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Abstract

In this thesis, we perform precision studies of cosmological observables in several setups.
We develop a formalism within cosmological perturbation theory that can take into account
the full time- and scale-dependence of the dynamics. The formalism is applied to the case
of massive neutrinos in structure formation, which features scale-dependent dynamics due
to the freestreaming of the neutrinos. Our results show that the impact of exact time-
and scale-dependence in that case exceeds a percent at k = 0.17h Mpc−1 for the power
spectrum at NNLO. When embedding the theory in an EFT framework however, we find
that this change is largely degenerate with counterterms. Next, we compute the NNLO
correction to the bispectrum of large-scale structure, showing that it extends the reach
of the theoretical prediction from k ≃ 0.08 to 0.15h Mpc−1. We show that the double-
hard region of the two-loop correction can be renormalized by the EFT operators already
introduced at one-loop, and we renormalize the single-hard contribution with a simplified
treatment adding one extra parameter. The impact of the departure from EdS at late times
is analyzed for the one-loop correction to the bispectrum. Finally, we analyze non-standard
neutrino interactions with Planck CMB data. Using a generic set of interaction rates
modeling neutrino interactions that halt freestreaming, we establish a freestreaming window
2000 ≲ z ≲ 105 in which neutrinos are not allowed to interact significantly. Furthermore,
we derive an upper bound for the interaction rate Γnfs/H ≲ 1–10 within the freestreaming
window. We investigate the potential of future CMB Stage IV experiments, finding that
they can improve the bound on Γnfs/H by an order of magnitude.

Zusammenfassung

In dieser Arbeit führen wir Präzisionsstudien für kosmologische Observablen in mehreren
Szenarien durch. Wir entwickeln einen Formalismus innerhalb der kosmologischen Störungs-
theorie, der die volle Zeit- und Skalenabhängigkeit der Dynamik berücksichtigt. Der
Formalismus wird auf den Fall massiver Neutrinos bei der Strukturbildung angewendet,
die aufgrund der freien Bewegung der Neutrinos eine skalenabhängige Dynamik aufweisen.
Unsere Ergebnisse bei zweiter nicht-trivialer Ordnung in der Störungstheorie zeigen, dass
der Einfluss der exakten Zeit- und Skalenabhängigkeit in diesem Fall bei k = 0,17h Mpc−1

ein Prozent der spektralen Leistungsdichte übersteigt. Bei der Einbettung der Theorie im
Rahmen einer Effektiven Feldtheorie (EFT) stellen wir jedoch fest, dass diese Änderung
weitgehend mit EFT Korrekturen entartet ist. Als nächstes berechnen wir das Bispektrum
der großräumigen Struktur in zweiter nicht-trivialer Ordnung und zeigen, dass die Reich-
weite der theoretischen Vorhersage von k ≃ 0,08 auf 0,15h Mpc−1 erweitert wird. Wir
zeigen, dass die doppelt-harte-Region der zweiten nicht-trivialen Korrektur durch die bereits
bei der ersten nicht-trivialen Korrektur eingeführten EFT-Operatoren renormiert werden
kann, und wir renormieren den einzel-harten-Beitrag mit einer vereinfachten Behandlung,
die einen zusätzlichen Parameter hinzufügt. Der Einfluss der Abweichung von der EdS
Näherung zu späten Zeiten wird für die erste nicht-triviale Korrektur des Bispektrums
quantifiziert. Schließlich analysieren wir exotische Neutrinowechselwirkungen mit Messun-
gen der kosmischen Mikrowellenhintergrundstrahlung (CMB) des Planck Satelliten. Unter



Verwendung eines generischen Ansatzes für die Wechselwirkungsraten des Neutrinos finden
wir einen Rotverschiebungsbereich 2000 ≲ z ≲ 105, in dem Neutrinos nicht signifikant
interagieren dürfen. Darüber hinaus leiten wir eine Obergrenze für die Wechselwirkungsrate
Γnfs/H ≲ 1–10 innerhalb dieses Bereichs ab. Wir untersuchen das Potenzial der nächsten
Generation von CMB Experimenten und stellen fest, dass sie die Grenze von Γnfs/H um
eine Größenordnung verbessern können.



Preface

This thesis deals with the precise modeling of cosmological observables. It is based on the
four papers listed below, which are the product of research concucted during my period
as a Ph.D. candidate at the Physics Department at the Technical University of Munich
from 2018 to 2022. The aim of the text is to put the results of the papers in a broader
context for non-experts, therefore the first three chapters provide an introductionary review
(with certain exceptions) of physical cosmology and in particular modeling of the large-scale
structure of the Universe. The remaining chapters present the main results of the papers;
more details can be found in the articles themselves, referenced below.
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1 Introduction

Cosmology deals with the some of the most fundamental questions of existence. What
is the composition and evolution of the Universe? What is its future? As a scientific
disipline, the study of cosmology is a relatively new one, arguably emerging just a century
ago with the introduction of General Relativity (GR) by Einstein [1] and the contemporary
advancements in telescopes allowing for explorations beyond the Milky Way [2–4]. Over
the last several decades, cosmology has gone from a field short of experimental data, with
order-of-magnitude estimates, to a precision science with formidable amounts of data [3].
Remarkably, these advancements have allowed us to provide informed answers to the above
questions, although several substantial conundrums remain to be explained.

The observational progress of cosmology includes several complementary probes of the
cosmos. The anisotropies in the Cosmic Microwave Background (CMB) was measured first
by the COBE satellite [5], and afterwards with high precision by the WMAP and Planck
satellites [6–8]. Together with the measurements of the abundance of light elements in
the Universe, the CMB yields firm evidence for the hot Big Bang model of cosmology [9].
Distance measurements of Type Ia Supernovae have revealed that the Universe is expanding
faster and faster, necessitating the existence of some form of dark energy [10, 11]. Redshift
surveys seek to map out the structure of the Universe on large scales by measuring the
angular position of and distance to galaxies. An important step in this pursuit was the
detection of the baryon acoustic oscillations (BAO) feature in the large-scale structure (LSS)
of the Universe by the Sloan Digital Sky Survey (SDSS) project [12]. In addition, the recent
detection of gravitational waves offers a new window into the cosmos, allowing for advanced
tests of GR as well as providing a means to see past the last scattering surface of the CMB
to the very early Universe [13, 14]. Even more recently, the James Webb Space Telescope
has observed the earliest galaxies ever seen, reportedly at about 250 million years after the
Big Bang [15].

The current standard model of cosmology, the ΛCDM model describes the Universe from
a fraction of a second after the beginning to the present (and future), 13 billion years
later [2, 16–18]. The model is supported by an abundance of experimental data, with
different probes yielding consistent values of cosmological parameters, resulting in the model
being referred to as concordant [4]. Nevertheless, there are many big open questions: What
is the nature of the dark components of the Universe? What is the physics underlying cosmic
inflation? How was the matter-anti matter asymmetry of the Universe generated? Ongoing
and future cosmological probes can offer new insights into these issues by scrutinizing the
impacts of dark matter, testing gravity on large scales and determining the initial conditions
for structure formation set by inflation [19–25]. Moreover, they are expected to determine
the absolute neutrino mass scale [20].

Naturally, obtaining valueable information from cosmological probes requires robust
theoretical predictions. While LSS observables potentially contain considerably more

1



1 Introduction

information than the CMB, it is much harder to extract: gravitational collapse is difficult to
model and we cannot observe the structure of the Universe directly as it is mostly comprised
of dark matter. On large enough scales however, where the fluctuations are small and can
be treated as close to linear, perturbative approaches have been developed over the last
couple of decades [26]. Recently, such models have been successfully been applied to the
Baryon Oscillation Spectroscopic Survey (BOSS) galaxy clustering data [27–29]. As the
modeling is very complex, several approximations are utilized. In particular, only the first
order correction to the linear theory is taken into account; adding the two-loop allows for
accurate predictions to even smaller scales. The deviation from an Einstein–de-Sitter (EdS)
universe at very late times in the ΛCDM model is only taken into account at the linear
level. Similarly, the impact of the neutrino component is only accounted for in linear theory.
Moreover, relativistic effects are neglected and baryons are treated as dark matter. While
these approximations are expected to be accurate at the few percent level or better, they
need to be scrutinized and/or corrected for to achieve (sub-)percent accuracy in accordance
with expected sensitivity of future LSS surveys.

Neutrinos are ubiquitous in cosmology and play an important role in the evolution of
the Universe throughout its history [30]. Consequently, cosmological probes are potent
in shedding light on neutrino properties, most notably their energy density in the early
Universe as well as the sum of their masses. We know that neutrinos are massive from
neutrino oscillation experiments, finding mass splittings that translate to a lower bound∑
mν > 0.06 eV/c2 for the sum of neutrino masses [31]. On the other hand, current

cosmological observations set upper bounds: CMB measurements constrain the sum of
neutrino masses to ∑mν < 0.26 eV/c2 at 95 % C.L. [8]. In addition, the presence of
neutrinos imprint a characteristic scale on the LSS of the Universe: due to their substantial
velocities, neutrinos slow down structure growth on scales smaller than their freestreaming
length, the distance neutrinos typically travel in a Hubble time. This distinguishing feature
is expected to be detectable by the Euclid survey, with which a neutrino mass measurement
with σ(∑mν) ≃ 0.02–0.03 eV/c2 is forecasted [20, 32–41]. The presence of the neutrino
freestreaming scale makes however the modeling of dark matter gravitational clustering
more complicated beyond linear theory, as the dynamics of structure growth becomes
scale-dependent.

Cosmological probes can also constrain properties of beyond-Standard Model (SM)
neutrinos. Although three SM neutrinos are consistent with current observations, there are
many viable scenarios with exotic neutrino interactions. Freestreaming, i.e. non-interacting
neutrinos in the early Universe leave a distinctive signal in the CMB that cannot be mimicked
by other cosmological parameters [30, 42, 43]. Consequently, measurements of the CMB
anisotropies serve as a laboratory to test and constrain scenarios with non-standard neutrino
interactions.

Hence, current and future cosmological probes can yield major insights into the evolution
of the Universe and the fundamental laws of physics that govern it. To achieve this, accurate
theoretical modeling is required. In this thesis, we discuss recent advancements hereof put
forward in Papers I–IV [44–47]. We seek to answer the following questions:

i) What is the impact of exact time- and scale-dependent structure growth in the presence
of massive neutrinos on LSS observables? The scale-dependent dynamics of structure

2



formation due to freestreaming neutrinos is not typically taken into account beyond
linear theory in LSS analyses. Moreover, EdS dynamics is often assumed since it
simplifies the calculations. We develop a framework within cosmological perturbation
theory that can capture general scale- and time-dependent dynamics in structure
formation. This framework is rather versatile and can capture a wide range of extended
cosmolocial models. Applying this framework to cosmologies with massive neutrinos,
we can relax both abovementioned approximations and assess their impact on the
next-to-next-to-leading order (NNLO) power spectrum of matter fluctuations.

ii) How can the bispectrum be modeled at NNLO in an effective field theory (EFT) frame-
work, and to what scale can the perturbative description be trusted? The bispectrum
was for the first time modeled at NNLO order in an EFT framework in Paper II. We
compare the perturbative result at one- and two-loop to N-body simulations, and
determine to what degree adding the two-loop term extends the reach of the theory.

iii) In models with non-standard neutrino interactions, what is the window of redshifts in
which neutrinos are not allowed to interact significantly given cosmological observa-
tions? And how will these constraints improve with future experiments? Cosmological
probes can put stringent constraints on exotic neutrino interactions. We determine
the window of redshifts in which neutrinos cannot interact efficiently given Planck
CMB data. Moreover, we forecast how much next generation CMB experiments can
extend this window assuming that the true cosmology is ΛCDM.

Outline of the thesis
The rest of the thesis is structured as follows: First, the stage is set with a brief introduction
and overview of the basics of physical cosmology in Chapter 2. We present the description of
the Universe as a homogeneous and isotropic FLRW background with density fluctuations
on top. Furthermore, we outline the use of Bayesian statistical inference in cosmology, which
will be later applied in Chapter 6. As a major focus of the thesis will be on large-scale
structure formation to address questions i) and ii), we devote Chapter 3 to a description
of cosmological perturbation theory in the Eulerian picture. In particular, after defining
Standard Perturbation Theory (SPT), we describe in Section 3.4 an extension that can
capture scale- and time-dependent dynamics that was introduced and developed in Papers
I and III. We moreover discuss an EFT framework for cosmological perturbation theory as
well the effect of large bulk flows on mildly non-linear scales.

In Chapter 4, we present the results of Papers I and III, undertaking item i) above.
After reviewing the cosmic neutrino background (CνB), we introduce a fluid model for
structure formation in the presence of massive neutrinos. We embed the model in an EFT
framework, and compare it to commonly adopted simplified treatments. Next, question ii)
is addressed in Chapter 5, presenting the results of Paper II. We compute the NNLO
correction to the bispectrum in an EFT setup, showing that it significantly extends the
reach of the perturbation theory. Furthermore, we assess the impact of using exact ΛCDM
time-dependent dynamics on the one-loop correction to the bispectrum.

In Chapter 6, we change gears a bit and consider beyond-SM scenarios featuring non-
standard neutrino interactions as relevant for question iii). Such models can be tested with

3



1 Introduction

CMB experiments. We present the analysis of Paper IV, where a redshift window in which
neutrinos are not allowed to significantly interact given current cosmological observations
was determined. In addition, we make a forecast of how these constraints will improve with
future CMB experiments.

Finally, in Chapter 7 we summarize the main conclusions of the thesis and provide an
outlook for future work. In Appendix A, we give explicit expressions and diagrams for the
two-loop correction to the bispectrum, relevant for the discussion in Chapter 5.

Notations and conventions
We work in natural units where the speed of light c, the Planck constant ℏ as well as the
Boltzmann constant kB is set to unity. Distances and inverse distances are measured in
Mpc/h and h/Mpc, respectively, where 1 pc = 3.086×1016 m = 3.262 ly and h is the reduced
Hubble constant:

h = H0

100 km s−1Mpc−1 . (1.1)

The expansion rate today H0 will be defined precisely in Chapter 2. Measuring distances
in Mpc/h thus effectively corresponds to quantifying them in terms of the Hubble radius
1/H0, which is useful since the dynamics of a mode depends on the relative size of the mode
compared to the Hubble radius.

We use metric signature (−,+,+,+). Spacetime indices are denoted by Greek letters, e.g.
µ = {0, 1, 2, 3}, while latin indices denote conventional summations starting at 1. Einstein’s
summation convention is used. Three-dimensional vectors are written in bold, e.g. q, and
their absolute values in italics, |q| = q. We denote the Dirac delta function by δD and the
Kronecker delta function by δ(K).

Finally, we adopt the following convention for the three-dimensional Fourier transform:

f̃(k) =
∫ d3x

(2π)3 e−ikxf(x) , f̃(x) =
∫

d3k eikxf(k) =
∫

k
eikxf(k) , (1.2)

where we in the last equation also introduced the shorthand notation
∫

k ≡
∫

d3k.
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2 Fundamentals of physical cosmology

Physical cosmology deals with the origin and evolution of the Universe as well as the observed
structures and dynamics on large scales. Starting with Einstein’s postulation of GR in
1915 [1] and the observation that the Universe is expanding by Edwin Hubble in 1929 [48],
theories of cosmology emerged, with the Big Bang model eventually established as the
leading theory. Its predictions of the abundance of light elements as well as the existence of
the CMB, was later experimentally confirmed, providing firm evidence for the model [49, 50].
In this chapter, we give a brief overview of the standard model of cosmology, with a focus
on parts relevant for this thesis. The review is in no way complete; more comprehensive
and pedagogical material on cosmology can be found in e.g. Refs [2, 16–18, 30, 51, 52]. In
Section 2.1, we introduce the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and
the Friedmann equations. Section 2.2 provides a brief list of main events in the course of
the Universe, and we discuss the inhomogeneous Universe in more detail in Section 2.3,
including observables such as the power spectrum and the CMB temperature anisotropies.
We end the chapter by briefly describing the use of Bayesian inference in cosmology.

2.1 Friedmann-Lemaître-Robertson-Walker universe

Two fundamental cornerstones lie at the base of the standard model of cosmology: General
Relativity and the cosmological principle. GR is the description of gravity as a geomet-
ric property of four-dimensional spacetime. The central equation is the Einstein field
equation [1],

Gµν = 8πGTµν , (2.1)

with G being Newtons gravitational constant. This equation expresses how the geometrical
properties of spacetime, described by the Einstein tensor Gµν , is influenced by the stress-
energy tensor Tµν . The stress-energy tensor represents the density and flux of energy
and momentum at each point in spacetime, with contributions from all sources of matter,
radiation and energy that populate spacetime. The Einstein tensor can be written in terms
of the spacetime metric gµν , relating observer-dependent coordinates Xµ to the invariant
line element via ds2 = gµν dXµ dXν .

The cosmological principle is the assumption that on large scales, the Universe is homo-
geneous and isotropic. The most general metric describing a spacetime compatible with the
cosmological principle is the Friedmann-Lemaître-Robertson-Walker metric, given by the
following line element [53–56]:

ds2 = − dt2 + a2(t)
[

dr2

1 − kr2 + r2
(
dθ2 + sin2 θ dϕ2

)]
, (2.2)

5



2 Fundamentals of physical cosmology

where t is the time coordinate and r, θ and ϕ are comoving spherical coordinates. The
parameter k describes the curvature of a three-dimensional spatial slice of the Universe.
Furthermore, the scale-factor a is a function of time, describing the expansion (or contraction)
of space. Note that if we simultaneously rescale a → aλ, r → r/λ and k → λ2k, the line
element remains invariant. Therefore we can rescale a so that a0 = 1 today, following
common conventions. We define the Hubble rate as the relative rate of change of the scale
factor with respect to time,

H = 1
a

da
dt . (2.3)

The expansion rate today is named the Hubble constant: H0 = (67.4 ± 0.5) km s−1Mpc−1,
with the quoted value being the measurement (68 % C.L.) from the Planck CMB experi-
ment [8].

Our inferences of the evolution of the Universe is based on measuring the light (and
recently gravitational waves) that we receive from distant objects. Due to the expansion
of the Universe, the wavelength of photons is stretched as they propagate, and hence an
observer measures wavelengths that are redshifted compared the emitted wavelengths. More
precisely, given emitted and observed frequencies νe and νo, respectively, we define the
redshift z as the relative change

z = νe − νo
νo

= ao
ae

− 1 , (2.4)

which we in the second equation related to the scale factors at the time of emission and
observation. For observers today, a0 = 1, such that light emitted when the scale factor
equaled a has a redshift z given by 1 + z = 1/a.

The stress-energy tensor compatible with homogeneity and isotropy on large scales is
that of a perfect fluid, given in the rest frame as

Tµ
ν = diag [−ρ, P, P, P ] , (2.5)

where ρ is the energy density and P is the pressure of the fluid. Both depend only on time
to respect homogeneity. The generalization of energy and momentum conservation in GR is
the conservation equation ∇νT

µ
ν = 0. For the perfect fluid, the zeroth component of this

equation yields an equation for the conservation of energy density,

dρ
dt + 3H(ρ+ P ) = 0 . (2.6)

The evolution of the scale factor can be derived for the homogeneous and isotropic FLRW
universe by inserting the metric (2.2) and the stress-energy tensor (2.5) into Einstein’s
equation (2.1). After a straightforward, but lengthy derivation (see e.g. Ref. [2]) one obtains
the Friedmann equations:

H2 = 8πG
3 ρ− k

a2 , (2.7a)

1
a

d2a

dt2 = −4πG
3 (ρ+ 3P ) . (2.7b)
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2.1 Friedmann-Lemaître-Robertson-Walker universe

Cosmic inventory

To be able to make further progress, we need to specify the contents of the Universe. We
will assume that the density and pressure of each component i can be related by an (in
general time-dependent) equation of state wi, i.e. pi = wiρi. Inserting the relation into the
conservation equation (2.6) yields the dependence of the energy density on the scale factor

ρi ∝ a−3(1+wi) . (2.8)

Hence, it is useful to classify the different components in the Universe by the equation of
state. We distinguish between the following:

• Matter. Components whose pressure is much less than the energy density is referred
to as matter, w → 0. From Eq. (2.8), we see that ρ ∝ a−3: matter dilutes with the
volume expansion. The main matter components in our Universe are dark matter,
baryons and neutrinos at late times. The former is an unknown type of weakly
interacting matter hypothesized as an explanation of various gravitational phenomena
in the Universe; see Refs. [57–60] for reviews on dark matter. In cosmology, “baryons”
refer to nuclei and electrons (even though the latter are leptons).

• Radiation. For a gas of relativistic particles, the equation of state is w = 1/3. We
refer to components with this pressure-energy ratio as radiation. From the equations
above it follows that radiation redshifts as a−4. Photons and neutrinos (at early times)
are important radiation components in our Universe.

• Dark energy. Einstein’s equations allow for an additional term referred to as the
cosmological constant term. We can however equivalently describe this constant as an
additional component with w = −1 and hence ρ ∝ a0 constant. Just before the turn
of the century, measurements of Type Ia Supernovae demonstrated that the expansion
of the Universe is accelerating [10, 11]. A species can drive accelerated expansion
if its equation of state satisfies w < −1/3. Thus, a cosmological constant could be
driving the acceleration. However, it is many orders of magnitude smaller than what is
expected from the ground state energy in quantum field theory (QFT) [61]. Therefore,
other models of dark energy or modified gravity have been proposed to explain the
accelerated expansion. We refer to Refs. [62–65] for discussions of dark energy and
modified gravity in the context of cosmology.

Given these scalings, it is clear that the different components dominate the energy content
of the Universe at different points in time. At early times, during the radiation domination
era, the scale factor is small and radiation comprises the dominant energy density of the
Universe. Since radiation dilutes faster than matter when the Universe expands, there is
a point at which the radiation and matter energy densities are equal. This is known as
matter-radiation equality. After a subsequent era of matter domination, dark energy takes
over at some point and becomes the dominant component. This crossover can be referred to
as matter-dark energy equality. Depending on which component dominates the total energy
of the Universe, we can derive the following time-dependence of the scale factor from the
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2 Fundamentals of physical cosmology

Friedmann equations (2.7),

a(t) ∝
{
t2/(3(1+w)) , w ̸= −1 ,
eHt , w = −1 .

(2.9)

While this result only exactly applies for a single-component universe, it can be used to
very good approximation deep in the various eras of the Universe at which either radiation,
matter or dark energy dominates.

It is convenient define a critical density ρ0
crit = 3H2

0/8πG, such that we can quantify
the contribution of each component to the energy density today in terms of dimensionless
density parameters,

Ω0
i = ρi(t0)

ρ0
crit

and ωi ≡ Ω0
ih

2 , (2.10)

where the sub-/superscript 0 indicates today (we will generalize the definition below). The
second set of equivalent parameters ωi is useful since it is independent of h (Ω0

i depends on
h through ρ0

crit). Using Eq. (2.8), we can rewrite the first Friedmann equation as

H(z) = H0

√
Ω0

r (1 + z)4 + Ω0
m(1 + z)3 + Ω0

Λ(1 + z)3(1+w) + Ω0
K(1 + z)2 + ρν

ρ0
crit

, (2.11)

where Ω0
r , Ω0

m and Ω0
Λ are the radiation, matter and dark energy density parameters,

respectively. In addition, we defined ΩK = −k/H2
0 , treating curvature as an effective

additional component of the Universe. CMB measurements indicate that curvature makes
up a permille of the total energy density of the Universe today [8]. We will therefore neglect
curvature from now on. As we will see more in detail in Chapter 4, neutrinos behave as
radiation in the early Universe and as matter at very late times, hence their energy density
ρν does not scale with the same power throughout the history of the Universe.

Finally, we introduce some notation that in particular will be useful for the description of
structure formation in Chapter 3. First, we define conformal time τ via dτ ≡ dt/a. Then,
the FLRW metric can be written as (assuming no curvature)

ds2 = a2(τ)
[
− dτ2 + dr2 + r2

(
dθ2 + sin2 θ dϕ2

)]
, (2.12)

and radial, light-like geodesics are simply given by ∆τ = ∆r. Starting at τ = 0 at the
Big Bang, τ is hence the maximum distance information can have propagated since, and
therefore referred to as the comoving horizon. Furthermore, we generalize the density
parameters defined above: let ρcrit(τ) = 3H(τ)2/8πG be the time-dependent critical density,
then we define density parameters Ωi(τ) = ρi(τ)/ρcrit(τ). We can write down the Friedmann
equations one more time in terms of these density parameters:1

1 = Ωr(τ) + Ωm(τ) + ΩΛ(τ) , (2.13a)
dH
dτ =

(
ΩΛ(τ) − Ωm(τ)

2 − Ωr

)
, (2.13b)

where H is the conformal Hubble rate,

H = 1
a

da
dτ = aH . (2.14)

1Written in this form, we can include neutrinos in the radiation or matter contributions as appropriate.
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2.2 A brief history of the Universe

The ΛCDM model
The currently most accepted model of cosmology is the ΛCDM model. Described by six
parameters, it agrees well with observations, and moreover different probes find consistent
values for the parameters.2 In ΛCDM, spacetime is described by a spatially flat FLRW
metric, and the ingredients in the Universe are baryons, cold dark matter, photons3,
neutrinos (with ∑mν = 0.06 eV fixed) and a homogeneous dark energy component with
w = −1 (e.g. a cosmological constant). The best constraints on the ΛCDM model are
provided by the Planck CMB measurements, yielding the following density parameters [8]:

Ω0
cdm = (0.2660 ± 0.0074) , Ω0

b = (0.0493 ± 0.0009) , Ω0
Λ = (0.6847 ± 0.0073) . (2.15)

Hence, the dark components dominate the cosmic energy budget today: almost 70 % of
the energy density is composed by dark energy and dark matter contributes 27 %. The
remaining parameters of the model control the amplitude and tilt of the primordial power
spectrum, as will be discussed below, and a parameter describing the amount of reionization
of the Universe at late times during the formation of stars [69].

2.2 A brief history of the Universe
In the standard picture of an expanding Universe that was initially in a hot, dense Big
Bang state, the main events of the thermal history are the following:

• Inflation. The theory of inflation is a hypothesized period in the very early Universe
in which the scale factor increased exponentially [70–73]. While not confirmed ex-
perimentally, this hypothesis explains certain puzzles in the hot Big Bang model, for
example why the CMB is remarkably uniform across (presumably disconnected causal
regions of) the sky, and why the curvature of the Universe is so small. Moreover, infla-
tion can explain the initial, seed density fluctuations in the early Universe. We do not
discuss the inflationary hypothesis in detail in this thesis, but refer to comprehensive
reviews in e.g. Refs. [74–78].

• Baryogenesis. We observe an overabundance of matter over antimatter today, in
particular a baryon-to-photon ratio nb/nγ ∼ 10−9. If the amount of matter and
anti-matter was equal in the early Universe, particles and anti-particles would have
annihilated and left a Universe with only radiation. Therefore, models of baryogenesis
attempt to construct a mechanism from which a matter-anti-matter asymmetry could
have arisen. In-depth discussions of baryogenesis can be found in Refs. [79–82].

• Electroweak phase transition. When the Universe has cooled to T ∼ 100 GeV,
corresponding to about z ∼ 1015, the Higgs field acquired a non-zero vacuum expec-
tation value, breaking electroweak symmetry, generating masses to fermions via the
Higgs-mechanism.

2There are a few mild tensions that somewhat break the concordance of the ΛCDM model, e.g. the H0 and
S8 tensions [66, 67]. Nevertheless, they do not (yet) rule out the model.

3The photon energy density today is taken as fixed since it has been measured directly by the COBE
satellite [68].
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2 Fundamentals of physical cosmology

• QCD phase transition. At T ∼ 100 MeV, strong interactions between quarks and
gluons become important, and they confine to mesons and baryons. This corresponds
to a redshift z ∼ 1012.

• Neutrino decoupling. After the temperature has dropped to T ≈ 1 MeV, or z ∼ 109,
weak interactions between electrons and neutrinos become inefficient and neutrinos
decouple from the thermal plasma.

• Big Bang nucleosynthesis. At temperatures of T ≈ 100 keV, the formation of light
nuclei starts, a process known as Big Bang nucleosynthesis (BBN). The Universe is
about three minutes old at this point, corresponding to a redshift z ∼ 108.

• Matter-radiation equality. At zeq ≈ 3400, the radiation and matter contributions
to the total energy density of the Universe are equal.

• Recombination. The production of neutral Hydrogen becomes favored compared
to the reverse ionization process at z ≈ 1100. Hence the free electron fraction of
the Universe becomes suppressed and the Universe ceases to be opaque to radiation.
Shortly after recombination, photon scattering with free electrons becomes inefficient
(because most have recombined with protons in Hydrogen) and photons decouple. They
freestream ever since, and are observed today as the Cosmic Microwave Background.

• Matter-vacuum energy equality. At this point, vacuum energy starts to become
the dominant contributor to the cosmic energy budget. For a model with Ωm = 0.3
and ΩΛ = 0.7 today, matter-vacuum energy equality happens at zΛ ≈ 0.3.

Today (z = 0), the Universe is about 13.8 × 109 years old with a temperature T ≈ 0.24 meV.

2.3 Density fluctuations
While the overall properties of the Universe appear to be homogeneous, we see inhomogeneous
structure from small scales up to hundreds of Mpc [83, 84]. These structures presumably
contain rich amount of information about the initial conditions of the Big Bang as well as
the subsequent evolution of the Universe. Therefore, the study of these inhomogeneities is
the main focus of precision cosmology today [8, 20, 21, 85, 86]. A natural observable is the
density contrast δ: the fluctuations of energy densities ρ(x) around the mean ρ̄,

δ(x) = ρ(x) − ρ̄

ρ̄
. (2.16)

We will discuss in great detail how this quantity can be modeled theoretically in the next
chapter.

The density fluctuations of the Universe are believed to have arisen from tiny, primordial
seed perturbations in the early Universe that over cosmological time-scales were amplified by
gravitational instability [26]. We have no direct measurements of the primordial fluctuations,
but the most appealing explanation for their physical origin is the inflationary paradigm [70–
73]. In models of inflation, the seed perturbations typically arise from quantum fluctuations
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2.3 Density fluctuations

in the dynamical field driving inflation, often called the inflaton. Under this assumption, the
primordial fluctuations therefore arose from stochastic processes, i.e. they are realizations of
an ensemble of possibilities with statistical properties depending on the inflationary model.

This statistical nature of the initial seed perturbations predicted by inflation implies
that cosmological observables are in general statistic rather than deterministic. In addition,
cosmological evolution has a time-scale much longer than the one over which we can observe:
in our past light-cone we can observe different objects which are in different stages of their
evolution, but we cannot follow the evolution of a single system. Hence, we model the
Universe as a realization of an ensemble of universes with certain statistical properties. To
measure these properties, one makes use of the ergodic theorem to replace ensemble averages
by spatial averages (we have only one realization, one universe that we can measure). This
replacement is only valid if fields are uncorrelated in the large-scale limit and separate
regions can be considered independent realizations.

The statistical properties of fields can be characterized by moments of the probability
density function (PDF), i.e. ensemble averages of N fields referred to as correlation functions
or N -point functions. For Gaussian random variables, all information is encoded in the
two-point correlation function. Random fields are statistically homogeneous and statistically
isotropic if the PDF or its moments are invariant under spatial translations and rotations.
We will assume that cosmic fields are drawn from statistically homogeneous and isotropic
distributions, in accordance with the cosmological principle on large scales.

Power spectrum

Since the density perturbations in the Universe grow from tiny initial conditions, it is useful
to define observables as fluctuations around the background value, as we did for the energy
density in Eq. (2.16). Then, applying the ergodic theorem, the first moment or the average
of fluctuation fields vanishes exactly. Hence, the first non-trivial moment is therefore the
two-point correlation function, ξ(|r|) ≡ ⟨δ(x)δ(x + r)⟩ for the density contrast. Due to the
assumption of statistical homogeneity and isotropy, it can only depend on the distance |r|
between the two positions x and x + r.

As we will see in the next chapter, it is useful to model the density perturbations in Fourier
space. Given the density contrast in Fourier space δ̃(k), we define the power spectrum P (k)
via4 〈

δ̃(k)δ̃(k′)
〉

= δD(k + k′)P (k) , (2.17)

where δD is the Dirac delta function. Due to statistical homogeneity and isotropy, the power
spectrum only depends on the norm of the wavenumber k [26]. The power spectrum of
density fluctuations will be one of the main observables modeled and discussed in this thesis.

The simplest, single-field inflationary models predict initial conditions that are generally
almost scale-invariant, adiabatic5 and that are very close to Gaussian [76]. This is in good

4Note that there are two conventions for the definition of the power spectrum in the literature, depending
on the placement of (2π) factors in the Fourier transform. In contrast to the definition (2.17), the power
spectrum is defined as ⟨δ(k)δ(k′)⟩ ≡ (2π)3δD(k + k′)P (k) when adopting the Fourier convention with a
factor (2π)3 in the transform to real space.

5For adiabatic perturbations all perturbations of individual species are related to each other (as well as
to the curvature perturbation [76]) by a rescaling. The opposite case, isocurvature fluctuations, has
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2 Fundamentals of physical cosmology

agreement with measurements of the CMB as measured by Planck [8, 87], in particular
measurements of the three-point function, the bispectrum, puts constraints on the primordial
non-Gaussianity to be about four orders of magnitude smaller than the Gaussian part [88].
Throughout this thesis we will therefore assume Gaussian initial conditions. In total, the
initial density fluctuations can be parametrized by the following primordial power spectrum:

Pprim(k) = A

(
k

k⋆

)ns

(2.18)

where A is the amplitude, k⋆ is a reference scale (typically k⋆ = 0.05 Mpc−1) and the
spectral index ns quantifies the tilt. Nearly scale-invariant initial conditions implies ns ≃ 1;
many inflation models predict a value slightly lower than unity [76]. Current CMB data
measures ns = (0.9645 ± 0.0004) at 68 % C.L. [8], but is however not yet sensitive enough
to detect deviations from power-law initial conditions (a scale-dependence or “running” of
the spectral index) [87].

The various events and evolution between inflation and present times shape the power
spectrum, hence we measure a “processed” version of the primordial power spectrum. We can
parametrize this processing as P (k, τ) = D2(τ)T 2(k)Pprim(k), where D is a time-dependent
growth factor and T is the transfer function. As the Universe evolves after inflation, larger
and larger comoving regions come in causal contact as they enter the comoving horizon.
A mode with wavenumber k enters the horizon when kτ = 1. It is useful to distinguish
between modes that enter the horizon during radiation domination, and modes that enter
during matter domination, k > keq and k < keq, respectively, where keq is the mode that
enters exactly at matter-radiation equality. The reason for this is that during radiation
domination, radiation pressure prevents growth of structure, and the density contrast grows
like δ ∝ ln a, while during matter domination it grows as δ ∝ a. [2, 18, 30]. Therefore, we
expect a different power shape for scales that enter the horizon before and after equality,
with a turnover at keq. Indeed, proper analytic (linear) treatments find [2, 17, 18, 30, 89]

T (k) ∝

1 k < keq ,
1

k2 ln
(

k
keq

)
k > keq .

(2.19)

During radiation domination, the perturbations in the photon fluid oscillate due to the
gravitational attraction and radiation pressure. Before recombination, baryons and photons
are coupled together via efficient Compton scatterings, and thus baryons partake in these
oscillations before they decouple, leading to the so-called BAO imprint on the matter
power spectrum. The BAO feature is a series of wiggles on the power spectrum around
k ∼ 0.1h Mpc−1.

The power spectrum of matter fluctuations can be obtained by Boltzmann solvers such
as CLASS [90, 91] and CAMB [92]. They solve numerically the linearized system of equations
to high accuracy [93]. As we will see in the next chapters, linear theory is only valid up to
k ∼ 0.1h Mpc−1 (depending on redshift and required accuracy). A major focus of this thesis
will be to describe structure formation beyond linear theory, in particular in Chapters 3, 4
and 5. We show the linear power spectrum computed by CLASS in Fig. 2.1 for z = 0 in a

perturbations of each species that adds to a vanishing total fluctuation.
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Figure 2.1: Linear matter power spectrum at z = 0, computed in CLASS. The vertical dashed
line correspond to keq, the mode that enters the horizon at matter-radiation
equality. The BAO feature can be seen around k ≈ 0.1h Mpc−1.

ΛCDM model. We can appreciate the turnover at keq, as well as the BAO feature around
k ≈ 0.1 h Mpc−1 (somewhat invisible on the log-log plot).

The matter power spectrum (as well as higher order N -point correlation functions)
contains rich amounts of information on the cosmological initial conditions and evolution,
and thus also on fundamental physics. As we discuss in detail in the next chapter, there is
consequently a significant effort to theoretically model and measure the structure of the
Universe on large scales.

Cosmic Microwave Background
Shortly after recombination, when electrons and protons form natural hydrogen, photons
decouple from electrons due to the greatly reduced number of free electrons. Subsequently,
photons freestream, forming the CMB today. At the time of photon decoupling, the
Universe was exceedingly homogeneous and isotropic, with inhomogeneities of amplitudes
10−5. Nevertheless, those fluctuations result in temperature anisotropies in the CMB that
have been observed, first in the 1990s by COBE [5] and subsequently with high precision by
WMAP [6] and Planck [8].

Consider the temperature of CMB photons reaching us from a direction n̂: T (n̂). We
can define the temperature fluctuation

Θ(n̂) = T (n̂) − T0
T0

, (2.20)

where T0 = (2.7255 ± 0.0006) K is the mean CMB temperature [68]. Including anisotropies
in all directions n̂ yields a two-dimensional map defined on the surface of a sphere, hence it
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Figure 2.2: Angular power spectrum of the CMB temperature anisotropies as measured by
Planck. Figure reprinted from Ref. [8]. The measurement is fitted to a ΛCDM
model, shown in blue, and the lower panel shows residuals with respect to this
model.

is useful to expand in spherical harmonics:

Θ(n̂) =
∑
l,m

almYlm(n̂) , (2.21)

with expansion coefficients alm. As reviewed above, we can only describe the statistical
properties of the fluctuations alm. Statistical isotropy implies that different m’s are equiva-
lent, i.e. there is no preferred direction. Thus, assuming Gaussian initial conditions, we can
describe the statistical properties as

⟨alm⟩ = 0 , ⟨alma
∗
l′m′⟩ = δ

(K)
ll′ δ

(K)
mm′Cl , (2.22)

where δ(K) is the Kronecker delta function. The variance Cl for the two-dimensional
distribution is analogous to the three-dimensional power spectrum.

The temperature anisotropies of the CMB are sensitive to the entire cosmological evolu-
tion: in particular to the fluctuations of the photon fluid in the early Universe and until
recombination, but they are also influenced by various effects between recombination and
today. We will not discuss the origin and evolution of the CMB anisotropies in detail in this
thesis, and refer the reader to Refs. [2, 8, 17, 30] for reviews. The exception is neutrinos:
we will describe the effects of cosmic neutrinos on the CMB in Chapter 4, and furthermore
examine the CMB impact of beyond-SM neutrinos in Chapter 6.

The angular spectrum of temperature anisotropies Cl, as measured by the Planck exper-
iment, is shown in Fig. 2.2 (more precisely, the equivalent quantity Dl = T 2

0 l(l + 1)Cl is
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2.4 Bayesian statistics

plotted). The spectrum is fitted to a ΛCDM model, the blue line, and the residuals are
shown in the lower panel. Thus, the Planck measurements of the CMB provides currently
the tightest constraints on the ΛCDM cosmological model [8]. Moreover, future CMB Stage
IV experiments such as Simons Observatory [94], LiteBIRD [95] and CMB-S4 [86] (as well
as the proposed CORE-M5 [96] and PICO [97] satellite projects) are expected to yield
significant improvements by measuring the small scale anisotropies in greater detail and the
polarization of the CMB photons with improved precision compared to Planck.

2.4 Bayesian statistics

We have seen that statistics plays an important role in the study of physical cosmology. The
last part of this chapter will therefore be devoted to a brief introduction to the Bayesian
school of statistics. More in-depth material can e.g. be found in the comprehensive reference
for Bayesian probability [98], or in Refs. [99–101] for reviews of Bayesian statistics in
cosmology.

Bayesian probability is a view of probability in which probabilities are quantified in
the degree of belief or knowledge given partial information. To determine the probability
of a hypothesis, the Bayesian statistician specifies a prior probability, related to their
knowledge or belief in the hypothesis before new evidence is presented. Subsequently, this
prior probability is updated to the posterior probability by taking into account new evidence
via Bayes’ theorem [98–101]. It is opposed to the frequentist view of probability, where the
probability of an event is defined as the relative frequency in the limit of an infinite number
of trials with equal probability. This definition is however somewhat unsatisfactory [99, 100]:
it is strictly speaking circular, assuming that trials have equal probability. Moreover, it
only applies to repeatable events, and only exactly in the infinite limit. The Bayesian
definition of probability can on the other hand be applied to any event (even unrepeatable).
Nevertheless, critics argue that while the frequentist definition is objective, the Bayesian
one is not: the probability depends on the subjective selection of the prior.

The use of Bayesian statistics in cosmology has had an upturn in the last decades [100, 101].
The Bayesian point of view is useful since we only have one Universe on which we can measure
and it is difficult to replicate surveys as they are exceedingly expensive. Nevertheless, one
can use the ergodic theorem to produce frequentist trials; see e.g. Ref. [102] for cosmological
inference performed in both a Bayesian and frequentist way. There are furthermore
good tools for Bayesian parameter inference in cosmology, such as CosmoMC [103] and
MontePython [104, 105], that are easily linked to Boltzmann solvers such as CAMB and
CLASS.

At the heart of Bayesian inference is Bayes’ theorem. As a simple consequence of basic
axioms of probability, the theorem itself is not controversial, only its use in Bayesian
inference is [100]. Let p(A|B) be the conditional probability of A given B and let p(A,B) be
the joint probability of A and B. Furthermore, let I represent information that is assumed
to be true. Bayes’ theorem states that

p(B|A, I) = p(A|B, I)p(B|I)
p(A|I) . (2.23)
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For our purposes, it is more illuminating to replace A with experimental data d, and B
with the parameters α of a model I = M . Then, Bayes theorem reads

p(α|d,M) = p(d|α,M)p(α|M)
p(d|M) . (2.24)

The conditional probability on the LHS, p(α|d,M) is the posterior probability, i.e. the
updated probability of the parameters α after taking the new evidence, the data d, into
account. It is proportional to the prior probability p(α|M) times the likelihood L(α) =
p(d|α,M). The prior probability expresses the degree of knowledge on α before confronted
with data. Prior information can for example incorporate that a mass parameter must
be positive. The likelihood is a function of the model parameters α, and represents the
plausibility of the measurement given those parameters. Furthermore, as a function of
the α’s, it is not a PDF and not normalized. The denominator in Eq. (2.24), p(d|M), is
known as the Bayesian evidence or the marginal likelihood. It is the normalization of the
posterior PDF. If one is only interested in parameter inference, rather than e.g. model
comparison, the normalization is irrelevant since only ratios of the posterior at different
points in parameter space are of interest. Then it is sufficient to apply Bayes’ theorem as
p(α|d,M) ∝ L(α)p(α|M).

Hence, to perform Bayesian inference on cosmological parameters, we need to specify
a prior on those parameters as well as compute the likelihood given the observed data.
A typical analysis involves O(10) free parameters, therefore a naive grid exploration of
parameter space is unfeasible. Moreover, most of parameter space is typically ruled out
with a very low posterior, and therefore worthless to explore. A better approach is to
sample parameter space in a clever way. One such method is the Markov Chain Monte
Carlo (MCMC) technique [106]. The aim of the MCMC method is to constructs a sequence
of points in parameter space, where the density of each point in the chain is proportional to
the posterior PDF. The sequence is defined as a Markov chain, with the property that it
converges to a steady state in which the points are sampled from the posterior distribution.
The elements of the chain are sampled in a random manner; various MCMC algorithms
have different prescriptions for picking and accepting/rejecting points in parameter space.
One example is the Metropolis-Hastings algorithm, defined as follows [107, 108]: let the
current element of the chain be the point α, and draw a new point α′ from a proposal
distribution q(α′|α). Calculate the Hastings ratio:

r(α,α′) = p(α′)
p(α)

q(α′|α)
q(α|α′) . (2.25)

The proposed new step is accepted with probability β = min(1, r(α,α′)). To save the
calculation of the ratio of proposal distributions above, one often chooses a symmetric
distribution q(α′|α) = q(α|α′), for example by letting the proposal distribution only
depend on the distance between the points, q(α′|α) = f(|α′ − α|). We will use the
Metropolis-Hastings algorithm for parameter inference when we consider non-standard
neutrino interactions in a cosmological context in Chapter 6.

For a MCMC chain with N steps, one can estimate the mean of a parameter as

⟨α⟩ = 1
N

N∑
i=1

α(i) . (2.26)
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3 Eulerian perturbation theory

In this chapter we discuss LSS as a probe of cosmology and fundamental physics, and
how structure formation can be modeled in the Eulerian fluid picture using perturbation
theory. The text serve as a review, introducing the SPT description in the Eulerian setup
and its embedding in an EFT framework (the effective field theory of large-scale structure
(EFTofLSS)), with one important exception: in Section 3.4 we describe an extension of
the standard formalism, introduced in Paper I [44] and further developed in Paper III [46],
that can capture non-trivial time- and scale-dependence in the dynamics. This extension is
applied to the case of massive neutrinos in structure formation in Chapter 4. In addition,
we will adopt the EFT framework described here to model the bispectrum in Chapter 5.

3.1 Large-scale structure as a probe of fundamental physics

Probing the structure of the Universe on large scales is one of the efforts that drives precision
cosmology today [19–21, 26, 109]. Starting from tiny fluctuations in the early Universe,
structures have formed over billions of years under gravitational collapse. This process
depends strongly on the cosmological model, and thus the observed over- and under-densities
contain a lot of information on fundamental physics. In particular, observations of the LSS
of the Universe can shed light on the properties of the dark components of the Universe,
deviations from general relativity on large scales, the initial conditions of the early Universe
as well as yield a measurement of the absolute neutrino mass scale [19, 20].

One way to probe the structure of the Universe is by redshift surveys, where the angular
position and redshift of astronomical objects such as galaxies and clusters of galaxies
are measured. The first redshift surveys were initiated in the 1970’s with a few thousand
galaxies [110]; by the turn of the century a few hundred thousand redshifts could be measured
by the 2-degree Field Galaxy Redshift Survey (2dFGRS) [111, 112]. The observations
established the rich variety of structure on large scales, in accordance with expectations
based on theory and computer simulations of gravitational collapse [113]. In the last
decade, survey volumes allowing for precision cosmology was attained, starting with the
6dFGRS [114, 115] and the WiggleZ Dark Energy Survey [116, 117], followed by the
BOSS [118], one of the four surveys of the SDSS-III [119] project, which measured the
BAO scale at the percent level [85, 120, 121]. Within the last generation of the SDSS [122],
the enhanced Baryon Oscillation Spectroscopic Survey (eBOSS) significantly increased the
number of objects and redshifts at which BAO and redshift space distortions (RSD) was
measured [123]. (We describe RSD shortly.) Building on this legacy, the ongoing Dark
Energy Spectroscopic Instrument (DESI) [21, 124] and near-future surveys Euclid [19, 20],
the Vera C. Rubin Observatory [22], the Prime Focus Spectrograph (PFS) [23], Spectro-
Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer
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3 Eulerian perturbation theory

(SPHEREx) [24] and the Nancy Grace Roman Space Telescope [25] are expected to map
out the structure of the Universe at unprecedented precision.

Complementary to galaxy surveys, photometric surveys such as the Kilo-Degree Survey
(KiDS) [125, 126], Dark Energy Survey (DES) [127, 128] and the Hyper Suprime Cam
(HSC) [129] are other leading probes of cosmology. They measure galaxy shear, i.e. the
distortions of images of distant sources due to gravitational lensing by large structures
between source and observer. Thus, they are sensitive to the dark matter structures of
the Universe as well as relative distances between objects and hence the expansion history
of the Universe [128]. Another probe of the LSS of the Universe is the Lyman α forest, a
series of absorption lines in the light from distant quasars due to the Lyman α transition in
natural hydrogen [130]. The position and depth of the absorption feature informs about
the position (redshift) and amount of hydrogen, which traces the underlying dark matter
distribution. By measurements of a few hundred thousands quasars, BOSS and eBOSS have
observed the BAO feature in the Lyman α forest [131–133].

A natural question to ask is why one would devote such an amount of resources to probe
the LSS when the measurements of the CMB has already constrained the parameters of
the ΛCDM model to an excellent degree of precision [8, 134], with significant improvements
expected from the next generation CMB Stage IV experiments. The answer is that the
constraints are limited by the number of available modes lmax ∼ 106, and LSS can provide
plenty additional independent modes by utilizing the three-dimensional distribution of
galaxies in the Universe. If survey volumes increase, and the maximum wavenumber up
to which data can be reliably analyzed is kmax ≈ 0.3, the number of LSS modes scales as
(kmax/kmin)3 ∼ 108, i.e. a few orders of magnitude more than the CMB. Moreover, LSS
surveys can be done tomographically in the sense that the structure can be observed at
several redshifts, while the CMB is seen at a fixed redshift. The LSS is also probed in the
era of the Universe when vacuum energy dominates, and further sensitive to the properties
of dark energy.

On the other hand, extracting information from the LSS is a challenging task due to
the non-linear nature of gravitational collapse as well as the fact that one cannot observe
directly the structure itself, but rather tracers of the underlying dark matter distribution.
In the currently accepted picture of structure formation, small, initial inhomogeneities in
the energy density grew over cosmic times due to gravitational collapse and became the
rich structures of galaxies and clusters we see today [2, 26, 89]. The evolution is assumed
to be dominated by a cold dark matter (CDM) component, and one assumes that the
only relevant force on large distances is gravity. These assumptions will be discussed more
in detail below. Combined with the assumption of an initial power spectrum P ∝ kns

with ns > −31, they yield a hierarchical model of structure formation, where small scales
collapse first and subsequently larger and larger scales collapse over time [26]. Therefore, a
linear description of the fluctuations, warranted at early times when the inhomogeneities
are small, is only applicable on larger and larger scales as time goes on. We can define
a characteristic wavelength λNL with corresponding wavenumber kNL, which defines the
scale below which structure has become non-linear and objects have collapsed and become
gravitationally bound. In our Universe we have kNL ≈ 0.3h Mpc−1 today, and a slightly

1As quoted in Chapter 2, the Planck CMB measurement yields ns = (0.965 ± 0.004) at 68 % C.L.
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3.1 Large-scale structure as a probe of fundamental physics

larger value at typical redshifts at which the LSS is observed, e.g. kNL ≈ 0.4h Mpc−1 at
z = 0.5. Hence on scales k ≪ kNL, corresponding to distances λ > λNL, linear theory can
be reliably applied, while on highly non-linear scales k > kNL the dynamics is exceedingly
complicated to solve from first principles and one can only resort to computer simulations or
empiric models. Our focus in this thesis will be the intermediate region, mildly non-linear
scales k ≃ 0.1–0.3h Mpc−1, in which the fluctuations are small enough to be treated in a
perturbative expansion.

Given the coverage of mildly non-linear scales of the abovementioned ongoing and
upcoming galaxy surveys, there has been in the previous decades a vast interest in obtaining
an accurate perturbation theory for the present day matter density fluctuations [26, 135–137].
On very large, linear scales, observations are limited by cosmic variance, while on small scales
the theoretical modeling becomes unworkable due to non-linear collapse. Hence, it is of great
interest to model the intermediate scales as accurate as possible, and preferably in an efficient
manner for fast scans of parameter space (MCMC). As noted above, increasing the maximum
kmax at which the theory can be trusted greatly increases the number of available modes. At
the time of writing, the dark matter power spectrum has been computed up to three-loop
corrections [138, 139] and the bispectrum up to two-loop [45, 140]. Nevertheless, additional
ingredients are required for constraining the theory with galaxy clustering data. Firstly,
galaxies are biased tracers of the underlying matter density field, i.e. their fluctuations
do not faithfully follow the matter counterparts. The topic of biased tracers is vast and
beyond the scope of this thesis; we refer the reader to the extensive review [137]. Secondly,
galaxy surveys do not measure three comoving coordinates but rather two angles and a
redshift for each galaxy. The conversion to distance needs to take into account Hubble
flow as well as peculiar motions. The former can be accounted for by assuming a fiducial
cosmology, while the latter requires a modeling of the peculiar velocities, known as redshift
space distortions [26, 141–143]. RSD can be accounted for by a (non-trivial) change of
coordinates, with the new coordinate system referred to as redshift space. In this thesis
we do not consider RSD, and compute statistics in real space. Thirdly, to account for
the effect on non-linear scales k > kNL on mildly non-linear scales, an EFT approach
(the EFTofLSS) has been successfully developed for structure formation [144, 145]. We
describe the EFT framework in detail in Sec 3.6. In the opposite limit, very long wavelength
modes correspond to large bulk flows, the effect of which on intermediate scales can be
resummed to all orders [146–149]. This is known as IR resummation and will be discussed
in Section 3.7. Including all these ingredients, as well as employing tools for fast evaluation
of the theory [150–152], the BOSS full shape power spectrum has been successfully analyzed
at one-loop order [27–29, 153–156] (see also [157]) as well as the bispectrum at tree- and
one-loop level [158–161] (see also [162, 163]), yielding in particular constraints on H0 and
Ωm comparable with Planck CMB measurements [8, 27].

Hence, several elements enter a rigorous theory for LSS. In this chapter, we will describe
the fundamental components in the Eulerian picture, focusing on those relevant for this
thesis. After ending this section with an overview of the overall assumptions, we will in the
next section derive the central equation describing structure formation: the Vlasov-Poisson
system. Moreover, we map the system onto a fluid with Eulerian coordinates and discuss
the linear solutions. In Section 3.3, we tackle the non-linear problem and introduce SPT.
Subsequently, Section 3.4 is a good point to discuss the extension of SPT described in
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3 Eulerian perturbation theory

Papers I and III. LSS is ultimately described statistically, and the perturbative solutions
are related to statistical observables in Section 3.5. Finally, the effective theory for LSS and
IR resummation are discussed in Section 3.6 and Section 3.7, respectively.

General assumptions
The following overall assumptions are standard for descriptions of LSS, and will also be
used in this work:

• We assume that dark matter is cold and collisionless on large scales, and comprises
the dominant actor in structure formation. Even though there is no direct detection
of dark matter yet, there are vast amounts of indirect evidence [164]. For reviews
on dark matter, see e.g. Refs. [57–60]. An important piece of this evidence is in fact
the observed large-scale structure of the Universe, which depends on the amount and
nature of dark matter. Warm or hot dark matter cannot cluster on small scales, and
the measured substantial power on scales k ∼ 10h Mpc−1 yields a lower keV bound
on dark matter [165–167]. A small fraction of dark matter could nevertheless have a
significant velocity. Observations of merging clusters constrain self-interactions of dark
matter [168]; a certain degree of such interactions could on the other hand explain
various small-scale problems [169]. On very large scales however, we can assume that
dark matter is collisionless. Finally, measurements of the CMB yield a dark matter
fraction of the total matter that is approximately 85 % [8].

• We will describe dark matter (and baryons) collectively as a fluid on large scales.
Assuming that the only agent responsible for structure formation on large scales is
gravity, and that the Universe was almost homogeneous with tiny fluctuations at
early times, matter flows coherently into gravitational wells. Hence, we can assume
a single-stream flow with no crossing streams on very large scales, i.e. a pressureless
fluid. The validity of this assumption will be discussed in detail below.

• On subhorizon scales, general relativity can be described by Newtonian gravity. Starting
from general relativity, it can be shown that on scales much smaller than Hubble,
k ≫ H, a Newtonian treatment is justified [89]. Nevertheless, relativistic corrections
scale as (H/k)2 and if future surveys access volumes close to Hubble they need to be
taken into account [74, 170, 171].

3.2 Vlasov-Poisson system
In this section, we derive the Vlasov-Poisson system in an expanding universe, which is the
fundamental equation in the study of LSS. We map the system onto a fluid description,
using Eulerian coordinates, and consider the solutions of the linearized equations. Similar
discussions can be found in e.g. Refs. [26, 89, 135, 136].

Particle dynamics in the Newtonian limit
A natural starting point is to establish the motion of a particle in an expanding Universe.
We consider small distances compared to the Hubble scale, r ≪ H, where Newtonian
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3.2 Vlasov-Poisson system

dynamics is applicable. Hence, the equation of motion for a particle at position r is

d2r
dt2 = −∇rΦ(r, t) , (3.1)

where Φ is the smooth gravitational potential sourced by the mass density ρ(x, t) as given
by the Poisson equation

∇2
rΦ(r, t) = 4πGρ(r, t) . (3.2)

We work in comoving coordinates x defined by r = ax; in the following all gradients will be
taken with respect to x, i.e. ∇ ≡ ∇x = a∇r. The physical velocity can be written in terms
of comoving coordinates as

dr
dt = Hx + v , (3.3)

where the first term accounts for the background expansion and v = adx/dt = dx/dτ is
the peculiar velocity, i.e. the deviation from the Hubble flow. We defined the latter in terms
of conformal time, dτ = a dt.

The Lagrangian describing a particle with mass m subject to the gravitational potential
Φ is therefore [89, 172]

L = 1
2m (Hx + v)2 −mΦ(x, t) . (3.4)

By introducing the generating function Λ = maHx2/2, we can perform a canonical trans-
formation L → L − dΛ/dt and obtain

L = 1
2mv2 −mϕ(x, t) , (3.5)

where we defined the peculiar potential ϕ via

Φ = −1
2

dH
dτ x

2 + ϕ . (3.6)

Using Eq. (3.2) we obtain its field equation,

∇2ϕ = 4πGa2ρ+ 3dH
dτ = 4πGa2(ρ− ρ̄) , (3.7)

where we used the second Friedmann equation in the second equality. It is clear that the
potential ϕ is only sourced by the energy density fluctuations of the Universe. From the
Lagrangian (3.5), the canonical momentum p is given by

p = ∂L
∂ (dx/dt) = a

∂L
∂v = amv . (3.8)

Therefore, in comoving coordinates, the Newtonian equation of motion follows as

dp
dτ = −ma∇ϕ . (3.9)

This equation can equivalently be derived from the geodesic equation assuming small
distances compared to the Hubble scale and small metric perturbations [89].
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3 Eulerian perturbation theory

Vlasov equation

To describe Np collisionless particles in an expanding universe, we introduce the distribution
function f(x,p, τ), i.e. the probability of finding a particle in a phase space volume d3x d3p
at conformal time τ . In the microscopic picture we have

f(x,p, τ) =
Np∑
i=1

δD(x − xi)δD(p − pi) , (3.10)

with each particle following the trajectory {xi,pi}. By the Liouville theorem the distribution
function is conserved along system trajectories, df/dt = 0, yielding the Klimontovich
equation for the microscopic distribution function [135]. For cosmological structure formation,
we consider the limit of large number of particles Np → ∞ (with the density kept constant)
so that the microscopic description can be replaced by a continuum one. This corresponds
to coarse-graining the distribution function, such that the individual information of each
particle is lost. In this smoothed-out limit, the Klimontovich equation becomes the Vlasov
equation [26]:

df
dτ = ∂f

∂τ
+ dx

dτ · ∇f + dp
dτ

∂f

∂p = ∂f

∂τ
+ p
ma

· ∇f − am∇ϕ ∂f
∂p = 0 , (3.11)

where we in the second equation used Eqs. (3.8) and (3.9). This equation is also referred
to as the collisionless Boltzmann equation. It expresses conservation of particle number
in phase space. Coupling this equation to the Poisson equation for the potential (3.7),
we obtain the Vlasov-Poisson system, which is the fundamental system of equations for
describing structure formation in the Universe.

The Vlasov-Poisson system is a seven-dimensional non-linear differential set of equations,
and therefore notoriously difficult to solve. We will use perturbation theory in the Eulerian
fluid picture to solve it, however it is informative to pause here and briefly mention other
approaches: One can simulate the system on a computer by initializing particles on a grid
and evolve them according to Eqs. (3.11) and (3.7). This is known as N-body simulations,
and the state-of-the-art collisionless simulations involve about 1010 particles [173, 174] with
boxes of typical size 100–1000 Mpc. On non-linear scales they are essentially the only
tool available, since analytic approaches break down. Nevertheless, a major challenge is
to accurately simulate complicated baryonic processes on very small scales [175] and even
on scales k ≃ 1–10h Mpc−1 different N-body codes produce power spectra with percent
differences [176]. N-body simulations are very computationally expensive, and can therefore
hardly be used in parameter scans such as MCMC analyses. In this thesis, we will use
N-body simulations as benchmark results for the power- and bispectrum on mildly non-linear
scales, to which we can compare our perturbative results.

Another approach that follows the microscopic system by considering the individual Np

particles is the recently introduced Kinetic Field Theory (KFT) [177–179]. Inspired by
QFT, a path integral approach is used to keep track of phase space trajectories over time,
and macroscopic quantities can be extracted from the corresponding generating functional.
This task is formidable, and has only been performed in relatively simplified setups so
far [180, 181].
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3.2 Vlasov-Poisson system

Alternatively, one can use the Schrödinger-Poisson method. This framework is typically
applied to “fuzzy” dark matter which has a macroscopic de Broglie wavelength of ℏ/p ∼
1 kpc [182]. If there are no other relevant interactions than gravity, fuzzy dark matter can
be described as a condensate with the Schrödinger equation coupled to the Poisson equation
for the gravitational potential. On the other hand, this system can be viewed as describing
clustering of cold dark matter with a coarse-graining scale ℏ/m in phase space [183]. By
taking the limit ℏ/m → 0, one expects to recover the solution of the Vlasov-Poisson system,
however this limit is non-trivial and needs to be taken with care. We refer to Refs. [183–190]
for more in-depth discussions on the Schrödinger-Poisson method.

Finally, complementary to the perturbative method in the Eulerian picture, one can
solve the Vlasov-Poisson system in Lagrangian Perturbation Theory (LPT). Starting from
an initial (Lagrangian) position q, Lagrangian theory follows the particle trajectory to
the final position x(q, τ) = q + Ψ(q, τ). The dynamical quantity Ψ can be expanded
perturbatively, and solutions for macroscopic fluid quantities can be obtained order by order.
See Refs. [26, 135, 136] for reviews on LPT, and Ref. [157] for a recent application to galaxy
clustering data.

In this thesis, we will employ Eulerian perturbation theory to solve the Vlasov-Poisson
system. In the Eulerian picture, instead of following individual trajectories, one describes
the fluid quantities at each spatial (comoving) coordinate over time. The fluid quantities
can be obtained by taking velocity moments of the distribution function, i.e. integrating
over the distribution function and multiplying by products of velocity components. Written
in terms of these moments, the Vlasov equation becomes an infinite hierarchy which needs
to be truncated in an approximate way. The first moments correspond to the density ρ,
velocity flow v and velocity dispersion σij (also referred to as anisotropic stress), and are
given by

ρ(x, τ) = m

a3

∫
d3p f(x,p, τ) , (3.12a)

vi(x, τ) = 1∫
d3p f(x,p, τ)

∫
d3p

pi

am
f(x,p, τ) , (3.12b)

vi(x, τ)vj(x, τ) + σij(x, τ) = 1∫
d3p f(x,p, τ)

∫
d3p

pipj

a2m2 f(x,p, τ) . (3.12c)

As we saw in the previous chapter, it is useful to decompose the density in a homogeneous
and an inhomogeneous part:

ρ(x, τ) = ρ̄(τ) (1 + δ(x, τ)) , (3.13)

where δ(x, τ) is the density contrast and ρ̄(τ) is the mean mass density, scaling like a−3 for
non-relativistic species in the matter-dominated era. We recall that the potential ϕ was
only sourced by fluctuations of the energy density (Eq. (3.7)), and we can write the Poisson
equation again in terms of the density contrast,

∇2ϕ = 3
2H2Ωmδ . (3.14)

In the periods relevant for structure formation, i.e. deep in the matter era as well as during
vacuum-energy domination, the radiation contribution to the Poisson equation and Hubble
rate is completely negligible, hence we do not include it.
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To obtain fluid equations for the density contrast, velocity flow and velocity dispersion we
take moments of the Vlasov equation (3.11). We get the following zeroth-order moment by
integrating over momentum, using integration by parts and that the potential is independent
of momentum,

∂ρ(x, τ)
∂τ

+ 3Hρ(x, τ) + ∇ · [ρ(x, τ)v(x, τ)] = 0 . (3.15)

This equation is referred to as the continuity equation. Since the Vlasov equation expresses
conservation of particle number in phase space, the continuity equation formulate the
corresponding conservation in real space. The second term arises due to the overall a−3

dilution, and inserting the decomposition (3.13), we obtain the equation in terms of the
density contrast,

∂δ

∂τ
+ ∇ · [(1 + δ)v] = 0 . (3.16)

The next moment of the Vlasov equation yields an equation of motion for the velocity flow
v. Using also the continuity equation, this can be reduced to

∂v
∂τ

+ Hv + (v · ∇)v = −∇ϕ− 1
ρ

ei∇j

[
ρσij

]
, (3.17)

where e is the unit vector, referred to as the Euler equation. This equation expresses
conservation of momentum, and the right hand side terms are the gravitational force and a
(anisotropic) pressure term, respectively. We see that the equation of motion for the n-th
moment of the Vlasov equation couples to the (n+ 1)-moment, leading to a hierarchy of
equations. To get a closed system of equations, we need a way of truncating the hierarchy.

Closing the Vlasov-Poisson hierarchy
In order to close the continuity and Euler system of equations (3.16) and (3.17), one can
postulate an ansatz for the velocity dispersion. In standard fluid dynamics [191], the velocity
dispersion can be split into isotropic and anisotropic parts

σij = −pδ(K)
ij + ζδ

(K)
ij ∇ · v + η

(
∇ivj + ∇jvi − 2

3δ
(K)
ij ∇ · v

)
, (3.18)

where p is the pressure and ζ and η are viscosity coefficients.
We are interested in clustering of CDM, which in the initial phase of gravitational collapse

has a negligible velocity dispersion compared to the velocity flow, because of the almost
homogeneous initial condition. The velocity dispersion denotes the deviation from single
coherent flow, therefore it vanishes before shell-crossing, i.e. before multiple streams pulled
by gravity cross each other. The assumption that σij = 0 is known as the single-stream
approximation, which is equivalent to

f(x,p, τ) = a3ρ(x, τ)
m

δD [p −mav(x, τ)] , (3.19)

hence demanding that all particles at a given point move with the same velocity. The Euler
equation (3.17) in the single-stream approximation describes a perfect, pressureless fluid,
and therefore the clustering of matter can be modeled as such as long as the single-stream
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approximation is valid. As time goes on, larger and larger scales collapse under gravity
yielding multiple flows, the dynamics of which is hard to describe analytically and one mostly
has to rely on N-body simulations. On sufficiently large scales however, the single-stream
approximation can be used to analyze a large number of effects in LSS. We will initially
employ this approximation when we set up the perturbative solution of the non-linear
equations below. However, in Section 3.6, we will see that the single-stream approximation
is not completely consistent on scales relevant for perturbative corrections in the mildly
non-linear regime, leading to a breakdown of perturbation theory in the perfect, pressureless
fluid picture. As described in detail in that section, the predictive power of the perturbative
theory can be restored by including a non-zero anisotropic stress tensor, written down in an
effective theory framework.

Vorticity

The gravitational term in the Euler equation (the only source term in the single-stream
regime) can not source a curl mode in the velocity field, and it is therefore useful to follow
the divergence and curl components of the velocity separately. From Helmholtz theorem we
can uniquely (assuming that v vanishes at the boundary) decompose the velocity into a
velocity divergence part θ and a divergenceless vorticity part, thus [192]

θ(x, τ) = ∇ · v(x, τ) , w(x, τ) = ∇ × v(x, τ) . (3.20)

The equation for the vorticity is obtained by taking the curl of the Euler equation,

∂w(x, τ)
∂τ

+ Hw(x, τ) − ∇ × [v(x, τ) × w(x, τ)] = ∇ ×
[1
ρ

ei∇jσ
ij
]
. (3.21)

In the single-stream regime, the RHS vanishes, and if the vorticity is zero initially it remains
zero at all times. Moreover, in the linear theory only the first two terms above are present
and any initial vorticity decays as w ∝ a−1. Nevertheless, an initial vorticity can be amplified
non-linearly by the third term in Eq. (3.21), and once the single-stream approximation
breaks down vorticity can be created by multi-streams and shocks [193]. In this work we
neglect the effect of vorticity. Based on mass and momentum conservation arguments,
the vorticity-vorticity power spectrum sourced by contributions to the anisotropic stress
tensor in the EFT (see Section 3.6 below) is suppressed by k4/k4

NL [194], and moreover
N-body simulations reveal that it is suppressed by 3–4 orders of magnitude compared to
the density power spectrum on mildly non-linear scales [193, 195, 196]. Hence, we expect
this approximation to have negligible impact on the results.

Linear solutions

We proceed to discuss the solutions of the continuity and Euler equations (3.16) and (3.17)
in the linear regime, where the fluctuation fields δ and θ and are small compared to the
mean density and homogeneous Hubble flow, respectively. This regime is relevant on large
scales or early times, where the Universe is smooth. In addition, understanding the linear
solutions is central in constructing a perturbative description of the mildly non-linear regime.
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In the single-stream approximation, the linearized equations read

∂δ(x, τ)
∂τ

+ θ(x, τ) = 0 , (3.22a)

∂θ(x, τ)
∂τ

+ H(τ)θ(x, τ) + 3
2Ωm(τ)H2(τ)δ(x, τ) = 0 , (3.22b)

where we used the Poisson equation (3.14) as well as the definition of the velocity diver-
gence (3.20). The velocity divergence can be eliminated from the second equation by using
the first equation, yielding a second order differential equation for the density contrast:

∂2δ(x, τ)
∂τ2 + H(τ)∂δ(x, τ)

∂τ
− 3

2Ωm(τ)H2(τ)δ(x, τ) = 0 . (3.23)

We note that no operator acting on spatial coordinates appear in the above solution,
implying that fluctuations will evolve independent of scale. This would not be the case
in general for σij ̸= 0 and is a particular feature of the perfect pressureless fluid. Due to
the scale-independence it is useful to factorize δ(x, τ) = D(τ)δ0(x) where D is named the
linear growth factor and δ0(x) is the initial density contrast. From Eq. (3.23) we obtain the
differential equation for the linear growth factor

d2D(τ)
dτ2 + H(τ)dD(τ)

dτ − 3
2Ωm(τ)H2(τ)D(τ) = 0 . (3.24)

The two independent solutions of this second order differential equation are denoted D+(τ)
and D−(τ), where the former is the faster growing mode of the two. For general H there is
a simple analytic solution for D− [197]

D−(τ) = 1
a

H
H0

, (3.25)

where H0 is the conformal Hubble rate today, and we normalized the solution such that at
present time, D−(z = 0) = 1. This solution decays with time and is labeled the decaying
mode. The other mode has no analytic solution in general, but can be expressed in an
integral representation as [197]

D+(τ) = 5
2ΩmH2

0
H
a

∫ a

0

da′

H3(a′) , (3.26)

known as the growing mode since it increases with time.
In total, the linearized solution is given by a linear combination of the growing and

decaying modes,
δ0 = D+(τ)δ+

0 (x) +D−(τ)δ−
0 (x) , (3.27)

where δ±
0 (x) are the initial field configurations. Using Eq. (3.22a), we can obtain the

corresponding linear solution for the velocity divergence,

θ = −H(τ)
[
f(τ)D+(τ)δ+

0 (x) + g(τ)D−(τ)δ−
0 (x)

]
, (3.28)
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3.3 Perturbation theory in the mildly non-linear regime

with the growth rates defined as

f(τ) ≡ d lnD+

d ln a = 1
H(τ)

d lnD+

dτ and g(τ) ≡ d lnD−

d ln a . (3.29)

We can immediately obtain the growth rate g(τ) from the simple decaying mode solu-
tion (3.25),

g(τ) = 1
H2

dH
τ

− 1 = ΩΛ − Ωm
2 − 1 , (3.30)

where in the second equality we used the second Friedmann equation (2.13b).
In general, the growth factors D±(τ) and corresponding growth rates f(τ) and g(τ)

depend on the background cosmology, in particular the matter density Ωm and the vacuum
energy density ΩΛ via the Hubble rate. One can obtain closed-form expressions for these
solutions in certain cosmologies; an overview can be found in e.g. Ref. [26]. Here we mention
one important case: the linear growth solutions in an EdS Universe.

The Einstein–de-Sitter Universe contains only matter (Ωm = 1, ΩΛ = 0) and no curvature
(ΩK = 0). This model is a very good approximation of our Universe sufficiently after
matter-radiation equality as well as before vacuum energy domination, and is therefore
particularly interesting. The Friedmann Eqs. (2.13) yields a ∝ τ2 and H = 2/τ for EdS.
The general solutions (3.27) and (3.28) as well as Eq. (3.29) reduce to

D+(τ) = a , D−(τ) = a−3/2 , f(τ) = 1 , g(τ) = −3
2 . (3.31)

Thus, deep in the matter dominated era, where the EdS approximation is applicable, the
density contrast (3.27) growths with the scale factor a and the growth rates are constant.
Hence, a sets the typical time-scale for growth of structure on large scales. Moreover,
inserting the growing mode solution into the Poisson equation (3.14) reveals that the
gravitational potential in the linear regime is constant during matter domination. In a
model with dark energy, the Hubble rate deviates from the EdS case at late times when
the dark component gives a sizable contribution to the cosmic energy budget, z ≲ 5 in
our universe. The relatively larger Hubble rate leads to a suppression of the growth of
fluctuations (cf. Eq. (3.26)), i.e. a slower growth than D+ ∝ a and hence f(τ) < 1. In
particular, in a ΛCDM Universe, the growth factor D+ is reduced by 20 % and f ≈ 0.5
today. This can be appreciated from Fig. 3.1, where we show the growth functions as a
function of redshift in an EdS and ΛCDM cosmology. At z = 10, when the ΛCDM universe
is matter dominated, the growth functions agree (we normalized the growth factors D in
EdS and ΛCDM such that they agree deep in the matter era), but approaching today the
vacuum energy in the ΛCDM universe becomes significant, suppressing the growth.

3.3 Perturbation theory in the mildly non-linear regime

We go on to the full non-linear equations of motion. In this section, we discuss their
perturbative solutions when expanding in the fluctuation fields. We work in the single-
stream approximation and neglect vorticity. The single-stream approximation will be relaxed
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Figure 3.1: Growth functions in a ΛCDM and EdS Universe. We show the growth factor D
(blue) and growth rate f (green) as a function of redshift in ΛCDM (solid lines)
and EdS (dashed lines). The ΛCDM growth factor is normalized such that it
agrees with the EdS one deep in the matter dominated era z ≫ 1. The matter
content is set to Ωm = 0.3175 in the ΛCDM model.

when discussing EFT corrections in Section 3.6. Under these assumptions and using the
Poisson equation (3.14), the non-linear continuity and Euler equations read

∂δ(x, τ)
∂τ

+ θ(x, τ) = −∇ · [δ(x, τ)v(x, τ)] , (3.32a)

∂θ(x, τ)
∂τ

+ H(τ)θ(x, τ) + 3
2Ωm(τ)H2(τ)δ(x, τ) = −∇ ·

{
[v(x, τ) · ∇] v(x, τ)

}
. (3.32b)

It is convenient to go to Fourier space to study these equations. The reason is that in
Fourier space, linear modes evolve independently and the statistical properties of each mode
is conserved. While this is valid in the linear regime on very large scales, on smaller scales
different wavenumber modes are coupled via the non-linear terms. The LHS of the above
set of equations can immediately be written down in Fourier space; for the RHS we use
that for vanishing vorticity, the Fourier transforms of the velocity and its divergence are
related by ṽ(k) = −ik θ̃(k)/k2 to obtain

∇ · [δ(x, τ)v(x, τ)] =
∫

k1,k2
eix·(k1+k2)δ̃(k1, τ)θ̃(k2, τ)(k1 + k2) · k2

k2
2

,

∇ ·
{

[v(x, τ) · ∇] v(x, τ)
}

=
∫

k1,k2
eix·(k1+k2)θ̃(k1, τ)θ̃(k2, τ)k1 · k2(k1 + k2)2

2k2
1k

2
2

.

where we use the notation
∫

k ≡
∫

d3k. The last factors in the integrals above are conven-
tionally compiled in two mode coupling functions,

α(k1,k2) = (k1 + k2) · k2
k2

2
and β(k1,k2) = k1 · k2(k1 + k2)2

2k2
1k

2
2

, (3.33)
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3.3 Perturbation theory in the mildly non-linear regime

which specify the coupling of different modes with wavenumbers k1 and k2. Note that β
is symmetric in its arguments while α is not, because α couples different fields. Thus, the
equations of motion in Fourier space become

∂δ̃(k, τ)
∂τ

+ θ̃(k, τ) = −
∫

k1,k2
δD(k − k12)α(k1,k2)δ̃(k1, τ)θ̃(k2, τ) , (3.34a)

∂θ̃(k, τ)
∂τ

+ H(τ)θ̃(k, τ) + 3
2Ωm(τ)H2(τ)δ̃(k, τ) =

−
∫

k1,k2
δD(k − k12)β(k1,k2)θ̃(k1, τ)θ̃(k2, τ) , (3.34b)

where we introduced the notation k12 ≡ k1+k2. The Dirac delta function ensures momentum
conservation required by translation invariance in a spatially homogeneous universe, i.e.
the evolution of the δ̃ and θ̃ fluctuations are determined by the coupling of all pairs of
wavenumbers k1 and k2 whose sum is k. Importantly, one recovers the linear theory (3.22)
from Eq. (3.34) by taking the large scale limit k → 0 because the mode-coupling functions α
and β vanishes in the limit where the sum of their arguments go to zero. There are in general
no closed-form solution of these equations, and one has to employ perturbative techniques,
simulate the system on a computer or make certain assumptions to make progress.

As we will mostly work in Fourier space, we drop the tilde notation to denote fields in
Fourier space from now on, and make it clear from the context whenever we consider the
fields in real space.

Before we pursue a perturbative solution of the non-linear Vlasov-Poisson system (3.34),
we introduce a compact notation which treats the fields in a symmetric manner and will be
crucial when we extend the formalism to cosmologies with non-trivial scale-dependence in
Section 3.4. Since the typical time scale for structure formation is set by the growth factor
D+(τ) (growing mode), we may choose a time variable defined by the relative change in
it, i.e. use η(τ) ≡ lnD+(τ). From Eq. (3.29) we can immediately relate ∂/∂τ = Hf∂/∂η.
Furthermore, in the linear regime we have θ = −Hfδ (growing mode, cf. (3.28)), so it is
convenient to collect the fields into a tuple [198]

ψa(k, η) ≡
(
δ(k, η), −θ(k, η)

Hf

)
. (3.35)

In order to write down the equations of motion in the new set of variables, we use that the
growth factor per definition satisfies the linear equation (3.24), here repeated in terms of
ln a for convenience:[

d2

d(ln a)2 +
(

1 + d ln H
d ln a

) d
d ln a − 3

2Ωm

]
D+(a) = 0 .

Furthermore, ∂ηH = f∂ln aH = fH(1 − 3Ωm/2 − 2Ωr) (using Eq. (2.13b) and including in
principle a non-zero radiation content for completeness), from which one can obtain

∂θ

∂τ
= H2f2

[
− ∂

∂η
+ 1
f

− 3
2

Ωm
f2 + 1

]
ψ2 .
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3 Eulerian perturbation theory

All together, the equations of motion become

∂

∂η
ψa(k, η) + Ωab(η)ψb(k, η) =

∫
k1,k2

δD(k − k12)γabc(k,k1,k2)ψb(k1, η)ψc(k2, η) , (3.36)

where it is understood that repeated indices are summed over and the linear evolution is
encoded in

Ωab(η) =
(

0 −1
−3

2
Ωm
f2

3
2

Ωm
f2 − 1

)
. (3.37)

The only non-zero elements of γabc are

γ121(k,k1,k2) = α(k1,k2) and γ222(k,k1,k2) = β(k1,k2) . (3.38)

In this notation, the linear growing and decaying modes of the equations of motion are

u(+)
a = eη

(
1
1

)
and u(−)

a = e− 3
2

Ωm
f2 η

(
1

−3
2

Ωm
f2

)
. (3.39)

This result is completely equivalent to the linear solutions (3.27) and (3.28), and the simple
form of the growing eigenmode simply reflects the suitable rescaling of the velocity divergence
in the new dynamical variables. Remarkably, the growing mode is independent of the in
general time-dependent ratio Ωm/f

2. This fact will be important when we discuss the
EdS approximation below. Note also that if we specialize to an EdS universe, eη = a and
Ωm/f

2 = 1 so that we recover Eq. (3.31).
We proceed in the following to solve Eq. (3.36) in perturbation theory. In SPT [26, 89,

136, 198–207], one assumes that the density and velocity fields can be expanded about the
linear solutions, which amounts to the assumption that the variance of linear fluctuations
can be treated as a small expansion parameter (we return to this assumption and discuss it
in Section 3.6). We can write

ψa(k, η) =
∞∑

n=1
ψ(n)

a (k, η) , (3.40)

where ψ(1)
a , ψ

(2)
a , . . . are linear, quadratic, etc. in the growing mode linear solution and

therefore also in the initial fields, since the growing mode is a simple (time-dependent)
scaling of the initial condition.

Perturbative solution in an Einstein–de-Sitter cosmology

As the perturbative approach simplifies quite a bit in an EdS universe, we study this case as
a first example. The growth factor equals the scale factor, as derived in Eq. (3.31), so that
eη = a and furthermore the growth rate is f = 1, hence the evolution matrix reduces to

Ωab

∣∣
EdS =

(
0 −1

−3
2

1
2

)
. (3.41)
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3.3 Perturbation theory in the mildly non-linear regime

We assume initial conditions in the infinite past ηini → −∞, so that the decaying modes
have had time to die out and the system completely resides in the growing mode. In other
words, we assume that the time-dependence can be factorized out thus2

ψa(k, a) =
∞∑

n=1
anζ(n)

a (k) ≡
∞∑

n=1
an

(
δ(n)(k)

−θ(n)(k)/H

)
. (3.42)

This is a perturbative expansion in the linear growing mode solution proportional to a

with time-independent coefficients ζ(n)
a (k) or equivalently δ(n)(k) and θ(n)(k) on the fluid

level (recall the definition of ψ in Eq. (3.35) with f = 1 in EdS). The solution is therefore
separable in time and momentum, which will allow us to obtain analytic expressions for the
coefficients ζ(n)

a (k). Inserting the expansion (3.42) into the equation of motion (3.36) yields

(
nδ

(K)
ab + Ωab

∣∣
EdS

)
ζ

(n)
b (k) =

n−1∑
m=1

∫
k1,k2

δD(k − k12)γabc(k,k1,k2)ζ(m)
b (k1)ζ(n−m)

c (k2) ,

(3.43)
at n-th order in perturbation theory. At first order the solution is simply the initial
condition, ζ(1)

a (k) = δ(1)(k, ηini) = −θ(1)(k, ηini)/H, and repeated application of (3.43)
yields ζ(n)

a = O([δ(1)]n), consistent with the overall perturbative ansatz (3.40). We can
therefore write ζ(n)

a as convolutions of linear density fields

ζ(n)
a (k) =

∫
q1,...,qn

δD(k − q1···n)F (n)
a (q1, . . . ,qn)

n∏
i=1

δ0(qi) , (3.44)

where the perturbative expansion is furnished by the kernels F (n)
a that are dimensionless,

scalar functions of the set of wavevectors q1, . . . ,qn. A diagrammatic representation of
this series expansion is shown in Fig. 3.2. In Eq. (3.44), δ0(qi) is the initial linear density
field for the mode qi and the Dirac delta function enforces momentum conservation for the
coupling of different modes, i.e. demanding k = q1···n ≡

∑n
i=1 qi. Note that we use a slightly

different notation for the kernels than what is typically found in the literature, anticipating
their generalization in Section 3.4, in particular the usual Fn and Gn kernels correspond
in our notation to Fn = F

(n)
1 and Gn = F

(n)
2 . Furthermore, without loss of generality, we

use symmetrized kernels, in other words we will demand that they are symmetric under
exchange of the momentum arguments, i.e. under permutations of the set {q1, . . . ,qn}. This
property is useful for example when manipulating momentum integrals over combinations
of the kernels.

At n = 1, we recover the linear solution by F (1)
a = 1. We obtain solutions for the higher

order kernels n > 2 by inserting the expansion (3.44) in Eq. (3.43):(
nδ

(K)
ab + Ωab

∣∣
EdS

)
F

(n)
b (q1, . . . ,qn) =

n−1∑
m=1

[
γabc(k,q1···m,qm+1···n)F (m)

b (q1, . . . ,qm)F (n−m)
c (qm+1, . . . ,qn)

]
sym

, (3.45)

2The subscript index a is unrelated to the scale factor.
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F
(n)
a

k

q1

q2

q3

· · ·
qn

Figure 3.2: Diagrammatic representation of the expansion in Eq. (3.44). The lines on the
right side represent initial fluctuation fields with momentum qj and the line left
of the kernel Fn represent an n-th order field with momentum k = q1···n.

where the RHS is understood to be symmetrized with respect to permutations exchanging
momenta in the {q1, . . . ,qm} set with momenta in the {qm+1, . . . ,qn} set, i.e. summing over
all permuted expressions and dividing by the total number of permutations Nm = n!

m!(n−m)! .
This way, the n-th order kernel will be symmetric under exchange of momentum arguments
provided that all lower order kernels are.

Defining

Υ(n) =
(
nδ

(K)
ab + Ωab

∣∣
EdS

)−1
= 1

(2n+ 3)(n− 1)

(
2n+ 1 2

3 2n

)
, (3.46)

the solution of Eq. (3.45) is given by the recursive relation

F (n)
a (k) = Υab(n)

n−1∑
m=1

γbcd(k,q1···m,qm+1···n)F (m)
c (q1, . . . ,qm)F (n−m)

d (qm+1, . . . ,qn)

(3.47)
or more explicitly in terms of the mode-coupling functions α and β (see also derivations in
e.g. Refs. [203, 204])

F
(n)
1 (q1, . . . ,qn) =

n−1∑
m=1

F
(m)
2 (q1, . . . ,qm)
(2n+ 3)(n− 1)

[
(2n+ 1)α(q1···m,qm+1···n)F (n−m)

1 (qm+1, . . . ,qn)

+ 2β(q1···m,qm+1···n)F (n−m)
2 (qm+1, . . . ,qn)

]
, (3.48a)

F
(n)
2 (q1, . . . ,qn) =

n−1∑
m=1

F
(m)
2 (q1, . . . ,qm)
(2n+ 3)(n− 1)

[
3α(q1···m,qm+1···n)F (n−m)

1 (qm+1, . . . ,qn)

+ 2nβ(q1···m,qm+1···n)F (n−m)
2 (qm+1, . . . ,qn)

]
. (3.48b)

Starting from n = 1, with F
(1)
a = 1, one can use these recursive relations to obtain higher

order kernels; explicit expressions for kernels up to n = 4 are given in Ref. [202]. At second
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3.3 Perturbation theory in the mildly non-linear regime

order, the kernels are given by the simple form

F
(2)
1 (q1,q2) = 5

7 + 1
2µ
(
q2
q1

+ q1
q2

)
+ 2

7µ
2 , (3.49a)

F
(2)
2 (q1,q2) = 3

7 + 1
2µ
(
q2
q1

+ q1
q2

)
+ 4

7µ
2 , (3.49b)

where qi = |qi| and µ is the cosine of the angle between q1 and q2, i.e. q1 · q2 = µq1q2.
The kernels F (n)

a satisfy certain properties that follow from underlying symmetries of the
system [26, 194, 202, 208, 209]:

• Due to momentum conservation, as k = ∑n
i=1 qi goes to zero, but the individual qi

does not, the kernels scale like F (n) ∝ k2.

• As one argument p becomes large while the argument sum k stays fixed, the kernel
vanishes like the second power of the large argument, i.e. for p ≫ qi

F (n)(q1, . . . ,qn−2,p,−p) ∝ 1/p2 . (3.50)

• In the limit where a subset {q1, . . . , qm} of the arguments is much smaller than the
remaining arguments {qm+1, . . . , qn}, the kernels can be factorized as

F (n)(q1, . . . ,qn) → m!
n! F

(m)(q1, . . . ,qm)k · qm+1
q2

m+1
· · · k · qn

q2
n

, (3.51)

where again k = ∑n
i=1 qi. This result follows from Galilean invariance. In the special

case where one argument qi becomes soft, there is an infrared divergence qi/q
2
i . On

the other hand, there is no infrared divergence if partial sums of momenta go to zero.

These properties hold also for the generalized kernels we define below in Section 3.4, as
long as momentum conservation and Galilean invariance are satisfied by the underlying
dynamics.

In total, the perturbative solution for the density contrast and velocity divergence in the
EdS universe is

ψa(k, a) =
(

δ(k, a)
−θ(k, a)/H

)
=

∞∑
n=1

an
∫

q1,...,qn

δD(k − q1···n)F (n)
a (q1, . . . ,qn)

n∏
i=1

δ0(qi) ,

(3.52)
where the kernels are given by the recursive relation (3.48). From here on we refer to the
kernels in the EdS model as EdS-SPT kernels, since we will generalize the perturbative
expansion and derive kernels for cosmologies beyond EdS in Section 3.4 below.

Einstein–de-Sitter-approximation
Specializing to an EdS universe and neglecting the decaying mode allowed us in the previous
paragraphs to obtain analytic solutions for the fluctuation fields where the time- and space-
dependence separated completely. This is not the case for a general cosmology. Even though
our Universe today does not resemble an EdS one, it turns out that the EdS-SPT kernels
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Figure 3.3: Ratio Ωm/f
2 as a function of redshift in ΛCDM and EdS. The matter content

is set to Ωm = 0.3175 in the ΛCDM model.

can be applied to good approximation nevertheless. This is the EdS-approximation, and
the logic proceeds as follows: Consider a cosmology in which the dynamics have non-trivial
time-dependence, such as ΛCDM, meaning that the evolution matrix Ωab(η) is not constant
in time as in the EdS case. Assume that the decaying modes have vanished and write down
the fluctuation field as an expansion in the linear growing mode solution:

ψa(k, η) =
∞∑

n=1
enηψ(n)

a (k) , (3.53)

with η = lnD+. If the evolution matrix (Eq. (3.37)) can be approximated by the EdS one,

Ωab(η) =
(

0 −1
−3

2
Ωm
f2

3
2

Ωm
f2 − 1

)
−−→
EdS

(
0 −1

−3
2

1
2

)
, (3.54)

the momentum structure of the solution (3.53) is given by the EdS-SPT solution, i.e.
ψ

(n)
a (k) = ζ

(n)
a (k). There are two reasons why one expects this replacement to be a good

approximation. Firstly, in a model with both matter and vacuum energy (no curvature), the
growth rate can to good approximation be given by f(Ωm, 1 − Ωm) ≈ Ω5/9

m [26], therefore
the ratio Ωm/f

2 ≈ Ω−1/9
m is very insensitive to the matter content. In Fig. 3.3 we show

this ratio for a model with Ωm ≃ 0.32. The ratio deviates less than 1 % from unity all the
way down to z ≃ 1.5, and differs by O(10 %) today. Secondly, the linear growing mode
solution (3.39) in the general time-dependent case is independent of Ωm/f

2, and therefore
equal in the EdS-approximation and the exact time-dependent case.

In summary, in the EdS-approximation the evolution matrix is approximated by the EdS
one, so that the solution to the equations of motion (3.36) is

ψa(k, η) =
∞∑

n=1
enη

∫
q1,...,qn

δD(k − q1···n)F (n)
a (q1, . . . ,qn)

n∏
i=1

δ0(qi) , (3.55)
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with F (n)
a being the analytic EdS-SPT kernels and the time-dependent prefactor enη = (D+)n

computed exactly in ΛCDM. The approximation has been shown to work at the percent
level for the power spectrum [44, 46, 210–212] and similarly for the bispectrum [213] in
the mildly non-linear regime for ΛCDM models. We discuss explicitly the impact of the
EdS-approximation on the one-loop bispectrum in Chapter 5, presenting results from Paper
II. The inaccuracy could potentially increase in cosmological models in which the background
evolution is altered significantly at late times, see e.g. Ref. [214].

Since the perturbative solution is a momentum integral over the kernels, having analytic
expressions for them is very useful and allows for simplifications and fast evaluation. In
particular, techniques for rapid computation of integrals over kernels have been developed,
as we will discuss briefly in Section 3.5 below. Therefore the EdS-approximation in widely
used in the literature, and is in particular used in the pipelines that analyze and constrain
cosmological parameters from the BOSS galaxy clustering data [27–29]. Recently, Ref. [215]
analyzed that data set with exact time-dependence, finding no significant shift in the
posteriors of the cosmological parameters. Nevertheless, with enhanced precision of future
surveys, the EdS approximation may be insufficient.

3.4 Extension of standard perturbation theory

In this section we discuss an extension of SPT introduced in Paper I [44] and further
developed in an EFT framework in Paper III [46]. Inspired by Ref. [216], the idea is to be
able to apply perturbation theory also in models where the dynamics have non-trivial scale-
and time-dependence, as well as in fluids with more than one component. This extended
framework will be applied in Chapter 4 to model structure formation in the presence of
massive neutrinos. Due to the increased complexity of the dynamics, the solutions will in
general not factorize in separate time- and space-dependence, so that one needs to resort to
numerical methods. This is made possible by the algorithm for computing loop corrections
developed in Refs. [44, 138, 216, 217].

We assume that structure formation can be described by a fluid comprising N species,
following the density contrast and velocity divergence of each species. The fluid perturbations
are described by

ψa(k, η) =
(
. . . , δi(k, η),−θi(k, η)

Hf
, . . .

)
, (3.56)

where the index a runs from 1 to 2N , and the index i labels the i-th species. Moreover, we
assume that the non-linear equations of motion of ψa can be written in analogous form as
Eq. (3.36),

∂

∂η
ψa(k, η)+Ωab(k, η)ψb(k, η) =

∫
k1,k2

δD(k−k12)γabc(k,k1,k2)ψb(k1, η)ψc(k2, η) , (3.57)

where we allowed for both a time- and scale-dependence in the (now 2N × 2N) evolution
matrix Ωab = Ωab(|k|, η). We allow in general for non-linear terms in the vertex γabc in
addition to the standard ones in Eq. (3.38).
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As in SPT, we look for a perturbative solution as an expansion around the linear density
contrast:

ψa(k, η) =
∞∑

n=1
ψ(n)

a (k, η)

=
∞∑

n=1

∫
q1,...,qn

δD(k − q1···n) en∆ηF (n)
a (q1, . . . ,qn; η)

n∏
i=1

δ0(qi) , (3.58)

where ∆η ≡ η − ηini and δ0 is an initial condition that will be discussed shortly. Notice
that contrary to the expansions in the EdS Universe (3.42) or in the EdS-approximation
for ΛCDM (3.53), we have not factorized the time- and wavenumber-dependence in the
ansatz above. The kernels here have a dependence on time in addition to the wavenumbers.
Therefore, the solution (3.58) accounts for the full time- and scale-dependence of the
dynamics. Finally, we extracted the factor en∆η from the time-dependent kernels at
each order in perturbation theory above for convenience, expecting that it captures the
predominant time-dependence of the solution. Thus, the kernels exhibit smaller variation
which improves the numerical stability when we integrate their time-dependence.

Inserting the perturbative solution (3.58) into the equation of motion (3.57) yields the
following recursive equation for the kernels:

(∂η + n)F (n)
a (q1, . . . ,qn; η) + Ωab(k, η)F (n)

b (q1, . . . ,qn; η) =
n−1∑
m=1

[
γabc(k,q1···m,qm+1···n)F (m)

b (q1, . . . ,qm; η)F (n−m)
c (qm+1, . . . ,qn; η)

]
sym

, (3.59)

where the RHS is symmetrized in the same way as described below Eq. (3.45) and k = q1···n.

Applications

The extended formalism with N species and time- and scale-dependent evolution matrix
defined above allows us to model structure formation in many scenarios beyond the standard
case, including the following:

i) ΛCDM universe where the EdS-approximation is relaxed. This is perhaps the simplest
application, with only one species (cold dark matter) and no scale-dependence. How-
ever the solution (3.58) captures the exact, time-dependent growth also beyond the
linear solution, and can therefore be used to test the accuracy of the EdS-approximation.

ii) Furthermore, cosmologies with altered recent expansion history, such as for example
ones including a dynamical dark energy component, e.g. [214], can be treated with
exact time-dependence.

iii) A dark matter fluid with effective sound velocity and viscosity descriptions that
can be captured by additional linear terms in the equations of motion, yielding a
scale-dependent Ωab-matrix as described in Refs. [216, 218, 219].
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3.4 Extension of standard perturbation theory

iv) Structure formation with massive neutrinos coupled via gravity to dark matter (or a
joint fluid of baryons and dark matter). As we will describe in detail in Chapter 4,
neutrinos freestream over long distances in a Hubble time. This freestreaming scale
adds a scale-dependence to the dynamics which can precisely be described by a scale-
and time-dependent evolution matrix with N = 2. This application is discussed in
detail in that chapter.

v) Baryons and dark matter are normally treated as a single component in LSS. This
assumption could be scrutinized with the formalism above.3

vi) In effective large-scale structure models of modified gravity or dark energy, the Poisson
equation gets additional terms which are second and third order in the fields [222].
While the extension of SPT defined above could not capture the third-order terms,
the second order terms could be incorporated by promoting γabc to a time-dependent
function.

Combinations of these scenarios could also be captured by the formalism defined above,
nevertheless with potential increased complexity. We will for example relax the EdS-
approximation (item i)) and incorporate freestreaming neutrinos (item iv)) in the composite
fluid model treated in Chapter 4.

Strategies for numerical solutions

Since there is in general no analytic solution of Eq. (3.59), we will integrate it numerically
using the Runge-Kutta-Fehlberg method of the GSL library.4 For a given set of wavenumbers
{q1, . . . ,qn}, our routine for solving F (n)

a as a function of time will recursively call itself to
compute the RHS of the ODE (3.59), until it reaches F (1)

a . For the linear case the RHS
is zero, and the equation of motion can immediately be integrated numerically. We store
the result on a grid with Nη points between the initial time and the final time. Now the
F

(2)
a kernels can be computed by interpolating the linear result, and this procedure can be

repeated up until we reach the n-th order kernels.
This procedure is considerably more computationally expensive compared to calculations

of EdS-SPT kernels. To obtain non-linear corrections to e.g. the power spectrum we will
need to integrate over certain combinations and configurations of the kernels, as we will
see in the next section. For the EdS-SPT kernels, analytic expressions are known, and the
integrals can be manipulated in such a way that they can be evaluated very efficiently. We
briefly describe one such technique, the FFTLog-method below. For our generalized setup,
we do not have analytic solutions, and hence the integrations entail O(106) executions of
the above algorithm that solves the hierarchy of ODEs. In total, our extension is therefore
not suited for MCMC analysis of galaxy clustering data (at least presently, it could see

3Even on large scales, due to the small, lingering coupling to the photons, baryons do not behave entirely
as dark matter until very late times, leading to slightly different initial conditions for structure formation
at z = O(10). On small scales, baryons obviously behave very differently than dark matter, which in the
EFT description leads to additional counterterms, see e.g. Ref. [220, 221].

4https://www.gnu.org/software/gsl/
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3 Eulerian perturbation theory

significant speed-up in the future), but rather useful to scrutinize common approximations
and model extended cosmological setups.

To solve the equation of motion for the kernels (3.57), we need to specify suitable initial
conditions. The formalism is tailored for late time structure formation, and the entire
prior evolution will be left to a linear Boltzmann solver (CLASS). Therefore, ηini needs to be
chosen well after recombination, deep in the matter era and when the baryon drag can be
completely neglected, but also sufficiently prior to the point at which non-linearities become
important on mildly non-linear scales. We assume adiabatic initial conditions so that all
initial fields are correlated, i.e.

ψa(k, ηini) = F (1)
a (k, ηini)δ0(k) , (3.60)

where δ0(k) is the initial fluctuation at ηini (which can be treated as fully linear since ηini was
chosen when non-linear corrections are negligible). Furthermore, we will assume that δ0(k)
is drawn from a Gaussian distribution, so that we will only need to specify the initial linear
power spectrum ⟨δ0(k)δ0(k′)⟩ = δD(k + k′)P0(k). We discuss the statistical observables in
more detail in the next section.

In practice, since we cannot take the initial time in the infinite past, we find that one
needs to be careful in setting the initial conditions for the kernels F (n)

a (k, ηini). By ηini the
decaying modes of the matter fluid in the Universe have had ample time to die out, and
therefore we need to make sure that we initialize the kernel hierarchy in the growing mode
solution at ηini, lest transient modes that do not entirely decay by the present time might
be excited. In the EdS case, this was not an issue since the dynamics was time independent
and the ηini → −∞ limit could trivially be taken, hence the perturbative solution could be
written analytically entirely in terms of the growing mode.

For some generalized setups, if the system can be mapped onto an EdS one at the initial
time, the EdS-SPT kernels can be used as initial conditions. This is for example the case
for the ΛCDM application i) above, testing the impact of exact time-dependent growth
at late times due to vacuum energy domination. Since Ωm/f

2 is very close to unity at
z ≳ 10 (see Fig. 3.3), EdS-SPT initial conditions can be used. In general however, the
system cannot be mapped exactly enough onto the analytic EdS solution at the initial
time; if the EdS kernels differs only slightly from the actual growing mode, transient modes
that traverse the hierarchy are excited. Hence we need a different strategy. We opt for
obtaining the growing mode initial condition numerically in the following way: Fixing the
dynamics to be the initial time one, Ωab = Ωab(k, ηini), we can evolve the system from the
infinite past, ηasymp → −∞, up to ηini. This way, the transient modes have died out and the
kernel hierarchy completely resides in the growing mode by η = ηini. As long as ηasymp is
sufficiently early, we can then in principle use any initial value for the kernels, because only
the growing mode will remain at ηini, which then can serve as the initial condition when
dynamics is “turned on” for η > ηini. Nevertheless, since the linear growing mode can easily
be obtained by computing the eigenvectors ua(k) of Ωab(k, ηini), it is advantageous to set

F (n)
a (k, ηasymp) =

{
ua(k) exp [(1 − λ1)(ηasymp − ηini)] , n = 1 ,
0 , n > 1 ,

(3.61)

as asymptotic initial condition, where 1 − λ1 is the growing mode eigenvalue of nδ(K)
ab +
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Ωab(k, ηini) for n = 1 (cf. Eq. (3.58)). Hence, starting at ηasymp and evolving the kernels
to ηini using Ω(k, ηini), the linear kernels remain in the growing mode by construction,
and higher order transient modes have sufficient time to die out before ηini. We will use
this method for the initialization of the kernels when we model structure formation in the
presence of massive neutrinos in Chapter 4.

3.5 Statistical quantities
The description of LSS is ultimately a statistical one. As discussed in Chapter 2, the rich
structure of the Universe today arose from small seed perturbations in the early Universe.
In typical models of inflation, the perturbations materialize due to quantum fluctuations in
the dynamical field driving the exponential expansion. As we have no direct measurement
of these primordial initial conditions and furthermore since we can not observe the cosmic
evolution of a single system, cosmological observables are statistic rather than deterministic.
In this section, we implement the perturbative solutions described above in statistical
observables of LSS.

We want to describe the statistical properties of cosmic fields such as the density fluctua-
tion, the velocity divergence or the gravitational potential on large scales. The stochastic
fields can be characterized by their N -point functions. Since the first moment, i.e. the
average of the fluctuation fields ψa vanishes, the first non-trivial moment is the power
spectrum Pab

5, defined analogously to Eq. (2.17),〈
ψa(k)ψb(k′)

〉
≡ δD(k + k′)Pab(k) . (3.62)

Here, we assume statistical homogeneity and isotropy in accordance with the cosmological
principle, such that the power spectrum only depends on the norm of the wavenumber
k [26].

Since we adopt Gaussian primordial initial conditions, the statistical properties of the
fluctuations ψa are completely determined by the initial power spectrum Pab(k, ηini) at
η = ηini.6 Furthermore, for adiabatic initial perturbations, we can use Eq. (3.60) to relate
correlations of any fields to a single initial power spectrum P0(k),〈

ψa(k, ηini)ψb(k′, ηini)
〉

= F (1)
a (k, ηini)F (1)

b (k, ηini)
〈
δ0(k)δ0(k′)

〉
≡ F (1)

a (k, ηini)F (1)
b (k, ηini) δD(k + k′)P0(k) . (3.63)

We will typically choose P0 to be the initial power spectrum of the ψ1 field, P0(k) =
P11(k, ηini), which fixes F (1)

1 (k, ηini) = 1. The initial, linear spectrum P0 can be computed
by a Boltzmann solver such as CLASS, which incorporates the primordial spectrum as well
as the entire linear evolution up to ηini (by computing accurately the growth and transfer
functions discussed in Section 2.3).

5We use the subscript ab to indicate which field components of the vector ψa that are correlated. This
should not be confused with the conventional labels of the various diagrams entering loop corrections to
the power spectrum, which we will denote with a superscript, e.g. P (22).

6As discussed in the previous section, we take ηini long after recombination but before structure formation
starts. Since non-linear corrections are completely negligible between inflation and ηini, the primordial
statistics are conserved until ηini.
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Due to the non-linear evolution of clustering matter under gravity, non-Gaussian features
are generated on larger and larger scales, even under the assumption of purely Gaussian
initial conditions. The leading non-Gaussian statistic is the bispectrum Babc, defined via

⟨ψa(ka, η)ψb(kb, η)ψc(kc, η)⟩ = δD(ka + kb + kc)Babc(ka,kb,kc; η) , (3.64)

where the Dirac delta function ensures momentum conservation which is demanded by
statistical homogeneity and isotropy. The bispectrum is an important observable because it
can be used to constrain primordial non-Gaussianity and in addition it is instrumental in
disentangling bias from cosmological parameters [223]. We discuss the bispectrum in more
detail when we describe the NNLO bispectrum in an EFT framework in Chapter 5.

Diagrams and Feynman rules

We want to obtain the N -point function at some time η using perturbation theory as
described in Secs. 3.3 and 3.4 above. Consider first the two-point function, by inserting the
perturbative expansion (3.58) we obtain

〈
ψa(k, η)ψb(k′, η)

〉
=

∞∑
n=1

∞∑
n′=1

e(n+n′)∆η
∫

p1,...,pn

∫
p′

1,...,p′
n′

δD(k − p1···n)δD(k′ − p′
1···n′)

× F (n)
a (p1, . . . ,pn; η)F (n′)

b (p′
1, . . . ,p′

n′ ; η)
〈

n∏
i=1

δ0(pi)
n′∏

i′=1
δ0(p′

i)
〉
.

(3.65)

Note that all the statistical information is contained in the expectation value of the initial
fluctuation δ0. We can reorder the sum and collect terms with equal powers of the δ0 fields,
thus

〈
ψa(k, η)ψb(k′, η)

〉
=

∞∑
L=0

2(L+1)∑
m=1

e2(L+1)∆η
∫

q1,...,q2(L+1)

δD (k − q1···m) δD
(
k′ − qm+1···2(L+1)

)
× F (m)

a (q1, . . . ,qm; η)F (2(L+1)−m)
b

(
qm+1, . . . ,q2(L+1); η

)
×
〈2(L+1)∏

i=1
δ0(qi)

〉
. (3.66)

Here, each term in the sum over L contains 2(L + 1) factors of δ0; we will see shortly
that L will correspond to the number of loops in the diagrammatic representation of the
perturbation expansion of the power spectrum. Since the initial perturbation δ0 is assumed
to be Gaussian, we can use the Wick theorem to relate N -point functions to products of
two-point functions. The Wick theorem is a cornerstone in both classical and quantum field
theories, relating ensemble averages of any products of stochastic variables to products of
ensemble averages of pairs [224]. Explicitly, for the Gaussian random field δ0 in Fourier
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F
(1)
a F

(1)
b

P0(k)
(a,k) (b,−k)

Figure 3.4: Diagrammatic representation of the tree-level power spectrum. The box repre-
sents the initial spectrum P0, and blobs represent kernels F .

space we have 〈2p+1∏
i

δ0(qi)
〉

= 0 , (3.67a)

〈 2p∏
i

δ0(qi)
〉

=
∑

all pair
associations

∏
p pairs (i,j)

⟨δ0(qi)δ0(qj)⟩ , (3.67b)

where p is an integer. Hence, expectation values of an odd number of Gaussian fields
vanish, while expectation values of an even number 2p of fields can be decomposed into
(2p)!/(2pp!) = (2p− 1)!! terms corresponding to all pairs p of the fields. The expectation
value of pairs of initial fields δ0 can be related to the power spectrum P0 via Eq. (3.63).
In consequence, higher order N -point correlation functions of Gaussian random fields can
be constructed completely from the power spectrum, and moreover for cosmic fields with
Gaussian initial conditions the statistical properties are entirely determined by the initial,
linear power spectrum.

The application of the Wick theorem to Eq. (3.66) can be nicely represented diagrammat-
ically by Feynman diagrams in a similar spirit to loop diagrams in QFTs. Representing each
kernel Fa and Fb by the diagram Fig. 3.2, where each incoming line illustrates an initial
fluctuation δ0, the sum in Wick’s theorem corresponds to pairing incoming lines between
the diagrams. Each pairing corresponds to a two-point function which can be related to the
initial power spectrum: ⟨δ0(qi)δ0(qj)⟩ = δD(qi + qj)P0(qi). The linear or tree-level diagram
is shown in Fig. 3.4. Each kernel has only one incoming line, which are connected together,
accompanied by an initial power spectrum. We depict P0 by square boxes, kernels by blobs,
and the endpoint labels indicate which fields (labeled by their indices a, b) we compute the
correlation of, as well as their wavenumbers, which must sum to zero due to translation
invariance (cf. Eq. (3.62)). The corresponding mathematical expression is simply

P tree
ab (k, η) = e2∆ηF (1)

a (k, η)F (1)
b (k, η)P0(k) . (3.68)

At one-loop, three separate diagrams contribute, named P (31), P (22) and P (13). The
superscript corresponds to the order of the kernels that appear in the diagram, e.g. P (31)

contains a third order kernel and a first order kernel. In Fig. 3.5 we display P (31), P (22); the
diagram P (13) is completely equivalent to P (31) with a and b exchanged. In Fig. 3.5 we also
label the momentum flowing in each internal line; the kernels conserve momentum, hence the
total momentum of each incoming line to a kernel equals the outgoing momentum. Note that
all pairs in the Wick theorem (3.67) sum do not contribute: disconnected diagrams would
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F
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a F

(1)
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P0(k)

P0(q)

−kk

−qq

(a,k) (b,−k)

P (31)

F
(2)
a F

(2)
b

P0(q)

P0(|k − q|)

q −q

−k + qk − q

(a,k) (b,−k)

P (22)

Figure 3.5: Diagrammatic representation of the contributions P (31) and P (22) to the one-loop
power spectrum correction. We do not show the one-loop diagram P (31) which
is equivalent to P (31) when exchanging a ↔ b.

correspond to ensemble averages over the fields, ⟨ψa(k, η)⟩, which vanish [225]. Another
way to see that disconnected diagrams do not contribute is to note that they would involve
kernels whose sum of arguments is zero, yielding zero. Furthermore, multiple Wick theorem
pairs yield equivalent diagrammatic contributions. At one-loop, there are three distinct
ways to pair incoming lines between kernels F (3) and F (1) to obtain the P (31) diagram (and
equivalently for P (13)), and similarly two ways to obtain the P (22) diagram. In general, each
diagram has an associated symmetry factor that counts equivalent contributions.

A general diagram at L-loop can be characterized by the number of lines connecting
the Fa and Fb kernels as well as the number of “daisy” loops attached to each kernel [138].
We show this classification in Fig. 3.6, where m counts the number of lines connecting the
kernels (there has to be at least one, m ≥ 1, otherwise the diagram is disconnected), and l
and r corresponds to the number of daisy loops attached to Fa and Fb, respectively. The
total number of loops in the diagram is L = l + r +m− 1. Since there are two incoming
lines from each daisy loop, the order of the kernels are 2l +m and 2r +m, respectively.

Relating a diagram at L-loop to the corresponding mathematical expression is relatively
straightforward, and can be summarized concisely by the following Feynman rules [206]:

1) Draw all distinct diagrams, corresponding to all combinations of integers (l,m, r) that
satisfy m ≥ 1, l ≥ 0, r ≥ 0 and l + r +m = L+ 1.

i) Assign an initial linear power spectrum δD(q + q′)P0(q) to each of the l + r +m
square boxes.

ii) For each kernel blob with incoming momenta qi and outgoing momenta p, write
down the kernel F (. . . ,qi, . . . ) as well as a Dirac delta function for momentum
conservation δD(p −

∑
i qi).

iii) Integrate over all inner momenta qi.
iv) Multiply by the symmetry factor

S(l,m, r) = (2l +m)!(2r +m)!
2l+rl!r!m! . (3.69)
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F
(2l+m)
a F

(2r+m)
b

. . .

. . . . . .

m lines

l daisy loops r daisy loops

a b

Figure 3.6: General diagram for loop contributions to the power spectrum. The kernels
F

(2l+m)
a and F

(2r+m)
b are connected by m lines. Moreover, they have l and r

daisy loops connected to them, respectively. The loop order of the diagram is
L = l + r +m− 1.

2) Add the expressions from each diagram, and multiply the result with the overall
time-dependent factor e2(L+1)∆η.

Applying these rules we obtain the following expression for the one-loop correction to the
power spectrum:

P 1L
ab (k, η) = P

(13)
ab + P

(31)
ab + P

(22)
ab

= e4∆η
∫

q
P0(q)

[
3F (1)

a (k; η)P0(k)F (3)
b (k,q,−q; η)

+ 3F (3)
a (k,q,−q; η)P0(k)F (1)

b (k; η)

+ 2F (2)
a (k − q,q; η)P0(|k − q|)F (2)

b (k − q,q; η)
]
. (3.70)

Similarly, by drawing all diagrams contributing to the two-loop correction, see Fig. 3.7, the
two-loop expression can be obtained as follows

P 2L
ab (k, η) = P

(15)
ab + P

(51)
ab + P

(24)
ab + P

(42)
ab + P

(33−I)
ab + P

(33−II)
ab

= e6∆η
∫

q,p
P0(q)P0(p)

[
15F (1)

a (k; η)P0(k)F (5)
b (k,p,−p,q,−q; η)

+ 15F (5)
a (k,p,−p,q,−q; η)P0(k)F (1)

b (k; η)

+ 12F (2)
a (k − q,q; η)P0(|k − q|)F (4)

b (k − q,q,p,−p; η)

+ 12F (4)
a (k − q,q,p,−p; η)P0(|k − q|)F (2)

b (k − q,q; η)

+ 9F (3)
a (k,q,−q; η)P0(k)F (3)

b (k,p,−p; η)

+ 6F (3)
a (k − p − q,p,q; η)P0(|k − p − q|)F (3)

b (k − p − q,p,q; η)
]
. (3.71)

Note that the highest order kernel entering in the one- and two-loop expressions are of
order n = 3 and n = 5, respectively (in general the highest order kernel at L-loop has
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Figure 3.7: Diagrams contributing to the two-loop power spectrum correction. There
are two separate diagrams with two third-order kernels P (33−I) and P (33−II),
distinguished by roman numerals. The equivalent contributions P (15) and P (24)

with a and b exchanged are not shown.

n = 2L − 1). Due to the recursive structure of the equations of motion of the kernels,
they become progressively harder to compute at higher order, making the integrals above
increasingly complicated to evaluate at higher loop order. In the rest of this section, we
discuss the calculation of loop integrals.

Loop integrals in EdS

Having derived general expressions for loop corrections to the power spectrum, we now
specialize to the EdS case, where the analytic solutions allows us to examine the loop integrals
in more detail. The one-loop correction to the matter power spectrum using EdS-SPT kernels
has been widely studied in the literature, see e.g. Refs. [26, 138, 206, 207, 217, 225, 226]. By
inserting the EdS-SPT recursion relation (3.48), we obtain the P (22) diagram contribution
to the one-loop power spectrum for the density contrast Pδδ = P11 as

P
(22)
11 (k, η) = 2e4∆η

∫
q
P0(q)P0(|k − q|)

[
F

(2)
1 (k − q,q)

]2
= 4π e4∆η

∫ Λ
dq q2

∫
dµP0(q)P0

(√
k2 + q2 − 2kqµ

)

×
[
k2(7kµ+ q(3 − 10µ2))
14q(k2 + q2 − 2kqµ)

]2

, (3.72)

where Λ is a cutoff which we discuss in detail in Section 3.6 and we in the second line
used rotational invariance to choose a coordinate system with k = k(0, 0, 1) and q =
q(
√

1 − µ2, 0, µ). In order to further integrate over q and µ, we need to specify an initial
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power spectrum P0. Similarly, the P (13) contribution is given by

P
(13)
11 (k, η) = 3e4∆ηP0(k)F (1)

1 (k)
∫

q
P0(q)F (3)

1 (k,q,−q)

= π

252 e4∆ηP0(k)
∫ Λ

dq q2P0(q)

×
[

12k4

q4 − 158k2

q2 − 42q2

k2 + 100 + 3(k2 − q2)3(2k2 + 7q2)
k3q5 ln

(
k − q

k + q

)]
,

(3.73)

where the initial power spectra had no µ-dependence, such that the integral over µ could
be done immediately. For the auto-correlations (a = b), the last diagram P (31) is equal to
P (13), therefore the total one-loop correction is P 1L

11 = P
(22)
11 + 2P (13)

11 .
The integrals above are key ingredients in the analysis of galaxy clustering data using the

galaxy one-loop power spectrum in redshift space [27–29]. Therefore, lots of effort have been
devoted to obtaining methods for fast evaluation [150, 151, 227–229]. In particular, in the
FFTLog-method, the input power spectrum P0(k) is written as a sum of self-similar spectra
that are (complex) power-laws in k [151]. Then, the P (22) and P (13) integrals are formally
equivalent to loop integrals of massless QFTs and can be integrated analytically. Thus the
complicated integrals can be evaluated once and for all, and evaluating loop integrals for
different cosmologies (input power spectra P0) reduces to matrix multiplication, yielding a
significant speed-up. In this thesis, we will not use these methods, because we will consider
generalized kernels beyond EdS-SPT, and we will go to two-loop in perturbation theory,
where currently no convenient method for fast loop evaluation exist.

It is useful to consider the behavior of the loop correction diagrams in the IR and UV
limits, i.e. when the absolute value of the loop momentum q is much smaller or much larger
than the external momentum k. Expanding Eq. (3.72) in the limit k ≫ q, we obtain

P
(22)
11 −−−→

k≫q
4πe4∆η

[
569
735P0(k) − 47

105k
dP0
dk + 1

10k
2 d2P0

dk2

] ∫ Λ
dq q2P0(q) + e4∆ηk2P0(k)σ2

d ,

(3.74)
where we defined the displacement dispersion of the initial power spectrum,

σ2
d ≡ 4π

3

∫ Λ
dq P0(q) . (3.75)

Similarly, the IR limit of P (13) reduces to

P
(13)
11 −−−→

k≫q
−2π

3 e4∆ηk2P0(k)
∫ Λ

dq P0(q)
[
1 − 116

105
q2

k2 + 188
245

q4

k4 · · ·
]

= −1
2e4∆ηk2P0(k)σ2

d .

(3.76)
Crucially, after adding all contributions P (22)

11 and twice P (13)
11 (P (31) gives an equal contri-

bution), we see that the leading k2 IR-dependence cancels out. This follows from Galilean
invariance [206, 217, 230, 231], in particular the kernel property Eq. (3.51). Therefore we
expect this cancellation to occur also for generalized kernels beyond EdS-SPT as long as
Galilean invariance is a symmetry.

45



3 Eulerian perturbation theory

In the UV-limit, q ≫ k, we have

P
(22)
11 −−−→

q≫k

18π
49 e4∆ηk4

∫ Λ
dq P

2
0 (q)
q2 , (3.77a)

P
(13)
11 −−−→

q≫k
−4π

3 e4∆ηk2P0(k)
∫ Λ

dq P0(q)
[

61
210 − 435k

2

q2 + · · ·
]

= −e4∆η 61
210k

2P0(k)σ2
d .

(3.77b)

The k-scaling in this limit could also have been deduced from the general property
F (n)(qi, . . . ,qn) ∝ k2 when k = ∑

i qi goes to zero, as a consequence of momentum
conservation (see general kernel properties on Page 33)

In the EdS-approximation, the power spectrum has been computed up to three-loop in
the literature [138]. The loop corrections are shown in Fig. 3.8 for a ΛCDM cosmology at
present time, z = 0. Each correction is negative up to a point where they cross zero as
can be seen from the spikes in the graphs on the absolute log-log plot (k ≃ 0.08, 0.5 and
2h Mpc−1 at one-, two- and three-loop, respectively). We see that the convergence of the
perturbation expansion appears to be poor: the two-loop correction is of the order of the
one-loop correction, and the three-loop correction is even larger. In Section 3.6 we discuss
how the convergence of SPT can be improved considerably by embedding it in an EFT
framework.

Loop integrals for generalized kernels

We now move on to considering generalized kernels as defined in the extension of SPT in
Section 3.4. Since we cannot (in general) obtain analytic solutions of the kernel equations of
motion (3.57), the one- and two-loop integrals (3.70) and (3.71) cannot be straightforwardly
simplified. Our strategy will therefore be to perform the integrals numerically. Since the
integrals are multidimensional, Monte Carlo integration is the best option [232], and we
employ the Suave routine of the CUBA library [233].7 This routine uses global adaptive
subdivision as well as importance sampling to optimize the Monte Carlo sampling distribu-
tion, and has been successfully applied to power spectrum loop-correction integrals in the
past [138].

For efficient evaluation of the loop-correction integrand, we implement and extend the
algorithm developed in Refs. [138, 216, 217]. We summarize the main elements here: At
L-loop, the integrand contains a summand of kernels at order no higher than n = 2L+1. The
kernels can be solved numerically and recursively using the equation of motion Eq. (3.57) for
each integration point drawn by the Monte Carlo sampler. In the recursive hierarchy, many
kernels appear multiple times and hence it is advantageous to use memoization. Moreover,
when one of the loop arguments go to zero, individual diagrams exhibit IR-divergences that
cancel out in the final result, as we saw explicitly for EdS-SPT kernels in the IR limits
of P (22) and P (13) Eqs. (3.74) and (3.76), respectively. The cancellations occur between
different integration regions, and therefore numerical uncertainties in the individual large IR
contributions lead to sizable errors after the cancellation in the full integral. This numerical

7The concurrent update of CUBA is described in Ref. [234].
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Figure 3.8: One-, two- and three-loop corrections (absolute values) to the power spectrum
using EdS-SPT kernels (reprinted from [138]). The results are shown for the
density contrast auto-correlation today, i.e. P11(k, η(z = 0)), and obtained
in Ref. [138] using a linear input spectrum from CAMB [92] with WMAP5
parameters [134]. At three-loop, the numerical errorbars are estimated from
two times the Monte Carlo uncertainty. Up to k = 0.55h Mpc−1, the relative
numerical error is less than 0.002.

instability can be avoided by constructing an IR safe integrand, in which the cancellations
occur already at the integrand level [138, 217, 235].

3.6 Effective theory of large-scale structure

This is a good point to pause and recap what we did so far. We started with the Vlasov-
Poisson system (3.16) and (3.17) and assumed that the cosmic fluid is a perfect, pressureless
one on large scales such that the system could be closed via the single-stream approximation
σij = 0. Subsequently, we expanded the density contrast and velocity divergence in the linear
solutions, that ultimately allowed us to compute loop corrections to the power spectrum (or
any higher order N -point function) in perturbation theory, both in the EdS-approximation
as well as for generalized dynamics. Now, let us examine the validity of this expansion, in
particular we will quantify the typical size of the fluctuations. The expectation value of the
density fluctuation vanishes (by definition), however we can compute the variance smoothed
on a scale R = 1/Λ, which can be estimated by summing modes up to a cutoff Λ:

σ2
Λ = 4π

∫ Λ

0
dq q2P0(q) =

∫ Λ

0
d ln q∆2

0(q) , (3.78)
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Figure 3.9: Variance of the fluctuation field smoothed on a scale R = 1/Λ, σ2
Λ as a function

of Λ in the ΛCDM model with As = 2.215 × 109. The non-linear scale kNL is
the wavenumber at which the variance exceeds one.

where we introduced the dimensionless power spectrum ∆2(k) = 4πk3P (k). We display the
variance σ2

Λ as a function of the cutoff in Fig. 3.9. A perturbative expansion is warranted
when the typical size of fluctuations is less than one. The variance increases for smaller and
smaller scales R as we approach the very non-linear dynamics of gravitational collapse, and
the wavenumber at which it crosses unity defines the non-linear wavenumber kNL, which
in our Universe is around kNL ≈ 0.3h Mpc−1. Beyond this wavenumber structures exhibit
shell-crossing where multiple streams cross due to gravitational collapse and eventually form
astrophysical objects through virialization [193, 236].

Problems of SPT

In SPT, due to mode-coupling, loop corrections are sensitive to physics at the non-linear
scale even when considering scales k ≪ kNL. Therefore the perfect, pressureless fluid
assumption is inconsistent even on large scales. In particular, at high loop order the SPT
predictions are increasingly sensitive to the UV, and therefore including higher order does
not improve the accuracy of the prediction [138, 225]. Three-loop calculations in ΛCDM as
shown in Fig. 3.8 indicate that there is no convergence even on linear scales. Furthermore,
in Eq. (3.77) we found that the UV-sensitivity of one-loop correction is proportional to
σ2

d,8 which is divergent for an initial power spectrum P0(k) = kn with n ≥ −1. Hence, for
general initial conditions, loop corrections are UV divergent. Therefore, one must impose
an arbitrary cutoff, on which predictions will depend. Since the linear power spectrum in
the phenomenologically favored ΛCDM universe has n ≃ −1.5 for k ≳ 0.1h Mpc−1 (see
Fig. 3.8), the UV-sensitivity of SPT in this case is not too strong, albeit increasing at higher
orders. We will see later in this section that EFT corrections of the contributions from the

8Even though the result was derived for EdS dynamics, the form of the UV limit follows from momentum
conservation and will be analogous in a general cosmology.
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UV are of order 1 % on mildly non-linear scales.
The shortcomings of SPT can be summarized as [237]:

• No well-defined expansion parameter : The variance of linear fluctuations is not small
for all scales and points in time.

• Deviations from perfect, pressureless fluid: Departures from the single-stream approx-
imation induced by short-scale non-linearities are not accounted for.

• Loop corrections are formally UV-divergent: For general initial conditions, the loop
corrections diverge, making predictions cutoff-dependent and unphysical.

In addition, in practice, there is no notion of convergence to the true answer (as obtained
from N-body simulations) in SPT, as we can see in Fig. 3.8.

The problems of SPT severely limits its predictive power, and therefore there have been
lots of efforts devoted to remedy these shortcomings as well as develop alternative approaches
that can extend the wavenumber range for which perturbative methods can reliably be
applied. One general direction has been to advance the perturbation theory description
by identifying and improving the understanding of the effects that lead to the breakdown
of the expansion. There have been attempts to partly resum the expansion, in particular
reorganizing it in terms of a non-linear propagator, referred to as renormalized perturbation
theory (RPT) [225, 238]. Given the slight improvement of these approaches over SPT, other
works have performed similar resummations, e.g. Refs. [239–246]. Nevertheless, Ref. [247]
considered cosmological perturbation theory in 1 + 1-dimensions, where the entire SPT
expansion can be resummed, and found that the theory does not accurately model the
power spectrum on any mildly non-linear scales.

Another direction to improve the predictive power of cosmological perturbation theory
is based on effective equations of motion, often referred to as the effective field theory of
large-scale structure (EFTofLSS), proposed in Refs. [144, 145]. The idea is that the true
equations of motion are that of an imperfect fluid with various contributions from the
effective anisotropic stress tensor σij . One way to derive the effective equations of motion is
to coarse-grain the fluctuations on some scale beyond which we cannot model the physics.
The resulting Vlasov-Poisson system contain contributions to the anisotropic stress tensor
from the coarse-graining procedure in addition to the microscopic contributions. Thus, the
stress tensor models the unknown UV physics; in the EFT it is not computed from first
principles but rather written in terms of operators allowed by symmetries multiplied by a
priori unknown coefficients. In this section we will describe the EFT approach in detail, and
demonstrate how we can cure the cutoff dependence of the perturbation theory at two-loop
order.

Coarse-grained equations of motion

We start by coarse-graining the distribution function, i.e. we integrate out the small scales
by smoothing it with a window function WΛ,

fl(x,p, τ) = [f ]Λ (x,p, τ) ≡
∫

d3x′WΛ(x − x′)f(x′,p, τ) , (3.79)
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with the l subscript indicating long-wavelength fields and where Λ is the smoothing scale
which we will take to be the order of the non-linear scale, Λ ∼ kNL. Any observable O can
be coarse-grained in a similar manner: Ol = [O]Λ, with the corresponding short-wavelength
part defined as Os = O − Ol. In particular, the smoothed energy density ρl and velocity
flow π are in real space given as

ρl(x, τ) = m

a3

∫
d3p fl(x,p, τ) , (3.80a)

πl(x, τ) = ρl(x, τ)vl(x, τ) =
∫

d3p
pi

am
fl(x,p, τ) . (3.80b)

Here, we defined the smooth velocity field as vl = πl/ρl.9
The exact form of the window function WΛ is not important; a top hat filter WΛ(x) =

Θ(1/Λ−|x|), where Θ is the Heaviside step function, could be used, but it is more convenient
to apply a Gaussian filter

WΛ(x) =
( Λ√

2π

)3
exp

(
−1

2Λ2|x|2
)
, WΛ(k) = 1

(2π)3 exp
(

−1
2

|k|2

Λ2

)
, (3.81)

whose integral over real space was normalized to one and has variance∫
x′
WΛ(x − x′) (x − x′)i(x − x′)j = δ

(K)
ij /Λ2 . (3.82)

Using this filter, one can derive the following expression for smoothing the products of two
fields f and g by Taylor expanding the long-wavelength fields [144],

[fg]Λ = flgl + [fsgs]Λ + 1
Λ2 ∇fl · ∇gl + · · · . (3.83)

Hence, in addition to the product of long-wavelength fields, we obtain corrections from
short-wavelength modes, as well as higher order corrections in the gradient expansion
k2/Λ2 ∼ k2/k2

NL. We will work at leading order in gradients, therefore it turns out that we
can neglect the derivative corrections above, because coarse-grained products always enter
with additional gradients in the equations of motion.

Applying the groundwork above, the continuity and Euler equations (Eqs. (3.16) and
(3.17)) can be coarse-grained yielding

∂δl
∂τ

+ ∇ · [(1 + δl)vl] = 0 , (3.84a)
∂vl
∂τ

+ Hvl + (vl · ∇)vl = −∇ϕl − 1
1 + δl

ei∇j

[
τ ij
]

Λ
, (3.84b)

9This definition follows typical conventions of EFTofLSS, even though the velocity is not a purely long-
wavelength field when defined as a ratio of coarse-grained fields. There are in principle additional
counterterms in the effective theory to absorb short-wavelength contributions from this ratio, but it was
shown in Ref. [194] that the finite parts of the counterterms have no physical effect. Therefore, the finite
parts can be chosen to exactly cancel the formally infinite parts, which can be taken as a definition of
what is meant by vl.
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where the effective stress tensor τij contains both the microscopic stress and corrections
due to the coarse-graining, in particular from products of short fluctuations in accordance
with Eq. (3.83) [144]:

τ ij = (1 + δl)σij
l + (1 + δl)vi

sv
j
s + δ(K)ij∇kΦs∇kΦs − 2∇iΦs∇jΦs

8πGρ̄ , (3.85)

where Φ is the full gravitational potential sourced by the total energy density, as described
by Eq. (3.2). The short-scale physics is therefore contained entirely in the effective stress
tensor. Those fluctuations on small scales are large and strongly coupled, and hard to
model from first principles. Nevertheless, we are not interested in the specific behavior
on small scales, but rather the impact on larger scales. Indeed, the idea of the EFT is to
take expectation values of the short wavelength fluctuations, analogously to integrating out
UV degrees of freedom in QFT. The expectation value is taken on a background of long
wavelength modes, which affect the small scales via tidal effects. Therefore, the effective
stress tensor will contain two contributions: a deterministic part which is correlated with
the long wavelength modes and a stochastic one which must be modeled statistically. Thus,
in the end, one obtains an effective theory where the only degrees of freedom are the long
wavelength ones.

Effective stress tensor
Before we discuss the EFT description of the effective stress tensor in more detail, let us
formulate the theory in the notation introduced in Section 3.4. We go to Fourier space
and neglect vorticity; the additional stress tensor modifies the Euler equation, i.e. the
equation for the second component of ψa = (δ, −θ/Hf) (considering only one species for
the moment, N = 1). We will only consider coarse-grained fields in the following, unless
otherwise specified, and drop the l subscript for brevity. Thus (cf. Eq. (3.57)),

∂

∂η
ψa(k, η) + Ωab(η)ψb(k, η) =

∫
k1,k2

δD(k − k12)γabc(k,k1,k2)ψb(k1, η)ψc(k2, η)

+ δ
(K)
a2 τθ(k) , (3.86)

where the effective stress term τθ is given in real space as

τθ = 1
H2f2∂i

1
1 + δ

∂jτ
ij . (3.87)

The prefactor arose due to the change of time variable to η as well as rescaling the velocity
divergence, and is not important for the discussion. Furthermore, the 1/(1 + δ) factor
which follows from Eq. (3.84b) needs to be present to be consistent with momentum
conservation [248].

In the EFT, we will write down the deterministic part of the stress tensor by including all
operators of long-wavelength fields allowed by symmetries, multiplied by a priori unknown
coefficients, EFT parameters or Wilson coefficients, that cannot be determined by the theory
itself, but rather has to be calibrated to N-body simulations or marginalized over in data
analysis. This expansion is akin to the bias expansion that models the response of tracer
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fields given the matter density perturbation, see e.g. Ref. [137]. Hence, the deterministic
stress tensor can be written schematically as

τ ij
det =

∑
O
cO Oij , (3.88)

where the time-dependent coefficients cO are EFT parameters and the operators O are
products of (gradients of) smoothed fields. The possible operators that can appear in the
sum (3.88) are constrained by Galilean invariance and the weak equivalence principle, in
particular v cannot appear without derivatives, ϕ without derivatives is unphysical and
no terms containing ∇ϕ in addition to the one already in the Euler equation (3.84b) are
allowed [194, 248]. Hence, we have the following building blocks

∂i∂jϕ and ∂iuj , (3.89)

from which operators preserving the underlying symmetries can be constructed. Here, we
defined the rescaled gravitational potential ϕ = 2ϕ/(3ΩmH2) that satisfies ∆ϕ = δ as well
as the rescaled velocity field u = −v/Hf = − dx/dη for convenience. Hence, the trace of
the operators above yields the density contrast and the (rescaled) velocity divergence. We
define the traceless parts as

sij =
(
∂i∂j − δ(K)ij ∇2

3

)
ϕ , (3.90a)

κij = ∂iuj + ∂jui − 2
3δ

(K)ij∇ · u , (3.90b)

corresponding to the tidal tensor and velocity shear, respectively. Hence, we can equivalently
work with the building blocks {δ, θ, sij , κij}.

Both short- and long-wavelength fluctuations evolve on the same time-scale, H−1, which
means that the stress-tensor depends on the evolution of the long modes on the entire past
Lagrangian trajectory. In other words, the effective theory is non-local in time [249, 250].
Explicitly, for a fluid element at position x at time η, the stress tensor depends on the past
trajectory xfl(x, η; η′) as a function of η′,

xfl(x, η; η′) = x +
∫ η

η′
dη′′ u

(
xfl(x, η, η′′), η′′) . (3.91)

For operators containing multiple fields, we need to include also products evaluated at
different times, i.e. integrate over the past trajectory of each field. Therefore, the most
general form of the deterministic stress tensor is given by

τ ij
det(η) =

∑
O

∫ η

dη1 · · · dηn cO(η; η1, . . . , ηn)
n∏

m=1
Om (xfl(x, η, ηm), ηm) , (3.92)

where each factor Om comprises (gradients of) one of the building blocks {δ, θ, sij , κij}
evaluated at time ηm. Each composite operator Oij in the sum can furthermore be
constructed from all compatible index contractions between the factors Om (for which we
dropped the tensor indices for simplicity).
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In the perturbation theory, we will categorize the operators in (3.92) by the number of
fields appearing, and include them consistently at each perturbative order. Additionally,
operators with increasing number of gradients are suppressed by powers of k/Λ. Hence, one
can systematically improve the EFT by going to higher order in perturbation theory or
by adding additional terms in the power expansion in gradients (albeit with an increasing
number of EFT parameters). At lowest order in fields and gradients, we have

τ ij
det
∣∣
1 =

∫
dη′

[
δ(K)ij (

c̃2
s (η′)δ(xfl, η

′) − c̃2
v,b(η′)∇ · u(xfl, η

′)
)

− 3
4 c̃

2
v,s(η′)κij(xfl, η

′)
]

(3.93)

where we introduced the dimensionless EFT parameters c̃s, c̃v,b, c̃v,s that can be identified
as the sound speed, bulk and shear viscosity of the fluid, respectively [194]. Note that we
could have in principle included a spatially constant, zeroth-order in fields term above,
however it would be killed by a spatial gradient and not contribute to the effective stress
term τθ.

The non-local in time formulation above is rather cumbersome; if we Taylor expand each
operator building block Om(xfl, ηm) around ηm = η the time-integral can be performed. We
have

Om(xfl(x, η, ηm), ηm) =
∑

n

1
n!
(
D+(ηm) −D+(η)

)n
[ dn

d(D+)n
Om(xfl(x, η, ηm), ηm)

]
ηm=η

=
∑

n

1
n!

(
D+(ηm) −D+(η)

D+(ηm)

)n [ dn

dηn
m

Om(xfl(x, η, ηm), ηm)
]

ηm=η

=
∑

n

1
n!

(
D+(ηm) −D+(η)

D+(ηm)

)n (
∂

∂η
− u(x, η) · ∇

)n

Om(x, η)

(3.94)

where we used dxfl/dηm = −u(xfl(ηm), ηm). Inserting this into Eq. (3.92), we obtain a local
in time formulation, with modified EFT parameters (which we will not calculate in the end,
but measure from N-body data or observations). Nevertheless, it comes at the expense of
an infinite sum of terms with increasing convective derivatives which in general contribute
at the same order in terms of the typical timescale H−1. When working at a finite order
in perturbation theory however, the time-dependence of an n-th order field is (D+)n if we
specialize to SPT and the EdS-approximation. Therefore only a finite number of terms
contribute in the sum above, leading to a finite set of local in time operators contributing
to the stress tensor. If the stress tensor contributions are only introduced to correct for
the spurious UV-sensitivity of SPT, the perturbative fields in the EFT will also satisfy the
same time-dependence. Even though the time-dependence of the EFT operators will in
general differ from that of EdS in SPT, we expect the dominant EFT terms to be captured
this way. In addition, the velocity field in the convective derivative above will be expanded
at n-th order in perturbation theory, yielding only a finite number of terms.

All in all, at lowest order, we can perform the integral (3.93) and obtain the following
effective stress term:

τdet
θ

∣∣
1 = 1

H2f2∂i
1

1 + δ
∂jτ

ij
det
∣∣
1 = c2

s ∇2δ − c2
v,b∇2θ − 3

4c
2
v,s∇2θ = c2

s ∇2δ − c2
v∇2θ (3.95)
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where we expanded 1/(1 + δ) and defined new EFT coefficients c2
s and c2

v after integration
and rescaling. Notice that there are two spatial gradients acting on the fields in Eq. (3.95).
This is required by momentum conservation, in particular the effect of the short-scale physics
as described by τdet

θ on a long-wavelength density field δ must go to zero faster than k2

times δ in the limit k → 0 (in Fourier space)[89, 194, 202].
So far, we only discussed the deterministic part of the stress tensor. The second, stochastic

contribution does not correlate with the long modes and describes the deviation between
the expectation value over the short scales and the actual realization. Including it, we have

τθ = τdet
θ + ∆J (3.96)

where ∆J = ∂i∂j∆τ ij
stoch. and ∆τ ij

stoch. is the stochastic part of the stress tensor. As
discussed above, momentum conservation implies that ∆J vanishes faster than k2 in the
long-wavelength limit. In addition, since ∆J is uncorrelated with the density field, it will
only correct the power spectrum via the auto-correlation ⟨∆J∆J⟩, and hence it is suppressed
by k4.

The importance of different contributions can be studied exactly in an EdS universe with
a power-law initial spectrum, P0 ∝ kn. For n > −3, the only available scale is where the
linear mode variance crosses unity: kNL, and the linear, dimensionless power spectrum is
given by ∆2

lin = (k/kNL)3+n. At L-loop, one finds the following scalings [237]:

∆2
L-loop ∼

(
k

kNL

)(n+3)(L+1)
, ∆2

det ∼
(

k

kNL

)n+5
, ∆2

stoch. ∼
(

k

kNL

)7
. (3.97)

In our Universe, we have n ≈ −3/2 at k = kNL. Hence, the stochastic contribution is
even less important than the two-loop correction, and we will neglect it in this thesis.
Furthermore, the deterministic part contributes similarly to the one-loop correction, hence
the EFT corrections start at the lowest non-linear order, effectively counting c2

s = O([δ(0)]2).

Effective theory in the EdS-approximation
We show explicitly how the EFT corrections can cure the spurious UV sensitivity of SPT
in the particular case of EdS dynamics. In Chapter 5, we indeed specialize to EdS when
we derive the NNLO bispectrum in an effective theory framework. Moreover, the effective
theory in EdS is illustrative for the general case, and serves as a starting point for our
application of the effective theory framework to structure formation with massive neutrinos
in Chapter 4.

We solve the equations of motion (3.86) in the presence of the effective stress tensor
term (3.87). At one-loop, only the lowest-order stress term (3.95) appears, containing
linear fields. In EdS, the linear density contrast and velocity divergence are related by
δ(1) = −θ(1)/Hf , hence we can write

τθ|1 = γ̃1∇2δ(1) , (3.98)
at this order (dropping the “det” superscript as we neglect stochastic contributions), with
γ̃1 = c2

s + Hfc2
v. The new source term yields a particular solution in Fourier space

δ̃(1)(k, η) = −k2
∫

dη′G(η, η′)γ̃1(η′)δ(1)(k, η′) = −e3∆ηk2γ1δ0(k, η) ≡ e3∆ηF̃ (1)(k)δ0(k) ,
(3.99)
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where G(η, η′) is the Green’s function for the homogeneous system (3.86) and we recall that
δ(1)(k, η) = e∆ηδ0(k) is the linear density contrast increasing with the growth factor. The
exact form of the Green function can be found in e.g. Refs. [210, 211], it is not important
for this discussion however: in the end we measure the EFT coefficient from simulations,
and we could therefore directly perform the time integration above and write the result in
terms of a new parameter γ1. In Eq. (3.99), we extracted a factor e2∆η for convenience and
defined the counterterm kernel F̃ (1). Hence, the density contrast up to third order is given
by

δ(k, η) = δ(1)(k, η) + δ(2)(k, η) + δ(3)(k, η) − e3∆ηF̃ (1)δ0(k, η) . (3.100)

The corresponding correction to the power spectrum at one-loop is the counterterm

P ctr
1L = −2e4∆ηF̃ (1)P0(k) = −2e4∆ηγ1k

2P0(k) . (3.101)

Notice that, crucially, the k-dependence of this counterterm matches exactly that of the UV-
limit of the one-loop correction to the power spectrum, as seen in Eq. (3.77). This serve as a
consistency check: the EFT term indeed precisely correct for the spurious UV contributions
to the one-loop corrections. Moreover, the EFT coefficient depends on the smoothing scale
Λ, and we can deduce this dependence by demanding that after renormalization, i.e. after
adding the counterterm (3.101), the result has no dependence on the artificial smoothing
scale Λ. In other words, we have

P ren
1L (k) = P1L(k; Λ) + P ctr

1L (k; Λ) = 2P (13)(k; Λ) + P (22)(k; Λ) + P ctr
1L (k; Λ) , (3.102)

whose cutoff-dependence is determined by

d
dΛP

ren
1L (k) = e4∆η d

dΛ

[
− 61

210k
2P0(k)σ2

d(Λ) − γ1(Λ)k2P0(k)
]
, (3.103)

where we in the second equation used the UV-limit from Eq. (3.77). This result is valid
at leading power in the expansion in gradients, i.e. up to corrections of O(k4/k4

NL). The
cutoff-dependence is exactly zero if we let

γ1(Λ) = γ1 + 4π
3

61
210

∫ ∞

Λ
dq P0(q) . (3.104)

where γ̄1 = γ1(Λ = ∞) is an initial condition.
Next, we consider the effective stress term at second order in fields, which will be relevant

for the two-loop power spectrum and the one-loop bispectrum. For this, we need to include
operators at second order to the effective stress tensor:

O ⊂
{
δ(K)ij

δη1δη2 , s
ij
η1δη2 , s

ik
η1s

kj
η2 , δ

(K)ij
slk

η1s
kl
η2

}
(3.105)

where the subscript labels the time along the fluid path, corresponding to ηm in the
integral (3.92). There are in addition an equivalent set of operators from the velocity fields
θ and κij . Rewriting the effective stress tensor contributions in terms of local in time
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Figure 3.10: Diagrammatic representations of the contributions to F̃ (2). The crossed boxes
indicates insertions of EFT operators. Adopted from Ref. [250].

operators via Eq. (3.94), one can obtain the following basis for the second order effective
stress term [213, 250]10

τθ

∣∣
2 = γ̃1∆δ(2) + ẽ1∆

[
δ(1)

]2
+ ẽ2∆

[
s

(1)
ij s

(1)ij
]

+ ẽ3∂i

[
s(1)ij∂jδ

(1)
]
, (3.106)

with additional EFT parameters ẽi in addition to γ̃1. The particular solution for the density
contrast at second order arising from the EFT source term can be written in Fourier space
in terms of a new counterterm kernel F̃ (2) [250],

δ̃(2)(k, η) =
∫

q
F̃ (2)(q,k − q)δ(1)(k, η)δ(1)(k, η) (3.107)

which can be split into three separate contributions: F̃ (2) = F̃
(2)
δ + F̃

(2)
α,β + F̃

(2)
τ , as depicted

in Fig. 3.10. The first term is simply F̃
(2)
δ = −γ1k

2F (2), corresponding to the first term
in Eq. (3.106). Here, we implicitly integrated the EFT source term over time with an
appropriate Green’s function (cf. Eq. (3.99)) and incorporated the result in γ1 (without a
tilde). F̃ (2)

α,β expresses non-linear corrections to the leading order particular solution δ̃(1), as
given by Eq. (3.99), i.e. coupling δ(1) or θ(1) with δ̃(1) or θ̃(1) by the coupling functions α and
β. Finally, the F̃ (2)

τ part captures the three operators in Eq. (3.106) with new coefficients
ẽi. By Fourier transforming those operators, we can write

F̃ (2)
τ (q1,q2) =

3∑
i=1

eiEi(q1,q2) , (3.108)

with

E1(q1,q2) = (q1 + q2)2 , (3.109a)

E2(q1,q2) = (q1 + q2)2
(

(q1 · q2)2

q2
1q

2
2

− 1
3

)
, (3.109b)

10This result is obtained from relating δ(1) = −θ(1)/Hf , as well as noticing that θ2 is redundant, which can
be seen from the relation (q1 + q2)2

[
F

(2)
1 (q1,q2) −G

(2)
1 (q1,q2)

]
= 4E1/21 − 2E2/7, with Ei defined in

Eq. (3.109). Furthermore, expanding the denominator 1/(1 + δ) in Eq. (3.87) yields no new terms that
are not already accounted for in the stress tensor expansion.
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3.6 Effective theory of large-scale structure

E3(q1,q2) = −1
6(q1 + q2)2 + 1

2q1 · q2

((q1 + q2) · q2
q2

2
+ (q1 + q2) · q1

q2
1

)
. (3.109c)

The F̃ (2)
δ and F̃

(2)
α,β parts contain F (2) and combinations of the mode coupling functions α

and β, that can be written as

Γ(q1,q2) = (q1 + q2)2F
(2)
1 (q1,q2) + 2

11

(10
21E1(q1,q2) − 5

7E2(q1,q2) − 3E3(q1,q2)
)
.

(3.110)
In total, we can write the counterterm kernel as

F̃ (2)(q1,q2) =
3∑

i=1
eiEi(q1,q2) + γ1Γ(q1,q2) . (3.111)

UV sensitivity at two-loop

So far, using EdS-SPT kernels, we showed that F̃ (1) can renormalize the one-loop power
spectrum, and we derived F̃ (2) which combined with F̃ (1) can renormalize the one-loop
bispectrum, as will be shown in Chapter 5. While one in principle could derive the third11

and fourth order counterkernels, which is needed for the two-loop power spectrum and
bispectrum, respectively, we opt for another approach when renormalizing those corrections,
where the explicit expressions of the higher order EFT operators are not needed. The
number of operators and corresponding EFT parameters grows rapidly at higher orders,
and in practice there is a large degeneracy between them. Therefore, when calibrating the
EFT result to N-body simulations, using an ansatz to only fit for the overall amplitude
of the counterterms is often sufficient [252, 253]. With a large number of free parameters,
there is also the risk of overfitting the data.

We will follow the prescription of Ref. [252], which we explain in the following. The
starting point is to examine the UV sensitivity of the two-loop correction. It consists of an
integral over two momenta q1 and q2 (see Eq. (3.71) for the power spectrum), and we can
distinguish between two contributions from the UV: the double-hard (hh) and single-hard (h)
limits. In the double-hard limit, both loop momenta becomes hard compared to the external
momentum, schematically k ≪ q1, q2, and in the single-hard limit only one of the momenta
become hard, e.g. k ∼ q2 ≪ q1. Both in the case of the power- and bispectrum (as well as
in the presence of massive neutrinos in Chapter 4), we will show that the double-hard limit
can be renormalized by the EFT operators already introduced to renormalize the respective
one-loop corrections. Following Ref. [252], the remaining single-hard UV sensitivity can be
corrected for by a single additional EFT parameter. We explain this method in detail for
the power spectrum in EdS below, and extend it to capture also structure formation with
massive neutrinos in Chapter 4 as well as to the bispectrum in Chapter 5.

The different contributions to the two-loop correction to the power spectrum is given
in Eq. (3.71) and the corresponding diagrams are shown in Fig. 3.7. Considering first the
double-hard limit, it is instructive to consider the parametric scaling of different contributions.
We take q1 ∼ q2 ∼ q with q → ∞ and k ≪ q fixed. Due to momentum conservation, the
11See Ref. [251] for an explicit expression for the F̃ (3) kernel.
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3 Eulerian perturbation theory

kernels entering the different contributions scale as F (n) ∝ k2/q2, hence

P (15),hh ∼ k2P0(k)
∫

q
[P0(q)]2 /q2 , P (24),hh ∼ k4

∫
q

[P0(q)]3 /q4 ,

P (33−I),hh ∼ k4P0(k)
∫

q
[P0(q)]2 /q4 , P (33−II),hh ∼ k4

∫
q

[P0(q)]3 /q4 . (3.112)

The leading UV contribution comes from the propagator correction diagram P (15), which
only contains daisy loops. The P (33−I) diagram corresponds to P (13) squared, and is
therefore suppressed by an additional factor k2/q2. The remaining diagrams represent in
the double-hard limit contributions where two short wavelength modes average out to a
long wavelength mode, which would be corrected for by stochastic contributions in the
effective stress tensor. As we work at leading order in k2/k2

NL, we therefore neglect all
double-hard contributions but P (15),hh. Its exact dependence on q1 and q2 in EdS can be
determined [217, 252, 254]:

P (51),hh(k) = −e6∆ηk2P0(k) 11191
6449625

∫
q1,q2

S1(q1/q2)
q1q2

P0(q1)P0(q2) , (3.113)

where

S1(r) = − 1
716224r6

[
4r(1 + r2)(5760 + 13605r2 − 128258r4 + 13605r6 + 5760r8)

+ 30(r2 − 1)4(384 + 2699r2 + 384r4) ln
( |1 − r|

1 + r

)]
. (3.114)

Indeed, we see that the leading double-hard contribution to the two-loop power spectrum
correction is proportional to k2P0(k) and can be absorbed by the counterterm that was
introduced in Eq. (3.101) to renormalize the one-loop correction.

The leading contributions to the single-hard limit arises from diagrams in which one daisy
loop is hard. Hence we neglect the single-hard contribution from P (33−II) and from P (24)

where the hard momentum is running in the “connecting” loop between the blobs. Taking
q1 → ∞, the relevant limits are [252]

P (15),h(k) = e6∆ησ2
d

k2P0(k)
1412611200

∫
q2
P0(q2)

×
{

−2r2(2266005 − 33470730r2
2 + 187902172r4

2 − 9879110r6
2 + 1167375r8

2)

+ 15(−1 + r2
2)3(−151067 − 451074r2

2 + 77825r4
2) ln

( 1 + r2
|1 − r2|

)}
,

(3.115a)

P (24),h(k) = e6∆ησ2
d

k2

113190

∫
q2
P0(|k − q2|)P0(q2)F (2)(q2,k − q2) 1

r2(1 + r2
2 − 2r2µ2)

×
{

(−32879µ2 + r3
2(6176 − 48096µ2

2) + 32r2
2µ2(1117 + 1503µ2

2)+
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3.7 Resummation of large bulk flows

r2(−25933 + 16892µ2
2))
}
, (3.115b)

P (33−I),h(k) = −2e6∆η 61
210σ

2
dk

2P (13)(k) , (3.115c)

where r2 = q2/k and k · q2 = kq2µ2. Noting that all limits contain the displacement
dispersion σ2

d, Ref. [252] makes the assumption that the EFT corrects the UV in a universal
manner, by a shift in the displacement dispersion

σ2
d(Λ) 7→ σ2

d(Λ) + Nγ2 . (3.116)

Here, γ2 is an EFT parameter and N is a factor introduced for convenience. The replacement
thus corresponds to adding a counterterm

P ctr
2L (k; Λ) = e6∆ηph

2L(k; Λ)Nγ2(Λ) , (3.117)

where
ph

2L(k; Λ) = 1
σ2

d

[
P (15),h(k; Λ) + P (24),h(k; Λ) + P (33−I),h(k; Λ)

]
. (3.118)

We illustrate the effect of adding EFT corrections to the perturbative prediction of
the power spectrum in Fig. 3.11, using the approach described above. The one-loop, or
next-to-leading order (NLO) results are displayed in blue and the two-loop, or NNLO results
in green, both normalized to the linear power spectrum. For comparison, we plot the
power spectrum computed using the Quijote N-body simulations [174]. (Details for this and
similar comparisons will be given explicitly in Chapter 4, here we only make a qualitative
comparison.) Clearly, the EFT prediction matches the N-body data much better than SPT,
in particular also on larger scales k ≃ 0.1h Mpc−1, where the theoretical uncertainty is
expected to be small. It is important to note that the relatively good agreement of the SPT
prediction on mildly non-linear scales at two-loop is largely due to the cancellation of the
one- and two-loop corrections, which on those scales have opposite signs (see Fig. 3.8). If
we would add the three-loop correction, the agreement would worsen, an obvious indication
of the breakdown of perturbation theory. In the EFT on the other hand, the prediction can
be systematically improved by including additional loop corrections and higher derivative
operators, however at the expense of additional EFT coefficients.

3.7 Resummation of large bulk flows
We finish this chapter by discussing the resummation of contributions from large wavelength
modes, known as IR-resummation. It is well known that Eulerian perturbation theory does
not adequately model the effect of large bulk flows on the BAO peak [226, 255]. This can
nevertheless be remedied in a relatively straightforward manner by resumming the effect of
large displacements in the IR non-perturbatively [146–149]. We will employ IR resummation
when modeling massive neutrinos in structure formation in Chapter 4, in order to compare
and calibrate to N-body simulations as accurately as possible.

IR resummation in SPT is nicely derived in e.g. Appendix F of Ref. [149], and we repeat
the resulting resummation method here. The first step is to split the linear power spectrum
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Figure 3.11: Illustration of the convergence of SPT (dashed) and EFT (solid) perturbative
predictions of the power spectrum at NLO (blue) and NNLO (green). The
thick, black, solid line shows the N-body result with the gray band indicating
estimated uncertainty. The perturbative results are obtained with EdS-SPT
kernels and the EFT lines are fitted up until a pivot scale kmax = 0.2h Mpc−1.

that is input to the loop corrections into a smooth, non-wiggly part and a wiggly part
comprising the BAO feature:

P0(k) = Pnw(k) + Pw(k) . (3.119)

This separation is useful because the large bulk flows affect only the BAO wiggles [147, 149].
The non-wiggly part of the power spectrum can be obtained by Fourier transforming the
spectrum to real space, manually removing the BAO peak, smoothly interpolating the result
and back-transforming to Fourier space, as described in Refs. [256, 257]. Alternatively, one
can use an analytic formula for the shape of the smooth power spectrum, as described in
Ref. [149] using the Eisenstein-Hu formula [258]. We will employ the first method. The
next step is to define the damping factor

Σ2 = 4π
3 e2∆η

∫ ks

0
dq Pnw(q)

[
1 − j0

(
q

kosc

)
+ 2j2

(
q

kosc

)]
, (3.120)

where ks is the separation scale between short and long modes, defining two regimes in which
the perturbative description is treated differently, kosc = h/(110Mpc) is the wavenumber
corresponding to the BAO period, and jn are spherical Bessel functions of order n. The
IR-resummed power spectrum at N -th order is then given by

P IR =
N∑

L=0
PL-loop

[
Pnw + Pw e−k2Σ2

N−L∑
n=0

(k2Σ2)n

n!

]
≡

N∑
L=0

PL-loop
[
P IR,N−L

0

]
. (3.121)
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Here, we defined in the second equality a short-hard notation P IR,N−L
0 for the content of the

bracket. In addition, the bracket notation PL-loop[X] indicates that the L-th loop correction
should be computed with X as input power spectrum. For example, for the IR-resummed
two-loop integral (3.71), P0 should be replaced by P IR,N−2

0 when working at N -th order in
perturbation theory. In Eq. (3.121), the exponential factor resums the contributions from
the IR. Since the loop integrals themselves also include contributions from the IR, one needs
to correct for the overcounting of IR contributions, yielding the additional factor composed
of a sum over n. Notice that in the limit N → ∞, P IR,N−L

0 = Pnw + Pw = P0, hence the
difference due to IR resummation only appears when working at finite order in perturbation
theory.

A key ingredient in deriving the result above is the kernel property in Eq. (3.51) when
a subset of the arguments is soft [149]. This property follows from Galilean invariance,
and therefore also holds for the generalized kernels defined in Section 3.4. Hence, the IR
resummation formula (3.121) can be applied also in our extension of SPT.

For convenience, we write down the explicit resummation formulas up to NNLO in
perturbation theory, by applying Eq. (3.121):

P IR
LO = Ptree

[
Pnw(k) + e−k2Σ2

Pw(k)
]
, (3.122a)

P IR
NLO = Ptree

[
Pnw(k) + e−k2Σ2(1 + k2Σ2)Pw(k)

]
+ P1L

[
Pnw(k) + e−k2Σ2

Pw(k)
]
, (3.122b)

P IR
NNLO = Ptree

[
Pnw(k) + e−k2Σ2

(
1 + k2Σ2 + 1

2(k2Σ2)2
)
Pw(k)

]
+ P1L

[
Pnw(k) + e−k2Σ2(1 + k2Σ2)Pw(k)

]
+ P2L

[
Pnw(k) + e−k2Σ2

Pw(k)
]
. (3.122c)

Moreover, in practice, it is convenient to simplify the IR resummed expression in the
following way,

PL-loop

[
Pnw + Pw e−k2Σ2

N−L∑
n=0

(k2Σ2)n

n!

]

→ PL-loop [Pnw] + (PL-loop [Pnw + Pw] − PL-loop [Pnw]) × e−k2Σ2
N−L∑
n=0

(k2Σ2)n

n! . (3.123)

This replacement is valid up to corrections of O(P 2
w) and diagrams containing Pw inside

a hard loop. Such corrections can safely be neglected however, since the wiggly spectrum
is very small compared to the non-wiggly spectrum, and its integral vanishes because it
oscillates around zero. Eq. (3.123) is useful since it only involves loop integrals with Pnw
and Pnw + Pw = P0 as input, as opposed to multiple combinations of inputs in Eq. (3.122).

We illustrate the effect of IR resummation in Fig. 3.12. The NLO and NNLO power spectra
in the EFT is displayed with and without IR resummation. The results are normalized to the
N-body result (the Quijote simulations [174]). There is an initial “bump” in the perturbative
results around k = 0.01–0.05 which is due to finite box effects in the simulation and unrelated
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Figure 3.12: Illustration of perturbative results with (solid lines) and without (dashed
lines) IR resummation. The NLO (blue) and NNLO (green) predictions are
computed in the EdS-approximation, including EFT corrections fitted up to
kmax = 0.2h Mpc−1. All graphs are normalized to the N-body result (Quijote
simulations), with the gray band indicating N-body uncertainty.

to IR resummation. For larger k, it is apparent that the IR resummed predictions better
match the BAO wiggles of the N-body results than those without resummation. Note that as
higher and higher corrections are added, the perturbative result itself more accurately models
the effect of large bulk flows on the BAO wiggles, and there is less need for IR resummation.
Indeed, we see in Fig. 3.12 that already at two-loop the effect of IR resummation is modest.

Summary In this chapter, we have introduced cosmological perturbation theory in the
Eulerian picture. Starting from the Vlasov-Poisson set of equations, we wrote down
perturbative solutions valid in the mildly non-linear regime. In Section 3.4, we introduced
an extension of SPT, allowing to capture clustering dynamics with non-trivial scale- and
time-dependence. This extention will allow us to treat massive neutrinos in structure
formation beyond linear theory in the next chapter. We ended the chapter by describing
two ingredients that significantly improve the accuracy of the perturbative prediction: EFT
corrections and IR resummation. Both will used when we model the power spectrum in the
next chapter, and the EFT formalism will be applied to the bispectrum in Chapter 5.
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4 Massive neutrinos in structure formation
Ever since the late 1990s, it has been established that neutrinos oscillate and have non-zero
mass [259], providing direct evidence for physics beyond the SM [164, 260]. As neutrinos
play a significant role in the history of the Universe, cosmological probes can shed light on
various neutrino properties, in particular the absolute mass scale [30].

In this chapter, our focus is on the effect of massive neutrinos on structure formation:
we present the results of Papers I [44] and III [46], which computed the power spectrum
at NNLO in the presence of neutrinos, going beyond previous studies by including the
full scale- and time-dependence of the dynamics induced by the neutrino component, as
well as computing perturbations in the neutrino fluid beyond linear theory. We start by a
review of the CνB and mention some important cosmological probes for measuring neutrino
properties. In Section 4.2, we introduce a two-component fluid model of structure formation
with CDM+baryons and neutrinos coupled via gravity, and discuss its performance compared
to the full Boltzmann solution at the linear level. This model is perfectly suited to be
captured by the extension of SPT introduced in Section 3.4, and we can therefore compute
non-linear corrections and compare to simplified treatments in Section 4.3. In Section 4.4,
we embed the two-component fluid model in an EFT framework, finding that we can
renormalize the loop corrections on scales much smaller than the neutrino freestreaming
scale. Finally, we compare and calibrate the model to N-body simulations in Section 4.5.

4.1 Neutrinos in cosmology
The hot Big Bang model predicts the existence of a cosmic neutrino background of relic,
non-relativistic (today) neutrinos that were produced thermally in the early Universe. The
number density of this background is only slightly less than that of the CMB, but the
typical kinetic energy of the cosmic neutrinos today are of order 10−4 eV, which combined
with their weakly interacting nature makes them notoriously difficult to detect [261]. We
describe in this section the main elements of the evolution of neutrinos throughout the
history of the Universe and discuss its impact on cosmological observables as well as
current constraints. More comprehensive reviews of neutrinos in cosmology can be found in
Refs. [30, 32, 262, 263].

Let us first briefly state the current experimental status of certain neutrino properties.
Global fits to neutrino oscillation experiments yield mass splittings ∆m2

21 ≃ 7.42 × 10−5 eV2

and |∆m2
31| ≃ 2.5 × 10−3 eV2 [31]. The sign of the last splitting is unknown, leaving

two possibilities open for the neutrino mass hierarchy: in normal ordering ∆m2
31 > 0

and m1 < m2 < m3, while for inverted ordering, ∆m2
31 < 0 and m3 < m1 < m2. The

measurements imply a lower bound on the sum of neutrino masses ∑mν ≳ 0.06 eV for
normal ordering and ∑mν ≳ 0.1 eV for inverted ordering. On the other hand, β-decay
measurements sets an upper bound mβ < 0.8 eV at 90 % C.L. on the effective electron
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anti-neutrino mass [264]. In addition to particle physics experiments, cosmologial probes
offer complementary information. Depending on the combination of data sets used, current
cosmological limits constrain ∑mν < 0.1–0.2 eV [8, 265] and the limits are expected to
tighten significantly in the next years [19, 20]. We discuss the cosmological bounds more in
detail below.

The cosmic neutrino background

In the early Universe, neutrinos are strongly coupled to the thermal plasma by frequent weak
interactions, keeping the distribution function in an equilibrium Fermi-Dirac form: spatially
homogeneous and isotropic and with temperature equal to the plasma Tν = Tγ = T ,1

f(p, z) = g

(2π)3
1

ep/T + 1
. (4.1)

For a single neutrino species, g = 2, accounting for particle and antiparticle, and we have
used E = p in the ultra-relativistic limit. As the Universe cools, weak interactions become
less frequent, and when the rate drops below the Hubble rate the neutrinos decouple from
the plasma. The weak interaction rate can be approximated by Γ ≈ GFT

5
ν , where GF

is the Fermi constant. Using also H ≈ T 2/MP , where MP = G−1/2 is the Planck mass,
applicable during radiation domination, one finds a decoupling temperature Tdec ≈ 1 MeV.
This temperature is much larger than the mass of the neutrinos, hence the neutrinos are
still relativistic when decoupling.2

After decoupling, neutrinos propagate freely. The distribution function is therefore “frozen”
in the ultra-relativistic Fermi-Dirac form, even when neutrinos become non-relativistic. Since
the particle momentum redshifts as p ∝ (1 + z), the neutrino temperature3 also redshifts
as Tν ∝ (1 + z). As the plasma temperature also decreases with the scale factor, the
neutrino temperature initially follows the plasma temperature after decoupling. However,
at T ∼ me/3 ∼ 0.2 MeV, when electrons and positrons become non-relativistic, the
favored annihilation of e+e− into photons transfers their entropy to the photon fluid. Since
neutrinos are decoupled from the photon plasma, they do not feel this heating of the photons.
Using entropy conservation, one can show that the neutrino and photon temperatures are
afterwards related by (see e.g. Refs. [2, 17, 30] for a derivation)

Tν =
( 4

11

)1/3
Tγ ≃ 0.71Tγ . (4.2)

This relation remains valid until today, implying that the CνB has a present day temperature
Tν(z = 0) = 0.71Tγ,0 = 1.95 K, where we inserted the measured CMB temperature Tγ,0 [68].
In reality, the neutrino decoupling and e+e−-annihilation processes are not instantaneous,

1We neglect the neutrino chemical potential, which on theoretical grounds is expected to be of the order of
the matter-antimatter asymmetry, i.e. ∼ 10−10 [30, 263].

2For neutrinos with mν = 1 eV and decoupling temperature Tdec = 1 MeV, only 1 in 1019 neutrinos has
momentum p < mν at decoupling [263].

3After decoupling, the neutrinos are not in thermal equilibrium, and therefore temperature is not technically
an appropriate term. We use it nonetheless, understanding that it refers to the neutrino distribution in
the ultra-relativistic Fermi-Dirac form.
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4.1 Neutrinos in cosmology

in particular neutrinos on the high-energy tail of the distribution are still coupled to the
plasma and heated by the e+e− entropy injection. Therefore, the neutrino temperature is
slightly larger than that given in Eq. (4.2). We comment on the precise value shortly.

As the Universe expands, the neutrinos redshift and at some point become non-relativistic.
We can define the non-relativistic transition as the redshift at which the average neutrino
momentum ⟨p⟩ equals the neutrino mass. We have

⟨p⟩ =
∫

d3p p (exp[p/Tν ] + 1)−1∫
d3p (exp[p/Tν ] + 1)−1 = 7π4

180ζ(3)Tν ≃ 3.15Tν , (4.3)

and thus the non-relativistic transition occurs at

1 + znr = 189 mν

0.1 eV . (4.4)

This implies that neutrinos with mass mν ≲ 1.8 eV and mν ≲ 0.6 eV became non-relativistic
after matter-radiation equality and recombination, respectively. Given the current experi-
mental upper mass bounds discussed above however, the transition happened at znr = O(100).
Furthermore, from the mass splittings from oscillation data quoted previously, we know
that at least two neutrinos are non-relativistic today (the lightest neutrino eigenstate in the
mass basis could be massless).

By integrating the neutrino distribution function, we obtain the number density for each
flavor as a function of neutrino temperature:

nν(z) = 3gζ(3)
4π2 T 3

ν (z) . (4.5)

Inserting the temperature today, g = 2 and counting three neutrino flavors yields a neutrino
particle density today of approximately 340 cm−3. To obtain an expression for the energy
density, we need to discriminate before and after the non-relativistic transition. While
neutrinos were ultra-relativistic, the energy density of each species was [30],

ρν = 7π2

120

( 4
11

)4/3
T 4

γ (Tν ≫ mν) . (4.6)

It is useful to relate this to the photon energy density, ργ = (π2/15)T 4, so that the total
energy density of relativistic species in the early Universe can be expressed as

ρr =
[
1 + 7

8

( 4
11

)4/3
Neff

]
ργ . (4.7)

Here, the new parameter Neff characterizes the effective number of relativistic degrees of
freedom in the early Universe. Given that the SM predicts three neutrinos with g = 2 degrees
of freedom as for the photon, one would expect Neff = 3. However, as we alluded above,
the neutrino-photon temperature ratio is not exactly (4/11)1/3 due to non-instantaneous
neutrino decoupling. Moreover, taking into account finite temperature QED effects and
neutrino oscillations, the SM prediction becomes Neff = 3.044 [266]. On the other hand,
many extensions of the SM predict the existence of additional (dark) radiation in the early
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4 Massive neutrinos in structure formation

Universe, and the corresponding additional degrees of freedom are conventionally expressed
by Neff . The effective number of relativistic degrees of freedom is constrained using CMB
measurements by Planck to Neff = (2.92 ± 0.37) at 95 % C.L. [8].

In the non-relativistic limit, the energy density of the neutrinos is simply nν
∑
mν , which

we can relate to the energy density parameter Ων today by inserting the present day neutrino
temperature in Eq.(4.5),

Ων =
∑
mνnν

ρcrit
≃

∑
mν

94.14h2 eV ≃ 0.0024
(∑

mν

0.1 eV

)
. (4.8)

We also introduce fraction of the neutrino energy density to the total energy density in the
late Universe, fν = Ων/Ωm. For e.g. a sum of neutrino masses Mν ≡

∑
mν = 0.1 eV and

Ωm = 0.3 today, we have fν = 0.008, i.e. a contribution to the present-day total energy
budget of less than 1 %.

Freestreaming
An important characteristic of the cosmic neutrinos is that they have a large velocity
dispersion, i.e. they freestream over large distances. One can define a horizon which
corresponds to the typical distance neutrinos can freestream in a Hubble time. The density
contrast of the neutrino component can only grow on scales larger than this horizon, because
neutrinos cannot remain confined in potential wells with wavelength smaller than the horizon.
More quantitatively, we can compute the neutrino velocity dispersion as〈
c2

ν

〉
=
∫

d3p p2/(p2 +m2
ν) (exp[p/Tν ] + 1)−1∫

d3p (exp[p/Tν ] + 1)−1 −−−−→
p≪mν

15ζ(5)
ζ(3)

( 4
11

)2/3 T 2
γ,0 (1 + z)2

m2
ν

, (4.9)

where we in the second equality evaluated the integral in the non-relativistic limit. In
analogy to the Jeans length scale, which generally indicates the scale below which pressure
inhibits gravitational collapse, one conventionally defines a freestreaming length λFS and
the corresponding wavenumber [30, 267]

kFS =
√

3
2

H
cs

≃
√

3
2

H√
⟨c2

ν⟩
. (4.10)

We approximated the neutrino sound velocity by the velocity dispersion in the last equality;
the exact expression will be discussed at length below. We display kFS in Fig. 4.1, computed
in Ref. [267] using the full relativistic velocity dispersion (4.9) (thin black line). The figure
distinguishes three scales:

(1) A very large scale with k ≪ kFS at all times. The neutrino density contrast starts
growing after horizon entry, behaving as dark matter.

(2) A small scale for which k ≫ kFS at all times. Freestreaming prohibits growth of the
neutrino density fluctuation, which oscillates around its small initial value.

(3) An intermediate scale, for which the density contrast is suppressed for a long time,
until the freestreaming length decreases to the point where k = kFS and perturbations
start to grow.
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4.1 Neutrinos in cosmology

Figure 4.1: Neutrino freestreaming wavenumber kFS as a function of the scale factor a for
mν = 0.13 eV. The thick solid line shows the comoving horizon, the thinner solid
line shows the freestreaming scale computed from the velocity dispersion exactly,
while the dotted line corresponds to an approximation in the non-relativistic
limit. Three scales (1)-(3) corresponding to different regimes are indicated, see
discussion in text. Figure taken from Ref. [267].

In the ultra-relativistic limit, cs → 1 and kFS ∝ (1 + z)−1/2 (during matter domination).
In the non-relativistic limit, we can use Eq. (4.9) to conclude that kFS ∝ (1 + z)1/2. The
minimal value kFS or the longest freestreaming distance happens at the non-relativistic
transition.

In summary, neutrinos are universal throughout the history of the universe. During
radiation domination they represent about 40 % of the total energy density, leaving an
imprint on the CMB through the gravitational potentials. After decoupling, they freestream
over large distances, which prevents growth of the neutrino perturbation, which affects
galaxy clustering in the late Universe. We end this section by briefly discussing neutrino
impacts on cosmological observables, and current constraints.

Neutrino signatures

Cosmological probes are mainly sensitive to the following neutrino properties: the early
Universe energy density and sum of masses. Other properties, such as individual masses,
mixing angles and CP violation phase are essentially imperceptible to cosmology, at least
with the precision of current and planned surveys [30, 164, 268]. Nevertheless, cosmological
experiments can test beyond-SM scenarios with non-standard neutrino interactions, as will
be the topic of Chapter 6. We mention here the main signatures of neutrinos on the CMB
and galaxy clustering, and refer the reader to more extensive and detailed descriptions in
Refs. [8, 30, 32, 164, 262, 263, 269–272].
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4 Massive neutrinos in structure formation

Neutrino effects on the CMB can be separated into the effect of massless neutrinos,
characterized by the parameter Neff and the sum of neutrino masses Mν . The effects of
changing Neff can be mimicked by altering other cosmological parameters, therefore it
turns out to be most illuminating to fix matter-radiation equality, matter-vacuum energy
equality and ωb, as to isolate the effect of Neff [30]. An increase in Neff leads to increased
Silk damping—the washing out of small perturbation modes due to photon diffusion—
before decoupling, reducing the damped high-l tail of the angular power spectrum. At
the perturbation level, freestreaming neutrinos dampen the gravitational potentials before
recombination and decrease the angular peaks. In addition, neutrino perturbations traveling
at the speed of light drag along the photons (with a lower speed-of-sound set by the photon-
baryon fluid), leading to shifts of the peaks. Similar effects are found for the polarization
spectrum, and given that they can hardly be mimicked by other parameters in ΛCDM,
CMB measurements yield the constraint Neff = (2.92 ± 0.37) at 95 % C.L. [8] as mentioned
above, consistent with the standard model prediction [266].

The impact of massive neutrinos is indistinguishable from massless ones in the early
Universe, therefore the main signal of the neutrino mass occurs at late times after the
non-relativistic transition. Increased neutrino mass raises the total energy density in the late
Universe, yielding at the background level a late integrated Sachs-Wolfe (ISW) effect—the
impact on the CMB from time-dependent gravitational potentials—and a change of the
angular diameter distance to the last scattering surface [30]. Both effects can be mimicked
by changing h and ΩΛ, but not at the same time; since the first peak of the angular
power spectrum is very precisely measured, it is most useful to keep the angular diameter
distance to the last scattering surface fixed. Then an increase in Mν is accompanied by
a reduced late-ISW effect since matter-vacuum energy equality happens later. A second
effect occurs due to the non-relativistic transition, where neutrino perturbations on scales
larger than the freestreaming scale, k < kFS, begin acting like a clustering component
and reduces the time-variation of the gravitational potentials, yielding an early-ISW effect.
Finally, freestreaming neutrinos suppress structure formation on scales smaller than the
typical freestreaming distance (we elaborate this directly below), reducing the late-Universe
gravitational potential and therefore reducing the lensing of the CMB photons. The Planck
experiment constrains the total neutrino mass to be Mν < 0.26 eV using TT,TE,EE and
low-E spectra, and to Mν < 0.24 eV including CMB lensing, at 95 % C.L. [8].

Next, we consider the effect of neutrinos on the matter power spectrum. If we again
consider Neff while keeping zeq, zΛ and ωb fixed, the amount of dark matter increases
with Neff . The altered baryon-to-dark matter ratio has a substantial effect of the power
spectrum: CDM experiences gravitational collapse before baryons decouple from photons,
while baryons partake in acoustic oscillations and are prevented from clustering until they
decouple. Therefore a decreased baryon-to-dark matter ratio leads to increased clustering
on small scales, a dampened BAO oscillation feature, and a shift due to the neutrino drag
effect as for the CMB.

Due to the large freestreaming scale of the neutrinos, corresponding to a wavenumber
kFS ∼ 0.01h Mpc−1, the neutrino density perturbation does not grow on scales k > kFS.
Therefore, at late times, neutrinos represent a species that contributes to the background
expansion, but only clusters on very large scales. This has important effects on the matter
power spectrum, depending on the neutrino mass both from the energy density contribution
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Figure 4.2: Suppression of the matter power for cosmologies with massive neutrinos. We
display massive neutrino models with Mν = 0.1, 0.2, and 0.4 eV, respectively,
normalized to a model in which neutrinos have been exchanged for CDM, so
that the matter content remains the same.

from the neutrinos as well as the freestreaming scale itself. It is perhaps most illustrative
to compare the power spectrum in a massive neutrino model to one in which the CDM
density is adjusted so that the total matter energy density is the same in both models (note
that zeq would be different between the massive and massless model, and hence the CMB
changes significantly). This comparison is shown in Fig. 4.2 for three sums of neutrino
masses Mν = 0.1, 0.2, and 0.4 eV. In the massive models, two effects combine to the
suppression of power on scales smaller than the freestreaming scale (k > kFS). Firstly,
neutrinos do not cluster. Secondly, gravitational wells grow less on these scales since the
neutrino perturbation vanishes. The growth of a perturbation in the matter dominated era
δ ∝ a that we derived in linear theory in Section 3.2 becomes δ ∝ a1−3fν/5 in the presence
of neutrinos [30]. In addition, for heavier neutrinos, the non-relativistic transition happened
earlier, and matter perturbations were suppressed for a longer time. The effects combine
to yield a relative change ∆P/Pfν=0 ≃ −8fν at z = 0 in linear theory [30]. Numerical
simulations find a somewhat larger suppression of ∼ 10fν [273–280]. The full shape galaxy
power spectrum obtained from BOSS measurements [85] has been used in combination with
Planck CMB data to obtain a neutrino mass bound Mν < 0.16 eV [265]. As mentioned
in Chapter 2, future surveys are expected to detect this characteristic suppression with
enhanced accuracy, leading to a forecasted measurement of the neutrino mass sum with
σ(Mν) ≃ 0.02–0.03 eV [19, 20, 32–41].

It is important to note that cosmology does not directly probe the neutrinos, but measures
their properties indirectly. Therefore, the experimental bounds can in principle be evaded if
one can construct beyond-SM models that mimick the impact of neutrinos on cosmological
observables.
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4 Massive neutrinos in structure formation

4.2 Two-component fluid: CDM+baryons and neutrinos

Having reviewed the presence of neutrinos in the cosmic evolution, we will in the rest of
this chapter focus on making a precise prediction of the matter power spectrum in the
presence of neutrinos, in particular quantifying the impact of scale- and time-dependence
induced by neutrino perturbations on the clustering dynamics. We will use the extension
of SPT described in the previous chapter to compute loop corrections taking neutrinos
into account. In order to use that setup, we need a description of structure formation with
massive neutrinos, which will be the focus of this section.

Hybrid model

The model we will employ is a hybrid Boltzmann and two-component fluid one, first
introduced in Ref. [281] and further developed in Paper I [44]. In the former work, the
model was applied using the time-renormalization group (TRG) perturbative approach [282],
in which one solves coupled equations for the power- and bispectrum. Scale-dependent
dynamics (as we will see occurs for the neutrino perturbations) could not easily be captured
fully in TRG, and increasing the accuracy by including NNLO corrections (corresponding
to including the trispectrum in that formalism) appeared complicated, therefore in Paper I
we opted for solving the two-component fluid equations using the aforementioned extension
of SPT. In addition, the fluid description was refined by more accurately modeling the
neutrino sound velocity in that work [44].

The idea of the hybrid setup is to describe neutrinos (and other cosmological species)
linearly by the full Boltzmann hierarchy up to some intermediate redshift zmatch, at which
the system is mapped onto a fluid model. The fluid has two components: baryons and
CDM are treated as one, joint component, which is coupled via gravity to the other
component, the neutrinos. Importantly, a fluid description of neutrinos is only valid at
late times, sufficiently after the non-relativistic transition. Indeed, Ref. [267] found that a
fluid description of neutrinos at all times, including times long before the non-relativistic
transition, was only accurate at the level of 10–20 %. After the non-relativistic transition
however, the coupling between lower and higher moments of the Boltzmann hierarchy
becomes suppressed by powers of Tν/mν , allowing us to follow only the lowest moments.
In the hybrid model we therefore only employ the fluid model for z < zmatch ≪ znr. We
will use zmatch = 25, for which we find sub-permille and percent level differences for the
baryons+CDM component and neutrino component, respectively, when comparing the
hybrid model to the full Boltzmann hierarchy at z = 0. This comparison will be discussed
in detail below.

The fluid model is useful at late times since it can be mapped onto a framework for
computing non-linear corrections to the power spectrum, which in our case will be the
generalization of SPT described in Section 3.4. The full Boltzmann hierarchy is very
complex to treat beyond linear order in perturbation theory, and it is moreover not needed
to obtain results with sub-percent precision. We will justify this in detail for the neutrino
component below, as well as for the baryons+CDM component by including EFT terms
accounting for corrections to the single-stream picture. Our interest is wavenumbers in the
mildly non-linear regime, k ≃ 0.1h Mpc−1, where non-linearities only become important for
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4.2 Two-component fluid: CDM+baryons and neutrinos

z < zNL ≃ 10. In summary, we can use the full Boltzmann hierarchy of linear perturbations
until zmatch = 25, with zNL ≪ zmatch ≪ znr, and subsequently map the system onto the
two-component fluid for which we include non-linear corrections.

We consider three degenerate neutrino species, described by a single fluid component.
While it would be possible to extend the formalism to a multi-fluid with each neutrino
species having a separate component, we do not expect our results to change significantly
in that case. The reason is that cosmological probes are very insensitive to specific neutrino
properties beyond the total density and absolute mass scale as discussed above, and moreover
errors introduced by treating neutrinos as degenerate appears to be much smaller than the
expected sensitivity of future experiments, see e.g. Ref. [268].

Equations of motion

Next, let us construct the equations of motion for the baryon+CDM and neutrino fluid.
At first we will only include linear terms. For a general perturbed energy-stress tensor
δT ij there are four scalar degrees of freedom: the density contrast δ, velocity divergence θ,
pressure perturbation δP and anisotropic stress σ, defined as [30, 283]

ρ̄δ = −δT 0
0 , (4.11a)

(ρ̄+ P̄ )θ = ∂iδT 0
i , (4.11b)

δP = 1
3δT

i
i , (4.11c)

(ρ̄+ P̄ )σ =
(
∂i∂j − 1

3∇2δ
(K)
ij

)
δT ij . (4.11d)

For a multi-component universe, the total fluctuation is given by summing the LHS quantities
for each component. For the density contrast, this implies that δtot = ∑

i fiδi with fi =
Ωi/Ωm in the late Universe. Thus, we can define the combined baryon+CDM density
contrast as

δcb = fbδb + fcdmδcdm
fb + fcdm

. (4.12)

On large scales, we can neglect the pressure and anisotropic stress of the baryon+CDM
component, treating it as a perfect, pressureless fluid. We will however take corrections to
this picture into account by including EFT terms. In any case, the only dynamical quantities
for the baryon+CDM component are δcb and θcb, with the latter defined equivalently as
Eq. (4.12).

To treat neutrinos accurately we need to account for all the degrees of freedom above for
the neutrino fluid. We can however neglect the neutrino equation of state wν = P̄ν/ρ̄ν in
the non-relativistic limit.4 It follows that the continuity and Euler equations for the coupled

4In particular, the neutrino equation of state has negligible impact on the fluid evolution for z < zmatch = 25
and Mν < 0.4 eV.
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fluid follows in Fourier space is given by [283]

∂τδcb + θcb = 0 , (4.13a)

∂τθcb + Hθcb + 3
2H2Ωm[fνδν + (1 − fν)δcb] = 0 , (4.13b)

∂τδν + θν = 0 , (4.13c)

∂τθν + Hθν + 3
2H2Ωm[fνδν + (1 − fν)δcb] − k2c2

sδν + k2σν = 0 , (4.13d)

where we introduced the neutrino sound velocity c2
s = δPν/δρν . Both c2

s and σν need to be
provided to close the system of equations above, we return to this point below.

Next, we write the equations above in a form that allows us to employ the generalized
framework introduced in Section 3.4. Firstly, we wish to use η = lnD+ as the time variable.
However, in the presence of massive neutrinos, there is a subtlety because the scale-dependent
suppression of growth due to neutrino freestreaming leads to a growth factor that depends
on scale, i.e. D+ = D+(z, k). To avoid using a time-variable that also depend on scale, we
define another growth factor D+

fν=0 for a corresponding cosmology with massless neutrinos
where the CDM density is tuned so that the total matter energy density is the same. This
growth factor does not have a scale-dependence, and we define η = lnD+

fν=0. Note that
D+

fν=0 is also the k → 0 limit of the scale-dependent growth factor in the massive model.
We collect the density contrast and velocity divergence, suitably rescaled by −1/Hf ,

where f = ffν=0 = d lnD+
fν=0/d ln a is the growth rate in the corresponding massless model,

into a vector
ψ1 = δcb , ψ2 = − θcb

Hf
, ψ3 = δν , ψ4 = − θν

Hf
. (4.14)

The set of equations (4.13) becomes

∂ηψa + Ωab(k, η)ψb = 0 , (4.15)

with

Ω(k, η) =


0 −1 0 0

−3
2

Ωm
f2 (1 − fν) 3

2
Ωm
f2 − 1 −3

2
Ωm
f2 fν 0

0 0 0 −1
−3

2
Ωm
f2 (1 − fν) 0 −3

2
Ωm
f2 [fν − k2c2

s,eff(k, η)] 3
2

Ωm
f2 − 1

 . (4.16)

Here, we introduced an effective neutrino sound velocity

c2
s,eff(k, η) ≡ 1

k2
FS(k, η) = 3

2ΩmH2

[
c2

s (k, η) − σν(k, η)
δν(k, η)

]
lin
, (4.17)

and its associated freestreaming scale kFS. We will compute the bracket in linear theory.
Hence we only treat δν and θν non-linearly. In the non-relativistic limit c2

s ≪ 1 and
|σν/δν | ≪ 1, hence it is a good approximation to treat them linearly, as we see below. In
the following we describe in detail how we can compute the bracket above.
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Sound velocity and anisotropic stress

We will employ two schemes to evaluate the effective neutrino sound velocity and close
the system of equations above: (i) neglecting anisotropic stress and approximating the
sound velocity by the adiabatic one, (ii) integrating the Boltzmann neutrino hierarchy
numerically to obtain exact sound velocity and anisotropic stress. Before we define them
exactly, let us review the relation between the neutrino fluid quantities and the phase-space
distribution. As we only discuss the neutrino component below, we drop the ν subscript on
fluid quantities for brevity.

The perturbed neutrino distribution function at linear order can be written as

f(k, n̂, q, τ) = f0 (q/a) [1 + Ψ(k, n̂, q, τ)] , (4.18)

where f0 is the background, time-independent, ultra-relativistic Fermi-Dirac distribution
function as given by Eq. (4.1), we introduced the comoving momentum q = ap and n = q/q.
Its evolution is given by the linearized, collisionless Boltzmann equation [283](

∂

∂τ
+ i q
ϵ(q, τ)(k · n̂)

)
Ψ(k, n̂, q, τ) + d ln f0

d ln q

(
∂ϕ(k, τ)
∂τ

− i ϵ(q, τ)
q

(k · n̂)ψ(k, τ)
)

= 0 ,

(4.19)
with ϵ =

√
q2 + a2m2 being the comoving energy. The relation above was written in

Newtonian gauge, i.e. with the scalar potentials ϕ and ψ characterizing the perturbation
around a FLRW metric5, ds2 = a2 (−(1 + 2ψ) dτ2 + (1 − 2ϕ) dxi dxi

)
. The distribution

perturbation Ψ can be expanded in Legendre polynomials of µ = k · n̂/k,

Ψ(k,n, q, τ) =
∞∑

l=0
(−i)l(2l + 1)Ψl(k, q, τ)Pl(µ) . (4.20)

Inserting this expansion into the Boltzmann equation (4.19) yields the Boltzmann hierar-
chy [267, 283]:

∂Ψ0
∂τ

= −qk

ϵ
Ψ1 − d ln f0

d ln q
∂ϕ

∂τ
, (4.21a)

∂Ψ1
∂τ

= qk

3ϵ (Ψ0 − 2Ψ2) − ϵk

3q
d ln f0
d ln q ψ , (4.21b)

∂Ψl

∂τ
= qk

(2l + 1)ϵ [lΨl−1 − (l + 1)Ψl+1] , l ≥ 2 . (4.21c)

This is an infinite hierarchy where each multipole is coupled to its predecessor (except for
l = 0) and successor. To integrate it numerically, one needs to truncate the hierarchy at
some maximum multipole lmax with a certain prescription for its evolution. A common
choice is to use a truncation scheme [283] Ψlmax+1 = 2(lmax + 1)ϵΨlmax/qkτ − Ψlmax−1 with
lmax = O(10), this is e.g. adopted by the Boltzmann solver CLASS [93]. Notice that in the
non-relativistic limit, the coupling between lower and higher multipoles in Eq. (4.21c) is

5The metric potential ψ should not be confused with the vector of perturbations ψa; the latter is always
written with an index subscript.
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suppressed by powers of q/ϵ ∼ T/m, which is why we are allowed to follow only the lowest
ones for neutrinos at late times.

The multipoles can be related to fluid quantities by integrating over particle momen-
tum [267],

ρ̄(τ) = 4π
a4(τ)

∫
dq q2ϵ(q, τ)f0(q) , (4.22a)

P̄ (τ) = 4π
3a4(τ)

∫
dq q2 q2

ϵ(q, τ)f0(q) , (4.22b)

δρ(k, τ) = 4π
a4(τ)

∫
dq q2ϵ(q, τ)f0(q)Ψ0(k, q, τ) , (4.22c)

δP (k, τ) = 4π
3a4(τ)

∫
dq q2 q2

ϵ(q, τ)f0(q)Ψ0(k, q, τ) , (4.22d)

(ρ̄+ P̄ )θ(k, τ) = 4πk
a4(τ)

∫
dq q3f0(q)Ψ1(k, q, τ) , (4.22e)

(ρ̄+ P̄ )σ(k, τ) = 8π
3a4(τ)

∫
dq q2 q2

ϵ(q, τ)f0(q)Ψ2(k, q, τ) . (4.22f)

Having reviewed these relations, we move on and outline the two schemes we use for
computing the effective neutrino sound velocity in linear theory:

Adiabatic approximation (2F-ad) In the non-relativistic limit, the neutrino sound speed
approaches the adiabatic sound speed, i.e.

c2
s −−−−→

z≪znr
c2

g = ∂τ P̄

∂τ ρ̄
= w(τ) − ∂τw(τ)

3H(τ) (1 + w(τ)) . (4.23)

Furthermore, for q2 ≪ a2m2, the equation of state is given by (using Eqs. (4.22a) and
(4.22b))

w(τ) = 1
3

1
a2m2

∫
dq q4f0(q)∫
dq q2f0(q) = 1

3
〈
c2

ν

〉
, (4.24)

which we in the last equality recognized as the neutrino velocity dispersion (4.9) in the
non-relativistic limit. Hence, the adiabatic approximation for the neutrino sound velocity
reads

c2
s = 1

3
〈
c2

ν

〉
+ 2

9

〈
c2

ν

〉
1 + ⟨c2

ν⟩/3 ≃ 5
9
〈
c2

ν

〉
, (4.25)

using ⟨c2
ν⟩ ≪ 1 in the last line. This non-relativistic approximation is a significant improve-

ment compared to the naive estimate cs = ⟨cν⟩ [267]. We neglect the neutrino anisotropic
stress, and therefore the effective neutrino sound velocity in this approximation becomes

c2
s,eff = 2

3ΩmH
5
9
〈
c2

ν

〉
≃ 1.214

Ωm(z = 0)

(1 eV
mν

)2
(1 + z)Mpc2

h2 . (4.26)

This approximation for the neutrino sound velocity was used in Ref. [281]. We use 2F-ad as
a shorthand name for the two-component fluid model using this approximation scheme in
the future.
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4.2 Two-component fluid: CDM+baryons and neutrinos

Exact effective sound velocity (2F) We aim for an analytic solution of the full neutrino
linear Boltzmann hierarchy, so that we can evaluate the sound velocity and anisotropic
stress using Eq. (4.22) in a way that is informed about the complete neutrino distribution
in linear theory. The discussion follows Appendix B of Ref. [267].

We collect terms including the perturbation Ψ on the LHS in the collisionless Boltzmann
equation,

∂

∂τ
Ψ(k, q, µ, τ) + i kqµ

ϵ(q, τ)Ψ(k, q, µ, τ) = S(k, q, µ, τ) , (4.27)

and define the source term S as

S(k, q, µ, τ) = d ln f0
d ln q

(
ikµϵ(q, τ)

q
ψ(k, τ) − ∂ϕ(k, τ)

∂τ

)
. (4.28)

Given the initial condition Ψ(k, q, µ, τini), the solution of this first order linear differential
equation is given by

Ψ(k, q, µ, τ) = Ψ(k, q, µ, τini)e−ikµy(τini,τ) +
∫ τ

τini
dτ̃ e−ikµy(τ̃ ,τ)S(k, q, µ, τ̃) , (4.29)

where
y(τa, τb) =

∫ τb

τa

dτ q

ϵ(q, τ) . (4.30)

To compute the fluid quantities (4.22), we need the first multipoles of the solution, therefore
we project this solution on Legendre polynomials. A useful identity for this purpose is

exp (−iµx) =
∑

l

(−i)l(2l + 1)jl(x)Pl(µ) , (4.31)

where jl is the spherical Bessel function. The multipole expanded solution therefore reads∑
l′

(−i)l′(2l′ + 1)Ψl′(k, q, τ)Pl′(µ) =∑
l′

∑
l′′

(−i)l′+l′′(2l′ + 1)(2l′′ + 1)Ψl′(k, q, τini)jl′′ [ky(τini, τ)]Pl′(µ)

+
∑

l′

(−i)l′(2l′ + 1)Pl′(µ)
∫ τ

τini
dτ̃
[
ikµϵ(q, τ̃)

q
ψ(k, τ̃) − ∂ϕ(k, τ̃)

∂τ̃

]
jl′ [ky(τ̃ , τ)] . (4.32)

Finally, we multiply each side by Pl(µ) and integrate over µ to obtain a solution for each
multipole:

Ψl(k, q, τ) = d ln f0
d ln q ×

(
ϕ(k, τini) jl[k y(τini, τ)] − ϕ(k, τ)δ(K)

l0

−k
∫ τ

τini
dτ̃
[
ϵ(q, τ̃)
q

ψ(k, τ̃) + q

ϵ(q, τ̃)ϕ(k, τ̃)
] [

l

2l + 1 jl−1[k y(τ̃ , τ)] − l + 1
2l + 1 jl+1[k y(τ̃ , τ)]

])

+
∑

l′

∑
l′′

(−i)l′+l′′−l(2l′ + 1)(2l′′ + 1) Ψl′(k, q, τini) jl′′ [k y(τini, τ)]
(
l l′ l′′

0 0 0

)2

, (4.33)
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where
(
l l′ l′′

0 0 0

)
is the Wigner 3-j symbol. The first two terms in Eq. (4.33) are boundary

terms arising from integrating the ϕ-term by parts. Moreover, to obtain the above result
we used orthogonality of the Legendre polynomials as well as the recursion relation

d
dxjl(x) = l

2l + 1jl−1(x) − l + 1
2l + 1jl+1(x) . (4.34)

Note that compared to Ref. [267], we fixed a sign typo in the ϕ-term of the second line of
Eq. (4.33).

With the analytic result (4.33), we can compute the fluid quantities (4.22) required to
obtain the exact neutrino effective sound velocity in linear theory as given by Eq. (4.17).
In practice, Eq. (4.33) can be evaluated numerically, taking the metric potentials from
a Boltzmann solver as input. Moreover, choosing an early initial time τini = 1 Mpc, the
initial perturbations Ψ(k, q, τini) can safely be neglected [44]. Knowing that during matter
domination, the metric potentials are constant, one can go back to Eq. (4.32), neglect
∂τϕ and derive a simplified integral solution. Nonetheless, the full integral expression in
Eq. (4.33) is needed when integrating τ̃ during vacuum energy domination.

We give the two-component fluid model in combination with the scheme above to obtain
the exact effective neutrino sound speed the shorthand name 2F.

Comparison to Boltzmann solver
Before we include non-linear terms in the hybrid two-component fluid model, we discuss
how its predictions compare to the Boltzmann solver CLASS.

First, let us look at the neutrino sound velocity and anisotropic stress computed in the
different schemes above and in CLASS. Fig. 4.3 makes this comparison for a small neutrino
mass Mν = 0.06 eV and intermediate wavenumber k = 0.1h Mpc−1 (right) and a larger
Mν = 0.21 eV and smaller wavenumber k = 0.01h Mpc−1. We show the adiabatic sound
speed c2

g, as given by Eq. (4.26), the sound speed c2
s and the ratio |σν/δν | computed exactly

using Eq. (4.33), as well as the same quantities computed by CLASS. It is clear that the
adiabatic sound speed does not match the exact one; only at late times for the larger neutrino
mass do the lines agree, where we are further along in approaching the non-relativistic limit.
The anisotropic stress is suppressed by ∼ (Tν/mν)2 compared to the density contrast in
the non-relativistic limit, therefore it decays at late times. We note that the sound speed
for Mν = 0.06 eV is about an order of magnitude larger than for Mν = 0.21 eV, which is
expected since the lighter neutrinos can freestream over longer distances.

The fluid quantities computed using the scheme detailed above have good agreement
with those computed in CLASS, with the exception of |σ/δ| for large wavenumber and
small neutrino mass, as apparent from Fig. 4.3. In that case, the CLASS solutions develop
oscillatory behavior with only the mean value following our result (Paper I [44]), until
the solutions converge at late times. Moreover, the CLASS solutions are dependent on the
maximum multipole number, indicating that errors from the truncation scheme propagates
the Boltzmann hierarchy down to lower multipoles. In this regime the anisotropic stress is
small however, and any mistake has negligible impact on the baryon+CDM or neutrino power
spectra. We remark that while Eq. (4.33) avoids the problem of truncating the Boltzmann
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Figure 4.3: Neutrino sound velocity and anisotropic stress for two neutrino masses Mν =
0.06 eV and Mν = 0.21 eV, and two wavenumbers k = 0.1h Mpc−1 and k =
0.01h Mpc−1. We display the adiabatic sound velocity as well as the exact sound
velocity and anisotropic stress computed exactly using Eq. (4.33). Furthermore
we show with dashed lines the corresponding quantities computed by CLASS,
with the maximum multipole number lmax in the parenthesis. Adapted and
reprinted from Paper I [44].

hierarchy altogether (having integrated the Boltzmann equation before projecting onto
Legendre multipoles), it would be cumbersome to use it in a Boltzmann solver, because the
integral has to be performed at every time step to update transfer functions and metric
perturbations. In our work, the metric perturbations were taken as external input, and
therefore the expression (4.33) was favorable since it bypasses the issues with hierarchy
truncation.

Next, we compare the hybrid two-component fluid model to CLASS at the level of the
power spectrum at z = 0. Using zmatch = 25, we recall that in the hybrid model, the
CLASS is used up to this point, so that any difference arises due to difference in dynamics at
z < zmatch or from the matching procedure (we postpone a description of how the matching
is done in practice until we include non-linear terms in the next section). The comparison
was done in Papers I and III [44, 46], we display the results from Paper I in Fig. 4.4. The
left panel reveals that the adiabatic approximation (2F-ad) does not yield an accurate
prediction for the neutrino auto spectrum (dotted lines). In fact, the power spectrum
is significantly underestimated, because the adiabatic approximation overestimates the
sound velocity compared to the true one (see Fig. 4.3), leading to excessive suppression of
growth [44]. On scales larger than the freestreaming scale, k < kFS ∼ 0.01h Mpc−1, this
mistake is less important however. The adiabatic approximation also works better for larger
neutrino masses, where a larger portion of the neutrino distribution has become adequately
non-relativistic. On the other hand, larger neutrino masses means that the neutrino fluid
influences the baryon+CDM fluid to greater extent, and a mistake in the neutrino transfer
function generates a larger error in the baryon+CDM one. In total however, since neutrinos
only constitute fν ∼ 1 % of the matter content, the total matter power spectrum in the
2F-ad model agrees with that from CLASS to a few permille.
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Figure 4.4: Relative difference between power spectra computed in the 2F model and
computed by CLASS, i.e. ∆P = |P 2F/P CLASS − 1| at z = 0. Four neutrino masses
Mν = 0.06, 0.15, 0.21 and 0.3 eV are displayed. Moreover, we show the total
matter power spectrum Pm,m (solid), the baryon+CDM power spectrum Pcb,cb
(dashed) and neutrino power spectrum Pν,ν (dotted). Left: Two-component
fluid model with the adiabatic approximation for the effective neutrino sound
velocity (2F-ad). Right: The same with exact effective neutrino sound velocity.
Figure taken from Paper I [44].

The right panel of Fig. 4.4 performs the same comparison, using the exact neutrino
effective sound velocity (2F). There is excellent agreement with the CLASS solution, at the
level of 10−4–10−3 for the total matter power spectrum and better than 1 % for the neutrino
auto spectrum for k ≲ 0.3h Mpc−1. On small scales k ≳ 1h Mpc−1, the 2F model cannot
be tested beyond an accuracy of a few percent for the neutrino spectrum, because the CLASS
solution varies at this level depending on the maximum multipole number lmax, indicating
that the truncation scheme introduces moderate deviations. Note that the outstanding
agreement with the Boltzmann solver for 2F is mainly a consistency check: apart from the
different means of integrating the Boltzmann hierarchy, the predominant difference between
the two is the neglection of the neutrino equation of state in 2F.

We deem the two-component fluid to be sufficiently accurate at the linear level (especially
in the 2F case), allowing for a precision calculation at the sub-percent level including
non-linear terms, that we discuss next.

4.3 Non-linear power- and velocity spectra

In Chapter 3, we saw that integrating the Vlasov equation generated non-linear terms in
the continuity and Euler equations, that were described by coupling functions α and β in
Fourier space. The same logic applies for the neutrino component of the two-component
fluid, hence we can immediately promote the baryon+CDM and neutrino fluid equations of
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4.3 Non-linear power- and velocity spectra

motion (4.15) to include non-linear terms:

∂ηψa(k, η) + Ωab(k, η)ψb(k, η) = γabc(k,k1,k2)ψb(k1, η)ψc(k2, η) , (4.35)

where the only non-zero components of the non-linear vertex are

γ121(k,k1,k2) = γ343(k,k1,k2) = α(k1,k2) , (4.36a)
γ222(k,k1,k2) = γ444(k,k1,k2) = β(k1,k2) . (4.36b)

Hence, the couplings between the neutrino density contrast (index 3) and the (rescaled)
velocity divergence (index 4) is given equivalently as the corresponding baryon+CDM ones.

Eq. (4.35) is precisely on the form (3.57) that can be described by the extended cosmo-
logical perturbation theory as defined in Section 3.4. Therefore, we can solve it by the
perturbative expansion (3.58), expanding in the initial fluctuation δ0(k) ≡ δcb(k, ηini), where
ηini = η(z = zmatch). The kernels that furnish the expansion then satisfies the equation
of motion (3.59), with the 4 × 4 evolution matrix Ωab(k, η) given by Eq. (4.16) (with a
certain prescription for the effective neutrino sound velocity) and the non-linear vertex
defined in Eq. (4.36). Using this, one can compute loop corrections to the power spectrum
with the one- and two-loop expressions (3.70) and (3.71) (or in principle any loop), with
P0(k) = P lin.

cb,cb(k, zmatch) as the input, initial power spectrum. In the hybrid model, P0 is
therefore computed by CLASS using the Boltzmann hierarchy up to z = zmatch. Hence, the
only final ingredient we need to match the two regimes in the hybrid setup is the initial
condition of the kernel hierarchy at zmatch.

As discussed in Section 3.4, some care needs to be taken when initializing the kernel
hierarchy at intermediate redshifts in order to avoid exciting transient modes that do not
decay by today (or the time of observation). This is the case also for the two-component fluid
model. To this extent, Papers I and III [44, 46] follow the strategy outlined in Section 3.4
to construct a kernel hierarchy residing in the growing mode at ηini: Let ua(k) and λ1 be
the growing mode eigenvector and corresponding eigenvalue of the evolution matrix at the
initial time, Ωab(k, ηini). Choosing a sufficiently early time ηasymp = −10 ≪ ηini, the kernels
can be set using Eq. (3.61). Evolving the kernels up to η = ηini using Ωab(k, ηini) ensures
that any decaying modes have vanished, given our choice of ηasymp being sufficiently early,
and the full perturbative solution comprises the growing mode when dynamics is turned on
for η > ηini.

The total power spectrum is given by the weighted sum of the baryon+CDM and neutrino
auto spectra and the cross spectrum:

Pm,m = (1 − fν)2Pcb,cb + 2fν(1 − fν)Pcb,ν + f2
νPν,ν . (4.37)

The different contributions and corresponding loop corrections as computed in the 2F
scheme is shown in Fig. 4.5. As one would expect due to their freestreaming nature, the
neutrino power spectra are heavily suppressed compared to the baryon+CDM ones for
k ≫ kFS. Since the contributions of Pcb,ν and Pν,ν to the total power also enters with factors
of fν , they can safely be neglected in the sum. Crucially however, this does not imply that
neutrinos can altogether be neglected: their presence influences the baryon+CDM power
spectrum at the level of several percent, as discussed above. For completeness, we include
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Figure 4.5: Different contributions to the matter power spectrum at z = 0 in a cosmology
with Mν = 0.15 eV, computed using the 2F scheme. We show the linear
(solid), (unrenormalized) one- (dashed) and two-loop corrections (dotted), for
the baryon+CDM auto spectrum (blue), neutrino auto spectrum (green) and the
cross spectrum (orange). Note that the graphs correspond to the absolute value;
the one-loop corrections are negative until they switch sign at k ≈ 0.08h Mpc−1

and the two-loop corrections are negative until about k ≈ 0.6h Mpc−1 (as
indicated by the spikes in the graphs). Figure taken from Paper I [44].

also the neutrino spectrum and the cross spectrum when displaying the total matter power
spectrum below.

Note that Fig. 4.5 only displays the unrenormalized loop corrections, therefore the loops
are large even in the mildly non-linear regime. We discuss an EFT framework to absorb the
UV-sensitivity in the 2F scheme in Section 4.4.

Schemes
In addition to the hybrid two-component 2F and 2F-ad models introduced above, we
mention a few simplified treatments of neutrinos in structure formation that are used in
the literature. The full set of schemes we consider in this work are, in increasing order of
complexity:

1. EdS-SPT scheme (1F): Neutrino perturbations are only taken into account on
the linear level. Hence, there is only one species: baryons+CDM. Furthermore, the
EdS-approximation is utilized (see Section 3.3) so that EdS-SPT kernels can be used.
Due to its simplicity and efficiency, this scheme is commonly adopted in the literature,
in particular for full-shape analyses of clustering data [28, 29, 265].

2. One-fluid scheme (1F+): Equivalent to 1F, but with the EdS-approximation
relaxed. This scheme is only included to gauge in how far any difference between 1F
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and 2F arises due to the departure from EdS or due to the treatment of neutrinos.

3. External source scheme (1F-ext): The effect of neutrinos perturbations on the
baryon+CDM fluid emanate from the gravitational coupling, which can be approxi-
mated by the linear neutrino transfer function [284]. Therefore, only baryons+CDM
are treated dynamically, using the evolution matrix

Ωab(k, η) =
(

0 −1
−3

2
Ωm
f2 ξ(k, η) 3

2
Ωm
f2 − 1

)
, (4.38)

where
ξ(k, η) = 1 − fν + fν

[
δν(k, η)
δcb(k, η)

]
lin.

. (4.39)

with the linear transfer function ratio δν/δcb taken as external input (e.g. from a
Boltzmann solver). This scheme can readily be captured by the extension of SPT.
As for the two-component fluid models, it can be put in a hybrid setting, using the
full, linear Boltzmann hierarchy until zmatch and the fluid setup afterwards. Then, the
initialization of kernels at zmatch can be done in an equivalent way as described above
for 2F and 2F-ad.

4. Two-component fluid with adiabatic sound speed (2F-ad): Baryon+CDM
and neutrino perturbations are treated beyond the linear level in the hybrid two-
component fluid model. Both the departure from EdS and the effect of non-linear
neutrino perturbations on the dynamics are captured by the numerical kernels. The
neutrino sound velocity is approximated by the adiabatic one.

5. Two-component fluid with exact sound speed (2F): As 2F-ad, but using
the exact, scale-dependent sound velocity and anisotropic stress as described in the
previous section. This is the scheme that most accurately models structure formation
in the presence of massive neutrinos, and will therefore serve as the benchmark scheme.

In the 1F and 1F+ schemes, the non-linear dynamics is not time-dependent, and one can
take the baryon+CDM power spectrum today (or at any other time of interest) as input to
loop calculations. Hence, the tree-level power spectrum is simply P tree = P0 = Pcb,cb(z = 0).
For 1F-ext, 2F-ad and 2F, this is not the case, and the input power spectrum is taken at
zmatch = 25.6 The tree-level spectrum is non-trivial and given by (cf. Eq. (3.68))

P tree
ab (k, η) = e2∆ηF (1)

a (k, η)F (1)
b (k, η)Pcb,cb(k, ηini) . (4.40)

We will now discuss the performance of the various schemes in modeling the power
spectrum at NNLO. The most important comparison is 1F vs 2F, since 1F is the scheme
commonly used to analyze galaxy clustering data, and it is essential to scrutinize all
approximations. Nevertheless, the other schemes are useful in that they give insights into
which mechanisms yield the largest effect on observables.

6There is more freedom to choose the initial time for the 1F-ext model, since it does not involve a fluid
description of neutrinos. Nonetheless, in Paper I [44], the initial time was chosen to agree with 2F-ad
and 2F, in order to perform a comparison on equal footing.
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Figure 4.6: Comparison of various schemes that capture neutrinos in structure formation.
We show the power spectrum at NLO (dashed) and NNLO (solid), computed in
the 1F, 1F-ext and 2F-ad models, normalized to the 2F result. Neutrino mass:
Mν = 0.15 eV. The shaded regions indicate uncertainty from the Monte Carlo
integration (invisible at one-loop). Adapted from Paper I [44].

Fig. 4.6 display the total matter power spectrum at NLO (dashed) and NNLO (solid)
at z = 0 and with Mν = 0.15 eV, normalized to the 2F result. A similar comparison was
shown in Paper I [44]. At large scales, the non-linear contributions are suppressed, and the
schemes agree. Around k ≃ 0.1h Mpc−1, the non-linear corrections become important, and
we see that the 1F scheme does not accurately capture these. We find a percent deviation at
k = 0.15h Mpc−1. On even smaller scales the discrepancy is larger, but there the two-loop
contribution becomes of the same order as the linear one, indicating the breakdown of
perturbation theory. We return to this point when we perform the same comparison with
EFT corrections in Section 4.5. The 1F-ext and 2F-ad schemes agree with 2F within the
uncertainty from the numerical integration. This implies that even though the neutrino
transfer functions in the adiabatic approximation are miscalculated at the O(10 %)-level
(see Fig. 4.4), the impact of this mistake on the baryon+CDM sector, which constitutes the
predominant part of the total matter power spectrum, is minimal. Nevertheless, for larger
neutrino masses, the impact is larger and the 2F-ad scheme deviates up to half a percent
from 2F, as is shown in Paper I [44]. It is interesting to see that the 1F-ext scheme is in such
good agreement with 2F. Given that the 1F-ext scheme does not capture non-linear neutrino
perturbations, this suggests that it is the changed time- and scale-dependent growth in
the presence of neutrinos, rather than the non-linear neutrino perturbations themselves,
that has the largest effect on the matter power spectrum. On the other hand, as we will
shortly see, the departure from EdS has the dominant imprint on the power spectrum, and
this is included in 1F-ext. Finally, we remark that the numerical complexity of the 1F-ext
and 2F-ad schemes are similar to that of 2F, therefore there is little benefit in using them
instead of 2F. In the following, our focus will be on 1F and 2F.

Next, we consider the neutrino mass dependence of the deviation between 1F and 2F.
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Figure 4.7: Baryon+CDM density-density spectrum Pδcb,δcb (left), density-velocity spectrum
Pδcb,θcb (middle) and velocity-velocity spectrum Pθcb,θcb (right) in the 1F and
1F+ schemes, normalized to 2F. The NLO (dashed) and NNLO (solid) prediction
in 1F is displayed, as well as the NNLO prediction in 1F+ (dotted). Neutrino
masses: Mν = 0.1 (blue), 0.2 (orange) and 0.4 eV (green). Shaded regions
indicate uncertainty from Monte Carlo integration. Figure reprinted from Paper
III [46].

This is addressed in the leftmost panel of Fig. 4.7 using three cosmologies with Mν = 0.1, 0.2
and 0.4 eV, respectively, which shows a similar ratio as Fig. 4.6, but for the baryon+CDM
power spectrum Pcb,cb. The fact that the difference between the schemes are essentially
neutrino mass independent suggests that the departure from the EdS-universe at late times
is the main source of discrepancy. This hypothesis is also supported by the third set of
graphs in Fig. 4.7. It corresponds to the 1F+ scheme, which is equal to 1F but with the
EdS-approximation relaxed. We see that the NNLO power spectrum of 1F+ and 2F agree
excellently, hence correcting for the departure from EdS rectifies the mistake of 1F to large
extent.

The other two panels of Fig. 4.7 show the same comparison for the velocity spectra. This
analysis was done in Paper III as a proxy for RSDs: in redshift space, the density contrast
is linked to the velocity in real space. A complete RSD analysis is complicated in the 2F
model, and is postponed to future work. Nevertheless, we can learn something about the
overall effect by considering the velocity spectra.

In contrast to the density-density spectra, the velocity spectra demonstrate a clear
dependence on the neutrino mass in the relative difference. Furthermore, in the rightmost
plot of Pθcb,θcb , the 1F and 1F+ curves agree to large extent, implying that the treatment
of neutrinos yields the dominant effect. An intricate interpretation of why the impact
of neutrinos on velocity loop corrections is larger than that for the density component
appears complicated. For k ≫ kFS, we can do the following qualitative analysis: while the
growing mode in the 1F and 1F+ schemes is (1, 1) for baryon+CDM, it is approximately
(1, 1 − 3fν/5) in the 2F model.7 Thus, one could expect the velocity loop corrections to be

7The approximate growing eigenmode (1, 1 − 3fν/5) in the 2F model can be found by considering the
limit k ≫ kFS where δν = 0. Then the baryon+CDM and neutrino system effectively decouples and the
eigenvector can be computed from the upper left 2 × 2 sub-matrix of Eq. (4.16), assuming Ωm/f

2 = 1 for
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larger in absolute magnitude in the 1F/1F+ schemes, which is indeed the case at one-loop.
Nonetheless, that naive expectation does not carry to two-loop, where the correction is
larger in 2F. This leads to a partial cancellation that yields a better agreement between
1F/1F+ and 2F for the NNLO predictions of Pθcb,θcb than for the corresponding NLO ones.
On the other hand, the two-loop correction is sensitive to a large range of scales due to
mode coupling, and thus not only the limit k ≫ kFS where the simple argument above holds.
We note that for wavenumbers k ≳ 0.2h Mpc−1, the loop corrections are large compared
to the linear result, signaling the breakdown of perturbation theory. Finally, we see for
the cross spectrum (middle panel) that a combination of the departure from EdS and the
neutrino impact leads to deviations that differ both depending on the neutrino mass as well
as between the 1F and 1F+ schemes.

4.4 EFT corrections
In this section we describe the EFT setup that we employ to cure the UV-sensitivity in the 2F
model. We will show that under the assumption of a large scale separation kFS ≪ k ≪ kNL,
the usual ∼ k2P0(k) EFT correction can absorb the UV-sensitivity at one-loop. At two-loop
we follow the prescription of Ref. [252] as outlined in Section 3.6, however using a numerical
evaluation of the single- and double-hard loops. After deriving the renormalized power
spectrum at NNLO, we will compare and calibrate both the 1F and 2F models to N-body
data, and determine in how far they can reproduce the simulation results in the next section.
Note that the quantities defined below can immediately be promoted to IR resummed ones,
by performing the replacement P0 → P IR,N−L

0 introduced in Section 3.7, where N is the
perturbation order and L indicates the loop correction.

Modified equations of motion
The equations of motion in the hybrid two-component fluid model including EFT terms
become (cf. Eq. (3.86))

∂ηψa(k, η) + Ωab(k, η)ψb(k, η) =
∫

k1,k2
δD(k − k12)γabc(k,k1,k2)ψb(k1, η)ψc(k2, η)

+ δ
(K)
a2 τθcb(k) + δ

(K)
a4 τθν (k) , (4.41)

where the effective stress tensors are defined in real space as

τθcb = 1
H2f2∂i

1
1 + δcb

∂jτ
ij
cb and τθν = 1

H2f2∂i
1

1 + δν
∂jτ

ij
ν . (4.42)

We neglect the stochastic contributions to the stress tensors as we only work at leading
power in gradients (k2/k2

NL).
In Section 3.6, we derived expressions for the effective stress term τθ in the EdS-

approximation for a fluid model with two fields: the matter density contrast and (rescaled)
velocity divergence. These formulae can be applied in the 1F scheme, in which the dy-
namical fields are the baryon+CDM density contrast and velocity divergence and the

simplicity.
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4.4 EFT corrections

EdS-approximation is used. In the 2F model however, there are in addition the neu-
trino density contrast and velocity divergence, and those fields need to be included when
writing the stress tensor in terms of all allowed operators. Moreover, at linear order,
there is no simple relation between the fields: while in 1F, δ(1)

cb /θ
(1)
cb = −Hf , we have

δ
(1)
cb /θ

(1)
cb = −HfF (1)

1 (k)/F (1)
2 (k) in 2F which is in general k-dependent. Therefore, at

leading order in fields, we in principle need to write down

τθcb

∣∣
1 =

4∑
i=1

d2
cb,i ∆ψ(1)

i and τθν

∣∣
1 =

4∑
i=1

d2
ν,i ∆ψ(1)

i , (4.43)

in the two-fluid model with EFT coefficients dcb,i, dν,i. For the baryon+CDM density field,
we thus obtain in Fourier space a counterterm

ψ̃
(1)
1 ≡ δ̃

(1)
cb = k2

4∑
i=1

d2
i ∆2ψ

(1)
i . (4.44)

Here, each EFT coefficient di depends on both sets of coefficients {dcb,i} and {dν,i}, because
in the time-integration (cf. Eq. (3.99)), the propagator mixes contributions from insertions
of both sources τθcb and τθν .

In practice, there is a large degeneracy between the EFT-terms corresponding to the
di’s, and we show next that in the limit k ≫ kFS Eq. (4.44) can be simplified to only one
term. The linear solutions are given by ψ(1)

a (k, η) = e∆ηF
(1)
a (k, η)δcb(k); we show the linear

kernels computed in the 2F model for a cosmology with Mν = 0.1 eV in Fig. 4.8. For F1
and F2 (left panel), we see the reduced growth of the baryon+CDM fluid on small scales,
and the step-like behavior around the freestreaming scale kFS ≃ 0.01h Mpc−1. In the right
panel the suppressed neutrino perturbations on small scales are apparent. We assume a
large scale separation kFS ≪ k ≪ kNL,8 for a wavenumber in the mildly non-linear regime
k ≃ 0.1h Mpc−1. In that limit, the ratio ψ(1)

2 /ψ
(1)
1 ≈ 1 − 3fν/5 is k-independent (the exact

factor is not important as it will be absorbed in the EFT coefficient), and we can exchange
ψ2 for ψ1 in the effective stress term above. Furthermore, the neutrino fluctuations ψ3
and ψ4 are negligible compared to the baryon+CDM ones in this limit, and based on the
expectation that d2

i /k
2
NL = O(1), we can disregard the insignificant neutrino contribution

to τθcb . In total, the baryon+CDM counterterm at leading order can be written as

ψ̃
(1)
1 (η) = e3∆ηγ1(η) k2ψ

(1)
1 (ηini) , (4.45)

in complete analogy with Eq. (3.101), with the EFT parameter γ1. It will in the end be
measured by calibration to N-body simulations, and its relation to the coefficients di and
kernels F (1)

i is therefore not of interest. Note that we extracted an overall growth factor
e3∆η in Eq. (4.45) for convenience.

To renormalize the power spectrum at two-loop, we in principle need to consider contri-
butions to the effective stress term at second- and third order in the fields. We gave the

8The freestreaming scale (4.10) is not a single scale, but rather a function of scale and time (in the
adiabatic approximation only of time). Using the exact neutrino sound speed and anisotropic stress, the
effective freestreaming wavenumber increases monotonically with wavenumber and we have approximately
kFS(k, z) ∝ (1 + z)−1/2.
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Figure 4.8: Linear kernels F (1)
a (z = 0) for Mν = 0.1 eV, computed in the 2F scheme.

Reprinted from Paper III [46].

expression for the second order effective stress term in the EdS-approximation in Eq.(3.106),
which could immediately be used for the modified baryon+CDM Euler equation in the
1F scheme. However, as was the case at leading order, in the 2F scheme there are in
general numerous additional operators arising from the neutrino fields and combinations
with the baryon+CDM fields. In addition, there are in general no k-independent relations
between the fields, e.g. ∆θ(2) is not necessarily redundant. Therefore, even if one would
argue that neutrino contributions to the effective stress term should be small compared to
the baryon+CDM operators, there are still additional terms in comparison to Eq. (3.106)
due to the scale-dependence of the dynamics in the presence of freestreaming neutrinos.

With this in mind, we opt for following the prescription introduced in Ref. [252] that we
described in Section 3.6 to renormalize the power spectrum at NNLO in the 2F model. As
discussed in that section, the benefit of this approach is that we do not need to know the
specific form of the effective stress terms at second and third order, introducing only one
extra EFT parameter at two-loop.

In the rest of this section, we evaluate the contributions to the one- and two-loop correction
from the UV in the 2F model, and show that they can be absorbed by the counterterm (4.45)
and the two-loop prescription discussed above, respectively.

Renormalization of the one-loop correction
We start at one-loop. As discussed in Secs. 3.3 and 3.4, the perturbation kernels satisfy the
scaling F (n)(q1, . . . ,qn) ∝ k2 in the limit where k = ∑

i qi goes to zero (but the individual
qi does not). Since this property follows from momentum conservation, it holds also for the
generalized kernels, and in particular for the 2F scheme kernels. We calculated the hard
limit, i.e. q → ∞, of the one-loop correction using EdS-SPT kernels in Eq. (3.77). In the 2F
case, we expect the shape of this limit to be the same due to the kernel property, but the
coefficient can change. Hence, we can write the hard limit at leading power in the gradient
expansion as

P h
1L(k, η) = −2e4∆ηk2P0(k) c 4π

3

∫ Λ
dq P0(q) = −2e4∆ηk2P0(k) c σd . (4.46)
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4.4 EFT corrections

The coefficient c depends on the exact dynamics and is in general time-dependent. We will
in the rest of this chapter always consider the baryon+CDM power spectrum, and therefore
we dropped the cb subscript for brevity. From Eq. (3.77), we obtain c = 61/210 in the 1F
scheme. In 2F scheme, we are only able to solve for the kernels numerically, and we can
therefore not derive c analytically in the limit q → ∞. Nevertheless, we can evaluate it
by taking a large value of q in the numerical evaluation of the one-loop correction. The
method can be explained as follows: Define the one-loop integrand p1L implicitly by

P1L(k, η) = e4∆η
∫ Λ

dq q2P0(q)
∫

dΩq p1L(k,q; η) . (4.47)

The integrand comprises the P (31), P (13) (equal to P (31) for the baryon+CDM auto spectrum)
and P (22) diagrams contributing to the one-loop correction, with its accompanying kernels
(see Fig. 3.5 for the Feynman diagrams). Furthermore, p1L contains one more input power
spectrum P0. In the UV-limit, the leading contribution to the integrand comes from
F (3)(k,q,−q) ∝ k2/q2 (see Eq. (3.70)), and the integral can be factorized

P h
1L(k, η) = 3e4∆η

∫ dΩq

4π

(
lim

q→∞
q2p1L(k,q; η)

) 4π
3

∫ Λ
dqP0(q) ≡ e4∆ηph

1L(k, η)σ2
d . (4.48)

Here, we introduced the q-independent hard-limit quantity ph
1L(k, η) corresponding to the

angular integral. It can be evaluated numerically by fixing the loop momentum to a large
value, q ≫ Λ. The displacement dispersion σ2

d was defined in Eq. (3.75). Comparing
Eq. (4.48) to Eq. (4.46), we have simply

c(η) = − ph
1L(k, η)

2k2P0(k) . (4.49)

This coefficient was computed in Paper III [46] for three cosmologies with Mν = 0.1, 0.2
and 0.4eV, respectively. The result at redshift z = 0 is shown in Fig. 4.9, with the constant
cEdS = 61/210 in 1F plotted in black for comparison. The cutoff used is Λ = 1h Mpc−1

and the loop momentum is fixed to q = 10h Mpc−1 when evaluating ph
1L. The dashed lines

show c with the linear kernel divided out.9 In the presence of freestreaming neutrinos,
c is not scale-independent anymore, but acquires a functional dependence c = c(k2/k2

FS).
Nevertheless, the scale-independence as required by momentum conservation for k ≪ q is
recovered in both limits k ≪ kFS and k ≫ kFS: On scales much larger than the freestreaming
scale, k < kFS, neutrinos behave as dark matter, and the two-component fluid behaves
as a single-component dark matter fluid, with c constant. This limit can be seen for
the largest neutrino mass (which has the largest freestreaming wavenumber kFS) around
k ≃ 10−3h Mpc−1 in Fig. 4.9. The 1F value of 61/210 is not recovered for k ≪ kFS, because
the EdS-approximation is relaxed and due to the sensitivity of the F (3)(k,q,−q) to small
scales q where the freestreaming neutrinos suppress structure formation.

The other limit k ≫ kFS corresponds to scales where the neutrino density does not grow,
δν ≃ 0, and therefore we have an effective decoupling of the baryon+CDM and neutrino

9The diagram P (31) that dominates in the hard limit, encompasses F (3) and F (1), hence the dashed lines
isolate the behavior of F (3) in the limit q ≫ k.
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Figure 4.9: The hard limit of the one-loop correction to the power spectrum, as characterized
by the coefficient c. We show the 1F result c = 61/210, as well as the coefficient
evaluated numerically in three models with Mν = 0.1, 0.2 and 0.4 eV, using
Eq. (4.49) and the 2F scheme. In the dashed lines, the linear kernel F (1) is
divided out. Taken from Paper III [46].

system. The system is therefore again equivalent to a single-component dark matter fluid,
but with slower growth due to the neutrino contribution to the Hubble friction. Accordingly,
c approaches a constant for k ≫ kFS. We see this limit for the two smallest neutrino masses
in Fig. 4.9, while the plateau only emerges on even smaller scales for Mν = 0.4 eV.

Under the assumption kFS ≪ k ≪ kNL, the c-coefficient can thus be measured, and more
importantly the hard limit of the one-loop correction has the appropriate scaling that can
be corrected for by the EFT counterterms. The values of c that will be used in the following
analysis are read off at the vertical dashed line in Fig. 4.9. The above assumption breaks
down for Mν = 0.4 eV, but this model can nevertheless be included for illustrative purposes.

As should be the case in the effective theory, the counterterm (4.45) introduced to model
the UV physics can exactly absorb the UV-sensitivity of the (generalized) SPT result (4.46).
The EFT prediction for the one-loop correction is therefore

P ren
1L (k, η,Λ) = P1L(k, η; Λ) + P ctr

1L (k, η; Λ) , (4.50)

where the counterterm is given by

P ctr
1L (k, η; Λ) = −2e4∆η γ1(Λ)k2P0(k) . (4.51)

To analyze the cutoff-(in)dependence of this result, we can consider the response to a change
of the cutoff:

d
dΛ

[
P1L(k, η; Λ) + P ctr

1L (k, η; Λ)
]

= −2e4∆ηk2P0(k) d
dΛ [c(η)σd(Λ) + γ1(Λ)] , (4.52)
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4.4 EFT corrections

where we used Eq. (4.46), valid at leading power in gradients. Demanding that the one-loop
correction is cutoff-independent thus yields an renormalization group equation (RGE) for
γ1(Λ) that has solution (cf. Eq. (3.104))

γ1(Λ) = γ1 + 4πc
3

∫ ∞

Λ
dq P0(q) , (4.53)

with γ̄1 being an initial condition.

Renormalization of the two-loop correction
At two-loop, there are two loop momenta q1, q2 (see the diagrams contributing as well as
the full two-loop expression in Fig. 3.7 and Eq. (3.71), respectively). The loop integrals
are therefore sensitive to the UV when one or both of the momenta become large. Hence,
we distinguish between the single-hard (h) and double-hard (hh) limits as described in
Section 3.6.

Double-hard limit As we saw in Section 3.6, the leading contribution of the double-hard
region of the two-loop integral comes from the P (51) diagram, and hence the F (5) kernel. In
this limit, we have F (5) ∝ k2 as required by momentum conservation, and thus the leading
double-hard contribution scales as k2P0(k), which can be captured by the counterterm
already introduced at one-loop (4.51). At NNLO, we can split the corresponding EFT
parameter into a one- and two-loop piece,

γNNLO
1 = γ1L

1 + γ2L
1 . (4.54)

A practical remedy is to choose γ2L
1 to precisely cancel the double-hard contribution of

the two-loop correction, and let γ1L
1 ≡ γ1 contain the correction of the hard limit of

the one-loop as well as the actual impact of short-scale physics (the “finite” part of the
counterterm) [252]. In practice, this can be done by subtracting the double-hard limit from
the two-loop correction: we define the subtracted two-loop correction as

P̄2L = P2L − P hh
2L . (4.55)

The double-hard limit is given by P hh
2L = bhhk2P0(k), where bhh is a model-dependent con-

stant. In the 2F scheme, we can compute this constant by evaluating bhh = limk→0 P2L/k
2/P0

in the low-k region of the two-loop integral, which has sole support from q1, q2 ≫ k that
precisely corresponds to the double-hard limit.

In the left panel of Fig. 4.10, we show the subtracted two-loop correction P̄2L normalized
to k2P0(k) (more precisely, the corresponding IR-resummed quantities, with an overall
rescaling growth factor), computed using a cutoff Λ = 1h Mpc−1. Both the 1F and the 2F
models (with various sums of neutrino masses) attain a plateau around k ≃ 10−3h Mpc−1,
indicating that the double-hard k2P0-scaling is reached. Due to the presence of the additional
freestreaming scale kFS ≃ 0.01h Mpc−1, the neutrino models recover this scaling for even
smaller wavenumbers than in 1F. The limiting values bhh in each model was measured at
the subtraction point indicated by the vertical dashed line. It is important to remark that
bhh defines the renormalization point, and therefore a change in its value only leads to a
shift in γ1. In Paper III, it was nevertheless checked that changing the subtraction point
had negligible impact on observables except for the shift in γ1 [46].
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Figure 4.10: Subtracted two-loop correction (left panel) and subtracted single-hard limit
of the two-loop (right panel), divided by k2P0. We show the corresponding
IR-resummed quantities and rescale the result by an appropriate growth factor
(see header). In addition to the 1F result, three models with Mν = 0.1, 0.2 and
0.4 eV computed in the 2F scheme are shown. The vertical dashed lines indicate
the subtraction points where the double-hard limits bhh and bh were evaluated
and subtracted. They coincide for all neutrino masses in the left panel, while
in the right panel, the subtraction points increase with the neutrino mass.
Errorbars indicate uncertainty from the Monte Carlo integration. Reprinted
from Paper III [46].

Single-hard limit We proceed to discuss the single-hard region, in which one of the loop
momenta becomes large. As alluded above, we will not explicitly write down counterterms
that renormalize this region, but correct for the UV-sensitivity in a universal manner using
one extra parameter.

To evaluate the single-hard limit, we start by defining the two-loop integrand p2L:

P2L(k, η) = e6∆η
∫ Λ

dq1 q
2
1P0(q1)

∫ Λ
dq2 q

2
2P0(q2)

∫
dΩq1 dΩq2 p2L(k,q1,q2; η) . (4.56)

In analogy to the one-loop case, we can factorize the integral in the single-hard case. Let
q1 be hard, with q2 ∼ k, then the leading contribution to the integral above comes from
kernels F (n)(. . . ,q1,−q1, . . . ) ∝ 1/q2

1, and the hard limit is factorized as follows,

P q1→∞
2L (k, η) = 3e6∆η

∫ Λ
dq2 q

2
2P0(q2)

∫ dΩq1

4π

(
lim

q1→∞
q2

1p2L(k,q1,q2; η)
)

× 4π
3

∫ Λ
dq1 P0(q1)

= e6∆η ph
2L(k, η)σ2

d , (4.57)
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where we defined ph
2L to be the integral in the first line which is q1-independent. We computed

the equivalent quantity analytically in EdS in Eq. (3.118). Since the other single-hard
contribution with q2 hard, q1 ∼ k, is completely equivalent, the total single-hard limit of
the two-loop power spectrum at leading power in gradients is

P h
2L(k, η) = 2e6∆η ph

2L(k, η)σ2
d . (4.58)

Following Ref. [252], we assume that the unknown UV physics can be captured by a shift
in the displacement dispersion, σ2

d(Λ) 7→ σ2
d(Λ) + Nγ2(Λ) , with the EFT parameter γ2. The

factor N will be defined explicitly below. As we showed in Eq. (3.117), the replacement
corresponds to adding a counterterm

2e6∆η ph
2L(k, η) Nγ2 , (4.59)

to the power spectrum at NNLO. We note however, that the integral ph
2L contains a region in

which q2 is large, corresponding to a double-hard limit if the external wavenumber k is much
smaller than the cutoff. Therefore, adding the counterterm (4.59) yields a contribution to
the two-loop correction that is degenerate with the k2P0(k) counterterm. We choose to
remove this contribution, adopting the renormalization scheme where γ2L

1 precisely cancels
the double-hard region of the two-loop correction, including the contribution from the
single-hard counterterm (4.59). In practical terms, the degenerate double-hard part can be
removed in an analogous manner as in the definition of the subtracted two-loop correction:
we define

p̄h
2L = ph

2L − phh
2L . (4.60)

The quantity ph
2L can be computed numerically by fixing q1 to a large value, q1 ≫ Λ,

performing the integral over q2 as well as the angular integral over q1 as given by the
first line of Eq. (4.57). In the results we show below, a cutoff Λ = 1h Mpc−1 is used
and the hard momentum is fixed to q1 = 10h Mpc−1 when evaluating the single-hard
limit. Subsequently, the double-hard contribution can be removed by computing the limit
bh = limk→0 p

h
2L/k

2/P0(k). For vanishing k, the integral in the first line of Eq. (4.57) only
gets contributions from q2 ≫ k, hence we recovered the double-hard limit, where ph

2L scales
as k2P0. It follows that phh

2L = bhk2P0(k).
In the right panel of Fig. 4.10, we display the subtracted single-hard contribution p̄h

2L,
normalized to k2P0(k) (as for the subtracted full two-loop correction, the corresponding
IR resummed quantities are shown). The 1F scheme (black curve) indeed exhibit the
appropriate k2P0(k) scaling at low k, and the degenerate double-hard contribution can be
subtracted at k = 10−2h Mpc−1. This is also the case for 2F, but on very small wavenumbers
there are certain deviations. Due to the large value q1 = 10h Mpc−1 ≫ k, they could be
attributed to large numerical cancellations. In Paper III, it was checked that using a smaller
q1 = 5h Mpc−1 extends the range in which the k2P0-scaling is manifest in the neutrino
models, without changing the result in the region of interest k ≳ 0.05h Mpc−1 [46]. Hence,
the subtraction points can be chosen in the intermediate region where the k2P0-scaling
is attained, but on wavenumbers larger than the point at which numerical instabilities
occur. In particular, for the results that we present, a subtraction point k = 0.015, 0.027,
0.04h Mpc−1 was used for Mν = 0.1, 0.2 and 0.4 eV, respectively. Note that this is above
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the freestreaming scale, and therefore the opposite limit as compared to the subtraction
of the full two-loop (right panel in Fig. 4.10). For the largest neutrino mass Mν = 0.4 eV,
the window in which the double-hard scaling is reached is very narrow, and moreover not
sufficiently away from the freestreaming scale, i.e. the assumption kFS ≪ k breaks down.
Finally, we stress again that the subtraction points define the renormalization points, and
hence the only impact of changing the subtraction point is a shift in the γ1 parameter.

In total, we obtain the renormalized two-loop power spectrum as

P ren
2L (k, η; Λ) = P̄2L(k, η; Λ) + P ctr

2L (k, η; Λ) , (4.61)

where the counterterm is given by

P ctr
2L (k, η; Λ) = 2e6∆ηNγ2(Λ) p̄h

2L(k, η) , (4.62)

absorbing the UV-sensitivity in the single-hard region, with the new EFT parameter γ2. The
double-hard region is corrected for by the γ1 counterterm already introduced at one-loop.
The quantities with a bar, P̄2L and ph

2L, have the double-hard contribution subtracted as
discussed above, such that they yield no contribution degenerate with the γ1 counterterm.

Cutoff-independence
We have introduced counterterms at one- and two-loop that can correct for the UV-
sensitivity of the baryon+CDM power spectrum in the two-component fluid model. Let us
now demonstrate explicitly that adding these counterterms cure the cutoff-dependence of
the theory.

The renormalized power spectrum at NNLO is given by

P ren
NNLO(k, η; Λ) = Ptree(k, η) + P ren

1L (k, η; Λ) + P ren
2L (k, η; Λ) , (4.63)

with the renormalized loop corrections given in Eqs. (4.50) and (4.61). We demand that
it should be independent of the cutoff: dP ren

NNLO/dΛ = 0. In the renormalization scheme
we adopted, there are no degenerate UV contributions between the one- and two-loop
corrections, which means that the RGE can be solved independently for each correction.
Moreover, in this scheme, the one-loop RGE and its solution (4.53) remain the same after
adding the two-loop contribution.

After renormalizing the one-loop correction, the only remaining cutoff-dependence of
Eq. (4.63) comes from the single-hard region (we removed the double-hard contribution from
the two-loop power spectrum, or in other words absorbed it by the one-loop counterterm),
hence we require

0 = d
dΛ

[
P̄ h

2L(k, η; Λ) + P ctr
2L (k, η; Λ)

]
= 2e6∆ηp̄h

2L(k, η) d
dΛ

[
σ2

d(Λ) + Nγ2(Λ)
]
. (4.64)

This result, valid at leading power in gradients, reflect the fact that we assume the UV-
sensitivity can be corrected for by a shift in σ2

d. The solution of the RGE is10

γ2(Λ) = γ2 + 4π
3N

∫ ∞

Λ
dq P0(q) , (4.65)

10For the EFT parameters γ1 and γ2, the bar notation is used to denote the initial condition as Λ → ∞. This
notation is unrelated to the bar labeling the subtracted power spectra, e.g. P̄2L as defined in Eq. (4.55).
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with γ̄2 being an initial condition. The factor N is purely conventional, and to treat γ2 on
equal footing as γ1, we use N = 1/c.

In Fig. 4.11, we display the one- and two-loop power spectra before and after renormal-
ization for two cutoffs Λ = 0.8h Mpc−1 and Λ = 1h Mpc−1. The bottom panels display
the fractional difference between the renormalized spectra using the two cutoffs, serving
as a check that using the EFT framework we have indeed obtained a cutoff-independent
result. It is reassuring to see that for the one-loop, the relative difference between the
cutoffs is at the permille level up to k ≃ 0.4h Mpc−1. As we increase k, we expect the
higher order terms in the gradient power expansion, O(k4/k4

NL), which we neglected, to
become important. The double-hard limit gives the largest contribution to the bare two-loop
correction, as can be seen by comparing the full (blue) and subtracted (yellow) lines in
Fig. 4.11. After adding the counterterm (green), we obtain the renormalized two-loop power
spectrum (red). It vanishes for small k (corresponding to the double-hard limit, whose
contribution is removed), therefore there is a large relative difference on these scales in the
bottom plot. For k ≃ 0.08–0.25h Mpc−1, we find that the renormalized two-loop differs less
than 1 % between the two cutoffs.

4.5 Comparison to N-body simulations
We have now obtained a framework for computing loop corrections in the presence of
massive neutrinos, using a hybrid fluid model that captures the time- and scale-dependence
introduced by neutrino perturbations as well as from the departure from EdS at late times,
embedded in an effective theory. To make a precise comparison to the simplified 1F scheme,
we calibrate both methods to N-body simulations and measure their performance. We use
the EFT approach outlined in the previous section, and promote the theory to include IR
resummation by making the replacement P0 → P IR,N−L

0 .
The discussion follows Paper III [46], were the analysis was performed for cosmologies

with Ωm = 0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624, σ8 = 0.834, and three sums
of neutrino masses Mν = 0.1, 0.2 and 0.4 eV. The loop integral cutoff is Λ = 1h Mpc−1

and hard limits are evaluated by fixing the hard momenta to q = 10h Mpc−1. For the IR
resummation, a separation scale ks = 0.2h Mpc−1 was used, as recommended by Ref. [149].

The N-body simulation results is taken from the Quijote suite [174]. In this suite, the
simulations including neutrinos have 5123 CDM and 5123 neutrino particles, in a box of
size 1 (Gpc/h)3. The simulations use pair fixed initial conditions, which significantly reduce
cosmic variance [285–287]. The power spectrum Pdata and its uncertainty ∆Pdata at z = 0
can be estimated by computing the mean and variance of the 500 Quijote realizations,
respectively.

The calibration and performance measurement of each model is done by computing the
following χ2 at NLO and NNLO:

χ2
NLO =

kmax∑
k=kmin

[Pdata(k) − P ren
NLO(k, γ1)]2

[∆Pdata(k)]2
, (4.66)

χ2
NNLO =

kmax∑
k=kmin

[Pdata(k) − P ren
NNLO(k, γ1, γ2)]2

[∆Pdata(k)]2
. (4.67)
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Figure 4.11: Cutoff-dependence of the one- and two-loop corrections, before and after
renormalization. Upper left: Bare (blue) and renormalized (red) one-loop
correction to the power spectrum. Upper right: Bare (blue), subtracted (yellow)
and renormalized (red) two-loop correction. The single-hard counterterm is
shown in green. In both panels the dashed curves use cutoff Λ = 0.8h Mpc−1

and the solid ones use Λ = 1h Mpc−1. The shaded region indicate the difference.
Bottom panels: Fractional difference between the renormalized results using
the two cutoffs, i.e. P (Λ = 0.8h Mpc−1)/P (Λ = 1h Mpc−1). Taken from Paper
III [46].

The EFT parameters are measured by minimizing the χ2 above, and their uncertainties
estimated by the region ∆χ2 = χ2 − χ2

min ≤ 1. The analysis uses kmin = 0.0089h Mpc−1

and utilizes at e.g. kmax = 0.1(0.3)h Mpc−1 14(46) wavenumber grid points. Moreover, the
following cases are considered in the fits:

NLO {γ̄1} one-loop, 1-parameter,

NLO, γ̄1 = γ̄
[NNLO]
1 ∅ one-loop, 0-parameter with γ̄1 fixed from NNLO fit,

NNLO, γ̄2 = γ̄1 {γ̄1} two-loop, 1-parameter with γ̄2 = γ̄1 ,

NNLO {γ̄1, γ̄2} two-loop, 2-parameter.

We explain the motivation for the unfitted, 0-parameter NLO scheme (the second case above)
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below. The third case, γ̄1 = γ̄2 ≡ γ̄ is motivated by an assumption that the EFT corrects
the displacement dispersion in the same way at one- and two-loop, i.e. σ2

d → σ2
d + γ/c.

Finally, we note that on large scales, close to the box size of the simulations, the binning
method used to estimate power spectra from particle densities yields significant effects, and
needs to be taken into account when comparing simulations results and theory. The same
binning procedure can be performed on the (theoretical) linear power spectrum11 and one
can thus “unbin” the simulation power spectra P binned

data (k) by multiplying it with the ratio
of the linear power spectrum with and without binning effects:

Pdata(k) = P0(k, z = 0)
P binned

0 (k, z = 0)
P binned

data (k) . (4.68)

Results

We present the results of the calibration and comparison to Quijote N-body data, using
the most phenomenologically relevant neutrino mass Mν = 0.1 eV. The power spectrum
computed in the 2F scheme normalized to the N-body result is shown in Fig. 4.12, using the
four different calibration cases discussed above as well as varying the pivot scale kmax—up to
which maximum wavenumber the fit is performed. We show also the linear power spectrum
for comparison. The gray band correspond to N-body uncertainty, ∆Pdata, and the red
shading indicate the expected theoretical uncertainty at one-loop (lighter red) and two-loop
(darker red) [288]. In all the perturbative cases, there is a “bumb”-like feature on large
scales k ≃ 0.01–0.05h Mpc−1, which extends a few permille but well within the uncertainty
of the N-body results. It likely arises due to finite box size effects that are not captured by
the formula (4.68) correcting for binning effects. We see that in all cases, the perturbative
solutions can be fit within the N-body uncertainty up to and beyond the pivot scale.

Inevitably, the results are subject to a degree of overfitting depending on the loop
order. We can estimate the extent of overfitting by comparing to the expected theoretical
uncertainty: considering e.g. the NLO case, which for all pivot scales deviates much less
from the data than expected by the size of the two-loop correction (i.e. the estimated
theoretical uncertainty at one-loop, light red shading), suggesting overfitting. An issue in
this analysis is that on large scales, there are few grid points and the N-body data is not
very precise (even after reducing cosmic variance) due to finite box size effects. Therefore,
one cannot accurately constrain the EFT parameters at k ≲ 0.05h Mpc−1, where the theory
is most precise. This issue is most prominent at NLO, because one needs to go beyond
kmax ≃ 0.1h Mpc−1 to get enough data points for a credible calibration, which is beyond the
point where the two-loop correction becomes important. At NNLO, the theory is precise up
to a larger wavenumber, and one can reliably use a larger pivot scale. This is the motivation
for the introduction of the 0-parameter NLO calibration case defined above. It uses the
γ̄1 parameter measured from the NNLO fit, and should thus be subject to less overfitting
(recall that the renormalization scheme was defined in such a way that γ̄1 is unchanged
after adding the two-loop, up to numerical error and overfitting). We see indeed that the

11The Pylians library, github.com/franciscovillaescusa/Pylians, has a routine that bins a power spectrum
the same way as is done to estimate non-linear power spectra from the Quijote suite.
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Figure 4.12: The baryon+CDM power spectrum at NLO and NNLO for Mν = 0.1 eV, using
different sets of EFT parameters, computed in the 2F scheme and normalized
to the Quijote result. The gray shaded region indicate uncertainty from the
N-body simulation, while the light (dark) shaded red region indicate expected
theoretical uncertainty at one(two)-loop. The pivot scales are kmax = 0.103
(left) 0.148 (middle) and 0.204h Mpc−1 (right), as indicated by vertical black
lines. Errorbars display the uncertainty from the numerical loop integration.
Reprinted from Paper III [46].

0-parameter case deviates much further than the 1-parameter one at NLO for the two larger
pivot scales in Fig. 4.12.

In the left panel of Fig. 4.13, we display the χ2 per degree of freedom in the different
calibration cases. We find χ2/d.o.f ≪ 1, indicating that the estimator we adopted for
the N-body uncertainty is too simple (e.g. neglecting correlations between different bins).
Nevertheless, the aim is to compare the performance of the 1F and 2F models, hence the
precise value of the χ2 is not important. Moreover, the results imply that the 1-parameter
γ̄1 = γ̄2 ansatz proposed by Ref. [252] does not agree too well with the N-body results when
including the exact scale- and time-dependence. In particular, this case even performs worse
than both NLO cases at kmax ≃ 0.12h Mpc−1. We discuss the right panel of this figure
shortly.

The measured EFT parameters are showed in Fig. 4.14. We show both schemes 1F
and 2F (their difference will be discussed below), where the shaded regions indicate 1σ
uncertainty. Consider first the γ̄1 parameter at NLO and NNLO (first and third panel). At
NLO, the measurement is consistent with a constant until k ≃ 0.11h Mpc−1, after which the
parameter begins to run. On the other hand, at NNLO this plateau region is extended to
k ≃ 0.14h Mpc−1 (and up to 0.2h Mpc−1 within 1σ uncertainty). The second parameter at
NNLO (γ̄2) can not be constrained below k ≃ 0.15h Mpc−1, because the counterterm (4.62)
(with the double-hard contribution subtracted) vanishes for small k. We note that the
measured values of γ̄1 and γ̄2 differ, yielding another indication that the 1-parameter ansatz
at NNLO does not work very well. Moreover, the EFT parameter γ̄ for this ansatz exhibits
a running across all scales, and in particular at low k, as can be seen in the second panel of
Fig. 4.14.

Next, let us compare the performance of the 1F scheme and 2F scheme in predicting
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Figure 4.13: Reduced χ2 as a function of pivot scale kmax for the different calibration cases
(left) and for different neutrino schemes (right). Taken from Paper III [46].
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Figure 4.14: Measured EFT parameters γ1, γ2 and γ ≡ γ1 = γ2 as a function of the pivot
scale kmax. The results are shown from a cosmology with Mν = 0.1 eV, with
the blue and green lines corresponding to the 1F and 2F schemes, respectively.
The shaded region indicate 1σ uncertainty. Figure taken from Paper III [46].

the baryon+CDM power spectrum at NLO and NNLO. Their power spectra are shown in
Fig. 4.15. It is clear that both schemes can match the N-body power spectrum very well,
and the differences between them are minimal. This conclusion is also supported by the
right panel of Fig. 4.13, showing only slight differences between the reduced χ2 in the two
schemes. Recalling the percent difference between the bare spectra at k ≃ 0.17h Mpc−1 we
found in Fig. 4.7, mostly due to the departure from EdS at late times, this result suggests
that the discrepancy can be largely absorbed by a shift in the counterterms. Specifically,
the difference between the schemes is degenerate with the k2P0-counterterm to large extent.
This is also apparent from Fig. 4.14, where both in the NLO and NNLO cases there is
a shift ∆γ̄1 ≃ 0.2 Mpc/h2 between the 1F and 2F schemes. On the other hand, the γ̄2
parameter is not altered between the schemes. The ∆γ̄1 shift is consistent with the findings
of Refs. [45, 213] for the bispectrum as we discuss in the next chapter.
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Figure 4.15: The baryon+CDM power spectrum at NLO (left) and NNLO for Mν = 0.1 eV
and using a pivot scale kmax = 0.148h Mpc−1. The blue and green lines show
the 1F and 2F results, respectively, normalized to the Quijote N-body result.
Reprinted from Paper III [46].

Summary In this chapter, we have described structure formation in the presence of massive
neutrinos, going beyond linear theory for the neutrino perturbations. Utilizing a hybrid
two-component fluid model, with a certain prescription for the neutrino sound velocity,
we could compute non-linear corrections to the power spectrum using the extension of
SPT introduced in the previous chapter. We find that our results, capturing exact scale-
and time-dependence (2F), yield percent differences compared to a commonly simplified
treatment (1F) beyond k ≃ 0.17 and 0.2h Mpc−1 for the density and velocity power spectra
(Mν = 0.1 eV), respectively. We constructed an EFT framework for the hybrid model valid
on scales much smaller than the freestreaming scale, and we showed that the resulting
power spectrum at two-loop is cutoff-independent. Comparing to N-body simulations, we
found that the difference of the density power spectrum between 1F and 2F can largely
be absorbed into the one-loop counterterm, hence both schemes perform equally well in
matching the simulation result.
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Beyond the power spectrum, the leading non-Gaussian LSS statistic is the bispectrum.
Containing information complementary to the power spectrum, it allows for breaking
degeneracies between cosmological parameters and galaxy bias [223], or even between the
cosmological parameters themselves, e.g. between the neutrino mass and amplitude of
fluctuations [39, 289]. For instance, recent analyses of the BOSS galaxy clustering data show
that including the bispectrum reduces the errorbar for σ8 (characterizing the amplitude of
fluctuations) by O(10 %) [159, 290] (see also Refs. [163, 291]). Moreover, the bispectrum is
a natural probe for deviations from Gaussian initial fluctuations, i.e. non-Gaussianity. For
example, a detection of a non-zero amplitude in the squeezed limit of the initial bispectrum
would rule out single-field inflation [292]. Recent analyses have used the bispectrum
in combination with the power spectrum from BOSS data to constrain primordial non-
Gaussianity, yielding constraints with similar uncertainties as WMAP [160, 161, 293, 294].1
Given the expected precision of the DESI [21] and Euclid [19, 20] surveys, these constraints
will certainly improve significantly in the future.

The bispectrum was first analyzed in the context of the EFTofLSS at one-loop in Refs. [250,
296], finding percent agreement compared to simulations up to kmax ≈ 0.2h Mpc−1 at z = 0.
More recent precision investigations show that the range of validity is smaller, concluding
that the one-loop prediction is accurate at the percent level for kmax ≲ 0.1h Mpc−1 [213, 297].
In this chapter we will indeed see that the two-loop correction becomes important at k ≈
0.08h Mpc−1, which is consistent with expectations based on theoretical uncertainties [288].
Ref. [213] also studied the EdS-approximation in the context of the bispectrum, and found
that the error introduced by this approximation on the tree-level bispectrum exceeds the
loop corrections for k ≲ 0.02h Mpc−1.

In this chapter we present the results of Paper II [45]: we derive a renormalized bispectrum
at NNLO in an EFT framework. The counterterms that renormalize the one-loop correction
are shown to be sufficient to absorb the double-hard region of the two-loop correction, albeit
in a different linear combination. To account for the UV-contribution in the single-hard
limit, we adopt the prescription described in Section 3.6 (and introduced in Ref. [252])
and extend it to the bispectrum, yielding one additional EFT parameter for the two-loop
correction. When comparing to N-body simulations, using a realization based approach
to beat cosmic variance, we find that the perturbative description has 1σ agreement up to
k ≃ 0.08h Mpc−1 and k ≃ 0.15h Mpc−1 at one- and two-loop, respectively. In Section 5.2
we also discuss the EdS-approximation and assess its accuracy for the one-loop bispectrum
compared to exact time-dependent ΛCDM kernels.

We will work with a single-component, dark matter fluid and adopt the EdS-approximation
1Note that galaxy clustering constrain the combination bϕfNL, where bϕ is the primordial non-Gaussianity

bias parameter and fNL is the parameter of interest: the amplitude of primordial non-Gaussianity. To
constrain the latter, one therefore needs to make assumptions on the former [295].
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unless otherwise specified. Specifically, this means that we solve the fluid equations via
the expansion (3.55) with the kernels given by the EdS-SPT recursion relations (3.48). We
evaluate the bispectrum at present time, and since the time-dependence is in this case
factored out, the input linear power spectrum can be taken at z = 0 and furthermore
∆η = 0. In addition, we will only be concerned with correlations of the matter density field,
so only the a = 1 components of the kernels F (n)

a are of interest. Therefore, we drop the a
subscript for brevity. We do not IR resum the perturbative predictions (at NNLO this is
needed to a lesser degree for obtaining accurate results). The results are presented for a
cosmology with Ωm(z = 0) = 0.272, h = 0.724, ns = 0.967 and σ8 = 0.81.

Tree-level bispectrum
The bispectrum was defined in Eq. (3.64). Inserting the perturbative expansion and applying
the Wick theorem analogously as for the power spectrum discussed in Section 3.5 yields
a “loop” expansion of the bispectrum. We assume Gaussian initial conditions, therefore
a non-zero bispectrum can only be generated by non-linear corrections, and indeed the
tree-level bispectrum contains the non-linear kernel F (2). Its diagrammatic representation is
displayed in Fig. 5.1. Each outgoing line corresponds to one of the fields that are correlated,
with the component indicated by the indices a, b and c. (As commented above, we only
consider matter density fields in this chapter, a = b = c = 1, but keep the indices in the
diagrams for generality.) The external wavenumbers for each field are denoted kA, kB

and kC , respectively. We choose their direction as going out from diagrams throughout
the discussion. Recall that due to statistical homogeneity and isotropy, they sum to zero.
Furthermore, the kernels conserve momentum, so for each kernel there is an associated
Dirac delta function ensuring that the incoming momentum equals the outgoing one.

As for the power spectrum, the different diagrams contributing to each order in pertur-
bation theory is named after the order of the kernels that appear in them; at tree-level
only the B(211)-diagram contributes. There are however two additional equivalent diagrams
corresponding to permutations of the three fields, i.e. cyclic permutations of {kA,kB,kC}
(and {a, b, c}).

In total, the mathematical expression for the tree-level bispectrum is therefore

Btree(kA, kB, kC) = 2F (2)(−kB,−kC)F (1)(kB)F (1)(kC)P0(kB)P0(kC) + 2 perm.
= 2F (2)(−kB,−kC)P0(kB)P0(kC) + 2 perm. , (5.1)

where we used in the second line F (1) = 1 in EdS2. The factor 2 is the symmetry factor of
the diagram, arising from the sum over parings in the Wick theorem (see Section 3.5).

5.1 One-loop correction
Before we describe the two-loop correction and its renormalization in the EFT, we review
the one-loop term and the counterterms correcting its UV-sensitivity. The review serves

2The linear kernels are also constant, F (1) = 1, when the EdS-approximation is relaxed, because the growing
mode is not affected by changes of Ωm/f

2, see Eq. (3.39). As we saw in Chapter 4, this is not the case in
general however.
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Figure 5.1: The tree-level bispectrum: B(211), containing a second-order and two first-order
kernels. On outgoing lines, we indicate the component of the fields a, b and c as
well as the external momenta kA, kB and kC . The square boxes indicate initial,
linear power spectra. The corresponding mathematical expression is given in
Eq. (5.1), adopting the convention that all external momenta are outgoing.

as a useful way to introduce the method and notation before we tackle the two-loop in
Section 5.3. Similar discussions can be found in Refs. [213, 250, 296, 297].

The one-loop correction to the bispectrum is given by

B1L = B(411)
s +B(321)

s +B(222) , (5.2)

where the s subscript indicates that the term should be symmetrized: B(411)
s contains three

cyclic permutations while B(321)
s contains (all) six permutations of {kA, kB, kC}. The latter

also consists of two distinct topological diagrams, which we label B(321−I) and B(321−II). The
diagrammatic representations of each term is shown in Fig. 5.2 (the counterterm diagrams
B(2̃11) and B(21̃1) are also displayed, which will be discussed shortly). The corresponding
mathematical expressions read [250, 296]3

B(411)(kA, kB, kC) = 12P0(kB)P0(kC)F (1)(kB)F (1)(kC)
∫

q
F (4)(−kB,−kC ,q,−q)P0(q) ,

(5.3a)

B(321−I)(kA, kB, kC) = 6P0(kC)F (1)(kC)
∫

q
F (3)(−kC ,−kB + q,−q)F (2)(kB − q,q)

× P0(q)P0(|kB − q|) , (5.3b)

B(321−II)(kA, kB, kC) = 6P0(kA)P0(kC)F (1)(kC)
∫

q
F (3)(kA,q,−q)F (2)(−kA,−kC)P0(q) ,

(5.3c)

B(222)(kA, kB, kC) = 8
∫

q
F (2)(kA + q,−q)F (2)(q,kB − q)F (2)(−kB + q,−kA − q)

3Note that the explicit formulas may look different depending on sign conventions and labeling of the
different diagram contributions. For the diagram with a loop running around all three “blobs”, there are
more than one way of evaluating the Dirac delta functions at each blob, yielding slightly different, but
equivalent expressions.
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Figure 5.2: Diagrams contributing to the one-loop bispectrum: B(411), B(321−I), B(321−II),
B(222), as well as the counterterm diagrams B(2̃11) and B(21̃1). See Eqs. (5.3)
and (5.14). We indicate counterterm kernels F̃ (n) by dashed circles.

× P0(q)P0(|kA + q|)P0(|−kB + q|) , (5.3d)

where we included the trivial F (1) kernels for completeness.

Hard limit

The perturbative expansion is no longer valid when the loop momenta in the integrals above
are large, of the order of the non-linear scale. In the EFT, this hard region is corrected for
by EFT operators. We will now derive the contribution of the hard limit to the one-loop
correction at leading power in gradients (k2/k2

NL), and show that its shape corresponds
precisely to that of the EFT operators.

The hard region corresponds to q ≫ kA, kB, kC . It is instructive to estimate the size of the
contributions from different diagrams in this limit, before we derive the explicit expressions.
For this purpose, we consider kA ∼ kB ∼ kC ∼ k, and k ≪ q. For all three kernels appearing
in each diagram, the sum of arguments are therefore k (absolute value), and any kernel
containing the hard loop momentum q thus scales as k2/q2 due to momentum conservation
(see Section 3.3). Hence, in the hard limit, the different diagrams scales as

B(411) ∼ k2P0(kB)P0(kC)
∫

q
P0(q)/q2 , B(321−I) ∼ k4P0(kC)

∫
q

[P0(q)]2 /q4 ,
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B(321−II) ∼ k2P0(kB)P0(kC)
∫

q
P0(q)/q2 , B(222) ∼ k6

∫
q

[P0(q)]3 /q6 . (5.4)

The B(411) and B(321−II) diagrams produce the leading contribution to the hard limit,
proportional to k2/q2, corresponding to propagator corrections. The B(222) term is propor-
tional to k6 and corresponds to a pure stochastic contribution, i.e. arising entirely from
short wavelength modes that combine into long wavelength modes. Finally, the B(321−I)

diagram corresponds to a cross between a propagator correction and a stochastic contribu-
tion, suppressed by k4/q4. Working at leading power in gradients, we therefore neglect the
contributions to the hard limit from the latter two diagrams.

To derive the explicit shape of the hard region, it is useful to define the integrand b1L of
the loop correction:

B1L(kA, kB, kC)) =
∫ Λ

dq q2P0(q)
∫

dΩq b1L(kA,kB,kC ,q) . (5.5)

In the hard limit, q ≫ kA, kB, kC , we identified B(411) and B(321−II) as the leading con-
tributions, with b1L ∝ 1/q2. Therefore, the one-loop correction can be factorized for
q → ∞:

Bh
1L(kA, kB, kC)) = 3

∫ dΩq

4π

(
lim

q→∞
q2b1L(kA,kB,kC ,q)

)
σ2

d ≡ bh
1L(kA, kB, kC)σ2

d , (5.6)

defining the hard limit bh
1L in the last equality, which contain the dependence on external

wavenumbers. So far the discussion was analogous to our examination of the UV-limit of
the one-loop power spectrum in the presence of massive neutrinos in Section 4.4. In that
case however, we did not have analytic expressions for the kernels, and had to evaluate
the limit numerically. Here, we consider EdS-SPT kernels, and can therefore obtain the
analytic shape dependence. In particular, using the expressions for the kernels appearing in
Eqs. (5.3a) and (5.3c), we obtain

bh
1L(kA, kB, kC) = 3

[
12f (4)(kB,kC) − 6 61

1890f
(3)(kB,kC)

]
P0(kB)P0(kC) + 2 perm. (5.7)

The first term arises from the B(411) diagram, and therefore the hard limit of the F (4)

kernel,
F (4)(k,p,q,−q) −−−−→

q≫k,p

1
q2 f

(4)(k,p) + O
(
(max(k, p)/q)4

)
, (5.8)

with

f (4)(k,p) = −1
4074840

[
49636µ3kp+ 58812(k2 + p2) + 114624µ2(k2 + p2)

+ µkp

(
32879

(
k2

p2 + p2

k2

)
+ 231478

)]
, (5.9)

where µ = k · p/kp. The second term in Eq. (5.7) comes from the B(321−II) diagram, with
the hard limit of the F (3) kernel capturing the daisy loop as well as the other F (2) kernel.
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5 The bispectrum of large-scale structure

We saw already the hard limit of the F (3) kernel integrated over angles in Eqs. (3.77b) and
(4.46), nevertheless we repeat it here for convenience:4∫ dΩq

4π F (3)(k,q,−q) −−−→
q≫k

− 1
3 × 3

61
210

k2

q2 + O
(
(k/q)4

)
. (5.10)

It follows that f (3)(k,p) = (k2 + p2)F (2)(k,p), where we included the permutation k ↔ p
corresponding to kB ↔ kC in Eq. (5.7). Combined with the three permutations included
expressly in that equation, we covered all 6 permutations of the B(321−II) diagram.

Only a handful of basis functions appear in the f (3) and f (4) shapes. In particular, we
can define

b1(k,p) = k2 + p2 , b2(k,p) = k · p , b3(k,p) = k · p
(
k2

p2 + p2

k2

)
,

b4(k,p) = µ2(k2 + p2) , b5(k,p) = µ3kp , (5.11)

from which we can write f (3) and f (4) as linear combinations

f (i)(k,p) =
5∑

j=1
f

(i)
j bj(k,p) . (5.12)

The coefficients f (i)
j are given in Tab. A.1. Since the perturbation kernels vanish when

the sum of all arguments is zero, we have f (i)(k,−k) = 0, which yields a condition on the
coefficients,

2f (i)
1 − f

(i)
2 − 2f (i)

3 + 2f (i)
4 − f

(i)
5 = 0 . (5.13)

Hence, one coefficient can be written as a combination of the others, and in the end only
four parameters specify the shape dependence of the hard limit of the one-loop correction
to the bispectrum.

Counterterms
Next, we compute the EFT corrections to the one-loop bispectrum and show that their
shape corresponds exactly to the shape functions defined above, with four independent
EFT parameters. Solving the equations of motion in the presence of the first and second
order effective stress terms sources (Eqs. (3.98) and (3.106)), yields additional contributions
(counterterms):

Bctr
1L (kA, kB, kC) =

(
B(2̃11)(kA, kB, kC) + 2 perm.

)
+
(
B(21̃1)(kA, kB, kC) + 5 perm.

)
,

(5.14)
with

B(2̃11)(kA, kB, kC) = 2F̃ (2)(kB,kC)P0(kB)P0(kC) , (5.15a)

B(21̃1)(kA, kB, kC) = 2F (2)(kB,kC)F̃ (1)(kB)P0(kB)P0(kC) . (5.15b)
4In the limit Eq. (3.77b), there is in addition an integration over the absolute value of the momentum q,

yielding a factor 3σ2
d, and the P (31) symmetry factor 3 is included.
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5.1 One-loop correction

The EFT kernels F̃ (1),(2) were given in Eqs. (3.99) and (3.111). Let us first consider the
B2̃11 term, which renormalizes B(411). Using also the definitions of the E and Γ shape
functions in Eqs. (3.109) and (3.110), respectively, one can readily show that

F̃ (2)(k,p) =
3∑

i=1
ϵiEi(k,p) + γ1Γ(k,p) =

5∑
j=1

cjbj(k,p) (5.16)

with

c1 = ϵ1 − ϵ2/3 − ϵ3/6 + 72γ1/77 , c2 = 2ϵ1 − 2ϵ2/3 + 2ϵ3/3 + 179γ1/77 , c3 = γ1/2 ,
c4 = ϵ2 + ϵ3/2 + 68γ1/77 , c5 = 2ϵ2 + 24γ1/77 . (5.17)

The first order EFT kernel is simply F̃ (1) = −c2
sk

2, where cs is the effective sound speed of
the fluid. Thus B(21̃1) is proportional to k2

BF
(2)(kB,kC). Adding the permutation kB ↔ kC ,

we recover the form of f (3), which we found could be written in terms of the basis functions
bj . Therefore, in total, we can write the one-loop counterterm in terms of the basis bj or
equivalently in terms of Ei and Γ,

Bctr
1L (kA, kB, kC) = −2

[ 3∑
i=1

ϵ̂iEi(kB,kC) + γ̂1Γ(kB,kC)
]
P0(kB)P0(kC) + 2 perm. , (5.18)

with four EFT parameters {ϵ̂1, ϵ̂2, ϵ̂3, γ̂1}, related to ϵi, γ1 and c2
s via

ϵ̂1 = ϵ1 − 97
231cs , ϵ̂2 = ϵ2 − 12

77cs , ϵ̂3 = ϵ3 − 68
77cs , γ̂1 = γ1 + cs . (5.19)

Thus, the shape dependence of the EFT correction corresponds exactly to that of the hard
region of the one-loop bispectrum, with four independent parameters. This serves as a
consistency check: the operators in the EFT precisely correct the spurious UV-dependence
of SPT.

We distinguish between two approaches for fitting the EFT parameters to N-body
simulations: the symmetry-based approach and the UV-inspired approach. The same
distinction was also made in Ref. [213]. In the symmetry based approach, all four EFT
parameters at one-loop are fitted independently (in addition to one extra parameter at
two-loop, as we will see below). The parameters could be taken to be {ϵ̂1, ϵ̂2, ϵ̂3, γ̂1}, however
we adopt here the choice of Paper II [45], where instead {ϵ1, ϵ2, ϵ3, γ1} were used as free
parameters after fixing c2

s from calibrations of the one-loop power spectrum to the N-body
simulations utilized in the work.

The other, UV-inspired approach gives a relation between the EFT parameters motivated
by the linear combination in which the corresponding shape functions enter in the hard limit
of SPT. Hence, only the overall amplitude of the EFT correction is fitted. In particular, we
assume that B(2̃11) can be parametrized by a single EFT coefficient γ1, multiplied by the
shape dependence of the hard limit of B(411), i.e. F̃ (2)(k,p) ∝ γ1f

(4)(k,p). This assumption
corresponds to fixing the ϵi parameters as

ϵ1 = 3466
14091γ1 , ϵ2 = 7285

32879γ1 , ϵ3 = 41982
32879γ1 . (5.20)
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5 The bispectrum of large-scale structure

After fixing c2
s from fitting the power spectrum to simulations, the bispectrum at NLO is

therefore described in this approach by one EFT parameter, γ1.
This approach can be made even more restrictive by assuming also a relation between

c2
s and γ1. The hard region of the one-loop correction is proportional to the displacement

dispersion σ2
d, and one can make an ansatz that the EFT corrects the UV in a universal

manner by adjusting its value, i.e. σ2
d 7→ σ2

d + ∆σ2
d . By considering the hard limit of the

one-loop power spectrum (3.77b) and the corresponding counterterm P ctr
1L ∝ c2

sk
2P0(k), we

can identify the shift in σ2
d as ∆σ2

d = 61/210c2
s . Moreover, inserting F̃ (2)(k,p) ∝ γ1f

(4)(k,p)
into Eq. (5.7) and subsequently Eq. (5.6), the normalization of γ1 can be chosen such that
γ1 = c2

s (this choice was in fact adopted in Eq. (5.20) above).
In summary, the calibration cases we will consider at one-loop are

{ϵ1, ϵ2, ϵ3, γ1} one-loop, 4-parameter symmetry based ,
{γ1} one-loop, 1-parameter UV-inspired with ϵi/γ1 fixed ,
∅ one-loop, 0-parameter UV-inspired with ϵi/γ1 fixed and γ1 = c2

s . (5.21)

5.2 EdS-approximation

Before we embark on the discussion of the two-loop correction to the bispectrum, we make
a detour and examine the EdS-approximation at one-loop. As discussed in Section 3.3, this
approximation is valid deep in the matter regime, but yields percent deviations at late times
when Ωm/f

2 differs substantially from one.
In Paper II [45], the one-loop bispectrum was computed using exact, time-dependent

kernels, where the Ωm/f
2 ratio that enters the equations were not approximated by 1

but taken from the Boltzmann solver CLASS. To perform this calculation, the generalized
framework capturing scale- and time-dependence of Section 3.4 was utilized, for a single dark
matter fluid. The initial time was taken to be ηini = −2.12 corresponding to z ≈ 10 (i.e. long
before Ωm/f

2 differs from 1 in ΛCDM, see Fig. 3.3). To evaluate loop integrals, numerical
integration with CUBA was used, with analogous methods to accelerate the evaluation of the
loop integrands as described in Section 3.5.

Fig. 5.3 displays the relative difference between contributions to the bispectrum computed
with EdS-SPT kernels and exact, time-dependent ones. We show the results for three distinct
shapes: equilateral (kA = kB = kC = k), squeezed (kA = kB = k, kC = 0.02h Mpc−1) and
isosceles (kA = kB = 2kC = k). For all shapes, there is an approximate, k-independent
0.5 % relative difference for the tree-level bispectrum. The F (2) kernel that enters the
tree-level bispectrum is not integrated over, therefore this mistake can relatively easily be
corrected for by promoting F (2) to the exact kernel. Moreover, in an analysis of galaxy
clustering data, this shift would be degenerate with the primordial amplitude of fluctuations
as well as linear bias. The departure from EdS is more complicated to capture exactly at
one-loop; its effect relative to the tree-level bispectrum exceeds 1 % at k ≃ 0.1h Mpc−1

for the equilateral shape and k ≃ 0.15h Mpc−1 for the squeezed and isosceles shapes as is
apparent from Fig. 5.3. To assess to which extent this discrepancy can be absorbed by the
counterterms in the EFT, the green and blue dotted lines show the one-loop bispectrum
counterterm fitted to the exact–EdS difference, using the symmetry based (4 parameter)
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Figure 5.3: Relative difference between the tree (gray) and one-loop (black) bispectrum
computed with exact, time-dependent kernels and EdS-SPT kernels for three
shapes: equilateral, squeezed and isosceles. The difference is normalized to the
tree-level bispectrum in EdS. The dotted lines show the one-loop counterterm
fitted to the difference, using the symmetry based ansatz (green) as well as the
UV-inspired approach (blue). Reprinted from Paper II [45].

and UV-inspired (1 parameter) approaches, respectively. In the symmetry based case, the
difference can be matched to good agreement up to k ≃ 0.15h Mpc−1, independent of
shape, while the UV-inspired approach can capture the difference relatively well for the
squeezed and isosceles shapes, but not for the equilateral. We note that in latter approach,
the measured shift in γ1 due to the departure from EdS is approximately 0.2 Mpc2/h2,
consistent with the findings of Ref. [213] as well as our conclusion in Section 4.5.

5.3 Two-loop correction
In this section we examine the two-loop correction and how we can cure its UV-sensitivity
in the EFT. It is given by

B2L = B(611)
s +B(521)

s +B(422)
s +B(431)

s +B(332)
s , (5.22)

where each term contains multiple topologically distict contributions which we label with
capital roman indices as well as permutations of external wavenumbers:

B(611)
s = B(611) + 2 perm. ,

B(521)
s =

(
B(521−I) +B(521−II)

)
+ 5 perm. ,

B(431)
s =

(
B(431−I) +B(431−II) +B(431−III)

)
+ 5 perm. ,

B(332)
s =

[(
B(332−I) +B(332−II)

)
+ 2 perm.

]
+
[
B(332−III) + 5 perm.

]
,

B(422)
s =

(
B(422−I) +B(422−II)

)
+ 2 perm. (5.23)

Hence, there are in total eleven diagrams contributing. We show their diagrammatic
representation in Fig. A.1 and the corresponding mathematical expressions in Eq. A.1. Each
diagram consists of an integration over both loop momenta q1 and q2, with an integrand
containing three kernels (whose order sum to 8, e.g. F (6)F (1)F (1)), two linear power spectra
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Figure 5.4: The linear (gray), NLO (black) and NNLO (blue) bispectrum in SPT as a
function of wavenumber. We show three shapes: equilateral, squeezed and
isosceles. Figure taken from Paper II [45].

evaluated at q1 and q2 as well as two additional power spectra evaluated at combinations of
external and loop momenta depending on the diagram.

The linear, NLO and NNLO bispectrum in SPT, i.e. without EFT corrections, are
displayed in Fig. 5.4 for the three shapes. The loop corrections are considerably sensitive to
the UV even on large scales, therefore there are sizable deviations from the linear prediction
in the log–log plot even at k ≃ 0.1h Mpc−1. These spurious contributions will be corrected
for by the EFT.

Let us examine the UV-sensitivity of the two-loop correction. We saw in Section 3.6 and
Section 4.4 that it was useful to distinguish two regions comprising the UV limit of the
two-loop power spectrum. We make the same distinction here and consider the double-hard
limit, q1, q2 → ∞, and single-hard limit, q1 ∼ k, q2 → ∞, separately.

Double-hard limit

In a similar manner as for the one-loop correction, we start the discussion by estimating
the parametric scaling of the different contributions in the double-hard limit. Consider
kA ∼ kB ∼ kC ∼ k and q1 ∼ q2 ∼ q with q ≫ k. Using the property F (n) ∝ k2/q2 in this
limit and the explicit expressions in Eq. (A.1), we have schematically

B(611),hh ∼ k2P0(kB)P0(kC)
∫

q1,q2
P0(q1)P0(q2)/q2 ,

B(521−I),hh ∼ k4P0(kB)
∫

q1,q2
P0(q1)[P0(q2)]2/q4 ,

B(521−II),hh ∼ k2P0(kB)P0(kC)
∫

q1,q2
P0(q1)P0(q2)/q2 ,

B(431−I),hh ∼ k4P0(kB)
∫

q1,q2
P0(q1)[P0(q2)]2/q4 ,

B(431−II),hh ∼ k4P0(kB)P0(kC)
∫

q1
P0(q1)/q2

1

∫
q2
P0(q2)/q2

2 ,

B(431−III),hh ∼ k4P0(kB)
∫

q1,q2
P0(q1)P0(q2)P0(|q1 + q2|)/q4 ,
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5.3 Two-loop correction

B(332−I),hh ∼ k6
∫

q1,q2
[P0(q1)]2P0(q2)P0(|q1 + q2|)/q6 ,

B(332−II),hh ∼ k4P0(kB)P0(kC)
∫

q1
P0(q1)/q2

1

∫
q2
P0(q2)/q2

2 ,

B(332−III),hh ∼ k6P0(kB)
∫

q1
P0(q1)/q2

1

∫
q2

[P0(q2)]2/q4
2 ,

B(422−I),hh ∼ k6
∫

q1,q2
P0(q1)[P0(q2)]3/q6 ,

B(422−II),hh ∼ k6
∫

q1,q2
[P0(q1)]2[P0(q2)]2/q6 . (5.24)

The leading UV-sensitivity comes from the diagrams B(611) and B(521−II), corresponding
to propagator corrections and containing each a factor k2/q2. The three diagrams B(332−I),
B(422−I) and B(422−II) are pure stochastic contributions in the double-hard limit, suppressed
by k6/q6. B(322−II) is also proportional to k6, being a combination of P (31)(kB) and a
stochastic connecting loop, see Fig. A.1. Moreover, the B(431−I) and B(322−II) diagrams
are “propagator squared” terms with power k4/q4. We discuss their contributions at the
end of this section. The remaining diagrams are crosses of stochastic contributions and
propagator corrections, proportional to k4/q4. These are B(521−I), B(431−I) and B(431−III).
Lastly, we note that the leading B(611) and B(521−II) limits are equivalent to that of P (51)

(cf. Eq. (3.112)), and in fact B(521−II) is exactly proportional to P (51)(kA).
In accordance with the gradient power counting so far, we neglect all UV-contributions

but the leading B(611) and B(521−II) ones. To obtain the precise shape dependence as well
as the dependence on the loop momenta in the double-hard limit, we need the hard limits
of the F (5) and F (6) kernels (with the appropriate arguments). The first limit is known
from analyses of the power spectrum [217, 252, 254] and the second limit was derived for
the first time in Paper II [45]: the results integrated over angles are

∫ dΩq1

4π
dΩq2

4π F (5)(k,q1,−q1,q2,−q2) −−−−−→
k≪q1,q2

− 11191
6449625

k2

q1q2
S1

(
q1
q2

)
, (5.25a)∫ dΩq1

4π
dΩq2

4π F (6)(k1,k2,q1,−q1,q2,−q2)

−−−−−→
k≪q1,q2

1
q1q2

[
f (6,1)(k1,k2)S1

(
q1
q2

)
+ f (6,2)(k1,k2)S2

(
q1
q2

)]
. (5.25b)

The function S1(r) was defined in Eq. (3.114), and the new S2 function will be defined
shortly. In Eq. (5.25b), the double-hard limit was factorized into shape functions f (6,1) and
f (6,2) and the S1,2 functions capturing the dependence on the hard loop momenta. The
shape functions can be expressed in the bj basis introduced in Eq. (5.11), or equivalently in
terms of the EFT operator shapes Ei and Γ (defined in Eqs. (3.109) and (3.110)). We write
down the corresponding coefficients in Tab. A.1. Crucially, neither of f (6,1) and f (6,2) are
proportional to f (4), i.e. they comprise a different linear combination of the basis functions.
This implies that the UV-inspired approach cannot naively be extended to two-loop, as we
argue in detail below.
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The second function describing the dependence on the hard loop momenta reads

S2(r) = − 1
512r6

[
4r(1 + r2)(105 − 340r2 + 406r4 − 340r6 + 105r8)

+ 30(r2 − 1)4(7 + 10r2 + 7r4) ln
( |1 − r|

1 + r

)]
, (5.26)

with r = q1/q2. Given the limits of F (5) and F (6), we can write down the precise shape-
dependence of the leading contributions to the double-hard limit,

B(611),hh(kA, kB, kC) = 90
[
f (6,1)(kB,kC)s1(Λ) + f (6,2)(kB,kC)s2(Λ)

]
P0(kB)P0(kC)

+ 2 perm. , (5.27a)

B(521−II),hh(kA, kB, kC) = 30
[
− 11191

6449625f
(3)(kB,kC)s1(Λ)

]
P0(kB)P0(kC) + 2 perm. ,

(5.27b)

where we included a factor 2 from the trivial permutation kB ↔ kC in the second equation,
such that the remaining permutations of the B(521−II),hh term are only the three cyclic ones
(cf. Eq. (5.23)). The numbers s1,2(Λ) denote the integrals over the S1,2 functions,

si(Λ) = (4π)2
∫ Λ

dq1 q1P0(q1)
∫ Λ

dq2 q2P0(q2)Si(q1/q2) , (5.28)

capturing the cutoff-dependence of the double-hard limit. Evaluating them for the cosmology
considered in this chapter with Λ = 0.6h Mpc−1 yields s1 ≃ 52.51 Mpc2/h2 and s2 ≃
29.55 Mpc2/h2 [45].

In total, the double-hard limit of the bispectrum can be factorized at leading power in
gradients as

Bhh
2L(kA, kB, kC)) = bhh

2L,1(kA, kB, kC)s1(Λ) + bhh
2L,2(kA, kB, kC)s2(Λ) , (5.29)

in analogy to Eq. (5.6) for the one-loop bispectrum. The hard limits are given by

bhh
2L,1(kA, kB, kC) =

[
90f (6,1)(kB,kC) − 30 11191

6449625f
(3)(kB,kC)

]
P0(kB)P0(kC)

+ 2 perm. , (5.30a)

bhh
2L,2(kA, kB, kC) =

[
90f (6,2)(kB,kC)

]
P0(kB)P0(kC) + 2 perm. (5.30b)

Hence, given that all three shape functions f (3), f (6,1) and f (6,2) are linear combinations
of the basis shapes bj , the two-loop double-hard limit can be renormalized by the EFT
operators Ei and Γ that renormalized the one-loop.

This result is akin to the power spectrum, where the double-hard limit of the two-loop
correction could be renormalized by the same k2P0 counterterm as the one-loop correction.
However, in the bispectrum case, perhaps not too surprisingly, the linear combination of
EFT operators needed to absorb the UV-dependence of the one-loop correction is not the
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Figure 5.5: Double-hard limit of two-loop correction to the bispectrum divided by the
hard-limit of the one-loop correction. Left: Ratio of the propagator corrections
B(611) and B(411). Right: Ratio of the full two-loop and one-loop bispectra.
One external wavenumber is fixed to kA = k1 = 0.1h Mpc−1 and all graphs are
normalized to the value in the equilateral configuration with k1/k2 = 1 and
µ = 0.5, where µ is the cosine of the angle between the external wavenumbers.
Reprinted from Paper II [45].

same as for the two-loop correction. This is confirmed quantitatively by Fig. 5.5, displaying
the ratio of the double-hard limit of the two-loop to the hard limit of the one-loop. Clearly,
the shape-dependence of the two limits differ, corresponding to different combinations of the
basis shape functions. Therefore, the UV-inspired ansatz introduced in Section 5.1, assuming
that the UV-sensitivity can be captured by one overall parameter controlling the amplitude
of the counterterm, cannot be naively extended to two loops. In the renormalization scheme
we adopt however, it may be applied for the one-loop part of the EFT coefficients, with a
prescription for the single-hard limit, as we discuss below. The symmetry based approach
is on the other hand immediately suited perfectly to correct for both the hard region of the
one-loop and simultaneously the double-hard region of the two-loop correction.

We will adopt a similar renormalization scheme for the double-hard limit as we used
for the corresponding limit of the power spectrum in Section 4.4. In particular, we can
split the ei and γ1 EFT parameters into one- and two-loop contributions. The two-loop
contributions can be chosen to exactly cancel the double-hard region, while the one-loop
part captures the actual effect of small scales on the bispectrum as well as correcting for
the spurious hard region of the one-loop integral. In practice, following Ref. [252] and the
discussion in Section 4.4, this choice amounts to subtracting the double-hard contribution
from the two-loop correction,

Bsub
2L (kA, kB, kC ; Λ) ≡ B2L(kA, kB, kC ; Λ) −Bhh

2L(kA, kB, kC ; Λ) , (5.31)

where Bhh
2L was given in Eq. (5.29).

Finally, we remark that the coefficients of f (6,2) when written in the linear combination
of the bj or the Ei and Γ basis functions are much smaller than the ones for f (6,2), such
that in practice bhh

2L,2 can be neglected to good approximation [45]. It will nevertheless be
included here for completeness.
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5 The bispectrum of large-scale structure

Single-hard limit
To obtain a cutoff-independent prediction for the bispectrum at two-loop, we also need
to renormalize the single-hard limit. In principle, this could be done by writing down
the effective stress term up to forth order in fields, and solve the equations of motion in
its presence, yielding one-loop diagrams with insertions of EFT operators. Even in the
EdS case, this is quite complex however, and we opt for correcting the single-hard region
in an universal manner with one extra parameter, extending the approach described in
Section 3.6. The fact that we find this ansatz to work well suggests that there is in fact a
large degeneracy between the effects of the full set of EFT operators allowed by symmetries
on the two-loop bispectrum. We will refer to this approach also as symmetry based, even
though it does not include all EFT operators allowed by symmetries.

Extending the single-hard prescription that has been applied to the power spectrum to
the bispectrum is relatively straightforward, and we describe it in detail next. The steps are
almost completely analogous to the derivation of the single-hard counterterm in Section 4.4.
Given the two-loop integrand b2L implicitly defined as

B2L(k, η) =
∫ Λ

dq1 q
2
1P0(q1)

∫ Λ
dq2 q

2
2P0(q2)

∫
dΩq1 dΩq2 b2L(kA,kB,kC ,q1,q2; η) ,

(5.32)
we can factorize the integral in the single-hard limit (assuming q1 hard and q2 of the size of
the external momenta)

Bq1→∞
2L (kA, kB, kC) =

[∫ Λ
dq2 q

2
2P0(q2)

∫ dΩq1

4π

(
lim

q1→∞
q2

1b2L(kA,kB,kC ,q1,q2)
)]

σ2
d

= bh
2L(kA, kB, kC)σ2

d . (5.33)

This factorization was possible because in the single-hard limit, the leading contribution
comes from diagrams with a hard daisy loop, containing a kernel F (n)(. . . ,q1,−q1, . . . ) and
scaling as 1/q2

1 in this limit. Assuming that the single-hard region can be renormalized
by a change of the displacement dispersion, i.e. σ2

d(Λ) 7→ σ2
d(Λ) + Nγ2(Λ), we obtain a

counterterm
2 bh

2L(kA, kB, kC) Nγ2 , (5.34)
where the factor 2 takes into account the equivalent contribution where q2 is hard. We
define the value of N below. While the expression (5.34) could immediately be added to the
bispectrum, it covers a double-hard region (q2 ≫ k in Eq. (5.33)), and since we adopt the
renormalization choice where this limit is completely removed from the two-loop correction,
we use the subtracted single-hard quantity

b̄h
2L = bh

2L − bhh
2L , (5.35)

in the counterterm (5.34). Here, the double-hard limit is given by

bhh
2L(kA, kB, kC)) = bhh

2L,1(kA, kB, kC)sh
1(Λ) + bhh

2L,2(kA, kB, kC)sh
2(Λ) , (5.36)

with bh
2L,1,2 being the limits derived above in Eq. (5.30). The sh

i functions are defined as

si(Λ) = 4π lim
q1→∞

∫ Λ
dq2 dΩq1

q2
q1
Si(q1/q2)P0(q2) , (5.37)
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Figure 5.6: The two-loop correction before (blue) and after renormalization (orange). The
linear (gray) and unrenormalized one-loop (black) contributions are shown for
comparison. We also show the double-hard limit, which on large scales yields
the dominant contribution to the two-loop correction. The EFT parameter is
set to γ2 = 1 Mpc2/h2 for simplicity. Figure taken from Paper II [45].

and can be evaluated using the expressions for S1,2 in Eqs. (3.114) and (5.26):

sh
1(Λ) = 4π × 120424

78337

∫ Λ
dq2 q

2
2P0(q2) , (5.38a)

sh
2(Λ) = 4π lim

q1→∞
q2

1

∫ Λ
dq2

64
21
q4

2
q4

1
P0(q2) = 0 . (5.38b)

In total, the additional counterterm we add at two-loop is

Bctr
2L (kA, kB, kC ; Λ) = 2Nγ2(Λ) b̄h

2L(kA, kB, kC) . (5.39)

In practice, the quantities b2L and its double-hard contribution was computed numerically
in Paper II [45]: using the same algorithm that computes the two-loop integral, b2L can be
obtained by fixing the hard loop momentum to a large value q1 ≫ Λ. While in the case
of massive neutrinos in Chapter 4, some care needed to be taken in fixing q1 to evaluate
the single-hard limit due to the presence of the freestreaming scale as well as numerical
instabilities if q1 was too large, this is to much less a degree an issue for EdS-SPT kernels.

In Fig. 5.6, we display the renormalized two-loop correction for the three shapes. The
linear, one-loop and two-loop contributions in SPT are also shown for comparison, as well as
the double-hard limit of the two-loop. For wavenumbers k ≲ 0.1h Mpc−1, the double-hard
region represent almost the complete two-loop correction, evidencing that the two-loop is
dominated by spurious contributions from the UV.

Cutoff-independence

Having seen that the double-hard region of the two-loop can be corrected for by the
counterterm appearing already at one-loop, and implemented a prescription for renormalizing
the single-hard contribution, we can present the following cutoff-independent prediction for
the bispectrum at NNLO

Bren
NNLO(kA, kB, kC) = Btree(kA, kB, kC) +Bren

1L (kA, kB, kC) +Bren
2L (kA, kB, kC) , (5.40)
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5 The bispectrum of large-scale structure

where

Bren
1L (kA, kB, kC) = B1L(kA, kB, kC ; Λ) +Bctr

1L (kA, kB, kC ; Λ) , (5.41a)
Bren

2L (kA, kB, kC) = B̄2L(kA, kB, kC ; Λ) +Bctr
2L (kA, kB, kC ; Λ) , (5.41b)

with the bare one- and subtracted two-loop corrections being given by Eqs. (5.2) and (5.31)
and the counterterms defined in Eqs. (5.14) and (5.39). Before we compare and calibrate it
to N-body simulations, let us demonstrate the cutoff-independence explicitly.

Given our choice of removing the degenerate double-hard contributions from the renor-
malized two-loop correction, the RGE dBren

NNLO/dΛ = 0 can be solved independently for the
one- and two-loop terms. After subtracting the double-hard limit, the cutoff-dependence
comes from the single-hard limit, which we demand is canceled by the counterterm:

0 = d
dΛ

[
B̄h

2L(kA, kB, kC ; Λ) +Bctr
2L (kA, kB, kC ; Λ)

]
= 2b̄h

2L(kA, kB, kC) d
dΛ

[
σ2

d(Λ) + Nγ2(Λ)
]
, (5.42)

reflecting the renormalization ansatz that the UV is corrected for by a shift in σ2
d. We

choose N = 1/cEdS = 210/61.
Since the we adopt a renormalization scheme in which the double-hard region of the

two-loop correction is exactly removed by the two-loop part of the EFT coefficients, the
UV-inspired approach may still be applied to the one-loop part (which in the end are the ones
fitted for). One still needs a prescription for the single-hard correction, and following the
simplistic spirit of this approach, with 0 or 1 free parameter, one can make the assumption
that γ2 = γ1, leaving only γ1 to be fitted for or fixed by measurements of the effective sound
speed c2

s from the power spectrum. This assumption is appropriate for N = 210/61 and if
γ1 and γ2 correct for the displacement dispersion σ2

d in an equal manner.
The cutoff-dependence of the two-loop correction before and after renormalization is

examined quantitatively in Fig. 5.7. It displays the bare, subtracted and renormalized
two-loop for two different cutoffs Λ = 0.6 and 10h Mpc−1, as well as the counterterm with
the same cutoffs. The bare correction exhibit a strong cutoff-dependence across a large range
of scales, as illustrated by the blue shaded region. After removing the double-hard limit,
the cutoff-dependence is significantly reduced. The residual dependence on Λ should be
absorbed by the counterterm, and indeed we see that the renormalized two-loop correction
(orange) has an insignificant dependence on the cutoff for small k. This result is independent
of the free parameter γ2. For larger k, we see that also the renormalized result exhibit a
certain cutoff-dependence, due to the neglected, subleading power corrections O(k4/k4

NL)
becoming relevant.

Subleading UV contributions

We end the section by discussing the subleading k4 contributions to the double-hard limit,
which was neglected so far. As reviewed above, the k4 terms B(321−I) and B(222) at one-loop
correspond in the hard limit to two short wavelength modes with almost opposite and equal
wavenumber that combine to a long wavelength mode. Such a UV-dependence is renormalized
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Figure 5.7: Cutoff-dependence of the two-loop correction before and after renormalization
for an equilateral, squeezed and isosceles shape. The bare (blue), subtracted
(magenta) and renormalized (orange) two-loop corrections as well as the coun-
terterm Bctr

2L (red) are shown for two cutoffs Λ = 0.6 (solid lines) and 10h Mpc−1

(dashed lines). The shaded regions indicate the difference between the cut-
offs, i.e. the cutoff-dependence. For the counterterm and renormalized graph,
γ2 = 1 Mpc2/h2 is used. Reprinted from Paper II [45].

by the stochastic contribution to the effective stress tensor (3.96). However, it enters with
an integral

∫
q P0(q)/q4 (see Eq. (5.4)) which is very suppressed in a ΛCDM cosmology, and

the stochastic EFT can in practice be neglected to good approximation [298, 299].
At two-loop, the only k4 terms that are not noise-terms, i.e. that do not contain pure

stochastic parts, are B(431−II) and B(332−II). They can be written as a products of one-loop
bi- and power spectra:

B(431−II)(kA, kB, kC) = B(411)(kA, kB, kC) × P (31)(kB)
P0(kB) , (5.43a)

B(332−II)(kA, kB, kC) = B(211)(kA, kB, kC) × P (31)(kA)
P0(kA)

P (31)(kB)
P0(kB) , (5.43b)

corresponding to “propagator squared” corrections. The contribution from the double-hard
region to these diagrams is simply given by the hard limits of B(411) (Eq. (5.7)) and P (13)

(Eq. (3.77b)). We show the double-hard limits in Fig. 5.8. They are very suppressed
compared to the one- and two-loop counterterms up to k ≃ 0.15h Mpc−1, and we can safely
neglect them in the analysis.

5.4 Numerical results
Finally, having derived a renormalized bispectrum at NNLO, we can calibrate the EFT
parameters to N-body simulations and determine how far the wavenumber reach of the
perturbative prediction increases when adding the two-loop correction.

The simulations used to compare to are 14 realizations computed with the Gadget-2
code [300], with 10243 particles in a cubic box of size (1500Mpc/h)3. To beat cosmic
variance and avoid features such as seen in Chapter 4 in the comparison of theory and
simulation on scales close to the box size, we use the realization based perturbation method
gridPT [301–303] to evaluate the theory. This means that the perturbation theory is
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Figure 5.8: Subleading UV-dependence of the two-loop bispectrum: we show the “propagator
squared” double-hard contributions B(431−II) and B(332−II), as well as the one-
and two-loop counterterms for the equilateral configuration. Reprinted from
Paper II [45].

evaluated on the very same modes that were used as seeds of the simulation. The linear,
one-loop and subtracted two-loop contributions can be computed with the gridPT method,
while the subtracted single-hard limit is more complex to evaluate this way, hence we used
Monte Carlo integration (with the linear power spectrum as input, i.e. without specifying
to a realization) to obtain it. In Paper II [45], a comparison between the loop corrections
computed with Monte Carlo integration and gridPT was done, finding no differences that
exceed the uncertainty due to binning effects. We use a cutoff Λ = 0.3h Mpc−1 unless
otherwise specified, although it should be stressed that the EFT predictions are cutoff-
independent, up to numerical uncertainty and small, subleading contributions from the
UV.

Both the simulation and gridPT work at the field level on particular realizations, hence
the wavenumbers must be divided into bins to estimate the bispectrum. We use ten linear
bins, and employ an FFT based estimator for the bispectrum measurement [213, 250]. As
discussed in Ref. [213] (see also Ref. [176]), there can be small time integration errors in the
Gadget simulations that yield a slight mistake in the linear growth. While the discrepancy
would typically be unimportant compared to cosmic variance, it matters for the realization
based approach. To remedy this, we add growth factor corrections ∆Di at first and second
order as free parameters in the fits, thus

δ(x, τ) = (1 + ∆D1)δ(1)(x, τ) + (1 + ∆D2)δ(2)(x, τ) + δ(3)(x, τ) + · · · . (5.44)

The EFT parameters and the growth corrections ∆Di are determined by minimizing the
following χ2,

χ2 =
kmax∑

k=kmin

[
Bdata(k) −Bren

NLO/NNLO(kA, kB, kC ; ∆D1,2, ϵi, γ1,2)
]2

[∆Bdata(k)]2
, (5.45)
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where the renormalized bispectrum at NLO and NNLO were given in Eq. (5.41). At
kmax = 0.1(0.2)h Mpc−1, we have 65(369) triangles contributing to the sum above. In
addition to the cases listed in Eq. (5.21), we consider the following calibration approaches
at two-loop,

{ϵ1, ϵ2, ϵ3, γ1, γ2} two-loop, 5-parameter symmetry based ,
{γ1} two-loop, 1-parameter UV-inspired with ϵi/γ1 fixed and γ2 = γ1 ,

∅ two-loop, 0-parameter UV-inspired with ϵi/γ1 fixed and γ2 = γ1 = c2
s .

(5.46)

It turns out that there is a large degeneracy between the ϵi contributions, and we find that
fixing ϵ1 = 0 has insignificant impacts on the results. This simplification is adopted below.

The difference between the perturbative prediction for the bispectrum and the N-body
result is shown in Fig. 5.9, using the symmetry based approach with four free parameters
at two-loop (ϵ1 = 0), and pivot scale kmax = 0.115h Mpc−1. The unrenormalized SPT
results only agree well with N-body for the lowest k-bins, with deviations of a few percent at
k = 0.05h Mpc−1, depending on the shape. Nevertheless, the agreement is improved when
adding the two-loop correction, especially in the squeezed limit where one of the external
wavenumbers are always linear. In the effective theory, the range of wavenumbers with
percent agreement is greatly extended. Moreover, the deviations are broadly consistent with
theoretical expectations from the missing higher order corrections (gray shaded regions) [288].
As expected, adding the renormalized two-loop bispectrum clearly extends the reach of the
perturbation theory, and in addition the agreement is better also on large scales, where the
numerical uncertainties are small.

We saw in Section 4.5 that one is easily subject to overfitting when calibrating the
EFT prediction to N-body data. In this case however, using the realization based gridPT
method, there is essentially no N-body uncertainty on large scales, and thus the fit is
strongly penalized for deviations in this region where the theory prediction is most accurate.
Therefore, a relatively low pivot scale kmax = 0.115h Mpc−1 can be used, and one can
reasonably assume there is only a limited degree of overfitting, in particular in the two-loop
case.

Fig. 5.10 shows the χ2 over degrees of freedom from the fits. In addition to the symmetry
based approach (labeled EFT in the legend), the figure also include points corresponding
to the UV-inspired approach—we discuss that case shortly. The NLO prediction has
χ2/d.o.f < 1 up to kmax ≃ 0.08h Mpc−1, in agreement with previous analyses [213]. The
range of wavenumbers with 1σ agreement is extended to kmax0.15h Mpc−1 when the two-
loop correction is added. As a check, equivalent results were found using a different cutoff
Λ = 0.6h Mpc−1 in Paper II [45].

Next, we investigate the best-fit EFT parameters in the symmetry based approach. They
are displayed as a function of the pivot scale kmax in Fig. 5.11. The γ1-parameter exhibit
a certain running at one-loop, which is greatly reduced after adding the two-loop. This
indicates that the NLO fit is attempting to capture missing higher order pieces, while at
NNLO the value is stable over a larger range of wavenumbers, allowing for an accurate
calibration. Notice that this parameter is most excellently constrained by the fit, with the
smallest error bars.
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Figure 5.9: Difference between the NLO and NNLO perturbative results and N-body results
for the bispectrum, both in the EFT and SPT, normalized to the tree-level
bispectrum. The upper left, upper right and lower panel correspond to the
equilateral, squeezed (∆k = 0.02h Mpc−1) and isosceles shapes, respectively.
The N-body uncertainty is displayed with red shading, while the tree-level, one-
and two-loop expected theoretical uncertainty is indicated with gray shading,
from light to dark, respectively. The pivot scale is kmax = 0.115h Mpc−1 as
indicated by the vertical gray line. Reprinted from Paper II [45].

The EFT parameter correcting for the single-hard limit of the two-loop correction, γ2, is
shown in the uppermost right panel. Since it multiplies the subtracted single-hard limit,
which by definition vanishes for k → 0 (corresponding to the double-hard limit), it cannot be
reliably determined for a low pivot scale. For kmax ≳ 0.12h Mpc−1 however, the subtracted
single-hard factor in the counterterm becomes sizable, and we see that the measured value of
γ2 is rather stable beyond this point. This dependence on the pivot scale is analogous to the
EFT parameter γ2 we introduced for the two-loop power spectrum with massive neutrinos
measured in Section 4.5, which could only be reliably calibrated above kmax ≃ 0.15h Mpc−1.
Due to the enhanced control over uncertainties on large scales with the gridPT method,
the corresponding bispectrum parameter can be accurately constrained for slightly smaller
wavenumbers.

The gray horizontal lines in Fig. 5.11 indicate the corresponding value of the coefficient in
the UV-inspired approach, in which the EFT is assumed to correct the UV-sensitivity of the
perturbative prediction in a universal manner by a shift in the displacement dispersion σ2

d.
For γ1 and γ2, the measured value in the two-loop, symmetry based case is not too far from
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Figure 5.10: Reduced χ2 for the different calibration approaches as a function of the pivot
scale kmax, see Eqs. (5.21) and (5.46). Figure taken from Paper II [45].

this line, suggesting that the dominant contribution to the EFT correction corresponds to
such a universal shift.

The last two parameters in the symmetry based approach are measured in the lower
panels of Fig. 5.11. On large scales, the errorbars are large, indicating that the contributions
from the corresponding EFT operators are small and the parameters cannot be faithfully
determined. On the other hand, for small scales kmax ≳ 0.2h Mpc−1, we observe a running
as a function of the pivot scale, signaling that higher order corrections become important.
There are also considerable degeneracies between ϵ2 and ϵ3, as well as to some degree with
γ1 and γ2, such that precise measurements of the ϵ-parameters are challenging. In the
intermediate region kmax ≈ 0.15h Mpc−1 however, the error bars are sufficiently small and
the values are reasonably stable against changes of the pivot scale, in particular at two-loop,
allowing for a fairly precise calibration.

UV-inspired approach
Lastly, we consider the UV-inspired approach and gauge in how far we can match the
bispectrum from simulations using only one EFT parameter, controlling the overall amplitude
of the counterterms. This method cannot be naively extended to two-loop, because of the
different linear combinations of basis functions that comprise the hard limit of the one-loop
and double-hard limit of the two-loop corrections. Nevertheless, after the double-hard limit
is subtracted, it can be applied to the one-loop part of the EFT coefficients. Furthermore,
we can extend it to capture the single-hard correction as well by fixing γ2 = γ1, as described
above.

The perturbative results for the bispectrum in the equilateral, squeezed and isosceles
configurations are displayed in Fig. 5.12. The symmetry based results are shown for
comparison, labeled EFT-1/2l. Both at NLO and NNLO and using with 0/1 free parameters,
the UV-inspired results are not as accurate as the corresponding symmetry based results.
Moreover, the deviations start on relatively large scales and exceed the expected theoretical
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Figure 5.11: EFT parameters measured from calibrating the two-loop prediction in the
symmetry based approach to the N-body bispectrum. The panels show γ1
(upper left), γ2 (upper right), ϵ2 (lower left) and ϵ3 (lower right). (ϵ1 is fixed
to zero as discussed in the text.) The thin gray lines indicate the value the
parameters would be fixed to in the UV-inspired approach. Reprinted from
Paper II [45].

error based on missing higher order corrections. The decreased accuracy in the UV-inspired
approach is also reflected in a much larger χ2/d.o.f. even at small wavenumbers, as shown
in Fig. 5.10. Nevertheless, comparing to Fig. 5.9, the UV-inspired results improve compared
to the SPT predictions.

The measured γ1 parameter is plotted in Fig. 5.12. There is a clear drift, especially
in the two-loop case, as compared to the symmetry based approach (cf. upper left panel
of Fig. 5.11). For illustration, there green diamonds correspond to a 2-parameter UV-
inspired approach where the γ1,2 parameters are fitted independently. Up to the pivot
scale kmax = 0.15h Mpc−1, where the NNLO prediction is accurate (in the symmetry based
approach), the measured parameter differs little between the 1- and 2-parameter UV-inspired
ansatz, implying that the improvement is not too large in the second case and we therefore
do not investigate it in more detail.

Summary We have studied the bispectrum at NNLO in an EFT framework. After showing
that the double-hard region of the two-loop correction can be renormalized by the same
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Figure 5.12: Same as Fig. 5.9, however displaying how the various calibration approaches
match the N-body data for the three different shapes. The lower right panel
shows the measured EFT parameter γ1 in the UV-inspired 1-parameter ap-
proach. In that panel, the gray line indicate the 0-parameter result, γ1 = c2

s ,
with c2

s fitted from the power spectrum. Furthermore, the green diamonds
illustrate γ1 in a 2-parameter extension of the UV-inspired approach where γ1
and γ2 are fitted independently. Figure reprinted from Paper II [45].

counterterms that correct the hard region of the one-loop correction, we employed a simplified
treatment of the two-loop single-hard limit, introducing one additional EFT parameter. We
compared the theory prediction to N-body simulations, using a realization based perturbative
approach to beat cosmic variance. In accordance with theoretical expectations based on
missing loop-corrections, we found that the one-loop has 1σ agreement with simulations
up to k ≃ 0.08h Mpc−1. Adding the two-loop extends the wavenumber range with percent
agreement to k ≃ 0.15h Mpc−1. Furthermore, we assessed the impact of exact, time-
dependent dynamics on the one-loop bispectrum, finding that the effect is largely degenerate
with the counterterm up to k ≃ 0.15h Mpc−1, independent of shape.
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6 Non-standard neutrino interactions in
cosmology

So far, we assumed that neutrinos have SM interactions. Then, in the standard picture
described in Chapter 4, the neutrinos decoupled from the plasma at T ≈ 1 MeV in the early
Universe and have been freestreaming ever since. They are therefore the only species that
can acquire a sizable anisotropic stress in the early Universe. Given that neutrinos comprise
40 % of the total energy budget during radiation domination, the neutrino anisotropic stress
in turn yield a large effect on the metric potentials via Einstein’s equations, leading to
observable impacts on cosmological probes. In particular, the metric potentials source the
CMB anisotropies, and the freestreaming nature of neutrinos therefore have two effects on
the CMB [30, 42, 43]: (i) a dampening of the acoustic peaks due to the neutrinos being
distributed more smoothly than the photons and (ii) a shift of the peaks to larger scales
due to the photon perturbations—traveling at the speed of sound of the baryon-photon
fluid—are dragged along the ultra-relativistic neutrino perturbations. The second effect
can not be mimicked by other cosmological parameters given adiabatic perturbations in
ΛCDM [42].

Current CMB measurements favor three freestreaming neutrino species in accordance
with the prediction of the CνB within the SM [6–8, 304, 305]. Nevertheless, there are
many beyond SM models that feature non-standard neutrino interactions that influence the
neutrino freestreaming in the early Universe. Thus, CMB measurements are a fruitful way
of testing and constraining such models given its indirect sensitivity to neutrino properties.
In this chapter, we present the analysis of Paper IV [47]: we take a global perspective and
study the redshift range in which neutrinos are allowed to interact given current cosmological
data. Using a generic set of interaction rates that model neutrino interactions, we perform
a full Planck 2018 CMB analysis and find a window of redshifts, the freestreaming window,
where neutrino interactions are disfavored. In addition, within this window, we determine
the allowed amplitude of the interaction rate. The interaction rates and the methodology
are described in Section 6.1 while the results are presented in Section 6.2. Moreover,
we investigate to which extent the Planck constraints can be improved in the future by
performing a forecast analysis with CMB-S4 in Section 6.3. Altogether, the findings of
Paper IV can serve as a guide for particle physics model builders, informing about which
models and what regions of parameter space are allowed by cosmological constraints.

As we elaborate below, numerous previous works in the literature have studied cosmological
implications in particular scenarios of neutrino interactions. Paper IV goes beyond earlier
works by being, to the best of our knowledge, the first to address the freestreaming window
in a model-independent manner. Moreover, it investigates the sensitivity of CMB Stage IV
experiments as well as the sensitivity of LSS to probe uncharted regions of parameter space
in models with interacting neutrinos, for the first time. The latter will not be included in
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Figure 6.1: Summary of four neutrino interaction scenarios. Left: Interaction rate Γnfs
dampening neutrino anisotropic stress as a function of redshift normalized to
the Hubble rate. The horizontal dotted lines indicate the window of major
sensitivity of Planck and CMB-S4. Right: Diagrams and overall scaling with
temperature in the various scenarios. Reprinted from Paper IV [47].

this thesis and we refer the reader to Paper IV [47]. Furthermore, the paper features an
extensive discussion connecting the phenomenological models used in the CMB analysis to
particle physics models of interacting neutrinos. We skip also that discussion in this text
for conciseness.

Interacting neutrino scenarios

In the last two decades, there have been many studies looking at non-standard neutrino
interactions from the cosmological perspective. We give in the following an overview of
scenarios containing exotic neutrino interactions that have been extensively studied in the
literature, and connect them to the phenomenological set of models we introduce in the next
section. For cosmology, the main difference between the models is the temperature depen-
dence of the interaction rate that suppresses neutrino freestreaming, the non-freestreaming
rate Γnfs. The interaction is efficient when this rate is much larger than the Hubble rate;
the latter scaling like H ∼ T 2 and H ∼ T 3/2 in early and late Universe, respectively. The
temperature/redshift-dependence of the ratio Γnfs/H is shown in the left panel of Fig. 6.1.
The right panel of that figure serves as a visual summary of the primary models, which are

• Neutrino self-interactions νν ↔ νν: Cosmological consequences of neutrino self-
interactions have been studies in e.g. Refs. [306–315]. On dimensional grounds,
assuming relativistic neutrinos and a mediator mass M ≫ Tν , the rate at which
neutrino freestreaming is dampened scales as Γnfs ∼ G2

effT
5
ν , where G2

eff is the effective
Fermi-constant parametrizing the interaction [306]. Therefore, the interaction is
efficient at early times, as can be seen from the red graph in Fig. 6.1. This scenario
will correspond to nint = 5 in our phenomenological model defined below.
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6.1 Dampening of neutrino freestreaming

• Interactions with neutrinophilic bosons ϕ ↔ νν: A scenario with decays and inverse
decays with eV-scale neutrinophilic bosons ϕ was the first interacting model to be
considered in the context of signals in the CMB [316]. In recent years, such scenarios
have been analyzed in detail [317–319]. The overall temperature dependence of Γnfs
can be split into two limits: Γnfs ∼ Γϕe−mϕ/Tν for Tν ≪ mϕ and Γnfs ∼ Γϕ(mϕ/Tν)5

for Tν ≫ mϕ [320]. The latter limit has recently been derived by Refs. [321, 322],
showing that the actual non-freestreaming rate is suppressed by two additional powers
of (mϕ/Tν)2 than what one would expect from the typical energy transport rate
Γ ∼ Γmϕ

(mϕ/Tν). Hence, given mϕ ∼ eV and a sufficiently large decay rate Γϕ, the
non-freestreaming interaction rate is efficient around z ∼ 104, see the yellow graph
in Fig. 6.1. In the formalism below, this scenario corresponds to the b = 4 transient
interaction.

• Neutrino decays νi ↔ νjϕ: Ref. [323] pointed out that neutrino decays could impact
freestreaming almost two decades ago, which has been followed by several works
assessing the impact on CMB observations [321, 322, 324–328]. As for the previous
item, Refs. [321, 322] have showed that the appropriate rate that suppresses the
neutrino anisotropic stress scales with temperature as Γnfs ∼ Γτ (mν/Tν)5. Thus, this
type of interaction becomes important at late times, as indicated by the magenta
graph in Fig. 6.1. In our analysis below, this model will correspond to nint = −5.

• Neutrino annihilations νν ↔ ϕϕ: Neutrinos annihilating into massless species has
been considered in the context of CMB observations in Refs. [329–335]. The non-
freestreaming rate goes like Γnfs ∼ T , which means that that its scaling is close to
Hubble, nevertheless the interaction is most efficient at late times. This scenario
corresponds to nint = 1 below, and is shown in blue in Fig. 6.1.

6.1 Dampening of neutrino freestreaming
In this section, we describe the method with which we will describe the effect on neutrino
freestreaming due to non-standard interactions, as well as define the phenomenological
non-freestreaming rates we will use.

At recombination, fluctuations were of the order of 10−5 hence we can use linear theory.1
Neutrino anisotropic stress sources the metric perturbations via Einsteins equations, which
subsequently affects the perturbations in the photon component. Schematically,

σν → δGµν → δTµν |γ → δTγ , (6.1)

where the δ prefix indicates a perturbation, Gµν is the Einstein tensor and Tµν is the energy
stress tensor of a species. We defined the anisotropic stress in terms of the energy stress
tensor in Eq. (4.11). Moreover, Tν is the CMB temperature. In linear theory, we can model
fluctuations around the background, ultra-relativistic Fermi-Dirac neutrino distribution

1Features in the angular power spectrum generated after recombination, secondary anisotropies, such as
lensing of the CMB photons, are subject to non-linear effects in the late Universe [336, 337]. However,
as a small secondary effect convoluted with percent changes in metric potentials at late times due to
non-linear corrections, it is safe to neglect non-linear effects on the CMB.
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6 Non-standard neutrino interactions in cosmology

function as Ψ ≃ δf according to Eq. (4.18). Its linearized Boltzmann hierarchy was given in
Eq. (4.21c); to describe interactions suppressing neutrino freestreaming, we add a collision
term to all multipoles l > 2,2

∂Ψ0
∂τ

= −qk

ϵ
Ψ1 − d ln f0

d ln q
∂ϕ

∂τ
, (6.2a)

∂Ψ1
∂τ

= qk

3ϵ (Ψ0 − 2Ψ2) − ϵk

3q
d ln f0
d ln q ψ , (6.2b)

∂Ψl

∂τ
= qk

(2l + 1)ϵ [lΨl−1 − (l + 1)Ψl+1] − aΓnfsΨl , l ≥ 2 . (6.2c)

In order to be able to describe the effect of non-standard neutrino interactions on the
neutrino perturbations with the relatively simple addition in the last line above, we made
the following assumptions:

i) The non-freestreaming rate is assumed to have no dependence on the momentum
q or the Fourier wavenumber k (and hence no dependence on multipole number l).
It only depends on temperature, and corresponds therefore to an average rate at
which neutrino freestreaming is dampened. As we will see, significant impacts on
the CMB from neutrino interactions occur for z ≳ 1000, which means the neutrinos
are ultra-relativistic when the interactions were active. (Cosmological bounds imply∑
mν ≲ 0.2 eV as we saw in Section 4.1, and this bound is furthermore consistent

with our findings for interacting scenarios below.) For ultra-relativistic species, ϵ = q,
and the q-dependence in the Boltzmann equation can be integrated over, with an
effective interaction rate. While we keep the q-dependence in the Boltzmann hierarchy
to allow for a non-zero neutrino mass in the analysis, the relevant ultra-relativistic
limit of that equation is equivalent to the approach in which q is integrated over, as
used in e.g. Refs. [306, 325, 334]. See Refs. [307, 322] for discussions on the impact of
including the momentum dependence in the interaction rate. Moreover, we assume
that the interaction is equally present on all scales (within the horizon) and thus
k-independent.

ii) The energy density of the neutrino component in the Universe as a function of time
is the same as in the Standard Model. This assumption is generally justified for all
the models described above (Fig. 6.1): For neutrino self-interactions, it is trivially
satisfied. For neutrino decays and annihilations into lighter species, the total energy
density of the system is conserved until Tν < mν due to energy conservation. At
lower temperatures, only the secondary anisotropies are affected, yielding a much
smaller effect than from the suppressed neutrino anisotropic stress. Refs. [321, 330]
have studied such scenarios taking into account the change in total energy density.
For interactions with neutrinophilic bosons, there can however be a change in total
energy density because the bosons are heavier than the neutrinos, and could thus
easily become non-relativistic before recombination. Nevertheless, it has been shown
that the neutrinophilic boson contribution to the combined energy density with
neutrinos is typically only O(10 %) [320], and moreover the altered expansion history

2This set of equations is given equivalently in synchronous gauge in Paper IV [47].
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6.1 Dampening of neutrino freestreaming

influences the CMB much less than the dampened neutrino freestreaming, given that
Γnfs/H ≫ 1 [317].

The benefit of this approach is that it is relatively simple to implement in a Boltzmann solver
such as CLASS. As discussed in detail in Paper IV [47], our constraints on non-standard
neutrino interactions broadly match those in the literature where a subset of the above
approximations are relaxed. Therefore, we deem this setup suitable for a global analysis of
suppression of neutrino freestreaming as constrained by cosmology.

We are interested in extracting the window of redshifts in which neutrinos cannot interact
significantly given Planck measurements in a model-independent manner. Therefore, we
will first consider an array of non-freestreaming interaction rates that are power-laws in
temperature. Specifically, we define

Γnfs(z; zint) = H(zint)
[ 1 + z

1 + zint

]nint

= H(zint)
[
T (z)
T (zint)

]nint

, (6.3)

corresponding to a family of models with different power-law index nint. In Eq. (6.3), the
parameter zint effectively describes the overall amplitude of the interaction, but parametrized
in a way such that zint corresponds to the redshift at which Γnfs(z)/H(z) = 1 (H(zint) is
the Hubble rate at z = zint). In Paper IV [47], we consider two families of power-laws:

Low-z interactions: nint ∈ {−5,−3,−1, 1} (6.4a)
High-z interactions: nint ∈ {3, 4, 5} . (6.4b)

The division is made with respect to the Hubble rate: the low-z interactions have a tempera-
ture dependence that decays less than Hubble (or increases) when the neutrino temperature
drops, while the high-z interaction rates decay quicker than Hubble as the temperature
decreases. While the models are phenomenological, a subset precisely correspond to the
physical models discussed in the introduction above. In particular nint = 5 corresponds
to neutrino self-interactions, nint = 1 to neutrino annihilations into massless states and
nint = −5 to neutrino decays.

The other set of non-freestreaming interaction rates we consider is transient in redshift.
We use phenomenological models defined as follows

Γnfs(z; zmax
int ,Γ/H|max

nfs ) = Γ/H|max
nfs

H(zmax
int )
C

K2(a x)x3 [K1(ax)/K2(ax)]b , (6.5)

where Ki are modified Bessel functions of the second kind, x = (1 + zmax
int )/(1 + z) and zmax

int
corresponds to the redshift at which the interaction rate divided by Hubble is maximal.
We tune the constant C such that Γ/H|max

nfs controls the value of Γnfs/H at this maximum,
in particular so that Γnfs/H|z=zint = Γ/H|max

nfs . The parameter b controls the slope in the
z ≫ zmax

int , where Γnfs ∝ T−1+b. To make sure that zmax
int corresponds to the point at which

Γnfs/H is maximum, we set a = 4.7. The sets of rates we consider are

i) b = 0, C = 1/130 , ii) b = 2, C = 1/240 , iii) b = 4, C = 1/420 . (6.6)

The form of the transient rate (6.5) is motivated by the physical model of neutrino interac-
tions with neutrinophilic bosons. Indeed, b = 0 corresponds to the energy transport rate for
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6 Non-standard neutrino interactions in cosmology

such a model, b = 2 to the expected non-freestreaming rate by assuming a random walk
of angular steps to isotropize the distribution [323] and b = 4 to the best motivated rate
derived from a complete Boltzmann equation from first principles [321, 322]. The last model
is displayed in yellow in Fig. 6.1.

Thus, the transient model entails efficient interactions at some intermediate redshift,
controlled by an amplitude and redshift at maximum interactions. Therefore, it can be
used both to confirm the existence of a redshift window as established by the power-law
cases, but also to determine how large the non-freestreaming interaction is allowed to be
in that region, as we see below. Note that zint and zmax

int control different properties of the
interaction rates: zint corresponds to the redshift at which the ratio of the non-freestreaming
rate versus Hubble is unity in the power-law cases, while zmax

int denotes the redshift at which
this ratio is maximum in the transient cases.

6.2 Neutrino interactions constrained by Planck
We present the results of the Planck analysis in this section. We implemented the modified
Boltzmann hierarchy (6.2c) with the different phenomenological non-freestreaming rates (6.3)
and (6.5) in the Boltzmann solver CLASS. Then, we performed MCMC analyses using the
Metropolis-Hastings algorithm of the MontePython sampler [104, 105]. The posterior plots
from the MCMC chains were performed with GetDist [338]. Following the Planck legacy
analysis, we use these data sets: Planck 2018 TT+TE+EE+lowE [8] and BAO measurements
from 6-degree Field Galaxy Redshift Survey (6dFGRS) [115], SDSS DR7 MGS [339] and
BOSS DR12 [340]. For the power-law interaction models, we apply the following priors:

log10 zint = [2, 4] for nint ∈ {−5,−3,−1, 1} , (6.7)
log10 zint = [3, 6] for nint ∈ {3, 4, 5} . (6.8)

In the transient scenario, there are two parameters zmax
int and Γ/H|max

nfs . We set the following
priors on them:

log10 z
max
int = [1, 7] and log10 Γ/H|max

nfs = [−4, 7] . (6.9)

The remaining priors for the cosmological parameters as well as the nuisance parameters in
the Planck likelihoods are set to the same as in the Planck analysis [8]. Our chains consist of
more than 3 × 106 steps and we check that the Gelman-Rubin convergence diagnostic [341]
satisfies R− 1 < 0.02 for all cosmological and nuisance parameters in all interaction models.

Freestreaming window
The posterior probabilities for H0, ns,

∑
mν and log10 zint for our set of seven power-law

cases is shown in Fig. 6.2. We do not find any statistically significant preference for
neutrino interactions in any of the cases, and can hence derive exclusion limits for zint.
In the low-z interaction scenarios (Eq. (6.4a)) we find a 95 % C.L. bound on zint to be
in the region 1300–2400, depending on the specific scenario (value of nint). The precise
95 % and 99.7 % C.L. bounds in all scenarios are listed in Paper IV [47]. We find that
those bounds broadly agree with those previously found in the literature for dedicated
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Figure 6.2: The posterior probabilities for H0, ns, ∑mν and log10 zint in the power-law in-
teraction cases, Γnfs ∼ Tnint . The contours display 95 % C.L. regions. Reprinted
from Paper IV [47].

analyses of specific scenarios, in particular with Ref. [334] for nint = 1, Refs. [325, 332] for
nint = −3 and Ref. [322] for nint = −5. Given that we perform a simultaneous analysis,
we can compare the bounds in the various scenarios. As can be recognized from the
log10 zint posteriors in Fig. 6.2, the nint = −5 bound (dark red) is more stringent than
the nint = −3 bound (red). This is to be expected, as the temperature dependence is
stronger in the former case. For the nint = −1 (yellow) we see a small ∼ 1σ preference for
interactions, which somewhat weakens the corresponding bound. Similar preferences for
non-standard interacting neutrinos at low temperatures have been reported in the literature,
e.g. Refs. [317, 319, 322, 325, 332, 334, 335]. In particular, Ref. [325] find the preference to
be driven by Planck polarization data at moderately low l.

Similarly, for the high-z cases (Eq. (6.4b)), we find a 95 % C.L. bound zint > (8–9) × 104,
with one exception: the nint = 3 model, which we discuss in detail below. The nint = 5
bound is similar to specific studies in the literature that find zint > 105 [306, 309, 314]; the
insignificant discrepancy can be attributed to small differences in the modeling or the choice
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6 Non-standard neutrino interactions in cosmology

of priors.
With the exception of nint = 3, we find no strong correlation between zint and the other

cosmological parameters. There is a slight correlation with ns; high-z interactions prefer a
lower value of ns while low-z interactions prefer a larger value of ns. From Fig. 6.2, we can
appreciate that while the changes are small, there is a clear trend. Similar tendencies have
been found in analyses focusing on specific scenarios, see e.g. Refs. [306, 309, 322, 334].

In Fig. 6.2, the nint = 3 case stand out from the other as it allows for interactions down
to redshifts of a few thousands. Since the temperature dependence of this rate is close
to Hubble H ∼ T 2, the angular power spectrum can be affected across a large range of
multipoles, a change that can largely be adjusted for by tuning the amplitude and tilt of the
primordial power spectrum. Indeed, the slight preference for interaction at log10 zint = 4 is
accompanied by a significant decrease in ns as well as a slight decrease of As and increase
of H0. A similar degeneracy with ns was found in the nint = 5 case prior to the Planck
legacy data [308, 309]. In Paper IV [47], we check whether this degeneracy can be broken
by adding Planck lensing data, finding however no significant difference in the posteriors.

In total, we can conclude that there is a well-defined freestreaming window 2000 ≲ z ≲ 105,
in which Planck CMB measurements reject efficient neutrino interactions that suppress
neutrino freestreaming. The exception is the peculiar nint = 3 case, in which the temperature
dependence of the interaction is close to Hubble. This scenario can nevertheless be tested
by CMB Stage IV experiments, as we see in the next section.

Freestreaming window depth
Having established the freestreaming window for neutrinos as seen by Planck using power-
law interaction cases, we wish to investigate how large the interaction rate can be in
this window, or in other words, how deep the window is. This can be checked with the
transient interaction cases (6.5), whose free parameters control the point at which the
non-freestreaming interaction is efficient as well as the amplitude.

The 95 % C.L. bounds on the amplitude Γ/H|max
nfs as a function of the maximum interaction

redshift zmax
int are shown in the left panel of Fig. 6.3 for the three models b = 0, 2 and 4.

For zmax
int ≳ 3.5, all cases agree relatively well, up to fluctuations that can be attributed to

uncertainties of the MCMC sampling compared to the true posterior. When the interaction
is efficient at late times however, zmax

int ≪ 3.5 well after recombination, the CMB probes the
high-z tail of the interaction rate controlled by the b parameter and we expect the slope of
the curves to differ. This can be discerned in the left panel of Fig. 6.3, however not in a
very clear-cut manner due to the uncertainty of the sampled posteriors.

The posterior shows that neutrino interactions cannot be efficient for 103.5 ≲ zmax
int ≲ 105,

consistent with our findings for the power-law scenarios. Moreover, we see that the
amplitude is constrained to be Γ/H|max

nfs ∼ 1–10. Hence, even for interaction rates that are
only sizable over a finite time interval, Planck CMB measurements constrain them within
the freestreaming window.

In the right panel we plot the non-freestreaming interaction rates that saturate the 95 %
C.L., combining both the power-law3 and transient (using the best motivated value b = 4)

3The nint = 3 case is not shown as it is special in allowing for significant interactions due to degeneracies
with ns and As.
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Figure 6.3: Freestreaming window depth. Left: 95 % C.L. bounds on Γ/H|max
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of zmax
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high-temperature limit z ≫ zmax
int , being proportional to Γnfs ∼ T−1, T−3 and

T−5, respectively. Right: Plot of the non-freestreaming interaction rates over the
expansion rate using the parameters from the Planck+BAO 95 % C.L. bounds.
The power-law interaction cases are displayed in magenta, while the transient
rates are shown in blue (b = 4). The vertical dotted line indicate the redshift of
recombination. Figure reprinted from Paper IV [47].

cases. At z ≃ 105, multiple blue lines (transient interactions) as well as the magenta
lines nint = 4 and 5 meet, giving another affirmation that this is the upper bound of
the freestreaming window. In the other limit of the freestreaming window z ≃ 2000,
we see that the low-z power-law bounds meet, although nint = −5 has a slightly lower
zint bound. Curiously, the for the transient cases, the interaction rate is allowed to be
somewhat larger, Γnfs/H ≃ 1–10, in the range zmax

int ≃ 1000–5000. Nonetheless, slight
preferences for neutrinos interactions at low redshift have been found previously in the
literature [317, 322, 325, 332, 334, 335].

Hence, in addition to determining the window in which neutrino interactions cannot
dampen neutrino anisotropic stress, with the exception of nint = 3, we have now seen that
the interaction rate at most be at most within an order of magnitude of the Hubble rate in
this window, given the Planck CMB measurements.

6.3 CMB Stage IV forecast

Building on the legacy of the Planck CMB measurements, the next generation CMB
Stage IV experiments, such as the Simons Observatory [94], LiteBIRD [95] and CMB-
S4 [86] are expected to yield noteworthy improvements, in particular by measuring the
CMB polarization in greater detail as well as by significantly improving the precision of
measurements of small-scale anisotropies. The difference between the precision of e.g.
CMB-S4 and Planck can be appreciated for the TT power spectrum in Fig. 6.5, with the
expected sensitivity of the former given by the black line and the error bars of the latter
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Figure 6.4: Depth of the freestreaming window for Nint = 1 (left), 2 (middle) and 3 (right)
interacting neutrinos. We show the 95 % C.L. bound on Γ/H|max

nfs as a function
of zmax

int , from analysis of Planck+BAO (black) as well as from a forecast of
CMB-S4 in combination with Planck. The colored points in the rightmost
panel correspond to particular parameter combinations that we show in Fig. 6.5.
Taken from Paper IV [47].

shown in gray. We discuss the figure in more detail below.
In light of this, it is appealing to examine in how far CMB Stage IV can further constrain

non-standard neutrino interactions. We run again an analysis with CLASS and MontePython,
but using a likelihood with a fiducial ΛCDM cosmology and the expected noise of the
CMB-S4 experiment, as described in Ref. [37]. Being ground based, CMB-S4 (and other
ground based missions) provide complementary information to space based experiments, in
particular by optimizing the measurements for small angular scales. It is therefore useful to
combine experiments. In addition to the CMB-S4 likelihood, we add a fake, Planck-like
likelihood, assuming for simplicity no overlap between the experiments. Following Ref. [37],
we assume that CMB-S4 measures 40 % of the sky for both temperature and polarization
multipoles 51 < l < 3000, and combine this with a fake Planck likelihood with fsky = 0.57 for
2 < l < 50 and fsky = 0.17 for 51 < l < 3000. We use the same priors for the cosmological
parameters as in the previous section.

One can imagine scenarios in which only one or two of the neutrino species are interacting.
For the transient interaction rates, we therefore analyze models in which only Nint = 1 or
Nint = 2 neutrinos are interacting (and the remaining neutrino species are SM ones), using
both the full Planck+BAO data as well as the forecasted CMB-S4 likelihood.

In Fig. 6.4, we show the 95 % C.L. bound on the non-freestreaming interaction amplitude
Γ/H|max

nfs as a function of the interaction redshift zmax
int in models in which Nint = 1, 2, and

3 neutrinos are interacting (transient rate with b = 4). The bounds are shown for both
Planck+BAO and CMB-S4. We find that CMB-S4 can typically tighten the bound on
Γ/H|max

nfs by an order of magnitude, depending on the redshift of interaction as well as the
number of interacting neutrinos. Moreover, not too surprisingly, increasing the number of
interacting neutrinos makes the bounds more stringent. For larger zmax

int , the effect of the
interaction extends to higher l. Therefore, the increased sensitivity of CMB-S4 on small
scales yields significantly improved constraints on high-z interactions. For interactions at
low−z the improvement over Planck is on the other hand small for Nint = 3. Nevertheless,
for Nint = 1 and to some extent for Nint = 2 the CMB-S4 tightens the bound across all
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Figure 6.5: Relative difference between the temperature angular power spectra in the neu-
trino interaction scenarios with transient non-freestreaming rate and the ΛCDM
model (fixed fiducial cosmological parameters and ∑mν = 0.06 eV). The error
bars from Planck 2018 is shown in gray, expected uncertainty for CMB-S4 with
fsky = 0.57 is indicated by the black line and dashed gray line corresponds to
the cosmic variance limit. Reprinted from Paper IV [47].

redshifts. The reason is that when only one species is interacting, the amplitude of the
interaction is allowed to be much larger, which in turn means that the interaction is efficient
over a longer period in time. Hence, for Nint = 1, even for small zmax

int , the interaction
considerably affects large multipoles, for which CMB-S4 has greater precision, leading to
bounds that are more rigid compared to Planck.

To further illustrate the potential of CMB-S4 in constraining non-standard neutrino
interactions, we show the relative difference of the temperature angular power spectra
between transient interaction models (b = 4) and ΛCDM in Fig. 6.5. We recall from the
beginning of this chapter that neutrino freestreaming dampens the acoustic peaks and shifts
them to larger scales. Hence, non-standard neutrino interactions suppress freestreaming and
“undo” these effects: the angular power is larger in the interacting cases (note however that
this is not visible in Fig. 6.5 which shows the absolute, relative difference) and the peaks are
shifted. Furthermore, for interactions efficient at high redshift, the higher multipoles that
entered the horizon at early times are affected, while the low-z interactions influence mainly
the lower multipoles. For each interaction redshift zmax

int , we show three amplitudes Γ/H|max
nfs ,

one rejected by Planck, one which should be ruled out by CMB-S4 and one whose effect is
smaller than cosmic variance. The parameter combinations are shown with corresponding
colors in the rightmost panel of Fig. 6.4.

Since CMB-S4 has the greatest potential in further constraining neutrino interactions
that are efficient at high redshift, we perform also CMB-S4 forecasts for the power-law
models nint = 3 and nint = 5. The forecast yields the following 95 % C.L. bounds on zint:

nint = 3 : zint > 2.4 × 105 , nint = 5 : zint > 2.8 × 105 , (6.10)

corresponding to an approximate factor 3 improvement in the latter case. For nint = 3, the
lower bound is increased by two orders of magnitude, indicating that CMB-S4 can break
the degeneracy between the neutrino interaction and ns and As. Indeed, the full posterior
including also those parameters reveals that this is the case; this is shown in Fig. 9 in Paper
IV [47].
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6 Non-standard neutrino interactions in cosmology

Hence, future Stage IV experiments that measure the CMB have the potential to further
constrain scenarios with non-standard neutrino interactions. For transient non-freestreaming
rates, we forecast an increased sensitivity of an order of magnitude for the interaction am-
plitude Γ/H|max

nfs , depending on the interaction redshift and number of neutrinos interacting.
Not surprisingly, when only Nint = 1 or 2 neutrino species are interacting, the bounds are
weaker. In these scenarios, CMB-S4 can largely improve the non-freestreaming constraints.
Finally, we found that the nint = 3 scenario can be fully tested with CMB-S4.

Summary In the standard picture, neutrinos freestream ever since they decouple in the
early Universe. While this is in agreement with cosmological data such as from CMB
measurements, there are many particle physics models which predict interactions at lower
temperatures Tν < 2 MeV. These models can be tested with CMB experiments, and in this
chapter we took a broad, model-independent approach to determine a window in which
neutrinos cannot interact given Planck CMB measurements. This freestreaming window
is found to be 2000 ≲ z ≲ 105, in which the non-freestreaming interaction can at most
be of the order of the Hubble rate. An exception to this is the peculiar case nint = 3,
which due to a similar temperature dependence as Hubble yields effects on a large range of
multipoles, degenerate with the effect of changing the tilt and amplitude of the primordial
power spectrum. Nevertheless, we show that the degeneracy can be broken by Stage IV
CMB experiments, such that this scenario can be fully tested.

134



7 Conclusions and outlook

Cosmology has in the recent decades seen an immense increase in experimental data, allowing
us to gain insights about the fundamental composition and evolution of the Universe. In
particular, current and near-future surveys of the large-scale structure of the Universe can
shed light on the properties of dark matter and dark energy, gravity on large scales, the
initial conditions in the early Universe, as well as measure the absolute neutrino mass
scale. The increased amount of observational data requires a considerable complementary
theoretical effort in order to extract valueable information.

In this thesis, we have performed precision calculations of LSS observables, to assess the
validity of common approximations and determine the reach of perturbation theory up to
NNLO order. We employed cosmological perturbation theory in the Eulerian picture to
model structure formation in the non-linear regime, k ≃ 0.1–0.3h Mpc−1. In the standard
setup, the clustering dynamics is approximated by that of EdS and neutrinos are neglected
beyond the linear level. To scrutinize these simplifications and describe structure formation in
models with generic time- and scale-dependent growth, we extended Standard Perturbation
Theory by allowing for multiple fields as well as promoting the linear evolution matrix Ωab

to depend on time and scale. This extension is largely versatile and can be applied to a
wide range of extended cosmological models. The computational complexity is however
extensive, hence the framework is better suited to test and scrutinize approximations as
well as extended cosmological models, than to analyze observational data.

We applied our generalized framework to the case of massive neutrinos in cosmological
structure formation in Chapter 4. Neutrinos have a large velocity dispersion and can
freestream over large distances. The corresponding distance, the freestreaming length,
introduces a scale-dependence in the clustering dynamics of baryons and dark matter.
We defined a hybrid, two-component fluid model featuring baryons and CDM coupled to
neutrinos via gravity, and described two ways of modeling the neutrino sound velocity.
This model is readily implemented in our extended framework for non-linear corrections
in structure formation, and we computed the matter density and velocity power spectrum
at NNLO. To assess the impact of full time- and scale-dependent dynamics, we compared
our results to commonly adopted simplified treatments. The difference exceeds one percent
at k ≳ 0.17 and 0.2h Mpc−1 (Mν = 0.1 eV) for the density and velocity power spectra,
respectively. For the latter the discrepancy is strongly dependent on neutrino mass; for a
larger Mν = 0.4 eV the difference is already 2.7 % at k = 0.15h Mpc−1. Finally, we compared
both schemes to N-body simulations. For this purpose, we embedded the baryon+CDM and
neutrino fluid model in an EFT framework. We showed that in the limit k ≫ kFS, where kFS
is the neutrino freestreaming wavenumber, we can obtain a renormalized power spectrum at
NNLO. Comparing to N-body results, we found that the mistake in the simplified treatment
due to not capturing the time- and scale-dependence of the true dynamics could largely be
absorbed by the counterterms introduced in the EFT, therefore both schemes could equally
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7 Conclusions and outlook

well match the simulation result.
Since we found that the impact of exact time- and scale-dependence due to massive

neutrinos to be largest for the velocity spectrum, we conclude that an exact treatment is
required to exhaust the information on neutrino mass in redshift space. This motivates an
analysis incorporating complete time- and scale-dependence in redshift space, which is left
for future work. Moreover, the formalism can relatively straightforwardly be applied to
assess the effect of massive neutrinos on the bispectrum beyond linear theory.

As a complementary statistical observable to the power spectrum, the bispectrum of LSS
can be instrumental in breaking degeneracies between cosmological parameters and galaxy
bias. Moreover, it is a very relevant statistic in probing deviations from Gaussian initial
conditions, from which we can gain information about the physics of inflation. We derived
the two-loop correction to the bispectrum in an EFT framework in Chapter 5, showing
that adding it to the perturbative result extends the wavenumbers with percent accuracy
from k = 0.08 to 0.15h Mpc−1. We showed that the double-hard region of the two-loop
correction can be renormalized by the counterterms introduced at one-loop in the EFT. The
remaining UV-sensitivity of the two-loop term comes from the single-hard limit. We treated
it in a simplified manner, computing the limit numerically and correcting the UV by a shift
in the displacement dispersion associated with the hard loops. To assess the perturbative
reach of the NLO and NNLO predictions, we compared to N-body simulations using gridPT
to beat cosmic variance. Finally, we used the extension of SPT to calculate the one-loop
correction to the bispectrum taking into account the exact time-dependence in ΛCDM. We
found that the impact of exact kernels is broadly degenerate with the one-loop counterterms
up to k ≃ 0.15h Mpc−1 independent of shape. Since the range of scales in which we found
the two-loop correction to become important is relevant for ongoing and future surveys, an
extension to the bispectrum of biased tracers is appealing, and left for future work.

We have seen that neutrinos play a significant role in the evolution of the Universe.
Consequently, cosmological probes can be used to investigate the properties of neutrinos.
In Chapter 6, we took a global view of non-standard neutrino interactions in cosmology,
aiming to establish a window of redshifts in which neutrinos are not allowed to interact
significantly given measurements of the CMB by Planck. Freestreaming, non-interacting
neutrinos leave a specific imprint on the angular power spectrum, and hence we found a
freestreaming window 2000 ≲ z ≲ 105 in which the neutrino interaction rate can be at
most of the order of the Hubble rate. We made a forecast for the next generation CMB-S4
experiment, assuming a fiducial ΛCDM model with no interactions. Given the expected
improved sensitivity on small scales, our results show that CMB-S4 extends the upper
bound by an approximate factor of 3, as well as the depth of the freestreaming window by
an order of magnitude. Finally, we analyzed a peculiar scenario in which the interaction
rate scales as Γnfs ∼ T 3, i.e. close to the Hubble rate. Since this interaction influences the
multipoles over a large range of scales, its impact can be corrected for by adjusting the
amplitude and tilt of the primordial power spectrum. Due to this degeneracy, Planck data
cannot rule out such an interaction in the redshift window. Nevertheless, when analyzing
the model with the expected sensitivity of CMB-S4, the degeneracy is broken so that the
model can be fully tested.

The uncovering of the freestreaming window can in particular be useful to guide model
builders interested in non-standard neutrinos. Moreover, the modest preferences for interac-
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tions in certain models can be explored in more detail with dedicated analyses in the future,
for example by investigating which subset(s) of the data drive the preference.
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Appendix A

Bispectrum: two-loop contributions and
coefficients

The diagrammatical representation of the different contributions to the two-loop bispectrum
are shown in Fig. A.1, and the corresponding mathematical expressions are [45] (see also
Ref. [140]):

B611 = 90P0(kB)P0(kC)
∫

q1,q2
F (6)(−kB,−kC ,q1,−q1,q2,−q2)P0(q1)P0(q2) ,

(A.1a)

B(521−I) = 60P0(kC)
∫

q1,q2
F (5)(−kC ,−kB + q2,−q2,q1,−q1)F (2)(kB − q2,q2)

× P0(q1)P0(q2)P0(|kB − q2|) , (A.1b)

B(521−II) = 30P0(kB)P0(kC)
∫

q1,q2
F (5)(kA,q1,−q1,q2,−q2)F (2)(−kA,−kC)

× P0(q1)P0(q2) , (A.1c)

B(431−I) = 36P0(kC)
∫

q1,q2
F (4)(kA + q1,−q1,q2,−q2)F (3)(−kC ,−kA − q1,q1)

× P0(q1)P0(q2)P0(|kA + q1|) , (A.1d)

B(431−II) = 36P0(kB)P0(kC)
∫

q1,q2
F (4)(−kB,−kC ,q1,−q1)F (3)(kB,q2,−q2)

× P0(q1)P0(q2) , (A.1e)

B(431−III) = 24P0(kC)
∫

q1,q2
F (4)(−kC ,−kB + q1 + q2,−q1,−q2)

× F (3)(kB − q1 − q2,q1,q2)P0(q1)P0(q2)P0(|kB − q1 − q2|) ,

(A.1f)

B(332−I) = 36
∫

q1,q2
F (3)(q1,kA − q1 + q2,−q2)F (3)(−kA + q1 − q2,q2,−kC − q1)

× F (2)(kC + q1,−q1)P0(q1)P0(q2)P0(|kA − q1 + q2|)P0(|kC + q1|) ,

(A.1g)
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B(332−II) = 18P0(kB)P0(kC)
∫

q1,q2
F (3)(kA,q1,−q1)F (3)(kB,q2,−q2)F (2)(−kA,−kB)

× P0(q1)P0(q2) , (A.1h)

B(332−III) = 18P0(kB)
∫

q1,q2
F (3)(−kB,−kC + q2,−q2)F (3)(kB,q1,−q1)

× F (2)(kC − q2,q2)P0(q1)P0(q2)P0(|kC − q2|) , (A.1i)

B(422−I) = 48
∫

q1,q2
F (4)(q1,kA − q1,q2,−q2)F (2)(−kA + q1,−kC − q1)

× F (2)(kC + q1,−q1)P0(q1)P0(q2)P0(|kC + q1|)P0(|kA − q1|) ,

(A.1j)

B(422−II) = 48
∫

q1,q2
F (4)(−kB + q1,−kC + q2,−q1,−q2)F (2)(kB − q1,q1)

× F (2)(kC − q2,q2)P0(q1)P0(q2)P0(|kB − q1|)P0(|kC − q2|) , (A.1k)

where we used F (1) = 1 in EdS.

Table A.1: Coefficients of the shape functions f (i) when written as a linear combination of
the basis shape functions bj (defined in Eq. (5.11)) or equivalently in terms of
Ei and Γ (defined in Eqs. (3.109) and (3.110)).

f (3) f (4) f (6,1) f (6,2)

b1 5/7 − 4901
339570 − 1394259753263

1811404542543750
104211446312

11774129526534375
b2 1 − 115739

2037420 − 70647110404331
23548259053068750 − 78591466504

3924709842178125
b3 1/2 − 61

7560 − 11191
38697750 0

b4 2/7 − 1592
56595 − 9685830431171

7849419684356250 − 80969969032
3924709842178125
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Figure A.1: Diagrams contributing to the two-loop bispectrum correction. The correspond-
ing mathematical expressions are given in Eq. (A.1).
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