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Abstract

While electric vehicle (EV) adoption is crucial to reducing the carbon footprint of future
mobility systems, many drivers remain reluctant to purchase an EV if they cannot rely on
an at-home charging solution. Limited public charging station availability and reliability
cause the so-called charge anxiety, i.e., the fear of not being able to rely on the public
charging infrastructure when needed to recharge a vehicle, due to non-usable or missing
public charging stations. This thesis aims to mitigate the users’ perceived charge anxiety
by maximizing the chances of quickly finding an available and usable public charging
station, i.e., with a non-broken, reachable, and compatible charging connector.

This thesis consists of an introduction, a state-of-the-art chapter, three methodolog-
ical chapters, and a conclusion. The introduction presents background information on
vehicle electrification developments and principal barriers against a faster EV adoption.
The state-of-the-art chapter comprehensively reviews related applications and methodol-
ogy papers, and identifies existing research gaps. The first two methodological chapters
address the problem from a short-term user perspective. Here, the objective is to pro-
vide reliable in-car guidance instructions that allow a driver to seamlessly find a suitable
charging station by explicitly accounting for a charging station’s availability uncertainty.
The first methodological chapter studies a single-agent setting and introduces a compre-
hensive algorithmic framework composed of a rollout algorithm and a multi-label setting
algorithm with novel dominance criteria, which allows to save up to 44% of a driver’s
search time. The second methodological chapter studies a multi-agent setting and focuses
on identifying the best possible driver coordination strategy, via information-sharing and
possible charging requests centralization. Numerical results show that advanced charg-
ing station search methods, including driver coordination, outperform greedy charging
station searches by decreasing the multi-agent search cost by up to 38%. The third
methodological chapter addresses the problem from a long-term system perspective and
aims to minimize potential station utilization conflicts due to uncoordinated charging
demand between navigation service platforms. Here, the objective is to synchronize the
public charging infrastructure utilization of several drivers that get guidance instructions
through self-interested navigation platforms. A mechanism design approach is developed
that allows to gear the behavior of such platforms towards an outcome that benefits all
EV drivers, by decreasing the social cost up to 42% in an online problem setting. Finally,
a conclusion summarizes and critically discusses the main methodological contributions
and managerial insights of this thesis, and highlights possible avenues for further research.
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2 Introduction

1 Background

The transportation sector contributed to 26% of worldwide carbon emissions in 2019 (IEA
2019) and is the second biggest carbon emitter, with more than 90% of the sector’s energy
demand being oil-based (EIA 2021). Accordingly, decarbonizing future mobility systems
is crucial to achieving climate change mitigation targets. To this end, mitigation policies
from the international panel on climate change (IPCC) report urge to foster a modal shift
toward low-carbon mobility systems (e.g., public transportation, shared mobility, walking,
cycling), to enhance communication technology (e.g., in order to facilitate home-office), and
to improve urban planning (e.g., to lower traveling distances) (Sims et al. 2014). While these
measures increase the use of non-motorized mobility, it remains essential to cut down the
prevailing carbon emissions caused by the remaining motorized mobility modes.

In this context, battery electric vehicles (BEVs) constitute an essential component of
future mobility systems, which allows to cut emissions if accompanied by strong measures on
energy mix decarbonization, battery technology improvement, and vehicle weight reductions.
In countries with intensive coal-based electricity, electric vehicles (EVs) show little lifetime
emissions savings compared to conventional vehicles. In contrast, studies report significant
lifetime emissions reductions in countries with a low-carbon energy mix, e.g., a Nissan EV
Leaf in the UK emits 70% fewer emissions than an average conventional vehicle. Whereas
the EV uptake may increase the stress on electricity distribution and transmission networks,
smart-charging strategies can limit the additional energy consumption to meet the charging
demand, e.g., by no more than 10% in the UK (Cambridge Econometrics 2017). Studies
further show that electrification helps fleet operators to cut down emissions and operational
costs (cf. Schmidt et al. 2021). Over the last years, field experiments verified theoretical
expectations: the experimental electric car-sharing network rollout in the city of Stuttgart
resulted in 12 064 kg savings of CO2 per 100 000 km driven, given a total of over 2 000
active users (cf. Unterwegs 2020). In practice, existing commercial services, e.g., Weshare,
already operate free-floating electric car-sharing services; major logistics service providers
unveiled their plans to electrify their fleets (DHL 2019, Amazon 2019), and municipalities
increasingly operate electric buses.
To promote EV adoption for private users, the EU committed to invest 20 million euros

to foster clean, i.e., electric and hydrogen, vehicle sales, as well as one million euros in clean
charging stations (CSs) by 2025 (Virta 2021). Such investments support the EU target of
having 30 million clean vehicles on the road by 2030. Governments complementary aim to
support the shift from conventional vehicles to EVs for private vehicle owners through differ-
ent national incentivization mechanisms. Most western Europe countries offer tax exemption
(e.g., Belgium, Denmark, Norway) complemented by EV and charger purchase grants (e.g.,
Italy, France, Germany, The Netherlands, Luxembourg, Sweden, Spain). At the local level,
municipalities can also implement incentive mechanisms (e.g., free parking space, charger
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purchase grant), or enforce punitive measures (e.g., eco-tax, conventional vehicles ban in
cities). Moreover, the automotive industry significantly matured its production of BEVs
in recent years, announcing more than 100 new pure EV models to be ready by 2024 and
accessible for all budgets. As a result, the market of privately owned vehicles is showing an
encouraging growth trend, with BEV sales doubling in 2021 and the share of BEVs increasing
in the EV mix, i.e., BEV and plug-in hybrid EV, in 2021.

However, an in-depth look at the adoption rates reveals significant geographical disparities
worldwide. In 2021, the EV share of new vehicle sales reached 75% in Norway but only 2% in
the US. The BEV share of the total vehicle volumes attained 52% in Norway but only 7% in
France (cleantechnica 2021). In general, public charging infrastructure coverage in Europe is
highly uneven and correlates with the EV market share and the GDP per capita of the coun-
try (ACEA 2021). For example, the Netherlands possesses 47.5 EV chargers (EVC)/100km,
but Lithuania only reports 0.2 EVC/100km (Intertraffic 2021). Besides lacking significant
charging infrastructure interoperability, the infrastructure quality can be heterogeneous even
within a single country. In recent years, highway-charging service quality has increased, but
public charging infrastructure can still be largely insufficient in remote areas with limited
connection to larger cities or highways (cf. Hsu and Fingerman 2021, Zap-Map 2022). Fur-
thermore, a user survey (Brückmann et al. 2021) reveals that house-ownership correlates
with a higher EV adoption rate contrary to flat owning or renting. In the former case, users
can easily install and rely on their home-charging solution, whereas in the latter case, users
depend on the charging and parking capabilities of their building. If home-charging is im-
possible, then the likelihood to adopt an EV is much lower, as users must solely rely on the
public charging infrastructure, which might be missing or deficient.
In fact, the major remaining obstacles to a faster private EV adoption are the users’ per-

ceived anxieties related to recharging at public infrastructure. The range anxiety describes
the fear of not being able to reach the next CS with the current battery’ state of charge in
a sparse charging network. Furthermore, the charge anxiety describes the fear of relying on
a public CS to recharge an EV, due to the heterogeneous quality and availability of existing
charging infrastructure. Map and EV-navigation services attempt to mitigate these anxieties
by providing driving range or CS locations, along with – if available – additional charging
station characteristics, e.g., plug-types, opening hours, and availability status. However,
such services still proved insufficient to cope with all existing infrastructure limitations, e.g.,
unreliable or missing availability information.
Not being able to find an available charging station (US) or a non-broken charging station

(France) is the most cited pain point and source of frustration caused by missing, poorly
maintained, or hardly accessible CSs (TomTom internal study 2020). The - sometimes
unexpected - long charging time comes as second most cited source of frustration. In addition,
a crucial limitation factor is the availability and reliability of CSs’ availability status data.
While 14% of the CSs do not report dynamic availability in the Netherlands, this number
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may rise to 80% in Berlin, Germany (TomTom Internal study 2020). When dynamic data
is available, discrepancies between reported and actual physical availabilities may still be
observed due to physical limitations, e.g., broken or unreachable connectors, but also due to
ICEing, i.e., conventional vehicles parking next to charging stations and blocking the access
for EVs. Up to 34% of observed CSs report being available while actually being blocked
by a non-charging (electric) vehicle in Berlin, in areas with low parking availability (Guillet
et al. 2022). Similarly, french EV drivers mention planning their routes and charging stops
by considering fallback stations in the vicinity of the initially planned CSs, to cope with
availability uncertainty (ACOZE 2018).
Uncoordinated charging represents another limiting factor. Today’s navigation service

APIs serve stateless charging requests, i.e., recommend identical CSs for users with similar
search attributes, e.g., same request location, which may create station utilization conflicts.
A survey realized by the Norwegian EV users association points out that 88% of users have
experienced queuing at a fast-CS (Frydenlund 2016). In line with these users’ observations,
facilitating a reliable EV charging process by ensuring that drivers can easily find and seam-
lessly use an available CS is critical to reducing EV drivers’ anxieties (Bonges and Lusk
2016, McKinsey 2020).

Accordingly, multiple measures may help to improve the users’ charging experience. At
the strategic planning level, increasing the CS coverage or the capacity of existing stations,
and detecting accurate availability through sensor detection is necessary to increase the
public charging infrastructure usability. Additional measures to enable a seamless charging
experience include improved interoperability between charging service providers but also
better price transparency (Bonges and Lusk 2016). As such strategic solutions require long
lead times, complementary solutions are necessary at the operational level to improve today’s
charging experience. Cooperative strategies leveraging vehicle-to-vehicle and vehicle-to-grid
technology may free up some charging capacities to cope with the currently undersized
charging infrastructure (You et al. 2016). However, such solutions remain unimplemented at
the moment due to immature technology, uncertain economic values, or low user acceptance
(Lauinger et al. 2017).
Against this background, we identify three levers to address today’s and future charg-

ing infrastructure deficiencies, with a high positive impact potential on the user’s charging
experience. From a short-term and operational perspective, easily implementable levers are

i) Providing a reliable charging experience by delivering reliable navigation guidance to
EV drivers through in-car or mobile navigation apps while accounting for the CS’s
availability uncertainty.

ii) Enabling local charging coordination by centralizing charging requests and enabling
information-sharing between vehicles and navigation services besides accounting for
CS’s availability uncertainty.
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From a long-term strategical perspective, the development of vehicle electrification may
reduce some of today’s issues, such as charging station availability uncertainty, e.g., with
sensors, new parking regulations. However, the expected charging demand increase may lead
to new problems. In particular, misaligned charging demand and charging capacity supply
with respect to charging stations or energy availability can lead to station use congestion and
users’ dissatisfaction, even within a properly dimensioned charging infrastructure. Expected
infrastructure bottlenecks can be addressed in the future as follows

iii) Providing system-level charging demand coordination by aligning locally coordinated
charging demand with available CSs, via incentivization mechanisms controlled by
non-profit entities, e.g., municipalities.

2 Aim and scope of the thesis

This thesis aims to address existing but also upcoming challenges of high-practical relevance
related to EV adoption, at both the individual and the system level. Specifically, the scope
of this thesis is twofold. First, the thesis provides an optimization-based framework and con-
tributes novel models and novel broadly applicable solution methods that solve the following
problems

i) Single-agent CS search under uncertainty: In a single-agent setting, an EV driver aims
to find a sequence of stations that minimizes her expected search cost to reach an
available station, considering heterogeneous CSs with stochastic availability.

ii) Multi-agent CS search under uncertainty: This multi-agent setting extends the single-
agent setting described above by accounting for possible charging requests centraliza-
tion, and for information-sharing between drivers.

iii) Competitive CS allocation: Assuming deterministic CS availability, with selfish navi-
gation platforms that optimally allocate their respective charging demand to stations,
a non-profit entity aims to best align the overall charging demand with all available
CSs.

Second, managerial and technical insights that validate and evaluate the benefits of the
proposed solutions are derived from extensive numerical experiments, based on real-world
data.

3 Structure and contribution of the thesis

The remainder of this thesis is organized as follows.
Chapter 2 reviews the literature related to the three optimization problems described

above. Accordingly, path planning problems, as well as search problems under uncertainty
are reviewed, both in single-agent and multi-agent settings. In addition, resource allocation
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problems in game-theoretical settings are discussed. Besides the analysis of application
papers and the used methodology, this chapter reviews purely methodological papers and
identifies existing research gaps.

Chapter 3 introduces the stochastic charging pole search (SCPS) problem and formalizes
it as a finite-horizon Markov decision-process (MDP). To solve this problem, this chapter
derives a comprehensive algorithmic framework composed of a novel label-setting algorithm
that provides an exact and a heuristic solution method best suited for small to medium-sized
test instances, and a rollout algorithm that allows to solve large-sized instances. An extensive
computational study outlines the benefit of a stochastic search method, compared to naive
EV users’ search strategies. Specifically, the numerical results highlight that such advanced
search methods may help an EV driver save up to 44% of her search time while increasing the
likelihood of successfully terminating the search within a given time budget. Results further
show that accounting for time-dependent recovering probabilities has a negligible impact on
the driver’s search experience.

Chapter 4 introduces the multi-agent SCPS problem (MASCPS), by extending the SCPS
problem to a multi-agent setting. The planning problem is first formalized as an MDP, that
can be solved from a driver or a system perspective. Then, several online algorithms are
developed, that allow solving various information-sharing scenarios: drivers can share their
planned visits, their observations of a charging station’s occupancy, or both. Practical and
managerial insights are derived from an extensive simulation-based computational analysis,
emphasizing the best search coordination strategies, considering quality performance and
implementability, i.e., real-world requirements to implement the solution in practice. The
results show that a decentralized coordination strategy that provides static recommenda-
tions to drivers, i.e., a fixed sequence of stations to visit, decreases the system cost obtained
without coordination by 26%, as long as visit intentions are shared. Additional experiments
show, that from a user perspective, a coordinated search strategy dominates an uncoordi-
nated search strategy.

Chapter 5 introduces the fleet CSs allocation (FCSA) game, in a setting with determin-
istic CS availability, in which multiple commercial navigation service platforms, modeled
as players, aim to best allocate their charging demand to existing available CSs. First, it
is shown that no pure Nash equilibrium guarantee exist. Then, centralized coordination is
enforced by implementing the Vickrey–Clarke–Groves (VCG) mechanism in both offline and
online settings. In the online setting, a data-driven station allocation policy is derived for
the mechanism’s principal. Numerical studies analyze the benefit of centralized coordination
over purely selfish agents’ behaviors. The results show that VCG-based coordination can
achieve on average a 52% social cost decrease in perfect information settings, and a 42%
social cost decrease in online settings. Results further highlight that a data-driven online
policy outperforms a myopic online policy.

Chapter 6 concludes the thesis, summarizes its contribution and results, and provides a
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brief research outlook.
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1 Introduction

Electric vehicle (EV) adoption raises new operational challenges, due to limited vehicle driv-
ing range, hard-to-predict energy consumption, and long recharging times. Accordingly,
EV fleet operators must plan their vehicles’ routes and charging schedules but can mitigate
operational uncertainties if relying on their own private charging infrastructure and central-
ized coordination. In contrast, private EV users are additionally facing road and charging
networks uncertainties, due to road and station congestion, public charging infrastructure
unreliability, and uncertain behaviors of other road and charging station (CS) users. Ac-
cordingly, increasing private EV adoption necessitates reducing users’ anxieties related to
unreliable charging (Bonges and Lusk 2016, Myersdorf 2020). Besides enhancing charging
tariffs transparency and up-scaling the charging infrastructure, readily usable solutions that
can provide a seamless charging experience to the drivers will be necessary (McKinsey 2020).
Against this background, this thesis focuses on developing algorithmic solutions that allow

to provide reliable guidance to private EV users via navigation services to address infras-
tructure and charging network congestion-related uncertainties. The work presented in this
thesis belongs to several research streams, covering different methodological concepts, e.g.,
Markov decision process (MDP), graph theory, mechanism design (MD), and contributes to
different application areas, e.g., EV routing, and multi-agent system (MAS). As the thesis
focus lies on private users, work centered around logistics operations that only considers
private depot recharging, is excluded from this literature review. However, work that ad-
dresses uncertainties related to non-depot charging in logistics is included. The remainder
of the review divides into three EV focused topic areas that best relate to the optimization
problems analyzed in the subsequent chapters,

• En-route charging under uncertainty: addresses work on road network and CS capacity
and availability uncertainties, focusing on single-agent settings.

• Coordinated charging under uncertainty: addresses work on users, road and charging
network uncertainties, focusing on multi-agent settings, with controllable agents.

• Non-cooperative charging: addresses work on user-related uncertainties, focusing on
self-interested multi-agent settings.

For each topic area, the following sections review related problems that may also extend
beyond EV applications and provide an overview of possible solution approaches.

2 En-route charging under uncertainty

This section focuses on optimizing charging station selection under uncertainty in a single-
agent setting. Section 2.1 reviews path planning under uncertainty, first in general settings,
and then in the context of EV path planning with intermediate charging stops. Then,
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Section 2.2 focuses on related resource search problems, including but not limited to CS
search.

2.1 Path planning under uncertainty

Path planning under uncertainty was first analyzed within the problem of pursuit (Eaton
and Zadeh 1962), which has been defined as the problem of catching a target randomly
moving between a finite set of states. Frank (1969) mentioned the path planning problem
under uncertainty as the shortest path problem in probabilistic graphs, while Derman (1970)
referred to it as the first passage problem to name a few. Bertsekas and Tsitsiklis (1991)
defined the stochastic shortest path problem that allows both positive and negative arc costs,
as the stochastic variant of its deterministic counterpart. The authors further showed that
the problem variant with non-negative or non-positive arc costs can be formalized as an MDP
(cf. Bellman 1954, Puterman 1994). Considering arc weights to be independent, discrete, and
time-varying random variables, Miller-Hooks and Mahmassani (1998) studied the least travel
time path problem, while Miller-Hooks and Mahmassani (2000) solved the least expected
time path problem using a label-correcting algorithm. Nie and Wu (2009) addressed the
problem of finding a-priori non-dominated paths in stochastic time variant networks, with
a guaranteed likelihood of on-time arrival. Focusing on an optimal routing policy (ORP),
i.e., a set of routing decisions depending on realized arc weights, rather than an optimal
path (i.e., a set of vertices), Andreatta and Romeo (1988) studied the ORP problem in a
stochastic network. Polychronopoulos and Tsitsiklis (1996) extended Andreatta and Romeo
(1988)’s work to account for correlated arc weights. The first time-dependent variant of the
ORP problem has been studied by Hall (1988). Assuming dependent random arc weights,
Gao and Chabini (2006) proposed the first framework for ORP problems, in stochastic time-
dependent networks. They derived an exact algorithm, as well as approximation strategies,
to solve the online problem variant with perfect information, i.e., when a traveler knows at
a given time t about all edges’ travel times realizations prior to t. Gendreau et al. (2015)
provided a comprehensive overview of recent works on time-dependent arc traversal times.
In the context of path planning problems for EVs, Jafari and Boyles (2017) studied the

problem of finding minimal-cost EV paths under stochastic arc travel times and energy con-
sumption. They proposed a label-setting algorithm (cf. Martins 1984) based on generalized
dynamic programming (cf. Carraway et al. 1990). While Jafari and Boyles (2017) focused
on uncertain arc travel costs, De Weerdt et al. (2016) and Sweda et al. (2017) additionally
modeled uncertain CS availability due to station congestion in the realm of long-distance EV
path planning. De Weerdt et al. (2016) solved a stochastic time-dependent routing problem
modeled as an MDP that accounts for waiting time at CSs, based on the work of Gao and
Chabini (2006). The authors implemented a system that centralizes historical and reported
EV drivers routing intentions to derive probabilistic waiting times. Each EV driver benefits
from the centralized information to optimally plan her routing policy. In Sweda et al. (2017),
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the authors explicitly modeled stochastic CS availability for the first time, and assumed that
occupied charging stations become available again after some expected amount of time. Be-
sides deriving a-priori routing strategies based on dynamic programming in a stochastic grid
network, they further derived dynamic re-planning heuristics to obtain en-route adaptive
routing and charging strategies. Gareau et al. (2019) extended the work of Sweda et al.
(2017), by solving real-world instances, and accounting for dynamically selected alternative
paths upon an EV driver’s journey. Focusing on charging operations for EV fleets instead
of private users, Kullman et al. (2021) were the first to consider charging strategies that
use both an operator’s private and public charging infrastructure, while accounting for the
CS availability uncertainty. Specifically, they represented the problem of deciding where to
recharge the fleet’s vehicles as a finite-horizon MDP, allowing multiple vehicles to queue at
a CS if already in use. As can be seen, there has been a very limited number of publications
that explicitly modeled stochastic CS availability for EV path planning.

2.2 Resource search

Resource search problems deal with finding resources under availability and location un-
certainty in grid or graph networks. In contrast to path planning problems, the process
of searching for resources may terminate after one or many resources have been collected
independent of a target destination. While practical solutions in this context may only rely
on real-time information sharing, e.g., using wireless embedded sensors, we only review work
that explicitly models resource stochasticity. Such problems can be either viewed as variants
of the traveling salesman problem (TSP) or as sequential decision-making processes. In the
former case, nodes that contain resources may represent customers to visit, weighted accord-
ing to the resource availability probability. In the latter case, deciding which resources to
visit next occurs after each visit to an occupied resource.
Focusing on the first category, Verroios et al. (2011), and Arndt et al. (2016) addressed the

public parking spot search problem, considering probabilistic parking spot availability. Ver-
roios et al. (2011) assumed availability probabilities to depend on the traveled time between
the origin and the potential parking spot, located on the graph’s nodes. They derived edge
weights based on a cost combining the time-dependent availability probability and the deter-
ministic edge travel times, and implemented an exact solution based on the time-dependent
TSP for small-sized instances. Arndt et al. (2016) defined the problem on a probabilistic
road network graph and associated each edge with a probability representing the likelihood
of finding a free spot while traversing it. Their probabilistic model built upon the work of
Jossé et al. (2015), and assumed time-independent and a-priori known probabilities. The
authors showed the NP-completeness through reduction to the Hamiltonian path problem,
and used a branch-and-bound based procedure to find a path that minimizes a generalized
cost, corresponding to the expected arrival time at a free charging spot. Focusing on similar
applications, Shao et al. (2018) modeled the traveling officer problem that aims to find a tour



12 State of the art

maximizing the probability of issuing infringement notices for vehicles that violate parking
restrictions, and proposed an ant-colony optimization based heuristic solution.
Modeling the resource search as a decision-making process, Tang et al. (2013) formalized

the taxi customer pick-up problem as an MDP, modeling for each (clustered) pickup area
the probability of finding a lucrative passenger, and solving small-sized instances with a
policy-iteration algorithm. Guo and Wolfson (2018) solved the problem of collecting generic
resources with uncertain availability located on a graph’s vertices as a dynamic program.
They forbade agents to wait at an occupied resource similar to Arndt et al. (2016) but allowed
the availability probability of a resource observed as occupied to recover over time. More
recently, Schmoll and Schubert (2018) formalized the dynamic resource routing problems as
an MDP, modeling probabilities of resources allowed to reappear (Jossé et al. 2015). Their
approach built on real-time dynamic programming to provide routing decisions to agents
that can account for up-to-date resource state information. Schmoll and Schubert (2020)
extended Schmoll and Schubert (2018) to a resource collection problem, in which an agent
aims to collect as many resources as possible within a limited time span (cf. Shao et al. 2018).
Here, resource availability is stochastic but cannot be explicitly represented, as they used a
deep Q-network-based solution method, to solve their problem formalized as a Semi-MDP
(S-MDP) (see Sutton et al. 1999) with unknown transition functions.
None of the work that modeled stochastic resource search processes as sequential decision-

making processes has considered both the heterogeneity of the resources and the possibility
to wait for an occupied resource to become available again. Furthermore, no exact algorithms
solve the underlying MDP by exploiting the problem structure. In our specific application
case, the decision process can be represented on a road network and adapted multi-criteria
shortest path algorithms can be used as computationally efficient solution approaches.

3 Coordinated charging under uncertainty

In this section, we survey work that relates to the problem of coordinating the utilization
of CSs across multiple EV users, under uncertainty. Section 3.1 reviews resource search
problems under uncertainty in a multi-agent setting, while Section 3.2 details work focused on
multi-agent path planning. We analyze both research streams in the context of MAS, focused
on controllable agents. A MAS describes a self-organized system composed of multiple
agents whose actions interfere with each other. The degree of information, centralization,
and cooperation, i.e., whether agents share a common goal, help each other, or pursue their
individual goals, may significantly vary according to the underlying problem.

3.1 Multi-agent resource search

Multi-agent resource search problems often arise in the context of robotics and system
control theory. A commonly analyzed problem is the target search problem via multiple
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sensor-detection, where uncertainty may relate to both the target location and the sensor
observation (Polycarpou et al. 2001, Bourgault et al. 2003, Song and Teneketzis 2004, Wong
et al. 2005). Song and Teneketzis (2004) assumed that sensors are located at each potential
target location and aimed to find an optimal sensor utilization strategy, given that sensors
can be used only once at a time. Focusing on moving vehicles, Polycarpou et al. (2001)
dealt with the problem of cooperatively detecting a target using vehicles with sensors ca-
pabilities. They proposed a two-stage solution framework, that i) maps an environment
using the vehicle’s own sensing capabilities and observation sharing, and ii) computes the
optimal trajectory accordingly. Similarly, a problem setting with several moving sensing
agents searching for a resource with no a-priori information on its location has been studied
in Bourgault et al. (2003). Here, decision-making was decentralized, i.e., took place at the
agent level. However, agents shared observations via a decentralized Bayesian data fusion
technique, allowing agents to build equivalent representations of their environment. Wong
et al. (2005) extended this work to a multi-target search problem with independent targets,
such that several instances of a Bayesian filter can be used. In addition to Bourgault et al.
(2003)’s setting, Chung and Burdick (2008) leveraged belief distribution feedback to dynami-
cally adjust agents’ search strategies. Following Wong et al. (2005), Dai and Sartoretti (2020)
analyzed a multi-target environment in a decentralized-decision making setting, leveraging
local coordination via an information exchange procedure between nearby agents. Using a
deep reinforcement learning (RL) solution approach, their results highlighted the benefit of
collaboration with information-sharing compared to a non-collaborative setting.

More recently, related search problems were studied in the context of taxi or ride-hailing
order dispatching for vehicle fleets in large-scale stochastic settings (see Xu et al. 2018, Wang
et al. 2018b, Tang et al. 2019, Kullman et al. 2022). Here, the customer to be picked up
constitutes the resource, and uncertainty relates to the location of future customer demand
but not the availability of the resource at a given location. Xu et al. (2018) analyzed
the problem of matching drivers and on-demand orders on a ride-hailing platform. Their
approach accounted for future customer orders by formalizing the sequential planning process
as an MDP. They obtained the matching action from a min-cost assignment problem solution,
deriving the assignment cost from the temporal difference error between the driver’s state
at picking and its current state, using approximated evaluation of the value function. Tang
et al. (2019) extended the work of Xu et al. (2018), by formalizing the sequential process of
matching customers and vehicles, as a S-MDP. The authors extended the RL approach to a
deep-RL approach, using the Cerebellar Value Network (CVnet), and adopting the transfer
learning solutions described in Wang et al. (2018b). Similarly using deep-RL but with
dynamic DQNs, Kullman et al. (2022) studied the order dispatching problem for ride-hailing
platforms operating EVs, accounting for battery depletion and vehicle recharging.

So far, there has been no work on the multi-agent search problem in the context of EV CS
search under uncertainty. Most of the work on multi-agent search problems treated agents
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as fully cooperative, and synchronously searching for one or multiple resources. In none of
the settings, multiple agents can visit several occupied resources in parallel, and stop their
search at the first available resource. In large-scale ride-hailing settings with unseen future
customer demand, most publications integrate a learning component as uncertainty only
relates to future demand. In the case of multi-agent CS searches, uncertainty relates to both
future demand and resources availability, but can be explicitly represented for resources’
availability,

3.2 Multi-agent path planning

Finding one (or many) resource(s) for multiple agents can be analyzed from a multi-agent
routing perspective, which minimizes the possible collusion between agents when visiting
or heading towards the resources. In the context of robot navigation in MAS, the multi-
agent pathfinding (MAPF) problem (cf. Erdmann and Lozano-Perez 1987) aims to find non-
colluding routes for several agents that simultaneously traverse a transportation network.
Researchers have solved a variety of MAPF problem variants, with different sets of assump-
tions and objectives. Stern et al. (2019) gave a recent overview of MAPF problems in the
literature, besides existing benchmarks to evaluate the performances of MAPF algorithms.
Unlike non-cooperative path planning, agents have full knowledge about other agents’

plans in cooperative path planning, and do not use this knowledge to prevent other agents
from reaching their destination unlike in antagonistic path-finding. Focusing on the former,
planning can be either coupled, i.e., realized by a centralized planner, or decoupled, i.e.,
decomposed into tasks that can be individually solved by each agent. Coupled planning
can be highly intractable (Hopcroft et al. 1984) but solves the problem to optimality (cf.
Hopcroft et al. 2008, Standley 2010, Standley and Korf 2011, Sharon et al. 2011). Sharon
et al. (2011) however showed that there do not exist any dominant optimal algorithms,
due to the high sensitivity of the optimal algorithms’ performances to the test instances
characteristics, e.g., graph sparsity. Decoupled planning (Erdmann and Lozano-Perez 1987)
allows agents to individually search for a path while avoiding collision given other agents’
states, which yields competitive computational times but no optimal solution. In Zelinsky
(1992), the authors developed the local repair A* algorithm to account for the re-planning
of an agent’s initial route when the risk of collision with another agent increases. Silver
(2005) extended the local repair A* by hierarchically pre-planning agents’ routes but also
re-planning routes at regular intervals to avoid a collision. In Sharon et al. (2015), the
authors presented an optimal conflict-based search algorithm that leveraged both coupled
and decoupled planning, using a two-level solution approach. In this work, a high-level
constraints tree is maintained based on potential route conflicts for all agents, while at the
agent level, each agent’s path is planned such that it satisfies all upper-level constraints.
As such traditional multi-agent path planners can fail to scale, modern artificial intelligence
(AI)-based approaches may solve larger-scale settings, e.g., Sartoretti et al. (2019)’s work
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on large factory robot navigation. In this work, the authors combined distributed RL (cf.
Foerster et al. 2016, Gupta et al. 2017, Lowe et al. 2017) and imitation learning to train a
high number of agents to cooperatively find non-colluding routes. Dai and Sartoretti (2020)
extended Sartoretti et al. (2019)’s work by identifying conventions and agent behaviors that
can be locally learned to improve the implicit coordination and solve the MAPF problem in
dense and more constrained environments. In a similar setting, Li et al. (2020) used graph
neural networks to improve agents’ knowledge sharing.
None of the existing work has studied cooperative path planning problems in the larger

context of EVs. Here, some exploration of the value of information-sharing and planning
centralization in the multi-agent EV path planning problem may yield interesting insights,
especially focusing on autonomous mobility-on-demand systems. In particular, it may be
crucial for system designers to implement the right-trade off between system operational
performance and data-efficiency.

4 Non-cooperative EV charging

This section details work that relates to EV charging with self-interested agents. Focusing
on a game-theoretical perspective, Section 4.1 reviews resource allocation games, before
Section 4.2 briefly details work that focuses on congestion reduction. Finally, Section 4.3
reviews MD techniques to align agents and system interests, and related application works.

4.1 Resource allocation games

Resource allocation games model the allocations of pooled resources among non-cooperative
agents. Congestion games were introduced as a framework to model resource allocation
games (Rosenthal 1973) and were referred to as atomic selfish routing games in contrast to
non-atomic selfish routing games (see Pigou 1920, Wardrop 1952). In congestion games, there
exists a common set of resources that any player can use. A player’s strategy consists of a
subset of the resources, while its payoff amounts to the sum of the selected resources costs. A
resource cost depends on its utilization congestion, i.e., is a function of the number of players
simultaneously selecting this resource. Monderer and Shapley (1996) showed that congestion
games belong to the broader category of potential games, which admit a player-independent
function – a potential function– that reflects a player payoff variation between two different
strategies. Such games have essential properties, such as the guaranteed existence of a pure
Nash equilibrium (PNE) or the finite improvement property, i.e., best response dynamics
convergence. Milchtaich (1996) proved that congestion games can extend to player-specific
payoffs without losing the PNE existence guarantee for singleton strategies. While Fotakis
et al. (2002) showed that weighted players games with singleton strategies similarly possess a
PNE, this property does not hold anymore for non-linear resource utilization cost functions
(Fotakis et al. 2005). Ackermann et al. (2009) completed these works by showing that
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the PNE existence guarantee holds when strategies are defined as the bases of a game’s
resources matroid. Airiau (2014) studied a multi-agent resource allocation problem that
allows for resource synergies, by defining a player’s payoff as the difference between its items
bundle valuation and the resource congestion –or delay– cost. By possessing a PNE, this
class of games is of particular interest to studying real-world applications, such as load-
balancing (Even-Dar et al. 2003, Goemans et al. 2006), network design (Anshelevich et al.
2008), wireless network selection (Cesana et al. 2008, Malanchini et al. 2013), or tolling
mechanisms (Paccagnan et al. 2021).

Game-theoretical work focusing on EV charging applications generally studied the equi-
librium of energy prices or charging strategies that best align available energy supply with
existing charging demand. Tushar et al. (2012) modeled the problem of defining profitable
energy prices in presence of self-interested EV drivers as a Stackelberg game. Here, the
electricity grid operator constitutes the leader, while EV drivers constitute the followers.
Yoon et al. (2016) followed a similar approach but additionally considered constraints on the
minimum energy amount to recharge. In Ma et al. (2013) or Karfopoulos and Hatziargyriou
(2013), a large population of EV drivers must define the amount of energy to recharge at
each point in time during a time-limited interval, based on energy prices that depend on
the total charging demand. The authors iteratively computed a pure ε-equilibrium that
achieves a near-optimal social cost for heterogeneous agents, and the social optimum for
homogeneous agents. Zhang and Li (2016) extended Ma et al. (2013)’s work by assuming
maximal individual drivers’ charging rates and limited station transformers, for local charge
scheduling coordination at charging parks, while Beaude et al. (2016) extended Ma et al.
(2013)’s work by considering rectangular energy profiles and an accordingly discrete strategy
action space. Wu et al. (2012) considered bidirectional charging in the vehicle-to-grid (V2G)
context, allowing vehicles to act as additional energy storage devices. Here, the goal was to
derive energy prices that incentivize EV owners to participate in the system. More recently,
Sohet et al. (2021) discussed a game that mitigates the impact of EV charging in both energy
and transportation networks by deriving energy prices that depend on the EV flow in the
transportation network. Related to the latter case but not focused on EV charging, Ayala
et al. (2011) introduced the competitive parking slot assignment problem, and an algorithm
that computes equilibrium parking slot assignment strategies. Here, the successful assign-
ment of a slot to a driver depends on its driving distance. Ayala et al. (2018) added a time
component to Ayala et al. (2011)’s work, by allowing vehicles to enter and leave the system.

Most congestion game applications focused on singleton strategies. Usually, the value of
resource utilization costs depends on the number of participants selecting the resource, the
players’ weights, or the player itself, but not on characteristics depending on the strategy
profile, e.g., numeric distance from each participant to the resource. Furthermore, most
game-theoretical settings of EV-related applications dealt with efficient charging strategies,
in the context of smart grids. None of the aforementioned works solved the optimal distri-
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bution of EV drivers across stations, realized by self-interested intermediate players, e.g.,
navigation service platforms.

4.2 Congestion reduction

Besides in system control and robotics, congestion reduction naturally arises in traffic man-
agement on highly-decentralized road transportation networks. To analyze congestion reduc-
tion strategies, game theory offers an adequate framework to manipulate drivers interested in
minimizing their individual travel times. In this context, route guidance information systems
(RGIS) aim to provide route choice recommendations or additional network information to
their users, which benefit both the overall system but also each individual driver. If carefully
designed, such systems proved to reduce total travel times (see Koutsopoulos and Lotan 1989,
Mahmassani and Jayakrishnan 1991, Al-Deek and Kanafani 1993, Hall 1996), but also on-
time arrival reliability (Wunderlich et al. 2001), while in the opposite case, they can lead to
exacerbated congestion, due to an increased driver concentration on a restricted set of routes
or system overreaction (Ben-Akiva et al. 1996). Predictive guidance accounts for network
state forecasts, such as expected traffic. While it may achieve similar outcomes as non-
predictive guidance under certain conditions, e.g., in densely meshed networks (see Pavlis
and Papageorgiou 1999, Ben-Akiva et al. 1996), it can better reflect actual drivers’ decisions.
Predictive guidance must also be consistent, i.e., anticipating the impact of guidance on fu-
ture network conditions, since a high number of system participants will likely affect network
flows and conditions (cf. Barnhart and Laporte 2007). In contrast to such guidance-oriented
traffic network models (Ben-Akiva et al. 1991), dynamic traffic assignment (DTA) models
(Janson 1991) compute assignments that approximate a dynamic user-equilibrium based on
the class of non-atomic selfish routing games. In this case, DTA does not account for the
impact of available travel information on users’ behaviors. Wang et al. (2018a) provided a
comprehensive overview of more recent advances in DTA applications. Little work has been
done so far to adapt traffic assignment models to EVs, i.e., accounting for range-constrained
vehicles and limited charging infrastructure availability. A notable exception is the work of
Zhang et al. (2019). The authors adapted the traffic assignment problem (TAP) under user
equilibrium (UE) by considering EV’s limited driving range and additional charging times.
Enforced traffic control strategies complement these approaches, using, e.g., traffic signaling
(Farges et al. 1990, Donati et al. 1984), or reactive ramp metering strategies (Masher 1975).

4.3 Market-based resource allocation

The social outcome that results from non-cooperative participants might be far from the so-
cial optimum, but market-based techniques can help mitigate the negative impact of ignored
coordination among self-interested agents.
To reduce high prizes of anarchy, e.g., due to strategic drivers on a congested road network
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(cf. Koutsoupias and Papadimitriou 1999, Roughgarden and Tardos 2002), MD approaches
aim to design games – payoff structure and strategy space – that gear participants’ behavior
toward socially desirable outcomes (Nisan et al. 2007). Focusing on a resource allocation
problem, the principal computes an allocation, i.e., the social outcome, based on participants’
resources valuations, and a payment based on the received allocation. Assuming that a
player’s utility amounts to its allocation valuation and payment, the generic VCG pricing
scheme (cf. Vickrey 1961, Clarke 1971, Groves 1973) ensures truthful revelations of a player’s
resource valuation, i.e., a player has no incentive to lie on its preferences. Roberts (1979)
showed that truthfulness holds even for weighted players and allocations outcome for so-
called affine maximizer social choice functions. The payment rule guarantees truthfulness
by aligning a participant’s interest with the overall system interest if the computed social
outcome is optimal. To cope with suboptimal outcomes, Nisan and Ronen (2007) introduced
the second-chance mechanism that gives participants the possibility to improve suboptimal
social outcomes and accordingly provides a rationale for truth-telling behaviors. In practice,
offline resource allocation applications might be limited, if participants dynamically enter
or leave the system, or resources availability changes. In Parkes and Singh (2003), the
authors introduced two mechanisms delayed VCG and online VCG mechanisms for online
resource allocation. The underlying online allocation problem was formalized as an MDP to
compute minimal in-expectation cost allocation and Bayesian-truthful payment rules, and
found direct applications for WiFi pricing (Parkes et al. 2004a). Since the truthfulness relies
on an optimal policies argument, Parkes et al. (2004b) discussed an approximately efficient
mechanism extension, based on ε-greedy policies, similar to the work of Nisan and Ronen
(2007) on offline VCG mechanisms. Parkes and Wellman (2015) placed Parkes and Singh
(2003)’s work in more general settings, connecting AI and economic reasoning. Additional
work that coupled mechanism design and dynamic resource allocation include Bi et al. (2019)
and Stein et al. (2020). In Bi et al. (2019), the authors derived a price-based mechanism that
guarantees dominant-strategy incentive compatibility and individually rationality to assign
resource allocation in fog computing. In Stein et al. (2020), the authors solved a generic
dynamic task allocation problem using a RL-based mechanism with guaranteed strategy-
proofness.

Focusing on coordinating EV charging operations of selfish agents, Gerding et al. (2011)
developed an online model-free mechanism ensuring that EV drivers truthfully report their
energy demand and charging time window preferences, to achieve a socially optimal charge
schedule. In Rigas et al. (2020), the authors formalized an offline charge scheduling problem
that accounts for demand imbalance and energy cost and defined the charging prices based
on the standard VCG pricing scheme. In Flath et al. (2014), the authors relied on dynamic
electricity pricing to coordinate EV charging but argued that prices must, besides a tem-
poral component, integrate a spatial component, to mitigate energy peak loads. Limmer
and Rodemann (2019) derived a dynamic pricing scheme for a charging station operator
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(CSO), based on deadline differentiated pricing (see Bitar and Low 2012), which requires
drivers to announce their energy demand and their charging deadline for completed charging.
Compared to earlier work on dynamic pricing for EV charging (see Limmer and Rodemann
2017, Ghosh and Aggarwal 2018), the authors accounted for extra energy peak demand fees,
such that the pricing and charge scheduling strategy of a profit maximization CSO will con-
tribute to reducing energy peak load caused by an increased charging demand. Foster and
Caramanis (2013) designed a participation policy in an hour-ahead power market for a load
aggregator managing the charging schedule of EVs, shown to outperform charge scheduling
strategies based on forecasted electricity prices.

Similar to game-theoretic settings discussed in Section 4.2, most MD approaches focused
on EV application dealt with efficient charging strategies that mitigated the discrepancy be-
tween possibly high charging demand and low capacity of energy infrastructure. In a broader
context, none of the work that focused on static or dynamic resource allocations considered
the allocation of resources to end consumers via intermediate self-interested agents.

5 Conclusion

Concerning operational problems addressed in the context of EVs, a large body of recent work
focuses on mitigating the impact of increased charging demand on power networks. Another
significant stream of research aims to adapt traditional routing and navigation algorithms for
EVs, focusing on planning efficient charging stops during long-distance trips, and improved
predictions of the car’s energy consumption. In both cases, related publications usually con-
sider the charging infrastructure to be reliable. From an application perspective, few studies
have emphasized the uncertain charging infrastructure reliability or CS congestion, and the
potential of improving the charging experience of the EV user through well-orchestrated CS
visit recommendations from modern navigation services.

From a methodology perspective, a limited number of publications model stochastic re-
source search problems as sequential decision-making processes. None of the works discussed
previously proposed efficient exact solution methods, at least in single-agent settings, but
also practical heuristic solutions that can be readily deployed in navigation systems. In multi-
agent settings, the problem of several collaborative agents asynchronously searching for a
single stochastic resource and stopping their search upon discovery of one of the available
resources has been rarely discussed. Most multi-agent search applications arise in robotics
or ride-hailing problems, where no or limited information on the location and the avail-
ability probabilities may be available. Furthermore, only a very limited number of works
compare performances of resource search with respect to the degree of decisions centraliza-
tion, or the amount of information shared between agents, or between agents and a central
decision-maker. Focusing on resource allocation games, none of the previous work consid-
ered the allocation of resources to users through intermediate self-interested agents, that a
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higher-level orchestrator, e.g., a municipality, can coordinate.
A few last remarks are in order. Multi-agent settings significantly raise the problem com-

plexity compared to their single-agent counterpart, and recent work on multi-agent resource
allocation or search problems increasingly addresses very large-scale settings. Accordingly,
most recent papers use deep-RL frameworks to leverage the enhanced capabilities of modern
data storage and management. However, in multi-agent settings, such papers assume trust-
ful agents and ignore possible strategic manipulation. Mechanism design approaches aim
to optimize systems composed of unreliable agents that may miscommunicate some of their
private information, but such systems are usually limited to myopic settings. In this context,
there has been a recent effort to couple MD and RL approaches and, more generally, couple
AI and economics (see Parkes and Wellman 2015).
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Abstract

Electric vehicles are a central component of future mobility systems as they promise to reduce
local noxious and fine dust emissions and CO2 emissions, if fed by clean energy sources. However,
the adoption of electric vehicles so far fell short of expectations despite significant governmental
incentives. One reason for this slow adoption is the drivers’ perceived range anxiety, especially
for individually owned vehicles. Here, bad user-experiences, e.g., conventional cars blocking
charging stations or inconsistent real-time availability data, manifest the drivers’ range anxiety.
Against this background, we study stochastic search algorithms, that can be readily deployed in
today’s navigation systems in order to minimize detours to reach an available charging station.
We model such a search as a finite horizon Markov decision process and present a comprehensive
framework that considers different problem variants, speed-up techniques, and three solution
algorithms: an exact labeling algorithm, a heuristic labeling algorithm, and a rollout algorithm.
Extensive numerical studies show that our algorithms significantly decrease the expected time
to find a free charging station while increasing the solution quality robustness and the likelihood
that a search is successful compared to myopic approaches.
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1. Introduction

All around the world, governments and companies try to foster the adoption of electric
vehicles (EVs), which are seen as a central component of future sustainable mobility systems
that can play a major role in reducing noise, noxious, and carbon emissions, if fed by clean
energy sources. While governments introduced national programs to support individual
EV purchase, e.g., by means of ecological bonuses (France), tax exemption (Germany),
or subsidies (Netherlands), private companies invested in public charging infrastructure
(Bensasson 2019, Fröhlich 2019), and major logistics service providers progressively integrated
EVs to realize sustainable transportation (Amazon 2019, DHL 2019). Yet the market uptake
for EVs fell short of expectation in most countries. One of the main obstacles remaining,
in particular for privately-owned EVs, is the customers’ perceived range-anxiety, triggered
by missing charging infrastructure and incomplete or non-standardized information about
charging services available. Hence, facilitating a reliable EV charging process is crucial to
decrease range anxiety in order to invigorate the adoption of EVs (Bonges and Lusk 2016).

Different stakeholders focus on different measures to facilitate a reliable charging experience
for users. At strategic level, municipalities try to facilitate reliable charging options by
improving the overall charging infrastructure, e.g., by building new charging stations or
increasing the capacity of existing ones. Further, enforcing new pricing schemes that support
a higher turnover rate of (re)charged vehicles may help to save additional capacities (Bonges
and Lusk 2016). However, infrastructure investments that require long planning lead times
and pricing schemes can hardly be realized without standardization and agreements between
charging station operators. At operational level, some online map services exist and aim to
help EV drivers to locate available charging stations. Unfortunately, such services struggle
with data inaccuracy, e.g., an incomplete coverage of real-time status data. Even worse,
charging stations can be blocked by non-charging vehicles (so-called “ICEing”) without
reflecting such inaccessibility in status data. An empirical study in Berlin revealed a high
correlation between such inaccessibility and parking availability, showing that in areas without
available parking it is three times more likely for a charging station to be illegitimately blocked
than legitimately used (see Table 1). Drivers may find a selected and seemingly free station

Table 1: Parking availability on data accuracy

Legal parking spots available in immediate vicinity � 2 1 0

Blocked by charging EV 5% 14% 10%
Blocked without connection (ICEing) 1% 9% 34%
Available 94% 77% 56%

Internal TomTom study in Berlin, 2019. The study shows how often charge points were legitimately
used (i.e.,“blocked” and actually used), actually available (correct “free”), or illegitimately blocked by
a vehicle. The data relates to the amount of free parking spots found in the immediate vicinity. For
most of the stations, real-time availability data was not available.
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to be blocked when arriving there. Such negative user experiences may require additional
detours with an already depleted battery in order to find a suitable charging station and
thus may even increase a driver’s range anxiety. To this end, a reliable stochastic search
algorithm that helps to route drivers to an available charging station as convenient as possible
constitutes a valuable algorithmic component for today’s map and navigation services and
may help to reduce the drivers’ range anxiety.

The goal of this paper is to develop such an algorithmic solution that can be readily
deployed as a built-in implementation in today’s navigation systems and map services. In
the remainder of this section, we first review the related literature, before we detail our
contribution and elaborate the organization of this paper.

1.1. Literature review

We now survey literature on EV routing with uncertain charging stations before we focus on
related search problems with stochastic resources.

Sweda et al. (2017) were the first to study probabilistic charging station availability in a
multi-stop shortest path problem under uncertainty. They used a dynamic programming
approach on a grid network and considered waiting times at unavailable stations. Kullman
et al. (2021) extended this work by modeling an electric vehicle routing problem with uncertain
charging at public charging stations as a Markov decision process (MDP). Given the large
action and state spaces, they proposed an approximate stochastic dynamic programming
approach with a look-ahead procedure (Goodson et al. 2017). Jafari and Boyles (2017)
studied a multicriteria stochastic shortest path problem for EVs, in which stochasticity relates
to travel time and energy consumption.

Focusing on related stochastic search problems, Arndt et al. (2016) studied a probabilistic
routing problem for on-street parking search with parking spots as stochastic resources and
incorporated user preferences for stops closer to their destination. Besides showing the
problem’s NP-completeness, they proposed a branch-and-bound algorithm for small problem
spaces. More generally, Guo and Wolfson (2018) studied a probabilistic spatio-temporal
resource search problem, in which resources have a general usage cost but the resource seeker
is not allowed to wait for an occupied resource to become available again. Contrary to Arndt
et al. (2016) where resource observations are persistent during the search, stations can become
available again after a defined time threshold. Guo and Wolfson (2018) proposed a value-
iteration solution procedure that remains tractable by making a fast recovery assumption at
the instance level, which keeps the state space small. Schmoll and Schubert (2018) studied a
dynamic resource routing problem under reliable real-time information, which requires fast
(re)computations as resources frequently change their occupancy state. Assuming a large
problem space, they used real-time dynamic programming to maintain utility values for likely
states to determine the best action on-the-fly.

As can be seen, related research on stochastic charging station search is still scarce.



Charging Station Search in Stochastic Environments 29

Approaches that are specifically tailored to EV charging station search focus on finding best
cost paths between an origin and a destination rather than on an open search with an a-priori
unknown destination. Further these approaches lack the consideration of sufficient real-world
problem variants and heterogeneous charging station characteristics. Literature on stochastic
resource search focuses on an open search concept but lacks EV and charging station specific
characteristics. Moreover, the algorithmic solutions that have been proposed in this domain
remain limited to a pure academic interest on artificial and small instances. Accordingly,
these approaches cannot be embedded into real-time environments.

1.2. Contribution

With this work, we close the research gaps outlined above by providing a profound algorithmic
framework that covers a wide range of problem variants in the context of stochastic EV
charging station search, which can readily be deployed into real-time environments for online
optimization purposes. Specifically, our contribution is fourfold. First, we formalize the
problem of stochastic EV charging station search as a novel stochastic search problem. We
model this problem as a discrete finite horizon MDP and consider two objectives: minimizing
i) the time until charging, and ii) the time until completion in case of heterogeneous charging
times. Moreover, we present different problem variants in which a driver may or may not
wait at occupied stations and charging stations might be homogeneous or heterogeneous.
Second, we prove the complexity of this problem class and show that it is NP-hard. Third,
we develop an algorithmic tool chain that consists of three algorithms: an exact labeling
algorithm for which we present a cost decomposition of the Markovian policy to derive
effective dominance rules; a heuristic variant of this labeling algorithm which is amenable for
real-time application; and a rollout algorithm. Additionally, we present multiple speed-up
mechanisms, e.g., reduced action spaces and sharpened dominance relations. Fourth, we
provide extensive numerical studies that base on real-world data for the cities of Berlin and
San Francisco. Our results show that compared to myopic approaches, our search algorithms
decrease the average time spent finding an available station by up to 44%. We further
benchmark the performance of our heuristic algorithms against the exact algorithm and show
that a combined, case-dependent usage of both allows for effective real-time application.

1.3. Organization

The remainder of this paper is as follows. In Section 2, we introduce the stochastic charge
pole search (SCPS) problem. Section 3 formalizes our problem as an MDP and consecutively
develops the corresponding algorithmic framework. In Section 4, we describe our case study
and the experimental design. Section 5 discusses our numerical results. Section 6 concludes
this paper and provides an outlook on future research. To keep this paper concise, we shift
proofs to Appendix A.
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2. Problem definition and representation

In this section, we introduce the SCPS problem for which we specify four problem variants,
each corresponding to a distinct real-world scenario.

2.1. Problem setting

We focus on a routing problem with stochastic charging station availability, where a driver
starts at a given location and seeks to find an unoccupied charging station to recharge her
vehicle. Her objective is to minimize her total expected cost, which consists of the driving
time during the search and additional factors, e.g., the time until the charging is complete,
or the time spent walking from the charge point to the actual destination. We consider
this search to be spatially and temporally bounded to account for the driver’s limited time
budget and penalize unsuccessful searches with a high termination cost to model the resulting
discomfort.

Formally, we define this problem on a directed and complete graph G = (V , A) that consists
of a set of vertices V and a set of arcs (v, v0) 2 A. Each vertex v 2 V , except the vertex where
the search starts, represents a charging station. The driver starts her search at a designated
start vertex v0 2 V at time 0, with a maximum search time of T . We assume that the driver
is willing to charge at any vertex in V and consider a limited search radius by restricting V
to the stations within a maximum distance S around the start vertex. Driving from v to v0

takes tv,v0 � 0 units of time. We model the availability of a station v 2 V at time t 2 [0, T ] as
a visit-dependent binary random variable av 2 {0, 1}, which the driver observes by visiting v.
Without prior knowledge, i.e., when visiting a station for the first time, the probability that
the station is free (av = 1) is a constant pv. Table 2 summarizes this notation.

We introduce two time-based penalties: �v is the time-equivalent usage cost for using pole
v if it is available upon arrival; �v denotes the cost for unsuccessfully terminating the search
at v in case v is occupied, which may happen if all vertices in V have been unsuccessfully
visited, or if it is impossible to visit another candidate within the remaining time budget T .

We define a solution to our problem as an ordered sequence of charging station vis-
its C = (v0, . . . , vn). In practice, a driver that uses this solution starts at v0 and visits the

Table 2: Notation used to define the SCPS

G = (V, A) Network graph
S Maximal distance allowed between any vertex and the start vertex v0

T Maximal overall driving time
Wv Expected waiting time at an occupied charging station v
Yv Expected charging time at charging station v
av Binary random variable modelling the availability of v
pv Initial probability that charging station v is available before any visit

tv,v0 Driving time on arc (v, v0)
�v Termination penalty cost at an occupied station v
�v Termination cost at an available station v
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charging stations in the given sequence up to the first available charging station. Accordingly,
our search terminates either successfully at any v 2 C, with a total cost of driving time until
that vertex plus extra cost �v, or unsuccessfully at vn, incurring driving time along C plus
cost �vn . We denote by ↵ the expected cost of solution C.

2.1.1. Problem setting variants:

In practice, different system characteristics and user preferences may require to solve different
problem variants, e.g., some drivers may want to find a charging station as fast as possible
without considering station heterogeneity, while others may want to finish charging as quickly
as possible. Such differences can be incorporated in our problem through the generic penalties
�v and �v, and an additional parameter ! defining whether it is permitted to finish the search
by waiting at a station (! = 1) or not (! = 0). We identify four different problem variants
that reflect the most common use cases in practical applications. Table 3 summarizes these
variants and states the respective realizations as a triple (�v, �v,!). In variant ¬W/¬C, the
driver is neither allowed to wait at stations nor do stations have (heterogeneous) usage costs.
To this end, we consider a constant penalty cost � for an unsuccessful terminated search.
While stations remain homogeneous, the driver is allowed to wait in variant W/¬C. We
assume that an expected waiting duration Wv is known for every station v, and to be a
constant independent of the arrival time and earlier observations. In variants ¬W/C and
W/C, stations have heterogeneous charging durations and the driver seeks to minimize her
total time to finish charging up to a preferred charge level. While the driver is not allowed to
wait in ¬W/C (i.e., the constant penalty cost � is induced in case of failure), this constraint
is relaxed in W/C.

2.2. Discussion

While our model captures the essential characteristics of the underlying real-world problem,
some comments are in order. First, we differentiate charging stations based on the charging
duration in problem variants ¬W/C and W/C. The model is however not restrictive and
allows charging stations to be heterogeneous with respect to any other criteria, including
walking distance to a destination location or the price for charging. Yet one needs to convert
non time-based usage costs (e.g., charging prices) to time-based costs to ensure search-cost
compatibility. Second, we assume an occupied station to remain occupied during the search
for most problem variants. This seems to be a plausible assumption based on the large

Table 3: Summary of problem setting variants and parameters (�v, �v,!)

No waiting allowed (¬W ) Waiting allowed (W )

Charging time insensitive (¬Y ) ¬W/¬C = (�, 0, 0) W/¬C = (Wv, 0, 1)

Charging time sensitive (Y ) ¬W/C = (�, Yv, 0) W/C = (Wv + Yv, Yv, 1)
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difference between typical search times (minutes) and charging durations (hours) in an
urban setting. However, we also present a problem variant with recovering probabilities in
Section 3.4 and discuss its impact in Section 5. Third, our basic model is agnostic of the
energy spent during the search. Here, a similar argument holds: given that a search typically
covers only a small distance radius compared to a vehicle’s range, we assume this effect to
be negligible. Nevertheless, we present a problem variant which considers the energy spent
during the search. Our results for this problem variant show no significant impact of the
respective energy consumption and thus confirm our assumption.

3. Methodology

We now introduce an MDP representation for the SCPS problem (Section 3.1) and a corre-
sponding algorithmic framework. As the SCPS problem is NP-hard (see Appendix B) we
develop one exact and two heuristic algorithms. In the remainder, we first focus on an exact
and a heuristic labeling algorithm in Section 3.2, before we present a rollout algorithm in
Section 3.3. We then show how these algorithms must be modified to account for time-
dependent recovery probability functions (Section 3.4) and search-related energy consumption
(Section 3.5). For the sake of conciseness, we detail these algorithms only for the practically
most relevant problem variant, ¬W/C, i.e., the charging-time sensitive variant that proscribes
waiting. We describe minor required methodological changes for the remaining problem
variants ¬W/¬C, W/¬C, and W/C in Appendix C.2.

3.1. Markov decision process

To model the SCPS problem as a finite-horizon MDP with multiple decisions over a time-
budgeted process, we use additional notation as summarized in Table 4.

Table 4: Notation used to define the MDP

S State space
U Action space
C Ordered sequence of station visits
x State

u(x) Action choosen in state x 2 S
w Binary variable indicating whether to wait at the current station in state x 2 S

d(u, u(x)) Immediate cost induced by taking action u in state x 2 S
⇡ Policy

V ⇡ Value function, based on policy ⇡
V ⇤ Optimal value function

a Binary variable modeling the availability of the last visited station
� Binary variable indicating whether the selected station v in x = (C, 0) is already contained in C

W Permissible values for waiting decisions
t(⇡) Driving time follwing policy ⇡

⇢(⇡, k) Probability that at least one of the k first stations of policy ⇡ is available
↵(⇡) Solution cost for following policy ⇡
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3.1.1. Model variables and transition functions:

We define a state x as a tuple (C, a), where C is an ordered sequence of stations C = (v0, ..., vk)

that have already been visited, with the driver being located at vk. Let a be the binary
realization of the availability of vk, indicating whether vk is free (a=1) or occupied (a=0).
Then, the state space results to

S = {(C, a) : C = (v0, . . . , vk), vj 2 V 8j, a 2 {0, 1}}.

We denote by u(x) = (v, w) a possible action taken in state x 2 S to transition to state x0,
with w being a binary that indicates whether to wait at the current station (w = 1) or not
(w = 0), and v stating the next station to visit. We denote by W the set of values taken
by w, such that W = {0} (W0) for problem variants without waiting and W = {0, 1} (W1)
for problem variants that allow to wait at a charging station. Since we assume a station’s
availability status to be persistent during the search, we further assume that for problem
variants without waiting, each station should be visited at most once, because a station
cannot be used during the search’s time horizon once it is occupied. For problem variants
with waiting, the driver can use an occupied station by paying the price �v, i.e., waiting. In
these settings, revisiting a station when knowing that it is occupied is only reasonable if the
driver decides to wait. As the search terminates in this case as soon as the drivers decides to
wait, only the last station may be visited twice. Actions are only taken at occupied stations:
if a = 1, x is a termination state, and the search finishes as the driver charges at the found
unoccupied station. Let eV(C) be the restricted set of charging station vertices, reachable in
less than T �Pk�1

i=0 tvi,vi+1
. Then, the action space for a state x = (C, 0) results to

U(x) = {(v, w) : w 2W , v 2 eV , (W = W0^ � = 0)_ (W = W1^ (� = 0_ (� = 1^w = 1)))},

(3.1)
with � being the binary variable that indicates whether v is already included in C (� = 1)
or not (� = 0). If eV(C) is empty, no more station can be reached under the given time
constraints and we refer to this state as a forced termination state.

We define the function pt(x
0 | x, u) to describe the probability that following action u 2 U(x)

from state x 2 S would result in state x0 2 S, such that
P

x02S pt(x
0|x, u) = 1 and consider

two cases:

1. If the selected action is to wait, then the driver stays at the current station. The
transition is deterministic and pt((C, 1)|(C, 0), (vk, 1)) = 1 for a path C ending in vk.

2. If the selected action is to continue searching, the selected next station v is either
available or occupied with respect to p̃v(C). Hence pt((C

0, 1)|(C, 0), (v, 0)) = p̃v(C) and
pt((C

0, 0)|(C, 0), (v, 0)) = 1� p̃v(C), where C 0 is the sequence C extended by v.

We denote by d(x, u) the immediate induced cost for taking action u = (v, w) in state
x = (C, a), which depends on the realized availability a at the last station vk and the
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respective action

d(x, u) = (1� a)w�vk
+ a�vk

+ (1� w)(1� a)tvk,v. (3.2)

We note that if a = 1, the driver charges at station vk, and d(x, u) corresponds to the station
usage cost �vk

. If a = 0 and the driver waits at the station, the search terminates and cost �vk

results. If a = 0 and the search continues at the next station v such that vk+1 := v, the cost
results to the travel time tvk,vk+1

.

Finally, we define a policy ⇡ as a function mapping a state x 2 S to an action ⇡(x) 2
U(x). Accordingly, ⇡ implicitly describes a search path C(⇡) = (v0, ..., vn) with ⇡(vi, 0) =

(vi+1, 0) 8i = 0, . . . , n� 1 and state xn = (C(⇡), a) that terminates the search at vertex vn,
either because the driver runs out of time or because she decides to wait with ⇡(xn) = (vn, 1).
We refer to C(⇡) as C and to p̃v(C) as p̃v to keep the notation concise.

3.1.2. Cost function:

We now analyze the cost function V ⇡(C, a) that describes the expected cost for following a
policy ⇡, from a start state (C, a). Then V ⇡(x0), with x0 = (v0, 0) represents the expected
cost for the driver when following policy ⇡ from starting at vertex v0 and the objective is to
find a policy ⇡ that minimizes V ⇡(x0). Then, the cost function V ⇡(C, a) can be expressed as
follows
V ⇡(C, a) = a�vk

+ (1� a)
⇥
w�vk

+ (1� w)(tvk,vk+1
+ p̃vk+1

V ⇡(C 0, 1) + (1� p̃vk+1
)V ⇡(C 0, 0))

⇤
,

(3.3)
with C = (v0, . . . , vk), u(C, a) = (vk+1, w), and C 0 = C [ {vk+1}. For both realizations of a,
Equation 3.3 can be simplified, as follows

V ⇡(C, 1) = �vk
, (3.4)

V ⇡(C, 0) = w�vk
+ (1� w)

⇥
tvk,vk+1

+ (1� p̃vk+1
)V ⇡(C 0, 0) + p̃vk+1

�vk+1

⇤
. (3.5)

3.1.3. Cost function expansion:

We now expand V ⇡ to derive an explicit evaluation of the expected cost. To simplify notation,
we use C[i:j] to denote a sub-sequence (vi, . . . , vj) of a sequence C = (v0, ..., vi, ..., vj, ..., vn).

Proposition 1. Let C = (v0, . . . , vn). Then, the cost for being in state xk = (C[0:k], 0), with
k < n, following policy ⇡ until the termination state xn = (C, a) expands as follows

V ⇡(xk) =
nY

i=k

(1� p̃vi
(C[k:i�1]))�vn +

n�1X

i=k

"
tvi,vi+1

iY

j=k

(1� p̃vj
(C[k:j�1]))

#

+
nX

i=k

"
�vi

p̃vi
(C[k:i�1])

i�1Y

j=k

(1� p̃vj
(C[k:i�1]))

#
.

(3.6)

Given that policies encode solutions, we can express the solution cost ↵ for a policy, and
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set ↵(⇡) = V ⇡(x0). Following Equation 3.6 and Proposition 1, this yields

↵(⇡) =
nY

i=0

(1� p̃vi
(C[0:i�1]))�vn +

n�1X

i=0

"
tvi,vi+1

iY

j=0

(1� p̃vj
(C[0:j�1]))

#

+
nX

i=0

"
�vi

p̃vi
(C[0:i�1])

i�1Y

j=0

(1� p̃vj
(C[0:j�1]))

#
.

(3.7)

For a more concise notation, let ⇢̄(⇡, k) be the probability that a driver fails in finding at
least one free station in C[0:k]

⇢̄(⇡, k) =
kY

i=0

(1� p̃vi
(C[0:i�1])) , (3.8)

with p̃vi
(C[0:i�1]) denoting the likelihood that vi is available after having visited all previous

stations from v0 to vi�1, while ⇢(⇡, k) = 1� ⇢̄(⇡, k) is the probability that she succeeds in
finding at least one free station in C[0:k]. Furthermore, let

A(⇡) =
n�1X

i=0

[tvi,vi+1
⇢̄(⇡, i)] +

nX

i=0

�vi
p̃vi

(C[0:i�1])⇢̄(⇡, i� 1) . (3.9)

Then, we rewrite Equation 3.7 as

↵(⇡) = ⇢̄(⇡, n)�vn + A(⇡) . (3.10)

We denote by t(⇡) =
Pn�1

i=0 tvi,vi+1
the accumulated driving time for all stations in C and

note that for a feasible solution, t(⇡)  T holds.

3.1.4. Cost structure variants:

The cost functions V ⇡(C, 0), V ⇡(C, 1), and V ⇡(xn) for a termination state xn = (C, a) can
be parameterized for each problem variant as introduced in Section 2.1.1 (cf. Table 3). For
¬W/C, it follows with C 0 denoting the extension of C by station vk+1 for non-termination
states that

V ⇡(C, 0) = tvk,vk+1
+ (1� p̃vk+1

)V ⇡(C 0, 0) + p̃vk+1
Yvk+1

,

V ⇡(C, 1) = Yvk
,

V ⇡(xn) = (1� p̃vn)� + p̃vnYvn .

(3.11)

Appendix C.1 details the cost function parameterizations for the remaining problem variants.

3.2. Dynamic programming based labeling algorithms

To find an optimal solution for the SCPS problem, we develop a dynamic programming based
labeling algorithm. Similar to solving multi-criteria constrained shortest path problems, we
propagate partial policies in order to find an in-expectation cost-optimal policy. Herein,
we use a dominance criterion to withdraw non-promising partial policies early to keep the
explored search space as small as possible. Formally, we associate each partial policy ⇡v with
a label Lv whose resources depend on the problem variant. A label Lv = (tv, Av, ⇢v,↵v, Sv)

consists of the accumulated driving time tv, the partial cost Av (cf. Equation 3.10), the
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likelihood ⇢v to successfully finish the search up to vertex v (cf. Equation 3.8), the cost ↵v

(cf. Equation 3.7), and the set of reachable and non-visited poles Sv.

To describe our labeling algorithm, we denote by La the set of active labels and by L0

the initial label that corresponds to our start location. Let Fv,v0(L) be a set of resource
extension functions (REFs) that expand a label L whose partial policy ends at vertex v to a
label L0 whose partial policy ends at vertex v0. Let ↵(L) be the cost associated with label L.
We define �+(L) as a function that returns a set of tuples (v, v0) which denotes all feasible
physical successor locations v 2 V for a label L whose partial policy ends at v 2 V .

Using this notation, Figure 1 shows a pseudo code of our dynamic programming algorithm.
We initialize our list of active labels La and our so far best found solution L⇤ with L0 (l.1)
and start propagating labels until our search terminates when La is empty (l.2). We then
process labels in La in cost increasing order (l.3). Once a label got selected for propagation,
we remove it from La (l.4) and propagate it considering all of its feasible successors (l.5)
using the REFs (l.6). We check whether an existing label in La dominates a newly created
label L0 (l.7). If this is not the case, we remove labels which are dominated by L0 from La (l.8)
and add L0 to La respectively (l.9). Whenever the newly created label is a termination label,
i.e., its corresponding state indicates that there are no feasible successors left, we check if the
found label improves the so far best found label and update L⇤ accordingly (l.10&l.11). In
the remainder of this section, we detail the REFs used to extend a label and the dominance
criterion to discard a dominated label.

3.2.1. Resource extension functions:

To extend a label L which corresponds to a partial policy ending at vertex v 2 V to a new
label L0 which corresponds to a partial policy ending at vertex v0 2 V , we write L0  Fv,v0(L)

and use the following set Fv,v0 of REFs :

Av0 = Av + (1� ⇢v)(tv,v0 + p̃v0�v0) (3.12)

1� ⇢v0 = (1� ⇢v)(1� p̃v0) (3.13)

tv0 = tv + tv,v0 (3.14)

Figure 1: Dynamic programming based labeling algorithm.
1: La  {L0}, L⇤  L0

2: while La 6= ; do
3: L costMinimumLabel(La)
4: La  La \ {L}
5: for (v, v0) 2 �+(L) do
6: L0  Fvv0(L)
7: if isNotDominated(L0, La) then
8: dominanceCheck(La, L0)
9: La  La [ {L0}

10: if (�+(L0) = ;) ^ ↵(L0) < ↵(L⇤) then
11: L⇤  L0

12: return L⇤
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Sv0 = Sv \ {v0}�
[

v002Sv ,tv0+tv0,v00>T

{v00} (3.15)

↵v0 = Av0 + (1� ⇢v0)�v0 (3.16)

Equation 3.12 propagates partial cost Av along arc (v, v0) with respect to its definition (cf.
Equation 3.9) considering the arc-dependent driving time tv,v0 , the availability probability
p̃v0 , and usage cost �v0 of vertex v0. Equation 3.13 propagates the success rate ⇢v (cf.
Equation 3.8) based on the availability probability of vertex v0. The accumulated driving time
tv0 is straightforwardly propagated along arc (v, v0) considering the arc-dependent driving
time tv,v0 (Equation 3.14). To obtain the set Sv0 from Sv (Equation 3.15), we remove from
Sv the last visited vertex v0 and all vertices v00 2 Sv that cannot be reached from vertex v0

within the remaining search time T � tv0 , i.e., if tv0,v00 � T � tv0 .

3.2.2. Dominance criterion:

Equation 3.10 decomposes the non-monotonous cost ↵(⇡) into monotonous resources A(⇡)

and ⇢(⇡) that partly define a label. Given the monotonicity of A(⇡), ⇢(⇡), and t(⇡), we
can then consider two partial policies ⇡1 and ⇡2 that end with the same vertex visit v and
their associated labels L1 and L2 and say that for problem variants ¬W/¬C and ¬W/C, L1

dominates L2 (L1 � L2), if the following conditions are true

1� ⇢v(⇡1)  1� ⇢v(⇡2) (3.17)

Av(⇡1)  Av(⇡2) (3.18)

tv(⇡1)  tv(⇡2) (3.19)

v0 2 Sv(⇡1), 8v0 2 Sv(⇡2) (3.20)

T̄ � tv(⇡1) + pv0(�v0 � �̄)  0, 8v0 2 Sv(⇡1) (3.21)

Here, Conditions (3.17)–(3.19)&(3.21) ensure that the cost and duration of ⇡1 are smaller
than the cost and duration of ⇡2. Conditions (3.19)&(3.20) check whether all non-visited
vertices reachable by ⇡2 can be reached from ⇡1 as well. Condition (3.21) checks whether all
reachable stations from v for ⇡1 contribute to decrease ↵v(⇡1). This check is necessary for
settings where ⇡1 can be extended with k more stations than ⇡2 to detect corner cases in
which these k additional stations may increase ↵(⇡1) to a value larger than ↵(⇡2).

While Algorithm 1 solves the SCPS problem optimally with the dominance criterion above,
one may consider to drop some of the dominance conditions to obtain a heuristic dominance
criterion that withdraws more labels at the price of losing optimality. In the remainder of this
paper, we study a heuristic labeling algorithm, where we preserve Conditions (3.17)&(3.18)
to obtain cost dominance but neglect Conditions (3.19),(3.20)&(3.21). In this context, the
label definition simplifies to Lv = (Av, ⇢v,↵v). We provide evidences to the selection of this
heuristic dominance criterion in Section 5.2.
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3.3. Rollout algorithm

In this section, we introduce a rollout algorithm, built as a forward dynamic programming
procedure. We identify the best action at a given state as the one that yields minimal
approximated cost. Here, the core idea of the cost approximation is to greedily expand the
current policy from each candidate action up to a defined horizon to obtain an associated
cost value via backpropagation. We apply a one-step decision rollout strategy (cf. Goodson
et al. 2017) whose complexity equals a post-state decision rule as the approximation reduces
to w = 0 decisions.

Let k be the index of the kth decision epoch and let xk be the non terminated epoch’s
state with xk = (C = (v0, v1, ..., vk), 0) and vk being the last station visited in epoch k. Let
xk+1 = (C 0, 0) be the state in the (k + 1)th epoch that results from action u = (v, 0) at epoch
k, with u 2 U(xk). Using this additional notation, Figure 2 details the pseudo-code of our
algorithm. We initialize the sequence of station visits C with the start vertex (l.1) and expand
the sequence until the time horizon T̄ is reached (l.2). From the current state xk, we seek to
determine the next best action (v⇤, 0) and initialize the variables that encode it (l.3). For all
possible succeeding states xk+1 (l.4&l.5), we use a heuristic policy ⇡̃v that bases on a greedy
procedure to propagate state xk+1 up to a forced termination state xk+K , with a look-ahead
of K epoch extensions. For all propagated states xl with l 2 [k + 1, K � 1], the greedy
procedure chooses the action (vl+1, 0), with station vl+1 being selected based on availability
probabilities of vertices reachable from vl and the driving time to each of these vertices. We
then use these anticipated states to evaluate the expected value of the policy-specific cost
V ⇡̃v(xk+1) for the candidate state xk+1. We define Greedycost(xk+1) as the function that
carries out the greedy expansion from xk+1 = (C 0, 0) and returns V ⇡̃v(xk+1) (l.6). Repeating
the greedy procedure and cost evaluation for all possible next actions u = (v, 0) 2 U(xk)

allows us to find the action u = (v, 0) that minimizes the cost to transition from state xk to
state xk+1 (l.7) that we define as Q(xk, v, xk+1), cf. Equation 3.23. Eventually, the selected
action u = (v⇤, 0) yields minimal cost Q(xk, v

⇤, xk+1) (l.8-l.11).

In this setting, we calculate the cost for being in state xk+1, V ⇡̃v(xk+1), based on the greedy

Figure 2: Forward programming based algorithm.
1: vk  v0, C  (v0), xk  (C, 0), t 0
2: while t  T do
3: v⇤  0, x⇤  0, C⇤  0, Q 1
4: for (v, 0) 2 U(xk) do
5: xk+1  (C 0, 0)
6: V  greedyCost(xk+1)
7: Q(xk, v, xk+1) tvk,v + (1� p̃v)V + p̃v�v

8: if Q(xk, v, xk+1) < Q then
9: Q Q(xk, v, xk+1)

10: v⇤  v, x⇤  x, C⇤  C 0

11: C  C⇤, xk  x⇤, t t + tvk,v⇤ , vk  v⇤

12: return C
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policy ⇡̃v as

V ⇡̃v(xk+1) =
KY

l=k+1

(1� p̃vl
)�vl

+
K�1X

l=k+1

[d(xl, ⇡̃v(xl))]
lY

m=k+1

(1� p̃vm), (3.22)

which allows to derive Q(xk, v, xk+1) as

Q(xk, v, xk+1) = tvk,v + (1� p̃v)V
⇡̃v(xk+1) + p̃v�v. (3.23)

3.4. Time-dependent probability recovery function

In the basic setting of the SCPS problem, we assume that a station does not change its
availability during the search’s time horizon and restrict the amount of visits to each individual
station. We now relax these assumptions and show which modifications are necessary to
consider a recovery function rv that allows the availability of an occupied station v to recover
over time. In this case, we define p̃v(C) as follows

p̃v(C) =

8
<
:

pv, if v /2 C

rv(�v) otherwise,
(3.24)

where �v =
Pk�1

j=` tvj ,vj+1
+ tvk,vk+1

, with l denoting the position of the last visit to v in C

and vk+1 := v.
We still consider a charging station v to be initially available at a probability of pv. When

it is blocked at the driver’s arrival time tv =
P`�1

j=0 tvj ,vj+1
, it may become available over time,

i.e., the availability probability of v recovers according to rv(�v), which denotes a station’s
availability probability for an arbitrary point in time t = �v + tv that remains after the first
visit and before the end of the time horizon. We specify rv(�) for any � based on Schmoll
and Schubert (2018) as

rv(�) =
µv

�v + µv

(1� e�(µv+�v)(�)). (3.25)

Here, 1
�v

and 1
µv

denote the average time station v remains available, respectively occupied,
and remain constant over the search’s time horizon. We can then express pv as a function of
�v and µv, with pv = µv

�v+µv
(cf. Jossé et al. 2015) and simplify Equation 3.25 to

rv(�v) = pv(1� e�(µv
pv

)(�v)) . (3.26)

We now assume that stations can be visited as many times as needed. Then, the action
space for a state x = (C, 0) slightly changes as follows,

U(x) = {(v, w) : v 2 eV(C), w 2W}.

In the remainder of this section, we outline the changes that are necessary to adapt the
labeling algorithm to such a setting. Apart from the new availability probability definition
p̃v(C), no modifications are necessary for the rollout algorithm.

Modifications for the Labeling Algorithm: The MDP definition remains unchanged,
because we can determine the arrival time at a station based on the arrival time at the
preceding station extended by the driving time that remains deterministic. Thus �v and
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p̃v(C) can be calculated from C without any further information. However, we need to
modify the initial dominance criterion (3.17)–(3.21) as the optimal solution may now contain
multiple visits to any charging station, independent of the problem variant.

We introduce an additional resource Rv that denotes the set of reachable but visited poles
so that a label is now defined as follows: Lv = (tv, Av, ⇢v,↵v, Sv, Rv). We accordingly add
the following REF to the set of REFs Fv,v0

Rv0 = Rv [ {v0}�
[

v002Rv ,tv0+tv0,v00>T

{v00} (3.27)

To obtain Rv0 (Equation 3.27), we insert the visited vertex v0 in Rv and similarly subtract all
vertices v00 2 Rv that cannot be reached from vertex v0 within the remaining search time.

We consider two partial policies ⇡1 and ⇡2 that end with the same visit at vertex v and
their associated labels L1 and L2. We then say L1 � L2, if (3.17)–(3.20) hold and

v0 2 Rv(⇡1) [ Sv(⇡1), 8v0 2 Rv(⇡2) (3.28)

1� ⇢v(⇡1)

1� ⇢v(⇡1)


Y

v02Rv(⇡1)

(1� pv0(1� e�(µ+�)(�v0 (⇡2))))

(1� pv0(1� e�(µ+�)(�v0 (⇡1))))
(3.29)

hold. Here, Condition 3.28 checks whether all visited vertices reachable by ⇡2 can be reached
from ⇡1 as well. Equation 3.29 accounts for different probabilities of charging stations that
have already been visited in both policies at different points in time by considering the biggest
possible difference of probability values for v0 between both paths. We note that we leave the
heuristic variant of the dominance criterion unchanged in this context.

3.5. Integrating search related energy consumption

In this setting, we assume that the vehicle starts its search with an initial state of charge
(SoC) b0, which reduces over the course of the search depending on the driven distances.
Then, longer driving distances result in higher energy consumption and an additional trade-off
results between visits to far-distanced stations with a high availability probability and visits
to near-distanced stations with medium to low availability probabilities. Here, a higher
availability probability may be counterbalanced by traveling longer distances, which increases
the energy that must be recharged or limits future visits to potential stations accordingly.

To account for this setting, we introduce additional notation and denote the energy
consumed when traversing arc (v, v0) as kv,v0 and a vehicle’s SoC after having visited all
stations in C = (v0, ..., vk) as b. In this setting, we can only transition from state (C, b, 0)

using arc (vk, vk+1) if b � kvk,vk+1
+ b, with b denoting the minimum feasible state of charge

a vehicle must keep. Analogously to common monotonicity assumptions in related settings
(cf. Sweda et al. 2017), we assume that

tv(⇡1) < tv(⇡2) () bv(⇡1) � bv(⇡2)
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and state the necessary MDP modifications which hold as follows

S = {(C, b, a) : C = (v0, ..., vk), vj 2 V 8j, b 2 [0, qmax], a 2 {0, 1}} , (3.30)

U(x) = {(v, w) : w 2W , v 2 V̄ ,

(W = W0 ^ � = 0) _ (W = W1 ^ (� = 0 _ (� = 1 ^ w = 1)))} ,
(3.31)

V ⇡((C, b, a)) = (1� a)w�vk
+ a�vk

+ (1� w)(1� a)[tvk,vk+1

+ (1� p̃vk+1
)V ⇡(C 0, b� kvk,vk+1

, 0) + p̃vk+1
V ⇡(C 0, b� kvk,k+1

, 1)] .

(3.32)

First, we include a vehicle’s SoC into the state space (Equation 3.30). Second, we modify the
action space such that it depends on V̄(C), which denotes a restricted set of charging station
vertices that are reachable from state (C, a) in less than T�t(⇡) time with t(⇡) =

Pn
k=0 tvk,vk+1

and such that kvk,vk+1
+ b  b (Equation 3.31). The policy-specific cost function results

straightforwardly from the modified action and state spaces (Equation 3.32). To account for
this new setting in our algorithms, the following modifications are necessary. The rollout
algorithm requires no modification. For the labeling algorithms, sets Sv and Rv now denote
vertices that are reachable within the remaining time budget and within the remaining energy
budget bv. Accordingly, we add to the existing dominance conditions (3.17)–(3.21) that

bv(⇡1) � bv(⇡2), (3.33)

must hold. The heuristic dominance relation remains unchanged, since the modified setting
does not affect Conditions (3.17)&(3.18). Additionally, the charging duration Yv at station v

now depends on the amount of time needed to recharge from b0 up to the maximum SoC b.
We introduce �Yv to denote the additional charging time due to the battery depletion �bv

during the search, where �bv = b0 � bv =
Pl=i

l=0 kvl,vl+1
. We then account in each algorithm

for the charging duration as

Y 0
v = Yv + �bv

Yvb

(1� b0)
. (3.34)

3.6. Computational complexity improvements

In this section, we proof additional characteristics that allow to improve the computational
complexity of certain problem variants. We first introduce three action space reductions,
before we focus on a sharpened dominance relation for both the exact and the heuristic
labeling algorithm.

3.6.1. Action space reductions

In the following, we discuss some action space reductions, which we summarize in Table 5.
We refer to the initially defined action space as complete. In addition, we create the following
reduced action spaces.
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Table 5: Modified action spaces

complete U((C, 0) = {(v, w) : w 2 W, v 2 eV, (W = W0 ^ � = 0) _ (W = W1 ^ (� = 0 _ (� =
1 ^ w = 1)))}

direct U((C, 0) = {(v, w) : (vk, v) 2 eA(C), w 2W}
direct/restricted U((C, 0) = {(v, w) : (vk, v) 2 eA(C), � = 0, w 2W}
T r-restricted U((C, 0) = {(v, w) : w 2 W, v 2 eV, (W = W0 ^ � = 0) _ (W = W1 ^ (� = 0 _ (� =

1 ^ w = 1))), tvk,v  T r}

direct: To further reduce the search space, we restrict the visits from the last visited station
vk to any feasible neighbor station vk+1, such that there does not exist any station
v0 on the shortest path from vk to vk+1 and denote by eA(C) the set of all feasible
arcs (vk, vk+1). We however allow vk+1 to be visited multiple times and show with
Proposition 2 that accordingly direct doesn’t lead to a loss of optimality for problem
variants ¬W/¬C and W/¬C.

direct/restricted : For very large instances of the problem, we combine the direct action
space with the visits restrictions from complete. The setting significantly reduces the
search space but at the expense of losing optimality for problem variants ¬W/¬C and
W/¬C.

T r-restricted : Finally, we restrict visits from station vk to stations vk+1 reachable in less
than T r time units, i.e., tvk,vk+1

 T r, while preserving the visit restriction of complete.

Proposition 2. Action space U can be modified such that U(C, 0) = {(v) : (vk, v) 2 eA}
without loss of optimality when �v = 0, 8v 2 V.

3.6.2. Sharpened dominance relation for the dynamic programming algorithms

In the following, we aim to sharpen the dominance relation, i.e., we aim to discard labels
faster without dropping optimality. In our initial problem setting, we assume that both
travel times and charging station availability probabilities are unbounded. We now account
for a bound on each of these values that still reflects a real-world application. Specifically,
we assume that i) the EV driver must travel at least a certain amount of time between two
charging stations

0 < t  tv,v0 , 8(v, v0) 2 A,

and ii) that one can never be entirely sure that a charging station is available

pv  p < 1, 8v 2 V .

These bounds can be computed during a preprocessing step and allow for a sharpened domi-
nance relation for the dynamic programming based labeling algorithms without invalidating
our generic model. We note that charging and waiting times at a station are bounded as well.
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Let Wmin and Ymin (respectively Wmax and Ymax) be the minimal (respectively maximal)
waiting and charging times.

We then consider two partial policies ⇡1 and ⇡2 that end with the same vertex visit and
their associated labels L1 and L2 and we refine the initial dominance criterion (3.17)–(3.21)
into stronger dominance checks. Let �Av = Av(⇡1) � Av(⇡2), �⇢̄v = ⇢̄v(⇡1) � ⇢̄v(⇡2) and
�↵v = ↵v(⇡1)� ↵v(⇡2)

In the initial setting, if �⇢̄v  0 and �Av > 0, i.e., Equation (3.17) holds but Equa-
tion (3.18) not, we cannot conclude that L1 dominates L2. In the new setting, we can ensure
that if quantity �↵v is small enough while quantity ⇢̄v is large enough, then L1 � L2, as the
lower bound on tv,v0 and upper bound on pv bound the propagated values of ↵v and ⇢v. We
then say L1 � L2, if (3.17)&(3.19)–(3.21) still hold and

p�↵v  (��⇢̄v)(t + p(�min � �max)) . (3.35)

Table 6 summarizes all variant-specific parameters �max, �min.

4. Design of experiments

To benchmark our algorithms, we develop real-world instances that allow for extensive
simulation experiments. We consider three different spatial patterns (see Figure 3), based on
the west side of San Francisco, USA (SF-1 ), the city center of Berlin, Germany (BER-1 ),
and the financial district of San Francisco, USA (SF-2 ). Here, we account for free-flow speeds
to calculate travel times tv,v0 that denote the time-shortest path between two stations v and
v0. As our search algorithms appear to be rather insensitive to the search’s starting point,
we randomly choose one starting point for each pattern and use this starting point in every
instance that builds on the respective pattern.

Besides the significant sensitivity to the instance size given by S and T , we found during
preliminary studies that our search algorithms are sensitive to two general instance charac-
teristics: the search area’s charging station density and the charging station’s availability
probability. Accordingly, we use the patterns described above to create a set of instances
that covers a broad parameter range for these characteristics. Figure 4 shows the amount of
charging stations for each pattern, depending on the search radius S around each pattern’s
starting point.

Our TomTom internal availability study in the city of Berlin (cf. Table 1) shows on average
high charging stations’ availability in areas with a large number of on-street parking spots. In
areas with few available parking spots, drivers often use available stations as free parking spots,

Table 6: Parameter setting for each problem variant

Parameter ¬W/¬C W/¬C ¬W/C W/C

�max � Wmax � Wmax + Ymax

�min 0 0 Ymin Ymin
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(a) SF-1 (b) BER-1 (c) SF-2

Figure 3: City maps

Each subplot shows the geographic area used to build the respective instance graph. SF-1 represents
the west side of San Francisco, USA, BER-1 the city center of Berlin, Germany, and SF-2 the
financial district of San Francisco, USA.This figure bases on Open Charge Map contributors (2019)
data, which is data licensed under CC BY-SA 4.01.

thus blocking access for EV drivers. In the study, the sole parking availability factor largely
impacts the station availability. To reflect these amplitudes, we introduce three availability
settings, drawing probabilities pv for each charging station v from a ��distribution, which is
centered on an expected availability of [0.15, 0.60, 0.90] to consider a low- (low-15% ), medium-
(avg-60% ) and high-availability (high-90% ) scenario. The avg-60% and high-90% settings
represent areas with average to high parking availability. The low-15% setting depicts a
fictitious extreme case scenario prospectively corresponding to stricter parking policies and
allows us to evaluate our algorithm behavior in such an environment.

For problem variants W/¬C and W/C, we consider a waiting duration Wv for each station
v, which is uniformly distributed in [3, 15, 60, 120] minutes. For problem variants ¬W/C and
W/C, we consider a charging duration Yv, uniformly distributed in [30, 60, 120] minutes, to
account for heterogeneous stations.

With this setup, we create a total of 9 scenarios by combining each area (BER-1 , SF-1 ,
SF-2 ) with each availability probability distribution (low-15% , avg-60% , high-90% ). We
then consider a small and a large-size instance for each combination, defined by the search’s
time budget and search radius (T [min]/S[meters]). For denser areas, BER-1 and SF-2 , this
corresponds to (5/800), resp. (10/2000), while for the sparse area SF-1 , this corresponds
to (10/2000), resp. (15/2600), resulting in a set of 18 instances per variant, 72 in total. We
denote for each area, the smaller-size instance by area/1 (e.g., SF-1/1) and the larger-size
instance by area/2.

For our studies, we set the penalty cost to � = 120 minutes for ¬W/¬C and to � =

200 minutes for ¬W/C and refer to Section 5.2 for a discussion on its selection and sensitivity.
To evaluate our algorithms, we conduct N = 1000 simulation runs, each with a different
station availability realization, drawn from the respective probability distribution. For all
average values reported in our results discussion, we applied two-tailed Wilcoxon signed-rank
tests to verify its significance.
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Figure 4: Number of stations depending on the search radius for each city district

5. Results

In the following, we discuss our results. We first detail the performance of our algorithms with
respect to several quality metrics as well as their computational effort (Section 5.1), before
we discuss results of additional sensitivity analysis and modeling assumptions (Section 5.2).
Similar to the methodology section, we mainly focus the discussion on problem variant ¬W/C

and provide detailed results for all additional variants in Appendix E. We implemented the
proposed algorithms single-threaded with Python 3.6.9, using PyPy 7.3.0 with GCC 7.3.1
and performed all experiments on a Virtual Machine on a Hypervisor, with 19 cores and
60 GB of RAM, running Ubuntu 18.04.3 LTS. For the following discussion we note that all
algorithms can be implemented more efficiently, e.g., in a C++ environment. However, as
this work stems from an industry project, we are not allowed to disclose the C++ related
computational times for confidentiality reasons and use the Python implementation for a fair
discussion of the algorithms’ complexity.

5.1. Performance analysis

We discuss the algorithms’ performance from two perspectives. First, we analyze the practical
benefits of our algorithms based on user-centered metrics in a simulation environment. We
then relate these results to a technically focused discussion on their computational complexity
and solution quality.

During algorithm testing and development, we noticed that both the labeling heuristic
and the rollout algorithm are sensitive to the used action space (cf. Section 3.6) in between
different problem variants. For the following discussion, we report results for the respective
best-performing reduced action space and refer to Appendix D for a detailed discussion of
this impact.



46 Charging Station Search in Stochastic Environments

5.1.1. Applicability

To evaluate the performance of our algorithms in practice, we use metrics that relate to the
drivers’ charging experience rather than to the theoretical objective value ↵. In the following,
we refer to b↵ as the realized search cost, which corresponds to the realized driving time
needed to find a station and complete charging in case of a successful search. We first analyze
for each algorithm the average search cost deviation, which we calculate as

�b↵ =
1.000X

i=1

(b↵i�b↵⇤
i )/b↵⇤

i

1.000

with b↵i being the realized search cost when following the solution of the respective algorithm
for simulation run i, and b↵⇤

i being the best realized search cost for simulation run i out of
all algorithms. Second, we compare the realized success rate, denoted with b⇢, that results
straightforwardly from the number of simulation runs, for which the respective search strategy
finally led to finding an unoccupied charging station. Note that for problem variants with
waiting, the search always ends successfully; in the worst case, with a long waiting time at
the last visited charging station. We accordingly compare the maximum realized search cost
for these variants in Appendix E.1.

As the exact labeling algorithm (LE) cannot solve large instances of our problem to
optimality, we limit the comparison, in the simulation environment, to our heuristic algorithms
(LH and RO) and add a naive and a greedy solution as myopic benchmarks. The greedy
search (G) creates a sequence of charging station visits based on a greedy cost combining the
travel time weighted by a station’s availability probability and a penalty cost weighted by its
occupancy probability. The naive search (N) mimics a driver without assistance by selecting
the closest non-visited station with highest availability probability.

Table 7 details the average realized search cost deviations between all algorithms while
Table 8 details the realized success rate of each algorithm based on 1.000 simulation runs for
each scenario to avoid a statistical bias. In Table 7, an average deviation of zero implies that
an algorithm always found the best search strategy, while increasing deviations indicate that
the best search strategy was not found by the respective algorithm. In some low availability
scenarios, LH yields higher average search costs than both RO and G, while N is always
strongly outperformed with respect to �b↵.

As can be seen in Table 8, all algorithms show comparable performances in average and
high availability scenarios but the LH algorithm shows much higher success rates compared
to the RO algorithm and the greedy search in low availability scenarios, which compensates
the larger average search cost. Remarkably, for some scenarios, the naive approach yields
the highest success rates. This highlights that there exists a trade off between search costs
and success rates, which we illustrate in Figure 5, by showing aggregated results over all
density scenarios. Analyzing Tables 7&8 and Figure 5 jointly, we conclude that for some
scenarios the naive algorithm outperforms the LH algorithm in terms of success rates at the
price of significantly higher search cost. Vice versa, the RO algorithm outperforms the LH
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Table 7: Average search cost deviations for ¬W/C

low-15% avg-60% high-90%

N G RO LH N G RO LH N G RO LH

SF-1/1 0.12 0.02 0.05 0.03 1.10 0.01 0.00 0.00 0.98 0.07 0.00 0.00
SF-1/2 1.41 0.18 0.11 0.20 2.85 0.02 0.01 0.00 0.06 0.05 0.00 0.00

BER-1/1 0.20 0.19 0.07 0.04 0.13 0.01 0.01 0.01 2.76 0.00 0.00 0.00
BER-1/2 0.42 0.35 0.05 0.21 0.94 0.03 0.01 0.01 2.92 0.06 0.00 0.00

SF-2/1 1.24 0.01 0.12 0.09 0.21 0.03 0.00 0.00 1.02 0.02 0.00 0.00
SF-2/2 0.19 0.06 0.03 0.02 0.99 0.03 0.00 0.00 1.03 0.03 0.00 0.03

The table compares the average search cost deviation �b↵ for LH, RO, G, and N for each instance of
the ¬W/C problem variant.

Table 8: Success rate for ¬W/C

low-15% avg-60% high-90%

N G RO LH N G RO LH N G RO LH

SF-1/1 0.80 0.55 0.79 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-1/2 0.94 0.74 0.69 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BER-1/1 0.78 0.73 0.78 0.78 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
BER-1/2 0.93 0.92 0.68 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SF-2/1 0.74 0.51 0.42 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-2/2 0.89 0.89 0.91 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The table compares the success rate b⇢ for LH, RO, G, and N for each instance of the ¬W/C problem
variant.
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Figure 5: Averaged search cost vs. success rate for problem variant ¬W/C
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algorithm for some scenarios in terms of average search costs at the price of significantly
reduced success rates.

Additional analysis in Appendix E.1 show similar trends for the other non-waiting problem
variant ¬W/¬C. For the problem variants with waiting (W), the improvement between G
and both heuristics LH and RO with respect to the average search cost is significantly larger
than for ¬W variants in low availability scenarios. In addition, results show an analogous
trade-off between the average search cost and the maximum search cost.

Summarizing over all problem variants results (cf Appendix E.1), the developed search
algorithms can significantly improve the search quality across all scenarios. Compared to G,
the advanced algorithms decrease the search cost by 21 % in average and up to 44% for areas
with a scarce number of charging stations and low charging station availability. For ¬W

variants, the failure rate decreases by 30 % with low charging station availability. Moreover,
advanced algorithms allow to reduce search times by five (W/¬C) to 31 (W/C) minutes
compared to myopic approaches for W problem variants with low station availability. This
reduction potential decreases for scenarios with average to high station availability. However,
advanced algorithms appear to be more robust in these cases and lower the worst search costs
by 20 % (W/¬C) and 12 % (W/C). Comparing the LH and RO algorithm among each other,
LH prolongs the search compared to RO but obtains a significantly higher success rate for
¬W variants. For scenarios avg-60% and high-90% RO and LH show a similar performance.

5.1.2. Computational tractability

To compare the performance of the LH and RO algorithm against the exact labeling al-
gorithm, we derive a set of 504 test instances by varying T 2 [5, 10, 15, 20] minutes, S 2
[800, 1000, ..., 3400] meters, and the availability distribution in {low-15%, avg-60%, high-90%}
for each search area in {SF-1,BER-1, SF-2}. Here, we use a large time limit of 15.000 seconds
to obtain a sufficient set of solutions that are eligible for our comparison, i.e., solutions for
instances that could be solved with all three algorithms. We compute for each algorithm the
true objective value ↵ as well as the simulated estimate of the true objective value, denoted
with ↵̄, based on 1.000 simulation runs for each test instance.

Table 9 shows for both heuristic algorithms (RO, LH) and for the exact labeling algorithm
(LE) the rate of instances solved within this time limit (n̂) and the average computational
time of the successful runs (t̂). For the heuristics RO and LH only, it shows the the optimality
gap (�(↵) = ↵heur�↵opt

↵opt ) and the deviation of the objective value estimate to the LE’s value

(�(↵̄) = ↵̄heur�↵̄opt
↵̄opt ) both averaged over all instances. Figure 6 shows the distribution of

optimality gaps �(↵) split per availability and density scenario.
As can be jointly observed in Table 9 and Figure 6, our LH algorithm provides optimal or

close to optimal solutions. The RO algorithm shows a similar solution quality for scenarios
with higher availability but shows a significantly worse solution quality for scenarios with
a low charging station availability. These high deviations result from penalty costs for
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Table 9: Aggregated computational results over all tested instances per scenario for ¬W/C

L-H RO L-E

�̂(↵) �̂(↵̄) t̂ n̂ �̂(↵) �̂(↵̄) t̂ n̂ t̂ n̂

low-15%
SF-1 0.00 0.00 104 100 0.10 0.10 0.04 100 87.7 64

BER-1 0.00 -0.02 412 100 0.43 0.41 0.18 100 1338 46
SF-2 0.06 0.08 1088 70 0.48 0.49 0.86 100 5313 2

avg-60%
SF-1 0.00 0.00 9.34 100 0.05 0.04 0.05 100 7.12 64

BER-1 0.00 0.00 0.54 100 0.03 0.03 0.15 100 1057 64
SF-2 0.00 0.00 355 57 0.00 0.00 0.83 100 5560 25

high-90%
SF-1 0.00 0.00 75.1 93 0.01 0.01 0.05 100 8.48 64

BER-1 0.00 0.00 2.82 100 0.00 0.00 0.15 100 266 59
SF-2 0.00 0.00 749 34 0.00 0.00 1.06 100 2303 4

Abbreviations hold as follows: �̂(↵) - averaged optimality gap [%], �̂(↵̄) - averaged simulated estimate
deviation [%], t̂ - averaged computational time [s], n̂ - rate of instances that can be computed in less than
15.000 seconds. We note that an average �̂(↵) of 0.00 indicates that an algorithm (almost) always finds
the optimal solution. If it always finds the optimal solution we highlight the respective �̂(↵) in bold font,
whereas we leave it in normal font if some solutions remain heuristic but are not reflected in the value of
�̂(↵) due to rounding.
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Figure 6: Optimality gap distribution, per availability and density scenarios for ¬W/C

Results are only shown for SF-1 and BER-1 , due to the very small number of instances solved to
optimality for SF-2 .

unsuccessful searches, which are more likely to occur at low charging station availability.
While the RO algorithm succeeds in solving all instances with computational times of a few
seconds, the LH algorithm improves upon its exact counterpart with respect to the number
of instances solved and computational times but can neither solve all instances nor preserve
computational times at the order of seconds. Results show very similar �̂(↵) and �̂(↵̄) values,
especially in higher availability scenarios. In some low-availability scenarios (BER-1 ), LH
yields close to optimal solutions but slightly outperforms LE with respect to the estimates of
the true objective value (�(↵̄)  0).

Figure 7 shows the computational time of LH, RO, and LE for a representative subset



50 Charging Station Search in Stochastic Environments

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400
0

0,5

1

1,5
·104

Maximal Radius S [m]

R
un

ti
m

e
[s

]

LE runtime
LH runtime
RO runtime

Figure 7: Computational times for LH, LE and RO for the BER-1 and high-90% scenario with
fixed T=20 min for ¬W/C

of instances (SF-1 , T = 20, high-90% ) for different search radii. As can be seen, RO and
LH remain equally efficient for search radii up to 2400m but the computational time of LH
increases exponentially for bigger search radii. Synthesizing Table 9 and Figure 7, we observe
a trade-off between LH and RO: while RO yields robust computational times at the price
of varying solution quality, LH yields a robust solution quality at the price of exponentially
increasing computational time.

A comparable analysis for the remaining variants can be found in Appendix E.2. Overall
the analysis shows similar computation and solution-quality trends (cf. Table 16) but in
scenarios with low charging station availability, we observe for RO a lower optimality gap for
the W variants than for the ¬W variants.

From a practitioner’s perspective, computational times of a few milliseconds are imperative
to deploy a search algorithm in practice, e.g., embedded into a navigation application. Here,
one could resolve the trade-off between RO and LH in two different ways. On the one hand,
one could apply both algorithms selectively, using LH for tractable problem sizes and RO for
larger problem sizes. On the other hand, one could always apply LH and terminate its search
after a given time limit. To analyze which strategy appears to be more promising in our case,
we compare the performance of RO and LH against each other, limiting the computation
time of LH to one second, which equals a sufficiently small computational time when using
an efficient implementation.

Figure 8 shows this comparison for problem variant ¬W/C, while we provide figures for all
other problem variants in Appendix E. In general, the time-limited LH outperforms RO (blue
areas) for small search radii, in particular for instances with low charging station availability,
whereas RO outperforms the time-limited LH (red areas) in some cases for large search time
budgets and bigger search radii. Accordingly, using both algorithms selectively appears to be
a reasonable deployment strategy in practice.
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Figure 8: Extensive comparison of the LH and RO heuristics for problem variant ¬W/C

Each subplot shows �↵ = ↵LH � ↵RO (with ↵LH , resp. ↵RO being the solution cost for LH, resp. RO) as a
function of T and S, where we limit LH computational times to 1 second. Each subplot corresponds to one
of the 9 scenarios resulting from the combination of each area (SF-1 , BER-1 , SF-2 ) with each availability
distribution (low-15% , avg-60% , high-90% ). Over all subplots, availability increases from left to right and
station density increases from top to bottom.

5.2. Extended analysis

In the following, we analyze the sensitivity of our algorithms towards parameter and design
decisions. We first analyze the algorithms’ sensitivity towards the penalty cost �̄ (for ¬W/C),
before we study the impact of a time dependent recovery function, substantiate the heuristic
dominance decisions, and study the impact of additional charging times due to battery
depletion during the search.

5.2.1. Termination penalty

We limit the discussion of termination penalty sensitivities to low charging station availability
instances as these appear to be the most sensitive. Apparently, analyzing the objective value
↵ does not allow for a meaningful interpretation of �̄ sensitivities as ↵ naturally increases
with increasing �̄. To circumvent this issue we decompose ↵ into user-relevant metrics (see
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Appendix F), and analyze the computational time, the expected search and charging time
ts and the probability ⇢̄ that the search unsuccessfully terminates, averaged over six low-
15% -instances for problem variant ¬W/C. We discuss results for problem variant ¬W/¬C

in Appendix E.

As can be seen in Figure 9, we observe a goal conflict between the expected search and
charging time and the search’s success rate: with increasing � we obtain better success rates
at the price of higher expected search times. We note that one must choose � � 30 minutes,
as otherwise the cost for not visiting any station is lower than the lowest cost for visiting at
least one station (i.e., the lowest charging time). We observe that the � values which are
necessary to obtain the best possible success rate are significantly higher (200 minutes) than
this lower bound.

While the computational times of LE significantly decrease with increasing �, the com-
putational times of LH and RO remain insensitive to changes in � for low charging station
availability scenarios. However, additional analysis show that LH computational times in-
crease with increasing � in high charging station availability scenarios, such that varying �

for risk-adverse searches in a real-world implementation (i.e., using a higher �) should be
chosen with respect to the computational overhead for LH.

5.2.2. Time-dependent recovery function

To analyze the impact of considering time-dependent recovering probabilities, we compare the
objective values obtained in our main model (without recovering) with the model introduced
in Section 3.4 (with recovering). In the former, we compute the search path with a persistent
charging station occupancy but calculate the true objective value ↵ considering time-dependent
recovery for a fair comparison of both models. Based on preliminary studies, we set the
average occupancy time to two hours such that 1

µ
= 120 minutes. In addition, we observe

that the estimated objective value ↵̄ is (nearly) identical to the true objective value ↵, in-line
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Figure 9: Impact of �̄ on averaged computational time, expected search & charging time and
failure rate for the low-15% instances for ¬W/C

For LE, data are averaged over 6 instances corresponding to two instances (S̄ = 800/T̄ = 5 and S̄ = 1.000,T̄ = 10) per spatial
scenario (SF-1 , BER-1 and SF-2 ) and for LH and RO over 9 instances corresponding to three instances (S̄ = 1.000/T̄ = 5,
S̄ = 1.500,T̄ = 10 and S̄ = 2.000,T̄ = 15) per spatial scenario.
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with Table 9. Accordingly, we only report the value of ↵, for the sake of conciseness.
Table 10 compares the value of ↵ for both models. As can bee seen no significant difference

exists between the initial model and the updated model at the exception of smaller areas
with large time budget, particularly in case of low station availability. This is the only
particular case where visiting stations multiple times within the time budget might be worth
an extra detour, as all stations can be visited at least once. No trade-off between unknown
far-distanced stations and known short-distanced stations appears as it seems always better
to visit unknown stations first. An additional analysis in Appendix E.3 for problem variant
¬W/¬C yields similar insights while there is no significant impact of the time-dependent
recovery function on W problem variants.

5.2.3. Relaxed dominance criteria

To design our labeling heuristic, we relaxed the dominance check of LE as described in
Section 3. In the following, we substantiate the design decision from Section 3. Here, we
identify each possible variant of the dominance check with a boolean quintuple that signifies
whether an equation (3.17, 3.18, 3.19, 3.20, 3.21 is active (= 1) or not (=0) in the respective
dominance check, e.g., quintuple (1,0,1,0,0) identifies the dominance check variant in which
only Equation 3.17 and Equation 3.19 are active.

Figure 10 shows the trade-off between the optimality gap and the computational times
for all dominance criteria. As can be seen, the (heuristic) dominance criterion as chosen in

Table 10: Potential solution improvement for the time-dependent probability recovery function
for problem variant ¬W/C

low-15% avg-60%

LH RO LH RO

T S ↵ref ↵new ↵ref ↵new ↵ref ↵new ↵ref ↵new

5 800 88.7 87.9 89.7 89.0 32.1 32.1 32.9 32.9
5 2000 80.9 80.9 157 157 31.9 31.9 33.1 33.1
5 3400 80.9 80.9 115 115 31.9 31.9 33.1 33.1

10 800 86.3 81.7 86.6 87.2 31.9 31.9 31.9 31.9
10 2000 67.1 67.1 98.9 98.9 31.6 31.6 32.3 32.3
10 3400 47.8 48.5 68.4 68.4 31.5 31.5 31.7 31.7
15 800 86.3 78.4 86.6 82.6 31.9 31.8 31.9 31.8
15 2000 61.6 61.6 66.7 66.0 31.5 31.5 31.7 31.7
15 3400 44.5 44.5 45.9 45.9 31.5 31.5 31.6 31.6
20 800 86.3 75.9 86.6 82.4 31.9 31.8 31.8 31.8
20 2000 58.9 60.8 59.7 59.4 31.5 31.5 31.6 31.6
20 3400 41.4 56.4 48.6 48.4 31.4 31.4 31.6 31.6

The table compares for BER-1 combined with low-15% and avg-60% the objective value obtained
in the updated setting (↵new) and the initial setting (↵ref ). The table excludes high-90% results as
these do not show any deviations. Significant differences are shown in bold characters. LH’s runtime
is limited to 3600 seconds, which explains the low performance of the updated setup in T = 20 / S
= 3400.
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Figure 10: Comparison of heuristic dominance criteria for problem variant ¬W/C

The Figure shows the averaged optimality gap g↵ =
P

i
↵i/↵opt

i as a function of the averaged computational
time gap gt =

P
i

ti/t
opt
i for each possible heuristic criterion for ¬W/C. Both values are averaged over 16

instances corresponding to BER-1 and SF-1 combined resp. with low-15% , avg-60% and high-90% for
S 2 [1200, 1400, 1600, 1800] and fixed T = 10. The red triangle shows our selected dominance criteria.

Section 3 – (1,1,0,0,0) – yields the lowest computational times possible to achieve the best
possible solution quality among all heuristic dominance criteria.

5.2.4. Battery depletion

For the following experiments, we consider a flat topography and base additional charging
time calculations due to battery depletion on the technical characteristics of a Renault Zoe
(battery: Z.E.50 [52 kWh], engine: R110/R135, (Renault 2020)). Furthermore, we assume
that the battery level remains at minimum at 20% of its maximum capacity to account
for safety considerations or driver anxiety. We approximate the extra charging time based
on a linear charge curve since the additional depletion adds only a limited amount to a
(partial) recharge and remains in the linear part of the overall charge curve. To calculate
energy consumption, we assume a constant speed of v = 50 km/h, which remains a worst
case estimate in an urban context. We define Yv as the expected time to charge the battery
from its initial state to a full state at station v. Then, the depleted amount of energy after t

(additional) minutes of driving results to �bv(v) = t
Ta(v)

⇥ 52.

In this setting, our results show that the impact of additional charging times due to an
extended search and the resulting battery depletion is very limited in urban areas. For
LH, we observe an average objective value change of 0.02%, which amounts to a maximum
deviation of 1.5% for single instances. The RO algorithm appears to be even less sensitive to
the changed objective and shows no significant differences.
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6. Conclusion and outlook

In this paper, we studied charging station search algorithms for stochastic environments,
motivated by real-world applications in today’s navigation system applications. We introduced
the underlying problem as a finite horizon MDP that covers several real-world problem variants.
In this setting, we aim to find cost minimal search paths for an individual driver. We developed
three solution algorithms: an exact labeling algorithm as well as a heuristic labeling algorithm
and a rollout heuristic. We benchmarked these algorithms using an extensive real-world case
study with instances for the cities of San Francisco, USA and Berlin, Germany. Our results
show that the heuristic algorithms allow for a significant speed-up compared to the exact
algorithm at a price of a reasonable performance loss. Moreover, we show that our algorithms
significantly improve a driver’s success to find a free charging station compared to myopic
and greedy search approaches. This is in particular the case if the number of free charging
stations in the search area is scarce. In this case, our algorithms reduce a driver’s search time
by up to 44%.

In future work, we aim to leverage this work to study the impact of coordination and
information sharing between multiple drivers. By so doing, we can study the impact of
additional coordination that reduces the amount of uncertainty in the system. Moreover,
studying the charging station search problem from a system perspective with a perfect
information setting may yield an interesting upper bound that allows for an improved
assessment of the solution quality of our algorithms in a stochastic setting.
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A. Proofs

Proof of Proposition 1. Let ⇡ be the policy associated to sequence C, with C = (v0, v1, ..., vn).
We consider state xk = (vk, 0) with charging station vk not being available and vk 6= vn. Thus,
for i < n,

Qi
j=i(1� pvj

) = 1. For i = n,
Qi

j=i(1� pvj
) = 1� pvn .

We then introduce F as follows

F ⇡(xk) =
nY

i=k

(1� p̃vi
(C[k:i�1]))�vn +

n�1X

i=k

"
tvi,vi+1

iY

j=k

(1� p̃vj
(C[k:j�1]))

#

+
nX

i=k

"
�vi

p̃vi
(C[k:i�1])

i�1Y

j=k

(1� p̃vj
(C[k:i�1]))

#
.

(A.1)

We notice that F ⇡(xn) = (1� pvn)�vn + pvn�vn = V ⇡(xn).
We now show that F fulfills the recursive definition of the policy specific cost function and
by recursion that F = V . From state xk = (C[0,k], 0), we let the cost for being in the next
state xk+1 = (C[0,k+1], 0) and seek to express F ⇡(xk) as a function of F ⇡(xk+1) to fulfill the
recursive Definition 3.5.

F ⇡(xk+1) =
nY

j=k+1

(1� pvj
)(�vn) +

n�1X

i=k+1

[tvi,vi+1

iY

j=k+1

(1� pvj
)]

+
nX

i=k+1

[�vi
pvi

i�1Y

j=k+1

(1� pvj
)]

(A.2)
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F ⇡(xk) = (1� pvk
)

nY

j=k+1

(1� pvj
)(�vn) + tvk,vk+1

+ (1� pk)
n�1X

i=k+1

[tvi,vi+1

iY

j=k+1

(1� pvj
)]

+ pvk
�vk

+ (1� pvk
)

nX

i=k

[�vi
pvi

i�1Y

j=k

(1� pvj
)]

F ⇡(xk) = tvk,vk+1
+ (1� pvk

)F ⇡(xk+1) + pvk
�vk

(A.3)

Accordingly, F fulfills the recursive Definition 3.5 for w = 0, which concludes the proof.

Proof of Proposition 2. We consider two simple search sequences (v) and (v, v0) extended
with the same visit sequence C = (v0, ..., vn). Let C 0 = (v) � C, resp. C 00 = (v, v0) � C,
associated to policies ⇡0, resp. ⇡00. Let tv,v0 = tv,v0 + tv0,v0 and let v0 be a direct neighbor of v

(i.e., there is no station v00 such that tv,v0 = tv,v00 + tv00,v0) and let v0 not be a direct neighbor.

We now show that from the considered state x0 = ((v), 0), visiting v0 before v0 is always
better than straightforwardly visiting v0. We get

V ⇡0
((v), 0) = tv,v0 + (1� p̃v0)V

⇡0
((v, v0), 0),

V ⇡00
((v), 0) = tv,v0 + (1� p̃v0)tv0,v0 + (1� p̃v0)(1� p̃v0)V

⇡00
((v, v0, v0), 0)

and distinguish two cases:

Case 1 (v0 /2 C): In this case, the valuation of any unexplored station after v0 does not de-
pend on preceding visits in the respective sequence, i.e., V ⇡00

((v, v0), 0) = V ⇡00
((v, v0, v0), 0).

Given that (1� p̃v)  1, we straightforwardly obtain V ⇡00
((v), 0)  V ⇡0

((v), 0).

Case 2 (v0 2 C): In this case, the valuation of any unexplored station after v0 depends on
preceding visits in the respective sequence and we obtain the following cost expansions,
visiting v0 at position k:

For path C 0, v0 is visited for the first time such that p̃vk
= pv0 and we get

V ⇡0
(C 0, 0) =

nY

j=0

(1�p̃vj
)(�)+

k�1X

i=0

tvi,vi+1

iY

j=0

(1�p̃vj
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n�1X
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[tvi,vi+1
(1�p̃v0)
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j=0,j 6=k

(1�p̃vj
)

(A.4)
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For path C 00, v0 is visited for the second time such that p̃vk
= 0 and we get

(1� p̃v0)V ⇡00
(C 00, 0) = (1� p̃v0)

nY

j=0

(1� pvj
)(�) + (1� p̃v0)

k�1X

i=0
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j=0
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)

+
n�1X

i=k

[tvi,vi+1
(1� p̃v0)
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j=0,j 6=k

(1� pvj
) (A.5)

Since (1� p̃v0)  1, we have

(1� p̃v0)V ⇡00
((v, v0, v0), 0)  V ⇡0

((v, v0), 0)

and consequently
V ⇡00

(x0)  V ⇡0
(x0).

In both cases, ⇡00 is preferred over ⇡0 (thus C 00 over C 0), such that candidate stations
can be restricted to neighbor stations only, which concludes the proof.

B. Problem Complexity

Proposition 3. The SCPS problem is NP-hard, even with metric travel times.

Proof of Proposition 3. We show hardness through reduction from the traveling salesman
problem (TSP) with metric and integer travel times. The decision problem variant of the
TSP can be defined as follows: we consider a set V of n sites and travel times tv,v0 2 N
between these. Travel times are bounded 1  tv,v0  � for all v, v0 2 V . We are asked for a
tour (i.e., a Hamiltonian path) v0, . . . , vn = v0 whose length satisfies

Pn�1
i=0 tvi,vi+1

 ✓ for a
given ✓. Given that travel times are integer, we can assume w.l.o.g. that ✓ 2 N. Further, we
assume that triangle inequality holds, i.e., tv,v0 + tv0,v00 � tv,v00 for all v, v0, v00 2 V. We note
that hardness for this restricted metric case implies hardness for the generic case as well.

Step 1: We construct an instance for the station search from the TSP instance as follows:
We select an arbitrary vertex s 2 V and designate it as start vertex v0 := s for the search.
We then create a duplicate s0 in the same location (ts,s0 = 0), which serves as the termination
vertex. Let q be an arbitrary value satisfying

✓
1� 1

�(n + 1)

◆ 1
n�1

 q < 1 . (B.1)

We parameterize the search as follows: All vertices c have an availability of pi := 1 � q

without recovery. There is no penalty for successful charging (�i := 0 8i). For unsuccessfully
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terminating at s0, the penalty is

�s0 :=
2�

q(1� q)
+ 1 . (B.2)

For all other vertices c 6= s0 the penalty is

�v :=
1

qn+1
(�s0 + n�) + 1 . (B.3)

Now for any search path C = (v0, . . . , vk) that does not visit any vertex multiple times, it
holds that

↵(C) =
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= qk+1�vk
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(B.4)

Step 2: We now claim that the TSP instance possesses a solution with cost at most ✓ 2 N
if, and only if, the station search admits a search path C with ↵(C)  q✓ + qn+1�s0 . This
is done by transforming solutions between the two problems and carefully mapping their
objective values.

For the first direction, we assume that a TSP tour is given. We convert it to a search path
C = (v0, . . . , vn) by cutting at s such that v0 = s and vn = s0. Then

↵(C) = qn+1�s0 +
n�1X

i=0

qi+1tvi,vi+1
 qn+1�s0 + q

n�1X

i=0

tvi,vi+1
 qn+1�s0 + q✓ .

Vice versa, we assume that we are given a search path P with ↵(P )  q✓ + qn+1�s0 . Then for
an optimal search path C = (v0, . . . , vk) it holds that ↵(P )  ↵(C)  q✓ + qn+1�s0 . Given
metric travel times and no recovery, we can assume that C does not visit any vertex more
than once. We construct a tour through the following observations:

1. C visits s0: Assume it does not. Let C 0 be C extended by ending at s0. Then

↵(C 0) = ↵(C)� qk+1�vk
+ qk+2�s0 + qk+1tvk,s0

= ↵(C)� qk+1(�vk
� q�s0 � tvk,s0)

(⇤)
< ↵(C)

(B.5)

using in (*) that �vk
> q�s0 + � by (B.3). This contradicts the optimality of C.

2. C visits s0 last: Assume it does not. We obtain C 0 from C by moving s0 to the end.
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Then it holds that

↵(C) � qk+1�vk
� qn+1�vk

and

↵(C 0)  qk+1�s0 +
k�1X

i=0

qi+1�  �s0 + n� .
(B.6)

Given that qn+1�vk
> �s0 + n� (B.3), it holds that ↵(C) > ↵(C 0), contradicting

optimality.

3. C visits every vertex: Assume C = (v0, . . . , vk�1, s
0) omits some vertex v0. Let C 0 =

(v0, . . . , vk�1, v
0, s0). Then

↵(C)� ↵(C 0) =
�
qktvk�1,s + qk+1�s0
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> 0 ,

(B.7)

again contradicting optimality.

4. It is clear now that C corresponds to a TSP tour, by identifying s with s0. It holds that

↵(C) =
n�1X

i=0

qi+1tvi,vi+1
+ qn+1�s0  q✓ + qn+1�s0 . (B.8)

Assume the tour would violate the threshold, i.e.,
Pn�1

i=0 tvi,vi+1
> ✓. Given integrality,

the length then is at least ✓ + 1. It follows that

n�1X

i=0

qi+1tvi,vi+1
�

n�1X

i=0

qntvi,vi+1
= q

n�1X

i=0

qn�1tvi,vi+1

(B.1)
� q

n�1X

i=0

(1� 1

�(n + 1)
)tvi,vi+1

= q

"
n�1X

i=0

tvi,vi+1
�

n�1X

i=0

tvi,vi+1

�(n + 1)

#

� q

"
✓ + 1�

n�1X

i=0

1

n + 1

#
> q✓ .

(B.9)

This contradicts (B.8), thereby proving that
Pn�1

i=0 tvi,vi+1
 ✓.

C. Variant-specific methods

We now present the required methodological changes for the problem variants ¬W/¬C,
W/¬C and W/C. Besides describing the cost structure variants (Section C.1), we detail the
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necessary modifications for the labeling and the rollout algorithms (Section C.2).

C.1. Cost structure variants

For ¬W/¬C, W/¬C and W/C problem variant as introduced in Section 2.1.1, the cost
functions V ⇡(C, 0), V ⇡(C, 1) and V ⇡(xn) for a termination state xn = (C, a), can be expressed
as follows, with C 0 denoting the extension of C by station vk+1 for non-termination states.

No waiting, without charging cost (¬W/¬C)

V ⇡(C, 0) = tvk,vk+1
+ (1� p̃vk+1

)V ⇡(C 0, 0) ,

V ⇡(C, 1) = 0 ,

V ⇡(xn) = (1� p̃vn)� .

(C.1)

Waiting permitted, without charging cost (W/¬C)

V ⇡(C, 0) = wWvk
+ (1� w)[tvk,vk+1

+ (1� p̃vk+1
)V ⇡(C 0, 0)] ,

V ⇡(C, 1) = 0 ,

V ⇡(xn) = (1� p̃vn)Wvn .

(C.2)

Waiting permitted, with heterogeneous charging costs (W/C)

V ⇡(C, 0) = w(Yvk
+ Wvk

) + (1� w)[tvk,vk+1
+ (1� p̃vk+1

)V ⇡(C 0, 0) + p̃vk+1
Lvk+1

] ,

V ⇡(C, 1) = Yvk
,

V ⇡(xn) = (1� p̃vn)Wvn + Yvn .

(C.3)

C.2. Algorithm variants

The main methodology section discusses the algorithm implementation for problem variant
¬W/C, which can be applied to the problem variant ¬W/¬C without any further changes,
because both variants ignore the waiting decision. In the following, we specify the required
changes to account for waiting times and waiting decisions that can be applied to both
problem variants W/¬C and W/C.

C.2.1. Labeling algorithm

Similar to the changes required to account for the time-dependent recovery functions detailed
in Section 3.4, we now introduce the resource Rv in the label definition (cf. Equation 3.27),
and define a label as follows: Lv = (tv, Av, ⇢v,↵v, Sv, Rv).

For problem variants W/¬C and W/C, we recall that a search can terminate before the
whole time budget is spent and that a station terminating the search might have been visited
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earlier. Accordingly we drop Condition 3.21 and use Condition 3.28 (defined in Section 3.4)
in the dominance criterion that checks whether all visited vertices reachable by ⇡2 can be
reached from ⇡1 as well. With L1 and L2 being the associated labels to ⇡1 and ⇡2, we then
say that L1 � L2 if Conditions (3.17)–(3.20) are true and Condition (3.28) holds.

Here, each newly created label can also serve as a termination label, as the driver can
decide to wait to terminate the search. Figure 11 shows the adapted pseudo-code (l.10),
where we relax the termination condition stating that no feasible successors should be left.

C.2.2. Rollout algorithm

For problem variants W/¬C and W/C, we use an additional procedure refinePolicy(C)

that bases on the resulting visits sequence C to introduce the waiting decision at the best
stage 1  k  n, with n being the total amount of station visits in C. Figure 12 shows the
adapted pseudo-code, where we account for the waiting decision.

We first calculate the no-waiting case and compute policy ⇡ with the associated ordered
sequence of charging stations C = (v0, ..., vn). We denote ⇡ as an intermediate policy and
introduce ⇡S representing the final search policy. Then, refinePolicy(C) calculates ⇡S using
the intermediate policy ⇡ while permitting wait-actions (l.12). For each intermediary charging
station vk at the kth decision epoch, vk 2 (v0, ..., vn), k 6= n, ⇡ provides a sub sequence of
charging stations to visit until the end of the search (vk+1, ..., vn) and thus the policy-specific

Figure 11: Dynamic programming based labeling algorithm.
1: La  {L0}, L⇤  L0

2: while La 6= ; do
3: L costMinimumLabel(La)
4: La  La \ {L}
5: for (v, v0) 2 �+(L) do
6: L0  Fij(L)
7: if isNotDominated(L0, La) then
8: dominanceCheck(La, L0)
9: La  La [ {L0}

10: if ↵(L0) < ↵(L⇤) then
11: L⇤  L0

12: return L⇤

Figure 12: Forward programming based algorithm.
1: vk  v0, C  (v0), xk  (C, 0), t 0
2: while t  T do
3: v⇤  0, x⇤  0, C⇤  0, Q 1
4: for (v, 0) 2 U(xk) do
5: xk+1  (C 0, 0)
6: V  greedyCost(xk+1)
7: Q(xk, v, xk+1) tvk,v + (1� p̃v)V + p̃v�v

8: if Q(xk, v, xk+1) < Q then
9: Q Q(xk, v, xk+1)

10: v⇤  v, x⇤  x, C⇤  C 0

11: C  C⇤, xk  x⇤, t t + tvk,v⇤ , vk  v⇤

12: C  refinePolicy(C)
13: return C
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cost value V ⇡(xk), associated to policy ⇡ and state xk = ((v0, ..., vk), 0). We aim to quantify
for each station vk whether the termination cost �vk

is actually lower than the expected cost
for continuing the search V ⇡(xk). If this is the case, the optimal decision is to wait and we
refine ⇡ into ⇡S with ⇡S(xk) = (vk, w = 1) and V ⇡S(xl)  V ⇡(xl) 8l 2 [0, n].

We define ⇡S as

⇡S(xk) =arg min
⇡(xk),(vk,w=1)

w�vk
+ (1� w)[tvk,vk+1

+ (1� p̃vk+1
) min(V ⇡(xk+1), V

⇡S(xk+1)) + p̃vk+1
�vk+1

],

(C.4)
where ⇡(xk) = (vk+1, w = 0). If there exists an index k such that 0  k < n, xk =

((v0, ..., vk), 0) and ⇡S(xk) = (vk, 1), then state xk terminates the search, as the driver will
wait at vk if vk is not immediately available. In this case ⇡S encodes the solution (v0, ..., vk).

C.2.3. Integrating search related energy consumption

Charge times become path-sensitive for problem variant W/C, similar to problem variant
¬W/C, whereas ¬W/¬C and W/¬C do not account for path-dependent charging times based
on their definitions.

D. Reduced action spaces results

Table 11 compares the computational times, and the percentage share of instances that can
be computed in less than 15.000 seconds by each heuristic. Further, for the instances that
can be solved to optimality within 15.000 seconds, the table compares for both heuristics the
averaged optimality gap and computational time gap.

Preliminary results show that using the complete action space for problem variants ¬W/¬C

and W/¬C with LH is computationally too heavy to be of any practical use, such that we
restrict results to the other restricted action spaces. As can be seen, while direct only slightly
helps saving computational times on average for ¬W/¬C and LH, it allows to solve 6%
more instances within the allocated time for W/¬C. For RO, results show a 96% decrease
of the computational time for W/¬C. For ¬W/C, restricting the next station visits from
the current location to the ones accessible in less than five minutes allows to save 36%
of the computational times compared to complete. Accordingly, Table 12 shows the most
appropriate action space for each heuristic and problem variant.

E. Problem variant-specific results

In the following, we discuss the results for problem variants ¬W/¬C, W/¬C and W/C of
the applicability study (Section E.1), the computational tractability study (Section E.2) and
the extended analysis (Section E.3).
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Table 11: Aggregated computational results over all tested instances for each problem variant
and used action space

Graph setup LH RO

Problem variant Action space �̂(t) �̂(↵) t̂ n̂ �̂(t) �̂(↵) t̂ n̂

¬W/¬C
direct -0.79 0.01 197 0.73 -0.65 0.27 0.08 1.00

direct/restricted -0.84 0.04 235 0.82 – – – –
T r-restricted -0.83 0.00 221 0.74 – – – –

complete – – – – -0.77 0.13 0.58 1.00

W/¬C
direct -0.80 0.00 72.7 0.83 -0.80 0.03 0.03 1.00

direct/restricted -0.84 0.02 16.7 1.00 – – – –
T r-restricted -0.84 0.01 250 0.78 – – – –

complete – – – – -0.64 0.04 0.76 1.00

¬W/C
T r-restricted -0.83 0.01 311 0.84 -0.82 0.12 0.31 1.00

complete -0.84 0.01 486 0.84 -0.81 0.12 0.38 1.00

W/C
T r-restricted -0.74 0.00 120 0.83 -0.69 0.00 0.88 1.00

complete -0.80 0.00 100 0.83 -0.66 0.00 1.05 1.00

Abbreviations hold as follows: �̂(t) - averaged computational time gap with �(t) = theur�topt
topt [%],

�̂(↵) - averaged optimality gap over all tested instances with �(↵) = ↵heur�↵opt
↵opt [%], t̂ - averaged

computational time [s], n̂ - rate of instances that can be computed in less than 15.000 seconds.

Table 12: Best action space /heuristic combination per problem variant

Problem variant LH RO

¬W/¬C direct complete
W/¬C direct direct
¬W/C T r-restricted complete
W/C complete complete

For all problem variants, the table shows for each heuristic (LH, RO) the graph setting to that
provides the best trade-off between computational times and solution quality.

E.1. Applicability

We use the same metrics to evaluate the performances of our algorithms for problem variant
¬W/¬C. Since the search always ends successfully in waiting variants W/¬C and W/C,
we analyze the algorithms based on their maximum realized search cost. Similarly to the
simulated search cost evaluation, we use the maximum realized search cost deviation, that
results to �b↵max = b↵max/b↵max⇤ with b↵max = max b↵i being the maximum cost out of all
simulation runs for a single algorithm and with b↵max⇤ being the maximum cost over all
simulation runs and all algorithms. Note that the realized search cost corresponds to the
realized driving time needed to find a station for variants ¬W/¬C and W/¬C, and to
complete charging for W/C. For W variants, ↵̂ includes the waiting time whenever the last
visited station is occupied.

Table 13 details the average realized search cost deviations between all algorithms for
problem variants ¬W/¬C, W/¬C and W/C while Table 14 details the realized success rate
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Table 13: Average search cost deviations for ¬W/¬C, W/¬C and W/C

low-15% avg-60% high-90%

N G RO LH N G RO LH N G RO LH

¬W/¬C SF-1/1 1.38 0.78 0.00 0.77 2.63 0.41 0.00 0.00 1.33 0.35 0.19 0.00
SF-1/2 1.13 0.59 0.09 0.14 2.66 2.55 0.00 0.00 2.52 1.08 0.00 0.00
BER-1/1 0.08 0.02 0.02 0.08 0.39 0.39 0.25 0.27 0.28 0.98 0.00 0.00
BER-1/2 0.18 0.08 0.01 0.01 3.38 0.16 0.03 0.03 4.14 0.24 0.00 0.00
SF-2/1 4.74 4.72 0.57 0.28 5.98 5.98 0.01 0.01 6.51 3.18 0.01 0.01
SF-2/2 8.31 6.52 0.25 0.16 10.7 6.16 0.17 0.10 6.43 6.43 0.01 0.01

W/¬C SF-1/1 5.67 6.61 6.68 0.60 2.71 1.72 0.01 0.01 1.08 0.12 0.00 0.00
SF-1/2 2.30 6.19 0.67 0.41 2.71 1.69 0.01 0.01 2.53 0.11 0.00 0.00
BER-1/1 0.41 1.32 0.20 0.20 0.15 0.36 0.04 0.04 0.25 0.00 0.00 0.00
BER-1/2 4.39 1.35 0.20 0.20 4.36 0.62 0.24 0.24 4.12 0.00 0.00 0.00
SF-2/1 58.1 4.55 0.42 0.42 6.41 0.55 0.01 0.01 6.52 0.04 0.01 0.01
SF-2/2 33.1 4.72 0.19 0.19 10.8 0.73 0.17 0.09 6.40 0.05 0.01 0.05

W/C SF-1/1 2.37 1.17 0.00 0.00 1.14 0.04 0.00 0.00 0.98 0.00 0.00 0.00
SF-1/2 2.11 4.24 0.01 0.01 2.83 0.04 0.00 0.00 0.06 0.00 0.00 0.00
BER-1/1 0.74 0.01 0.00 0.00 0.12 0.02 0.00 0.00 2.79 0.02 0.00 0.00
BER-1/2 1.37 0.01 0.01 0.01 0.94 0.02 0.00 0.00 2.92 0.00 0.00 0.00
SF-2/1 3.48 0.03 0.01 0.01 0.17 0.01 0.00 0.00 1.02 0.00 0.00 0.00
SF-2/2 0.89 0.04 0.02 0.02 0.98 0.01 0.00 0.00 1.02 0.00 0.00 0.00

The table compares the average search cost deviation �b↵ for LH, RO, G, and N for each instance of
problem variants ¬W/¬C, W/¬C, and W/C.

of each algorithm for ¬W/¬C. Figure 13 shows the trade-off between the average realized
search costs and (i) the realized success rate, aggregated over all scenarios for problem variant
¬W/¬C (Figure 13a) or (ii) the maximum realized search cost, aggregated over all scenarios
for W problem variants (Figure 13b).

As can be seen in Table 13, larger search cost deviations occur for the W variants, especially
for W/¬C, due to the heterogeneous penalty costs that result from waiting at an occupied
station. Particularly, on the SF-1 instances at low-availability, RO performs significantly
worse compared to LH with respect to the average search time. In this case, a single varying
station visit between two search strategies can cause such differences due to the limited
amount of candidate stations and the large amplitude between penalty costs. For ¬W/¬C,
the LH algorithm shows higher success rates compared to the RO algorithm (cf. Table 14
and Figure 13a), which highlights the superiority of the LH algorithm compared to the RO
algorithm as both algorithms show comparable performances with respect to the average
search cost.

Table 15 shows the deviation between the maximum search cost of all algorithms for W

problem variants, which are guaranteed to be feasible at the price of high waiting cost. Here,
we observe a trade-off between the average search cost and the maximum search cost (cf.
Figure 13b). As one can see, the LH and the RO algorithm show a similar performance for
scenarios with medium and high charging station availability, but the LH algorithm performs
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Table 14: Success rate for ¬W/¬C

low-15% avg-60% high-90%

N G RO LH N G RO LH N G RO LH

¬W/¬C SF-1/1 0.81 0.85 0.36 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-1/2 0.95 0.85 0.81 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BER-1/1 0.78 0.77 0.77 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BER-1/2 0.95 0.80 0.78 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-2/1 0.70 0.80 0.78 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SF-2/2 0.90 0.86 0.87 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

The table compares the success rate b⇢ for LH, RO, G, and N for each instance of the ¬W/¬C
problem variant.

Table 15: Maximum realized search cost deviation for W/¬C and W/C

low-15% avg-60% high-90%

N G RO LH N G RO LH N G RO LH

W/¬C SF-1/1 22.6 2.29 10.8 0.00 1.42 0.00 0.10 0.24 2.11 0.00 0.13 0.13
SF-1/2 4.45 2.29 0.00 0.00 2.01 0.11 0.00 0.00 0.69 0.00 0.13 0.13
BER-1/1 1.12 0.00 0.32 0.32 0.28 2.08 0.00 0.00 0.27 0.34 0.00 0.00
BER-1/2 33.7 0.00 0.32 0.32 0.60 2.08 0.00 0.00 0.71 0.34 0.00 0.00
SF-2/1 29.0 0.27 0.00 0.00 0.89 1.05 0.00 0.00 0.74 0.00 0.70 0.70
SF-2/2 30.2 0.27 0.00 0.00 3.60 2.04 0.00 1.07 0.02 0.55 0.00 0.55

W/C SF-1/1 6.07 1.22 0.00 0.00 2.60 0.00 0.01 0.01 0.85 0.00 0.00 0.00
SF-1/2 2.78 6.24 0.00 0.00 2.61 0.01 0.00 0.00 0.00 0.03 0.03 0.03
BER-1/1 2.69 0.00 0.00 0.00 0.73 0.36 0.00 0.00 1.63 1.70 0.00 0.00
BER-1/2 6.41 0.00 0.00 0.00 0.96 1.38 0.00 0.00 2.39 0.01 0.00 0.00
SF-2/1 6.34 0.06 0.00 0.00 2.57 0.00 0.00 0.00 0.99 0.00 0.01 0.01
SF-2/2 6.49 0.20 0.00 0.00 0.85 0.00 0.02 0.01 0.95 0.00 0.01 0.00

The table compares the average maximal search cost deviation �b↵max for LH, RO, G, and N for
each instance of problem variants W/¬C and W/C.

better in the SF-1/1 scenario with low charging station availability. Across all scenarios
the greedy algorithm sometimes yields the least maximum cost. However, this improvement
stems from significantly increased search costs (cf. Table 13).

For W problem variants, we observe that the advanced algorithms outperform the myopic
algorithms significantly, independent of the charging station availability. This performance
difference is higher for problem variant W/¬C. For problem variant W/C, the greedy
algorithm performs close to the advanced algorithms for scenarios with medium or high
charging station availability.

E.2. Computational tractability

Table 16 compares the performance of the LH and RO algorithm against the exact labeling
algorithm for the remaining ¬W/¬C, W/¬C and W/C problem variants. As can be seen,
the observed differences are sensitive to the problem variant. Significant differences occur
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(b) Averaged search cost vs. worst search cost for problem variants W/¬C and W/C

Figure 13: Trade off between the average search cost and the success rate, resp. the worst
search cost

for the ¬W/¬C problem variant, similar to ¬W/C, with low charging station availability
and varying search radii, while the algorithms perform similarly on the waiting problem
variants. These high deviations result from penalty costs for unsuccessful searches, which can
only result for ¬W problem variants and are more likely to occur at low charging station
availability.

Figures 14-16 show the extensive heuristic comparisons for the remaining problem variants
W/¬C, ¬W/C, W/C. Similarly to ¬W/C, LH significantly outperforms RO for both non
charging variants in low availability scenarios, especially in low density areas, whereas there
exists no significant difference for problem variant W/C.

E.3. Extended analysis

In the following, we discuss the algorithm’s sensitivity toward �̄ for problem variant ¬W/¬C,
the heuristic dominance criterion for problem variants ¬W/¬C, W/¬C and W/C and the
impact of time-dependent recovery functions.

Termination penalty
For problem variant ¬W/¬C, ts corresponds to the expected search time, due to the usage
cost homogeneity (�v = 0, 8v 2 V). As can be seen in Figure 17, a similar goal conflict as
for problem variant ¬W/C, between expected search time and success rate, exists. Note that
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Table 16: Aggregated computational results over all tested instances per scenario for ¬W/¬C,
W/¬C and W/C

L-H RO L-E

�̂(↵) �̂(↵̄) t̂ n̂ �̂(↵) �̂(↵̄) t̂ n̂ t̂ n̂

¬W/¬C

low-15%
SF-1 0.01 0.01 1.78 100 0.32 0.38 0.09 100 164 64
BER-1 0.04 0.04 0.49 100 0.43 0.46 0.28 100 1386 46
SF-2 0.03 0.01 444 66 0.22 0.18 1.38 100 8646 4

avg-60%
SF-1 0.00 0.00 266 96 0.04 0.04 0.11 100 7.02 64
BER-1 0.00 -0.02 84.5 100 0.01 -0.02 0.23 100 473 59
SF-2 0.00 0.00 803 34 0.11 0.10 1.76 100 4816 5

high-90%
SF-1 0.00 0.00 107 66 0.03 0.03 0.10 100 16.4 64
BER-1 0.00 0.00 66.7 66 0.00 0.00 0.35 100 517 57
SF-2 0.00 0.00 1.70 25 0.00 0.00 0.95 100 4156 4

W/¬C

low-15%
SF-1 0.04 0.05 0.05 100 0.09 0.10 0.01 100 482 68
BER-1 0.00 0.00 1.60 100 0.00 0.00 0.04 100 283 64
SF-2 0.00 0.00 160 64 0.03 0.04 0.10 100 2111 25

avg-60%
SF-1 0.00 0.00 0.05 100 0.03 0.03 0.01 100 2.33 64
BER-1 0.00 0.01 0.72 100 0.00 0.00 0.01 100 1046 64
SF-2 0.00 0.00 491 54 0.09 0.09 0.03 100 4219 25

high-90%
SF-1 0.00 0.00 0.06 100 0.00 0.00 0.01 100 1.68 64
BER-1 0.00 0.00 0.38 100 0.00 0.00 0.01 100 475 64
SF-2 0.00 0.00 0.43 25 0.00 0.00 0.05 100 2024 25

W/C

low-15%
SF-1 0.00 0.00 1.90 100 0.00 0.00 0.12 100 493 68
BER-1 0.00 0.00 5.98 100 0.00 0.00 0.77 100 803 66
SF-2 0.00 0.00 358 79 0.00 0.00 2.95 100 2565 25

avg-60%
SF-1 0.00 0.00 0.25 100 0.00 0.00 0.12 100 472 68
BER-1 0.00 0.00 0.83 100 0.00 0.00 0.57 100 495 64
SF-2 0.00 0.00 527 64 0.00 0.00 2.59 100 2031 25

high-90%
SF-1 0.00 0.00 1.99 89 0.00 0.00 0.08 100 352 68
BER-1 0.00 0.00 0.05 89 0.00 0.00 0.34 100 629 66
SF-2 0.00 0.00 4.27 29 0.00 0.00 1.88 100 2661 25

Abbreviations hold as follows: �̂(↵) - averaged optimality gap [%], �̂(↵̄) - averaged simulated estimate
deviation [%], t̂ - averaged computational time [s], n̂ - rate of instances that can be computed in less than
15.000 seconds. We note that an average �̂(↵) of 0.00 indicates that an algorithm (almost) always finds
the optimal solution. If it always finds the optimal solution we highlight the respective �̂(↵) in bold font,
whereas we leave it in normal font if some solutions remain heuristic but are not reflected in the value of
�̂(↵) due to rounding.
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Figure 14: Extensive comparison of the LH and RO heuristics for problem variant ¬W/¬C
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Figure 15: Extensive comparison of the LH and RO heuristics for problem variant W/¬C
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Figure 16: Extensive comparison of the LH and RO heuristics for problem variant W/C
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Figure 17: Impact of �̄ on averaged computational time, expected search time and failure rate
for the low-15% instances for ¬W/¬C

For LE, data are averaged over 6 instances corresponding to two instances (S̄ = 800/T̄ = 5 and S̄ = 1.000,T̄ = 10) per spatial
scenario (SF-1 , BER-1 and SF-2 ) and for LH and RO over 9 instances corresponding to three instances (S̄ = 1.000/T̄ = 5,
S̄ = 1.500,T̄ = 10 and S̄ = 2.000,T̄ = 15) per spatial scenario.

Time-dependent recovery function
Results show no significant impact of the time-dependent recovery functions for the problem
variants W/¬C and W/C, such that we only report values for problem variant ¬W/¬C

in Table 17. As can be seen, results yield similar insights as for problem variant ¬W/C:
time-dependent recovery functions mainly impact results in scenarios with smaller search
areas, large time budget, and low charging station availability.
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Table 17: Potential solution improvement for the time-dependent probability recovery function
for problem variant ¬W/¬C

low-15% avg-60%

LH RO LH RO

T S ↵ref ↵new ↵ref ↵new ↵ref ↵new ↵ref ↵new

5 800 25.8 25.7 28.6 33.1 1.41 1.53 1.55 1.81
5 2000 13.8 13.85 13.9 13.8 1.32 1.32 1.34 1.34
5 3400 9.63 9.62 16.3 16.27 1.32 1.32 1.34 1.34

10 800 23.9 21.1 28.6 25.9 1.35 1.33 1.4 1.6
10 2000 6.84 6.84 7.32 11.8 1.23 1.23 1.23 1.23
10 3400 3.26 3.26 3.44 3.44 1.23 1.23 1.23 1.23
15 800 23.9 18.1 28.6 24.4 1.35 1.31 1.4 1.59
15 2000 4.25 4.28 5.05 6.14 1.23 1.23 1.23 1.23
15 3400 2.45 2.58 2.53 2.53 1.23 3.34 1.23 1.23
20 800 23.9 16.3 28.6 23.4 1.35 1.3 1.4 1.58
20 2000 3.51 3.51 4.46 4.15 1.23 1.33 1.23 1.23
20 3400 2.41 3.13 2.50 2.50 2.02 3.37 1.23 1.23

The table compares for BER-1 combined with low-15% and avg-60% the objective value obtained
in the updated setting (↵new) and the initial setting (↵ref ). The table excludes high-90% results as
these do not show any deviations. Significant differences are shown in bold characters.

Relaxed dominance criteria

Figure 18 shows the trade-off between the optimality gap and the computational times for
all dominance criteria for problem variants ¬W/¬C, W/¬C and W/C. Similarly to ¬W/C,
the (heuristic) dominance criterion as chosen in Section 3 – (1,1,0,0,0) – yields the lowest
computational times possible to achieve the best possible solution quality among all heuristic
dominance criteria for problem variants ¬W/¬C and W/¬C. For problem variant W/C,
(1,1,0,0,1) yields the best trade-off by slightly decreasing computational times obtained with
(1,1,0,0,0), but selecting (1,1,0,0,0) allows the best possible generic implementation for LH.

F. Objective value decomposition

In this section, we show by proving Proposition 4 that the objective value ↵(⇡) as derived in
Section 2 can be expressed based on t(⇡), ⇢(⇡) and an additional quantity ts(⇡) representing
the expected time to find and use a station assuming at least one station is available among
C, the visits sequence associated with ⇡. We derive the quantity ts(⇡) based on the work of
Arndt et al. (2016) that describes ts(⇡) as a sum over all stations of the accumulated driving
time to a station and its utilization cost weighted by the probability the driver charges exactly
at this station.

Proposition 4. Cost ↵ can be decomposed to exhibit ts(⇡) as follows,

↵(⇡) = ts(⇡) · ⇢(⇡) + ⇢̄(⇡) · (t(⇡) + �vn) (F.1)
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Figure 18: Comparison of heuristic dominance criteria for problem variants ¬W/¬C, W/¬C and
W/C

The Figure shows the averaged optimality gap g↵ =
P

i
↵i/↵opt

i as a function of the averaged computational
time gap gt =

P
i

ti/t
opt
i for each possible heuristic criterion for ¬W/C. For each variant, both values are

averaged over 16 instances corresponding to BER-1 and SF-1 combined resp. with low-15% , avg-60% and
high-90% for S 2 [1200, 1400, 1600, 1800] and fixed T = 10. Red triangles show our selected dominance
criteria..

Proof of Proposition 4. We recall that ↵(⇡) = A(⇡) + ⇢̄(⇡) · �vn (cf. Equation 3.9). For
the sake of conciseness, we simplify the notation for the remainder of this proof as follows:
C = (0, 1, ..., n) such that tk,k+1 = tvk,vk+1

, ⇢̄k =
Qk

i=0 p̄k We let ⇢n = ⇢(⇡), An = A(⇡),
tn = t(⇡), tsn = ts(⇡).
We then define ts based on Arndt et al. (2016) as

tsn =

Pn�1
k=0 ⇢̄k�1pk(tk + �k)

⇢n

.
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We now note that ⇢̄kpk represents the probability of station k being available when visited,
given that no station in i 2 (0, ..., k � 1) was available.

We then introduce the quantity Bn =
Pn�1

k=0 ⇢̄k�1pk(tk + �k) such that tsn · ⇢n = Bn and
note that to prove F.1, it is sufficient to show

An = Bn + ⇢̄n · tn, (F.2)

which follows by recursion:
Step 1: For n = 0, F.1 holds : A0 = t0,1 and B0 = p1t0,1 + p̄1t0,1 = A0.
Step 2: We assume that F.1 holds and show that An+1 = Bn+1 + ⇢̄n+1 · tn+1 holds, too:

An+1 = An + ⇢̄n · (tn,n+1 + pn+1�n+1)

.
Bn+1 = Bn + ⇢̄npn+1 · (tn+1 + �n+1) (F.3)

Given F.1,

An+1 = Bn + ⇢̄n · tn + ⇢̄n(tn,n+1 + pn+1�n+1)

, An+1 = Bn + ⇢̄n · tn + ⇢̄n(tn,n+1 + pn+1�n+1) + ⇢̄npn+1 · (tn+1 + �n+1)� ⇢̄npn+1 · (tn+1 + �n+1)

(F.4)
From F.3 and F.4, we get :

An+1 = Bn+1 + ⇢̄n · (tn) + ⇢̄n(tn,n+1 + pn+1�n+1)� ⇢̄npn+1 · (tn+1 + �n+1)

, An+1 = Bn+1 + ⇢̄n · tn+1 � ⇢̄n(pn+1)tn+1

, An+1 = Bn+1 + ⇢̄n+1 · tn+1

(F.5)

This concludes the proof.



4 Coordinated Charging Station
Search in Stochastic
Environments: A Multi-Agent
Approach

This chapter is based on an working article published as:

Guillet M., Schiffer M. (2022). Coordinated Charging Station Search in Stochastic Envi-
ronments: A Multi-Agent Approach. https://arxiv.org/pdf/2204.14219.pdf

Abstract

Range and charge anxiety remain essential barriers to a faster electric vehicle market diffusion.
To this end, quickly and reliably finding suitable charging stations may foster an electric vehicle
uptake by mitigating drivers’ anxieties. Here, existing commercial services help drivers to find
available stations based on real-time availability data but struggle with data inaccuracy, e.g.,
due to conventional vehicles blocking the access to public charging stations. In this context,
recent works have studied stochastic search methods to account for availability uncertainty in
order to minimize a driver’s detour until reaching an available charging station. So far, both
practical and theoretical approaches ignore driver coordination enabled by charging requests
centralization or sharing of data, e.g., sharing observations of charging stations’ availability
or visit intentions between drivers. Against this background, we study coordinated stochastic
search algorithms, which help to reduce station visit conflicts and improve the drivers’ charging
experience. We model a multi-agent stochastic charging station search problem as a finite-
horizon Markov decision process and introduce an online solution framework applicable to static
and dynamic policies. In contrast to static policies, dynamic policies account for information
updates during policy planning and execution. We present a hierarchical implementation of a
single-agent heuristic for decentralized decision making and a rollout algorithm for centralized
decision making. Extensive numerical studies show that compared to an uncoordinated setting,
a decentralized setting with visit-intentions sharing decreases the system cost by 26%, which is
nearly as good as the 28% cost decrease achieved in a centralized setting, and saves up to 23%
of a driver’s search time while increasing her search reliability.
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1. Introduction

Electric vehicles (EV) can play a crucial role in decarbonizing the transportation sector,
given a rapid energy transition and continuous battery technology improvement (Schuller
and Stuart 2018). To sustain the global electric vehicle market’s growth of the past two years
(Deloitte 2020), it is necessary to mitigate the remaining barriers to private EV adoption. In
addition to the well-known range anxiety, a new phenomenon referred to as charge anxiety,
caused by unreliable and insufficient public charging infrastructure, remains an essential
barrier, particularly in cities (Myersdorf 2020). Besides increased price transparency, a
seamless charging experience may reduce these anxieties if drivers can easily find and use an
available charging station (McKinsey 2020).

In this context, increasing public infrastructure coverage and improving interoperabil-
ity between charging service providers is necessary to facilitate easy and reliable access to
public charging stations but requires a long planning horizon (Volkswagen 2019). Accord-
ingly, complementary short-term solutions are necessary to alleviate deficiencies in the cur-
rently undersized charging infrastructure. In theory, cooperative charging strategies based on
vehicle-to-vehicle communication can allow for fairer charging capacity allocation (You et al.
2016) but are not implemented yet due to immature technology and uncertain economic-
value (Lauinger et al. 2017). In practice, existing map-based services help EV drivers to
locate available charging stations based on real-time charging station availability data, but
fail to provide a reliable charging station search experience: stations reported as available
can be unusable due to inaccurate reporting or ICEing, i.e., conventional vehicles blocking
the access to a charging station (Guillet et al. 2022). In such cases, drivers must take detours
to reach another station, which may lead to increasing anxiety.

Moreover, simultaneous uncoordinated searches of multiple drivers may conflict if drivers
head to the same charging station. Navigation services platforms that offer services to
find available charging stations through local navigation devices or an online API, may
centralize driver requests or leverage active and passive driver community input, e.g., GPS
trace data, to coordinate search recommendations. In the literature, stochastic charging
station search methods offer a reliable alternative to existing search services, accounting
for charging stations’ availability uncertainty. Such methods consider charging stations as
stochastic resources and aim to find a sequence of charging station visits – a search path –
that minimizes the expected search cost to reach an available station. These approaches are
amenable for real-time applications, may significantly save drivers’ time, and increase the
search’s reliability. However, such approaches so far focus always on a single-agent setting.
Accordingly, coordinating drivers in a multi-agent setting has not been studied so far, but
may avoid possible visit conflicts and further improve the driver’s charging experience by
increasing the search’s reliability and decreasing the search time.

With this paper, we close this research gap by extending stochastic single-agent search
algorithms to a stochastic multi-agent setting, accounting for information-sharing and possi-
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ble requests centralization. We consider scenarios in which drivers may share their planned
visits, their observations of a charging station’s occupancy, or both. Our goal is to identify
the coordination strategy that yields the best improvement on the drivers’ search times and
the search’s reliability.

1.1. Related literature

In the following, we first review literature that relates to stochastic charging station search
problems in a single-agent setting, including EV routing with uncertain charging station
availabilities and more generic stochastic resource search problems. We then focus on multi-
agent resource search problems with stochastic availability or locations.

Only a few papers that deal with EV routing problems address charging station availability
uncertainty but do not focus on open-search problems. Kullman et al. (2021) solve the electric
vehicle routing problem with a public-private recharging strategy, while Sweda et al. (2017)
and Jafari and Boyles (2017) focus on shortest paths with multiple charging stops for EVs.
Sweda et al. (2017) propose adaptive charging and routing strategies when utilizing the
public charging infrastructure, whereas Jafari and Boyles (2017) additionally model both
stochastic travel time and charging consumption. Alternatively, a few papers deal with
stochastic resource search problems in general settings (Guo and Wolfson 2018, Schmoll and
Schubert 2018) or more specific settings, e.g., on-street parking spots (Arndt et al. 2016) or
stochastic taxi customer demand (Tang et al. 2013). Guillet et al. (2022) are the first to
cover multiple variants of the stochastic charging station search problem for EVs, considering
charging or waiting times at stations. However, all aforementioned papers, including Guillet
et al. (2022), are limited to single-agent settings and ignore possible agents coordination.

Focusing on multi-agent settings, most works on resource search problems under uncer-
tainty focus on cooperative searches, i.e., settings in which agents share a unique common
goal. In Bourgault et al. (2003), all agents aim at locating a resource with no a-priori in-
formation on its location in a decentralized decision-making setting. Chung and Burdick
(2008) solve a similar setting with centralized decision-making, while Wong et al. (2005),
and Dai and Sartoretti (2020), extend the single resource target search problem to a multi-
target search problem. Qin et al. (2020) address the multi-agent travel officer problem in
a centralized decision-making setting, in which agents must cooperatively collect resources
with stochastic availability in given locations. In all of these papers, the cooperative search
terminates after the (all) resource(s) have been found. This is not the case in our multi-agent
charging station search setting: here, each agent terminates her search when she found at
least one non-shareable available resource. Existing work on multi-agent settings for EVs
mostly focuses on autonomous EV fleet management, such as ride-sharing planning (Al-Kanj
et al. 2020) or online requests matching for ride-hailing (Kullman et al. 2022) and do not
cover stochastic resource search problems.

In summary, most papers that deal with heterogeneous resource search problems with
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stochastic availability focus on a single-agent setting. Multi-agent search problems mostly
focus on cooperative (multi) resource search problems with unknown resource locations. In
contrast, the search problem studied in this work is rather collaborative than cooperative
because there exists a trade-off between an individual agent’s search experience and the
system performance. Furthermore, while agents usually synchronously search for one or
multiple resources, our setting requires the agents’ search to start at different times and in
different locations which are sequentially revealed.

1.2. Aims and scope

With this work, we close the research gap outlined above by providing coordinated stochastic
search algorithms, that consider both resources and agents heterogeneity, tailored to various
information-sharing and decision-making scenarios of high practical relevance. Specifically,
our contribution is three-fold. First, we formalize the underlying centralized multi-agent
decision-making problem. To this end, we define the planning problem as a single-decision-
maker Markov Decision Process (MDP) and show that with an additional policy constraint,
this MDP can be alternatively represented as a set of single-agent MDPs, which enables
decentralized and static planning. Second, we present several online algorithms that allow to
solve a variety of real-world scenarios. Here, we consider both settings in which a navigation
device addresses a charging request on-the-fly, by providing either a full search path (static
planning) or only the next best charging station to visit (dynamic planning) to the driver.
Moreover, we consider centralized and decentralized planning settings with different levels
of information-sharing in which drivers share either their planned visits, or their charging
station occupancy observations, or both. Third, we conduct extensive numerical studies
based on real-world instances to analyze which coordination strategy yields the highest
improvement potential from a system and a driver perspective.

Focusing on a short planning horizon, our results show that, from a system perspective,
a centralized coordination strategy can decrease the system cost by 28%, and that a static
decentralized coordination strategy already achieves a 26% cost decrease if visit intentions
are shared. In a decentralized setting with intention-sharing, observation-sharing does not
increase the system’s performance further, but enforcing agents’ collaboration is required
when drivers depart within a short time span. While a decentralized setting with only
observation-sharing performs worse than intention-sharing settings, it provides a computa-
tionally efficient implementation in practice. When implemented in a dynamic setting, it
yields a 10% cost decrease when drivers depart within a short time span, but achieves a
26% cost decrease with larger departure time span. From a driver perspective, coordination
may save up to 23% (intention-sharing setting) of a driver’s search time, while increasing her
search reliability. Our results further show that a coordinated search outperforms uncoordi-
nated searches, with respect to both best and worst solutions that an individual driver may
obtain. Finally, we show in additional analyses that coordination also positively impacts a
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driver’s search for a longer planning horizons, yielding up to 46% decrease in system cost.

1.3. Organization

The remainder of this paper is as follows. Section 2 introduces our problem setting. In
Section 3, we formalize our multi-agent decision making problem as an MDP, before we
characterize MDP policies that allow for decentralized policy execution and planning. Sec-
tion 4 introduces our solution framework for online charging requests. In Section 5, we
describe our case study and the corresponding experimental design. We discuss numeri-
cal results in Section 6. Section 7 concludes this paper and provides an outlook on future
research.

2. Problem setting

We focus on a non-adversarial multi-agent search problem, with stochastic charging station
availability, where multiple drivers seek to find an unoccupied charging station in their
vicinity at the earliest possible time. Drivers enter the system sequentially and reveal their
current position at the same time. Accordingly, drivers start their search asynchronously;
each driver departs from a given location, i.e., its current position, and may visit multiple
occupied charging stations before reaching an available charging station. A driver visits the
stations recommended by her navigation device, which synchronizes with a central navigation
service platform. In this setting, an EV driver’s objective is to minimize her expected time to
reach an available station and any related charging costs. The navigation service provider’s
objective is to satisfy as many drivers as possible by minimizing the sum of all drivers’
individual search cost as well as the likelihood that a driver does not reach any available
station within a given time budget.

We assume each individual search to be spatially and temporally bounded to account for
a driver’s limited time budget. Every unsuccessful search induces an individual penalty.
Moreover, we assume that a driver cannot wait at an occupied station nor visit a station
twice and that she stops at the first available station she visits. Stations are heterogeneous
and using a station yields a cost. Drivers are heterogeneous with respect to the charging
and penalty costs, their time budget, and the radius delimiting their (circular) search area.

Practically, the navigation device transmits a search solution to the driver: the driver
may either receive a full sequence of stations to visit until an available station is reached,
i.e., a search path, or she may receive the next station to visit dynamically. We refer to
the former as static planning and to the latter as dynamic planning. Moreover, the solution
planning can be (i) centralized within the navigation service platform or (ii) decentralized,
i.e., at agent-level. In the latter case, solution planning can happen directly within the local
navigation device and devices only use the platform to share information with each other.
In both cases, agents may share their station occupancy observations intermittently or in
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real-time with the central platform. In the decentralized case, they may additionally share
the planned charging station visits. To capture these varying characteristics which are of
practical relevance, we introduce the following problem settings as summarized in Table 1.

Static planning: In such settings, a search path is planned upon request of the agent
and cannot be dynamically updated once the agent started her search. Accordingly, an
agent’s actions only depend on the agent’s own observations and the initial information
available prior to her search. We assume that planned search paths and (if shared) collected
observations, can be transmitted to the central platform to be available to subsequent agents.
We introduce four decentralized decision-making settings according to the type of shared
information. In the DEC setting, no information is shared between agents, while each agent
is aware of prior availability observations of other agents when computing her search path in
the DEC-O setting. Both settings DEC & DEC-O are purely informative, such that agents
are unaware of other agents’ planned search paths. The DEC-I and DEC-IO extend the DEC
& DEC-O settings: each agent additionally knows previous agents’ search paths, i.e., their
intended station visits and visit times. Agents may use the information selfishly, e.g., by
visiting other agents’ target stations first, or they may use the information collaboratively.

Dynamic planning: In such settings, an agent does not receive the whole search path at
once. Instead, it receives the next station to visit at each occupied visited station until it
reaches an available station. Here, we consider a centralized-decision making setting (CEN)
in which a central planner, i.e., the navigation platform, is fully aware of all agents’ observa-
tions and actions, and assigns station visits on the fly to minimize the total expected search
cost of all agents, while maximizing the likelihood that all agents find an available station.
Here, each action assigned to an agent depends on the other agents’ actions and all decisions
are system-optimized as the platform does not prefer any agent. Further, we consider a
dynamic variant (DEC-O-dyn) of the decentralized observation-sharing setting DEC-O. In
this setting, the initial solution is dynamically re-planned upon each occupied station visit
to account for the latest shared observations.

Note that we discard CEN with pure observation-sharing, DEC-I-dyn, and DEC-IO-dyn

Table 1: Problem settings overview

visit intentions availability
observations

path
planning

decision-
making

type

DEC static decentralized selfish
DEC-I X static decentralized collaborative
DEC-O X static decentralized informative
DEC-IO X X static decentralized collaborative

CEN X X dynamic centralized collaborative
DEC-O-dyn X dynamic decentralized informative
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from our analyses for the following reasons: a CEN setting with pure observation-sharing
does not exist, as the planner who centrally assigns stations to drivers is aware of all drivers’
visit intentions. In DEC-I-dyn, intention-sharing implies observation-sharing, as an intention
update occurs when a driver visits an occupied station, which reveals the driver’s station
occupancy observation. In DEC-IO-dyn, each driver has nearly as much information as a
centralized planner, at the exception of other drivers’ search radii or time budget preferences.
Since both settings are very similar, we focus on CEN, which requires less information sharing
in practice.

A few comments on our problem setting are in order. First, we model our coordinated
charging station search as a closed system. While this assumptions seems to be a limitation
from a theoretical perspective, it is appropriate from a practitioners perspective as it reflects
real-world planning scenarios, where charging requests usually accumulate during certain
periods of the days (see Figure 1). Even for scenarios with charging requests homogeneously
distributed during a day, we observe a sufficiently long period without charging requests
during the night which imposes a natural system boundary. Second, we mostly focus on
short planning horizons and assume in this context constant availability probabilities and
observations persistency over the planning horizon. This assumption is in line with practice
for the following reason: in a single-agent scenario, modeling time-dependent recovering
availability probabilities has no impact on the computed search path as an agent either
succeeds or gives up the search after a limited time budget (cf. Guillet et al. 2022). By
restricting our experimental studies to short planning horizon scenarios, we can analogously
ignore time-dependent recovering probability modeling. However, we discuss how to account
for relaxed constant probability assumptions as well as for relaxed observations persistency
(see Section 4.3), and detail the impact of coordination in longer planning horizon settings
(see Section 6.2.3). Third, we assume that all the shared information is available to the other
drivers or the central decision-maker, but limited to a certain vicinity. This assumption
allows to reduce computational effort and is reasonable in practice as far-distanced drivers
do not interfere with each other.
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Figure 1: Number of ending trips on Tuesday 12.01.22 in the east-area of Berlin, Germany

The figure shows 1/3 of all collected anonymized OD pairs of all vehicles using TomTom navigation
services, that end their trips in the east-area of Berlin.
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3. MDP representation

We refer to the problem setting discussed in Section 2 as the multi-agent stochastic charging
pole search (MSCPS) problem and model it as a sequential multi-agent decision making
problem with a finite time-horizon. In the following, we first consider a centralized represen-
tation of the system states, and represent an offline multi-agent search with omniscient single
decision-maker, i.e., assuming that all future requests are known ahead, as a finite-horizon
MDP in Section 3.1. We then reduce the solution space such that the solution policy can be
decentrally executed in Section 3.2, and show that in this case the MDP can be represented
by a set of individual MDPs in Section 3.3.

We formalize the MSCPS problem on a complete directed graph G = (V , A) consisting of
a set of vertices V and a set of arcs (v, v́) 2 A, where a vertex v 2 V consists of a charging
station or a revealed driver’s departure location. For each agent i 2 D let ti0 be her departure
time and vi

0 be her start vertex. Each agent i has a defined time budget T̄ i and we define the
total planning horizon T = [0, maxi2D(ti0 + T̄ i)] during which all searches occur. Each agent
can charge at any charging station located at a vertex v 2 V within a limited search radius
S̄i. We denote with tv,v́ � 0 the time to drive from v to v́. An unsuccessful search yields a
penalty cost �̄i for the agent. We let �i

v be the (time-equivalent) cost for using pole v for
agent i, if v is available upon the arrival of i. We let pv be the probability that station v

is initially free. Finally, we assume in our basic setting that an occupied station remains
occupied during the whole planning horizon T .

3.1. MDP notation

An agent triggers a new decision epoch either by requesting to charge her vehicle or by
observing a new station. We refer to the requesting or observing agent as the deciding agent
denoted with � although a central planner may take the actual decision. If the observed
station is occupied and there is at least one reachable station within her remaining time
budget, � selects her next station visit; otherwise � has terminated her search. Note that
each station visited by � can no longer be used by any succeeding agent, since the station
is either (i) already occupied, or (ii) available and thus occupied by �. Accordingly, the set
of visited stations, i.e., stations that have been observed, corresponds to the set of occupied
stations.
State space: We represent a system state x 2 X out of state space X as

x = (xd, J , T , O) , (3.1)

with J ✓ D being the set of active agents, T ✓ D being the set of successfully terminated
agents, O ✓ V being the set of all visited stations, and xd = (xi)8i2J S T being the vector
that describes the state of each agent. Here, we define an agent’s state xi as

xi = (vi, ti, si) , (3.2)

with vi 2 V being the station assigned to agent i in state x; ti being the arrival time at vi
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and si 2 {d, f, t, r} being the status of the agent: an agent can either (i) be en-route to the
station (si = r), unaware of vi’s realized availability, (ii) observe vi to be available, which
successfully terminates her search (si = f), (iii) observe vi to be occupied, having sufficient
time to reach a new station (si = d) or (iv) not (si = t), which unsuccessfully terminates
her search. The observation of vi in (ii) and (iii) triggers a new decision epoch.

Action space and immediate cost: We denote with u, the action taken in state x for
agent �, i.e., the next station to visit, and by U(x) the set of feasible actions, such that
u 2 U(x). We let d(x, u) be the cost immediately induced by taking decision u in state x,
which does not depend on any future uncertainty realization. For clarity, we refer to state x

as xs if the station observed by � is available, or as xf if � observes an occupied station or
begins her search.

Available station (xs) : Here, the status of � is s� = f, such that no further decision can
be made; accordingly u = ; such that � belongs to the set of terminated agents (T ). The
immediate cost is the cost for � to use v�, such that d(x, u) = ��

v� .

Occupied station (xf): Here, the status of � is s� = d if � can select an unvisited station v to
visit next. Accordingly we get u 2 {v : v 2 V , v /2 O, t� � t�0 + tv�,v  T̄ �}. The immediate
cost results to the driving time for � from her current station to the chosen station, such
that d(x, u) = tv�,u. If no station can be reached within �’s remaining time budget, � has
failed her search, which induces an immediate driver penalty �̄�. In this case, s� = t and we
set d(x, u) = �̄�. At the next stage, its new assigned station is v́� = u, while its new arrival
time is t́� = t� + tv�,u.

We define a policy ⇡ 2 ⇧ as the state-action mapping function, such that ⇡(x) 2 U(x).

State transition: Upon a single-agent’s action, the system transitions from state x to the
next state x́, with �́ being the new deciding agent. The new state x́ can either be a successful
state x́s for �́ with probability pv́ or an unsuccessful state x́f with probability 1� pv́.

We introduce the value function V ⇡(x), that corresponds to the expected sum of future
costs obtained when executing ⇡ from state x, and that can be recursively expressed as

V ⇡(x) = d(x, ⇡(x)) + pv́V
⇡(x́s) + (1� pv́)V

⇡(x́f), (3.3)

with x 2 {xs, xf}. Then, our objective is to find a policy ⇡⇤ that minimizes the accumulated
costs when executing ⇡⇤ from the initial state x0, i.e, V ⇡⇤

(x0)  V ⇡(x0) 8⇡.

To increase the robustness of our solution, we introduce a global penalty cost �G that is
induced in a termination state in case at least one agent unsuccessfully terminated her search.
We note that a higher �G may decrease the quality disparities of the single-agent solutions
by favoring a conservative system with equally bad solutions. On the contrary, a lower �G

may favor single-agent high quality solutions at the detriment of other agents. We define xn

as a termination state as soon as the set of active agents J becomes empty. In state xn,
each agent i 2 T has either successfully (si = f) or unsuccessfully (si = t) terminated her
search. We define V (xn), with xn being a termination state, as

V ⇡(xn) = d(xn, ⇡(xn)) + �G� , (3.4)
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with � being the binary variable that indicates whether at least one agent i 2 T has failed
her search. Table 6 (in Appendix A) summarizes the notation used to define the MSCPS
problem and the related MDP.

3.2. Policy representation

In Section 3.1, we introduced the policy function ⇡ which indicates for any encountered
state x the action ⇡(x) to take, assuming that a state-action pair (x, ⇡(x)) can apply to any
agent. Alternatively, we can represent ⇡ as a set of single agent policies ⇡i by defining ⇡i

only for states where agent i takes a decision. With � being the deciding agent in state x,
we let ⇡i(x) = ⇡(x) if i = � in state x and ⇡i(x) = ; if i 6= �. We refer to this joint set of
single-agent policies {⇡i}i2D as the agent-based representation of ⇡.

User-dependent single-agent policies: In general, the execution of a single-agent policy
⇡i is user-dependent and must be centrally coordinated as each agent’s action depends on
other agents’ observations. In state x, the deciding agent � is aware of the full state x,
i.e., aware of all other availability realizations observed by all other agents. From a single-
agent perspective, the station selection for � depends on whether and where other agents
terminated. For all states x corresponding to � located at v, selected actions ⇡i(x) might
not be identical. We let ⇧dep be the set that contains user-dependent policies ⇡ = {⇡i}i2D,
with ⇡i being user-dependent.

User-independent single-agent policies: While coordinated search in general requires
central coordination, it is possible to ensure a-priori coordination between agents without
central coordination, i.e., preserving user-independent search policies. In this special case,
coordination accounts for other agent’s visit intentions when deriving an agent’s search policy
but excludes observation sharing during the search. In such a setting, an agent i, executing
a search policy ⇡, being located at station v with v being occupied, will always visit the
same next station. We can formally describe this condition as

⇡i(x) = ⇡i(x̄), 8(x, x̄) 2 X̄ ⇥ X̄ st. vi = v̄i = v, (3.5)

with vi being the location of agent i in state x, v̄i being the location of i in state x̄, and X̄
being the subset of states possibly reachable from x0 through ⇡. We let ⇧ind be the set that
contains user-independent policies ⇡ = {⇡i}i2D, with ⇡i being user-independent.

3.3. MDP representation with a user-independent policy constraint

The MDP defined in Section 3.1 considers a user-dependent global policy that can be rep-
resented as a set of single-agent user-dependent policies (see Section 3.2). We show that by
constraining single-agent policies to be user-independent, this global MDP representation
simplifies to a set of single-agent MDPs, which allows to easily plan each agent’s solution
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decentrally. We introduce the representation of a single-agent MDP in Section 3.3.1 accord-
ingly. Here, the objective function equals the sum of single-agent MDP objective functions
with an extra penalty cost. In this case, a single-agent policy ⇡i translates to an ordered
sequence of station visits C i = (vi

0, . . . , v
i
n) with i starting at vi

0, following the vertices in
sequence, and terminating either the search at any first available charging station v 2 C i, or
unsuccessfully at vi

n. Section 3.3.2 then focuses on representation equivalence.

3.3.1. Single-agent MDP notation:

Analogously to Guillet et al. (2022), we model each driver’s individual search process as a
single-agent finite-horizon MDP. Let S be the (single-agent) state space and x 2 S be a
state defined as x = (C i, a), with C i = (vi

0, ..., v
i
k) being the sequence of visited stations,

and a being the realized availability at the last visited station vi
k of C. If a = 0, then the

agent takes an action u that consists of the single station selection decision u = (v), with
v 2 Ṽ , v /2 C i, and Ṽ being the set of reachable stations from vi

k. In this case, the transition
function pi

t(x́|x, u) describes the probability for the agent i to be in state x́ after having taken
action u in state x. The immediate cost induced for taking action u = (v) in state x results
to the travel time tvi

k,v between vi
k and v, or to the penalty cost �̄i, if the agent already spent

her time budget. If a = 1, then the agent successfully terminated her search at vi
k and the

agent-specific station usage cost �i
vi

k
results.

Policy ⇡i is the function that maps the planned action u for agent i in each encountered
state x, and defines the related search path C i(⇡i) = (vi

0, ..., v
i
n), with ⇡i((vi

0, ..., v
i
k), 0) =

vi
k+1 8 k 2 [0, ..., n� 1].
Agent i aims to find a policy ⇡i that minimizes her search cost F ⇡i

((vi
0), 0), with F being

the single-agent value function, which is defined as

F ⇡i

(x) =tvk,v +
X

x́2S
pi

t(x́|x, ⇡i(x))F ⇡i

(x́)

, F ⇡i

(C, 0) = tvk,v + pi
t((C

0, 1)|(C, 0), ⇡i(C, 0)).�i
v

+ pi
t((C

0, 0)|(C, 0), ⇡i(C, 0))F ⇡i

(C 0, 0) ,

(3.6)

with x = (C, 0) being a non-termination state, x́ = (C 0, a0) and C 0 = (v0, ..., vk, v).
Transition functions: To define our transition functions, we recall that station occupancy
observations are persistent for the whole planning horizon and a-priori availability probabili-
ties are identical for all agents by assumption, which leads us to the following observation: if
the first station v visited by j is available, j stops and charges there, otherwise v is occupied
and remains occupied during the search horizon. Accordingly, v will never be available to
another agent i who intends to visit station v after j. More generally, the probability that
v is available to agent i equals the probability that all agents j intending to visit v before i

(tiv � tjv) will have found a free station before their expected visit to v, and that station v is
available during the search.

Formally, we denote the probability that station v is available for agent i at time t
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with pi
v(t). We let ⇢i(t) be the probability that agent i found at least one station avail-

able among all stations v, from sequence C i = (vi
1, ..., v

i
n), for which the visit time tiv is lower

than t, and define ⇢i(t) as

⇢i(t) = 1�
Y

v2Ci,tivt

(1� pi
v(t)). (3.7)

Then, pi
v(t) reads

pi
v(t) = pv

Y

j2D,j 6=i,tjvt

⇢j(tjv). (3.8)

Note that both definitions are finitely nested as visits are ranked by agent’s arrival time.

We now define user-dependent transition function as

pi
t((C

0, 1)|(C, 0), (v)) = pi
v(t
0),

pi
t((C

0, 0)|(C, 0), (v)) = 1� pi
v(t
0),

(3.9)

with C := C i. We let C 0 be sequence C extended by station v, and t0 be the accumulated
driving time for sequence C 0.

In a single-agent setting, transition functions are independent of other agents planned
actions and simplify to

pt((C
0, 1)|(C, 0), (v)) = pv,

pt((C
0, 0)|(C, 0), (v)) = 1� pv.

(3.10)

3.3.2. System evaluation cost:

With F ⇡i being the single-agent value function for agent i, we now introduce a cost that
jointly evaluates all single-agent policies. Let ↵i = F ⇡i

(xi
0) be the cost that explicitly

evaluates the expected value of the policy cost assigned to i in its initial state. Cost ↵i can
be decomposed (cf. Guillet et al. 2022) as

↵i = (1� ⇢i)�i + Ai(⇡i) . (3.11)

We let ⇢̄i(⇡, k) be the probability that agent i fails in finding at least one free station in C i
[0:k],

while ⇢i denotes the probability to find at least one free station in the whole sequence C i.
Here we define Ai(⇡i) as

Ai(⇡i) =
n�1X

k=0

[tvi
k,vi

k+1
⇢̄i(⇡i, k)] +

nX

k=1

�i
vi

k
pi

vi
k
(C[0:k�1])⇢̄

i(⇡i, k � 1) . (3.12)

We define the cost ↵⇡ that jointly evaluates the system policy ⇡ = {⇡i}i2D, i.e., the set of
single-agent user-independent policies, as

↵⇡ =
X

i2D
↵i + (1�

Y

i2D
⇢i)�G, (3.13)

with ↵⇡ being the sum of all expected single-agent MDP costs and a cost (1 �Q
i2D ⇢i)�G

that penalizes the system with respect to the number of agents that could not successfully
finish their search. Quantity (1�Q

i2D ⇢i) represents the likelihood that at least one agent
did not successfully terminate her search.
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We now show that for such a policy ⇡, the joint cost ↵⇡ equals the value function V ⇡

evaluated in the initial global state x0.

Proposition 1. Let policy ⇡ be a set of single-agent user-independent policies, such that
⇡ 2 ⇧ind. Then

↵⇡ = V ⇡(x0),

with V ⇡ being defined in Equation 3.3 and ↵⇡ being defined in Equation 3.13.

Proposition 1 simplifies the representation of the centralized MDP to a set of single-agent
MDPs, which enables us to devise decentralized online algorithms in Section 4.

4. Online solution planning

In the following, we present our online heuristics to process sequentially revealed charging
requests, i.e., drivers entering the system are unknown ahead of time. Accordingly, the set
of agents D is initially empty and we update D each time a new charging request enters the
system.

4.1. Static policy planning

For static policy planning, we focus on decentralized decision-making settings (see Section 2).
We plan each agent’s search path with a modified version of the stochastic search algorithm
developed in Guillet et al. (2022), by taking into account the latest available information,
i.e., the latest shared visit intentions or the latest availability observations. In the fol-
lowing, we first briefly outline our algorithm (Section 4.1.1) in its basic variant without any
information-sharing, before we detail the required changes to account for observation-sharing
(Section 4.1.2), visit intention-sharing (Section 4.1.3), or both (Section 4.1.4).

4.1.1. No information-sharing (DEC)

This setting corresponds to a (fully-decentralized) single-agent setting, in which each agent
is unaware of any prior requested search paths and availability observations. In practice, this
setting equals planning routes on individual non-communicating navigation devices or with a
stateless navigation service platform, which does not retain information about past requests.
Here, each agent aims to minimize her individual cost ↵i, with ↵i being defined based on a
single-agent MDP with user-independent transition functions (see Equation 3.10). As shown
in Guillet et al. (2022), a multi-label setting algorithm with a heuristic dominance criterion,
which we refer to as LH, can efficiently solve this problem setting.

In general, a multi-label setting algorithm propagates partial policies to find a cost-optimal
policy, maintaining a list of all explored and non-dominated partial policies in cost-increasing
order. A partial policy ⇡i

v describes a given search path starting from the initial vertex v0
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and ending at v. We associate each partial policy ⇡i
v with a label Li

v, associated to vertex v

and agent i, defined as Li
v = (tiv, A

i
v, ⇢

i
v,↵

i
v). A label Li

v consists of the accumulated driving
time tiv, the partial cost Ai

v, the overall probability of success ⇢i
v, and the total cost for agent i

(see Equation 3.11). We recall that Ai
v and ⇢i

v result from the decomposition of cost ↵i
v (see

Section 3.3.1). At each exploration step, the algorithm retrieves the minimum-cost partial
policy ⇡i

v and propagates her related label Li
v to all unvisited vertices v́, reachable from

v. For each vertex v́, the algorithm discards the propagated label Li
v́ if it is dominated

by any other label at vertex v́, and otherwise discards any labels that Li
v́ may dominate.

Specifically, considering two partial policies ⇡i
1 and ⇡i

2 for agent i that end with the same
vertex visit v and their associated labels Li

v(⇡
i
1) and Li

v(⇡
i
2), we say that Li

v(⇡
i
1) dominates

Li
v(⇡

i
2) (Li

v(⇡
i
1) � Li

v(⇡
i
2)), if

1� ⇢i
v(⇡1)  1� ⇢i

v(⇡2) , (4.1)

Ai
v(⇡1)  Ai

v(⇡2) (4.2)

are true.
Finally, the labeling procedure returns the – non-dominated – minimum-cost label, that

describes the search policy ⇡i with minimum cost ↵i. The used dominance relation does not
guarantee the optimality of ⇡i in a single agent setting but provides close to optimal solutions
with significant runtime savings compared to an exact dominance relation (cf. Guillet et al.
2022). For a detailed pseudo-code of this algorithm, we refer to Appendix C. We solve each
incoming request with this algorithm and refer to its sequential application as hierarchical
label-setting, denoted with HLH.

4.1.2. Occupancy observation-sharing (DEC-O)

In this setting, each agent i knows about occupied stations observed by other agents prior
to her search. To account for this knowledge, we remove observed occupied stations from
an agent’s action space because occupied stations cannot be freed up during the remaining
planning horizon. Accordingly, an action u for i consists of the single station selection
decision u = (v) with v 2 Ṽ , v /2 C i, v /2 O, Ṽ being the set of reachable stations from vi

k,
and O being the set of observed occupied stations. To account for this modified action
space, we reduce the charging station network graph to unvisited stations whenever we
compute a new search path. Accordingly, this allows us to use the HLH algorithm for the
no-information-sharing setting to compute each agent’s search path.

4.1.3. Visit-intentions sharing (DEC-I)

In this setting, an agent i knows all station visit intentions of agents who started their
search prior to i, i.e., all ⇡j 8j 2 D̃, with D̃ being the set of preceding agents. Here, we
define cost ↵i based on a single-agent MDP with user-dependent transition functions (see
Equation 3.9). Given i is the ith requesting agent, we let ⇡i�1 = {⇡j}8j2D̃ be the joint
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policy of the (sub)system prior to i’s request, i.e., the joint set of all single-agent policies for
agents in {1, ..., i � 1}. Then, the probability of station v to be available to i results from
Equation 3.8, by replacing D by D̃

pv(t) = pv

Y

j2D̃,j 6=i,tjvtiv

⇢j(t) , (4.3)

with ⇢j(t) being defined in Equation 3.7.

Each agent i uses the information about other agent’s visit intentions to individually
optimize her own search path, which may occur at the detriment of the agents that started
their search earlier. In some cases, agent i may bypass another agent j by visiting the
intended stations of j before j’s expected visit times.

Collaborative intention-sharing: To avoid the selfish use of intention-sharing, we design
a hierarchical solution method such that agents minimize their search times without compro-
mising other agents’ success. Here, agent i does not optimize her search path with respect
to her individual cost; instead she optimizes her search path with respect to the cost of the
subsytem that includes herself and already planned policies ⇡i of other agents. We refer to
this collaborative implementation as HLH-c. To optimize the agent’s policy with respect to
the subsystem cost, we compute n candidate policies for agent i using our LH algorithm,
which queues the evaluated policies by cost-increasing order. Out of these candidate policies,
we then select the policy that yields the lowest subsystem cost.

Formally, let �i = {⇡i
k : 8k 2 [0, n]} be the set that contains these n candidate policies for

agent i. Then, we (i) compute �i using LH, evaluate the joint cost of the subsystem policy
⇡i�1 and the newly planned policy, i.e., ⇡i = ⇡i�1 � {⇡i} for all ⇡i 2 �i, and (ii) select ⇡i⇤

among �i that minimizes ↵⇡i as

⇡i⇤ = arg min
⇡i2 �i

↵⇡i�1�{⇡i} . (4.4)

If agents are heterogeneous, an agent i needs to know other agents’ parameters �̄i and �i
v

to compute the exact value ↵⇡i�1�{⇡}. In practice, these parameters can be either shared or
approximated.

4.1.4. Intentions & Occupancy observations sharing (DEC-IO):

In this setting, an agent i combines both knowledge about past agents’ observations and
visit intentions when planning her search path at time ti. Similar to DEC-O, we remove
occupied stations from an agent’s action space, and similar to DEC-I, transition functions
are user-dependent. In this setting, we do not need to account for an agent j’s remaining
visit intentions, if j started earlier than i and successfully finished her search already. If
this agent j is not terminated yet at planning time ti, we know that all stations visited by
j before ti are occupied, such that we only account for j’s visit intentions that would occur
later than ti. Accordingly, we truncate j’s search path Cj to the stations not visited yet at ti
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and refer to the truncated sequence as C̄j. We obtain availability probabilities by replacing
Cj by C̄j in Equations 3.7&3.8.

4.2. Dynamic policy planning

In the following, we describe the methodology for dynamic policy planning.

Focusing on a centralized-decision maker, we utilize two different algorithms to dynami-
cally solve the large-scale MDP introduced in Section 3.1. The first algorithm is a rollout
algorithm (RO) with a one-step decision rule as described in Goodson et al. (2017), which is
known to provide high-quality solutions in similar settings. This rollout algorithm explores
the MDP solution tree partially, using a base-policy to approximate the value function. In
each state, the algorithm selects the action that yields the lowest approximated cost. The
second algorithm bases on a dynamic implementation of our HLH-c algorithm (see Sec-
tion 4.1.3). Instead of selecting the next best station visit based on a partial MDP solution
tree exploration, this algorithm (re)computes an agent’s individual search path using the
latest observations and visit intentions available at each decision step. We then use the first
station visit of the recomputed search path as the next station visit. We refer to this second
algorithm as LH-RO and note that it combines dynamic and offline planning similar to the
work of Ulmer et al. (2019).

Rollout algorithm (RO): Figure 2 details the pseudo-code of our algorithm which dynam-
ically solves the MDP defined in Section 3.1. We initialize the set of active and terminated
agents, the set of observed stations, and the vector that describes the state of each agent (l.1).
A new request or a new station visit triggers a new decision epoch (l.3). In case this is not
the first decision epoch, we update the status of the last deciding agent from s� = d to
s� = r and her assigned station to v⇤. We assume that the system state x gets implicitly
updated upon each new decision epoch. The current agent � can observe v� as available
and successfully terminate her search (l.7&8), as occupied (l.9), or may start her search,
such that we add � to J (l.10&11). In case v� is not available, the deciding agent � must
select the next best station v⇤ to visit. For each feasible station that � may visit (l.13) and
for both possible states x́f and x́s, the function greedyCost(x́) approximates the related
cost-to-go V ⇡̃(x́) by following the greedy base-policy ⇡̃ until a termination state or until K

decision epochs are reached. Given the explicit values of V ⇡̃(x́s) and V ⇡̃(x́f), the best station
⇡(x) = v minimizes the cost-to-go (l.16,17&18) as

⇡(x) = arg min
u=(v)2U(x)

d(x, u) + pvV
⇡̃(x́s) + (1� pv)V

⇡̃(x́f) . (4.5)

If there is no reachable station within �’s remaining time budget (l.19), � has failed her
search. The search continues over the overall planning horizon as long as new decision
epochs are triggered (l.2&3).
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Dynamic HLH-c algorithm (LH-RO): We now use the dynamic variant of the HLH-c
algorithm to solve the CEN setting and detail the pseudo code in Figure 3. Upon each
agent’s request, the algorithm plans a user-independent policy and dynamically refines it
at each agent’s decision epoch using the latest updated information, i.e., station occupancy
observations and visit intention updates.

Similar to the online rollout algorithm, we initialize our variables and compute a visit
recommendation each time an agent starts her search or visits an occupied station. We
add the agent to the set of terminated agents if it finds an available station (l.7&8). In
addition, we initialize the set ⇧ that contains for each active agent i 2 J her last computed
user-independent policy. The procedure getBestPaths (l.15) executes the single-agent label-
setting algorithm LH that returns the n best candidate single-agent policies for �. We then

Figure 2: Online rollout algorithm
1: J  ;, T  ;, O  ;, x 0, x (J , T , O,x)
2: while True do
3: if newEpochTriggered() then
4: if J 6= ; ^ s� == d then
5: s�  r, v�  v⇤, t�  t� + tvk,v⇤

6: � decidingAgent(), v�  observedStation()
7: if av� == 1 then
8: O.add(v�), T .add(�), J .pop(�), s�  f
9: else
10: if � /2 J then
11: J .add(�), s�  d
12: v⇤  0, Q⇤  1
13: for v 2 U(x) do
14: for x́s, x́f 2 T (x, v) do
15: V s  greedyCost(x́s), V f  greedyCost(x́f)
16: Q tvk,v + (1� pv)V f + pvV s

17: if Q < Q⇤ then
18: Q⇤  Q, v⇤  v

19: if v⇤ == 0 then
20: s�  t

Figure 3: Label-based heuristic (LH-RO)
1: J  ;, T  ;, O  ;, x 0, x (J , T , O,x), ⇧ ;
2: while True do
3: if newEpochTriggered then
4: if J 6= ; ^ s� == d then
5: s�  r, t�  t� + tv�,v⇤ , v�  v⇤,

6: � decidingAgent(), v�  observedStation(), ⇧.pop(⇡�)
7: if av� == 1 then
8: O.add(v�), T .add(�), J .pop(�), s�  f,⇧.pop(⇡�)
9: else
10: if � /2 J then
11: J .add(�), s�  d
12: ⇧.pop(⇡�)
13: ⇡⇤  0, ↵⇤  1
14: T  T̄� � t�

15: for ⇡ 2 getBestPaths(v�, T,⇧, O) do
16: ↵ getCost(⇧ � ⇡)
17: if ↵ < ↵⇤ then
18: ↵⇤  ↵, v⇤  ⇡(x), ⇡⇤  ⇡

19: if v⇤ == 0 then
20: s�  t
21: else
22: ⇧.add(⇡⇤)
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select policy ⇡⇤ that minimizes the subsystem cost ↵⇧�⇡⇤ (l.16,17&18) as

⇡⇤ = arg min
⇡2��

↵⇧�⇡, (4.6)

with �� being the set that contains the n best policies for �, and with ⇧ being the set of
individual policies for all agents except �. We let the procedure getCost (l.16) compute the
value of ↵⇧�⇡. Finally, as long as unvisited stations are left, the minimum cost policy ⇡⇤

provides the next station visit v⇤ for � from the current state x (l.19) with � being located at
v�

0 := v�. Since ⇡⇤ maps to a search path (v�
0 , v�

1 , ..., v�
n), v⇤ corresponds to the first unvisited

station, i.e., v⇤ := v�
1 .

In the decentralized decision-making settings with observation-sharing (DEC-O-dyn), we
compute an agent’s search path using the algorithm developed for the static planning setting
DEC-O. However, we recompute the initially planned search path each time the agent visits
an occupied station, using the latest observations shared by all agents

4.3. Observation validity

For the sake of completeness, we discuss how to relax station occupancy persistency in the
following. To do so, we assume that availability probabilities of already visited stations can
recover over time following a time-dependent exponential function (cf. Guillet et al. 2022)
defined as

pr
v(�

i
v) = pv(1� e�(µv

pv
)(�i

v)) , (4.7)

with �i
v being the elapsed time since i visited v for the last time. Here, 1

µv
, denotes the

average time station v remains occupied, and pv the probability that v is available prior to
any visit. Both values remain constant over the total planning horizon. To account for time-
dependent recovering functions, we consider observed stations as candidate stations with an
availability probability recovered according to Equation 4.7. We note that to reduce the
computation overhead, one could chose to exclude latest observed stations from candidate
stations, formally if �i

v  Tthres.

In this paper, we assume that agents can only passively communicate about occupied
charging stations. These observations could be deduced from sharing GPS trace data, if a
vehicle drives by a station without stopping, then the station is assumed to be occupied.
However, future work could assume agents being able to communicate actively about station
availability when they leave the station after having (re)charged their car. In this case, the
station is available upon the agent’s departure and the probability availability decreases from
1 to her initial value pv, analogously to Equation 4.7 as

pr
v(�

i
v) = pv + (1� pv)(e

�(µv
pv

)(�i
v)). (4.8)

Moreover, Equation 4.8 could be used in a setting that allows an agent not to select the first
(or next) available station, while reporting about the availability status of the non-selected
stations.
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5. Experimental design

To analyze the effectiveness of the different coordination strategies, we conduct extensive
numerical simulation experiments on real-world test instances for the city of Berlin (see
Figure 4). In the following, we first detail our instance generation, before we describe addi-
tional benchmark algorithms, and elaborate on the metrics used to evaluate our algorithms’
performance.

Instance generation: Besides the charging station availability distribution, the ratio of
candidate stations per number of drivers and the departure time horizon are the main factors
that impact our results. Accordingly, we vary the number of drivers, the global and individual
search area dimensions, and the planning horizon to create a diverse set of scenarios as
follows. To account for varying spatial overlaps in between multiple drivers’ search areas as
well as for a varying number of drivers, we randomly draw departure locations within a radius
of rs 2 {100, 300, 700} meters for a total number of N 2 {2, ..., 10} drivers. Additionally,
we consider two different driver search radii of S̄ = 1 km and S̄ = 2 km. Table 2 specifies
the available number of stations that result from varying those parameters. Moreover, we
account for varying temporal overlaps between multiple drivers by equally distributing the
drivers’ search start time within a varying time horizon ts 2 {0, 1, 5, 15} min. Independent
of those characteristics, drivers have a search time budget of T̄ = 5 min. Utilizing a full-
factorial design, we thus obtain 216 different test instances for our studies.

To analyze the impact of the varying charging station availability, we consider a low and a
high charging station availability scenario. We generate those scenarios based on probability
distributions centered on an expected mean da with da = 0.25 for the low-availability scenario
(low-25 ) and da = 0.60 for the high-availability scenario (high-60 ). For each instance and
availability scenario, we perform 100 simulation runs and use the same realized availability
values to compute simulated estimates over all test instances.

Figure 4: Charging stations distribution in a part of
Berlin

Charging station network in the city center of Berlin, Ger-
many used to build the respective instance graph. The
Image was created using Folium, which is data licensed
under MIT License.

Table 2: Number of stations depending
on the search area dimension

S̄ rs
N

2 3 4 5 6 7 8 9 10

1000
100 11 13 13 13 13 13 13 13 13
300 11 13 14 15 16 17 18 18 18
700 10 13 15 14 16 18 22 22 21

2000
100 22 23 23 23 23 23 23 23 23
300 23 25 27 28 29 30 31 31 31
700 26 31 36 40 40 35 52 53 40
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We analyzed the sensitivity of our algorithms with respect to the penalty term �G in a
preliminary study (see Appendix D.1). In this study, we observed only little sensitivity of
the results to �G, such that there exists only a minor trade-off between system robustness
and quality performances, that is best addressed by setting �G = 700 min.

We further consider agents’ heterogeneity to account for both heterogeneous and homoge-
neous use cases. We focus the main results discussion on the homogeneous agents use-case,
because a service provider does not want to bias the search towards single agents by con-
sidering heterogeneous parameters in practice. Accordingly, we set the station’s utilization
cost �i

v = 0 for all drivers i 2 D and all stations v 2 V , and consider an identical time
budget T̄ and search radius S̄ for all agents. We additionally briefly analyze the impact of
heterogeneous agents’ time budget and search radius to complete our analyses.

Benchmark algorithms: We evaluate the quality performances of the RO and LH-RO
in the centralized setting (CEN). Since the MDP is too large to be solved optimally, we
benchmark both policies against a myopic greedy algorithm G and a deterministic offline
solution OFF, as suggested in Powell (2009).

In G, we greedily decide on the next station visit v⇤ for the deciding agent � in each decision
epoch based on a cost combining the driving time from its current station v� to available
stations and the individual driver’s time-based penalty weighted by stations’ availability
probability. Formally,

v⇤ = arg min
v2V̄

tv�,v + (1� pv)�̄ , (5.1)

with V̄ being the set of candidate stations that agent � can visit.

In OFF, we assume the charging demand, i.e., all drivers’ departure time and loca-
tion, to be known for the overall planning horizon. We then compute for each realization
k 2 [0, ..., 100] of simulated stations availability, the minimum-cost assignment of drivers to
stations, using a weighted bipartite graph G0 = (V 0, A0), with (v, i) 2 A0 such that i 2 D
and v 2 Vavail(k) is the set of available stations for realization k. Let the weight for arc (v, i)

be the driving time from the agent i’s start location to station v, such that wv,i = tvi
0,v. We

add dummy station vertices ⌫ if |Vavail| |D|, such that w⌫,i = � 8i 2 D and we add dummy
driver vertices ◆ if |Vavail|� |D|, such that wv,◆ = 0 8v 2 Vavail. We then solve the resulting
assignment problem with the Karp algorithm (Karp 1980).

Performance evaluation: For each test instance, we successively compute the search path
(static planning) or next station visit (dynamic planning) for all drivers, according to their
departure order and the selected setting. We then evaluate the performance from both a
driver and a system perspective, based on 100 simulation runs for both low-25 and high-
60 scenarios. From a driver perspective, we compute the realized search time t̂k for each
simulation run k, which allows us to compute the simulated estimate of a driver i’s individual
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cost ↵̂i as

↵̂i =
P100

k=0 t̂k+�̂k�̄/100 , (5.2)

with �̂k being the binary variable that indicates whether the kth search was successful. We
obtain the driver’s success rate ⇢̂i as

⇢̂i =
P100

k=0 �̂
k/100 . (5.3)

From a system perspective, we compute the simulated estimate of the expected system cost
↵̂ as

↵̂ =
X

i2D
↵̂i + (1�

Y

i2D
⇢̂i)�G . (5.4)

The quantity ⇢̂ =
Q

i2D ⇢̂i describes the realized system success rate, i.e., the simulated
estimate of the likelihood that all drivers successfully finished their search.

6. Results

We first discuss our results from a system perspective (Section 6.1) before we focus on a
driver perspective (Section 6.2).

6.1. System perspective

In the following, we first analyze the impact of collaboration in intention-sharing settings,
before we focus on the impact of dynamic planning in observation-sharing settings. We then
benchmark our algorithms for the centralized setting, and finally draw general conclusions
on the performance of all possible algorithmic settings.

6.1.1. Collaboration in intention-sharing settings:

To analyze the benefit of collaboration, we compare the performances of HLH and HLH-
c (see Section 4.1.3), in the DEC-I setting, with respect to individual drivers’ costs ↵̂ (see
Equation 5.2) and the solution’s fairness. Here, we consider a solution to be fair if each driver
obtains a similar cost ↵i independent of her departure position. Figures 5a and 5b show the
distribution of individual drivers’ cost depending on their departure order, obtained with
the collaborative algorithm (HLH-c), respectively the non-collaborative algorithm (HLH)
for ts = 0 min, in low- and high-availability scenarios for all instances with N = 5 drivers.
We note that five simultaneously active drivers represent a very likely real-world scenario
that we observed in practice. For each setting, Table 5c compares the difference between the
highest and the lowest value (median, mean, 1st and 3rd quartiles, max, min) obtained for
these individual drivers’ cost distributions. As can be seen in Figure 5, solutions obtained
with HLH-c outperform the solutions obtained with HLH on average with respect to both
the system cost ↵̂ and the solution’s fairness. Table 5c shows that the departure position
has a smaller impact on the results with than without collaboration. The difference between
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(a) low-25 scenario (b) high-60 scenario

�(mean) �(median) �(max) �(min) �(q1) �(q3)

low-25
HLH-c 26.7 31.2 63.9 22.7 22.3 53.2
HLH 60.1 72.3 92.4 28.0 50.2 78.0
�ref [%] -56 -57 -31 -19 -56 -32

high-60
HLH-c 11.3 4.95 47.1 2.44 2.07 12.8
HLH 28.5 33.1 65.2 3.02 11.4 38.3
�ref [%] -60 -85 -28 -19 -82 -66

(c) Comparison of the distributions of driver’s costs per departure position

Figure 5: Comparison of HLH and HLH-c in the DEC-I setting for ts = 0 min
Note. Each subplot shows for each driver i the distribution of the realized individual cost ↵̂i depending
on her departure position, over all test instances that correspond to ts = 0 min, rs 2 {100, 300, 700}
m, S̄ 2 {1000, 2000} meters, for N = 5 drivers. In the table, we compute � as follows for each metric
m 2 {mean, median, q1, q3, max, min}: �(m) = maxi(m(i))�mini(m(i)), with i being the departure position
and m(i) being the statistic of the costs distribution corresponding to the ith departure position. We compute
�ref as follows: �HLH-c(m)��HLH(m)/�HLH(m).

highest and lowest mean, median, maximum, minimum, 1st quartile, 3rd quartile values
decreases with collaboration. In particular, collaboration decreases the difference for mean
individual costs by 56% in the low-25 scenario and by 60% in the high-60 scenario. In the
analyzed case, drivers start their search closely one after another, such that the last navigated
drivers have a high chance to start while the preceding drivers are still searching. Without
collaboration, the latest drivers may use the visit intention information to their advantage
by earlier visiting the stations targeted by the preceding drivers. Here, the collaborative
procedure HLH-c yields lower realized system cost ↵̂ than HLH as it ensures that the use of
visit intention information benefits all drivers by avoiding conflicts at the stations already
included in their search paths. An additional analysis in Appendix D, show a similar trend for
ts = 1 min, but decreasing effects for larger departure time horizon, ts = 5 and ts = 15 min.
In the latter case, we observe no significant benefit in a collaborative setting.

Result 1. Visit intentions sharing can – and should – be used collaboratively. Without
collaboration, visit intention may favor selfish solutions that negatively affect early departing
drivers’ search paths.
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6.1.2. Dynamic planning for decentralized observation-sharing:

We analyze the impact of dynamically re-planning solutions in the observation-sharing set-
ting.

Table 3 compares the system cost ↵̂ for DEC-O and DEC-O-dyn, in low- and high-
availability scenarios. As can be seen, the effectiveness of dynamic and static planning
depends on the length of the drivers’ departure time horizon: if ts is small, drivers start
their search almost simultaneously and cannot benefit from prior observations of preceding
drivers. Here, dynamically sharing observations during the search significantly increases the
available information for all drivers and thus leads to significant improvements, by decreasing
cost ↵̂ on average by 8% and up to 53%. If ts is large, subsequently searching drivers benefit
from observations shared by prior drivers already in a static planning approach. Accordingly,
the benefit of dynamic observation-sharing decreases with an average cost decrease limited to
2%. Here, DEC-O even outperforms DEC-O-dyn in some cases (e.g., N = 4 & ts 2 {5, 15}).

Result 2. Without intention-sharing, dynamic observation-sharing in addition to static ob-
servation sharing improves the system performances for short departure time horizons by
decreasing cost ↵̂ by 8% on average.

6.1.3. Centralized planning:

In the following, we compare the performance of RO’s and LH-RO’s policies to the greedy
(G) and offline (OFF) benchmark described in Section 5. Here, G provides an upper bound
to RO and LH-RO, which allows to analyze the performance gain by looking ahead (RO &
LH-RO) rather than myopically deciding (G). Contrary, OFF provides a lower bound for
each availability realization, as all uncertain information – station availability and future
charging demand – is known, allowing to study an artificial perfect information setting.
Figure 6 shows the detailed distribution of the realized cost ↵̂ for RO, LH-RO, G, and OFF,

Table 3: System cost comparison between static and dynamic decentralized policy planning
strategies

low-25 high-60

n ts=0 ts=1 ts=5 ts=15 ts=0 ts=1 ts=5 ts=15

2 -13.4 -6.94 0.09 0.09 -7.14 -1.54 0.00 0.00
3 -27.7 -21.9 -7.67 -1.16 -53.1 -37.2 0.65 0.20
4 -21.7 -9.37 -4.42 5.30 -15.5 -34.6 33.1 27.7
5 -14.0 -11.3 -2.81 -0.75 10.4 -25.2 -12.7 7.62
6 -10.2 -4.52 -1.90 -0.58 -22.4 -3.84 -4.56 0.75
7 -6.14 -2.12 -1.47 0.77 0.86 3.87 -5.12 1.45
8 -7.96 -3.94 -2.07 -0.13 -6.32 -12.9 -5.01 -5.31
9 -6.80 -5.75 0.18 -0.10 -11.2 -11.1 -2.75 -4.72

10 -6.38 -3.78 -1.51 0.27 -5.21 -3.58 -3.56 -5.50

The table shows ↵̂’s relative improvement �[%] = (↵̂dyn�↵̂stat)/↵̂stat of the dynamic setting to the static
setting for DEC-O. A negative � means the dynamic setting outperforms the static counterpart.
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Figure 6: Distribution of the realized system cost ↵̂ in CEN for RO, LH-RO, G, and OFF per
number of drivers, separated for small and large search areas

for a varying number of drivers and search radii S̄.
As can be seen, both RO and LH-RO outperform the myopic policies (G) by decreasing

cost ↵̂ by 14% (RO) and 16% (LH-RO) on average. The cost reduction depends however on
the search radius S̄. For small search areas (S̄ = 1000 m), both RO and LH-RO decrease the
cost obtained with G by 2% on average, while the perfect-information setting OFF yields a
9% cost decrease on average. We observe that the benefits of using RO, LH-RO, or even OFF,
decrease with the number of drivers as in this case, there is only little room for improvement
over the myopic policy, due to the very limited number of candidate stations available for all
drivers. For larger search areas (S̄ = 2000 m), all non-myopic settings achieve a significantly
higher cost reduction of 29% (RO), 34% (LH-RO) and 63% (OFF) compared to G. According
to LH-RO and RO’s performances, we decide to use LH-RO in the CEN setting.

Result 3. On average, the LH-RO algorithm decreases the cost ↵̂ obtained by RO by 3%
and the cost obtained by G by 16% in a centralized setting. Specifically, for larger search
areas (S̄ = 2000 m), LH-RO achieves a cost reduction of 7% (compared to RO) and 34%
(compared to G).

6.1.4. General performance evaluation:

We compare the performances of all decentralized settings, DEC, DEC-I, DEC-O, DEC-
IO and DEC-O-dyn, the centralized setting CEN, and a decentralized myopic benchmark,
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DEC(N), that greedily computes search paths in a decentralized way, to reflect drivers’
behavior without any search assistance.

Figure 7 provides a detailed comparison of all settings with respect to the system cost ↵̂

averaged over all test instances. As can bee seen, an advanced search strategy without
coordination (DEC) already decreases the system cost obtained with a naive search strat-
egy (DEC(N)) by 15% on average. With coordination, the DEC-O setting decreases the cost
compared to DEC(N) by 26% in a static setting and by 30% in a dynamic setting (DEC-O-
dyn), while DEC-I and DEC-IO lead to a 37% decrease, and CEN yields a 39% cost decrease.
Comparing uncoordinated and coordinated settings, we note that DEC-O-d decreases the
cost obtained in DEC by 18% while both DEC-I and DEC-IO decrease it by 26%, and CEN
leads to a 28% decrease. The static observation-sharing setting DEC-O performs on average
worse than both static intention-sharing settings due to the algorithm’s sensitivity to the de-
parture time horizon ts (see Section 6.1.2) and yields only a 13% cost decrease. Both DEC-I
and DEC-IO show performances very close to CEN, which indicates that a decentralized
and static setting performs nearly as well as a dynamic and centralized setting, as long as
drivers share intentions. Figure 8 visualizes two static search paths computed in the DEC
and DEC-I settings, for N = 5 drivers, S̄ = 2000 m, rs = 300 m and ts = 0 min: the benefit
of coordination translates into routes with fewer overlapping stations.

Result 4. Compared to an uncoordinated setting (DEC), decentralized static intention-
sharing (DEC-I, DEC-IO) reduces ↵̂ on average by 26%. A centralized dynamic setting
(CEN) leads to a slightly higher cost reduction of 28%.

Figure 9 compares DEC, DEC-I, DEC-O, DEC-IO, DEC-O-dyn and CEN with respect to
cost ↵̂ in low-availability scenarios. We divide plots between short departure time horizons
(ts 2 {0, 1} min) and large departure time horizons (ts 2 {5, 15} min), as well as between
small search areas (S̄ = 1000 m) and large search areas (S̄ = 2000 m).

Numerical results show that a larger search area (S̄ = 2000 m) decreases the system cost ↵̂
for coordinated settings by at least 30% in low-25 on average and by at least 90% in high-60
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Figure 7: Average realized system cost ↵̂ for all information-sharing settings and both selfish
settings, aggregated over all instances, per number of drivers
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(a) DEC (b) DEC-I

Figure 8: Visual representation of uncoordinated (DEC) and coordinated (DEC-I) search
routes

scenarios on average. In contrast, ↵̂ remains constant, or in some cases increases without
coordination.

For short departure time horizons (see Figures 9a&9c), we observe that pure intention-
sharing (DEC-I) slightly outperforms combined observation- and intention-sharing (DEC-IO)
for static policies, mostly when S̄ = 2000 m. In this case, DEC-IO tends to provide lower
individual cost solutions for the early departing drivers than DEC-I due to the additional
observation information. Here, improving the solutions of early drivers worsens the solution
quality of subsequent drivers due to the limited number of possible station visits. In contrast,
DEC-I achieves better performances from a system perspective by negatively affecting the
early drivers’ search, such that subsequent drivers can obtain higher-quality solutions. In
observation-sharing settings, results confirm that dynamic policies (DEC-O-d) outperform
static policies (DEC-O).

For large departure time horizons (see Figures 9b&9d), DEC-IO improves over DEC-I and
even outperforms CEN for smaller search areas. Notably, DEC-O performs very similar to
the other coordinated settings in this case. As the departure time horizon increases, the
likelihood that searches temporally overlap decreases, which in turn decreases the benefits
of intention-sharing in addition to observation-sharing. We further observe that DEC-O
slightly outperforms DEC-O-dyn in this case for small search areas (S̄ = 1000 m). We
note that in this case, DEC-O is well suited for a practical implementation as it has lower
computational requirements than DEC-IO or CEN.

Figure 23 in Appendix D contains similar analyses for high-availability scenarios. While
these results show similar trends in general, we note that the benefit of dynamic observation-
sharing in a decentralized setting (DEC-O-dyn) is less consistent in this scenario for smaller
departure time horizons.

Result 5. Sharing occupancy observations in addition to intentions is not beneficial for al-
most simultaneous searches, i.e., ts 2 {0, 1} min. In this case, observation-sharing improves
the early departing drivers’ solution to the detriment of succeeding drivers, which worsens
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(b) ts 2 {5, 15} min & S̄ = 1000 meters
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(d) ts 2 {5, 15} min & S̄ = 2000 meters

Figure 9: Comparison of decentralized and centralized decision-making in low-availability sce-
narios

the total system performance.

Result 6. For larger departure time horizons, i.e., ts 2 {5, 15} min, the decentralized
observation-sharing setting (DEC-O) performs similar as the decentralized information-sharing
settings (DEC-I, DEC-IO) and as the centralized setting (CEN).

6.2. Single-driver perspective

In the following, we evaluate how coordination impacts an individual driver’s solution, before
we analyze the impact of driver heterogeneity.

6.2.1. Drivers’ benefits of coordination:

We refer to the uncoordinated solutions (DEC) as selfish solutions, in which a driver obtains
her solution independently, without additional information and in her own best interest.
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First, we analyze the worst and best realized solutions obtained among all drivers for each
test instance. For all decentralized settings (DEC-I, DEC-O, DEC-IO, DEC-O-dyn) as well
as for the centralized dynamic setting (CEN), we compare the results to the uncoordinated
setting (DEC). We then analyze the impact of a driver’s departure position on her individual
solution, before we analyze each driver’s success rate and search time deviation between the
selfish and any coordinated solution.

Figure 10 shows the mean value of all lowest and highest realized individual search times
and a corridor corresponding to a 95% confidence interval over all test instances of the low-
availability scenario for each analyzed setting. Figure 11 analogously shows mean values of
all lowest and highest realized individual success rates. As can be seen, the lowest search
times are comparable with and without coordination, such that a selfish solution does not
improve the best case scenario with respect to individual search times.

However, all coordinated settings decrease the maximal individual search times, in par-
ticular by 30 % in DEC-I and DEC-IO, and by 35% in CEN. Analyzing performances with
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Figure 10: Distribution of the worst and best search times in the low-availability scenario
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Figure 11: Distribution of the worst and best success rate in the low-availability scenario
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respect to individual success rates (see Figure 11), there exists a minor trade-off between
the best and the lowest individual success rates. While the highest individual success rate
appears to be slightly higher in a selfish environment, the lowest success rate increases sig-
nificantly in all coordinated settings, by up to 30 % (0.02 to 0.32). We note that CEN yields
the most robust solutions, by providing lowest worst individual search times and highest
worst individual success rates.

Result 7. Coordinated searches outperform selfish searches, because they significantly im-
prove the worst-possible solution that a driver may obtain while preserving her best-possible
solution.

Figure 12 shows the individual costs ↵̂i obtained for all drivers i depending on their
departure position, averaged over all values of rs 2 {100, 300, 700} for test instances with
ten drivers. Figure 12a shows results for a short departure time horizon (ts = 1 min), while
Figure 12b details results for a larger departure time horizon (ts = 15 min).

As can be seen, coordination reduces a driver’s search cost (nearly) independent of her
departure position. In some specific cases (e.g., for the first driver with ts = 15 min),
a driver may obtain a higher individual cost with coordination than without. However,
these larger costs occur at the benefit of a smaller spread between the worst and the best
solution that any driver may obtain. Moreover, our results show that individual solutions
are more homogeneous for shorter departure time horizons, as searches take place almost
simultaneously. With a larger departure time horizon, early drivers are privileged against
succeeding drivers as they have more chances to find a free station before parallel competing
searches start.

Result 8. At the exception of early departing drivers, the individual solution obtained by a
driver with coordination outperforms the one obtained without coordination, independent of
the driver’s departure position.
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Figure 12: Single-agent cost ordered by departure times in a low-availability scenario (low-25)
with larger search radius (S̄ = 2000 m, N = 10 drivers)
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Table 4 shows the relative individual search time deviation (�̂trel) and the absolute in-
dividual success rate deviation (�̂⇢) per number of drivers N and search radius S̄ for all
instances, averaged over all rs, ts, and availability values. As can be seen, all coordinated
settings allow a driver to reduce her search time and increase her search reliability on aver-
age. Specifically, a driver may save 2% (DEC-O-d), 3% (CEN), 8% (DEC-O, DEC-IO) and
9% (DEC-I) of her search time, while she can increase her success rate by 0.05 (DEC-O),
0.06 (DEC-O-d) and 0.09 (DEC-I, DEC-IO, CEN). In line with the system-perspective eval-
uation, DEC-I, DEC-IO, and CEN yield the best performances from a driver-perspective
too, such that we further detail results only for these settings.

There exists a trade-off between search time savings and the reliability improvement. For
small search areas (S̄=1000 m), drivers save 8% (CEN) or 12% (DEC-I, DEC-IO) of their
search times on average, and up to 23% (DEC-I, DEC-IO) with a high number of drivers
(N = 9). The success rate increase is limited to 0.05 on average (DEC-I, DEC-IO, CEN).
For larger search areas (S̄ = 2000 m), the time gain decreases. Drivers may only save 5% of
their search times on average (DEC-I, DEC-IO) or even slightly increase their search time
by 2% (CEN). In this case, however, the reliability gain significantly increases, with drivers
increasing their success rates on average by 0.12 (DEC-I, DEC-IO) or 0.13 (CEN), and up
to 0.30 (CEN with N = 10).

Table 4: Individual search time and reliability improvements with coordination

Av. search time deviation �̂trel Av. success rate deviation �̂⇢

N DEC-I DEC-O DEC-O-d DEC-IO CEN DEC-I DEC-O DEC-O-d DEC-IO CEN

S̄ = 1000 m

2 2.21 2.06 2.20 2.12 1.71 0.00 0.00 0.00 0.00 0.00
3 1.40 2.39 -2.33 2.21 -2.33 0.01 0.01 0.01 0.01 0.01
4 3.72 4.52 1.21 2.98 0.08 0.03 0.02 0.02 0.03 0.03
5 5.86 7.27 4.52 4.49 2.23 0.05 0.03 0.04 0.05 0.05
6 16.8 10.5 9.13 15.5 12.0 0.07 0.04 0.06 0.07 0.08
7 18.0 13.6 7.26 15.7 9.88 0.09 0.05 0.06 0.09 0.08
8 21.3 14.5 9.85 21.3 15.4 0.08 0.04 0.05 0.08 0.08
9 23.4 18.0 11.8 23.4 14.9 0.07 0.04 0.06 0.07 0.08
10 21.1 17.7 7.32 21.4 20.5 0.09 0.05 0.08 0.09 0.09

S̄ = 2000 m

2 1.99 2.11 2.39 2.11 2.50 0.00 0.00 0.00 0.00 0.00
3 3.79 3.02 -1.83 4.00 -1.73 0.01 0.01 0.02 0.02 0.02
4 3.50 4.07 0.35 2.82 -0.34 0.03 0.02 0.03 0.03 0.04
5 1.97 4.87 -3.50 -0.40 -3.37 0.06 0.03 0.05 0.06 0.07
6 7.68 7.92 0.15 6.77 1.01 0.10 0.05 0.08 0.10 0.11
7 14.9 11.0 4.17 13.3 8.70 0.16 0.09 0.10 0.16 0.17
8 1.36 4.61 -9.01 0.03 -9.16 0.19 0.09 0.13 0.19 0.21
9 2.28 6.54 -6.56 0.51 -13.3 0.23 0.12 0.16 0.23 0.25
10 9.38 7.43 -2.38 7.84 -3.01 0.29 0.13 0.18 0.29 0.30

The table compares �trel and �⇢, with �̂trel [%] and �̂⇢ their respective average over all test instances,
computed as: �trel = �1/n(

Pn
i=0

(t̂i
setting�t̂i

DEC)/t̂i
DEC) and �⇢ = �1/n(

Pn
i=0 ⇢̂

i
DEC � ⇢̂i

setting), with n being
the number of drivers. The evaluated setting outperforms DEC for positive values.



104 Coordinated Charging Station Search in Stochastic Environments

6.2.2. Impact of driver heterogeneity:

To analyze the impact of driver heterogeneity, we split drivers into two distinct groups:
the first group contains all drivers with an odd departure position, while the second group
contains all drivers with an even departure position. Figure 13 shows the impact of drivers
with heterogeneous search radii in the CEN setting by analyzing three cases: in the first
case (13a), drivers of the first group have a smaller search radius (S̄ = 1000 m), while
drivers of the second group have a larger search radius (S̄ = 2000 m). In the second case
(13b), drivers of both groups have a smaller search radius (S̄ = 1000 m) while in the third
case (13c), drivers of both groups have a larger search radius (S̄ = 2000 m). Accordingly,
drivers are heterogeneous in Figure 13a and homogeneous in Figures 13b&13c. Analogously,
Figure 14 shows the impact of smaller and larger time budgets. In the first case (14a), drivers
from the first group have a smaller time budget (T̄ = 5 min) while drivers from the second
group have a larger time budget (T̄ = 10 min), in the second case (14b) all drivers have a
smaller time budget whereas in the third case (14c), all drivers have a larger time budget.
We average results for test instances with N = 10 drivers.

As can be seen, the distribution of individual search times in homogeneous settings is
(nearly) independent of the respective group. This is not the case in heterogeneous settings.
Here, drivers that perform a more constrained search, i.e., have a smaller search radius (see
Figure 13a) or a smaller time budget (see Figure 14a), obtain lower search times compared to
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Figure 13: Impact of heterogeneous search radii on drivers’ search times
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Figure 14: Impact of heterogeneous time budgets on drivers’ search times
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drivers that perform a less constrained search, especially in the first case. To reduce potential
visit overlap, drivers with a larger search radius increase their chances of finding unoccupied
stations by visiting far-distanced stations that are less affected by potential overlaps, which
then contributes to increase their search times. Finally, we note that performing searches
with homogeneous parameters appears to be preferable from a practitioner’s perspective, in
order to provide fair and consistent service to all customers.

Result 9. Time budget or search radius heterogeneity favors drivers with lower time budget
and lower search radius.

6.2.3. Coordination in longer planning horizons:

In the following, we analyze the impact of coordination in a longer planning horizon, i.e., a
three-hour departure time horizon, by comparing three charging demand distribution scenar-
ios, see Figure 15. In SC1 , drivers are steadily entering the system, with 5 requests per 15

minutes time interval. In SC2 , each fourth request is skipped, whereas in SC3 , every fourth
and fifth requests are skipped. The first scenario reflects a homogeneous demand distribu-
tion, while the other scenarios reflect heterogeneous demand distributions, similar to peak
demand that arises in practice. Table 5 compares the relative cost improvement obtained
on average between coordinated (CEN) and uncoordinated decentralized (DEC) planning
in both short (ts = 15 minutes) and long (ts = 180 minutes) planning horizon settings, de-
pending on the radius of the area in which all agents start their search (rs 2 {100, 300, 700}
meters). Figure 16 further compares the average individual drivers cost obtained in the long
planning horizon setting with coordination (CEN) and without (DEC) depending on the
driver’s departure times, the search radius (S̄ 2 {1000, 2000} meters) and the distribution
scenario (SC1 or SC3 ).

Figure 15: Requests distribution sce-
nario
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The figure shows for each scenario the requests
distribution pattern, with each (missing) bar cor-
responding to a (missing) request.

Table 5: Relative cost improvement for
CEN over DEC

Horizon rs SC1 SC2 SC3

ts = 15 min
100 m -38.3% -41.3% -40.3%
300 m -38.3% -42.6% -49.0%
700 m -17.2% -11.8% -25.7%

ts = 180 min
100 m -21.7% -26.5% -29.6%
300 m -22.6% -26.2% -29.7%
700 m -23.6% -25.8% -27.7%

The table shows the relative improvement of
the realized system cost ↵̂, computed as follows:
�[%] = (↵̂CEN�↵̂DEC)/↵̂DEC of the CEN setting
to the DEC setting in percentages, averaged over
all instances corresponding to S̄ 2 {1000, 2000}
m, and both low-25 and high-60 scenarios, for
each value of rs.
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As can be seen, coordination significantly improves the overall search performances in
longer horizon settings. Comparing the results of the short and long planning horizon settings
(cf. Table 5), our results show that cost savings in the long planning horizon setting decrease
for a limited departure area (rs 2 {100, 300} meters), but increase when drivers are initially
better distributed over the search area (i.e., rs = 700 meters). When accounting for a long
planning horizon, the overall station availability in the system decreases slightly due to an
increasing number of drivers entering the system and possibly blocking charging stations for
a longer period of time. However, additional information related to stations getting freed can
be shared, such that the results illustrate the trade-off that exists between the performance
loss due to the availability decrease and the performance gain due to the information increase.
Our results further show that a decreased charging demand (i.e., SC3 ) increases the cost
reduction obtained with coordination in long planning horizons, with an up to 46% ↵̂ cost
decrease in the high-60 scenario. While the system performances increase for a larger search
radius, in-line with short planning horizons results, Figure 16 shows that decreasing the
requests frequency has however a larger positive impact for a smaller search radius.

Finally, we observe that long planning horizon results reveal cyclic patterns for individual
drivers cost (see Figure 16). These patterns show a decreasing amplitude for larger charg-
ing demand heterogeneity or search radii. This effect results from early drivers having a
higher chance of reaching closely related charging stations and thus obtaining lower individ-

0 50 100 150

0

50

100

Driver departure time [min]

In
di

vi
du

al
co

st
[m

in
]

(a) SC1 & S̄ = 1000 meters

CEN DEC

0 50 100 150

0

50

100

Driver departure time [min]

In
di

vi
du

al
co

st
[m

in
]

(b) SC1 & S̄ = 2000 meters

0 50 100 150

0

50

100

Driver departure time [min]

In
di

vi
du

al
co

st
[m

in
]

(c) SC3 & S̄ = 1000 meters

0 50 100 150

0

50

100

Driver departure time [min]

In
di

vi
du

al
co

st
[m

in
]

(d) SC3 & S̄ = 2000 meters

Figure 16: Comparison of DEC and CEN in high-availability scenarios for a three-hours plan-
ning horizon
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ual cost than succeeding drivers. When these stations are freed after �T v
charge minutes, they

get revisited first with a higher recovered probability to be available to succeeding drivers,
which replicates the pattern. With a smaller overlap between drivers’ searches, which can
be realized either by larger search radii or larger temporal disconnect between drivers en-
tering the system, the amplitude of these patterns decreases as a smaller overlap increases
the chance for each driver to reach an unoccupied closely related station. Figure 24 in Ap-
pendix D.4 shows complementary analyses for the low-availability scenario. Similar to short
planning horizon results, the cost reduction obtained in CEN compared to DEC decreases
in low-availability scenarios, especially for a small search radius with S̄ = 1000 meters.

7. Conclusion

In this paper, we studied the multi-agent charging station search problem in stochastic
environments, which we define as a single-decision maker MDP. We showed that by con-
straining agents’ individual policies to be executed independent of each other, we can sim-
plify the global MDP representation to a set of single-agent MDPs. We then introduced
several online algorithms that solve centralized and decentralized decision-making settings,
applicable to static and dynamic policies, and different levels of information-sharing. Specif-
ically, we analyzed the benefits of intention-sharing, i.e., drivers sharing their planned visits,
observation-sharing, i.e., drivers sharing observed occupancies of charging stations, or both.

Using a case-study for the city of Berlin, we analyzed the benefits of coordination between
multiple agents’ search: our results show that coordination increases the system perfor-
mance while individually benefiting each driver in general. Analyzing the performance from
a system perspective, our results show that a static decentralized coordination strategy
achieves a 26% cost decrease as long as drivers share visit intentions. A centralized coor-
dination strategy requires higher computational load but achieves only 2% additional cost
decrease. We further highlight the benefit of enforcing collaboration in intention-sharing
settings. Moreover, our results show that observation-sharing performs on average worse
than intention-sharing setting. However, observation-sharing requires less data and compu-
tational resources, and may be used to derive more accurate availability probabilities, which
makes it interesting for practitioners. We show that from a driver perspective coordination
may save up to 23% of a driver’s search time, while increasing her search’s success rate by
9% on average. We find that coordinated searches outperform uncoordinated searches for in-
dividual best and worst case scenarios. Finally, we observe similar effects in longer planning
horizon settings.

Finally, one comment on our study is in order. We assumed a non-adversarial setting such
that agents always follow their navigation device visit recommendations, which may however
be challenged by drivers behavior in practice. If drivers deviate from the recommended visits,
intention-sharing might become misleading. Analyzing competitive searches within a game-
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theoretical setting by relaxing the non-adversarial assumption opens a new avenue for further
research in this context.
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A. Problem notation

Table 6: Notation

Notation used to define the MSCPS problem

G = (V, A) Complete charging station graph
D Set of agents
ti0 Departure time of agent i

vi
0 Start vertex of agent i

S̄i Maximal distance allowed between any vertex and the start vertex vi
0 for agent i

T̄ i Time budget for agent i

T Planning horizon
av Binary random variable modeling the availability of v

pv Initial probability that charging station v is available before any visit
tv,v́ Driving time on arc (v, v́)

�̄i Termination penalty cost at an occupied station v for agent i

�i
v Termination cost at an available station v for agent i

Notation used to define the MDP

X (Multi-agent) State Space
U (Multi-agent) Action Space
J Set of active drivers in state x 2 X
T Set of terminated drivers in state x 2 X
O Set of visited stations in state x 2 X
vi Station assigned to driver i in state x 2 X
ti time when i reaches vi

si 2 {d, f, t, r} status of i in state x 2 X
d(x, u) immediate cost induced by taking action u 2 U(x) in state x 2 X

⇡ System policy
V ⇡ Value function
⇡i Single-agent i policy
� Binary variable indicating if at least one driver failed her search in termination state xn 2 X

⇧dep Set of policy ⇡ with user-dependent single-agent policies
⇧ind Set of policy ⇡ with user-independent single-agent policies
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B. Proof of Proposition 1

To prove Proposition 1, we seek to show that

8⇡ 2 ⇧ind , ↵⇡ = V ⇡(x0) (B.1)

holds, i.e., that the expected MDP cost defined in Section 3.1 for a user-independent policy
⇡ (see Section 3.2) can be expressed as a function of all expected single-agent MDP costs
(see Section 3.3). We recall that a user-independent policy can be expressed as a set of
single-agent policies, with ⇡ = {⇡i, i 2 D} and ⇡i being represented by a sequence of station
visits C i = (vi

0, ..., v
i
n).

To show that Equation B.1 holds, we first reformulate the policy-specific cost function
V ⇡(x) for any state x 2 S. We then show by recursion that it holds for any state, which
allows us to finally prove the equality relation for the initial state x0.

Step 1: Given decision epoch t with deciding agent �́, we explicitly define for both the
partially successful state x́s and the unsuccessful state x́f the policy cost function
V ⇡(x́s) and V ⇡(x́f). J 0f , respectively J 0s represent the set of non-terminated drivers
at x́f, respectively x́s. We consider for all drivers i 2 J 0f their truncated policies, i.e.,
actions prescribed from their last visited stations in decision epoch t. We represent
agent i’s truncated policy by the sequence of station visits C̄ i = (v̄i

0, ..., v̄
i
l), with v̄i

0

being the assigned station to i in x. With a slight abuse of notation, we refer to v̄i
k as

vi
k in the remainder of this proof.

In the following, we let indices k describe the time-ordered visit events of stations
included in C̄ i for all drivers in J 0f for both x́f and x́s. Let n(J 0f ) be the maximum
number of all possible visit events, considering all stations defined by all respective
C̄ i such that n =

P
i2J 0

f
|C̄ i|, with |C̄ i| being the length of C̄ i. We define ki as the

index in sequence C̄ i of the last station visited by i in stage k. The binary variable
�i,k indicates whether i observes an occupied station and has enough time to select her
next station to visit at stage k. In this case, we let t(i, k) indicate the travel time for i

from the station visited in stage k to the next planned station, i.e., t(i, k) = tvi
ki ,v

i
ki+1

.
We let ⇢i

[k:l] be the likelihood for i to get a least one free station among C̄ i[ki, li], with
⇢i

[k:l] = 1�Q
v2C̄i[ki:li](1� pi

v) and pi
v being the user-dependent availability probability.

Binary variables �0s, respectively �0f, indicate whether at least one driver failed her search
already, i.e., s = ’t’, in state x́s, respectively in state x́f.
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We now explicit the expected cost of value function V from states x́s and x́f as follows
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n�1X
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[0:n]))�

G ,

V ⇡(x́f) =
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i2J 0
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[0:k]t(i, k)�i,k +

X

i2J 0
f
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with

n�1X

k=0

X

i2J 0
f

⇢̄i
[0:k]t(i, k)�i,k �

n�1X

k=0

X

i2J 0
s

⇢̄i
[0:k]t(i, k)�i,k

(⇤)
=

n�1X

k=0

⇢̄�́[0:k]t(�́, k)��́,k , (B.3)

using in (⇤) that the subsequent visit decisions for all drivers but �́ do not depend on
whether �́ observes an occupied station (x́s) or not (x́f) in decision epoch t, because
all ⇡i are user-independent.

For brevity in notation, we show the case for �i
v = 0 8i 2 D, v 2 V , w.l.o.g., as one

can apply the following transformation: (i) tvi
k,vi

k+1
 tvi

k,vi
k+1

+ pvi
k+1

· �i
vi

k+1
and (ii)

V ⇡(x́s) V ⇡(x́s) + ��́
v .

Step 2: Equation B.2 holds for the last decision epoch in state x́ before the global termina-
tion state, in which only one non-terminated driver, for x́f and no driver for x́s (n = 1)
remains. We now show that if Equation B.2 holds for t, then it also holds for t� 1 and
thus by recursion for any possible decision epoch, e.g., in the initial state with t = 0.

Let us consider all states x that can lead to x́s or x́f following policy ⇡, such that
p(x́ 2 {x́f, x́s}|x, ⇡(x)) = 1. Let � be the deciding agent for these states and t � 1 be
the decision epoch accordingly. For all these states, �́ is unterminated, as it is either
deciding in x́f or successfully finished in x́s. Without loss of generality, let us shift
indexes such that k := k + 1 in the summations of V (x́s) and V (x́f). The first station
visit from x́f or x́s in epoch t becomes the second station visit from states xf or xs in
preceding epoch t� 1.

For brevity, we show the case in which �́ is not terminated, i.e., �́ 2 J 0f and J 0f = J 0s
S
�́.

In this case, �0s = �0f = �f. If at least one agent terminated in x́s, at least one agent
must have terminated in x́f and vice-versa since �́ did not terminate. Similarly, if no
agent terminated in x́s, then no agent terminated in x́f since �́ did not terminate and
vice-versa. In all cases, the termination condition holds for the previous unsuccessful
state xf.
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(B.4)

We use in (⇤) the recursive definition of V ⇡ and in (⇤⇤) Equation B.3. In (⇤ ⇤ ⇤),
we exploit that J 0

f = Jf, which follows from the following reasoning: if �́ belongs to
J 0

f , then it is not terminated in xf and accordingly belongs to Jf; as xf is a partially
unsuccessful state for �, it follows that � belongs to both Jf and J 0

f . We show that
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(⇤ ⇤ ⇤) holds, given the following equality
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using in (⇤ ⇤ ⇤⇤) that 8i 2 J 0
s ⇢i

[0:n+1] = ⇢i
[1:n+1] and that

(1� ⇢�́[0:n+1]) = (1� ⇢�́[1:n+1])(1� pv�́), ⇢�́[0:n+1] = ⇢�́[1:n+1] + pv�́ � ⇢�́[1:n+1]pv�́ .

Finally, we have n(Jf) := n(J 0f ) + 1 = n + 1.

We can analogously show that B.2 holds for V ⇡(xf) when �́ is terminated in x́f. In
this case, J 0s = J 0f , J 0f = Jf

S
�́, �0f = 1, and �0s = �f. Given that
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We analogously show that B.2 holds for V ⇡(xs).

Step 3: Finally, we have
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with n = n(J0). In the initial state x0, � = 0 holds, because no driver has terminated
in the initial state by assumption. We use in (⇤) Equation B.2 and in (⇤⇤) the definition
of ↵i.

Finally, we justified that for ⇡ 2 ⇧ind, with x0 as initial state at the decision epoch
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t = 0 and J0 = D, that
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This concludes the proof.

C. Pseudo code of the LH algorithm

Figure 17 shows the pseudo-code of the multi-label setting algorithm introduced in Guillet
et al. (2022). We introduce the set of active labels La and let Li

0 be the initial label cor-
responding to an agent’s start location. We let Fv,v́(L) be the function that returns the
propagated label L0 (with a partial policy ending at v́) of L (with partial policy ending at
v). The cost ↵(L) is the cost associated with label L. Function �+(L) returns a set of tuples
(v, v́) which denotes all feasible physical successor locations v́ 2 V for a label L whose partial
policy ends at v 2 V .

D. Additional numerical results

In this section, we substantiate our results discussion with additional analyses.

D.1. Sensitivity analysis

In the following, we analyze the sensitivity of the algorithmic settings DEC-I, DEC-IO,
and CEN to the value of parameter �G, and recall that DEC, DEC-O, and DEC-O-d are
insensitive to this parameter.

Figure 17: LH algorithm.

1: La  {Li
0}, L⇤  Li

0

2: while La 6= ; do
3: L costMinimumLabel(La)
4: La  La \ {L}
5: for (v, v́) 2 �+(L) do
6: L0  Fvv́(L)
7: if isNotDominated(L0, La) then
8: dominanceCheck(La, L0)
9: La  La [ {L0}

10: if (�+(L0) = ;) ^ ↵(L0) < ↵(L⇤) then
11: L⇤  L0

12: return L⇤
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Figure 18: Impact of �G on system and worst success rates

We compute ⇢min as follows: ⇢̂min = mini2D ⇢̂i with D being the set of drivers considered for each instance.
We average values over all instances corresponding to a low-25 or high-60 scenario that correspond to
ts = 300 m.

As the value of cost ↵̂ depends on the value of �G, we analyze the impact on �G-
independent metrics: Figure 18 evaluates the impact of �G on the system success rate ⇢̂

and the worst individual success rate ⇢̂min that a driver may obtain, while Figure 19 evalu-
ates the impact of �G on the average search time t̂ and the largest search time t̂max that a
driver may obtain in a successful search.

As can be seen, the impact of �G on both the success rate and the search time is low.
In both cases, results show opposite effects in low- and high-availability scenarios. While a
value of �G lower than 700 min yields lower search times (worst and average case) in a low-
availability scenario for DEC-IO, it also yields larger search times in the worst and average
case. We note that values of �G larger than 700 have only a marginal impact for all settings
and set �G = 700 min.

D.2. Collaboration in intention-sharing settings

Similar to Figure 5, Figures 20,21&22 compare the individual driver’s costs depending on
their departure order, obtained with the collaborative procedure (HLH-c) and the non-
collaborative procedure (HLH) for ts = 1 min, respectively ts = 5 min, and ts = 15 min, in
low and high-availability scenarios for instances with N = 5 drivers.
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Figure 19: Impact of �G on on average and worst search times

We compute t̂max as follows: t̂max = maxi2D t̂i with D being the set of drivers considered for each instance.
We average values over all instances corresponding to a low-25 or high-60 scenario and that correspond to
ts = 300 m.
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Figure 20: Comparison of individual cost ↵̂i obtained with HLH and HLH-c in the DEC-I
setting for ts = 1 min

Each plot shows for each driver i, depending on her departure position, the distribution of the realized
individual cost ↵̂i over all test instances that correspond to ts = 1 min, rs 2 {100, 300, 700} m, S̄ 2
{1000, 2000} m, and for N = 5 drivers.
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Figure 21: Comparison of individual cost ↵̂i obtained with HLH and HLH-c in the DEC-I
setting for ts = 5 min

Each plot shows for each driver i, depending on her departure position, the distribution of the realized
individual cost ↵̂i over all test instances that correspond to ts = 5 min, rs 2 {100, 300, 700} m, S̄ 2
{1000, 2000} m, and for N = 5 drivers.
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Figure 22: Comparison of individual cost ↵̂i obtained with HLH and HLH-c in the DEC-I
setting for ts = 15 min

Each plot shows for each driver i, depending on her departure position, the distribution of the realized
individual cost ↵̂i over all test instances that correspond to ts = 15 min, rs 2 {100, 300, 700} m, S̄ 2
{1000, 2000} m, and for N = 5 drivers.

As can be seen, collaboration significantly increases the solution’s fairness for ts = 1 min,
in particular in low-availability scenarios. However for a larger ts, collaboration affects
marginally the individual solution that a driver may obtain, independent of her departure
position.

D.3. General performance evaluation

Analogously to Figure 9, Figure 23 compares all decentralized settings (DEC, DEC-I, DEC-
O, DEC-IO, DEC-O-dyn) with the centralized setting (CEN) with respect to cost ↵̂ in
high-availability scenarios. We split results between short departure time horizons (ts 2
{0, 1} min) and large departure time horizons (ts 2 {5, 15} min), and between a small search
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Figure 23: Comparison of decentralized and centralized decision-making in high-availability
scenarios

radius (S̄ = 1000 m) and a large search radius (S̄ = 2000 meters). Overall we observe similar
result trends as for low-availability scenarios. However, the difference between the improve-
ment obtained with coordination in small search areas and the improvement obtained in
large search areas is significantly higher than for low-availability scenarios. Here, the benefit
of deviating from overlapping selfish solutions increases due the higher number of alternative
available candidate stations compared to a low-availability scenario. We additionally note
that the amplitude of the cost distribution obtained in the DEC-O-dyn setting for large
search radius instances (see Figure 23a) is larger than in low-availability scenarios.

D.4. Coordination with a long planning horizon:

Similar to Figure 16, Figure 24 shows individual drivers’ cost depending on their departure
time, but in a low-availability scenario. Coordination generally improves a non-coordinated
system, but with a less visible impact than in the high-availability scenario case, in-line with
the main results discussion (cf. Figure 12). In Figure 24a, a lower search radius S̄ = 1000
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Figure 24: Comparison of DEC and CEN in high-availability scenarios for a three-hours plan-
ning horizon

Each subplot shows the individual realized cost ↵̂i for each considered setting, per number of drivers N ,
averaged over all values of rs 2 {100, 300, 700} meters.

meters combined with low-25 increases the number of drivers that compete for a very limited
number of expectedly available stations, which significantly limits the overall coordination
potential. In contrast to high-availability scenarios, results show a visible system transition
from the initial state to congested states.



5 Coordinating charging request
allocation between self-interested
navigation service platforms

This chapter is based on an working article published as:

Guillet M., Schiffer M. (2022). Coordinating charging request allocation between self-
interested navigation service platforms. https://arxiv.org/pdf/2208.09530.pdf.

Abstract

Current electric vehicle market trends indicate an increasing adoption rate across several coun-
tries. To meet the expected growing charging demand, it is necessary to scale up the current
charging infrastructure and to mitigate current reliability deficiencies, e.g., due to broken con-
nectors or misreported charging station availability status. However, even within a properly
dimensioned charging infrastructure, a risk for local bottlenecks remains if several drivers cannot
coordinate their charging station visit decisions. Here, navigation service platforms can opti-
mally balance charging demand over available stations to reduce possible station visit conflicts
and increase user satisfaction. While such fleet-optimized charging station visit recommenda-
tions may alleviate local bottlenecks, they can also harm the system if self-interested navigation
service platforms seek to maximize their own customers’ satisfaction. To study these dynamics,
we model fleet-optimized charging station allocation as a resource allocation game in which nav-
igation platforms constitute players and assign potentially free charging stations to drivers. We
show that no pure Nash equilibrium guarantee exists for this game, which motivates us to study
VCG mechanisms both in offline and online settings, to coordinate players’ strategies toward a
better social outcome. Extensive numerical studies for the city of Berlin show that when coor-
dinating players through VCG mechanisms, the social cost decreases on average by 42% in the
online setting and by 52% in the offline setting.
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1. Introduction

Battery-powered vehicles support the shift towards more sustainable mobility systems, espe-
cially if coupled with the overall increased use of public transportation systems. After a slow
start for EV adoption, the private electric vehicles market recently showed an encouraging
growth, with global adoption doubling in 2020 and 2021, and car manufacturers planning to
launch more than 100 new electric vehicle models by 2024. However, studies reveal strong
adoption heterogeneity, at national and regional scales. In 2020, Norway had a (BH)EV
market share of more than 70% (cleantechnica 2021), whereas Romania’s EV market share
was less than 10% (AVER 2021). In the latter case, the adoption is thus far hindered by
poor or missing charging infrastructure. In general, charging-related anxieties caused by
limited infrastructure availability dissuade conventional vehicle drivers from switching to
electric vehicles. Drivers may experience so-called range anxiety, i.e., the fear of running out
of battery, or charge anxiety, i.e., the fear of not finding any available and non-broken public
charging station. While building new charging stations may alleviate these anxieties, oper-
ating over-dimensioned charging infrastructure in low charging demand areas can be highly
cost-inefficient (Nelder and Rogers 2019). Overcoming this chicken-and-egg dilemma, i.e.,
deciding whether to pursue EV adoption or charging infrastructure first, can be mitigated
with appropriate infrastructure planning and operation (cf. Enlit 2022).

From a short-term perspective, drivers’ anxieties related to charging in an undersized in-
frastructure can be addressed via advanced operational planning, e.g., a navigation system
that reliably guides EV drivers until they find an available station, anticipating possibly
blocked, unreachable, or out-of-order stations. To foster EV adoption from a long-term per-
spective, regulatory measures, e.g., a ban on conventional vehicles in city centers or financial
incentivization are necessary, but must be complemented by planning solutions. Such so-
lutions include developing the charging infrastructure with new equipment, consolidating
existing urban infrastructure (e.g., street lamp charging), or increasing the reliability of
real-time availability information through detection sensors or cameras.

The expected growing charging demand can nevertheless create new bottlenecks, i.e.,
charging station congestion, if demand is misaligned with charging infrastructure capacities.
Even with an increased charging infrastructure coverage, several EV drivers may receive
identical charging station recommendations from navigation services platforms, which cre-
ates station utilization conflicts due to long recharging times. Here, fleet-optimized recom-
mendations – enabled by requests centralization – can better distribute the charging demand
over the available charging stations and increase the overall users’ satisfaction (cf. Guillet
and Schiffer 2022).

Such a fleet-optimization may work very well in presence of a single platform but finds its
limits with the presence of several self-interested navigation platforms, each seeking to max-
imize their own drivers’ utilities. In this case, the overall outcome of the drivers’ assignment
to stations may be far from optimal due to conflicting charging station allocations in between
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platforms. Accordingly, solely improving the infrastructure with no further charging demand
coordination at the system level may worsen the EV charging experience by decreasing the
likelihood of finding an available station within a minimum amount of time. If a system
composed of multiple navigation services platforms cannot reach any good equilibrium, a
centralized non-profit-driven authority, e.g., a municipality, may aim to improve the system
towards a socially efficient outcome, using financial incentives or penalties.

To understand the dynamics of such a setting, we introduce the fleet charging station
allocation (FCSA) game in which several self-interested navigation platforms aim to individ-
ually optimize the assignment of available stations to their EV drivers, i.e., their charging
demand. In this context, the scope of this paper is twofold. First, we use a game-theoretical
framework to analyze the dynamics and bottlenecks that may arise in this setting due to
non-cooperative driver assignments. We show that no guarantee for a pure Nash equilibrium
(PNE) exists, which motivates our second scope: deriving mechanisms to stabilize and co-
ordinate the charging station allocation, studying the impact of aligning platforms’ interests
from a platform but also from a driver perspective.

1.1. Related Work

Our work relates to indivisible resource allocation problems for electric vehicles (EVs) and
other related applications, e.g., parking utilization, which we review in the following. We
first discuss resource allocation games, particularly with a focus on equilibrium analyses,
before we review works that apply mechanism design to resource allocation problems.

Congestion games, initially introduced in Rosenthal (1973), model non-cooperative atomic
resource allocation between homogeneous agents. Here, a player’s strategy is defined as a
subset of the available resources, whose utilization cost depends on the total number of
players selecting the resource. This class of games naturally applies to load-balancing (see,
e.g., Even-Dar et al. 2003, Goemans et al. 2006), network design (see, e.g., Anshelevich
et al. 2008), or internet routing (see, e.g., Secci et al. 2011). Congestion games fall into
the category of potential games (cf. Monderer and Shapley 1996), i.e., games that admit
a potential function, which describes the payoff variation between two different strategies
independent of the players. Such games possess a guaranteed PNE existences. Milchtaich
(1996)’s work extends Rosenthal (1973)’s work by showing the existence of a PNE in conges-
tion games with player-specific payoff functions or weighted players, but restricted singleton
strategies. Ackermann et al. (2009) later show that strategies that consist of the bases of a
matroid defined on the resources set still guarantee the PNE’existence for games analyzed
in Milchtaich (1996).

Most EV-related games deal with charging capacity allocation in grid networks, focused on
optimizing grid operators’ revenues (Tushar et al. 2012), reducing energy peak load through
load and capacity-dependent energy prices (Sheikhim et al. 2013), or mitigating the impact of
charging vehicles on transportation networks (Sohet et al. 2021). Ayala et al. (2011) analyze



Coordinating charging request allocation between self-interested platforms 123

related competitive parking slot assignment problems, and show the existence of a PNE
when each player, i.e., driver, must select at most one parking spot for which a successful
utilization depends on her and other players’ driving distances to all parking spots. He
et al. (2015) further extend the result of Ayala et al. (2011) by analytically characterizing
equilibrium parking slot assignments.

While the FCSA game studied in this paper resembles a congestion game, its payoff
functions are user-specific and depend on the number of other players selecting an identical
resource only under some conditions: while all drivers competing for the same resource affect
each other’s payoff in a classical congestion game, in the FCSA game only drivers that are
closer to utilizing the resource affect the payoff function of drivers that are further away from
utilizing the resource. Moreover, congestion games have not yet been studied in the context
of charging station allocation via intermediate self-interested participants.

To deal with inefficient equilibria, mechanism design (MD) theory aims to design games
in such a way that a socially desirable outcome is reached (Nisan et al. 2007). A third
party, a so-called principal, centrally allocates goods or resources to its participants, who
must reveal their preferences on the resources before paying a price for the received resource.
In this context, the well-known VCG mechanism (Vickrey 1961, Clarke 1971, Groves 1973)
defines a pricing scheme that ensures revelation truthfulness by aligning participants and the
overall system interests in an offline setting. As an offline allocation may be hard to realize in
practice, Parkes and Singh (2003) propose two online VCG mechanisms, namely delayed and
online VCG, that utilize a Markov decision process (MDP) to derive the minimal expected
cost allocation, while ensuring that expected participant utilities align with the expected
system interest. They show the Bayesian-Nash truthfulness of these mechanisms and apply
them successfully to WiFi pricing (Friedman and Parkes 2003). As the pricing scheme relies
on an optimal policy argument, the authors later discuss approximately efficient online MD
using ✏-efficient policies. More recently, Stein et al. (2020) proposed a reinforcement learning-
based mechanism that guarantees strategy-proofness when the resource allocation problem
is solved online. Focusing on EV charging, Rigas et al. (2020) apply standard VCG pricing
schemes to achieve efficient charge scheduling of self-interested EV drivers by minimizing the
charging demand imbalance at a station. Gerding et al. (2011) design a mechanism to solve
the online charge scheduling problem, blind to future charging demand. Several works have
studied mechanisms in the related context of parking slot allocation. Xu et al. (2016) derive
a trading mechanism to share private parking slots during office hours in big cities between
self-interested owners, to remedy limited public parking spot availability. Zou et al. (2015)
extend the parking slot assignment game of Ayala et al. (2011) by applying VCG mechanisms
to a publicly-owned parking facility that aims to maximize the social welfare, both in static
and dynamic settings. Wang et al. (2020) derive an optimal allocation pricing scheme based
on a Demange-Gale-Sotomayor-based mechanism, for reservable and non-reservable parking
resources in a city.
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In summary, most EV-related settings focus on charge scheduling problems with homo-
geneous self-interested EV drivers, while this work focuses on navigation platforms as self-
interested participants. Similarly, work on parking slot allocation problems focus on directly
incentivizing drivers to truthfully report their valuations, but not on intermediaries that
could balance aggregated parking demand over available slots.

1.2. Aims and Scope

To close the research gaps outlined above, we introduce a game-theoretical setting to study
the dynamics of self-interested navigation platforms that aim to best balance their own
clients’ charging requests among available charging stations, focusing first on equilibrium
analysis, and second on mechanism design. We formalize the resulting charging station
allocation problem as a novel game, and apply both offline and online VCG mechanisms to
ensure socially desirable outcomes in idealized but also in practical settings. Specifically,
our contribution is three-fold. First, we define the FCSA game in a perfect-information
setting as a new resource allocation game, and show that this game does not possess a
guaranteed PNE, but also no approximated PNE with a sufficiently small approximation
factor. Second, we coordinate players by applying VCG pricing in both an offline and an
online setting, accounting for weighted players. We extend the delayed VCG mechanism to
a weighted delayed VCG mechanism, and implement a data-driven online assignment policy.
Finally, we conduct extensive simulation-based experiments to analyze the benefits of our
coordinated allocation mechanism. Our results show that players’ coordination via the VCG
mechanism can decrease the social cost on average by 52% in an offline setting and by 42%
in an online setting when using our data-driven assignment policy. Our results further show
that a player with a small share of drivers has a greater interest in participating in the VCG
mechanism than a player with a larger share of drivers. A player’s payoff relative to its
number of drivers decreases when its share of managed drivers increases.

1.3. Organization

The remainder of this paper is structured as follows. Section 2 details our FCSA game setting
and corresponding equilibrium analyses. In Section 3, we introduce the VCG mechanisms,
which we apply in both offline and online settings. Section 4 describes our experimental
design, while we discuss our numerical results in Section 5. Section 6 concludes this paper
and provides an outlook for future research. For the sake of conciseness, we shift all proofs
to the Appendix.
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2. Problem Setting

We focus on an non-cooperative offline resource allocation problem, where several navigation
platforms aim to optimally assign their EV drivers to available charging stations, such that
no visit conflict arises for their drivers and the total travel time for drivers to assigned
stations is minimal. In the following, we consider a perfect-information setting, in which
each platform is aware of overall charging demand, and of accurately reported real-time
charging station availabilities. Note that such a perfect-information setting is unrealistic
in practice but allows us to analyze whether stable players’ strategies exist at least in an
idealized setting. Each platform optimally assigns free stations to its navigated EV drivers,
who accordingly drive to the stations to recharge their vehicles. To focus on the dynamics
between the navigation platforms, we assume that electric drivers do not deviate from their
assigned stations. In case of a conflicting assignment, i.e., if two or more platforms assign
one of their drivers to the same station, the station availability is guaranteed for the driver
with the earliest arrival time. The other assigned drivers fail their search, which induces a
penalty cost for the respective platform.

In the following, we formalize our problem setting as a resource allocation game, show that
a PNE guarantee does not exist, and discuss the limits of refinement equilibrium concepts
within this context.

2.1. Fleet Charging Station Allocation game

We now define the FCSA game, in which navigation service platforms constitute the players.
A player’s strategy is an assignment of charging stations to its drivers, while its payoff
describes the cost of the assignment, corresponding to the sum of the time needed by each
driver to travel to its assigned station. We assume that if multiple drivers are assigned to
the same station, all non-closest drivers must pay an extra penalty cost that represents the
discomfort for failing to find a free charging station. We further restrict the set of reachable
stations for a driver by setting a maximal driving time, and assume a deterministic driver
behavior as reasoned in the section’s introduction.

Formally, we consider a set of players N , a set of drivers D, and a set of available charging
stations v 2 V . We denote with V 0 = V S{v0} the set of charging stations extended with an
artificial station v0, which represents a non-feasible assignment of a driver to any physical
station. Such non-feasible assignments may occur when the number of drivers exceeds the
number of available stations. We let tk,v be the driving distance for driver k to charging
station v. Each player must serve a charging demand, that corresponds to a set of driver
locations, denoted by Di = {ki 2 D} , 8i 2 N . A player’s pure strategy si is an allocation
function of charging stations to drivers, with si : D 7! V 0. We restrict the stations that a
driver k may visit to the stations reachable within S̄ meters, i.e., si(k) 2 {v : v 2 V 0, �(k, v) 
S̄}, with �(k, v) being the distance from driver k to station v. A player can assign a physical
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station at most once to its drivers, but can assign an artificial vertex v0 as many times as
needed, formally

8k, k0 2 Di, (si(k) = si(k
0)) ^ (si(k) 6= v0) ) (k = k0) . (2.1)

A player must further assign a real station to each of its drivers if possible, i.e., at most
|Di|�|V| drivers can be assigned to the artificial station v0. We let the strategy profile
s = (si)i2N be the vector of strategies of all players, s�i be the vector of strategies for all
players but i, and Si be the strategy space for player i. We denote with ui(s) the payoff for
player i when strategy profile s is played, which corresponds to the assignment cost of si,
resulting from the sum of its individual driver’s payoff functions ci, given the other competing
players’ strategies s�i. Formally, we define ui(s) as

ui(s) =
X

k2Di

ci(k, s) , (2.2)

with

ci(k, s) =

8
>>><
>>>:

�̄, if si(k) = v0

tk,si(k), if 8k0 2 Dj 8j 2 N , j 6= i (sj(k
0) = si(k)) ) (tk0,v � tk,v)

tk,si(k) + �̄ otherwise

(2.3)

An individual driver k’s payoff ci(k, s) ensures that, in case of conflicting driver to station
assignments, all but the earliest arriving drivers assigned to a station v must pay a penalty
cost �̄. The penalty �̄ represents the discomfort for failing the charging station search. Then,
the goal of each player i is to find a strategy si that minimizes ui(si, s�i), given that the
assignment cost depends on other players’ selected strategies.

We consider the pure-strategy profile s⇤ to be a PNE when it holds that

8i 2 N , s⇤i 2 arg min
si2Si

ui(si, s
⇤
�i) , (2.4)

i.e., no player can unilaterally decrease its payoff by changing its strategy. The sum of all
players’ payoffs defines the social cost.

From a system-perspective, i.e., in an idealized setting with collaborative players, the goal
is to find a strategy profile that minimizes the social cost. We refer to the minimum total
cost as the social optimum, defined as

Sg = min
s2S

X

i2N

X

k2Di

ci(k, s) . (2.5)

With Av being the assignment of drivers to station v, s(k) being the station assigned to
driver k, and strategy profile s, we can reformulate the social optimum as

Sg = min
s2S

X

v2V

X

k2Av

tk,s(k) + (|Av|�1) · �̄ . (2.6)

2.2. Equilibrium analysis

To analyze possible stable outcomes of the FCSA game, we discuss the FCSA game’s equi-
librium properties in the following. Here, we note that a Nash equilibrium corresponds to a
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strategy profile such that no player has an incentive to unilaterally deviate from its current
strategy. Moreover, there always exists a Nash equilibrium for a strategy profile of mixed
strategies, i.e., a profile that corresponds to a probability distribution over pure strategies.
However, mixed strategies do not reflect the behavior of a player in practice, as a player
assigns a set of physical stations to its drivers once, which makes the interpretation of mixed
strategy Nash Equilibria difficult for real-world analyses. In contrast, a PNE allows for more
interpretable outcomes but is not guaranteed to exist in the FCSA game.

Proposition 1. The FCSA game does not always possess a PNE.

Proof. We refer to Appendix A for a proof of Proposition 1.

For games with non-guaranteed PNE existence, ⇢-equilibria with pure strategies constitute
an interesting alternative to interpret the outcome of a game. Specifically, a ⇢-equilibrium
corresponds to a near-stable state in which each player cannot decrease its payoff by more
than the absolute factor ⇢ � 0. In practice, such an equilibrium corresponds to each player
accepting to slightly deviate from the best solution it may obtain if its deviation stabilizes
the game outcome. Formally, this corresponds to a profile s, such that

8i 2 N , 8s0i 2 Si , ui(s
0
i, s�i) > ui(s) � ⇢ . (2.7)

However, we can assume that such equilibrium refinement is only of practical interest if a
player’s payoff marginally increases when the player deviates from its best response, i.e., if
⇢ is sufficiently small. In Proposition 2, we show that the existence of an equilibrium with ⇢

being sufficiently small cannot be guaranteed, as we can construct instances in which for any
set of strategy profiles at least one player can significantly decrease its payoff by deviating
from its current strategy.

Proposition 2. The existence of a ⇢-PNE with ⇢ < �̄ ��t, with �t = tmax � tmin being the
difference between the largest and the lowest driving times between a driver and a station,
cannot be guaranteed for the FCSA game.

Proof. We refer to Appendix A for a proof of Proposition 2.

3. Charging station allocation mechanism

In Section 2, we show that no pure PNE guarantee exists for the FCSA game, which motivates
our interest to better coordinate the different players via MD to steer the system towards
more socially desirable outcomes. To realize such a mechanism, we consider the existence
of a white label operator (WLO) who decides on the system-optimal allocation of stations
to drivers across several players, considering station preferences reported by all players. In
practice, the WLO might be an inter-charge operator or a municipality that allocates, e.g.,
via a charging slot booking system, a subset of stations to the navigation platforms, who
then assign the stations to their drivers.
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Formally, we consider m = |V| charging stations constituting m indivisible resources to be
concurrently allocated among |N | players. Each player has a cost valuation for each bundle
of stations, that corresponds to the minimum cost assignment between its drivers and the
bundle’s stations. Valuations are non-additive, e.g., if a bundle contains more stations than
drivers, removing the non-assigned station from the bundle preserves the valuation. While
the valuation is expressed in units of time in the following, it can be transposed to monetary
units in practice.

Observation 1. As the principal already knows where stations are located, it can compute
a player’s cost valuation if it also knows where a player’s drivers are located.

Accordingly, it suffices that a player reports the locations of its drivers to the principal
rather than explicitly communicating its cost valuation for every bundle.

Observation 2. Reporting drivers’ locations is linear in the number of drivers owned by the
player.

Accordingly, reporting drivers’ locations requires much less information-sharing between
a player and the principal, than if a player would report its cost valuation for any possible
combination of stations.

The principal computes the allocation of stations to drivers that minimizes the sum of
all players’ bundle cost valuation and requires in return that each player pays a price for
the station assignment. Each player aims to minimize its payoff, which corresponds to the
sum of its cost valuation for the received station allocation and the price decided by the
principal. We assume that players may lie about their preferences if lying can decrease their
payoff compared to truthfully reporting their preferences. The goal of the principal is then
to design a pricing rule, such that all players have an incentive to truthfully report their
drivers’ locations. To ensure players’ truth-telling behavior, we apply the well known VCG
pricing scheme which ensures that it is in a player’s best interest to reveal its true preference.

In the following, we first analyze the VCG pricing scheme from an offline perspective in
Section 3.1, to derive an upper bound on the system efficiency improvement that can be
reached. We then study how to design an online VCG mechanism for a practical implemen-
tation in Section 3.2.

3.1. Offline charging demand

We now develop an offline mechanism to ensure truthful reporting of the players’ informa-
tion, i.e., the locations of their drivers. Focusing on an offline setting, we assume all players’
information to be simultaneously reported. The principal allocates stations based on the
revealed information, and each player accordingly receives a subset of stations and the cor-
responding drivers assignment for each of these stations. In Section 3.1.1, we discuss the
mechanism for unweighted players, whereas we discuss how to account for weighted players
in Section 3.1.2.
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3.1.1. Unweighted VCG Mechanism

In the following, we adapt the VCG mechanism for payoff minimization and social cost
minimization. We consider a setting in which each player i 2 N has some hidden information
✓i, representing the set of its drivers’ locations that it chooses to accurately reveal or not.
We denote with ✓ = (✓i)i2N , the vector that contains all players’ information. Let a 2 A

be the set of alternatives that correspond to assignments of stations to drivers, which the
principal computes and communicates to the players. Here, a real station can be assigned
only once to a driver and a driver may only be assigned to a station if the driving distance
is less than its maximum search radius S̄. The artificial station vertex v0 can be assigned to
multiple drivers and induces a penalty cost for each assigned driver.

We introduce the function f(✓) that minimizes the sum of all players’ valuations based on
their reported information ✓, and refer to it as the social choice function

f(✓1, ..., ✓n) = arg min
a2A

X

i

vi(✓i, a) . (3.1)

The valuation vi(✓i, a) of player i for alternative a corresponds to the sum of assignment
costs of drivers to stations given the player’s information ✓i, formally

vi(✓i, a) =
X

k2Di

c(k, a) , (3.2)

with c(k, a) being the cost of assigning driver k to station a(k)

c(k, a) =

8
<
:
�̄, if a(k) = v0

tk,a(k), else .
(3.3)

Within an allocation a, each driver k 2 D receives an assigned station a(k) 2 V S
v0. Using

Equation 3.2, we can further express the social choice function as

f(✓1, ..., ✓n) = arg min
a2A

X

k2D
c(k, a) . (3.4)

Note that the social choice function minimizes the social cost as defined in Equation 2.6,
with the additional constraint that no more than one driver can be assigned to each physical
station.

Adapting the VCG mechanisms for payoff minimization leads to non-positive VCG prices,
which implies a positive transfer of money from the player to the system. Accordingly, the
VCG pricing rule is given by

p(✓�i) = h�i �
X

j 6=i

vj(✓j, a) , (3.5)

with

h�i = min
b2A

X

j 6=i

vj(✓j, b) , (3.6)

and with a = f(✓), such that each player’s payoff function results to

ui = vi(✓i, a) � p(✓�i) =
X

j2N
vj(✓j, a) � h�i . (3.7)

Using VCG prices, the principal aligns each player’s interest with the overall system interest
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as the term
P

j 6=i vj(✓j, a) in Equation 3.7 aligns the player payoff with the social cost (cf.
Equation 2.6). Thus, a player minimizes its payoff when telling the truth, i.e., the pricing
scheme guarantees incentive-compatibility (cf. Nisan et al. 2007). VCG prices further ensure
that a player does not have an incentive to assign different drivers to each of the stations
contained in its received subset (see Proposition 3).

Proposition 3. A Player has no incentive to deviate from the drivers assignment to stations
prescribed by the allocation a chosen by the principal, when telling the truth.

Proof. We refer to Appendix A for a proof of Proposition 3.

Moreover, VCG prices ensure that truth-telling minimizes a player’s payoff even when it
has the possibility to deviate from the received assignment (see Proposition 4). A player
that misreports information on its drivers may receive a suboptimal stations assignment,
which it may improve by modifying the assignment of its drivers to the stations contained
in the received subset of stations. However, the resulting assignment will still yield higher
payoff than when truthfully reporting its information and not deviating from the prescribed
assignment.

Proposition 4. A Player has no incentive to lie on its revealed information, even when it
can deviate from the realized assignment by the principal

Proof. We refer to Appendix A for a proof of Proposition 4.

3.1.2. Weighted VCG Mechanism

The presented VCG mechanism leads to a minimal social cost but does not ensure solution
fairness for a single player, e.g., it may lead to an outcome with one player having none
of its drivers assigned at all, while another player may have all of its drivers assigned.
Accordingly, a player might be better off in some scenarios by not participating in the
system-based allocation unless it gets prioritized. To mitigate these issues, we now study a
VCG mechanism, in which players are weighted to better balance the resulting individual
player’s assignments. We note that a VCG mechanism with weighted players guarantees
truthfulness (cf. Roberts 1979).

To formalize this setting, we detail

f(✓1, ..., ✓n) = arg min
a2A

X

i

wi · vi(a) , (3.8)

with wi being the weight associated to player i.
In this setting, the weighted pricing rule is

pw(✓�i) = h�i �
X

j 6=i

wj

wi

vj(✓j, a) , (3.9)

with h�i being a cost independent of the allocation obtained by i, and defined as

h�i = min
b2A

X

j 6=i

wj

wi

vj(✓i, b) (3.10)

to ensure positive money transfer from the players to the system.
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Weights optimization: Assuming a weighted players VCG mechanism, the weights can be
defined a-priori based on the players’ characteristics, e.g., the number of controlled drivers.
We can also optimally derive weight values such that each player benefits from participat-
ing in the centrally optimized system. Deciding whether to participate in the system or
not relates to a game, where each player can {opt-in, opt-out} of the system. By opting
in, the player receives the VCG allocation and pays the related price, whereas by opting
out, the player selfishly assigns stations to drivers, possibly conflicting with other players’
assignments. We assume that if one player opts out, then all players are forced to opt out
and selfishly assign their charging demand, as the noise created by the opted-out participant
prevents computing an optimal system assignment for the remaining participants. Thus, a
player has only an incentive to opt in if its resulting payoff with VCG is lower than its payoff
without VCG. Accordingly, our goal is to derive weights such that all players profit from
participating in the VCG mechanism.

The resulting weights optimization problem can be formalized as follows: let b = (bi)i2N

be the selfish strategy profile for all players, and let ui(b) be the respective payoffs for each
player i with strategy profile bi. As we seek to derive the best possible weights, we adapt the
pivot rule such that the minimization part of h�i for player i is independent of the a-priori
undefined weights for all players but i, and let

h�i = min
b2A

X

j 6=i

1

wi

vj(✓i, b) . (3.11)

Equation 3.11 still guarantees the price to be non-positive such that the mechanism does
not transfer a positive amount of money to its players. We denote with OPT�i the social
optimum realized when i does not exist, as

OPT�i = min
b2A

X

j 6=i

vj(✓i, b) . (3.12)

We let w = (wi)i2N , with 1  wi  W , and W being the maximal weight value; and define
the weights optimization problem as

min
x2A,w

X

i2N
wi ·

X

k2Di

X

v2V[V0

xkvtkv (3.13)

X

k2D
xkv  1 8v 2 V [ V0 (3.14)

X

v2V[V0

xkv = 1 8k 2 D (3.15)

X

j2N
wj ·

X

k2Dj

X

v2V[V0

xkvtkv � OPT�i  wi · ui(b) 8i 2 N (3.16)

The objective (3.13) minimizes the weighted social cost. The first two constraints (3.14&3.15)
are assignment constraints, while the last constraint (3.16) ensures that the resulting payoff
within the mechanism, i.e., vi(✓i, x) � pw

i (✓�i), is better for each player compared to the
payoff when acting selfishly.
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3.2. Online charging demand

An offline setting as described in Section 3.1 is not applicable in practice, because it is
not possible to delay the station assignment when charging requests arrive in the system.
Against this background, we extend the offline VCG mechanism to an online setting to allow
for immediate assignment decisions by implementing a delayed VCG mechanism similar
to Parkes et al. (2004). Section 3.2.1 introduces the mechanism for both unweighted and
weighted players, while Section 3.2.2 describes our online allocation policies.

3.2.1. Delayed VCG Mechanism

In this online setting, different platforms interact with the principal and sequentially reveal
their drivers’ locations to the principal during the planning horizon. We assume that requests
must be served immediately. Then, the goal of the principal is to make decisions over time
that minimize the expected total cost assignment of all drivers in the system. In this setting,
each player makes a delayed payment at the end of the planning horizon, that depends on
the realized assignment.

The information vector ✓i of each player is sequentially revealed, such that ✓i = (✓k
i )k2Di

,
with k being the kth driver belonging to player i. We let ✓t := ✓k

i be the information revealed
at time t, identifying the location of the requesting driver k and the player i it belongs to.
We denote with ⇥ = {✓i : i 2 N} the set of player’s information vectors and we define
a state xt as the vector that describes the history of decisions and of revealed information
such that xt = (✓0, ..., ✓t, a0, ..., at�1). We define policy ⇡ = (⇡1, ..., ⇡t) as the sequence of
decisions made in each epoch, with at := ⇡t(xt), being the station assigned to driver ✓t by the
principal. Each assignment decision induces an immediate cost corresponding to the time
required by the associated driver to reach the station, t✓t,⇡t(xt). At time t, a player’s cost is
the sum of all of its driver’s travel times or penalties. A player’s cost sequentially increases
until the planning horizon ends.

From the principal’s perspective, the sequential station assignment problem can be mod-
eled as an MDP, whose solution policy corresponds to the policy ⇡. Accordingly, we introduce
an MDP defined by a policy ⇡, the state space X, and transition functions p(x0|x, a) that
describe the probability that the system in state x will transition to post-decision state x0

after having taken action a. As previously introduced, a state x describes the current sta-
tions’ assignment of existing drivers in the system and an action a represents the assignment
decisions realized by the principal.

We define the immediate cost di
t(xt, at) for each player i as

di
t(xt, at) =

8
<
:

c(✓t, at), if i = î

0, else
(3.17)

with î being the player associated to request ✓t, using the station assignment cost c(✓t, at)

as defined in (3.3). Let the total immediate cost be dt(xt, at) =
P

i2N di
t(xt, at). Further, we
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denote by

di
<T (✓, ⇡) =

TX

t=0

di
t(xt = (✓0, ..., ✓t, a0, ..., a�1), ⇡t(xt)) (3.18)

the accumulated cost for player i from t = 0 until T , with reported information ✓. We can
then define the MDP value function V ⇡ as the expected value of the summed costs over all
decision epochs

V ⇡(xt) = E⇡[
TX

⌧=t

dt(x⌧ , ⇡⌧ (x⌧ ))] , (3.19)

which we can also recursively express as

V ⇡(xt) = dt(xt, ⇡t(xt)) +
X

xt+1

p(xt+1|xt, ⇡t(xt))V
⇡(xt+1) . (3.20)

The objective of the principal is then to find a policy ⇡ that minimizes the expected cost
value V ⇡(x0) over the planning horizon, with x0 being the initial system state. The realized
cost for each individual player corresponds to the summed costs over the entire planning
horizon for its drivers, formally

vi(✓i, aT ) =
TX

⌧=0

di
⌧ (x⌧ , a⌧ ) . (3.21)

Similar to the offline setting in Section 3.1, we assume that a player i may misreport her
information ✓k

i and we refer to the reported information as ✓̂, used by the planner to decide on
the next action ât. Then, the immediate cost induced by action ât corresponds to the distance
from the actual driver location to the next decided station, and depends on the actual
location of the driver ✓t and the action chosen. Accordingly, di

t((✓
0, ..., ✓̂t, ⇡), ât) = c(✓t, ât)

when i reports information ✓̂t with actual information ✓t.

Analogous to Parkes et al. (2004), we define the mechanism’s prices as the difference
between the sum of realized costs of all players but i and the optimal realized cost with
perfect information without player i. Each player pays the price at the end of a given
planning horizon. Formally, the pricing rule for player i is

pi(✓, ⇡) = �
X

j 6=i

TX

t=0

dj
t((✓<t, a<t�1), ⇡t(xt)) + OPT✓�i

, (3.22)

with OPT✓�i
being the optimal assignment cost that can be obtained under full information

without i being in the system, and ⇡ being the optimal MDP-policy, such that

OPT✓�i
=

X

j 6=i

dj
<T (✓�i, ⇡) . (3.23)

Then, the mechanism Mon = (⇥, p, ⇡) defined by the players’ information ⇥, the pric-
ing rule p = (pi)i2N and the assignment decisions policy ⇡ constitutes the delayed VCG
mechanism. The pricing rule defined in Equation 3.22 makes Mon Bayesian-Nash Incentive-
compatible, i.e.,

E⌧>t[v
i(✓i, aT ) � pi(✓, ⇡)]  E⌧>t[v

i(✓i, âT ) � pi(✓̂, ⇡)] 8✓̂t 8t (3.24)

with âT = (⇡0(x0), ..., ⇡t(x̂t), ..., ⇡T (x̂T )). Here, x̂⌧ = (✓̂<⌧ , â⌧�1) with ✓̂<⌧ = (✓0, ..., ✓̂t�1,
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...., ✓̂⌧ ) 8⌧ 2 [t, T ]. We assume that ✓̂⌧ = ✓⌧ if player j 6= i reports in epoch ⌧ , i.e., all players
but i truthfully report their information. Equation 3.24 ensures that the expected player’s
payoff cannot be better when the player reports false information ✓̂t, instead of ✓t.

Proposition 5. Mechanism Mon is Bayesian-Nash incentive-compatible.

Proof. We refer to Appendix A for a proof of Proposition 5.

Similar to the VCG mechanism (see Section 3), we show that the delayed VCG mechanism
M can be extended to account for weighted players. We can adapt the immediate cost by
weighting players, and introducing the new immediate cost

d̃t(xt, at) =
X

i2N
wi · di

t(xt, at) (3.25)

with wi � 1 8i 2 N . Note that vi(✓i, aT ) remains unchanged. We accordingly update the
pricing rule as

p̃i(✓, ⇡) = �
X

j 6=i

TX

t=0

wj

wi

dj
t((✓<t, a<t�1), ⇡t(xt)) + ˜OPT ✓�i

(3.26)

where ˜OPT ✓�i
=

P
j 6=i

wj

wi
dj

<T (✓�i, ⇡).

We define M̃on = (⇥, p̃, ⇡) as the weighted delayed VCG mechanism, and show that M̃on

is still in-expectation incentive-compatible.

Proposition 6. Mechanism M̃on is Bayesian-Nash incentive-compatible.

Proof. We refer to Appendix A for a proof of Proposition 6.

3.2.2. Online allocation policy

In an online setting, each decision stage is triggered by a new driver’s request, and the
principal assigns a charging station to the driver reported by a player based on the online
allocation policy. Finally, the mechanism computes prices at the end of the planning horizon,
which terminates after a fixed number of considered requests. In the following, we derive
two online allocation policies to solve the underlying MDP of the delayed VCG mechanism
Mon. The first policy greedy allocates the closest available station to the requesting driver.
The second policy data-driven bases on a data-driven algorithm (cf. Garatti and Campi
2022), and learns the policy parameterization based on historical charging requests. As both
policies are suboptimal in practice, the truthfulness of the mechanism cannot be guaranteed
in theory. We notice that if one wants to formally ensure truthfulness, one could extend
the mechanism similar to the second chance mechanism as introduced in Nisan and Ronen
(2007). In this case, players have a chance to report a different information only if it improves
their utility, and accordingly the expected social cost.
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Greedy policy: The greedy policy is a deterministic policy that assigns a requesting driver
to the closest available station, such that ⇡t(xt) = arg minv2V̄ t✓t,v, with ✓t being the location
of the requesting driver in state xt, and V̄ being the set of stations that have not been already
assigned to preceding drivers.

Data-driven policy: The data-driven policy is a probabilistic policy, i.e., a policy that
chooses its action based on a probability distribution. To sample actions, we use a para-
metric data-driven online algorithm to determine the action taken at each decision stage.
Specifically, the algorithm parameters denote with which probability to take a specific ac-
tion. We learn the parameterization of this algorithm offline, based on a large set of training
input sequences, each consisting of charging requests of a fixed length.

We derive the data-driven algorithm A as follows. Formally, we let I be the set of all
possible scenarios I where I = [✓0, ..., ✓t, ..., ✓T ], with T + 1 being the input sequence length
and ✓t 2 ⇥ being the location of a driver in position t, such that DI corresponds to the set of
drivers k contained in I. Our goal is to find an algorithm A that minimizes the competitive
ratio ↵ for all possible input sequences I 2 �, such that

A⇤ = arg min
A

↵

ON(Il, A)  ↵OPT (Il)8I 2 �,
X

v2V[V0

xkv = 1 8k 2 DI , 8I 2 �,

X

k2DI

xkv  1 8v 2 V , 8I 2 �

xkv 2 [0, 1]8k 2 DI , 8v 2 V 8I 2 � ,

(3.27)

where ON(I, A) corresponds to the online solution obtained with A for a given scenario l

and OPT (I) corresponds to the offline solution obtained for l. The offline solution OPT (I)

corresponds to the minimum cost assignment of the drivers in I to charging stations in
v 2 V [ V0, as

OPT (I) = min
xkv8k2DI 8vV[V0

X

v2V[V0

X

k2DI

xkv · c(k, v) (3.28)

X

v2V[V0

xkv = 1 8k 2 DI (3.29)

X

k2DI

xkv  1 8v 2 V (3.30)

xkv 2 {0, 1} 8k 2 DI , 8v 2 V (3.31)

c(k, v) =

8
<
:
�̄, if v = v0 _ �(k, v) � S̄

tk,v, else.
(3.32)

Here, the objective (3.28) is to find an assignment of drivers to stations that yields minimal
cost. Each driver must be assigned to at least one physical or virtual station (3.29), and
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at most one driver can be assigned to a physical station (3.30). A driver assignment cost
corresponds to the driving time from its current location to the physical station or to a
penalty cost if the station is further away than S̄ or if the station is virtual (3.32).

To mitigate the computational burden, we chose A to lie on a parametric class and relax
the integer constraint on the decision variables x. We then learn the algorithm A⇤ based on L

i.i.d. sampled training input sequences I0, ..., IL of the uncertainty set I ⇢ �. Accordingly,
the learning objective becomes

A⇤ = arg min
A

↵

ON(Il, A)  ↵OPT (Il)8Il 2 I, l 2 [L]
X

v2V[V0

xkv = 1 8k 2 DIl
, 8Il 2 I, l 2 [L]

X

k2DIl

xkv  1 8v 2 V , 8Il 2 I, l 2 [L]

xkv � 08k 2 DIl
, 8v 2 V .

(3.33)

We introduce the parameterization vector of the algorithm A, as ~p✓,t 2 R|V| for each (✓, t)-
pair, such that 0  p✓,t,v  1 represents the probability for a driver in location ✓ with position
index t in the input sequence to be assigned to station v. Thus, we derive the algorithm A

with parameterization ~p⇤✓,t for all (✓, t)-pairs, as follows

A = arg min
p✓,t,v8✓2⇥,t2[0,...,T ],v2V

↵ (3.34)

TX

t=0

X

v2V
p✓t,t,v · c(✓t, v)  ↵ · OPT (Il) 8l 2 [L] ✓t 2 Il (3.35)

X

v2V
p✓,t,v = 1 8✓ 2 ⇥, 8t 2 [0, ..., T ] (3.36)

TX

t=0

X

✓2⇥
p✓,t,v · n(✓, t, I)  1 8v 2 V , (3.37)

↵ 2 R+ (3.38)

with n(✓, t, I) being the likelihood that a driver is located in ✓ with position index t, estimated
based on the occurrence of such combination (✓, t) among all input sequences Il, l 2 [L].
The Objective (3.34) is to find a parameterization that minimizes the competitive ratio ↵,
i.e., the ratio between the optimal cost and the cost obtained with the parametric algorithm
as introduced in (3.27). Constraint (3.35) ensures that the ratio between the expected
online solution and the optimal offline solution is lower than the minimized competitive
ratio ↵. Constraint (3.36) enforces that we compute a discrete probability distribution,
while Constraint (3.37) ensures that we do not assign (in-expectation) more than one driver
to a station.

We apply this data-driven policy in state xt = (✓0, ..., ✓t, a0, ..., at�1) as follows. First,
we exclude already allocated stations, i.e., v 2 {a0, ..., at�1}, from the possible stations
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assignment by setting the probability to be selected to 0, such that p✓,t,v = 0, 8✓ st. ✓ = ✓t.
Then, we scale the assignment probabilities of the remaining candidate stations to preserve
the discrete probability distribution as

p0✓,t,v :=
p✓,t,vP

v2Vp✓,t,v ·�v

8v 2 V ,

with �v = 0 if v 2 {a0, ..., at�1}. Finally, we select a station v for the driver in location ✓

based on the probabilities p0✓,t,v.
In a setting with weighted players, optimizing weights requires to know each player’s

payoff resulting from a selfish behavior. However, as requests are unseen, we do not know a
player’s selfish payoff ahead of time and thus cannot optimize weights a-priori. To remedy
this issue in practice, one could derive the weights a-posteriori, i.e., after a planning horizon
has terminated, and apply them for the next planning horizon. In this case, one needs to
additionally ensure that the assignment costs account for the players’ weights, as c(k, v, i) =

wi · c(k, v). Consequently, the parameterization needs to be indexed on the players, such
that p✓,t,v,i represents the probability that a driver in location ✓ at requesting time t and
belonging to player i should be assigned to station v.

4. Experimental design

To analyze the impact of coordinating the charging demand at drivers’ and platforms’ levels,
we derive real-world test instances based on the charging station network for the city of
Berlin, Germany (cf. Figure 1).

We consider three unweighted navigation platforms, i.e., players. The ratio of available
stations and requesting drivers is the main factor impacting our results. We accordingly vary
the total number of drivers in the system N 2 [2, .., 40], the search radius (S̄ 2 {1000, 2000}
meters) and the radius of the circular area in which all drivers depart (sr 2 {300, 700, 1100}
meters). We set the penalty �̄ = 120 min, such that failing the search for a driver corresponds
to a delay of two hours.

To account for the navigation platforms’ heterogeneity, we vary the players’ imbalance,
with respect to the number of drivers managed by each platform as shown in Table 1. We
compare three driver distribution scenarios. In the small scenario, one player accounts for
20% of the total demand, whereas in the big scenario, one single player accounts for 50% of
the demand. In both scenarios, the other two players share the remaining demand equally.
The equal scenario represents a homogeneous player scenario, with equal distribution of
drivers between players.

For both offline and online charging demand, we benchmark the VCG-based assignment
against two naive assignment strategies. In D-SELF , each EV driver visits the closest
station in its vicinity, whereas in P-SELF , navigation platforms compute the cost-minimum
assignment of stations to drivers with respect to their own charging demand. We compare
all three settings, i.e., VCG , D-SELF , and P-SELF , with respect to the social cost Sg,
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Platform A’s driver Platform B’s driver Platform C’s driver

Figure 1: Charging station and driver distribu-
tion in a part of Berlin

Table 1: Driver distribution scenarios

scenario
Navigation platform

A B C

big 25.00% 25.00% 50.00%
equal 33.33% 33.33% 33.33%
small 40.00% 40.00% 20.00%

i.e., the sum of each player’s drivers to stations assignment cost, which reflects end-users’
satisfaction. To analyze the benefits of VCG pricing, we further compare each player’s payoff,
including VCG prices when applicable. To complement the offline analyses, we analyze the
impact of optimally weighting players, such that all players benefit from VCG when applying
the weighted VCG pricing scheme. Here, we solve the optimization problem introduced in
Equations (3.13)-(3.16), and set the maximal weight value to W = 10.

For the online charging demand setting, we assume that for both D-SELF and P-SELF ,
there is a latency between the time when the drivers stop at the station and the time the
station’s availability status is up-to-date for the succeeding drivers. We consider a latency
of ⌧ = 3 minutes, i.e., the time for the driver to stop and start charging and for the system
to update the availability information. For P-SELF the latency only concerns the other
player’s drivers, as the player knows which stations were assigned to its drivers. We further
assume that requests arise every �t minute with �t 2 {0.5, 1.5, 2.5} minutes.

For the data-driven parameterization, we limit the computational burden by identifying
a set of at maximum 40 possible locations a driver can depart from (|✓| 40). In most
instances, candidate departing locations cover all vertices in the corresponding road network,
i.e., roads junctions. To evaluate the stochastic data-driven online policy on a test instance
with N drivers, we randomly sample n = 500 start locations for each driver, and compute
the simulated estimates of the social cost and each player’s individual payoff.

5. Results

In the following, we first detail our results for an offline charging demand setting in Sec-
tion 5.1, to obtain an upper bound on the system improvement as well as to understand the
interactions between navigation platforms with different driver shares. We further discuss
the impact of optimally weighted platforms in this setting in Section 5.2. We then discuss
our results for an online charging demand setting in Section 5.3 and compare it to the offline
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benchmark.

5.1. Offline allocation results

Figure 2 shows the distribution of the social cost for all three strategies (P-SELF , D-SELF ,
VCG) depending on the number of drivers in the system for both small (S̄ = 1000m) and
large (S̄ = 2000m) search radii. As can bee seen, selfish navigation service platforms can
increase the overall user satisfaction by optimally balancing their own charging demand
(P-SELF ) compared to selfish EV drivers taking greedy visit decisions (D-SELF ). However,
VCG pricing further reduces the social cost significantly. Our results show that the benefit of
platform coordination increases when the ratio between the total number of charging stations
and the total number of drivers in the system increases. In contrast, when the likelihood of
visit conflicts is high, i.e., many drivers depart within small distance or with small search
radius, the coordination improvement decreases. However, coordination remains necessary
in these cases as selfish platform optimization becomes as bad as individual greedy driver
decisions.

Result 1. Coordinating platforms with VCG pricing decreases the social cost by up to 52%
compared to an allocation obtained with selfish platforms.

Figure 3 shows all three platforms’ mean payoffs depending on the number of drivers and
for each driver distribution scenario. To compare platforms with a heterogeneous driver
share, we normalize each platform’s payoff by its number of managed drivers. As can be
seen, VCG pricing significantly decreases a platform’s payoff on average by 27% (equal),
respectively 21% (big), and 26% (small) compared to the payoff obtained for platform-
optimized allocations (P-SELF ). In case of a high charging demand, i.e., for more than
20 drivers departing in a small vicinity and with lower search times, the induced VCG
prices increase a platform’s payoff compared to an uncoordinated setting. Focusing on the
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Figure 2: Benefit of VCG pricing on the social cost

Results are averaged over all values of sr with sr{300, 700, 110} m.
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Figure 3: Impact of the distribution scenario on each platform’s payoff for VCG, P-SELF , and
D-SELF

impact of the driver distribution, our results highlight two effects. Utilizing VCG pricing, a
platform’s payoff decreases if its share of drivers in the system increases (see e.g., Platform
C, in Figure 3). Contrarily, the improvement obtained with VCG pricing compared to a
selfish assignment is larger for a platform with proportionally less drivers. In some cases,
e.g., for S̄ = 1000 m and a very large number of drivers, VCG does not outperform P-SELF
for a platform that manages the highest share of drivers. If a platform manages most drivers,
then the subsystem composed of other platforms’ drivers is smaller such that the platform’s
impact on it is low, which decreases the large platform’s price. In this case, the impact of
other platforms on the platform with the largest drivers share decreases as well, such that
the benefits of coordination do not always compensate the additional VCG prices induced
by coordination.

Result 2. A navigation platform with a low share of drivers (nearly) always benefits from
VCG pricing compared to P-SELF. In contrast, a platform with a higher share of drivers is
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sometimes better off not participating in a VCG setting.

Figure 4 compares the mean payoffs obtained for each platform and distribution scenario
depending on the number of drivers. In line with Figure 3, results show that a platform with
more drivers gets, proportionally to the number of drivers managed, a lower payoff compared
to platforms with less drivers. As can be further seen, the impact of a heterogeneous driver
share is bigger for a large search radius (S̄ = 2000 meters) compared to a small search radius
(S̄ = 1000 meters). In summary, if a platform participates in a VCG setting, its payoff will
inversely decrease with the number of drivers it manages in the system, but the benefit of
participating in VCG compared to P-SELF with a lot of drivers will decrease, too. If a
platform has few drivers, it is better off participating in the system.

Result 3. If participating in a VCG coordinated system, a navigation platform can decrease
its cost by increasing its drivers share. However, the relative improvement obtained with
VCG compared to P-SELF decreases in this case.

Figure 5.a shows the average driving time to an available station for any driver in the
system, while Figure 5.b shows the average station assignment success rate for a platform
for both S̄ = 1000 m and S̄ = 2000 m. Analyzing Figures 5.a & 5.b, our results show that
coordination through VCG pricing slightly increases the average driven search time needed
by its drivers to reach an available station for each platform compared to a selfish or a greedy
behavior. However, lower driver search times in selfish settings (P-SELF&D-SELF ) come
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Figure 5: Impact of VCG pricing on average drivers search times and success rates

at the expense of significantly lower success rates, which highlights the need of coordination
to decrease station visits conflicts.

Result 4. Platform coordination mildly increases the average driving time of drivers in
the system by 32 seconds on average, compared to local coordination (P-SELF), and by 47
seconds, compared to uncoordinated drivers (D-SELF). These longer searches significantly
reduce the number of station visit conflicts, leading to a success rate increase of 33% compared
to P-SELF, and of 49% compared to D-SELF.

5.2. A-priori weights optimization

In the following, we analyze the impact of optimizing weights prior to applying offline
weighted VCG pricing by solving the optimization problem described in Section 3.1.2. Ta-
ble 2 summarizes the number of instances in which unweighted VCG pricing ("VCG benefi-
cial") benefits all platforms, i.e., each platform obtains lower cost with VCG than without,
as well as the number of instances in which VCG pricing benefits all platforms only if play-
ers are optimally weighted ("Weighted VCG beneficial"). Furthermore, the table shows the
number of instances for which optimal weights could not be derived ("Infeasible weights"),
and the number of instances for which the weights optimization problem could not be solved
within the computational time limit ("Not solved") of 120 minutes. We differentiate results
between low (S̄ = 1000 m) and high (S̄ = 2000 m) search radius.
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Table 2: Number of test instances that improve with weighted VCG over unweighted VCG,
respectively are infeasible, or unsolvable

Number of instances

S̄ VCG beneficial Weighted VCG beneficial Infeasible
weights

Not solved

1000 23 14 83 51
2000 125 5 24 17

total 148 (43%) 19 (6%) 107 (31%) 68 (20%)

As can bee seen, weighted VCG pricing increases the total number of instances in which
all platforms benefit from VCG participation from 43% to 49%. There remain 31% of
test instances that yield no feasible weights and 20% of instances for which the weights
optimization problem could not be solved within the limited computational time. Focusing
on test instances that yield infeasible weights, either unweighted VCG already benefits all
platforms, or the ratio of available stations per driver is too low to distribute all drivers across
stations. In the latter case, prices will be high for any weights values for at least one platform,
which accordingly results in higher payoff with VCG than with P-SELF . In a limited number
of cases (6% of the total number of test instances), the ratio of stations per driver is low
enough such that unweighted VCG does not benefit all platforms, but large enough such
that a minor reallocation of stations to platforms ensures that all platforms benefit from
VCG over P-SELF . Here, platforms who initially did not benefit from VCG have larger
weights than other platforms. Moreover, we observed that the range of improvement through
weights optimization depends on the search radius, with 60% of the instances benefiting from
weighted VCG in a low search radius (S̄ = 1000 m) setting against only 4% benefiting in a
large search radius (S̄ = 2000 m) setting. In the latter case, initial benefits of VCG pricing
are higher for a larger search radius (S̄ = 2000 m) due to the higher number of available
stations per driver, which in turn decreases the improvement potential.

Result 5. Optimizing platforms’ weights increases the number of instances in which all
platforms benefit from participating in VCG from 43% to 49%.

To further detail the impact of weighting players, Figures 10a-10c in Appendix B show the
averaged payoff per platform and scenario in both unweighted and weighted cases, depending
on the total number of drivers. Platform C appears to benefit the most from the weight
optimization in the small scenario, when managing only 20% of the total number of drivers.
Weighting platforms slightly benefits the system by decreasing a platform’s payoff. However,
results show little differences between weighted platforms’ payoffs and unweighted platforms’
payoffs, and no clear trend on the weights values depending on the scenario. Accordingly,
we focus on the unweighted platforms setting in the following analyses.
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5.3. Online allocation results

The following section analyzes the benefit of VCG coordination with online charging requests.
Preliminary studies (cf. Appendix B) show a similar effect of driver imbalance on a platform’s
payoff in an online compared to an offline setting. Accordingly, we focus the results discussion
on the balanced platforms scenario equal to evaluate the performances of VCG and compare
the benefits with respect to a perfect-information benchmark (OFF ).

Figure 6 shows the social cost deviation between the data-driven online policy (VCG-dd)
and the greedy online policy (VCG-greedy), computed as follows �(↵̂) = (↵̂dd�↵̂greedy)/↵̂greedy,
with ↵̂dd, respectively ↵̂greedy, being the realized social cost for the data-driven, respectively
greedy, online policy. Figure 7 compares the search cost distribution obtained with VCG-
dd and VCG-greedy online policies against the perfect-information benchmark (OFF ), per
number of drivers, for a small (S̄ = 1000 meters) and large search radius (S̄ = 2000 meters).

Our results (cf. Figure 6) show an improvement of the data-driven policy over the greedy
allocation policy in an online setting, due to a better anticipation of possible visit conflicts
of the data-driven policy. For S̄ = 1000, the averaged improvement over all values of sr is
23% in the best case (N = 10 drivers), whereas for S̄ = 2000 it increases to 34% (N = 22

drivers). As can bee seen, the benefit of a data-driven policy is highest for a small number
of drivers in case of a small search radius (S̄ = 1000 meters) but highest for a large number
of drivers in case of a large search radius (S̄ = 2000 meters). In the former case, the social
outcome for a higher number of drivers is generally bad due to a high number of unavoidable
station visit conflicts. Here, the bottleneck significantly limits the improvement potential,
such that the two online policies and the perfect-information setting (OFF ) yield equally
bad outcomes (cf. Figure 7). In contrast, the likelihood of station visit conflicts is low for a
small number of drivers in the latter case, such that a greedy policy performs already nearly
as good as a perfect-information setting allocation (OFF ). In this case, there will always be
enough available stations to allocate to incoming drivers, which will not increase the social
cost with penalty costs.
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Figure 6: Social cost deviation �(↵̂) between the VCG-dd and VCG-greed online policies
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Figure 7: Social cost obtained with the VCG-dd and VCG-greedy online policies, and the
perfect-information benchmark OFF

Results are aggregated over all values of sr with sr{300, 700, 110} m.

Result 6. A data-driven online assignment policy improves the social outcome when the
improvement potential is highest, i.e., for a small number of drivers with small search radius
or for a large number of drivers with large search radius.

Result 7. A data-driven online assignment policy decreases the social cost on average by
14% given a large search radius, and yields a maximum reduction of 55% for sr = 700 meters
and 32 drivers, compared to a greedy online assignment policy.

Table 3 shows the deviation of the realized social cost obtained with P-SELF , D-SELF ,
and VCG-greedy compared to the VCG-dd online policy. For P-SELF and D-SELF , we
detail results for a small time span between two driver requests (�t = 0.5 minutes), an
average time span (�t = 1.5 minutes) and a large time span (�t = 2.5 minutes). For
both VCG-greedy and VCG-dd online policies, results are independent of �t as the central
decision-maker is aware of charging station’ availability. As can be seen, both coordinated
online assignment policies significantly outperform the two naive benchmarks. In line with
Figure 6, results further show the superiority of the online VCG-dd policy over the online
VCG-greedy policy, particularly in cases with widespread drivers, i.e., for a large search
radius (S̄ � 2000 m) or for a large departing area (sr � 700 m). Our results further show
that the benefit of coordinating platforms increases with the requests frequency and are
highest for �t = 0.5 minutes. We note that for a lower request frequency, i.e., �t = 2.5

minutes, a platform does not benefit from locally coordinating its charging demand. Here,
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Table 3: Social cost deviation for P-SELF , D-SELF , and VCG-greedy compared to VCG-dd

S sr VCG-greedy P-SELF D-SELF

�t = 0.5 �t = 1.5 �t = 2.5 �t = 0.5 �t = 1.5 �t = 2.5

1000
300 -0.17% 15.6% 12.2% 10.7% 34.4% 11.9% 6.20%
700 0.95% 13.3% 9.23% 7.63% 19.0% 8.81% 5.31%

1100 4.23% 37.6% 25.0% 20.5% 51.9% 24.3% 15.1%

2000
300 -0.19% 193% 167% 155% 259% 171% 114%
700 77.5% 994% 778% 670% 1199% 780% 536%

1100 45.6% 1571% 1185% 1004% 1895% 1195% 811%

The table shows the search cost deviation computed as �(↵̂) = (↵̂op�↵̂dd)/↵̂dd, with ↵̂dd, being
the realized social cost for the data-driven online policy and ↵̂op being the realized social cost for
P-SELF , D-SELF , and VCG-greedy respectively.

the realized social outcome is better when EV drivers greedily decide on their station visits
(D-SELF ) compared to when navigation platforms locally coordinate their charging demand
(P-SELF ).

Result 8. Online coordination with VCG pricing yields a significant system benefit compared
to an uncoordinated setting by decreasing the social cost by 42% when platforms act selfishly
(P-SELF), and 44% when drivers act selfishly (D-SELF).

Result 9. Local charging demand coordination (P-SELF) can yield a higher social cost than
without any coordination at all (D-SELF).

Finally, Figure 8 compares the realized platform payoff, averaged over all demand realiza-
tions and platforms, normalized by the number of navigated drivers per platform for each
online setting, against the offline benchmark (OFF ). These results highlight the trade-off
that exists between the additional cost induced by coordination via VCG pricing and the
cost reduction due to a system-optimized allocation. As can be seen, VCG pricing mostly
benefits a platform when the ratio of stations compared to the number drivers in the system
is large enough, as otherwise the price paid by a platform increases due to the platform’s
negative impact on the system. For a large search radius (S̄ = 2000 meters), the online
VCG-dd policy outperforms any naive allocation strategy, independent of the total number
of drivers in the system.

Result 10. VCG pricing significantly outperforms any naive strategy (P-SELF, D-SELF)
for larger search areas (S̄ = 2000m) by decreasing a platform’s payoff on average by 58%
compared to P-SELF and by 61% compared to D-SELF.

Result 11. In some cases, VCG pricing may slightly increase a platform’s payoff, when the
room for improving the social outcome with coordination is small, e.g, for a large number of
drivers in a small search area.
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Figure 8: Averaged platform’s payoff for P-SELF , D-SELF , VCG-dd, VCG-greedy, and OFF.

6. Conclusion

In this paper, we analyzed the dynamics between several self-interested navigation service
platforms that seek to best allocate charging stations to EV drivers. In this context, we
studied the problem of conflicting charging station assignments realized by independent
platforms from a game-theoretical perspective and introduced the FCSA game. We showed
that the game can neither be represented as a congestion game, nor admits a guaranteed
PNE. To steer the system towards a stable and optimal social outcome, we studied the VCG
mechanism in both offline and online settings, such that coordinated platforms’ assignment
decisions benefit the overall system. We further discussed how to extend the mechanism
to account for heterogeneously weighted players in both settings. In the online setting, we
introduced a data-driven online allocation policy. We analyzed the benefits of implementing
our mechanisms by conducting a case study for the city of Berlin, and showed that coordi-
nation decreases the social cost by up to 52% in the offline setting and by up to 42% in the
online setting. We further showed in an offline setting that optimized players’ weights may
increase the likelihood that participants benefit from participating in the VCG mechanism.
Finally, our results showed that the online data-driven allocation policy performs on average
slightly better than a myopic policy, but may significantly improve the social outcome by up
to 55% in congested scenarios.
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A. Proofs

Proof of Proposition 1. We show the non-guaranteed PNE existence by finding a game in-
stance that does not possess any. Figure 9 visualizes such a game instance. The instance
comprises three stations a, b, and c for two players p1 and p2: the first player has two drivers
d1 and d2, the second player has only one driver e1. None of the possible game outcomes
corresponds to a Nash equilibrium. If each player individually optimizes the assignment of
its drivers to the available station, we obtain the following profile ((b, c), (c)), with c conflict-
ing. From there, p2 should re-assign its unique driver to b, which is then conflicting. In this
case, p1 is better off reassigning d1 to c and d2 to a, as the total cost (=17) for strategy (c, a)

is lower than the total cost (=18) for strategy (a, c). However, p1 should now re-assign its
unique driver to c such that p1’s best response is again its individually optimized assignment
solution. The last strategy profile now equals the initial strategy profile, such that the path
P = ((b, c), c), ((b, c), b), ((c, a), b), ((c, a), c), ((b, c), c) of length 5 is an improvement path.
Additionally, starting from any other strategy profile not included in P , one may reach P

within at most two best responses moves, such that there exists no sink in the best response
dynamics graph and, accordingly, no PNE.

Proof of Proposition 2. We show the non-existence guarantee of a ⇢-PNE with ⇢  �̄ ��t,
by using an intermediate game G, defined with the same set of strategies than the FCSA
game but with new payoff functions. We ignore travel times, such that assigning a station
induces a penalty cost only for the non-closest drivers, i.e.,

ci(k, s) =

8
>>><
>>>:

�̄, if si(k) = v0

0, if 8k0 2 Dj 8j 2 N , j 6= i (sj(k
0) = si(k)) ) (tk0,v � tk,v)

�̄ otherwise .

(A.1)

Accordingly, player i’s payoff can be expressed as ui(s) = k · �̄, with k 2 N. Similar to
Proposition 1, G has no guaranteed PNE, as we can find an instance of G that admits none.
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Figure 9: G1’ instance with no PNE
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i, s�i) < ui(s) . (A.2)

When a player can strictly decrease its payoff by switching from strategy si to s0i, then its
payoff decreases by at least �̄, such that ui(s) � ui(s

0
i, s�i) � �̄, which corresponds to one

additional player being successfully assigned to a station.
By assumption, each feasible profile s in G is feasible in the FCSA game and the previous

condition implies that for some FCSA game instances, a player can decrease its cost by
obtaining at least one more driver successfully assigned to a station. In this case, assume
for player i, that l drivers are successfully assigned to a station in si. For any alternative
strategy improving s0i, this implies at least l + 1 successfully assigned drivers. Let us denote
with tmax and tmin the highest and lowest driving times between stations and drivers. We let
ni = |Di| be the number of drivers belonging to i. Then, we have

ui(si, s�i) � (ni � l) · tmin + l · �̄ (A.3)

and
ui(s

0
i, s�i)  (ni � l � 1) · tmax + (l � 1) · �̄ , (A.4)

such that i decreases its cost by switching from si to s0i by at least � = �̄ + (tmin � tmax).
Finally, we showed that ⇢ � �.

Proof of Proposition 3. Assuming that all players tell the truth, the principal computes the
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cost-minimal allocation
a = arg min

b2A

X

k2D
c(k, b) , (A.5)

with c(k, a) as defined in Equation (3.3). The payoff of player i corresponds to
P

k2D c(k, a)�
h�i. We let a0 be the modified allocation, when player i reassigns its drivers to its stations
allocated by the principal. All drivers that do not belong to player i are still assigned to the
same station in a0. The payoff of player i in this case corresponds to

X

k2D
c(k, a0) � h�i . (A.6)

However, as allocation a minimizes the total cost, i.e., the assignment cost of drivers to
stations, then X

k2D
c(k, a0) �

X

k2D
c(k, a) , (A.7)

such that deviating from the assigned allocation of stations to drivers increases the payoff
of a player. Concluding, a player has no benefit from assigning its drivers differently to the
stations allocated by the principal.

Proof of Proposition 4. First, let us assume that a driver cannot deviate from the received
assignment of drivers to stations. Let ✓̂ be the reported information, and with a slight abuse
of notation let k̂ be a reported driver information (i.e., its location), while k denotes the actual
driver information. Let â = f(✓̂). Then a player’s payoff corresponds to

P
k2D c(k, â)� h�i,

as the assignment cost c(k̂, â) corresponds to the cost with actual driver information, but
with allocation â computed based on the driver’s reported information by the corresponding
player, such that c(k̂, â) = c(k, â). We differentiate two cases:

i) Correct number of reported drivers: If a single player correctly reports its number of
drivers but misreports its drivers’ location, such that ✓̂ 6= ✓, then

X

k2D
c(k, â) �

X

k2D
c(k, f(✓)) , (A.8)

as f(✓) = arg minb2A

P
k2D c(k, b), and the player’s payoff increases when not telling

the truth.

ii) Incorrect number of reported drivers: If a single player lies on the number of reported
drivers, then each non-reported driver k̂ does not get any assigned station, which yields
a penalty cost for each of them, such that c(k, â) = �̄ � c(k, a) 8a 6= â. Then, for
each extra reported driver k̂ the actual driver assignment cost becomes c(k, â) = 0.
Accordingly, the principal optimizes the allocation of actual drivers on a reduced subset
of stations V 0 ⇢ V , i.e., stations that are not assigned to virtual reported drivers, such
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that
min

b2A,V 0

X

k2D
c(k, b) � min

b2A,V

X

k2D,V
c(k, a) . (A.9)

In theses two cases of misreported drivers’ numbers, a player’s payoff is at least smaller
when all drivers are correctly reported. Furthermore, following i), a player’s payoff is
at least smaller when all players’ information are correctly reported.

Second, let us assume that a driver can deviate from the received assignment of drivers
to stations. If a player lies, then its payoff is larger than when telling the truth as shown
above, such that X

k2D
c(k, â) + h�i �

X

k2D
c(k, f(✓)) + h�i , (A.10)

as f(✓) = arg minb2A

P
k2D c(k, b). As its payoff is not minimized when lying, it can deviate

from the allocation â by reassigning other drivers to its received stations, such that the new
allocation a0 decreases its payoff obtained with allocation â. However, the newly obtained
allocation â cost is at least as large as the minimum cost allocation obtained when telling
the truth, such that a player is better off reporting its true information and not reassigning
its drivers to different charging stations.

Proof of Proposition 5. We recall the proof exposed in Theorem 1 from Parkes et al. (2004),
that transposes the regular VCG incentive-compatibility to an in-expectation incentive-
compatibility.

Let t be the last decision epoch before the first epoch, where i misreports information
✓t+1 (and may further misreport her information), such that ✓̂t = ✓t. By expliciting pay-
ment pi in Equation 3.24, omitting OPT✓�i

that does not depend on player i, and omittingP
i2N

P⌧�1
⌧=0 dt

⌧ (x⌧ , ⇡⌧ (x⌧ )) that does not depend on realizations later than t, we need to show
that

E⌧>t[
X

i2N

TX

⌧=t

di
⌧ (x⌧ , ⇡⌧ (x⌧ ))]  E⌧>t[

X

i2N

TX

⌧=t

di
⌧ (x̂⌧ , ⇡⌧ (x̂⌧ ))] 8✓̂t 8t

, E⌧>t[
TX

⌧=t

d⌧ (x⌧ , ⇡⌧ (x⌧ ))]  E⌧>t[
TX

⌧=t

d⌧ (x̂⌧ , ⇡⌧ (x̂⌧ ))] 8✓̂t 8t .

(A.11)

The immediate cost for a misreported information depends on the driver’s true information,
i.e., actual location, and on the decision taken upon the misreported information, such that

X

i2N

TX

⌧=t

di
⌧ (x̂⌧ , ⇡⌧ (x̂⌧ )) =

X

i2N

TX

⌧=t

di
⌧ ((✓<⌧ , â⌧�1), ⇡⌧ (x̂⌧ )) .

The right part of (A.11) corresponds to the expected cost from xt (as x̂t = xt by assump-
tion) following policy ⇡̂, with ⇡̂(x⌧ ) = ⇡(x̂⌧ ) 8⌧ 2 [t, ..., T ], i.e., V ⇡̂(xt). The left part
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of (A.11) corresponds to the expected cost from xt following policy ⇡, V ⇡(xt), such that
Equation (A.11) can be rewritten as

V ⇡(xt)  V ⇡̂(xt).

Since ⇡ is the optimal MDP-policy by assumption, Equation A.11 holds; otherwise this
contradicts ⇡’s optimality. Finally, we justified that a player has no incentive to reveal false
information.

Proof of Proposition 6. We need to show that the following inequality

E⌧>t[v
i(✓i, aT ) � p̃i(✓, ⇡)]  E⌧>t[v

i(✓i, âT ) � p̃i(✓̂, ⇡)] 8✓̂t 8t

,wi · E⌧>t[v
i(✓i, aT ) � p̃i(✓, ⇡)]  wi · E⌧>t[v

i(✓i, âT ) � p̃i(✓̂, ⇡)] 8✓̂t 8t
(A.12)

holds. By omitting the same terms in (A.12) than in (3.24) (see Proposition 5), we can show
that the following inequality holds

,E⌧>t[
X

i2N

TX

⌧=t

wi · di
⌧ (x⌧ , ⇡⌧ (x⌧ ))]  E⌧>t[

X

i2N

TX

⌧=t

wi · di
⌧ (x̂⌧ , ⇡⌧ (x̂⌧ ))] 8✓̂t 8t

,E⌧>t[
TX

⌧=t

d̃⌧ (x⌧ , ⇡⌧ (x⌧ ))]  E⌧>t[
TX

⌧=t

d̃⌧ (x̂⌧ , ⇡⌧ (x̂⌧ ))] 8✓̂t 8t .

(A.13)

Using the same argument as previously, with ⇡ being in this case the optimal policy solving
the MDP with updated immediate cost d̃, we justified inequality (A.13). Accordingly, a
player has no incentive to reveal false information when players are weighted, if the payment
rule is weighted too.

B. Additional Numerical results

Weights optimization: Figures 10a-10c show the averaged payoff per platform per sce-
nario, depending on the total number of drivers. Payoffs are shown for both weighted and
unweighted VCG . For instances that could not solve the weights optimization, unweighted
payoffs are shown.

Online averaged platform payoffs: Similar to Figure 4, Figure 11 compares the nor-
malized payoffs obtained for each platform depending on the number of drivers, for each
distribution scenario in an online setting. Analogous to offline results, online results show
that a platform with a lower share of drivers (platform B in small) obtains a higher payoff
than a platform with a higher share of managed drivers. Compared to the offline setting,
platforms’ payoffs are slightly higher due to the approximation induced by the online allo-
cation policy compared to a perfect-information allocation (cf. Figure 4).
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Figure 10: Impact of weighted VCG on each platform’s payoff in an online setting
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Figure 11: Impact of the distribution scenario on each platform’s payoff in an online setting
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1 Main findings of the thesis

Electric vehicles (EVs) are an essential lever for decarbonizing the transportation sector
but challenges to seamlessly recharging a vehicle hinder its adoption in the private mar-
ket. To this end, at-home charging solutions offer a trusted charging experience but are
insufficient for one-way or long-distance trips, and must complement but cannot replace
reliable public charging options. However, unreliable public charging station availability
and congestion risks prevent EV users from trusting the public charging infrastructure.
Therefore, operational solutions that mitigate uncertainties in the public charging experi-
ences are needed to foster EV adoption. Against this background, this thesis contributes
novel models and solution methods, that aim to reliably help EV drivers find a free charg-
ing station in the presence of uncertainties. The first two methodological chapters focus on
a driver-centric approach, while the third methodological chapter approaches the problem
from a system-centric angle.

Chapter 3 derives a comprehensive algorithmic solution framework to solve the stochastic
charge pole search (SCPS) problem under uncertainty, in which a driver aims to find a
cost minimal sequence of stations to visit. Several variants of the problem are analyzed to
account for charging station heterogeneity and the possibility of waiting at an occupied
charging station. A labeling algorithm is developed and exactly solves the problem by
decomposing the Markovian policy cost to derive an efficient dominance criterion. A
simplified dominance criterion provides a high-quality heuristic. Furthermore, a rollout
algorithm is developed to solve large-sized instances. Results show that implementing a
combination of both heuristics best addresses the trade-off between solution quality and
computational performances. Simulation-based results that use real-world data for the
city of Berlin further show that advanced search strategies compared to greedy search
strategies can save significant time for the EV driver, by up to 44%, while increasing the
likelihood of successfully terminating the search within a limited time span.

Chapter 4 extends the SCPS problem to a multi-agent setting and formalizes the multi-
agent SCPS (MASCPS) problem as a Markov decision process (MDP). Online algorithms
are introduced to synchronize multiple agents’ search paths through joint search path
planning or information-sharing. Extensive numerical experiments compare several prac-
tical settings: search path planning can be decentralized or centralized, and static or
dynamic. In the static decentralized case, agents can share either en-routes observations
of occupied stations, their intended charging station visit, or both. The numerical results
show that coordinated search strategies significantly outperform uncoordinated search
strategies. On average, a centralized decision-making approach decreases the system cost
by 28% compared to agents performing uncoordinated stochastic searches, while a de-
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centralized decision-making setting with information-sharing already achieves a 26% cost
decrease. User-centric analyses further show that coordination improves the worst pos-
sible uncoordinated search solution and preserves the best possible uncoordinated search
solution quality.

Chapter 5 aims to mitigate charging station utilization congestion caused by large unco-
ordinated charging demand, and analyzes the optimal allocation of drivers to available
stations by navigation service providers in competitive environments. To this end, the
fleet charging station allocation (FCSA) game is introduced and shown not to admit a
guaranteed existence of a pure Nash equilibrium. Then, a mechanism design approach is
introduced to coordinate the allocation of stations to drivers across self-interested navi-
gation service platforms. Specifically, the VCG mechanism is implemented in both offline
and online settings, and a data-driven approach is applied to solve the resulting online
station allocation problem. Numerical results show that platforms coordination signifi-
cantly improves the system efficiency, reducing the social cost by up to 52% in an offline
setting and up to 42% in an online setting.

In conclusion, this thesis contributes new models, methods, and managerial insights
on relevant real-world problems closely related to the adoption of EVs. First, the SCPS
problem is formalized as a single-agent finite-horizon MDP, and then extended to the
MASCPS problem. The single-agent model accounts for charging station heterogeneity
and waiting decisions at occupied charging stations. In the multi-agent case, we define
several variants of the problem depending on the level of information-sharing between
agents and the degree of centralization. The FCSA is formalized as a new game, and
a mechanism design approach based on off and online VCG is applied to this setting
to coordinate the self-interested participants. Second, a label-setting algorithm with a
novel dominance criterion is developed to solve the MDP-based formulation of the SCPS
problem. A heuristic that uses a relevant subset of the dominance checks yields close to
the optimal solutions, and is a central component of the online algorithmic framework
developed to solve the multi-agent setting. Third, short-term and long-term managerial
insights are derived. When helping drivers to recharge their vehicle using existing public
charging infrastructure, results show the benefit of accounting for charging station avail-
ability uncertainty, and coordinating EV drivers’ requests coordination. While an EV
driver can already save up to 44% of her driving time without search coordination, our re-
sults show that the averaged system performance cost further decreases by up to 28% with
coordination. Focusing on a longer-term perspective, centrally coordinating the allocation
of stations to drivers, which is otherwise realized by competing self-interested navigation
service platforms, benefits EV users. Specifically, system-level coordination may decrease
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the social cost by 42% in a real-world setting, compared to a scenario without charging
station visits coordination between navigation service platforms.

2 Limitations of the thesis and future research

directions

Although this thesis provides a comprehensive algorithmic framework that addresses
charge anxiety faced by EV drivers, a few comments on the models and corresponding
assumptions are in order. First, Chapter 3 and Chapter 4 assume that station availability
probabilities depend on drivers’ observations, and both chapters model time-dependent
recovering availability probabilities. However, these two chapters also assume constant,
initially given availability probabilities. It is reasonable in practice to have marginal prob-
ability variation in a relatively short time span, i.e., at most in a couple of hours, but
analyzing longer planning horizons may require taking into account probability variations.
Second, in Chapter 4, future charging demand is represented as unpredictable exogenous
information, and the modeled uncertainty remains limited to the availability of visited
charging stations. Uncertainty about future charging requests can be addressed by a
model-free (deep) reinforcement learning approach. Third, for both the MASCPS prob-
lem and the FCSA game settings, respectively introduced in Chapter 4 and Chapter 5,
drivers’ behaviors are considered to be deterministic. While this assumption is necessary
to provide an initial rigorous and methodological analysis, it may be relaxed in subsequent
works. Here, considering drivers as self-interested players may yield further interesting
insights.

In the following, we identify possible avenues for further research, related to model-
ing or methodological contributions. Focusing on modeling contributions, the MASCPS
problem (Chapter 4) can be extended to account for the robustness and fairness of an
individual driver solution but also for adversarial driver behaviors. Furthermore, the
SCPS and MASCPS problems focus on charging-on-the-spot use-cases, e.g., charging at
destination, but availability uncertainty may also arise during long-distance trips, which
requires considering en-route possible detours due to unoccupied charging stations. Both
SCPS and MASCPS problems may extend to long-distance EV routing, with similar anal-
yses on the benefit of information-sharing and request centralization in the multi-agent
case. Future work may account for increased real-time availability information accuracy,
e.g., correct real-time information of unavailable charging stations. In this case, dynamic
re-planning approaches must be carefully designed to account for updated real-time occu-
pancy. Finally, the FCSA game can be extended in two manners. First, the mechanisms’
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principal may be profit-driven, e.g., an inter-charge operator that aims to maximize its
revenues from station booking payments. Second, single drivers may also be considered
strategic agents, although non-strategic drivers may remain relevant in the context of
future autonomous mobility-on-demand systems.
Focusing on methodological contributions, the effective labeling-based solution proce-

dure derived in Chapter 2 to solve the SCPS problem may be further researched and
applied to MDPs with similar structures. An immediate application extension can be
the 2-agents SCPS problem with joint static path planning. In this case, nodes of the
underlying graph on which labels expand represent the joint agent positions.


