:

s = Vω. (3.37)
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Then similarly to the datasets defined in Equation 3.18, correspondingly, we construct
two datasets with ω and a dataset with µ:

Ωin =
[
ω10 ω11 ... ω1K−1 ... ωNsim0 ωNsim1 ... ωNsimK−1

]
,

Ωout =
[
ω11 ω12 ... ω1K ... ωNsim1 ωNsim2 ... ωNsimK

]
,

Uin =
[
µ10 µ11 ... µ1K−1 ... µNsim0 µNsim1 ... µNsimK−1

]
.

(3.38)

Substituting the datasets into the assumed quadratic ROM equation (Equation 3.23)
produces:

Ωout −Ωin

δt
= F1Ωin + F2Ωin ⊗Ωin + FBU in + FNU in ⊗Ωin + FC, (3.39)

which is essentially the explicit Euler discretization of Equation 3.23. With the
prepared snapshots, the following matrices can be constructed:

R =
ΩT

out −ΩT
in

δt
,

D =
[
ΩT

in UT
in I (Ωin ⊗Ωin)

T (U in ⊗Ωin)
T
]

,
(3.40)

where I is the corresponding identity matrix. Substituting Equation 3.40 into Equa-
tion 3.39 produces:

R = DO, (3.41)

where O =
[
FT

1 FT
B FT

C FT
2 FT

N
]
. The matrix O is an unknown term to be solved.

Observing Equation 3.41, the matrix O can be obtained by solving a least-square
problem:

arg min
O
‖DO− R‖2. (3.42)

In reality, the matrix O from the direct solution to the least-square problem is very
likely to provide an instable ROM. This phenomenon is similar to the overfitting
[88] in the training of ANNs. Applying linear regularization to the original problem
can remarkably prevent from overfitting. Typically, there are two kinds of linear
regularization can be applied to the least-square problem. They are called Tikhonov
regularization (also known as L2 regularization) [89] and Lasso method (also known
as L1 regularization) [90]. The difference is that the operators computed from
an L1-regularized least-square problem usually have sparsity while the solution
to an L2-regularized least-square problem intends to have small values for its all
entries. Although many FOM system matrices are sparse, e.g. stiffness matrix, force
distribution matrix, thermal conductivity matrix, etc., their projection in the reduced
space is usually dense. Therefore, using L2-regularization complies this fact better.

The L2-regularized least-square problem is:

arg min
O
‖DO− R‖2 + λ‖O‖2, (3.43)
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and Equation 3.43 is equivalent to a new least-square problem:

arg min
O
‖
[

D
λI

]
O−

[
R
0

]
‖2, (3.44)

where the parameter λ decides the strength of the penalty. Thanks to the penalty
added to the L2-norm of the operators, we will not have entries with extremely
large magnitudes in the inferred operators. As a result, the ROM constructed by
the inferred operators is less sensitive to the inputs. The larger λ is, the greater the
penalty are added to the regularization. However, an over-strong regularization can
lead to a ROM completely insensitive to different input parameters. In [84], it is
suggested that we can use different penalties for the linear terms and the quadratic
terms in D. In our practice, this indeed improves the accuracy and the stability of the
inferred ROM. The improved regularization can be written as:

arg min
O
‖
[

D
λ

]
O−

[
R
0

]
‖2, (3.45)

where:
λ = diag(λ1, . . . , λ1︸ ︷︷ ︸

o1

, λ2, . . . , λ2︸ ︷︷ ︸
o2

), (3.46)

and o1 and o2 describe the numbers of columns in D belonging to the linear terms
and the quadratic terms, respectively. The grid searching strategy can be employed
to optimally select the parameters λ1 and λ2.

The algorithm for searching the optimal regularization parameters is given in
Algorithm 5. Nevertheless, using L2 regularization still cannot produce a guaranteed
stable OpInf-ROM. For the purely projection-based MOR methods, the preservation
of the stability from the FOM to the ROM can be ensured through some special
treatments [91, 92]. Unfortunately, this kind of treatments usually require the intru-
siveness to the FOM and is therefore impossible for the black-box/glass-box ROM
identification methods.

3.4. Summary

In this section, three different ways to construct ROMs in reduced spaces are intro-
duced. As a hyper-reduction method, DEIM needs snapshots of FOMs and detailed
FOM matrices. Besides the intrusive method, we can also identify surrogate ROMs
with data generated by FOMs. As a universal approximator, MLPs can also be used
to identify ROMs. However, a disadvantage of the MLP is that it can only learn the
mapping between two consecutive reduced states directly is explained. To tackle
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Algorithm 5 Grid searching for the optimal λ

Require: λ1,min, λ1,max, λ2,min, λ2,max, Ωout, Ωin,U in
1: Create a uniform grid Λ between λ1,min, λ1,max, λ2,min, λ2,max
2: Split Ωout, Ωin,U in into Ωout,train, Ωin,train,U in,train and Ωout,test, Ωin,test,U in,test
3: losstest,best = 106, λoptimal = λmin
4: for λ1, λ2 in Λ do
5: Construct λ = diag(λ1, . . . , λ1, λ2, . . . , λ2)
6: Solve Equation 3.45 with selected λ and dataset Ωout,train, Ωin,train,U in,train
7: Construct ROM using O solved in the last step
8: Use the ROM to generate prediction Ω̂out,test with input Ωin,test and U in,test
9: Compute the test error losstest = MSE(Ω̂out,test, Ωout,test)

10: if losstest < losstest,best and ROM is bounded then
11: losstest,best = losstest
12: λoptimal = λ

13: end if
14: end for
15: return λoptimal

this problem, an architecture called RKNN is proposed, which learns the RHS of
the latent reduced equation and integrates the learned ROM as a RK4 integrator.
Besides, another non-intrusive ROM identification method, OpInf, is introduced,
which requires snapshots of FOMs and some basic information of RHS of FOMs.
As a fully intrusive method, DEIM will be considered as another reference in this
thesis apart from FOM solutions. In the following content, we will compare it to the
black-box method RKNN and the glass-box method OpInf.
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4. Concept of Active Learning

Active Learning (AL) is a family of Machine Learning (ML) methods which may
query data instances (samples) to be labelled for training by an oracle (e.g., a human
annotator) — can achieve higher accuracy with fewer labelled examples than passive
learning [93]. In the context of Model Order Reduction (MOR), because solving a
Full Order Model (FOM) is a time-consuming task, we can consider the generation of
FOM snapshots as a time-consuming labelling process. The employment of AL for
MOR can bring us benefits such as shorter time for Reduced Order Model (ROM)
construction and a higher ROM accuracy with the same number of FOM snapshots.
In [30, 94], the authors successfully employ the AL method to optimize the learned
ROMs. Their work gives us strong confidence in using AL/Passive Learning (PL) to
close the gap described in section 1.2.

4.1. Query strategies

Based on how an AL method queries new data, we can classify AL methods into three
classes: query synthesis, stream-based selective sampling and pool-based sampling.

4.1.1. Query synthesis

The query synthesis method is proposed in [95]. The main idea of the query synthesis
method is that we let the learner to synthesize new queries based on its current
knowledge [96]. In our MOR context, as shown in Figure 4.1a, this would mean that
we let the ROM to prepare some new inputs for the FOM solver, and the FOM solver
generates the corresponding snapshots as the new training data. While preparing
the new inputs, the ROM can, e.g., add some noise to the old inputs, or transform
the old input by some means. The synthesis can be completely random, or based on
the current status of the ROM. However, without knowing physics knowledge of the
FOM, it is difficult to synthesize inputs in a meaningful way. Therefore, this method
is not suitable for the research in this thesis.
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(a) Query synthesis. (b) Stream-based selective sam-
pling.

(c) Pool-based sampling.

Figure 4.1.: A demonstration for different query strategies in the MOR context.

4.1.2. Stream-based selective sampling

Just like its name implies, this method designs an AL framework in a streaming fash-
ion. As an on-the-fly interactive labelling strategy, unlabelled samples are provided
in a data stream. The learner (or ROM in the language of MOR) will measure/score
each sample and decide if it wants to query for labelling immediately [97]. As shown
in Figure 4.1b, this will require the existence of a continuous data stream, which does
not fit the scope of the thesis.

4.1.3. Pool-based sampling

Pool-based sampling is probably the most popular AL method nowadays. In this
method, we prepare a data pool containing a relatively large number of unlabelled
samples in such a setting. During the AL iterations, the algorithm will pick some
samples from the data pool strategically and label them. The labelled samples
are added to the training data. Then, the ML model is retrained/updated with
the extended training data. The iterations will be carried on until the ML reaches
some criteria. There are many different methods, such as [98, 99, 100], to select
the unlabelled samples, but most of them are essentially based on the status of the
current ML model. This process can be described as Figure 4.1c.
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In the field of MOR, especially for ML-based MOR, random sampling is currently
the most widely-used sampling strategy. Based on the above introduction to the
methods, we know that the pool-based sampling strategy can be a good alternative
for snapshot collection. However, we do not close the possibility of applying the
query synthesis method and the stream-based selective sampling method to specific
use cases in the MOR world.

4.2. Active selection strategies

So far, we have introduced different ways of obtaining new labelled data, and we
find that the pool-based method is the most suitable one in our MOR context. As
introduced in section 4.1, within the pool-based sampling method, we will choose the
samples to be labelled from a data pool strategically. The selection strategy makes
decisions based on sample’s informativeness. Here, we will introduce two active
selection strategies and a passive selection strategy.

4.2.1. Maximum Mean Square Error

In [101], this concept was proposed for the first time. The key idea of Maximum
Mean Squared Error (MMSE) is to include the sample which will maximize the mean
squared error of the ML model learned from the current training data:

ζ∗ = argmax
ζ∗

MSE(ROM(ζ∗), FOM(ζ∗)), (4.1)

where ζ∗ is the selected new sample. We consider such a sample is the most infor-
mative for updating the ROM. In [94], this principle is used for active data selection
of the data-driven MOR. In this thesis, we will use the same principle for picking
samples from the data pool.

4.2.2. Query by Committee

Besides the error based indicator, sample’s informativeness can be also measured by
the uncertainty of the model about that sample. A very convenient and famous way
to measure the uncertainty is called Query by Committee (QBC) [102, 103, 104].

Within QBC, we will train multiple (at least 2) models and use them to predict for
all the unlabelled samples, then we compute the ambiguity of the predictions. The
unlabelled sample with the greatest ambiguity will be selected for labelling. In [103],
the authors successfully used this method for AL for regression problems.
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Uncertainty-based methods are very suitable while the ROM errors on unlabelled
samples are difficult to estimate. However, in the original QBC method, we need
either to train multiple ROMs to compute uncertainty or to use a ROM which has a
natural uncertainty indicator, e.g., a Gaussian-Process-Regression-based ROM. In this
thesis, we will introduce a workaround to resolve the limitations in section 6.4.1.3.

Besides the active selection methods introduced in section 4.2, methods such as
mismatch-first farthest-traversal [105], maximizing expected model change [106] and
maximizing expected error reduction [107], can be good alternative strategies. Here
we encourage readers to investigate different selection strategies.

4.3. Batch query for active selection

With the methods introduced in section 4.2.1 and section 4.2.2, one can easily find
the most informative sample from the data pool. However, such a serial mode (one
sample at a time) is unrealistic in our MOR context. The offline phase will be slowed
down as time required for model identification is considerable. Therefore, we have a
strong demand of a query-in-batch mode.

In such a mode, a batch of unlabelled samples will be selected from the data pool.
After being labelled, multiple new samples will be added to the training data, and
the extended training data will be used to refine the ML model. A naive approach to
constructing such a batch is to simply assess all the unlabelled samples, and select the
most informative ones by some measure. Unfortunately this is a myopic strategy, and
generally does not work well since it does not consider the redundant information
content among the informative samples. In other words, the best two queries might
be so highly ranked because they are virtually identical (similar), in which case
labeling both is probably wasted effort [93].

To deal with such a problem, different methods have been proposed [108, 109,
110, 111, 112]. In [112], a method based on mini-batch AL considering both the
informativeness and the diversity of selected samples is proposed. It is easy to
combine it with different measurement of informativeness. In this thesis, we will
introduce this Diverse mini-Batch Active Learning (DBAL) method and employ it.

Within the DBAL method, the informativeness of unlabelled samples will be
measured first. The measurement can be error-based, model-change-based, model-
uncertainty-based, etc. Then samples will be sorted in a descending order of their
informativeness. Then, pre-filtering will be performed to select the top b · n samples
from the sorted samples, where b is called pre-filter factor, and n is the desired
number of new samples. Afterwards, the pre-selected samples will be classified into
n clusters. The classification can be done with, for example, K Means clustering [113].
Samples in the same cluster can be considered to have strong similarity. Therefore,
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Algorithm 6 Diverse mini-Batch Active Learning

Require: Number of new samples n, data pool of unlabelled samples D, pre-filter
factor b

1: Compute the informativeness of all samples in D
2: Pre-filter to the top b · n samples based on the computed informativeness
3: Classify the b · n samples into n clusters
4: For each cluster, pick the unlabelled sample closest to the centroid of the cluster
5: Label the selected n samples
6: return The labelled samples

we will only pick one sample from each cluster. The picked samples will be the ones
closest to their clusters’ centroid, which can be considered the most representative
samples in their clusters.

4.4. Passive selection strategy (Passive Learning)

Passive selection is also called PL. Within this method, we do not check the status of
the learned ML model. Instead, we first investigate unlabelled samples’ geometric
characteristics in the feature space [114]. Then, we pick the samples which are consid-
ered the most informative based on the investigation. The geometric characteristics
usually refer to the distance between samples.

Let us assume in the sample space we have a vacuum space. Since lack of informa-
tion in this area, the ROM is very likely to be uncertain while predicting for a new
sample coming from the vacuum space. Moreover, the uncertainty is expected to be
maximized when the new sample is from the position which is the most distant to
the current training samples. We consider such a sample is the most informative to
the current ROM. This can be concluded as:

ζ∗ = argmax
ζ∗

dist(ζ∗, {ζ1, ζ2, ζ3, . . . }), (4.2)

where ζ i is the i-th training sample in the current training data. There are different
ways of defining the distance function dist(·). By properly defining the distance
function dist(·), passive selection can naturally enable batch selection without having
redundant information in the selected samples. We will introduce our definition later
in section 6.4.2.
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4.5. Summary

In this section, the concept of AL is introduced. We chose the combination of
pool-based sampling and the selection strategies based on MMSE, QBC and PL as
the sample selection methods for Active-Learning-based Model Order Reduction
(AL-MOR). To make the selection strategies more practical in the MOR context, a mini-
batch AL method called DBAL is introduced. The DBAL method takes not only the
informativeness but also the diversity of unlabelled samples into consideration, which
can reduce the redundant information in selected unlabelled samples. Using the AL
methods introduced in this section, we can accelerate the procedure of constructing
ML-based ROMs described in section 3.2 and section 3.3.
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As introduced in section 2.3.4, while applying truncated Singular Value Decomposi-
tion (SVD), we can freely choose the position of truncation. The size of the Reduced
Order Model (ROM) is decided by how many singular vectors are included in the
reduced basis V . The ROM size directly influences two important performance
indicators of the ROM: accuracy and efficiency. On the one hand, a small ROM
results in a large projection error, and the physics encoded in the reduced snapshots
will be distorted, which makes ROM identification also difficult. On the other hand,
identifying the ROM in an unnecessarily big reduced space will require more training
data, and the resulting ROM can take a long time to solve during the online phase.
Therefore, an appropriate size for the ROM will be important. Naturally, a question
is raised here: what is the best size for a ROM? In this chapter, an automatic way of
determining the optimal ROM size will be introduced. Based on it, we propose a
more reliable algorithm for choosing the ROM size.

5.1. ROM size determination based on singular value
scree plot

In [115, 116, 117, 118, 39], the authors proposed and introduced some methods to
determine the optimal number of reduced basis vectors, such as Eigenvalue-greater-
than-one Rule [117], Scree Test [119, 39], Parallel Analysis [118], etc. In [39], an
automatic decision is made by using profile likelihood on scree plot.

Scree plot is a figure reflecting the trend of singular values of the snapshot matrix
calculated by SVD. In Figure 5.1, we present an example of the scree plot, where we
can see a descending curve. As we know, each singular value corresponds to a Proper
Orthogonal Decomposition (POD) component. The larger the singular value is, the
more energy/information is contained in its corresponding POD component and
the more important the corresponding POD component is. Therefore, we consider
the position of a ’gap’ or ’elbow’ displayed in the scree plot as the best position for
truncation. Based on this consideration and to automatically detect this position, the
method Maximize Profile Likelihood is proposed in [39].
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Figure 5.1.: A scree plot.

Let us assume that we extract c POD components as candidates:

Vcand =
[
v1 v2 . . . vc

]
, (5.1)

and they are sorted with the corresponding singular values ς in a descending order:

Σcand =
[
ς1 ς2 . . . ςc

]
. (5.2)

We further assume that Vall is truncated at (included) the q-th column, with 1 ≤ q ≤ c,
which will split our singular value set Σcand into to two parts as well:

Σ1 = {ς1, ς2, . . . , ςq},
Σ2 = {ςq+1, ςq+2, . . . , ςc}.

(5.3)

If the i-th column is the right position for separation, we consider Σ1 and Σ2 are
sampled from two different distributions. For sake of simplicity, we assume they are
sampled from two different normal distributions [120], denoted as:

f1(ς|µ1, σ) =
1

σ
√

2π
exp

(
− (ς− µ1)

2

2σ2

)
,

f2(ς|µ2, σ) =
1

σ
√

2π
exp

(
− (ς− µ2)

2

2σ2

)
,

(5.4)

where:

µ1 = mean(Σ1),
µ2 = mean(Σ2),

(5.5)
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and:

σ2 =
(q− 1) · var(Σ1) + (m− q− 1) · var(Σ2)

m− 2
(5.6)

It might be noticed that in Equation 5.4, we use the same σ for two distributions. If
we establish the distributions with the variances computed from the corresponding
error sets, Equation 5.4 will have infinite values while q = 1 or q = m− 1. Then we
can use Equation 5.4 to build the likelihood function:

l(q) =
q

∑
i=1

log( f1(ςi|µ1(q), σ)) +
m

∑
j=q+1

log( f2(ς j|µ2(q), σ)). (5.7)

The q maximizing Equation 5.7 then is selected as the position for truncating Vcand.

5.2. Improved ROM size determination based on
projection error

The ROM size selection method introduced previously uses the scree plot of singular
values to decide the truncation position. A ROM constructed in such a way can be
considered to be the most efficient in information preservation. However, besides the
efficiency, the ROM accuracy is another performance indicator that is very important
for application. Here, we propose an improved version of the selection strategy based
on projection error curves. Firstly, we define the mean projection error emean

proj of Model
Order Reduction (MOR) as:

emean
proj (V , Y) = mean

(∣∣VV TY − Y
∣∣

|Y |

)
, (5.8)

and the maximum projection error emax
proj of MOR as:

emax
proj (V , Y) = max

(∣∣VV TY − Y
∣∣

|Y |

)
, (5.9)

where Y is the snapshot matrix used to construct the reduced basis V . These two
errors can clearly quantify the quality of the reconstruction of the snapshots using
the reduced basis.

Then we can create the curves for the mean and maximum projection error. Without
loss of generality, in Figure 5.2 we use the curve of emean

proj as an example.
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Figure 5.2.: An example for the curve of emean
proj .

Our target is the same: finding the gap or elbow existing in the error curves. We
first build two sets for emean

proj and emax
proj respectively:

Emean
proj =

{
emean

proj,1, emean
proj,2, . . . , emean

proj,c

}
,

Emax
proj =

{
emax

proj,1, emax
proj,2, . . . , emax

proj,c,
}

,
(5.10)

where:

emean
proj,i = emean

proj (Vi, Y),

emax
proj,i = emax

proj (Vi, Y),
(5.11)

with Vi = Vall[:, : i]. Here Vall[:, : i] means extracting the first i columns of Vall. Since
later Emean

proj and Emax
proj will be treated equally, we use E to represent the both sets and

e to represent the errors stored in the sets. We further assume that Vall is truncated at
(included) the q-th column, with 1 ≤ q ≤ c, this will split our error set E into to two
sets:

E1 = {e1, e2, . . . , eq},
E2 = {eq+1, eq+2, . . . , ec}.

(5.12)

Similarly, we consider the two sets are sampled from two different distributions,
which are denoted as:

f1(e|µ1, σ) =
1

σ
√

2π
exp

(
− (e− µ1)

2

2σ2

)
,

f2(e|µ2, σ) =
1

σ
√

2π
exp

(
− (e− µ2)

2

2σ2

)
,

(5.13)
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where:

µ1 = mean(E1),
µ2 = mean(E2),

(5.14)

and:

σ2 =
(q− 1) · var(E1) + (m− q− 1) · var(E2)

m− 2
. (5.15)

The final likelihood function is:

l(q) =
q

∑
i=1

log( f1(ei|µ1(q), σ)) +
m

∑
j=q+1

log( f2(ej|µ2(q), σ)). (5.16)

Comparing the improved method with the original method, the most important
change is the replacement of the singular value scree plot with the projection error
curves. Such error curves contain both the information of the ROM efficiency as well
as the information of the ROM accuracy. This two information will be the ingredients
for the ROM-size-determination algorithm.

Figure 5.3.: An example for the curve of the mean projection error (red) and the curve
(blue) of the corresponding profile likelihood. Two local maximums are
found in the blue curve, while the ROM size qbest,2 corresponding to the
second local maximum has a mean projection error smaller than emean

tol
and should therefore be selected as the optimal ROM size.

Although by maximizing Equation 5.16 we can find the position of the elbow, so
far we only consider for the efficiency of the ROM. To be specific, a ROM constructed
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with such a size is very efficient in preserving information, but we have not thought
about if the preserved information is sufficiently accurate for describing our Full
Order Model (FOM). Therefore, we use the errors computed in Equation 5.12 to
quantify the projection quality resulted from different truncation positions.

The algorithm selecting the optimal ROM size under given error conditions is
presented in Algorithm 7. The concept behind Algorithm 7 can be explained by
Figure 5.3. We again use emean

proj,i as an example. A tolerance for the projection error
emean

proj,i must be defined in advance. In the algorithm, we will calculate l(q) and
probably we can observe one global maximum as well as some local maximums for
l(q). In Figure 5.3 we see two peaks in the curve of l(q), and they are denoted as qbest,1
and qbest,2. If we select qbest,1 as the ROM size, we will have the global maximum for
l(q), which means this is the most efficient ROM. However, a ROM with size qbest,1
will have a projection error higher than our tolerance. Therefore, if we take the ROM
accuracy into consideration, we should choose the local maximum where ROM size
is qbest,2. Algorithm 7 completely respects the principle we mentioned in section 1.2
that the ROM quality always goes first. Under this condition, we try to minimize the
size of the ROM to make it more efficient while serving in the online phase.
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5. ROM Size Determination

Algorithm 7 ROM size selection

Require: Y , m, emean
tol , emax

tol
1: Apply POD to Y to get Vall =

[
v1 v2 . . . vc

]
2: Construct Emean

proj and Emax
proj

3: lmax
mean = lmax

max = −∞, qbest
mean = qbest

max = 1
4: for q ≤ m do
5: Split Emean

proj into Emean
1 , Emean

2
6: Compute lmean(q) and emean

proj,q
7: if lmean(q) > lmean

max and emean
proj,q ≤ emean

tol then
8: lmean

max = lmean(q)
9: qmean

best = q
10: end if
11: end for
12: for q ≤ m do
13: Split Emax

proj into Emax
1 , Emax

2
14: Compute lmax(q) and emax

proj,q
15: if lmax(q) > lmax

max and emax
proj,q ≤ emax

tol then
16: lmax

max = lmax(q)
17: qmax

best = q
18: end if
19: end for
20: return qbest = max(qmean

best , qmax
best )
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Collection

Data sampling is a crucial step for non-intrusive Model Order Reduction (MOR).
Without sufficient access to full order systems, data/output produced by Full Order
Models (FOMs) is the only key with which we can identify latent dynamics. In
general, the more data available, the more accurate the knowledge discovered from
data is. However, in the field of MOR, collecting FOM data is computationally
expensive, which must need solutions of full order problems and cost a long time in
the offline phase. Besides, saving those high-fidelity solutions in devices and loading
them to computer memory also have an intensive requirement for computational
resources. Therefore, the decision of how much data are actually needed is the key to
saving time, disk space, and computer memory, which can eventually make MOR’s
application more practical. In this thesis, an Active Learning (AL) algorithm for
constructing a Reduced Order Model (ROM) is proposed, where the training data
will be continuously extended until the ROM meets a predefined accuracy.

The algorithm is designed based on the pool-based AL method. The algorithm
needs two necessary ingredients: a data pool and a strategy to select data from the
data pool. In this chapter, we will propose different ways to prepare them. We start by
introducing the approach of preparing the data pool, and then we propose different
selection strategies using the methods introduced in section 4.2 and section 4.4.

6.1. Dynamic Parameter Sampling

The shortcoming of using the Static Parameter Sampling (SPS) method introduced
in section 2.3.3 is apparent: the sample diversity in the parameter space is restricted
by the number of FOM simulations. This limitation may not be observed when the
parameter space is low-dimensional. However, when the FOM has a high-dimensional
parameter space, the data-driven ROM requires prohibitive amounts of data to achieve
an acceptable accuracy.

A sampling method called Dynamic Parameter Sampling (DPS) is proposed to
tackle this problem. Similarly, DPS begins with taking samples randomly in the
parameter spaceM. However, the amount of samples is not matching the number of
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FOM simulations Nsim but equal to Nsim · (K + 1). These samples will form a set:

MDPS = {µ1, µ2, ..., µNs}. (6.1)

We can randomly split them into Nsim subsets:

M1
DPS ={µ10, µ11, ..., µ1K},

M2
DPS ={µ20, µ21, ..., µ2K},

...

MNsim
DPS ={µNsim0, µNsim1, ..., µNsimK},

(6.2)

Then, we use these subsets to create Nsim Initial Value Problem (IVP)s. For the i-th
FOM simulation, we use the parameter samples in Mi

DPS to create the time-dependent
parameter function µ(i)(t):

µi(t) = Interp(t̄; Mi
DPS). (6.3)

In Equation 6.3:
t̄ = {t0, t1, t2, . . . , tend} (6.4)

is the time grid for integration, and Interp(t̄; Mi
DPS) means interpolating based on

the instances in t̄ and Mi
DPS. Compared to SPS, DPS makes full use of all time steps

in transient problems. The parameter sample density of DPS is K + 1 times as high
as SPS’s.

However, DPS also has its own disadvantages. The most crucial one is the incom-
plete observation of system states. Thinking about why we use different parameter
samples for taking snapshots, the reason is to explore the parameter space more effi-
ciently. This can be translated to having a better parameter diversity in training data.
Apart from this, different parameters will also make the system evolve differently.
The snapshots taken during different evolution of the system can provide a relatively
complete observation of system states. Training data containing adequate state sam-
ples and parameter samples are particularly important for purely data-driven MOR,
i.e. Artificial Neural Network (ANN)-based approaches in this thesis. However, so far,
we only pay attention to the parameter diversity in training data, and the diversity of
sampled states is ignored.

Now, let us analysis the diversity of system states sampled by DPS. We can consider
a FOM established by DPS as a dynamic system whose input is a stochastic process:

ẏ(t) = f (y(t); µrandom(t)), (6.5)

where µrandom(t) is a random function of time. In [121], it is proven that for such
a dynamic system, the mean value of system output is equal to the system output
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produced by sending the mean value of the stochastic process to the system. Moreover,
the variance of the output is determined by properties of the system and the stochastic
process. This means for some FOMs whose output variance is small, DPS samples
can be closely distributed around the mean-output trajectory.

Example We create a 1-D IVP whose governing equation is:

dy
dt

= k(t)y + ea(t), (6.6)

where t ∈ (0, 1]. We prescribe the parameter range as k(t) ∈ [0.1, 1] and a(t) ∈ [1, 2].
We first integrate two IVPs configured by two parameter settings with δt = 0.02:

dy
dt

= kminy + eamin ;

dy
dt

= kmaxy + eamax ,
(6.7)

where kmax = 1, kmin = 0.1 and amax = 2, amin = 1. Their solutions will form
two trajectories, as the red curves shown in Figure 6.1, which are called extreme
trajectories. The space between two extreme trajectories can be considered as the
solution space for this parameterized system. Then we use another parameters
kmean = 0.55, amean = 1.5 to get another curve, which is yellow dashed in Figure 6.1.
We call this trajectory mean trajectory. We use DPS to create Nsim = 1, 5, 10, 100
IVPs and get their corresponding solutions. The results are shown in Figure 6.1a,
Figure 6.1b, Figure 6.1c and Figure 6.1d, respectively. As we see, the DPS trajectories
are distributed around the mean trajectory and form a band. This exactly matches the
point mentioned in [121]. Additionally, we also observe that the width of this band is
growing with increasing Nsim. However, the speed of the growth is not constant. At
the beginning, when we increase Nsim from 1 to 5, the width grows fast. The same
trend is observed when increasing Nsim from 5 to 10. But when we directly increase
Nsim from 10 to 100, we can see the growth of the band width is actually hardly
visible. The additional DPS trajectories are just filling the empty space in the band
where Nsim = 10. This implies that if we want to use DPS trajectories to fill the whole
solution space between two extreme trajectories, we probably need to construct many
different IVPs with many different parameter settings, which is very inefficient and
non-practical.

6.2. Joint Space Sampling

As discussed in section 6.1, DPS-sampled states have a bad distribution, and the
knowledge learned from such training data is consider lacking generalization. Com-
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(a) Nsim = 1 (b) Nsim = 5

(c) Nsim = 10 (d) Nsim = 100

Figure 6.1.: An example showing the disadvantage of using DPS for sampling the
snapshots. The red curves are produced by the IVPs with parameters:
k(t) ≡ 1, a(t) ≡ 2 (upper) and k(t) ≡ 0.1, a(t) ≡ 1 (lower). The yellow
dashed curve is produced by the IVP with parameters: k(t) ≡ 0.55, a(t) ≡
1.5. The blue curves are sampled by DPS. The width of the band formed
by the blue trajectories grows fast from Nsim = 1 to Nsim = 10 but reaches
the saturation point at Nsim = 10. The growth then becomes invisible
from Nsim = 10 to Nsim = 100.
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pared to the DPS-sampled data, samples collected using SPS have a better distribution
for the reduced state. However, since SPS uses only one parameter sample for each
FOM simulation, its exploration in the parameter space is not sufficient. Unless a
large number of FOM simulations are performed, the ROM can only observe little
diversity for system parameters in training data. In this point of view, neither of them
can be considered a good strategy for generating training data for the ROM.

A new approach for collecting snapshots is proposed in this thesis to overcome
the disadvantages and named Joint Space Sampling (JSS). Just as its name implies,
we generate many samples in a joint space consisting of the parameter space and an
estimated reduced solution space. By taking joint samples, we will create a data pool
consisting of a large number of initial states and system parameters for the full order
problem.

However, unlike system parameters which already have a predefined sampling
space, we have not defined such a space for the system state. So in this section, we
will introduce how to create an estimated space and to sample initial states in the
estimated space.

6.2.1. Reduced solution space estimation

The most straightforward solution to sample an initial state is that we randomly
generate values for each degree of freedom (DOF) in the FOM and use the resulting
system state as the initial condition for the simulation. However, the initial system
state constructed in this approach is considered as a non-physics system state, because
such a sampling approach completely ignores the continuity of physics in the FOM.

We notice that during the process of Proper Orthogonal Decomposition (POD), the
most correlative DOFs in the FOM are described by the same POD component in the
reduced space [122]. This inspires us that sampling randomly in reduced space first
and then lifting the sampled reduced state back to the full space can produce a FOM
state where correlative DOFs are assigned with continuous physics quantities.

In Figure 6.2, a vacuum furnace model is given as an example. In Figure 6.2a, a
FOM state is randomly sampled. In this case, the temperature field is discontinuous
across the model. This kind of FOM state is non-physics and can be hardly observed
in reality. In Figure 6.2b, we first construct a reduced space for the FOM. Then we
generate a random reduced state in the reduced space. Finally, we lift the sampled
reduced state back to the full space. The resulting FOM state has a continuous
temperature field and makes sense physically.

To allow sampling reduced states randomly, we will construct a new space called
reduced solution space. The first step is generating a hyper-cubic space.

1. Define the parameter spaceM for the problem based on potential use cases.
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(a) A FOM state randomly sampled in the full space.

(b) A FOM state lifted from a reduced state randomly
sampled in the reduced space.

Figure 6.2.: Comparison between the FOM states sampled in different ways.
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2. Perform SPS with m parameter samples collected from the spaceM, and the
resulting snapshot matrix is denoted as Yestimate.

3. Apply POD to Yestimate, and project it onto the reduced space to get the reduced
basis V and Xestimate.

4. Find out the minimum and maximum entry in Xestimate for each POD compo-
nent, and we denote them as:

{x1,min, x1,max, x2,min, x2,max, ..., xNr,min, xNr,max}. (6.8)

5. A rough estimate for the reduced state space is:

X = [x1,min, x1,max]× [x2,min, x2,max]× · · · × [xNr,min, xNr,max], (6.9)

and we get a joint space J =M×X

A vectoral sample taken from J takes the form of:

J =

[
µ

x

]
, (6.10)

where a reduced state and a group of system parameters are sampled simultaneously.

6.2.2. Loosening and trimming the reduced solution space

However, the reduced solution space X described by Equation 6.9 is just a rough
estimate. We need to loosen and trim it to improve the estimation. The first step is
loosening. For this purpose, we introduce an expansion ratio β and compute the
distance ∆xi between the current upper and lower limit:

∆xi = xi,max − xi,min. (6.11)

Then we modify the original upper and lower limit by:

x̌i,max = xi,max + β∆xi,
x̌i,min = xi,min − β∆xi.

(6.12)

We use x̌i,max and x̌i,min as the new upper and lower limit. By doing this, the upper
and lower limit of each POD component is shifted on purpose. We need to loosen
the reduced solution space because when we use parameter samples from M to
collect the snapshots Yestimate with SPS, we cannot ensure that the boundary (extreme)
trajectories are included in Yestimate. In this case, we will underestimate/overestimate
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the upper/lower limit of the true reduced solution space. Finally, we denote the
loosened reduced solution space as X ∗.

The next step will be trimming the space. Now the space X ∗ is still defined as a
hyper-cubic space. The projection of a reduced state x directly sampled from X ∗ in
the full space can still be meaningless to the full order problem. Therefore, we need
to add two extra inequalities to trim the hyper-cubic space X ∗:{

MAX(V x) < ymax

MIN(V x) > ymin
, (6.13)

where MIN(·) finds the maximum entry in a matrix. The value ymax and ymin can be
decided by different approaches, for example:

ymax = MAX(Yestimate),
ymin = MIN(Yestimate).

(6.14)

Alternatively, ymax and ymin can be defined by empirical values, for example, thinking
of a thermal system, then ymin can be the room temperature while ymax can be the
highest temperature recorded in the system’s history data. The step of trimming
the reduced solution space is also very important. Without trimming step, the full
states lifted from sampled reduced states can have entries which are too extreme for
potential use cases.

As shown in Figure 6.3, before loosening and trimming, the joint space J is a hyper-
cubic (or cubic) space. After loosening and trimming, it becomes a polyhedral space.
The polyhedral space is produced by the loosened hyper-cubic space J ∗ =M×X ∗
and the trimming inequalities.

6.2.3. One-step snapshot

With a joint sample J and the reduced basis V on our hands, we have an initial state
and a group of system parameters needed by the FOM solver. In Algorithm 8, we
present how to sample a set of joint samples. If we have enough joint samples, and
they are uniformly distributed in the joint space, we only need the FOM solver to
integrate for one time step δt in the time span with corresponding parameters. We
denote this process as:

y = FOM (J, V , δt) , (6.15)

and we call a snapshot obtained in this way a one-step snapshot.
To explain why we only collect the one-step snapshot, we use the the same 1-

D system as in section 6.1 as an example. We demonstrate the collected one-step
snapshots in Figure 6.5. As we can see, thanks to the trimming step, all the initial states
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Figure 6.3.: An example for the original hyper-cubic joint space J where Nr = 2 and
Nu = 1
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Figure 6.4.: An example for the joint space J ∗ after being loosened and trimmed
where Nr = 2 and Nu = 1. The original cubic space is first loosened to
the larger cubic space (black lines), then trimmed to the polyhedral space
(red lines).
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Algorithm 8 Generation of a set of random joint samples J

Require: M, Ns, m, FOM
1: Create a sample set M = {µ1, µ2, ..., µm} inM
2: Perform SPS with m parameter samples and FOM to get Yestimate
3: Apply POD to Yestimate to get V and Xestimate
4: Find the upper and lower limits for each POD component, denote them as
{x1,min, x1,max, x2,min, x2,max, ..., xNr,min, xNr,max}

5: Create hyper-cubic space for reduced state, denote it as X
6: Loosen space X to get the new space X ′

7: Determine ymax and ymin
8: Nsampled = 0, I = {}
9: while Nsampled < Ns do

10: Generate a random sample xsample in X ′

11: if MAX(V xsample) < ymax and MIN(V xsample) > ymin then
12: Generate a random sample µsample inM

I = I ∪
{[

µsample
xsample

]}
Nsampled = Nsampled + 1

13: end if
14: end while
15: return I
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Figure 6.5.: The distribution of the one-step snapshots in the solution space. Com-
pared to the DPS-collected snapshots, the one-step snapshots have a
relatively uniform distribution in the solution space. Compared to the
SPS method, the parameters sampled by the JSS method have more
diversity.
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(the starts of the blue arrow lines) are located inside the solution space. Nevertheless,
since we assign a random parameter for each IVP, we cannot ensure that all the
updated system states (the ends of the blue arrow lines) always fall into the solution
space. In Figure 6.5, we indeed see some lines whose end points are outside the
solution space. In this case, if we insist to collecting multi-step snapshots, the system
states collected on those long trajectories can be far outside the solution space. This
phenomenon will cause a problem that the solution space is expanded unnecessarily,
which will influence the ROM’s performance in the online phase negatively.

6.3. ROM validation

ROM validation is a step where we evaluate the validity of the ROM. Based on
whether specific test cases need to be manually designed, we divide ROM validation
strategies into two classes: case-dependent ROM validation and case-independent
ROM validation. In this section, we will introduce how to use them to assess the
quality of the ROM.

6.3.1. Case-dependent validation

Case-dependent validation is probably the most widely-used validation method for
MOR. In this kind of approaches, some specific test cases will be defined. The ROM
and the FOM will be used to simulate in the same test cases, and their results will be
compared. As introduced in [123], we can use these types of use cases as the selection
for test cases:

1. Normal events: system parameters are assigned with some foreseeable val-
ues. The designed input parameters usually have some specific meanings
in industrial use cases. For example, for a radiation furnace model, we can
consider using "constant-power heating-up", "increasing-power heating-up",
"periodic-power heating-up", etc., as the test parameters.

2. Extreme-condition events: system parameters are assigned with extreme or
unlikely combination. Thinking of the thermal system, in the test cases, we
can use the highest heating power, the lowest heating power, the strongest heat
convection and so on.

3. Historical events: if historical events are available, we can pick some input
parameters from the record and use them as the test cases.

Here we denote the test parameters as µvalid(t) to distinguish them from µtest(t) used
by ROM identification. Once we define µvalid(t) by any above means. We can perform
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the ROM and the FOM simulation:

Yvalid = FOM(µvalid(t)),

Ŷvalid = ROM(µvalid(t)),
(6.16)

where:

Yvalid =
[
y0,valid y1,valid y2,valid ... yK,valid

]
,

Ŷvalid =
[
ŷ0,valid ŷ1,valid ŷ2,valid ... ŷK,valid

]
.

(6.17)

Then we can calculate the mean absolute error or the mean relative error for the ROM
solution:

eabs =
1

K + 1

K

∑
i=0
‖yi,valid − ŷi,valid‖

erel =
1

K + 1

K

∑
i=0

‖yi,valid − ŷi,valid‖
‖yi,valid‖

(6.18)

Usually, we can also compute the error fields at different time points for error
visualization and statistical analysis:

eabs =
[
e1,abs e2,abs . . . eK,abs

]
=
∣∣Yvalid − Ŷvalid

∣∣
erel =

[
e1,rel e2,rel . . . eK,rel

]
=

∣∣Yvalid − Ŷvalid
∣∣

|Yvalid|
(6.19)

Using the error field e, some statistical indicators, such as Mean, Standard Deviation
(Std.), Minimum (Min.), Maximum (Max.) and Median, can be computed to evaluate
the ROM’s performance over the entire model geometry.

6.3.2. Case-independent validation

The other model validation method is called case-independent validation. Just as its
name implies, this kind of methods do not use any use-case-specific solution to test the
ROM. For example, in the field of MOR, in [124], the authors use Nonlinear Normal
Mode (NNM) computed from the ROM as the initial conditions and integration
periods for the FOM. By investigating the corresponding FOM outputs, the quality of
the ROM is evaluated. In [125], Sensitivity Analysis is applied to assess the quality
of the reduced basis. In this thesis, we propose a case-independent approach based
on Statistical Machine Learning (ML). The basic theory of this approach is Probably
Approximately Correct (PAC) learning [126, 127, 128].

Similar ideas of using the PAC learning theory for assessing simulation models can
be found in [128, 129]. There are two key performance indicators which need to be
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determined in the assessment: ROM accuracy and ROM confidence. They can be
determined by applying a large number of independent tests to the ROM.

First of all, we use an inequality to represent the relationship between ROM
accuracy and ROM confidence:

Pr(e ≤ τ) > η, (6.20)

where e is the prediction error of the ROM and τ is a predefined error value. The
meaning of Inequality 6.20 is that the ROM’s prediction error e being lower than τ

has a probability of η. We should notice that the prediction error e here can be either
an absolute error or a relative error, and τ should be computed in the same approach.

We can consider τ as the accuracy indicator and η as the corresponding confidence
indicator. Here we clarify that although τ is the prediction error, it can certainly
be used to describe the accuracy of the ROM. For simplicity, from here on, we will
consider the ROM accuracy and ROM’s prediction error equivalently. The accuracy
and confidence is a pair of variables which are (negatively) correlated. Our target is
to find a way to computing the values of these coupled variables.

Using the one-step snapshot introduced in section 6.2.3, we can construct s inde-
pendent tests for the validation, and we denote the input vector of the i-th test as:

Ji,in =

[
µi,in
xi,in

]
. (6.21)

We further denote the reference solution computed by the FOM as:

yi,out = FOM (Ji,in, V , δt) . (6.22)

The corresponding prediction by the ROM is:

ŷi,out = ROM (Ji,in, V , δt) . (6.23)

We can compute the prediction error (relative) for test i as:

ei =
‖ŷi,out − yi,out‖
‖yi,out‖

. (6.24)

Assuming there are s test cases in validation and we have defined the investigated
accuracy τ, we can calculate the observed confidence p(τ) of the ROM having a ROM
error smaller than τ using Equation 6.25:

p(τ) =
1
s

s

∑
i=1

L(ei ≤ τ),

L(ei, τ) =

{
1 ei ≤ τ

0 ei > τ
.

(6.25)
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In Equation 6.25, it is not hard to see that the lower τ is, the lower p(τ) is. This matches
the description that accuracy and confidence is a pair of (negatively) correlated
parameters.

However, since we can only construct limited number of tests for ROM validation,
the observed confidence of the ROM must have deviation from the true confidence
of the ROM. Since the true confidence of the ROM is still unknown to us, we can
establish an inequality for the observed confidence and the true confidence:

Pr(|p(τ)− p̌(τ)| < ε) > 1− σ, (6.26)

where p̌(τ) is the true confidence of the ROM. We can also notice that ε and 1− σ is
a pair of accuracy and confidence of validation itself. For holding Inequality 6.26, at
least sPAC test samples must be included in validation:

sPAC =
1

2ε2 ln
(

2
σ

)
. (6.27)

Equation 6.27 is called Chernoff’s bound. The proof of Equation 6.27 is given in
Appendix A.1.

Assuming we find τ∗ which is the smallest τ satisfying:

p(τ∗) = 1, (6.28)

which means all prepared tests can be passed with prediction errors lower than τ∗.
While seeking τ∗, we can perform binary search [130] on a pre-built grid {τ1, τ2, ..., τk}
of τ.

Substituting Equation 6.28 into Inequality 6.26 produces:

Pr(|1− p̌(τ∗)| < ε) > 1− σ, (6.29)

which is equivalent to:
|1− p̌(τ∗)| < ε (6.30)

holding with probability of 1− σ. If we remove the absolute, we will get:

−ε <1− p̌(τ∗) < ε

m
1− ε < p̌(τ∗) < 1 + ε

(6.31)

holding with probability of 1− σ. Here we only need the left inequality 1− ε < p̌(τ∗),
because we know the true confidence cannot be larger than 1. Finally, we get the
true confidence of the ROM at accuracy level τ∗ is 1 − ε, and this conclusion is
reliable with probability of 1− σ. Since we can only evaluate for limited number
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of τ, the found τ∗ must be larger than the true τ∗. In other words, we will always
underestimate the accuracy of the ROM, and the coarser the grid is, the more we
underestimate.

We notice that the reliability of the conclusion is influenced by the variable σ.
The smaller σ is, the more reliable the conclusion is. At the same time, a smaller
σ also leads to a greater sPAC, which further means we need more test samples for
validation.

Algorithm 9 Prepare PAC validation

Require: ε, σ, FOM, V
1: Determine s based on s ≥ sPAC, where sPAC can be computed using Equation 6.27

2: Randomly take s samples following Algorithm 8,
denoted as IPAC =

{
JPAC

1,in , JPAC
2,in , ..., JPAC

s,in

}
3: Get reference solution OPAC =

{
yPAC

1,out, yPAC
2,out, ..., yPAC

s,out

}
,

where yPAC
i,out = FOM(JPAC

i,in , V , δt)
4: return IPAC, OPAC

In Algorithm 9, we demonstrate how to prepare independent test samples for ROM
validation based on PAC learning. Furthermore, we denote such a validation step as:

τ∗, p(τ∗design), ePAC = PAC(ROM, V , τ∗design). (6.32)

In the validation step, we will have 3 important outputs. p(τ∗design) is the observed
confidence for an expected accuracy level τ∗design. τ∗ is the accuracy level whose
observed confidence is 1. This two outputs can reflect the deviation between the
current ROM quality and the expected ROM quality. As a by-product, we can have a
error snapshot matrix ePAC saving the ROM errors in all tests.

6.4. Snapshot selection based on the concept of Active
Learning

The key principle of AL is that a ML algorithm can achieve a higher accuracy with
fewer training data if it is allowed to choose the data from which it learns [31]. In the
field of ML, lots of application of AL can be found, for example, in Recommender
Systems [131], Natural Language Processing [132], etc.

In conventional model-based MOR methods, similar principles are already em-
ployed, e.g., in [133, 134, 28, 26, 27]. For data-driven MOR, some research regarding
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applying AL to existing MOR methods also can be found. For example, in [30], the
AL concept is employed for inferring a linear system. In [94], an AL algorithm is
designed for a Gaussian-Process-Regression-based MOR method. In this section, we
will show how to employ the AL approaches introduced in section 4.2 in the MOR
context.

A typical flowchart for Active-Learning-based Model Order Reduction (AL-MOR)
can be concluded as Figure 6.6. In the flowchart, "Initialization" includes necessary

Figure 6.6.: The flowchart of AL-MOR.

steps such as constructing the FOM, pre-defining the parameter space of the FOM,
collecting initial training datasets, preparing the data pool, etc. "Build ROM" simply
means building the reduced space and identifying the ROM in the reduced space. As
we see in Figure 6.6, so far, we have prepared all the components but only "Extend
training data" is still missing. Here, in this section, we will use the active/passive
selection methods introduced in chapter 4 to support the selection of samples.

6.4.1. Snapshot selection based on active selection

In this section, we will apply the active sample selection methods described in
section 4.2.1 and section 4.2.2 to the procedure of constructing the ROM.

6.4.1.1. Snapshot selection based on the Maximum Mean Squared Error

Here, we will incorporate the idea introduced in [94], which is essentially active selec-
tion based on the Maximum Mean Squared Error (MMSE) introduced in section 4.2.1.
We will combine it with our JSS method introduced in section 6.2.
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As introduced in section 4.2.1, we want to know with what inputs, the current
ROM has the largest approximation errors. Since the errors are the ROM errors with
respect to the joint samples remaining in the data pool, whose reference solutions
(FOM snapshots) are not computed yet, we need to estimate these errors. To keep the
non-intrusiveness of the whole workflow, a data-driven error estimator is therefore
demanded. Data-driven approaches are already tested for supporting error estimation
for numerical simulations or MOR, such as research presented in [135, 136, 137].

Recalling the non-intrusive ROM identification methods introduced in chapter 3.
We can encapsulate different data-driven ROMs into such a feedforward ML model:{

x̂out = ROM(xin, µin, δt)
ŷout = V x̂out

, (6.33)

or simply as:
ŷout = ROM(Jin, V , δt). (6.34)

Such a ROM is used recurrently in the online phase. After each step, the predicted
reduced state will be passed to the next time point. As we can see in Equation 6.33,
besides the fixed parameter δt, there are mainly two variables in the input: the
reduced state and the system parameters at current time point. The predicted
reduced state at the new time point is lifted to the full space using the reduced basis
V . Finally, the output of such a ROM is the predicted state ŷout of the FOM.

To assess the prediction quality, we usually measure the relative error or absolute
error between the predicted full state and the reference full state. Here we use the
relative error computed by Equation 6.24 as an example.

We know that:
yout = FOM(Jin, V , δt). (6.35)

Substituting Equation 6.35 into Equation 6.24 yields:

e =
‖ROM(Jin, V , δt)− FOM(Jin, V , δt)‖

‖FOM(Jin, V , δt)‖ . (6.36)

According to Equation 6.36, we can summarize the computation of the error with:

e = Λ(Jin, V , δt), (6.37)

where Λ is the exact error function, and it is not available to us. Since usually δt
is constant, and V is also constant in each iteration. Based on Equation 6.37 and
simplification, we can expect to estimate the ROM error with:

ê = Λ̂(Jin) (6.38)

where ê is the estimation for the ROM error e. To construct the error estimator Λ̂, we
have different choices. Here in this thesis, we will introduce two approaches.
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Error estimation based on RBF interpolation Radial Basis Function (RBF) interpo-
lation is one of the primary tools for interpolating multidimensional scattered data
[138, 139]. Here we consider to use RBF interpolation to estimate ROM errors for
unlabelled samples in the data pool. To construct the error estimator, the first thing
we need is training data. In our case, the training data for the error estimator is the
test data used by PAC validation.

As we know, for validating the ROM with the PAC learning theory, we have
constructed s independent tests. By collecting the prediction errors in PAC validation,
we can construct the so-called error snapshot matrix:

ePAC =
[
e1 e2 . . . es

]T , (6.39)

where ei is the ROM error in the i-th test. We can further build a matrix for the joint
samples in validation as:

IPAC =
[

J1 J2 . . . Js
]

, (6.40)

whose column vector Ji is equivalent to the joint sample JPAC
i,in in Algorithm 9, and

we drop the superscript and a subscript for simplicity. Assuming we have another
matrix I∗ consisting of the joint samples J∗ remaining in the data pool:

I∗ =
[

J∗1 J∗2 . . . J∗n
]

, (6.41)

and we denote their corresponding ROM prediction errors as:

e∗ =
[
e∗1 e∗2 . . . e∗n

]T . (6.42)

We can use RBF interpolation to estimate the ROM error in such a way [140]:

ê∗ = Λ̂(I∗) = F(I∗, IPAC)a + P(I∗)b, (6.43)

where a and b are the coefficients need to be determined during the fitting process.
F is a matrix whose entries can be computed by:

Fij = RBF(J∗i , Jj), (6.44)

and P is a matrix of monomials. There are multiple choices for the RBF:

Linear: − r,

Thin Plate Spline: r2log(r),

Gaussian: exp(−r2),

(6.45)
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where r = ‖J∗ − J‖ means the distance between the remaining joint samples and
the joint samples in PAC validation. To solve the coefficients a and b, the following
conditions are enforced:{

ePAC = F(IPAC, IPAC)a + P(IPAC)b,
P(IPAC)

Ta = 0.
(6.46)

In this thesis, we will use Thine Plate Spline for RBFs, which is also the default choice
selected by Python library SciPy [141].

Error estimation based on GPR Gaussian Process Regression (GPR) [142], also
known as Kriging Interpolation [143], is a non-parametric model used for regression
or interpolation. We use the same notation as defined for RBF error estimator.

Gaussian Process prescribes that ePAC and e∗ follow a joint Gaussian distribution,
which can be written as:[

ePAC
e∗

]
∼ N

(
0,
[

K(IPAC, IPAC) K(IPAC, I∗)
K(I∗, IPAC) K(I∗, I∗)

])
, (6.47)

and we are interested in knowing the conditional distribution:

p(e∗|IPAC, ePAC, I∗). (6.48)

We can use the mean of this conditional distribution to estimate the ROM prediction
errors. The mean of this distribution is [144]:

K(I∗, IPAC)K(IPAC, IPAC)
−1ePAC. (6.49)

To compute the covariance matrix K, we introduce the so-called covariance function
κ, and the entries in the covariance matrix K can be computed with:

Kij = κ(J∗i , Jj). (6.50)

Here we introduce some widely used covariance functions:

Constant: κ(J∗i , Jj) = c,

Linear: κ(J∗i , Jj) = J∗Ti Jj,

Squared exponential: κ(J∗i , Jj) = σ2exp

(
−
∥∥J∗i − Jj

∥∥2

2l2

)
.

(6.51)

In this paper, we employ a combination of the squared exponential function and the
constant function, i.e.:

κ(J∗i , Jj) = σ2exp

(
−
∥∥J∗i − Jj

∥∥2

2l2

)
+ c. (6.52)
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With the defined covariance function, we can compute the covariance matrices in
Equation 6.49 and the predicted ROM errors ê∗.

Using the error estimation methods introduced above, we can estimate the ROM
errors for all the samples remaining in the current data pool and pick those joint
samples with maximal estimated ROM errors for the next iteration. Based on this
strategy, we can finalize the MMSE algorithm for MOR. In Algorithm 10, Iall is the

Algorithm 10 MMSE in the j-th iteration

Require: Snapshot increment ∆s, current data pool Iall \ Ij, PAC, ROMj
1: Compute ePAC using ROMj and PAC
2: Fit the RBF-/GPR-based error estimator using IPAC and ePAC
3: Compute e∗ using the fitted error estimator and the matrix I∗ built by Iall \ Ij
4: Use e∗i ∈ e∗ as informativeness measure, and perform the DBAL method in

Algorithm 6 to generate ∆I = { J̌1, J̌2, . . . , J̌∆s}
5: return ∆I

initial data pool prepared by Algorithm 8, Ij is the training data in the j-th iteration,
and ROMj is the ROM in the j-th iteration. The MMSE algorithm is enhanced by
the Diverse mini-Batch Active Learning (DBAL) method to allow a batch mode for
sample selection. The return ∆I of the algorithm is the remaining samples that are
considered the most informative.

6.4.1.2. Agreement ratio

So far, we have introduced two approaches for estimating ROM errors. Later, we
will test their performance with numerical experiments. Before that, we introduce a
performance indicator which will be used in the experiments. We name this indicator
as ’agreement ratio’ and denoted as α.

Definition As we know, in the j-th iteration, we will extend the training data with
the new data generated from the ∆s joint samples selected from the current data
pool Iall \ Ij. No matter with which error estimation method, we expect that the
selected joint samples are the most informative for the current ROM. In other words,
by predicting with them, the ROM should generate the largest prediction errors.

However, the selection strategy cannot be 100% accurate. If we compare to the
samples that exactly maximizes the ROM error, we must observe some deviation. We
can describe the deviation using:

α =
N(∆Iestimate ∩ ∆Itrue)

∆s
, (6.53)
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where ∆Iestimate is the sample set selected by the estimation, and ∆Itrue is the true
selection. The function N(·) counts the number of entries in a set. Based on its
definition, we know that the higher α is, the better agreement between the estimation
and the ground truth is.

Calculus for reference agreement ration We can compute a reference α, denoted
as αref, which is the expectation of the agreement rate of randomly selecting ∆s
samples from the data pool Iall \ Ij. For simplicity, we introduce Np = N(Iall \ Ij) and
Nall = N(Iall). The reference α can be computed as:

αref =

 ∆s

∑
n=0

n ·

(
∆s
n

)(
Np − ∆s
∆s− n

)
(

Np
∆s

)
 /∆s. (6.54)

Noticing that Np = Nall − j · ∆s. We can further write:

αref(j) =

 ∆s

∑
n=0

n ·

(
∆s
n

)(
Nall − (j + 1) · ∆s

∆s− n

)
(

Nall − j · ∆s
∆s

)
 /∆s. (6.55)

Figure 6.7.: The curve of αref. The expected agreement ratio increases with the number
of performed iterations. However, unless a large amount of training
snapshots are needed (more than 90% of the data pool), the expected
agreement ratio of random selection is lower than 50%.
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Example Let us assume that we have 20,000 joint samples in the initial data pool,
and each time we pick 500 samples from the data pool. Based on Equation 6.55, we
can draw the curve for the function αref(j), which is presented in Figure 6.7. As we
can observe, the reference agreement ratio at early stages is very low, and it will
increase fast in late stages. In the training process, if the agreement ratio is higher
than this reference agreement ratio, we can consider snapshot selection is guided by
the error estimator effectively.

6.4.1.3. Snapshot selection based on Query by Committee

As introduced in section 4.2.2, snapshot selection guided by ROM uncertainty is
another potential selection strategy. The motivation to applying such an uncertainty-
based strategy is our inconfidence of data-driven error estimation. The inconfidence
resulted from such a consideration: if ML model A can simulate the prediction error
of ML model B, then it is very likely that ML model A has a much higher accuracy
and a better stability than ML model B.

Similarly, if our error estimator can predict the ROM error accurately, the error
estimator will be a more stable and accurate model compared to the ROM. Then a
question arises: why not directly using the model architecture of the error estimator
for the ROM? If the error estimator is not stable and accurate enough, the snapshot
selection based on error estimation might be ineffective. Based on this concern, an
uncertainty-based strategy will be a good alternative.

According to the method introduced in section 4.2.2, we need to train multiple
ROMs in each iteration. However, in reality, this is nearly infeasible. The reason is
that training multiple ROMs is time consuming and will significantly drag out the
offline phase.

Compared to training a ROM, fitting an error estimator, especially a RBF-based
estimator, consumes much less time. In this thesis, we propose to employ error
estimators constructed in different ways as committee members in the Query by
Committee (QBC) method. Based on the concept of QBC, we know that the samples
selected by the committee will be the most uncertain for the members in the committee.
This further means that such samples are the most difficult to predict by the error
estimators.

Assuming we have k error estimators, we denote them as:

Λ̂1, Λ̂2, ..., Λ̂k. (6.56)

They are fitted with the test joint samples IPAC stored in the PAC validator and the
error snapshots ePAC generated by the PAC validator. We use them to predict for a
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joint sample J∗i in the data pool:

ê∗i1 = Λ̂1(J∗i ),

ê∗i2 = Λ̂2(J∗i ),
...

ê∗ik = Λ̂k(J∗i ).

(6.57)

According to [103], we can define the ambiguity of the prediction ê∗i as:

ai = a(J∗i ) =
k

∑
j=1

(ê∗ij −Mean(ê∗i ))
2. (6.58)

The large ai is, the more difficult it is to predict the ROM error e∗i generated by
the joint sample J∗i . So what could this kind of difficulty imply? In Figure 6.8, we
demonstrate two situations where this difficulty can occur. We first draw some points
to represent the test inputs J in the PAC validator and their ROM errors e. Here
we consider the input as a scalar instead of a multi-dimensional joint input just for
demonstration.

Ideally, we expect the points to distribute in a horizontal line. Because that means
the ROM has a stable performance across the input space. However, in reality, we can
always find that the ROM is overfitting or underfitting for some inputs. No matter for
overfitting or underfitting, what can be observed in the error distribution is an outlier.
The ROM error e for this outlier is much lower (overfitting) or higher (underfitting)
in its local region. If we use an interpolation-based error estimator to predict for a
new input, it will be the most difficult to predict for a new input from the region
(J1, J2). The committee will also be likely to have disagreement for a new input from
this region.

A new sample from such a region will be anyway informative for the model. If
underfitting occurs, a new sample will definitely enrich the information in this region
and help the model to improve its approximation in this region. If overfitting occurs,
a new sample from this region can help the model discover the real FOM dynamics
in this region more precisely.

Therefore, we can use ai as an indicator of informativeness. The bigger ai is, the
more informative the sample J∗i is.

To construct the committee, we can use, for example, a set of RBF estimators with
different RBFs, a set of GPR estimators with different kernel functions, or a mixture
of different models. In this thesis, we use three RBF estimators with a linear function,
a thin-plate spline function and a Gaussian function as the RBF, respectively.

However, by solely using the QBC method, in each iteration of the AL algorithm,
only one new sample can be selected. This will make the procedure of ROM refine-
ment slow and time-consuming. A solution is to use the DBAL algorithm introduced
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(a) Overfitting. (b) Underfitting.

Figure 6.8.: Two situations where it is difficult to predict the ROM error generated by
an input J. Left: overfitting occurs. Right: underfitting occurs.

in section 4.3. Combined with the DBAL algorithm, and the QBC method for MOR is
presented in Algorithm 11.

Algorithm 11 QBC in the j-th iteration

Require: Snapshot increment ∆s, current data pool Iall \ Ij, PAC, ROMj
1: Compute ePAC using ROMj and PAC
2: Fit three different RBF error estimators using IPAC and ePAC
3: Compute {ai = a(J∗i ) | ∀J∗i ∈ Iall \ Ij} use the RBF error estimators
4: Use ai as informativeness measure, and perform the DBAL method in Algorithm 6

to generate ∆I = { J̌1, J̌2, . . . , J̌∆s}
5: return ∆I

6.4.1.4. Algorithm for MOR based on active selection

So far, we have designed the active sample selection methods for MOR. Now, with all
ingredients on hand, we can realize Figure 6.6 with Algorithm 12.

In Algorithm 12, the sub-routine CONV is used for determining the convergence of
the algorithm. Its details are given in Algorithm 13. The coefficients α1 and α2 decide
how much relative improvement is expected. Since snapshots are only one of the
factors influencing the ROM quality, when the observed improvement is too small to
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Algorithm 12 AL-MOR

Require: V , Iall, ∆s, τ∗design, PAC, FOM
1: Randomly pick ∆s samples from Iall as the initial snapshot set, denoted as I1
2: O1 = {FOM(Ji, V , δt) | ∀Ji ∈ I1}
3: Use I1, O1 and V to train ROM1
4: p1(τ

∗
design), τ∗1 , ePAC = PAC(ROM1, V , τ∗design)

5: j = 1
6: p0(τ

∗
design) = 0, τ∗0 = 1

7: while NOT CONV(pj(τ
∗
design), τ∗j , pj−1(τ

∗
design), τ∗j−1) do

8: Pick ∆I for generating the new training data by Algorithm 10 or Algorithm 11
9: Ij+1 = Ij ∪ ∆I

10: Oj =
{

FOM(Ji, V , δt) | ∀Ji ∈ Ij
}

11: Update V
12: Use Ij, Oj and V to train ROMj+1
13: pj(τ

∗
design), τ∗j , ePAC = PAC(ROMj+1, V , τ∗design)

14: j = j + 1
15: end while
16: return ROMj+1

continue the iteration, we should stop the iteration actively. We can validate the ROM
again with case-dependent validation and combine the results with the performance
indicators produced by PAC validation to decide if we should look for improvement
from other sources, e.g., the ROM size or the ROM identification method, and redo
the whole AL process.

Algorithm 13 CONV

Require: pj(τ
∗
design), τ∗j , pj−1(τ

∗
design), τ∗j−1

1: ptol = α1pj−1(τ
∗
design)

2: δτ∗tol = α2τ∗j−1
3: if pj(τ

∗
design)− pj−1(τ

∗
design) < δptol AND τ∗j−1 − τ∗j < δτ∗tol then

4: return True
5: end if
6: return False
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6.4.2. Snapshot selection based on passive selection

Besides the active selection strategies in section 6.4.1.1 and section 6.4.1.3, we can
also use the Passive Learning (PL) approach, Farthest Point Sampling (FPS) [145], to
update the snapshots for training. Methods with similar concept is already widely
used in other fields of ML [146, 147, 114].

To introduce this approach, we first define the distance between two joint samples
as:

d(Ji, Jj) =
∥∥Ji − Jj

∥∥ . (6.59)

Just as the method’s name implies, while including a new joint sample for generating
the new training data, we intend to pick the joint sample that is the most distant
to the joint samples already used to generate the current training data. In this
thesis, we define the distance between a joint sample Ji and a set of joint samples
Ij =

{
Jj1, Jj2, ..., Jjn

}
as:

d(Ji, Ij) = min(
{

d(Ji, Jj1), d(Ji, Jj2), ..., d(Ji, Jjn)
}
). (6.60)

Just as presented in Figure 6.9, Equation 6.60 means the distance between the joint
sample Ji and the set of joint samples Ij is defined as the shortest distance between Ji
and Jjk in Ij.

Let us assume that in the j-th iteration we have a set of joint samples in the training
data Ij. In the (j + 1)-th iteration, we want to add a joint sample to Ij using FPS.
Straightforwardly, one will consider to implement Algorithm 14 to achieve this step.
However, Algorithm 14 is very inefficient in practice. If we assume there are m joint

Algorithm 14 Vanilla FPS
Require: Ij, ∆s, Iall

1: ∆I = {}
2: Dj = {}
3: for J in Iall \ Ij do
4: Compute d(J, Ij)
5: Dj = Dj ∪ d(J, Ij)
6: end for
7: Find Jfp corresponding to max(Dj)
8: ∆I =

{
Jfp
}

9: return ∆I

samples in Iall, to update Ij, we need to evaluate Equation 6.59 j(m− j) times. To
develop a faster algorithm, let us compare Ij−1 to Ij:

Ij−1 =
{

J1, J2, ..., Jj−1
}

,

Ij =
{

J1, J2, ..., Jj−1, Jj
}

.
(6.61)
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Figure 6.9.: The distance from a point to a point set is defined as the shortest distance
between this point and any point in the point set. Blue point: the point.
Black points in shade: the point set. Solid line: distance from the point to
the point set.
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As we know, to update from Ij to Ij+1, we need to calculate the distances between
every sample in Iall \ Ij to the sample set Ij. For the joint samples in Iall \ Ij, we have
already calculated their distances to Ij while updating from Ij−1 to Ij, except for
Jj = Ij \ Ij−1.

Therefore, we can improve Algorithm 14 by using a set Dj−1 storing the point-
to-set distance in the (j− 1)-th iteration. The improved algorithm is presented in
Algorithm 15. In Algorithm 15, to update Ij, we only need to evaluate Equation 6.59
m− j times.

Algorithm 15 FPS
Require: Ij, Iall, Dj−1

1: Dj = {}
2: for J in Iall \ Ij do
3: Compute dnew = d(J, Jj)
4: Denote the distance in Dj−1 corresponding to J as dold
5: Dj = Dj ∪ {min(dnew, dold)}
6: end for
7: Find Jfp corresponding to max(Dj)
8: ∆I =

{
Jfp
}

9: return ∆I

Finally, we can design the MOR algorithm based on PL as Algorithm 16. Compared
to the active selection strategies, the passive selection strategy is independent to the
status of the ROM. This allows us to sort all the samples in the initial data pool Iall
up-front starting the iteration, which reduces the requirement for computer memory
during the iterations. For sorting Iall, we can choose a random sample as initialization
and sort the whole set iteratively using Algorithm 15. During the iteration, we just
pick the first ∆s samples from Iall \ Ij−1 as the new samples and add them to Ij. The
PL method essentially selects samples based on their diversity to the current training
data, we can therefore choose the size of the data batch freely without worrying about
information redundancy.

6.5. Summary

In this section, another snapshot collection strategy DPS is introduced and analyzed.
However, its own disadvantage is found in the analysis. In order to improve the
disadvantages of SPS and DPS. A new sampling method is proposed, and it is named
as JSS.
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Algorithm 16 PL-MOR

Require: V , Iall, ∆s, τ∗design, PAC, FOM
1: Sort Iall with Algorithm 15
2: Pick the first ∆s samples from Iall as the initial snapshot set, denoted as I1
3: O1 = {yi|yi = FOM(Ji, V , δt), for all Ji ∈ I1}
4: Use I1, O1 and V to train ROM1
5: j = 1
6: p0(τ

∗
design) = 0, τ∗0 = 1

7: while NOT CONV(pj(τ
∗
design), τ∗j , pj−1(τ

∗
design), τ∗j−1) do

8: j = j + 1
9: Pick the first ∆s samples from Iall \ Ij−1 as ∆I

10: Ij = Ij−1 ∪ ∆I
11: Oj =

{
yi|yi = FOM(Ji, V , δt), for all Ji ∈ Ij

}
12: Update V
13: Use Ij, Oj and V to train ROMj
14: pj(τ

∗
design), τ∗j , ePAC = PAC(ROMj, V , τ∗design)

15: end while
16: return ROMj

Within the JSS method, we first estimate a reduced solution space where we can
randomly take samples for reduced states. Lifting sampled reduced states to the full
space will give us diverse full order states that compromise physics of the FOM. A
joint space consisting of the estimated reduced solution space and the predefined
parameter space can be created then. We can use samples taken from such a space as
the input to the FOM and generate many one-step snapshots for identifying the ROM.
Such snapshots are considered to have a better distribution compared to snapshots
collected by the conventional methods.

For validating the trained ROM, two different methods for validation are introduced.
Besides the conventional case-dependent method, the case-independent method based
on PAC learning is proposed. With case-independent validation, we can know the
confidence and the accuracy of the investigated ROM.

Finally, the active sample selection methods and the passive sample selection
method are introduced. The active methods check the status of the current ROM to
decide which unlabelled samples in the data pool should be labelled by the FOM.
The method MMSE and QBC belong to this category. The passive sample selection
method does not check the status of the ROM. Instead, the PL method measures
samples’ geometric characteristics and selects based on their distance information.
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Experiments, discussions and
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7. Numerical Experiments

In this chapter, we use numerical experiments to test different Model Order Reduction
(MOR) methods. In the numerical experiments, two numerical models are used to
perform these experiments. The first model is a thermal block with temperature-
dependent conductivity. The conductivity has a rapid change in the high-temperature
region. By observing the results of this simple but specially-designed model, we
can understand why the proposed Active-Learning-based Model Order Reduction
(AL-MOR) approach can construct a Reduced Order Model (ROM) better than the
state-of-the-art approaches. The second model has relatively realistic settings. This
numerical model is built based on a real radiation furnace. We will show the
performance of different ROMs under realistic system inputs. The ROM of this Full
Order Model (FOM) can be potentially used in industrial use cases such as Process
Control, Virtual Sensor Monitoring, Optimal Control, etc.

7.1. Model I: thermal block with non-constant material
property

Figure 7.1.: Model I: the thermal block.

The first numerical model is heat conduction in a block area. As shown in Figure 7.1,
we apply four boundary conditions to this area. On the left side of this area, we
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prescribe a Neumann boundary condition that no heat flux is transferred from the
area to the environment. On the top, right and base side of the area, we define three
different Dirichlet boundary conditions. The temperature of each side will be fixed
with a certain value. Based on the description of the problem, we can write down the
governing equation for this thermal block model as:

∂T(x, y, t)
∂t

= kx
∂2T(x, y, t)

∂x2 +ky
∂2T(x, y, t)

∂y2 ,

T(x, 10, t) = Γtop, T(x, 0, t) = Γbase,
∂T(0, y, t)

∂t
= 0, T(10, y, t) = Γright,

(7.1)

where x ∈ (0, 10), y ∈ (0, 10), t ∈ (0, 2].

Figure 7.2.: The thermal conductivity of the material.

We further assume that the material of this block is isotropic and temperature-
dependent, i.e.,:

kx = ky = 1.9 + 0.005T − 1.56× 10−5T2, T ∈ [20, 500] (7.2)

which is graphically shown in Figure 7.2. As we see, the conductivity in the range
[20, 300] is relatively stable while having a fast drop in the range [300, 500]. This
requires that the ROM must have a better performance throughout the whole temper-
ature range.

The controllable parameters of this system are the values of the temperature
boundary conditions, i.e. Γtop, Γbase, Γright. The range for each parameter is:

Γtop ∈ [200, 500], Γbase ∈ [200, 500], Γright ∈ [20, 200], (7.3)
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Then we use the Finite Difference Method [148] to discretize this block area with
50× 50 = 2500 elements. The discrete form of the FOM governing equation is:

E
∂T
∂t

= K(T)T + B(T)u, (7.4)

where T is the temperature state vector of the FOM, E is the thermal capacity matrix
which is just an identity matrix, K(T) is the heat conduction matrix, B(T) is the
equivalent heat load matrix due to the fixed temperature boundary conditions, and:

u =

 Γtop
Γbase
Γright

 (7.5)

is the parameter vector storing the values of the boundary conditions.
Since we know the temperature-dependency of the material, Equation 7.4 can be

re-written as:
∂T
∂t

= m(T)� (K0T + B0u), (7.6)

where m(T) is the nonlinear term caused by the non-constant thermal conductivity.
� means component-wise product. K0 and B0 is the normalized K and B.

7.1.1. Constructing the reduced space

First, we need to construct a Proper Orthogonal Decomposition (POD) space as
introduced in section 2.3. According to the description above, we can construct the
parameter spaceM as:

M = [200, 500]× [200, 500]× [20, 200] . (7.7)

To build the snapshot matrix T , 30 samples are randomly taken fromM, and Static
Parameter Sampling (SPS) will be used. To improve the sample distribution, here we
employ Hammersley Sequence [48] to sample from this cubic parameter space. We
denote the sampled parameter vectors as:

U = {u1, u2, . . . , u30} . (7.8)

We use these parameter vectors to construct 30 Initial Value Problems (IVPs). For
each IVP we simulate in the time span t ∈ (0, 2] with δt = 2e− 2.

To determine the size of the ROM, we gradually increase the number of reduced
basis vectors in V from 1 to 30 and compute the mean and the maximum relative
error of projection.
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The corresponding results are shown in Figure 7.3, we use the method introduced
in section 5.1 to select our ROM size. We pre-define emean

tol = 1% and emax
tol = 1.5%,

and Algorithm 7 helps us choose a size of 19. Based on the decision, we use the first
19 singular vectors from Singular Value Decomposition (SVD) to build the reduced
space for this problem.

(a) emean
proj (q) and lmean(q). (b) emax

proj (q) and lmax(q).

Figure 7.3.: The curves for eproj(q) and l(q). The red dashed lines in Figure 7.3a and
Figure 7.3b stand for emean

tol = 1% and emax
tol = 1.5%. The green dashed lines

mark the q maximizing l(q). The blue dashed lines mark the minimum q
satisfying eproj(q) ≤ etol. The optimal ROM size is selected to be Nr = 19
for this FOM.

7.1.2. Application of DEIM

In this section, we demonstrate how to apply the Discrete Empirical Interpolation
Method (DEIM) to reduce this model.

Recalling the governing equation we conclude for the FOM:

∂T
∂t

= m(T)� (K0T + B0u). (7.9)

Using the reduced basis V constructed in section 7.1.1, we can re-write Equation 7.9
as:

V TV
∂Tr

∂t
= V Tm(V Tr)� (K0V Tr + B0u). (7.10)

Then by substituting V TV ≈ 1, we get:

∂Tr

∂t
= V Tm(V Tr)� (K0V Tr + B0u). (7.11)
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We will take the whole right hand side (RHS) as the nonlinear term and build the
nonlinear snapshot matrix F as:

F = m(T )� (K0T + B0U ), (7.12)

where U is a matrix consisting of the parameter vectors assigned to each time step in
each IVP, i.e.:

U =
[︸ ︷︷ ︸

100

u1 . . . u1 ︸ ︷︷ ︸
100

u2 . . . u2 . . . ︸ ︷︷ ︸
100

u30 . . . u30
]

.
(7.13)

Then by applying SVD to F, we can get the DEIM basis:

H =
[
h1 h2 . . . h50

]
, (7.14)

where we set the size of the DEIM space to be 50. Using Equation 3.8, we can write
the RHS of Equation 7.9 as:

H(PT H)−1PT [m(T)� (K0T + B0u)] . (7.15)

To know how to perform the next step, we focus on the term:

PTm(T)� (K0T). (7.16)

We use Figure 7.4 to explain the point that needs attention. After constructing P,

Figure 7.4.: Explanation to DEIM DOFs and their coupled DOFs. The yellow DOF in
m(T) is selected by the DEIM algorithm. The green entries are non-zero
entries in the corresponding row in the matrix K. The blue DOFs in T
are all DOFs coupled to the DOF selected by the DEIM algorithm.

we look at the l-th row of PT whose i-th entry is 1. We know that the i-th degree
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of freedom (DOF) is recognized as the DOF where we preserve the nonlinearity, i.e.
where we should get the exact evaluation of the nonlinearity during the online phase.
Then we know, in m(T), the i-th row needs to be kept. Correspondingly, the i-th row
in the result of K0T is needed. To compute this contribution, we need:

(K0T)[i] =
N

∑
j=1

K0,ijTj, (7.17)

where K0,ij means the entry in the i-th row and the j-th column of K0. Since K0 is
usually sparse, we only need to take its non-zero terms into account. If we denote
the positions of the non-zero terms in the i-th row as:

Φi =
{

φi1, φi2, . . . , φiki

}
, (7.18)

where ki is the number of the non-zero entries in the i-th row. Equation 7.17 is
equivalent to:

(K0T)[i] = ∑
j∈Φi

K0,ijTj. (7.19)

Recalling we have defined D = {d1, d2, . . . , d50} as the interpolation points, by scan-
ning K0, we can construct:

Φ1 =
{

φ11, φ12, . . . , φ1k1

}
,

Φ2 =
{

φ21, φ22, . . . , φ2k2

}
,

...
Φ50 =

{
φ501, φ502, . . . , φ50k50

} (7.20)

for them. We let:

Φ = Φ1 ∪Φ2 ∪ · · · ∪Φ50 (7.21)
= {φ1, φ2, . . . , φk} , (7.22)

where k is the number of coupled DOFs. We further construct a matrix:

Pcouple =
[
pcouple,1 pcouple,2 . . . pcouple,k

]
, (7.23)

where:
pcouple,i =

[
0 0 . . . 1 . . . 0 0

]T (7.24)

is a vector whose components are all 0 except the φi-th component is 1, ∀φi ∈ Φ.
Then we can define:

Kcouple = K0[:, Φ] (7.25)
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where K0[:, Φ] is a sub-matrix whose columns are picked as the φi-th column of K0,
∀φi ∈ Φ.

Since there is no coupling effects existing in B, we can directly define:

BDEIM = PTB0. (7.26)

Therefore, Equation 7.15 can be transformed into:

H(PT H)−1PT [m(T)� (K0T + B0u)]

= H(PT H)−1
[
m(PTV Tr)� (PTKcouplePT

coupleV Tr + BDEIMu)
]

= H(PT H)−1
[
m(PTV Tr)� (KDEIMTr + BDEIMu)

]
,

(7.27)

where KDEIM = PTKcouplePT
coupleV . Together with Equation 7.11, we finally get:

∂Tr

∂t
= V T H(PT H)−1

[
m(PTV Tr)� (KDEIMTr + BDEIMu)

]
. (7.28)

Ahead of going to the online phase, we can pre-compute W = V T H(PT H)−1, VDEIM =
PTV , KDEIM and BDEIM. Therefore, during the online phase, we only need to solve:

∂Tr

∂t
= W [m(VDEIMTr)� (KDEIMTr + BDEIMu)] . (7.29)

7.1.3. Application of the ANN

As introduced in section 3.2, we can use the Artificial Neural Network (ANN) to
identify the ROM from the FOM snapshots. Here in this thesis, we will use the
Runge-Kutta Neural Network (RKNN) as the fundamental architecture to construct
the network. The core Multilayer Perceptron (MLP) inside the RKNN structure has 4
layers, including an input layer and an output layer. The number of neurons in each
layer is [22, 88, 88, 19]. The input layer has 22 neurons because the size of our reduced
state is 19 and the number of the system parameters is 3. The activation function
A(·) is the Rectified Linear Unit (ReLU) function [149]. The ReLU function has the
mathematical expression:

A(wzin + b) = max(0, wzin + b), (7.30)

as shown in Figure 7.5.
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Figure 7.5.: The ReLU function.

7.1.4. Application of Operator Inference

To apply Operator Inference (OpInf), we need to first introduce some auxiliary
variables to enable a quadratic description for the FOM. We define the lifted state
vector as:

s =

[
s1 = T
s2 = T2

]
. (7.31)

Taking all variables into consideration and using the Chain Rule, Equation 7.9
becomes:

∂s1

∂t
=(1.9 + 0.005s1 − 1.56× 10−5s2)� (K0s1 + B0u),

∂s2

∂t
=2s1(1.9 + 0.005s1 − 1.56× 10−5s2)� (K0s1 + B0u)

=(3.8s1 + 0.01s2 − 3.12× 10−5s1s2)� (K0s1 + B0u).

(7.32)

Notice that the term s1s2 � s1 in the third line of Equation 7.32 can be considered as
s2 � s2. Therefore, the RHS of Equation 7.32 contains only polynomial terms up to
quadratic and can be summarized as:

∂ω

∂t
= F1ω + F2ω⊗ω + FBu + FNu⊗ω + F̃Nu⊗ω⊗ω. (7.33)

As a result, while preparing snapshots, we need to directly get the snapshots for
s1 = T and compute the auxiliary variables s2. The size of the reduced lifted state ω

is Nr = 19× 2 = 38.
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7.1.5. Study on data sampling strategies

In this test, we focus on studying the influence from data sampling methods. We
prepare three data pools, and each of them has 20,000 training samples. They
are created by SPS, Dynamic Parameter Sampling (DPS) and Joint Space Sampling
(JSS), respectively. For the JSS method, we use the snapshot matrix T collected in
section 7.1.1 as T estimate. Besides, we choose β = 0.1, Tmax = MAX(T estimate) and
Tmin = MIN(T estimate) to loosen and trim the joint space.

To validate the ROM, we construct a Probably Approximately Correct (PAC)
validator. The PAC validator is designed as:

ε = 0.03, σ = 0.01,

Ns =
1

2× 0.032 ln
(

2
0.01

)
= 2944,

(7.34)

which means the investigated ROM confidence level is 1 − 3% = 97%, and its
validation result is 1− 1% = 99% reliable. For building this validator, 2,944 joint
samples J are collected from the joint space.

Notation for ROMs We first introduce the notation used to distinguish the ROMs
constructed in different approaches:

• SPS-ANN/OpInf: a ROM identified by ANN/OpInf. Using the data randomly
picked from a data pool constructed by SPS-sampled data.

• DPS-ANN/OpInf: a ROM identified by ANN/OpInf. Using the data randomly
picked from a data pool constructed by DPS-samples data.

• JSS-ANN/OpInf: a ROM identified by ANN/OpInf. Using the data randomly
picked from a data pool constructed by JSS-sampled data.

Results In each iteration, we randomly draw some samples from each data pools
and add to their current training data, respectively. We train/update the ROMs with
the extended training data and compute their PAC scores. The validation results are
given in Figure 7.6 and Figure 7.7.

For the ANN-based approach, after refining ROM with the JSS data for 10 iterations,
where the snapshot increment ∆s = 300, the 97%-confident ROM error is 1.67%. With
the same amount of training data, the SPS-ANN has a 97%-confident ROM error of
28.43% and the DPS-ANN has a 97%-confident ROM error of 8.70%.

For the OpInf-ROMs, after refining ROM with the JSS data for 10 iterations, where
the snapshot increment ∆s = 25, its 97%-confident ROM error is 1.67%. Using the
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(a) p(τ∗design). (b) τ∗.

Figure 7.6.: The PAC scores of the ANN-ROMs change with the extension of the
training data. The snapshot increment ∆s = 300. The JSS-ANN has
the lowest ROM error τ∗ at the investigated confidence level, while the
DPS-ANN takes the second place and the SPS-ANN is the worst.

(a) p(τ∗design). (b) τ∗.

Figure 7.7.: The PAC scores of the OpInf-ROMs change with the extension of the
training data. The snapshot increment ∆s = 25. The JSS-OpInf is the best
ROM, which has the lowest ROM error τ∗ at the investigated confidence
level. The DPS-OpInf and the SPS-OpInf have similar τ∗ at the investi-
gated confidence level, but the SPS-OpInf has higher observed confidence
p(τ∗design) for the desired accuracy. Therefore, the SPS-OpInf is considered
to be better than the DPS-OpInf.
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same amount of training data, the 97%-confident ROM error of the SPS-OpInf and
the DPS-OpInf is 15.72% and 13.32%, respectively.

It is observed that just by using the JSS method to create the data pool, we can get
a huge improvement for the ROM’s confidence and accuracy with the same amount
of training data. Then, in the next test, we will study how many additional benefits
we can gain by employing the concept of Active Learning (AL).

7.1.6. Study on snapshot selection strategies

To determine the framework for the AL algorithm, we need to decide what kind of
snapshot selection strategy we want to use based on their effectiveness.

Recalling in section 6.4.1, three different sample selection strategies are introduced,
including the Maximum Mean Squared Error (MMSE), Query by Committee (QBC)
and Passive Learning (PL). Moreover, for the MMSE method, we will investigate
using the Radial Basis Function (RBF) interpolation and Gaussian Process Regression
(GPR) as the data-driven error estimator, respectively. Besides using the estimated
error for the MMSE method, we also use the ROM to compute its errors for all
samples remaining in the data pool and pick those generating the maximal errors.
This method is unrealistic in the online phase, but here it can serve as the reference
for the MMSE methods.

Notation for selection methods We first introduce the notation used to distinguish
different sample selection methods:

• Random: randomly picking from a data pool constructed by the samples from
JSS.

• MMSERBF: the samples are actively selected from the JSS data pool, which is
constructed by Algorithm 8. The selection strategy is MMSE in section 6.4.1.1.
The error estimator is based on RBF interpolation.

• MMSEGPR: the samples are actively selected from the JSS data pool. The
selection strategy is MMSE. The error estimator is based on GPR.

• MMSETrue: the samples are actively selected from the JSS data pool. The
selection strategy is MMSE. The errors are exactly computed using the ROM
and the FOM.

• QBC: the samples are actively selected from the JSS data pool. The selection
strategy is QBC in section 6.4.1.3.

• PL: the data are passively selected from the JSS data pool. The selection strategy
is PL, i.e., Farthest Point Sampling (FPS) in Algorithm 16.
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Results We first investigate the accuracy of error estimation. For both ROM identifi-
cation methods, we use 10 iterations to build the ROM. The curves of the agreement
ratio α in these iterations are presented in Figure 7.8.

(a) For training ANN. ∆s = 300. (b) For training OpInf. ∆s = 25

Figure 7.8.: The curves of the agreement ratio α in the first 10 iterations for the ROMs.
The error estimators are fitted using the 2944 samples in PAC validation.
For both ROMs, we see a clear trend: at the beginning, α is higher. But
with the ROMs being refined, α drops quickly.

A very clear trend observed in Figure 7.8 is that α is descending within the iterations.
As we introduced in section 6.4.1.2, α is the empirical accuracy of the error estimator.
Therefore, based on the descending α, we can get a conclusion that the ROM error
becomes more and more difficult to be predicted during the iterations. We also see
that in most situations, αRBF and αGPR is higher than αref, which means the samples
selected by the error estimators are more informative in terms of maximizing the
Mean Squared Error (MSE) of the ROM.

Then we generate the convergence curves of the 97%-confident ROM errors (τ∗)
for each method. The curves are given in Figure 7.9.

As we can observe in Figure 7.9a, almost all non-random selection strategies can
accelerate the convergence of ROM construction, except applying PL to OpInf. In
Figure 7.9b, acceleration brought by PL is nearly ignoreable. Therefore, we consider
PL as the least efficient among all the selection methods.

The MMSE method based on the true MSE has the most stable performance. This
promising result tells us that if we can find a good approach to estimate the MSE
accurately, using MMSE-based selection is very beneficial to the construction of the
ROM. As for the MMSE methods based on the estimated MSE, they can generally
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(a) ANN. ∆s = 300.

(b) OpInf. ∆s = 25.

Figure 7.9.: 97%-confident τ∗ of the ROMs trained by five different methods. All
methods draw samples from the same initial data pool, which is create
by JSS.
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speed up the convergence, but the stability of the acceleration is not as good as the
MMSETrue method.

Besides, the uncertainty-based method QBC also shows good performance. In
Figure 7.9b, it is even more effective than the MMSETrue method in accelerating the
construction of the OpInf-ROM. In the following case-dependent validation, we will
use the ROM constructed by the QBC method.

7.1.7. Case-dependent validation results

Besides case-independent validation, we also test the ROMs with 2 specific test
cases. Four points in the thermal block are assumed to be the positions for virtual
sensors (Figure 7.10). Their coordinates are: p1 = (1, 5), p2 = (5, 1), p3 = (9, 5) and
p4 = (5, 9).

Figure 7.10.: Virtual sensor positions in the thermal block. p1 = (1, 5), p2 = (5, 1),
p3 = (9, 5) and p4 = (5, 9).

Notation for ROMs As before, we first clarify the notation for different ROMs.

• DEIM: a ROM created by the hyper-reduction method DEIM.

• SPS-ANN/OpInf: a ROM identified with ANN/OpInf. The training data are
picked from a data pool created with the SPS method.

• DPS-ANN/OpInf: a ROM identified with ANN/OpInf. The training data are
picked from a data pool created with the DPS method.

• AL-ANN/OpInf: a ROM identified with ANN/OpInf. The training data are
actively picked from a data pool created with the JSS method. The AL method
is QBC.
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7.1.7.1. Test Case 1

Figure 7.11.: The temperature boundary conditions used in Test Case 1.

In Test Case 1, we set the time-dependent functions of the temperature boundary
conditions as Figure 7.11. The time-dependent functions are:

Γtop(t) = 350 + 150sin(2πt),
Γright(t) = 350 + 150sin(πt),

Γbase(t) = 110 + 90sin(πt).

(7.35)

In this test case, we use the sinus functions as the time dependent functions for the
system’s parameters to design a scenario where the input parameters are frequently
changed during the simulation time. Through this test, we can evaluate our ROMs’
exploration in the parameter space M. The test results are presented in Table 7.1,
Figure 7.12, Figure 7.13, Figure 7.15 and Figure 7.16.

For the ANN-based ROMs, the same as declared in section 6.1, the ROM built by
SPS performs bad facing complex dynamic parameters. As its upgraded version,
DPS snapshots can build a ROM with a better accuracy, which can catch the main
trend of the FOM trajectories. This means in the training data sampled by the DPS
strategy, we already have a better sample diversity for the system’s parameters. But
with better sample diversity in both the parameter space and the reduced solution
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space, the AL-ANN is still leading. The prediction made by the AL-ANN is smooth
and has the best agreement to the FOM solution.

But in the results of the OpInf-based ROMs (Figure 7.15 and Figure 7.16), the
difference caused by using different training data is small. All the three ROMs can
produce accurate prediction.

As introduced in section 3.3, an OpInf-ROM contains hypotheses to full order
and reduced governing equations. The physics-informed hypotheses can restrict the
flexibility of the Machine Learning (ML) model. As discussed in [150], the flexibility
and the robustness of a ML model are usually two conflicting properties. A robust
ML model can predict for the new samples which are not directly included in its
training samples, which is also called extrapolation. For this problem, the ANN
model is over-flexible and less robust. Therefore, we need the training data to be
well-distributed in the parameter space and the reduced solution space. But for the
OpInf-ROMs, it is appropriately flexible and more robust. This leads to the fact that
the resulting models can extrapolate better in both spaces.

DEIM AL-ANN DPS-ANN SPS-ANN AL-OpInf DPS-OpInf SPS-OpInf
Mean (◦C) 0.97 1.09 5.18 23.31 1.22 1.02 0.91

Std. ((◦C)2) 0.86 1.28 4.74 33.75 1.58 1.55 1.08
Min. (◦C) 1.13e-06 1.92e-07 2.29e-05 1.54e-06 4.80e-07 1.29e-06 1.54e-06
Max. (◦C) 4.83 9.73 31.81 202.19 12.26 14.22 8.63

Median (◦C) 0.72 0.63 3.90 10.67 0.60 0.47 0.50

Table 7.1.: The statistical measures for eabs in Test Case 1 of the thermal block model.
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(a) DEIM. (b) AL-ANN.

(c) DPS-ANN. (d) SPS-ANN.

Figure 7.12.: The comparison between the solution trajectories of the FOM, DEIM, and
ANN-based ROMs at: p1 = (1, 5), p2 = (5, 1), p3 = (9, 5) and p4 = (5, 9)
in Test Case 1 of the thermal block model. Nr = 19, Nm = 50, Ns = 3000.
With the same amount of data, the prediction accuracy of the AL-ANN
is the closest to the intrusive hyper-reduction method DEIM. The DPS-
ANN can catch the main trend but its accuracy is much worse. The
SPS-ANN has the worst performance.
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Figure 7.13.: The comparison between the error fields of (1) DEIM: upper-left (2)
AL-ANN: upper-right (3) DPS-ANN: lower-left (4) SPS-ANN: lower-
right, at: t = 2, in Test Case 1 of the thermal block model. The error
field of DEIM and AL-ANN has similar error magnitude. In the error
field of DPS-ANN, some bright areas are observed, where the ROM has
relatively large error. The error field of SPS-ANN is much brighter in
general compared to other error fields, which means SPS-ANN has the
worst prediction throughout the whole geometry.
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Figure 7.14.: The comparison between the error fields of (1) DEIM: left (2) AL-ANN:
right, at: t = 2, in Test Case 1 of the thermal block model.
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(a) POD-DEIM. (b) AL-OpInf.

(c) DPS-OpInf. (d) SPS-OpInf.

Figure 7.15.: The comparison between the solution trajectories of the FOM, DEIM, and
OpInf-based ROMs at: p1 = (1, 5), p2 = (5, 1), p3 = (9, 5) and p4 = (5, 9)
in Test Case 1 of the thermal block model. Nr = 19, Nm = 50, Ns = 250.
With the same amount of data, the OpInf-based ROM’s predictions at
the virtual sensor positions match the FOM solutions very well. This fact
applies to the OpInf-based ROMs trained in all the approaches, i.e., AL
approach (Figure 7.15b), DPS approach (Figure 7.15c) and SPS approach
(Figure 7.15d).
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Figure 7.16.: The comparison between the error fields of (1) DEIM: upper-left (2) AL-
OpInf: upper-right (3) DPS-OpInf: lower-left (4) SPS-OpInf: lower-right,
at: t = 2, in Test Case 1 of the thermal block model. Despite that the error
field of DPS-OpInf ROM has some bright areas, the prediction errors for
all types of the ROMs are in a comparable level. The consistently good
performance is enabled by the physics knowledge used for making the
hypothetical form of the governing equation.
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Figure 7.17.: The comparison between the error fields of (1) DEIM: left (2) AL-OpInf:
right, at: t = 2, in Test Case 1 of the thermal block model.
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7.1.7.2. Test Case 2

In this test, we choose the same points for observation as in Figure 7.10. But we will
use a constant parameter combination which is:

Γtop(t) ≡ 500, Γright(t) ≡ 500, Γbase(t) ≡ 200. (7.36)

In this test case, we aim to lift the temperature field of the thermal block to the highest
value. According to Figure 7.2, the material’s thermal conductivity drops quickly in
the temperature range [300, 500]. Testing the ROMs in this temperature range can
provide us a more generalized evaluation for the ROM’s performance in the whole
possible state space. Through such a test case, we can evaluate the sample diversity
with respect to system states. The test results are presented in Table 7.2, Figure 7.18,
Figure 7.19, Figure 7.21 and Figure 7.22.

In Figure 7.18 and Figure 7.19, both the the AL-ANN and the SPS-ANN can make
accurate predictions at the virtual sensor positions. If we further check Table 7.2,
we will see that the AL-ANN has the best performance, the DPS-ANN performs
worst, and the SPS-ANN has an acceptable performance. As a purely-data-driven
ROM identification method, the ANN uses its universal approximation to simulate
the input-output relation of the latent physics in the reduced space. However, the
approximation is optimized only for the training data, and the quality of extrapolation
is not guaranteed. Compared to the DPS-ANN, the training data for the SPS-ANN
have much more samples in the high-temperature region, where the sharp drop of
the thermal conductivity occurs. We believe this is the reason why the SPS-ANN is
much better than the DPS-ANN in this test case.

For the OpInf-ROMs, the results are similar to Test Case 1. All the OpInf-ROMs
have comparably accurate predictions in Test Case 2. This further proves that the
OpInf method can take the advantage of being physics-aware and minimize the
dependency on the training data.

DEIM AL-ANN DPS-ANN SPS-ANN AL-OpInf DPS-OpInf SPS-OpInf
Mean (◦C) 1.53 0.82 15.85 2.87 0.80 0.95 0.82

Std. ((◦C)2) 1.51 0.95 14.08 2.70 1.04 1.50 0.98
Min. (◦C) 1.81e-05 1.23e-06 2.29e-05 1.16e-05 2.37e-07 1.77e-06 6.65e-06
Max. (◦C) 7.18 8.12 104.11 14.05 16.16 14.64 9.62

Median (◦C) 1.06 0.52 12.14 2.20 0.49 0.40 0.41

Table 7.2.: The statistical measures for eabs in Test Case 2 of the thermal block model.
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(a) DEIM. (b) AL-ANN.

(c) DPS-ANN. (d) SPS-ANN.

Figure 7.18.: The comparison between the solution trajectories of the FOM, DEIM, and
ANN-based ROMs at: p1 = (1, 5), p2 = (5, 1), p3 = (9, 5) and p4 = (5, 9)
in Test Case 2 of the thermal block model. Nr = 19, Nm = 50, Ns = 3000.
With the same amount of data, the prediction accuracy of the AL-ANN
in Figure 7.18b and the SPS-ANN in Figure 7.18d are both close to
the intrusive hyper-reduction method DEIM and can be considered
as accurate prediction. The DPS-ANN in Figure 7.18c has the largest
deviation to the FOM solution.
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Figure 7.19.: The comparison between the error fields of (1) DEIM: upper-left (2) AL-
ANN: upper-right (3) DPS-ANN: lower-left (4) SPS-ANN: lower-right, at:
t = 2, in Test Case 2 of the thermal block model. The error field of DEIM,
AL-ANN and SPS-ANN has similar error magnitudes. The error field
of DPS-ANN is much brighter in general compared to the other error
fields, which means DPS-ANN has the worst prediction throughout the
whole geometry.
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Figure 7.20.: The comparison between the error fields of (1) DEIM: left (2) AL-ANN:
right, at: t = 2, in Test Case 2 of the thermal block model.
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(a) DEIM. (b) AL-OpInf.

(c) DPS-OpInf. (d) SPS-OpInf.

Figure 7.21.: The comparison between the solution trajectories of the FOM, DEIM, and
ANN-based ROMs at: p1 = (1, 5), p2 = (5, 1), p3 = (9, 5) and p4 = (5, 9)
in Test Case 2 of the thermal block model. Nr = 19, Nm = 50, Ns = 250.
At the investigated points, the OpInf-ROMs trained by the SPS data
(Figure 7.21d), the DPS data (Figure 7.21b) and the AL data (Figure 7.21b)
all have similar performances to the DEIM.
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Figure 7.22.: The comparison between the error fields of (1) DEIM: upper-left (2)
AL-OpInf: upper-right (3) DPS-OpInf: lower-left (4) SPS-OpInf: lower-
right, at: t = 2, in Test Case 2 of the thermal block model. Similar to
Figure 7.16, among all the error fields, the DPS-OpInf is the brightest
but still comparable to the others. The bright areas in the error field
of DPS-OpInf are close to the high-temperature boundary conditions,
which means the DPS data lack of observation in this temperature range.
Despite of this, the prediction errors for different ROMs can be still
considered to have similar magnitudes.
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Figure 7.23.: The comparison between the error fields of (1) DEIM: left (2) AL-OpInf:
right, at: t = 2, in Test Case 2 of the thermal block model.
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7.1.8. Experiment discussions and conclusions

In this section, we use a thermal block made of temperature-dependent material to
test different ROMs. Through two test cases, we can clearly see the advantages and
disadvantages of the ROMs constructed in different ways.

Data sampling strategy Regarding the sampling strategies of training data, their
influence on the ROM quality depends on the ROM identification method.

• For the non-physics-aware method, i.e., ANN-based MOR, since the ROM learns
everything from training data, well-distributed training data can significantly
improve the ROM’s quality. In PAC validation, it is observed that trained
with the same number of data, the JSS data construct an ANN-ROM whose
97%-confident ROM error is 1.67%. This is much lower than the ANN-ROM
trained with the DPS data, which is 8.70%. The worst is the ANN-ROM trained
with the SPS data, whose 97%-confident ROM error is 28.43%.

• For the physics-informed method, i.e., OpInf, since the ROM is informed with a
hypothetical form of the full-order governing equation, the model’s robustness
and capability of extrapolation is naturally better. In PAC validation, it is
observed that trained with the same number of data, the JSS data construct an
OpInf-ROM whose 97%-confident ROM error is 1.67%. This is better than the
OpInf-ROM trained with the DPS data (13.32%) and the OpInf-ROM trained
with the SPS data (15.72%).

Through the comparison, we can conclude that the data prepared by the JSS method
are more informative for constructing the ROM. Using the same number of samples,
the ROMs trained with the JSS data have a much higher confident accuracy than the
other ROMs.

Snapshot selection strategy Although the snapshot selection strategy is not the
factor deciding the quality of the ROM, an appropriate snapshot selection strategy can
accelerate the construction of the ROM. In this experiment, we test random selection,
MMSE with the RBF estimator, MMSE with the GPR estimator, MMSE with the true
error, the QBC method and the PL method.

For the MMSE method based on the error estimator, we first test the accuracy of
the error estimator. In the results, the accuracy of both error estimators decreases
with the iteration.

Then we generate the convergence curves for different approaches, We find that all
the AL methods can accelerate the convergence, but the effectiveness is different. The
PL method is the least effective. The QBC is the best choice. The MMSE method’s
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effectiveness is influenced by the accuracy of the error estimator, and the more
accurate the error estimator is, the more effective the MMSE method is.

Case-dependent validation Here we conclude the ROM performance in the case-
dependent validation.

• For the ANN-based ROMs, based on Figure 7.12, Figure 7.13, Figure 7.18 and
Figure 7.19, we can verify that the SPS-ANN has good accuracy in the high-
temperature region (Figure 7.18d) but is inaccurate facing the complex input
parameters (Figure 7.12d). On the contrary, the DPS-ANN is inaccurate in
the high-temperature region (Figure 7.18c) but is relatively better facing the
complex input parameters (Figure 7.12c). The AL-ANN has good prediction for
the complex parameters as well as the high-temperature states, and we consider
it as the best ANN-based ROM.

• For the OpInf-based ROMs, as a conclusion to Figure 7.15, Figure 7.16, Fig-
ure 7.21 and Figure 7.22, the SPS-OpInf that has a narrow sample distribution in
the parameter space and the DPS-OpInf that has a narrow sample distribution
in the reduced solution space can have a comparably good performance to the
AL-OpInf that has a good sample distribution in both parameter space and
reduced solution space. The OpInf-ROM’s feature of being physics-informed
significantly reduces the ROM’s dependency on training data.

Conclusion Through this experiment, we can draw an initial conclusion that using
the AL algorithm with a data pool constructed by JSS is a very efficient way of
building a stable and accurate ROM, especially for non-physics-informed ROMs,
i.e., ANN-ROMs. The core improvement is brought by the good distribution of the
data sampled by the new sampling method JSS, and the AL method facilitates the
construction of the ROM. In the next section, we will use a more realistic simulation
model to further test different methods.

7.2. Model II: 3-D numerical model of a vacuum furnace

The second test model is a 3-D simulation model of a vacuum furnace. The model is
essentially a thermal radiation problem.

In Figure 7.24, the 3D model used for the numerical experiments is presented. The
geometry of the model is reproduced based on the 3D model used in [151], whose
prototype is the high-pressure-gas-quenching furnace VHQ-446HF. The cubic part at
the center of the model is the workzone where the processed material will be placed.
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(a) Vertical cross-section. (b) Horizontal cross-section.

Figure 7.24.: The 3D model used for simulating the vacuum furnace. Brown: work-
zone, red: heaters, blue: protection shield, gray: outer case.

The U-shaped tubes surrounding the workzone are heaters. During the operation
phase, there will be heat generation inside the heaters, so the temperature of the
heaters will increase. Through the radiation flux, the high-temperature heaters will
heat up the material in the workzone. To prevent from overheating, a reflection shell
is installed between the heaters and the outer case.

The material of the outer case and the reflection sheet is copper, whose thermal
capacity is 385 J/(kg · K) and thermal conductivity is 387 W/(m · K). The heaters are
made of Titanium. The thermal capacity of Titanium is 526 J/(kg · K) and its thermal
conductivity is 6.7 W/(m · K). Without loss of generality, we define the emissivity of
the reflection sheet to be 0.2 while other parts are defined to be black-body.

The governing equation of such a problem takes a generalized form:

E
∂T(t)

∂t
= KT(t) + aT(t) + RT4(t) + Bu(t), (7.37)

where T is the vector for the temperature field of the model. E and K is the thermal
capacity matrix and the thermal conductivity matrix, respectively. R stands for
the radiation heat transfer matrix, hereinafter called radiation matrix. T4 means
element-wise-power-of-4 for the temperature field T , which is also the nonlinear term
in this problem. The matrix B is the distribution matrix of the parameter vector u.
By multiplying with B, the parameters will be assigned to the corresponding DOFs.
In this model, we design 7 controllable parameters, and they are 6 heating powers
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{h1, h2, . . . , h6} and the convection coefficient a. The range for each parameter is:

h1, h2, . . . , h6 ∈ [0, 104] kW/m3,

a ∈ [5, 100] W/(m2 · K).
(7.38)

Based on this, we can get the parameter spaceM for this problem, which is:

M = [0, 104]× [0, 104]× [0, 104]× [0, 104]× [0, 104]× [0, 104]× [5, 100]. (7.39)

The FOM is created and simulated by the commercial simulation software Simcenter
3D. We simulate the problem in the time span t ∈ (0, 45000] with δt = 100.

7.2.1. Constructing the reduced space

We start with constructing a good POD space for the vacuum furnace model. 30
samples are randomly sampled from the predefined parameter space M using
Hammersley Sequence. Based on them, 30 IVPs are constructed. In each IVP, 450
times steps are used. Through this process, we build the snapshot matrix T .

Using the snapshot matrix T , we can build the POD space of the optimal size. We
use the same error tolerance as before:

emean
tol = 1%, emax

tol = 1.5%. (7.40)

We first assume the optimal ROM size can be found under 30. Then we produce the
projection error curves for the constructed snapshot matrix T in Figure 7.25.

With q = 22, the profile likelihood is maximized under the conditions that:{
emean

proj (q) ≤ emean
tol

emax
proj (q) ≤ emax

tol

. (7.41)

Therefore, the optimal ROM size for this FOM is determined to be 22. The first 22
singular vectors will be used to construct the reduced basis V .

7.2.2. Application of DEIM

In the last section, we have already constructed the reduced basis V , which establishes
a bridge between a full state and a reduced state by T ≈ V Tr. Inserting this relation
into Equation 7.37, we can get:

∂Tr

∂t
= V TE−1KV Tr + aV TE−1V Tr + V TE−1R(V Tr)

4 + V TE−1Bu. (7.42)
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(a) emean
proj (q) and lmean(q). (b) emax

proj (q) and lmax(q).

Figure 7.25.: The curves for eproj(q) and l(q). The red dashed lines in Figure 7.3a and
Figure 7.3b stand for emean

tol = 1% and emax
tol = 1.5%. The green dashed

lines mark the q maximizing l(q). The blue dashed lines mark the
minimum q satisfying eproj(q) ≤ etol. The optimal ROM size is selected
to be Nr = 22 for the FOM of the vacuum furnace.

The term V TE−1R(V Tr)4 in Equation 7.42 needs to be evaluated in the full space
during the online phase. Therefore, we should apply DEIM to reduce this term. For
this purpose, the snapshots of the nonlinear term need to be prepared, which is:

F = T 4. (7.43)

By applying the steps described in section 3.1, we can get the DEIM basis H and the
selection matrix P. But unlike the trouble we have in section 7.1.2, the computation
for the nonlinear contribution T 4 is an element-wise operation, and different DOFs
are not coupled in such operation. Therefore, we can directly build the DEIM
approximation as:

V TE−1RH(PT H)−1PTT4

≈ V TE−1RH(PT H)−1PT(V Tr)
4

= V TE−1RH(PT H)−1(PTV Tr)
4

= RDEIM(WTr)
4,

(7.44)

where: {
RDEIM = V TE−1RH(PT H)−1

W = PTV
. (7.45)
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Substituting Equation 7.44 into Equation 7.42 results in:

∂Tr

∂t
= KrTr + aArTr + RDEIM(WTr)

4 + Bru, (7.46)

where: 
Kr = V TE−1KV
Ar = V TE−1V
Br = V TE−1B

. (7.47)

The matrices W , RDEIM, Kr, Ar, Br can be computed in the offline phase, and
evaluating Equation 7.46 does not have much computational complexity during the
online phase. Here we only apply DEIM to the nonlinear term such that there is no
approximation error but only the projection error for the linear terms in Equation 7.37.

7.2.3. Application of the ANN

The ANN used to identify the ROM is a RKNN with 1 input layer, 2 hidden layers
and 1 output layer. The numbers of neurons are [29, 116, 116, 22]. The activation
function is ReLU.

7.2.4. Application of Operator Inference

For employing OpInf, we need auxiliary variables again. For this problem, we define
the lifted state vector as:

s =

 s1 = T
s2 = T2

s3 = T3

 . (7.48)

Then we can construct the lifted governing equation as:

∂s1

∂t
= E−1Ks1 + aE−1s1 + E−1Rs4

1 + E−1Bu,

∂s2

∂t
= 2T

∂T
∂t

= 2E−1KT2 + 2aE−1T2 + 2E−1RT5 + 2E−1Bu⊗ T ,

= 2E−1Ks2 + 2aE−1s2 + 2E−1Rs2 ⊗ s3 + 2E−1Bu⊗ s1,
∂s3

∂t
= 3T2 ∂T

∂t
= 3E−1KT3 + 3aE−1T3 + 3E−1RT6 + 3E−1Bu⊗ T2,

= 3E−1Ks3 + 3aE−1s3 + 3E−1Rs3 ⊗ s3 + 3E−1Bu⊗ s2,

(7.49)

We can assume that the projection of Equation 7.49 in the reduced space takes such a
form:

∂ω

∂t
= F1ω + F2ω⊗ω + FBu + FNu⊗ω + FC. (7.50)
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Then we can use the method described in section 3.3 to identify the reduced system
matrices F1, F2, FB, FN and FC. Here we can see, for different full order problems,
hypothetical governing equations can be different.

7.2.5. Study on data sampling strategies

In this test, we focus on testing the influence of the data sampling methods. We
prepare three data pools, and each of them have 40,000 samples. They are created by
SPS, DPS and JSS, respectively. A PAC validator with 2,944 test samples is built. With
this validator, we can check the 97%-confident ROM error with a validation reliability
of 99%. We set the designed ROM error τ∗design to be 1%.

To perform the JSS method, we use T collected in section 7.2.1 as T estimate. We
use β = 0.1 to loosen the joint space. To trim the joint space, we define ymax = 1500
and ymin = 20. Here the upper and lower limit for the values in the lifted space is
defined by empirical values. 20 ◦C is the room temperature, and 1500 ◦C is lower
than the melting point of the material of the heaters (Titanium, 1668 ◦C). According
to the application of the equipment, we know this assumption builds meaningful
boundaries for the temperature range in the full space.

In each iteration, we randomly draw a certain number (2,000 for the ANN-ROM
and 500 for the OpInf-ROM) of samples from each data pool and add to their
corresponding training data. We train/update the ROMs with the extended training
data and compute their PAC scores.

The results are given in Figure 7.26 and Figure 7.27, the results from PAC validation
are presented. For the ANN-based approach, using the JSS data, the observed confi-
dence p(τ∗design) of the predefined ROM error converges to 100% after 10 iterations.
However, the ROMs constructed with the other two types of data still have a very
low observed confidence for the designed ROM error τ∗design. The SPS-ANN has
a 97%-confident error of 29.15%, and the DPS-ANN has a 97%-confident error of
11.56%.

A similar conclusion can be applied to the OpInf-based approach. Using the
JSS data, the algorithm converges after 10 iterations. When it converges, the 97%-
confident error of the JSS-OpInf is 1.94%. However, with the same number of the
SPS samples and the DPS samples, the ROMs still have τ∗ that are far greater than
τ∗design. The SPS-OpInf has a 97%-confident error of 43.22%, and the DPS-OpInf has a
97%-confident error of 7.54%.

In sum, for this model with a higher-dimensional parameter space, the advantage
of using the JSS method to collect training data is even more significant.
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(a) p(τ∗design). (b) τ∗.

Figure 7.26.: The PAC scores of the ANN-ROMs change with the extension of the
training data. The snapshot increment ∆s = 2000. Both PAC scores of
the JSS-ANN are the best, followed by the DPS-ANN. The SPS-ANN is
the worst.

(a) p(τ∗design). (b) τ∗.

Figure 7.27.: The PAC scores of the OpInf-ROMs change with the extension of the
training data. The snapshot increment ∆s = 500. Both PAC scores of the
JSS-OpInf are the best, followed by the DPS-OpInf. The SPS-OpInf is the
worst.
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7.2.6. Study on snapshot selection strategies

In this test, we will analyze the accuracy of the error estimators using the agreement
ratio α. In Figure 7.28, we run the AL algorithm for 10 iterations. During the
iterations, we compute the agreement ratio α between the estimated and the true
ROM errors. While estimating for the OpInf-ROM, we see a similar trend as observed
in section 7.1.6, where αRBF and αGPR drop within the iterations. However, we see a
different trend during training the ANN-ROM, where both agreement ratios firstly
decrease, then increase. While training the ANN-ROM, more training data are
demanded and drawn from the data pool. Therefore, the number of the remaining
samples in the data pool decreases faster within the iteration. This probably causes
the increasing α in late iterations.

(a) For training ANN-ROM. ∆s = 2000. (b) For training OpInf-ROM. ∆s = 500.

Figure 7.28.: The curves for the agreement ratio α in the first 10 iterations for the
ROMs. The error estimators are fitted using the 2944 samples in the
PAC validator. For the ANN-ROM, αRBF and αGPR firstly decrease then
increase. For the OpInf-ROM, αRBF and αGPR generally decrease with
the iteration proceeding.

Then we track the convergence of the 97%-confident ROM error τ∗ during the
iterations. In Figure 7.29, the convergence curves of using different methods to
training ROMs are presented.

In Figure 7.29a, we see that although the MMSE method based on true MSEs
successfully accelerates the convergence of both the ANN-ROM and the OpInf-ROM,
the MMSE methods based on the estimated MSEs is not effective when applied to
the ANN-ROM. When applying them to the ANN-ROM, the convergence rates are
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(a) τ∗ of the ANN-ROMs. ∆s = 2000.

(b) τ∗ of the OpInf-ROMs. ∆s = 500.

Figure 7.29.: 97%-confident τ∗ of the ROMs trained by five different methods. All
methods draw samples from the same initial data pool, which is create
by JSS.
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similar to random selection. Between them, the convergence rate of the MMSERBF is
better than the MMSEGPR. Recalling in Figure 7.28a, the accuracy of the RBF error
estimator is higher than the GPR error estimator, which can be the reason for different
behaviors in Figure 7.29a.

In Figure 7.29, the QBC method accelerates the convergence rates of both the ANN-
ROM and the OpInf-ROM. Since the QBC method does not require an accurate error
estimator but uses uncertainty in error estimation, the accuracy of error estimators
does not influence sample selection. In Figure 7.29a, its performance is as good as
the MMSE method based on true MSEs of the ANN-ROM.

As for the PL method, it successfully speeds up the convergence of the algorithm
for the ANN-ROM. However, for the OpInf-ROM, it does not show any advantages
to random selection.

Based on the above observations, we will use the QBC method to build the ROMs
actively.

7.2.7. Case-dependent validation results

In this section, the ROMs will be tested by two different use cases. In the first use
case, we use a 3-stage heating profile optimized in [151]. In the second use case, two
heaters are assumed to have failures and cannot generate heat flux throughout the
process. The ROMs are used to perform the real-time simulation for the described use
cases. Such ROMs can be used for, e.g., process control or virtual sensor monitoring
for the hot working.

7.2.7.1. 3-stage heating

In this use case, an element in the workzone and an element in the heater are chosen
as the positions for temperature monitoring, and they are shown in Figure 7.30a.
The time-dependent function of the volumetric power of the heaters is shown in
Figure 7.30b. The convection coefficient a is defined with 50W/

(
m2 · K

)
throughout

the process. The predicted trajectories are given in Figure 7.31 and Figure 7.32. The
statistical analysis is given in Table 7.3.

According to Figure 7.31, the ANN-ROM built by our AL algorithm has a much
better performance than the rest ANN-ROMs. Its prediction in the high-temperature
region is even better than the DEIM-ROM. The DPS-ANN takes the second place,
whose prediction at the heater is accurate. But when it predicts for the element in the
workzone, it has a relatively large deviation to the FOM solution. The SPS-ANN is the
worst and has relatively big errors both in the prediction of the heater temperature
and workzone temperature.
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(a) Two virtual sensors are placed at: (1) the
workzone (2) the heater.

(b) The 3-stage heating profile.

Figure 7.30.: Left: the virtual sensor positions. Right: the 3-stage heating profile in
the first use case.

In the test of the OpInf-ROMs, the AL-OpInf and the DPS-OpInf can predict with
similar accuracy, which can be also verified by the data in Table 7.3. In Table 7.3,
we see that their maximum errors are both higher than the maximum error of the
DEIM-ROM. Besides, the standard deviations of the AL-OpInf and the DPS-OpInf
are also higher than the DEIM-ROM’s. However, we can also observe that their
mean errors are both lower than the mean error of the DEIM-ROM. This means their
performances in this use case are already very close to the intrusive ROM.

DEIM AL-ANN DPS-ANN SPS-ANN AL-OpInf DPS-OpInf SPS-OpInf
Mean (◦C) 5.35 2.29 5.72 18.42 3.69 3.79 102.40

Std. ((◦C)2) 6.47 4.30 9.29 34.09 8.74 13.39 246.05
Min. (◦C) 1.33e-02 2.14e-08 1.69e-06 1.43e-06 1.21e-06 5.15e-08 3.46e-07
Max. (◦C) 32.70 96.65 104.01 315.83 166.32 334.06 3953.85

Median (◦C) 2.42 1.03 2.30 10.81 1.33 1.71 15.12

Table 7.3.: The statistical measures for eabs in the 3-stage heating.
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(a) DEIM. (b) AL-ANN.

(c) DPS-ANN. (d) SPS-ANN.

Figure 7.31.: The comparison between the solution trajectories of the FOM, DEIM,
and ANN-based ROMs in the 3-stage heating. Nr = 22, Nm = 100, Ns =
16000. At the virtual-sensor positions, the prediction made by the AL-
ANN is the best and comparable to the prediction by the DEIM. The
second place is taken by the DPS-ANN while the SPS-ANN is the worst
one. However, both of their accuracy are significantly worse than the
AL-ANN’s.
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(a) DEIM. (b) AL-OpInf.

(c) DPS-OpInf. (d) SPS-OpInf.

Figure 7.32.: The comparison between the solution trajectories of the FOM, DEIM, and
OpInf-based ROMs in the 3-stage heating. Nr = 22, Nm = 100, Ns =
5000. At the virtual-sensor positions, the predictions made by the AL-
OpInf and DPS-OpInf are comparably good and their quality is close to
the prediction by the DEIM-ROM. The SPS-OpInf is the worst.
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7.2.7.2. Failed heating

(a) Two virtual sensors are placed at: (1) the
cold side (2) the hot side.

(b) The 3-stage heating profile for the working
heaters.

Figure 7.33.: The virtual sensor positions and heating profile in the second use case.

In this use case, we assume two out of six heaters are failed during the process. Due
to the failure, the temperature field in the furnace is no longer symmetric. Assuming
that the final temperature at t = 45000 s is crucial for the success of the material’s hot
working, we will be interested in knowing the temperature field in the workzone at
the final time. As shown in Figure 7.33a, we pick an element on the side close to the
failed heaters and an element on the opposite. They are named as "cold side" and
"hot side", respectively. During the simulation/prediction, the temperature at these
two places will be monitored. For the rest working heaters, they are operated using
the same 3-stage heating profile as normal. The convection coefficient is still defined
with 50W/

(
m2 · K

)
.

In Figure 7.34, it is observed that the AL-ANN’s prediction is almost as good as
the ROM constructed by the intrusive hyper-reduction method DEIM. Both of them
can distinguish the temperature difference between the cold side and the hot side.
The prediction made by the DPS-ANN diverges from the FOM solution. Although
the SPS-ANN’s prediction does not diverge, the comparison between the two sides is
completely wrong.

For the OpInf-ROMs, both the AL-OpInf and the DPS-OpInf give a right compar-
ison for the temperature on the two sides. It is also difficult to say which one is
outperforming just by observation. According to the statistical analysis in Table 7.4,
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their performance is also comparable. But the SPS-OpInf is much worse than them.
Its performance diverges from the FOM solution. This conclusion can also be proven
by the data in Table 7.4.

DEIM AL-ANN DPS-ANN SPS-ANN AL-OpInf DPS-OpInf SPS-OpInf
Mean (◦C) 2.48 8.66 31.76 21.32 5.22 5.93 94.49

Std. ((◦C)2) 1.99 16.40 63.99 61.63 12.43 21.89 218.69
Min. (◦C) 2.74e-03 1.31e-06 8.84e-07 3.11e-06 1.17e-06 7.32e-07 4.13e-06
Max. (◦C) 10.08 348.93 680.32 629.03 208.38 346.93 5426.79

Median (◦C) 2.30 2.60 11.78 4.30 1.88 2.24 25.80

Table 7.4.: The statistical measures for eabs in the failed heating.
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(a) DEIM. (b) AL-ANN.

(c) DPS-ANN. (d) SPS-ANN.

Figure 7.34.: The comparison between the solution trajectories of the FOM, DEIM
and ANN-based ROMs in the failed heating. Nr = 22, Nm = 100, Ns =
16000. At the virtual-sensor positions, the predictions made by the AL-
ANN have the highest accuracy and are comparably good to the DEIM-
ROM. The DPS-ANN’s prediction diverges from the FOM solution, and
the SPS-ANN predicts the temperature comparison incorrectly.
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(a) DEIM. (b) AL-OpInf.

(c) DPS-OpInf. (d) SPS-OpInf.

Figure 7.35.: The comparison between the solution trajectories of the FOM, DEIM and
OpInf-ROMs in the failed heating. Nr = 22, Nm = 100, Ns = 5000. At
the virtual-sensor positions, the AL-OpInf and DPS-OpInf can predict
with the similar accuracy, which is acceptably lower than the DEIM.
However, the SPS-OpInf’s prediction has terrible accuracy.
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7.2.8. Experiment discussions and conclusions

The experiment model (vacuum furnace) in this section has relatively realistic settings,
and similar models can be frequently found in industrial use cases. Using this model,
we can better assess the applicability of different methods.

Data sampling strategy A significant difference between this experiment model and
the previous experiment model is that the simulated system has a high-dimensional
parameter space. The experiment results also show some differences facing this new
challenge.

• For the ANN-based MOR, similar to the observation made in the experiments of
the thermal block model, the ROMs’ performance is remarkably influenced by
training data. It is observed that with the same number of data, the ANN-ROM
constructed with the JSS data has the smallest 97%-confident ROM error which
is 1.00%. This is much smaller than the ANN-ROM trained with the DPS data,
which is 11.56%. The worst is the ANN-ROM trained with the SPS data, whose
97%-confident ROM error is 29.15%.

• The OpInf-ROM trained by the JSS data has a 97%-confident ROM error of
1.94%, which takes an advantage to the rest OpInf-ROMs. The second place
is taken by the OpInf-ROM trained with the DPS data, whose 97%-confident
ROM error is 7.54%. The OpInf-ROM trained with the SPS data has the largest
97%-confident ROM error, which is 43.22%.

Through the tests, we see the data sampled by the JSS method provide more diverse
information to the training process. By using the JSS data, we can construct a ROM
with a higher confident accuracy using fewer training samples.

Snapshot selection strategy Similar to the thermal block model, we observe that
random snapshot selection is the slowest for constructing ROMs, and AL methods
can generally accelerate the convergence of the algorithm. Among all the investigated
methods, the QBC method makes the best balance between practicality and effective-
ness. The MMSE method requires to have a good estimation for the ROM’s MSE.
If this requirement can be fulfilled, it is believed to be the most effective method.
However, learning an accurate error estimator from a limited number of the test
samples in PAC validation is a tough task. Last but not least, the PL method is
effective for the ANN but not the OpInf-ROM in this experiment.

Case-dependent validation Here we conclude the ROM performance in case-dependent
validation.
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• For the ANN-based approaches, based on Figure 7.31, Figure 7.34, Table 7.3,
and Table 7.4, a fact we can confirm is that the ANN-ROM trained by the AL
algorithm always has the best performance. Solely based on Figure 7.31 and
Figure 7.34, it is difficult to say which one is better between the SPS-ANN and
the DPS-ANN. However, if we check the statistical analysis in Table 7.3 and
Table 7.4, the indicators of the DPS-ANN are always better than the SPS-ANN’s.
Therefore, we can only draw a conclusion that the DPS-ANN is generally
better than the SPS-ANN but sometimes performs worse at the virtual-sensor
positions.

• For the OpInf-based approaches, based on Figure 7.32, Figure 7.35, we can get a
first impression that the AL-OpInf and the DPS-OpInf have similar performances
at the positions of the virtual sensors. In Table 7.3 and Table 7.4, we can see the
AL-OpInf is generally better than the DPS-OpInf. The SPS-OpInf is worse than
them. Since in this experiment, there is no temperature-dependent property,
the biggest challenge comes from the high-dimensional parameter space. As a
sampling method lacking of sample diversity in the parameter space, it is not
out of our expectation that the SPS-OpInf performs the worst.

Conclusion With this relatively realistic numerical model, once again, we see that
our AL-MOR method improves the accuracy and the confidence of different data-
driven ROMs. Facing the challenge from the high-dimensional parameter space,
the ROMs constructed with AL-MOR have consistently good performances in PAC
validation. Furthermore, even if we compare the ROMs constructed with AL-MOR to
the intrusive ROM constructed with DEIM, the differences are acceptable. Thinking of
its easy implementation, a ROM constructed with AL-MOR will be a good alternative
to the DEIM-ROM.

7.3. Summary

In this chapter, we systematically investigate different MOR methods through a
series of numerical experiments. Two numerical models are used to perform these
experiments. In the first numerical model, the system’s material property is dependent
on temperature and has a sharp change in the high temperature region. The second
numerical model is a more realistic furnace model, which has a large number of
controllable parameters. Through the experiments, we can analyze the effectiveness,
applicability and compatibility of the proposed AL-MOR method.
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Effectiveness The effectiveness indicates how much improvement we can gain by
integrating an existing ML-based MOR method into the proposed AL-MOR algorithm.
According to the experiment results, we can expect that the proposed algorithm can
enhance the ML-based MOR methods that are purely dependent on data. The
methods belong to this class, including but not limited to the RKNN in this thesis,
Deep Neural Network in [152], GPR in [94], Dynamic Mode Decomposition [153],
Residual Network in [154]. These methods learn latent dynamics from training data
without any guidance from physics knowledge. Their ROMs’ quality strongly relies
on training data’s quality. Therefore, the good data distribution provided by the JSS
method can significantly improve the ROMs’ performance in the whole solution and
parameter space.

Another class of methods are aware of a hypothetical form of FOM equations. They
use it to guide/restrict the training of ROMs. They are an important member of the
so-called physics-informed-Machine-Learning-based MOR method. Apart from the
OpInf method introduced in this thesis, the Physics-Informed Neural Network in
[155] and Sparse Identification of Nonlinear Dynamics in [156] also can be included
to this class. They reduce the flexibility of ML models with physics constraints. In
return, their models have better generalization outside training data. Because of
this, the influence of the distribution and the diversity of training data is minimized.
As a result, we do not see a significant improvement in the OpInf method in the
experiments. We cautiously extend this conclusion to other methods belonging to
this class.

Applicability The applicability of the proposed method is mainly decided by the
type of the full order problem. The one-step snapshot used by the JSS method makes
sense only if the FOM is a time-invariant system. However, for a time-variant system:

ẏ = f (y, t; µ), (7.51)

such one-step snapshots are not feasible anymore. This is because the update of the
system state depends not only on the current system state and input parameters
but also on the time of observation. Besides the time-variant system, FOMs having
discontinuity in their parameter spaces and solution spaces will also be problematic.
However, luckily, they are rarely found in industrial use cases.

Compatibility The compatibility refers to how much extra effort is needed to inte-
grate an existing ML-based MOR method into the proposed algorithm. A foreseeable
incompatibility is caused by the architecture of the ML model that is used to identify
the ROM. Specifically, ML models with recurrent architecture will be challenging to
be integrated into the proposed algorithm. Since the one-step snapshots generated by
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the JSS method do not belong to the same trajectory, recurrent ML models cannot
use them as data sequence for the training process. The ROMs belonging to this
category include but are not limited to Recurrent Neural Network (RNN) in [21, 20,
22], Long-Short-Term Memory (LSTM) in [23, 157], Neural ODE in [157], etc. For
them, a potential solution is to increase the number of steps used in the JSS method.
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In this work, aiming to enhance conventional approaches of non-intrusive Model
Order Reduction (MOR), we propose an Active-Learning-based Model Order Reduc-
tion (AL-MOR) method. The proposed method can generate high-quality training
data for constructing Machine-Learning-based Reduced Order Models (ROMs). The
training data generated by the new sampling method, Joint Space Sampling (JSS),
have a better distribution in both the parameter space and the reduced solution space.
Using the data sampled by JSS as the core, an Active Learning (AL) algorithm is
employed. They together form the AL-MOR method. The AL-MOR method focuses
on providing an efficient, automatic, and unbiased way to construct non-intrusive
ROMs.

In the first step in the proposed method, we use Proper Orthogonal Decomposition
(POD) to construct a reduced space. We start with determining the size of the reduced
space. For this step, we propose a method to automatically determine the reduced
dimension based on the projection error plots, as an extension of the work in [39]. By
using our method, one is allowed to limit the projection error with a reduced space
that is as small as possible.

Afterwards, we need to identify a ROM to approximate the latent dynamic in
the reduced space. We show that the instability and the inaccuracy of conventional
Machine-Learning-based ROMs is partially caused by the bad distribution of training
data. The disadvantages of using two conventional training data sampling methods,
i.e., Static Parameter Sampling (SPS) and Dynamic Parameter Sampling (DPS), are
pointed out. To produce training data with a good distribution in both the parameter
space and the reduced solution space, we propose to sample in a joint space consisting
of a predefined parameter space and an estimated reduced solution space. The new
sampling method is named JSS.

Next, we prepare a large number of joint samples in a data pool with the JSS
method. Each of them defines an initial state and a group of system parameters
for a one-step simulation of the Full Order Model (FOM). In each iteration of the
AL algorithm, some joint samples will be selected from the data pool. The one-step
simulations defined by them will be performed. The simulation results are then used
as training data to identify the ROM. The training data will be extended with the
proceeding of the algorithm, and the ROM will be refined.

We test three kinds of AL-based strategies as alternative methods to select the
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joint samples to be added in each iteration. The first is the Maximum Mean Squared
Error (MMSE), where we create an error estimator of the ROM Mean Squared
Errors (MSEs) on the remaining candidate joint samples in the data pool. The joint
samples maximizing the ROM error will be chosen to define the new simulations
in the next iteration. To construct such an error estimator, we test Radial Basis
Function (RBF) interpolation and Gaussian Process Regression (GPR). However, in
the research, we observe that it is difficult to estimate the ROM MSE accurately.
The inaccurate error estimation makes the efficiency of the active selection unstable.
Another investigated AL method is the Query by Committee (QBC) method [102, 103,
104]. In our experiments, this model-uncertainty-based method effectively accelerates
the convergence of the ROM construction. The last investigated AL method is the
Passive Learning (PL) method [114]. Within this method, in the new iteration, we
always include the joint samples that are the most distant to the samples in the
current training data. The experiments found that the PL method is not very effective
for Operator Inference (OpInf).

As a final conclusion for the selection strategy, before an accurate error estimator is
available for the MMSE method, the QBC method is considered the best strategy for
sample selection.

Last but not least, a case-independent validation method based on Probably Ap-
proximately Correct (PAC) learning is proposed. Using this method, we can evaluate
a generalized accuracy and confidence of the ROM, which can better decide the
acceptance of the refined ROM during the iterations.

In sum, we get a novel AL-MOR method based on JSS and AL. The method is
non-intrusive and is therefore easy to be applied even without access to the original
solver of the FOM. This is illustrated in Figure 8.1. According to the results from
the numerical experiments, we would emphasize these advantages of the proposed
method:

• By using data collected with the JSS method, a constructed ROM can predict
accurately and stably. The improvement brought by the JSS method is dominant
in the whole method package in this thesis.

• By using the concept of AL, we can strategically extend training data by picking
new samples from a data pool created by the JSS method. As a result, the
convergence rate of ROM construction is accelerated.

• By using PAC validation, we can assess a ROM without bias towards specific
use cases. The PAC scores are good indicators for terminating the iteration.

The non-intrusive ROMs constructed with the AL-MOR method can be as good as
the intrusive ROMs constructed with the Discrete Empirical Interpolation Method
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(DEIM). Besides, the proposed method only requires little human interaction and are
therefore very promising to be employed in industrial settings.

Figure 8.1.: The software architecture of the ROM creator based on the AL-MOR
method.

Based on the research results, we believe the proposed AL-MOR method still has
potential improvement. Some possible directions for future work are presented next:

• It would be interesting to investigate how to minimize the number of snapshots
needed for estimating the reduced solution space.

• The way for estimating the reduced solution space is still elementary. Can
we estimate the reduced solution space more accurately? This can give us
improvement in three aspects:

– In the sample pool, we will have fewer samples that are actually non-
reachable for the FOM. The identified ROM will be, therefore, more spe-
cialized for the given full order problem.

– By discarding the non-reachable snapshots from the training data, we can
further reduce the time needed for training the Machine Learning (ML)
model.

– Since the validation samples are also collected from the same space, by
using the validation samples collected from the better estimated space, the
evaluation for the ROM performance will be more meaningful to users.

135



8. Conclusions and Outlook

• Can we find a more accurate way to predict/estimate the ROM error? As we
can see in the numerical experiments, the effectiveness of the MMSE method
strongly relies on the accuracy of the error estimation. If an accurate error
estimator is available, we can construct the ROM in a more efficient way.

• In PAC validation, currently, we can only evaluate the confidence and accuracy
of the one-step-ROM prediction. It will be very useful if we can find a way to
evaluate the confidence and accuracy of the recurrent prediction in the temporal
space given with the desired number of prediction steps.

• If we can estimate how many training samples are needed given with a desired
ROM confident accuracy, we can be more strategical while deciding the snapshot
increment size for the AL algorithm.

• There are also other query strategies specializing in querying unlabelled data
in batch mode [158, 159, 160]. It would be interesting to investigate their
performance in the framework of AL-MOR.
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A. Appendix

A.1. Proof of Chernoff’s bound

Here we consider a Bernoulli random variable x. If we assume E[x] = p, we will
know that Var[x] = p(1− p). We further assume we have n observed samples, then
we can define the empirical mean of x as:

Ên =
1
n

n

∑
i=1

xi. (A.1)

Also we know that E[Ên] = E[x] = p and Var[Ên] = p(1− p)/n.
The Chernoff’s bounds tells us the inequality:

Pr(|Ên − E[Ên]| < ε) > 1− σ (A.2)

holds for any accuracy ε ∈ (0, 1) and confidence σ ∈ (0, 1) if that at least:

n ≥ 1
2ε2 ln

(
2
σ

)
(A.3)

independent samples are observed.
Since it is a binomial distribution, we know:

Pr(Ên > p + ε) = Pr(nÊn > n(p + ε)) =
n

∑
k>n(p+ε)

(
n
k

)
pk(1− p)n−k (A.4)

and

Pr(Ên < p− ε) = Pr(nÊn < n(p− ε)) =
k≤n(p−ε)

∑
k=0

(
n
k

)
pk(1− p)n−k. (A.5)

Chernoff provided a bound [161] for them:

Pr(Ên ≥ p + ε) ≤ e−2nε2
(A.6)

and
Pr(Ên ≤ p− ε) ≤ e−2nε2

. (A.7)
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We know that:

Pr(|Ên − E[Ên]| ≥ ε) = Pr(|Ên − p| ≥ ε)

= Pr(Ên ≥ p + ε) + Pr(Ên ≤ p− ε).
(A.8)

Therefore, we have:
Pr(|Ên − E[Ên]| ≥ ε) ≤ 2e−2nε2

(A.9)

and further:
Pr(|Ên − E[Ên]| < ε) > 1− 2e−2nε2

. (A.10)

Inequality A.2 will hold if:

1− σ ≤1− 2e−2nε2

m

n ≥ 1
2ε2 ln

(
2
σ

)
.

(A.11)

This conclusion can be extended to variables with generic distribution using Hoeffding
Inequality [162].

Finally, we get:

sPAC =
1

2ε2 ln
(

2
σ

)
. (A.12)
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Glossary

AL Active Learning.

AL-MOR Active-Learning-based Model Order Reduction.

ANN Artificial Neural Network.

DBAL Diverse mini-Batch Active Learning.

DEIM Discrete Empirical Interpolation Method.

DOF degree of freedom.

DPS Dynamic Parameter Sampling.

DT Digital Twin.

EENN Explicit Euler Neural Network.

FOM Full Order Model.

FPS Farthest Point Sampling.

GPR Gaussian Process Regression.

IVP Initial Value Problem.

JSS Joint Space Sampling.

LSTM Long-Short-Term Memory.

LTI Linear Time Invariant.

Max. Maximum.

Min. Minimum.

ML Machine Learning.
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Glossary

MLP Multilayer Perceptron.

MMSE Maximum Mean Squared Error.

MOR Model Order Reduction.

MSE Mean Squared Error.

NNM Nonlinear Normal Mode.

ODE Ordinary Differential Equation.

OpInf Operator Inference.

PAC Probably Approximately Correct.

PCA Principal Component Analysis.

PL Passive Learning.

POD Proper Orthogonal Decomposition.

QBC Query by Committee.

RBF Radial Basis Function.

RE random-extended.

ReLU Rectified Linear Unit.

RHS right hand side.

RK Runge-Kutta.

RK1 1st-order Runge-Kutta.

RK4 4th-order Runge-Kutta.

RKNN Runge-Kutta Neural Network.

RNN Recurrent Neural Network.

ROM Reduced Order Model.

SINDy Sparse Identification of Nonlinear Dynamics.

140



Glossary

SPS Static Parameter Sampling.

Std. Standard Deviation.

SVD Singular Value Decomposition.
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