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Abstract

Random media and the process-structure-property chain generally define complex,

high-dimensional and stochastic materials systems, posing a challenging setting for

any prediction or optimization task. In this thesis, we pursue a Bayesian approach for

learning and predicting the behavior of such systems, leveraging probabilistic machine

learning methods to identify their effective, coarse-grained properties. A particular

focus will be on limiting and mitigating the dependence on labeled data due to the

computational cost of their procurement (through established numerical discretization

techniques). We achieve the prediction of high-dimensional stochastic systems defined

by random media in the small-data domain by exploiting concepts such as physics-

informed learning, active learning and semi-supervised learning. In addition to the

data-parsimonious prediction of effective physical properties and behavior of random

media, we also demonstrate the full stochastic inversion of the entire process-structure-

property chain in a high-dimensional setting, thereby enabling the identification of

optimal process parameters for computational materials design problems.

Zusammenfassung

Random Media und die Process-Structure-Property Kette definieren im Allgemeinen

komplexe und hochdimensionale stochastische Materialsysteme, welche eine nicht-triviale

Herausforderung für Prädiktion und Optimierung darstellen. In dieser Arbeit verfolgen

wir einen Bayesschen Ansatz um das das Verhalten derartiger Systeme vorherzusagen,

wobei effektive physikalische Eigenschaften durch den Einsatz von Methoden des wahr-

scheinlichkeitsbasierten Maschinellen Lernens identifiziert werden. Ein besonderer Fokus

liegt hierbei in der Reduktion der Abhängigkeit von Daten (generiert durch konven-

tionelle numerische Diskretisierungsansätze), aufgrund der damit assoziierten nume-

rischen Kosten. Wir erreichen die Vorhersage hochdimensionaler stochastischer Sys-

teme im Kontext von Random Media in der Small-Data Domain dank der Verwendung

von Techniken wie Active Learning, Physics-Informed Learning und Semi-Supervised

Learning. Zusätzlich zu der datensparsamen Vorhersage des physikalischen Verhaltens

und Eigenschaften von Random Media demonstrieren wir die volle stochasische Inver-

sion der gesamten Process-Structure-Property Kette in einer hochdimensionalen An-

wendung, was die Identifizierung optimaler Prozessparameter für computergestütztes

Design und Entwicklung neuer Materialien ermöglicht.
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1
Introduction

1.1 Models, Probability, and Uncertainty

At the core of engineering lies the pursuit to understand and predict complex physical

systems or processes, and to subsequently leverage this insight to inform optimal design

decisions or to exert control over the physical process (according to some specific,

prescribed notion of optimality). The attainment of this goal is predicated on the

construction and identification of models, which can be seen to formulate a hypothesis

about the latent processes and governing principles underlying our observations. A

model introduces a set of mechanistic assumptions about interdependencies of various

entities or state variables and thereby serves to reduce the real-world complexity to

a sufficiently useful representation. In such a setting, the utility of a model is judged

according to its ability to provide a sufficiently accurate representation of the governing

dynamics with respect to specific predictive tasks, i.e., its ability to explain observed

data with sufficient accuracy. Consequently, the task of identifying, calibrating, or

reasoning in the context of models lies at the heart of scientific discovery and engineering

design. In its most general - and arguably also most elegant - form, models express

interdependencies and relationships between various entities probabilistically [1, 2],

i.e., posit non-deterministic relationships and articulate interdependencies in terms

of plausibilities and degrees of belief. But even under the often simplified and more

restrictive assumption of deterministic models, a probabilistic approach is still generally

required in order to resolve both aleatoric and epistemic uncertainty, identify unknown

model parameters or inputs (inverse problem), account for uncertain inputs to the

model (uncertainty propagation), or tackle any other task in the context of limited

information and/or stochasticity of inputs and model parameters [3, 4]. The uncertainty

arising in such settings can in principle be differentiated with respect to their underlying

cause [3]:

Aleatoric Uncertainty We refer to aleatoric uncertainty as stochasticity that cannot be

attributed to a lack of knowledge or information, i.e., it is inseparably intertwined

with the problem under consideration. While the delineation of aleatoric uncertainty

can be an almost arbitrarily nuanced question, from a pragmatic perspective and

for the purpose of this thesis we associate with aleatoric uncertainty the inherent

1



1 Introduction

stochasticity of systems that cannot feasibly be reduced through the acquisition of

additional information or data.

Epistemic Uncertainty Systems that exhibit deterministic behavior in principle will

still be subject to epistemic uncertainty in a setting of finite data or limited in-

formation being available. As such, epistemic uncertainty may refer to uncertainty

arising due to the limitation of finite information, finite data, or finite computational

resources. The cost-effective or data-effective reduction of epistemic uncertainty

pertains to the domains of active learning [5, 6] and Bayesian experimental design

[7]. One notable example of epistemic uncertainty arises in the context of model

compression, i.e., any surrogate, coarse-grained and reduced-order description of a

physical process or model. The field of probabilistic numerics even goes so far to

reconsider established, deterministic discretization techniques as probabilistic infer-

ence, providing probabilistic estimates and confidence intervals corresponding to the

epistemic uncertainty arising from numerical discretization error [8, 9, 10, 11, 12].

Model Compression Even in cases where the physical process can in principle be re-

solved accurately in its entirety, considerations of the numerical cost may nonetheless

lead to the requirement of reduced model descriptions or limited model evaluations.

This constraint is particularly prevalent in the context of many-query applications,

where repeated evolutions of the forward model are required. Prime examples are,

e.g., given by calibration of complex multi-physics models (e.g. in biomechanics

[13, 14, 15], or turbulent flow [16]). Despite decades of advancements in both

computational resources as well as numerical methods, resolution of all relevant

tempo-spatial scales (in particular for multi-query, multi-physics and multiscale ap-

plications) still quickly approaches the limitations of computational feasibility. Sub-

stituting a fine-grained model (FGM) with a coarse-grained model (CGM) - or any

other suitable surrogate - hence defines a special case of epistemic uncertainty, in-

duced by computational limitations.

The infeasibility of computationally fully resolving relevant physical processes by

means of established numerical discretization techniques for many-query applications

gives rise to the objective of this thesis to identify probabilistic surrogate models able

to predict the behavior of such systems at a reduced cost, while still retaining sufficient

predictive accuracy. Instead of an expert-defined model, a machine learning approach

is employed to obtain a parsimonious and cheap representation of the physical pro-

cess, leveraging data and/or a priori physical knowledge as a source of information for

model identification (i.e., we posit an a priori hypothesis space and infer the candi-

date most suitable to explain observed data and/or physical constraints). Within such

probabilistic models, uncertainties are then accounted for and propagated consistently

irrespective of their respective origin or underlying cause. In this context we can also

2



1.2 Random Media and the Process-Structure-Property Chain

note that according to Shannon [17], information can be regarded as the resolution

of uncertainty, and hence the goal of learning and resolving uncertainties can be seen

as dual in nature (or according to Jayes [1],’probability distributions ... [are] carriers

of incomplete information’ ). In consequence - for a Bayesian setting - the process of

learning or generalizing about a physical process by means of a model can be regarded

as probabilistic inference conditional on our observations (indeed this notion is so gen-

eral, that the free energy hypothesis [18, 19] seeks to express human cognition and

action planning as complex hierarchical probabilistic inference processes). The partic-

ular objective under consideration in this thesis will be the identification of suitable

probabilistic models for the prediction and control of stochastic materials systems in

a high-dimensional and physics-constrained setting, which remains an area of ongo-

ing research despite decades of advancements. The stochastic systems at which we

aim our methodological efforts and discussion are defined by random media and the

process-structure-property chain.

1.2 Random Media and the Process-Structure-Property Chain

We consider as a prototypical example a class of stochastic systems arising in the con-

text of continuum thermodynamics [20], where stochastic variability is introduced by

random spatial fluctuations of pertinent physical material properties (random media).

Even with the governing equations of continuum thermodynamics assumed a priori

already known, the physical system (characterized in our case by a partial differen-

tial operator) will become stochastic due to the inherent microscopic variability of the

material. The spatial random variability of the material (as well as the thermody-

namic state variables) can be modeled as random fields [21] and are characterized by

generally complex spatial or even spatio-temporal correlation structures. Examples of

random media are given for instance by binary two-phase and multiphase materials

[22], for which two or more phases with distinct physical properties exhibit random

spatial variability over the domain (see Figure 1.1). The formation of these phases

Figure 1.1: Three random field realizations
for binary two-phase random
heterogeneous media. For-
mally, we can describe this ma-
terial by means of an indica-
tor function I (s;ω) depending
on the spatial coordinate s ∈
Rd and the elementary event ω
in conjunction with a suitable
probability space (Ω,F ,P).
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1 Introduction

occurs itself according to complex physical processes, for binary two-phase material

for instance it could be defined by the limiting case of the Cahn-Hilliard equation

∂c/∂t = D∇2
(
c3 − c− λ∇2c

)
converging towards phase separation (i.e. c ∈ {−1, 1}).

Another notable example is given by polycrystalline materials [23], characterized by

random variability of the grains (with the microstructure being defined by the sizes

and orientations of the atomic lattice of the grains). Random media comprised of sev-

eral distinct phases is referred to as random heterogeneous media [24]. While it is in

principle possible to consider the fine-grained description of random media in full detail,

resolving phenomena across all pertinent physical scales in a high-dimensional many-

query setting will quickly deteriorate to a computationally infeasible setting. As such

the endeavor in this thesis will be to identify parsimonious features of the fine-grained

structure of the material on a microscopic level which are predictive of the effective

properties [25] on a macroscopic scale (structure-property-linkage), or more generally,

to identify a reduced description which still permits useful, probabilistic predictions

about the system response under macroscopic loading (e.g., deformation or thermal

response of the material). Finding a surrogate or reduced system that only depends

on a comparably small set of features of the fine-scale material description which still

enables to adequately capture the system response is referred to as coarse-graining

or model order reduction [26, 27, 28], and implies the additional introduction of epis-

temic uncertainty in an already stochastic system due to model compression. Once a

suitable surrogate is identified, it can be employed in any many-query setting to sig-

nificantly reduce the computational burden. Additional complexity is introduced if we

also consider how the statistical formation of microstructures is affected by processing

conditions, with the stochastic linkage between processing conditions and material mi-

crostructures being referred to as the process-structure linkage. In conjunction with the

previously discussed linkage between microstructures and their macroscopic properties

and response, jointly this gives rise to the process-structure-property chain (see Figure

1.2). I.e., instead of relating individual microstructures to macroscopic properties, we

seek to relate aggregate macroscopic properties to processing parameters governing the

stochastic process underlying the formation of material microstructures. The inversion

of this stochastic process-structure-property chain then corresponds to identifying the

optimal process conditions that - as a statistical aggregate - give rise to physical prop-

erties that satisfy a certain criterion of optimality [29]. As this involves the stochastic

inversion of both the process-structure as well as structure-property linkage (each cor-

responding to generally non-deterministic complex physical models), this poses a grand

challenge and largely unsolved problem in a high-dimensional setting [30]. Both when

predicting material properties and their response to physical loading in isolation, or in

the more complex setting of the complete process-structure-property chain, the cost

of repeated evaluations of the forward model will force the identification of suitable

surrogates or coarse-grained descriptions of the physical process.
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1.2 Random Media and the Process-Structure-Property Chain
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Figure 1.2: Conceptual overview of the process-structure-property chain and its stochastic in-
version - reproduction of Figure 1 from [31], corresponding to section 3.2 of this
thesis. Random heterogeneous media (here) in the form of binary two-phase mi-
crostructures arise as a stochastic process defined by process parameters. Learning
the physical behavior or response of an individual microstructure can be consid-
ered as learning a structure-property mapping defined by a physical process, with
microstructures themselves generated by a physical stochastic process (process-
structure linkage). We aim to (i) learn the structure-property map in the small-
data domain by means of a physics-informed, semi-supervised machine learning
approach bottlenecked and physics-biased by a coarse-grained model and (ii) also
consider full stochastic inversion of the entire process-structure-property chain by
means of a conventional discriminative convolutional neural network surrogate
embedded within an adaptive stochastic optimization framework (i.e., we seek to
identify processing parameters which lead to optimal material properties of the
microstructures, with the optimality criterion entailing an expectation over the
generating stochastic process of the microstructures).
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1.3 Model Compression and Probabilistic Machine Learning

Model compression refers to the endeavor of finding a surrogate or reduced description

of a physical process, which nonetheless retains sufficient accuracy for predictive pur-

poses [32]. The model under consideration for which we wish to identify a simplified

description may exemplarily be given by a time-dynamical process, or in a stationary

setting as a physical process which - upon discretization - can be regarded as relating

inputs to outputs, e.g., a discretized differential operator Lh : Rdx → Rdy (consider

mapping discretized microstructures to their effective physical properties). Finding

a suitable surrogate for such a physics-defined input-output system becomes partic-

ularly challenging in high-dimensional settings, and more so still when the problem

under consideration is not easily amenable to dimensionality reduction (i.e., the prob-

ability mass is not concentrated on a low-dimensional manifold, or the manifold is

highly nonlinear and complex). A wealth of surrogate-based approaches have been

developed for such systems, but despite ongoing efforts, prediction and control of high-

dimensional stochastic systems remain challenging and an area of ongoing research.

One approach is to model the system response directly as a function of the inputs,

as is exemplarily the case for Gaussian Process regression [33, 34] and (generalized)

Polynomial Chaos [35, 36, 37]. While developments in this area such as sparse grid

and stochastic collocation methods [38, 39, 40] will succeed in delaying the onset of the

curse of dimensionality somewhat, for a sufficiently high-dimensional setting this ap-

proach still ceases to be feasible. In contrast, the vast field of projection-based methods

[41, 42, 43, 44, 45, 46, 47, 48, 49, 50] constitute a model reduction approach that seeks

to identify a reduced basis system to describe the physical process (in a probabilistic

setting this would translate to the implicit assumption that most of the probability

mass is concentrated on a lower-dimensional manifold, which can also be exploited in

the inference process, e.g., [51, 52, 53]). As a prominent example for projection-based

methods, Proper Orthogonal Decomposition (POD) [54] makes the assumption that the

evolution of the state variables of a PDE can be expressed with respect to a linear sub-

space that is identified from a finite number of (sufficiently representative) snapshots.

Despite recent attempts to combine this reduced order modeling approach with deep

learning techniques [55, 56, 57, 58], in a high-dimensional setting the identification of a

suitable reduced basis becomes highly non-trivial necessitating increasing amounts of

(expensive) data. Another attempt to bypass the curse of dimensionality is represented

by multi-level [59] and multi-fidelity [60, 61, 62, 63, 64] approaches, which introduce a

hierarchy of solvers of varying numerical cost and either seek to exploit correlation or

fuse information from different solvers to obtain predictions at a reduced cost. Their

inherent constraint is however that they presuppose the existence of suitable a priori

defined models of varying fidelity, and give no insight regarding their construction or

identification. From the more recently prevailing perspective of machine learning [65]

and deep learning [66, 67] (as well as the general emergence of data-driven approaches

6



1.4 Outline and Contributions

in science and engineering [68, 69, 70]), the identification of a surrogate model for the

previously discussed case of Lh : Rdx → Rdy defines a supervised learning problem. The

goal of machine learning in the context of model compression can then be regarded as

the discovery of a much more parsimonious description of the physical process, ideally

enabling considerably accelerated probabilistic reasoning and inference in the context

of systems governed by physical laws. Learning (reduced) models for physical systems

can be regarded as the accumulation of information regarding their behavior. While

this information would most commonly spring from labeled data, given more recent

advances it may also be partially derived from unlabeled data (semi-supervised learn-

ing), or is extracted directly from the governing equations and becomes infused into the

probabilistic model as pseudo-observed artificial nodes (virtual observables [71, 28, 72]).

When adopting a machine learning perspective it is important to realize that this field

has generally evolved in the big-data domain, while in the context of physical models the

acquisition of data is typically arduous and expensive (necessitating experimentation

or expensive reference simulations with sufficiently accurate spatio-temporal discretiza-

tions). This in turn dictates that the development of probabilistic machine learning

methods in such settings should be driven by the requirement of reducing dependence

on (labeled) data as far as possible, i.e., providing the ability to operate in the small-

data domain. The previously mentioned approach of extracting information from the

governing equations directly into the model becomes of interest in such a setting, as it

enables mitigating or altogether bypassing the dependence on expensive labeled data

(physics-informed machine learning [73]). Similarly, careful choice of inductive model

bias, as well as other previously mentioned techniques such as careful selection of data

points (active learning) and incorporation of unlabeled data (semi-supervised learning),

can reduce the dependence on expensive labeled training data.

1.4 Outline and Contributions

This thesis follows a probabilistic approach [1] and aims to develop novel numerical

methods for the prediction and control of stochastic systems in a high-dimensional and

data-scarce setting. Our effort will more specifically be aimed at predicting the physical

properties of microstructures and random media, as well as the larger enveloping goal

of achieving stochastic inversion of the entire process-structure-property chain using

this predictive ability. The methodological approaches suggested and investigated can

be interpreted as instances of probabilistic machine learning, seeking to exploit the

combination of various concepts and ideas to alleviate the curse of dimensionality as

well as the dependence on labeled data as far as possible (e.g., by adopting a principled

approach to encode physical constraints in a probabilistic model as a priori knowledge,

or by inducing inductive physical bias utilizing an embedded coarse-grained model).

As this is a cumulative thesis with the methodological approach rooted in probabilistic

7



1 Introduction

modeling and reasoning, the general introductory discussion in the following chapter

2 aims to introduce the most pertinent concepts and ideas underlying the papers in

sections 3.1 and 3.2. Please note that we will forego a rigorous discussion of more mun-

dane aspects of probability theory, i.e., assume basic familiarity and refer to the suitable

literature on probability theory [1, 74, 2, 75, 76, 77, 78] and probabilistic machine learn-

ing [79, 65, 80]. With the basic foundation laid out, in section 3.1 we will introduce a

generative model with inductive bias provided by an embedded coarse-grained model

coupled to a latent variable representation of the random media. In addition to the

inductive bias and the information bottleneck defined by the latent variables, predictive

features are also informed by unlabeled data (semi-supervised learning) as well as by

the injection of a priori knowledge of the governing equations encoded as virtual ob-

servables (i.e., as virtual nodes in our probabilistic graphical model). In section 3.2 we

make use of a more conventional deterministic surrogate with convolutional architec-

ture for the structure-property linkage in order to attain the inversion of the stochastic

process-property-structure chain for a materials design problem in a high-dimensional

setting. This ambitious goal [30] is achieved by the introduction of an inner-loop outer-

loop approach with the incremental and adaptive refinement of the dataset informed by

a problem-specific acquisition function. This active learning approach is coupled with

a custom Variational-Bayes Expectation-Maximization algorithm that enables driving

learning in this high-dimensional and intractable setting by providing low-noise Monte

Carlo gradient estimates of the objective function.

8



2
Fundamentals

Doubt is not a pleasant condition,

but certainty is absurd.

Voltaire

The need for probabilistic reasoning not only arises in settings where stochastic phe-

nomena are under investigation but in any setting where one wishes to reason in a con-

text of finite and incomplete information. Probability theory therefore can be regarded

as a rigorous theoretical framework of ’extended logic’ to conduct ’plausible reasoning’

[1] beyond a mere deductive setting. The necessity for such a framework arises due to

the limitation of deterministic reasoning - consider exemplarily the following Boolean

statement (or syllogism)

A→ B (2.1)

which Jaynes [1] characterizes as a logical consequence which does not permit to

draw inference upon A, even upon having observed B to be true. A weak syllogism is

introduced by the notion that knowing B may not permit an absolute statement about

the veracity of A, but that A should become more plausible after having observed

B. This gives rise to the fundamental question, of whether one may consistently and

quantitatively ascertain the plausibility of the statement A in such a setting. In a

seminal paper [81] published in 1946, Cox showed that introducing a set of axioms for

this framework of ’plausible’ reasoning (the axioms here are reproduced as formulated

by MacKay [75])

9



2 Fundamentals

Axiom 1 ’Degrees of belief can be ordered [...] and in consequence can be

mapped onto real numbers’

Axiom 2 ’The degree of belief in a proposition x and its negation x are

related. There is a function f such that B (x) = f [B (x)]’

Axiom 3 ’The degree of belief in a conjunction of propositions x, y (x AND

y) is related to the degree of belief in the conditional proposition x|y
and the degree of belief in the proposition y. There is a function g

such that B (x, y) = g [B (x|y) , B (y)]’

yields a mathematical framework isomorphic to probability theory as following from

Kolmogorov’s axioms [82], and that moreover, it constitutes the only mathematical

framework in compliance with the consistency requirements expressed by these axioms.

A more informal and colloquial formulation of these desiderata for a framework of

plausible reasoning as stated by Arnborg and Sjödin [83]:

Divisibility and comparability: ’The plausibility of a statement is a real

number and is dependent on information we have related to the state-

ment’

Common sense: ’Plausibilities should vary sensibly with the assessment

of plausibilities in the model’

Consistency ’If the plausibility of a statement can be derived in two ways,

the two results must be equal’

When probability theory is used in the context of plausible reasoning, it is com-

monly referred to as the Bayesian perspective [83]. In the Bayesian interpretation of

probability, ’probability is a measure of the degree of belief about a proposition’, or equiv-

alently ’a state of knowledge in presence of partial information’ [84]. This importantly

implies that we cannot only argue about probabilities as relative frequencies of repeat-

able events but that instead, we can consistently reason about any given hypothesis

in a non-deterministic or finite-information setting (enabling quantitative assessments

as degrees of belief or plausibility). In such a setting the inability to make absolute

statements generally either derives from epistemic uncertainty (lack of knowledge), or

aleatory uncertainty (inherent randomness), i.e., ’probability explains the limitations of

our knowledge of truth’ [85]. From this must necessarily follow that probabilistic rea-
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soning aims to obtain a ’measure or characterization of truth’ [85], conditional on the

observations and finite information available to us (in any setting where truth defines

a meaningful concept - consider, e.g., the recovery of governing equations from lim-

ited data of observed physical phenomena [86, 87, 88]). The demarcation line between

epistemic and aleatoric uncertainty impeding this pursuit of truth can be a subject of

contention (consider e.g. turbulent flow), but within the Bayesian framework, uncer-

tainty is treated and resolved independently of its root cause. Furthermore, it is to

be emphasized that the theoretical framework of probabilistic reasoning derived from

Cox’s axioms does not merely provide a set of expeditious tools useful for the solution

of specific problems. Instead, it gives rise to what Jaynes referred to as the ’logic of

science’ [1], i.e., a principled way to reason probabilistically about the world. In the

context of the more confined setting of this thesis, i.e. considering stochastic system

governed by physical laws, probabilistic reasoning allows - among other things - to draw

inference and learn from data (machine learning) [65, 80], quantity limits of knowledge

and assess behavior of stochastic systems (uncertainty quantification) [89, 4, 90], assess

reliability [91] and consistently deal with epistemic uncertainty [3, 92], formulate inverse

problems [93, 94], perform data analysis [95], enable decision-making [74, 96], as well

as stochastic optimization [97] and control [98]. While of course there are assumptions

underlying the Bayesian approach of probabilistic reasoning (e.g., the axioms, model

choices and prior distributions), we follow MacKay in his observation that ’you can-

not do inference without making assumptions’ [75], which in the Bayesian probabilistic

framework are simply made transparent. We will continue this section by providing a

brief exposition about probabilistic models as well as the representation of their struc-

ture, and conclude by discussing as an illustrative example a Hidden Markov Model

at the end of this section (before then moving on to discuss the nature of information

encoded in such models in section 2.2.)

2.1 Probabilistic Models and Learning

A probabilistic model [99] is defined by a set of assumptions relating all relevant enti-

ties in a generally non-deterministic manner (by assigning probabilities to joint occur-

rences). That is to say, the model embodies assumptions about the hidden mechanics

underlying our observations, and we can infer the hidden mechanics within the con-

fines of the model assumptions due to the probabilistic levers connecting unobserved

cause and the observed effect. Learning in probabilistic models (probabilistic inference)

therefore corresponds to a process where a subset of entities defined in the probabilistic

model is observed, and subsequently one conducts inference on the conditional prob-

ability distribution of unobserved variables of interest; i.e., the information contained

in the observations is extracted to inform the hidden parts of the model which have

given rise to the observation. For a suitable conceptual grouping of the entities of the

11
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probabilistic model, the process of learning by probabilistic inference can be regarded

as the alteration of our prior belief to the posterior belief conditional on our observa-

tion, corresponding to the Bayes’ theorem (discussed in greater detail in section 2.3).

While one will often introduce semantic structure by differentiating between observed

data, parameters or latent/hidden nuisance variables, this delineation to an extent is

artificial and superimposed. In the Bayesian approach, probabilistic reasoning consti-

tutes the ’daring move that puts causes (observations) and effects (parameters) on the

same conceptual level’ [74]. The central role models inhabit for the process of learning

and reasoning has been aptly summarized by Ghahramani [100]:

Models allow one to make predictions, to understand phenomena, and to

quantify, compare and falsify hypotheses. Modelling is also at the core of

intelligence. Both artificial and biological systems that exhibit intelligence

must be able to make predictions, anticipate outcomes of their actions and

update their ability to make predictions in light of new data. It is hard to

imagine how a system could do this without building models of the environ-

ment that the system interacts with.

In the context of a probabilistic model, this enables us to reason about the world by

conducting inference. As formulated by David Barber [2]:

The central paradigm of probabilistic reasoning is to identify all relevant

variables x1, ..., xN in the environment, and make a probabilistic model

p (x1, ..., xN ) of their interaction. Reasoning (inference) is then performed

by introducing evidence that sets variables in known states, and subsequently

computing probabilities of interest, conditioned on this evidence.

As such in its most abstract terms, a probabilistic model is defined by a joint density

p (x1, ..., xN ). For the sake of simplicity in the subsequent discussion we will assume

a finite-dimensional setting permitting a representation in terms of a probability mass

or probability density functions (for non-parametric models see, e.g., [100, 101, 102]);

likewise for the sake of our discussion we by default (and without loss of generality)

assume xi ∈ R. Assigning probabilities to joint occurrences of variables p (x1, ..., xN )

implies that the observation of any subset of variables {xi, |i ∈ I}, I ⊂ {1, ..., N} gen-
erally affects the conditional belief of the remaining unobserved variables. Resolving

these conditional distributions corresponds to probabilistic inference and learning1.

1In some cases people delineate conceptually between learning relevant model parameters and
inferring latent model parameters. We do not draw this distinction.
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2.1.1 Representation of Probabilistic Models

The necessity to provide abstract and formalized descriptions of probabilistic models

has given rise to Probabilistic Graphical Models (PGM) [103], i.e. a formalized descrip-

tion of probabilistic models where structures of complex interdependencies and condi-

tional independence assumptions are represented by means of graphs. While graphical

models and corresponding specialized inference algorithms have a rich history, we will

refer the reader to the suitable literature for a general discussion [104, 103]. A particu-

lar type of PGM expedient for our discussion is given by a Bayesian network which can

be represented as a directed acyclic graph (DAG), encoding conditional independence

assumptions, i.e., implying a factorization of the joint probability density function:

p (x) =

K∏
k=1

p (xk|pak) (2.2)

Here pak defines the set of parent nodes for xk. Considering our previously introduced

joint distribution p (x1, ..., xN ), we may always introduce a factorization p (x1) p (x2|x1)
p (x3|x1, x2) . . . p (xN |x1, ..., xN−1). If represented as a Bayesian network, this would

correspond to a fully connected graph with a connection between any arbitrary two

nodes. The interesting aspect of a Bayesian network - i.e. conditional independence

- is therefore encoded in the absence of edges between any two random variables. In

such a setting we refer to as Markov blanket of xk the set of variables that fully shields

the node from the remaining variables in the model. A more general class of PGMs

than Bayesian networks is provided by factor graphs [103], i.e., an undirected bipartite

graph (variable vertices and factor vertices), similarly defining a factorization of the

joint distribution as a product over factors. While A Bayesian network can always be

converted to a factor graph representation (a process referred to as moralization), the

reverse statement does not hold. Inference algorithms have been developed that seek to

exploit a specific structure of the graphical model (e.g., message passing, sum-product

algorithm [65]). An interesting type of problem in this context lies in the identification

of the structure of graphical models from data [105].

2.1.2 Example : Linear Hidden Markov Model

To remove the discussion from the purely abstract domain, let us consider the following

first-order Markovian system generally modeling the time-dynamical evolution of some

system (for t = 1, ..., T ):

xt+1 = A (θ)xt + L (θ) ϵt ϵt ∼ N (0, I) (2.3)

st+1 = C (θ)xt+1 + U (θ) εt+1 εt+1 ∼ N (0, I) (2.4)
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Figure 2.1: Bayesian network representation of first-order hidden Markov model, with ob-
served nodes shaded in gray. The parameters θ are not explicitly depicted in this
graphical representation.

Here the matrices A (θ) ∈ RN×N , C (θ) ∈ RM×N , L ∈ RN×N and U ∈ RM×M

depend on a set of model parameters θ ∈ Rdθ , which for the time being we assume

known. Furthermore we posit x1 ∼ N (µ,Σ) and assume that {st|t = 1, ..., T} can be

directly observed (in contrast to the latent and unobserved variables {xt|t = 1, ..., T}),
leading to the so-called emission probabilities p (st|xt, θ) relating unobserved and ob-

served model variables. The special Markovian structure of this model is implied by

Eqs. (2.3,2.4) and leads to conditional independence of, e.g., xt given its Markov

blanket {xt−1, xt+1, st}. Furthermore, the Markovian structure is also evident in the

factorization of the joint distribution of our hidden Markov Model

p (x1:T , s1:T | θ) = p (x1)

T∏
t=1

p (xt+1|xt, θ)
T∏
t=1

p (st|xt, θ) (2.5)

, and can also be observed in the representation of this model as a Bayesian network

in Figure 2.1. With the probabilistic model fully specified by means of our joint distri-

bution in Eq. (2.5), the process of inference or learning for this model - as previously

introduced - corresponds to resolving conditional distributions given observations of a

subset of the involved variables. Exemplarily, one might seek to predict the next state in

time p (xt+1|s1:t+1, θ) at time instance t (filtering), or instead attempt to infer the latent

states given the complete set of observations s1:T , i.e., identify the marginal posteriors

p (xt|s1:T , θ) for t = 1, ..., T (smoothing). While under the assumption of Gaussianity

and linearity inference on these posterior distributions is attainable in closed form by

means of forwards and backward recursion [106, 107], approximate inference methods

such as particle filters [108] or variational strategies [109] (as discussed later in section

2.4) have to be employed to approximate the intractable target distributions arising

from less restrictive model assumptions. If we consider an extension of the problem

where the model parameters θ defining the dynamical behavior of the system also are

unknown, this introduces additional complexity and seemingly fundamentally alters the

problem. While indeed the necessity to estimate θ alongside the state-trajectory x1:T
has far-reaching practical implications, from a sufficiently high and abstract vantage

point of probabilistic reasoning the undertaking remains essentially unchanged. Fol-
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lowing a Bayesian approach - i.e. treating all unknown model parameters as unknowns

- a prior p (θ) can be introduced, giving rise to a joint distribution p (x1:T , s1:T , θ) now

also encompassing the model parameters θ. In consequence, any conceivable question

we wish to answer about this system can again be answered by - generally complex and

intractable - conditional distributions of this joint model, such as e.g. making use of

the observations s1:T to estimate the system parameters p (θ|s1:T ) (with the states x1:T
marginalized out), or instead learning jointly both the latent states as well as model

parameters, i.e., inferring p (x1:T , θ|s1:T ). We provide this example to again echo our

previous statements that the general process of probabilistic reasoning and learning is

universal and unchanging, and that particular approaches (see, e.g., the Expectation-

Maximization algorithm for the identification of θ [110]) merely correspond to specific

choices and approximations for conducting approximate probabilistic inference (e.g., a

flat prior p (θ) in conjunction with a Dirac approximation for θ). From the viewpoint

of probabilistic reasoning, there is no inherent distinction between entities of the model

acting semantically as parameters θ or unobserved states x1:T (of course our interests

and/or ambitions regarding them might vary). To further emphasize this point, one

may observe that reinforcement learning can be interpreted as inference in probabilis-

tic graphical models [71] structurally similar to the hidden Markov model depicted in

Fig. 2.1, with now merely different semantic meaning of nodes and edges, and with

the observation of s1:T substituted by pseudo-observed optimality variables which we

condition on (in such a setting inference of θ would then correspond to finding an opti-

mal policy according to which an actor chooses to influence stochastic state transitions

from xt to xt+1). These examples have been made in the hope to impress upon the

reader that within the framework of probabilistic modeling and reasoning, different

prediction tasks, seemingly different problem settings (e.g., filtering vs. smoothing) or

even entirely different problem domains (e.g., reinforcement learning vs. inference for

time-dynamical systems) do not fundamentally differ if viewed from the highest abstrac-

tion layer. Learning, prediction and reasoning for any arbitrary system is synonymous

with (approximate) probabilistic inference in our probabilistic model, invariably always

seeking to resolve distributions conditional on the observed evidence (albeit in possibly

extremely complex, challenging and varying settings).
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2.2 Information Theory and Statistical Manifolds

In the context of probabilistic reasoning and machine learning, inevitably the question

arises of how to quantify information encoded in probability distributions, or how to

quantitatively assess the discrepancy of information encoded in two distinct distribu-

tions p(x) and q(x) (recall our previous observation that ’probability distributions ...

[are] carriers of incomplete information’ [1]). Similarly one would want to be able to

assess how informative observation of one random variable x1 is w.r.t. another depen-

dent random variable x2 in the context of a joint distribution p(x1, x2) (which does not

factorize). As we shall see, both these questions necessitate scoring the similarity or

dissimilarity of two distributions in terms of their distribution of probability mass. To

this end let us consider two densities p, q ∈ P with P the set of all admissible proba-

bility density functions (with assumed identical support), and introduce a divergence

measure D [·||·] : P × P → R+
0 as any mapping which satisfies:

(i) D [p||q] ≥ 0 ∀ p, q ∈ P

(ii) D [q||p] = 0⇐⇒ q = p

As such D [·||·] returns a measure of dissimilarity which attains zero value if (and

only if) the two distributions are identical (q = p). Notably, we do not require D [·||·]
to be symmetric nor to satisfy the triangle inequality - as such it is not a proper metric.

An example for a divergence measure is given by the Csiszàr’s family of f -divergences

Df [p||q] =
∫
f(p(x)/q(x))q(x) dx, with f a suitable2 convex function [111]. For specific

choices of f , we recover important instances such as, e.g., the forward and backward

Kullback-Leibler divergence (KLD). Although D [·||·] does not define a proper metric

in the general case (due to lack of symmetry and triangle equality), it can nonetheless

be regarded as a statistical distance, i.e., as quantifying the discrepancy of information

encoded in p and q (in terms of the mismatch of probability mass). The most important

and widely used divergence measure is given by the previously mentioned Kullback-

Leibler divergence [112]

DKL [q||p] =
∫

q (x) log

(
q (x)

p (x)

)
dx (2.6)

Inspecting Eq. (2.6) we note that this defines an expectation of the log-ratio of

densities w.r.t. q (x), and correspondingly the Kullback-Leibler divergence increases

with the discrepancy of densities assigned by q and p. Clearly the divergence measure

D [q||p] most heavily penalizes cases in which q (x) assigns any significant probability

2Convexity is not the only requirement
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mass in regions where p (x) approaches zero, leading to mode-snapping behavior of q

in the context of variational inference (see upcoming discussion in section 2.4). In con-

trast, the reverse Kullback-Leibler divergence DKL [p||q] would generally be minimized

by a distribution q overestimating the support of p, if zero divergence is not attain-

able. Within the wide ensemble of possible divergence measures the Kullback-Leibler

divergence inhabits a special role, among other reasons because it corresponds to the

relative entropy (see upcoming section 2.2.2) and relates to the evidence lower bound

(see upcoming section 2.4.1.1).

2.2.1 Statistical Manifolds

In the context of a parametric family of distributions P =
{
p (x|θ)

∣∣θ ∈ Rd
}
it follows

from our discussion up to this point that similarity or distance of two distributions p, q ∈
P should be quantified in terms of the mismatch of probability mass. This also implies

that the underlying structure of P is non-euclidian, as we cannot meaningfully gauge

the similarity of two distributions p, q ∈ P by means of their corresponding parameter

values θp, θq. While we will not attempt any complete or mathematically rigorous

discussion, the question about the underlying structure of P leads to the observation

that P defines a d-dimensional statistical manifold with non-euclidian geometry. The

study and description of such manifolds by means of differential geometry is referred to

as information geometry [113, 114, 115], as each point on the manifold corresponds to

an encoding of information about x by means of the distribution p (x|θ). One possible

way to obtain the metric tensor of this Riemannian manifold is by considering a second-

order Taylor approximation for the previously discussed Kullback-Leibler divergence.

If - with slight abuse of notation - we define the distribution p := p(x|θ̂) and an

infinitesimal perturbation q := p(x|θ̂ + ϵθ), then a Taylor approximation yields (up to

second order terms)

DKL [q||p] = 1

2

d

dϵ2

∫ p
(
x
∣∣∣θ̂ + ϵθ

)
log

p
(
x
∣∣∣θ̂ + ϵθ

)
p
(
x
∣∣∣θ̂)

 dx

=
1

2
ϵ2θTEp(x|θ̂)

[
∇θ log p

(
x
∣∣∣θ̂)∇θ log p

(
x
∣∣∣θ̂)T

]
θ (2.7)

where one can identify the symmetric and positive definite Fisher information ma-

trix I (θ) ∈ Rd×d [116, 117] arising as the Riemannian metric tensor of the statistical

manifold (at θ̂) induced by our divergence measure3

3The Fisher information matrix - if not in the context of a metric tensor of statistical manifolds -
is generally only positive semi-definite.
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I (θ) = Ep(x|θ)
[
∇θ log p (x|θ)∇θ log p (x|θ)T

]
(2.8)

The entries of this matrix I (θ) quantify the information that x on average conveys

regarding the parameter values of θ (correspondingly it appears in the Cramér–Rao

bound [118] as a threshold of the attainable precision for unbiased statistical esti-

mators of θ). Fisher information also connects to natural selection and evolutionary

dynamics [119], as the genome accumulates information about the environment. The

Fisher information matrix as a metric tensor for statistical manifolds is unique (up to

a constant) and can be derived from other principles as well (e.g., from distinguishabil-

ity). This uniqueness arises from the necessity of invariance under Markov mappings

[120, 115], i.e., information monotonicity [121, 122].

2.2.2 Information Theory

Having remarked upon the non-euclidian nature of statistical manifolds, we will con-

clude this section by providing brief summaries of the most important information-

theoretic quantities as required for our purposes (for simplicity and brevity, assuming

continuous and real-valued random variables). The field of information theory was orig-

inally pioneered by Shannon [17] in 1948 and studied the problem of communicating

over a noisy channel with assumed distributions over the transmitted signal. We refer

to the literature for a more in-depth discussion [116, 75].

Entropy The (differential) entropy provides a measure of the uncertainty associated

with a random variable x ∼ p (x)

H [x] = Ep(x) [− log p (x)] (2.9)

and is defined as the expectation of the negative log p (x), which can be regarded

as the surprisal of observing x. The entropy, therefore, represents the average,

expected surprisal. Correspondingly, the entropy collapses to zero for degenerate

distributions which place their entire probability mass on a single outcome, and

the entropy increases as probabilities are assigned more equally to all possible

values of x. If the logarithm is given with respect to base 2, information is

measured in bits, whereas for base e we refer to it as nats (this will be our

default, unless stated otherwise). Considering e.g. the case of a discrete Binomial

random variable x ∼ B (x|θ) with θ ∈ [0, 1], then the entropy (measured in bits)

is 0 for θ = {0, 1}, and H [x] = 1 for θ = 0. We note that the differential

entropy can attain negative values and differs in principle from the entropy of

discrete random variables (i.e., it is not a perfect equivalence). If x defines a
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random vector, or if we consider two random variables x and y, the (joint) entropy

H [x, y] = Ep(x,y) [− log p (x, y)] follows analogously.

Relative Entropy Given two distributions q(x) and p(x), the relative entropy can be

regarded as the coding inefficiency that arises from encoding a message under

the assumption x ∼ q (x), if in actuality x ∼ p (x) (i.e., ’expected excess surprisal

from using q as a model when the actual distribution is q’ [123]). The relative

entropy equates to the previously introduced Kullback-Leibler divergence

DKL [ p (x)||q (x) ] = Ep(x)

[
log

(
p (x)

q (x)

)]
(2.10)

= Ep(x) [− log q (x)]−H [p (x)] (2.11)

and in Eq. (2.11) has been expressed with respect to the cross-entropy H [q, p] =

Ep(x) [− log q (x)] and the entropy of p (x). While (for base 2) the relative entropy

defines the average number of additional bits required to encode x, the relation-

ship defined by Eq. (2.11) suggests that cross-entropy corresponds to the total

number of bits required to encode x ∼ p (x) under the sub-optimal assumption

x ∼ q (x). Classical loss functions (e.g. discriminative classification problems) in

machine learning often entail cross-entropy, as it defines the only non-constant

term of the Kullback-Leibler divergence in the context of fixed empirical data

distributions.

Conditional Entropy Given a joint distribution p (x, y), the conditional entropy quan-

tifies the remaining uncertainty in y conditionally on having observed x, and is

defined as the expectation of the entropy of the conditional distribution p (y|x)
with respect to p (x)

H [y|x] = Ep(x)

[
Ep(y|x) [− log p (y|x)]

]
(2.12)

= −Ep(x,y)

[
log

(
p (x, y)

p (x)

)]
(2.13)

From the definition of the entropy and conditional entropy one can derive the

chain rule, according to which the (joint) entropy of a random vector [x, y] can -

rather intuitively - be expressed and decomposed in terms of marginal entropies

and conditional entropies [116]

H [x, y] = H [x] +H [y|x] (2.14)

= H [y] +H [x|y] (2.15)
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If x and y are not independent, the conditional distributions p (y|x) and p (x|y)
will see a reduction in entropy and thus uncertainty upon observing either x

or y. Consequently, the conditional entropy needs to relate to the amount of

information that x conveys about y or vice versa (see upcoming Eqs. (2.17 -

2.20)), given the dual nature of information and uncertainty.

Mutual Information We again consider two random variables x, y with a joint distri-

bution p (x, y). The mutual information I (x, y) quantifies the dependence of two

random variables as is defined as the Kullback-Leibler divergence of the joint and

the product of marginal probability density functions

I [x, y] =
∫

p (x, y) log

(
p (x, y)

p (x) p (y)

)
dx dy

= DKL [p (x, y)||p (x) p (y)] (2.16)

The properties of the KLD imply that the mutual information I [x, y] must be both

non-negative and symmetric, only attaining zero value for independence of x and

y (implying a factorization of the density p (x, y) = p (x) q (x)). In contrast to,

e.g., the correlation of x and y, the mutual information can also capture complex

non-linear dependence. Furthermore, if the mutual information quantifies the

amount of information gained upon observing one of the two random variables

(in, e.g., bits or nats), there necessarily must exist a relationship to the previously

introduced conditional entropies, which can be derived as [124]:

I [x, y] = H [y]−H [y|x] (2.17)

= H [x]−H [x|y] (2.18)

= H [x] +H [y]−H [x, y] (2.19)

= H [x, y]−H [x|y]−H [y|x] (2.20)

I.e., mutual information corresponds to the reduction of marginal entropy upon

observing a dependent random variable. Unsurprisingly, the concept of mutual

information is relevant when trying to extract informative and compressed encod-

ings of data, for instance in the context of an information bottleneck [125] (other

machine learning techniques explicitly seeking to exploit mutual information ex-

ist, e.g., [126, 127]).
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2.3 Bayes’ Theorem

2.3.1 Updating States of Belief

If the Bayesian viewpoint as previously stated proclaims that ’probability is a measure

of the degree of belief about a proposition’, then Bayes’ theorem constitutes the ’rule for

manipulating states of belief ’ [84] in light of new information or data. Alternatively,

one may consider Bayes’ theorem as a mechanism by which (possibly incrementally

and recursively) information is accumulated, with information - as previously already

remarked - being dual to the ’resolution of uncertainty’ [17]. While Bayes’ theorem

trivially follows from the definition of conditional probabilities or conditional densities,

it is difficult to overstate its importance, as it equates to the process of inference at the

heart of probabilistic reasoning and machine learning. For this reason, we will discuss

some non-obvious implications and properties implicitly defined by Bayes’ theorem.

To this end, we again assume a parametric, finite-dimensional probabilistic model that

permits a representation via a probability density function p (x|θ) with real-valued

vectors x and θ 4. Let us furthermore assume that there exists a finite set of competing

hypothesis Hi, i ∈ 1, ...I, implying different possible explanations of the data and as

such different probabilistic models p (x|θ,Hi). It is our intention to make statements

about the plausibility of parameters and competing hypotheses given the observation of

a dataset D = {xn}Nn=1. In contrast to the maximum likelihood approach, which seeks

to identify the parameters θ̂ that satisfy θ̂ = argmaxθ p (D|θ,Hi), Bayes’ theorem states

that given a prior belief p (θ|H) the observation of data D = {xn}Nn=1 affects a change

in our (prior) probabilistic belief giving rise to the posterior

Bayes’ theorem

p (θ|D,Hi) =
p (D|θ,Hi) p (θ|Hi)

p (D|Hi)
(2.21)

, i.e., information contained within the data D is consistently combined with a pri-

ori available information encoded in the prior distribution p (θ|Hi). This of course is

contingent on a model underlying the likelihood p (D||θ,Hi), i.e., the ability to make

statement about the data expected to be observed conditional on θ and Hi. As Bayes’

theorem permits to relate forward predictions and forward models with the plausibility

of parameters θ conditional on the observed data, it is also sometimes referred to as

the inverse law of probabilities. In consequence, the posterior p (θ|D,Hi) defines the

4The parameters θ ∈ Θ and data x ∈ X can correspond to - in principle - arbitrarily simple entities,
or alternative e.g. the set of all symmetric positive definite matrices (manifold), or Hilbert function
spaces.
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solution for the probabilistic treatment of any inverse problems, with the forward model

defining the predictions in the likelihood term [93, 128]. In Bayes’ theorem (2.21), all

involved densities are assigned different names according to the role they take in this

context:

Prior The prior distribution p (θ|Hi) defines the a priori belief regarding

the parameters θ of the model Hi, i.e., prior to observing the data

D. The prior may either incorporate a priori available information

(as well as encode desirable model bias in the context of machine

learning), but can also be constructed to remain uninformative in

any setting where this is not applicable (see section 2.3.4.)

Likelihood The likelihood p (D|θ,Hi) is a distribution in the data and defines

the probability (or the probability density) of observing a specific

dataset D conditional on the model parameters θ and hypothesis

Hi. In conjunction with the prior the likelihood scores plausibility

of the parameters θ by their ability to explain the observed data D.

Evidence The evidence term p (D|Hi) acts as a normalizing term and quanti-

fies the marginal probability or probability density of observing the

dataset D given hypothesis Hi, therefore relating to the plausibil-

ity of Hi. Note that the evidence term corresponds to a marginal

density p (D|Hi) =
∫
p (D|θ,Hi) p (θ|Hi) dθ which is intractable in

almost all interesting problem settings.

Failure to account for the prior information, i.e. conflating the plausibility of pa-

rameters given the data with the probability of the data given the parameters, is in

some settings known as the base rate fallacy (consider exemplarily the prevalence of

false positive tests). For a flat prior p (θ|Hi) ∝ const. this distinction disappears,

and the maximum likelihood estimate and maximum a posteriori (MAP) estimate

θ̂ = argmaxθ p (θ|D,Hi) will coincide - but as to be discussed later, a flat prior does not

necessarily correspond to a uninformative prior (section 2.3.4). One can also show that

Bayes’ theorem arising from our framework of probabilistic reasoning satisfies [129, 130]

for any arbitrary possible PDF ρ (θ) the convex optimality criterion [131]

p (θ|D,Hi) = min
ρ(θ)

{
DKL [ρ (θ)||p (θ|Hi)]− Eρ(θ) [log p (D|θ,Hi)]

}
(2.22)

which identifies the posterior as the density ρ (θ) maximizing the marginal probabil-

ity of observing the data Eρ(θ) [log p (D|θ,Hi)], while also balancing it against the shift

from the prior belief in terms of relative entropy (i.e., the information-distance implied
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2.3 Bayes’ Theorem

by the shift of prior distribution to ρ (θ)). In this context we mention that similarly to

Eq. (2.22) the maximum likelihood estimate (MLE) θ̂ can also be phrased as the mini-

mization of the Kullback-Leibler divergence with respect to the empiricial distribution

pe(x) = (1/N)
∑N

n=1 δ (x− xn) defined by the dataD, i.e. θ̂ = argminDKL[pe(x)||p (x|θ)].
As we are only able to inform model predictions by means of our inferred parameters

θ, Ghahramani observed that ’the parameters in parametric models constitute a bot-

tleneck in this information channel from past data D to future predictions x’ [100]5.

This contrasts with nonparametric methods, where the complexity of the model adapts

automatically to the data due to the infinite-dimensional nature of the parameters

[102, 101]. Within the confines of parametric models, techniques like sparsity-inducing

priors and automatic relevance determination [132, 133, 134] can be used to incentivize

the model to make only partial use of the information channels available (based on the

inherent complexity of the data or some desired structured and interpretable explana-

tion of the observed data). Similarly, hierarchical probabilistic models and hyperpriors

can be adopted when following a fully Bayesian approach [135, 136], i.e., when treating

all unknown parameters probabilistically. Both the evidence term as well as the poste-

rior are generally not tractable, with the exception of narrowly constrained conjugate

exponential models [65]. As such, specialized algorithms have to be employed which

seek to provide a numerical approximation of the posterior (see the ensuing discussion

in section 2.4). In passing we remark that given suitable inference methods such as

reversible jump Markov Chain Monte Carlo [137] one may also consider parametric

models where the number of model parameters itself is variable (e.g., Bayesian DNA

sequence segmentation [138]). Another feature of Bayes’ theorem is that it straightfor-

wardly lends itself to sequential and iterative updating, i.e., the sequential arrival of

data D = ∪Kk=1Dk as an ensemble of K batches D1,D2, ...,DK can be phrased in terms

of recursive updates p (θ|D1, ...,Dk,Hi) ∝ p (Dk|θ,Hi) p (θ|D1, ...,Dk−1,Hi). Here the

posterior recursively acts as the new prior the given the latest batch of observed data.

This type of iterative updating arises naturally in a setting where data arrives sequen-

tially, as well as of course for time-dependent and time-dynamic inference problems

[139]. Traditional deterministic, computational methods can also be subsumed into

Bayes’ theorem from the vantage point of probabilistic numerics [8, 10, 9, 12], which

phrases the solution of numerical problems as an inverse inference problem (uncertainty,

e.g., being introduced by finite machine precision or the constraints of tempo-spatial

discretization). Another recent trend has been the emergence of probabilistic pro-

gramming and associated numerical frameworks [140, 141, 142, 143, 144], which seek

to provide a more automated construction of probabilistic models and execution of

(approximate) probabilistic inference.

5Hence why we will explore and exploit the notion of effective physical properties as very narrow
information channels enabling predictions in the small data domain, see section 3.1
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2.3.2 Posterior Predictive and the Bayes Estimator

The posterior distribution p (θ|D,Hi) represents the combined information of the prior

and the data D conditional on our model assumptions Hi. After obtaining the posterior

distribution (or a sufficiently accurate approximation), one may employ it to make

predictions w.r.t. x conditional on our model (i.e., hypothesis Hi) by means of the

posterior predictive

p (x|D,Hi) =

∫
p (x|θ,Hi) p (θ|D,Hi) dθ (2.23)

which importantly marginalizes out the epistemic uncertainty in our model parame-

ters θ. Obtaining the posterior and posterior predictive translates to the objective in

the engineering domain to make predictions or to make decisions and/or inform com-

peting designs. The distributions p (x|D,Hi) and p (θ|D,Hi) capture all the relevant

information available about the model and model predictions given the data D. In

particular one may in principle evaluate any arbitrary expectation under the posterior

predictive

Ep(x|D,Hi) [f (x)] =

∫
f (x) p (x|D,Hi) dx (2.24)

If one seeks to reduce θ to a point estimate, a principled way to do so is by means

of the Bayes estimator θ̃, which minimizes the posterior expectation of a suitable risk

function or utility function. I.e., select as Bayes estimator the parameters θ̃ which

minimize the a posteriori expected Bayes risk argmaxθ̃ Ep(θ|D,Hi)[L(θ, θ̃)], with L(θ, θ̃)

a suitable application-specific loss function depending on the parameters.

2.3.3 Bayes Factor

If our preceding discussion has identified the correct way to consistently update our

states of belief regarding the parameters θ conditional on the hypothesis Hi, the ques-

tion remains how plausible or credible the competing hypotheses Hi are in light of the

observed data D. The evidence ratio, i.e., the relative probability of observing the data

under different hypotheses, in combination with our a priori belief p (Hi) regarding

model plausibility gives rise to the Bayes Factor [145]

BFij =
p (Hi|D)
p (Hj |D)

=
p (D|Hi)

p (D|Hj)

p (Hi)

p (Hj)
(2.25)
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2.3 Bayes’ Theorem

Bayes Factor BFij Interpretation

> 100 Extreme evidence for Hi.
30− 100 Very strong evidence for Hi.
10− 30 Strong evidence for Hi

3− 10 Moderate evidence for Hi

1− 3 Anecdotal evidence for Hi

1 No evidence

Table 2.1: Jeffrey’s scale of the Bayes factor as given in [147], providing the relative weight of
evidence of the data for Hi over Hj . Relative plausibilities of BFij < 1 follow from
symmetry.

as the relative plausibility (or posterior odds) of two competing hypotheses Hi and

Hj upon observing the data D. Notably we do not require the marginal probability

p (D), which cancels out. The Bayes factor BFij depends on the probability of observing

the data conditional on the hypothesis, i.e., involves the generally intractable marginal

distribution

p (D|Hi) =

∫
p (D|θ,Hi) p (θ|Hi) dθ (2.26)

While we will defer discussion on the underlying mechanism by which Bayes’ theorem

and thus BFij give preference to competing hypotheses (section 2.3.5), a comparably

simple way to at least interpret the Bayes factor is by considering it as betting odds,

i.e., expressing to which extent the data D favors hypothesis Hi over Hj (or the other

way around). It is therefore obvious that the plausibility of a model or hypothesis

Hi regarding the observation of some data D can only be quantified in relative terms

(compared to another competing explanation Hj), and not in absolute terms (see also

Bayesian hypothesis testing [146]). A qualitative interpretation of the Bayes factor -

known as the Jeffreys scale - has been given in Table 2.1.

2.3.4 Uninformative and Improper Priors

Based on our preceding discussion of the non-euclidean structure of probability distri-

butions as well as from Bayes’ theorem and its parametrization dependence it follows

that the notion of an uninformative prior must be different from the notion of a flat

prior p (θ|Hi) ∝ const., which would arise from the naive extension of the principle of

insufficient reason [148] in a discrete setting. An uninformative prior can rather be

understood as assigning a priori ’equal probability to equal volumes of the statistical

manifold’ [149], or alternatively, to equal volumes of the hypothesis space. One can

show that for a parametric statistical manifold with the Fisher information matrix I (θ)
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as the Riemannian metric tensor (see previous discussion in section 2.2.1), the notion

of equal probability for equal volumes in the hypothesis space leads to Jeffreys prior

[150]

p (θ) ∝
√
det I (θ) (2.27)

While this often constitutes an improper prior (i.e., not integrating to a finite value),

the associated posterior may still generally define a valid distribution. Despite the

theoretical justification and elegance of Jeffreys prior, from a pragmatic perspective it

has been known to yield suboptimal results in particular in a high-dimensional setting

(even assuming that I (θ) is attainable). This observation gave rise to the proposition

and development of reference priors [151, 152], which seek to identify an uninformative

prior distribution p (θ) by maximizing the expected information distance between prior

and posterior (a concept also explored in the context of deep learning [153]). Impor-

tantly, the reference prior is not defined with respect to a specific observed dataset, but

instead implies an expectation w.r.t. the data predicted to be observed by the model.

For certain simple cases, Jeffreys’ prior coincides with the reference prior [152].

2.3.5 Occam’s razor and Geometric Complexity

Bayes’ theorem inherently trades off model complexity and model fit giving preference

to simpler explanations of the data - a general principle known as Occam’s razor. This

is reflected already in Eq. (2.22), if we regard as a measure of complexity the extent to

which the probability mass of the posterior has shifted from the prior distribution (as

measured by the Kullback-Leibler divergence). Notably, the preference for simplicity

is not postulated or artificially introduced, but rather arises naturally from the basic

rules of probability theory (and therefore Cox’s axioms) [132]. From a machine learning

perspective, one can remark that the ability to increase the model fit to the observed

data does not equal a better generalization performance (see also bias-variance de-

composition [65]). The most accessible and most widely stated explanation as to why

Bayes’ theorem incorporates Occam’s razor is given by the necessity of the model to

define a normalized distribution p (D|Hi) in the data. This implies that a more com-

plex model - which may account and explain for the observations of a greater variety of

data - therefore necessarily must generally assign a smaller probability (or probability

density) p (D|Hi) compared to a simpler model, as long as both models are able to pro-

vide an explanation for the observed data. This mechanism is illustrated in Figure 2.2

reproduced from MacKay [75], where the conceptual idea is visualized for a simplistic

model. We assume the existence of three hypotheses i = 1, 2, 3, corresponding to an ap-

proximately uniform distribution in x with its spread depending on the variance of the

parameter θ (consider conceptually a model akin to x|θ ∼ N (θ, 1) , θ|Hi ∼ N (0, σ2
i )).
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2.3 Bayes’ Theorem

If one assumes that the posterior p (θ|D,Hi) is sufficiently strongly peaked around the

maximum a posteriori estimate of θ, using Laplace’s method one can approximate the

evidence term as [75]:

p (D|Hi) =

∫
p (D|θ,Hi) p (θ|Hi) dθ

≈ p (D|θMAP,Hi)︸ ︷︷ ︸
Achieved Likelihood

·
σθ|D
σθ︸︷︷︸

Occam factor

(2.28)

The values of σθ|D and σθ characterize the variance of unimodal prior and posterior

distributions in θ, respectively (see also Figure 2.2). This suggests that the model

evidence can be interpreted as the achieved likelihood penalized by the Occam factor,

which MacKay characterized as ’the ratio of the posterior accessible volume of parameter

space Hi’s to the prior accessible volume’ [154]; i.e. the complexity of a hypothesis is

measured to the extent it requires to shift the prior’s probability mass. An extension of

this discussion and analysis has been pursued by Balasubramanian from an information

geometric perspective [155], considering competing models with d-dimensional bounded

parameter space (θ ∈ Θ,Θ ⊂ Rd) and non-informative Jeffreys prior p (θ) ∝
√
det I (θ).

If we introduce the negative model evidence X = − log p (H|D) as a measure of the

complexity of our model H, then similarly to our previous discussion given a sufficiently

large dataset D = {xn}Nn=1 resulting in a sharply peaked unimodal posterior enables

approximation of the complexity term X as [155, 156]

X ≈ − log p
(
D|θ̂

)
+ log

(
V (H)
Vc (H)

)
+O (1/N) (2.29)

The ratio of V and Vc again corresponds to the previously mentioned ratio of prior

and posterior accessible volume of the parameter space in Θ, i.e., Vc (H) constitutes the
volume of the subspace of Θ which yields non-negligible probability for the observed

data D (this is basically a generalization of Eq. (2.28)). Additionally, it was shown by

Balasubramanian that for suitable simplifying assumptions (restricting contributions

to the integrals to the vicinity of the maximum likelihood estimate θ̂) the measure

of complexity X of the model can be expressed and further decomposed in terms of

stochastic and geometric complexity 6 [155]. Let θ̂ denote the maximum likelihood

estimate of the parameters, then approximately:

6Note that we merely reproduce the final results, and the reader is referred to the original publica-
tion for detailed discussion and derivation.
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p(D|H3)

p(D|H2)

p(D|H1)
D

D

p(θ|D,H3)

p(θ|H3)

θ θ θ

p(θ|D,H2)

p(θ|H2)

p(θ|H3)

p(θ|D,H3)

σθ

σθ|D

Figure 2.2: Illustration of Occam’s razor as given by MacKay (Figure 28.6 in [75], with slight
adaptions to notation). Our three different models H1,H2 and H3 correspond to
three approximately uniform distribution in x with the spread depending on the
variance of the parameter θ (as stated in the main text, conceptually a model akin
to x|θ ∼ N (θ, 1) , θ|Hi ∼ N (0, σ2

i )); for i = 1, 2, 3 we obtain different variability
in p (θ|Hi) and p (D|Hi). We compare the relative plausibility of these three
models under the assumption of having observed a single datapoint D. Following
Eq. (2.28), the most plausible hypothesis is H2, as it defines the simplest model
which nonetheless still is able to explain the observed data (i.e., the model H2 can
assign a larger density to the data D compared to H3, due to its smaller support).
Reproduced with permission of The Licensor through PLSclear.
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M1 = {p (D|θ,H1) | θ ∈ Θ}
’Natural’ model M1

’Unnatural’ model M2

M2 = {p (D|θ,H2) |θ ∈ Θ}

Space of all distributions

True Distribution p (D)

Figure 2.3: Illustration of geometric formulation of Occam’s razor for parametric models based
on Figure 2 by Balasubramanian [157]. While both natural M1 and unnatural
model M2 can be identically close to the ground truth for suitable parameter
values θ̂, the unnatural model scores poorly on geometric complexity (as small de-
viations lead to rapid deterioration of its ability to explain the data); furthermore
it needs to be assumed that a different realization of the data D could strongly
affect the estimate of θ. Hence the choice according to Bayesian evidence favors
the natural and less complex modelM1.

X ≈ − log p
(
D
∣∣∣θ̂)+

d

2
log

N

2π
+ log

∫ √
det I (θ) dθ + 1

2
log

det J
(
θ̂
)

det I
(
θ̂
)
+O (1/N)

(2.30)

Here I(θ̂) and J(θ̂) denote the Fisher information matrix as well as a kind of em-

pirical Fisher information matrix [J(θ̂)]uv = −(1/N)∇θu∇θv log p (D|θ)|θ̂ around the

maximum likelihood estimate θ̂ (normalized by the number of datapoints N). The

expression in Eq. (2.3) can again be viewed to relate to the achieved log-likelihood

penalized by the model complexity. The first two terms of X in this expansion de-

fine the stochastic complexity and relate to the minimum description length (MDL)

principle [158], i.e., favor a hypothesis H that offers a parsimonious compression of

the data (while taking into consideration the likelihood achieved for the data). The

stochastic complexity scales with the number of data points as O(N) and O(logN).

The Bayesian approach of model selection can therefore be seen to extend upon the

stochastic complexity criterion of the minimum description length, adding terms that

capture the robustness of the proposed model in the hypothesis space. The third term

in Eq. (2.3) essentially provides a measure of the prior support of the model, and as

29



2 Fundamentals

such penalizes models to the degree they are a priori unconstrained. We can also note

the second and third terms of our expression (2.3) for the complexity X do not depend

on the observed data D, and as such define an inherent property of the assumed model.

In contrast, the last term relates to the Fisher information matrix at the maximum

likelihood estimate θ̂ and thereby to the notion of geometric robustness. If the volume

spanned by the eigenvectors of the Fisher information matrix I(θ̂) is small (in relation

to J(θ̂)), this implies that the model is sensitive with respect to the choice of θ, i.e.,

perturbation of the parameters away from θ̂ quickly degrade the ability of the model

to explain the data D. This is visually illustrated in Figure 2.3, which contrasts a

’natural’ model and an ’unnatural model’; while achieving the same likelihood, they

score differently according to their geometric robustness. We also note that of course,

the discussion of Occam’s razor and the Occam factor is theoretical in nature, as the

evidence p (D|Hi) remains intractable in the general setting. The purpose of this sec-

tion is merely to shed light on the mechanism by which the evidence gives preference

to models, and how this relates to robustness and generalization. Approximations of

the evidence term exist which introduce varying degrees of simplifying assumptions

(e.g., based on a Laplace approximation [2], Akaike Information Criterion (AIC) [159],

Bayesian Information Criterion (BIC) [160]). Intuitive examples for the preference of

the Bayesian evidence towards simpler models may also be found in Tenenbaum’s thesis

on Bayesian concept learning [161].
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2.4 Approximate Probabilistic Inference

Inference pertains to the process of resolving probability distributions conditional on a

set of known or observed entities, or more generally, the resolution of any distribution of

interest by means of suitable numerical methods. While a large ensemble of algorithms

exists which have been tailored to specific models enjoying a specific structure (e.g.,

factorization, conjugate models), in the following we will confine our discussion to

inference methods that have general applicability and as such can target in principle any

intractable distribution p (x) without any further restrictive assumptions. Exemplarily,

our target distribution p may arise as the posterior p (x|D) upon the observation of a

dataset D

p (x|D) = p (D|x) p (x)
p (D)

=
π (x)

p (D)
(2.31)

with π (x) the unnormalized posterior, i.e., π (x) ∝ p (x|D). Generally, inference

necessitates working with the unnormalized distribution π (x) due to the intractability

of the evidence. We have slightly changed the notation away from θ, as we do not

necessarily assume parametric models. Given the vast amount of effort this topic has

received, the following exposition by necessity is limited to an introductory discussion

of two of the most widely used and most general approaches (variational inference and

sampling-based methods). The reader is referred to the appropriate literature for a

more in-depth discussion (e.g., [162, 163, 164, 165, 166]). In addition, we should note

that the delineation suggested in the following subsections is not absolute, as hybrid

variants exist that seek to, e.g., bridge variational inference and sampling-based ap-

proaches [167, 168, 169]. Naturally more simplistic approaches can be used which reduce

the a posteriori probability mass to a mere point-estimate (maximum-a-posteriori), or

try to capture the distribution of probability mass with a Gaussian at the mode of the

posterior (Laplace approximation).

2.4.1 Variational Inference

Variational Inference (VI) [162] rephrases the problem of capturing the probability mass

of the posterior p as a variational problem. To this end, we posit that the intractable

target distribution can be sufficiently approximated by a distribution q∗ within an a

priori defined family of distributions Q. We then identify the optimal distribution

q∗ ∈ Q within this family as the minimizer of a divergence metric D [·||·], i.e.

q∗ = argmin
q∈Q

D [q||p] (2.32)
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Qξ =
{
qξ (x)

∣∣ξ ∈ R2
}

p

geodesic

M

q∗

ξ1

ξ2

Figure 2.4: Variational inference as
projection of p ∈M along a geodesic on
variational submanifold Q ⊂M. Figure
based on and adapted from [170].

The variational approach is inherently approx-

imate (unless p ∈ Q), and the choice of Q de-

fines a tradeoff between computational complex-

ity and the extent to which q∗ is able to capture

the probability mass of the target distribution.

The divergence measure D [·||·] of course implic-

itly defines a mechanism that quantifies the mis-

alignment of probability mass between q and p in

a particular way, and hence even for the identical

variational family Q, different choices of the di-

vergence metric may define widely different op-

tima q∗ ∈ Q 7 (e.g., α-divergence [171], Rényi

divergence [172], χ-divergence [173], Wasserstein

distance [174, 175]). Conditional on the specific

choice of Q and the divergence measure (as well

as other practical considerations), a large ensemble of different variational inference

methods arise (e.g., [176, 177, 178, 179]). In the general case, we can define Q irre-

spective of the specifics of the probabilistic model (black-box variational inference), as

long as we are able to evaluate the log-joint corresponding to the unnormalized den-

sity π (x) [180, 181, 182]. Most commonly we parametrize Qξ by means of variational

parameters ξ and subsequently rephrase Eq. (2.32) as a minimization problem w.r.t.

the variational parameters, i.e., ξ∗ = argminξ D [qξ||p]. As an example one might

seek to approximate p by means of a Gaussian N (x|µ,Σ), implying that ξ = {µ,Σ)
(or a low-rank representation thereof [183] for scaleability) would be a possible choice

for the associated variational parameters ξ. Given this example, it should be noted

that variational inference is not restricted to families of distribution Q which permit

explicit representation, see e.g. [184, 185, 186]. From an information-geometric per-

spective considering Qξ ⊂M as a statistical manifold, identifying q∗ according to Eq.

(2.32) defines an information projection of p ∈ M onto the submanifold Qξ along the

geodesic implicitly defined by D [·||·] [170], where D [q||p] can be interpreted as the loss

of information incurred by substituting the intractable target distribution p with the

approximation q. This geodesic projection of the posterior p is illustrated in Figure

2.4 - with the variational submanifold Qξ (here ξ ∈ R2) embedded in the space of all

admissible density functionsM. While we will not attempt a taxonomy of the various

variational inference methods developed, we make mention of a subclass of algorithms

(due to their importance) summarized as Stochastic Variational Inference (SVI, e.g.

[163, 187, 188]). For these algorithms, the divergence (or some proxy) cannot be cal-

culated, and instead, a Monte Carlo estimate of the divergence as well as most often

7Consider exemplarily the impact of forward and reverse Kullback-Leibler divergence in under- or
overestimating the support of the target distribution [65]
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also its gradient is used in combination with stochastic optimization techniques (e.g.,

stochastic gradient ascent [189, 190, 191]). The nature of the Monte Carlo estimator

used [192] will generally heavily impact the variance, and hence the viability and scal-

ability of this approach; in consequence, a significant research effort has been aimed

at variance reduction of Monte Carlo gradient estimators in this context (e.g. natural

gradients [193], path derivative gradient estimator [193], generalized reparametrization

gradient [194]). Due to its scalability, SVI is also the most commonly used inference

approach for complex, deep probabilistic models [195]; in this setting, SVI can also

(additionally) involve subsampling of the data. The approximative nature of varia-

tional inference however also runs the risk of a ’self-fulfilling prophecy’ [196], where

incorrect and faulty model assumptions are reinforced in the results. Echoing our pre-

vious claims that learning is synonymous with probabilistic inference [197], we mention

that variational inference has been related to general human cognition and action plan-

ning by means of the Bayesian brain hypothesis and the free energy principle [18, 19],

which formulates cognition and action planning [198] as a process akin to variational

inference, similarly involving the minimization of the variational free energy (see next

section 2.4.1.1).

2.4.1.1 Evidence Lower Bound

As previously discussed, the Kullback-Leibler divergence defines a special choice in

the context of variational inference, as it implies the solution of a variational problem

aimed at the minimization of relative entropy and thus information loss. In addition,

minimization of the generally intractable Kullback-Leibler divergence is also equivalent

to maximizing a lower bound of the log-probability of the data, the so-called Evidence

Lower Bound (ELBO). If we consider the case where the target distribution is defined

by the posterior p (x|D) and substitute p (x,D) /p (D) in the definition of the KL-

divergence in Eq. (2.6), we obtain

DKL [q||p] =
∫

log

(
q (x)

p (x|D)

)
q (x) dx

= log p (D)− Eq(x) [log (p (D, x))− log q (x)]︸ ︷︷ ︸
F(q)

(2.33)

with F also being referred to as the negative variational free energy. Due to the

non-negativity of the Kullback-Leibler divergence it follows from log p (D) = F (q) +

DKL [q, p] that F (q) ≤ log p (D), with F (q) = Eq(x) [log p (D, x)− log q (x)] the Evi-

dence Lower Bound (alternatively also obtained from Jensen’s inequality [199]). While

the ELBO generally involves non-tractable expectations which have to be estimated

with Monte Carlo, the substitution of the Kullack-Leibler divergence minimization
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with the (equivalent) maximization of the ELBO offers the benefit of not depending on

the intractable evidence term - we can use the unnormalized distribution π (x), which

merely shifts the ELBO by a constant. In addition, the estimation of the ELBO F by

means of Monte Carlo provides the ability to monitor convergence (in contrast to, e.g.,

sampling-based methods). Instead of our initially obtained representation, we can also

restructure the ELBO into a different representation containing the entropy term [200].

F (q) = log p (D)−DKL [q (x)||p (x|D)]
= Eq(x) [log p (D, x)] +H [q (x)] (2.34)

which suggests that maximization of the Evidence Lower Bound corresponds to iden-

tifying a variational approximation q ∈ Q which according to the first term Eq. (2.34)

’place[s] high mass on configurations of the latent variables that also explain the obser-

vations’ [180], while the second term favors entropic distributions, i.e., which ’maximize

uncertainty by spreading their mass on many configurations’ [180].

2.4.1.2 Mean-Field Approximation

One prominent choice regarding the variational approximation q ∈ Q lies in the assump-

tion of (partial) independence, defining a restriction of Q typically due to computa-

tional and/or practical consideration. If we introduce a partitioning of x into J disjoint

groups {xj , j = 1, ..., J}, then the (blocked) mean-field approximation corresponds to

the assumption that q factorizes as q (x) =
∏J

j=1 qj (xj) (it defines an approximation

because the posterior will generally not possess such a structure). When this mean-

field assumption is paired with the Kullback-Leibler divergence one can show that the

optimal variational factors qj (xj) , j = 1, ..., J are implicitly defined by [162, 65]

log q∗j (xj) = Ei ̸=j [log p (D, x)] + const. (2.35)

where Ei ̸=j denotes an expectation w.r.t. all the remaining (J − 1) variational factors.

In certain settings for all (or some) of the variational factors, no further assumptions

are necessary, with the family of the variational factors qj then implicitly defined by

Eq. (2.35). In a semi-tractable setting, reintroduction of the optimal factors q∗ into

the ELBO gives rise to the collapsed Evidence Lower Bound (e.g., [201]), which will

provide lower-variance estimates and expedited inference.

2.4.1.3 Expectation Maximization

The Expectation-Maximization (EM) [202] is aimed at the identification of point esti-

mates for parameters of intractable probabilistic models and can be derived and mo-
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tivated in several ways. Given our preceding discussion in a probabilistic setting, it is

most readily introduced by phrasing it as variational inference constrained to specific

assumptions regarding mean-field factorization and their variational family. If we con-

sider a partitioning x = {y, z}. then the ELBO arising for the mean-field approximation

q (y, z) = q (y) q (z) is given by

log p (D) = log

∫
p (D|y, z) p (y, z) dy dz (2.36)

≥ Eq(y)q(z)

[
log

(
p (D, y, z)
q (y) q (z)

)]
(2.37)

Constraining ourselves to point estimates of y by introducing a Dirac q (y) = δ (y − ŷ),

then from Eq. (2.35) we find that the optimal variational factor in z is given by

the posterior q∗ (z) = p (z|ŷ,D). The EM-algorithm then corresponds to optimiza-

tion of the ELBO by iteratively updating the variational factors, i.e., the Dirac and

q∗ (z) = p (z|ŷ,D). Notably, this implies that the traditional EM-algorithm assumes

the posterior p (z|ŷ,D) to be tractable, as well as generally the required expectations

with respect to this distribution. We can summarize the EM-algorithm as iterative op-

timization requiring an expectation with respect to the posterior as well as a subsequent

maximization with respect to ŷ

E-Step Identify the posterior q∗ (z) = p (z|ŷ,D) and obtain the lower bound

Q (y) = Eq∗(z) [log p (D, y, z)] (2.38)

M-Step Maximize the lower bound (or marginal likelihood) to obtain a point estimate

ŷ = argmax
y

Eq∗(z) [log p (D, y, z)] (2.39)

Here we have neglected any terms of the ELBO which do not depend on y. For

applications of the EM-algorithm, z often corresponds to latent variables (e.g. [203])

or to auxiliary variables artificially introduced to obtain a tractable expression for the

likelihood (e.g. [204]). The Variational-Bayes Expectation-Maximization (VB-EM)

algorithm simply defines a relaxation of this algorithm, where instead of being able to

identify q∗ in the E-step in closed form as the posterior, we conduct variational inference

to approximate the posterior; generally, the EM algorithm permits incomplete or sparse

updates [205], i.e., none of the two optimization problems implied by the E-step and

M-step need to be solved fully in each iteration. The EM algorithm can also be viewed

as a coordinate ascent algorithm, iteratively constructing local lower bounds of the log-

likelihood in the E-step, and subsequently maximizing this local approximation in the

35



2 Fundamentals

M-step. Obtaining maximum likelihood point estimates of y in absence of a prior follows

from lower-bounding the conditional likelihood log p (D|y) = log
∫
p (D|y, z) p (z) dz.

2.4.2 Sampling-based Inference

In contrast to variational inference, the class of sampling-based inference methods is

able to obtain a sample-based representation of a target density which in principle can

be asymptotically accurate. In practice, however, they are often not competitive with

variational inference due to their comparably poor scalability as well as the comparably

complicated assessment of convergence. The most prominent sampling-based method

is given by Markov Chain Monte Carlo (MCMC) [165, 166, 206], which artificially

constructs a Markov Chain as an ordered sequence of random variables subject to the

Markov property. If carefully constructed to certain criteria, random variables pro-

duced by the chain are (correlated) samples from the desired target distribution [207].

The Metropolis-Hastings algorithm [208] achieves this by generating proposals from

a generally non-symmetric proposal distribution q (y|x), either accepting or rejecting

them with probability α

x(n+1) =

{
y(n) with probability α

(
x(n), y(n)

)
x(n) with probability 1− α

(
x(n), y(n)

) (2.40)

with the acceptance probability α given by

α (y, x) = min

{
p (y)

p (x)

q (x|y)
q (y|x)

, 1

}
(2.41)

In combination, Eqs. (2.40, 2.41) define the (homogenous) transition operator t (y|x)
of the Markov chain satisfying the detailed balance criterium p (y) t (y|x) = p (y) t (x|y)
[165]. As detailed balance is a stronger criterium, this automatically guruantees in-

variance of the target distribution p (x) under the transition operator, in addition to

irreducability and aperiodicity [165]; more particularly, the target distribution p (x) is

the only distribution invariant under the transition operator of the chain (also referred

to as stationary distribution). The detailed balance criterium relates to the concept

of reversibility and equilibrium thermodynamics (at equilibrium the distribution does

not change under time-reversal). As an obvious consequence of sampling proceeding

sequentially within the Markov process, the samples generated are correlated and as

such no longer independent. This implies that any Monte Carlo estimator based on

such a correlated sample representation suffers delayed convergence directly related

to the extent of the autocorrelation present (quantified by the effective sample size

[209],[165]). The convergence of the chain and the quality of the samples produced
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as such heavily hinges on the suitability of the proposal distribution q (y|x) given the

target distribution; the challenge of obtaining decent sample-representations increases

steadily in lockstep with the dimension, the complexity of the submanifold along which

most of the probability mass is concentrated, as well as the number and separation

of modes of the distribution. In addition, assessment or diagnostic of convergence of

Markov chains [210, 211] is generally non-trivial. The acceptance ratio as the fraction

of accepted proposals is a coarse metric, with statements regarding optimal values only

feasible for a subset of methods under heavily constrained assumptions (e.g., [212]).

The dependence of the convergence on the autocorrelation implies that very large or

small values of the acceptance ratio will inherently be problematic, and this behavior

will be evident in the mixing behavior of the traces of the samples generated by the

Markov chain. Many convergence diagnostics such as the Gelman and Rubin Diagnos-

tic [213, 214] rely on analyzing multiple chains, whereas other methods such as e.g.

the Geweke diagnostic [215] looks at the temporal evolution of a single chain; generally

speaking however assessing and assuring convergence of Markov chains (in finite time)

is non-trivial and constitutes a disadvantage compared to variational methods. Apart

from discarding the initial samples generated by the chain affected by the choice of

the starting point (burn-in period), chain thinning [216] is another technique that is

employed to mitigate sample correlation (it is primarily of utility when memory is of

concern, or when computationally intensive operations need to be performed on the

generated samples). Research into variants of Metropolis-Hastings has seen many at-

tempts to identify improved proposal distributions yielding small autocorrelation of the

chain, while simultaneously being able to deal with other complications (e.g., multi-

modality of the target distribution). An ensemble of methods such as e.g. Hamiltonian

Monte Carlo (HMC) [217] or Metropolis Adjusted Langevin Algorithm (MALA) [218]

seek to inject available gradient information into the proposal distribution in order to

more efficiently explore and traverse the space (of course this has been extended to the

idea of including curvature information as well [219]). Other methodological refine-

ments aim at adaptively tuning the proposal distribution over time, e.g., the adaptive

No-U-Turn sampler (NUTS) [220]. Another notable family of methods is defined by

auxiliary variable methods which apart from HMC also most notably contain Gibbs

sampling [221] and slice sampling [222, 223, 224]. Lastly, the inherent sequential nature

of Markov Chain Monte Carlo can be elegantly parallelized by making use of Sequen-

tial Importance Sampling (SIS), i.e., wrapping the Markov chain within a Sequential

Monte Carlo (SMC) method [209, 225]. This is essentially conceptually identical to a

particle filter, acting instead on a sequence of artificially defined bridging distributions

in a static Bayesian inference setting.
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2.5 Probabilistic Machine Learning and Deep Architectures

From the Bayesian perspective [226], machine learning simply reduces to probabilistic

reasoning for certain types of probabilistic models, and hence any delineation is to some

extent artificial. Probabilistic models in the context of machine learning still equate

to a hypothesis of the generative process underlying the observed data, and upon ob-

servation of the data, we infer the underlying parameters or structure of the model.

When we extend this to ‘deep learning‘’, this simply implies an increase in hierarchical

complexity of the probabilistic model (e.g. [227, 228]) or underlying neural network

architectures [66, 229]). Increasing complexity and expressibility of models by adding

depth enjoys advantages compared to adopting shallow but wider models [230], among

other reasons due to the ability to encode complex hierarchical features. Deep architec-

tures and complex hierarchical features are most commonly constructed by repeatedly

stacking elements, ranging from, e.g., relatively simple convolutional layers to more

complex ’compound’ blocks (e.g. dense blocks [231] or LSTMs [232]). An illustrative

example of the complexity of features achievable by deep hierarchical architectures is

given by multi-modal neurons [233], i.e., neurons that fire and are excitated when con-

fronted with general abstract concepts, irrespective of the specific representation (e.g.,

textual, drawings, or photographs - see for instance the Contrastive Language-Image

Pre-Training (CLIP) model [234]). A viewpoint suggested by Tishby [235] relating

closely to this observation is that deep learning can be understood as a sequence of

operations that iteratively arrives at a more compressed encoding of the pertinent

information; considering for instance the example of a classification problem, unneces-

sary and redundant information is iteratively stripped away until an image is reduced

to just a single bit of information (in a binary classification setting). From the previ-

ous statement, i.e., probabilistic models defining an a priori hypothesis space regarding

the explanation of the observed data, it follows that the specific model assumptions

correspond to an inductive bias. Consequently, one may argue that specifying models

with inductive bias suitable for the task at hand is a large part of successfully apply-

ing machine learning methods in challenging problem settings [236]. Exemplarily, the

functional mapping identified by a convolutional neural network (CNN) [237] could

similarly be expressed by a sufficiently deep and wide dense feedforward neural net-

work. But apart from the apparent and undesirable increase in parameter complexity

due to a less parsimonious representation, the feedforward neural network lacks the

inductive bias which makes CNNs so useful and successful for certain prediction tasks

(e.g. translational invariance [238]). Another way to recognize the hidden inductive

bias in the model assumption is the preference of neural networks for simple, low en-

tropy functions [239, 240], as well as the equivalence of many Bayesian neural network

architectures with Gaussian Processes, i.e., an a priori belief (and therefore model bias)

about function space underlying the mapping [241, 242, 243, 244].
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Posterior Ground TruthPosterior Ground Truth

Prior Hypothesis Space Prior Hypothesis Space

Admissible Model Space Admissible Model Space Admissible Model Space

Prior Hypothesis Space

(a) Adequate model (b) Overly simplistic model (c) Overly complex model

Posterior Ground Truth

Figure 2.5: Figure recreated and adapted from [236], illustrating the impact of model capac-
ity and inductive bias. Subfigures (a,b,c) illustrate the contraction of prior to
posterior probability mass in the hypothesis space, with the shift of probability
mass indicated by arrows. From left to right: (a) The prior hypothesis space
envelopes the ground truth without being overly complex, and the inductive bias
of the model favors the underlying ground truth. (b) An overly simplistic model
does not contain the ground truth within the a priori hypothesis space, and conse-
quently the posterior is not able to capture it. (c) While an overly complex model
with poor inductive bias is (in theory) still able to capture the underlying ground
truth, given the limitations of finite data, the posterior mode in the hypothesis
space will generally only assign small plausibility to the underlying ground truth.

2.5.1 Deep Learning as Approximate Variational Inference

Building on this discussion, it has been shown that learning with deep neural networks

can be readily understood as ’approximate variational inference in a Bayesian set-

ting’ [195]. Similarly, a large ensemble of initially entirely heuristic methods and tools

which have contributed considerably to the success and generalization performance of

deep learning has subsequently been identified as (highly) approximate Bayesian infer-

ence. For instance, stochastic gradient ascent using batch subsampling has been shown

to correspond to a stochastic process approximating the posterior [245, 246], with

penalty terms for neural network parameters implicitly corresponding to e.g. Gaus-

sian or Laplace priors. Similarly dropout and ensemble methods [247] can be regarded

as approximate probabilistic inference, and indeed this observation has given rise to

variational inference methods specifically tailored towards the parameters of large and

complex neural network architectures [248]. When talking about deep learning from the

perspective of probabilistic reasoning, it of course true that most often approximations

and simplifying assumptions are introduced compared to a rigorous probabilistic ap-

proach (e.g., point estimates or maximum likelihood). Similarly not every conceivable

computational method can immediately be subsumed into a probabilistic framework.
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Despite this, it can be argued that any learning task is most readily understood from the

Bayesian viewpoint (consider, e.g., non-probabilistic support vector machines viewed

from the vantage point of relevance vector machines). On the other hand, while learning

and inference in deep and complex probabilistic models remain conceptually identical

to more simplistic settings, there are of course profound complications and challenges

arising in practice (e.g., the sheer scale, gradient saturation, non-convex optimizations,

learning parameters, non-trivial choices of architectures and hyperparameters, etc.).

As a general discussion of probabilistic machine learning methods would be entirely

prohibitive in scope, in the following we instead discuss the variational autoencoder

as an archetypical example, in particular, due to its similarity to the generative latent

variable model adopted by us in section 3.1.

2.5.2 Example: Generative Latent Variable Model

A wide ensemble of generative models [249] with the ability to model complex distribu-

tions and interdependencies have been proposed, such as e.g. GANs [250], latent vari-

able models [188, 228, 251, 252], flow-based models [185, 253, 254, 255, 256], diffusion-

based models [257], and autoregressive models [258, 259, 260, 261] (with hybrids of

course existing, e.g. [262]). These methods come with their own set of advantages

and disadvantages, and of course, also differ w.r.t. the technicalities of training and

inference (in particular for implicit models [263], which do not permit a closed-form

evaluation of the likelihood). One of the desirable features of generative models which

we will later exploit is their ability to incorporate unlabeled data and therefore enable

semi-supervised learning in a discriminative setting [264, 251, 265]. In the following we

briefly discuss the variational autoencoder (VAE) [188] as a prototypical example of

generative models. This model posits that each observed datum x(n) within a dataset

D = {x(n)}Nn=1 has been generated by means of sample latent encoding or representa-

tion z(n), i.e. a joint density defined by p (x|z) p (z). For the simplest case of assumed

linear dependence and Gaussianity this gives rise to PPCA [203, 266], and of course

with some modifications also permits a semi-supervised variant [267]. If instead of a

linear model (as for PPCA) we introduce a nonlinear neural network to parametrize

the conditional density pθ (x|z) we thereby attain the ability to learn more complex

marginal distributions pθ (x) at the cost of losing tractability for our model. The varia-

tional autoencoder addresses this intractability by means of of an amortized variational

inference network qΦ (z|x) with variational parameters Φ. The amortized auxiliary dis-

tribution provides a very scalable 8 way to lower bound the log probability of the data

as previously discussed in section (2.4). With the short-hand notation X = {x(n)}Nn=1

and Z = {z(n)}Nn=1 we can obtain the evidence lower bound as:

8Of course non-amortized or semi-amortized inference [268] could also be adopted
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Algorithm 1: SVI for learning a Bayesian Variational Auto-Encoder [188]

1 while ELBO not converged do

// Reparametrization trick

2 Sample ϵ(k) ∼ p (ϵ) , k = 1, ...,K ;

3 Z(k) ← ϱZΦ
(
ϵ(k)

)
θ(k) ← ϱθΦ

(
ϵ(k)

)
k = 1, ...,K ;

// Monte Carlo estimate of ELBO and its gradient

4 Estimate F ← 1
K

∑K
k=1 F̂

(
Φ;Z(k), θ(k)

)
;

5 gΦ ← ∇Φ
1
K

∑K
k=1 F̂

(
Φ;Z(k), θ(k)

)
;

// Stochastic Gradient Update

6 Φ(n+1) ← Φ(n) + ρ(n) ⊙ gΦ ;

7 n← n+ 1

8 end

log pθ (D) = log

∫
pθ (D|Z) p (Z) dZ = log

∫ (
pθ (D,Z)
qΦ (Z|X )

)
qΦ (Z|X ) dZ

≥
∫

log

(
pθ (D,Z)
qΦ (Z|X )

)
qΦ (Z|X ) dZ (Jensen’s inequality)

= EqΦ(Z|X ) [log pθ (D|Z)]−DKL [qΦ (Z|X )||p (Z)]

:= F (θ; Φ) (2.42)

The ELBO decouples additively into contributions from individual data points (due

to assumed conditional independence). How tightly we lower-bound the log-likelihood is

determined by both the approximations gap as well as the amortization gap [269]. The

result obtained in Eq. (2.42) suggests simultaneously optimizing the ELBO F w.r.t.

the parameters θ of the generative model as well as the auxiliary variational inference

parameters Φ. As this still involves intractable expectations, one resorts to stochastic

variational inference and low-variance Monte Carlo estimates of the gradients via the

reparametrization trick [187]. Additional noise generally results from also subsampling

batches of data due to computational constraints (doubly-stochastic approach). As

before in section (2.1.2), instead of a point estimate for θ we can also pursue a fully

Bayesian approach by introducing a prior distribution p (θ) and corresponding varia-

tional approximation qΦ (θ), with both qΦ (θ) and qΦ (Z|X ) assumed independence and

amenable to reparametrization. Noting the assumed independence of the prior, i.e.,

p (Z, θ) = p (Z) p (θ), we again lower bound:
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log p (D) = log

∫ ∫
p (D|Z, θ) p (Z) p (θ) dZ dθ

≥ EqΦ(Z,θ|X )

[
log

(
p (D|Z, θ) p (Z) p (θ)

qΦ (Z, θ|X )

)]
(Jensen’s inequality)

= EqΦ(Z|X )qΦ(θ) [log p (D|Z, θ)]−DKL [qΦ (Z|X ) qΦ (θ)||p (Z) p (θ)]

= F (Φ) (2.43)

The intractable expectations in the ELBO are approximated with K Monte Carlo

samples (most often K = 1), with the KLD term here assumed tractable:

F (Φ) ≈ 1

K

K∑
k=1

[
log p

(
D|Z(k), θ(k)

)]
−DKL [qΦ (Z|X ) qΦ (θ)||p (Z) p (θ)]

=
1

K

K∑
k=1

F̂
(
Φ;Z(k), θ(k)

)
with Z(k) ∼ qΦ (Z|X ) , θ(k) ∼ qΦ (θ)

(2.44)

From the probabilistic viewpoint, the model specifies a joint distribution p (D,Z, θ)
and we reason probabilistically about the plausibility of unobserved values of θ and Z
given the dataset D (see Algorithm 1 for pseudo-code of training the Bayesian varia-

tional autoencoder with SVI). Apart from the probabilistic treatment of parameters θ,

numerous proposals to extend and modify the variational autoencoder have been made,

aiming to extend the method or attempting to improve on limitations and shortcomings

(e.g., learning more flexible conditional distribution using normalizing flows [270], or

mitigation of uninformative latent code [271]). For the extension of a generative latent

variable model towards semi-supervised learning, see for instance [251]. As Generative

Adversarial Networks (GANs) [250] became popularized shortly after VAEs and sim-

ilarly define an archetypical example of generative models, we briefly note that they

similarly can be interpreted as latent generators which differ primarily in their method

of training. For GANs, the identification of generative model parameters is rephrased

as a problem of estimating the ratio of two densities [272] with the help of an auxiliary

classifier. Generator and discriminator are then trained jointly until convergence to a

Nash equilibrium (see [262] for a hybrid VAE and GAN approach).
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2.6 Stochastic Processes and Physical Systems

The goal of this section is to provide a brief outline of the stochastic physical systems

which we wish to consider in the context of random media. Given a probability space

(Ω,Σ,P) with sample space Ω, σ-Algebra of measurable subsets Σ, and probability

measure P : Σ → [0, 1], we consider a stochastic partial differential equation (SPDE)

defined by a general differential operator L and boundary operator B dependent on

ω ∈ Ω

L (s;ω)u = 0 ∀ s ∈ D (2.45)

B (s;ω)u = 0 ∀ s ∈ D (2.46)

for some d-dimensional computational domain, i.e., s ∈ D ⊂ Rd. In Eqs. (2.45 -

2.46), the physical state of the system (e.g., pressure field, velocity field) u consequently

also depends on the elementary event ω ∈ Ω. As such the scalar, vector or tensor fields

defining the solution of the SPDE also constitutes a stochastic process induced by the

underlying probability space (Ω,Σ,P). In the context of random media, the dependence

of the differential and boundary operator on ω is mediated by a d-dimensional stochas-

tic process describing the random spatial variability of material properties entering

into the SPDE. While a d-dimensional stochastic process can generally be seen as a

infinite collection of random variables {X (t;ω) : t ∈ T} with countable or uncountable

d-dimensional index set T [273], in our specific case the stochastic process takes the

form of a random field G (s;ω) over the computational domain D (i.e., the indexing set

T corresponds to the computational domain D). We are interested in predicting the

behavior and propagating uncertainty through the physical system defined by L and

B, or - in a more complex problem setting - to exert a certain degree of control over the

system (in the case of the PSP by manipulating the stochastic process, but more gener-

ally also by means of additional design variables entering the physical system directly).

In the remainder of this section we lay the foundation for our subsequent discussion and

numerical investigations, first by introducing the particular case of Gaussian random

field G (s;ω), as well as additionally briefly discussing two specific cases for the differen-

tial operator L corresponding to two different physical phenomena. By doing so we seek

to establish the basis for the specific problems and numerical illustrations considered

in sections (3.1, 3.2), where we are interested in inferring coarse-grained behavior of

physical systems or the effective macroscopic properties of microstructures (assuming

that spatial variations of material properties indicated by G (s;ω) are exhibited on a

smaller length-scale). Further details on this homogenization or coarse-graining process

in terms of effective macroscopic properties are given in Appendix A.
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2.6.1 Gaussian Random Fields

In the following, we discuss briefly Gaussian random fields as well as a means of sam-

pling them based on their spectral representation (for spatial dimension d = 2). A

Gaussian random field G ∼ GP (µ, C) defines a stochastic process where any arbitrary

and finite subset of points follows jointly a Gaussian distribution, with the index set

T corresponding to spatial coordinates s ∈ D within the computational domain (hence

field). In particular, we consider a second order stationary random field character-

ized by a constant mean function µ = E [G (s, ω)] = 0, as well as an autocovariance

function depending only on the spatial lag vector r = s − s′; this implies that the

covariance function can be written as C (r) = E [G (s, ω)G (s+ r, ω)] − µ2. Bochner’s

theorem [274] asserts that for any continuous and shift-invariant positive kernel the

Fourier dual S (w) of the autocovariance function exists, known as the spectral density

function (SDF) (where w ∈ R2 denotes the wave vector) [275, 276]

S (w) =
1

(2π)2

∫
e−iwT rC (r) dr (2.47)

Under the assumption of a truncation frequency wmax (beyond which the SDF dimin-

ishes to approximately zero) we can introduce a discrete approximation of the Gaussian

process for sampling in the spectral domain [275, 277]

G (s;ω) =
√
2

J1−1∑
l1=0

J2−1∑
j2=0

[
Âj1,j2 cos

(
w1,j1s1 + w2,j2s2 + Ψ̂j1,j2 (ω)

)
+Ãj1,j2 cos

(
w1,j1s1 − w2,j2s2 + Ψ̃j1,j2 (ω)

)] (2.48)

with wi,ji = ji∆wi and ∆wi = wmax/Ji (for i ∈ {1, 2}). The remaining coefficients

are defined by:

Âj1,j2 =
√
Cj1,j2S (w1,j1 , w2,j2)∆w1∆w2

Ãj1,j2 =
√
Cj1,j2S (w1,j1 ,−w2,j2)∆w1∆w2

(2.49)

Cj1,j2 =



1
2 for j1 = j2 = 0

1 for (j1 = 0 ∩ j2 > 0) ∪ (j1 > 0 ∩ j2)

2 otherwise

(2.50)
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Similarly to wmax defining the smallest length-scales, the choice of J1 and J2 deter-

mine ∆wi and consequently the largest length-scale which can be resolved in direction

si. We refer to to Ψ̂j1,j2 ∼ U [0, 2π] and Ψ̃j1,j2 ∼ U [0, 2π] as the phase angles, and we

may summarily denote them by means of a high-dimensional vector Ψ ∈ R2J1J2 in which

we stack all phase angles Ψ̂j1,j2 and Ψ̃j1,j2 , i.e., [Ψ]i ∼ U (0, 2π) and i = 1, ..., 2J1J2.

If we define a random vector x as corresponding to the values of the random field at

a finite number of points in the domain this implies a Gaussian PDF p (x). Assuming

furthermore a parametric SDF Sφ (w) with process parameters φ induces a conditional

PDF p (x|φ), accordingly. We can consequently generate samples from this discretized

random field representation by sampling uniformly distributed phases angles, and sub-

sequently mapping them as x = Fφ (Ψ), where Fφ (·) is implicitly defined by Eqs. (2.48)

to (2.50). As we model the stochastic process in the spectral domain directly, one par-

ticular useful choice which we will adopt in 3.2 is the spectral mixture kernel, defining

the SDF Sφ (w) as a mixture of Gaussians (and φ thus generally given by mixture

weights, means and covariances). For sufficiently many Gaussian mixture components

in the SDF, any arbitrary stationary covariance function C can then be approximated

to any desired degree of accuracy [278].

Binary random two-phase media

It is a straightforward extension to employ the continuous Gaussian random field to

define a stochastic process over binary two-phase random media (see Figure 1.1). While

this process-structure linkage is an artificial construction and not directly based on a

physical process, it can be used to define a suitable high-dimensional process-structure

linkage for evaluating our methodological approach discussed in section 3.2. The defi-

nition of the two phases is simply derived from a truncation operation of the GP w.r.t.

a constant x0, i.e., we define one of the phases as V1 (ω) := {s | G (s, ω) < x0} (and V0
implicitly defined by V1 ∩ V0 = ∅). Here the constant x0 implicitly defines the volume

fraction of the two phases, as - exemplarily for a zero-mean and unit-variance Gaus-

sian Process - in expectation the volume fraction of V1 is given by Φ (x0), with Φ the

cumulative density function of the standard Gaussian distribution.

2.6.2 Governing Equations

In the following, we briefly introduce two specific cases for Eq. (2.45) as relevant

for our numerical illustrations in sections 3.1 and 3.2. The physical phenomena we

consider correspond to either structural phenomena (i.e., deformation under load) as

well as diffusion-type processes (e.g., flow through permeable material). In both cases,

the PDEs associated with these physical phenomena do of course not permit a closed-

form solution and therefore require a suitable numerical discretization. For the work

presented in sections 3.1 and 3.2 we adopted the Galerkin approach [279] and made

use of Fenics [280, 281] for the discretization and solution of the governing equations
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where required. For all cases we consider, we assume that stochasticity enters the

partial differential equation by means of material properties described by random fields

(random media), with the PDE implicitly defining the state variables that satisfy the

governing equations for specific realizations of the random field. In consequence, of

course, the governing equations outlined in this section relate to the structure-property

linkage of the PSP chain. The more specific notion of effective properties attached

to the governing equations as well as their computation by means of Hill’s averaging

theorem is discussed in Appendix A.

Diffusion We consider as a prototypical case a linear elliptic PDE generally arising

for diffusion-type processes such as, e.g., Darcy flow or steady-state heat transfer

In this case the abstract differential operator L from Eq. (2.45) can be written in

terms of a Balance Equation (BE) and Constitutive Equation (CE)

(BE): −div (q) = f ∀ s ∈ D (2.51)

(CE): q = α (s;ω) · ∇u ∀ s ∈ D (2.52)

augmented by suitable Dirichlet and Neumann boundary conditions. The scalar

field u describes, e.g., the pressure or temperature over the domain, while the vector

field q can be interpreted as (negative) flux. Here f defines a source term over the

domain, and the variable coefficient α (s;ω) corresponds to a random field.

Structural Assuming a linear constitutive equation, material behavior is defined by

(BE): −div (σ) = f ∀ s ∈ D (2.53)

(CE): σ = C (s;ω) : ϵ ∀ s ∈ D (2.54)

, similarly augmented by suitable Dirichlet and Neumann boundary conditions.

The fourth-order stiffness tensor C (s;ω) in the constitutive equation (CE) relates

the tensor-valued stress σ and infinitesimal strain ϵ, which due to its dependence

on ω defines a tensor-valued random field. The balance equation (BE) relates the

divergence of the stress to a volume force f , i.e., in absence of a force the stress-

field needs to be divergence-free over the domain. The stiffness tensor C (s;ω)

corresponds to a tensor-valued random field.

In the next section, we discuss physics-informed machine learning, i.e. incorporation

of the constraints articulated by the governing equation into the probabilistic model

(as well as their inclusion in an automatic differentiation framework).
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2.7 Physics-Informed Learning and Differentiable Physics

When probabilistic reasoning and inference are employed in physical problem settings,

the crucial difference lies in the existence of additional structure (e.g., expressed by the

governing equations as in section 2.6.2) which is absent in purely data-driven problems.

Consequently, exploiting this underlying physical structure or ensuring compliance of

the model with it may become a major consideration. This may be accomplished by

introducing physical features in the loss function directly [72, 282, 283, 284, 285, 286,

287, 288] (e.g. by point-wise enforcement of governing equations for an ensemble of

collocation points), or in a Bayesian setting by making the probabilistic model privy to

the physical constraints by means of pseudo-observed nodes in the probabilistic graph-

ical model [28, 71, 289]. Similarly, one might construct models which are inherently

in compliance with certain physical principles such as symmetries or invariances, i.e.,

they by construction do not permit (or at least mitigiate) violation of certain princi-

ples. This can also be seen as a physics-derived or physics-based inductive bias of the

model (e.g., tensor basis neural networks for turbulence modeling [290, 291], or forcing

observations to be explained by a coarse-grained physical model as in section 3.1). By

incorporating physical knowledge and/or constraints directly, one can mitigate the de-

pendence on(labeled) data, which generally is expensive to obtain (necessitating either

numerical simulations or experimentation). Instead, the information required for in-

ferring the model can be derived directly from the governing equations and underlying

physical principles. In combination these methods define the field of physics-informed

machine learning [73, 292]. Additionally, in a scientific or engineering setting, one

generally faces more stringent requirements regarding both accuracy and reliability of

the predictions. Both these criteria strongly suggest the adoption of a probabilistic

approach that enables accounting for and quantifying epistemic uncertainty, i.e., pro-

viding the ability to assess confidence in predictions as well as specifying confidence

bounds. Closely related to the concept of physics-informed machine learning is the

concept of differentiable physics [293, 294, 295, 296, 297, 298], as it will generally be

necessary to backpropagate information through either entire physical simulations (e.g.

turbulent flow [299]), or at least to backpropagate through computation of certain phys-

ical properties and characteristics of model predictions (in our case exemplarily the flux

imbalance in Eq. (2.52)). In both cases, we require the embedding of these physical

computations and/or simulations into the probabilistic graphical model and therefore

the computational graph defined by it. As such, in the following we set out to provide

a cursory discussion of how automatic differentiation as the backbone of probabilistic

inference and probabilistic programming can be extended to accommodate physical

systems governed by partial differential equations, providing backpropagation of infor-

mation through the probabilistic model and therefore enabling gradient-driven learning

and inference.
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Figure 2.6: The expression J : Rn → Rm given by J (x1, x2) = sin
(
x2
1 +
√
x2

)
with (n =

2,m = 1), decomposed as elementary operations ϕj in a directed acyclic graph
(DAG), forming the basis for automatic differentiation. The variables vj , j =
0, ..., n + p +m − 1 associated with the edges comprise the n = 2 inputs (v0, v1)
and m = 1 outputs (v5), as well as the p intermediate variables resulting from the
elementary operations ϕj acting on their respective inputs (i.e., here v2, v3 and
v4).

2.7.1 Automatic Differentiation and Backpropagation

Automatic differentiation (or also algorithmic differentiation) essentially refers to the

automated differentiation of computer programs [300], i.e., providing gradients and

higher-order derivatives without any additional implementation overhead and ideally

for a numerical cost roughly comparable to the forward pass. In Figure 2.6 we illustrate

as a simple example the computation of the expression sin
(
x21 +

√
x2

)
. The elementary

operations associated with this computation are represented as a directed acyclic graph

(DAG), which can be seen to form the basis of automatic differentiation. Nodes in this

graph correspond to (elemental) operations, while the edges v correspond to inputs and

outputs, of preceding and succeeding nodes, respectively. Gradient information can be

obtained in more than one way: forward mode automatic differentiation is based on the

tangent linear code, which may propagate linear perturbations through the model, and

thus also directional derivatives. It is typically implemented by overloading the code

to not only propagate the actual values v but also simultaneously the perturbations

v(1); here v(1) indicates augmented state variables describing sensitivities of any given

v. The drawback of this approach is that the numerical cost increases prohibitively

for higher dimensions. More useful in our problem setting is reverse mode automatic

differentiation, which first executes a forward pass to compute all nodal values of the

DAG and then uses the linearized model to backpropagate gradient information in

the form of the adjoint value v(1) - this is equivalent to the backpropagation algorithm

widely employed for neural networks, as well as the adjoint PDE (see discussion in 2.7.2)

The reverse mode automatic differentiation using the adjoint involves the forward and

backward pass, for which we compute in order
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Forward Pass for j = n, ..., n+ p+m− 1

vj = ϕj (vi)i≺j (2.55)

Backward Pass for every node i in the graph for i = n+ p− 1, ..., 0

v(1)i =
∑
j:i≺j

∂ϕj

∂vi
· v(1)j (2.56)

Here i ≺ j denotes a direct dependence in the graph, while the ϕj corresponds to

elemental functions (i.e., nodes in the DAG). The ordering of the nodes in the DAG is

assumed to reflect the admissible order of computational execution in the DAG. As such

Eq. (2.55) simply implies a forward pass for any j ≥ n (as the inputs vj , j = 0, ..., n−1

are already known) in order of dependence, with vj depending on the subset of edges

i ≺ j which precedes j (dependence indicated by edges). As we retain all values vj in

memory, the backward pass executed in reverse order enables to backpropagate sensi-

tivity information making use of the linearized elementary operations ∂ϕj/∂vi, giving

rise to the adjoint variables v(1)i containing derivatives (or more generally, sensitivities)

of the outputs with respect to vi. Implementation of reverse mode automatic differen-

tiation is most commonly achieved by overloading the forward operations (e.g., [301]),

but has also been implemented to operate on compiler-level generated code [302, 303].

2.7.2 Differentiable Physics and the Adjoint Method

Differentiable physics - as it is relevant for our discussion in section 3.1 - involves differ-

entiating the computation of physical features on a fine scale as well as differentiating

the solution of a partial differential equation on a coarse scale (using established nu-

merical discretization techniques). We focus on the latter in the following but note

that the concept of differentiable physics of course has broader applicability. From

the viewpoint of automatic differentiation we can consider the discretized solution of

the partial differential equation as a node in the computational graph, mapping inputs

x ∈ Rn (parameters) to outputs y ∈ Rm (discretized representations of e.g. pressure,

velocity, etc.). In contrast to explicit layers such as exemplarily feedforward or con-

volutional layers, the mapping implied by the discretized partial differential equation

y (x) : Rn → Rm is only defined implicitly by a numerical residual r(x, y) = 0 (i.e.,

effectively an implicit layer [304, 305]). In this context, we do not specify r (x, y) in

detail, but simply assume r ∈ Rm resulting from a suitable numerical discretization

such as the Galerkin method. It is our objective to obtain the gradient of some func-

tional h (x, y) : Rn+m → R w.r.t. the parameters x (one could also obtain higher

order gradient information, e.g., the action of the Hessian). More generally, we wish

to backpropagate gradient information through the PDE solve, if y (x) appears as an
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implicit layer within our probabilistic model. If exemplarily the solution of the PDE

y defines a flow field depending on the parameters x, backpropagating gradient infor-

mation through the PDE solver can be understood as the reversal of the flow field, or

as the reversal of time itself (for time-dependent problems). As we will see shortly,

the adjoint method for partial differential equations is simply equivalent to the reverse

mode of automatic differentiation discussed previously. To simplify notation, let us

define the reduced functional H (x) = h (x, y (x)) solely as a function of the parameters

x. Then the desired gradient arises as the chain rule applied to the reduced functional

dH

dx
=

∂h

∂y

dy

dx
+

∂h

∂x
(2.57)

The non-trivial term in this equation is given by the derivative of the solution of the

PDE with respect to the parameters, i.e. dy/dx. In order to obtain the desired gradient

dH/dx in Eq. (2.57), note that from the requirement for the residual to vanish, i.e.,

r (x, y) = 0, it follows that for any tuples (x, y) satisfying the PDE it follows ∂r/∂x = 0,

and therefore

∂r

∂x
=

∂r

∂y

dy

dx
+

∂r

∂x
= 0 (2.58)

From this one obtains directly the tangent linear model (TLM)

∂r

∂y

dy

dx
= −∂r

∂x
(2.59)

enabling the computation of the Jacobian J = dy/dx ∈ Rm×n. The tangent linear

equation corresponds to the forward mode of automatic differentiation, mapping per-

turbations δx to δy, thereby enabling the calculation of gradients irrespective of the

specific functional H. It however unfortunately would imply the repeated solution of

a high-dimensional equation system n times (with x ∈ Rn generally high-dimensional).

The alternative is to employ the adjoint equation - if ∂r/∂y is invertible we can instead

represent the Jacobian as

J =
dy

dx
= −

(
∂r

∂y

)−1 ∂r

∂x
(2.60)

and substitute this expression for dy/dx into Eq. (2.57)
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dH

dx
=

∂h

∂y

[
−
(
∂r

∂y

)−1 ∂r

∂x

]
+

∂h

∂x
(2.61)

Taking the adjoint of this equation and assuming here without loss of generality

real-valued vectors and matrices

(
dH

dx

)T

= −
(
∂r

∂x

)T (
∂r

∂y

)−T (
∂h

∂y

)T

+

(
∂h

∂x

)T

(2.62)

We can define the adjoint vector λ = ∂r
∂y

−T ∂h
∂y

T ∈ Rm, as defined by:

(
∂r

∂y

)T

λ =
∂h

∂y

T

(2.63)

This constitutes the (linear) adjoint equation. Once we have solved this equation for

λ we can rephrase Eq. (2.62) w.r.t. λ

(
dH

dx

)T

= −∂r

∂x

T

λ+

(
∂h

∂x

)T

(2.64)

Solving the partial differential equation and subsequently solving the adjoint equa-

tion to obtain the derivative dH/dx corresponds to the backward mode of automatic

differentiation. After the forward pass and during the backward pass of the computa-

tional graph, all the pertinent quantities x, y and ∂h/∂y appearing as a source term

in the adjoint equation are known. Hence gradients can be backpropagated, with the

cost being dominated by the solution of the linear adjoint equation (in addition to

the forward pass). For any higher-dimensional setting of x ∈ Rn, the adjoint equation

corresponding to the backward mode automatic differentiation is generally decidedly

preferable in terms of numerical cost.
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3
Summary of Publications

This chapter comprises short summaries of the following two publications which are

the subject of this cumulative dissertation:

Paper A: Rixner, Maximilian, and Phaedon-Stelios Koutsourelakis. ”A probabilistic

generative model for semi-supervised training of coarse-grained surrogates and

enforcing physical constraints through virtual observables.” Journal of Computa-

tional Physics 434 (2021): 110218.

Paper B: Rixner, Maximilian, and Phaedon-Stelios Koutsourelakis. ”Self-supervised

optimization of random material microstructures in the small-data regime.” npj

Computational Materials 8.1 (2022): 1-11.

The publications are attached in full in Appendix B and C.
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3 Summary of Publications

3.1 Paper A

A probabilistic generative model for semi-supervised training of

coarse-grained surrogates and enforcing physical constraints through

virtual observables.

M. Rixner, P.S. Koutsourelakis

Summary

Computational physics is concerned with modeling complex physical phenomena and

processes, in the most pertinent cases spanning a wide range of spatio-temporal scales.

The numerical resolution of such a hierarchy of scales in fine-grained models is however

also inextricably tied to a significant computational burden. While this suggests the

construction of cheap surrogates, identifying a suitable surrogate in high-dimensional

settings with limited availability of labeled data in itself poses a grand challenge. In

this paper, we suggest a novel approach for surrogate construction in the context of

random media. The generative model underlying our proposed surrogate is endowed

with a physics-based inductive bias, as predictions are forced to be informed by coarse-

grained, effective physical properties (which in turn are derived from a compressed

latent representation of the random media). The information bottleneck induced by

this architecture is moreover not merely informed by labeled data, but additionally

incorporates unlabeled data for semi-supervised learning as well as physical constraints

and/or inequalities in the form of virtual observables. The bottlenecked architecture

as such forces the dense and physics-constrained accumulation of information from

all the different sources available (i.e., labeled data, unlabeled data, governing equa-

tions). Notably, both the coarse-grained physical model as well as the virtual observ-

ables encoding the governing equations are embedded directly within the probabilistic

graphical model, with the coarse-grained physic model inferred by backpropagating in

a differentiable-physics setting.

Contributions

(MR): conceptualization, physics and machine-learning modeling and computations,

algorithmic and code development, writing of the paper. (PSK): conceptualization,

writing of the paper.

Reference

Rixner, Maximilian, and Phaedon-Stelios Koutsourelakis. ”A probabilistic generative

model for semi-supervised training of coarse-grained surrogates and enforcing physical

constraints through virtual observables.” Journal of Computational Physics 434 (2021):

110218.
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3.2 Paper B

3.2 Paper B

Self-supervised optimization of random material microstructures in the

small-data regime.

M. Rixner, P.S. Koutsourelakis

Summary

The stochastic inversion of the process-structure-property (PSP) chain corresponds to

the identification of process parameters yielding optimal effective material properties on

a macroscopic scale. It defines a largely unsolved problem and an object of ongoing re-

search, as any attempt to approach it is confronted with both its inherent intractability

as well as the complexities of the physical linkages. These linkages - mapping process

to structure and structure to property - are generally non-deterministic and expen-

sive to resolve numerically. This paper suggests an approach in which a convolutional

neural network acts as a discriminative surrogate, wrapped within an optimization al-

gorithm iteratively lower-bounding the intractable objective function. Lower bounding

is achieved by means of stochastic variational inference, simultaneously providing noisy

but comparably low-variance Monte Carlo estimates of the gradient of the objective

w.r.t. process parameters (even in a high-dimensional setting). To mitigate the depen-

dence on expensive labeled training data (requiring numerical simulations), the dataset

informing the surrogate is successively enriched using an active learning approach em-

bedded within the optimization routine. The addition of new data points is guided and

informed by an acquisition function that is coupled to the objective function itself, i.e.,

the informativeness of microstructure-property pairs is tied directly to the optimization

problem at hand. Basing our numerical illustrations on the spectral representation of

a thresholded Gaussian Process for the process-structure map (i.e., binary-two phase

microstructures), we execute and evaluate this approach for different flexible notions of

optimality, solving a material’s design problem by stochastic inversion of the full PSP

chain for thermal and structural properties in a high-dimensional setting.

Contributions

(MR): conceptualization, physics and machine-learning modeling and computations,

algorithmic and code development, writing of the paper. (PSK): conceptualization,

writing of the paper.

Reference

Rixner, Maximilian, and Phaedon-Stelios Koutsourelakis. ”Self-supervised optimiza-

tion of random material microstructures in the small-data regime.” npj Computational

Materials 8.1 (2022): 1-11.
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4
Discussion and Outlook

In the following, we provide a brief concluding discussion of the probabilistic models

which were developed in this thesis for the prediction and control of materials systems

in the context of random media. We emphasize that the methods under investigation

correspond to the emerging approach of learning or infering the behavior of physical

systems [68, 69, 70], instead of relying on numerical discretization techniques or hand-

crafted models defined by experts. In our context, this entails the identification of a

parsimonious set of features predictive of the coarse-grained behavior of the physical

system. The ability to predict the behavior of a system with a comparably cheap proba-

bilistic surrogate subsequently enables to drive the solution of many-query applications,

such as optimization problems or inverse problems. In all our investigations, it was of

primary concern to mitigate the number of datapoints required for the construction

of our surrogate model. This concern for a data-parsimonious approach is represented

by the utilization of techniques such as active learning, semi-supervised learning, and

physics-informed learning. In such a setting one either seeks to maximize the informa-

tion contained within a fixed number of data points (active learning), derives additional

information from unlabeled data (semi-supervised learning), or injects a priori knowl-

edge from governing equations directly (physics-informed learning). The reason for this

emphasis on data reduction derives from the fact that computational physics resides

within the small-data regime, i.e., apart from data generally being high-dimensional

it also needs to be considered scarce due to the expense of obtaining it (by means of

numerical simulations).

In section 3.1 we demonstrated the ability to predict the coarse-grained response of

a parametric partial differential equation in the context of random media (structure-

property linkage), thereby enabling the propagation of uncertainty in a high-dimensional

setting with extremely few labeled datapoints. In order to obtain meaningful general-

ization performance in such a challenging setting, the probabilistic model was forced to

make predictions by identifying effective properties of a physical coarse-grained model,

instead of purely relying on black-box models (this can be regarded as an information

bottleneck as well as a strong physics-derived inductive bias, see Figure 2.5). To this

end, the physical coarse-grained model and its adjoint were embedded directly in the

convolutional encoder-decoder architecture of the generative model, i.e., effective prop-

erties were derived from the latent representation of the information bottleneck. In
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addition to the incorporation of the coarse-grained model, the other pivotal feature of

our approach was defined by the adoption of a generative model which allowed the sim-

ulatenous incorporation of labeled data, unlabeled data, as well as physical constraints

derived from governing equations. Information from these different sources was accu-

mulated and fused in our information bottleneck, leading to their various respective

contributions to the Evidence Lower Bound (resulting from a stochastic variational

inference approach for training the model). Importantly, we also demonstrated the in-

crease of predictive performance by incorporating only a reduced set of coarse-grained

physical constraints. While the incorporation of the governing equation at full resolu-

tion into the machine learning model provides in principle the maximum of information,

it also implies the largest numerical cost - thereby counteracting one of the foremost

reasons for physics-informed learning (the expense of obtaining labeled data). In con-

trast, we were able to achieve significant improvement in predictive performance while

only considering a projection of the residual, corresponding to a certain filtered view

of the governing equations (in our case translating to numerically efficient low-rank

updates of the variational mean-field updates).

In section (3.2) the prediction of the coarse-grained response of the materials sys-

tem was enveloped within a more complex optimization objective, demonstrating the

identification of optimal process parameters according to desirable effective material

properties. I.e., we addressed the challenging task defined by the stochastic inver-

sion of the complete process-structure-property chain. Our proposed formulation was

able to incorporate a diverse ensemble of optimization objectives (maximizing an ex-

pected utility, or minimizing the Kullback-Leibler divergence for a specified target

distribution of the effective, macroscopic properties). Intractability, numerical cost

and non-differentiability of the optimization objective were addressed by the simulta-

neous introduction of a probabilistic discriminative convolutional surrogate, as well as

a stochastic variational inference approach iteratively lower-bounding the intractable

objective (Variational-Bayes Expectation-Maximization algorithm). While here the

surrogate was purely data-driven and not privy to physical information, the VB-EM

algorithm was embedded within an outer-loop data acquisition step informed by an

optimization-specific acquisition function (thereby enabling selection of the most in-

formative microstructure-property pairs for an active learning approach). Apart from

mitigating the numerical cost of generating training data, this incremental enrichment

of the dataset was also rooted in the general futility of constructing a globally valid

surrogate in a setting where a priori unknown process parameters will heavily impact

the nature of the generated microstructures. Instead, we suggested expanding the

predictive utility of the surrogate according to necessity as we traverse the process pa-

rameter space during optimization. While this approach cumulatively required several

thousand data points for the stochastic inversion of the PSP chain, this still constitutes

comparably few datapoints when considering the complexity of the linkages as well

as the high-dimensional nature of the microstructures (i.e., small-data domain). We

58



particularly emphasize the high-dimensionsal nature of the process parameters in our

numerical demonstrations, which significantly exceeded prior published work [29]. In

conclusion, both methodological frameworks developed in sections 3.1 and 3.2, may be

regarded as probabilistic models resolving the complete or partial process-structure-

property chain for the purpose of prediction and/or control. Having summarized some

of the novel characteristics and contributions of our proposed methods, we conclude

by discussing some of the insights obtained during their investigation, as well as corre-

spondingly some modifications or further developments which could be attempted:

Spatial Awareness The methods under investigation made use of convolutional neural

networks for extracting pertinent features from the discretized representations of

the random media, either in a discriminative or generative setting. While archi-

tectures based on convolutional features inherently offer a certain level of spatial

coherence, improvements could be made by increasing spatial awareness as well

as ideally expanding the ability to identify multi-scale features. Classes of mod-

els which are inherently suitable in this regard are, e.g., given by autoregressive

methods [259, 258] as well as Gaussian Process [33, 306] based approaches. As an

example, the discriminative surrogate in section 3.2 was restricted to capturing

dependencies limited by the depth and filter size of the convolutional architecture

(see for instance dilated convolutions [307] for increased receptive fields). Simi-

larly in 3.1 the nature of the architecture was not inherently aware of the effective

properties defining a spatial field, and instead just regarded it as an unstructured

vector derived from the latent representation. Instead, one might e.g. use a Gaus-

sian Process parametrized by inducing points [201] to define a mapping between

latent space and effective coarse-grained properties that has spatial awareness of

the effective properties.

Morphological Awareness With regards to morphological awareness, we note that in

the context of generative modeling it is not necessarily desirable to identify a

compressed encoding or representation of the random media which enables a

pixel-perfect reconstruction (as implied by our likelihood in 3.1). An alternative

would be to incentivize the model to retain characteristical statistical properties,

particularly in the context of random heterogeneous media with distinct phases

(see e.g. reduced order models based on 2-point statistics [23]). While any semi-

supervised learning approach will bias latent representations towards disregarding

irrelevant fine-scale variations in favor of predictive features, it seems plausible

to the author that a reconstruction likelihood aware of the morphological equiv-

alence [308, 309, 310, 311] could yield further improvements, e.g., by scoring

microstructures based on the Gram matrix of convolutional features similar to

neural style transfer [312, 313]. In such a setting the latent representation will be

incentivized to encode complex statistical features rather than memorize pixel-
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perfect representations. We note that conceptually similar challenges appear in

the setting of learning and synthesizing textures (e.g. [314, 315]).

Representation The pixelized discrete representation of microstructures and random

media which we adopted is not definitive but simply just constitutes one possible

modeling choice. While certainly the most common approach [316, 317, 318, 319],

depending on the microstructure under consideration it might prove advanta-

geous to consider alternatives representations. Exemplarily, for polycrystalline

microstructures, one could adopt a sparse graph representation encoding neigh-

bourship relations of grains as well as grain features (such as orientation and

size as node-level information). The advantage would be a more natural and

parsimonious description, due to the close equivalence of graphs resulting from

microstructures with similar statistical properties (see the previous discussion

of morphological awareness). In addition, and maybe more importantly, it will

lead to a significantly lower-dimensional representation of the microstructures. A

graph-based representation of microstructures would then suggest the adoption

of graph neural networks [320] for the probabilistic model.

Probabilistic Models and Inference A further avenue of improvement would be given

by more flexible and expressive variational inference approaches, which were em-

ployed either in the training of the generative model or the stochastic inversion

of the PSP chain (e.g. normalizing flows [185, 321]). In the context of learn-

ing a probabilistic model for the process-structure-property chain, it also seems

promising to investigate inherently invertible architectures such as flow-based

models [253, 254, 255, 256] (invertibility defines a desirable property in this set-

ting where the ultimate goal is defined by the inversion of the model). Flow-

based models can also incorporate autoregression [260] and multiscale features

[261], which as previously discussed are attractive in the context of random me-

dia. Regarding physics-informed machine learning in the context of probabilistic

models and inference, we mention that any model is advantageous which enables

to concentrate a priori probability mass on a relatively low-dimensional manifold

(see e.g. impact of the chosen prior distribution for Bayesian Conjugate Gradient

[9]). This would for instance translate to the adoption of a low-rank Gaussian for

the noise model in section 3.1.

Bayesian Neural Networks In our approach, neural network parameters have been

relegated to point estimates (both for discriminative as well as generative mod-

els). A fully Bayesian approach [241] seeking a variational approximation (e.g.

[322, 186]) should yield further generalization improvements in the small data

domain, as well as provide the ability to more tightly and more consistently cap-

ture predictive uncertainty (in particular it would enable to provide uncertainty

bounds for the surrogate-based objective for the PSP inversion). Additionally, the
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Bayesian treatment of neural network parameters also yields a more information-

rich environment for adaptive acquisition of data points by opening the door to

Bayesian active learning [323], i.e., enabling the introduction of acquisition func-

tions differentiating between inherent noise and epistemic uncertainty of neural

network parameters (see for instance ’Bayesian Active Learning by Disagreement’

[324, 325]). Bayesian Active Learning also relates to Bayesian Experimental De-

sign and information-theoretic considerations introduced in section (2.2.2); one

may for instance seek to introduce new datapoints which exhibit high mutual

information with the neural network parameters, i.e., offer the highest expected

information gain [326].

For the stochastic inversion of the process-structure-property chain (section 3.1), we

also mention the possibility of a more integrated approach by constructing a genera-

tive model encompassing process parameters, microstructures and effective properties.

Among some other benefits, it would enable tighter coupling compared to the current

inner-loop outer-loop approach enveloping a discriminative model (i.e., data acquisition

loop and EM loop). If such a unified generative model is attainable, it would be a more

natural choice to additionally also infer the process-structure map (as opposed to daisy

chaining two discriminative models). Closer to the confines of the currently adopted

choices, a more incremental expansion enabling more complex problem setting could be

given by the adoption of a mixture of experts [327, 328, 329] for the discriminative surro-

gate. In the context of the generative model and physics-informed machine approach in

section 3.2, we observe that the physical information infused into the generative model

by means of the virtual observables was fixed a priori. An adaptive selection of vir-

tual observables based on information-theoretic consideration or adversarial examples

[330] could enable us to select the most informative queries given a fixed computational

budget. A more drastic (yet interesting) modification would be to treat the differential

operator itself as an unknown entity with the possibility of constructing a suitable prior

[331, 332]. In closing we remark that more flexible physics-informed approaches could

be adopted by turning toward compiler-level automatic differentiation [333, 302, 303],

as the differentiable coupling of physical computations and probabilistic model poses

non-trivial practical constraints. In the opinion of the author, physics-informed prob-

abilistic methods in the context of partial differential equations also enjoys several

connections to, e.g., probabilistic numerics [8], randomized/probabilistic linear algebra

[334, 335] as well as probabilistic solvers [11, 10], which remain to be explored in this

setting.
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A
Micro-to-Macro transition

In the following, we discuss the characterization of microstructures in terms of their

effective macroscopic properties. The ensuant discussion is based on Hill’s averaging

theorem [336], which itself is predicated on an energy argument. In our context, we

seek to determine effective macroscopic material properties for a representative volume

element (RVE) of binary two-phase random media (generated by a stochastic process),

such that the dissipated energy given its microscopic and effective macroscopic de-

scription becomes identical (see Figure A.11. As this necessitates a sufficiently fine

spatial resolution to capture the variability of the microstructure, establishing the mi-

cro to macro transition (coarse graining) defines a numerically expensive operation. An

abridged version of the exposition in this section can be found in the supplementary

material of [31] (corresponding to section 3.2 in this thesis).

Structural Properties

In the following, we exemplarily consider the case where one is interested in the physical

response of the microstructure under structural loading, assuming linear elastic material

behavior on the microscopic scale. We will consider microstructures as realizations of

random fields on our representative volume element V ⊂ Rd (with its volume given

by |V|). On a microscopic scale, our assumptions then equate to the balance equation

(BE) and constitutive equation (CE)

(BE): div (σ) = 0 ∀ s ∈ V (A.1)

(CE): σ = C (s) : ϵ ∀ s ∈ V (A.2)

where σ and ϵ define the microscopic Cauchy stress and microscopic (infinitesimal)

strain tensor, respectively. For binary two-phase random media the spatially variable

fourth-order stiffness tensor C (s) takes only take two distinct values corresponding to

the two binary phases V(0) ⊂ V,V(1) ⊂ V, with V(0) ∩ V(1) = ∅ and V0 ∪ V(1) = V:
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Macroscopic Microscopic

V V

C(0)

C(1)

Hill’s averaging theorem

Ceff

Chose Ceff to obtain identical energy dissipation

Figure A.1: The macroscopic stress Σ = ⟨σ⟩ and strain E = ⟨ϵ⟩ are defined as spatial averages
of microscopic stress σ and strain ϵ, related to each other by the effective, tangent
elastic modulus Ceff = ∂EΣ. The effective material properties Ceff are determined
by necessitating identical energy dissipation on both microscopic and macroscopic
scales.

C (s) =


C1 for s ∈ V(1)

C0 for s ∈ V(0)
(A.3)

Under the assumption of isotropic and homogenous media, both C0 and C1 are fully

characterized by their respective Lamé parameters. We define the macroscopic stress

Σ = ⟨σ⟩ as the spatial average Σ = |V|−1 ∫ σ dV . We can furthermore relate the

macroscopic stress to the boundary tractions t by means of Stokes’ theorem, i.e. for

any tensor Tijk it holds
∫
V ∂iTijkdV =

∮
∂V niTijk dA, and as such

[Σ]ik =

[
1

|V|

∮
∂V

sym (t⊗ s) dA

]
ik

=
1

|V|

∮
∂V

1

2
(σijnjsk + σkjnksi) dA

=
1

|V|
1

2

∫
1

2
(σijsk),j + (σkjsi),j dV

=
1

|V|
1

2

∫
σij,jsk + σijsk,j + σkj,jsi + σkjsi,j dV

=
1

|V|
1

2

∫
σijδkj + σkjδij dV

=
1

|V|

∫
σik dV =

[
1

|V|

∫
σ dV

]
ik

(A.4)
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with spatial dimension d, tractions t ∈ Rd, normal vector n ∈ Rd, spatial coordinates

s ∈ V and the closed boundary of the domain ∂V. Similarly, the macroscopic strain E

corresponding to a second order tensor is given as the spatial average of the microscopic

strain ϵ

E =
1

|V|

∫
sym (u⊗ n) dA

=
1

|V|

∫
1

2
(ui,j + uj,i) dV =

1

|V|

∫
ϵdV (A.5)

The effective physical properties of the material is characterized by an effective tan-

gent elastic modulus Ceff := ∂EΣ, i.e., a fourth-order tensor linearly relating macro-

scopic stress Σ and strain E for the RVE

Σ = Ceff : E (A.6)

The macroscopic, effective behavior characterized by Ceff is implicitly defined by the

constraint that Eq. (A.6) satisfies Hill’s averaging theorem, i.e., the energy dissipated

according to the macroscopic description is equal to the energy dissipated according to

the microscopic displacements u and the boundary tractions t:

Σ : E =
1

|V|

∫
∂V

t · udA (A.7)

If we can identify (for d = 2) the macroscopic stress Σ satisfying this requirement

for the following elementary macroscopic strain modes corresponding to pure tension

or shear states

Ê(1) =

 1 0

0 0

 , Ê(2) =

 0 0

0 1

 Ê(3) =

 0.5 0

0 0.5

 (A.8)

then obviously from Eq. (A.6), this enables identification of the effective tangent

elastic modulus Ceff defining the effective macroscopic behavior of the microstructure

under structural loading. As detailed in [337], one of several approaches to numeri-

cally identify Ceff in compliance with Hill’s averaging theorem is to introduce periodic

boundary conditions and augment the constitutive equation (A.2) and balance equation

(A.1) with a set of additional equations
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A Micro-to-Macro transition

ϵ = Ê(c) +∇sv in V (A.9)

v is V-periodic (A.10)

t = σ · n is V-antiperiodic (A.11)

for c ∈ {1, 2, 3}, where v defines a periodic (microscopic) fluctuation across the

domain V, and t being the anti-periodic (microscopic) boundary tractions. The solution

of this set of partial differential equations under the given boundary conditions can,

e.g., be rephrased in weak form using Galerkin’s method. This suggests to introduce a

discrete function space Vh for v and to simultaneously solve for the periodic fluctuation

v ∈ Vh and Lagrange multiplier λ ∈ Rd such that [338]

∫
V

(
Ê(c) +∇sv

)
: C (s) : ∇sv̂ dV +

∫
V

λ · v̂ dV +

∫
V

λ̂ · v dV = 0 (A.12)

for all (v̂, λ̂) ∈ Vh × R2 acting as test functions. Here the Lagrange multiplier λ has

been introduced to disambiguate with respect to rigid body modes. In summary this

suggests the following approach: the set of coupled differential equations under periodic

boundary conditions are solved for the three elementary load cases Ê(c), c ∈ {1, 2, 3},
and the associated macroscopic stress Σ is inferred (see (A.4)). Knowledge of the

macroscopic stress for the elementary load cases straightforwardly enables to determine

Ceff given Eq. (A.6). In closing, we note that the discussion can analogously be repeated

for effective thermal properties of the microstructures (corresponding to the diffusion

process defined by Eqs. (2.51) and (2.52)). In this setting a temperature field u and

flux q have as counterpart the macroscopic temperature field U and flux Q, which are

connected by Fourier’s law, i.e., Q = −aeff (∇U), with aeff a symmetric positive definite

tensor relating temperature gradient and flux. The effective conductivity tensor aeff is

then similarly determined utilizing Hill’s averaging theorem, i.e., postulating identical

energy dissipation on the microscopic and macroscopic scale, and solving a coupled set

of partial differential equations.
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The data-centric construction of inexpensive surrogates for fine-grained, physical models 
has been at the forefront of computational physics due to its significant utility in many-
query tasks such as uncertainty quantification. Recent efforts have taken advantage of the 
enabling technologies from the field of machine learning (e.g., deep neural networks) in 
combination with simulation data. While such strategies have shown promise even in 
higher-dimensional problems, they generally require large amounts of training data even 
though the construction of surrogates is by definition a small data problem. Rather than 
employing data-based loss functions, it has been proposed to make use of the governing 
equations (in the simplest case, at collocation points) in order to imbue domain knowledge 
in the training of the otherwise black-box-like interpolators. The present paper provides 
a flexible, probabilistic framework that accounts for physical structure and information 
both in the training objectives as well as in the surrogate model itself. We advocate a 
probabilistic (Bayesian) model in which equalities that are available from the physics (e.g., 
residuals, conservation laws) can be introduced as virtual observables and can provide 
additional information through the likelihood. We further advocate a generative model i.e. 
one that attempts to learn the joint density of inputs and outputs that is capable of making 
use of unlabeled data (i.e., only inputs) in a semi-supervised fashion in order to reveal 
lower-dimensional embeddings of the high-dimensional input which are nevertheless 
predictive of the fine-grained model’s output.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The complexity and cost of many models in computational physics necessitates the development of less expensive sur-
rogates (or coarse-grained/reduced-order models), which aim to emulate or approximate the mapping implicitly defined by 
the physical process between parametric inputs and the output at a significantly reduced cost. Such surrogates which re-
tain sufficient predictive accuracy can be extremely valuable in many-query applications (e.g., inverse problems, uncertainty 
propagation, optimization) which would otherwise be inaccessible due to computational cost. The difficulty of constructing 
a suitable surrogate becomes particularly pronounced in the high-dimensional setting, i.e. when the number of input-output 
(random) variables is large as in most cases of practical interest. Data-based surrogates must also be capable of dealing with 
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the scarcity of training data [1]. Unlike recent successes in statistical/machine learning, and supervised learning in particular, 
which in large part have been enabled by large datasets (and the computational means to leverage them), the acquisition 
of data, i.e. pairs of input-outputs, is the most expensive task and the reduction of their number, the primary objective of 
surrogate development.

Another critical challenge stems from the nature of the physical models themselves. Their primary utility arises from 
their ability to distill apparent complexity and high-dimensional descriptions into much fewer, essential variables and the 
relations between them, which can in turn be used to make accurate predictions under a variety of settings (e.g. different 
boundary/initial conditions, right-hand-sides). This robustness of physical models as well as their ability to operate un-
der extrapolative conditions is not a property shared by black-box statistical surrogates, which in most cases are used in 
interpolative settings.

We put forward the proposition that to overcome these challenges, domain knowledge, i.e. information about the under-
lying physical/mathematical structure of the problem, must be injected into the surrogates constructed [2]. While this prior 
physical knowledge is generally plentiful and eloquently reflected in the governing equations, it is not necessarily obvious 
how to mine it, nor how to automatically combine it with the data-based learning objectives, especially in a probabilistic 
setting [3].

A probabilistic framework provides a superior setting for such problems as it is capable of quantifying predictive uncer-
tainties which are unavoidable when any sort of model/dimensionality reduction is pursued and when the surrogate model 
is learned from finite (and hopefully, small) data [4].

The development of surrogates for the purposes of uncertainty quantification in the context of continuum thermodynam-
ics where pertinent models are based on PDEs and ODEs has a long history. Some of the most well-studied methods have 
been based on (generalized) Polynomial Chaos expansions (gPC) [5,6] which have gained popularity due to the emergence 
of data-based, non-intrusive, sparse-grid stochastic collocation approaches [7–9]. These approaches typically struggle with 
high-dimensional stochastic inputs, as is the case, e.g. when random heterogeneous media [10] are considered.

Another strategy for the construction of inexpensive surrogates is offered by reduced-basis (RB) methods [11,12] where, 
based on a small set of “snapshots” ,i.e. input-output pairs, the solution space’s dimensionality is reduced by projection 
onto the principal directions. Classical formulations rely on (Petrov-)Galerkin projections [13] for finding the associated 
coefficients, but recently several efforts have been directed towards unsupervised and supervised learning strategies [14–17]. 
Apart from issues of efficiency and stability, RB approaches in their standard form are generally treated in a non-Bayesian 
way and therefore only yield point estimates instead of full predictive posterior distributions. Furthermore, since scalar- or 
vector- or matrix-valued quantities need to be learned as a function of the parametric input in the offline phase, they are 
also challenged by the high-dimensions/small-data setting considered [18].

A more recent trend is to view surrogate modeling as a supervised learning problem and employ pertinent statistical 
learning tools, e.g. Gaussian Process (GP) regression [19–21], which can frequently provide closed-form predictive distribu-
tions. Although several advances have been made towards multi-fidelity data fusion [22–26] and incorporation of physical 
information [27–30] via Gaussian Processes, their performance and scaling with stochastic input dimension remains one of 
the main challenges. In the context of supervised learning, deep neural networks (DNNs) [31,32] have found their way into 
surrogate modeling of complex computer codes [33–37]. One of the most promising developments in the adaptation of such 
tools for physical modeling are physics-informed neural networks [38–41] which are trained by minimizing a loss function 
augmented by the residuals of the governing equations [42]. Physical knowledge in training DNNs has also been introduced 
in the form of residuals in [38,16,43–47] whereas in [48], a Boltzmann-type density containing physics-based functionals or 
residuals were employed as the target for the associated learning problem. Recent reviews of the use of various machine 
learning models, and in particular deep neural networks, for the solution of problems in computational physics, including 
the development of surrogates, can be found in [49,50]. Therein the difficulty of the task of incorporating physical domain-
knowledge into machine learning objectives and tools [51,52] is detailed as well as the scarcity of probabilistic approaches 
in the context of such tasks.

In contrast to the majority of the efforts summarized above, our goal is not to provide a numerical discretization 
technique which aims to solve the PDE for a single case, but instead to learn the general input-output map defined by a 
parametric PDE. For this purpose, we consider as our reference model a discretized version of the PDE which is assumed to 
provide sufficiently accurate resolution (we refer to this as the Fine-Grained Model (FGM)). Furthermore, we wish to differ-
entiate our work from applications of machine learning in problems where the underlying governing equations themselves 
are assumed unknown and one aims to identify them from data [53–55]. While a component of our model makes use of a 
(discretized) coarse-grained model, its form is in this work prescribed.

We propose overcoming the aforementioned challenges by introducing a novel, generative probabilistic model that is 
capable of exploiting labeled (i.e. input-output pairs) and unlabeled (i.e. only inputs) data in discovering lower-dimensional 
embeddings and identifying the right surrogate model-structure (section 2). More importantly, we propose augmenting 
the aforementioned data by injecting domain knowledge in a principled manner in the probabilistic models employed. In 
particular, such physical/mathematical knowledge is incorporated:

• in the learning objectives (section 2.2) through the novel notion of virtual observables [56]. We demonstrate how 
various types of information in the form of (non)linear equalities/constraints as well as minimizing functionals can be 
introduced in the likelihood terms.
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• in an appropriately selected coarse-grained model (CGM, section 2.3) which through coarsened or reduced-physics 
versions of the full-order model provides an integral component of the proposed surrogate.

We complement the aforementioned elements with an integrated, supervised dimensionality reduction scheme which 
can distill lower-dimensional features of the high-dimensional input that are most predictive of the high-dimensional output 
and which is trained simultaneously with the other components by making use of (un)labeled data and virtual observables. 
We employ Stochastic Variational Inference techniques for training the proposed model (section 2.5), which yield a prob-
abilistic surrogate that not only produces point estimates of the high-dimensional output but can quantify the predictive 
uncertainty associated with this task (section 2.6). We discuss the numerical complexity of the proposed algorithms in 
section 2.7 and assess the predictive performance of the proposed framework in section 3, where we demonstrate that 
unlabeled data and virtual observables can lead to significant improvements in its generalization accuracy and can reduce 
the number of labeled data (i.e., input-outputs pairs) to a few tens. Furthermore, we illustrate the model’s ability to perform 
equally well under interpolative and extrapolative conditions, i.e., under boundary conditions seen or not seen during train-
ing. We finally demonstrate its benefits in an uncertainty propagation problem and discuss possible extensions in section 4.

2. Methodology

We illustrate the propose methodological framework in the context of steady-state, physical processes modeled by a 
partial differential equation and associated boundary conditions (i.e. a boundary value problem) of the general form

L(u(s, x); x) =0, for s ∈ �

B(u(s, x); x) =0 for s ∈ ∂�
(1)

over the physical domain � ⊂Rd . The differential L and boundary B operators depend on the random parameters x ∈Rdx

and so does the solution of the PDE u(s, x). We denote by y ∈ Rdy discretized (with respect to s) version of the latter 
and by y(x) the input-output map implied by any of the usual PDE-discretization schemes. The governing equations are 
complemented by boundary conditions which might depend on the parameters x. We refer to this discretized model as 
fine-grained model (FGM). We are interested in FGMs that are computationally demanding, i.e. the number of forward model 
runs determines the cost of the analysis task of interest (e.g. forward or backward uncertainty propagation, optimization). 
Furthermore, the problems of interest are high-dimensional, i.e. dx, dy >> 1, as in most cases of practical interest. Our goal 
is to construct a surrogate with the least possible labeled data Nl , i.e. input-output pairs Dl = {x(il), y(il) = y(x(il))}Nl

il=1,1

while still delivering sufficiently accurate predictions.
It is clear that in the small data setting learning a probabilistic surrogate p (y|x) is possible only if the problem is 

amenable to dimensionality reductions, i.e. there exists a lower-dimensional set of features2 of x that are predictive of y
and/or the latter itself lives in a lower-dimensional manifold. The simultaneous discovery of such lower-dimensional em-
beddings through a latent variable model was demonstrated in [57,58] where the sought density p(y|x) was approximated 
by

pθ (y|x) =
∫

pθ (y|z) pθ (z|x)dz , (2)

with θ being the trainable parameters of the model. The variables z ∈ RQ represent the lower-dimensional (i.e. Q <<

dx, dy) information bottleneck between inputs and outputs. In the aforementioned works, these have been associated with a 
lower-fidelity physical model and have been identified in the presence of small data using sparse Bayesian learning from a 
large vocabulary of physically-motivated features of x (in contrast, in this work we will seek to identify predictive features 
of x purely based on data by making use of general blackbox function approximators, i.e. neural networks).

2.1. Generative model

The most direct approach in order to obtain a probabilistic surrogate would be to specify pθ (y|x) as is the case for wide 
array of methods. In the following we would like to suggest to the reader a different approach. The first novel contribution 
of this work is the use of a generative model, i.e. one that attempts to approximate the joint density p(x, y) and which 
can subsequently be used by conditioning on x for predictive purposes. Such a model offers the capability to incorporate 
unlabeled data (i.e. only inputs) Du = {x(iu)}Nu

iu=1 and therefore enables semi-supervised learning. This in turn allows the use 
of the information provided by the inexpensive (and potentially large) dataset Du which can reduce the dependence on the 
expensive labeled data [59,60]. In particular, we propose a model that performs supervised dimensionality reduction of x

1 Each vector y(il) is the discretized solution u(s, x(il)) of the governing PDE.
2 i.e., there exist dφ << dim (x) functions {φi (x)}dφ

i=1 such that p (y|x) ≈ p 
(

y
∣∣∣ {φi (x)}dφ

i=1

)
.
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Fig. 1. Illustration of differences between probabilistic graphical models discussed (shaded nodes are observed). a) Discriminative model where the latent 
variables z encode lower-dimensional features of the input x which are predictive of the output y, b) Generative model where z represent latent generators 
of both input and output, and c) Generative model which in comparison to (b) is augmented by virtual observables encoding domain knowledge.

and y [61] by postulating the existence of latent variables z that constitute x, y conditionally independent (see Fig. 1b), i.e., 
for each labeled pair il in Dl the model assigns a likelihood

pθ (x(il), y(il)) =
∫

pθ (y(il)|z(il)) pθ (x(il)|z(il)) pθ (z(il)) dz(il) . (3)

We denote again with θ any tunable model parameters, although these are in general different from the ones in Equation 
(2). The unobserved variables z play the role of latent generators of x and y. We specify the form of the aforementioned 
densities, their parameterization as well as their training in the sequel. We note that the generative construction adopted 
provides also a likelihood for each unlabeled data point iu in Du as follows

pθ (x(iu)) =
∫

pθ (x(iu)|z(iu))pθ (z(iu)) dz(iu) . (4)

Furthermore, for predictive purposes, the posterior of z for a new x, i.e. pθ (z|x) ∝ pθ (x|z)pθ (z), can be used in order to 
compute

pθ (y|x) =
∫

pθ (y, z|x) dz =
∫

pθ (y|z)pθ (z|x) dz , (5)

i.e., the predictive posterior on the corresponding output y. Figs. 1a and 1b provide illustrations of the discriminative and 
generative probabilistic graphical models.

2.2. Virtual observables

The second novelty proposed in this paper pertains to the introduction of domain knowledge as represented in the 
governing equation (Equation (1)) into the learning objectives. We would like the training process not to rely exclusively on 
unlabeled Du or labeled Dl data but also to incorporate physical knowledge. This can appear in several forms but since we 
are interested in their systematic incorporation we consider here various (in)equalities expressing different types of physical 
relations between the model-variables. The governing PDE of Equation (1) for example, is a potentially infinite source of 
information (if one considers that the equality holds at each of the infinite points of the problem domain �) in contrast to 
the limited times these governing equations can be solved due to computational expense. While the introduction of such 
equalities is rather straightforward in deterministic settings in the training loss and has been employed successfully in the 
context of physics-informed neural networks (PINNs [40]), in a probabilistic setting, it has only been achieved for linear ones 
and in order to approximate the solution of the PDE (not its dependence on input parameters) using Gaussian Processes 
[62]. In this work, we generalize the type of equalities that we consider by including nonlinear ones as well as demonstrate 
how other types of information, e.g. that the solution is a minimizer of a functional, can be incorporated. We discuss below 
how these can be integrated in the learning/inference process and we give specific examples of the forms these take in the 
numerical illustrations (section 3).

Consider first equality constraints, i.e.

c(y; x) = 0 , (6)

where c : Rdy × Rdx → Rdc . Such equalities can represent residuals of the governing PDE computed, e.g. at some collo-
cation points or by employing weighted residuals with appropriate test/weight functions. They might also represent the 
enforcement of a physical constraint such as a conservation law (e.g. mass, momentum, energy). The only requirement on c
imposed by our framework is that they are differentiable functions, a property that will prove crucial in the Stochastic Vari-
ational Inference component (section 2.5). In order to incorporate Equation (6), we introduce an auxiliary variable/vector ĉx

which relates to c as follows

4
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ĉx = c(y; x) + σcεc, εc ∼ N (0, I) (7)

We further assume that ĉx is virtually observed and ĉx = 0. This induces a virtual likelihood p(ĉx|x, y), i.e.

p(ĉx = 0 | x, y) ∝ 1

σ
dc/2
c

e
− 1

2σ2
c

|| c(y;x) ||22
. (8)

The parameter σc determines the intensity of the enforcement of the virtual observation and is analogous to the tolerance 
parameter with which constraints or residuals are enforced in deterministic solvers. In the limit that σc → 0, the likelihood 
above degenerates to a Dirac-delta concentrated on the manifold implied by the constraint. In the context of the generative 
model proposed, one can exploit such unlabeled data, {x(ic), ̂c(ic)

x } consisting of pairs of inputs and virtual observables and 
the likelihood of each such data-pair ic will be given by:

pθ (x(ic), ĉ(ic)
x = 0) = ∫

pθ (ĉ(ic)
x , y(ic), z(ic), x(ic)) d y(ic) dz(ic)

= ∫
p(ĉ(ic)

x = 0 |y(ic), x(ic))pθ (y(ic), z(ic), x(ic)) d y(ic) dz(ic)

= ∫
p(ĉ(ic)

x = 0 |y(ic), x(ic))pθ (y(ic)|z(ic))pθ (x(ic)|z(ic)) pθ (z(ic)) d y(ic) dz(ic)

(9)

We emphasize that in this case, the solution vector y(ic) (which satisfies the constraint c(y(ic); x(ic))) is latent and must 
be inferred. We also note that ĉ(ic)

x = 0 in Equation (9) does not imply that we have conditioned on this observation, but 
that ĉ(ic)

x is always assumed to be (pseudo-) observed as equal to zero, and just like x(ic) , is treated as observed data. The 
corresponding graphical model is illustrated in Fig. 1c where the virtual observables are depicted as observed nodes [63]
with y, the solution of the PDE, becoming a latent variable and therefore unknown quantity in this case.

Another type of physical information that can be accommodated with the concept of virtual observables pertains to the 
variational nature of the associated problem. It is well-known that the solutions of most PDEs in computational physics can 
be expressed as minimizers of appropriate functionals. Such functionals have served as the foundation of several numerical 
schemes and appear in various forms, even for irreversible, nonlinear processes [64,65]. Various versions of these functionals 
were incorporated in the machine-learning loss functions of deterministic, deep models [66] as well as in the likelihood 
functions of probabilistic models [48].

Suppose that the discretized solution vector y(x) is obtained as the minimizer of

y(x) = arg min
y

V (y; x) , (10)

where V : Rdy × Rdx → R represents a generalized free energy or potential. Let Vmin(x) = miny V (y; x) be the unknown 
minimum value of V (attained by the solution) for each x. We define a new, auxiliary variable V̂ x as

V̂ x = V (y; x) − Vmin(x) − εV , εV ∼ Expon(β−1) . (11)

The random variable εV is by construction always non-negative and follows an exponential distribution with parameter β .3

We further assume that V̂ x = 0 has been virtually observed which implies a virtual likelihood

p(V̂ x = 0 | y, x) = β−1 e−β−1(V (y;x)−Vmin(x)) . (12)

As it will be become clear in the sequel, the unknown Vmin(x) does not enter the training of the model. One can deduce 
from Equation (12) that the smaller V (y; x) is, the higher the corresponding likelihood becomes and the latter is maximized 
for the y that corresponds to the solution (Equation (10)). Furthermore, the parameter β dictates the decay of the likelihood 
for V (y; x) > Vmin(x) and in the limit β−1 → 0, the likelihood degenerates to a Dirac-delta concentrated at the minimum 
(i.e. the true solution).

As in the previous case of the equality constraints, the introduction of these new observables enables the incorporation 
of the information contained in the discretized functional V in the training of the proposed generative model. In particular, 
given unlabeled data {x(iV ), V̂ (iV )

x } consisting of pairs of inputs and virtual observables V̂ x , the likelihood implied by the 
model for each data-pair iV will be:

pθ (x(iV ), V̂ (iV )
x = 0) = ∫

pθ (V̂ (iV )
x = 0, y(iV ), z(iV ), x(iV )) d y(iV ) dz(iV )

= ∫
p(V̂ (iV )

x = 0 | y(iV ), x(iV )) pθ (y(iV ), z(iV ), x(iV )) d y(iV ) dz(iV )

= ∫
p(V̂ (iV )

x = 0 | y(iV ), x(iV )) pθ (y(iV )|z(iV ))pθ (x(iV )|z(iV )) pθ (z(iV )) d y(iV ) dz(iV )

(13)

As in Equation (9), the solution vector y(iV ) (which minimizes V (y; x(iV )) is latent and must be inferred.
To make our presentation independent of specific choices, in the remainder we denote a dataset of virtual observables 

by DO = {
x(iO), ̂o(iO)}NO

i=1, where x(iO) represents an input query point and the corresponding ô(iO) ∈ RM comprises the 

3 εV can be thought as the probabilistic analogue of a slack variable for the enforcement of inequality constraints in optimization.
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Fig. 2. Node X corresponds to the inputs of a deterministic coarse-grained model (CGM), implying that z is encouraged not only to learn a representation 
of the inputs x, but also features that through the CGM can be predictive of the FGM output y (compare with Fig. 1c - shaded nodes are observed).

corresponding virtually observed values. Without loss of generality, we assume that we enforce the same number of M
constraints at every point (this assumption can easily be relaxed). Parameters that govern how rigidly the constrains are 
enforced, such as σ−1

c or β , are denoted summarily by τ ; in the more general case, different constraints can be enforced 
to varying degrees, i.e. τ can comprise several precision-type parameters and may be a vector instead of a scalar. We 
stress that the parameters τ are conceptually different from the parameters θ of the generative model, since they do not 
pertain to the generative process of (x, y), but rather govern the enforcement of physical constraints. In order to simplify 
the discussion and our notation, in the following we will assume that τ is a-priori specified and therefore we will omit 
to explicitly condition on τ (we discuss in Appendix C how τ could be inferred if not known a-priori by introducing a 
variational approximation q (τ )). We use the term input query point for each x(iO) appearing in DO to emphasize that in 
the general case the corresponding solution of the PDE y (x) is not observed/known, and we only query certain information 
from the underlying physics. The introduction of virtual observables implies that the plausibility of each model contained 
within the hypothesis space of the generative model pθ (y, x) is scored not only according to its performance on unlabeled 
and labeled data, but also with respect to the associated physical constraints.

2.3. Physics-inspired structure for surrogate

The third contribution of the paper in the direction of imbuing physical knowledge into the machine learning framework 
pertains to the meaning of the latent variables z and the density pθ (y|z). While one can make use of a purely statistical 
model by employing, e.g., a Gaussian Process or a (deep) neural network, we advocate here building the surrogate around a 
coarse-grained model (CGM). The latter can be based on simply coarsening the discretization of the governing equations ([57]) 
or by employing simplified physics ([58]). It serves as a stencil that automatically retains the primary physical characteristics 
of the FGM and can therefore lead to a reduction of the amount of data needed for training.

Let X and Y denote the input and output vector of the aforementioned CGM. The physical meaning of these variables 
does not need to be the same as for x or y but they are, by construction, lower-dimensional and the solution of the CGM, 
i.e. the cost of each evaluation of Y (X)4 is negligible as compared to y(x). We propose:

• linking the latent features z with X through a density pθ (X |z) with tunable parameters θ
• linking the sought FGM output y with the output of the CGM Y (X) rather than with z directly. Hence instead of 

pθ (y|z) we propose employing a density

pθ (y | Y (X)) (14)

These two elements combined allow us to express pθ (y|z) in Equation (5) as

pθ (y|z) =
∫

pθ (y | Y (X)) pθ (X |z) dX

and the (analytically intractable) predictive conditional density pθ (y|x) becomes

pθ (y|x) =
∫

pθ (y | Y (X)) pθ (X |z) pθ (z|x) dX dz . (15)

By mapping to the CGM input X , the latent variables z, learn to reconstruct the FGM’s solution y from the output Y of the 
CGM by means of pθ (y|Y (X)) (Fig. 2).

We specify X, Y , the CGM itself as well as the densities involved in subsequent sections and in particular in the context 
of the numerical illustrations (section 3). The introduction of the CGM and the associated latent variables X (and Y for a 
stochastic CGM) does not alter the generative nature of the model. We note though that the CGM can be omitted or simply 
complemented by a phenomenological statistical emulator, in which case the graphical model structure in Fig. 2 would be 
altered.

4 We assume a deterministic CGM for simplicity although this can be relaxed.
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Fig. 3. A schematic overview of the building blocks of the generative model. All solid black arrows correspond to the conditional 
densities Eq. (17)–(19), i.e. encode conditional dependence assumptions, and therefore define the joint distribution pθ

(
z, x, X, y, ô

) =
p (z) p (x|z, θ) p (X |z, θ) p (y|Y (X) , θ) p (ô∣∣y, x,τ

)
. The dashed lines correspond to the amortized encoder (Eq. (34)) as an auxiliary tool for inference, 

as well as the mapping y (x) implied by the fine-scale resolution of the differential operator L. The latent space encoding z ∼ N (0, I) (Eq. (16)) is as-
sumed to have given rise to all other observed quantities via a series of conditional densities involving complex, parametric nonlinear transformations 
defined by θ and the CGM Y (X). Since the latent dimension Q = dim (z) is considerably smaller than dx = dim (x) , dy = dim (y), this implies that the 
model (via an information-bottleneck) has to identify a lower-dimensional embedding of the data (x, y) defined by p (z|x, y, θ), which in turn is used to 
derive effective properties X via p (X |z, θ) (see Eq. (18)) entering the coarse-grained model Y (X); subsequently the predictions of the CGM are used to 
reconstruct the fine-scale solution via p (y|Y (X) , θ), see Eq. (19). If any of the nodes in this graph are observed, we can probabilistically reason about the 
parameters θ that have given rise to these observations (using variational inference, see section 2.5). It is possible to leverage any kind of data (unlabeled, 
labeled, domain knowledge) to reason about θ (by optimizing the combined ELBO Eq. (28)), and thereby identifying a suitable coarse-grained physics model 
in conjunction with some latent encoding out of an a-priori defined parametric family of candidates.

2.4. Specification of generative model

In the following we suggest a specific architecture for the probabilistic model which satisfies all of the previously dis-
cussed key aspects; i.e., a generative model that implicitly defines (and learns) a joint distribution pθ (x, y) via unobserved, 
latent variables z (see Eq. (3)), and where predictions for y are obtained by identifying a coarse-grained physical process 
based on the latent space encoding via the densities pθ (y|Y (X)) and pθ (X |z) (see Eq. (14), (15)). Assuming real-valued 
x, z, X, y we propose the following probabilistic generative model (for a schematic overview see also Fig. 3)

z ∼ N (0, I) (16)

x = f (z; θ x) + S1/2
x (z; θ x)εx εx ∼ N (0, I) (17)

X = g
(
z; θ g

)+ S1/2
X εX εX ∼ N (0, I) (18)

y = h
(
Y (X) ; θ y

)+ S1/2
y εy εy ∼ N (0, I) (19)

where f (·) and g (·) are nonlinear functions (e.g. neural networks) parameterized by θ x and θ g respectively. We have 
assumed here a Gaussian noise model, implicitly parameterized by a set of symmetric positive definitive matrices S x , S X

and S y .5 We defer any further discussion of the specifics until section 3 where the meaning of the different variables is 
presented. Since we operate under the assumption of small labeled data, the complexity of g(z; θ g ·) is chosen relatively low 
compared to f (z; θ x), in order to allow learning a mapping from latent space to effective properties X with comparably 
few examples. The role of h(Y (X); θ y) is to define the map from the CGM’s output Y (X) to the (mean of the) output y of 
the FGM. All the conditional densities in (17) - (19) are multivariate Gaussians which have constant covariances with the 
exception of Equation (17) where the covariance S x depends on the z variables as dictated by the associated parameters θ x .

We denote by θ = {
θ x, θ g, θ y, S X , S y

}
the parameters of the generative model, which we wish to learn from a dataset 

D = {
Du,Dl,DO

}
which, in the most general case, consists of Nu unlabeled examples Du = {

x(iu)
}Nu

iu=1, Nl labeled input-
output examples Dl = {(x(il), y(il))}Nl

il=1, and a collection DO = {x(iO), ô(iO)}NO
iO=1 of NO query input points and virtual 

observables. We may then write the marginal likelihood as

5 We adopted a heteroscedastic noise model for pθ (x|z) due to S x (z; θ x) depending on the latent variables, while S X and S y are assumed constant. 
This difference in the noise models was necessitated by the fact that the identification of a heteroscedastic noise model requires (much) larger amounts of 
data, and we wish to operate (in the ‘supervised’ branch of the model) in the small data regime.

7



M. Rixner and P.-S. Koutsourelakis Journal of Computational Physics 434 (2021) 110218

p (D|θ) = p(Du|θ) p(Dl|θ) p(DO|θ)

=∏Nu
iu=1 p(x(iu)|θ)

∏Nl
il=1 p(x(il), y(il)|θ)

∏NO
iO=1 p(x(iO), ô(iO)|θ)

, (20)

where each of the likelihood terms in the products are given by Equations (4), (3) and (9) (or (13)) respectively. In view of 
the densities in Equations (16) - (19) these become

p(x(iu)|θ) = ∫
N
(
x(iu)| f

(
z(iu); θ x

)
, S x

(
z(iu); θ x

))
N
(
z(iu)| 0, I

)
dz(iu) , (21)

p(x(il), y(il)|θ) = ∫
N
(

y(il)| h
(
Y
(

X (il)
) ; θ y

)
, S y

)
N
(

X (il)| g
(
z(il); θ g

)
, S X

)
N
(
x(il)| f

(
z(il); θ x

)
, S x

(
z(il); θ x

))
N
(
z(il)| 0, I

)
dX (il) dz(il) ,

(22)

and

p(x(iO), ô(iO)|θ) = ∫
p(ô(iO)|y(iO), x(iO);τ ) N

(
y(iO)| h

(
Y
(

X (iO)
) ; θ y

)
, S y

)
N
(

X (iO)| g
(
z(iO); θ g

)
, S X

)
N
(
x(iO)| f

(
z(iO); θ x

)
, S x

(
z(iO); θ x

))
N
(
z(iO)| 0, I

)
d y(iO) dX (iO) dz(iO)

,

(23)

where p(ô(iO)|y(iO), x(iO); τ ) depends on the nature of the virtual observable (e.g. Equation (8) or Equation (12)). A fully 
Bayesian model could be defined by the introduction of appropriate priors for θ leading to a posterior on those, i.e. 
p (θ |D) ∝ p (D|θ) p (θ).

2.5. Inference and learning

Our primary objective is to learn the model parameters θ on the basis of the mixed data D = {Du,Ds,DO} so that 
the trained probabilistic surrogate can be used for predictive purposes. This task is hindered by the intractability of all 
the likelihood terms in Equations (21)-(23) due to the presence of the latent variables which must be integrated out. In the 
following we will discuss how such an intractable model can be trained, even if the likelihood cannot be evaluated in closed 
form. In order to simplify notation for our following discussion, let us denote summarily by R = {Zu,Zl,ZO,Xl,XO,YO}
the latent variables appearing in Equations (21) - (23) which consist of:

• Zu = {z(iu)}Nu
iu=1 associated with Du (see, e.g., Equation (4) or Equation (21)),

• Zl = {z(il)}Nl
il=1, Xl = {X (il)}Nl

il=1 associated with Dl (see, e.g., Equation (3) or (22)),

• ZO = {z(iO)}NO
iO=1, XO = {X (iO)}NO

iO=1, YO = {y(iO)}NO
iO=1 associated with DO (see, e.g., Equation (23)).

To enable the training of the intractable latent variable model, we advocate the use of Stochastic Variational Inference 
(SVI, [67,68]), which produces closed-form approximations of the true posterior p(θ , R|D) and simultaneously of the model 
evidence p(D). In contrast to sampling-based procedures (e.g., MCMC, SMC), stochastic variational inference yields biased 
estimates at the benefit of computational efficiency and computable convergence objectives in the form of the Evidence 
Lower Bound (ELBO [69]). In particular, we denote the variational approximation to the joint posterior as qξ (θ , R) where ξ
are its tunable parameters and note that the model evidence p(D) can be lower-bounded as [70]:

log p(D) = log
∫

p(D, θ ,R)dθ dR
= F (ξ) + K L

(
qξ (θ ,R)

∣∣∣∣ p (θ ,R|D)
)

≥ F(ξ)

, (24)

where

0 ≤ K L
(
qξ (θ ,R)

∣∣∣∣ p (θ ,R|D)
)= −

∫
qξ (θ ,R) log

(
p(θ ,R|D)

qξ (θ ,R)

)
dθ dR (25)

is the KL-divergence between approximate and true posterior, and F(ξ ) is the ELBO, i.e.

F(ξ) = ∫
qξ (θ ,R) log

(
p(D, θ ,R)

qξ (θ ,R)

)
dθ dR

= Eqξ

[
log

(
p(D, θ ,R)

qξ (θ ,R)

)] . (26)

Maximizing the ELBO over the parameters ξ is therefore equivalent to minimizing the KL-divergence from the true 
posterior. The ELBO provides a score function for comparing different approximations (e.g. different family of distributions 
q ∈ Q or different parametrizations ξ ) and as an approximation to the model evidence can also be used to compare different 
models (e.g., with different structure or different parametrizations θ ).
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We employ a (partial) mean field approximation, i.e. a qξ that factorizes as follows

qξ (θ ,R) = qξ (θ)
∏Nu

iu=1 qξ

(
z(iu)

)∏Nl
il=1 qξ

(
z(il)

)
qξ

(
X (il)

)∏NO
iO qξ

(
z(iO

)
qξ

(
X (iO)

)
qξ

(
y(iO)

)
. (27)

While this might appear drastic, we note that the elements of Zu are conditionally (given θ ) independent of the rest even 
in the true posterior. The same holds for the latent variables in the following two groups {Zl, Xl} and {ZO, XO, YO}. 
Furthermore, q (R) is only an auxiliary distribution which facilitates the training of the intractable generative model (i.e. it 
only has an impact on later predictions to the extent that it influences qξ (θ)). Given this, the ELBO becomes:

F (ξ) = Eqξ

[
log

(
p (D, θ ,R)

qξ (θ ,R)

)]

= Eqξ

[
log p (Du|θ ,R) + log p (Dl|θ ,R) + log p (DO|θ ,R) + log p (R, θ) − log qξ (θ ,R)

]
=

∑Nu

iu=1
Eqξ

[
log p

(
x(iu)

∣∣∣z(iu), θ
)]

+
∑Nl

il=1
Eqξ

[
log p

(
y(il)

∣∣∣X (il), θ
)

+ log p
(

x(il)
∣∣∣z(il), θ

)]
+
∑NO

iO=1
Eqξ

[
log p

(
ô(iO)

∣∣∣y(iO), x(iO), θ
)

+ log p
(

x(iO)
∣∣∣z(iO), θ

)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Eqξ [log p (Du|θ ,R)]

Eqξ [log p (Dl|θ ,R)]

Eqξ [log p (DO|θ ,R)]

+
∑Nu

iu=1
Eqξ

[
log p

(
z(iu)

)]
+
∑Nl

il=1
Eqξ

[
log p

(
X (il)

∣∣∣z(il), θ
)

+ log p
(

z(i)
)]

+
∑NO

iO=1
Eqξ

[
log p

(
y(iO)

∣∣∣X (iO), θ
)

+ log p
(

X (iO)
∣∣∣z(iO), θ

)
+ log p

(
z(iO)

)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
Eqξ [log p (R|θ)]

+Eqξ [log p (θ)]

−Eqξ

[
log qξ (R) + log qξ (θ)

]
.

(28)

In all subsequent illustrations we used point estimates for the parameters θ , i.e. computed their maximum-a-posteriori 
(MAP) estimate θ M A P . This is equivalent to introducing a Dirac-delta

qξ (θ) = δ (θ − θ M A P ) (29)

in the variational approximation in which case the parameters ξ include also θ M A P . In this case, the expectations with 
respect to qξ (θ) can simply be computed by substituting θ M A P wherever θ appears and the entropy term Eqξ

[log qξ (θ)]
can be ignored as it is independent of θM A P .

The presence of three sets of conditionally independent datasets, i.e. Du ,Dl and DO (Equation (20)) leads to an additive 
decomposition of the ELBO of the form F = Fu + Fl + FO + log p(θ M A P ), where

Fu(ξ) =∑Nu
iu=1 Eqξ

[
log p(x(iu)|z(iu), θ)

]+∑Nu
iu=1 Eqξ

[
log p(z(iu))

]−∑Nu
iu=1 Eqξ

[
log qξ (z(iu))

]
(30)

accounts for the terms associated with the unlabeled data Du ,

Fl(ξ) =∑Nl
il=1 Eqξ

[
log p(y(il)|X (il), θ) + log p(x(il)|z(il), θ)

]
+∑Nl

il=1 Eqξ

[
log p(X (il)|z(il), θ) + log p(z(il))

]
−∑Nl

il=1 Eqξ

[
log qξ (X (il)) + log qξ (z(il))

] (31)

accounts for the terms associated with the labeled data Dl , and

FO(ξ) =∑NO
iO=1 Eqξ

[
log p(ô(iO)|y(iO), x(iO), θ) + log p(x(iO)|z(iO), θ)

]
+∑NO

iO=1 Eqξ

[
log p(y(iO)|X (iO), θ) + log p(X (iO)|z(iO), θ) + log p(z(iO))

]
−∑NO

iO=1 Eqξ

[
log qξ (y(iO)) + log qξ (X (iO)) + log qξ (z(iO))

] (32)

accounts for the terms associated with the virtual observables/data DO .
We note that in Equation (30), Equation (31) and Equation (32) the expected log-likelihood terms (i.e. first sum) promote 

a good fit of the generative model to the unlabeled Du , labeled Dl and virtual data DO data respectively, while the second 
and third sums correspond to the Kullback-Leibler divergence between approximate posteriors and priors which act as regu-
larization that prevents overfitting. The common model parameters θ appear in all components of the ELBO and synthesize 
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Algorithm 1: Training generative model using SVI.

Data: Generative Model, Du = {
x(iu )

}Nu

iu=1, Dl = {
x(il), y(il)

}Nl

il=1 , DO =
{

x(iO ), ô(iO )
}NO

iO=1

1 while ELBO not converged do
// Reparametrization trick

2 Sample ε(k) ∼ p (ε) , k = 1, ..., K ;

3 R(k) ← 
R
ξ

(
ε(k)

)
θ (k) ← 
θ

ξ

(
ε(k)

)
k = 1, ..., K ;

// Monte Carlo estimate of ELBO
4 Estimate F̂ ←∑K

k=1 F
(
θ (k),R(k)

)
; // Equation (28)

5 // Backpropagate

6 gξ ← ∇ξ

∑K
k=1 F

(
θ (k),R(k)

)
;

// Stochastic Gradient Update
7 ξ (n+1) ← ξ (n) + ρ(n)  gξ ;
8 n ← n + 1
9 end

the information provided by the different data-types. We highlight the term log p(ô(iO)|y(iO), x(iO), θ) in Equation (32), 
which is driven by the virtual dataset and reflects the incorporation of our (in)equality constraints. In this case, the model 
attempts to infer the solution y(iO) through qξ

(
y(iO)

)
. Hence the updates of the model parameters θ are affected also by 

the inferred solutions and the uncertainty associated with them.
For the structured mean-field approximation qξ (θ ,R) in Equation (27) we adopt diagonal Gaussians, primarily due to 

their linear scaling with the dimension of the corresponding latent variables. The following forms and parametrizations for 
the variational posteriors qξ in Equation (27) were adopted:

• ∀iu ∈ {1, ..., Nu}: qξ

(
z(iu)

)= N
(

z(il)
∣∣∣ μ(iu)

z ,diag
(
σ (iu)

z

))
• ∀il ∈ {1, ..., Nl}: qξ

(
z(iu)

)= N
(

z(il)
∣∣∣ μ(il)

z ,diag
(
σ (il)

z

))
qξ

(
X (il)

)= N
(

X (il)
∣∣∣ μ(il)

X ,diag
(
σ (il)

X

))
• ∀iO ∈ {1, ..., NO}: qξ

(
z(iO)

)= N
(

z(iO)
∣∣∣ μ(iO)

z ,diag
(
σ (iO)

z

))
qξ

(
X (iO)

)= N
(

X (iO)
∣∣∣ μ(iO)

X ,diag
(
σ (iO)

X

))
qξ

(
y(iO)

)= N
(

y(iO)
∣∣∣ μ(iO)

y ,diag
(
σ (iO)

y

))

which, in combination with Equation (29) suggest that the parameter vector ξ consists of

ξ =
{
θ M A P ,

{
μ(iu)

z ,σ (iu)
z

}Nu

iu=1

{
μ(il)

z ,σ (il)
z ,μ(il)

X ,σ (il)
X

}Nl

il=1

{
μ(iO)

z ,σ (iO)
z ,μ(iO)

X ,σ (iO)
X ,μ(iO)

y ,σ (iO)
y

}NO

iO=1

}
. (33)

For the parameters that are constrained to be positive, a suitable transformation (e.g. exp (·)) is employed such that maxi-
mizing the ELBO becomes an unconstrained optimization problem.6

From Equation (33) it is obvious that the number of variational parameters associated with the, potentially large unla-
beled dataset, Du scales linearly with Nu . One may therefore consider introducing an amortized encoder q�

(
z(iu)

∣∣x(iu)
)

[71], 
i.e. an approximate posterior that explicitly accounts for the dependence of each z(iu) on the data x(iu) . In particular, we 
adopt an approximate posterior of the form

q�

(
z(iu)

∣∣∣x(iu)
)

= N
(

z(iu)
∣∣∣μ�

(
x(iu)

)
,diag

(
σ�

(
x(iu)

)))
∀iu ∈ {1, ..., Nu} , (34)

where the amortization implies that the parameters � are shared between all instances iu of unlabeled data. Similarly to the 
choice of q (R) the specific structure of Eq. (34) follows from numerical considerations.7 While the approximate posterior 
in Equation (34) can, at best, achieve the same ELBO as the qξ (z(iu)) above, it contains fewer parameters that need to be 
optimized (at least for large Nu) and once trained can be readily used as an approximation to the true posterior pθ (z|x) for 
predictive purposes in Equation (15). In our simulations, the parameters � pertain to deep neural nets (see section 3) and 
from a practical point of view, the only difference is that 

{
μ(iu)

z , σ (iu)
z
}Nu

i=1 are substituted by the parameters � in the vector 
ξ of Equation (33), and that the unlabeled data is subsampled in batches during training.

We conclude this section by enumerating the basic steps associated with the variational inference task in Algorithm 1. 
The intractable expectations with respect to qξ appearing in the ELBO F and its gradient ∇ξF are estimated with Monte 
Carlo. In order to reduce the variance of these estimators, we apply the well-established reparametrization trick [71].

6 We note that σ denotes a vector of variances, not standard deviations.
7 This specific choice is amenable to reparametrization (see Algorithm 1). As detailed in the seminal paper of [71] this enables low-variance estimates of 

the gradients of the ELBO needed in training (see Algorithm 2).
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Algorithm 2: Making predictions for new x using the generative model.
Data: x, trained generative model

1 if amortization then
2 q∗ (z) ← q� (z|x) ; // Equation (34)
3 else
4 q∗ (z) ← arg maxζ F̂u

(
qζ (z)

)
; // Equation (37)

5 end
6 for k ← 1 to K do
7 Sample z(k) ∼ q∗ (z) ;

8 Sample X (k) ∼ p (X
∣∣z(k), θ M A P

)
; // Equation (18)

9 Sample y(k) ∼ p (y
∣∣X (k), θ M A P

)
; // Equation (19)

10 end

11 Construct sample-based approximation p̃ (y|x,D) using samples y(k), k = 1, ..., K

We combine the noisy estimates of the gradient ∇ξ F with stochastic gradient ascent [72] and the Adam algorithm in 
particular [73]. We note that training requires the propagation of gradients through the whole model, including the CGM 
and the constraints associated with virtual observables. Propagating gradients through the model can readily be done using 
algorithmic differentiation [74] whenever possible; i.e., when evaluating a Monte Carlo estimate of the evidence lower bound 
F a computational graph is built, such that in a backward pass gradient information propagates from F to the leaf nodes 
of the computational graph (e.g. given by the variational parameters ξ ) [75]. The CGM and the virtual observables o (y; x)

must be embedded within this computational graph, i.e. it is required that the CGM also allows the back-propagation of 
gradient information. If the CGM involves the solution of a (coarse-grained) PDE, the reverse-flow of information required 
during back-propagation corresponds to the solution of the adjoint problem (at a cost equivalent to the forward solution 
of the CGM). Obtaining derivatives of the virtual observables is equally a cheap operation but also problem-specific and 
discussion is deferred until section 3.3.

2.6. Predictions

Once an (approximate) posterior qξ (θ) on the model parameters θ has been computed, the interest shifts to using the 
trained model for predictions. The adoption of a generative model however implies that by learning a joint distribution 
pθ (x, y), the desired posterior predictive p (y|x,D) no longer directly exists in closed form. In the simplest case, given a 
new (unobserved) input x, we seek the corresponding output y. The probabilistic nature of the proposed generative model 
yields a probability density on y (see also (5)), i.e. the predictive posterior p (y|x,D) given by

p (y|x,D) =
∫

p (y|X, θ) p (X |z, θ) p (z|x, θ) p (θ |D) dz dX dθ (35)

≈
∫

p (y|X, θ M A P ) p (X |z, θ M A P ) p (z|x, θ M A P ) dX dz , (36)

where the variational approximation qξ (θ) = δ (θ − θM A P ) was used in place of the intractable posterior p (θ |D).8

If an amortized approximate posterior q�(z|x) has been found in the inference step as detailed in the previous section, 
then this can be used in place of p (z|x, θ M A P ) in Equation (36). Alternatively, one might employ sampling methods (e.g. 
MCMC) or another round of (stochastic) variational inference in order to obtain an approximation, say qζ (z). The latter is 
found by maximizing an analogous ELBO, i.e.

q∗ (z) = arg min
ζ

KL
[
qζ (z)

∣∣∣∣p (z|x, θ M A P )
]

= arg max
ζ

Eqζ (z) [log p (x|z, θ M A P )] − KL
[
qζ (z)

∣∣∣∣p (z)
]

= arg max
ζ

F̂u
(
qζ (z)

)
. (37)

We note that irrespective of the adopted method, no additional model solves of the FGM are required and for the results 
reported in subsequent sections the variational approximation qζ was used. The integral in the predictive posterior of (36)
can be approximated with Monte Carlo and requires solely solutions of the CGM. In Algorithm 2 we briefly summarize how 
probabilistic predictions p (y|x,D) can be obtained for new (unobserved) inputs x.

8 We also briefly mention the possibility (without pursuing it further in this work) to incorporate (additional) constraints o(y; x) at x during the 
prediction stage as well, i.e. to perform prediction by inference and update the posterior predictive using again the virtual likelihood p (y

∣∣x, ô,D
) ∝

p (ô∣∣y, x
)

p (y|x,D) where ô denotes the associated virtual observables.
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2.6.1. Predictive performance metrics
In the context of making (probabilistic) predictions, it is essential to score the predictive utility of the probabilistic 

surrogate in a way that assesses how well the model has learned to generalize the underlying mapping (i.e. the mapping 
y (x) implicitly defined by the PDE and the FGM). To this end we consider a validation dataset Dv = {

x(iv ), y(iv )
}Nv

iv =1
consisting of Nv input-output pairs of the FGM not appearing in the training data. On this validation dataset we evaluate the 
following two metrics using the predictive posterior density:

Coefficient of determination R2 The coefficient of determination R2 is a standard metric [76] which assesses the accuracy 
of point estimates, and in particular of the mean μ(x(iv )) of the predictive posterior of our trained model for each 
validation input x(iv ) , i.e.

μ(x(iv )) = Ep
(

y
∣∣x(iv ),D

) [ y] , iv = 1, . . . , Nv . (38)

The mean of the posterior predictive is estimated using Monte Carlo (see Algorithm 2) and is compared to the 
reference FGM outputs {y(iv )}Nv

i=1 using the coefficient of determination

R2 = 1 −
∑Nv

iv=1

∣∣∣∣y(iv ) − μ(x(iv ))
∣∣∣∣2

2∑Nv
iv=1

∣∣∣∣y(iv ) − yv

∣∣∣∣2
2

, (39)

where yv = 1
Nv

∑Nv
iv =1 y(iv ) is the sample average of the validation dataset. It can be noted that R2 attains its 

maximum value, i.e. R2 = 1, when the mean predictive estimates coincide with the actual FGM outputs in the 
validation dataset and deviations from these are weighted by the variability of the validation data appearing in 
the denominator of Equation (39).

Logscore L S This metric assesses not just point estimates of the predictive posterior but also the associated predic-
tive uncertainty. In particular and for the purpose of computing L S we approximate the otherwise intractable 
p(y|x(iv ), D) in Equation (36) at each validation input x(iv ) , by a Gaussian with a mean equal to the actual mean 
of the predictive posterior μ(x(iv )) (Equation (38) - estimated by Monte Carlo) and a diagonal covariance matrix 
S(x(iv )) containing the actual variances (also estimated by Monte Carlo - see Algorithm 2), i.e.

S(x(iv )) = diag
(
σ 2

j

(
x(iv )

))
, iv = 1, . . . , Nv (40)

where

σ 2
j (x(iv )) =Ep

(
y
∣∣x(iv ),D

) [(y j − μ j(x(iv )))2
]
, iv = 1, . . . , Nv . (41)

Subsequently, L S is evaluated as

L S = 1

Nv

Nv∑
iv=1

log N
(

y(iv ) | μ(x(iv )), S(x(iv ))
)

. (42)

One notes that high L S values are achieved not only when the predictive mean μ(x(it )) is close to the true 
y(it ) but also when the predictive uncertainty (as measured by the variances σ 2

j (x(it ))) is simultaneously as small 
as possible. It can finally be shown [57] that L S approximates the Kullback-Leibler divergence between the true 
p(y|x) and the (Gaussian approximation of the) predictive posterior pθ (y|x, D) averaged over the true distribution, 
say p(x), of the inputs.

2.7. Numerical complexity analysis

In the following we discuss the computational complexity of the proposed algorithms and their scaling with the dimen-
sions of the problem, as well as with the number of, virtual or actual, training data. In such a discussion it is necessary 
to distinguish between the training phase (i.e., obtaining θMAP - frequently referred to as offline phase) and the prediction 
phase (frequently referred to as online phase). Since the CGM is directly embedded in the probabilistic graphical model, the 
numerical cost of training (with the exception of unlabeled data) depends on the cost of the CGM, which we need to solve 
for a forward pass of our model (as well as an adjoint solve of the CGM for the backpropagation of gradient information). 
Forward evaluations of the CGM are also required, if - after training - the model is used for predictive purposes. As such, 
the overall numerical complexity depends on dcgm ≈ dim (Y ) ≈ dim (X). The numerical effort of the entire algorithm there-
fore scales with dcgm , and the specific dependence follows from the type of the CGM; i.e., how the numerical discretization 
technique used for the CGM scales with the dimension of dcgm . In the following we shall assume O(d2

cgm) and note that 
dcgm and the cost of a CGM solve is by construction much smaller than the corresponding dimension and cost of the FGM.
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During training the algorithm exhibits linear scaling in the number of labeled data points Nl and query points NO , as 
variational inference is carried out separately for qξ (z(i)) and qξ (X (i)) for i = 1, ..., (Nl + NO). The same statement extends 
to the memory requirements resulting from the variational inference for the X (i) and z(i) . In contrast, sub-linear scaling 
can be achieved in terms of the number of unlabeled data Nu , assuming that an amortized encoder q�(z|x) is introduced 
which enables the batched sub-sampling of data. In addition, the number of parameters dim(�) of the amortized encoder 
which one has to infer is constant irrespective of Nu . One of they key points is of course that the virtual observables enable 
the incorporation of a set of M = dim

(
ô
)

physical constraints at a cost that is dictated by the number of constraints M , 
and does not directly relate to the dimension arising from the fine-scale discretization, i.e. dy = dim (y) (in Appendix B we 
discuss the special case of closed form updates with the complexity being bounded by O(M3)) . As such the incorporation 
of virtual observables and the subsequent optimization of FO scales overall as O(NO · M3 · d2

cgm).
The cost of the generation of predictive estimates with the trained model is dictated primarily by the cost of the forward 

solve of the CGM, which makes the surrogate usable in a multi-query setting (for which we provide a numerical illustration 
in section 3.9). Since pθ (y|x,D) is not available in closed form, several evaluations of the CGM (at an assumed complexity 
O(d2

cgm) each) are required to obtain a sufficient estimates of the integrals involved (see section 2.6 and Algorithm 2). The 
numerical cost in the prediction phase is further reduced if an amortized encoder q� (z|x) has been employed, since this 
enables to bypass variational inference for any new x at which the surrogate is to be evaluated. Hence, FGM solves are 
needed only in the generation of Nl labeled data Dl = {

x(il), y(il)
}Nl

il=1 provide to the model. Since the cost of each FGM call 
for most problems outweighs the others, the primary cost metric used for our illustrations is the number of labeled data, 
which we try to reduce as much as possible while retaining predictive accuracy.

3. Numerical illustrations

We demonstrate the capabilities of the proposed framework in discovering predictive, probabilistic surrogates on a two-
dimensional diffusion problem. In the sequel, we specify particular elements of the proposed model that were presented 
generically in the previous sections and additionally concretize parametrizations and their meaning. The goals of the nu-
merical illustrations are:

• to examine the effect of the number labeled data Nl which are the most expensive to obtain and to assess whether the 
model can perform well under small Nl (i.e. a few tens of FGM runs, section 3.4).

• to assess the ability of the model to learn effective and interpretable CGMs that provide insight to the relevant features 
of the high-dimensional input x which are predictive of the output y (section 3.4).

• to examine the effect of the amount of virtual observables DO and assess whether the model’s predictive performance 
can be improved by increasing the number NO of such data (section 3.5).

• to examine the effect of the type of virtual observables provided for training. In particular, we consider three different 
types (namely coarse-grained residuals, hybrid and potential energy) and assess the model’s predictive performance for 
each one of those (section 3.5).

• to examine the effect of unlabeled data Du which are inexpensive to obtain and to assess whether the model’s predic-
tive performance can be improved by increasing the number Nu of such data (section 3.6).

• to examine the effect of the information bottleneck implied by the latent variables z and the CGM and to assess the 
effect of the dimension of z and the CGM’s state variables (i.e. X and Y ) on the predictive performance of the model 
(section 3.7)

• to assess the predictive performance of the model under high-dimensional parametric inputs x and under “interpola-
tive” and “extrapolative” conditions. The latter distinction refers to the ability to predict the (equally high-dimensional) 
output vector y under boundary conditions that were (interpolative) or not (extrapolative) used during training (sec-
tion 3.8).

• to investigate the efficiency and accuracy of the trained surrogate in a many-query application involving uncertainty 
propagation (section 3.9).

Some of the simulation results as well as the corresponding code will be made available at the following github reposi-
tory9 upon publication.

3.1. Definition of physical problem

For the numerical illustration of our modeling framework we consider a linear elliptic PDE defined on the unit square 
� = [0,1]d in dimension d = 2. We can write the governing equations as a two-field problem

conservation law: ∇ · J (s) = f , ∀s ∈ � (43)

constitutive law: J (s) = −∇ (κ (s) u(s)) ∀s ∈ � (44)

9 https://github .com /bdevl /PGMCPC.
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with boundary conditions

u = uD , s ∈ D (45)

J · n = 0, s ∈ N , (46)

where u(s) is a scalar field to which one might attribute the physical meaning of temperature or pressure or concentration, 
J (s) is a vector field representing flux, and n is the unit outward normal vector. N denotes the part of the boundary where 

Neumann boundary conditions are prescribed and is comprised of the top and bottom sides of the unit square �, i.e. for 
{s|s2 = 0 or s2 = 1}. At the remaining boundary D , i.e. the left and right side of the domain, we introduce randomized 
boundary conditions of the form

uD (s) = a0 · s2 + a1 (1 − s2) s ∈ {s|s1 = 0}
uD (s) = a2 · s2 + a3 (1 − s2) s ∈ {s|s1 = 1} (47)

with ai ∼ U [−0.5,0.5].
We model κ (s) with a log-normally distributed random field, i.e., κ(s) = eλ(s) where the underlying Gaussian field has a 
spatially constant mean μλ and a covariance Cλ

(
s, s′) function given by

Cλ

(
s, s′)= σ 2

λ · exp

(
−1

2

∣∣∣∣s − s′∣∣∣∣2
2

l2λ

)
. (48)

The following values were used for the parameters: μλ = 0.4, σλ = 0.8 and lλ = 0.04 or 0.15 (depending on the resolu-
tion of the FGM). The resulting random field κ(s) exhibits significant variability with a coefficient of variation of 0.95 and 
the small correlation lengths necessitate fine discretizations resulting in a high-dimensional random input x. A discretized 
sample of κ (s) is obtained by sampling the underlying Gaussian field on a spatial grid defined by the discretization of the 
FGM, which will be discussed in the following.

The numerical solution of the governing equations is obtained using a standard Finite Element (FE) schemes. For the 
purposes of our illustrations we consider the following two FE discretizations giving rise to the fine-grained (FGM) and 
coarse-grained (CGM) models in the previous discussion:

FGM This employs a fine(r) discretization using a regular grid of size d f × d f .10 Our simulations are based on d f = 32 (for 
lλ = 0.15) and d f = 64 (for lλ = 0.04) giving rise to dim(y) = (d f +1)2 using the standard FE scheme, i.e. dim(y) = 1089
and 4225, respectively. The random field κ(s) is discretized using piece-wise constant functions over each grid element, 
and the vector x represents the value of κ(s) at the centroid of each pixel. Hence dim(x) = d2

f .
In anticipation of the virtual observables that will be enforced and are discussed in more detail in section 3.3, we review 
here the weak form of the governing PDE which, in view of Equation (43) and the boundary conditions in Equation (45)
and Equation (46) becomes

−
∫
�

∇s w · J ds −
∫
�

w f ds = 0 , (49)

or upon making use of the constitutive equation (44)∫
�

∇s w · κ ∇su ds −
∫
�

w f ds = 0 . (50)

The admissible weight functions w ∈ W belong in the set W = {w(s) | w(s) ∈ H1(�), w(s) = 0 on D}. We denote by 
y the discretized representation of u(s) with the usual FE shape functions which, upon substitution in Equation (50), 
and for each w ∈ W yields a residual rw :Rdx ×Rdy →R

rw(y; x) = 0 . (51)

We note that depending on the choice of the weight functions w (at least) six methods (i.e. collocation, sub-domain, 
least-squares, (Petrov)-Galerkin, moments) arise as special cases [79].

10 The use of regular grids is pursued in order to enable the use of convolutional neural networks (CNNs) ([77], [78]) for the parameterized densities, 
enabling a parsimonious description of a complex hierarchy of features. We note that expressing physically meaningful spatio-(temporal) features on 
possibly non-regular and unstructured domains is a challenge in itself, but not the subject of this investigation. As such we have chosen to constrain 
ourselves to the representation of the random field on a regular grid, which enables the use of methods that have reached maturity due to their extensive 
use in computer vision.
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Fig. 4. Comparison of a sample x(i) of the discretized of the Gaussian random field λ(s) of the FGM (left - Equation (48) with lλ = 0.15) with the (log of 
the posterior mean of the) corresponding X (i) for three different CGM discretizations, i.e. 1 × 1 , 2 × 2 and 4 × 4 (The posterior means E[q(X(i))] are based 
on Nl = 512 training data). The CGMs encode effective properties X (i) via the trained model density p (X |x). As the CGM is refined, it captures more details 
of the underlying FGM properties, e.g. areas in the problem domain with higher/lower conductivity x in the FGM correspond to higher/lower values of X
in the CGM. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

It is also well-known that the solution to this problem, as with many problems in computational physics, can be 
obtained by minimizing an appropriate functional which in this case reduces to the potential energy function V given 
by

V = 1

2

∫
�

κ |∇su|2 ds −
∫
�

f u ds . (52)

Upon discretization, this suggests that the solution vector y can be found by minimizing V , i.e.

min y V (y; x) , (53)

where V is the discretized potential energy obtained by using the discretized versions of κ and u in V of Equation (52).
We note that the output vector y which corresponds to the discretization of u(s) is of similar dimension dy = dim(y) =
(d f +1)2 as well11 (Fig. 4). We do not consider the discretization error of the FGM, as our goal in this work is to predict 
y (i.e. the discretized solution), and as such assume it to be of sufficient accuracy.

CGM This is based on a FE solver on a coarse(r) regular grid of size dc × dc . Analogously to the FGM, the CGM input vector 
X represents the property within each of the pixels and is therefore of dimension dim(X) = d2

c . The FE solver yields 
the output vector Y (which represents u(s)) and is therefore of dimension dim(Y ) = (dc + 1)2 as well.12 The values 
dc = 1, 2, 4 were considered (see Fig. 4) - in all cases dc << d f ) in order to assess the effect of the dimensionality of 
the CGM in the predictive estimates. We note that this particular form of the CGM was adopted for simplicity and due 
to the fact that boundary conditions can be readily incorporated in it rather than having to learn their effect as well 
(e.g. by including them in x, X ). Nevertheless, any coarse-grained or reduced-order model from the vast literature on 
this topic can be employed instead.

3.2. Specification of the generative model

Given the physical problem above and the definitions of the associated input X , x and output vectors Y , y, we provide 
details on the parameterization of the generative model which was generically described in section 2. In particular, the 
following modeling choices were made:

(a) we employ a densely connected convolutional neural network [80] to parameterize the mean f (z; θ x) as well as the 
input-dependent diagonal covariance matrix S x(z; θ x) in Equation (17). In addition, we make use of the same architec-
ture for the amortized encoder q� (z|x) (section 2.5). More specifically, the implementation is based on a variation of 
the architecture proposed in [34]. The alterations refer predominantly to a reduction in the complexity and expressivity 
since the latent space z encodes the salient features of x, i.e., we primarily wish to retain information to the extent that 
it can help us in predicting effective properties by means of p (X |z, θ) (Equation (18)).

(b) The conditional density N (X
∣∣g(z; θ g), S X ) defined by Equation (18) relates the latent encoding z to the input X of 

the CGM (i.e. the apparent/effective/homogenized properties). The mean vector g(z; θ g) depends on the latent variables 
z and is parameterized using a linear layer, i.e. g(z; θ g) = W g z + bg such that θ g = {W g, bg}, which was found to be 
most robust in the low-data regime (this could be trivially expanded to a shallow feedforward neural network).

(c) For the dimension of the latent space we adopt the choice dim (z) = 0.5 · dim (X). To motivate this choice, we note 
that the primary function of z is to induce an information bottleneck which is able to retain information about effective
properties X . A suitable choice however will always be problem-dependent (see also section 3.7).

11 Excluding boundary conditions.
12 Excluding boundary conditions.
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Fig. 5. The left column provides examples of the mean of the predictive posterior p (y|x,D) for various x not seen during training. The middle column con-
tains the actual output y obtained by solving the FGM (ground truth / reference). Finally on the right column we compare the reference with the posterior 
predictive distribution by cutting along the diagonal of the unit square domain; the shaded area corresponds to the 95% credible interval ((64 × 64) FGM, 
(8 × 8) CGM, lλ = 0.04).

The general implementation of the model leverages and intertwines both Fenics [81] as well as PyTorch [75]. The CGM 
and its adjoint have been fully embedded within the automatic differentiation framework of PyTorch, enabling the fast and 
parallel solution of the CGM on the GPU (i.e. in batches).

3.3. Virtual observables

Following the general discussion in section 2.2 on how domain knowledge can be introduced consistently in a proba-
bilistic graphical model as artificial nodes (virtual observables), we discuss several types of such virtual observables DO
derived from the governing equations. We are primarily interested in those that can inexpensively augment the training 
data and improve the predictive ability of the trained model even though they might provide incomplete or partial pieces of 
information at each input query point x(iO) about the underlying governing equations. This property (partial information) 
will be reflected in the fact that most constraints we consider only carry information about a small subset of dimensions 
in the y-space. We note that when the virtual observables o (y; x) are linear with respect to y, then low-rank, closed-form 
updates for {q(y(iO))}NO

iO=1 (Equation (27)) can be employed. Detailed information on these technical matters is provided in 
Appendix B and in the appendices referenced in the ensuing discussion.

Weighted Residuals As discussed in the previous section, the method of weighted residuals can be used to enforce the 
governing equations. Hence we propose using Equation (50) as constraints that are probabilistically incorporated 
in the proposed model as discussed in section 2.2. We note that the use of weighted residuals of PDEs has also 
been advocated in deterministic machine-learning loss functions [46]. We consider two categories of residuals 
rw(y; x) based on two different types of weight functions w . The latter can be thought of as the lens through 
which the governing equations are viewed.
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Fig. 6. Illustration of 4 randomly sampled radial basis-type weight functions (Eq. (55)) corresponding to the Randomized Residuals. Instead of using col-
location points at which the PDE is enforced, we randomly sample Galerkin weight functions that enforce governing equations in a spatially-averaged 
sense.

The first type, which we call Coarse-Grained Residuals, employs weight functions w that correspond to 
the coarser discretization of the CGM. Due to the lower resolution of the corresponding mesh, they can be 
thought as enforcing the governing equations in a spatially-averaged sense. In particular and if we denote by 
�(s) = {�m(s)}M1

m1=1 the vector containing the shape-function of the CGM, we consider M1 weight functions 
{wm1 }M1

m1=1 of the form13

wm1(s) = �m1(s), m1 = 1, . . . , M1 . (54)

The second type of residuals considered and which we call Randomized Residuals are based on using M2

radial basis-type functions as weight functions w , i.e.

wm2(s) = exp

(
−||s − s0,m2 ||2

�2
m2

)
, m2 = 1, . . . , M2 . (55)

The scale parameters {�m2 }M2
m2=1 were set equal to 0.1 in subsequent investigations, and the centers {s0,m2 }M2

m2=1
are sampled uniformly over the problem domain, i.e. [0, 1]2 (Fig. 6).

In contrast to the first type of residuals, these are capable of providing more localized information and over 
subdomains the size of which is determined by the scale parameters �m2 which can be adjusted accordingly. In the 
extreme where �m2 → 0, the weight function wm2 becomes a Dirac-δ function and the corresponding constraint, 
a collocation-type one. The constraints associated with weighted residuals are enforced with infinite precision, i.e. 
σc = 0 in Equation (8).

Conservation (Flux) Constraint The second category of constraints that we employ can also be cast as a special case of 
weighted residuals, but operating instead directly on the conservation law (Equation (43)), i.e. on the flux vari-
able J as in Equation (49). In particular, we make use of indicator functions of subdomains �m3 ⊆ � as weight 
functions wm3 , i.e.

wm3(s) = 1�m3
(s), m3 = 1, . . . , M3 . (56)

We note that in this case, Equation (49) reduces to∫
∂�m3

J d −
∫

�m3

f ds = 0 , (57)

where the first integration is over the boundary of �m3 . The subdomains �m3 are selected to coincide with the 
finite elements of the CGM (Fig. 4). The flux J is computed using the constitutive law in Equation (44) from the 
discretized solution vector y. Even though the spatial resolution of the weight functions is analogous to the ones in 
the Coarse-Grained Residuals above, the information the residuals of Equation (57) provide is of a different physical 
nature. Since not even the FGM satisfies such flux constraints perfectly, we learn the precision σ−2

c (Equation (8)) 
with which these constraints are enforced by introducing a prior that promotes larger values (Appendix C). This is 
analogous to the well-known Automatic Relevance Determination (ARD, [70]) on the associated constraints.

Energy The final constraint that we make use of pertains to the type presented in Equation (10) (section 2.2) where the 
actual potential energy (Equation (53)) is employed. In contrast to the other constraints discussed, this provides 
complete information at each input query point, i.e. by minimizing V which implies fully enforcing the corre-
sponding virtual observable, one can perfectly determine the solution vector y. This precludes low-rank updates 

13 We always ensure these are admissible.
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Fig. 7. Predictive performance in terms of the R2 and L S metrics as a function of the number of labeled data points Nl (Nu = NO = 0), for d f = 32 and 
lλ = 0.15. Results have been averaged by repeatedly training the model on resampled data.

and makes the incorporation of this constraint more expensive. We provide details on how {q(y(iO))}NO
iO=1 is up-

dated using stochastic second-order optimization in Appendix D.

3.4. Predictive performance and the effect of Nl

In the simplest scenario, the model is given access solely to a set of labeled data Dl = {x(il), y(il)}Nl
il=1 (i.e. Nu = NO = 0). 

In the following we demonstrate as a baseline that the model generalizes well in the small labeled data regime, as a result 
of the information-bottleneck variables z as well as the CGM. We provide indicative samples of the mapping to the CGM 
inputs learned in Fig. 4 and indicative predictions for new inputs in Fig. 5.

As observed in Fig. 7, the model achieves very high scores with only Nl = 128 labeled data in terms of the R2 (the 
largest possible value of R2 is 1) and Nl = 64 in terms of the L S score. We observe that further increase of Nl results in 
minimal if not negligible improvement, i.e. the model has saturated. While alterations in the neural networks involved can 
be expected to change the particular values, we note that the saturation effect is a consequence of the limited capacity of 
the CGM which lies at the center of the model proposed. That is, even assuming an optimal choice for θ , the information 
bottleneck and the CGM implies that we can only predict the FGM output y up to a certain level of detail. Hence even 
if infinite (labeled) data were available, the predictive scores of the model would not improve further and the remaining 
pieces would be enveloped by the predictive uncertainty (see Fig. 5). On the other hand, if the CGM was removed and 
was substituted by a more expressive (and with more parameters) black-box model (e.g. another neural net), its predictive 
performance would not be as high with so few labeled data but would continue to increase (as much as its capacity would 
allow) with increasing Nl . This saturation effect arising from the CGM has also been observed in the discriminative model 
proposed in [58] where procedures for the adaptive refinement of the CGM were proposed. These were driven by the ELBO 
F , which provides a natural score function for each model, but were not pursued in this work.

3.5. Effect of the amount and type of virtual observables

In the following, we demonstrate the benefits of the inclusion of virtual observables to the predictive performance of the 
proposed model. In order to quantify this benefit, we consider the posterior predictive density p (y|x,Dl,DO) (section 2.6) 
as a function of labeled data Dl as well as of the virtual observables DO = {x(i), ô(i)

)}NO
i=1. We omit in these experiments, 

unlabeled data Du (i.e. Nu = 0), the effect of which will be examined in section 3.6. In particular, we examine the improve-
ment in the predictive performance, i.e. in the metrics R2 and L S (section 2.6.1), of the three baseline models (for NO = 0) 
corresponding to the following number of labeled data, i.e.

Nl = {16, 32, 64} , (58)

when NO virtual observables are added, where:

NO = {32, 64, 128, 196, 256} . (59)

Furthermore, we examine the effect of the different types of virtual observables by considering the following three cate-
gories:

• CGR: At each input query point x(iO) , M1 = 25 Coarse-Grained Residuals (Equation (54)) are observed .
• Hybrid: At each input query point x(iO) the CGR (M1 = 25), a set of randomized weighted residuals (M2 = 60, Equation 

(55)) and the conservation of flux (M3 = 32, Equation (56)) are observed.
• Energy: At each input query point x(iO) the potential energy is observed.
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Fig. 8. Left Column: Predictive performance of a model trained on Nl labeled data, NO virtual observables of type CGR (Nu = 0). Right Column: Comparison 
of predictive performance in terms of the L S metric with respect to 3 different types of virtual observables. The baseline performance for NO = 0 has been 
removed to improve clarity but the corresponding values can be found in the left column as well as Fig. 7. Results have been averaged by repeatedly 
training the model on resampled data.

We report results in Fig. 8, where the left column depicts the evolution of the R2 and L S for different values of NO and 
for virtual observables of the CGR type. One can readily observe that, for all three Nl values (i.e. number of labeled data), 
the introduction of the domain-knowledge in the form of these residual-type constraints leads to a significant improvement 
of the model’s predictive accuracy. Furthermore, with the virtual observables introduced, one can attain with only Nl = 16
predictive performance scores that in Fig. 7 required Nl = 512 labeled data i.e. a significant reduction in the number of times 
the FGM needs to be solved. As one would perhaps expect, the gains from the virtual observables are more pronounced for 
small numbers of labeled data, i.e. when the model still struggles to generalize based on the too few labeled data points 
and therefore has more room to improve. Despite the fact that these virtual observations ô ∈ R32 only provide partial 
information, the model is still able to leverage this to improve upon its predictive performance.
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Fig. 9. L S score as function of Nl (number of labeled data) and NO (number of virtual observables). Results have been averaged by repeatedly training the 
model on resampled data.

In the right column of Fig. 8 we expand upon these results by considering different types of virtual observables and 
by quantifying the impact of their informational content on the model’s predictive performance. We note that the energy 
virtual observables have the most striking benefit which is expected as they provide complete information on the associated 
FGM output. Secondly, the Hybrid-type seems to yield a higher improvement in the model’s predictive score as compared to 
the CGM-type. Finally in Fig. 9, we provide additional details by depicting the L S metric as a function of both NO and Nl .

3.6. Effect of unlabeled data

In this section we study the effect of unlabeled data Du = {x(i)}Nu
i=1, i.e. semi-supervised learning, in the model’s pre-

dictive accuracy. To this end we investigate the predictive posterior p (y|x,Du,Dl) as the number of unlabeled data Nu

increases. We re-emphasize that unlabeled data are inexpensive to obtain (i.e. just inputs) and if the generative model 
proposed can exploit their informational content in improving its predictive ability, this would be of high utility.

In Fig. 10 we present the evolution of predictive metrics R2 and L S as a function of the number of labeled data Nl
for two models. The blue line corresponds to no unlabeled data, i.e. Nu = 0, whereas the red line corresponds to Nu = 256
unlabeled data. In both Figures the benefit of Du can be clearly observed. The unlabeled data contribute in the identification 
of the lower-dimensional encoding z, i.e. a compressed description of the input x which in turn informs the prediction of 
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Fig. 10. A model trained on a certain number of labeled data Nl is compared to a model which in addition had access to Nu = 256 unlabeled data points, 
the latter achieving consistently better performance. Results have been averaged by repeatedly training the model on resampled data.

Fig. 11. The predictive performance of the generative model as a function of the number of unlabeled data Nu for Nl = 32 (left) and Nl = 64 (right). Results 
have been averaged by repeatedly training the model on resampled data.

the output y through X i.e. the CGM (Fig. 2). As one can also observe, the benefit of unlabeled data decreases the higher 
Nl (i.e. the number of labeled data) is. This is not unexpected as the room for improvement is smaller for higher Nl .

Fig. 11 conveys similar information by varying the number of unlabeled data points while Nl if fixed (either to Nl = 32 or 
Nl = 64). The improvement in the predictive performance due to addition of unlabeled data points can be clearly observed. 
We further note that this improvement is always less than what one would attain with additional labeled data or with 
virtual observables (Fig. 9).

3.7. Effect of the lower-dimensional encoding and the CGM

In the following we provide a brief exposition of the effect of the dimension of the latent encoding z and the state 
variables X (and Y ) of the CGM on the predictive accuracy. In Fig. 12a we alter the dimension of the dim (z) and clearly 
observe the existence of the information bottleneck, i.e. there exists threshold for dim(z) up to which an improvement of 
the generative model is observed (for a fixed number of labeled data Nl = 256 and Nu = 256). After this threshold, the 
predictive capability of the model deteriorates, since the ability to retain more information in the latent encoding z is 
now superseded by the inability of the model to generalize well in the low-data-regime about the (increasingly complex) 
mappings linking the latent space to effective properties X and random field discretizations x.

With regards to the dimension of X (or equivalently the resolution of the CGM), and as one would perhaps expect, there 
is an improvement in performance, as long as the dimension of the latent space as well as the number of data points afford 
the ability to exploit the increasing expressivity of the CGM. In Fig. 12b we illustrate the improvement of the predictive 
performance as the discretization of the CGM is increased from dim(X) = 2 (i.e. a CGM resolution of (1 × 1) - dc = 1) to 
dim(X) = 32 (i.e. a CGM resolution of (4 × 4) - dc = 4). The resolution of the FGM was (32 × 32) (i.e. d f = 32) and the 
results presented were obtained for Nl = 512, Nu = 512 and dim(z) = 32. We refer also to Fig. 4 for an illustration of the 
learned inputs X for various resolutions of the CGM.
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Fig. 12. Effect of the dimension of the latent encoding z and X on the predictive performance. Results have been averaged by repeatedly training the model 
on resampled data.

Table 1
(a) Different BCs considered, and (b) Predictive performance L S score obtained when training a model 
under the BCs indicated by the row and tested on the BCs indicated by the column.

Boundary Conditions

A B C D

a0 0 1 U (−0.5,0.5) 0
a1 0 1 0 Beta (2,5)

a2 1 0 0 −Beta (2,5)

a3 1 0 U (−0.5,0.5) 0

Logscore L S

prediction on
A B C D

trained on

A 1.30 1.30 2.61 2.34
B 1.40 1.40 2.64 2.39
C 1.26 1.24 2.75 2.30
D 1.17 1.13 2.44 2.42

3.8. Effect of different BCs

In the following we evaluate the predictive performance of the model in an extrapolative setting, i.e. when the model 
is asked to provide predictions for boundary conditions not observed during training. To this end we consider the set of 
boundary conditions listed in Table 1a, where the coefficients ai refer to the definition of a parametric Dirichlet B.C. as given 
in Equation (47) (for any ai we specify either a fixed value, or a distribution of it to be randomly sampled from).

In Table 1b we report the L S score obtained on a validation dataset (Nv = 256). In all cases the model was trained 
on Nl = 512 labeled and Nu = 2048 unlabeled data (with NO = 0) using an amortized encoder. The diagonal terms cor-
respond to predictive scores on the same BCs as the ones used for training (interpolative), whereas the off-diagonal ones 
to scores obtained on different BCs than the ones used for training (extrapolative). The results indicate that the predictive 
performance does not significantly depend upon the type of boundary condition the model has been trained on, i.e. the pre-
dictive performance in Table 1b only varies marginally across a column (BC used for training), and the variation is mostly 
determined (see row-wise), on which kind of boundary conditions we wish to make predictions.

3.9. Application: uncertainty propagation

As mentioned earlier, many-query applications represent one of the main incentives for learning probabilistic surrogates. 
We consider here the case of uncertainty propagation where the goal is to compute statistics of Quantities of Interest (QoIs) 
associated with the output y when the input x is random with a density, say p (x). In the following, we compare the 
reference solution for the density of such a scalar QoI v(y) obtained by direct Monte Carlo employing NMC = 8192 FGM 
runs with the marginal distribution p̃ (v|D) over the QoI obtained from the posterior predictive as

p̃ (v|D) =
∫ ∫

δ (v − v (y)) p (y|x,D) p (x)dx d y , (60)

where p(x) is the sampling density of the FGM inputs. We chose as v(y) the value of the solution of the PDE at the 
middle of our computational domain, i.e. at s = (0.5, 0.5). The generative model was trained with Nu = 8192, Nl = 32 and 
NO = 256 and the results obtained are illustrated in Fig. 13. The approximation p̃ (v|D) obtained from the probabilistic 
surrogate matches closely with the Monte Carlo reference. If we had adopted a fully Bayesian approach, i.e. if p (θ |D)

was captured beyond a point estimate, additional uncertainty bounds on the probability density function p̃ (v|D) could be 
derived [82]. Note that the approximate marginal distribution p̃ (v|D) as seen in Fig. 13 has been obtained by leveraging 
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Fig. 13. The predictive posterior density p (v|D) over the QoI v(y) as compared with the Monte Carlo reference p(v) obtained with NMC = 8192 FGM 
solves. The model has been trained using Nl = 32 (compare this with NMC ), Nu = 8192 and NO = 256 hybrid virtual observables (see section 3.5). An 
amortized encoder was used for training and predictions.

the amortized encoder p� (z|x), such that each prediction merely requires to pass x through a neural network, followed by 
solving the CGM.

4. Conclusions

We have proposed a generative probabilistic model for constructing surrogates for PDEs characterized by high-
dimensional parametric inputs x and high-dimensional outputs y. In the following we summarize the most important 
and novel characteristics which enable the model to generalize in the small (labeled) data setting

• it learns the joint density p(x, y) in contrast to the conditional p(y|x) that most discriminative models in the literature 
target. As a result, it can make use of unlabeled data (i.e., only inputs x) and enable training in a semi-supervised 
fashion.

• the choice of a latent variable model defines an information-bottleneck, and as such provides a mechanism to identify 
salient features of the random vector x which are predictive of the output. In other words, the information bottleneck 
forces the model to identify a small set of (complex and non-linear) features, which exhibit high mutual information 
with the solution y. This is achieved by maximizing of the ELBO which yields an encoding pθ (z|x) in the latent space 
that is ‘rich‘ in information concerning the output y we wish to predict [83].

• it employs a coarse-grained model at its core which serves to further tighten the information-bottleneck between the 
high-dimensional inputs x and outputs y. We have demonstrated how such models can be flexibly constructed by coars-
ening the FGM and have shown that this can lead to superior predictive performance in the small labeled data regime 
as well as under extrapolative conditions (i.e., boundary conditions not used during training). Part of the complexity of 
the expensive FGM is absorbed by the CGM which in turn reduces the dependence on (labeled) data. Alternatively one 
may regard this as an additional constraint imposed upon the generative model, as the mean predictions for p ( y|x,D)

are restricted to the manifold that is defined by a coarse-grained physical process [47].
• it makes use of domain knowledge in the form of constraints/equalities or functionals that govern the original phys-

ical problem. These are incorporated in the likelihood in a fully Bayesian fashion as virtual observables and can lead 
to significant performance gains while reducing further the need for expensive, labeled data. Furthermore, we have 
demonstrated the beneficial effect of such virtual observables even in cases where they only provide incomplete/partial 
information of the FGM solution vector.

• it yields a predictive posterior density that can be used not only for point estimates, but for quantifying the predictive 
uncertainty as well. The latter is most often neglected in similar efforts but it is an unavoidable consequence of any 
coarse-graining or dimensionality-reduction or reduced-order-modeling scheme that is trained on finite amounts of 
data.

The proposed modeling framework provides a fertile ground for several extensions. Apart from the obvious refinement, 
both in terms of breadth and depth, of the neural networks employed, these improvements would involve:

• the automatic discovery of the dimension of the latent variables z as well as of the CGM. In the latter case, this could 
involve the dimension of the state variables X , Y as well as the model-form itself, i.e. the relation between X and Y . 
As previously mentioned, the ELBO F could serve as the driver for such investigations since it quantifies the plausibility 
of the data under a given model by balancing the quality of the fit with the model’s complexity [84,58].

• active learning in terms of unlabeled data and virtual observables. As it has been demonstrated, such data provide 
valuable information in improving the model. It is not necessary though that all inputs x or pairs of inputs and virtual 
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Fig. A.14. If the source term f i associated with subdomain �i is zero, then the integrated flux across the boundary should net to zero. The discrepancy of 
this flux oi := ���i corresponds to a virtual observable (equality constraint) introduced as artificial node in our probabilistic graphical model.

observables (x, ̂o) provide the same information. A critical component in improving the overall training efficiency would 
be to employ active learning schemes [85] in order to adaptively select the inputs and/or virtual observables (e.g. weight 
functions) at each step that are most informative. We note that such a scheme and in the context of a deterministic PDE-
surrogate has been proposed in [46]. Extensions in the probabilistic setting advocated could also make use of the ELBO 
in selecting from a vocabulary of options, the one that would lead to the largest increase in F .
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Appendix A. Encoding conservation laws as equality constraints

A wide range of PDEs imply physical conservation laws, i.e. the governing equation state that some quantity � is con-
served and unchanging. Since this holds for any arbitrary subdomain �i ⊂ � and time interval we may express this in 
integral form [86] as

���i (t) = d

dt

∫
�i

∫
�(s, t)d�i +

∫
∂�i

J i (s, t)d (∂�i) −
∫
�i

f i (s, t)d�i (A.1)

where s, J i and f i denote the spatial coordinates, (boundary) flux and source term of subdomain �i , respectively. We 
may introduce this physical conservation constraint into our model by introducing oi = ���i as a virtual observable. A 
virtual observable may then for instance correspond to violation of energy conservation resulting from the CGM predictions, 
entering into the probabilistic model by virtue of a zero-mean virtual Gaussian likelihood, i.e. oi := ���i ∼ N

(
0, τ−1

i

)
. For 

our steady-state elliptic problem with no time-dependence Equation (A.1) simplifies to

���i =
∫

∂�i

J i (s)d −
∫
�i

f i (s) ·d�i , (A.2)

which states that the net-flow across the boundary ∂�i must be equal to production specified by the source term (see also 
Equation (43) and (57)). With u (s) =∑dy

j=1 ϕu
j (s) y j given by a Finite Element discretization of local (linear) shape functions 

defined on some triangulation T of the computational domain, Equation (A.2) results in a linear constraint, since the flux 
J (s) reduces to an element-wise constant quantity (see Fig. A.14), enabling us to compute
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∫
∂�i

J (s)d =
Ne∑
j=1

nT
e j

J e j
, (A.3)

where the element-wise constant flux J ei
= B(i) y is linear in y with B(i) ∈ R2×dy , and we sum over all finite elements 

comprising the subdomain �i (assuming a compliant mesh). As such for the choice of M subdomains �i, i = 1, ..., M we 
may define as virtual observable a vector o (y; x) (where the i-th entry corresponds to ���i ) which can be expressed as

o (y; x) = � (x) y − α (x) , (A.4)

with the entries of � (x) deriving from (A.3) and J ei
= B(i) y, while αi = ∫

�i
f i (s) ·d�i .

Appendix B. Low-rank mean-field updates for virtual observables

While in principle the entire model can be trained using stochastic variational inference14 as outlined in Algorithm 1, 
for linear equality constraints we are able to perform closed-form mean-field updates for q (YO), providing both additional 
insight as well as computationally efficient updates. For any ensemble of linear physical constraints enforced with a certain 
precision � we may write

o (y, x) := � (x) y − α (x) ∼ N
(
0,�−1) � (x) =

[
γ 1 (x)T , ...,γ M (x)T

]
∈RM×dy (B.1)

where the entries of � (x) and α (x) derive from the particular choice of constraint and the underlying physics at a query 
point x (see section 3.3). The precision matrix � = diag (λ1, ..., λM) is chosen diagonal, such that the set of parameters 
τ governing the enforcement of our constraints follows as τ = {λi}M

i=1. Given the assumed structure of the variational 
approximation qξ (θ,R) (see Equation (27)), note that the optimal q∗ (YO) follows by integrating out all other factors of qξ

[70]

log q∗ (YO) = Eq̃ξ

[
log

(
p
(
Ô
∣∣∣YO,XO,�

)
p (YO|XO, θ) p (XO|ZO, θ) p (XO|ZO, θ) p (ZO) p (θ)

)]

= Eq̃ξ

⎡
⎣−

NO∑
iO=1

[
1

2

(
y(iO) − h

(
X (iO)

))T
S−1

y

(
y(iO) − h

(
X (iO)

))]⎤⎦

+Eq̃ξ

⎡
⎣−

NO∑
iO=1

[
1

2

(
�
(

x(iO)
)

y − α
(

x(iO)
))T

�
(
�
(

x(iO)
)

y − α
(

x(iO)
))]⎤⎦+ const. , (B.2)

where Ô = {ô}NO
iO=1 comprises all virtual observations and q̃ξ denotes all other factors of the structured mean-field ap-

proximation aside from q(YO), i.e. qξ = q(YO)q̃ξ . Inspecting Equation (B.2) we find that it is linear-quadratic in y, which 
implies a Gaussian q(y(iO)) = N (μ(iO),�(iO)) at every query point with mean and covariance implicitly defined by (for 
iO = 1, ..., NO)

�(iO) −1
μ(iO) = �

(
x(iO)

)T
�
(

x(iO)
)
α
(

x(iO)
)

+ 〈
S−1

y

〉 〈
h
(

Y
(

X (iO)
)

; θ
)〉

�(iO) −1 = �
(

x(iO)
)T

��
(

x(iO)
)

+ 〈
S−1

y

〉
, (B.3)

where 〈·〉 denotes an expectation with respect to all remaining factors of the variational approximation q̃ξ . Given our model 
choices (Eqs. (16) - (19)), the expectation of the precision matrix 〈S−1

y 〉 is constrained to be diagonal while the matrix 
�
(
x(i)

)T
��

(
x(i)

)
with � ∈ RM×dy exhibits low-rank structure. This low-rank structure reflects the fact that we only have 

introduced partial or incomplete information, and as such the constraints are only informative for a certain (low-dimensional) 
subspace. It simultaneously allows us to cheaply incorporate this physical knowledge into our model, since we may exploit 
the low-rank structure and use the Woodbury matrix identity to obtain mean vector and covariance matrix of the Gaussians 
q
(

y(iO)
)= N

(
μ(iO), �(iO)

)
at a cost O

(
M3

)
, i.e. numerical expense of updating q

(
y(i)

)
depends on the number of enforced 

constraints rather than the dimension of y . Making use of the Woodbury matrix identity one finds

�(iO) = 〈
S y
〉− 〈

S y
〉
�
(

x(iO)
)T

�(iO) −1
�
(

x(iO)
) 〈

S y
〉
, (B.4)

14 The required Jacobian of the virtual observables o (y, x) in order to propagate gradients simply reduces to the well-known Gateaux derivative, and is 
easily (as well as cheaply and parallelizable) obtained in most Finite Element frameworks (see e.g. Unified Form Language [87]).
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where we have introduced the M × M matrix �(iO) = �(x(iO))〈S y〉�(x(iO))T + �−1. In the limit case of components of 
the diagonal precision matrix � being infinite (i.e. absolute enforcement of the constraint), the result is an am improper 
Gaussian with rank-deficient covariance, i.e. the epistemic uncertainty of the epistemic uncertainty of the model collapses to 
a subspace which is completely in compliance with the enforced constraints; the update of q (YO) then becomes similar to 
the updates of Bayesian Conjugate Gradient (BCG) [88], which poses the solution of a linear equation system as a problem 
of probabilistic inference conditionally on the observance of a set of search directions.

Appendix C. Adaptively inferring finite precisions

For some physical constraints as, e.g., the flux constraint (Appendix A) it is neither plausible to assume infinite precision, 
nor do we a-priori know a suitable finite precision value with which to enforce the constraint. In such cases we may 
chose to treat the precision parameters τ = {λm}M

m=1 probabilistically as well. We propose to introduce a Gamma prior 
λm ∼ (α

(m)
0 , β(m)

0 ) for each of the unknown precision values λ(m) , or alternatively assume identical precision for all virtual 
observables (or subgroups thereof). For notational simplicity we discuss the latter case where all virtual observables are 
governed by a singular precision parameter λ

λ ∼ β
α0
0

(α0)
λα0−1 exp (−β0λ) . (C.1)

The variational approximation is extended to include q (λ), and following the same approach as for the closed-form 
updates of q (YO) in Appendix B, the optimal variational approximation q∗ (λ) can be found to be a Gamma distribution 
(α, β), with parameters α and β given by

α =
⎛
⎝ NO∑

iO=1

1

2
M

⎞
⎠+ α0 β = 1

2

NO∑
iO=1

E
q
(

y(iO )
) [∣∣∣∣∣∣o (y(iO); x(iO)

)∣∣∣∣∣∣2
2

]
+ β0 , (C.2)

where M the number of constraints at each query point governed by λ. For a linear constraint (B.1) and a Gaussian 
q(y(iO)) = N (μ(iO),�(iO)) as given by Equation (B.3) the expectation involved in finding β becomes tractable; otherwise 
they can be cheaply estimated using Monte Carlo. For the Gamma prior we chose α0 = β0 = 10−6.

Appendix D. Stochastic second order optimization for the energy-based virtual observables

The introduction of the energy as a virtual observable at NO query point differs from the other constraints we con-
sidered, since in contrast to M << dy equality constraints it fully summarizes all the information about the governing 
equations. Specifically, for a Finite Element discretization of the linear elliptic PDE given by K (x) y = f (x), the energy can 
be expressed in discretized form as

V
(

y(iO), x(iO)
)

= 1

2
y(iO) T

K
(

x(iO)
)

y(iO) − f
(

x(iO)
)T

y(iO) , (D.1)

and we find that the minimization of the quadratic potential V
(

y(iO), xiO
)

is the dual problem to solving the linear equation 
system associated with the solution of the discretized PDE itself. The introduction of the energy similarly implies that 
the ELBO becomes a quadratic potential in μ(iO); i.e. plausibility of the model as scored by the ELBO now depends on 
the energy state obtained for predictions at all NO query points. With the virtual likelihood defined by a Exponential 
distribution as given by Equation (12) and following the same mean-field approach as in Appendix B, the optimal q

(
y(iO)

)=
N
(
μ(iO), �(iO)

)
is similarly found to be a Gaussian with mean and covariance defined by (for iO = 1, ..., NO)

�(iO) −1
μ(iO) = τ f (iO) + 〈

S−1
y

〉 〈
h
(

Y
(

X (iO)
)

; θ
)〉

�(iO) −1 = 〈
S−1

y

〉+ τ K
(

x(iO)
)

, (D.2)

where τ is a precision or tempering parameter which governs the weight given to the virtual observables - for the limit 
case of τ approaching infinity, the belief about yiO will entirely depend on the energy state and becomes independent of 
the probabilistic surrogate. In contrast to the enforcement of M << dy equality constraint, the precision matrix �(iO) −1

is 
sparse but exhibits full-rank structure, precluding the possibility to perform low-rank updates. As such the maximization of 
the evidence lower bound as a quadratic potential w.r.t. μ(iO) on first glance appears to be the dual problem to solving the 
linear PDE itself if no amortization is applied. Note however that

• the maximization of the ELBO defines a simplified transfer problem since cond(τ K (x(iO)) + 〈S−1
y 〉) ≤ cond(K (x(iO))), 

i.e. the probabilistic surrogate implicitly acts as a preconditioner. When optimizing the evidence lower bound we merely 
use the energy to correct the predictions of the surrogate and to pull them gradually in the right direction, instead of 
solving the PDE from scratch. This suggests an approach where one slowly tempers τ during training

• knowledge is transferred and mediated by the probabilistic model, as opposed to solving NO entirely disjoint problems
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• we are not intrinsically interested in q
(

y
)

but only to the extend to which it is able to inform our probabilistic surrogate, 
(i.e. learn the parameters θ of the generative model). As such, due to the inherent irreducible error introduced by the 
CGM, beyond a certain point there is no benefit in increasing τ (which, e.g., can be seen to correspond to the tolerance 
parameter of iterative solvers)

Despite this, it has to be noted that the incorporation of this inequality constraint is comparably much more expensive 
and bears more resemblance to the original forward problem defined by the FGM. Since we want to avoid solving the equa-
tion system implied by Equation (D.2) directly, we constrain the covariance matrix �(iO ) of the variational approximation 
q(y(iO)) = N (μ(iO),�(iO)) to be diagonal and chose to optimize F iteratively with respects to the parameters of q(y((iO))

using second order stochastic optimization. Here we use randomized Newton [89,90], which can be seen to iteratively up-
date parameters such that the iterates are as close as possible in the L2 norm, while simultaneously forcing the error to be 
zero with respect to a randomly sampled subspace (see sketching-viewpoint of [89]).
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ARTICLE OPEN

Self-supervised optimization of random material
microstructures in the small-data regime
Maximilian Rixner1 and Phaedon-Stelios Koutsourelakis 1,2✉

While the forward and backward modeling of the process-structure-property chain has received a lot of attention from the
materials’ community, fewer efforts have taken into consideration uncertainties. Those arise from a multitude of sources and their
quantification and integration in the inversion process are essential in meeting the materials design objectives. The first
contribution of this paper is a flexible, fully probabilistic formulation of materials’ optimization problems that accounts for the
uncertainty in the process-structure and structure-property linkages and enables the identification of optimal, high-dimensional,
process parameters. We employ a probabilistic, data-driven surrogate for the structure-property link which expedites computations
and enables handling of non-differential objectives. We couple this with a problem-tailored active learning strategy, i.e., a self-
supervised selection of training data, which significantly improves accuracy while reducing the number of expensive model
simulations. We demonstrate its efficacy in optimizing the mechanical and thermal properties of two-phase, random media but
envision that its applicability encompasses a wide variety of microstructure-sensitive design problems.

npj Computational Materials            (2022) 8:46 ; https://doi.org/10.1038/s41524-022-00718-6

INTRODUCTION
Inverting the process-structure-property (PSP) relationships repre-
sents a grand challenge in materials science as it holds the
potential of expediting the development of new materials with
superior performance1,2. While significant progress has been made
in the forward and backward modeling of the process-structure
and structure-property linkages and in capturing the nonlinear
and multiscale processes involved3, much fewer efforts have
attempted to integrate uncertainties which are an indispensable
component of materials’ analysis and design4,5. Uncertainties can
arise since: (a) process variables do not fully determine the
resulting microstructure but rather a probability distribution on
microstructures6, (b) noise and incompleteness are characteristic
of experimental data that are used to capture process-structure
(most often) and structure-property relations7, (c) models
employed for the process-structure or structure-property links
are often stochastic and there is uncertainty in their parameters or
form, especially in multiscale formulations8, and (d) model
compression and dimension reduction employed in order to gain
efficiency unavoidably lead to some loss of information which in
turn gives rise to predictive uncertainty9. This randomness should
be incorporated, not only in the forward modeling of the PSP
chain, but in the optimization objectives and the inverse-design
tasks as well.
(Back-)propagating uncertainty through complex and poten-

tially multiscale models poses significant computational difficul-
ties10. Data-based surrogates can alleviate these as long as the
number of training data, i.e., the number of solutions of the
complex models they would substitute, is kept small. In this small-
data setting additional uncertainty arises due to the predictive
inaccuracy of the surrogate. Quantifying it can not only lead to
more accurate estimates but also guide the acquisition of
additional experimental/simulation data.
We note that problem formulations based on Bayesian

Optimization11–13 account for uncertainty in the objective solely

due to the imprecision of the surrogate and not due to the
aleatoric, stochastic variability of the underlying microstructure. In
the context of optimization/design problems in particular, a
globally-accurate surrogate would be redundant. It would suffice
to have a surrogate that can reliably drive the optimization
process to the vicinity of the optimum (or optima) and can
sufficiently resolve this (those) in order to identify the optimal
control parameters. Since the location of the optima is, a priori,
unknown, adaptive strategies, in which the training of the
surrogate and the optimization are coupled, would be necessary.
We emphasize that unlike successful efforts e.g., in topology

optimization14 or general heterogeneous media15 which find a
single, optimal microstructure maximizing some property-based
objective, our goal is more ambitious but also more consistent
with the physical reality. We attempt to find the value of the
processing variables that gives rise to the optimal distribution of
microstructures (Fig. 1). To address the computational problem
arising from the presence of uncertainties, we recast the stochastic
optimization as a probabilistic inference task and employ
approximate inference techniques based on Stochastic Variational
Inference (SVI16).
In terms of the stochastic formulation of the problem, our work

most closely resembles that of17 where they seek to identify a
probability density on microstructural features which would yield
a target probability density on the corresponding properties.
While this poses a challenging optimization problem, producing a
probability density on microstructural features does not provide
unambiguous design guidelines. In contrast, we operate on (and
average over) the whole distribution of microstructures and
consider a much wider range of design objectives. In18 random
microstructures were employed but their macroscopic properties
were insensitive to their random variability (due to scale-
separation) and low-dimensional parametrizations of the two-
point correlation function were optimized using gradient-free
tools. In a similar fashion, in19,20 analytic, linear models were
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employed which, given small and Gaussian uncertainties on the
macroscopic properties, find the underlying orientation distribu-
tion function (ODF) of the crystalline microstructure. In21,22,
averaged macroscopic properties (ignoring the effects of crystal
size and shape) were computed with respect to the ODF of the
polycrystalline microstructure and on the basis of their targeted
values, the corresponding ODF is found. While data-based
surrogates were also employed, the problem formulation did
not attempt to quantify the effect of microstructural uncertainties.
In terms of surrogate development, in this work we focus on the

microstructure-property link and consider random, binary micro-
structures, the distribution of which depends on some processing-
related parameters. We develop active learning strategies that are
tailored to the optimization objectives. The latter can account for
the potential stochasticity of the material properties (as well as the
predictive uncertainty of the surrogate), i.e., we enable the
solution of optimization-under-uncertainty problems.

RESULTS & DISCUSSION
It is advisable that the readers familiarize themselves with the
mathematical entities defined in the "Methods" section in order to
better appreciate the results presented in this section which
contains two applications of the methodological framework, for
(O1)- and (O2)-type formulations of the inversion of the PSP chain
(see "Methods"). We first elaborate on the specific choices for the
process parameters φ, the random microstructures x and their
properties κ as well as the associated PSP links.

Process φ - Microstructure x
In all numerical illustrations we consider statistically homoge-
neous, binary (two-phase) microstructures which upon spatial
discretization (on a uniform, two-dimensional Np × Np grid with Np

= 64) are represented by a vector x ∈ {0, 1}4096. The binary
microstructures are modeled by means of a thresholded zero-
mean, unit-variance Gaussian field23,24. If the vector xg denotes the
discretized version of the latter (on the same grid), then the value
at each pixel i is given by xi= H(xg,i− x0) where H( ⋅ ) denotes the
Heaviside function and x0 the cutoff threshold, which determines
the volume fractions of the resulting binary field. We parameterize

the spectral density function (SDF) of the underlying Gaussian
field (i.e., the Fourier transform of its autocovariance) with φ, using
a combination of radial basis functions (RBFs—see Supplementary
Notes) which automatically ensures the non-negativity of the
resulting SDF. The constraint of unit variance is enforced using a
softmax transformation. The density p(x∣φ) implicitly defined
above affords great flexibility in the resulting binary microstruc-
tures (as can be seen in the ensuing illustrations) which increases
as the dimension of φ does. Figure 1 illustrates how different
values of the process parameters φ can lead to profound changes
in the microstructures (and correspondingly, their effective
physical properties κ). While the parameters φ selected do not
have explicit physical meaning, they can be linked to actual
processing variables given appropriate data. Naturally, not all
binary media can be represented by this model and a more
flexible p(x∣φ), potentially learned from actual process-structure
data, could be employed with small modifications in the overall
algorithm25–27.

Microstructure x - Properties κ

In this study we consider a two-dimensional, representative
volume element (RVE) ΩRVE= [0, 1]2 and assume each of the two
phases are isotropic, linear elastic in terms of their mechanical
response and are characterized by isotropic, linear conductivity
tensors in terms of their thermal response. We denote with C the
fourth-order elasticity tensor and with a the second order
conductivity tensor which are also binary (tensor) fields. The
vector κ consists of various combinations of macroscopic,
effective (apparent), mechanical or thermal properties of the RVE

which we denote by Ceff and aeff, respectively. The effective
properties for each microstructure occupying ΩRVE were com-
puted using finite element simulations and Hill’s averaging
theorem28,29 (further details are provided in the Supplementary
Notes). We assumed a contrast ratio of 50 in the properties of the
two phases, i.e., E1/E0= 50 (where E0, E1 are the elastic moduli of
phases 0 and 1, as well as Poisson’s ratio ν= 0.3 for both phases)
and a1/a0= 50 (where a0, a1 are the conductivities of phases 0 and
1). In the following plots, phase 1 is always shown with white and
phase 0 with black. We note that the dependence of effective
properties on (low-dimensional) microstructural features (analo-
gous to φ) has been considered, in e.g.30,31, but the random
variability in these properties has been ignored either by
considering very large RVEs or by averaging over several of them.
We emphasize finally that the framework proposed can accom-
modate any high-fidelity model for the structure-property link as
this is merely used as a generator for the training data D.

Case 1: Target domain of multi-physics properties (O1). In the
following we will demonstrate the performance of the proposed
formulation in an (O1)-type stochastic optimization problem (see
“Methods”), with regards to both thermal as well as mechanical
properties. In addition, we will provide a systematic and
quantitative assessment of the benefits of the active learning
strategy proposed (as compared to randomized data generation).
We consider a combination of mechanical and thermal proper-

ties of interest, namely [Eq. 1]:

κ1 ¼ ½aeff �11; κ2 ¼ 1
2

½Ceff �1111 þ ½Ceff �2222
� �

(1)

i.e., κ 2 R2
þ, and define the target domain [Eq. 2]:

K ¼ 8:5; 11:0½ � ´ 6:75; 9:0½ � (2)

The utility function uðκÞ ¼ IK κð Þ is the (non-differentiable)
indicator function of K � R2

þ which implies that the objective
of the optimization (type (O1)—see Fig. 2a) is to find the φ that
maximizes the probability that the resulting microstructures have
properties κ that lie in K. The two-phase microstructures have

Fig. 1 Conceptual overview. Given stochastic process-structure and
structure-property links, we identify the process parameters φ*
which maximize the expected utility Ep xjφð Þ u κð Þ½ � (Illustration based
on the specific case u κð Þ ¼ IK κð Þ and p κjxð Þ ¼ δ κ � κ xð Þð Þ). (Micro)
Structures x arise from a stochastic process through the density
p xjφð Þ which depends on the process parameters φ. A data-driven
surrogate is employed to predict properties κ which introduces
additional uncertainty.
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volume fraction 0.5 and the parameters φ 2 R100 as well as p(x∣φ)
were defined as discussed in the beginning of this section.
With regards to the adaptive learning strategy (appearing as the

outer loop in Algorithm (1) in “Methods”), we note that the initial
training dataset Dð0Þ consists of N0= 2048 data pairs which are
generated via ancestral sampling, i.e., we randomly draw samples
φ from Nð0; IÞ and conditionally on each φ(n) we sample p(x∣φ(n))
to generate a microstructure (the choice φ � Nð0; IÞ is not
arbitrary, as—given the adopted parametrization—it envelopes all
possible SDFs). In each data acquisition step l, Npool= 4096
candidates were generated and a subset of Nadd= 1024 of those
was selected based on the acquisition function. We note that Nadd

(as well as N0) defines a trade-off between information acquisition
and computational cost. Hence the size of the dataset increased
by 1024 data pairs at each iteration l, with L= 4 data
augmentation steps performed in total.
The optimal process parameters at each data acquisition step

are denoted as φ�
M;DðlÞ , with the subscript indicating the

dependence on the surrogate model M and the dataset DðlÞ on
which it has been trained. Once the algorithm has converged to its
final estimate of the process parameters after L data acquisition
steps, i.e., φ�

M;DðLÞ , we can assess φ�
M;DðLÞ by obtaining a reference

estimate of the expected utility Uðφ�
M;DðLÞ Þ ¼ Prðκ 2 Kjφ�

M;DðLÞ Þ
using Monte Carlo, i.e., by sampling microstructures
x � pðxjφ�

M;DðLÞ Þ, and running the high-fidelity model instead of

the inexpensive surrogate. In this manner we can also compare
the optimization results obtained with active learning with those
obtained by using randomized training data D (i.e., without
adaptive learning). We argue that the former has a competitive
advantage, if for the same total number N of datapoints we can
achieve a higher score in terms of our materials’ design objective
Pr κ 2 Kjφ�ð Þ. As the optimization objective F is non-convex and
the optimization algorithm itself non-deterministic, generally the
optimal process parameters φ* identified can vary across different
runs (non-determinancy arises from the randomized generation of
the data, the stochastic initialization of the neural network, as well
as the randomized initial guess of φð0Þ � N 0; Ið Þ) . For this reason
the optimization problem is solved several times (with different
randomized initializations) and we report on the aggregate
performance of active learning vs. randomized data generation
(baseline).
In the following we discuss the results obtained and displayed

in Figs. 3, 4, 5 and 6.

● In Fig. 3 we depict sample microstructures drawn from p(x∣φ)
for two values of φ, i.e., for the initial guess φ(0) (Fig. 3a) and for
optimal process parameters φ�

M;DðLÞ (Fig. 3b). While the
optimized microstructures as shown in Fig. 3b remain random,
one observes that the connectivity of phase 1 (stiffer) is
increased as compared to the microstructures shown in
Fig. 3a. The diagonal, connected paths of the lesser

Fig. 2 Illustration of various materials design objectives. Different optimization objectives with respect to the density p κjφð Þ that expresses
the likelihood of property values κ for given processing conditions φ. We illustrate the following cases: (a) we seek to maximize the probability
that the material properties κ fall within a target domain K. (b) We seek to minimize the mean deviation of the properties κ from a target
value κtarget . (c) we seek to minimize the deviation between p κjφð Þ and a target probability density ptarget κð Þ on the material properties.

Fig. 3 Case 1: Optimal random microstructures. (a) Samples of microstructures drawn from p(x∣φ) for the initial guess φ(0) of processing
variables. (b) Samples of microstructures drawn from p(x∣φ) for the optimal value φ�

M;DðLÞ of processing variables which maximize the

probability that the corresponding material properties will fall in the target domain K ¼ 8:5; 11:0½ � ´ 6:75; 9:0½ � (Eq. (2)). Underneath each
microstructure, the thermal κ1 and mechanical κ2 properties of interest (Eq. (1)) are reported.
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conducting phase (black) effectively block heat conduction in
the horizontal direction. This is also reflected in the effective
properties reported underneath each image. The value of the
objective, i.e., the probability that properties κ reside in K, is ≈
0.65 for the optimal microstructures (Fig. 3b), as opposed to ≈
0.14 for the microstructures shown in Fig. 3b (see also Fig. 4a
and c).

● Figure 4 provides insight into the optimization algorithm
proposed by looking at the process-property density p(κ∣φ) for
various φ values. We note that this density is implicitly defined
by propagating the randomness in the microstructures
(quantified by p(x∣φ)) through the high-fidelity model that
predicts the properties of interest. Based on the Monte Carlo
estimates depicted in Fig. 4, one observes that the density

Fig. 4 Case 1: Evolution of the process-property density during optimization. The actual process-property density p κjφð Þ was estimated
using 1024 Monte Carlo samples making use of the high-fidelity structure-property model (see Supplementary Notes), and for the following
three values of the process parameters φ: (a) for the initial guess φ(0), (b) for the optimal φ as obtained using the initial training dataset Dð0Þ

and without adaptive learning, (c) for the optimal φ obtained with the augmented training dataset Dð4Þ identified by the active learning
scheme proposed. The target domain K (Eq. (2)) is drawn with a green rectangle and the colorbar indicates the value of the density p κjφð Þ.

Fig. 5 Case 1: Assessment of active learning approach. (a) The probability we seek to maximize with respect to φ, i.e., Pr κ 2 Kjφð Þ is plotted
as a function of the size N of the training dataset (i.e., the number of simulations of the high-fidelity model). Based on 80 independent runs of
the optimization algorithm, we plot the median value (with dots) and the 50% probability quantiles (with error bars). The red lines correspond
to the results obtained without adaptive learning and the blue with adaptive learning. (b) For the the optimal φ�

M;Dð4Þ identified using active

learning, we compare the actual process-property density pðκ1jφÞ (black line—estimated with 1024 Monte Carlo samples and the high-fidelity
model) with the one predicted by the surrogate trained only on the initial dataset Dð0Þ (red line) and with the one predicted by the surrogate
trained on the augmented dataset Dð4Þ (blue line).

Fig. 6 Case 1: Convergence characteristics of the optimization algorithm. We illustrate for a single optimization run (a) the evolution of the
ELBO F as a function of the iteration number in the inner loop and for l= 0 (outer loop—see Algorithm (1)). (b) Evolution of the probability
we seek to maximize Prðκ 2 KjφÞ (estimated with 1024 Monte Carlo samples and the high-fidelity model) for the optimal values φ�

M;DðlÞ

identified by the algorithm at various data acquisition steps l (outer loop in Algorithm (1)).
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p(κ∣φ) only minimally touches the target domain K for initial
process parameters φ(0) (Fig. 4a) and gradually moves closer to
K as the iterations proceed, with the optimization informed by
the surrogate trained on the initial batch of data Dð0Þ (Fig. 4b).
The incorporation of additional training data by means of the
adaptive learning scheme enables the surrogate to resolve the
details in the structure-property map with sufficient detail to
eventually identify process parameters such that the density p
(κ∣φ) maximally overlaps (in comparison) with the target
domain K (Fig. 4c).

● In Fig. 5a we illustrate the performance advantage gained by
the active learning approach proposed over the baseline. To
this end, we compare the values of the objective function, i.e.,
Prðκ 2 Kjφ�

M;DÞ achieved for datasets D of equal size, with the
dataset being either generated randomly (baseline), or
constructed based on our active learning approach. Evidently,
the latter was able to achieve a better material design at
comparably significantly lower numerical cost (as measured
by the number of evaluations of the high-fidelity model of the
S-P link). We observe that while the addition of more training
data generally leads to more accurate surrogates, when this is
done without regard to the optimization objectives (red line),
then it does not necessarily lead to higher values of the
objective function. In Fig. 5b we provide further insight as to
why the adaptive data acquisition was able to outperform a
randomized approach. To this end we consider the impact of
adaptive learning on the model belief for one of the effective
properties κ, i.e., we compare the model-based belief
pðκ1jφ�

M;Dð4Þ ;Dð0ÞÞ of the surrogate conditional on Dð0Þ against
a reference density obtained using Monte Carlo (black line).
We can see that a model only informed by Dð0Þ (red line)
identifies an incorrect density and as such fails to converge to
the optimal process parameters. The active learning approach
(blue line) was able to correct the initially erroneous model
belief and as a result performs better in the optimization task.

● In Fig. 6a we illustrate the evolution of the ELBO during the
inner-loop iterations of the proposed VB-EM algorithm (see
Algorithm (1) in “Methods”). Finally, in Fig. 6b we depict the
evolution of the maximum of the objective identified at
various data acquisition steps l of the proposed active learning
scheme in a single, indicative run (in contrast to Fig. 5 where
results over multiple runs are summarized). As it can be seen,

the targeted data enrichment enables the surrogate to resolve
details in the structure-property map and identify higher-
performing processing parameters φ.

Case 2: Target density of properties (O2). In this second numerical
illustration, we investigate the performance of the proposed
methodological framework for an (O2)-type optimization problem
(Eq. (7)) where we seek to identify the processing parameters φ that
lead to a property density p κjφð Þ that is closest to a prescribed target
ptarget κð Þ. In particular, we considered the following two properties
[Eq. 3]

κ1 ¼ aeff
h i

11
κ2 ¼ aeff

h i
22

(3)

i.e., κ 2 R2 and a target density [Eq. 4]:

ptarget κð Þ ¼ N μ̂; Σ̂
� �

(4)

with μ̂ ¼ 20:5; 3:5½ �T and Σ̂11 ¼ 0:60, Σ̂22 ¼ 0:01; Σ̂12 ¼ �0:03
(depicted with green iso-probability lines in Fig. 8). These values
were selected to promote anisotropic behavior, i.e., the targeted
microstructures should have a large effective conductivity in the
first spatial dimension and simultaneously be (relatively) insulating
in the second spatial dimension. The characteristics of the active
learning procedure (outer loop in Algorithm (1) in “Methods”)
remain identical, with the only difference that Dð0Þ now comprises
N0= 4096 datapoints, with Nadd= 1024 datapoints (out of 4096
candidates) added in each of the L= 6 data-enrichment steps. We
used S= 20 samples from ptarget κð Þ to approximate the objective
(see Eq. (9)).
We discuss the results obtained based on Figs. 7 and 8:

● In Fig. 7 we showcase sample microstructures drawn from
p xjφð Þ both for the initial guess φ(0) (Fig. 7a, b) as well as for
the optimal process parameters φ�

M;DðLÞ identified by the

optimization algorithm using the active learning approach
(Fig. 7c, d). The examples shown in Fig. 7a, b correspond to
volume fraction 0.5 whereas the examples shown in Fig. 7b, d
correspond to volume fraction 0.3 (of the more conducting,
white phase, a1) . As one would expect, we observe that the
optimal family of microstructures identified (determined by
φ�
M;DðLÞ ) exhibit connected paths of the more conductive

phase (white) along the horizontal direction. The connected
paths of the lesser conducting phase (black) are also aligned

Fig. 7 Case 2: Optimal random microstructures. (a), (b) Samples of microstructures drawn from p(x∣φ) for the initial guess φ(0) of processing
variables. (c), (d) Samples of microstructures drawn from p κjφð Þ for the optimal value φ�

M;Dð6Þ of the processing variables which minimize the

KL-divergence between p κjφð Þ and the target density ptarget κð Þ (Eq. (4)). Underneath each microstructure, the thermal properties κ1 , κ2 of
interest (Eq. (3)) are reported. The illustrations correspond to two volume fractions 0.5 (in (a, c)) and 0.3 (in (b, d)) of the high-conductivity
phase (a1= 50).
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in the horizontal direction so as to reduce the effective
conductivity along the vertical direction. The optimal micro-
structures therefore exhibit a marked anistropy and funnel
heat through pipe-like structures of high-conductivity material
in the horizontal direction. This is also reflected in the
indicative property values reported under each frame.

● Finally, Fig. 8 assesses the advantage of the active learning
strategy advocated for this problem. In particular, we plot the
evolution of the process-structure density p κjφð Þ in relation to
the target ptarget κð Þ (depicted with green iso-probability lines)
at different stages of the optimization (initial-intermediate-
converged). Using the optimal process parameters φ identified
at each of these stages, we see that the optimization scheme
without active learning (Fig. 8a–d) results in a density that is
quite far from the target. In contrast, the optimization
algorithm with active learning (Fig. 8e–h) is able to identify
a φ which brings the p κjφð Þ very close to the target
distribution ptarget κð Þ. The validity of this result is assessed in
(Fig. 8i–l) where the actual p κjφð Þ (estimated with Monte Carlo

and the high-fidelity model) is depicted for the φ values
identified by the active learning approach (Fig. 8e–h). We
observe a very close agreement which reinforces previous
evidence on the advantages of the active learning strategy
advocated.

In conclusion, we presented a flexible, fully probabilistic, data-
driven formulation for materials design that can account for the
multitude of uncertainties along the the PSP chain and enables
the identification of optimal, high-dimensional, process para-
meters φ.
The methodology relies on probabilistic models or surrogates

for the process-structure p κjφð Þ) and structure-property p κjφð Þ)
links which could be learned from experimental or simulation
data. Although only the latter was extensively discussed in this
work, similar concepts and tools can be employed for the
construction of the former. The predictive uncertainty of
the surrogate is incorporated in the optimization objectives and
the self-supervised, active learning mechanism can reduce the
requirements on training data, which is particularly important

Fig. 8 Case 2: Evolution the of process-property density p κjφð Þ with and without active learning in relation to the target ptarget κð Þ. We
plot the evolution of the process-property density p κjφð Þ at three different stages of each optimization run, i.e.: the initial φ (a, e, i), the φ at an
intermediate stage of the optimization (b, f, j), and the optimal φ identified upon convergence (c, g, k). The fourth column, i.e., (d, h, l) is a
zoomed-in version of the third that enables closer comparisons of the densities involved. (a–d) Illustrate p κjφð Þ as predicted by the surrogate
trained on a randomized dataset without active learning. (e–h) Illustrate p κjφð Þ as predicted by the surrogate trained using the adaptive
learning proposed. (i–l) Illustrate the actual p κjφð Þ (estimated with 1024 Monte Carlo samples and the high-fidelity model) and for the optimal
φ identified by the active learning approach. The target distribution ptarget κð Þ is indicated with green iso-probability lines.
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when those arise from expensive experiments/simulators, so that
only the regions necessary for the solution of the optimization
problem are resolved. Adaptations to different material descrip-
tions or underlying physics would only require alterations of these
densities.
We have demonstrated that a variety of different objectives can

be accommodated by appropriate selection of the utility function.
Despite the use of surrogates, the computation of the objective
functions and their derivatives remains intractable as it requires
expectations with respect to the, generally, very high-dimensional
microstructural representations. To this end, we employed an
Expectation-Maximization scheme which iteratively identifies a
(near)-optimal sampling density for estimating the expectations
involved while simultaneously updating the estimates for the
optimal processing variables.
While not discussed, it is also possible to assess the optimization

error, albeit with additional runs of the high-fidelity model, by
using an Importance Sampling step32. Lastly we mention further
potential for improvement by a fully Bayesian treatment of the
surrogate’s parameters θ, which would be particularly beneficial in
the small-data regime we are operating in.

METHODS
A conceptual overview of the proposed stochastic-inversion framework is
provided in Fig. 1 where it is contrasted with deterministic formulations.
We present the main building blocks and modeling assumptions and
subsequently define the optimization problems of interest. We then
discuss associated challenges, algorithmic steps and conclude this section
with details regarding the probabilistic surrogate model and the active
learning strategy.
We define the following variables/parameters:

● process parameters φ 2 Rdϕ : These are the optimization variables and
can parametrize actual processing conditions (e.g., chemical composi-
tion, annealing temperature) or statistical descriptors (e.g., ODF) that
might be linked to the processing. The higher the dimension of φ, the
more control one has over material design and the more difficult the
problem becomes.

● random microstructures x: This is in general a very high-dimensional
vector that represents the microstructure with the requisite detail to
predict its properties. In the numerical illustrations which involve two-
phase media in d= 2 dimensions represented on a uniform grid with
Np subdivisions per dimension, x 2 f0; 1gNd

p consists of binary
variables which indicate the material phase of each pixel (see, e.g.,
Fig. 3) (for notational simplicity we nonetheless treat x as continuous
in general expressions, i.e., define integrals instead of sums). We
emphasize that x is a random vector due to the stochastic variability of
microstructures even in cases where φ is the same (see process-
structure link below).

● properties κ: This vector represents the material properties of interest
which depend on the microstructure x. We denote this dependence
with some abuse of notation as κ(x) and discuss it in the structure-
property link below. Due to this dependence, κ 2 Rdk will also be a
random vector. In the numerical illustrations κ consists of mechanical
and thermal, effective (apparent) properties.

Furthermore, our formulation includes the:

● process-structure link: We denote the dependence between φ and x
with the conditional density p(x∣φ) (Fig. 1), reflecting the fact that
processing parameters φ do not in general uniquely determine the
microstructural details. Formally experimental data25,33 and/or mod-
els34 would need to be used to determine p(x∣φ),which could induce
additional uncertainty (see discussion in the Introduction). We also
note that no a-priori dimensionality reduction is implied, i.e., the full
microstructural details are retained and used in the property-
predicting, high-fidelity models. In this work, we assume the
process-structure link p xjφð Þ is given a-priori, and its particular form
for the binary media examined is detailed in the Results & Discussion
section (the binary microstructures considered for our numerical
illustrations could arise from the solution of the Cahn–Hilliard equation
describing phase separation occurring in a binary alloy under thermal
annealing).

● structure-property link: The calculation of the properties κ for a given
microstructure x involves in general the solution of a stochastic or
deterministic, complex, high-fidelity model (in our numerical illustra-
tions, this consists of partial differential equations). We denote the
corresponding conditional density as p κjφð Þ, which in the case of a
deterministic model degenerates to a Dirac-delta. In order to perform
the optimization, repeated solutions of the high-fidelity model would
be necessary. In a high-dimensional setting, additionally derivatives of
κ w.r.t. x would in general be required to drive the search. Such
derivatives might be either unavailable (e.g., when x is binary as
above), or, at the very least, would add to the overall computational
burden. To overcome this major efficiency hurdle we advocate the use
of a data-driven surrogate model. We denote with D the training data
(i.e., pairs of inputs-microstructures and outputs-properties κ(x)) and
explain in the sequel how these are selected (see section on Active
Learning). We employ a probabilistic (for reasons we explain in the
subsequent sections) surrogate model (see Fig. 9) denoted by M and
use pMðκjx;DÞ to denote its predictive density.

We note that the introduction of p κjxð Þ and p xjφð Þ as a probabilistic
representation of the PSP chain is a very general description which in
principle can accommodate any epistemic or aleatoric source of
uncertainty. With these definitions in hand, we proceed to define two
closely related optimization problems (O1) and (O2) that we would like to
address. For the first optimization problem (O1) we make use of a utility
function u(κ) ≥ 0 (negative-valued utility functions can also be employed,
as long as they are bounded from below). Due to the aforementioned
uncertainties we consider the expected utility U1(φ) which is defined as
[Eq. 5]:

U1ðφÞ ¼ Ep xjφð Þ

Z
uðκÞ pðκjxÞ dκ

� �
(5)

(where Ep xjφð Þ½:� implies an expectation with respect to p xjφð Þ) and seek
the processing parameters φ that maximize it, i.e. [Eq. 6]:

ðO1Þ : φ� ¼ argmax
φ

U1 φð Þ (6)

Consider for example the case that uðκÞ ¼ IK κð Þ, i.e., the indicator
function of some target domain K, defining the desired range of property
values (Fig. 2a). In this case, solving (O1) above will lead to the value of φ
that maximizes the probability that the resulting material will have
properties in the target domain K, i.e., U1 φð Þ ¼ Pr κ 2 Kjφð Þ. Similar
probabilistic objectives have been proposed for several other materials’
classes and models (e.g.35). Another possibility of potential practical
interest involves introducing uðκÞ ¼ e�τjjκ�κtarget jj2 , with τ a scaling
parameter. In this case solving (O1) leads to the material with properties
which, on average, are closest to the prescribed target κtarget (Fig. 2b).
The second problem we consider involves prescribing a target density

ptarget(κ) on the material properties and seeking the φ that leads to a
marginal density of properties p κjφð Þ ¼ Ep xjφð Þ p κjxð Þ½ � that is as close as
possible to this target (Fig. 2c). While there are several distance measures
in the space of densities, we employ here the Kullback–Leibler divergence
KL(ptarget(κ)∣∣p(κ∣φ)), the minimization of which is equivalent to (see
Supplementary Notes) [Eq. 7]:

ðO2Þ : φ� ¼ argmaxφ U2ðφÞ
whereU2ðφÞ ¼

R
ptargetðκÞ log pðκjφÞ dκ

(7)

The aforementioned objective resembles the one employed in17, but
rather than finding a density on the microstructure (or features thereof)
that leads to a close match of ptarget (κ), we identify the processing
variables φ that do so (i.e., we are a-priori constrained to distributions
realizable for specific processing conditions φ).
We note that both problems are considerably more challenging than

deterministic counterparts, as in both cases the objectives involve
expectations with respect to the high-dimensional vector(s) x (and
potentially κ), representing the microstructure (and their effective proper-
ties). Additionally, in the case of (O2), the analytically intractable density
p κjφð Þ appears explicitly in the objective. While one might argue that a
brute-force Monte Carlo approach with a sufficiently large number of
samples would suffice to carry out the aforementioned integrations, we
note that propagating the uncertainty from x to the properties κ would
also require commensurate solutions of the expensive structure-property
model which would need to be repeated for various φ-values. To
overcome challenges associated with the structure-property link, we make
use of a probabilistic surrogate model M trained on data D with a
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predictive density pMðκjx;DÞ, which we use in place of the true p κjφð Þ in
the expressions above.
We note that an alternative strategy based on circumventing the high-

dimensional x and trying to approximate directly p κjφð Þ36, while tempting,
will quickly become infeasible in terms of data requirements (i.e., triplets of
(φ, x, κ)) even for modest dimensions of φ. The reformulated objectives
based on pM κjx;Dð Þ are denoted with UD

1;M and UD
2;M. We discuss the

solution strategy of the optimization problem as well as the specifics of the
probabilistic surrogate in the next sections.

Expectation-maximization and stochastic variational inference
We present the proposed algorithm for the solution of (O1) and discuss the
requisite changes for (O2) afterward. The goal to identify the optimal
process parameters φ* remains challenging despite the introduction of an
inexpensive, probabilistic surrogate, since the the objective functions as
well as their derivatives remain intractable due to the averaging over the
high-dimensional microstructures x, as well as the—in the general case—
intractable integration over κ in Eq. (5). For this reason we propose to
employ the Expectation-Maximization scheme37, which is based on the so-
called Evidence Lower BOund (ELBO) F [Eq. 8]:

logUD
1;MðφÞ ¼ log

R
uðκÞ pMðκjx;DÞ pðxjφÞ dκ dx

� Eqðx;κÞ log uðκÞ pMðκjx;DÞ pðxjφÞ
qðx;κÞ

h i
¼ F q κ; xð Þ;φð Þ

(8)

where Eqðx;κÞ½:� denotes an expectation with respect to the auxiliary
density q(x, κ). The algorithm alternates between maximizing F with
respect to the density q(x, κ) while φ is fixed (E-step) and maximizing with
respect to φ (M-step) while q(x, κ) is fixed. We employ a Variational-
Bayesian relaxation38, in short VB-EM, according to which instead of the
optimal q we consider a family Qξ of densities parameterized by ξ and in
the E-step maximize F with respect to ξ. This, as well as the the
maximization with respect to φ in the M-step, are done by using stochastic
gradient ascent where the associated derivatives are substituted by noisy
Monte Carlo estimates (i.e., SVI16). The particulars of ξ as well as of the E-
and M-steps are discussed in the Supplementary Notes. We illustrate the
basic, numerical steps in the inner-loop of Algorithm (1) (the algorithm
starts from an initial, typically random, guess of ξ and φ). Colloquially, the
VB-EM iterations can be explained as follows: In the E-step and given the
current estimate for φ, one averages over microstructures that are not only
a priori more probable according to p(x∣φ) but also achieve a higher score
according to uðκÞ pMðκjx;DÞ. Subsequently, in the M-step step, we update
the optimization variables φ on the basis of the average above (see
Supplementary Notes for further details).
The second objective, U2;M (Eq. (7)) can be dealt with in a similar

fashion. The integration over κ with respect to the target density ptarget κð Þ
is first approximated using S Monte Carlo samples fκðsÞgSs¼1 from ptarget κð Þ,
and subsequently each of the terms in the sum can be lower-bounded as

follows [Eq. 9]:

UD
2;MðφÞ ¼ R

ptargetðκÞ log pMðκjφ;DÞ dκ
� 1

S

PS
s¼1 log pMðκðsÞjφ;DÞ

¼ 1
S

PS
s¼1 log

R
pMðκðsÞjx;DÞ pðxjφÞ dx

� 1
S

PS
s¼1 EqðsÞðxÞ log pMðκðsÞ jx;DÞpðxjφÞ

qðsÞðxÞ
h i

¼ 1
S

PS
s¼1 F s qðsÞ xð Þ;φ� �

(9)

In this case, the aforementioned SVI tools will need to be applied for
updating each qðsÞ xð Þ; s ¼ 1; ::: ; S in the E-step, but the overall algorithm
remains conceptually identical. We note that incremental and partial
versions of the EM-algorithm are possible, where e.g., one or more steps of
stochastic gradient ascent are performed for a subset of the q(s)39, leading
to overall improved computational performance.

Probabilistic surrogate model
Despite the introduction of densities in the VB-EM algorithm which are
tailored to the optimization problem and which enable accurate Monte
Carlo estimates of the high-dimensional integrations involved, multiple
evaluations of the S-P link are still required. To that end, the high-fidelity
model (i.e., κ(x) or p κjφð Þ), is substituted by a data-driven surrogate (i.e.,
pM κjx;Dð Þ) which is trained on N pairs [Eq. 10]

D ¼ xðnÞ; κðnÞ ¼ κ xðnÞ
� �n oN

n¼1
(10)

generated by the deterministic/stochastic high-fidelity model. While such
supervised machine-learning problems have been studied extensively and
a lot of the associated tools have found their way in materials
applications40, we note that their use in the context of the optimization
problems presented requires significant adaptations.
In particular, and unlike canonical, data-centric applications relying on

the abundance of data (Big Data), we operate under a smallest-possible-
data regime. This is because in our setting training data arises from
expensive simulations, the number of which we want to minimize. The
shortage of information generally leads to predictive uncertainty (even for
deterministic S-P links) which, rather than dismissing, we quantify by
employing a probabilistic surrogate that yields a predictive density
pMðκjx;DÞ instead of mere point estimates. More importantly though,
we note that the distribution of the inputs in D, i.e., the microstructures x,
changes drastically with φ (Fig. 1). As we do not know a priori the optimal
φ*, we cannot generate training data from p κjφ�ð Þ. At the same time it is
well known that data-driven surrogates produce poor extrapolative, out-of-
distribution predictions41. It is clear therefore, that the selection of the
training data, i.e., the microstructures-inputs x(n) for which we pay the price
of computing the output-property of interest κðnÞ, should be informed by
the optimization algorithm in order to produce a sufficiently accurate
surrogate while keeping N as small as possible. We defer a detailed
discussion of this aspect for the next section, and first present the
particulars of the surrogate model employed.

Fig. 9 Architecture of the convolutional-neural-network surrogate for property κ prediction. Features are extracted from the
microstructure x using a sequence of 4 blocks (each comprised of a sequence of convolutional layer, nonlinear activation function and
pooling), where in each block the size of the feature map is reduced, while the depth of the feature map increases. Fully connected
feedforward layers map the extracted convolutional features to the mean mθ xð Þ and the covariance Sθ xð Þ of the predictive Gaussian
distribution pM κjx; θð Þ ¼ N κjmθ xð Þ; Sθ xð Þð Þ, where θ denotes the neural network parameters.
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The probabilistic surrogate M adopted has a Gaussian likelihood, i.e.,
pMðκjxÞ ¼ N κjmθðxÞ; SθðxÞð Þ, where the mean mθ(x) and covariance
Sθ(x) are modeled with a convolutional neural network (CNN) (see Fig. 9
and Supplementary Notes for more details), with θ denoting the associated
neural network parameters. CNNs have been used previously for property
prediction in binary media in e.g.,42,43. Point estimates θD of the
parameters are obtained with the help of training data D by maximizing
the corresponding likelihood pM Djθð Þ ¼ QN

n¼1 N κðnÞjmθðxðnÞÞ; SθðxðnÞÞ
� �

.
On the basis of these estimates, the predictive density (i.e for a new input-
microstructure x) of the surrogate follows as pMðκjx;DÞ ¼
N κjmθD ðxÞ; SθD ðxÞð Þ. We emphasize the dependence of the probabilistic
surrogate on the dataset D, for which we will discuss an adaptive
acquisition strategy in the following section. While the results obtained are
based on this particular architecture of the surrogate, the methodological
framework proposed can accommodate any probabilistic surrogate and
integrate its predictive uncertainty in the optimization procedure. Similarly,
the same data-based approach could also be adopted for p xjφð Þ.

Active learning
Active learning refers to a family of methods whose goal is to improve
learning accuracy and efficiency by selecting particularly salient training

data44. This is especially relevant in our application, in which the
acquisition of data is de facto the most computationally expensive
component. The basis of all such methods is to progressively enrich the
training dataset by scoring candidate inputs (i.e., microstructures x in our
case) based on their expected informativeness45. The latter can be
quantified with a so-called acquisition function α(x), for which many
different forms have been proposed (depending on the specific setting).
We note though that in most cases in the literature, acquisition functions
associated with the predictive accuracy of the supervised learning model
have been employed, which in our formulation translates to the accuracy
of our surrogate in predicting the properties κ for an input-microstructure.
Alternate acquisition functions have been proposed in the context of
Bayesian Optimization problems which as explained in the introduction
exhibit significant differences with ours11. While it is true that a perfect
surrogate (i.e., if pðκjxÞ ¼ pMðκjx;DÞ8x) would yield the exact optimum,
this is not a necessary condition. An approximate surrogate is sufficient, as
long as its aggregate predictions can correctly guide the search in the φ-
space in order to discover the optimal value of φ for (O1) or (O2). This also
implies that an accurate surrogate for φ− values (and corresponding
microstructures x) far away from the optimum is not necessary. The
difficulty of course is that we do not know a priori what is the optimum φ*
and a surrogate trained on microstructures drawn from p(x∣φ(0)) (with φ(0)

being the initial guess in the optimization—see Algorithm (1)) will
generally perform poorly at other φ’s.
The acquisition function that we propose incorporates the optimization

objectives. In particular, for the (O1) problem (Eq. (5)) it is given by:

αðxÞ ¼ VarpMðκjx;DÞ uðκÞ½ � (11)

We note that α scores each microstructure x in terms of the predictive
uncertainty in the utility u (the expected value of which we seek to
maximize) due to the predictive density of the surrogate. In the case
discussed earlier where uðκÞ ¼ IK κð Þ (and U1ðφÞ ¼ Pr κ 2 Kjφð Þ), the
acquisition function reduces to the variance of the event κ 2 K. This
suggests that the acquisition function yields the largest scores for
microstructures for which the surrogate is most uncertain whether their
corresponding properties fall within the target domain K.
We propose a general procedure according to which the VB-EM-based

optimization is embedded in an outer loop indexed by the data
augmentation steps l= 1, . . . L. Hence DðlÞ denotes the training dataset
at step l, pMðκjx;DðlÞÞ the corresponding predictive density of the
surrogate, q(l)(x) the marginal variational density found in the last E-step
and φ(l) the optimum found in the last M-step. With this notation in hand
we can then summarize the adaptive data augmentation as follows (see
also Algorithm (1) in Fig. 10):

● in each outer loop iteration l we randomly generate a pool of
candidate microstructures fxðl;nÞgNpool

n¼1 from q(l)(x) and select a subset of
Nadd < Npool microstructures which yield the highest values of the
acquisition function α(x(l, n)).

● We solve the high-fidelity model for the aforementioned Nadd

microstructures and construct a new training dataset DðlÞ
add which we

add to DðlÞ in order to form Dðlþ1Þ ¼ DðlÞ ∪DðlÞ
add . We retrain the

surrogate based on Dðlþ1Þ , i.e., we compute pMðκjx;Dðlþ1ÞÞ, and
restart the VB-EM-based optimization algorithm with the updated
surrogate (we note that retraining could be avoided by making use of
online learning46, which can accomodate incremental adaptions of the
dataset).

For the (O2) problem we propose to select microstructures that yield the
highest predictive log-score on the sample representation fκðsÞgSs¼1 of the
target distribution, i.e. [Eq. 12],

α xð Þ ¼ 1
S

PS
s¼1

log pM κðsÞjx� �
κðsÞ � ptarget κð Þ (12)

DATA AVAILABILITY
The accompanying data is available at https://github.com/bdevl/SMO.

CODE AVAILABILITY
The source code is available at https://github.com/bdevl/SMO.

Fig. 10 Pseudo-code for proposed algorithm. The inner VB-EM
iterations are wrapped within the adaptive data acquisition as an
outer loop.
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Supplementary Note

In the following, we provide details specific to the algorithmic imple-
mentation and the numerical simulations.

1.1 Process-Structure linkage

As mentioned in the main text, the discretized, two-phase ran-
dom microstructures employed in the numerical illustrations are
represented by a random vector x which arises by thresholding a
two-dimensional, zero-mean, unit-variance Gaussian field, in its dis-
cretized form denoted by the vector xg . The cutoff threshold x0

is specified by the desired volume fraction and the parameters ϕ
are associated with the spectral density function (SDF) G (w) of
the underlying Gaussian field. The SDF G (w) arises as the Fourier
dual of the autocovariance, where w = [w1, w2]T ∈ R2 denotes the
wavenumbers. We express the SDF as:

G (w) =

Q∑

i=1

γihi (w;µi, σi) (1)

where the functions hi are Radial Basis Functions (RBFs) which
depend on the parameters µi, σi and have the functional form:

h (w;µ, σ) =
1√

2πσ2
e
− 1

2σ2
||w−µ||2

(2)

This form is adopted because it automatically ensures the positivity
of the resulting SDF. Eq. (1) is also known as a spectral mixture
kernel, which defines a universal approximator for sufficiently large
Q [1]. In our simulations, the parameters {µi}, i.e. the centers
of RBFs, were fixed to a uniform grid in [0, wmax]2, with wmax =
65.0 and σi = 12.0, ∀i. Finally the weights γi are related to the
optimization variables ϕ through a softmax transformation:

γi =
eϕi

∑Q
j=1 e

ϕj
(3)

This is employed so that the resulting SDF integrates to 1 which
is the variance of the corresponding Gaussian field. We made use
of a spectral representation of the underlying Gaussian field (and
therefore of xg) on the basis of its ϕ-controlled SDF and according
to the formulations detailed in [2, 3, 4]. The thresholded Gaussian
vector xg gives rise to the binary microstructure x as described above
and we denote summarily the corresponding transformation as:

x = Fϕ(Ψ) (4)

where Ψ denotes a vector of so-called random phase angles [2].
It consists of independent random variables uniformly distributed
in [0, 2π], and its dimension depends on the discretization of the
spectral domain. A direct implication of Eq. (4) is that the process-
structure density p(x|ϕ) can now be expressed as:

p(x|ϕ) =

∫
δ (x− Fϕ(Ψ)) p(Ψ) dΨ (5)

where p(Ψ) is the product of uniform densities U [0, 2π]. As a result,
expectations of arbitrary functions, say f(x), with respect to p(x|ϕ)
can now be written as:

Ep(x|ϕ) [f (x)] =

∫
f (x) δ (x− Fϕ (Ψ)) p (Ψ) dx dΨ (6)

=

∫
f (Fϕ (Ψ)) p (Ψ) dΨ (7)

1.2 VB-EM-Algorithm

By making use of Eq. (7) above, we can write the ELBO for the
log-expected utility (type (O1) problems) as

logUD1,M (ϕ) = logEp(x|ϕ)

[∫
u (κ) pM (κ|x,D) dκ

]

= log

∫
u (κ) pM (κ|Fϕ (Ψ) ,D) p (Ψ) dκ dΨ

≥ Eqξ(κ,Ψ)

[
log

u (κ) pM (κ|Fϕ (Ψ) ,D) p (Ψ)

qξ (κ,Ψ)

]

= F
(
ϕ, qξ (κ,Ψ)

)
(8)

where expectations with respect to x have been substituted by
integrations with respect to the (primal) random variables Ψ arising
from the spectral representation. Similarly the variational density is
expressed with respect to Ψ, i.e. qξ (κ,Ψ) (as opposed to qξ (κ,x)).
The ELBO of the (O2)-type problems can similarly be written as

logUD2,M (ϕ) =

∫
ptarget (κ) log pM (κ|ϕ,D) dκ

≈ 1

S

S∑

s=1

log pM
(
κ(s)

∣∣∣ϕ,D
)

κ(s) i.i.d.∼ ptarget (κ)

=
1

S

S∑

s=1

log

∫
pM

(
κ(s)

∣∣∣Fϕ (Ψ) ,D
)
p (Ψ) dΨ

≥ 1

S

S∑

s=1

E
q
(s)
ξ

(Ψ)


log

pM
(
κ(s)

∣∣Fϕ (Ψ) ,D
)
p (Ψ)

q
(s)
ξ (Ψ)




=

S∑

s=1

Fs

(
q
(s)
ξ (Ψ) , ϕ

)

(9)
The expression for logUD2,M (ϕ) follows from the observation that

minimization of the Kullback-Leibler divergence is equivalent to max-
imization of

∫
ptarget (κ) log pM (κ|ϕ,D) dκ due to the following

relations:

KL (ptarget (κ)||pM (κ|ϕ,D))

= Eptarget(κ)

[
log

ptarget (κ)

pM (κ|ϕ,D)

]

= −Eptarget(κ) [log pM (κ|ϕ,D)]− H [ptarget (κ)]︸ ︷︷ ︸
independent of ϕ

(10)

and consequently

ϕ∗ = arg min
ϕ
KL (ptarget (κ)||pM (κ|ϕ,D))

= arg max
ϕ

Eptarget(κ) [log pM (κ|ϕ,D)]

= arg maxUD2,M (ϕ) (11)

Since the maximization of the ELBO w.r.t. ξ and ϕ is not
possible in closed form, noisy estimates of the gradients ĝϕ ≈
∇ϕF

(
ϕ, qξ (κ,Ψ)

)
and ĝξ ≈ ∇ξF

(
ϕ, qξ (κ,Ψ)

)
are obtained us-

ing Monte Carlo and the reparametrization trick ([5] - see ensuing
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discussion). For our numerical illustrations, the optimization with
respect to ϕ and ξ is carried out with stochastic gradient ascent and
the Adam optimizer [6] in PyTorch [7].

Representation

Instead of the bounded phase angles Ψ, we employ the unbounded
and normally distributed variables Ψt (i.e. Ψt ∼ N (0, I)) which
are related through the error function erf (·) as follows:

Ψi = 0.5 ·
(

1 + erf

(
Ψt,i√

2π

))
· 2π (12)

As a result, all expectations with respect to p(Ψ) are substituted by
expectations with respect to p (Ψt) = N (0, I).

In addition, instead of the Heaviside function defining the binary
vector x from the underlying Gaussian xg as xi = H(xg,i−x0), we
employ the differentiable transformation

xi =
tanh (ε (xg,i − x0)) + 1

2
(13)

We note that as ε → ∞ we recover the Heaviside function and
therefore a hard truncation. While the resulting xi’s are only ap-
proximately binary for finite ε (we used ε = 25), these were used
in all computations involved in the surrogate and the optimization.
An advantage is that this enables the use of the reparametrization
trick [5] to estimate the ELBO and its gradients as explained in the
previous section.

Low-rank Variational Approximation

For qξ (κ,Ψt) ∈ Q we adopt the choice of a low-rank multivariate

Gaussian distribution (with z = [κ,Ψt]
T ∈ Rdz ), i.e.

qξ (z) = N
(
z | µ,Σ = diag (d) +LLT

)
(14)

with L ∈ Rdz×M and M << dz . The variational parameters are
given by ξ = {µ,d,L} with dim (ξ) = O (dz ·M). This particu-
lar choice enables to capture enough of the correlation structure to
drive the EM updates, while remaining scalable with regards to the
(generally large) dimension dz of the problem (we used M = 50).
We note that a fully Bayesian treatment of the surrogate could
be accomplished by including the neural network parameters θ in
the variational inference framework. While we could also drive the
EM-algorithm via, e.g., Markov Chain Monte Carlo or Sequential
Monte Carlo, the choice of variational inference is computationally
faster and additionally enables monitoring of convergence through
the ELBO F .

Tempering

When specifying the material design objective, it is numerically ad-
vantageous to pursue a tempering schedule, in particular if the
desired material behaviour deviates strongly from the initially ob-
served dataset D, or the properties κ associated with the initial
guess ϕ(0). In the following we discuss an adaptive tempering strat-
egy which - for the sake of illustration - we explain in the context
of a utility function u (κ) = IK (κ). Instead of trying to obtain
ϕ∗ = arg max p (κ ∈ K|ϕ) directly, we instead introduce a sequence
of target domains K(r), r = 1..., R, such that K(R) = K. To this
end we may define K(0) in such a way, that (according to the model
belief) a non-negligible number of samples κ ∼ pM

(
κ
∣∣ϕ(0),D

)
fall

into the domain K(0). In order to assess how strongly the tempered
target domain K(r) can be shifted towards the desired K in each
each step r, we can make use of the effective sample size (ESS) [8].

For an ensemble of Nw phase angles {Ψ(n)}Nwn=1 generated from
q (Ψ), we introduce the corresponding weights as the model-based
belief that the material properties κ reside in the tempered target
domain K(r)

wr
n =

∫
IK(r) (κ) pM

(
κ
∣∣∣Fϕ

(
Ψ

(n)
t

)
,D
)

dκ (15)

Denoting the normalized weights as w̃r
n = wr

n/
(∑Nw

n=1 w
r
n

)
, the

ESS is defined as

ESS =




Nw∑

n=1

w̃r
n

2



−1

=

(∑Nw
n=1 w

r
n

)2

∑Nw
n=1 w

r
n

2
(16)

where ESS ∈ [0, 1] represents the deterioration of sample quality
induced by shifting the domain K(r). Let q (Ψt) be an approxi-
mation to the posterior over the phase angles conditional on the
optimality criteria (i.e. K(r)) and the current value of ϕ. One may
then adaptively chose to shift the target domain K(r) → K(r+1) in
such a manner, that the ESS of the samples generated from q (Ψt)
does not deteriorate beyond a certain threshold value (e.g. using
a bisection approach). When defining the material design objective
by means of a target distribution ptarget (κ), similarly one may in-
troduce tempering by gradually shifting the sample representation
giving rise to the evidence lower bound.

1.3 Structure-Property linkage

Probabilistic Surrogate

The probabilistic surrogate employed is based on a parametric con-
volutional neural network (see illustration in main text), where a split
in the final dense layers gives rise to (separately) the mean vector
mθ (x), as well as the covariance matrix Sθ (x) (assumed to be
diagonal). The specific choices made regarding the neural network
architecture are based on prior published work (e.g. [9, 10]). Each
block displayed in the illustration corresponds to 2d convolutions
with a subsequent non-linear activation function (Leaky ReLU) ,fol-
lowed by average pooling. The convolutional layers employ a (3× 3)
kernel, which in combination with appropriate padding leaves the size
of the feature map unchanged 1. The subsequent average pooling
always employs a (2× 2) kernel (and identical stride), such that the
size of the feature maps is reduced by half in each block. For the
numerical results presented, after a sequence of 4 such blocks (with
an increasing depth of 4, 8, 12 and 16 channels in the feature maps),
the resulting feature representation extracted from the microstruc-
ture is flattened and enters first a shared hidden layer (of width 30),
subsequently splitting up into two more layers that map to the mean
µθ and the diagonal covariance matrix Sθ (the positivity of the lat-
ter is ensured via an exponential transformation). The two phases
were encoded as a (+1) and (−1) for the CNN, as this is numer-
ically more expedient compared to an {1, 0} representation of the
phases. For all numerical experiments presented, the neural network
was trained with a batch size of Nbs = 128. To add regularization,
a weight decay of 10−5 was used, and additionally a dropout layer
(with p = 0.05) was introduced before the first dense layer. The
neural network was trained on the log-likelihood of the data making
again use of the Adam optimizer for the stochastic updates of the
parameters θ.

Physical model for the computation of properties κ

In the following we provide a more detailed description of the phys-
ical models in the structure-property linkage abstractly represented
as κ(x), i.e., the link between the microstructures and their physical
properties we want to control in this study. Note that the specific
choice of κ(x) does not have any direct bearing on the optimiza-
tion, as the structure-property linkage only enters into the generation
of the training data D for the surrogate. For our numerical illustra-
tions we make use of both the effective thermal as well as mechanical
properties of the microstructures x ∼ p (x|ϕ). We present details re-
garding the numerical computation of the effective mechanical prop-
erties, with the thermal properties following by analogy. In order to
quantify the macroscopic response of a microstructure, we consider
a linear, isotropic elasticity problem on the microscopic scale for a
representative volume element (RVE). At this scale the behaviour
of the microstructure is characterized by the balance equation (BE)
and constitute equation (CE)

(BE): div (σ) = 0 ∀s ∈ ΩRVE (17)

(CE): σ = C (s) : ε ∀s ∈ ΩRVE (18)

1The discretized microstructures regarded as a vectors x ∈ {0, 1}4096 are of course
reshaped into their original (64× 64) un-flattened tensor representation for the CNN.
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where σ, ε denote microscopic stress and strain, while C (s) con-
stitutes the heterogeneous elasticity tensor C (s). For a binary mi-
crostructures where the two phases occupy (random) subdomains V0

and V1 (with V0∩V1 = ∅ and V0∪V1 = ΩRVE) the elasticity tensor
follows as:

C (s) =

{
C1, if s ∈ V1

C0, if s ∈ V0
(19)

In our case, the elasticity tensors C0 and C1 are fully defined by
the Young’s moduli E0 and E1 of the two phases (a common Pois-
son’s ratio of ν = 0.3 was used). We define the macroscopic stress
Σ = 〈σ〉 as well as macroscopic strain E = 〈ε〉, where 〈·〉 denotes a
spatial average of microscopic quantities over ΩRVE. We then char-
acterize the macroscopic, effective behaviour of the microstructure
via [11]

Σ = Ceff : E (20)

under the constraint that (20) satisfies the averaging theorem by
Hill [11, 12]

Σ : E =
1

|ΩRVE|

∫

∂ΩRVE

t · u dA (21)

with microscopic tractions t and displacements u. The homog-
enized properties κ are based on various entries of Ceff which is
computed by solving an ensemble of elementary load cases, as given
by the following macroscopic strain modes

Ê(1) =

[
1 0
0 0

]
, Ê(2) =

[
0 0
0 1

]
, Ê(3) =

[
0 0.5

0.5 0

]

(22)

corresponding to either a pure tension or shear mode, such that
Ceff is recovered by integrating the microscopic stress σ to obtain
Σ = 〈σ〉. One possible approach of imposing these elementary
strain modes is based on the introduction of periodic boundary con-
dition (as opposed to defining load cases based on displacement or
tractions), which augments Eq. (17) and (18) by

ε = Ê(c) +∇sv in ΩRVE (23)

v is ΩRVE-periodic (24)

t = σ · n is ΩRVE-antiperiodic (25)

Here v denotes a periodic fluctuation (i.e., u = Es + v), and
t are antiperiodic tractions on the boundary of the domain ΩRVE.
We solve for the periodic fluctuations v for all three elementary load
cases c = {1, 2, 3} using the Bubnov-Galerkin approach and the
standard Finite Element Method (an additional Lagrange multiplier
has to be included in the variational problem to disambiguate it with
regards to rigid body transformations). The effective tangent mod-
uli Ceff of the RVE thus obtained by the solution of the differential
equations (Eq. (17), (18), (23), (24) and (25)) can be shown [11]
to satisfy the averaging theorem by Hill. We finally note that Ceff

and the properties of interest κ vary depending on the underlying,
random microstructure x and the need for their repeated computa-
tion represents the computational bottleneck for the optimization of
the process parameters ϕ.
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