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Abstract

Quantum mechanics tells us how to describe systems in terms of equations, but not
how to solve them. For typical many-body quantum systems, solving these equations
becomes an incredibly challenging task. The number of degrees of freedom blows up
exponentially with the number of constituents, which makes it extremely hard to study
strongly correlated phenomena—such as high-temperature superconductivity or the
fractional quantum Hall effect.

In the last decades, tensor networks have emerged as a new class of methods to study
strongly-correlated systems in low-dimensional lattices. Tensor networks have led to
powerful numerical algorithms, but also provide a language to analytically understand
such systems. In this dissertation, we use the framework of tensor networks to propose
new algorithmic ideas, and we apply it to numerically explore novel phenomena which
arise from quantum interactions.

Tensor networks have been employed for the variational construction of ground
states of one- and two-dimensional systems, but to date, no variational algorithm has
been proposed for the construction of thermal states. We first propose an alternative
approximation to thermal states based on the maximization of the Rényi entropies. Such
ensembles can be variationally optimized with tensor network methods, combined with
ideas from Riemannian manifold optimization.

We then turn our attention to non-equilibrium physics, in particular in the case
of discretized evolutions. We explore alternative ways of performing numerical time-
evolution in such settings using the recently-introduced Feynman–Vernon influence-
matrix approach, which is known in the tensor-network community as the folding
algorithm. Contrary to traditional approaches, the efficiency of this method is insensitive
to the growth of the spatial entanglement entropy, and is instead related to the so-
called temporal entanglement. In this thesis, we propose a conjecture on the generic
logarithmic growth of the temporal entanglement in integrable systems. Based on an
appealing semiclassical picture, we argue that the latter must grow sub-linearly, and
provide compelling evidence of a very stark difference between the non-interacting and
the interacting regime. We support these claims by tensor-network numerical calculations,
as well as an analytical solution at a special point in the system parameters.

Finally, we apply tensor network methods to explore topological phases of matter.
These phases of matter are intrinsically a quantum effect, as they have a form of long-
range order hidden in their entanglement pattern. A plethora of distinct topological
phases exists in theory. However, it is far from obvious how to embed these phases in
available quantum simulators. The spin liquid state probed in one of these experiments
can be understood as the quantum superposition of dimer coverings of a lattice. In this
thesis, we extend this paradigm to models of trimers, which are bonds connecting three
sites of a lattice. We identify the lattice geometries that yield a robust quantum spin
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liquid of trimers with a novel form of topological order, and propose an experimental
realization in present-day quantum simulators based on Rydberg atoms.



Zusammenfassung

Die Quantenmechanik zeigt uns, wie man Systeme in Form von Gleichungen beschreibt,
aber nicht, wie man sie löst. Für typische Vielteilchen-Quantensysteme wird das Lösen
dieser Gleichungen zu einer schwierigen Aufgabe. Die Anzahl der Freiheitsgrade steigt
exponentiell mit der Anzahl der Bestandteile, was die Untersuchung stark korrelierter
Phänomene—wie etwa Hochtemperatur-Supraleitung oder der fraktionierte Quanten-
Hall-Effekt—extrem erschwert.

In den letzten Jahrzehnten haben sich Tensornetzwerke als eine neue Klasse von
Methoden zur Untersuchung stark korrelierter Systeme in niedrigdimensionalen Gittern
entwickelt. Tensornetzwerke haben zu leistungsfähigen numerischen Algorithmen ge-
führt, bieten aber auch eine Sprache, um solche Systeme analytisch zu verstehen. In
dieser Dissertation nutzen wir den Rahmen von Tensornetzwerken, um neue algorithmi-
sche Ideen vorzuschlagen, und wir wenden sie an, um neuartige Phänomene, die sich
aus Quantenwechselwirkungen ergeben, numerisch zu untersuchen.

Tensornetzwerke wurden bereits für die variationeller Ansatz von Grundzuständen
ein- und zweidimensionaler Systeme verwendet, aber bisher wurde noch kein variationelle
Method für die Konstruktion von thermischen Zuständen entwickelt. Wir entwickeln zu-
nächst eine alternative Annäherung an thermische Zustände vor, die auf der Maximierung
der Rényi-Entropien basiert. Solche Ensembles können mit Tensornetzwerk-Methoden,
kombiniert mit Ideen aus der Optimierung von Riemannschen Mannigfaltigkeiten, varia-
tionell optimiert werden.

Anschließend wenden wir uns der Nicht-Gleichgewichtsphysik zu, insbesondere
im Fall von diskretisierten Entwicklungen. Wir erforschen alternative Wege zur Durch-
führung numerischer Zeitentwicklung in solchen Umgebungen unter Verwendung des
kürzlich eingeführten Feynman-Vernon-Einflussmatrix-Ansatzes. Dieser Ansatz ist in
der Tensornetzwerk-Gemeinschaft als “Folding”-Algorithmus bekannt. Im Gegensatz zu
traditionellen Ansätzen ist die Effizienz dieser Methode unabhängig von der Erhöhung
der räumlichen Verschränkungsentropie und hängt stattdessen von der sogenannten
zeitlichen Verschränkung ab. In dieser Arbeit stellen wir eine Vermutung über das gene-
rische logarithmische Wachstum der zeitlichen Verschränkung in integrablen Systemen
auf. Auf der Grundlage eines intuitiven semiklassischen Bildes argumentieren wir, dass
letztere unterlinear wachsen muss, und liefern überzeugende Belege für einen deutlichen
Unterschied zwischen dem nicht-interagierenden und dem interagierenden Zustand. Wir
unterstützen diese Behauptungen durch numerische Berechnungen mit Tensornetzwer-
ken sowie durch eine analytische Lösung für einen speziellen Punkt der Systemparameter.

Schließlich wenden wir Tensornetzwerk-Methoden an, um topologische Phasen zu
untersuchen. Diese Phasen der Materie sind an sich ein Quanteneffekt, da sie eine Form
von langreichweitiger Ordnung aufweisen, die in ihrer Verschränkungsstruktur verborgen
ist. Theoretisch gibt es eine Vielzahl von unterschiedlichen topologischen Phasen. Es ist
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jedoch alles andere als offensichtlich, wie diese Phasen in die verfügbaren Quantensi-
mulatoren eingebettet werden können. Der Spinflüssigezustand, der in einem dieser
Experimente untersucht wurde, kann als Quantensuperposition von Dimerabdeckungen
eines Gitters verstanden werden. In dieser Dissertation erweitern wir dieses Paradigma
auf Modelle von Trimeren, das sind Bindungen, die drei Stellen eines Gitters verbin-
den. Wir identifizieren die Gittergeometrien, die eine stabile Quantenspinflüssigkeit von
Trimeren mit einer neuartigen Form der topologischen Ordnung ergeben, und schla-
gen eine experimentelle Umsetzung in heutigen Quantensimulatoren auf der Basis von
Rydberg-Atomen vor.
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Introduction

1.1 Motivation
The theory of quantum mechanics has been around for almost a century. Already in 1929,
Dirac deemed the foundations of quantum mechanics to be mostly laid out, but that two
main problems remain, namely (i) incorporating relativistic effects and (ii) understanding
many-body effects. Indeed, in Ref. [7], to motivate the study of many-electron systems,
he writes:

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much
too complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems
without too much computation.

Dirac’s comments are incredibly prescient. The first point was one of the ingredients that
contributed to the development of relativistic quantum field theories, which eventually
led to the formulation of the Standard Model. The latter is the motivation behind
condensed-matter physics. Indeed, one hundred years later, we are still searching for
new methods to tackle many-body problems in quantum physics.

The main difficulty in describing a many-body quantum systems comes from our
representation of states using the tensor product—this leads to an exponential growth of
the degrees of freedom with the number of constituents. Just storing a representation
of a quantum state on a computer is a problematic task. For example, the state of 26
qubits—a qubit being the smallest non-trivial local degree of freedom—would require
around a gigabyte of memory1. Take ten times that number of qubits, and the number of
bits required would be approximately the number of baryons in the universe.

1Assuming double-precision complex numbers, i.e. 128-bits.
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2 Introduction

Keeping track of all these degrees of freedom is clearly a hopeless task. But do we
really need to? In physics we are often interested in some approximate, or compressed
representation, from which we can extract relevant thermodynamic quantities, like
energy and magnetization. Historically, the problem has been tackled using perturbative
quantum field theory [8]. The corresponding noninteracting model is solved exactly, and
perturbations around this solution are taken into account according to their order in
the interaction parameter. This approach however fails when the interaction is strong,
and the interactions drive the system to a different phase of matter. In one-dimensional
lattice systems, certain interacting systems known as integrable can be solved using Bethe
ansatz techniques [9]. These techniques are extremely powerful and have immensely
contributed to our understanding of low-dimensional systems 2. Despite these successes,
integrable systems are very special, as they have an extensive number of conservation laws.

From a computational point of view, Monte Carlo methods have provided an al-
ternative point of view of the problem [14]. Since the wavefunction is impossible to
represent exactly, we may as well give up completely on writing it down—after all, it is
not something we can directly observe. Instead, we sample from the thermal distribution
to estimate local thermodynamic quantities. In certain cases, this sampling can be done
in an efficient manner, and its properties are well understood with the theory of Markov
chains. Much effort has been dedicated to speeding up the sampling procedure, and
has proven to be a scalable solution in many situations, especially in higher dimensions.
However, the sampling for certain quantum systems cannot be performed in an efficient
way because of the so-called sign problem, where the integrals to be evaluated contain
near-cancellations. Unfortunately, the sign problem shows up in many systems of interest.
This seems to be a more fundamental problem with the method, as it is believed to be
intimately related to the systems itself [15].

A direction which can be seen as complementary to the Monte Carlo approach is to
insist on having an explicit model for the state of the system. Generally speaking, this is
more useful in undestanding the nature of our solution and to gain a deeper physical
insight beyond the ability of computing observables. Typically this model, or ansatz (as
we like to refer to it in physics), has some free parameters that we can tune. We can then
play with these parameters, or optimize them, in such a way that it best approximates that
which we are interested in representing. For example, if we are interested in representing
the ground state, we may minimize the energy with respect to our parameters. This, in
a nutshell, is the variational principle.

Tensor networks [16–18] are a variational class of quantum states that are extremely
flexible and typically allow for a systematic enrichment by increasing the number of
parameters, something very appealing for tackling challenging systems, for example
where perturbative approaches fail and the sign problem occurs. Tensor networks have
been a topic of intense research in the last 20 years. The core ideas, somewhat remarkably,
have been around for at least 50 years in different forms in quantum physics. Indeed,
the ideas of matrix product states were almost completely laid out in 1968 by Baxter.
When solving a diluted dimer model on the square lattice, he introduced the concept of
the transfer matrix and noted [19]

2From a tensor network perspective, the geometric Bethe ansatz can be thought of as a class of solutions
to the Yang–Baxter equations, which derive from imposing the associativity condition to certain tensors, see
for example Refs. [10–12]. The tensor network picture also offers a potential avenue to generalize these
concepts, see for example Ref. [13] and references therein.
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In fact, if they are allowed to have infinitely great dimensionality, then the
results obtained should be formally exact. Further, and more significantly, if
the matrices are restricted to be of finite and quite small dimensionality, then
it should still be possible to obtain good approximations to Γ [the leading
eigenvalue] and the thermodynamic properties.

Readers acquainted with matrix product states will probably find this remarkably familiar.
Interest in tensor networks did not spark until the early 1990s, with the advent of the
DMRG algorithm of White [20, 21] as a numerical method for simulating one-dimensional
systems. Its connection with “finite correlated states” [22, 23] (generalizations of the
AKLT state) was soon recognized and reformulated as a variational method based on
MPS [24]. Refs. [17, 18] recount in more detail the key historical steps. From the
beginning of the 21st century, research into tensor networks took off, in part due to the
interest from the quantum information community. The intimate connection between
tensor networks and entanglement provided additional interest in these methods, not only
as a numerical tool, but as a powerful analytical framework to study quantum systems.
Certainly the concept of entanglement was not new. Indeed, already in 1935, Schrödinger
recognized that entanglement was “the characteristic trait of quantum mechanics, the
one that enforces its entire departure from classical lines of thought” [25]. Yet, it is only
in the last decades that it was promoted to a defining feature of different phases of matter
in many-body quantum physics.

Finally, the concepts of tensor networks are certainly not unique to physics. Similar
concepts have been reinvented in applied mathematics and computer science [26, 27]
to tackle high dimensional problems such as stochastic partial differential equations
and financial modelling. In other areas of physics they have been used to solve non-
equilibrium statistical physics problems [28], and the classification of Lie groups [29].
Recently, the connection with machine learning techniques is being explored as well [30–
32].

1.2 Lattice physics
In condensed matter physics, we typically try to understand howmacroscopic phenomena
arise from microscopic interactions. Challenging problems where strong correlations
dominate are, for example, high-Tc [33, 34] superconductivity and the fractional quan-
tum Hall effect [35]. Solving a model from first principles is generally a hard task, so
in practice, an effective model is chosen. For example, the Hubbard model is believed
to represent high-Tc superconductivity, while the Heisenberg model was proposed to
explain quantum magnetism. These effective models try to capture the salient features
of the system in question, in particular the low-energy properties.

In this thesis, we focus on the case where the degrees of freedom are spatially
restricted to the sites of a lattice. This is a valid approximation for many systems of
interests, as most solids have a crystalline order, and at low-energies, electrons typically
are confined to orbit around their respective atoms. We may also consider the interactions
of atoms directly. This is particularly relevant for recent experimental platforms based on
Rydberg atoms, where neutral atoms are individually trapped and arranged in a desired
lattice configuration [36, 37]. The excited states of these atoms can exhibit strong dipolar
interactions, and can be targeted using using external laser fields. We associate a local
system to each lattice site i described by a d-dimensional system; the corresponding local



4 Introduction

Hilbert space is Hi = Cd. The total Hilbert space is constructed using the tensor product
⊗, i.e. H =

⊗N
i=1 Hi, equipped with the usual inner product 〈·|·〉. The generalization to

generic graphs and different vector spaces is straightforward. The interactions are then
described by a Hamiltonian which couples the degrees of freedom, typically in some
local way. We consider local Hamiltonians of the form

H =
N∑

i=1

hi , (1.1)

where hi acts on a lattice patch around site i. The simplest non-trivial situation is a
two-site operator acting on nearest-neighbor pairs:

i

hi

For example, the Heisenberg model is described by

H = J
∑

〈i,j〉

Si · Sj ,

where Si is the spin operator at site i, J is the coupling strength, and the sum runs over
all nearest-neighbor pairs. Hence, each site is occupied by a spin degree of freedom,
and the coupling between their dipolar moments is described by the interaction term:
spins that are aligned (antialigned) are energetically favored for J < 0 (J > 0). The
Heisenberg model can as well be derived from the Hubbard model at half filling in the
limit of strong repulsive interaction.

The Hamiltonian is the core description of a system in condensed matter. Not only
does it govern the dynamics (via the Schrödinger equation), but it also determines the
equilibrium properties. For a fixed inverse temperature β, the Gibbs state at thermal
equilibrium is ρ ∝ e−βH . This can be derived from a maximum entropy principle. Due to
fluctuations, it is not possible to precisely give a description of a system as a particular
(pure) state, but we resort to a statistical description. Hence, we define a density operator
ρ as a self-adjoint (ρ = ρ†), positive (ρ � 0), normalized (Tr ρ = 1) operator, such that it
returns expectation values averaged over the possible outcomes—the classical analogue
is a probability distribution. We assign the density operator in the following way: we
choose the positive-definite operator that maximizes the entropy, i.e. contains the least
amount of information about the system. Since the only information we have is that
the system is in thermal equilibrium, the energy must be constant. By including this
constraint,

ρG = arg min
ρ�0

Tr(Hρ)=Ē
Tr ρ=1

S(ρ) ,
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where S(ρ) is the von Neumann entropy S(ρ) = −Tr (ρ log ρ). Performing the extrem-
ization with Lagrange multipliers yields the Gibbs state

ρG =
1

Z
e−βH ,

where Z = Tr(e−βH) is the partition function, and β, coming from the Lagrange multi-
plier, is interpreted as the inverse temperature. Note that as we send β →∞, we obtain
the lowest energy state |E0〉, known as the ground state. In fact, by expanding in the
energy eigenbasis {Ek},

lim
β→∞

1

Z
e−βH = lim

β→∞

∑
k e
−βEk |Ek〉 〈Ek|∑
k e
−βEk

= |E0〉 〈E0| ,

assuming for simplicity that the system does not have degenerate ground states.
Quantum effects are typically most prominent in the low-temperature regime, so we

are usually interested in the low-energy subspace of the Hamiltonian, which corresponds
to the eigenstates of the Hamiltonian with smallest eigenvalues. As we just saw, the
ground state is particularly important as it determines all the properties of the system
at zero temperature. The low-lying next eigenstates determine the properties related
to excitations. If the ground state is separated from the next eigenstates by an energy
gap which does not close in the thermodynamic limit, we say that the system is gapped.
This gap has far-reaching consequences for the properties of the system. For example,
if the Hamiltonian describes electrons moving in a material, the gap reveals whether
the system is a conductor or an insulator: in a gapless system, arbitrarily small electric
fields can produce excitations, and the system is said to be a conductor. In general, in
gapped systems all correlations decay exponentially with the distance [38]. This stands
in contrast to critical models, where the ground-state correlations can decay with a
power law. Such properties are a manifestation of the fact that many of the low-energy
properties of the system are encoded in the ground state.

The search for the ground state, central in many-body quantum physics, is not an
objective per se, but rather as a means to compute the static properties of a system. One
is typically most interested in local observables 〈Oi〉 = 〈Ψ|Oi|Ψ〉 (or Tr(Oiρ) in the case
of density matrices), where Oi has non-trivial support on a patch around site i.

1.3 Outline
Tensor networks for quantum physics As tensor networks will be the recurring theme
in this thesis, we introduce the basic concepts in Chapter 2. We present the graphical
notation used throughout this thesis, and discuss the fundamental operations with
tensors. We then introduce the main tensor network states used in physics, with a
particular emphasis on matrix product states and projected entangled pair states. The
geometric properties of the variational manifold of matrix product states are introduced
as well, and will be used later on in Chapter 3. The chapters following present some
applications of tensor networks to study many-body quantum systems.

Rényi free energy In Chapter 3, we propose the construction of thermodynamic en-
sembles that minimize the Rényi free energy, as an alternative to Gibbs states. For large
systems, the local properties of these Rényi ensembles coincide with those of thermal
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equilibrium, and they can be used as approximations to thermal states. We provide
algorithms to find tensor network approximations to the 2-Rényi ensemble. In particular,
a matrix-product-state representation can be found by using gradient-based optimization
on Riemannian manifolds, or via a non-linear evolution which yields the desired state as
a fixed point. We analyze the performance of the algorithms and the properties of the
ensembles on one-dimensional spin chains.

Temporal entanglement In quantum many-body dynamics admitting a description
in terms of noninteracting quasiparticles, the Feynman-Vernon influence matrix (IM),
encoding the effect of the system on the evolution of its local subsystems, can be analyzed
exactly. For discrete dynamics, the temporal entanglement of the corresponding IM
satisfies an area law, suggesting the possibility of an efficient representation of the IM
in terms of matrix-product states. A natural question is whether integrable interactions,
preserving stable quasiparticles, affect the behavior of the temporal entanglement. While
a simple semiclassical picture suggests a sublinear growth in time, one can wonder
whether interactions may lead to violations of the area law. We address this problem in
Chapter 4, by analyzing quantum quenches in a family of discrete integrable dynamics
corresponding to the real-time Trotterization of the interacting XXZ Heisenberg model.
By means of an analytical solution at the dual-unitary point and numerical calculations
for generic values of the system parameters, we provide evidence that, away from the
noninteracting limit, the temporal entanglement displays a logarithmic growth in time,
thus violating the area law. Our findings highlight the non-trivial role of interactions, and
raise interesting questions on the possibility to efficiently simulate the local dynamics of
interacting integrable systems.

Trimer resonating-valence-bond states In Chapter 5, we study the quantum states
obtained as equal-weight superpositions of all trimer coverings of a lattice, with the
constraint of having a trimer on each vertex: the so-called trimer resonating-valence-bond
(tRVB) states. Exploiting their tensor network representation, we show that these states
can host Z3 topological order or can be gapless liquids with U(1)×U(1) local symmetry.
We prove that this continuous symmetry emerges whenever the lattice is tripartite such
that each trimer covers all the three sublattices. In the gapped case, we demonstrate
the stability of topological order against dilution of maximal trimer coverings, which is
relevant for realistic models where the density of trimers can fluctuate. Furthermore,
we clarify the connection between gapped tRVB states and Z3 lattice gauge theories by
smoothly connecting the former to the Z3 toric code, and discuss the non-local excitations
on top of tRVB states. Finally, we analyze via exact diagonalization the zero-temperature
phase diagram of a diluted trimer model on the square lattice and demonstrate that the
ground state exhibits topological properties in a narrow region in parameter space. We
show that a similar model can be implemented in Rydberg atom arrays exploiting the
blockade effect. We investigate dynamical preparation schemes in this setup and provide
a viable route for probing experimentally Z3 quantum spin liquids.

Conclusions and outlook We conclude in Chapter 6, and present an outlook for further
research directions.



A method is more important than a discovery, since the right method will lead to new and
even more important discoveries.

L. D. Landau [40]
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Tensor networks for quantum physics

2.1 Basics
The main purpose of tensor networks is to represent mathematical expressions involving
many indices and summations in a clear and concise way. Using a graphical representation,
the structure and relationship between the different parts becomes evident. As we will
see later on, it is not only a handy way of writing down complicated expressions, but
tensor networks become the building blocks to construct more complicated objects, such
as quantum states. As we will see later on, this will come in handy to predict certain
properties of the whole states, from the properties of the individual objects. In this
section, we introduce the basics: tensors, the graphical rules of tensor networks, and
some basic operations.

What is a tensor?
Tensors are ubiquitous in physics, mathematics and computer science, and naturally
many different definitions are used. From a pratical point of view, tensors can be thought
of as simply multidimensional arrays1. We can represent them graphically as some shape,
with lines (or legs) coming out of it, each one corresponding to an index [16, 39]. For
example, we can represent a scalar, a vector, and a matrix as

i i j .

The number of indices is referred to as the rank of a tensor. By connecting the legs
of different tensors, we can represent a summation (or contraction) over that index.
For example in the matrix multiplication

∑
j,k AijBjkCkl the contracted indices are j

and k. The resulting tensor is a rank-2 tensor formed by the uncontracted indices i
and l. We represent this graphically by connecting the indices of the tensors that are
involved in the summation. Here are some examples of (i) a scalar product, (ii) a matrix-
vector multiplication, (iii) a matrix-matrix multiplication and (iv) a more complicated

1Lately, in machine learning this has become the de facto definition.

7
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contraction yielding a vector

(i)
∑

i

AiBi = BA
i , (iii)

∑

j

Ai,jBj,k = BA
i j k ,

(ii)
∑

j

Ai,jBj = BA
i j

, (iv)
∑

i,j,k,l,n

Ai,jBi,j,k,lCk,mDl,n,n =

C

B

i

A

j

m

D

k

l

n

.

We see that contractions between a set of tensors can be represented as a sort of graph,
that is called a tensor network (TN).

This definition is however limited to Euclidean spaces such as Rd or Cd. To work in
more general vector spaces, it is sometimes handy to generalize the definition of a tensor
to be an element from the tensor product of several vector spaces over the same field. For
example, we can write a rank-r tensor T

T ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vr .

We start by representing vectors by adding an outgoing arrow on their leg
V

.

In order to take scalar products, we must also define dual vectors belonging to the dual
space V ∗ ((or linear functionals on V ). We represent these with an arrow in the opposite
direction

V

.

This notation makes it clear that we can identify a dual vector with a primal vector on
the dual space, since flipping the direction of an arrow then corresponds to taking the
dual space

V ∗

=

V

. (2.1)

Equivalently, we can identify a vector as a dual vector in the dual space (since V ∗∗ = V ).
The tensor product of two tensors can be seen as just placing two tensors next to each
other, or viewing it trivially as a single tensor

w

W

⊗v

V

= w

W

v

V

W

v ⊗ w

V

= . (2.2)

This can be used to construct tensors of arbitrary rank.
Notice that in this last example the direction of the arrows suggest that we think of

the tensor v ⊗ w as a linear functional inW which then outputs a vector in V . In other
words, we can think of it as a mapW → V . This brings us to a second way one can think
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of a tensor: as a multilinear map between vector spaces. We can then interpret a tensor
as a mapping from a set of the spaces (the domain) to the set of remaining spaces (the
codomain)

T =

V1

V2

Vm

...

Wn

W1

...

W2

co
d
o
m
a
in

d
o
m
a
in

.

The choice of partitioning is arbitrary, and we can always freely move indices from one
partition to the other, remembering to take the dual space when changing sides. Finally,
we choose to represent the adjoint tensor with a shaded color

T † =

V1

V2

Vm

...

Wn

W1

...

W2 .

Tensor contractions are represented in the same way, as long as we can connect legs
representing the same vector space, such as

C

BA=

.

This diagrammatic approach is actually a very powerful tool. Much like Feynman
diagrams for quantum field theory, tensor networks allow us to get a more intuitive and
visual understanding rather than handling long equations. To illustrate this briefly, the
cyclic property of the trace is immediately visible from its diagrammatic form

A

B

C

E D

= Tr(ABCDE) = Tr(BCDEA) = Tr(CDEAB) = . . . , (2.3)

because of its symmetry the result does not change by starting to contract from another
element, as long as the correct network structure is preserved [39].

We also wish to point out is that, contrary to the index notation, a tensor network
does not assume any specific basis dependence on any of its contractions. Indeed we can
always introduce on a link the resolution of the identity 1 = X−1X, where X is some
invertible operator. It corresponds to performing a basis transformation on the specific
leg. This leads us to an extra convention: that the identity operator 1 is represented as a
simple line

X−1 X = . (2.4)
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The introduction of arrows is useful in more complicated vector spaces to keep track
of the fusion of the irreducible representations of certain symmetries. In quantum physics
we often want to include some unitary symmetry group G which acts on the vector spaces
with a certain representation. A vector space V can then be represented as the direct sum
of the irreducible representations of G, and a tensor can be restricted to the equivariant
under the action of the symmetry. Because of Schur’s Lemma [41], such a tensor is in
block-diagonal form. If one keeps track of how the irreducible representations fuse and
split, one can exploit the block-diagonal form for significant computational speedups [42].
Indeed, many Hamiltonians of interest commute with the unitary representations of
some symmetry group G: [H,Ug] = 0, g ∈ G. If we are interested in the ground state,
we can then restrict ourselves to states obeying Ug |Ψ〉 = |Ψ〉, assuming no spontaneous
symmetry breaking occurs. In the case of local symmetries Ug = u⊗Ng , where the ug act
on a single site, the symmetry constraint becomes a constraint on the local tensors. It
was realized early on that the common tensor-network algorithms could be adapted
to handle symmetric tensors [43–46], both for Abelian symmetries [47, 48] as well as
non-Abelian ones [49, 50].

Index manipulation

Because we can freely combine vector spaces with the tensor product, we are allowed to
group indices at will. For example, we can easily see that any contraction of two arbitrary
tensors can be seen as a matrix multiplication after grouping the indices2

A B A B= AB AB= = ,

(2.5)
where the we have indicated in bold the grouped indices. This is actually how most
numerical tensor contraction packages perform a contraction on a computer. Instead
of doing the summation over some indices one at a time, the indices of the tensors are
reshuffled such that they form two matrices. Then the matrix multiplication is performed,
and the remaining indices are split up again to obtain the original ones. This strategy
is employed in most numerical libraries, as typically matrix multiplication routines on
modern CPU architectures are highly optimized [51]. This is also handy to place an
upper bound on the time complexity of doing a contraction between the tensors by
O(# of legs). 3

For a tensor network with more than two tensors, the order of contraction becomes
very important. Typically one can only contract tensors in a pairwise fashion, so the order
in which we choose to perform the contraction (which we can think of as a bracketing
of the expression) is crucial: the complexity—both in space and time—can vary wildly.
Explicit examples are provided in Ref. [16]. Unfortunately there exist networks that do

2After performing potential traces on individual tensors.
3It is an upper bound since algorithms with slightly better asymptotic scalings are known, such as

Strassen’s algorithm [52].
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not admit any efficient contraction. For example in a grid

we soon realize that the contraction necessarily must store an object which has at least a
number of legs equal to one of the sides, as is depicted in the shaded area. Additionally,
it is possible to encode in a tensor network very difficult tasks, such as computing
the number of solutions to NP-complete problems [16, 53] (known as a #P–complete
problem), something that is very unlikely to be computable efficiently.

In general, even computing the optimal contraction order of an arbitrary tensor
network is a hard (at least #P–complete) problem [54]. Heuristic methods exist that
are able to find an approximately optimal contraction tree for several hundreds or even
thousands of tensors [55, 56]. As a rule of thumb, tensor networks made of a tree-like
structure are efficiently contractible, while the presence of closed cycles, or loops, makes
the contraction much more costly.

Factorizations
We have learned that we combine tensors together by contracting them. Can we do
the opposite operation? It turns out that the opposite operation can be done too, by
generalizing the concept of matrix factorizations.

One of the common ways of factorizing a tensor is to use the singular value decompo-
sition (SVD), appropriately generalized to higher ranks. An SVD splits a tensor into two
isometries U and V and a diagonal tensor S. Similarly to before, we partition the legs
into two sets, interpret the tensor as a matrix and perform the factorization

T i1,...,imj1,...,jn
=
∑

k

U i1,...,imk Skk V
k
j1,...,jn =

U

i1

i2

im

...

S V

jn

j2

j1

...

. (2.6)

The tensor S contains the singular values, which are positive real numbers.
Other matrix factorizations can be similarly employed. The popularity of the SVD

lies in the fact that the decomposition is rank-revealing (in the matrix sense). The new
index created has the smallest possible dimension, which is what is most computationally
advantageous.

Not only does the SVD give the factorization with the smallest possible index di-
mension, but it also allows one to approximately factorize a tensor in a controlled way.
Essentially the SVD decomposition gives a way of finding the closest possible factorization
(in Frobenius norm) to the original tensor with a smaller intermediate dimension. Not
only that, but the approximation is controlled: all we have to do is discard the smallest
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singular values. This method is known as the Eckart–Young theorem [57, 58], although
it was previously discovered by Schmidt [59, 60].

Applications of this approximation have been applied early on for image compres-
sion [61]. By storing a factorization of an original image we are able to encode an image
while retaining only a small fraction of the original data [cf. Fig. 2.1].

Figure 2.1: Example of SVD compression of an image. The original image (seen as a
rank-3 tensor) is factorized, the first n singular values are retained and the image is
reconstructed. Here, n is chosen to be 8, 16, 64. The compression ratio α is defined as
the ratio between the total dimension of the compressed tensors and the dimension of
the original image [62].

2.2 Tensor networks as quantum states
Tensor networks can be employed for the representation of quantum states. In this
thesis we consider the case of states on a regular lattice with N sites, where each site is
associated to a d-level quantum system. The associated finite-dimensional Hilbert space
is simply the complex Euclidean space H =

⊗N
k=1 Cd, equipped with the usual inner

product 〈·|·〉. Generalizations to generic graphs, different vector spaces and different
dimensions at each site should be straightforward.

Hence an arbitrary pure quantum state |Ψ〉 ∈ H can be written down in the compu-
tation basis ~s = s1, . . . , sN as

|Ψ〉 =
∑

s1,...,sN

ψs1,...,sN |s1, . . . , sN 〉 =

s1 s2 sN−1 sN. . .

. (2.7)

The amplitudes ψs1,...,sN = 〈s1, . . . , sN |Ψ〉 correspond to a complex number for each
combination of s1, . . . , sN . Hence, once we have chosen a basis, we can fully describe a
state with the complex tensor ψs1,...,sN , which we represent as a big blob with N legs.
Each leg corresponds to an index sk, which we shall often refer to the physical indices, as
we are about to introduce many more.
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The essential idea behind a tensor network state is to parametrize a quantum state
as a contraction of low-rank tensors. For example, we can construct a one-dimensional
chain

|Ψ〉 =

s1 s2 · · · · · · sN−1 sN

, (2.8)

which we refer to as a matrix product state. The newly introduced indices that are con-
tracted are referred to as virtual indices. 4 Similarly, we can generalize this construction
to higher dimensions,

|Ψ〉 = , (2.9)

which is called a projected-entangled pair state (PEPS).
So far, the tensor networks we considered follow very closely the geometry of the

lattice. Of course, we are not constrained by this, and we are allowed to construct
more complicated networks. Several constructions introduce an additional “dimension”,
which can be thought broadly-speaking as a renormalization dimension. For instance,
tree tensor networks (TTN) correspond to tensor networks on tree graphs [63]. They
are efficiently contractible, and, as opposed to MPS, allow for algebraically-decaying
correlations [64]. It is however challenging to construct two-dimensional TTNs that can
account for an area law of entanglement, which we clarify later on. Another construction
introduced for representing critical states in one dimension is the multiscale entanglement
renormalization ansatz (MERA) [65]. It is more sophisticated network of isometries5 for
which local expectation values are efficiently computable, even if it contains loops. Their
higher dimensional generalization was however shown to be embeddable in PEPS [66].
In this thesis, we leave these more exotic alternatives to the side and restrict ourselves to
MPS and PEPS.

4This is not the most general MPS. We could introduce an extra index linking the first tensor to the last
tensor, such that the state becomes

|Ψ〉 =
∑

s1,...,sN

Tr
(
As11 A

s2
2 . . . A

sN−1

N−1 A
sN
N

)
|s1, . . . , sN 〉

where the trace is over the virtual degrees of freedom. However, this is typically less efficient in numerical
routines. For the infinite uniform case we prefer this notation, as the choice of boundary condition should
not matter, except in the case of symmetry-protected topological order (not discussed in this thesis).

5An isometry is a linear map such that U†U = 1 (UU† = 1), when the dimension of the codomain
is larger (smaller) that the dimension of the domain. Isometricity can be seen as the generalization of
unitarity to non-square matrices.
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Tensor networks and area laws
At this point it is still not clear what we have gained. While any state could potentially
be represented as a TN state (and constructive algorithms exist for MPS [67]), it is
not necessarily an efficient representation. In order to have a polynomial number of
parameters in system size, the dimension of each virtual index is typically upper bounded
by some constant, which we call the bond dimension. Despite this restriction, we can
represent many known and commonly used states in quantum physics [16–18]. More
importantly, the bond dimension is intimately related to the concept of entanglement
entropy. When choosing a bipartition of a pure quantum system, the entanglement
entropy is defined as

S = −Tr(ρ log ρ) (2.10)

where ρ is the reduced density matrix of either half of the bipartition. Informally, it
corresponds to some kind of average over the quantum correlations between the two
subsystems. It turns out that for TN states, the entanglement entropy of any bipartition
is easily upper bounded by the number of virtual legs cut off by the the bipartition [68].
Consider for example the state represented in the following

|Ψ〉 = ∂A

A

. (2.11)

We choose a subsystem A and trace out the degrees of freedom in the complement Ā as

ρA = TrĀ |Ψ〉 〈Ψ| =
Ā

. (2.12)

The blue tensor, representing the physical degrees of freedom belonging toA, is connected
to the tensor representing the ones of Ā with the virtual degrees of freedom in ∂A. The
partial trace is then performed over the physical degrees of freedom of Ā. Note that
the number of legs in the diagram is chosen arbitrarily. Now, the matrix rank of ρA is
effectively bounded by the dimension of the space of the boundary of A. Denoting it by
|∂A|, the entanglement entropy is bounded by S ≤ log |∂A|.

Such states are highly relevant physically. The ground state of local, gapped Hamilto-
nians are widely believed6 to obey an area law: the entanglement entropy of a subregion
scales proportionally to the boundary of the subregion, and not its volume. Indeed, as we
will discuss more in detain in Sec. 2.5, efficient heuristic algorithms for finding ground

6This is rigorously proven in 1D [69], as well as for 2D frustration-free Hamiltonians in a recent
breakthrough paper [70].
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states in one dimension have spearheaded the popularity of tensor networks for quantum
physics. In particular matrix product states (MPS) are arguably the most effective ansatz
to represent ground states of local, gapped Hamiltonians in one dimension [69, 71–73].
For a more detailed discussion of the relationship between TN states and area laws, we
refer the interested reader to Ref. [17].

On a more philosophical level, TN states reintroduce the notion of locality to quantum
states, since each physical site is associated to a tensor. This is desirable, as our intuition
suggests that the physics at one site should be mostly determined by its neighborhood.
Already Feynman pointed out that in quantum field theory this notion of locality is not
particularly apparent [74]:

Now, in field theory, what’s going on here and what’s going on over there and
all over space is more or less the same. Why do we have to keep track in our
functional of all the things that are going on over there while we are looking at
the things that are going on over here? [. . . ] It’s really quite insane, actually:
we are trying to find the energy by taking the expectation of an operator which
is located here and we present ourselves with a functional which is dependent
on everything all over the map. That’s something wrong.

Feynman’s vision was to construct a new variational class which would account for this
locality. Despite being critical of the variational principle for quantum field theories, he
still has hope that

Maybe there is some way to surround the object, or the region where we want
to calculate things, by a surface and describe what things are coming in across
the surface. It tells us everything that’s going on outside.

In a way, TN provide an answer to this research program: they model the entanglement
degrees of freedom that are at the interface of two regions. Since MPS and PEPS typically
are chosen to have the same geometry of the underlying system, they naturally represent
this interface in a lower dimension, and by construction represent states which obey a
corresponding area law.

Finally, tensor networks are a useful constructive class. A bit like stacking Lego
bricks together, we can construct complicated states from elementary tensors. From
the properties of the individual tensor we can then predict certain properties of the full
state, like symmetries and unconventional orders. Simply repeating the same tensor
over and over, we can costruct nontrivial translationally-invariant states directly in the
thermodynamic limit. As we will see in Sec. 2.4, we can then optimize this class of
variational states, for example to approximate the ground state.

2.3 Operators

We can easily generalize the construction of TN states to operators as well. A matrix
product operator (MPO) [75–77] is graphically represented as

O = , (2.13)
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and a projected entangled pair operator (PEPO) reads

O = . (2.14)

These constructions are convenient to efficiently represent local Hamiltonians [67, 78]7.
TN operators have also been employed as an ansatz representing mixed states, espe-

cially thermal states. In general, thermal states with exponentially decaying correlations
obey an area law [79, 80], so one expects that an efficient tensor network representation
exists. Indeed theoretical work has bounded the bond dimension necessary for an approx-
imate PEPO representation of a thermal state to (N/ε)O(β) [38, 81] and subsequently
a better bound D ∼ exp

[
O
(√

β log(N/ε)
)]

was found [80]. Despite these theoretical
results, on the numerical side, algorithms as effective as DMRG are still lacking. Yet,
several numerical algorithms for constructing thermal TN states exist, and are discussed
more in detail in Chapter 3.

MPOs also appear as the transfer matrix of two-dimensional statistical-mechanics
models. Indeed, the partition function of many models on a 2D square lattice can be
formulated as grid of rank-4 tensors,

Z = T T

TT T

T

T T T

. (2.15)

For example, the partition function of the 2D classical Ising model can be constructed as
follows

Z =
∑

~σ

eβ
∑
〈i,j〉 σiσj =

G

G

G

G

G

G

G

G

(2.16)

7In one dimension these correspond to finite-state automata, in higher dimensions to weighted finite
signalling agents, cf. Ref [78].
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where

i

j

k

l

= δi,j,k,l, G =

(
eβ e−β

e−β eβ

)
. (2.17)

The idea is that the δ-tensors represent each spin degree of freedom, and G encodes
the Bolzmann weights, which gives a contribution eβ (e−β) to the partition function if
the neighboring spins are aligned (anti-aligned). This can then be recast in the form of
Eq. (2.15). Such formulations of the partition function can then be studied by considering
taking one row of the partition function, seen as an MPO. This is commonly referred to
as the transfer operator

T = TTTTTT . (2.18)

The leading eigenvector of this MPO can then be estimated—for finite sizes or using a
uniform MPS approximation—to extract the properties of the model. This method is, in
essence, the modern formulation of Baxter’s method mentioned in Chapter 1. Of course,
for the specific case of the Ising model, the partition function was famously solved exactly
by Onsager in 1944 [82], but this formalism can be generalized to tackle many different
models. Such techniques are reviewed in detail in Ref. [11], and are used extensively in
Chapter 5.

These techniques are useful for contracting PEPS as well. When computing an
overlap, or an expectation of a local operator on states that are uniform PEPS, the
network becomes very similar to Eq. (2.15), where the local tensor is

T = . (2.19)

As a side note, we remark that we can construct a PEPS representation of a state
|Ψ〉 such that its norm 〈Ψ|Ψ〉 corresponds to the partition function of the 2D classical
Ising model[83]. This model undergoes a thermal transition for a finite temperature
βc = ln(1 +

√
2)/2, at which point the model displays an algebraic decay of correlations.

Therefore PEPS can describe states with an algebraic decay of correlations. This is
somewhat surprising, as MPS cannot describe these types of correlations, as we argue in
Sec. 2.4.

2.4 MPS manifolds

Uniform MPS

We now turn our attention to the states described by MPS of a fixed bond dimension. As
we already saw, these states are characterized by a low entanglement entropy. We now
explore their properties from the point of view of differential geometry, by viewing them
as a manifold embedded in the total Hilbert space.
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We focus on the case of a uniform MPS generated by a tensor A ∈ CD ⊗ Cd ⊗ CD,
which describes a state directly in the thermodynamic limit:

|Ψ(A)〉 =
A

sn−2

A

sn−1

A

sn

A

sn+1

A

sn+2

=
∑

~s

Tr (. . . Asn−1AsnAsn+1 . . . ) |~s〉 .

(2.20)
The discussion can readily be generalized to the case of finite MPS, as well as generic
vector spaces.

The parametrization of the state in Eq. (2.20) has an inherent redundancy, since we
can perform a gauge transformation on the virtual degrees of freedom of the form

A 7→ A X−1X
, (2.21)

for any invertible matrix X. This gauge redundancy of the MPS parametrization allows
us to choose the tensors to fulfill the left-gauge condition without loss of generality

A†

A

= ,

A†

A

%=% . (2.22)

The tensor % is the (positive-semidefinite) right fixed point of the transfer matrix8

E =
A

A†

, (2.23)

which encodes the Schmidt values [67]. Hence, we can view the tensor A as a linear
map from the right virtual leg to the left virtual and physical legs, which is isometric. We
will use W to denote this specific mapping, so we can use the notation W †W = 1 to
unambiguously specify the isometricity condition.

Hence the tensors A belong the Stiefel manifold [84],

St(n, p) =
{
W ∈ Cn×p

∣∣∣W †W = 1

}
. (2.24)

In reality, since there is a unitary freedom remaining in Eq. (2.22)—namely, As 7→
U †AsU—one can restrict the manifold even further to the Grassmann manifold. The
Grassmann manifold should be understood as a quotient manifold, namely all W sat-
isfying the isometricity condition up to a basis rotation, and it is often denoted as
Gr(n, p) = St(n, p)/U(p) [84].

Tangent space
This parameter redundancy gives the manifold the structure of a principal fiber bun-
dle [85]. The associated metric is induced by the scalar product in the embedding Hilbert

8This assumes the leading eigenvalue of the transfer matrix is unique. This condition is typically known
as injectivity [75], and excludes all macroscopic superpositions of different MPS. In the rest of this thesis we
implicitly assume injectivity of the MPS considered.
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space

〈Ψ(Ã)|Ψ(A)〉 =

A A A A A

Ã† Ã† Ã† Ã† Ã†

. (2.25)

Notice that this implies the normalization ‖Ψ(A)‖2 = Tr %, since the transfer matrix has
the leading eigevectors

lim
n→∞




A

A†




n

= % = |%〉〉〈〈1| . (2.26)

The transfer matrix gives information about correlations in the system. Indeed, the
magnitude of the second leading eigenvalue is related to the correlation length, which
gives an upper bound on the decay of all possible correlation functions in the system. As
a consequence, MPS always have an exponential decay of correlation functions.

To each state |Ψ(A)〉 we can associate a vector space generated by the infinitesimal
variations of the tensor. This is known as the tangent space. A generic tangent vector to a
uniform MPS is a linear combination of the partial derivatives of the individual tensor
components. This can be seen as a vector embedded in Hilbert space, composed of an
(infinite) sum of MPS vectors

|∆(B)〉 = B
∂

∂A
|Ψ(A)〉 =

∑

n

A A B A A

n. . . n− 1 n+ 1 . . .

(2.27)

where B contains the coefficients associated to linear combination of partial derivatives
and the sum runs over all physical sites.

A tangent vector parametrized by a tensor B also has an inherent gauge freedom to
it. The explicit transformation that leaves the vector invariant is

B 7→ A XAXB −+ , (2.28)

for any D ×D matrix X. Indeed, the set of derivatives ∂A |Ψ(A)〉 form an overcomplete
basis. Hence, by introducing the orthogonal complement of A [86], such that

A

A†

+

A⊥

A⊥†

= , (2.29)

we can parametrize the tangent vectors as

B = A⊥ Z
, (2.30)

where Z is a D(d − 1) ×D matrix. This parametrization arises quite naturally if one
considers the tangent vectors to be embedded in the original Hilbert space. In this case,
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the choice of Eq. (2.30) corresponds to imposing orthogonality of the tangent space,
〈Ψ(A)|∆(B)〉 = 0. We remark that Eq. (2.30) is exactly the parametrization of the
tangent space for Grassmann manifolds, as derived traditionally [84].

This framework is very interesting, as it allows to write evolution equations in the
manifold of MPS. Take for example the Schrödinger equation

∂

∂t
|Ψ(A)〉 = −iH |Ψ(A)〉

for some HamiltonianH. In general, for some initial state belonging to the MPS manifold,
the evolution will immediately yield a state outside of it, making the problem intractable.
We can however project into the tangent space, by finding the optimal approximation of
the variation ∂t |Ψ(A)〉 onto the tangent space

∂A

∂t
= arg min

B

∥∥ |∆(B)〉 − iH |Ψ(A)〉
∥∥2
.

This leads to a corresponding nonlinear differential equation for A. In analogy to the
method developed for Hartree–Fock theory, this technique has introduced the time-
dependent variational principle (TDVP) [87, 88] in the context of MPS. Using the correct
gauge choices, this yields local equations involving the tensor A which can be solved
numerically to simulate time-evolution of quantum states.

The projector onto the tangent space is also useful to construct excitation ansätze
which can be thought of as a generalization of spin waves to MPS. These states correspond
to the eigenstates of an effective projected Hamiltonian, and have been used succesfully
to approximate the dispersion relation of the full Hamiltonian. These techniques are
reviewed in detail in Ref. [88].

More generally, we can use this formalism to optimize any differentiable function
f(A) → R. As we explain later on, the gradient ∂Af(A) can be projected onto the
tangent plane, and this prescribes a direction to move in the manifold. Any gradient-
based optimization can then be adapted to work on Riemannian manifolds. In general it
should also be faster than simply constraining the parameters, as we follow the evolution
in parameter-space more uniformly, as we know the local metric of our manifold.

The optimization of differentiable functions on Riemannian manifolds has been
the object of extensive studies in mathematics and recently these techniques have been
applied to TNs [86]. In what follows, we look into some ingredients necessary to optimize
a generic function f(A): Gr(Dd,D)→ R using gradient-based optimization.

Projection

One particularity arises from the choice of metric in the tangent space. In a general setting
it is not always obvious what the correct choice should be, as there is not necessarily a
straighforward physical interpretation of the tangent space. In Riemannian manifold
optimization, one usually chooses the Euclidean metric [84]:

〈∆1(B1)|∆2(B2)〉Eucl = Re Tr(B†1B2) = Re

Z†
1

Z2

. (2.31)
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However, this is not the most natural choice in this setting, since the underlying physical
Hilbert space prescribes the metric

〈∆1(B1)|∆2(B2)〉Hilb ∝ Re Tr(B†1B2%) = Re

Z†
1

Z2

% . (2.32)

Note that, as opposed to Eq. (2.31), this metric depends on the current point |Ψ(A)〉 of
the manifold.

Regardless of our choice, the metric allows us to project arbitrary Hilbert space vectors
onto the tangent space. For the Euclidean metric in Eq. (2.31), the projection of a tensor
Y onto the tangent space of A reads [89]

PA(Y ) =

A

A†−

Y

Y
. (2.33)

The projection operator for the Hilbert metric requires inverting the fixed point %, which
might lead to numerical instabilities if its singular values are very small.

For the optimization of a generic function f(A), we can compute the gradient ∂Af(A)
without taking into account the isometricity condition and then project onto the tangent
space [84]. This projected gradient grad f(A) := PA [∂Af(A)], can be considered as
the direction of steepest ascent on the manifold, while its magnitude can be used as a
convergence criterion.

Retraction and transport
The last ingredient necessary for a gradient descent algorithm is defining a retraction.
Loosely speaking, we need to define a curve on the manifold such that we can move in a
direction specified by a tangent vector ∆ by a step size α. Hence a retraction RA(α∆)
can be any smooth curve such that it (i) starts at A, RA(0) = A and (ii) is consistent with
dR(α∆)/dα = ∆. Different choices of retraction exist, but the most natural choice is a
retraction that follows the manifold geodesics, i.e., the shortest path that connects two
points on the manifold. Remarkably, the geodesic retraction on a Grassmannian manifold
relative to the Euclidean metric is known and is relatively efficient to compute [89]:
Given some point A, the retraction of some tangent vector ∆ = A⊥Z [see Eq. (2.30)] is

RA(α∆) = eαQA, (2.34)

where

Q =
(
A A⊥

)(0 −Z†
Z 0

)(
A†

A⊥
†

)
. (2.35)

This constitutes the bare minimum to define a gradient descent algorithm on the
Grassmann manifold. In practice, the convergence of gradient descent can be very slow,
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and, in Euclidean space, several methods exist that just use first-order information. For
example, conjugate gradient adjusts the gradient with the previous search direction, and
quasi-Newton methods—notably l-BFGS [90, 91]—uses the previous iterations to create
a low-rank approximation of the inverse Hessian. To adapt these methods to optimization
on manifolds, it is sufficient to define a vector transport, a way of transporting a tangent
vector at a previous point of the manifold to the current one. In other words, for a
retraction A′ = RA(∆), a vector transport T∆(Ω) maps a tangent vector Ω at A to a
tangent vector at A′. A typical way of defining transport is via differentiated retraction,
i.e.,

T∆(Ω) =
d

dα
RA(∆ + αΩ)

∣∣∣∣
α=0

. (2.36)

Using Eq. (2.34), we obtain
Tα∆(Ω) = eαQΩ . (2.37)

2.5 Overview of algorithms
As tensor networks are a language to describe quantum physics, a plethora of algorithms
have been introduced in the last years. Nonetheless, there are relatively few algorithms
that are well-established, and yet these few have led TNs to obtain some of the state-of-
the-art results in many-body quantum physics. In this section we briefly overview some
of these algorithms, referring the interested reader to Refs. [92, 93] for an overview of
the different methods, and Refs. [16, 39, 67] for a more in-depth discussion on practical
implementations.

Ground states
Undoubtedly, the most well-known and successful algorithm for tensor networks is the
density-matrix renormalization group (DMRG), used for approximating ground states
in one dimension as MPS. The name is admittedly a bit of a misnomer, as its original
formulation by White [20, 21] was only much later understood in the framework of
tensor networks [24, 94]. In its modern formulation, it is a variational optimization
of the MPS tensors. The variational principle transforms the ground state eigenvalue
problem to an optimization of the ground state energy ε0

ε0 = min
Ψ

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ,

where the extremization is performed over some class of ansatz states.
In DMRG, tensors in the chain are sequentially visited, and optimized to minimize the

energy keeping all the other tensors fixed. The process is then repeated until convergence.
The power of this algorithm lies in the fact that the local optimization is quadratic, and
can be solved efficiently with time complexity O

(
D3
)
, where D is the bond dimension.

Generalizations to the case of uniform MPS in the thermodynamic limit have been
proposed as well [95–97].

One may also wonder how DMRG compares to the manifold optimization in Sec. 2.4.
The DMRG method can be interpreted from the manifold perspective as an effective
evolution in imaginary time: the evolution equations for each tensor are taken separately
and each tensor is evolved sequentially with an infinitely-large time step [87]. Hence it
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is a heuristic algorithm, as it optimizes one tensor at a time, as opposed to considering
the global energy function. This is discussed in the infinite case in Ref. [86]. Despite this,
DMRG has proven to be a very robust and effective method to find ground states of local
Hamiltonians. More generally, it can be used to find extremal eigenvalues of operators
written as MPOs.

Dynamics

Simulating the dynamics of quantum systems is essential for exploring out-of-equilibrium
phenomena, understanding thermalization, as well as constructing thermal states (using
imaginary time evolution). Several different approaches exist, and are reviewed in more
detail in the Ref. [98]. The most standard approach is known as time-evolving block
decimation (TEBD) [67, 99] and relies on the decomposition as a series of gates of the
time-evolution operator U = e−iδtH for some short time step δt. Repeatedly applying
these gates to an MPS leads to an exponential increase of the bond dimension, so the
state must be truncated back down. This truncation can be performed with SVD or other
methods described in Ref. [67].

Another method based on the tangent space is TDVP, already mentioned in Sec. 2.4.
This method does not require explicit truncation during the evolution, as one is performing
the evolution directly on the MPS manifold. While this method has some theoretical
advantages, like preserving conserved quantities, in practice it has other disadvantages,
as discussed in Ref. [98].

While thesemethods work well for simulating short-time dynamics, they are all subject
to a fundamental limitation, the so-called entanglement barrier. In a typical setting, a
global quench of a system leads to a linear growth of the entanglement entropy [100,
101], which results in an exponential growth of the required bond dimension [102].
To circumvent this problem, alternative contraction strategies have been proposed in
Ref. [103], and have been developed in several subsequent works. This direction is
further explored and discussed in Chapter 4.

Higher dimensions

So far, the discussion of algorithms has been focused mostly on MPS. Indeed, the attempt
to generalize these methods to two or more dimensions has proved to be very challenging.
Early on in the history of DMRG, attempts were made at adaptingMPS to two-dimensional
problems by wrapping it around the lattice sites in a periodic fashion. This leads however
to a more costly representation of the Hamiltonian as an MPO, and generally the bond
dimension required grows exponentially with the system size, even in representing area-
law states (c.f. Sec. 2.2). PEPS seems to be the right ansatz, but, contrary to MPS, PEPS
have the inherent difficulty of not being efficiently contractible, and are typically related
to hard computational problems [104]. Nonetheless, over the last ten years, considerable
effort has been dedicated to adapting the one-dimensional methods to PEPS, and some
methods are becoming the state-of-the-art in tackling two-dimensional problems [105]
or even more [106].

In all practical PEPS algorithms, one must find a way of performing an approximate
partial contraction of the network to estimate the environment around a few sites, i.e.
the tensor at the virtual level that is associated with the contraction of an expectation
value. This is typically achieved by performing an MPS approximation of the boundary



24 Tensor networks for quantum physics

tensor [107] (typically for finite PEPS) or using the corner-transfer matrix renormal-
ization group (CTMRG) [108] for infinite PEPS. In all these methods, the environment
is approximated as a TN, so it can be improved on arbitrarily, at the price of a higher
computational cost.

Once the environment is calculated, both a variational optimization as well as time-
evolution can be performed on local tensors. The gradient of the energy with respect to
the local tensor is typically very nonlinear and complicated to calculate, so other heuris-
tics which mimic imaginary time evolution have traditionally been employed [109–113].
Direct variational optimization schemes were introduced in 2016 with two breakthrough
papers in Refs. [114, 115]. The direct environment resummation which was introduced
is a special case of a more general technique employed in computer science and machine
learning, known as automatic differentiation [116]. This technique has recently been
introduced into the tensor network community [117, 118], and is a versatile tool for
computing gradients of tensor networks in a more general setting, and with less coding
effort. The development of tensor network algorithms for two (or possibly more) dimen-
sions is still a work in progress, but we expect more exciting breakthroughs and results
in the near future.
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Rényi free energy

3.1 Introduction
From the point of view of thermodynamics, thermal states describe the equilibrium
properties of a system. Given a Hamiltonian H, the Gibbs state

ρG =
1

ZG
e−βH , ZG = Tr e−βH (3.1)

describes the state of the system at a given temperature 1/β. On the other hand,
thermal states arise from the principle of maximum entropy [119, 120]: for a given
energy, the thermal ensemble is the one that maximizes the von Neumann entropy
SG(ρ) = −Tr(ρ log ρ). Equivalently, this can be formulated as the minimization of the
free energy

FG(ρ) = Tr(Hρ)− 1

β
SG(ρ), (3.2)

so that
ρG(β) = arg min

ρ�0
Tr ρ=1

FG(ρ), (3.3)

for some fixed value of β. To keep the notation light, we do not explicitly write the
dependence of ρG on this parameter. One should keep in mind that the minimum is
taken with respect to density operators, i.e. positive-semidefinite operators ρ � 0 with a
chosen normalization, typically Tr(ρ) = 1. This optimization is not very convenient in
practice, since the entropy SG is often difficult to compute, as it requires information
about the entire spectrum of ρ. In a quantum many-body setting, this would require
diagonalizing an exponentially large operator, because of the inherent tensor product
structure of the Hilbert space.

In the quantum many-body setting, numerical approaches to thermal equilibrium do
not try to explicitly solve the optimization above, but resort to different approaches to
approximate Eq. (3.1). Monte Carlo methods use sampling to estimate very efficiently
the physical properties from Eq. (3.1), but they encounter difficulties in scenarios where
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a sign problem appears, as can happen for fermionic models or frustrated systems. A
different approach is based on tensor networks (TNs), where the total state corresponds
to the contraction of low-rank tensors and allows for a local description of the physics.
This is motivated by the fact that thermal states for a local Hamiltonian obey an area law
for the mutual information [79, 80], and hence there is strong theoretical evidence that
a tensor network description should be efficient at approximating thermal states [38, 72,
80, 81, 121].

In practice, TNs are extremely successful for studying thermal equilibrium. In one
spatial dimension, matrix product states (MPSs) can be used to construct a represen-
tation of the (mixed) Gibbs state [75, 76, 122–124] or, combined with sampling, to
construct minimally-entangled thermal states [125, 126]. Alternatively, the partition
function can be represented as a two-dimensional TN, and its contraction can be ap-
proximated using tensor renormalization group approaches, for instance, as originally
proposed in Refs. [127–129]. The algorithms can also be generalized for two-dimensional
systems [130–132].

In this chapter, we study alternative thermodynamic ensembles that, instead of the
von Neumann entropy, maximize the α-Rényi entropy [133],

Sα(ρ) =
1

1− α log Tr ρα (3.4)

at a fixed energy. In the limit α → 1, Sα reduces to the von Neumann entropy. By
replacing the von Neumann entropy in Eq. (3.2) by a Rényi entropy, we define the Rényi
free energy:

Fα(ρ) = Tr(Hρ)− 1

βα
Sα(ρ). (3.5)

We would like to stress that, in general, the extremizer ρα of this function is not the
thermal ensemble. However, as we will show in Sec. 3.2, this ensemble nonetheless
reproduces all local expectation values in the thermodynamic limit. The parameter βα is
not, in general, related to the conventional inverse temperature β, but should be treated
as a constant for the optimization.

From a TN perspective, the definition in Eq. (3.5) offers the possibility of directly per-
forming a minimization, since the Rényi entropies in Eq. (3.4) are efficiently computable—
at least for small integer values of α > 1. In this chapter, we analyze the properties of
such ensembles, in particular, how they approximate the thermal properties, and present
several variational algorithms which can be used to compute them.

For practical purposes, we will often consider the most convenient case α = 2, for
which Eq. (3.5) becomes

ρR = arg min
ρ�0

FR, FR(ρ) = Tr(Hρ) +
1

βR
log Tr ρ2, (3.6)

where the subscript R represents α = 2. In other words, optimizing Eq. (3.6) is equiv-
alent to finding the most mixed state at a chosen energy. In applied mathematics, the
optimization of such a function is known as a non-linear semi-definite programming and
can be tackled with interior-point methods. However, in many-body quantum physics,
the dimension of ρ increases exponentially with the system size, making such approaches
impractical for large systems.

This chapter is organized as follows. In Sec. 3.2, we provide an analytical solution
to Eq. (3.6), expressed in the eigenbasis of the Hamiltonian. Since the eigenbasis of a
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many-body system is not always accessible, we propose an optimization strategy based on
uniform MPSs, to approximate the purification of ρR directly in the thermodynamic limit.
This non-linear optimization can be accelerated using state-of-the-art techniques [86]
by restricting it to the Grassmann manifold. This is discussed in detail in Sec. 3.3,
and accompanying numerical experiments to benchmark the algorithm are presented.
Moreover, we present an alternative technique, based on a non-linear evolution of the
density operator in Sec. 3.3, which flows toward the desired ensemble. To conclude, we
discuss possible developments in Sec. 3.4.

3.2 Theoretical framework

Maximal Rényi ensemble
We now show the analytical form of the extremizer of Eq. (3.5), which has been previously
derived for classical distributions [134–136]. We can use this result in the quantum
case, noticing that the state that minimizes Eq. (3.5) must be diagonal in the energy
eigenbasis {|Ek〉} and its eigenvalues are equivalent to a probability distribution.

To find the coefficients {pk} in the density operator ρ =
∑

k pk |Ek〉 〈Ek|, ρ � 0 which
maximizes the Rényi entropy Eq. (3.4) under the constraints Tr ρ = 1 and Tr(Hρ) = Ē,
we introduce the Lagrange multipliers βα and γα. The functional L is then

L(ρ) =
1

1− α log
∑

k

pαk − γα
(∑

k

pk − 1

)
− βα

(∑

k

Ekpk − Ē
)
. (3.7)

At the stationary point, the parameter γα can be eliminated [134], and we obtain the
maximal Rényi ensemble (MRE)

ρα =
1

Zα
ΠE⊥

(
1− βα

α− 1

α
(H − Ē)

) 1
α−1

ΠE⊥ , (3.8)

where Zα is a normalization factor and ΠE⊥ is a projector onto the eigenvalues below a
cutoff energy E⊥ = α

β(α−1) + Ē 1:

ΠE⊥ = Θ(E⊥ −H),

Zα = Tr

[
ΠE⊥

(
1− βα

α− 1

α
(H − Ē)

) 1
α−1

]
, (3.9)

where Θ(·) is the Heaviside function.
To illustrate the behavior of Eq. (3.8), we show in Fig. 3.1 some characteristics of

the different ensembles in a particular finite case. In Figs. 3.1(a) and 3.1(b), we show
the distribution of ρ relative to the eigenbasis. The MRE has a distinctive cutoff energy,
beyond which the distribution is zero and therefore fairly different from the case of the
canonical ensemble. However, in a many-body system, we have to consider that the
density of states is not uniform but becomes increasingly peaked in the middle of the
spectrum. Then the energy distributions, weighted by the density of states, become much
more similar, as seen in Fig. 3.1(b).

1Symmetrically, there is also a solution with a projector onto energies above the cutoff energy: E > E⊥.
It is the Rényi equivalent of negative temperatures.
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Figure 3.1: (a) Distribution p(E) of the maximal Rényi and Gibbs ensembles for different
values of α for the Ising model in Eq. (3.18), with longitudinal and transverse fields,
respectively, hx = 0.5 and hz = −1.05 and system size N = 10 (PBC). The mean energy
Ē is fixed at −1/4 of the width of the spectrum. (b) The same distributions weighted
with the corresponding density of states D(E), from the approximation in Ref. [137].
Below, the von Neumann (c) and 2-Rényi (d) entropies for the canonical (solid line)
and 2-Rényi (dotted line) ensembles are compared at a given mean energy density,
for the same system size and Hamiltonian. In both cases, the asymptotic behaviors
limβ→0 SG = limβR→0 SR = N log 2 and limβ→±∞ SG = limβR→±∞ SR = 0 are recov-
ered. The branch with negative (positive) mean energy density corresponds to a β > 0
(β < 0), corresponding to a solution with a projector onto energies below (above) the
cutoff energy E⊥.

Another way of visualizing the relation between the canonical and the Rényi ensembles
is to compare their entropies for the same mean energy Ē. In Figs. 3.1(c) and 3.1(d), we
explicitly show the comparison of von Neumann and 2-Rényi entropies for the ensembles
that maximize each of them over the whole energy range for a small system size. While
the behavior is qualitatively similar, both ensembles only coincide in the limiting cases
Ē = 0, when the state is maximally mixed (corresponding to the Gibbs ensemble at
infinite temperature β = 0) and Ē = Emin (Emax), when the ensemble reduces to the
ground (maximally excited) state, corresponding to β → +∞ (−∞).

To study the behavior at large system sizes, we chose to examine an exactly solvable
case, the results of which are in Fig. 3.2. For this Hamiltonian, the density of states
becomes Gaussian and the arguments in App. 3.A hold. While we expect that local
observables for both ensembles coincide as the system size increases, the same does not
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Ē/N

0.0

0.2

0.4

0.6

0.8

1.0
S
G
/N

lo
g

2

N = 32

N = 80

N = 200

N = 500

Gibbs

−1.5 −1.0 −0.5 0.0
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Figure 3.2: (a), (b) Von Neumann and 2-Rényi entropies of ρR as a function of mean
energy density, for the (classical) Ising model with hx = 1/2, hz = 0. Since there is no
visible difference in the curves for ρG, only the largest size (N = 500) is shown (dashed
line). The von Neumann entropy density of the Rényi ensemble approaches that of the
Gibbs ensemble, as the system size increases. The two ensembles, however, exhibit a
difference at intermediate values of the energy density when comparing their 2-Rényi
entropy. (c) Comparison of β and βR as a function of the mean energy density for the
largest size. The correspondence is discussed further in Sec. 3.3.

need to hold for non-local quantities, such as the entropies. It is interesting to notice
that the Rényi ensemble has a von Neumann entropy which approaches that of the Gibbs
state, and hence will have a free energy—see Eq. (3.2)—which increasingly approaches
its minimal value. However, in Fig. 3.2(b), it seems that the same cannot be said when
comparing the 2-Rényi entropy of the two ensembles.

Equivalence of local observables
We now consider a one-dimensional quantum system described by a local Hamiltonian
H, an operator in the complex Hilbert space H. This total Hilbert space is formed by the
tensor product of N local Hilbert spaces:

H =
N⊗

n=1

Hn . (3.10)

The Hamiltonian is restricted to be ` local, i.e. it can then be written in the form

H =

N∑

n=1

hn, (3.11)

where each hn acts non-trivially only on sites n, . . . , n+ `− 1, and has finite operator
norm. Additionally, we will assume that almost all local terms satisfy ‖hn‖op > 0, such
that the spectrum of H is extensive. We mostly consider infinitely large systems, but,
when considering finite systems, we specify either open boundary conditions (OBC) or
periodic boundary conditions (PBC).
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In this setting, it is straightforward to see that the density of states

D(E) =
1

|H | Tr δ(H − E) (3.12)

has a variance which scales as O(
√
N). The dimension of the total Hilbert spaces is

denoted as |H |. For specific models, such as strictly one-local Hamiltonians, it can be
shown that D(E) becomes Gaussian in the thermodynamic limit. Under the assumption
of a Gaussian density of states, we can then compute the variance of the energy when
we take into account the energy distribution of the ensemble. In the case of the 2-Rényi
entropy, it turns out that this can be computed exactly. As described in App. 3.A, the
variances 〈(∆H)2〉G and 〈(∆H)2〉R both scale as O(N). Hence, if we think about the
normalized energy spectrum, both distributions will be increasingly peaked around the
same Ē = 〈H〉 with a standard deviation O(1/

√
N) for large N . Hence, the expectation

values of local observables become equivalent in the thermodynamic limit. This derives
from the correspondence between microcanonical and canonical ensembles [138]. While
there exist counterexamples to this correspondence, a sufficient condition for it to hold
is that the mean energy per site converges to a constant [139, 140]. Note that while this
argument has been carried out for a Gaussian density of states, we believe that it can be
extended to the general case as long as the Hamiltonian is local.

We now turn our attention to the corresponding parameters characterizing the two
ensembles. At least in the case of α = 2, we find a correspondence βR → β which holds
in the thermodynamic limit. This holds asymptotically for large βR and the range of
validity of this approximation increases with system size. Hence, in the thermodynamic
limit, the βR for which the Rényi ensemble has the same energy density Ē as a Gibbs
ensemble turns out to be the same as the inverse temperature β. This can be shown in
the case of a Gaussian density of states (see App. 3.A), and is observed numerically in
both integrable and non-integrable models (see Sec. 3.3). This is somewhat surprising,
since a priori there is no connection between the parameters describing the two different
ensembles. From a practical point of view, however, this correspondence is convenient to
approximate a thermal ensemble of a sufficiently large system, since we may as well take
βR to be the inverse temperature.

3.3 Variational algorithms for approximating the Rényi ensem-
ble

In this section, we introduce two different possibilities to numerically obtain the Rényi
ensemble in Eq. (3.8). Although we have a closed form for the exact solution, its use
in a many-body setting is impractical because it would require knowledge of the full
energy eigenbasis or of the projector in Eq. (3.8). This motivates the formulation of
methods compatible with TN techniques. In Sec. 3.3, we explore how uniform MPSs can
be used to form a purification which represents the density matrix, and its individual
tensors can be optimized directly by using techniques from Riemannian optimization. In
Sec. 3.3, instead, we propose a non-linear evolution which has Eq. (3.8) as a fixed point,
so any arbitrary state can be brought to the desired one by simulating this evolution for
a sufficient amount of time.
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Minimization on the MPS manifold
The optimization problem in Eq. (3.6) can be restricted to the manifold of states described
by some class of tensor networks. We consider the class of uniform MPS as in Eq. (2.20),
since we can handle states directly in the thermodynamic limit. The method can be
applied to finite MPSs as well.

As we saw in Chapter 2, we might consider representing density matrices with an
MPO [cf. Eq. (2.13)]

O = . (3.13)

The issue with this construction is that it is hard to ensure positivity (if the tensors
are over the field C or R), which is a necessary and physical property for objects like
density operators. The problem is that positivity is a global property, which cannot
be captured in the local tensors [141–143]. Although an MPO ansatz has been used
successfully to approximate the stationary points of dissipative dynamics [144, 145], it
is problematic for a variational method since there is no way to vary the local tensors
without compromising positivity.

An alternative is to introduce a locally purified state [75, 141, 146], which guarantees
the positivity of the operator for any local tensor. The construction goes as follows. One
considers a pure state, where each site has twice the degrees of freedom, which we call
system and ancilla, so the local tensor is

A =
A

sys anc

. (3.14)

By tracing out the ancillary degrees of freedom, we obtain a ladder-like TN, which
represents the density matrix ρ = Tranc |Ψ〉 〈Ψ|, or, graphically:

ρ = . (3.15)

It is simple to see that this TN is positive semidefinite by construction. The price to pay
is that we have introduced a non-linearity in ρ with respect to the local tensors, so even
if the objective function is quadratic in ρ, as in Eq. (3.6), it will be quartic in the local
tensors. Hence we cannot use linear algebra to iteratively optimize the local tensors, as
in the case of the density matrix renormalization group (DMRG) [67]. Nonetheless, we
can consider the problem in Eq. (3.6) a non-linear optimization over the tensors of an
MPS.

Using the techniques introduced in Sec. 2.4, we can then restrict the purification
tensors to the Grassmann manifold, and perform a non-linear optimization. For our
application, the objective function is given by Eq. (3.6). For the uniformMPS of Eq. (2.20),
it reduces to

fR =
FR
N

= ε+
1

βR
log η, (3.16)
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where ε = Tr(Hρ)/N is the energy per site and η =
(
Tr ρ2

)1/N is the purity per site.
Both these terms are computable with standard TN routines in polynomial time, for
uniform MPSs as well as finite MPSs. The gradient of Eq. (3.16) with respect to A is

∂fR
∂A

=
∂ε

∂A
+

1

βRη

∂η

∂A
. (3.17)

Both these quantities ∂ε/∂A and ∂η/∂A are simple to obtain, as described in App. 3.B.
We thus use this gradient information to perform the optimization on the Riemannian
manifold using the l-BFGS algorithm [90, 91]. An open-source implementation of the
non-linear optimization in Julia is available online 2.

To conclude, we note that gradient methods cannot guarantee in any way convergence
toward the global minimum, but only some local minimum. While Eq. (3.6) has a unique
solution in the cone of the positive operators, the same cannot be said on a uniform MPS
manifold of fixed bond dimension.

Numerical experiments

For our numerical experiments, we consider the Ising model:

H = −
∑

k

(
σxkσ

x
k+1 + hzσ

z
k + hxσ

x
k

)
. (3.18)

When the parallel field vanishes (hx = 0), the model is integrable, and local observables
and correlations have a closed form [147, 148]. We use this model to perform the
optimization of Eq. (3.6) as described in Sec. 3.3. The parameter βR is fixed to different
values in the interval βR ∈ [0, 2], and the uniform MPS is optimized until the gradient is
sufficiently small 3.

The results of the optimization are shown in Fig. 3.3, where we plot some lo-
cal observables such as the magnetization 〈σzi 〉 and next-neighbor correlation Γa,b =
〈σai σbi+1〉 − 〈σai 〉 〈σbi+1〉 as a function of the mean energy density of the ensemble. By
increasing the bond dimension, we increase the number of the free parameters, and the
numerical results converge toward the thermal ones. Additionally, the comparison of the
thermal observables by setting βR = β is shown in Fig. 3.3(e). Up to βR . 2, we observe
that there is a correspondence between the two ensembles at βR = β. For βR & 2, the
optimization of Eq. (3.16) converges to the ground space exactly, especially at small bond
dimensions. To study the physics of low temperatures, it is therefore more convenient to
reexpress the optimization problem in Eqs. (3.6) by introducing a Lagrange multiplier:

ρ∗ = arg min
ρ�0

{
ln Tr ρ2 +

λ2

2

(
Tr(Hρ)− Ē

)2
}
. (3.19)

The gradient (see App. 3.B) can be modified accordingly, and the non-linear optimization
can be performed in a similar way. This objective function gets rid of the dependence
on βR, and one can directly choose an energy to target, since limλ→∞Tr(Hρ∗) = Ē.
However, if one wishes to explore the behavior of some observable with respect to Ē, it
is not necessary to perform the extrapolation with λ→∞, but a finite λ is sufficient to
obtain an energy in the vicinity of the desired value 4.

2https://github.com/giacomogiudice/RenyiOptimization.jl
3The optimization halts after the norm of the gradient vector in tangent space is smaller than 10−6.
4In our simulations, we set λ = 10. Since the purity per site 0.5 ≤ η ≤ 1 is order 1, we expect deviations

in energy density around O(1/λ2).

https://github.com/giacomogiudice/RenyiOptimization.jl
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Figure 3.3: Magnetization (a) and next-neighbor correlation Γz,z (b) versus the mean
energy density for the Ising model with hx = 0, hz = 3/2, for different bond dimensions
D. The dotted line corresponds to the exact results with the same mean energy density.
In (c) and (d), the absolute errors to the exact solution are compared. (e) Average energy,
choosing βR = β. No spontaneous symmetry breaking can occur at finite temperature in
one-dimensional systems with local interactions—we therefore explicitly enforce the Z2

symmetry in the tensors.

We also wish to remark that the method is completely general and does not depend
on whether the system is integrable or not. To complete our benchmarks, we present
in Fig. 3.4 a comparison in the case where a parallel field is introduced, making the
system non-integrable. In this case, exact results are not known, but our results are
compared to those of an MPS approximation to the Gibbs state purification obtained with
a traditional imaginary time evolution method [75, 99]. Since the model does not have a
finite-temperature phase transition, the method will behave similarly for any value of the
fields. If one chooses hx = 0 and hz = 1, we expect that the required bond dimension
increases when β → ∞, as the critical ground state is approached [149–152]. In this
regime, the cost function in Eq. (3.6) will be dominated by the energy term. Hence the
algorithm is reduced to an energy minimization, and we expect it to behave equivalently
to other variational methods, such as the one proposed in Ref. [86].

Non-linear evolution

In Ref. [153], the authors introduced a non-linear evolution for approximating the
thermal ensemble with Gaussian states. Here we generalize this idea for the Rényi en-
tropies, which gives rise to an evolution that is efficiently computable with TN techniques.
We consider a non-linear evolution of a density operator ρτ which depends on a real
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Figure 3.4: (a)–(d) Different observables as a function of the mean energy density for
the nonintegrable case with hx = 0.5, hz = −1.05. The dotted line corresponds to the
results given by the iTEBD algorithm.

parameter τ
ρ̇τ =

∂ρτ
∂τ

= −1

2
{Jτ − 〈Jτ 〉 , ρτ} . (3.20)

The operator Jτ can be chosen such that the fixed point of this evolution gives rise to
the MRE. For example, the choice

Jτ [ρτ ] = βRH +
2

Tr ρ2
τ

ρτ (3.21)

gives rise to the same density operator as Eq. (3.6). The proof follows similarly from
Ref. [153], and it is sufficient to show that the operator Jτ in Eq. (3.21) satisfies the
following criteria:

Tr ρτ = 1, ∀τ ∈ R trace conservation, (3.22a)
ρτ � 0, ∀τ ∈ R positivity conservation, (3.22b)
∂fR (ρτ )/∂τ ≤ 0 free-energy decrease. (3.22c)

Hence, choosing an appropriate density operator ρ0 and integrating Eq. (3.20) over a
sufficiently long interval, we obtain the solution to Eq. (3.6), since its value can only
decrease with time. There is no guarantee of reaching the global minimum—and indeed
any eigenstate of H does not evolve under Eq. (3.20)—but a random choice of the initial
state should be sufficient in most cases.

We present some numerical experiments on small system sizes in Fig. 3.5, where the
energy eigenbasis is available. In all cases, the numerically integrated density operator
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Figure 3.5: 2-Rényi entropy of the maximal Rényi ensemble obtained with the analytic
solution (solid lines) and nonlinear evolution (points). Results are for the Ising model
(OBC) in Eq. (3.18) with longitudinal and transverse fields, respectively, hx = 0.5 and
hz = −1.05. We also show numerical results for N = 20 obtained using the non-linear
evolution with MPS.

converges to the ensemble in Eq. (3.8). The evolution is discretized by expanding
Eq. (3.20) to first order:

ρτ+δτ ≈ e−
δτ
2

(Jτ−〈Jτ 〉)ρτe
− δτ

2
(Jτ−〈Jτ 〉). (3.23)

If the time step is chosen to be sufficiently small, then this evolution will converge to
the desired fixed point. This is witnessed by the fact that the Rényi entropy reaches the
theoretical maximum for each mean energy, as shown in Fig. 3.5. As a proof of concept,
we also perform the integration using MPSs, in particular, using the TDVP scheme [87,
88] to update the state at each time step. In practice, however, we observe that the time
step required to obtain accurate results scales unfavourably with the system size, and we
have yet to fully understand if the evolution becomes ill-conditioned for large system
sizes. Notwithstanding, it is possible that different integration schemes allow for large
time steps without compromising the stability of the evolution. We leave this as a venue
for future work.

3.4 Outlook
In this chapter, we have introduced an approach to compute thermal expectation values.
Instead of attempting to approximate the minimum of the free energy, we construct
an ensemble that maximizes the 2-Rényi entropy for the same mean energy, and—in
the thermodynamic limit—reproduces local observables of the corresponding Gibbs
ensemble.

We have shown that this ensemble can be efficiently approximated using TNs and
have presented variational algorithms to obtain such an approximation. It is possible
to work directly in the thermodynamic limit and use an MPS representation of the
ensemble, which optimizes the objective function in Eq. (3.6). Despite the simple
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form of this function, the optimization is non-linear and must be tackled with gradient-
based methods. The fundamental reason is that the positivity constraint in TNs is
highly non-local, and one way of enforcing it is via a purification. The convergence
can be accelerated with techniques from manifold optimization, but a fundamental
limitation is the high contraction cost. Indeed, for a purification of bond dimension D,
the time complexity involved in computing the purity (see App. 3.B) is O(D5), which is
significantly higher than the typical O(D3) for other popular MPS algorithms, such as
time evolution or ground-state search. Coincidentally, the former is the same leading
cost of the original formulation of DMRG with PBCs [154]. Although the time complexity
is higher, we observe that a moderate bond dimension captures well the ensemble and
its local properties, both in integrable and nonintegrable models.

As an alternative to gradient-based optimization, we also propose an alternative
method based on a non-linear evolution of the density operator. Under this evolution,
the objective function in Eq. (3.6) is monotonically decreasing, and hence flows to the
MRE.

Despite these limitations, we believe more efficient cost functions could be devised.
Additionally, the ideas outlined here could be applied to other wave-function ansätze.
For example, in recent works [155–158], neural networks have been optimized with
variational Monte Carlo to describe the steady state of dissipative dynamics. Such
techniques could be adapted to perform the optimization described in this chapter.
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Appendices

3.A Calculation of the variance for a Gaussian density of states
In this Appendix, we compute the mean energy 〈H〉 and variance 〈(∆H)2〉 = 〈H2〉−〈H〉2
for the Gibbs and 2-Rényi ensembles, assuming the density of states is a Gaussian of the
form

D(E) ∝ exp

(
−(E − Emid)2

2σ2N

)
, (3.24)

where N is the system size and σ is a constant independent of N . Additionally, without
loss of generality, let us assume it is centered at Emid = 0.

For local Hamiltonians as Eq. (3.11), it was shown that the density of states weakly
converges to a Gaussian in the thermodynamic limit, as a consequence of Lyapunov’s
central limit theorem [159–161]. As an alternative proof, one can take an ancillary
copy of the system, and consider the state |Ξ〉, which is the tensor product of maximally
entangled pairs between system and ancilla:

|Ξ〉 =
⊗

n

1√
|Hn |

|Hn |∑

i=1

|i〉sys |i〉anc . (3.25)

In the doubled system, the state |Ξ〉 is a product state, and one can apply directly the
Theorem in Ref. [159] to obtain the desired result.

However, the rate of convergence to the central limit theorem is larger thanO(1/
√
N),

and one should take into account the finite-size corrections when computing expectation
values. Hence, we can think of Eq. (3.24) as a toy model of actual local Hamiltonians,
and derive results under this assumption.

For the Gibbs ensemble, we have that the partition function is

ZG =

∫ +∞

−∞
e−βED(E) dE. (3.26)

This leads to

〈H〉G = − ∂

∂β
logZG = −βσ2N, (3.27a)

〈(∆H)2〉G =
∂2

∂β2
logZG = σ2N. (3.27b)

Working under the assumption of a Gaussian density of states, this results only hold in
the region around the peak of the Gaussian, and break down when one tries to take the
limit of β →∞.

For the 2-Rényi distribution, we cannot use the trick of deriving the partition function
with respect to β, since we cannot interpret it as a generating function. We can however
express everything in terms of the truncated moments:

Φm =

∫ E⊥

−∞
EmD(E) dE. (3.28)

The upper integration limit is related to the mean energy and βR as E⊥ = Ē+ 2
βR

. These
moments enjoy a recurrence relation of the form Φm+2 = σ2∂Φm/∂σ. Additionally, Φ1
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is analytical because the integrand is the derivative of a Gaussian. This allows us to
establish the identities

Φ2 = σ2NΦ0 + E⊥Φ1, (3.29a)
Φ3 =

(
2σ2N + E2

⊥
)

Φ1. (3.29b)

By dividing the partition function by β/2, we can then compute the mean energy for this
ensemble as

〈H〉R =
E⊥Φ1 − Φ2

E⊥Φ0 − Φ1
= −σ2N

Φ0

E⊥Φ0 − Φ1
. (3.30)

Equating this result to Ē allows us to express Φ0 in terms of Φ1:

Φ0 =
Ē

ĒE⊥ + σ2N
Φ1. (3.31)

Using this last relation, we can write the variance as

〈(∆H)2〉R = ĒE⊥ + 2σ2N − Ē2 = 2σ2N +
2Ē

βR
. (3.32)
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Figure 3.A.1: (a) The energy density of the MRE for a Gaussian density of states as a
function of the parameter βR, for increasing system sizes. For clarity, in all plots we set
σ2 = 1. In the high-temperature limit (Ē → 0), the behavior Ē = βN/2 (dotted line)
indicates that βR ≈ 2β. However, as the system size is increased, at non-zero energy
density the equation of state approaches Ē = βN , which is analogous to the Gibbs
ensemble. Hence, in the limit ofN →∞ we can identify βR ≈ β. This can be understood
in (b), for which βR ≈ max(E⊥/N, 0) + O(1/

√
N). (c) The derivative ∂(Ē/N)/∂βR

has an initially fast-varying regime, corresponding to E⊥ < 0, and a second regime at
E⊥ > 0 approximately constant around −1.

For the Gibbs ensemble, notice that β and Ē are collinear, Ē = −βσ2N . At infinite
temperature (Ē = 0), we have trivially β = βR = 0. Expanding ρG around β = 0, we
obtain ρG ≈ 1− βH. Comparing this with the form of the MRE, we can easily conclude
that in this limit βR ≈ 2β. However, one should take into account the thermodynamic
limit. Indeed, as shown in Fig. 3.A.1, at non-zero Ē, increasing the system size leads
to an equation of state which asymptotically approaches Ē = −βRσ2N . This is due to
the fact that the cutoff E⊥ becomes proportional to βR. Indeed, at E⊥ = 0, one has that
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βR(E⊥ = 0) = O(1/
√
N). The point E⊥ = 0 also corresponds to a stationary point of

∂Ē/∂βR. Taking derivatives, one obtains a relation between Ē and β only

∂Ē

∂βR
=

∂Ē

∂E⊥

∂E⊥
βR

=
σ2N

β2
R

1 + 2 Ē
βRσ2N

1 + Ē
βRσ2N

. (3.33)

As the system size is increased, the derivative converges toward a constant, as shown
in Fig. 3.A.1. This allows us to conclude that, for a Gaussian density of states and
βR � 1/

√
N , we have βR ≈ β.

3.B Calculation of the gradient
For simplicity, we assume that the Hamiltonian is two-local and hn = h ∀N , but the
algorithm can be readily generalized to a non-trivial unit cell and any Hamiltonian which
has an MPO form [97]. Once the leading fixed point % is computed, the energy density
reduces to the following network:

ε = h % . (3.34)

To compute the derivative ∂ε/∂A† of Eq. (3.34) it is useful to define the left and right
environments corresponding to the geometric sum of the terms in the Hamiltonian over
each half-infinite chain:

HL = (1− E)Ph , HR = (1− E)P h % .

(3.35)
The notation (1−E)P = (1−E+ |%〉〉〈〈1|)−1 is used to denote the geometric where the di-
vergent part—corresponding to the leading eigenpair—is subtracted [97] [c.f. Eq. (2.23)].
Hence the gradient ∂ε/∂A†, without accounting for the constraint, is

∂ε

∂A†
=

HL %
+ h % + h % +

HR .

(3.36)
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When computing the purity, we can retain the leading eigenvalues and eigenvectors of
the transfer element of ρ2:

ΣL = η ΣL , ΣR = η ΣR , ΣRΣL = 1.

(3.37)
This is by far the costliest computational step relative to the bond dimension D, since it
scales as O(D5), as opposed to the other steps which are all O(D3). The gradient ∂η/∂Ā
becomes

∂η

∂A†
= ΣRΣL + ΣRΣL . (3.38)

We can then put together Eq. (3.36) and Eq. (3.38) to obtain the gradient ∂fR/∂A† in
Eq. (3.17). To compute the gradient on the Grassmann manifold, we must then project
the unconstrained gradient using Eq. (2.33).

In practice, we notice that the choice of the metric is not very important for the
optimization, and the Euclidean metric poses the advantage of not having to invert a
potentially ill-conditioned fixed point % when projecting onto the manifold5.

5Additionally, the use of the Euclidean metric is not necessarily deleterious since, compared to Eq. (2.32),
it will magnify the importance of small Schmidt values of the state |Ψ(A)〉. In Ref. [86], the authors have
proposed a non-linear preconditioner that acts as a compromise between these two metrics.
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Temporal entanglement

4.1 Introduction

While computing the exact properties of many-body quantum systems out of equilibrium
remains a formidable problem, the past decades have witnessed the development of
powerful numerical techniques allowing for accurate approximations. This is especially
true in one dimension, where the dynamics can be simulated using algorithms based on
matrix-product states (MPSs) [67, 103, 162–166]. Even in this case, however, the generic
linear growth of the entanglement entropy [100, 167, 168] poses a major obstacle for
the MPS representation of the time-evolving state [67].

When one is interested in the dynamics of local observables, it is natural to expect
that much of the information encoded in the wave function is irrelevant, and that
alternative approaches can be devised retaining only the data needed to reconstruct
the local physics. A promising idea in this direction was put forward in Ref. [103] (see
also Refs. [169–171]), which proposed an MPS algorithm to describe the dynamics
induced on local subsystems. Crucially, the efficiency of the method is insensitive to
the growth of the standard entanglement entropy. Instead, it is related to the so-called
temporal entanglement (TE) [172], which is naturally understood as the entanglement
generated along a space-time rotated direction [103]. This approach has recently received
renewed interest in connection to the study of space-time dualities in Floquet-kicked
Ising chains [173, 174] and dual-unitary quantum circuits [175–179]. In addition,
similar ideas motivated related constructions exploiting space-time rotation in generic
quantum-circuit dynamics [180–185].

Recently, the approach developed in Ref. [103] has been understood in more physical
terms based on the so-called Feynman–Vernon Influence Matrix (IM) approach [172,
186], where one views the system as an environment for its local subsystems. Complete
information on the local dynamics is encoded in the IM, which can be thought of as a
wave function in a multitime Hilbert space. The TE is the bipartite entanglement entropy
of the IM. For time-discrete evolution, it has been argued that the scaling of the TE
provides valuable information about the nature of the dynamics [187–190], displaying,
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for instance, a slow growth in many-body localized phases [189]. Still, despite a few
interesting examples [178, 191–194], our understanding of the TE scaling remains
largely incomplete.

As an exception, a detailed characterization of the TE was achieved for noninteracting
systems, as exemplified by infinite-temperature states in the transverse-field kicked Ising
chain [187]. Here, the IM was computed analytically, displaying a Bardeen–Cooper–
Schrieffer-like structure, and the corresponding TE entropy was shown to obey an
area-law scaling. Since the analysis of Ref. [187] relies on a quasiparticle description, it is
natural to ask about the fate of the TE area law in the presence of integrable interactions,
preserving the stable quasiparticles. Besides its interest per se, this question has implica-
tions for the possibility of efficiently simulating the (discrete) dynamics of interacting
integrable models, a task known to be difficult from the analytical viewpoint [195–197].

We tackle this question by studying a family of dynamics corresponding to the
Trotterization of the interacting XXZ Heisenberg model [198, 199]. We focus on quenches
from generic initial states, extending the setting of Ref. [172] to nonequilibrium situations.
Based on a quasiparticle picture [100, 101, 195, 200–202], we argue that the TE scaling
is sublinear in time. We provide evidence that, while the area law is preserved for a large
class of initial states in the noninteracting case, the TE exhibits a typical logarithmic
growth in the presence of interactions, violating the area law. We conjecture this to be a
generic feature of interacting integrable systems, and discuss some interesting questions
raised by our results.

4.2 Setup

The model

We consider a spin-1/2 chain with L sites and periodic boundary conditions. The discrete
dynamics is driven by U = Uodd Ueven, with

Uodd =

L/2∏

n=1

U2n,2n+1, Ueven =

L/2∏

n=1

U2n−1,2n , (4.1)

where

Un,n+1 = e−iJxσ
x
nσ

x
n+1−iJyσ

y
nσ

y
n+1−iJ ′(σznσzn+1−1) (4.2)

is a two-site gate expressed in terms of Pauli matrices. We denote by |0〉j , |1〉j the
states in the local computational basis. Unless stated otherwise, we will set Jx = Jy =
J . This model was introduced in Refs. [198, 199] as a paradigmatic example of an
integrable, periodically driven spin chain and can be thought of as a Trotterized XXZ
Heisenberg evolution. These Floquet dynamics can be represented as a brickwork circuit,
cf. Fig. 4.2.1(a). For J ′ = 0, the model reduces to the XY spin chain, mappable to
free-fermion dynamics by a Jordan–Wigner transformation, while for Jx = Jy = π/4 the
circuit generated by repeated application of the Floquet operator U is dual unitary [175].
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This means that the two-site gate is not only unitary in the conventional sense

U

=

U† U

U†

=
, (4.3)

but is unitary under permutation of the legs as well

U

=

U†

U

=

U†

, , (4.4)

This property is exploited for solving the dynamics at this fine-tuned point. For arbitrary
J , J ′, the system displays an extensive number of local conservation laws [198, 199]
and the Floquet spectrum may be obtained exactly via the Bethe ansatz [203, 204]. The
corresponding quasiparticle structure bears similarities to that of the well-known XXZ
Heisenberg Hamiltonian [203, 205].

The quench protocol and the influence matrix
We study a quench, where the system is initialized in product states (either pure or
mixed), and analyze the subsequent evolution in the thermodynamic limit L→∞. The
IM formalism [172, 186] may be introduced starting from the time-evolved expectation
value Tr [ρ(t)Oj ] = Tr

[
ρ0(U†)tOjU t

]
of a local observable Oj at site j. Taking for

simplicity an initially uncorrelated state, ρ0 =
⊗

k ρ
(k)
0 , the parts of the system to the left

and right of j will be treated as environments. The IMs associated with them arise from
integrating out the environment degrees of freedom, treating the trajectory of spin j as an
external parameter. Focusing on the right environment k > j, we can write down the IM
as a Keldysh path integral, where forward and backward spin trajectories are “folded” on a
closed time contour. We introduce a subsystem-environment decomposition U = Uint UE ,
where Uint is the gate acting on spins j and j + 1, and UE acts only on spins k > j,
which can be done in a natural way exploiting the brickwork structure, cf. Fig. 4.2.1(a).
Defining the partial matrix elements of Uint as the operators [Uint]s,s̄ = [Uj,j+1]ss̄ acting
on spin j + 1 only (where s, s̄ are the input and output states of spin j), the IM |Ft〉 is
the vector with coordinates depending on the trajectories {s±τ , s̄±τ } as

Ft
[
s̄±τ , s

±
τ

]
=

TrE

(
[Uint]s+t ,s̄

+
t
UE · · · UE [Uint]s+1 ,s̄

+
1
UEρE0 U†E

[
U†int

]
s̄−1 ,s

−
1

U†E · · · U
†
E

[
U†int

]
s̄−t ,s

−
t

)
,

(4.5)

where TrE ≡ Trk>j and ρE0 ≡
⊗

k>j ρ
(k)
0 , cf. Fig. 4.2.1(a). The superscript ± labels the

forward and backward branch on the Keldysh contour.
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Figure 4.2.1: (a) A system of L qubits is initialized in a product state and evolved via a
brickwork quantum circuit, with two-site gate defined in Eq. (4.2). “Folding” the circuit,
the left and right IMs determine the evolution of local subsystems. Fixing a site j, the
Floquet operator decomposes into U = UintUE , cf. the main text. In the figure, Uint
consists of the highlighted gates, while the gray and white gates are part of UE . The
operator T̃ defines the dual transfer matrix. (b) Cartoon of the quasiparticle picture
for the TE. After folding, backward and forward world lines for each quasiparticle are
superimposed, leading to the prediction of sublinear growth for the TE.

The IM of a longer environment can be computed from that of a shorter one, leading to
an exact self-consistency equation in the thermodynamic limit [103, 172]. As depicted in
Fig. 4.2.1(a), this can be formalized by introducing a dual transfer matrix T̃ generating the
evolution in a “rotated direction”: the self-consistency equation reads T̃ |Ft〉 = |Ft〉 [103,
169, 172] and completely determines |Ft〉.

Temporal entanglement and the quasiparticle picture

The quantity of interest in this chapter is the TE entropy, denoted by Sτ (t). In order to
define it, we consider a bipartition of the multitime Hilbert space of spin trajectories, cut
into two regions with time labels 0 ≤ t′ ≤ τ and τ + 1/2 ≤ t′′ ≤ t. Here t′, t′′ ∈ (0, t)
are half integers, as each time step consists of two layers of gates. The TE is the von
Neumann entanglement entropy [206] of the state |Ft〉 associated with this bipartition
across both contours.

We recall that the growth of the standard entanglement entropy after a quantum
quench in integrable systems is captured by a well-known quasiparticle picture [100,
101, 195, 200–202]. In essence, one postulates that the quench can be modeled as a
process creating at each point in space uncorrelated pairs of entangled quasiparticles
spreading through the system with opposite momenta. Given two disjoint regions A
and B, their entanglement then grows proportionally to the number of pairs with one
quasiparticle in A and the other in B. When supplemented with model-dependent data,
this results in a quantitative prediction for the linear growth of the entanglement entropy,
which has been proved analytically for noninteracting chains [101] and extensively tested
numerically in interacting models [201, 202, 207–209].
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Heuristically, we may apply this picture to the TE, cf. Fig. 4.2.1(b). Now for each
pair we have to keep track of both the forward and backward evolution. Although these
trajectories are correlated, they end up being superimposed in the folded spacetime.
As a consequence, given a “space slice”, all correlated quasiparticles occupy the same
temporal position on the Keldysh contour and quasiparticles are not able to transport
entanglement at different time sites. One concludes that no TE is generated between
disjoint temporal regions after the quench 1.

A similar heuristic argument already appeared in Ref. [103]. However, there it was
stated in terms of noninteracting localized excitations and supported by the analysis
of a circuit of swap gates [169]. In contrast, we insist that the picture presented here
is in terms of the stable collective quasiparticles of integrable models. As such, it is
expected to hold in the scaling limit of large times and to only provide predictions for
the leading-order behavior of the TE. That is, the above argument suggests that the TE
in integrable systems must asymptotically grow sublinearly in time. This prediction is
consistent with the TE area law scaling found in Ref. [187] for the infinite-temperature
kicked Ising chain

max
τ

[Sτ (t)] ≤ c , ∀ t , (4.6)

where c is a constant. This result was derived by mapping the system to noninteracting
fermions and constructing a gapped quasilocal parent Hamiltonian for |Ft〉. The area
law Eq. (4.6) has been numerically confirmed exploiting a covariance-matrix approach
for efficient evaluation. A similar analysis can be carried out in our model for J ′ = 0,
for which Eq. (4.1) is mapped onto a free-fermion evolution. In addition, although
Eq. Eq. (4.6) was originally shown for infinite-temperature states [187], the covariance-
matrix approach can be generalized to any Gaussian initial state [cf. App. 4.A], allowing
us to confirm Eq. (4.6) for different values of Jx, Jy and various quenches. An example
of our data is shown in Fig. 4.2.2.
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Figure 4.2.2: Growth of the TE for the noninteracting case. In the plot we set Jx =

0.3, Jy = 0.5, J ′ = 0, while the initial state is ρ0 =
⊗

k ρ
(k)
0 , with ρ(k)

0 = e−βσ
z
k/Z and

Z = 2 coshβ.

1The assumption of the quasiparticles being created in pair is crucial. While this can be justified
rigorously for the two-site shift invariant product states considered in this chapter [210, 211], fine-tuned
examples are known for which this is not the case [212, 213].
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Next, our goal is to test the prediction of the quasiparticle picture and scaling in
Eq. (4.6) in the presence of interactions. We provide evidence that, while the TE growth
is indeed sublinear in time, interactions bring about logarithmic violations of the area
law.

4.3 Results

Exact solution at the dual-unitary point

In principle, integrability allows one to diagonalize the rotated transfer matrix T̃ via
the Bethe ansatz and obtain an explicit expression for the IM [214, 215]. However,
the resulting wave function is too complicated, and it is not known how to extract the
corresponding entanglement.

In order to get some analytical insight, we consider J = π/4, for which the dynamics
is dual unitary [175]. While in this case the TE is vanishing for a class of fine-tuned initial
states [178], here we are interested in its behavior for generic ones. To be concrete, we
consider a product state |Ψ0〉 = |+〉⊗L, with |+〉 = (|0〉+ |1〉)/

√
2, although our results

generalize to arbitrary two-site shift invariant states |Ψ0〉 = |ψ〉1,2⊗|ψ〉3,4⊗· · ·⊗|ψ〉L−1,L.
The Bethe ansatz description remains nontrivial at J = π/4 [203]. Nonetheless,

the form of the gate in Eq. (4.2) becomes simple, allowing us to obtain an exact MPS
expression for the IM. Interestingly, we do this avoiding Bethe ansatz techniques and
relying instead on methods borrowed from analytical tensor-network theory [11, 193].
We consign the details to App. 4.B, while here we simply report the final result of our
analysis. Setting J ′ = π/4 +K, we find that the left IM is an MPS of the form

〈Ft| =

A

B

v

A

B

w

A

= 〈v|A[1]B[2]A[3]B[4] . . . A[2t−1]|w〉 . (4.7)

Here, A, B are tensors with four physical indices labeled by 00, 01, 10, 11 and bond
dimension 2t+ 1. The corresponding matrices are defined by the elements

[A00]α,β = δα,β cos[2Kα], (4.8a)
[A01]α,β = δ1,α−β cos[2K(α− 1)], (4.8b)
[A10]α,β = δ1,β−α cos[2Kβ], (4.8c)
[A11]α,β = [A00]α,β, (4.8d)
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and

[B00]α,β = δα,β exp[2Kiα], (4.9a)
[B11]α,β = δα,β exp[−2Kiα], (4.9b)
[B01]α,β = [B10]α,β = 0. (4.9c)

Here α, β = −t,−(t− 1), . . . , t. In addition, the boundary vectors are defined by the ele-
ments |v〉α = δα,0 and |w〉α = 1. A similar expression holds for the right IM, cf. App. 4.B.
As an immediate consequence, we obtain

max
τ

[Sτ (t)] ≤ ln(2t+ 1) ∼ ln(t) , (4.10)

yielding a rigorous proof for the sublinear growth of the TE. Here we employed the fact
that the bipartite entanglement entropy of an MPS with bond dimension D is bounded
by lnD [67]. Despite the simplicity of the solution, the TE displays interesting features.
First, we find that the asymptotic behavior at large times is not continuous as a function
of K. In order to see this, we take K = nπ

m , with n, m coprime integers. In this case, it is
easy to see that the MPS in Eq. (4.7) can be compressed to one with finite bond dimension:
because of the periodicity of the trigonometric functions, the infinite matrices A[i] and
B[i] can be truncated to the firstm lines and columns, so that the TE is bounded. However,
this compression is not possible when K/π is irrational, suggesting a logarithmic growth.

In order to verify this, we evaluated numerically the TE for irrational values of K/π,
which can be done efficiently since the MPS form of the IM is known exactly. An example
of our data is reported in Fig. 4.3.1(a), providing evidence of a logarithmic growth. We
also show the TE corresponding to rational values approximating K/π 2.

To evaluate the entanglement entropy of the exact solution in Eq. (4.39), we resort
to numerical calculations with MPS of finite size. While the times accessible with this
method are of the order of 105, we notice that there can be very large finite-size effects
that make the extrapolation of the asymptotic behavior sometimes challenging. As shown
in Fig. 4.3.1(b), plateaux of arbitrarily long times can occur when an irrational K is
close to a rational approximation with small denominator. Indeed, if an irrational K/π
is ε-close to a rational number Krat/π with small denominator, the TE for K/π will
approximately follow the behavior of Krat/π until a time which increases with 1/ε. If ε
is sufficiently small, the curve for Krat may well have saturated before that time, so that
the curve for K will display a long initial plateau. An example of this behavior is shown
in Fig. 4.3.1(b) for K/π =

√
2. In this case, despite an initial plateau, we clearly see an

eventual growth for the TE for increasingly better rational approximations of K.
This example shows that, because of the highly fine-tuned nature of the dual-unitary

point, the behavior of the TE is extremely irregular in this case. Therefore, our numerical
evidence at the dual unitary point should be taken cum grano salis. Still, for the accessible
time scales, our data consistently point to an indefinite growth of the TE for generic
values of J .

Nonetheless, for the accessible timescales, our data consistently point to an indefinite
growth of the TE for generic J , thus violating the area law 3.

2Increasingly better rational approximations are obtained via a continued-fraction expansion of K/π.
3Away from the “singular” dual-unitary point, we find that the TE behaves in a much more regular way

(for instance, no area law appears for rational K/π), and we expect that the behavior observed within the
accessible time scales is representative of the asymptotic one.



48 Temporal entanglement

101 102 103 104

t

0.5

1.0

1.5

2.0

2.5

S
m

ax

7/10
9/13
61/88

192/277
ln 2

101 102 103 104 105

t

0.50

0.75

1.00

1.25

S
m

a
x

17/12
41/29
99/70

239/169√
2

(a)

(b)

Figure 4.3.1: Maximum TE Smax = maxτ [Sτ (t)] as a function of time at the dual-unitary
point Jx = Jy = π/4 and J ′ = π/4 + K for K/π = ln(2) (a) and K/π =

√
2 (b),

quenching from |Ψ0〉 = |+〉⊗L. The plot is obtained evaluating the entanglement entropy
of the analytical MPS solution Eq. (4.7). We also show the TE for rational approximations
of K/π.

Generic interactions

Away from the dual-unitary point, the IM may be obtained using MPS numerical methods.
Following Refs. [103, 169, 172], we represent T̃ as a matrix product operator (MPO),
and compute its leading eigenvector using either the density-matrix renormalization
group (DMRG) [67], or power methods [103]. In order to push the available simulation
times, we focus on initial states displaying U(1) symmetry, allowing us to enforce it
explicitly in the local tensors [216]. Finally, throughout our simulations we used the
bond dimension D as a control parameter, checking convergence with respect to it.

We first consider the infinite-temperature state for different values of J , J ′. Away from
J = π/4, we find no evidence of a TE area law for rational values of K/π. In general, we
observe an initial linear increase of the TE, followed by an eventual logarithmic growth.
Our data are shown in Fig. 4.3.2(a): for the available times, curves corresponding to
increasing D are seen to converge to a straight line in logarithmic scales.

Next, we turn to the TE from non-equilibrium initial states. In order to preserve U(1)

symmetry, we have chosen the Néel state |Ψ0〉 = |01〉⊗L/2. Here we observe that the TE
is large compared to the infinite-temperature state and increasing as we move away from
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Figure 4.3.2: TE for different values of Jx = Jy = π/4 + ε and J ′ = 1. (a) Quench
from the infinite-temperature state at ε = 0.05. (b)–(c) Same plot for the Néel state
|Ψ0〉 = |01〉⊗L/2 at ε = 0.05 (b), ε = 0.08 (c). Dotted lines are a guide to the eye to
emphasize the logarithmic growth.

the dual-unitary point. The TE is not symmetric around t/2, with its maximum generally
attained at later times between t/2 and t. Its precise location varies with the initial states
and parameters. Our numerical data are shown in Figs. 4.3.2(b) and 4.3.2(c). Although
simulation times are limited, we observe a convincing logarithmic growth emerging
after an initial short-time regime. Altogether, our results consistently point to a typical
logarithmic violation of the area law in the presence of interactions, which we conjecture
to be a general feature of interacting integrable systems.

4.4 Outlook

We have studied the TE in integrable discrete dynamics. Starting from a heuristic quasi-
particle picture and based on analytical and numerical evidence in the XXZ Heisenberg
model, we have put forward that the TE generically grows logarithmically in time,
violating the area law scaling away from the noninteracting regime.

Our findings raise several questions. First, it would be interesting to put our conjecture
on rigorous grounds away from the dual-unitary point. From the computational point of
view, instead, it would be important to understand whether and how the sublinear growth
of the TE may be exploited for an efficient computation of the IM and its approximation
in terms of MPS.

A natural question pertains to the relation between the growth of the TE and the
operator-space entanglement entropy (OSEE) of local observables [217, 218]. In fact,
the latter was also conjectured to grow logarithmically in integrable systems [218–220];
see Refs. [207, 221–224] for a proof in special cases. However, at the dual-unitary point
of Eq. (4.2), the OSEE was shown to satisfy an area law [223]. Therefore, our results
suggest that the OSEE is not directly related to the TE: this is consistent with the intuition
that the IM bears information beyond the Heisenberg evolution of local observables, see
e.g. Refs. [192, 193].

Finally, while we have focused on discrete dynamics, it would be interesting to study
the Trotter limit of continuous-time evolution. Preliminary results suggest that the TE
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could be vanishing in this limit, similarly to the noninteracting case studied in Ref. [187].
This would indicate that a continuous MPS ansatz [225, 226] could be successfully
employed in this limit.
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Appendices

4.A Computation of the temporal entanglement for free fermions
In this section, we extend the analysis of Ref. [187] to the case of non-equilibrium initial
states. We consider the XY-model, defined by Eq. (4.2) with J ′ = 0. In this case the
evolution can be mapped to free fermion dynamics and the IM can be computed exactly.
We outline this calculation in the following.

As a first step, the spin model is rewritten in terms of fermionic creation and annihi-
lation operators by means of a Jordan-Wigner transformation,

σ+
j = eiπ

∑
l<j c

†
l clcj σ−j = c†je

−iπ
∑
l<j c

†
l cl σzj = (1− 2c†jcj).

Making these substitutions in Eq. (4.5), one obtains a trace expression over exponentials
with quadratic fermionic operators in the exponent. For its evaluation, it is convenient to
cast it into a Grassmann path integral such that Gaussian integration techniques can be ap-
plied. To this end, we substitute resolutions of the identity in terms of Grassmann coherent
states between all operator products in Eq. (4.5) [187]. In the environment, we introduce
the Grassmann fields ξ̄±τ = (ξ̄±τ,n=1, ξ̄

±
τ,2, . . . , ξ̄

±
τ,N )T and ξ±τ = (ξ±τ,n=1, ξ

±
τ,2, . . . , ξ

±
τ,N )T at

all sites n of the environment at time steps τ ∈ {0, 1
2 , . . . , t}. The superscript ± labels

the forward and backward branch on the Keldysh contour, respectively. Moreover, we
define Grassmann fields η̄±τ , η±τ with τ ∈ {1, . . . , t} that analogously describe the degrees
of freedom of the system. With this, the IM becomes:

Ft
[
{η̄±τ , η±τ }

]
=




t∏

τ=0,1/2,...

dξ̄±τ dξ±τ


 e+ξ̄+

t ξ̄−t

(
〈η̄+
t , ξ̄

+
t |UintUodd|η+

t , ξ
+
t−1/2〉 e

−ξ̄+
t−1/2

ξ+
t−1/2 〈ξ̄+

t−1/2|Ueven|ξ
+
t−1〉

× 〈η̄+
1 , ξ̄

+
1 |UintUodd|η+

1 , ξ
+
1/2〉 e

−ξ̄+
1/2

ξ+
1/2 〈ξ̄+

1/2|Ueven|ξ
+
0 〉 e−ξ̄

+
0 ξ+

0 〈ξ̄+
0 |ρE0 |ξ−0 〉 e−ξ̄

−
0 ξ−0

× 〈ξ̄−0 |U†even|ξ−1/2〉 e
−ξ̄−

1/2
ξ−

1/2 〈η̄−1 , ξ̄−1/2|U
†
oddU

†
int|η−1 , ξ−1 〉

× 〈ξ̄−t−1|U†even|ξ−t−1/2〉 e
−ξ̄−

t−1/2
ξ−
t−1/2 〈η̄−t , ξ̄−t−1/2|U

†
oddU

†
int|η−t , ξ−t 〉

)
.

(4.11)

To evaluate the single terms in Eq. (4.11), we first note that

〈η̄, ξ̄|Uint Uodd|η, ξ〉 = 〈η̄, ξ̄n=1|Uint|η, ξn=1〉 〈¯̃ξ|Uodd|ξ̃〉 , (4.12)

where ¯̃
ξ and ξ̃ contain only Grassmann variables for n > 1. Next, the Grassmann

kernel of the two-site gates need to be evaluated. For the XY-model with Un,n+1 =
exp

(
−iJxσxnσxn+1 − iJyσynσyn+1

)
, they read

F(ξ̄n, ξ̄n+1, ξn, ξn+1) = 〈ξ̄n, ξ̄n+1|Un,n+1|ξn, ξn+1〉
= cos(Jx − Jy) exp

[
− i sin(Jx+Jy)

cos(Jx−Jy)(ξ̄nξn+1 + ξ̄n+1ξn)

+ i tan(Jx − Jy)(ξ̄n+1ξ̄n + ξnξn+1)− 2
sin Jx sin Jy
cos(Jx−Jy) (ξ̄nξn + ξ̄n+1ξn+1)

]
eξ̄nξn+ξ̄n+1ξn+1 ,

(4.13)
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where we have suppressed the labels for the time index and Keldysh branch. Furthermore,
for a thermal initial state of the form ρE0 =

⊗N
n=1 e

−βσzn (we neglect normalization
here since it is not relevant for our purpose), we find for the Grassmann kernel of the

initial state: 〈ξ̄|ρE0 |ξ〉 = e−β exp

(
e2β

N∑
n=1

ξ̄nξn

)
. Making the appropriate substitutions

in Eq. (4.11), one arrives at an integral of the form

Ft({η̄τ , ητ}) ∼




t∏

τ=0,1/2,...

dξ̄′τdξ′τ




exp


1

2

t∑

τ,τ ′=0,1/2,...

(
ξ̄′τ
ξ′τ

)T
A

(τ,τ ′)
E

(
ξ̄′τ ′
ξ′τ ′

)


× exp




t∑

τ,τ ′=1

(
η̄τ
ητ

)T
A

(τ,τ ′)
S

(
η̄τ ′

ητ ′

)
 exp




t∑

τ=1
τ ′=0,1/2,...

(
η̄τ
ητ

)T
A

(τ,τ ′)
int

(
ξ̄′τ ′
ξ′τ ′

)




 ,

(4.14)

where we defined ξ′τ ≡ (ξ+
τ , ξ

−
τ )T and ητ ≡ (η+

τ , η
−
τ )T (and analogously for the variables

with a bar). The matrices A come from rewriting Eq. (4.13) as a quadratic form. Using
standard relations for Gaussian Grassmann integrals, Eq. (4.14) can be rewritten as:

Ft({η̄τ , ητ}) ∼ exp




t∑

τ,τ ′=0

(
η̄τ
ητ

)T
B(τ,τ ′)

(
η̄τ ′

ητ ′

)
 , (4.15)

with
B(τ,τ ′) = A

(τ,τ ′)
S +

1

2

(
AintA

−1
E AT

int
)(τ,τ ′)

. (4.16)

The state in Eq. (4.15) can be represented as BCS wavefunction of the form |Ft〉 ∝
exp(

∑
i,j Bij ĉ

†
i ĉ
†
j) |∅〉, from which we can infer the correlation matrix Λ that uniquely

determines the IM. The correlation matrix Λ depends only on the matrix B and is
independent of the normalization of |Ft〉 in particular. By defining a bipartition of the
system in temporal direction and viewing one part as subsystem, one can compute the
TE from the reduced correlation matrix of that subsystem [227]. In Fig. 4.2.2, we show
the maximal TE, i.e. for each physical evolution time t, we choose the temporal cut in
such a way that the TE is maximized.

4.B Exact solution at the dual-unitary point
Here we outline the calculations leading to the exact MPS representation for the IM at
the dual-unitary point. We consider the following parametrization for the two-site gate

U1,2[K] = e−i[
π
4
σx1σ

x
2 +π

4
σy1σ

y
2 +(π4 +K)σz1σz2 ] . (4.17)

This can be rewritten as

U1,2[K] = S exp [−iKσz1σz2 ] = exp [−iKσz1σz2 ]S , (4.18)

where S is the swap operator. We focus on quantum quenches from two-site shift invariant
product states |Ψ0〉 = |ψ〉1,2 ⊗ |ψ〉3,4 ⊗ · · · ⊗ |ψ〉L−1,L. Although the method presented
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in the following can be extended to generic |ψ〉j,j+1, here we consider the simplest case
where |Ψ0〉 is one-site shift invariant, and choose for concreteness |Ψ0〉 = |+〉⊗L, where
|+〉 = (|0〉+ |1〉)/

√
2.

We start by analyzing the folded circuit, which we represent pictorially (for t = 2) as

(4.19)

where black dots denote the folded identity, while two-tone circles correspond to the
folded product state |+〉 |+〉. Before tackling the computation of the IM, it is convenient
to analyze the so-called light-cone transfer matrix, indicated in Eq. (4.19) by a shaded
area. It was introduced in Ref. [228] and it is easy to see that its right fixed point is
always a product state of maximally entangled Bell pairs.

In order to compute the left fixed point, we will make use of a graphical “zipper-
equation”, which appeared in Ref. [11] in the context of the classical asymmetric exclusion
process. There, it was presented as a tensor-network reformulation of the solution found
in Ref. [28]. In the literature of quantum quenches, zipper equations of similar form
were previously exploited to obtain analytical results in interacting quantum cellular
automata [192–194].

As a starting point, we first look for a solution of the fixed-point equation for a
formally infinite transfer matrix. Supposing that the time direction has no boundaries,
we may interpret the transfer matrix as obtained by sequential application of the dual
gates as

. (4.20)

We assume that in the bulk the fixed point can be written as an MPS with the same
tensor A at each site (its graphical form is given in Eq. (4.33) below). Following [11],
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we observe that a sufficient condition to find a solution is that there exists a tensor B
which satisfies the zipper equation

B

A

=

A

B

. (4.21)

Of course, for a finite time t, the light-cone transfer matrix has boundaries, which
have to be taken into account. Denoting by 〈v| and |w〉 the boundary vectors of the MPS,
one can see that the following give a sufficient condition for the MPS to be a left fixed
point

A

v

B

v

= , (4.22a)

B

= Aw

w

. (4.22b)

In the following, we use k to label the four local basis states in the folded picture, i.e.
k = 00, 01, 10, 11. We will find a solution to the bulk and boundary equations Eqs. (4.21)
and (4.22), automatically yielding an MPS solution for the left fixed point.

We note that the first of the boundary conditions in Eq. (4.22) does not depend on
the initial state. It states that 〈v|Bk = 0 for k 6= 00, 11. We thus set B01 = B10 ≡ 0, for
which it is automatically satisfied. Next, we introduce

f(k, `) =





0 if k, ` ∈ {00, 11}
or k, ` ∈ {01, 10}

(−1)s(k)+s(`) otherwise ,

where s(00) = s(10) = 1, s(01) = s(11) = 0. Eq. (4.21) can be rewritten as

AkB` = B`Ake
2iKf(k,`) . (4.23)

Let λ0 be an eigenvalue of B00 with eigenvector |λ0〉. Assuming λ0 6= 0, Ar00 |λ0〉 6= 0, we
have that Arα |λ0〉 is an eigenstate of B00 with eigenvalue e−2iKr. Excluding the special
case where K/π is a rational number, the eigenvalues e−2iKr are all different, implying
that B00 must be infinite dimensional. We thus introduce the ansatz

B00 = diag(. . . , e−4iK , e−2iK , 1, e2iK , e4iK , . . .) . (4.24)

Now, A00 and A11 commute with B00, and since all its eigenvalues are different, they
must be diagonal in the same basis, namely

A00 = diag(. . . , a−1, a0, a1 . . .) , (4.25a)
A11 = diag(. . . , a′−1, a

′
0, a
′
1 . . .) . (4.25b)
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On the other hand, A00 and A11 also commute withB11, which we can thus take diagonal
in the same basis

B11 = diag(. . . , b−1, b0, b1 . . .) , (4.26)

where bk must be determined. Next, using that A01, and A10 permute the eigenvectors
of B00 cyclically [which follows from Eq. (4.23)] they must take the form

[A01]α,β = δ1,α−β ãβ , α, β ∈ Z , (4.27a)
[A10]α,β = δ1,β−αã

′
α , α, β ∈ Z . (4.27b)

Eq. (4.27), together with the commutation relations Eq. (4.23), allow us to fix the
coefficients bα in Eq. (4.26), yielding

B11 = b0 diag(. . . , e4iK , e2iK , 1, e−2iK , e−4iK , . . .) .

where b0 is an overall constant. As will be manifest later on, for the initial state chosen
we can set b0 = 1.

It remains to fix the constants in Eqs. (4.25) and (4.27) and the vectors 〈v|, |w〉.
Using Eq. (4.22b) for k = 00, 11, we obtain

[A00]α,β = [A11]α,β =
1

2
cos(2Kα)δα,β . (4.28)

Next, using Eq. (4.22a), we get

|v〉 = (. . . , 0, 0, 1, 0, 0 . . .) . (4.29)

Now, Eq. (4.22b) for k = 10 reads

1

4
(B00e

2iK +B11e
−2iK) |w〉 = A10 |w〉 .

Using Eq. (4.27) and after a little guess work, we immediate see that a solution is given
by

|w〉 = (. . . , 1, 1, 1, . . .) , (4.30)

and
[A10]α,β =

1

2
δ1,β−α cos[2Kβ] . (4.31)

Similarly, repeating the same steps for k = 01, we have

1

4
(B00e

−2iK +B11e
2iK) |w〉 = A01 |w〉 ,

which straightforwardly yields

[A01]α,β =
1

2
δ1,α−β cos[2K(α− 1)] , (4.32)

completely fixing the tensors of left fixed point.
Although the MPS solution which we have found is defined in terms of infinite-

dimensional matrices, it is immediate to see that the boundary conditions allow one to
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truncate them at each finite time t. Putting all together, for a given time t, we have that
the left fixed point of the light-cone transfer matrix is given by the MPS

〈LLC| =

A

A

v

w

A

A

A

= 〈v|AA . . . A︸ ︷︷ ︸
2t−1

|w〉 , (4.33)

where vα = δα,0, wα = 1 and (dropping an overall factor 1/2)

[A00]α,β = δα,β cos[2Kα] , (4.34a)
[A01]α,β = δ1,α−β cos[2K(α− 1)] , (4.34b)
[A10]α,β = δ1,β−α cos[2Kβ] , (4.34c)
[A11]α,β = [A00]α,β , (4.34d)

with α, β = −(2t− 1),−(2t− 2), . . . , 2t− 2, 2t− 1. We will use the above result to obtain
the left IM. We start by the explicit representation for the left fixed point of the light-cone
(〈LLC|) and standard (〈L|) transfer matrices in terms of the two-site gates, reading (for
t = 3)

〈LLC| = , 〈L| = . (4.35)

We recognize that the bottom-left corner of 〈L| is the fixed point of the light-cone transfer
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matrix for a shorter time. Therefore, using our previous result, we have

〈L| = A

A

v

A

w

. (4.36)

It is straightforward to see that the tensor B satisfies the identity

B =

v v

. (4.37)

Applying it to Eq. (4.21), this yields

A

=

A

B

v

v

. (4.38)

Finally, we can use Eq. (4.38) to simplify Eq. (4.36): Starting from the leftmost corner,
and applying iteratively Eq. (4.38) and the zipper condition Eq. (4.21), we get

〈L| =

A

B

v

A

B

w

A

= 〈v|ABAB . . . BA︸ ︷︷ ︸
2t−1

|w〉 . (4.39)

Now, because the only non-zero matrices Bk are diagonal, it is immediate to see that
the infinite matrices Ak and Bk can be truncated to be square matrices with α, β =
−t,−t+ 1, . . . t− 1, t.
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Eq. (4.39) holds for arbitrary values of K, yielding an MPS solution whose bond
dimension increases linearly with t. However, it can be compressed to an MPS with finite
bond dimension when K/π is a rational number

K/π = n/m ,

with n,m ∈ Z. In this case, because of the periodicity of the trigonometric and exponential
functions in the tensors A and B, it is easy to show that the corresponding matrices can
be truncated to the first m lines and columns. After reshaping, we obtain

[A00]α,β = δα,β cos[2K(α− 1)] , (4.40a)
[A11]α,β = [A00]α,β , (4.40b)
[A01]α,β = δ1,α−β mod m cos[2K(β − 1)] , (4.40c)
[A10]α,β = δ1,β−α mod m cos[2Kα] , (4.40d)

and

[B00]α,β = δα,β exp[2Ki(α− 1)] , (4.41a)
[B11]α,β = δα,β exp[−2Ki(α− 1)] , (4.41b)
[B01]α,β = [B10]α,β = 0 , (4.41c)

with 1 ≤ α, β ≤ m.
Here we have illustrated the derivation for the left IM. A similar computation can be

carried out for the right one, starting from the SW-NE light-cone transfer matrix, yielding

|R〉 = 〈v|B∗A∗B∗A∗ . . . A∗B∗︸ ︷︷ ︸
2t−1

|w〉 . (4.42)
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Trimer resonating-valence-bond states

5.1 Introduction

When quantum fluctuations meet classical frustration, exotic strongly correlated states
can arise. Paradigmatic examples are resonating valence bond (RVB) states of hard
dimers. They are defined as equal-weight quantum superpositions of all dimer coverings
with one dimer touching each vertex of a lattice. These many-body states are the ground
states of local Hamiltonians with peculiar properties, such as a ground state degeneracy
that depends on the topology of the system and deconfined excitations that come in
pairs [229]. When their correlation length is finite, a stable, topologically ordered,
quantum phase of matter exists with RVB states as its representatives [230]. This kind
of topological order is characterized by a local Z2 symmetry closely related to the Gauss’
law in the gauge theory description of these phases, and it is expected to emerge in
dimer models defined on non-bipartite lattices [229].

In this work, we consider RVB states of hard trimers (tRVB). A trimer is an object made
up of two nearest-neighbor edges of a lattice that share a common vertex [cf. Fig. 5.1.1(a)].
’Hard trimers cannot touch each other, such that each vertex of the lattice can be covered
by at most one trimer, yielding what we refer to as the trimer constraint. Maximally-
packed trimer configurations are obtained by demanding that exactly one trimer covers
each vertex. These configurations are then promoted to orthogonal quantum states,
and the tRVB state is their equal-weight quantum superposition. On certain lattices,
tRVB states are known to be gapped and to possess a form of topological order with
emergent Z3 gauge symmetry [231–233], and thus to be good representatives of a
quantum phase with Z3 topological order. However, a general condition on the lattice
geometry for which these states are gapped and have topological character is still lacking,
and physical realizations of this phase are little known [234]. Here, we identify a
necessary condition for having a gapped tRVB state with Z3 topological order, similar to
the condition of non-bipartite lattices for dimer models. Moreover, we provide a trimer
model where signatures of the above-mentioned topological phase are identified. This
model is physically relevant for experimental platforms based on Rydberg atom arrays,
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as we demonstrate by proposing and analyzing a viable implementation of the trimer
constraint in this setup.
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Figure 5.1.1: (a) Maximal trimer configuration with arrows pointing from the center
to the two external vertices of each trimer, on the square and honeycomb lattice. The
net flux for each vertex is 2 mod 3. The region enclosed by the dashed line has Ns = 3
vertices and a net flux 3 = 2Ns mod 3. (b) One-parameter family of tRVB states on the
square lattice. The parameter t = tan θ weights the presence of straight trimers, such
that for θ = 0 (π/2) the tRVB state is solely made of bent (straight) trimers.

Firstly, we focus on the square lattice, where we demonstrate the emergence of
the trimer coverings Hilbert space as a particular limit of a Z3 lattice gauge theory
(LGT). We introduce a tensor network (TN) [16, 17, 235] representation that describes
a one-parameter family of tRVB states [Fig. 5.1.1(b)]. Utilizing exact and approximate
TN methods, we show that all the tRVB states considered have Z3 topological order
except for a fine-tuned point, where we establish the presence of a U(1) × U(1) local
symmetry that leads to long-range correlations. We show that topological properties
are stable against dilution of the maximally-packed trimer configurations by studying a
tensor-network perturbation that encodes all hard trimer configurations with at most
one trimer on each vertex. Furthermore, we discuss a general mechanism that explains
the enhancement of the local Z3 conservation law of Fig. 5.1.1(a) to a U(1) × U(1)
law, yielding long-range correlations and ultimately spoiling Z3 topological order. We
support our conclusions with further examples of gapless and gapped tRVB states, on
the triangular and honeycomb lattices.

Secondly, we consider a diluted trimer model on the square lattice with a single
type of trimers, namely the bent blue trimers in Fig. 5.1.1(a). The corresponding tRVB
state [Fig. 5.1.1(b) for t = 0] will be shown to be a gapped Z3 topological liquid, thus
motivating the choice of this geometry. The model Hamiltonian has a control parameter
that tunes the density of trimers. We compute the ground state wavefunction via exact
diagonalization on periodic clusters and show that a Z3 topologically ordered phase arises
at finite density. We show that the blockade effect induced by van der Waals interactions
in Rydberg atom arrays can be used to engineer the (bent) trimer constraint on the
square lattice, by mapping the four possible trimer orientations on a square into four
different excited Rydberg atoms. The effective Rydberg model is equivalent to the diluted
trimer model upon neglecting some trimer configurations [cf. Fig. 5.4.3(a)]. We prove
numerically that removing these configurations from the superposition does not spoil the
Z3 topological nature of the fully-packed tRVB state. We find that, despite signatures
of a topological phase being elusive in the ground state of the Rydberg Hamiltonian, a
semi-adiabatic dynamical preparation bolsters the topological character of the prepared
state.
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The chapter is structured as follows. In Sec. 5.2 we introduce a one-parameter
family of tRVB states on the square lattice, its TN representation, and a one-parameter
perturbation that lower the density of trimers, preserving the TN form. We study the
state phase diagram of this two-parameters family and demonstrate the presence of a
stable Z3 topologically ordered phase. In Sec. 5.3 we relate gapped tRVB states to the
Z3 toric code, from which we can define string operators and non-local excitations. We
discuss the condition for which a U(1)×U(1) gauge theory emerges in trimer models,
and verify it by considering tRVB states on various lattice geometries. In Sec. 5.4 we
introduce the model of diluted bent trimers on the square lattice, analyze its ground
state properties on finite periodic systems, and show that a narrow topological phase
emerges. We outline the implementation of this model in Rydberg atom arrays, point out
the differences between the trimer and Rydberg models and discuss the consequences.
Finally, we analyze dynamical preparation protocols to realize Z3 topologically ordered
states in experiments.

5.2 tRVB states on the square lattice

Trimers on the square lattice can either be bent or straight [cf. blue and red trimers in
Fig. 5.1.1(a)]. Therefore, we can define a one parameter family of tRVB states on this
lattice by weighting each covering c with coefficients that depend on the number of bent
and straight trimers (N⊥(c) and N‖(c) respectively) in the covering. In particular, we
introduce the parameter θ ∈ [0, π/2] such that the coefficient of a maximally-packed
configuration c is

W(c) = (cos θ)N⊥(c)(sin θ)N‖(c). (5.1)

The tRVB state then reads

|tRVB(θ)〉 =
1

N (θ)

∑

{c}

W(c) |c〉 , (5.2)

where N (θ) =
√∑

{c}[W(c)]2 is a normalization factor. The angle θ changes the relative
weight of bent versus straight trimers [see Fig. 5.1.1(a)]: in the limit θ = 0 (θ = π/2)
only bent (straight) trimers contribute.

In this section, we analyze the topological properties of this state with tensor network
methods. After studying the one-parameter family in Eq. (5.2), we add another parameter
by considering a diluted TN deformation obtained by destroying trimers with a certain
probability. We map out the state phase diagram and demonstrate the stability of the
topological phase against dilution.

The tensor network representation of the tRVB model

We turn our attention to the classical statistical-mechanics model whose partition function
is the sum of the squared weights in Eq. (5.1) of all maximally-packed trimer configura-
tions on the square lattice. This partition function can be interpreted as the norm of the
quantum state in Eq. (5.2). Its tensor-network representation was previously introduced
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in Ref. [231]: the partition function Z can be written as the tiling of rank-4 tensors

Z = T T

TT T

T

T T T

(5.3)

The rank-4 tensor T is constructed in such a way that, once the tensor is contracted with
its neighbors, only the valid trimer configurations survive. As will be later discussed in
Sec. 5.3, it is beneficial to consider an equivalent representation of this model, where
trimer configurations are mapped to possible ways to position arrows on the links such
that there is a local constraint —or Z3 conservation law— around each edge. As shown
in Fig. 5.1.1(a), a given trimer configuration has a one-to-one mapping to a single arrow
configuration obtained by assigning arrows to the links covered by the trimers, in such
a way that each arrow goes from the center of the trimer to the external vertices. In a
fully-packed configuration, each vertex has either two outgoing arrows or one ingoing
arrow. Because the net outgoing flux for each vertex is 2 (where the flux is measured
mod 3), we obtain that a region of Ns vertices has flux 2Ns mod 3. This Z3 rule for the
flux suggests that the tRVB state can be described as a Z3 gauge theory and can be a
gapped Z3 quantum spin liquid.

The tensor T is then constructed by labeling each leg with indices {0,+1,−1}, where
0 means no arrow, and +1 (−1) corresponds to an arrow aligned (anti-aligned) with the
direction of the leg. The non-zero entries are

0

0

0

+1 0

0

+1

0 -1

0

0

0 0

-1

0

0

0

0

-1

-1 0

+1

0

-1 +1

+1

0

0 +1

0

-1

0

+1

0

0

-1 0

+1

-1

0 sin2 θ

cos2 θ

=

=

=

=

=

=

=

=

1

=

=

. (5.4)

The Z3 symmetry of the underlying gauge theory is reflected in the tensor. Indeed the
symmetry operator σ, whose matrix representation 1 is later defined in Eq. (5.12), acts

1The operator is represented in the basis {0,+1,−1} defined above.
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on the tensor as

T

σ†

σ

σ

σ† = ω T . (5.5)

We remark that if one wishes to remove the factor ω = ei2π/3 from Eq. (5.5) it is sufficient
to block three consecutive tensors and construct a Z3-invariant tensor. When interpreting
the partition function encoded in the tensor Eq. (5.4) as the norm of the tRVB state, each
leg of the tensor is interpreted as the product between the bra and ket virtual layers of
the quantum state.

The properties of the tRVB wavefunction can be extracted by analyzing the row-wise
transfer operator

T = TTTTTT . (5.6)

By computing the leading eigenvalues (ordered by magnitude) λ0, λ1, . . . of the transfer
operator of length L (with periodic boundary conditions), we obtain the correlation
length ξ as

ξ = 1/ ln

∣∣∣∣
λ0

λ1

∣∣∣∣ . (5.7)

This quantity bounds all correlation functions in the height direction of the infinitely-tall
cylinder of circumference L. The Z3 virtual symmetry in Eq. (5.5) can be used to label
the eigenvalues of the transfer operator as λQn , where Q = 0,±1 is the Z3 charge and
n = 0, 1 . . . is eigenvalue index starting from the largest in magnitude. As expected
for a topologically ordered state, this symmetry is spontaneously broken, yielding an
approximate 3-fold degeneracy for the largest eigenvalues from the three Z3 symmetry
sectors: the gap between the logarithm of these eigenvalues closes exponentially in
L [236]. In fact, the spectrum E = − log λ is analogous to the spectrum of a Hamiltonian
with spontaneous symmetry breaking. To compute the correlation length at finite L we
thus consider the two largest eigenvalues in the Q = 0 sector. The results of numerical
diagonalizations on finite cylinders are presented in Fig. 5.2.1(a). These finite-size
results are compared to the correlation lengths obtained from the corner-transfer matrix
renormalization group (CTMRG) [108, 237–241] exploiting the reflection symmetry
along the tensor diagonal [242], as well as from the variational uniform matrix product
state algorithm (VUMPS) [97]. From the numerical results, we conclude that the
correlation length diverges only in the limit θ → π/2, while it remains finite below
that value. As we will discuss in the next section, long-range correlations concur with
the emergence of a U(1)×U(1) local symmetry for θ = π/2.

The leading eigenvector of the transfer operator on a cylinder represents the diagonal
reduced density operator ρ of the infinite half-cylinder, from which we can as well obtain
the entanglement entropy S = −Tr(ρ ln ρ) of this bipartition. The scaling with the
circumference length L of the entanglement entropy obeys

SL ∼ αL− γ, (5.8)
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(a) (b)

Figure 5.2.1: (a) Correlation length ξ as a function of θ, computed using infinite cylinders
of circumference L, as well as infinite-size methods (see main text). (b) Topological
entanglement entropy γ ' SL − 2SL/2 extracted from finite-size cylinders.

where γ is a well-known topological correction [243, 244]. γ ' ln 3 implies that the state
is in a gapped Z3 topological phase. In Fig. 5.2.1(b) we plot the topological entanglement
entropy obtained from the subtraction γ = SL−2SL/2, as a function of θ. While γ appears
to approach a finite value compatible with ln 3 for θ 6= π/2, a bump occurs in the proximity
of this point. In fact, in the presence of continuous local symmetries such as U(1)×U(1)
the topological correction is expected to scale logarithmically with L [245].

Stability under dilution of the tRVB state

We now study a deformation of the tRVB state obtained by diluting fully-packed trimer
coverings. This deformation will be relevant for Sec. 5.4, where we will discuss how to
implement trimer models in Rydberg atom arrays. In these setups, the total occupation
can fluctuate, so it is important to consider imperfect trimer coverings.

Similarly to recent work on dimer models [246], we consider the following variational
ansatz, which depends on two real parameters 0 ≤ θ ≤ π/2 and z ∈ R

|Φ(θ, z)〉 ∝
⊗

i,j

(
1 + z2Σ−ij

)
|tRVB(θ)〉 , (5.9)

where Σ−ij is the operator that removes a trimer on the edges i and j, and z2 corresponds
to the weight of a removed trimer. In essence, we add to the fully-packed trimer configu-
rations other trimer configurations that can be obtained from the former by removing
trimers without moving the remaining ones. Each removed trimer is weighted by z2.
In the limit z → ∞, the state is simply the vacuum, while at z → 0 we recover the
tRVB state, which we showed to be in a topological phase. Similarly to |tRVB〉, the
state |Φ〉 has a simple projected entangled-pair state (PEPS) [17] representation of bond
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dimension 4

|Φ〉 = . (5.10)

Its construction is relegated to App. 5.A.
In Fig. 5.2.2, we study the link density n 2 and the correlation length of the state as

we vary θ and z using CTMRG. Remarkably, the topological phase survives up to values
of order one of the dilution strength z, and is fairly insensitive to the mixing angle θ.
The transition between the topological and trivial phases appears to be continuous, as
witnessed by a diverging correlation length at the critical point [Fig. 5.2.2(b)]. We do not
address the characterization of the universality class of this phase transition as the critical
exponents we could extract from the available data exhibit strong dependence on the
CTMRG environment bond dimension D, even for the largest D we employed. We note
that topological and trivial phases are distinguished by two different degeneracies of the
PEPS cylinder transfer matrix. The spectrum of the transfer matrix is 3-fold degenerate
in the former and 9-fold degenerate in the latter. The 9-fold degeneracy reflects the full
breaking of the Z3 × Z3 virtual symmetry of the PEPS double tensor, which implies the
condensation of magnetic and the confinement of electric excitations [see Sec. 5.3] in
the gauge theory picture [236].

5.3 tRVB states and lattice gauge theories

To understand the emergence of Z3 topological order in the tRVB state, it is useful to
shed light on its connection with a gauge theory. To this end, in Sec. 5.3 we compare the
tRVB state to the ground state of a Z3 toric code.

We argued in Sec. 5.2 that the presence of a Z3 local conservation law of the flux
suggests an emergent description as a Z3 gauge theory, and hence the tRVB state is
a good candidate for being a gapped Z3 quantum spin liquid. However, as we show
below, it may happen that for some trimer models the Z3 local symmetry is enhanced to
a U(1)×U(1) symmetry, in which case the state is gapless 3. A similar scenario occurs
for RVB states of dimer models, that are known to host gapped Z2 spin liquids only on
non-bipartite lattices; on bipartite lattices, they are described by a U(1) gauge theory,
that does not support a stable topologically ordered phase. In Sec. 5.3 we will formulate
a similar criterion for trimer models.

2The link density n counts the ratio of links occupied by a trimer over the total number of links. On the
square lattice the link density of a fully-packed configuration is 1/3.

3As we discuss below, there are exceptions in which, despite the U(1)×U(1) local, the tRVB state is a
gapped symmetry broken state.
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(a) (b)

(c)

Figure 5.2.2: (a) Link density of the diluted tRVB state |Φ(θ, z)〉, obtained from CTMRG
with an environment bond dimension D = 729. The grey dots indicate where its
numerical derivative with respect to z has an extremum. (b) Correlation length ξ
obtained from the transfer matrix of the diluted tRVB state computed with CTMRG.
Note that ξ diverges at the phase boundary and at θ → π/2. (c) Details for θ = 0: the
density displays a non-analyticity at zc = 0.88(6) (dashed line), which corresponds to a
divergence of the correlation length (inset).

The Z3 toric code

A state that is very similar to the tRVB state and has Z3 topological order is the ground
state of the Z3 generalization of Kitaev’s toric code [247]. We now review this model
and show the similarities and differences between its ground state and the tRVB state.

To define the Z3 toric code, we introduce clock variables on the links of our lattice;
on each link we define the operators σ and τ , that satisfy the following properties:

στ = ωτσ, σ3 = 1, τ3 = 1, (5.11)

where ω = e2iπ/3. These variables are the Z3 generalizations of the Pauli matrices σz
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(a) (b)

(c)
(d)

(e)

Figure 5.3.1: Definitions of operators (a) Av and (b) Bp. (c) Mapping from a trimer
configuration to a state in the σ basis. (d) Configurations for a vertex in the trimer model.
The 10 total configurations are obtained from these under rotations. (e) Configurations
that satisfy Gauss’ law but do not correspond to trimer configurations. The full set of
unallowed configurations (17 in total) is obtained from these under rotations.

and σx, and their most common matrix representation is

σ =




1 0 0
0 ω 0
0 0 ω∗


 , τ =




0 0 1
1 0 0
0 1 0


 . (5.12)

We now define the star and plaquette operators as in Figs. 5.3.1(a) and 5.3.1(b). Similarly
to the case of the Z2 toric code, these operators all commute: [Av, Bp] = 0 for every
vertex v and plaquette p. We now define the state |ψTC〉 as the equal-weight superposition
of all the states in the σ basis that satisfy the Gauss’ law Av = ω for all vertices. Note that
this choice differs from the typical case with Av = 1 and corresponds to the presence of a
background charge on each vertex of the lattice. Nevertheless, the physical properties that
we are interested in are not altered by this background charge, as a unitary transformation
can be defined to eliminate it. The state defined here has the property that Bp |ψTC〉 =
|ψTC〉 for every plaquette p, and is the ground state of the following Hamiltonian

HTC = −
∑

v

(ω∗Av + ωA†v)−
∑

p

(Bp +B†p). (5.13)

Because star and plaquette operators commute, it is easy to identify the excitations
of the model: we call an excitation with Av = ω∗ (Av = 1) a charge (anticharge),
while an excitation with Bp = ω (Bp = ω∗) is a vison (antivison). Both “electric”
(charge/anticharge) and “magnetic” (vison/antivison) excitations are gapped.

We now elucidate the connection between the tRVB state and |ψTC〉. We can map
each configuration of fully-packed trimers to a configuration in the σ basis as shown in
Fig. 5.3.1(c). It is easily shown that this configuration satisfies Gauss’ law. However, not
all the configurations of the Z3 toric code that satisfy Gauss’ law correspond to a trimer
configuration: as shown in Fig. 5.3.1(d), only 10 of the 27 configurations of a vertex
correspond to allowed vertex configurations of the trimer model. Despite this difference,
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the tRVB state may still have Z3 topological order like |ψTC〉 if the missing configurations
are recovered under renormalization: for 0 ≤ θ < π/2 the renormalization-group flow
from the state |tRVB(θ)〉 ultimately leads to the toric code ground state, which is a fixed
point under blocking, with correlation length ξ = 0. Another approach to establish
that the tRVB state and the toric code ground state describe the same phase consists in
showing that no phase transitions occur when interpolating between the two states. This
operation can as well be interpreted as a smooth interpolation between the two parent
Hamiltonians, since Z3 injectivity is preserved [236, 248]. We interpolate between
the states |ψTC〉 and |tRVB〉 by progressively decreasing the weight of the forbidden
configurations in Fig. 5.3.1(e). In Fig. 5.3.2(c) we plot the correlation length ξ obtained
from CTMRG during the interpolation. The gradual increase of ξ for any 0 ≤ θ < π/2
indicates the absence of phase transitions. We note that what we observed here differs
from what happens in the dimer model of the kagome lattice, where the RVB state is
a fixed point of Z2 topological order, and can be directly mapped into the toric code
ground state [249].

Finally, the connection with the Z3 toric code allows one to define string operators
that are useful for detecting topological order, namely Wilson lines and ’t Hooft lines.
The latter can be defined as in Fig. 5.3.2(a). Because of Gauss’ law, the value of the
’t Hooft line around a closed loop is equal to ωNv+nq−nq̄ , where Nv is the number of
vertices, and nq, nq̄ are respectively the numbers of charges and anticharges enclosed
by the loop. Similarly, Wilson loops detect the number of visons/antivisons in a region.
Moreover, a ’t Hooft (Wilson) line creates a vison/antivison (charge/anticharge) pair at
the two ends of the line.

We now consider the same string operators on the trimer model. The diagonal
operator (’t Hooft line) is still well defined. Closed ’t Hooft loops count the number of
charges/anticharges in a closed region. Note that, if we consider a diluted tRVB state,
we allow only for the presence of monomers on vertices, i.e. anticharges having Av = 1.
In this case, a pair of monomers represents a charge. In contrast with the ’t Hooft line,
the off-diagonal operator (Wilson line) is not well defined on the trimer model, as it can
map a valid trimer configuration to one that contains one of the vertices in Fig. 5.3.1(e).
However, as shown in Fig. 5.3.2(b), on some states it is possible to define an operator
that acts similarly to a Wilson line, and creates a monomer at one end of the line, and a
pair of monomers at the other end. The charges and anticharges obtained in this way
are deconfined if the state has topological order.

Knowing the operatorial form of Wilson and ’t Hooft lines provides (non-local) order
parameters [250, 251] that can be used to assert the presence of Z3 topological order, as
exploited in [252] for Z2 topological spin liquids in Rydberg atom arrays. Although in
Sec. 5.4 we will not undertake the calculation of these order parameters because of the
limited system sizes, we point out that they might be an effective probe for experimental
realizations of trimer models.

Tripartite trimer models and U(1)× U(1) lattice gauge theories

As shown in Fig. 5.2.1, the correlation length of the model diverges for θ = π/2, implying
that the tRVB state containing only straight trimers is gapless. We now explain this
result, by proving that for straight trimers the Z3 symmetry is enhanced to a U(1)×U(1)
symmetry. We define a partition of the square lattice in three sublattices A, B, and C
as in Fig. 5.3.3(a). It is easy to check that a straight trimer always covers one and only
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(a)

(b) (c)

Figure 5.3.2: (a) String operators in the Z3 toric code: ’t Hooft lines and ’t Hooft loops
(green), Wilson lines and Wilson loops (purple). (b) Creation of a charge-anticharge
pair on a trimer configuration with a string operator: a monomer is an anticharge, and a
charge consists of a pair of monomers. (c) The correlation length remains finite when
interpolating between the Z3 toric code (α = 0) and the tRVB state (α = 1) at different
mixing angles θ of the Z3-charged tensor T = (1−α)TTC +αTtRVB(θ). Finite-size results
on a cylinder of L = 18 (solid lines) agree with the CTMRG results (dotted lines).

one site per type. A similar scenario occurs for dimer models on bipartite lattices: each
dimer covers one site of each type, and the symmetry is enhanced from Z2 to U(1). Here,
we will show that the emergent symmetry for straight trimers is U(1)×U(1). To prove
it, we define two electric fields. The first electric field flows from the A to the B site
of each trimer [Fig. 5.3.3(b)], and the second electric field flows from the A to the C
site [Fig. 5.3.3(c)]. We then obtain two independent conservation laws, one for each
electric field: consider a region with NA, NB, NC vertices of the three types. The net flux
going out of the region is NA−NB for the first electric field and NA−NC for the second
electric field. Therefore, the tRVB state has a local symmetry U(1)×U(1) and must be
gapless, as shown by Polyakov [253].

The argument presented above can be generalized to any trimer model on a two-
dimensional lattice. We posit that a trimer model is tripartite if three sublattices can
be defined, such that a trimer always covers one site for each sublattice. Note that this
definition depends both on the lattice and on the class of trimers considered. If a trimer
model is tripartite, the tRVB state has a local U(1)×U(1) symmetry. In the absence of
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(a) (b) (c)

Figure 5.3.3: (a) Partition of the square lattice in the three sublattices A (yellow), B
(blue) and C (pink). A straight trimer always covers one site of type A, one of type B
and one of type C. (b) First U(1) symmetry: electric field lines go from the A site to the
B site for each trimer. The net flux going out of the region enclosed by the red line is
−1 = NA −NB. (c) Second U(1) symmetry: electric field lines go from the A site to the
C site for each trimer. The net flux going out of the region enclosed by the red line is
−1 = NA −NC .

(a) (b) (c)

(d)

Figure 5.3.4: (a) Trimer model on the honeycomb: the lattice is not tripartite. (b)–(c)
Two possible tripartitions of the trimer model on the kagome lattice. We define trimers
of type I (straight), II (bent, with angle 60◦), and III (with angle 120◦). (b) The lattice is
tripartite if no type III trimers are included. (c) Similarly, the lattice is tripartite if no
type I trimers are included. (d) Trimer model on the triangular lattice: the lattice is
tripartite for triangular trimers. (e) The triangular lattice is tripartite for trimers of type
I and II, not tripartite for trimers of type III.

lattice symmetry breaking, the emergence of this continuous local symmetry leads to
a gapless spin liquid state akin to RVB states in dimer models on bipartite lattices. We
can thus conclude that a necessary condition for having a gapped Z3 spin liquid from a
tRVB state is that the trimer model is not tripartite. We remark that this condition is not
sufficient, as demonstrated by the examples that we provide below.

Let us first consider the tRVB state on the honeycomb lattice [Fig. 5.3.4(a)]. This
trimer model is not tripartite, so this state on the honeycomb lattice can be a gapped
state with Z3 topological order. The numerics in Fig. 5.3.5 confirm that this is the case.
In Fig. 5.3.5(b) we show that the correlation length of the tRVB state on a finite cylinder
converges to a finite value as the circumference increases. In Fig. 5.3.5(b) we show
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that the entanglement entropy of a half-infinite cylinder exhibits a − ln 3 correction to
its area law scaling. Finally, the blue hexagons in Fig. 5.3.5(c) demonstrate that the
logarithmic gap between the leading eigenvalues of the neutral and charged sectors
closes exponentially, pointing to the spontaneous breaking of Z3 virtual symmetry.

(a) (b)

(c) (d)

Figure 5.3.5: (a) Scaling of the entanglement entropy of the tRVB state on the honeycomb
lattice as a function of the number of tensors N around the cylinder. We extract a
topological correction γ ' ln 3. (b) Correlation length of the tRVB state on the honeycomb
lattice. (c) Logarithmic gap between the leading eigenvalues of the Q = 0 and Q = ±1
sectors for the tRVB state on the honeycomb (blue hexagons) and triangular (orange
triangles). On the triangular lattice, only triangular trimers are considered. Transfer
matrix eigenvalues are labeled as λQn where Q is the Z3 symmetry sector and n = 0, 1 . . .
is the position in the spectrum starting from the largest in magnitude. (d) Correlation
length of the tRVB on the triangular lattice. Similar to dimer models on bipartite lattices, it
grows linearly with the number of tensorsN along the circumference. The TN description
of these models can be found in App. 5.A.

Let us now turn our attention to the kagome lattice. In this case, various types of
trimers can be defined. If we consider the tripartition of the lattice shown in Fig. 5.3.4(b),
we note that some types of trimers (I and II) cover sites of different types, while trimers
of type III do not. Therefore, we deduce that type III trimers are needed to have a Z3 spin
liquid phase. Similarly, from the tripartition in Fig. 5.3.4(c), we find that type II trimers
are also needed. This result is in agreement with Ref. [233], where it was shown that
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a gapped tRVB state with topological order is found only when all types of trimers are
included. This lattice provides a counterexample that shows how our “non-tripartibility”
condition is not sufficient for gapped Z3 topological order. In fact, in Ref. [233] it was
proven that the tRVB state with trimers of type I and III possesses a U(1) local symmetry
that spoils Z3 topological order although the trimer model cannot be tripartite. Trimer
models on this geometry also provide an example of U(1)×U(1) symmetric tRVB state
that is not gapless but has symmetry breaking: the tRVB state with trimers of type II only
is tripartite, but all trimer coverings break the two-fold rotation of the lattice that maps
upper into lower triangles.

Finally, let us consider the triangular lattice. As can be inferred from Fig. 5.3.4(d), the
tRVB state of triangular trimers 4 (grey triangles in the figure) is U(1)×U(1) symmetric
because the model is tripartite: this finding agrees with Ref. [254], where a U(1)×U(1)
conservation law (for “left-” and “right-movers”) was found in the classical configurations.
From numerical diagonalization of the transfer matrix on finite-size cylinders, we deduce
that this tRVB state is indeed gapless, as demonstrated in Fig. 5.3.5(d), where we show
that for the sizes accessible with our numerics, the correlation length scales linearly with
the circumference of the cylinder. We refer to App. 5.A for the explicit TN representation
of this tRVB state. Using the same definitions of trimers as for the kagome lattice, we have
that trimers of type I (straight) on the triangular lattice are also tripartite and expected
to spoil gapped topological order, while trimers of type III do not respect the tripartition
[Fig. 5.3.4(e)]. This implies that tRVB states on this lattice can have topological order
only if these trimers are included. We leave a complete analysis of this family of tRVB
states for future work.

5.4 Diluted trimer models and Rydberg atoms
In the previous sections we have shown that RVB states of trimers can be gapped and
have topological character. When these conditions are met they are good candidates
for representing a stable phase with Z3 topological order. It is thus natural to ask if
simple Hamiltonians exist that have tRVB-like phases at zero temperature. As trimer
states are TN states with finite bond dimension, they are exact ground states of local
Hamiltonians with finite range. However, it is known that such Hamiltonians can be
rather complex and include fairly unphysical operators [248, 249, 255]. In particular,
parent Hamiltonians of tRVB states on certain lattices are discussed in Refs. [231, 233].
Here, instead, we introduce a simple trimer model on the square lattice and study its
ground state phase diagram via exact methods, providing evidence of a tRVB-like phase
with Z3 topological order. Moreover, we show that a similar model can be implemented
in Rydberg atom arrays and that hallmarks of Z3 topological order can be observed
employing semi-adiabatic dynamical preparation schemes.

An e�ective trimer models on the square lattice

We consider the Hilbert space spanned by all diluted trimer configurations of bent trimers
on the square lattice, i.e. with at most one trimer per vertex of the square lattice, and

4The triangular trimers considered here do not consist of two edges sharing a common vertex, but
rather of triangular plaquettes with hard constraints. Nevertheless, the discussion on the general conditions
for Z3 or U(1)×U(1) gauge symmetry is applicable here in the same way.
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take the following model Hamiltonian

H =
Ω

2

∑

�

| 〉〈 |+ h.c.−∆ | 〉〈 |+Rπ
2
. (5.14)

Rπ
2
denotes the terms that can be obtained by 90-degree rotations from those given in

Eq. (5.14). The first term coherently creates and destroys bent trimers (subject to the
hard trimer constraint), whereas the second, diagonal term acts like a chemical potential
for trimers. The ratio ∆/Ω controls the density of trimers in the ground state. For large
and negative ∆/Ω the ground state is trivial and adiabatically connected to the vacuum.
For ∆/Ω = +∞ the classical ground space is exponentially degenerate and consists of
all maximally-packed trimer coverings, corresponding to a link density 〈n〉 = 1/3. By
treating pertubatively the off-diagonal diagonal term, it is easy to see that the first non
trivial process in this subspace occurs at fourth order and produces resonances between
pairs of trimer coverings differing only on two nearby squares. Therefore, at large ∆/Ω
a valence bond solid (VBS) ground state is expected to emerge, with a maximal density
of resonating “plaquettes”, i.e., resonating pairs of nearby squares 5. At finite ∆/Ω,
quantum fluctuations act in two ways: they create defects in the trimer coverings by
lowering the density and build coherent superpositions of high density components. As
we showed in Sec. 5.2, topological order can survive at finite dilution, implying that a
diluted tRVB state might also arise from this setup.
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Figure 5.4.1: Periodic clusters employed for the exact diagonalization of the Hamiltonian
in Eq. (5.14). 36, 48, and 60 stand for the number of edges inside the cluster. The
turquoise regions are the subsystems used to compute the entanglement entropy. We
measure their perimeter L in units of an edge of the square lattice.

To understand the character of the ground state at intermediate ∆/Ω we performed
exact diagonalization calculations on periodic clusters of up to 60 edges of the square
lattice [Fig. 5.4.1]. In Fig. 5.4.2(a) we plot the overlap between the ground state and
the pure tRVB state (solid line), and the ground state fidelity with the diluted tRVB state
Eq. (5.9) for θ = 0 optimized over z (dashed line). The optimal values of z as a function of
∆/Ω are shown in Fig. 5.4.2(c). Remarkably the overlap displays a maximum at ∆/Ω ' 1,

5We note that the number of plaquette coverings is not finite when the system is infinite, and a quantum
order by disorder scenario is likely to occur.
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(a) (b)

(c)

(d)

(e)

Figure 5.4.2: (a) Overlap between the ground state of the Hamiltonian Eq. (5.14) and
the tRVB state (solid line), and the diluted tRVB state Eq. (5.9) optimized over z (dashed
line). The shaded red region sets approximate boundaries for the topologically ordered
phase, where the fidelity with the tRVB state is maximized. (b) Ground state fidelity
susceptibility per link F = (1−|〈GS(λ)|GS(λ+ dλ)〉|)/Ndλ2, with λ = Ω/∆. Two peaks
appear for the larger clusters, pointing at the presence of an intermediate phase for
0.95 . ∆/Ω . 1.15. (c) Optimal value of z that maximizes the overlap between the
ground state and the diluted tRVB state Eq. (5.9). |z| . 0.4 in the intermediate phase,
a value that lies deep in the topological phase in the state phase diagram plotted in
Fig. 5.2.2. (d) Ground state topological entanglement entropy computed by subtracting
the entropies of the square-shaped regions in Fig. 5.4.1 with L = 4 and L = 8. (e) Scaling
of the entanglement entropy of the ground state for L = 4, 6, 8, 10 and Ω/∆ = 1.

pointing to the presence of an intermediate tRVB-like phase. The maximum fidelity is
greatly improved when optimized with the diluted tRVB state. We note that the optimal
value of z near the maximum is perfectly consistent with the topologically ordered phase
in the state phase diagram in Fig. 5.2.2. The occurrence of an intermediate phase is also
witnessed by the presence of two peaks in the ground state fidelity susceptibility per
link F = (1− | 〈GS(λ)|GS(λ+ dλ)〉 |)/Ndλ2, where λ = Ω/∆ 6 for the 48- and 60-links
clusters, as depicted in the Fig. 5.4.2(b). To confirm the nature of the intermediate
phase in an unbiased way, in Fig. 5.4.2(d) we show the topological entanglement entropy
extracted from γ ' S2L − 2SL as functions of ∆/Ω. Here L is the length of the contour
of the subsystem, in units of one edge of the square lattice, and the subsystems employed
for the computation are depicted in Fig. 5.4.1. The value of γ obtained near the tRVB

6The parameter λ is chosen to make more distinguishable the two peaks in F .
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fidelity maximum is remarkably close to the value ln 3, hinting at the emergence of Z3

topological order.

The trimer constraint with Rydberg atoms

We now turn to a discussion of potential realizations of trimer models and tRVB states
with experiments based on Rydberg atom arrays. In these systems, neutral atoms are
individually trapped and arranged in a desired lattice configuration using optical tweez-
ers [36, 37]. Spin models can then be realized by manipulating the internal degrees of
freedom of each atom with an external laser field [256–261]. Specifically, we consider a
situation where a laser induces a coherent coupling from the atomic ground state |g〉 to
a highly excited Rydberg state |r〉. The frequency mismatch between the laser frequency
and the transition frequency between those two states, i.e. the laser detuning, is denoted
by ∆. The coupling strength for this transition, i.e. the Rabi frequency, is denoted by Ω,
and is proportional to the laser amplitude. Importantly, two atoms that are both in the
Rydberg state interact via a Van der Waals process, whose strength decays with the sixth
power of the atomic separation. As a result, the Hamiltonian governing the dynamics of
this system is given by [262]

HRyd =
Ω

2

∑

i

σxi −∆
∑

i

ni + C
∑

i>j

ninj
|~xi − ~xj |6

, (5.15)

where, ~xi is the position of atom i, and we defined σxi = |g〉i〈r| + |r〉i〈g| and ni =
|r〉i〈r|. The parameter C depends on the Rydberg state. The interplay between the
laser parameters and the geometry of the atom arrangement gives rise to a variety of
phenomena [263–268]. Most of them are based on the Rydberg blockade effect, that
prohibits the simultaneous excitation of two atoms located at a distance r < Rb =
(V/Ω)1/6. Below we show that this effect can be used to implement trimer constraints in
Rydberg atom arrays. For example, it is easy to prove that the hard trimer constraint for
triangular trimers on the triangular lattice in Fig. 5.3.4(d) is equivalent to a Rydberg
blockade constraint on a honeycomb lattice: the atoms sit on the centers of the original
triangular lattice and a Rydberg excitation represents a triangular plaquette; the blockade
radius Rb is chosen such that two atoms cannot be simultaneously excited if and only
if they belong to the same hexagon. We now show that the Rydberg blockade effect
also allows one to realize a bent trimer model on the square lattice very similar to the
one outlined above. A sketch of the implementation is depicted in Fig. 5.4.3. Rydberg
atoms are placed on the corners of a square lattice such that an excited atom is mapped
to a bent trimer. The basic idea is to exploit the blockade radius to mimic the hard
trimer constraint. However, while the latter is anisotropic, the blockade effect is not,
as long as the Rydberg state is rotational invariant. Nevertheless, we can avoid the use
of anisotropic Rydberg states by dividing the atoms into two groups, according to the
sublattice of the square to which they are closer. The two groups are then arranged
onto two planes at a distance h. Consequently, atoms between different planes will be
blockaded if their planar distance is less than

√
R2
b − h2, where Rb is the blockade radius.

By properly choosing h and the atoms positions inside the plaquettes of the square lattice,
it is possible to realize a trimer constraint, as demonstrated by Fig. 5.4.3(b). This trimer
constraint is such that some trimer configurations are locally prohibited. The latter are
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trimer coverings that include two trimers with the same orientation that are “wedged”
diagonally as in Fig. 5.4.3(b).
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Figure 5.4.3: (a) Mapping between Rydberg atoms and bent trimers on the square lattice.
Atoms are placed at each corner of the square lattice such that an excited atom is mapped
to a bent trimer on that corner. (b) Atoms are split into two groups (green and red)
depending on the sublattice of the square lattice bipartition to which the corresponding
corner belongs. The groups are arranged onto two planes at distance h such that the
2D blockade radius between atoms of different colors is

√
R2
b − h2, where Rb is the

3D blockade radius. Tuning h and the distance of the atoms from the vertexes allows
realizing a constraint equivalent to the trimer constraint where the “wedged" trimer
configurations on the bottom left are blockaded (and its 90-degree rotations).

Before addressing the Rydberg model, we study the effect of removing these coverings
from the fully-packed tRVB state. In Figs. 5.4.4(c) and 5.4.4(d) we plot the lowest
logarithmic gaps in the spectrum of the cylinder transfer matrix of the corresponding TN
state as functions of the cylinder circumference L. The TN representation is outlined in
App. 5.A. Despite a level crossing occuring at finite L, the gap between the neutral and
charged sectors eventually closes exponentially (green circles), whereas the neutral gap
(blue circles) appears to be increasing for the available Ls. From infinite-size calculations
we can infer that this gap converges to ' 0.6, yielding a correlation length ξ ' 1.7.
We note that this value is larger than the correlation length of the unrestricted trimer
state ξ ' 1.1 [cf. Fig. 5.2.1(a)]. This fact is expected, as removing these configurations
pushes away the tRVB state from the Z3 toric code fixed point, for which ξ = 0. These
results demonstrate that Z3 topological order is preserved. Although we did not study
TN perturbations that lower the density of trimers, we expect a diluted version of this
tRVB state to host a topologically ordered phase.

We now focus on the Rydberg model arising from the implementation explained
above. For simplicity, we neglect interactions beyond the blockade, so that the effective
Hamiltonian is the same as Eq. (5.14), with the caveat that all the states containing
wedged trimers as in Fig. 5.4.3(b) are not included in the Hilbert space of diluted trimer
coverings. The exact diagonalization of this restricted trimer model displays no evidence
of an intermediate topological phase in the ground state, rather a single phase transition
between a disordered phase and a plaquette phase can be identified. Therefore, we
conclude that if such a phase exists it is extremely narrow. In fact, the topological
entanglement entropy extracted from the finite size cluster 48 in Fig. 5.4.1 exhibits a
peak approaching γ = ln 3 that is much sharper than in the unrestricted model, as we
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show in Fig. 5.4.4(b). The black lines are the ground state curves for γ in the restricted
(solid line) and unrestricted (dashed line) trimer models. However, below we provide
numerical evidence that this witness of Z3 topological order is stabilized by a dynamical
preparation protocol regularly used in experiments [265].

(a) (b)

(c) (d)

Figure 5.4.4: (a) The protocol employed for the semi-adiabatic dynamical preparation.
The vacuum |0〉 is evolved with a time-dependent Hamiltonian with ∆(t) and Ω(t) as
depicted in the figure. First, Ω is switched on from 0 to 1 at constant ∆ = ∆0 with a
smoothed linear ramp. ∆ is then increased linearly from ∆0 = −1.5 to ∆1 = +3 of
constant Ω. The total sweep duration is T . (b) Topological entanglement entropy of the
dynamically prepared state, for different preparation times. The black line corresponds
to the ground state of the Hamiltonian Eq. (5.14) (T = ∞). Solid and dashed lines
are obtained in the effective Rydberg model where the “wedged” trimer configuration
of Fig. 5.4.3(b) are not included in the Hilbert space and the unrestricted diluted
trimer model, respectively. Results are obtained on the periodic cluster 48 of Fig. 5.4.1.
(c) E = − log λ, where λ are the eigenvalues of the cylinder transfer matrix of the tensor
network representation of the restricted tRVB state of bent trimers on the square lattice.
N is the number of tensors along the circumference, Q is the Z3 virtual charge (Q = ±1
sectors are exactly degenerate), n is the eigenvalue index in the sector with charge Q.
(d) Exponential scaling of the gap between the smallest Es in the neutral and charged
sectors, signaling spontaneous symmetry breaking of the Z3 virtual symmetry of the
tensor.

The initial state is the vacuum, subsequently evolved with the time-dependent Hamil-
tonian H(t) = H(Ω(t),∆(t)). To prepare the ground state of H(t) the variation of the
time-dependent couplings has to be perfectly adiabatic. In real experiments, this is very
hard in practice, due to limited coherence time. Thus it is often preferable to consider
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non-adiabatic state preparation schemes. In fact, as demonstrated in Ref. [246, 265],
non-adiabatic effects can even enhance topological order in the prepared state with re-
spect to the ground state. In the following, we show that a similar result is observed here.
Specifically, we study the dynamical preparation process depicted in Fig. 5.4.4(a). The
vacuum state |0〉 is evolved with the time-dependent Hamiltonian H(Ω(t),∆(t)), where
∆(0) = −2.5, Ω(t) = 0, such that |0〉 is the ground state at t = 0. A first (smoothed)
linear ramp turns on the effective Rabi frequency until the final value Ω = 1 is reached.
The latter sets our units of energy and time. A second ramp is used to drive the detuning
from ∆(0) = −1.5 to ∆(T ) = 3, where T is the total sweep time, and the final value of
∆ is chosen to be well beyond the peaks in tRVB overlap and topological entanglement
entropy of the ground state. The slopes of the two ramps decrease with increasing T
and are fixed by requiring that the switching on of Ω (∆) takes T/3 (2T/3). In both the
restricted and unrestricted models a phase transition is crossed during the second ramp.

In Fig. 5.4.4 we plot the topological entanglement entropy of the state during the
preparation sweep, for different total sweep times T , for the 48 cluster in Fig. 5.4.1,
that corresponds to 96 atoms in the mapping of Fig. 5.4.3(a). The result indicates that
topological properties are stabilized in the prepared state when the preparation is not
adiabatic, i.e. for short and intermediate T . Remarkably, the peaks in the topological
entropy correction disappear in this regime, and the latter points to a topological state
when ∆/Ω & 1. For the largest T s the ground state curve is recovered (T = ∞). We
note that this phenomenon occurs in both the restricted and unrestricted models [cf.
dash and solid lines in Fig. 5.4.4(b)].

We remark that it might be possible to engineer other implementations of the Hamil-
tonian in Eq. (5.14) that do not require a restriction of the diluted trimer Hilbert space.

5.5 Outlook

We showed that maximally-packed trimer states can be simple representatives of quantum
spin liquids with Z3 topological order. By mapping trimer configurations into the Hilbert
space of a lattice gauge theory, we identified a condition on the lattice geometry and
trimer model that leads to the emergence of a U(1)×U(1) symmetry and a tRVB state
with infinite correlation length. We verified this condition by performing numerical
checks on several trimer models with TN methods. We demonstrated that when tRVB
states are gapped, Z3 topological order is stable against fluctuations in the number of
trimers. We did so by studying a TN perturbation that represents a diluted tRVB state
on the square lattice and showing that it hosts a wide topologically ordered phase in
the state phase diagram. Finally, we considered a simple model Hamiltonian on the
square lattice that exhibits signatures of a tRVB-like phase, where the ground state is well
approximated by the Z3 topologically ordered diluted TN perturbation previously studied.
We provided an implementation of a very similar model by exploiting the blockade effect
in Rydberg atom arrays, and show that hallmarks of a Z3 quantum spin liquid can be
observed in non-adiabatic dynamical preparation schemes.

Our findings open new future directions for the quantum simulation of topological
phases of matter. The necessary condition for having Z3 topological order that we
formulated depends solely on the geometry of the model and can therefore guide the
search for quantum spin liquids in various experimental implementations, including—but
not limited to—Rydberg atom arrays. In this respect, it would be interesting to study more
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extensively the realization of tRVB states both as ground states of realistic Hamiltonians
and as dynamically-prepared non-equilibrium states. In addition, our approach can be
naturally extended from trimer- to polymer-RVB states, which can support the emergence
of Zn topological order. A systematic study of such states can similarly be performed
efficiently with tensor network methods and is left for future work. Finally, an interesting
direction is the related problem of quantum spin liquid phases in SU(3) and SU(N)
symmetric models. In certain models, trimers (polymers) can be interpreted as simplified
versions of SU(3) (SU(N)) spin singlets; it remains an open question to what extent this
interpretation can be used to infer the properties of RVB states of singlets.
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Appendices

5.A Details on the tensor-network representations

tRVB model on the square lattice
Symmetries

The tensor defined in Eq. (5.4) enjoys a reflection symmetry along the diagonal, which
can be exploited in the CTMRG algorithm. The corresponding transfer operator is not
self-adjoint, which requires one to compute both fixed points for the VUMPS algorithm.
However, the fixed point in one direction can be readily converted into the the fixed
point into the other direction, since

=T

P †

P

TT P †P = , (5.16)

where P is the operator that permutes the ±1 indices.

Diluted tRVB PEPS

The PEPS representation for the diluted tRVB in Eq. (5.9) is constructed by introducing
two species of trimers; one that appear on the physical layer and ones that do not.
Graphically, we have the following construction:

|Φ〉 = T T

TT T

T

T T T

. (5.17)

We label the indices of the tensor T̃ with {0,+1,−1,+1̃,−1̃}. We now have two pairs of
uncoupled charges, each of which have the similar diagrams as Eq. (5.4). In order to
preserve the correspondence with the partition function in Eq. (5.3), we must also take
the square root of each weight. The black dot on each link represents a projector, which
signals the presence of one type of trimer on the physical layer, and gives a fugacity
contribution z to the second type

0 0

0

= = 1,
±1 ±1

1

= z
±1̃ ±1̃

0

. (5.18)

The corresponding PEPS tensor, formed by contracting one T̃ and two projectors, has
bond dimension D = 5. It should be noted that the double-layer tensor—coming from
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Figure 5.A.1: Allowed diagrams at each vertex for the restricted tRVB model, up to
rotations of π/2.

the contraction of the norm 〈Φ|Φ〉—can be reduced to dimension 9 (instead of the naïvely
expected 52). We observe this by performing Gaussian elimination on the tensor, which
is exact up to numerical precision.

Restricted tRVB model

The mapping to Rydberg atoms in Sec. 5.4 suggests the ansatz state in which we restrict
the trimer configurations to not have any “wedged” configurations, as shown in Fig. 5.4.3.
We start from the arrow representation in Fig. 5.3.1(d), but we introduce new color
labels

. (5.19)

Referring to Fig. 5.A.1, we start by labelling the two outgoing arrows of a bent trimer with
different colors (blue and orange). To enforce the additional constraint, we introduce a
dashed arrow which continues anticlockwise from the blue arrow. Notice that the arrow
does not convey any charge information, as all dashed lines correspond to a Z3-charge 0.
A vertex with the middle of the trimer cannot couple to it directly since it requires two
gray lines. The other diagrams then account for the possible ways of closing the dashed
lines. Accounting for rotations, in total there are 28 distinct diagrams.

The construction of the tensor network from Fig. 5.A.1 is straightforward, and is
similar to Eq. (5.4). We must however remember that the mapping from the arrow
representation to the index of the tensor is different if a leg of the tensor is ingoing or
outgoing. Each leg of the double-layer tensor is then eight-dimensional.

tRVB model on the honeycomb lattice

On the honeycomb lattice there is only one type of trimer. On each vertex of the lattice
we can place the tensor

−1 0

0

+1 +1

0

=

0

+1

0 0

−1

−1

=

= 1

= 1





∀ rotations (5.20)
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to obtain the corresponding partition function. To convert the problem into a TN on the
square lattice, we define the tensor

=T . (5.21)

Similarly to the case of square lattice in Eq. (5.5), this tensor obeys a similar transforma-
tion: (σ† ⊗ σ† ⊗ σ ⊗ σ)T = ω2T .

tRVB model on the triangular lattice
On the triangular lattice an efficient TN representation can be found in the dual-lattice
picture, where a site is defined on each triangular face, similarly to the way in which
one would propose a Rydberg implementation. In this picture, only one site around each
original vertex of the triangular lattice can be occupied. Correspondingly, in the TN
picture we define a δ-tensor on each face, representing the site

=
0 0

0

1 1

1

= 1 , (5.22)

which is connected to three rank-6 constraint tensors
1

0

0

0

0

0

= 1




∀ rotations . (5.23)

We can then bring the problem back to a TN contraction on the square lattice by first
defining a decomposition of the constraint tensor

= , (5.24)

and performing the contraction

= . (5.25)



A conclusion is the place where you got tired of thinking.

M. H. Fisher [270]

C
h
a
p
t
e
r

6
Conclusions and outlook

The leitmotif of this thesis is the language of tensor networks. Using this framework, we
have contributed to new methods for the study of many-body physics, and have applied
well-established methods to study interesting physical systems. After having introduced
the basic notions and having provided a brief overview of the field in Chapter 2, some
works performed during this PhD have been presented. While the problems tackled
are quite different, they are all difficult to solve with conventional methods. All touch
upon open questions in quantum many-body systems, and hold an intrinsic interest
of their own, such as describing equilibrium states, especially in case of frustration,
long-range interactions or higher dimensions, understanding non-equilibrium dynamics
and examining non-trivial states of matter which do not have any classical counterpart.

In Chapter 3, we focused on equilibrium physics by constructing an alternative to
the Gibbs ensemble. This ensemble can reproduce the local physics of the corresponding
thermal state, and can be constructed variationally using tensor networks. Indeed, we
investigated the numerical optimization of one-dimensional tensor networks for this
purpose. More generally, this method is applicable in cases where the von Neumann
entropy is hard to estimate but the Rényi entropies are readily available. This could be
applicable for example to neural network representations of quantum states [269]. As we
mentioned in Chapter 1, connections between machine learning techniques and tensor
networks have been explored in the last years. This connection works both ways. On one
hand, the techniques developed for deep neural networks are being applied to construct
powerful computational ansätze for many-body quantum systems [31, 269]. This is
a promising direction for tackling challenging problems in higher dimensions, where
tensor networks may be too costly to be competitive. On the other hand, the tensor
network framework is being introduced to the machine learning community, and the
connections with entanglement may assist in devising better methods and architectures
in machine learning (see for example Refs. [30, 32]).

In Chapter 4, we explored tensor-network applications to a non-equilibrium setting.
We studied the entanglement in the temporal direction in discrete integrable dynamics,
and argued that integrable systems generally display a logarithmic growth. This sheds
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light on the case of integrable dynamics, and unveils the unexpected role of interactions.
Fully characterizing the origin of this slow growth of entanglement will lead to a better
undestanding of the dynamics of integrable systems, but may also have consequences
for more efficient numerical simulations. Indeed, as discussed in Sec. 2.5, conventional
tensor-network schemes are limited by the linear growth of the spatial entanglement.
At the same time, the long-time limit of local observables is typically described by
thermal ensembles, which are themselves efficiently representable by tensor networks.
This somewhat contradictory situation has sparked an ongoing effort to find new ways
of avoiding the entanglement barrier and predicting the long-time behavior of local
quantities, as this would be of great interest to probe and understand the onset of
thermalization.

In Chapter 5, we explored the state composed of the superposition of all trimer
configurations on different lattices. We demonstrated that these quantum states can
host topological order, and connected them to Z3 lattice gauge theories. Building upon
these results, we provided a simple model Hamiltonian with a topological trimer ground
state, and devised an implementation of this model in Rydberg atom setups. Using exact
numerical methods, we studied the experimental preparation of this state and showed
that its topological nature can be captured on small-scale systems. Therefore, beyond the
theoretical interest, these findings pave the way to the experimental realization of more
complex forms of topological order. The latter is a crucial step towards the development
of a fault-tolerant quantum computer.

More specific and technical conclusions can be found at the end of each respective
chapter. Having come close to the end, we can take some distance and reflect on this work
and the field in a broader context. Broadly speaking, this work lies at the intersection
of many different branches of theoretical physics, chiefly condensed matter, quantum
information theory and statistical physics. The modest contributions reported in this
thesis can be seen as part of an emerging field, in which entanglement is not simply
viewed as a feature of quantum physics, but as a tool to probe many-body phenomena.
The realization of the existence of an area law of entaglement in gapped quantum
systems has furnished firm theoretical justification for tensor network states. At the
same time, it hints towards a holographic principle, and possible applications of tensor
networks to study quantum field theory and quantum gravity. Although it is not clear if
the expectations and promises that are attributed to tensor networks will all be fulfilled,
the field can already boast several achievements, both from a numerical, as well as an
analytical point of view.

On the numerical side, tensor networks have become the state-of-the-art tool to
variationally approximate ground states in one dimension and, in the last years, a
competitive method in two dimensions. Many technical aspects can still be improved;
it remains to be seen what will yield practical speedups. Obtaining results in higher
dimensions is much more challenging, as tensor network (at least the generalizations
of MPS and PEPS) still suffer from their own form of a curse of dimensionality: as the
connectivity increases, so does the number of parameters inside the tensors. While we
expect that tensor networks may become a go-to numerical method for two-dimensional
physics in the coming years, it is unlikely that this will be the case for three or more
dimensions.

In parallel, tensor networks have become a tool for theoretically manipulating quan-
tum systems and obtaining analytical results. Many theoretical achievements, such as
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the classification of symmetry protected phases in one dimension can be understood in
the language of tensor networks. In recent years, MPOs are being explored as algebraic
elements, and interesting connections with fusion categories [271–273] and weak Hopf
algebras [13] are being discovered. We would also like to conjecture that new theoretical
insights are going to provide the input for new improved numerical algorithms. It is
likely that many more exciting discoveries are just around the corner.
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