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Abstract

In recent years, Machine Learning (ML) has made significant progress in being incorporated
into many aspects of our life. While centralized ML paradigms provide good performance,
they typically require access to the entire dataset, which may be impractical for specific tasks
and may raise privacy concerns. Federated Learning (FL) was proposed to address this issue
and migrate from using a centralized training approach to a distributed one. FL Clients
preserve their data for local training and send the locally optimized model updates for the
aggregation to the central server. FL, like any distributed system, has issues such as security,
scalability, fault tolerance, and synchronization. Previous work proposed using Function-as-a-
Service (FaaS) platforms to address some of these issues and facilitate an efficient training
process among heterogeneous clients. FaaS is an efficient computation model to run stateless
functions without worrying about infrastructure management. Moreover, FaaS environments
only charge for consumed resources that dynamically scale according to demand. Although
FaaS addresses problems such as scalability and infrastructure management, it still leaves
some issues to be handled by the developers. Stragglers in an FL system are one of these issues.
The effect of stragglers can severely hinder system performance, slow down convergence,
or increase training time. Consequently, FL algorithms must be resilient against stragglers
for the system to function efficiently. Our work focuses mainly on the problem of stragglers,
particularly in FaaS-based federated learning. We propose a new clustering-based strategy,
FedLesScan, designed to mitigate the effect of stragglers in serverless-based federated learning.
We provide an extensive evaluation of our strategy and compare it to novel FL approaches
on four different datasets with different ratios of stragglers. Compared to novel approaches,
FedLesScan reduces training time by an average of 8% and retains a cost advantage of 20%,
while improving test accuracy by 2%.
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1 Introduction

In recent days, Machine Learning (ML) has made a noticeable leap forward in solving
problems and building complex systems that do not have an algorithmic solution. ML
systems are now able to identify patterns and provide accurate predictions with a high
certainty rivaling human predictions in some cases [1]. Centralized learning has been used
for a long time. Nowadays, ML models require a huge amount of data to reach acceptable
results [2]. Data processing outpaced the computation power of centralized systems. Another
limitation is privacy constraints since the training data is collected and shared with the
centralized model. This limitation is increasing as countries try to enforce data protection,
such as General Data Protection Regulation (GDPR) [3] enforced by European Union. There
emerges Federated Learning (FL) to tackle both issues. FL is a privacy-preserving alternative
to the centralized approaches. The objective of FL is to address the problem of data governance
and privacy by eliminating the need for data transfer to a centralized server. It distributes
the training load over many mobile learners (clients). Unlike centralized learning, clients
retain their data and only share their local model parameters. The shared parameters are
combined to form a global model that can be used again to train the clients. There are no
constraints on the type of devices participating in training; they can range from powerful
machines to edge devices such as mobile devices. Since FL is a distributed machine learning
approach, it carries some of the challenges that a distributed system might have, such as
synchronization, scalability, and fault tolerance [4, 5]. FL has been slowly making its way
into different industries such as the health industry, recommendation systems, autonomous
vehicles, and mobile devices [6, 7, 8]. Each of these applications still encounters challenges
that come with using a distributed learning process, such as statistical heterogeneity, security,
data imbalance, resource allocation, and privacy [8, 9, 10].

Serverless Computing is a computing model that abstracts the process of server management
such as provisioning, maintenance, and scaling away from the consumer [11]. Consequently,
giving the developers more room to focus on the application business logic without spending
time or resources on management and provisioning. In a serverless environment, functions
represent the bundled applications requested or scaled according to the current demand.
Serverless functions run on demand. They do not consume resources when not needed; as
a result, serverless applications tend to have a lower cost [11]. The ease of use of serverless
applications relies on their adoption in most of Function-as-a-Service (FaaS) platforms such
as AWS Lambda [12], Google Cloud Functions [13], Microsoft Azure Cloud Functions [14],
and IBM Cloud functions [15]. Although serverless has been adopted by multiple cloud
providers and has many viable use cases, it suffers from a few limitations that affect the
performance and type of application that can utilize this kind of infrastructure. One of the
main challenges that serverless face is the limitation on function resources. Currently, the
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1 Introduction

duration of a function execution is relatively short(minutes) [16, 17, 11]. Furthermore, the
latency of cold starts for functions might affect latency-critical applications [17]. Functions
tend to have limited resources in terms of allocated CPU time and memory. Moreover, the
lack of GPU support makes functions slower for some parallel execution tasks [17].

We argue that the idea of a serverless environment can benefit FL in terms of resource
efficiency and cost in many scenarios. In a traditional FL, a subset of the clients is selected
to participate in the training round. This means that the rest of the clients are waiting to
be selected while wasting hardware resources. A FaaS environment can address this issue
with clients utilizing hardware resources only if they participate in the current training
round. As a result, serverless-based FL should have lower resource utilization and lower
cost. Furthermore, the problem of rapidly scaling or managing infrastructure for the clients
is one of the core benefits that FaaS provides. This means that setting up and updating a
serverless-based FL platform is much easier.

As a first effort to use an FL system over a combination of connected FaaS platforms (FaaS
fabric), Chadha, Jindal, and Gerndt [18] proposed fedkeeper as a tool to manage FL over FaaS
fabric. The system models clients as separate functions each of which has its own independent
training data. The client functions supported various FaaS providers such as Google Cloud
Functions [13], OpenFaaS [19] and OpenWhisk [20].

Grafberger et. al [21] proposed FedLess as an evolution of fedkeeper. The platform sup-
ports more commercial and self-hosted providers such as Azure functions [14] and AWS
Lambda [12]. Furthermore, many features and enhancements were added, such as client
authentication and Local Differential Privacy [22]. Their evaluation showed the efficiency and
cost advantage of the FaaS-based FL system compared to traditional IaaS-based FL systems.

1.1 Problem Definition

The problem of stragglers threatens the stability of FL systems. The presence of stragglers can
affect training causing a reduction in accuracy and wasting resources. In a FaaS environment,
stragglers might run, wasting money while their contributions are wasted due to failures,
network issues, low computation capacity, or just slow starts. Furthermore, The scale-to-zero
model used by FaaS platforms means there might be request latency for the idle functions to
start.

To demonstrate the effect of stragglers, we performed an experiment using Google Speech
Commands dataset [23], a real-world speech recognition dataset. Figure 1.1 depicts the effect
of stragglers on FedLess, a FaaS-based FL system. Stragglers do not only affect the accuracy
but can also hinder system performance by wasting resources as well as increasing both
training time and cost. Notice that we show the total round duration in this experiment,
including the aggregation of client updates. We show that despite the shorter aggregation time
in the presence of stragglers, the wasted time due to waiting for clients is more significant.

Moreover, calling unavailable clients can cause under-utilization of system resources while
other clients are waiting to participate in the training.
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Figure 1.1: Model accuracy (Left) and average FL training round duration (Right) for different
ratios of stragglers in the serverless FL system [21] for the Speech Commands
dataset [23] using the FedAvg algorithm [24].

1.2 Research Objectives

Our objective is to explore methods that can mitigate the effect of stragglers in serverless
federated learning. We rely on FedLess Platform [21] as a representative for FaaS-based
FL systems. Our work focuses on two aspects of the platform. First, we propose a few
enhancements to the FedLess platform implementation that incorporates the following:

• Implementation of Client mocks to make developing and using FedLess easier and
more cost-efficient.

• Support for multiple FL training strategies.

• Prototype implementation for Speech Commands dataset [23] from FedScale bench-
mark [25].

Second, we propose FedLesScan, a clustering-based semi-asynchronous training strategy,
specifically tailored for serverless FL. The strategy consists of two main components: The
first is a clustering-based client selection algorithm that selects a subset of clients for training
based on their previous behavior. The second is a staleness-aware aggregation scheme to
mitigate slow updates and avoid wasted contribution.

We demonstrate the effectiveness of the FedLesScan by providing an extensive evaluation
and comparison to two FL training strategies, FedAvg [24], and FedProx [26]. We evaluate the
strategies on four different audio, image, and text datasets from two different benchmarks
to ensure the results are conclusive. Our experiments show that FedLesScan achieves better
accuracy in most scenarios in fewer rounds. Furthermore, FedLesScan can minimize the effect
of stragglers, providing better resource utilization, lower cost, and faster convergence time.
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1 Introduction

1.3 Thesis Overview

In the second chapter, we discuss the core concepts of FL. We also provide an overview
of various clustering mechanisms, their differences, and usecases. In the third chapter, we
explore solutions for serverless ML. Then we discuss the origin of serverless FL and the core
architecture and limitations of FedLess. We then examine work done to mitigate stragglers
in FL and their limitations. In the fourth chapter, We demonstrate the enhancements made
to the platform to facilitate the integration of our new strategy. Afterward, we discuss the
operation and design of the FedLesScan algorithm. In the fifth chapter, we demonstrate
metrics we use to evaluate FedLesScan. Furthermore, we provide detailed information about
the experiment setup. We thoroughly evaluate our strategy on four different datasets in
various synthesized and real-world scenarios. Moreover, we compare the performance of our
strategy to two popular training schemes FedAvg and FedProx. We also perform experiments
to demonstrate the resource efficiency of FaaS compared to IaaS platforms in FL. The last
chapter includes a summary of our work and the limitations of our approach. We also include
further recommendations for the future of the FedLess platform.
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2 Background

2.1 Federated Learning

Server

Wk
t+1

WtCentral server send global model To clients1

Local training at
the client

2

Clients send Their Models back to the Server3

Server aggregates client updates4

Wt+1

Figure 2.1: FL system architecture and training flow

Originally proposed by McMahan et al. [24], Federated Learning (FL) is a distributed ML
scheme that allows collaborative training among multiple data holders. Unlike traditional
ML, FL does not require data to leave its source. The data privacy guarantees provided by FL
make it suitable for many privacy-sensitive domains such as healthcare systems [27, 28]. FL
has gained a lot of traction in various fields such as autonomous vehicles [29, 30], text and
emoji prediction for mobile keyboards [31, 32], and brain tumor diagnosis [33, 34].

FL is designed to solve federated optimization problems. Their paper highlighted character-
istics distinguishing federated optimization problems from typical distributed optimization
problems by the following assumptions:

• Data available on a client is Non Independent Identically Distributed (IID): local clients’
dataset is not representative of the population distribution [24].

• Client’s local data in unbalanced: the amount of local training data is not the same for all
clients.
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2 Background

• The client might become offline or slow; therefore, the system operates under the
assumption of limited communication.

• Data is massively distributed.

2.1.1 FederatedAveraging

To solve federated optimization problems, FL relies on a synchronous update scheme called
FederateAveraging or FedAvg for short. Figure 2.1 shows the training flow of a typical FL
system. The algorithm starts by having a set of K clients participating in the training. A
training session consists of multiple rounds. At the start of each round, C clients are randomly
sampled from all the clients. The central server sends the current global model to the
participating clients. Each client performs the training using its local dataset. After that, the
clients send their updated models back to the server. The central server combines the models
from all clients to form a new global model. The cycle repeats with the new model until
we reach the desired number of rounds. For a system with K clients where Pk is the data
items assigned to client k and nk is the number of data items in Pk. Equation 2.1 shows the
loss computation at the client where fi(w) is the loss for sample i. Equation 2.2 indicates the
aggregation formula used back at the central server where wt is the model weights at round t.

Fk(w) =
1
nk

∑
∀i∈Pk

fi(w) and w←− w− µ∇Fk(w) (2.1)

wt+1 ←−
K

∑
k=1

nk

n
wk

t+1 (2.2)

Their evaluation demonstrated that this method is robust to unbalanced and non-IID
data distribution results with experiments considering four different datasets with different
models. Although the original work was based on Stochastic Gradient Descend (SGD) [35],
this method can be used with other optimizers [24, 36].

2.1.2 Federated Learning Challenges

Since FL is a distributed system, it faces various challenges [9, 10]. For example, sharing
models between clients and the central server can cause communication issues, especially
with large models and clients with limited network bandwidth [9]. Some work tries to
improve communication efficiency by using model compression [37], while others opted for
limiting communication between the client and the central server for only useful or relevant
updates [38].

Another challenge facing FL is the system and data heterogeneity [10]. Clients’ hardware
and network capabilities are not necessarily the same. There might be drastic variations
in clients’ computational power or communication capabilities [9, 10]. A robust FL system
should be able to mitigate slow or offline clients and tolerate the differences in clients’
capabilities.
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2 Background

One of the main objectives of FL is preserving privacy. Although FL does not require
the training data to leave the client, there are several ways to deduce information about the
client’s data from the model updates [9]. One of the mechanisms that can address this issue
is Differential Privacy (DP) [39, 22]. DP prioritizes privacy at the expense of accuracy. In this
technique, clients add random noise to their updates before sending them back to the server.
The noise distorts the information about the dataset that the client’s local updates might carry.

Being a system with multiple parties raises some security concerns. In FL, Malicious clients
can perform attacks such as data and model poisoning attacks [9, 40]. The target of these
attacks is to influence the global model prediction by either injecting poisonous data or
changing local model weights on the client-side. These attacks can be partially mitigated by
filtering client updates based on the model’s loss before aggregation [9].

2.2 Clustering

Clustering is a type of unsupervised learning. The objective is to divide and partition
unlabeled data into groups or categories [41]. Although there are many definitions of
clustering[42], most of them identify clusters by the intra-cluster connectivity and inter-cluster
separation [42]. This section provides an overview on the most popular types of clustering
algorithms and the rationale behind choosing DBSCAN [43] in our strategy. The discussion
in this section is based on the survey done by Halkidi, Batistakis, and Vazirgiannis [44] unless
otherwise stated.

2.2.1 Hierarchical Algorithms

Hierarchical clustering (HC) is a type of clustering where the data is categorized in an iterative
approach [42]. The outcome is typically a tree-like structure (binary tree or a dendrogram).
The root represents a single cluster with all the data points, while each leaf represents a single
data element. Intermediate nodes represent clusters where the descendent leaves are the
members. Cutting the structure at any level represents a way of clustering the dataset.

There are two types of HC. The difference between both is the method of building the
tree itself. Divisive clustering is When using a top-down approach [42]. Starting from a
single cluster that contains all data, we keep splitting the data until we reach all clusters
are singletons. Because the number of ways to split the data is exponential, this strategy is
computationally inefficient.

The second method is Agglomerative clustering. It is based on a bottom-up approach [42].
The algorithm starts with N clusters, where N is the number of data elements. Successive
merge operations are made until we reach a single cluster containing all data elements. The
merge operation depends on the proximity among clusters using a specific similarity measure.
Before each merge operation, the algorithm computes a proximity matrix P. The entry P(i, j)
is the distance between cluster i and cluster j. At each merge step, the algorithm computes P
and merges the clusters with the least P(i, j). The process is repeated until all the clusters are
merged. The entries in the proximity matrix are computed based on different definitions. The

7



2 Background

most popular methods are:

• Single Linkage [45]: determine distance using the closest two objects from each cluster

• Complete Linkage [46]: determine distance using the furthest two objects from each
cluster

There are other definitions for computing distances between clusters: average linkage, median
linkage, and centroid linkage [42].

Basic HC approaches suffer from a few limitations. One of the limitations of HC is the
sensitivity to noise and outliers [42, 44]. Furthermore, data elements assigned to clusters can
not be adjusted or reassigned to other clusters. Moreover, computing the proximity matrix P
is computationally intensive. Consequently, the complexity of the algorithm is O(N2) which
is not practical for large datasets.

2.2.2 Partition-based Clustering

Partitional clustering uses a heuristic-based algorithm to partition the data into a set of
clusters. Unlike HC, the set of clusters is not based on any hierarchical structure. The
heuristic algorithm uses a criterion function, typically sum squared error, to organize the data
points into a set of clusters.

One of the most popular partition-based algorithms is the K-Means algorithm [47]. The idea
is to move clusters around iteratively until reaching a reasonable partitioning. The algorithm
can be summarized in the following steps.

1. Select K random points as cluster centroids.

2. Assign all the points to clusters based on their distance to the cluster centroid.

3. Recalculate the clusters’ centroids based on the new assignment.

4. Go back to step 2 until clusters do not change or a maximum number of iterations is
reached.

The time complexity of the K-means algorithm is O(NKd) for N(d-dimensional) data points
and K Clusters.

There are a few drawbacks to K-means. For instance, there is no well-defined initialization
method for the initial selection of the clusters’ centroids. As a result, the end cluster centroids
can vary depending on the initialization. One way to mitigate this effect is to run the
algorithm multiple times with random initialization [42]. Furthermore, K-means is not robust
against outliers and noise. Since every data point must be assigned to a cluster, outliers can
affect the cluster centroids and disrupt the cluster shape. There are methods to reduce the
effect of noise by discarding clusters with few data points [48]. K-means variations, such as
PAM(Partitioning Around Medoids) [49] address the algorithm robustness by using medoids
instead of mean. However, PAM still has a higher time complexity (O(K(N − K)2)) than
normal K-means.

8



2 Background

2.2.3 Density-based Clustering

In density-based algorithms, clusters are represented as regions of high density separated by
low-density regions. One of the most popular density-based clustering algorithms is Density
Based Spatial Clustering of Applications with Noise (DBSCAN). The algorithm relies on point
density in the space to construct the clusters. DBSCAN defines core points to be the points in
high-density regions.

The approach relies on one main parameter ϵ, representing the maximum distance between
two samples to be considered in the neighborhood of each other [43]. In other words, it dictates
the density for a neighborhood to be considered a cluster. There is another noise control
parameter, minPts which represents the minimum number of points in the neighborhood of a
certain point to be considered a core point.

With both parameters, we define two more types of data points. Border points are defined
as points that are in the neighborhood of core points. Outliers are the points that are not
reachable by a distance ϵ from any core points.

the algorithm does the following steps:

• For each data point p, define the ϵ-neighborhood as all points within a distance ϵ from
p.

• For each point p, if the size of its ϵ-neighborhood is greater than minPts, define p as a
core point.

• Define a cluster as a group of core points in the same ϵ-neighborhood

• Attach each border point (points reachable from core points) to a nearby cluster

• Points not reachable from any core are defined as outliers

In DBSCAN, both ϵ and minPts can affect the outcome of the clustering [50]. A large ϵ will
increase the cluster size. If ϵ is too large, the whole data will be included in a single cluster. A
small ϵ can result in a high number of clusters or no clustering at all [43]. On the other hand,
minPts is a noise parameter. It can be tuned to reduce the effect of outliers by managing the
number of core points in the algorithm. Small minPts will result in more core points. A large
minPts can deal with noise better because it will only consider points with a higher density
as core points.

One of the main advantages of DBSCAN is that it does not require the number of clusters
to be specified. Furthermore, DBSCAN is robust against outliers [50, 42]. Moreover, the
algorithm can find clusters of arbitrary shapes. DBSCAN is computationally efficient. For N
data points the algorithm has a time complexity of O(Nlog(N)) [42], making it suitable for
large-scale datasets.

Similar to other clustering algorithms, DBSCAN has limitations. One of the limitations
of DBSCAN is dealing with high dimensional data [42]. When the data dimensionality
increases beyond a certain limit, distance measures become less effective [51] in representing
the differences among data points. Consequently, clustering based on neighborhood distance
becomes less effective [42].

9



2 Background

2.2.4 Choosing Clustering Algorithm

The increase in the amount of raw data is one of the challenges that face clustering algorithms.
Some algorithms are not well suited to deal with large-scale data, such as HC algorithms, due
to their high complexity O(N2). On the other hand, K-means has a near-linear time and space
complexity, making it more suited to large-scale datasets. However, K-means still requires the
number of clusters to be stated beforehand. There are numerous algorithms developed to
target the problem of clustering large datasets. The rationale behind choosing DBSCAN in
our strategy is its robustness against outliers. Furthermore, explicitly setting the number of
clusters means that we have pre-acquired information about the underlying system behavior,
which is not the case in a large-scale FL. DBSCAN does not require the number of clusters
to be explicitly set. As a result, the system can adjust to changing behavior of the clients.
Moreover, the algorithm’s computation efficiency makes it suitable for large-scale FL systems
with large number of clients. Although DBSCAN suffers in the case of high-dimensional data,
we disregard this limitation because we only rely on a few features to distinguish clients’
behavior; therefore, we argue that this limitation will not exist in our system.

10



3 Related Work

Although using serverless architecture for distributed ML problems is a rising area of research,
numerous platforms emerged trying to leverage the simplicity and cost advantage of the
serverless execution model. This chapter first explores previous work integrating serverless
architecture in distributed ML systems. Then we provide an overview of previous efforts in
using FaaS in FL, particularly the architecture and training workflow of the FedLess platform.
We then move to the problem of stragglers in FL and explore previous approaches to tackle
the issue. In the end, we explore the differences between using Infrastructure-as-a-Service
(IaaS) and FaaS in FL in terms of reliability and performance to help us well understand how
stragglers behave in a serverless environment.

3.1 Serverless Machine Learning

The typical workflow for a distributed ML system includes, first, data preprocessing, where
each worker fetches the assigned dataset shard and performs its preprocessing script. This
process is followed by training the model where workers perform the training and synchronize
with the central parameter server. The last step involves running multiple instances with
different setups to search for the best-performing hyperparameters.

One of the main Problems of ML is resource management [52]. Not only ML developers
have to develop a working model, but they also perform hyperparameter tuning for variables
such as learning rate and the number of epochs. In a distributed ML environment, the
workload increases by the additional management of many system-level parameters such
as the number of workers (virtual machines), their memory, and the number of CPUs. In a
study made by Carreira et al. [52], they discussed the benefits of using serverless architecture
for ML distributed workloads. Serverless Computing addresses two of the main problems
in traditional distributed ML [52]. First, low-level resource management puts more work
on the shoulder of ML developers. The second problem is that the heterogeneity of ML
tasks can lead to over-provisioning due to an imbalance of resources. Although serverless
computing represents a suitable solution to those problems, it still suffers from a the following
limitations [52].

• Short running time and low memory

• Low network bandwidth compared to virtual machines

• No communication among functions

• Limited support for GPU workloads
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With the developments in serverless computing, these issues will gradually fade away [53].
In that regard, many serverless ML platforms were developed. For instance, PyWren developed
by Jonas et al. to run on AWS by utilizing S3 [54] and Lambda services [12]. The system
contains a central server that invokes a specific function on a specific dataset shard. The
function code and the sharded data are serialized and put in an S3 bucket. A single lambda
function fetches the serialized function code on the specific data. The serialized function code
is dynamically injected into the common function and executed on the obtained data. After the
end of the execution, the result is uploaded back to the S3 bucket. Their evaluation included
testing multiple distributed computing models such as the bulk-synchronous processing
(BSP) scheme. They also suggested that PyWren can be used to implement distributed
ML applications that utilize the parameter server style if a fast storage service with high
throughput and low latency is used, such as Redis [55]. They discussed some limitations of
their prototype, such as Debugging, which poses a significant challenge due to many system
components. Furthermore, the existing limits on functions’ bandwidth and storage might
hurt performance in high-performance data processing workloads.

SIREN [56] is a distributed ML frameworks that is based on a serverless architecture. Their
work promotes one of the main features of serverless architecture: ease of use and eliminating
complex infrastructure management. The platform contains a server that manages parallel
workers running as stateless functions. The main server has full control and assigns a batch
of data to each function. Furthermore, the paper proposed a scheduler based on reinforcement
learning [57] to adjust the number of functions and the allocated memory during training.
The scheduler learns the best way to provide the resources throughout the training to yield
the minimum training time given a specific cost cap. The proposed prototype was based on
AWS Lambda. Their evaluation provided experiments for mainly logistic regression models.
Their results demonstrate that using Lambda functions with the proposed scheduler yields a
44% decrease in training time in comparison to traditional distributed ML benchmarks.

MLLESS is another distributed ML framework that utilizes FaaS. The platform is built
based on IBM Cloud Functions [15]. Their work shows the advantages of using FaaS-based
solutions to the traditional IaaS reservation model. The key difference in their approach
is the implementation of two optimizations: a significance filter and a scale-in auto-tuner.
The significance filter restricts workers from sending insignificant updates, reducing the
communication bandwidth required to share the model updates. The scale-in auto-tuner
reduces the number of workers participating in the training as the training progresses. Their
idea is to drop the workers with low local progress towards the end of the training, resulting
in lower training costs. The platform contains two main components. First, the driver which
is the main script that runs on the owner’s personal computer. The driver manages and
calls participating serverless workers. The second component is the supervisor, which is a
function that runs during training to monitor and synchronize workers. Furthermore, the
supervisor can communicate with worker functions using RabbitMQ [58] to end training or
limit model divergence between functions. The workers use Redis for sharing local gradients.
Each worker performs the aggregation locally to update their local model by pulling the
intermediate results from the external storage (Redis). An object store hosted on IBM COS

12



3 Related Work

stores the dataset used by the workers in training. Their work examined basic ML tasks such
as logistic regression and matrix factorization. Their approach was 15X times faster than
traditional IaaS ML systems.

3.2 Serverless Federated Learning

Although FL is a distributed machine learning approach. The main difference between FL
and traditional distributed ML is the additional privacy and security guarantees. Exploring
serverless capabilities in FL is a new area of research. This section provides an overview
of previous efforts to integrate serverless architectures in FL. We also discuss the current
implementation of the FedLess platform, including its architecture and limitations.

Jayaram et al. [59] proposed λ-FL, a new aggregation architecture for large-scale FL systems
based on serverless functions over multiple steps. The aggregation process must be associative
to carry the aggregation on multiple functions [59]. They discussed horizontally scaling
functions based on aggregation demand, where functions are only active when clients push
their model updates. The system contains two types of functions: First, leaf aggregation
functions which generate intermediate models by aggregating parameters from a group of
clients. Second, intermediate aggregation functions which produce the final global model by
combining intermediate models. The system contains a messaging queue based on Kafka
to hold the client updates and store intermediate models. Furthermore, the messaging
queue triggers aggregation functions based on the number of received updates. Each FL-
training session is assigned a unique SessionID). Before the start of the session, the system
creates two queues, one for aggregation updates (SessionID-Agg) and the other for client
updates (SessionID-Parties). All clients subscribe to the SessionID-Agg queue to get the
latest model updates. At the start of the training, the initial model is published by the
aggregator to the SessionID-Agg queue. Next, clients fetch the initial model and start training.
Afterward, clients publish their model updates to SessionID-Parties. For every K updates in
SessionID-Parties, Kafka marks the updates and triggers a leaf aggregation function. These
functions perform the aggregation and push their results back to Kafka with a cascading
effect, triggering other intermediate aggregation functions. Although the system is not fully
serverless, they demonstrate the advantages of using serverless architecture in the aggregation
by achieving a > 90% reduction in resource utilization compared to traditional tree-based
parallelization schemes at a small aggregation latency.

Chadha, Jindal, and Gerndt were first to propose FedKeeper as a client-based python tool
for orchestrating FL clients distributed over different FaaS platforms. Their objective was
to build a system that can efficiently train a shared model for heterogeneous devices over
FaaS fabric. The platform should also facilitate the scaling of FL process over different FaaS
platforms. Furthermore, it leverages one of the key advantages of FaaS by abstracting the
clients’ infrastructure management away from the developer.

FedKeeper relies on Openwhisk for running the main functions of the Central server, while
the participants can be deployed on any FaaS platform. The Openwhisk cluster contains
several components. The central server manages the training round and stores the initial
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model in the local object store. Client Register which manages all information about the
participating clients in a local MongoDB instance. Client-Invoker manages clients’ invocation
by creating invoker functions that are one-to-one mapped to clients participating in this
round. An invoker function reads the current global model from a global object store and
forwards it to the client. After the client finishes training, it sends the updated model back to
the invoker function, which pushes the update back to the global object-store and notifies
the weight updater function to start the aggregation. Upon successful aggregation, the weight
updater stores the new global model in the object store and notifies the central server to start
the next round. Their work demonstrated the ability to perform FL tasks on multi-platform
FaaS-based systems.

Figure 3.1: FedLess System Architecture [21].

FedLess [21] was designed as the evolution of FedKeeper [18]. It provided multiple
enhancements in terms of security and performance over FedKeeper. Figure 3.1 show
the platform architecture and interaction among different platform components. Unlike
FedKeeper, FedLess does not rely on invoker functions; therefore, it has less overhead because
fewer functions are running during training. The Fedless controller contains a few sub-
components. Client registry stores information about the clients in the client database. Client
invoker manages function invocation for clients and aggregation functions. The parameter
server is a MongoDB [60] instance that stores the global model and client updates. The
aggregator is a local Openwhisk function that manages the aggregation of clients’ results at
the end of the round. The key addition is the integration of a separate authentication entity
running in AWS Cognito [61]. This entity ensures that only the FedLess Controller is allowed
to call the client functions and that functions are verified before participating in the training.
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Figure 3.2 shows the interactions among FedLess components during a training round.
Currently, FedLess uses FedAvg as the only strategy available for training the client functions.
Clients are required to submit a registration request to the authentication server to be able
to participate in the training. The request is then approved by the FL admin who runs
the FedLess Controller. At the start of the training, the FL admin configures the model,
dataset, and hyperparameters. Afterward, the controller fetches invocation tokens from the
authentication server. At the start of the round, The controller invokes the client function
using the invocation tokens. The client function contacts the authentication server to validate
the invocation token. Upon successful validation, the clients fetch the latest global model from
the parameter server and perform the training locally. When the training finishes, the clients
upload the new local model to the parameter server and notify the controller. Afterward, the
controller invokes the local aggregation function, which combines the clients’ results into a
new global model. At the end of the round, the controller invokes a subset of the clients for
evaluation. The process then repeats for subsequent rounds.
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Figure 3.2: FedLesstraining workflow [21].

As we mentioned earlier, we use FedLess to develop and evaluate our strategy. Although the
end goal is to mitigate the effect of stragglers in serverless FL, we want to overcome limitations
that affect the platform usage or the experience of using FedLess itself to demonstrate the
capabilities of FaaS-based FL. We notice the following architectural limitations in FedLess:

• FedLess Control Plane is only beneficial for the aggregation function to run inside the
Openwhisk Cluster. Therefore, the current implementation requires more effort to run
the platform by deploying a Kubernetes Cluster and then deploying Openwhisk inside.

• The aggregator function is only available in Openwhisk: this causes an issue of vendor
lock-in while we try to make the platform as versatile as possible.
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• Client Functions must be deployed even for development or debugging purposes,
increasing development costs.

• Support for only a single strategy: Stragglers are a common issue in FL. Although
FedAvg is relatively robust against stragglers to some extent [36], stragglers can signifi-
cantly impact training time, which causes underutilization of the system’s resources.
Additionally, random selection ignores the client’s performance in the selection criteria,
which means that a single straggler can be triggered repeatedly, decreasing round
efficiency and potentially increasing cost.

In addition to our novel training strategy, this work provides architectural changes to the
core platform design to address the limitations mentioned above.

3.3 Stragglers in Federated Learning

Resource and data heterogeneity restricts the collective learning process in large-scale FL
systems. It is not practical to expect consistent performance and reliable communication
throughout the training. In real-world scenarios, clients can be offline due to network or
resource constraints. Furthermore, clients’ training speed depends on the amount of data
and computation power. Synchronous training mechanisms such as FedAvg can be significantly
affected by stragglers where the slowest client dictates training pace. In addition, offline
clients which do not respond can cause significant training delays. Previous efforts proposed
asynchronous FL schemes [62, 63] to mitigate the effect of stragglers and avoid wasted contribu-
tions. The system allows all clients to communicate with the central server asynchronously.
As a result, these systems suffer from high communication costs. Furthermore, stall gradients
might affect the system’s performance [63, 64]. Other approaches adapt semi-asynchronous
strategies as a tradeoff between the latency of synchronous approaches and communication
and staleness issues of asynchronous approaches. In this section, we explore various syn-
chronous, asynchronous, and semi-asynchronous techniques used to mitigate the effect of
stragglers in FL and discuss their limitations within the context of serverless FL.

Li et al. [26] proposed a protocol called FedProx to tackle heterogeneity in federated learning.
The algorithm is based on FedAvg with two minor differences. The first is a custom loss
function at the client, which contains a proximal term to limit the fluctuating effect of local
updates. This proximal term helps control the local model deviation from the global model
by factoring in the square difference in model weights in the loss computation. Equation 3.1
shows the formula used for the client loss function. Notice that wt represents the weights of
the global model, and w represents the local model during training. Setting µ to zero defaults
the algorithm back to FedAvg. The second difference is the idea of tolerating partial work.
The clients can perform a variable amount of work to accommodate constraints in terms of
hardware, network, and battery levels. To achieve this, clients can run a different number
of local epochs. Their experiments were done in an environment to simulate clients with
different local computations. The results have shown about 22% improvement of test accuracy
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over FedAvg in high heterogeneous settings (90% stragglers in the system) while performing
similarly in scenarios with less amount of stragglers.

hk(w; wt) = Fk(w) +
µ

2
∥w− wt∥ (3.1)

From the perspective of a FaaS FL, FedProx has a few downsides. First, the proximity term
depends on the difference in weights between the global model and the current local model.
Consequently, training large models may suffer performance degradation, as clients might
take longer to train compared to strategies like FedAvg. This issue is particularly critical in
a serverless environment because current implementations of functions allow for a limited
duration. We also confirmed this behavior during our experiments where FedProx clients
take slightly longer to train compared to FedAvg. Second, incorporating partial work requires
tailoring the number of local epochs for each client individually, which might be infeasible
for a significantly large number of clients. The work did not specify an automatic way to
incorporate partial work from clients at a reasonable communication cost. Finally, using
random client selection means that the algorithm is exposed to stragglers similar to FedAvg.

Xie, Koyejo, and Gupta proposed an asynchronous federated optimization algorithm
FedAsync [63]. They rely on the parameter server architecture to invoke and synchronize
clients. The server contains two parallel working threads. The first is a scheduler thread
that periodically triggers clients to perform the training using the latest global model. The
second thread (updater) receives client updates and directly aggregates them to the global
model. To mitigate staleness in client results, they use an adaptive weighted average at the
updater, which dynamically changes the weights based on the staleness of the updates. Their
experiments show that FedAsync can provide similar performance to FedAvg in scenarios
with a low number of stragglers in the system while outperforming it in straggler-heavy
scenarios. The robustness of this system against slow clients and its adaptability to stall
updates are two of its main advantages [63]. Nevertheless, the system suffers from a few
limitations. First, the aggregation computations for a large-scale system can overwhelm the
central server. They discussed implementing multiple updater threads to mitigate this issue.
Second, in the context of a serverless FL, this system has a high communication cost. It is
not efficient in terms of cost or resources to have a function that does the aggregation after
receiving each client update.

Chai et al. proposed FedAT as a semi-synchronous tier-based FL system. Their idea is
to partition the clients into tiers based on their performance. The system consists of two
components. Firstly, a tiering module that partitions clients into M tiers where tier1 contains
the fastest clients and tierM contains the slowest clients. Secondly, a central server maintains
a local model for each tier, {wt

tier1, wt
tier2, ..., wt

tierM}, where wt
tierX is the most updated model

for clients in tier X at round t. Furthermore, the central server maintains the global model
updated asynchronously from the M tiers.

Each tier performs its updates synchronously, where S clients are randomly selected to
participate in the training. Once a tier finishes training, its clients send their updates to the
server. Next, the server aggregates the updates to compute the tiers’ new model wt

tierX. Then,
the server aggregates the updates from all tiers to form a new global model wt+1. The server
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uses a weighted aggregation strategy where slow tiers have higher weights to balance the
difference in update frequency between tiers and counter the bias towards faster clients. They
also included miscellaneous improvements to enhance the quality of their training strategy.
Firstly, to keep the client’s local model from deviating from the global model, they utilized
FedProx’s custom loss function 3.1. Secondly, they implemented a weights compression
scheme based on polyline encoding to improve communication efficiency. Clients flatten
the weights of each layer and compress the output weights before pushing them to the
server. On the other side, the server reconstructs the weights after decompression to start
the aggregation. Their experiments showed improvements by up to 21.09% accuracy on
five selected datasets from the LEAF benchmark [65]. Furthermore, they showed an 8.5X
reduction in communication cost compared to FedAsync. Although the system was effective,
it suffered from a few limitations. Firstly, a constant number of tiers prevent the strategy from
dynamically adjusting to system changes. Furthermore, the system does not specify how to
mitigate client failures. For instance, clients which do not respond to the central server can
cause tiers to take significantly longer time and affect the efficiency of training.

Zang et al. proposed CSAFL, a clustered semi-asynchronous FL scheme [66]. Their
approach was to divide clients into groups based on similarities in computation and com-
munication latencies. At first, the central server computes an affinity matrix with mutual
similarity values between each pair of clients. Then the server performs a spectral clustering
algorithm to divide the clients into M groups. The central server maintains M global models
{Wg0, Wg1, ..., Wgm}, each representing a specific group. Furthermore, each group is trained
independently of the other groups, so there is no global model that combines the M models.
At the start of the round, K candidates are randomly selected from each group. Next, the
server starts training each subset in parallel. The initial model is broadcast to the participating
clients within a group with a version number (Wgx, 0). Each participant updates their local
model’s version number to maintain the difference between the old and the new model
(Vpre, Vnew). If the difference between Vnew and Vpre is larger than a certain tolerance H, the
client is forced to update the model synchronously. If the difference is less than H, the central
server invokes the client and updates the group model once the client replies with the update.
After each synchronization, the new group model is broadcasted to all group clients. The
same process repeats until the end of the round.

They experimented with over four datasets from the LEAF benchmark and showed a 5%
accuracy gain over FedAvg. Despite the accuracy gain, their approach suffers from a few
limitations. Similar to FedAT, the number of groups can not be changed during training.
As a result, the system can not always produce the best partitions for grouping the clients.
Moreover, calculating and storing the affinity matrix is computationally intensive, which
might cause performance issues in large-scale systems. Furthermore, The system does not
use the notion of a global model that can perform predictions on different data. In their
evaluation, they used a weighted test accuracy to evaluate each group model on the test data
and combine the results.

Wu et al. [67] proposed a semi-asynchronous FL protocol (SAFA). The algorithm focused
on low round efficiency and slow convergence in scenarios where clients drop frequently. To
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mitigate the impact of stragglers, they suggested new designs in client selection and global
aggregation. They rely on caching client updates to avoid wasted contributions. Therefore,
a mapping between clients and their updates is saved in a cache maintained by the central
server.

In the client selection, a client can have one of the following states:

• Up-to-date: Clients who completed the previous round and have the latest model at the
start of the current round

• Tolerable clients: Clients that do not use the latest global model as a basis for training but
whose model is not too old.

• Deprecated clients: Clients that still use a stale global model as the basis for their local
training.

The semi-asynchronous nature of the algorithm allows tolerable clients to stay asynchronous
with the server, while the other two types are required to synchronize with the server. The
algorithm allows all clients to participate in the current round if they are willing. The central
server signals the start of the round to all clients. Afterward, it waits until C updates are
received, where C is the minimum number of updates required to start the aggregation phase.

After C clients are finished, the server tags clients with one of the following labels.

• Crashed: clients who did not complete the training or decided not to complete it.

• Undrafted: clients whose results are not selected but cached by the server for future use.

• Picked: clients picked to be used in the aggregation.

The cache is then updated once before aggregation and once after aggregation.

• Pre-aggregation update:

w∗k (t) =


w‘

k(t) : if k ∈ Picked Clients
w(t− 1) : if client k has model older than t-τ
w∗k (t− 1) : otherwise

(3.2)

In the pre-aggregation phase, picked clients save their latest local model while tolerable
clients maintain their cache entry. On the other hand, deprecated clients are forced to
synchronize their model with the latest global model and abandon their stall progress.
Equation 3.2 shows the cache update conditions before aggregation where w‘

k(t) is the
trained local model at client k for round t and w∗k (t) is the weights saved in cache for
client k. τ is a tunable parameter that represents the algorithm tolerance to stragglers.

• Post-aggregation update:

w∗k (t + 1) =
{

w‘
k(t) : if k ∈ Undrafted Clients

w∗k (t) : otherwise
(3.3)
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In the post-aggregation step, undrafted clients keep their updates in the cache to be used
in the subsequent round, while the rest of the clients use the most recent global model
after the aggregation, as shown in Equation 3.3.

On the client-side, the algorithm follows the same procedure as FedAvg. They performed ex-
periments with multiple classifications and regression tasks. Their experiments demonstrated
accuracy and efficiency improvements at a slightly higher communication cost. Although we
believe a custom client selection algorithm is beneficial in overcoming the stragglers’ problem,
this approach still has some issues if used in a FaaS environment. One of the downsides
is overutilizing the clients, which increases the experiment’s cost. The deprecated clients
might stay behind for the whole training session, wasting their contributions and consuming
resources. Furthermore, their selection strategy does not benefit from the scale-to-zero capa-
bilities of a serverless infrastructure by involving all clients each round. Clients will always
be running in some scenarios since they are called every round, increasing cost and resource
utilization.

Other approaches proposed ideas to benefit from the contributions of slow clients, which
are normally wasted. Damaskinos et al. [64] proposed FLEET, an online FL framework for
Android devices. The framework focuses on integrating stale updates from clients. Although
delayed updates can result in noise that might slow down or even prevent convergence [68, 69,
70], they might contain important information about unseen data. The algorithm proposed
an Adaptive Stochastic Gradient Descent (ADASGD) learning paradigm that starts the
aggregation process when receiving a certain number of updates from the participating
clients. The algorithm uses weighted aggregation to combine client updates. They multiply
each client update by a certain factor composed of 2 elements. First is the damping element, an
exponentially decreasing function based on the system’s expected percentage of reliable clients.
The second element is a boosting factor that boosts the gradient of unique data. Their results
accuracy improvements compared to standard FL schemes. Furthermore, ADSGD showed
18.8% improvements in convergence speed compared to other staleness-aware approaches.
This approach is designed to work in scenarios with slow and unreliable clients. However, it
still suffers from similar limitations to FedAvg in terms of dealing with client failures. For
instance, if a client fails repeatedly, it might still be called multiple times, affecting the round
time.

3.4 Stragglers in Serverless Federated Learning

Although Serverless computing models show advantages in terms of resource efficiency and
cost, the reliability guarantees of such systems are weak [71, 72]. Node failures can cause
requests to be dropped or even executed multiple times. Furthermore, the scale-to-zero
model implies that starting function instances from scratch (cold starts) might cause higher
request latency. Therefore, the reliability assurances in serverless infrastructures are left to
the developers [72]. There are two types of clients that can participate in serverless FL. The
first type is functions running on edge devices. These functions inherit the reliability issues
of edge devices. The devices themselves can drop or suffer communication or network issues.
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Furthermore, edge devices tend to have slower performance due to hardware limitations. The
second type is the functions running in a FaaS platform, either public or self-hosted. Although
they tend to be more reliable than edge devices due to their Service Level Agreements (SLAs)
providing better guarantees [73, 74], the serverless computing model itself provides best-effort
infrastructure [72]. As a result, using functions might be less reliable than using virtual
machines in some scenarios. For instance, the Service Level Objective (SLO) for Google
Cloud functions is an uptime percentage of 99.95% [73] compared to 99.99% for multi-zone
compute instances [75]. In the context of serverless FL with heterogeneous clients, the
system encounters failures or variations in performance. Furthermore, cold starts might cause
unexpected delays to function executions. As a result, even a few stragglers can affect system
efficiency. Although we cannot eliminate stragglers from the system, we address the issue by
adapting to clients’ behavior and minimizing the effect of stragglers on the overall system
performance.
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4.1 FedLess System Enhancements

In this section, we explain the enhancements added to the FedLess platform. These improve-
ments aim to make the platform easier to use and provide the prerequisite architectural
changes to include FedLesScan.

4.1.1 System Architecture

In section 3.2, we discussed the architecture of FedLess and its current limitations. The
objective of improving the platform is to make it easier for users to develop and train FL
models. Furthermore, the changes facilitate incorporating various FL strategies and techniques
in the future. Figure 4.1 provides an overview of the modified system architecture and the
core system components. The first significant enhancement is in the FedLess controller.
Previously, the FedLess controller ran in an Openwhisk cluster on top of a Kubernetes
deployment. Therefore, even for debugging, getting started with the platform required a
complex deployment configuration. One of the main objectives of a FaaS-based FL platform is
its abstraction of the infrastructure management layer away from the developer. We addressed
this limitation by removing the need for Openwhisk and Kubernetes. In the new architecture,
the FedLess controller is a light weight process that runs on any machine that includes its
dependencies without any infrastructure management. As a result, the cost and time needed
for development and maintenance should decrease compared to the old architecture.

We also added multiple sub-components to the FedLess controller. The strategy manager
controls the behavior of the selected strategy. Each strategy contains the following:

• Client selection Scheme: Function responsible for clients selected for this training round.

• Aggregation Scheme: The aggregation scheme used by the aggregation function.

Developers can switch between different strategies with a single command line parameter.
Furthermore, FedLess used to support aggregation only on functions deployed in the local

Openwhisk cluster. We abstracted the aggregation function to be usable on any self-hosted
or public cloud. The effect of these changes lies in the ability to set up the platform quickly.
The system no longer requires setting up the FedLess controller. Moreover, the system is
no longer locked to using a specific serverless platform. On the database side, we added
client history collection to store information about clients’ behavior, such as failures, training
duration, and the identifiers of missed rounds. We rely on the obtained behavioral data to
implement our strategy and measure clients’ performance. We also include components to
facilitate debugging the platform. We explain their details in the next section.
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Figure 4.1: Modified Architecture of the FedLess platform. The highlighted components
shows the modified components and additions to the system.

4.1.2 System Debugging Capabilities

One of the main challenges in a distributed system is developing and debugging the whole
system. Critically developers spend a considerable amount of time tuning the model’s hyper-
parameters. Furthermore, debugging client functions is even more challenging, especially
when the functions are deployed using cloud providers. Therefore, we introduced a mocking
system in FedLess to enable developers to run and debug the whole platform on a single
machine. The FedLess controller contains mock components Mock Invoker, Mock Client, and
Mock Aggregator that simulates the behavior of the actual components. The Mock Client is a
Class that runs the same code present in the client functions. The Mock Aggregator is a Class
that runs the aggregation process locally. When running the FedLess controller in debug
mode, the Mock Invoker is activated and passed as a parameter to the Strategy Manager.
After clients are selected to participate in the current round, the Strategy Manager delegates
the clients’ invocation to the Mock Invoker, which invokes multiple instances of the Mock
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Client class. When the clients finish training, the Mock Invoker receives a signal from the
Strategy Manager to invoke the Mock Aggregator. The process repeats until the end of the
training session. The developer can activate the mocking feature by specifying the –mock
parameter when running the FedLess controller.

4.1.3 Training Workflow
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Figure 4.2: The training workflow of a typical training round in FedLess

Although the core idea of FedLess did not change, the training workflow changed slightly
to accommodate the new architectural changes. Furthermore, the new flow should facilitate
the implementation of other strategies, particularly FedLesScan, with minimal communication
costs. The protocols required to invoke and authenticate clients remain the same.

Figure 4.2 demonstrates the communication among FedLess components in a typical
training round. As discussed in Section 3.2, the FL admin configures the model, dataset,
and hyperparameters before starting the training. In the beginning, the controller fetches
invocation tokens from the authentication server. Next, the controller fetches the clients’
behavioral data from the FedLess database. This step is done based on the selected training
strategy. For instance, FedAvg uses random selection; therefore, it does not need to perform
this step. On the other hand, other strategies can update the behavioral data of the clients
if needed. Based on the selected strategy, a subset of the clients is chosen to participate in
the current round. The controller invokes the client function using the invocation tokens. In
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the next step, the client function contacts the authentication server to validate the invocation
token. Upon successful validation, the clients fetch the latest global model from the parameter
server and perform the training locally while collecting information about the current training
progress. When the training is complete, the clients upload the new local model to the
parameter server and push the collected information to the client History collection. Next,
the client function responds to the controller signaling the end of the training. At the end of
the training round, the controller adjusts the participant’s behavioral attributes based on the
strategy and pushes them back to FedLess database. Afterward, the controller invokes the
aggregation function, which combines the clients’ results into a new global model. At the
end of the round, the controller invokes a subset of the clients for evaluation. The process
then repeats for subsequent rounds.

4.2 Intelligent Client Selection

In this section, we explain our client selection algorithm. First, we explain the data we
collect about the clients’ behavior and how we distinguish between failures and slow updates.
Second, we explain the details of the FedLesScan client selection algorithm. Lastly, we explain
the details of some auxiliary functions used inside the algorithm.

4.2.1 Gathering Behavioral Data

The client selection scheme relies on data collected on clients’ behavior in previous rounds.
Our selection scheme considers separating reliable clients that do not miss their training
round from stragglers. Furthermore, we use clustering to partition the reliable clients into
subsets with similar behavior. In other words, clients with similar performance are called in
the same round to decrease waiting time at the controller and increase the system’s efficiency.
That said, we divide clients into three tiers. The first tier is for clients which never participated
in a training round. We use this tier to make sure that each client has a chance to participate
at least once to collect data about their behavior. The second tier includes reliable clients
which participated in training at least once before. The clustering is limited to the second-tier
clients. Clustering these clients aims to group clients who behave similarly to improve system
efficiency and reduce round time. We explain the details of clustering the second-tier clients in
the next section. The last tier contains inconsistent clients which miss one or more successive
rounds. The last-tier clients are not permitted to participate in the clustering. Clients are
chosen from the last tier only if all clients from the first two tiers have been chosen and the
required number of participants is not met.

The selection strategy relies on the following attributes to use in the clustering:

• training time: time taken by the client to finish training.

• missed rounds: a list that contains the round number of all missed rounds. In the next
section, we discuss the usage of missed rounds to evaluate the client’s penalty.
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Moreover, each client has a cooldown variable, representing the number of rounds a client
has to stay in the last tier. We evaluate the cooldown period from the client’s last missed
round. For instance, if client A missed round 2, the cooldown is set to 1. In this case, client
A must stay in the last tier for one more round (round 3) before returning to the second
tier in round 4. If client A missed round 4 (assuming client A is selected), the cooldown is
multiplied by two. Consequently, client A has to stay in the last tier for two rounds. Equation
4.1 demonstrates how the cooldown variable is updated. Using this variable prevents wasting
time and resources on calling clients which fail repeatedly. It can also reduce the impact of
temporarily slow or unavailable clients by lowering their priority for a certain number of
rounds.

cooldown =


0 : if client completed round successfully
1 : if the client failed and cooldown = zero
cooldown× 2 : otherwise

(4.1)

Algorithm 1 shows the steps taken by the FedLess controller and client function to update
the clients’ attributes and how we distinguish between crashed and slow clients. FedLess
controller runs the Train_Global_Model function to train the global model for a single round.
FedLess Clients run Train function to train their local model. We define nClientsPerRound as
the number of clients that must be selected every round and maxRounds as the maximum
number of training rounds allowed.

At the FedLess controller, we select a subset of the clients and wait until they finish, or a
timeout occurs (lines 2-3). We explain the details of the Select_Clients function in the next
section. Then we iterate over each successful response for which we reset the cooldown
variable (lines 5-8). Because FedLess controller does not know if a client is slow or ultimately
crashed, it assumes that the remainder of the invoked clients failed to finish. Accordingly, we
update their attributes in which the current round is recorded in the missed rounds list (line
10), and the cooldown is updated according to Equation 4.1 (line 11-15).

The Client_Update function shows the training flow at the client-side. We start by loading
the client’s behavioral history in the previous rounds (line 22). Afterward, we start to record
the start time before loading the model and dataset (lines 23-25). Next, the client function
trains the model on the local data (line 26). We record the training time at the end of training
(line 27). The local model updates are sent to the parameter server (line 28). Clients are then
required to update their training time for the current round (line 29). Furthermore, slower
clients have a chance to correct information about their missed rounds if they finish the round
later. As previously stated, the controller considers clients that did not finish the round in
time as crashed. Therefore, distinguishing between slow clients and crashes is done on the
client-side. We do that by allowing clients to correct assumptions made by the controller and
erase the current round from their missed rounds list (lines 30-32).

As per our three-tier division, we can define clients in terms of their assigned tier:

1. Rookies (first-tier): which were not called before and yet to participate in training.

2. Participants (second-tier): which are allowed to participate in the clustering.
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Algorithm 1: Client History Updates at FedLess Controller and Clients.

1 FedLess Controller:
2 Function Train_Global_Model(Clients, round):
3 selectedClients = Select_Clients(clients, round, maxRounds, nClientsPerRound)
4 success, f ailures= Invoke_Clients(selectedClients)
5 for each client in success do
6 client.cooldown = 0
7 updateClientHistory(client)
8 end
9 for each client in f ailures do

10 client.missedRounds.append(round)
11 if client.cooldown ≤ 0 then
12 client.cooldown = 1
13 else
14 client.cooldown = client.cooldown× 2
15 end
16 updateClientHistory(client)
17 end
18 return
19

20 FedLess Client:
21 Function Client_Update(hyperParameters, round, database):
22 clientHistory = loadClientHistory()
23 startTime = timer.startTime()
24 model = loadModel()
25 dataset = loadDataset(database)
26 model.train(hyperParameters, dataset)
27 endTime = timer.endTime()
28 saveModel(database, model)
29 clientHistory.trainingTimes.append(endTime - startTime)
30 if round in clientHistory.missedRounds then
31 clientHistory.missedRounds.remove(round)
32 end
33 updateClientHistory(database, clientHistory)
34 return
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3. Stragglers (third-tier): which missed one or more successive rounds (cooldown ≥ 0).

We ensure that all clients have an opportunity to participate at least once at the start of
the training by giving Rookies the highest priority in our selection scheme. This method also
allows us to collect behavioral data on all participants, which can be used for clustering
in subsequent rounds. As the training progresses, the number of rookies decreases until it
reaches zero, when all clients have been invoked before. Participants represent the clients
ready to participate in the training round. During training, reliable clients are labeled as
participants and are clustered based on their previous behavior. Stragglers have the least
priority.

4.2.2 FedLesScan Selection Algorithm

Algorithm 2: Client selection

1 Function Select_Clients(clients, round, maxRounds, nClientsPerRound):
2 rookies←− list of clients not called before
3 pariticipants←− list of clients available for clustering
4 stragglers←− list of clients where missedRounds.last + cooldown > round
5 startClusteringRound←− −1
6 if len(rookies) ≥ nClientsPerRound then
7 return random.sample(rookies, nClientsPerRound)
8 end
9 nClientsFromClustering = min(nClientsPerRound - len(rookies), len(pariticpants))

10 if nClientsFromClustering ≥ 0 and startClusteringRound == -1 then
11 startClusteringRound = round
12 end
13 nStragglers = nClientsPerRound - nClientsFromClustering - len(rookies)
14 roundStragglers = chooseRandomly(stragglers, nStragglers)
15 clusteringData = []
16 for each client in participants do
17 trainingEma = getEma(client.trainingTimes)
18 missedRoundRatios = divide(client.missedRounds, round)
19 missedRoundEma = getEma(missedRoundRatios)
20 clusteringData.append((trainingEma, missedRoundEma))
21 end
22 labels = DBScanClustering(clusteringData)
23 sortedClusters = sortClusters(participants, labels, round)
24 clusteringResults = Sample(sortedClusters, round, maxRounds,

startClusteringRound, nClientsFromClustering)
25 return [rookies + clusteringResults + roundStragglers]

Algorithm 2 shows the pseudo-code for our selection scheme. The algorithm promotes fair
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selection for reliable clients while involving stragglers less in the training process. We start
by selecting from the pool of rookie clients. The selection is made randomly if the pool is
large enough until the remaining rookies are less than the required number of clients per
round (nClientsPerRound) (lines 6-8). We determine the number of clients selected from the
second tier by subtracting the number of remaining rookies from nClientsPerRound (line 9).
Furthermore, we record the round in which we begin sampling tier 2 clients to use it later to
choose which cluster to train (lines 10-12). If the clients selected from the first and second
tiers are not enough, we randomly select the remaining number from the third tier (lines
13-14).

For clients which will participate in clustering, we obtain two attributes. First, trainingEma
which represents an exponential moving average (EMA) [76] on the previously recorded
training time (line 17). Using a weighted average better represents the current client behavior
by giving higher weight to the recent recorded times. Second, missedRoundEma which is a
penalty factor based on previous missed rounds. This factor should satisfy two objectives.
First, recent failures should have higher penalties. For instance, A client which failed in
the second round would have a higher penalty than a client which failed in the first round.
Second, the penalty should fade as we progress in training if the client becomes more reliable.
In other words, if a client only missed the first round, the calculated client’s penalty in round
five must be less than its penalty in round two. To achieve this, we divide the numbers in
the missed rounds list by the current round number to get a list of ratios (line 18). As the
training progresses, the effect of a specific missed round decreases because the current round
number increases. We then compute the missedRoundEma as an EMA on the computed list
of the missed rounds (line 19).

After collecting the data for the participating clients, we use it to cluster the clients. The
DBScanClustering function partitions the clients’ data into separate clusters, each with a
specific label (line 22). As explained in Section 2.2.3, DBSCAN requires ϵ parameter to be
set. For simplicity, we treat outliers as a single cluster. Although developers can tune the
clustering parameters manually, we provide a simple method to pick the best-performing
parameters. DBScanClustering performs a grid search for the best parameter values that yield
the highest Calinski-Harabasz index [77]. This score measures the ratio between intra-cluster
and inter-cluster dispersion to evaluate the quality of the clusters. We chose this index because
it is fast to compute; therefore, it will not affect our running time. Moreover, the low time
complexity of DBSCAN means that the time needed to run the clustering multiple times
takes a few seconds, which is insignificant compared to the overall round time. Instead of
developing the clustering algorithm from scratch, we rely on the DBSCAN implementation
provided by scikit- learn library [78].

The next step involves sorting the clusters according to the average total time of their
members, where the total time of a client is the sum of its training time and its penalty time,
as shown in Equation 4.2 (line 23).

totalEma = trainingEma + missedRoundEma×maxTrainingTime (4.2)

We then select clients according to the Sample function explained in section 4.2.3 (line 24).
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The returned list of clients contains rookie clients, if any, appended to the selected clients
from clustering and the list of stragglers that are selected to complete the required number of
clients (line 25).

4.2.3 Selecting Clustering Clients

Algorithm 3: Sampling Function for clustering participants

1 Function Sample(sortedClusters, round, maxRounds, startClusteringRound,
nClientsFromClustering):

2 perc = (round - startClusteringRound)/ max(maxRounds - startClusteringRound,
1)

3 startIdx = percentile(sortedClusters, perc)
4 samples = []
5 while nClientsFromClustering > 0 do
6 cluster = sortedClusters[startIdx]
7 if len(cluster.clients) ≥ nClientsFromClustering then
8 sort cluster.clients according to the number of successful contributions.
9 samples.append(cluster.clients[0: nClientsFromClustering])

10 nClientsFromClustering = 0
11 else
12 samples.append(cluster.clients)
13 nClientsFromClustering -= len(cluster.clients)
14 end
15 startIdx = (startIdx + 1) % len(sortedClusters)
16 end
17 return samples

The Sample function exists to select clients from the list of sorted clusters. Instead of
randomly selecting clusters to run, we start by running the fastest clusters earlier in the
training process. Then, we gradually move to slower clusters further in the sorted list. That
way, faster clients serve as a hot start for the slower clients. Algorithm 3 shows the process
used to pick clients from the clusters. We choose the cluster corresponding to our current
training progress (lines 2-3). The current progress is determined using the ratio between the
current round and the maximum number of rounds. Initially, we start with an empty list and
add clients as we move along (line 4). Afterward, we check whether the current cluster size is
more than the number of clients required (line 7). If that is the case, we sample clients from
the selected cluster prioritizing the ones involved less in training (lines 8-9); otherwise, we
select the whole cluster (line 12). We update the required number of clients in both cases
by subtracting the number of selected clients (lines 10, 13). As long as we do not reach the
required number of clients, we move to the next cluster and repeat the same process (line 15).
If we reach the end of the final cluster, we return to the first cluster in the list.
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4.3 Staleness-Aware Aggregation

In the previous section, we discussed our intelligent selection strategy. Although an informed
selection mechanism should improve the system’s efficiency, slow clients will still be in the
system. Therefore, we use a staleness-aware aggregation scheme to convert FedLesScan
to a semi-asynchronous strategy. In FedLess, slow clients might push their updates to
the parameter server after the round ends. Usually, these updates are considered wasted
contributions. Additionally, client updates might still hold valuable information to improve
the model’s performance. Our approach to tackling this problem is to aggregate delayed
updates with a dampening effect asynchronously. In other words, delayed updates are
considered the next time the aggregation function is called. For a system with K clients,
the global model wt+1 after aggregation at round t is computed as a weighted average of
clients’ contributions that exist in the FedLess database. Equation 4.3 shows the updated
aggregation function used to include delayed updates. Notice that wk

tk
is the local model of

client k at round tk and nk represents the cardinality of the dataset at client k while n is the
total cardinality of the aggregated clients. If the updates arrive at the same round (tk = t), the
equation becomes the same as Equation 2.1. On the other hand, older updates (tk < t), are
dampened by tk

t . To avoid obsolete updates from affecting the training, the aggregator uses a
parameter τ to dictate the maximum age of updates included in the aggregation. Updates
with t− tk ≥ τ are discarded by the aggregator.

wt+1 ←−
K

∑
k=1

tk

t
× nk

n
wk

tk
(4.3)
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The system improvements added to FedLess enabled us to implement other strategies to
compare their performance to FedLesScan. We compare FedLesScan to two novel training
strategies, FedAvg [24] and FedProx [26]. The evaluation should provide insights into
FedLesScan’s performance expectations and limitations.

5.1 Metrics and Experiments Configuration

5.1.1 Evaluation Metrics

In this section, we provide an overview of the metrics and evaluation methodologies used to
evaluate FedLesScan. We compare our results to both FedAvg and FedProx. Our evaluation
covers three aspects:

• Round utilization and system performance.

• Model performance, including model loss and test accuracy.

• Strategy efficiency by analyzing experiment time and cost.

To properly evaluate round utilization and strategy performance, we use Effective Update
Ratio (EUR) [67], demonstrated by Equation 5.1. EUR per round is defined as the ratio
between successful clients (S) and the subset of selected clients (C). EUR shows the effect
of stragglers on round utilization. Higher EUR means less wasted resources since clients
requested to participate in a certain round end up contributing to the global model.

EUR =
S ∩ C

C
(5.1)

Furthermore, we provide insights into the bias of the client selection scheme using variance
plots. This works by showing the frequency of selection for each client across the training
session. We define bias as the difference between the frequency of the least called client and
the most client [67]. Ideally, we target low bias in light-straggler situations. On the other
hand, the bias should increase in straggler-heavy scenarios due to prioritizing reliable clients
in training.

To evaluate the model performance, we measure the end accuracy reached by the model in
a specific number of rounds. Furthermore, we show the progress of the model’s accuracy
throughout the training. The use of centralized evaluation does not accurately represent
what happens in a highly scalable distributed FL system. Therefore, we chose to evaluate
the system in a distributed manner by randomly choosing clients to evaluate the model on
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their test dataset. The number of clients participating in the testing phase (Ct) is the same
as the number of clients called per round. Each client computes the accuracy according to
Equation 5.2. Then the average accuracy is weighted by the ratio between client dataset
cardinalities (nc) and the total cardinality of the test dataset (N). Equation 5.3 shows the
formula used to compute the average accuracy per round. Notice that for MNIST, the dataset
is small enough to perform a central evaluation.

acc =
TruePredictions

TotalNumberO f Predictions
(5.2)

average_acc = ∑
∀c∈Ct

nc

N
× acc (5.3)

We analyzed the experiment’s time and cost to evaluate the system’s efficiency. We utilize
Google Cloud’s next-generation FaaS offering [79] to deploy all client functions for our
experiment. The rationale behind using 2nd gen cloud functions is the major enhancements
in infrastructure, which address a few of the previously mentioned limitations of FaaS
infrastructures. These enhancements include enhanced runtime for up to 60 mins, larger
instances with up to 16 GB of RAM and four vCPUs, concurrency, a minimum number of
pre-warmed instances to minimize cold starts, and enhanced traffic management. We use
their cost computation model [80] to estimate the cost for each client function based on the
number of invocations, memory, and duration of execution.

5.1.2 Benchmarks and Datasets

For our experiments, we rely on four datasets from 4 different benchmarks. We pick dif-
ferent domains to make the evaluation conclusive to test the new strategy. These domains
include image classification (MNIST, FEMNIST), speech recognition (Speech Commands),
and language modeling (Shakespeare).

The first dataset is MNIST Handwritten Image Database. It contains 60000 images available
for training and 10000 for central evaluation. The images are sorted and randomly distributed
to 300 clients.

We chose two datasets from LEAF [65] which is a benchmarking framework for FL. It
contains a variety of datasets that cover different domains. As per the original setup covered
in [21], we use both the FEMNIST dataset for image classification and the Shakespeare dataset
for character prediction. FEMNIST is short for Federated Extended MNIST, which is based on
modifying the Extended MNIST dataset [81]. The dataset contains more than eight hundred
thousand images, with an average of 226 images per partition. Shakespeare dataset contains
sentences from The Complete Works of William Shakespeare [82]. The dataset is partitioned such
that each role in each play is mapped to a specific partition. With more than four million
samples, each of length 80 characters, a device is responsible for an average of 3743 samples.

The last benchmark is FedScale [25], which contains a group of large-scale realistic bench-
mark datasets for tasks such as object detection, word prediction, and speech recognition.
From FedScale, we choose real-world speech recognition represented by the Google Speech
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Commands dataset [23]. The dataset was designed to build basic and helpful voice interfaces
for applications with common words such as "Yes", "No," and directions [23]. The dataset
contains 105,000 samples of 1-second audio files distributed across 2618 clients. One of
the challenges we faced with the Fedscale benchmark is that their implementation uses
Pytorch [83] while FedLess is based on Tensorflow [84]. Furthermore, the dataset is split using
client-data mapping, which maps file ids to a particular client. The dataset was designed
to be split into 2618 clients, 2168 of which are for training and the rest for validation and
testing. Accordingly, we reimplemented the preprocessing scripts for the Speech Commands
dataset. Moreover, we implemented a custom mapping algorithm to scale the number of
clients down according to a specific ratio. For example, a ratio of 4 means that one FedLess
client is responsible for the training data of 4 FedScale clients. In our experiments, we used a
ratio of 4 to map 542 FedLess clients to 2168 Fedscale clients.

5.1.3 Models Architecture and Parameters

Each experiment trains a different model suited for the task. For MNIST, FEMNIST, and
Shakespeare, we use the same model architecture mentioned by [21] and used in the original
LEAF benchmark paper [65]. For MNIST, we use a 2-layer CNN with a 5x5 kernel. A 2x2
max-pooling layer follows each Convolutional layer. The model ends with a fully-connected
layer with 512 neurons and a ten-neuron output layer with softmax activation. The model
had a total of 582,026 trainable parameters.

We picked two datasets from the LEAF benchmark. For FEMNIST, we use a 2-layer CNN
with a 5x5 kernel. A 2x2 max-pooling layer follows each Convolutional layer. The model ends
with a fully-connected layer with 2048 neurons followed by an output layer of 62 neurons
with softmax activation. The final model contains 6,603,710 trainable parameters.

We use a Long Short Term Memory (LSTM) recurrent neural network [85] for the Shake-
speare dataset. The model consists of an embedding layer of size eight followed by two LSTM
layers with 256 units and an output layer of size 82 with softmax activation. The number of
trainable parameters in the final model is 818,402.

For the FedScale benchmark, we opted for designing a simple CNN instead of replicating
models from the FedScale benchmark itself. Since we are only interested in comparing differ-
ent strategies, the designed model should show any differences if they exist. Nevertheless, the
designed model was on-par with the results from the original FedScale paper [25] in terms of
accuracy. The model’s architecture consists of two identical blocks followed by an average
pooling layer and an output layer with 35 neurons, and a softmax activation. A block contains
two convolutional layers with a 3x3 kernel followed by a max-pooling layer. A dropout layer
follows the max-pooling layer with a rate of 0.25 to avoid overfitting. The number of trainable
parameters in the model is 67,267.

Table 5.1 shows the different hyperparameters used for each dataset. Due to the divergence
issues [65] that faces FedAvg, we use a high learning rate and a small number of epochs for
the Shakespeare dataset.
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Dataset
Hyper Parameters

Epochs Batch Size Optimizer Learning Rate
MNIST 5 10 Adam [86] 0.001

FEMNIST 5 10 Adam 0.001
Shakespeare 1 32 SGD [35] 0.8

Speech Command 5 5 Adam 0.001

Table 5.1: Model hyperparameters used for each dataset.

5.1.4 Experiment Setup

To properly scale our experiments and eliminate database bottlenecks, we deployed the
FedLess database on a single machine with 40vCPUs and 177GB of RAM. Furthermore, we
use the same machine to run the FedLess controller. We deployed the aggregator function on a
self-hosted single node OpenFaas cluster with 45GB of RAM and 10 vCPUs. The aggregation
function had a memory limit of 7GB. Furthermore, we used a file server with 45GB of RAM,
10 vCPUs, and 200GB of storage to host the four datasets.

The client functions are deployed in the europe-west4 region due to the limited availability of
2nd gen functions at the time of writing. Each client function had a memory limit of 2048MB
and a maximum timeout of 540 sec. Table 5.2 show the configuration we used for each dataset.
Because each dataset has a different number of clients, a single client runs on one function
instance to ensure all clients can perform the training independently.

Benchmark Dataset Name No. of Clients Clients Per Round
- MNIST 300 200

LEAF FEMNIST 300 175
LEAF Shakespeare 100 50

FedScale Speech Command 542 200

Table 5.2: Total number of clients and clients per round used for each dataset.

We aim to evaluate the performance of FedLesScan against delays and function dropouts.
Although the deployed functions will show delays, failures, and cold starts, it does not
indicate how our strategy behaves in extreme situations [21]. Therefore, we decided to test
two separate scenarios.

In the standard scenario, we perform the experiments on the client function without any
modifications. Furthermore, the round time is adjusted to ensure clients can finish their
local training before the round ends. This scenario shows the performance in a more real-
world situation when using FaaS providers as an infrastructure base for the experiment. In
subsequent sections, we refer to this experiment as the standard scenario.

The second scenario includes synthesized experiments where we simulate multiple strag-
glers ratios in the system. Although there might be different reasons for client failure, such as
memory limit, function timeout, or communication issues, simulating different failure types
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will significantly increase the experiment cost. These failures can only have one of two effects
on the clients. Clients can completely crash (not push their updates) or push their updates
after the training round is finished (slow updates).

In order to simulate slow updates, we opted to strict the round time such that clients with
cold starts will not finish before the end of the round. We considered simulating slow updates
by introducing delays in the functions, but we found a significant increase in the experiment
cost. To simulate failures, we randomly select a specific ratio of clients to fail their training at
the beginning of each experiment. We perform four different experiments for each dataset
with 10%, 30%, 50%, and 70% stragglers. We refer to the experiment by its stragglers’ ratio in
subsequent sections.

With about 60 experiments, we analyze the results on each dataset separately and provide
further insights on the behavior of FedLesScan compared to FedAvg and FedProx.

5.2 Utilization and Strategy Performance
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Figure 5.1: EUR comparison between FedAvg [24], FedProx [26] and FedLesScan on the
MNIST dataset.

We start our evaluation by comparing the EUR of the three strategies. The EUR shows the
utilization of the rounds, which demonstrates how FedLesScan’s selection strategy chooses the
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clients to increase the overall round utilization. Figure 5.1 depicts the EUR comparison among
the three strategies. First, in the scenario with no straggler simulation, we see FedProx suffers
from slight drops compared to the other algorithms. This happens because the algorithm uses
a custom loss function at the client-side, as discussed in section 3.3. This function includes a
factor that relies on the difference between the local and global models to reduce divergence
from the global model. As a result, computing the difference between both models every
epoch might affect the overall performance of the client function. Therefore, some clients do
not finish their training in time. With large models FedProx clients tend to take a longer time
or exceed their memory limit compared to the other two strategies.

On the other hand, FedLesScan consistently achieves higher EUR compared to the other
strategies; we also see the gap increase as the percentage of stragglers increases. Furthermore,
we notice occasional drops in EUR plots for FedLesScan. These drops show the effect
of clustering the clients. Distributing stragglers across the training rounds will affect the
efficiency of more rounds. For instance, consider a system that contains ten stragglers. If the
invocation of those ten stragglers is distributed among all rounds, there will be at least ten
rounds affected by stragglers. These effects can lead to clients waiting for the straggler to
finish, decreasing the system efficiency. Alternatively, FedLesScan combines stragglers with
similar behavior together, decreasing their effect on training the other clients. This leads to
occasional drops in the EUR, as seen in the plots, but it shows that the system can maintain a
higher ratio in subsequent rounds.

Although the EUR shows the efficiency of the system, it does not show the bias of the
strategy. A system that utilizes a specific subset of clients and discards the rest of the clients
will have high EUR but will underutilize the rest of the clients. The violin plots in Figure 5.2
provides us with further insights into the bias encountered by our strategy. The graph shows
a distribution based on the number of invocations for each client (y-axis). We demonstrate
bias by the difference between the highest and lowest point in the distribution. When the
difference between the two points increases (the height increase), the algorithm is biased
towards a specific subset of clients. On the contrary, when the height decreases, the difference
between the most and least invoked clients is low. Furthermore, the width of the plot at a
particular point X provides insights into the ratio of clients called X times. If the width at
point X is larger than at an arbitrary point Y, then the number of clients called X times is
more than the number called Y times. We rely on this explanation to understand the behavior
of our strategy on the four datasets.

As per the information discussed above, the graphs in Figure 5.2 show the bias observed
by our selection strategy. FedAvg and FedProx use random client selection; therefore, they
show similar behavior without distinguishing between stragglers and reliable clients. On the
other hand, FedLesScan dynamically adapts to stragglers. We see that the strategy promotes
fair client selection in the standard scenario. We demonstrate this by comparing the height
difference in each plot. We notice that the FedLesScan plot is more concentrated in the middle,
which means clients get an equal share of training.

In the synthesized scenarios, we see FedLesScan prioritizing reliable clients while relying on
stragglers less during training. We see a clear separation between the number of invocations
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Figure 5.2: Distribution of client’s invocation frequency on the MNIST dataset.

of reliable clients compared to stragglers.
For the FEMNIST dataset, Figure 5.3 illustrates the difference between the three strategies

in EUR during training. In the standard scenario, we see FedLesScan and FedAvg perform
similarly while producing better round utilization than FedProx. We see the effect of FedProx’s
custom loss function, which increases the training time at the client leading to more stragglers.
This effect is particularly noticeable in FEMNIST because the number of trainable model
parameters is large, making the loss function more computationally intensive. To further
quantify the difference, we computed the average EUR during training. FedProx had an
average EUR of 0.962 compared to 0.995 and 0.996 to FedAvg and FedLesScan respectively.

The rest of the plots in Figure 5.3 depicts the performance of the three strategies in our
synthesized scenarios. We notice that the round utilization gap increase as the percentage of
stragglers increases. Similar to the behavior on MNIST, FedLesScan shows occasional drops
in EUR as an effect of clustering clients with similar behavior together. Although invoking
stragglers in the same round affects the round’s utilization, it improves the long-term system
efficiency by mitigating their impact on other clients.

Figure 5.4 shows the client distribution based on the number of invocations per client. In
the standard scenario, FedAvg and FedProx show more bias than FedLesScan. The observed
behavior shows that our strategy utilizes all participants more fairly in the standard scenario
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Figure 5.3: EUR comparison between FedAvg [24], FedProx [26] and FedLesScan on the
FEMNIST dataset.

than using random client selection. In the synthesized scenarios, We notice a similar behavior
to MNIST. We see a distinction between reliable clients and stragglers in the number of
invocations. The effect becomes more evident in the system that suffers from more stragglers.

For the language modeling task on the Shakespeare dataset, we observe a similar pattern
in EUR comparison, as shown in Figure 5.5. We calculated the average EUR for the three
strategies. In the standard scenario, FedLesScan had an EUR of 0.94 compared to 0.87 and 0.86
for FedAvg and FedProx respectively. Furthermore, we noticed a few clients failed because
they exceeded the memory limit of 2GB set for each function. As a result, we see lower round
utilization in the first plot when no synthesized stragglers are present in the system. We refer
to this note when we demonstrate the violin graph for the Shakespeare dataset.

The rest of the plots in Figure 5.5 show that the difference in utilization increases as the
ratio of stragglers increases. In the scenario with 70% stragglers, FedLesScan had an average
EUR of 0.7, which is 30% percent more than FedAvg and FedProx. We choose to run a few
numbers of rounds for the Shakespeare dataset because LSTMs take a long training time,
especially on CPU-only functions. Most clients in the Shakespeare dataset take more than 9
mins/round to finish their local training compared to 2 minutes for the other datasets.

The distribution of invocation per client shows similar behavior to other datasets, as shown
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Figure 5.4: Distribution of client’s invocation frequency for the FEMNIST dataset.

in Figure 5.6. Unlike the previous two datasets, we notice FedLesScan had a high bias in the
standard scenario. We argue that the cause of the high bias is because some clients failed
due to exceeding their memory limit, as we previously noted. The synthesized scenarios
show similar behavior to the previous two datasets, with FedLesScan having slightly higher
variance than the other two approaches. This behavior becomes more evident as the ratio of
stragglers increases.

To further inspect our approach, we evaluated the training statistics on FedScale, a bench-
mark that contains real-world datasets. We choose the Speech Commands dataset to evaluate
the performance on a real-world speech recognition task. We ran the experiment for 35
rounds in the standard scenario, while synthesized Scenarios ran for 60 rounds to show the
system behavior for prolonged training sessions. Figure 5.7 depicts the difference in EUR
during training between the three strategies.

The standard scenario in the first plot shows similar behavior to our evaluation on the
FEMNIST dataset where FedProx struggles to match the EUR of the other two approaches.
In all approaches, few of the clients did not meet the memory limit requirements for the
functions. As a result, we still see slight drops in EUR for all strategies. Because of the
large number of clients invoked per round, this effect is not as noticeable as it was with the
Shakespeare dataset.
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Figure 5.5: EUR comparison between FedAvg [24], FedProx [26] and FedLesScan on Shake-
speare dataset for language modeling task.

In the synthesized scenarios, FedLesScan achieved a higher average EUR across four
different ratios, with the difference further increasing as the ratio of stragglers increases.
Furthermore, we see the effect of using a clustering-based algorithm in the steep drops in
EUR that occasionally happens during training. We noticed this behavior before with MNIST
and FEMNIST datasets where stragglers are grouped in the same round to reduce their effect
on training the other fast clients and avoid long waiting times at the controller.

Figure 5.8 shows the difference in behavior across the different scenarios. In the standard
scenario, we notice that the width of the distribution is higher in the range of 15 invocations
per client. This means that number of invocations is similar for most of the clients. Further-
more, we observe that the FedLesScan distribution shows few clients with a low number of
invocations. This is because clients that have repeatedly failed due to memory constraints are
not used as often as the rest of the clients. This effect is similar to what we noticed in the
standard scenario in the Shakespeare dataset. The rest of the plots show a higher bias than
random client selection, while the values are spread more than in previous experiments.
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Figure 5.6: Distribution of client’s invocation frequency on Shakespeare Dataset.
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Figure 5.7: EUR comparison between FedAvg [24], FedProx [26] and FedLesScan on the
Speech Commands dataset.
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Figure 5.8: Distribution of client’s invocation frequency on the Speech Commands dataset.
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5.3 Accuracy and Model Performance

In the previous section, we compared the three strategies in terms of round efficiency and
utilization. Although these results show the advantages of using our intelligent selection
algorithm, they do not show a concrete evaluation of the system performance. This section
evaluates the model performance of the three strategies in terms of loss and test accuracy.
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Figure 5.9: Comparison between test accuracy for FedAvg [24], FedProx [26], and FedLesScan
on MNIST dataset with different straggler ratios.

For the MNIST dataset, we ran the experiments for 60 rounds. As shown in Figure 5.9, in
the standard setting, FedLesScan reached about 0.4% better accuracy compared to FedAvg.
FedProx had slightly lower performance because clients took slightly longer to train, which
resulted in more clients missing their round, as discussed in the previous section. In the rest
of the synthesized experiments, we see a pattern where FedAvg and FedProx reach higher
accuracy at the beginning of the training, but FedLesScan catches up at the end, even reaching
higher accuracies faster. In our experiments, the end accuracy achieved by FedLesScan is
constantly higher than FedAvg and FedProx by an average of 0.2% and 0.3% respectively.

Similarly, Figure 5.10 depicts the loss across the five experiments. We notice a behavior
similar to the accuracy graphs mentioned above. In the standard scenario, FedLesScan
and FedAvg perform similarly during training, while FedProx performed worse. In the
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Figure 5.10: Comparison between loss for FedAvg [24], FedProx [26], and FedLesScan on
MNIST dataset with different straggler ratios.

synthesized scenarios, FedLesScan can consistently achieve lower loss compared to FedAvg
and FedProx.

On the Image Classification task of the FEMNIST dataset, we performed the training for
40 rounds. Figure 5.11 depicts the progress of accuracy over time comparison among the
three different strategies. In the standard setting, we see the three approaches perform
similarly with a slight advantage to FedLesScan in terms of convergence speed. Furthermore,
FedLesScan outperformed FedAvg and FedProx in terms of the end accuracy by 2% and 0.5%
respectively. In our synthesized settings, the overall training behavior for different numbers
of stragglers shows the same trend with a slight advantage to FedLesScan in terms of the
convergence speed. Although FedProx showed slightly faster convergence than FedLesScan
in the 10% straggler setting, both reach accuracies higher than FedAvg by about 1% at the end
of training. In the 30% and 50% straggler settings, FedLesScan achieved consistently higher
accuracy during training, while the end accuracy was similar among the three strategies. In
the 70% settings, FedLesScan had a higher convergence rate and achieved an end accuracy of
75% compared to 73% and 74% compared to FedProx and FedAvg respectively.

Investigation of the loss behavior on FEMNIST in Figure 5.12 shows a similar trend to the
accuracy plots. In the standard settings, FedLesScan had faster convergence compared to
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Figure 5.11: Comparison between test accuracy for FedAvg [24], FedProx [26], and FedLesScan
on FEMNIST dataset with different straggler ratios.

the other two approaches while reaching a lower loss at the end. The synthesized settings
show FedLesScan achieves lower loss during training compared to FedAvg and FedProx.
Furthermore, we notice that the loss fluctuations between rounds decrease as the number
of stragglers increases. We believe this effect happens because as the number of stragglers
increases, the number of clients contributing to the global model decreases. As a result, the
learning process is easier as the model represents fewer clients’ contributions. We can see
that FedLesScan has higher fluctuations in the first three experiments because our selection
scheme involves more clients in training.

We investigate the performance of the language modeling task on the Shakespeare dataset.
Compared to other experiments, the Shakespeare dataset clients take longer time to train.
Therefore, we opted for fewer training rounds due to budget limitations. Although training
for fewer rounds will not reach the best possible accuracy, it was enough to give us insights
into the behavior of our strategy. While the reached accuracy documented in the original
paper [65] was about 50% in 40 rounds, In our experiments, the three approaches reached
accuracies in the range of 40% within 25 rounds. For all experiments we performed on the
Shakespeare dataset, the round time was 520 seconds.

Figure 5.13 shows the performance of the three strategies in standard and synthesized
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Figure 5.12: Comparison between loss for FedAvg [24], FedProx [26], and FedLesScan on
FEMNIST dataset with different straggler ratios.

scenarios. In the first plot, FedAvg outperformed both FedProx and FedLesScan. Furthermore,
FedLesScan had the worst performance of the three approaches, reaching about 39% accuracy
compared to 40% for FedProx and 43% for FedAvg. An explanation for the performance
difference is that the way the selection works for FedLess does not provide the best results on
the Shakespeare dataset. In our experiment setup, the functions have similar computation
power. Therefore, data heterogeneity among clients plays an essential role in dictating the
running time of each client. In other words, faster clients tend to have less training data.
As discussed in Section 4.2.2, FedLesScan prioritizes fast clients at the beginning of the
training process by starting with faster clusters first. Selecting faster clients first means that
the algorithm trains on a smaller part of the dataset at the beginning of the training than
the other strategies. As a result, FedLesScan typically shows slower convergence at the
beginning. As the training progresses, the strategy gradually involves the rest of the clients.
Therefore we see the gap between FedAvg and FedLesScan decrease as the number of rounds
increases. We further analyzed the round duration in this particular experiment to verify
our hypothesis. We noticed that FedLesScan takes a shorter time to finish a training round.
Table 5.3 shows a comparison between the round duration for the three strategies. We notice
that the average round duration for FedLesScan is lower by almost 2 minutes compared to the
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Figure 5.13: Comparison between test accuracy for FedAvg [24], FedProx [26], and FedLesScan
on Shakespeare dataset with different straggler ratios.

other two approaches. This result shows the effect of grouping clients with similar training
time together on the round duration. Based on these results, we argue that FedLesScan can
afford to run more rounds and finish in a comparable time.

The rest of the plots in Figure 5.13 show the performance in our synthesized scenarios. We
notice that the performance deficiency to FedAvg and FedProx decreases as the number of
stragglers increases in the system. In scenarios with 30% and 50% stragglers, FedLesScan
matched FedAvg in terms of convergence rate and end accuracy by reaching 40%. In the
scenario with 70% stragglers, FedLesScan outperformed FedAvg and FedProx in terms of the
end accuracy by 1% and 5% respectively. FedProx struggles to match the same performance
level of the other approaches in the situations with 50% and 70% of the system clients.

In Figure 5.14, we examine the loss during training. The first plot confirms our accuracy
analysis, with FedLesScan being the slowest to converge. Furthermore, FedAvg had the
lowest loss during training. In the rest of the synthesized scenarios, we see the performance
of FedLesScan catch up to the other approaches, even surpassing them in the straggler-heavy
situations. Although the behavior of FedProx in scenarios with 50% and 70% stragglers was
worse than the other two approaches, the algorithms can be adjusted to behave similarly to
FedAvg [26].
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Strategy
Round Time (sec)

Time to Reach 39% Accuracy (Hr)
Min Max Mean

FedLesScan 143 550 447 ± 146 3.1
FedAvg 550 562 558.5687 ± 2.344 2.8
FedProx 549 560 554.8362 ± 3.97 3.2

Table 5.3: Analysis of round duration on the Shakespeare dataset for normal behavior with no
straggler simulation. Furthermore, we show the time taken by the three strategies
to reach the same accuracy.
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Figure 5.14: Comparison between loss for FedAvg, FedProx, and FedLesScan on the Shake-
speare dataset with different straggler ratios.

We further investigate the speech recognition task’s performance of the Speech Commands
dataset from the FedScale benchmark. Figure 5.15 depicts the accuracy over time comparison
for the three strategies in both standard and synthesized scenarios. In the standard scenario,
we ran the three strategies for 35 rounds. We see FedLesScan outperform both FedAvg and
FedProx in terms of convergence rate and accuracy at the end of training. FedLesScan reached
an accuracy of 79.4% compared to 76.6% for FedAvg and 77.4% for FedProx. Furthermore,
FedLesScan showed faster convergence by reaching an accuracy of 70% in 19 rounds compared
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Figure 5.15: Comparison between test accuracy for FedAvg, FedProx, and FedLesScan on the
Speech Commands dataset with different straggler ratios.

to 21 and 22 for FedProx and FedAvg respectively.
For the synthesized experiments, we ran the experiments for 60 rounds to see the long-term

behavior of the three approaches on a real world-dataset. For the second plot, with 10%
stragglers, FedLesScan and FedAvg had a similar convergence rate while FedProx was slightly
behind. Additionally, FedLesScan reached an accuracy of 76%, which is a 6% and 10%
increase over FedAvg and FedProx respectively. The third plot with the 30% stragglers shows
FedLesScan consistently besting FedAvg by about 8% towards the end of the training while
outperforming FedProx by a smaller margin of 1%. Although FedProx suffered a slight decline
in accuracy towards the end of the training, it managed to outperform FedAvg at the end.
The same trend continues for the rest of the synthesized experiments. I the 50% stragglers
scenario, FedLesScan outperformed FedAvg and FedProx by 7% and 3% respectively. In the
last experiment, with 70% stragglers, FedAvg performed better compared to its previous
results outperforming FedProx by 1%. Nevertheless, the end accuracy of FedLesScan was
higher than FedAvg by 3%.

We further examine the loss for each experiment. Figure 5.16 demonstrates the performance
gains when using FedLesScan. We also notice that FedProx suffers more fluctuations during
training compared to the other two approaches. Notice that the three approaches reach lower
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Figure 5.16: Comparison between loss during training for FedAvg, FedProx, and FedLesScan
on the Speech Commands dataset with different straggler ratios.

loss and better accuracy with 70% stragglers in the system compared to 50%. We believe
that this phenomenon shows that clients have a different effect on model performance. For
example, some clients might hold more information in their training data; therefore, they
have a higher impact on accuracy when they face issues during training compared to other
clients.

5.4 Time and Cost Analysis

Although accuracy is an essential factor, it does not inform us about the efficiency of the
system or the strategy used. Furthermore, the accuracy results in the previous section were
expressed in terms of the number of rounds. Fast convergence in terms of the number of
rounds does not provide a complete picture of the system efficiency. This section provides
a collective analysis of all experiments in terms of duration and cost. Time computation
was done based on the maximum round timeout. In the three strategies, the round time is
dictated by the slowest client invoked. Therefore, the round time is determined by either
the response of the slowest client or a predetermined timeout. Our calculations compute the
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total experiment time by aggregating the round time during training. We further simulate
real-world behavior by assuming that stragglers in the synthesized scenarios do not respond,
requiring the controller to wait until the round timeout expires.

Dataset Strategy
Experiment Time (mins)

Standard 10% 30% 50% 70%

MNIST
FedAvg 39.6 40.2 40 40 40
FedProx 40 40.2 40.0 40 40

FedLesScan 23.7 28.6 27.2 40 40

FEMNIST
FedAvg 75.5 86.6 86.6 86.6 86.6
FedProx 112 88 88 87 87

FedLesScan 70.9 75.6 82.8 86.8 86.6

Shakespeare
FedAvg 216.9 216.9 216.9 216.9 216.9
FedProx 216.9 216.9 216.9 216.9 216.9

FedLesScan 185.5 215 205 216 216

Speech Command
FedAvg 20 40 40 40 40
FedProx 21.5 40 40 40 40

FedLesScan 15 31 28 33 40

Table 5.4: Experiment duration comparison between FedAvg, FedProx, and FedLesScan across
all datasets.

Table 5.4 shows the total aggregated time per experiment. In the standard scenario, the
duration of the FedLesScan is significantly shorter than FedAvg and FedProx across all
datasets. On the MNIST dataset, FedLesScan had a 40% lower duration than both strategies.
On the FEMNIST dataset, our approach reached higher-end accuracy in 7% less time compared
to FedAvg and 40% less time compared to FedProx. On the Shakespeare dataset, FedAvg
and FedProx had 15% longer duration than FedLesScan. On the Speech Commands dataset,
FedLesScan had a 25% and 30% improvement in experiment duration compared to FedAvg
and FedProx respectively.

In the synthesized scenarios, we see the effect of stragglers on increasing round duration.
In the scenarios with 10% and 30% straggler ratios, we notice that FedLesScan maintains a
lower duration across all experiments. When the percentage of stragglers surpasses a certain
value, they must be invoked in almost all training rounds to meet the minimum number of
clients per round. For instance, if a system has 100 clients and 50 are called every round, at
least one straggler must be called every round if the straggler ratio exceeds 50%; because the
system contains less than 50 reliable clients, it has to choose from stragglers to complete the
required number of clients per round. We notice this effect on FedLesScan as the ratio of
stragglers goes beyond a certain level. In the 50% scenarios, we see a similar training time
for all strategies except the Speech Commands dataset, where FedLesScan had an 18% lower
experiment duration. We justify this advantage by estimating the number of stragglers in the
Speech experiment. The experiment was performed using 542 clients. At a 50% straggler
ratio, the number of reliable clients is about 272. Our approach is not bound to choose from
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stragglers each round because the number of participants per round is 200 (<272). On the
other hand, at a 70% straggler ratio, the system contains 162 reliable clients. Consequently,
Stragglers must be selected every round to reach the minimum number of clients (200). We
see this in the 70% scenarios, where all approaches have similar experiment times across all
datasets.

To analyze the cost of the experiments, we had to estimate the cost of stragglers since strag-
glers can either miss their round or crash. Their running cost still factors in the experiment
cost. The three approaches determine the round time by the slowest client participating in the
current round or a specific timeout. In the worst-case scenario, stragglers can increase costs by
wasting resources doing computations on wasted contributions. Therefore, we estimate the
cost of stragglers as the cost of running the functions for the round duration. As discussed in
section 5.1.1, we use the computation model [80] provided by Google Cloud to calculate the
expected client cost.

Dataset Strategy
Experiment Cost ($)

Baseline 10% 30% 50% 70%

MNIST
FedAvg 2.9 3.9 6 8 10.4
FedProx 5.5 6.4 7.6 9.21 11.03

FedLesScan 2.7 3.8 4 6 9.2

FEMNIST
FedAvg 13.5 16.1 17.87 20.54 24.7
FedProx 16.7 17.3 19.4 22.42 25.8

FedLesScan 13.2 14.58 14.4 14.81 20.6

Shakespeare
FedAvg 5.4 6.6 9.2 12.5 15.4
FedProx 5.12 6.72 9 12.2 15.4

FedLesScan 5.33 5.5 6.75 8.46 12

Speech Command
FedAvg 1.98 3.9 6.4 8.3 10.5
FedProx 2.39 4.6 6.77 8.7 10.8

FedLesScan 1.73 2.7 3.68 4.2 5.5

Table 5.5: Cost analysis of the three approaches in real-world and synthesized scenarios across
all datasets.

Table 5.5 shows the cost of each experiment grouped by strategy and dataset. Investigating
experiment cost for MNIST dataset shows that FedLesScan has a 9% lower cost than FedAvg
and 40% lower cost compared to FedProx in the standard scenario. We notice that the
FedLesScan efficiency becomes more visible as the number of stragglers in the system
increases. In the synthesized scenarios, FedLesScan maintains the cost advantage over
FedAvg while FedProx had the highest cost.

For the FEMNIST dataset, FedLesScan had the lowest overall experiment cost in all scenarios.
Furthermore, FedProx had the highest overall cost. In the standard scenario, FedLesScan was
more cost-efficient compared to FedAvg and FedProx by 2.2% and 20% respectively. In the
synthesized scenarios, the average cost across all scenarios for our strategy was 18% and 23%
lower compared to FedAvg and FedProx respectively.
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For the Shakespeare dataset, the same trend continues where FedLesScan had a lower cost
across all experiments. The cost gap among the three strategies was not significant in the
standard scenario. Nevertheless, FedProx performed better than FedLesScan and FedAvg by
about 4% and 6% respectively. In the synthesized scenarios, FedLesScan achieve an average
experiment cost which was 20% lower compared to FedProx and FedAvg. Notice that we ran
the experiment for a few rounds with fewer clients each round. As a result, the small scale of
the experiment might underestimate the cost gains for FedLesScan.

We further investigate the cost performance of our large-scale experiment using the Speech
Commands dataset. The Cost analysis results follow a trend similar to MNIST and FEMNIST
datasets. FedLesScan had the lowest cost compared to the other approaches across the five
experiments. In standard settings, FedLesScan was 12% more cost-efficient compared to
FedAvg. Moreover, FedLesScan had a 27% lower cost than FedProx. In the synthesized
settings, The average cost gains across experiments increase to about 30% when compared to
FedAvg and 40% when compared to FedProx.

5.5 IaaS vs FaaS Federated Learning

In the original [21] paper, they compared FedLess to the IaaS platform Flower [87] in terms of
training time and cost. Although their results showed that FedLess could reach had overall
lower cost because of the scale to zero advantages of FaaS platform, we wanted to examine
the behavior of the clients in a real training scenario and compare that behavior to clients in
Flower. We chose to run the FedAvg algorithm on MNIST for this experiment.

We performed two experiments. The first included 100 clients, 20 selected each round for
30 rounds. We increased the number to 200 in the second experiment with 50 clients per
round without changing other experiment parameters. The idea of using a small portion of
the clients each round is to show the advantage of using FaaS in training FL models. Besides,
in a large-scale scenario with millions of clients, a small subset of clients participate each
round [24, 88]. We compared FedLess against Flower [87] in terms of the system’s memory
utilization.

We used the statistics for clients’ invocation time, duration, and average memory utilization
to calculate the memory utilization for the whole system. We utilized a sliding window
approach with one-second increments to obtain the number of active client functions at a
specific time during the training session. Each client function was allowed a five-second
cooldown window (after execution) before being considered inactive. We obtained the
system’s memory utilization by multiplying the client’s average memory by the number of
active clients at a given instance.

For Flower, each client runs in a container, and the central server uses high performance
Remote Procedure Call gRPC to communicate with the clients. We obtained the memory
utilization during the experiment by aggregating the statistics of the running flower containers.

Figure 5.17 shows the difference in median memory utilization between FedLess and
Flower. In both scenarios, FedLess has 50% less memory utilization. This demonstrates the
advantages of a run-on-demand model for FaaS compared to IaaS clients. In addition, we
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Figure 5.17: Median memory utilization for FedLess and Flower. The first experiment shows
the result for 100 clients 20 of which are selected per round. The second experi-
ment shows 200 clients with 50 clients selected per round.

noticed that the memory usage of a client function was larger than the memory usage of a
client using Flower. This is due to the additional infrastructure cost that the function requires.
For instance, the function must listen to requests and parse request objects, resulting in higher
memory utilization. We argue that the infrastructure cost becomes less noticeable for higher
client workloads as the additional memory becomes insignificant to the memory required
for training. Furthermore, Edge devices tend to have lighter components. Their memory
footprint is usually smaller than public or self-hosted FaaS platforms; hence the infrastructure
load on these devices will not be as significant.

5.6 Discussion

FedLesScan has a few advantages that set it apart from other approaches. While other
strategies may rely on a multi-threading or computationally capable central server, FedLesScan
does not require substantial computational power to run or manage the FL clients. FedLesScan
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provides an efficient way to use serverless functions in FL. Although synchronous approaches
are reliable, even a small number of stragglers might significantly impact their training
time. Asynchronous techniques, on the other hand, may tolerate client heterogeneity and the
effect of stragglers. However, the high communication cost or persistent communication link
between the central server and the clients prevents the full benefit of serverless architecture
from being realized. The semi-asynchronous nature of FedLesScan attempts to combine
the benefits of both approaches by providing best-effort synchronization guarantees while
tolerating failures and long delays.

We did an exhaustive evaluation of our new approach on four different datasets. Further-
more, we compared FedLesScan to two popular FL training approaches FedAvg and FedAvg,
in terms of round utilization, accuracy, training time and cost. One of the aspects we wanted
to evaluate is how our approach can dynamically adapt to systems with different ratios of
stragglers. We evaluated the performance in standard scenarios for each dataset without
changing the clients’ behavior. Moreover, we performed controlled experiments by simulating
a system with different percentages of stragglers. The evaluation findings show how the
strategy behaves in different scenarios. Furthermore, they show the effect of stragglers on the
system performance and our approach to mitigate this effect.

In Standard scenarios, FedLesScan showed better accuracy, shorter experiment duration,
and lower cost. FedLesScan outperformed both FedAvg and FedProx on all datasets with the
exception of Shakespeare dataset. Our analysis of the Shakespeare dataset shows that some
of the clients might contribute to the model accuracy more than others, especially clients with
longer training time. Figure 5.13 confirms that hypothesis; FedLesScan has lower accuracy in
the early rounds because we prioritize fast clients early in training. Moreover, the training
session was slightly short, with only 25 rounds, due to budget constraints. We argue that in a
more realistic scenario with more rounds, the difference in accuracy will decrease.

In our simulated scenarios, FedLesScan delivered better accuracy in a shorter time and
lower experiment cost on MNIST, FEMNIST, and Speech Commands datasets. On the
Shakespeare dataset, FedLesScan outperformed FedAvg and FedProx in scenarios with 30%,
50%, and 70% stragglers. From our results, we can define a proper usecase for FedLesScan.
Although FedLesScan was designed as a straggler-resilient variation of FedAvg on serverless
FL, the strategy does not try and reduce or eliminate stragglers from the system. That
said, FedLesScan works best in long training sessions because there are more data collected
about the clients’ behavior that will help group clients better. In case of repeated failures,
FedLesScan should perform well due to its three-tier classification system. Furthermore, we
notice that in the case of small-scale experiments with a small number of clients per round,
strategies based on random client selection might perform better than FedLesScan. We notice
this effect in the Shakespeare experiment as the benefits of grouping clients with similar
behavior appear in large-scale experiments.

The overall evaluation showed that FedLesScan achieves an average of 2% better accuracy
in 8% shorter round time and up to 20% lower cost compared to FedAvg and FedProx.

We also compared the resource utilization between FedLess (a FaaS-based FL platform)
and Flower (an IaaS FL platform). The results we showed in Section 5.5 demonstrates the
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resource-efficiency of a scale-to-zero model in FL compared to IaaS platforms. Alongside the
results provided in [21], we argue that FaaS environments can be an efficient alternative in
terms of resources and cost to IaaS-based FL systems.
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6 Conclusion and Future Work

In our work, we focused on two main contributions. Our first contribution consists of
numerous enhancements to the FedLess platform. We made some architectural modifications
to enable FedLess to run different training strategies and facilitate the deployment of the
platform. Furthermore, we integrated a mocking system that can simulate the behavior
of all system components for easier development of FL models. Few improvements can
be integrated intoFedLess. Currently, the platform is implemented using the Tensorflow
library, which limits the platform’s capability to run models or training based on other
libraries such as PyTorch [83]. We faced this limitation when we tried using the FedScale
benchmark to test our strategy because the benchmark was entirely based on Pytorch. One
improvement to address this issue is to move towards library agnostic FL by abstracting the
platform implementation from library dependencies. Furthermore, the current architecture
of the platform uses MongoDB [60] as the parameter server and client database. Although
MongoDB is easy to use and supports horizontal scaling, the platform is locked in to use
this specific database. Another limitation is the usage of a single aggregation function. In
large-scale systems with thousands of clients, the aggregation needs significant memory
and computation power. To address this issue, we can explore multi-function aggregation
approaches such as λ-FL [59].

Our second contribution presented FedLesScan, a clustering-based training strategy de-
signed for FL on FaaS platforms. FedLesScan can adapt to system behavior dynamically.
We proposed an intelligent client selection algorithm based on clustering clients with sim-
ilar behavior. The selection strategy can dynamically adapt to the client’s performance to
provide better system utilization. Furthermore, we integrated a staleness-aware aggregation
mechanism to mitigate wasted contributions for slow clients.

We did an extensive evaluation of FedLesScan comparing its performance to two popular
strategies on multiple datasets. We analyzed its behavior in different system states with
different straggler ratios. Our experiments showed that FedLesScan achieves overall better
results in terms of accuracy, time, and cost by better utilizing participating clients. Although
the strategy produced good results, some enhancements can be made to enhance its perfor-
mance. First, FedLesScan uses a simple staleness-aware aggregation module. In some cases,
stale updates affect model accuracy. Therefore, a more sophisticated aggregation scheme to
aggregate valuable updates and discard unnecessary ones might provide better results. An
example of this aggregation algorithm is the one presented by [64].

In conclusion, the fast development of serverless technologies demonstrates a new direction
for FL. We hope that our efforts to tackle the problem of stragglers in serverless FL motivate
further research in this area.
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