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Abstract

Understanding diseases on the molecular level can enable precise diagnostic methods and
more cost-effective treatments with fewer side effects. Systems medicine research tries
to achieve this by acquiring large quantities of molecular data and analyzing them with
computational methods to understand diseases” molecular heterogeneity and mechanisms.
Lipids are biomolecules that are gaining more importance in systems medicine. They are
involved in energy storage, signal transduction, and the composition of membranes. Mass
spectrometry-based lipidomics can identify and quantify large numbers of molecular lipid
species from biological samples. However, computational methods for integrating lipidomics
in systems medicine workflows are still missing. This publication-based dissertation presents
computational methods and applications to advance lipidomics-driven research.

First, the disease subtyping Molecular Signature identification using Biclustering (MoSBi)
is presented. It utilizes the predictions of multiple biclustering algorithms to predict robust
sample groups and characteristic molecular signatures. The method was developed to
be highly interpretable using scalable network visualizations of the predictions. Further,
the performance was evaluated on multiple synthetic and experimental datasets to show
the advantages over other methods. The following publication utilized the method in a
liver lipidomics study on non-alcoholic fatty liver disease (NAFLD). A common disease in
modern societies, strongly associated with obesity. The analysis revealed molecular subtypes
describing the progression of the disease that could classify patients into subgroups using
lipid markers. This shows the potential of lipids as potential biomarkers for systems medicine.

Furthermore, the Lipid Network Explorer (LINEX) is presented. A method to create and
analyze lipid species networks for lipidomics data. So far, systematic lipid metabolic networks
are not available. They are necessary to functionally analyze and interpret lipidomics data for
systems medicine. In a combined visualization of lipid networks with statistical measures,
LINEX can show systematic alterations of the lipidome between experimental conditions. To
make LINEX networks more comprehensive, LINEX? is presented as a preprint. It utilizes
curated lipid class reactions from public databases and includes a network enrichment
algorithm to predict enzymatic dysregulations.

Finally, two co-author contributions on computational drug repurposing strategies are
discussed. Predicting drug repurposing candidates for new diseases can be the last computa-
tional step in a systems medicine workflow.

In summary, the work presented in this dissertation presents novel computational al-
gorithms for subtyping and functional lipidomics interpretation and drug repurposing
strategies. This can make it possible to add lipidomics as another molecular dimension to
systems medicine research. All methods were developed with high accessibility to promote
the interpretation of complex molecular data in clinical research.
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Kurzfassung

Ein Verstiandnis von Krankheiten auf molekularer Ebene kann neue Diagnose- und Behand-
lungsverfahren ermoglichen, die praziser sind als symptombasierte. In der Systemmedizin
werden grofle Mengen molekularer Daten akquiriert und analysiert, um Krankheitsmecha-
nismen und deren Heterogenitdt zu verstehen. Lipide sind Biomolekiile, die an Relevanz
fiir die Systemmedizin gewinnen. Sie spielen eine wichtige Rolle fiir die zelluldre Ener-
giespeicherung, Signalverarbeitung und sind Hauptbestandteil von Zellmembranen. Mit
Massenspektrometrie kann eine Vielzahl von Lipiden quantifiziert werden aus biologischen
Proben. Computergestiitzte Methoden, um Lipid Daten systematisch im systemmedizinischen
Kontext zu analysieren fehlen bisher. In dieser kumulativen Dissertation werden Methoden
und Anwendungen von computergestiitzten Methoden zur Integration von Lipidomik Daten
in die Systemmedizin vorgestellt.

Zuerst wird die Subtypisierungsmethode Molecular Signature identification using Bicluste-
ring (MoSBi) prasentiert. Sie nutzt die Vorhersagen von mehreren Biclustering Algorithmen,
um robuste Patientengruppen und molekulare Charakteristika vorherzusagen. Die Methode
legt den Fokus auf Interpretierbarkeit der Resultate durch Netzwerkvisualisierungen. Zu-
satzlich wurde die Methode auf einer Vielzahl von synthetischen und experimentellen Daten
evaluiert, um die Vorteile gegeniiber anderen Methoden zu zeigen. In der darauffolgenden
Publikation wurde Methodik auf Leber Lipidomik Daten von Patienten mit nichtalkoholischer
Fettleber angewandt. Das ist eine weit verbreitete Krankheit in der modernen Zivilisation, die
oft mit Ubergewichtigkeit einhergeht. Die Analyse zeigte molekulare Subtypen auf, die den
Verlauf der Krankheit beschreiben und anhand derer Patienten klassifiziert werden konnten,
durch Identifizierung von Lipid Markern. Dadurch konnte das Potential von Lipiden als
Biomarker gezeigt werden.

Des Weiteren wird der Lipid Network Explorer (LINEX) prasentiert, eine Methode zur
Erstellung und Analyse von Lipid Species Netzwerken von Lipidomik Daten. Bis zu diesem
Zeitpunkt waren systematische Lipid Metabolische Netzwerke nicht verfiigbar. Diese sind
wichtig, um Lipidomik Daten in der Systemmedizin funktional zu interpretieren. In einer
kombinierten Visualisierung mit statistischen Kenngrofien konnen systematische Lipidomver-
dnderungen aufgezeigt werden. Um Lipid Netzwerke zu vervollstandigen, wird LINEX? als
Preprint vorgestellt. Dafiir nutzt die Software kuratierte Lipid Reaktionen aus 6ffentlichen
Datenbanken. Auch wird ein Algorithmus présentiert, um enzymatische Dysregulierung
vorherzusagen.

Schlussendlich werden zwei Beitrdge zur computergestiitzten medikamentdsen Neu In-
dikation diskutiert. Vorhersage von Kandidaten zur medikamenttsen Neu Indikation einer
Krankheit ist der letzte Schritt einer systemmedizinischen Analyse.

Zusammengefasst werden in dieser Dissertation neue Algorithmen fiir die Subtypisie-
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Kurzfassung

rung, der funktionellen Analyse und der medikamentosen Neu Indikation vorgestellt. Dies
kann es ermoglichen, die Lipidomik als zusatzliche molekulare Dimension zur Systemme-
dizin hinzuzufiigen. Alle Methoden wurden entwickelt mit Hinblick auf Nutzbarkeit und
Interpretierbarkeit von komplexen molekularen Daten in der klinischen Forschung.
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1. Motivation

Metabolic diseases have become highly prevalent in modern society. For example, around
25% of the world’s population is affected by non-alcoholic fatty liver disease (NAFLD). An
even higher prevalence is among obese individuals [1].

In a healthy state, cells maintain a molecular balance of reactions and interacting biomolecules
to adapt to changing conditions. This is known as homeostasis [2]. In metabolic diseases, the
metabolism is especially disturbed, and therefore the focus for understanding such diseases.
The most common metabolic disease is obesity. In Germany, approximately 12.9% of the
population is obese, which puts affected people at risk of coronary heart disease or diabetes
mellitus [3]. Germany’s estimated population with diabetes mellitus is between 7.2 and 9.8%
[4]. Obesity is also a risk factor for cardiovaslular diseases (CVD), which is the leading cause
of death worldwide [5]. non-alcoholic fatty liver disease (NAFLD) is strongly associated with
diabetes and obesity, and around 28% of patients develop liver damage through fibrosis and
steatohepatitis [6]. These diseases are also a high economic burden. For CVD these costs in
the US are estimated at around $320 billion [7]. Diseases do not only result in deaths and
hospital stays but cause a reduced quality of life for affected individuals [8]. NAFLD results
in estimated costs of €4.33 billion in Germany and $103 billion in the United States in the year
2016 [9].

NAFLD is characterized by an excessive accumulation of lipids in the liver. Lipids are
a highly diverse class of metabolites. They are essential for long-term energy storage and
are the main constituents of cellular membranes. This enables cells to separate from the
environment and create compartments with distinct functions. Lipids are also crucial for a
variety of metabolic and signaling processes. The increasing prevalence of metabolic diseases
requires a detailed understanding of the lipidome on the structural level to understand their
cellular functions and regulation. This can be enabled by mass spectrometry-based lipidomics
protocols. Lipids are also becoming more critical for precise drug delivery [10]. Just recently,
they received attention for COVID-19 mRNA vaccines. The mRNA is transported in a lipid
vesicle that can be taken up by cells.

Effectively treating diseases requires understanding the altered molecular processes affected
by the disease. The availability of high-resolution molecular data is crucial to understanding
diseases, but not sufficient. Generating clinically relevant knowledge from heterogeneous
molecular data is challenging and requires computational algorithms [11]. These efforts
fall under the umbrella of systems medicine, where the functions of complex biological
systems are studied in health and disease [12]. Systems medicine can provide a better
disease understanding and offers new opportunities for medicine to be predictive and
personalized [12]. With computational methods, diseases can be subtyped [13], molecular
disease mechanisms identified [14], or biomarkers predicted [15]. In particular, subtyping
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aims at unraveling molecular differences within a disease cohort. This can promote more
individualized treatments of patients [16]. A disease is divided by stages, risk factors, or a
molecular mechanism during subtyping. Deciphering such differences within a patient cohort
can enable precise treatments for specific disease subtypes. Disease mechanisms can promote
the selection and development of therapeutics tailored towards a specific disease manifestation
[17]. For example, lipid enzymes and their regulating pathways can be potential drug targets
if a mechanistic connection to a disease has been identified. Biomarkers can provide early-
stage information for the prognosis of a disease or reveal risk factors. Personalized medicine
diagnoses can also be more cost-effective [18], potentially reducing the health system’s costs.
Due to the importance of lipids in biological processes, they are essential for understanding
and treating diseases [19]. Developing computational approaches to efficiently subtype
diseases on a molecular basis and adding lipids as another dimension for biomedical research
is the goal of this publication-based dissertation.

In the first publication, I present the computational subtyping method Molecular Signature
identification using Biclustering (MoSBi) [20]. This work aims at making subtyping more
accessible and interpretable. MoSBi combines the results from multiple algorithms to make
predictions more robust. To offer value for clinical research, computational methods for
disease subtyping need to promote the interpretation of subtype predictions. The visualization
of such results was also an unsolved problem for this class of algorithms. In a systems
medicine context, this can be beneficial to visualize results because the method allows
additional health confounders to be incorporated into the visualization. By overcoming
hurdles of accessibility, the approach makes computational disease subtyping more usable
for clinical research and molecular data, where stratification is required.

In the second publication, I utilized liver lipidomics data of a large patient cohort with
different stages of NAFLD to reveal disease subtypes, and potential biomarkers [21] (in the
following, referred to as NAFLD stratification publication). This was not only a perfect
opportunity to apply MoSBi to find novel disease subtypes but is of great importance for
gaining more insights into the most common liver disorder. Finding markers for NAFLD and
predicting the progression is of enormous interest to public health. Markers that resemble the
disease progression could enable early detection of the disease and provide more insights
into the molecular status of the disease for treatment decisions. From a biological perspective,
lipidome alterations in the liver can be investigated to quantify changes in the abundance
and composition of lipids during disease progression.

Extracting disease mechanisms requires a functional understanding of molecular biological
interactions. Mass spectrometry has enabled the detection of the molecular composition of
lipids. However, large-scale interaction networks for lipids are not available. Therefore, the
third publication presents the Lipid Network Explorer (LINEX) method [22]. The approach
computes lipid networks and visualizes them with statistical measures to interpret lipidome
alterations quantitatively. This approach is complemented by a network analysis method that
can propose mechanistic hypotheses for enzymatic dysregulation from lipidomics data. This
work is attached to the dissertation as a preprint [23]. These methods make it possible to
interpret lipid data functionally and give it more relevance for clinical research. A functional
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understanding of systematic lipid alterations has great potential for systems medicine.

The final step of assessing diseases from a systems medicine standpoint is the development
of treatments. The development of new drugs can cost several billion dollars. Drug discovery
is an especially difficult step during the development [24]. In contrast, identifying new
targets for existing drugs can be a more cost-effective alternative [25]. This is called drug
repurposing, and computational methods play a crucial role in predicting drug repurposing
candidates. I co-authored two publications focusing on drug repurposing of COVID-19 [26,
27]. First, the development of an interaction network-based method to predict drug targets
and candidates [27]. Second, in a review on drug repurposing strategies and the proposal
of a standardized development cycle [26]. Drug repurposing is the last step in a systems
medicine workflow that from disease subtyping, biomarker identification, and mechanism
detection to find drug targets. It further shows the importance of computational methods to
advance drug repurposing research.

Outline

In the following introduction, I will explain the biological and computational basics of the
publications. In sections 2.1 & 2.2, the principles of the cellular metabolism and and lipids
are covered with examples of dysregulation in diseases. These are crucial to understanding
the variety of existing lipids and the structure of the lipid metabolism, which serves as
a basis for the work on creating lipid networks. This is followed by an introduction to
the experimental methodologies for measuring lipids in biological samples. Knowing the
experimental details provides the reader with the necessary knowledge for discussing future
computational lipidome research opportunities and limitations. Next, I give an overview
of other omics techniques. Finally, computational biology is introduced in section 2.5. The
section gives an overview of types of computational research and shows how the previously
introduced aspects of molecular biology are utilized to get a better understanding of the
cellular machinery. It also gives an overview of the different types of computational biological
research for systems biology and where the developed methods of this dissertation fit in.

Followed by the introduction is a summary of the developed computational methods and
contributions to the presented publications. In the discussion, the general applicability and
limitations of the results are described, and an integrated workflow is presented. I also
describe the limitations of current lipidomics research and the implications for computa-
tional method development. In the end, the opportunities for computational methods for
personalized medicine are discussed.




2. Introduction

Before introducing lipids and their metabolism, which are central to this dissertation, a general
background in molecular biology is required. It will provide an overview of how lipids are
embedded in the molecular biology of the cell and how they relate to other biomolecules.

The fundamental building blocks of a living cell are deoxyribonucleic acid (DNA), ribonu-
cleic Acid (RNA), proteins, metabolites, and lipids. As famously formulated in the central
dogma of molecular biology by Francis Crick [28], information flows from DNA over RNA
to proteins. This view on molecular biology is partially outdated. Nowadays, it is known
that epigenetic modifications such as methylations also influence the activity of genes [29] as
well as metabolites and lipids can alter protein activity. Information is stored as a sequence
of nucleic acids, known as genes on the DNA. The RNA polymerase enzyme can transcribe
genes to RNA. RNAs that encode proteins are also known as messenger RNA (mRNA). The
mRINA sequence can be translated into an amino acid chain using ribosomes, a complex
molecule composed of ribosomal RNA and proteins. The amino acid chain then folds into a
chemically and thermodynamically optimal state [30], known as a protein. Proteins fulfill a
variety of functions. They can serve as transcription factors, where they activate or inhibit
gene transcription. Other proteins act as signaling molecules, forwarding sensory information
that can activate or inhibit transcription factors. Some proteins build the cytoskeleton by
creating polymer fibers, providing structural integrity for cells and highways for intracel-
lular transport proteins. Enzymes, another subset of proteins, catalyze chemical reactions
of metabolites or lipids. Metabolites are diverse organic molecules that provide energy for
cellular processes, and they are the building blocks for all biomolecules, such as proteins or
DNA. Lipids, also known as fats or oils, can store energy efficiently. Furthermore, lipids are
the basis of cellular membranes that allow a cell to have compartments and separate itself
from the environment.

An essential aspect of a living cell is that biomolecules dynamically interact. Genes regulate
each other, metabolites are catalyzed by enzymes and regulate their activity, and proteins
interact are used to forward information [31]. Figure 2.1 shows an overview of the information
flow and interactions. Hence, changes or defects of only one gene can influence the whole
system. Examples of such changes are defects in the synthesis of species sugar chains, so-
called glycans, that increase mortality in the first years of life [32], somatic mutations resulting
in cancer development [33], or obesity causing type 2 diabetes [34].

Crucial for cell functions is that biomolecules can often interact with multiple other
molecules. An example of this is the phosphorylation of proteins. Over 40% of proteins have
phosphorylations during their lifetime, created by kinases [35]. Kinases are also proteins that
phosphorylate other proteins or metabolites. They are usually able to phosphorylate proteins
at various phosphorylation sites. The same holds for transcription factors, which regulate the
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expression of genes. They can bind to multiple sequence motifs and, therefore, influence the
expression of many genes. Such Multi-specificity can also be observed in metabolic reactions.
Many lipid enzymes catalyze metabolic reactions for lipids with different fatty acyls. While
this can have drastic implications for diseases caused by a single gene or protein failure, it
enables the molecular machinery to adapt to the state of the whole system by altering the
activity of central biomolecules. Understanding the importance of multi-specificity is also
crucial for my publications on lipid networks. It will be more explicitly elaborated for the
lipid metabolism in section 2.2.1.

Before introducing lipids and their functions, I will introduce the basics of metabolism. En-
ergy metabolism is crucial for synthesizing lipids, and specific metabolites are the precursors
of lipids. As an example of systematic alterations in diseases, the well-studied metabolism in
cancer is explained.

1. Metabolism

Metabolism is commonly associated with providing energy for all processes in a cell. But
metabolism is more than just the production of energy from food. Energy storage is done
with metabolites, separation of cells from the environment via membranes, and in signaling
processes, metabolites are involved. Metabolites are also the building blocks for all complex
biomolecules.

Metabolites are small molecules compared to polymers such as proteins with hundreds
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of amino acids. In a cell, they are converted to other metabolites by metabolic reactions.
Most reactions do not occur spontaneously under the conditions in a cell. This is due to
the activation energy of every reaction that is required for every reaction. The same reason
we need sparks to kindle a fire. Enzymes fulfill this purpose for metabolic reactions. They
bind metabolites and stabilize reaction transitions through their active pockets [36]. This
biochemical principle was already described by Linus Pauling in 1946 [37]. While many
enzymes are multispecific, meaning they can catalyze multiple reactions, various enzymes
are necessary to catalyze all metabolic reactions in a cell. The model "Recon 2.2", a manually
curated collection of known metabolic reactions, contains 5324 metabolites, 7785 reactions,
and 1675 associated genes [38] (the genes mainly encode for enzymes). And this does not
include thousands of lipid species with their corresponding reactions. This is due to the
complexity of the lipid metabolism (explained in section 2.2.1), but also because of a general
lack of integration of lipidomics into bioinformatics workflows, which is one of the topics
that are addressed in this thesis.

One of the most critical energy sources is glucose. It comes mainly from plant-based food
in the form of starch, a polymer of glucose molecules. Starch is broken down in the saliva of
the mouth by amylases, a class of enzymes that are also excreted by the pancreas [39].

Before the enzymatic machinery in a cell can start working, metabolites need to enter the
cell. Metabolite transporters are membrane-based transporters that can channel metabolites
through membranes. One essential class of transporters is the GLUT family. They transport
glucose through the membrane without needing external energy [40]. Therefore, they can
only transport glucose along the osmotic gradient. Another class of transporters, the SLC5
family, couples glucose transport to a Na™ gradient and can actively import glucose into a
cell [41]. Transporters for many different metabolites exist (e.g. [42, 43, 44, 45]).

Once glucose is imported into cells, it can be broken down to release energy. This happens
in the central carbon metabolism. In the following, I will introduce the main pathways of the
central carbon metabolism to give an overview of metabolic principles for energy generation
and biosynthesis.

Glycolysis

Glycolysis is one of the main pathways to supply energy and metabolites for biosynthesis
[46]. It is evolutionary conserved and can be found in all domains of life. By binding a
phosphate group, energy is generated from glucose by converting Adenosine diphosphate
(ADP) to Adenosine triphosphate (ATP). The bound is highly energetic, and releasing or
transferring the phosphate groups is an exergonic reaction. Exergonic reactions have a strongly
negative free energy change, which is irreversible under normal conditions. Irreversibility
is defined by an equilibrium of a reaction that lies firmly on the side of products. The
glycolysis starts with the glucose sugar (Figure 2.2), consisting of 6 carbon atoms (C6). Kinase
enzymes activate glucose twice by phosphorylation, which requires energy in the form
of ATP. It is essential to consider that the pathway requires an initial energy investment
before energy can be released. After this, the C6 sugar with two phosphorylations (Fructose
6-bisphosphate) is broken down into two C3 molecules Glyceraldehyde 3-phosphate (G3P)
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Figure 2.2.: Glycolysis pathway. C6 glucose is broken down into two C3 pyruvate molecules.
In this process, ATP and NADH are generated. Abbreviations: Adenosine diphos-
phate (ADP), Adenosine triphosphate (ATP), oxidized Nicotinamide adenine
dinucleotide (NAD™), reduced Nicotinamide adenine dinucleotide (NADH),
Coenzyme A (CoA), Proton (H').

and Dihydroxyacetone phosphate (Figure 2.2). An isomerase converts the latter to G3P.
This is followed by two crucial reactions for energy generation and shows the principle of
metabolic energy generation. G3P is oxidized at the first carbon atom, and a free phosphate is
binding, producing 1,3-Bisphosphoglycerate. Electrons from the oxidized G3P are transferred
to oxidized Nicotinamide adenine dinucleotide (NAD™) resulting in reduced Nicotinamide
adenine dinucleotide (NADH). The phosphoglycerate kinase then phosphorylates ADP using
the previously bound phosphate from 1,3-Bisphosphoglycerate. Finally, one more ATP per
molecule is produced, yielding Pyruvate. In total, 2 ATP have to be invested for one glucose
molecule, and 4 ATP and one NADH are produced.

In an aerobic environment, the additional electrons of NADH can be forwarded to oxygen
to produce more energy. However, pyruvate is reduced when no oxygen is available, or cells
cannot perform oxidative phosphorylation. This can result in the production of either ethanol
and CO; or lactate. The recovered NAD™ can then be reused for oxidization of G3P.

Citric acid cycle

With the availability of oxidizing agents, more energy can be generated from the complete
oxidation of pyruvate. Furthermore, it is crucial for the efficient energy extraction from
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proteins and lipids [47]. Before pyruvate can enter the citric acid cycle, also known as the
tricarboxylic acid (TCA) cycle, it is further oxidized and bound to Coenzyme A (CoA). In this
reaction, CO, is released and NAD™ reduced and the product of the reaction is acetyl-CoA
(Figure 2.2). The pathway is called a cycle because, in the first step, the acetyl group is
binding to oxaloacetate, which is also the end product and can be reused to start another cycle.
Oxaloacetate can also be synthesized from pyruvate by a reaction catalyzed by the pyruvate
carboxylase. It creates a bond between pyruvate and carbonic acid under ATP hydrolysis.
The TCA cycle consists of 9 reactions with the following summed-up reaction equation:

Acetyl-CoA + 3NAD™ + FAD + GDP + P; + 2H,0 —»
CoA-SH + 3NADH + FADH, + 3H" + GTP + 2CO,

The synthesized Guanosine triphosphate (GTP) can also be used to phosphorylate ADP.
Since the main currency for energy in cells is ATP, the energy saved in the reduced NAD™
and flavin adenine dinucleotide (FAD) is then used to synthesize ATP. This is happening in
the oxidative phosphorylation.

Oxidative Phosphorylation

ATP is generated in the oxidative phosphorylation by a proton translocation through a
membrane, driven by a proton gradient [48]. An excellent summary of the history of the
findings and debate on the pathway can be found in the publication of Nath et al. [49].
Creating and maintaining a proton gradient requires a particular environment. Therefore, the
TCA cycle and oxidative phosphorylation occur in the matrix of mitochondria. Mitochondria
have an outer and inner membrane. The inner membrane space is called the matrix, and the
space in between the two membranes is the intermembrane space. The pathway consists of a
series of protein complexes at the inner mitochondrial membrane. They are electron acceptors
from NADH and FADH and forward them from one complex to the next. In this process,
they pump protons from the matrix to the intermembrane space and forward them to O,
synthesizing H,O. As a result, a proton gradient across the inner membrane is generated,
with a high concentration of protons in the intermembrane space and a low concentration
in the matrix. The ATP Synthase protein complex utilizes this gradient by allowing protons
to pass through to the matrix and using the motion to synthesize ATP from ADP and free
phosphate.

The pathways described so far are all catabolic, meaning metabolites are broken down to
produce energy. However, anabolism, the synthesis of new metabolites as building blocks for
biomolecules, is another important aspect of metabolism. Three significant pathways that
contribute to anabolism are discussed below.
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Pentose phosphate pathway

The Pentose phosphate pathway (PPP) fulfills several important functions. It provides reduced
nicotinamide adenine dinucleotide phosphate (NADPH) for the fatty acid synthesis (more
on that in Section 2.2.1), C5 sugars for nucleic acid synthesis, and the C4 sugar Erythrose
4-phosphate as an amino acid precursor [50].

The PPP can be divided into oxidative and non-oxidative parts. In the oxidative part,
glucose 6-phosphate is oxidized to Ribulose 5-phosphate in three reactions under release of
CO; and two NADPH. This is followed by the non-oxidative part, where the reactions are
reversible. There are two versions of this non-oxidative part. The canonical (of F-type) pathway
and the L-type pathway. In the canonical version, two enzymes catalyze all reactions. First is
the transketolase that transfers a C2 carbon fragment from one phospho-sugar to another,
and the second is the transaldolase that transfers a C3 fragment from one phospho-sugar to
another. They can synthesize C3, C4, C6, and C7 phospho-sugars from two initial C5 phospho-
sugars. The L-type pathway contains not only the transketolase but an additional aldolase
that combines a C3 and C5 molecule to Octulose 1,8-bisphosphate. With a phosphotransferase,
C7 bisphosphate molecules can be synthesized. The same end products can be synthesized as
in the canonical pathway. Since C7 and C8 mono- and bisphosphate sugars could be observed
[51], and the transaldolase can be found in humans [52] a combination of proposed versions
of the pathway is likely.

Because of the reversibility of the reactions in the PPP, it can, on the one hand, supply the
glycolysis with intermediates for the energy metabolism, and on the other hand, glycolysis
can provide the precursors for the pathway [53]. This makes it a powerful buffer for stressful
situations.

Gluconeogenesis

The pathway that synthesizes glucose is called gluconeogenesis. It plays a vital role in
mammals during starvation [54]. Gluconeogenesis occurs predominantly in the liver when
glycogen stores are depleted. As precursors for glucose metabolites such as lactate, pyru-
vate, glycerol, and certain amino acids can be used [55]. The precursors are converted to
Phosphenolpyruvate (see Figure 2.2). From there, reverse glycolysis is possible. The pathway
shares many enzymes with the glycolysis that are reversed based on substrate and product
concentrations [56]. For example, there are differences in the enzyme glucose-6-phosphatase,
converting glucose 6-phosphate into glucose, instead of the hexokinase that catalyzes the
opposite direction in the glycolysis.

Gluconeogenesis is an excellent example of cooperation in multicellular organisms, where
liver cells invest energy to synthesize the more easily transportable glucose to provide energy
for other organs. Since it is an important pathway;, it is also regulated by the hormone insulin
[54].
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2.1.1. Example: metabolism in cancer

Because of metabolism’s central role in providing energy and biosynthesis of all cellular parts,
metabolic reprogramming is often observed in diseases. This phenomenon is incredibly well
studied in cancer and known as a hallmark of cancer [57]. Oncogenes do not only alter the
metabolism in general but also remodel the lipid metabolism, for example, via the EFGR [58]
or KRAS [59] signaling proteins. Understanding the molecular basis of cancer development is
of immense interest to systems medicine research. Cancer is a very heterogeneous disease,
and many subtypes can be identified. In the MoSBi publication, I worked with several
cancer-related datasets to evaluate the method for subtyping complex diseases. Here, I will
explain the metabolism in cancer as an example of the adaption of metabolic pathways in
diseases.

Cancer cells are growing and dividing very fast compared to normal tissue. This is also
reflected in an altered metabolism. The effect is famously known as the Warburg effect,
named after the scientist Otto Warburg, who discovered it in the 1920s [60]. It describes the
principal activity of aerobic glycolysis in cancer cells. Oxidative phosphorylation and the
TCA cycle, which provide the most energy, are down-regulated compared to the glycolytic
activity. There are several theories for this behavior. The two leading theories are oxidative
stress [61] and precursor demands [62]. First, fast-growing cells have not only a high demand
for energy but also for precursors of biomolecules [62]. They are required to synthesize other
biomolecules required for cell division and growth. For example, the cancer cells facilitate
metabolic flux from the glycolysis into the PPP [63]. This provides ribose sugars that are
necessary for nucleotide synthesis and NADPH for fatty acid synthesis [64] that are building
blocks for the membranes. Cancer cells also excrete specific metabolites, such as lactate or
glutamate. Since this is also observed in oxygen-rich environments, lactate excretion is not
fully understood [62]. Glutamate excretion is believed to stimulate nucleotide production
[65].

The second theory for increased glycolysis is an often low oxygen environment in cancer
tissue. The growth of blood vessels cannot always keep up with the fast growth of cancer.
Limited oxygen supply paired with oxidative phosphorylation can result in oxidative stress
[61, 66]. Oxidative stress is defined as the occurrence of reactive oxygen species that result
in tissue damage [67]. They can occur during the oxidative phosphorylation from electron
leakage [68]. At high concentrations, the cell’s antioxidant capacity cannot remove them
sufficiently anymore. Using just glycolysis as the primary energy supply can reduce this
stress.

Regulated is this metabolic reprogramming by the differential activity of central signaling
pathways including mTOR, PI3K, and AKT [66], but also circular non-coding RNAs have
been found as regulators of glycolytic enzymes in cancer [69]. These differences in metabolic
pathway activity between healthy and cancer tissue make it a potential target for therapeutics
inhibiting such anabolic activity [70].

In this section, I presented different metabolic pathways and showed that pathway defini-
tions are often blurry and that reactions can be part of multiple pathways. Furthermore, the
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Phosphatidylcholine (18:1(11E)/18:1(62))

Figure 2.3.: Structure of a Phosphatidylcholine (PC) lipid. The lipid consists of a glyc-
erol backbone (green), a phospho-choline headgroup (orange), and two fatty
acyls (blue). Lipid structure received from the SwissLipids database (identifier:
SLM:000008040).

cancer example showed that there are often complex relationships between metabolic func-
tions and regulations that are not always well understood. This is already a first indication of
why working with networks covering all known metabolism parts can be advantageous.

In the next section, I will introduce lipids, a versatile set of molecules essential for long-
term energy storage, membrane integrity, and signaling cascades. Their metabolism is highly
entangled with the previously introduced pathways.

2.2. Lipids

Lipids are molecules that are characterized by high hydrophobicity. They are commonly
known as fats or oils. Due to their heterogeneity, lipids can be divided into several groups and
classes. The most common group comprises glycerolipids consisting of a glycerol backbone,
one to three fatty acyls, and sometimes a headgroup. Figure 2.3 shows an example of such a
lipid. Fatty acyls (or fatty acyls, when not bound via an ester bond) are aliphatic chains that
can have one or several double bonds. In the example, two fatty acyls of carbon length 18 with
one double bond can be seen. The right fatty acyl has the double bond at the 11 position in
a trans configuration (E), counting from the first carbon of the chain. In contrast, the left fatty
acid has the double bond at the 6" position in a cis (Z) configuration. The lipid headgroup in
Figure 2.3 is a phosphocholine and therefore belongs to the Phosphatidylcholine (PC) lipid
class. Two other important groups are sterol-based lipids and sphingolipids. Both can also
have bonds with fatty acyls and headgroups.

Several nomenclatures for lipid names are available. Lipid-specific short-nomenclatures are
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more commonly used than the official naming of molecules by the International Union of
Pure and Applied Chemistry (IUPAC). Most common are the LIPID MAPS [71] or the Liebisch
shorthand nomenclature [72]. For lipid fragments, a dedicated lipid nomenclature is available,
as used by the ALEX123 software [73]. In this dissertation the LIPID MAPS nomenclature is
used, which defines the lipid in Figure 2.3 as a PC(18:1(11E)/18:1(6Z)). Different resolutions
for lipid names are possible, depending on the identification level of the lipid (more on that in
section 2.3). The naming of PC(18:1(11E)/18:1(6Z)) follows the highest resolution. It defines
the stereospecifically numbered (sn) position of each fatty acid at the glycerol (18:1(11E) at
sn-1 and 18:1(6Z) at sn-2), as well as the number of carbon atoms and double bond positions.
PC(18:1/18:1) describes the lipid with fatty acyl positions but without double bond positions.
PC(18:1_18:1) is the lipid without knowing the exact fatty acyl positions. This and all previous
descriptions are called "molecular species” since they resolve the molecular compositions of
the fatty acyls. Finally, the sum formula PC(36:2) only describes the sum of fatty acyl lengths
and the combined number of double bonds.

Lipids are very amphiphilic molecules, meaning they have hydrophobic (fatty acyls) and
hydrophilic (head group) properties (Figure 2.3). Therefore, they are not or only partially
soluble in water. Lipids with polar headgroups, such as PCs can form bilayers or micelles in
hydrophilic environments such as cells [74] (examples in Figure 2.4). Micelles with an outer
layer of polar lipids can be used to store or transport non-polar lipids, e.g., Triacylglycerol (TG)
species that consist of a glycerol backbone with three fatty acyls (Figure 2.5) and therefore do
not have a polar headgroup.

Lipid bilayers are the central part of cellular membranes, enabling a separation between the
intracellular space and the environment or between cellular compartments. It also prevents
polar molecules from passing through the membrane. Dedicated membrane transporters are
available, as explained for glucose transporters in Section 2.1. The composition of biological
membranes is commonly described by the fluid mosaic model [75]. It defines the membrane
as a mixture of proteins and lipids forming a bilayer, where biomolecules are diffusing freely
[75]. This can be compared to a two-dimensional fluid solution of diffusing lipids and proteins
along the membrane. The membrane’s fluidity has to be maintained through temperature
changes, especially for organisms that don’t maintain their temperature. Lipid class and fatty
acid composition of membrane lipids can be adapted to achieve this. Highly unsaturated fatty
acyls (many double bonds) induce bends in the carbon chain (as can be seen in Figure 2.3),
which results in higher distances between lipids in the membrane (higher fluidity). The fluid
mosaic model has been challenged by the lipid raft model [76]. It describes the membrane as a
self-organized structure that emerges from associations between different lipids and proteins
[77]. Based on this model, the bilayer is not a passive solvent but provides local accumulations
of distinct lipids and proteins [78]. These can facilitate environments for specific protein or
lipid functions, such as signaling processes.

Lipids are very effective for storing energy. With lipid synthesis, the cell can store energy
long-term and adapt its function. During degradation, energy can be released. Lipids can
also be converted into each other to fulfill different functions. In the following section, I
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Figure 2.4.: Important functions of lipids in the cell: As signaling molecules, long-term energy
storage, and main membrane component.

will explain these crucial parts of lipid metabolism. This is crucial to understanding lipid
functions and roles in different parts of the metabolism and signaling pathways.

2.2.1. Lipid metabolism

Lipid metabolism can be divided into the metabolism of complex lipids and fatty acids.
However, complex lipids require fatty acids for their assembly. Fatty acids also carry the
majority of energy that can be stored in lipids. The energy can also be released in a pathway
known as p-oxidation.

Fatty acid synthesis

The synthesis of saturated fatty acids is an iterative process that involves acetyl-CoA, the end
product of glycolysis (Figure 2.2) and NADPH as primary substrates. NADPH as a reducing
equivalent is primarily synthesized in the PPP. In each iteration, an acyl chain is extended
by two carbon atoms [79]. The iteration starts with the carboxylation of an acetyl-CoA to
malonyl-CoA. Then, under the release of CO,, a ketoacyl is created. In three further reactions,
the ketoacyl is reduced, dehydrated, and again reduced by oxidizing two NADPHSs. The
result of the iteration is an extended acyl-CoA chain. Odd-chain fatty acids, such as 15:0 or
17:0 can be synthesized by starting with Propionyl-CoA (a C3 chain) instead of acetyl-CoA
[80].

Elongation of saturated fatty acids is only one part of the fatty acid synthesis. As already
mentioned, fatty acids can have double bonds in the acyl chain, affecting their shape and
functional properties. Dehydrogenases catalyze the desaturation of fatty acids (i.e., introduc-
ing double bonds). These enzymes oxidize the acyl chain by reducing FAD. However, not all
desaturations can be catalyzed by human enzymes. Desaturation from oleic acid (C18:1-A9)
to linoleic acid (C18:2-w6), and from there to a-linoelic acid (C18:3-w3) is only synthesized
in plants [81]. Therefore, they are essential fatty acids that come from the diet. These can

13



2. Introduction

be utilized as substrates for further elongations and desaturations in humans to synthesize
e.g. arachidonic acid (C20:4-w6) or docosahexaenoic (22:6-w3). Since the focus of this thesis
lies on the metabolism of complex lipids, I will not discuss all details of fatty acid synthesis,
but interested readers can get an excellent overview of the different enzymes involved in the
pathway and their regulation in the publication of Guillou et al. [81].

p-oxidation

Another essential part of fatty acid metabolism is catabolism. Fatty acids store energy at
a high density. They are oxidized in the mitochondria to make the energy available for
other cellular pathways. The pathway is called B-oxidation since the third carbon of the
acyl chain (the B-position carbon) is oxidized in the process. Just like fatty acid synthesis,
B-oxidation is an iterative pathway, where in each iteration acetyl-CoA is cleaved-off the
acyl-chain while reducing one NAD™, one FAD, and consuming one H,O molecule [82]. The
resulting acetyl-CoA can then enter the TCA cycle and used to synthesize ATP. Odd chain
fatty acids are oxidized similarly, with the final product being Propionyl-CoA. This metabolite
can be transformed to Succinyl-CoA and also enter the TCA cycle

Oxidation of unsaturated fatty acids is also possible via this pathway. This requires two
additional enzymes. An enoyl-isomerase that moves a double bond from the A-3 to the A-2
position, and a reductase that reduces the double bond [82].

Complex lipid metabolism

Fatty acids are an integral part of complex lipids (Example in Figure 2.3). Therefore, they are
required for the first step of assembling complex lipids. The synthesis of glycerolipids begins
with a reaction catalyzed by the glycerolphosphate acyltransferase, which creates an ester
bond between a G3P and a fatty acyl-CoA [83]. The resulting lipid is a Lyso phosphatidic
acid (LPA) (Figure 2.5). An LPA acyltransferase can then attach another fatty acid to the lipid,
thus synthesizing a Phosphatidic acid (PA). After hydrolyzing the phosphate headgroup, the
class Diacylglycerol (DG) lipid is formed. Another ester bond can be created between a DG
and a fatty acid, which is catalyzed by a DG acyltransferase, converting the DG to a TG [84].
TGs are typical storage lipids in adipose tissue. Enzymes to catalyze the reverse reaction
also exist. Lipases hydrolyse TG to DG, Monoacylglycerol (MG) and fatty acids [85]. Also a
DG can be converted back into a PA species, by phosphorylation at the glycerol backbone
(catalyzed by the DG kinase) [86].

PA also serves as a precursor for other lipid classes, such as Phosphatidylinositol (PI). The
Cytidine diphosphate (CDP)-DG synthase uses PA and Cytidine triphosphate as substrates to
synthesize CDP-DG. In the next step, the PI synthase binds inositol to the phosphate group
of CDP-DG, while hydrolysing Cytidine monophosphate, creating a PI lipid [87]. PI can
be further phosphorylated at various positions of the inositol ring [86]. This is especially
important in signaling cascades.

Other classes of glycerophospholipids, such as Phosphatidylethanolamine (PE) and PC re-
quire DG as a metabolic precursor. PE is synthesized by DG reacting with CDP-ethanolamine,
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Figure 2.5.: Chemical structures of common lipid classes. Abbreviations: Lyso phosphatidic
acid (LPA), Phosphatidic acid (PA), Phosphatidylethanolamine (PE), Diacylglyc-
erol (DG), Triacylglycerol (TG), and Ether Phosphatidate (PA-O).

catalyzed by the choline/ethanolamine phosphotransferase (CEPT) [88]. Alternatively, it can
be created by decarboxylation of Phosphatidylserine (PS). PC also can be synthesized by
the CEPT, which catalyzes a reaction of DG and CDP-choline. This de-novo synthesis of
PE & PC is also known as the Kennedy pathway [89, 90]. Another way is by three iterative
methylations of a PE (phosphatidylethanolamine N-methyltransferase) [88].

Not all glycerophospholipids have fatty acids attached by ester bonds. Ether lipids can
also be commonly found in cellular membranes. An Ether Phosphatidate (PA-O) can bee
seen in Figure 2.5. The ether lipid biosynthesis pathway starts with introducing an ester
bond between a Glycerone-phosphate and a fatty acid [91]. This bond is then oxidized by the
alkylglycerone-phosphate synthase, resulting in a Ether Lyso Phosphatidate (LPA-O). Several
pathways can bind more fatty acids or create headgroup modifications [91]. These pathways
are often the same as for the non-ether counterparts.

Sphingolipids are another important class of lipids that are not based on a glycerol backbone.
They consist of a sphingoid backbone, where an additional fatty acid and headgroup can be
attached. An example is Ceramide (Cer), a subclass of sphingolipids (Figure 2.5). They are
synthesized by a reaction of a fatty acid with serine (Serine-palmitoyl transferase), creating
a ketosphinganine, which is then reduced to a sphinganine [92]. The sphinganine can bind
a fatty acid, producing a Cer. By adding or modifying headgroups of the Cer, other lipid
classes can be synthesized (e.g., Sphingomyelin (SM)). It was recently discovered that the
pathway of synthesizing sphingolipids in bacteria varies in the order or reactions compared
to eukaryotes [93]. In this pathway, ketosphinganine first binds a fatty acid before reducing it
to Cer.
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So far, I have introduced the metabolism of complex lipids only on the lipid class level and
not for specific molecular species. This is because lipid enzymes are highly multi-specific, a
crucial aspect that was the basis for the lipid network methods presented in this dissertation
[22, 23]. I will explain this using two lipid enzyme families as examples. The Phospholipase
A; (PLA;) and Membrane-bound O-acyltransferase (MBOAT) families. MBOAT enzymes
attach a activated fatty acid (bound to CoA) to lysophospholipids. Gijon et al. [94] investigated
the preference for different MBOAT enzymes towards phospholipid classes and fatty acid
substrates. MBOAT1 showed a strong preference toward C18 fatty acids, especially for
PS. Another family member, MBOAT?7 preferred arachidonic acid and PI lipids. MBOAT?2
& 5 were less specific with substrates and catalyzed the reaction over a broader range of
phospholipids. Hayashi et al. [95] performed a similar study for PLA; enzymes. This class of
enzymes hydrolyses fatty acyls from glycerophospholipids. They also showed that different
PLA; members can catalyze the reaction over various fatty acyl and lipid class substrates.
With e.g. cPLA; being more specific and sPLA; less specific. The two studies provide great
insight into how lipid enzymes act on the lipidome. Instead of changing the abundances
of specific lipid molecular species, they act on multiple lipids and alter the lipidome’s lipid
classes and fatty acids distribution. PLA; and MBOAT are opposing parts of the Land’s cycle
that is remodeling the lipidome [96].

This multispecificity shows how difficult it is to find all associations between individual lipid
species and enzymes. As I will explain in section 2.3 about the experimental measurements
of lipids, many lipids have only been identified recently, and more will be in the future
with technological advances. Filling these gaps computationally and creating comprehensive
reaction networks for lipids was a central part of this dissertation.

Lipid transport

Lipid metabolism happens not only within a cell; lipid transport across organs is also crucial
for organisms. The transport of lipids is not as easy as for other water-soluble metabolites.
Their hydrophobic properties lead to the formation of micelles or double layers. Therefore,
dedicated transport mechanisms have been developed. We can differentiate between vesicular
and non-vesicular. In non-vesicular pathways, lipid-transfer proteins carry individual lipids
through the cell [97]. However, in this way, they can move only small amounts of lipids.
Especially in multicellular organisms, where stored fats in the form of TG must be transported
through the bloodstream from adipose tissue to the liver and vice versa, vesicular lipid
transport is utilized. A significant class of lipid vesicles is lipoproteins. They consist of a
core of TGs, and cholesteryl esters, covered by a monolayer of phospholipids and proteins
[98]. Lipoproteins are characterized by size and weight, and are commonly grouped into
five classes: Chylomicrons, very-low-density lipoprotein (VLDL), low-density lipoprotein
(LDL), intermediate-density lipoprotein, (IDL) high-density lipoprotein (HDL). HDLs carry
the lowest percentage of TG and cholesterol [98]. Their function is to transport lipids from
peripheral (adipose) tissue to the liver for hydrolysis [99].

Different lipoproteins have been associated with cardiovascular diseases [100]. They are
commonly investigated in blood diagnostics as health indicators. Cholesterol and lipoprotein
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research was awarded the Nobel prize in medicine in 1964 and 1985 [101, 102]. However,
current technologies make it possible to investigate lipids not only on the lipoprotein level
but to identify and quantify different lipid species. Such fine-grained insights can bring more
detailed insights into disease-related alterations in lipid metabolism.

2.2.2. Functions of lipids in health and disease

When thinking about the function of lipids, an important question is why such a variety of
lipids exists. Cell membranes comprise predominantly of glycerophospholipids, in particular
PC [103]. Long-term energy storage is done through TGs and cholesterol. But why are there
so many glycerophospholipids and other lipid classes?

PI plays an important part in cellular signaling cascades [104]. It can be phosphorylated
at the inositol ring. In this way, it participates, e.g., in the PI3K/Akt pathway [105] that
is important for cell growth and proliferation. In this pathway, PI3K phosphorylates PI-
bisphosphate, which enables Akt to bind with it, which then, in turn, can directly activate
mTOR [106], a regulator of many processes, such as metabolism and mRNA translation.

Cardiolipins (CLs) are lipids consisting of two PAs connected via glycerol, bound to their
phosphate headgroups. This gives them unique physiochemical properties [107]. For example,
they can promote curvature of the membrane. For that reason, they can be found in the inner
membrane of mitochondria, which is strongly curved.

Sphingolipids participate in apoptotic signaling pathways, and they mix poorly with
Cholesterol and therefore tend to form microdomains [108]. As Globosides, which are
sphingolipids with polysaccharide headgroups, they contribute to the extracellular matrix.
By aggregating certain lipid classes in the membrane, cells can regulate membrane dynamics,
such as expansion or vesicle transport [109]. Lipids can also support certain folding states
of membrane-bound proteins and hence their function by stabilizing or destabilizing them
[110]. In a recent publication, researchers found that a higher variability of lipids can confer
robustness to environmental changes [111]. Also, fatty acids can fulfill essential functions.
Arachidonic acid and its derivatives are involved in inflammation, pain, and fever processes
[112]. They can also be found in the stratum corneum, the outer protective layer of human
skin [113].

These are not all functions and pathways where lipids are involved. However, it shows the
diversity and requirements for all the different lipids found in organisms. Because of their
importance, it is also clear that lipids are involved in many diseases.

Lipids in diseases

Obesity is the most commonly known lipid-associated disease. Together with other factors,
obesity can lead to metabolic syndrome. It is defined by an excessive flux of free fatty acids
(FFA), a pro-inflammatory state, and induces a high risk for type-2 diabetes, as well as CVD
[114]. A strong correlation between Cholesterol and CVD has been observed [115]. High
concentrations of FFA can activate receptors that promote lipoprotein lipase activity [116].
This leads to TG release from VLDLs and results in Cholesterol rich HDLs. Furthermore,
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FFAs are the main drivers of lipotoxicity [117]. Lipotoxicity describes the accumulation of
lipids in non-adipose tissue that can lead to cellular dysfunction and cell death [118]. In
the heart, FFA accumulation results in TG synthesis, as seen in CVD [118]. Also, insulin
resistance of type-2 diabetes patients can be related to lipotoxicity [117].

In cancer, an altered lipid metabolism can also be observed. Oncogenic activation of the
PIBK/Akt pathway results in lipid synthesis [19]. De-novo lipid synthesis is required for
growth and proliferation [119]. Especially synthesis of saturated lipids has been observed [120].
But also, the breakdown of storage lipids to meet energy demands is accelerated. Therefore,
liver cancer, predominantly hepatocellular carcinoma, drastically impacts the concentration of
lipoproteins in the blood because of its importance in the lipoprotein metabolism [121]. Other
examples are thyroid diseases, a hormone gland that also influences lipoprotein metabolism
that can have an impact on HDL & LDL levels [122].

Other diseases where an altered lipid metabolism was shown are neurogenerative diseases,
such as Parkinson’s and Alzheimer’s [123, 124], and viral infections. Lipids play an essential
role in virus-host interactions in the form of receptors, fusion cofactors, or modification of
membrane curvature [125]. Their membrane receptors could also infer with the lipoprotein
metabolism [121].

Due to the relevance of lipids in many biological processes and especially the dysregulation
of lipid metabolism in many diseases, studying lipids can lead to a better understanding
of diseases. Investigating the role of lipids in the non-alcoholic fatty liver disease (NAFLD)
was the goal of one publication in this dissertation [21]. Working with lipid data requires
understanding the experimental procedure and computational processing of the data. This
is also necessary for discussing limitations and the potential of lipidomics for future re-
search. Therefore, mass spectrometry-based lipidomics, the research field that measures lipid
abundances of biological systems, is introduced in the next Section.

2.3. Lipidomics

Deciphering the complex lipidome of organisms is the goal of lipidomics. Nowadays,
lipidomics experiments are commonly performed using mass spectrometry (MS) [126, 127].
Before the wide availability of mass spectrometers, lipids were usually measured by thin-layer
chromatography (TLC). This method applied lipids in an organic mobile phase to a stationary
silica gel [128]. Lipid classes eluted at different positions after a particular time based on
their interactions with the stationary phase. They could then be identified from standards
and labeling with a dye [128]. Also, a two-dimensional TLC can be performed by applying
mobile phases with different elution powers after each other [129]. TLC made it possible to
identify the abundances of different lipid classes. However, the identification of individual
lipid species was not possible.

Using mass spectrometry coupled with Liquid chromatography (LC), over a thousand
lipids species can be identified [130]. This allows more profound insights into changes in the
lipidome. The workflow of a typical lipidomics experiment can be seen in Figure 2.6. After
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Figure 2.6.: Common workflow of mass spectrometry-based lipidomics experiments.

sample collection, lipids are extracted and optionally separated in a liquid chromatography
step. After that, lipids are ionized and enter the mass spectrometer. It detects Mass-to-charge
(m/z) ratios of ions and, when performing a tandem-MS experiment, can break apart the
ions and measure their fragment m/z ratios. From the mass spectra, dedicated software tools
identify and quantify lipids. The resulting lipidomics data can then be used for statistical
analysis and biological interpretation. In many ways, lipidomics and metabolomics workflows
are very similar. The most significant differences are in the extraction due to the non-polarity
of lipids and computational identification. Each step of the experimental lipidomics pipeline
influences the quality of the data and the resulting level of lipid identification, which in turn
influences the computational analysis and interpretation. The variability of the workflow can
yield different results. In a clinical context, standardization of such workflows is crucial. All
necessary steps are explained below to give an overview of the complexity of a lipidomics
experiment.

Sample collection

The first step in lipidomics is the collection of samples. In clinical lipidomics, blood [131] or
tissue [132] samples are commonly used. Because of potential oxidization or enzyme activity
that might alter the lipid composition even after sample collection, samples should be stored
at -80°C [133]. Before starting an experiment, it should also be decided how many samples
are necessary to perform the desired statistical analysis. Adding additional samples later
might induce batch effects, which must be computationally removed. However, this requires
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knowledge of batch processing of each experimental step.

Lipid extraction

After sample collection, lipid extraction is performed. It is done to remove all non-lipid
molecules from the solution. Unwanted and less volatile compounds such as proteins or
specific metabolites can lead to ion suppression in the MS [134], thus reducing the sensitivity of
identifications in the experiment. The extraction should be performed in a cold environment,
e.g. in a cold room or on ice. This ensures equal conditions for each sample and reduces the
chance of undesired enzymatic or chemical reactions inside the sample after collection. Before
the extraction starts, internal standards are added to the sample material. These resemble
typical lipid classes that are expected in the sample but unlikely to exist in the organism, e.g.,
synthetically modified lipids [135]. They serve the purpose of monitoring the consistency of
sample preparation and absolute quantification.

The most common protocols for lipid extraction are the Folch [136] and the Bligh & Dyer
method [137]. Both methods are based on Chloroform, methanol, and water and aim to
split the polar phase, which includes metabolites and proteins, from the non-polar phase
containing lipids. The Bligh & Dyer method is faster and requires fewer volumes [137]. Also,
other extractions that use, e.g., methyl tert-butyl ether (MTBE), have been developed [133].
Additionally, fractionation might be used to separate polar and non-polar lipids [130].

As I observed in the NAFLD stratification study [21] that the extraction day can also result
in batch effects. This can be due to temperature alterations or newly mixed chemical solutions
for the extraction. Therefore, reporting lipidomics data should also include extraction batch
information for large cohorts.

Separation

Before ionization and injection into the MS, a separation layer is often applied. This step is
not performed in direct-injection (also called shotgun lipidomics) experiments, where the
extract is ionized directly. Due to the complexity of the lipidome, separation is required to
detect the complete structural identity of lipids from complex biological samples [138].

The most common separation technique for lipidomics is LC. It separates lipids by chemical
properties such as polarity. An LC consists of a high-pressure pump and a chromatography
column. The column contains particles that interact with the lipids, also known as the
stationary phase. Under high pressure, the column is loaded with the lipid solution, and a
mobile phase is added that is pumped through the column. Through interactions of lipids
with the mobile and stationary phase, lipids pass the columns at different times, which is
captured as the retention time. Different LC techniques are available for lipidomics that
differ in stationary and mobile phase [138]. In reverse-phase chromatography, a non-polar
stationary phase is used with a polar mobile phase. This results in polar lipids eluting first,
whereas more non-polar lipids eluting later. Normal phase chromatography is the opposite,
with a stationary and non-polar mobile phase. Hence, lipids are eluting, starting with highly
non-polar lipids. Finally, hydrophilic interaction chromatography uses a polar stationary
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phase and an aqueous mobile phase. In this chromatography method, polar lipids elute earlier
than non-polar lipids. It increases the sensitivity of the MS identifications since a less diverse
set of lipids is measured at each retention time [139]. LC columns with different lengths,
particle sizes, and chemical properties have been shown to influence lipid identification
performance [140]. Therefore, the choice of LC technology and columns should be carefully
evaluated.

Gas chromatography (GC) is is mainly used for FFAs. The principle is that the solvent is
inserted into the GC and heated up. Compounds vaporize at different temperatures based
on the interactions with the stationary phase. It has provided a good separation for fatty
acid (and derivative) characterization [141]. For complex lipids, GC requires derivatization to
increase stability and volatility [142] and therefore is typically not used.

Another, more recently used separation technique for lipidomics is Ion mobility spectrom-
etry (IMS). This separation is done post-ionization and often combined with LC. It adds
another dimension to the measurement, the Collision cross-section (CCS). The principle relies
on interactions of ions in the gas phase with a neutral drift gas that yields separation of ions
based on size and chemical properties [143]. Multiple versions of IMS are available. For
example, in drift tube IMS, ions travel through an electric field and are slowed down by the
drift gas. In trapped IMS, ions are trapped, and the trapping voltage is gradually reduced
while a drift gas flows through the trap. Based on their collisions with the drift gas, ions leave
the trap at different time points. IMS happens on the scale of milliseconds and therefore is
a high-speed separation technique, compared to LC, which is on the scale of minutes [143].
In lipidomics, IMS can help to minimize sample loss and preserve the biomolecular context
(e.g., glycolipid conjugates) [144]. It has been shown to provide a better sensitivity with low
sample amounts [145].

Ionization

A MS measures the m/z ratios of ions. Not all lipids are ions in their natural state. Ionization
methods can charge molecules such as lipids such that the MS can detect them. The two main
ionization methods used for lipidomics are Electrospray ionization (ESI) and Matrix-assisted
laser desorption/ionization (MALDI).

For developing the ESI method, John Fenn received the Nobel prize in chemistry in 2002
[146]. ESI ionizes lipids that are in a liquid solvent. The solvent with lipids is ejected from a
metal capillary with electric potential and forms a cone at the front [147]. Charged droplets
are emitted at the tip of the cone, which is supported by a gas flow. The solvent is rapidly
evaporating from the droplet. While the droplets shrink, the charge density builds up, due
to a maximum number of elementary charges on a droplet (Rayleigh limit) [147]. Droplets
exceeding this limit form even smaller droplets [147]. This way, droplets become smaller
and smaller until single molecules and potential adducts are left. Adducts can come from
the sample matrix or mobile phase solvents [148]. These nano droplets then enter the mass
spectrometer (Figure 2.6). ESI is known as a soft ionization method. However, fragmentation
of ions can occur and lead to losses of, e.g., hydroxyl, ammonia, or formate groups [148].
Buffer additives in the solvent are also commonly added to modify the pH and improve
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ionization efficiency [138]. The exact mechanism of ionization has not been understood, but
two physical models have been proposed [149]. The process results in lipids that have one or
multiple charges. ESI is commonly combined with LC and IMS.

The other commonly used ionization method is MALDI. For MALDI, the sample is em-
bedded in a matrix of often aromatic molecules, such as 2,5-dihydroxybenzoic acid. The
solvent is added in a liquid phase, evaporates, and matrix molecules co-crystallize with the
analytes [150]. Then a laser pulse is directed to the sample. This results in evaporation of
analytes and ion formation with the matrix molecules. Different laser wavelengths, pulse
widths, and matrix elements influence the ion formation [151]. MALDI is especially suited
for spatial lipidomics analysis since the laser beam can be directed at different positions, such
as a histological tissue sample [152]. It can also be combined with IMS for lipidomics [153].

Finally, it is essential to mention that some lipids ionize better with negative adducts,
whereas others are mainly positively ionized.

Mass Spectrometry

m/z values of ionized lipids are measured in the mass spectrometer. If ions are additionally
fragmented and product ions measured, it is called tandem MS or MS2. The layout of
most instruments is very similar. Since most machines nowadays are tandem MS, I will
describe their basic setup. Ions enter the instrument and are accelerated by an electric field.
After that, they enter a quadrupole mass filter. It consists of four parallel electrodes with
oscillating voltages. By setting the voltages for a specific frequency and amplitude (described
by Mathieu’s differential equation), only ions of a specific m/z value pass the device [154].
Others collide with the electrodes or walls. Selected ions then proceed to fragmentation in the
collision cell. In there, ions collide at high speeds with neutral molecules, inducing breaks in
covalent bonds. These fragments can be lipid specific and, therefore, helpful for identifying
molecules (More on that in the next paragraph). After this, ions enter the mass analyzer. The
most common mass analyzers are the time-of-flight (TOF), quadrupole, and orbitrap.

As the name implies, the TOF mass analyzers measure the flight time of accelerated ions.
It is based on the inertia of m/z ratios of molecules, which is higher for heavier molecules.
Often, ions are accelerated and redirected by an electromagnetic repulsion. Their drift can be
measured by an ion detector and the m/z ratio calculated. The quadrupole measures ions
similarly to the quadrupole mass filter. It is set for specific m/z values or cycles through
ranges of m/z values. The amount of passing ions is detected for each m/z value. In the
orbitrap mass analyzer, ions are orbiting through an elliptic spindle, and the induced current
is measured [155]. Through Fourier transformation, m/z values can be identified. A good
overview of mass spectrometer types and their potential for lipidomics was published by
Kofeler et al. [139].

Many mass spectrometers have additional parts, such as ion traps, to accumulate ions in
specific steps, but that does not alter the basic principle of filtering, fragmentation, and mass
detection. Due to positive or negative charges of ions, an MS measurement is done either in
negative or positive mode, where it accelerates only one type of charge. When a simple MS
experiment is performed without fragmentation, the initial mass filtering and fragmentation
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steps are not performed, and ions proceed directly to the mass analyzer.

In lipidomics, the analysis can be differentiated between targeted and untargeted [156].
Targeted lipidomics is performed when known lipid species should be confirmed or quantified
in a sample. It is performed, by filtering for specific precursors (for simple MS) and fragment
ions (for MS2). This requires knowledge about the mass and fragmentation patterns of
the target molecule. The most common instrument of choice for this analysis is the triple-
quadrupole mass spectrometer [156], first developed by Yost et al. [157]. The untargeted
analysis aims at identifying all (or as many as possible) lipids from a sample. For MS1, as
many ions as possible within a mass range are detected. Untargeted MS2 can be generally
divided into Data-dependent aquisition (DDA) and Data-independent aquisition (DIA). DDA
selects and fragments ions based on the measured intensities of the precursor ions. Ions
exceeding a certain intensity are fragmented, and the fragmentation results are detected. This
is the most common MS2 mode in lipidomics [140]. A restriction is that low-abundant lipids
might not be fragmented and that within a time interval, only a limited number of ions can
be fragmented. The problem can be partially solved by multiple DDA MS2 runs with the
iterative exclusion of the previously fragmented ions [158]. In DIA, ions are fragmented
independently of their measured abundance. One DIA method is All ion fragmentation (AIF),
which fragments all ions without a prior mass filter [159]. This mode loses information about
the precursor ions of the fragments, and fragments of all ions are mixed. An alternative
is Sequential window acquisition of all theoretical fragment ion spectra (SWATH) MS [160,
161]. In SWATH small windows of mass ranges are selected for fragmentation and cycled
through. This method was initially developed for proteomics, but it can also be applied for
metabolomics and lipidomics, where it could benefit absolute quantification [162].

Lipid Identification & Quantification

Identifying lipids from MS1 spectra is based on reference databases of lipids. Masses of lipids
combined with possible adducts can be matched to observed peaks. Additionally, isotopic
peaks can be incorporated to improve the identification [163]. However, such identification
is still prone to errors since multiple molecules can have the same mass. It also does not
allow the identification of lipids on the molecular species level. For example, the mass of
PC(18:2_18:2) is identical to the mass of PC(16:0_20:4) (both have the sum formula PC(36:4)).

MS2 can provide the information to identify molecular species. Since fragmentation of
lipids commonly occurs at the ester bonds of fatty acyls and the headgroup, these can be
predicted or are available in libraries, such as the ALEX'? lipid calculator [73]. Figure 2.7
shows the MS2 spectrum of a PC(18:3_18:3) in negative scan mode. For example, a fatty acid
fragment (m/z 277.22) can be observed. Another example is the neutral loss of fatty acid
and parts of the headgroup (m/z 502.30). All fragment information combined can increase
confidence in the identification of a lipid.

Software tools can automate the identification of hundreds of lipids. Non-commercial
software for shotgun lipidomics is e.g. ALEX [164], ALEX123 [165], or LipidXplorer [166].
LC-MS(2) identification can be performed with MS-DIAL [167], Lipid Data Analyzer [168],
LipidMatch [169] or LipidHunter [170]. Because quantifying lipids on fragments is chal-
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Figure 2.7.: Fragmentations of a PC(18:3_18:3) with a CH3COO™ adduct in negative scan
mode. (A) MS2 spectra of the m/z 836.5 precursor. (B) Potential annotated

fragments of the peaks in A.

The figure is taken from the publication of J. K. Pauling et al. [73]. It has not been
modified and is originally provided under the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/).
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lenging, it is commonly done on MS1 peaks, using identified lipids from MS2 spectra, if
available. The Peak area or intensity of identified lipid peaks is used for quantification.
Baseline correction from blanks can be done correctly for noise in the measurement [169]. If
internal standards of known concentrations were added at the beginning of the extraction,
they could be used for (semi-)absolute quantification. In this case, the intensity of lipids of
the same class (or lipids with a similar retention time) is used to normalize peaks and predict
concentrations from a standardization curve [171].

2.4. Other omics technologies

Lipidomics is not the only "omics" discipline. Compared to other techniques, it is a relatively
new field. Omics techniques have enabled a systematic molecular analysis of organisms. While
the main focus of this dissertation lies in lipidomics, other omics techniques are commonly
used for molecular biological research and can give valuable insights into biological functions.
The disease subtyping method I present in this dissertation [20] can be used with any
omics data. In the systematic evaluation of the method, transcriptomics, proteomics, and
metabolomics data were used. I will introduce some of the most widely used omics methods
in the following.

Capturing more precise and complete data is dependent on technological advancement. The
tirst human genome was sequenced in 2001 [172]. However, the first gap-free sequence of a
whole human genome has only been published in 2022 [173]. Genomics can reveal mutations
that might be risk factors for diseases [174]. In contrast to the first sequencing method
published in 1977 by Sanger et al. [175], next-generation sequencing (NGS) is massively
parallelized and high-throughput [176].

Observing and understanding the changes in gene expression in disease development
can be achieved by transcriptomics. Transcriptomics first was traditionally measured with
microarrays, a targeted method, where transcripts bind to the provided oligomers. Currently,
transcriptomics is mainly done by mRNA sequencing. With this method, transcripts are
individually sequenced after breaking them into smaller reads and mapped to a genome
[177]. In contrast to the genome, the transcriptome is more dynamic, since cells can alter their
gene expression.

As already mentioned, mRNA is not the final product of converting a gene into a functional
unit. After transcription comes translation, where a nucleotide sequence is translated into
an amino acid sequence, resulting in a protein. Therefore, proteomics can be beneficial in
investigating the functional state of a sample. Similarly to lipidomics, proteomics is performed
with MS. Proteins are split into smaller peptides prior to ionization. In the MS, the m/z
ratios of peptides are measured and additionally fragmented. The peptide chain commonly
breaks at the peptide bond, leaving peptide fragments broken at different places of the chain.
Since the masses of amino acids are well known, the fragments can be computationally put
together and quantified. Thousands of proteins can be identified in a sample using MS.
Mass spectrometry-based proteomics has the advantage that it can also be used to identify
posttranslational modifications, such as phosphorylations that, e.g., activate the catalytic
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activity of a protein. MS-based proteomics can also be combined with protocols such as
affinity purification [178]. This way, proteins can bind and build complexes to a specific
target before measuring. Only proteins bound to the target proceed to the MS. This makes it
possible to identify interactions between proteins.

Metabolomics is performed using MS or nuclear magnetic resonance spectroscopy (NMR).
With MS, molecules are identified based on their m/z ratio, whereas in NMR intra-molecular
and inter-molecular resonances between protons (or other atomic nuclei) are measured
for identification [179]. MS yields higher sensitivity and reliable identification, whereas
NMR provides highly quantitative and reproducible measurements [180]. Identifying and
quantifying metabolites or lipids only gives a snapshot of the current state of the metabolism.
Even if several time points are measured, it cannot be tracked which metabolic pathways
are active or into which end products metabolites are converted. The idea of 3C fluxomics
is to achieve this by labeling metabolites. In nature, two stable isotopes of the carbon atom
exist, 12C with 6 protons and 6 neutrons in the atomic core, and 13C with 6 protons and 7
neutrons. The relative abundance of '3C carbon in nature is only around 1% [181]. Molecules
with 13C carbon have a higher mass than the molecule without the isotope, which can be
detected in an MS. By introducing artificially 1*C enriched metabolites to a sample, e.g.,
glucose, and performing metabolomics over a series of time intervals, it can be observed that
other molecules with the 1*C carbon become higher abundant. Calculating the flux through
metabolic pathways from this data can be done computationally but requires knowledge
about active enzymatic reactions in a sample [182].

This is not a complete list of omics techniques, but it gives an overview of some of the
most popular ones. For omics data, it is also important at what resolution and dimension it is
measured. Typically, omics data is measured from bulk samples. This means that cells from
cell culture, tissue, or a blood sample are processed and the biomolecules of interest isolated.
This is usually done to get a minimum required amount of sample to detect the molecules.
However, such a sample can contain many different types of cells. Experimental comparisons
between samples from cancerous and healthy tissue on the bulk level might not reflect the
high heterogeneity of cancer cells within a tumor [183]. A complete understanding of the
tumor would require investigating its molecular biology on the single-cell level.

Therefore, single-cell omics techniques have become more prominent. Single-cell RNA
sequencing was first published in 2009, and the technology has made big progress since
then [184]. For instance, subclasses of cells in the brain cortex could be revealed using
single-cell RNA sequencing [185]. In cancer research, it can be utilized to understand
metastasis development [186]. Single-cell analysis is possible not only for RNA data. Also,
metabolomics/lipidomics can be performed on the single-cell level using MALDI MS coupled
with microscopy [187]. Another important aspect of understanding the function of cells
within a tissue is their spatial location. A functional tissue contains multiple cell types that
are specialized and often require a specific cellular environment. Spatial omics techniques can
be used to achieve this. They aim to give a two-dimensional representation of, e.g., metabolite
abundances. For lipidomics, this is achieved by MS imaging [188].
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Gaining knowledge from large amounts of biological omics data can be facilitated by
computational methods, such as the ones developed in this dissertation. The following section
introduces essential concepts of computational biology.

2.5. Computational Biology

The Computational biology (CB) research field aims to produce knowledge about biological
processes and systems by analyzing and modeling biomedical data. This can range from
developing novel computational methods to applying analysis and modeling approaches.
It is a highly interdisciplinary research field since it requires understanding experimental
potentials/limitations, statistics and mathematical modeling, and the biological system.
The work of a computational biologist often starts after data has been acquired and is
complementary to experimental work by helping to generate knowledge from the data.

Biology has become a highly quantitative science [189] because research questions usually
involve many genes or connections. Large quantities of "omics" data contain various informa-
tion about the state and change of a biological system, be it from case-control experiments
or big clinical cohorts with different disease manifestations and origins. Molecular biology
consists of complex interactions between thousands of molecules that have dynamic effects
on each other. CB approaches can be used to identify disease mechanisms, infer regulatory
interactions, provide low-dimensional representations, or enable multimodal data integration
[190]. Therefore, computational biology utilizes methods and concepts from mathematics,
statistics, machine learning, and physics to model biological data.

A quote from an article about computational biology summarises it very well: "Compu-
tational biology turns ideas to hypotheses" [191]. This highlights that the outcome of a CB
analysis are hypotheses about phenomena, which require external confirmation or validation
by additional experiments that, e.g., test the proposed mechanism on other patient data that
was not part of the original analysis.

2.5.1. Systems biology & systems medicine

The computational methods explained in this section focus on studying systems” biological
phenomena. In systems biology, cellular function is studied as a whole; instead of investigating
single entities, such as single genes or lipids [192]. Two main paradigms exist to study systems
biology [193]. In bottom-up analysis, a subset of previously known connections is used to
predict changes in the system. This relies on precise (quantitative) knowledge of interactions.
The top-down method tries to find new interactions and regulations from vast molecular
biological data. Top-down can also profit from prior knowledge in the form of molecular
interactions. Bottom-up research requires more targeted data, with many perturbations to
estimate the systemic response, whereas top-down studies work with big datasets and fewer
perturbations [193]. Experimental data and computational models must be integrated to
understand complex biological behavior [194]. Especially for top-down research, omics data
is necessary, capturing the whole system’s properties. The results of a top-down analysis
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can serve as a starting point for targeted bottom-up research. The computational methods
presented in the publications of this dissertation follow the top-down paradigm. They were
designed to identify disease subgroups, hypothesize mechanisms, and visualize trends in
complex omics data.

Applying systems biological research methods to investigate diseases is known as systems
medicine. Systems Medicine wants to overcome current limitations of disease complexity [12].
The aim is to make medicine predictive, preventive, personalized, and participatory, referred
to as P4 medicine [195]. To reach this goal, molecular environment, socioeconomic interactions,
and co-morbidities of diseases are analyzed [196]. A particular challenge is integrating all
types of (molecular) biological information [197]. To get a systematic understanding of a
disease on the molecular scale, all levels of biology need to be considered. This is where
CB comes in, to convert data into knowledge that reveals disease mechanisms, diagnostic
markers, subtyping, and drug targets [197]. Molecular interaction networks and regulatory
information offer additional benefits to the computational analysis in systems medicine [198].
In the long term, systems medicine can personalize medicine by treating molecular causes
rather than symptoms [195].

This dissertation’s computational methods and applications fit into the systems medicine
workflow for subtyping, biomarker detection, and mechanism investigation. While they work
independently in their sub-domain, I will present an integrated workflow in the discussion.
Systems medicine is very similar to systems biology and shares many principles. Therefore,
they can also be applied in a general systems biological context to study the behavior of
cellular systems in a top-down fashion.

In the following sections, I will explain and summarize concepts focusing on analyzing
clinical omics data. I divided the section into data-driven approaches, which work entirely
with the quantitative information provided by the omics experiment, and prior knowledge-
based approaches, which additionally take prior knowledge into account.

2.5.2. Data-driven approaches

While simple statistical methods, such as a t-test that compare two population means [199]
can help manifest differences between two experimental groups, more sophisticated method-
ologies are necessary to unravel the complex relationships and interactions in molecular
omics data.

Machine learning algorithms are promising to infer biological knowledge from such data
[190]. The algorithms are designed to learn and find patterns in data. Combined with the right
research question, their findings can be interpreted as molecular biological insights. Machine
learning algorithms used in CB can mainly be divided into supervised and unsupervised
learning methods.
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Unsupervised machine learning

Unsupervised machine learning works with unlabeled data, meaning that data is used as
an input without providing additional information, such as the experimental conditions.
Dimensionality reduction algorithms aim at representing multi-dimensional data at a low
dimensionality, which humans can capture. Prominent representatives are Principal Com-
ponent Analysis (PCA), Uniform Manifold Approximation and Projection (UMAP) [200],
and t-Distributed Stochastic Neighbor Embedding (t-SNE) [201]. They make it possible to
visualize data, e.g., hundreds of lipid features in a two-dimensional plot. PCA shows linear
combinations of features that exhibit the most variance in the data. t-SNE and UMAP are
non-linear methods that aim to preserve similarities between samples and embed them in
a low-dimensional space. Such methods are often the first step in the analysis to get an
overview of the data. In the NAFLD stratification study, we used dimensionality reduction to
visualize global differences between experimental groups and potential batch effects. They
can also be used to investigate multiple omics layers jointly [202].

Unsupervised approaches based on neural networks are becoming more popular with
better data availability. For example, to learn low-dimensional representations for integrating
multiple datasets [203] or multiple omics layers [204].

Another group of unsupervised learning algorithms is clustering. Clustering algorithms
group samples into subsets (clusters), where samples within one cluster are similar, whereas
non-similar samples belong to different clusters [205]. Typically, clustering algorithms require
the number of clusters as a parameter. Therefore, they require an initial guess or hypothesis
on the number of expected groups in the data. However, methods to estimate the best number
of clusters from the data have been developed [206]. Probably the most simple clustering
algorithm is k-means. The algorithm assigns samples to clusters based on their distance to
centroids. Their positions are updated to the mean positions of all the assigned samples until
the algorithm converges. Other clustering algorithms are based on densities (e.g., DBSCAN),
distributions (Gaussian mixture models), or hierarchical trees. Different clustering approaches
can yield different results on different datasets and should therefore be evaluated to select the
most appropriate tool for an analysis [207]. The application of clustering for clinical omics
data is, e.g., the de-novo grouping of disease patients based on molecular data resembling
traits such as treatment response, survival, or recurrence [208]. This can provide an alternative
view of the disease based on the molecular phenotype and be less biased than commonly
used disease definitions. Molecular subtyping can enable more efficient treatments [209],
since patients show similar molecular alterations. Especially in the clinical context, high
interpretability of stratification is important [210].

Biclustering is a special case of clustering, where samples and features (e.g., lipids) are
clustered simultaneously. They not only find sample subgroups but also subsets of features
that are characteristic of them [20]. This can yield additional insight for the identification and
characterization of patient subgroups. In a systems medicine context, it can be particularly in-
teresting for disease subtyping since the disease does not affect all biomolecules but manifests
in a subset of genes, proteins, lipids, or pathways. Many algorithms have been developed,
with different objectives and heuristics [211]. Biclustering is the primary technology for the
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MoSBi method [20]. The publication also provides a more detailed overview of biclustering
algorithms. As shown in this work, biclustering and unsupervised approaches generally have
a vast potential for disease subtyping since they can find novel groups in the data.

Supervised machine learning

In contrast to unsupervised learning, labeled data is used for supervised machine learning.
Typical tasks for supervised machine learning methods are classification or regression. The
simplest form of regression is linear regression. A linear model fits a linear relationship
between one or multiple independent variables and a dependent variable. Another type
is Cox proportional hazards regression, which quantifies the survival between two patient
groups [212]. Such a model can be used to, e.g., predict cancer development [213].

Classification models learn to differentiate samples based on categorical variables. In a
clinical context, disease manifestations can be classified based on omics data [214]. This way,
future patients can be diagnosed based on their molecular data. Examples of classification
algorithms are decision trees, support vector machines, or naive Bayes. I utilized classification
models to investigate how well NAFLD subgroups can be differentiated from each other [21].

Also, for supervised machine learning, neural network-based methods have been developed
and deliver promising results for complex CB problems. For example, they are used to predict
gene expression from regulatory interactions [215] or three-dimensional structures of proteins
from their amino acid sequence [216].

The concept of feature importance plays an essential role in applying supervised machine
learning methods in omics data. In many supervised machine learning algorithms, the feature
importance can be quantified. This describes how much a feature or combination of features
contributes to predicting a particular label. These can serve as biomarkers for a disease
[217]. Therefore, machine learning applications for biomedical omics data often are applied
to identify potential biomarkers [218] explicitly. As shown in the NAFLD stratification study,
also a combination of supervised and unsupervised methods can be used to predict potential
biomarkers [21] (Appendix A.2).

A common problem for supervised machine learning methods on omics data is overfitting.
It can occur when a high number of features are available for a comparably low number of
samples. In this case, models use many parameters to incorporate each feature, allowing
them to fit the data perfectly. However, a perfect fit means that all training samples can be
perfectly predicted, but labels for new samples that were not part of the training are predicted
poorly. So the algorithm learns the training data’s properties and does not generalize beyond
the training data. This is not desirable since computational biologists are interested in finding
genuine relationships in the data that provide insights into the molecular machinery instead of
data-specific artifacts [219]. Multiple solutions have been proposed to cope with the problem.
Examples are regularization, where the number of predictive variables in a model is reduced
[220], splitting the data into a training and test set, or applying more complex strategies such
as cross-validation.

Machine learning algorithms are not the only algorithms applied to omics data in CB.
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Also, other heuristic algorithms or statistical methods are commonly used. Here, I want to
highlight specific methods that infer networks from omics data. Networks are not only visually
appealing for data analysis but can resemble so far unknown interactions of biomolecules in
a cell. Many studies employ correlation networks, where a connection between two features
indicates a correlation above a certain threshold. They are used across all omics disciplines
and can indicate co-expression or co-regulation [221]. Another example is partial correlation
which regularizes the number of edges [222]. A typical application is to infer gene regulatory
networks, for which various computational methods have been published [223].

2.5.3. Prior-knowledge integrating approaches

An advantage for the computational analysis of omics data can be the integration of prior
knowledge. Research in molecular biology in the last century has led to extensive knowledge
about molecular interactions, functions, and pathways. This knowledge can be utilized to
enhance computational methods and increase interpretability.

Central to the integration of prior knowledge is its accessibility. A variety of biological
databases are available. Examples of databases (that were also partially used for the work
in this dissertation) are as follows. The Kyoto Encyclopedia of Genes and Genomes (KEGG)
stores molecular pathways, structural information, disease perturbations, and other molecular
biological information [224]. Information about protein-protein interactions, which can
be utilized to create corresponding networks, is available in the STRING database [225].
Metabolic reactions can be found, e.g., in the Rhea database [226].

Pathway analysis methods

A typical research question is which known pathways are significantly dysregulated between
two experimental or clinical conditions. Two approaches are mainly used for such analysis:
Gene Set Enrichment Analysis (GSEA) and Over-representation Analysis (ORA). Both meth-
ods utilize information about gene participation in pathways from databases such as Gene
Ontology (GO) or KEGG.

GSEA uses a list of genes (or other features) ranked by correlation with the phenotype of
interest [227]. These can be p-values of t-tests or feature importance of a machine learning
model. The algorithm then scores if the genes corresponding to a pathway accumulate
predominantly at the top of the list. A p-value can be calculated by perturbating the feature
ranking. The rationale is that all genes should show a substantial alteration in an active or
dysregulated pathway. ORA utilizes a similar principle but works with a non-ranked set of
features and tests if more features than expected, belonging to one pathway, are in the set of
features [228] (using a hypergeometric test). Such a feature list can result from t-tests after
setting a significance threshold. Pathway enrichment is not only possible for genes, but also
methods for metabolites [229] and lipids [230] have been developed. For the evaluation and
systematic comparison of computational methods, pathway enrichment algorithms are often
used [231, 232, 233] since they provide simple and interpretable insights into the results of
an analysis. The resulting pathways can provide a hypothesis for dysregulated pathways

31



2. Introduction

in diseases [234, 235]. As with every computationally generated hypothesis, it requires an
additional experimental validation by individually investigating a pathway’s activity.

GSEA and ORA are both top-down systems biological methods. However, bottom-up
pathways analysis is also typical, especially in metabolic research. This analysis of individual
pathways (or reaction networks) is known as kinetic modeling [236]. Kinetic models use
ordinary differential equations or stochastic numerical methods [237] to simulate metabolic
pathways. They can show how functional behavior emerges from dynamic concentration
changes [238]. Rate equations model enzymatic reactions, e.g., the Michaelis-Menten kinetics
[239]. These can incorporate regulation by metabolites or signaling cascades [238]. Param-
eterization of kinetic models can be very challenging due to many parameters. Therefore,
whole-cell models, including many pathways, have been developed [240], but are still rare.
As an example application, kinetic modeling was used to understand the dynamics and
vulnerabilities of fatty acid metabolism [241]. In the clinical context, kinetic models can
potentially recapitulate variations in the dynamics of disease development in patients [242].
Other applications are in modeling the metabolism on a larger scale. This has been done for
the glucose metabolism of the liver and transport to other organs [243].

Network analysis methods

Pathways are human-defined molecular subsets that were grouped by one particular molec-
ular function. As discussed with the Pentose phosphate pathway (PPP), borders between
pathways are not always clear. This means that they can be biased toward certain well-
studied functions. Therefore, a de-novo network analysis that works on a whole interaction
network, such as protein-protein interactions from the STRING database [225] or a genome-
scale metabolic network, e.g., the previously mentioned Recon network [38]. By combining
complete interaction networks with molecular omics data in a top-down systems biological
approach, the activity or dysregulation of specific network modules can be inferred and
provide a de-novo pathway analysis.

Strategies to incorporate biological interactions for data analysis vary and a very diverse.
For example, a method by Benedetti et al. [244] builds correlation networks of features entirely
based on omics data. Interaction networks are utilized in the last step to find a correlation
cut-off. The cut-off is selected such that the resulting network has the highest overlap with
the prior knowledge network. This gives the method the freedom to find correlations that
are not previously known. On the other hand, it makes interpretation of the network more
challenging. Other approaches, such as active module identification or network enrichment,
work with a different principle.

Network enrichment methods start from a complete interaction network and combine it
with omics data, where each feature corresponds to an edge or node in the network. A
heuristic is then used to identify a subnetwork that shows the highest activity, variation
in samples or can explain differences between disease groups. Unsupervised methods for
network enrichment have been developed [245], as well as supervised methods [246]. It
was also utilized to combine network enrichment with feature selection of machine learning
algorithms [208]. With network enrichment, pathways associated with liver fibrosis [247] or
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hubs for mutations in cancer [248] have been identified. Alterations in interactions can also
be investigated in this way [249]. In this dissertation, I co-developed an enrichment algorithm
specifically for lipid networks [23]. Enrichment on lipid networks was not possible so far
because of missing comprehensive lipid networks combined and unique requirements to
include the enzyme multispecificity into the modeling.

An important network-based method specific to metabolic networks is constrained or stoi-
chiometric modeling. It utilizes the stoichiometry of metabolic reactions and constraints about
maximum and minimum reaction activity [250]. The most famous method for constrained-
based modeling is Flux Balance Analysis (FBA). It studies the behavior of genome-scale
metabolic networks under steady-state conditions. A steady-state occurs when the metabolite
concentrations do not change; therefore, the same amount of nutrition is consumed as an
organism grows/generates a product. The objective of an FBA is usually to maximize the
growth of an organism. But also other objectives, such as ATP production, energy reduction,
or product synthesis, can be investigated [251]. A great potential of the method is that it can
simulate a metabolic steady-state under several conditions, e.g., gene knockouts or limited
nutrition availability [252]. FBA analysis has been successfully applied to, e.g., find drug
targets for Tuberculosis by simulating knockouts [253] or investigate the metabolic states of
breast cancer [254]. But FBA is not the only method that analyses metabolic networks under
steady-state conditions, other strategies that sample flux distributions [255] or investigate
flux variability [250] have been developed. Stoichiometric network analysis approaches can
be integrated with metabolic flux data [256] or mRNA sequencing data [257] to resemble
experimental conditions.

2.5.4. Computational lipidomics

Only a few computational methods are available for systematically mining and interpreting
lipidomics data. Examples are the lipidr [258], BioPAN [259], LION/web [230], or the
LUX Score [260]. The lipidr software focuses on statistics on fatty acyl chains and a lipid
set enrichment [258]. LION/web implements an ontology enrichment for lipid functions,
chemical, and physical properties [230]. The LUX Score computes an embedding of lipidomes
into a chemical space [260]. Finally, BioPAN is a network-based method that can predict
active linear pathways on the class, fatty acid, or lipid species level [259]. These methods
and more algorithms are further discussed in the attached manuscripts on lipid networks
(Appendix A.3 & A .4).

Such a low number of algorithms and computational methods compared to other omics
disciplines makes it challenging to analyze lipidomics data in every experimental scenario and
gain functional knowledge. Because of big differences between lipids and other metabolites
in structural and metabolic aspects, methods designed for metabolomics analysis cannot be
used out of the box for lipidomics analysis. Further, differences in lipid identification, either
on the sum- or molecular species level, complicate the development of general methods.

Networks are crucial for integrating lipidomics data with other omics data. They can include
metabolic reactions between lipid species and links to the corresponding lipid enzymes. Also,
signaling processes and lipid transport can be encoded in networks. This is also important for
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systems medicine research. Interaction networks can point towards molecular mechanisms
of diseases in combination with quantitative omics data. For this dissertation, two lipid
network-based approaches have been developed [22, 23]. They aim to functionally understand
systematic lipidomic alterations and compute hypotheses for enzymatic dysregulation from
lipidomics data.

2.5.5. Drug repurposing

Two co-author contributions in this dissertation focus on drug repurposing [26, 27]. Drug
repurposing is the application of drugs for other diseases. New drug development and
certification are associated with high costs and time-consuming processes. Therefore, drug
repurposing is especially interesting for rare diseases [261]. But also for cancer, promising
repurposing candidates have been identified [262]. In the united states, around 30% of
newly marketed drugs are repurposed [25]. Computation approaches are crucial for drug
repurposing. They are used to predict novel drug targets on the molecular level through
pathway/network mapping, docking simulations, signature matching, or genetic associations
[261]. During the Sars-CoV-2 pandemic, drug repurposing gained strong interest to respond
to the disease [26]. In this context, I contributed to a project on repurposing using interaction
networks [27].

Computational drug repurposing is also facing many challenges. In particular, the transition
from computational predictions to experimental validation and clinical trials. This is the main
focus of a review I co-authored about lessons from drug repurposing research during the
COVID-19 pandemic [26].

2.5.6. Challenges in computational biology

Computational biology (CB) comes with many challenges. Overfitting as a potential problem
of machine learning algorithms was already mentioned. But this is not the only challenge.
Problems for computational biologists can already occur before the computational work starts.
Biases in clinical trials can happen at any trial stage, for example, during patient selection
[263]. Cohorts can be subject to gender, ethnic, or social biases. These might affect the
generalizability of a study outcome. After cohort acquisition, batch effects can be introduced
in the sample processing. They describe differences between samples that are introduced
because of processing of samples by different people, changed solvents, or environmental
differences [264]. Standardized protocols and randomization can help reduce and make
it possible to cope with them. One strategy to tackle batch effects in lipidomics data is
described for the NAFLD stratification publication [21] (Apendix A.2). To detect batch effects,
computational biologists need information about the exact experimental procedure. When
comparing different cohorts from different studies, standardized procedures and protocols
are necessary to achieve comparability [133]. Standardization is critical in lipidomics, where
different nomenclatures and levels of identification are used.

More challenges occur when applying computational methods to quantitative omics data.
Depending on the analytical method for measuring, the resulting data can have different
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distributions or sparsity. For example, single-cell data tends to be more sparse, i.e., more
missing values per sample [265]. Computational methods are often developed with certain
assumptions about the distribution. Therefore, researchers need to check whether the
data is suitable for analysis using the selected method. This is even more challenging
when integrating multiple omics layers with different distributions and modalities. Various
methods are usually available that address the same (or similar) problem. Evaluations of
computational methods and comparisons can often be found in the literature, e.g., the DREAM
challenges [266]. Another potential issue of utilizing CB approaches is parameterization.
Parameter choices should be carefully evaluated for each data set. Evaluating the influence of
parameters and data modalities for CB methods is crucial. Therefore, in the MoSBi publication
a systematic influence of these properties on biclustering algorithms was evaluated [20]
(Appendix A.1).

Mapping omics data to networks and pathways is another challenge in CB [267]. A
big problem lies in the bias of biological networks towards over-studied areas. Parts of
networks can be over-represented. In protein-protein interaction networks, systematically
higher connectivity towards commonly studied proteins has been observed [233]. On the
contrary, e.g., large parts of the metabolome remain unstudied and cannot be mapped to
pathways [268]. This is a particular challenge for lipids, where systematic lipid species
networks are unavailable. With the Lipid Network Explorer (LINEX) framework, this problem
was addressed [22, 23] (Appendix A.3 & A.4). Such biases can strongly affect the analysis,
and the prior knowledge quality needs to be evaluated. One needs to pay attention in the
analysis that specific biomolecules are highlighted just because they have higher connectivity
instead of exhibiting exciting behavior.

Because of these challenges, computational biologists need to process each dataset carefully
and check if assumptions for specific computational methods hold and what potential
limitations or biases are. I will return to this topic about specific challenges during my
research in the discussion.

2.6. Objective

The introduction gave an overview of lipid metabolism, the pipeline of lipidomics experiments,
and computational biology. While there have been many achievements over the last decades,
there are still critical challenges in integrating lipidomics into systems medicine research.
This publication-based dissertation aims to address some of these challenges. In the following
chapters, the developed and applied methods are presented and summarized in the context
of the publications. The dissertation includes three first-author publications, two co-author
contributions, and a method available as a preprint.

The three first-author publications are: First, the biclustering ensemble method MoSBi for
the automated stratification of omics data [20]. Integrating multiple algorithms and profiting
from them overcomes the specificities of single algorithms. The publication presents the
method, an extensive evaluation and comparison to other methods, and possible applications.
Using networks makes it possible to visualize biclustering results on a large scale. Second, a
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NAFLD liver lipidomics study. Using the previously developed biclustering method, subtypes
that resemble the progression of the disease are discovered [21]. This shows the applicability
of the biclustering method to discover novel disease subtypes and potential molecular markers
for disease progression. Third, the LINEX method generates data-specific lipid networks
and combines them with statistics to provide a functional analysis of lipidomics data [22]. It
addresses the problem of mapping lipidomics data to metabolic networks.

Next, unpublished work is discussed, extending LINEX [23]. It provides a method to
create more comprehensive lipid-metabolic networks and a network enrichment algorithm to
derive hypotheses for enzymatic dysregulation from lipidomics data. The work addresses the
problem of inferring the alterations of transcripts/proteins from lipidomics data.

Finally, two co-author contributions are mentioned that arose during the Sars-CoV-2
pandemic and focused on drug repurposing. I participated in a study that developed an
interaction network-based method to find drug repurposing candidates [27] (summary is
available in Appendix A.5.1). In the other publication, I co-authored a review that evaluated
methods utilized for finding drug repurposing candidates for the disease [26] (summary is
available in Appendix A.5.2).
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The following chapter gives an overview of the developed computational methods of this
dissertation: The biclustering ensemble method Molecular Signature identification using
Biclustering (MoSBi) for sample subtyping, the Lipid Network Explorer (LINEX) for function-
ally analyzing lipidome alterations, and based on this, the Lipid Network Explorer 2 (LINEX?)
that computes more comprehensive lipid networks and includes a network enrichment algo-
rithm. The summaries provide an intuition about the principles of the algorithms. The entire
explanations and definitions can be found in the full publications (section A.1, A.3, A.4).

3.1. An Ensemble biclustering method for disease subtyping

The first publication [20] (Section 4.1) presents the ensemble biclustering algorithm MoSBi.
Similar to clustering, biclustering is a class of unsupervised machine learning algorithms.
The difference between clustering and biclustering algorithms is visualized in Figure 3.1.
Clustering algorithms use all features of omics data to identify sample groups, whereas
biclustering groups samples and features simultaneously. This makes it possible to analyze

molecular signatures for each subgroup to guide the biological interpretation and downstream
analysis.

Clustering Biclustering
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Bicluster 1
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Figure 3.1.: Difference between clustering (left) and biclustering (right) on an omics data
matrix.
Unaltered figure taken from Vvedenskaya and Rose et al. [21] (Supplementary
Figure 3SA). Original figure distributed under the CC BY-NC-ND license (https:

//creativecommons.org/licenses/by-nc-nd/4.0/).

As an ensemble approach, MoSBi integrates the results of previously published biclustering
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algorithms. This can be beneficial because each biclustering algorithm has different objectives
and definitions of biclusters. By combining multiple algorithms into a joint ensemble output,
we can profit from each algorithm and gain more confidence in their predictions.

The MoSBi algorithm consists of several steps. First, Each biclustering algorithm is executed
independently. Second, an overlap between each pair of predicted biclusters is computed,
resulting in a similarity matrix for all biclusters. For instance, the Jaccard index can be used
as an overlap or similarity metric. The overlap is calculated independently if two biclusters
were predicted by the same algorithm or not. Third, an error model is utilized to filter for
randomly overlapping biclusters. The method aims at finding strongly overlapping biclusters
that point towards the same underlying data structure. Therefore, slight overlaps between
biclusters that can occur randomly are filtered out. In the fourth step, MoSBi builds a network
of biclusters from the filtered similarity matrix. Connections between biclusters indicate
higher than random overlaps. Finally, network communities are extracted using the Louvain
method [269]. The network communities can then be interpreted as ensemble biclusters.

A formal description of the algorithm can be found in the Methods Section of the publication
[20] (attached to Section 4.1). The second publication used the algorithm to stratify NAFLD
patients (Vvedenskaya et al. [21], Section 4.2).

The network visualization is central to the MoSBi workflow. It gives the user an overview
of the biclustering predictions and their overlaps. Colorings of biclusters offer additional
benefits. Biclusters colored by algorithms can offer insight into the similarity between the
results of biclustering algorithms or within one algorithm. Coloring by sample groups can
reveal the enrichment of certain conditions within bicluster communities. This serves as a
starting to investigate those communities further in downstream analysis.

Match scores were used to evaluate the algorithm performance in the publication. They
quantify the match between predicted biclusters and ground truth. We defined the ground
truth by simulating data with implanted biclusters or known disease subtypes from clinical
omics data. The gene match score has been widely used to evaluate biclustering algorithms.
To apply it on simulated data, we extended the score to a two-dimensional version. The
match score can define two metrics: relevance and recovery. Bicluster relevance describes
how well predicted biclusters match the ground truth and can be calculated. The bicluster
recovery quantifies how well each bicluster matched the ground truth on average.

A detailed description of the method and evaluation can be found in the original publication
[20] (Appendix A.1. The MoSBi algorithm was implemented as an R package and web service.
Both can be used to execute all included biclustering algorithms, execute the ensemble
workflow and visualize the results. The source code and web service links can be found in
the publication [20] (attached to Section 4.1).

3.2. Creation of rule-based lipid networks for a functional
lipidome interpretation

The LINEX is a framework to create, visualize and analyze lipid networks [22]. Due to a large
number of theoretically possible lipid species in an organism, LINEX builds data-dependent
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lipid species networks. Hence, it requires lipidomics data with quantified lipid species as an
input. As already mentioned in the introduction, multiple lipid nomenclatures exist. We use
the LipidLynxX software to convert them into one format [270].

The network is based on metabolic rules. They describe lipid class reactions that LINEX
then extrapolates to lipid species. Fatty acid reactions can also be defined to visualize the
fatty acid metabolism in the network. Class reactions are divided into headgroup and fatty
acid-related reactions. A rule describing the reaction between PE and PS only affects the
headgroup. Therefore, it requires two lipid species with the same fatty acid composition (or
sum formula, if only sumspecies are provided). Fatty acid-related class reactions (e.g., LPA —
PA) require fatty acid composition for all but one fatty acid in the lipid with more fatty acids.
For example, the rule can be extrapolated to the species reaction LPA(18:1) — PA(16:0_18:1).

LINEX also offers the possibility of adding fatty acid reactions to the network. The fatty
acid metabolism is usually independent of the lipid class metabolism, and elongations
or desaturations do not occur for fatty acyls bound to a lipid. However, it can help to
visualize fatty acid effects. For example, a desaturation in the network results in the following
connection: LPA(18:0) — LPA(18:1).

Creating a lipid network is only part of the LINEX method. Another important aspect is the
combination of statistical measures shows quantitative changes in the lipidome. P-values of
hypothesis testing can be shown as node color or size on the network. Correlations between
lipids in one experimental condition of changes in correlation between conditions can be
highlighted on the network edges. Systematic changes in parts of the lipidome can intuitively
be visualized with this. Figure 3.2 shows examples for different LINEX visualizations.

A detailed description of the method and evaluation can be found in the original publication
[22] (Appendix A.3). LINEX was implemented in the python programming language and
comes with a web service, where users can upload lipidomics data and analyze the created
networks interactively in the browser. Links to the source code and web service can be found
in the publication [22] (attached to Section 4.3).

3.3. Deriving hypothesis for enzymatic dysregulation

Finally, Lipid Network Explorer 2 (LINEX?) was developed to create more comprehensive
lipid networks and a network-based algorithm to interpret lipidomic changes [23]. In contrast
to version 1, LINEX? changes the algorithm and knowledge base for the computation of
data-driven lipid metabolic networks. Instead of relying on user-defined metabolic rules,
curated lipid-metabolic reactions from public databases are used. Lipid-related reactions
from the Rhea [271] and Reactome [272] database were parsed and curated. The databases
were selected because Rhea is crosslinked with the SwissLipids database and includes
specific molecular species reactions and Reactome because of its general overview of the lipid
metabolism (but only on the class level). After curation, over 3000 reactions were annotated
from both databases for various lipid classes, and organisms [23]. The annotation allows the
construction of comprehensive lipid networks without advanced knowledge from users about
lipid reactions.
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Figure 3.2.: Workflow of LINEX. Lipidomics data and metabolic rules are the input for the
algorithm. This is used to create a lipid species network and combine it with
statistical measures, such as hypothesis tests or correlation analysis.

Unaltered figure taken from Kohler and Rose et al. [22]. Original figure distributed
under the CC BY license (https://creativecommons.org/licenses/by/4.0/).
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Figure 3.3.: Schema of the LINEX? network enrichment algorithm. A LINEX? network is
converted into a hypergraph. Each hyperedge represents one lipid species reaction
and connects substrates, products, and class reaction nodes. Hyperedges are
weighted by changes in the substrate-to-product ratio between experimental
conditions as an approximation for enzymatic dysregulation. A local network
search is performed to find the maximally dysregulated subnetwork.

Figure adapted from Rose et al. [23]. Permission granted by the authors.

Another novelty of LINEX? is a network enrichment algorithm for inferring enzymatic
dysregulation from lipidomics data. The idea of the network enrichment is to utilize the
multispecificity of the lipid enzymes in the network to infer systematic changes in substrates
and products. The workflow of the algorithm is depicted in Figure 3.3.

First, lipid class reaction nodes are introduced to the network. They connect to lipids that
participate in at least one lipid species reaction derived from the corresponding class reaction.
This network is converted into a hypergraph, where each hyperedge represents a lipid species
reaction with lipid-substrates, -products, and reaction nodes [23] (Figure 3.3 step 3). The
hypergraph is transformed into a new representation, where hyperedges are nodes, and edges
connect them if they share lipids or lipid class reactions [23]. In the following steps, each
hyperedge is weighted by changes in the substrate-to-product ratio between experimental
conditions. Substrate-product changes are calculated using the lipidomics data [23]. Finally,
combined with simulated annealing, a local network search is employed to find the maximally
weighted (dysregulated) subnetwork. A full description is available in the preprint (Appendix
A4).

For the interpretability of the solution, the workflow also includes the computation of a
p-value, where (unconnected) lipid species are samples and their score computed [23]. The
distribution of random solutions is then utilized to calculate an empirical p-value. It provides
a measure of whether the computed subnetwork (mechanistic) has a significantly higher score
to explain changes in the network than unconnected solutions [23].

A detailed description of the method and evaluation can be found in the preprint [23]
(Appendix A.4). The LINEX? algorithm is available as a python package (https://pypi.
org/project/linex2/) and web service (https://exbio.wzw.tum.de/linex2, source code:
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https://gitlab.lrz.de/lipitum-projects/linex).
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4.1. MoSBi: Automated signature mining for molecular
stratification and subtyping

Citation

"MoSBi: Automated signature mining for molecular stratification and subtyping" Tim D. Rose,
Thibault Bechtler, Octavia-Andreea Ciora, Kim A. L. Le, Florian Molnar, Nikolai Kohler, Jan
Baumbach, Richard Rottger, and Josch K. Pauling; In: Proceedings of the National Academy of
Sciences 119.16 (2022): €2118210119; doi: https://doi.org/10.1073/pnas.2118210119

Summary

A variety of biclustering algorithms have been published in the last twenty years. However,
selecting a specific algorithm for new data is challenging, since there is no universally fitting
algorithms. Each algorithm has different heuristics and objectives, such that they can yield
different insights into experimental omics data.

To address this challenge, we developed the biclustering ensemble method Molecular
Signature identification using Biclustering (MoSBi). The method integrates the results of
different biclustering algorithms into a network of bicluster similarities, from which highly
overlapping bicluster communities can be extracted.

We evaluated the potential of the method for molecular disease stratification on clinical
cancer data sets with known subtypes. This included transcriptomics, proteomics, and
metabolomics data. In comparison to individual biclustering approaches, MoSBi showed the
most consistent high performance in terms of recovering the known subtypes, and pathway
enrichment of the resulting (ensemble) biclusters. We also evaluated the performance on
simulated data with known properties. Our analysis did not show a clearly outstanding
individual biclustering algorithm there, and again MoSBi was consistently high performing.

Furthermore, we investigated the applicability of MoSBi on multi-omics data. For this, we
used a public breast cancer cohort, transcriptomics, micro RNA, and protein data for each
patient. The method can be applied to each dataset independently and on the combined
multi-omics data to consistently recover disease subtypes.

Overall, we showed that the ensemble method has advantages over individual biclustering
algorithms and removes the need to parameterize them independently. Biclustering has
great potential to improve the analysis of clinical omics data for exploratory research and
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patient stratification. To make this analysis accessible for researchers of all fields, we made
the method is available as an R package and web service.

Contribution

I developed the methodology and implemented it as an R package. I conceptualized, super-
vised, and co-implemented the evaluation of the algorithm on synthetic and experimental
omics data. Further, I generated all Figures for the main manuscript, drafted the original
version of the manuscript, and contributed to the revised manuscript.

As stated in the publication: “I.D.R., |.B., R.R., and ].K.P. designed research; T.D.R., T.B.,
O.-A.C.,, KA.LLL.,, EM., N.K., and J.K.P. performed research; T.D.R. and ].K.P. contributed new
reagents/analytic tools; T.D.R., T.B., O.-A.C., K.A.L.L., FM., N.K., and |.K.P. analyzed data; and
I.D.R., N.K, ].B., R.R., and ].K.P. wrote the paper.” [20].

Availability

The publication is available in Appendix A.1. "Copyright © 2022 the Author(s). Published
by PNAS. This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CCBY-NC-ND)." [20] (https://creativecommons.
org/licenses/by-nc-nd/4.0/).
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4.2. Nonalcoholic fatty liver disease stratification by liver
lipidomics
Citation

"Nonalcoholic fatty liver disease stratification by liver lipidomics" Olga Vvedenskaya®,
Tim D. Rose®, Oskar Knittelfelder, Alessandra Palladini, Judith A. H. Wodke, Kai Schuh-
mann, Jacobo M. Ackerman, Yuting Wang, Canan Has, Mario Brosch, Veera Raghavan
Thangapandi, Stephan Buch, Thomas Ziillig, Jiirgen Hartler, Harald C. Kofeler, Christoph
Rocken, Unal Coskun, Edda Klipp, Witigo Von Schoenfels, Justus Gross, Clemens Schafmayer,
Jochen Hampe, Josch K. Pauling, and Andrej Shevchenko; In: Journal of Lipid Research 62
(2021): 100104; doi: https://doi.org/10.1016/j.j1r.2021.100104

 These authors contributed equally.

Summary

The non-alcoholic fatty liver disease (NAFLD) is common in western societies. It is charac-
terized by a accumulation of neutral lipids in the liver and correlates with obesity. In some
patients, the disease can transform into non-alcoholic steatohepatitis (NASH), which yields to
tibrosis and inflammation of the liver. The disease is diagnosed by histological inspection of
liver biopsies.

In this study, we aimed to investigate the lipidomic changes of the liver during disease
progression. For this, shotgun lipidomics of 365 patients with healthy liver, obese patients,
NAFLD, and non-alcoholic steatohepatitis (NASH) was performed. A strong increase of
neutral lipids with disease progression was confirmed from this data.

Next, we utilized the ensemble biclustering approach to access changes of other parts of
the lipidome. We identified bi-directional changes of Sphingomyelin (SM) species. Some
increase with disease progression, whereas others decreased. Using these SMs as features
for classification, we could differentiate for instance healthy from NASH patients, but failed
to differentiate obese from NAFLD patients. However, this is crucial for a robust disease
diagnosis. Therefore, we identified subgroups from the biclusters, after observing that many
NAFLD patients clustered together with either healthy or NASH patients.

The subgroups, in combination with the SMs showed systematic changes of the disease
progression with in patients diagnosed with NAFLD. Some NAFLD patients were from their
lipidomic profile very close to obese patients, whereas others exhibited a profile similarly to
NASH patients. The subgroups, identified from the lipidomics data were confirmed with
clinical information about the patients.

Contribution

I conceptualized and performed the computational analysis (biclustering, classification, data
normalization/correction) of the lipidomics data generated for this study. I contributed to the
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interpretation of the results, made Figure 2-4, and participated in writing the manuscript.
As stated in the publication: “O.V,, T.D.R., ].Hampe, ] K.P., and A.S. conceptualization; O.V.,
O.K,A.P,JAHW., ]MA. CH., M.B., VR.T, S.B., and ].K.P. data curation; T.D.R., A.P,, JA.HW.,
J.M.A., and C.H. formal analysis; H.C.K., U.C., E.K., ].Hampe, ].K.P., and A.S. funding acquisition;
O.V,, T, D.R.,, O.K., YW., T.Z., and ].Hartler investigation; T.D.R., O.K., JA.HW., K.S., YW,
J.Hartler, H.C.K., ] K.P.,, and A.S. methodology; O.V., M.B., . Hampe, and A.S. project administration;
M.B., S.B., C.R.,, Wu.S., ].G., and C.S. resources; T.D.R., A.P.,, [ M.A., C.H., and ].K.P. software;
H.CK.,CR.,UC.,EK,WuvS.,].G., C.S., J.Hampe, ].K.P, and A.S. supervision; O.V., O.K., K.S., and
Y.W. validation; O.V., T.D.R., and A.P. visualization; O.V., T.D.R., ] K.P., and A.S. writing—original
draft; M.B., VR.T., S.B., ].Hartler, H.C.K., U.C., EK., and C.S. writing—review and editing.” [21]

Availability

The publication is available in Appendix A.2. "© 2021 THE AUTHORS. Published by Elsevier
Inc on behalf of American Society for Biochemistry and Molecular Biology. This is an open
access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/
by-nc-nd/4.0/)" [21].
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4.3. Investigating Global Lipidome Alterations with the Lipid
Network Explorer

Citation

"Investigating Global Lipidome Alterations with the Lipid Network Explorer" Nikolai Kéhler®,
Tim D. Rose’, Lisa Falk, and Josch K. Pauling; In: Metabolites 11(8) (2021): 488; doi: https:
//doi.org/10.3390/metabo11080488

T These authors contributed equally.

Summary

Mapping of complex lipids onto metabolic reaction networks is challenging, because of the
multispecificity of lipid enzymes (as explained in Section 2.2.1). Therefore, data-specific lipid
networks are necessary, that generate a reaction network based on the identified lipids in an
experiment.

In this publication, we presented the Lipid Network Explorer (LINEX), as software to
generate lipid networks and visualize them in combination with statistical characteristics
of the altered lipidome between two experimental conditions. Lipid species reactions are
created from metabolic rules that serve as templates of lipid class of fatty acid reactions. This
results in context-specific lipid networks that unite the class and fatty acid metabolism. The
networks can then be used to visualize lipidomic changes between conditions. For example,
with fold-changes, significance levels, or changes of correlation.

We applied the method to three public lipidomics datasets, to show its applicability and
how novel insights can be gained from lipidomics data. On colorectal cancer lipidomics, we
observed that individual lipids might not show significant changes, whereas in the network,
similar patterns between metabolically closely related lipids can be found. Next, we discussed
the importance of lipidomic coverage for computing data-specific lipid networks. And finally,
on lipidomics data from the serum of aging humans, we showed how global lipidome
alterations can be visualized with the methodology.

Another focus of the publication was, to provide web-based software that enables the easy
use of LINEX to analyze lipidomics data. This is especially important because there is only a
small number of lipidomics-specific software available to systematically investigate such data.
Therefore, LINEX is an addition to existing software solutions but offers novel insights into
global and local changes of the lipidome from a functional standpoint.

Contribution

I conceptualized the methodology, co-developed the software, and performed the application
of the method on public lipidomics data (all equally with the co-first author N.K.). I also
contributed to the writing, creation of Figures, and revision of the manuscript.

47


https://doi.org/10.3390/metabo11080488
https://doi.org/10.3390/metabo11080488

4. Publication summaries

As stated in the publication: “Conceptualization: N.K., T.D.R. and ].K.P; Software: N.K.,
T.D.R. and L.F.; Validation: N.K. and T.D.R.; Writing—original draft: N.K., T.D.R. and ].K.P;
Writing—reviewing & editing: N.K., T.D.R. and ].K.P.; Supervision: ] K.P.” [22].

Availability

The publication is available in Appendix A.3. "© 2021 by the authors. Licensee MDPI,
Basel, Switzerland. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.
org/licenses/by/4.0/)" [22].
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5.1. Lipid network and moiety analysis for revealing enzymatic
dysregulation and mechanistic alterations from lipidomics data

Availability

The following work was not peer-reviewed at the time of submission but is available as
a preprint on bioRxiv [23]. Since this work was a significant part of my research, it is
presented in this dissertation. In this chapter, a summary of the results in the preprint and
my contribution are shown. The full preprint manuscript is available in appendix A .4.

Results

LINEX? builds on the previously developed Lipid Network Explorer (LINEX) [22]. This
method was limited in several aspects. It required user-defined lipid class reactions, which
require detailed knowledge about lipid metabolic pathways if reactions beyond the default
ones are needed [23]. While LINEX provided a network visualization of the lipidome, no
algorithm was available to mine it systematically.

LINEX? incorporates lipid class reactions from manually curated reaction database entries.
With this, lipid networks incorporating over 90 lipid classes can be built. Network extension,
the algorithm that creates data-specific lipid networks, can also evaluate biochemical reac-
tions with more than one lipid substrate and product. Furthermore, a network enrichment
algorithm for the lipid networks was developed. It uses the multispecificity of lipid enzymes
to infer enzymatic dysregulation from lipidomics data (Figure 5.1A, the method is explained
in 3.3).

As a proof of principle, the network enrichment was applied to liver lipidomics of mice
under non-alcoholic fatty liver conditions [273]. The algorithm was used to find the max-
imum difference between WT and MBOAT? knock-out samples. MBOATY7 catalyzes the
acyltransferation of a fatty acyl CoA on Lyso-PI, producing a PI. It is known to have a strong
preference for arachidonic acid as a substrate. The score optimization process can be seen in
Figure 5.1B. It highlights the advantage of simulated annealing to overcome local maxima.
The enrichment algorithm recovered the correct lipid class reaction from the lipidomics data
(Figure 5.1C) and the lipid species reactions pointed towards long-chain highly unsaturated
substrated. This strongly indicated that MBOAT7 was at the center of dysregulation. The
LINEX? enrichment was the first algorithm to achieve this on lipidomics data. "LINEX? cannot
differentiate between the exact enzyme for this reaction. However, in contrast to e.g., PLA2, MBOAT7
only catalyzes LPI rightarrow PI class reactions. Additionally, MBOATY7 is known for a higher affinity
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Figure 5.1.:

(A) Workflow of the LINEX? network enrichment algorithm. (B) Score opti-
mization of the network enrichment comparing wild type (WT) and MBOAT7
knock-out liver lipidomics. Data taken from Thangapandi et al. [273]. The same
data is used for the plots (C-F). (C) Optimized subnetwork. (D) Ratio distribution
of the LPI <+ PI reaction for all molecular species reactions. (E) Principal compo-
nent analysis of the lipidomics data with all lipids and (D) only for the lipids in
the subnetwork shown in (C)

The figure is taken from the preprint of Rose et al. [23]. Permission granted by
the authors.
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for AA [...]. This preference can also be observed in the solution [...] for the edge between LPI(18:1) and
PI(38:5), under the assumption that this reaction can only occur if the molecular composition of PI(38:5)
is PI(18:1_20:4). Furthermore, all other reactions between LPIs and Pls are only possible for the
addition/removal of fatty acyls with at least 20 carbon atoms and 4 double bonds. These results are not
surprising, because of the structural similarity of AA to other (very)-long-chain polyunsaturated fatty
acids [...]." [23]. The results indicate that the network enrichment approach and knowledge
about lipid metabolism can provide strong hypotheses for enzymatic dysregulation from
lipidomics data.

In the next step, the overall distribution of substrate-to-product ratios for the LPI — PI class
reaction was evaluated (Figure 5.1D). "The distributions show a peak around zero, indicating that
many reaction ratios are not influenced by the MBOAT7 knock-out (KO). However, two more peaks
around 1 and -1 can be observed for both conditions, where the peaks of the KO are shifted slightly more
towards absolutely higher values. Despite these subtle differences, it is not possible to draw a hypothesis
towards a mechanistic explanation including fatty acid-specific effects" [23]. This highlights the
importance of the enrichment algorithm that can pick up on such fatty acid-specific effects.
Principal component analysis of all lipids (Figure 5.1E) and lipids predicted by the enrichment
(Figure 5.1F) was performed. It can be seen that both plots show a clear distinction between
the WT and knock-out samples. However, in Figure 5.1F, this difference describes the primary
source of variance (85.84%), in contrast to the analysis with all lipids, where the second
principal component describes this [23].

In the preprint, LINEX? was also applied to lipidomics data of lean and obese adipocytes.
Together with a lipid moiety analysis, we showed systematic differences in the neutral lipid
metabolism and membrane lipids. The enrichment provided us with a hypothesis about
changing PC to PE ratios that indicate membrane expansion for membrane lipids.

Overall, it shows that LINEX? can support the computational analysis of lipidomics data
and automate analysis workflows to create hypotheses about mechanisms for lipidomic
changes.

Citation

"Lipid network and moiety analysis for revealing enzymatic dysregulation and mechanistic
alterations from lipidomics data" Tim D. Rose', Nikolai Kohler®, Lisa Falk, Lucie Klischat,
Olga E. Lazareva, Josch K. Pauling; In: bioRxiv (2022) 2022.02.04.479101 version 2; doi:
https://doi.org/10.1101/2022.02.04.479101

T These authors contributed equally.

Contribution

As stated in the manuscript: "JKP supervised the project and secured the funding. NK, TDR,
and JKP planned and conceptualized the work. NK and TDR developed the web service. NK, OEL,
and TDR designed and implemented the network enrichment procedure. LF, LK, and TDR parsed
and curated the reaction databases, and implemented the network extension. NK and TDR applied,
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validated, and interpreted the approach on lipidomics data. NK, OEL, TDR, and JKP wrote the
manuscript. All authors read, reviewed, and accepted the manuscript in its final form."
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Computational methods are essential for identifying complex relationships from large-scale
omics data. They can provide mechanistic insights into disease development and possible
treatment targets in the clinical context. In this dissertation, two methods for the computa-
tional analysis of omics data were presented, the biclustering ensemble approach MoSBi and
the LINEX/LINEX? framework for lipid network analysis. The goal was to enable systems
medicine approaches that include lipidomics to get a new perspective of the molecular char-
acteristics of diseases. Investigating alterations of the lipidome can be of great importance
for understanding metabolic diseases. In the following discussion, I will go through all the
presented work and discuss them in the context of contributing to systems medicine and
computational biology. Furthermore, I will propose an integrated computational workflow,
combining all approaches to show that they are not individual contributions to the field but
can be applied together to tackle disease complexity. Finally, the challenges and prospects for
integrating lipidomics into systems medicine research are discussed.

Interpretable subtyping with MoSBi

In the publication of MoSBi, I aimed to develop a computational method for patient stratifi-
cation that works universally. The need to select algorithms, parameterize them, and make
custom visualizations of the data should be reduced. Algorithms that require extensive
parameterization and are challenging to execute can be used by the computational biology
community but are less likely to be utilized by a broader scientific userbase [274]. To address
these challenges, MoSBi was developed as a biclustering ensemble approach. In this way,
MOoSBi can profit from predictions of multiple biclustering algorithms. This is important since
it allows MoSBi to build consensus biclusters from predictions of algorithms that identify
different types of biclusters. This distinguishes MoSBi from previous biclustering ensemble
approaches, which aimed at finding consensus biclusters for the same algorithms, which
are applied multiple times to the same data [275, 276, 277]. In the publication, I showed
that MoSBi could achieve a robust high performance without optimization of parameters
for individual biclustering algorithms. However, I also found that individual algorithms
can achieve significantly better results with the correct parameters [20], which are difficult
to obtain since biclustering is an unsupervised method. Future work on the systematic
parameterization of biclustering algorithms has the potential to make this class of algorithms
even more useful for application on omics data. The applicability of MoSBi goes beyond
just the performance of algorithms. I showed that it also drastically reduces the number
of predicted biclusters by creating consensus biclusters of patterns in the data that were
predicted multiple times and providing the frequencies of how often specific samples or
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features were predicted. This can estimate the confidence for each data point as part of the pre-
dicted bicluster. An essential aspect is the network visualization of MoSBi. Interpretation of
biclustering predicting requires a scalable visualization. Biclustering can be applied to disease
subtyping in a systems medicine context, but interpreting many predicted biclusters is not
trivial. The MoSBi visualization aims at aiding the interpretation by visually grouping similar
biclusters and the possibility to color the network with other confounders. This increases
the applicability of MoSBi in a clinical context since complex relationships to other health
confounders can be visualized alongside the biclustering results. The network visualization
can also be a basis for future biclustering algorithms and the consolidation of their results
since it is a highly scalable method. Novel biclustering algorithms can also be easily added to
the MoSBi framework. It can be beneficial to MoSBi predictions since they might find patterns
in the data which were not found by any other biclustering algorithm. While the results
showed that the MoSBi performance could be better than each algorithm individually, MoSBi
predictions strongly rely on their predictions. Another contribution of the MoSBi publication
for the biclustering /subtyping field is the development of a workflow to create simulated data
to evaluate algorithms. The work showed that different data properties strongly influence
performances. Future research in this field can reuse the pipeline to evaluate performances
on various properties. This workflow allows biclustering algorithms to be compared on a
diverse and standardized set of data characteristics.

Revealing heterogeneity in the NAFLD liver lipidome

Computational method publications usually focus on performance metrics and potential
applications to showcase the developed methodology’s usability. These controlled testing
environments do not always represent the challenges of novel data analysis. In the NAFLD
study [21], I was able to apply MoSBi to identify previously unknown disease subgroups
based on lipidomics data. Starting from the biclustering results, we found characteristic
Sphingomyelin (SM) alterations showing differences between the disease groups. Further,
NAFLD patients were subgrouped based on their co-occurrence in bicluster communities
with either healthy or NASH patients. Classifiers were trained on SM markers, to distinguish
NAFLD subgroups. The analysis and results would not have been possible without the
MoSBi workflow. Canonical clustering analysis might have identified similar subgroups, but a
simultaneous detection of characteristic features would not have been possible. Using a single
biclustering algorithm would have resulted in an incomplete set of predicted biclusters for
which no appropriate visualization would have been possible that was crucial for identifying
the subgroups. Network visualization of biclustering results, provided by MoSBi, made it
possible to see a systematic co-occurrence of sample groups. The computational workflow
of this publication can also serve as a blueprint for other clinical omics studies because
biclustering analysis is not very commonly used. Starting with unsupervised (ensemble)
biclustering analysis for feature selection and subtyping, followed by supervised classification
for performance evaluation, and finally, validation of subgroups on additional clinical patient
information. The results generated with MoSBi show the importance of lipidomics in
NAFLD research. A potential limitation of the study is that only sum species for lipids were
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systematically quantified. This level of identification was enough to provide many insights
into the NAFLD liver lipidome. However, molecular lipid species can potentially reveal in
even greater detail the functional associations of lipids. In the next section, I will focus more
on the importance of structural lipid identification. In another publication on animal models
of alcoholic fatty liver disease, MoSBi revealed characteristic signatures of Ceramide lipids.
The researchers hypothesized a protective role of Kupffer liver cells in alcoholic steatosis [278].
This is another example that showed the usability of MoSBi for gaining insight from omics
data.

MoSBi can identify characteristic features from any numeric data. This is not restricted
to molecular data. In a clinical context, for example, electronic health records can be used
to stratify patients based on their medical history. Features are not necessarily functionally
related when working with omics data and predicting biclusters. Highly correlating features
can be co-regulated but do not have to be. Biclustering methods incorporating interaction
networks have been developed [245] for a more functional interpretation of the results.
However, this also restricts the feature selection to potential biases in interaction networks
[233]. For the functional interpretation of lipidomics data, we then developed LINEX.

Functional analysis of lipids using networks

LINEX aims to overcome the gap between identified lipid species and functionally inter-
pret quantitative lipidome alterations. Systems medicine research integrating lipidomics
data for drug target prediction and disease mechanism identification requires a functional
interpretation of lipidomics data. By computing data-specific lipid networks, LINEX ad-
dresses a common discrepancy between identified lipids and database information about
lipid metabolic reactions. For instance, the human metabolic network Recon3D contains
427 phospholipid reactions. However, it is still inaccurate because "the exact position of the
double bond is not specified or the exact lipid composition of a phospholipid or triglyceride
or sphingomyelin species is missing" [279]. This is also the case in other reaction databases,
such as Rhea [271]. Reactions are often undefined for fatty acyls (marked as "R", e.g. in
RHEA :10604) or specified for certain fatty acyls but are incomplete (e.g. RHEA:46360) and lack
the oberved broad multispecificity of lipid enzymes [94, 95]. LINEX solves this problem by
constructing data-specific lipid networks from lipid class reactions, assuming that a lipid
species reaction can occur for all identified possible substrate-product pairs. LINEX? provides
a significant update to the previous version since it works out of the box with various lipid
classes and is supported by the knowledge from reaction databases. The idea of creating
data-specific lipid networks is not new and has been previously implemented in the BioPAN
software [259]. A significant difference is that BioPAN operates only on the sum species level.
With improvements in lipidomics technology, molecular species identification becomes more
common and therefore requires computational methods that can work with this type of data.

While data-specific lipid networks are advantageous for accurately depicting likely reac-
tions in the measured samples, it is also a clear limitation. Especially low abundant lipids
might not always be identified in experiments. This creates gaps in the networks that have
technical reasons. As technology evolves with better separation techniques and more sensitive
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mass spectrometers, this will become less of a problem. Until a complete lipidome can be
reliably measured, inferring nodes to improve network connectivity might be a solution. In
metabolism research, inference is often used to construct metabolic networks from genomic
data [280] or predict networks from identified metabolites [281]. Inference in lipid networks
could profit from prior knowledge about reference lipidomes from similar organisms/tissues
or measured fatty acid compositions. Prediction of likely lipid species that improve the
network connectivity could also benefit experimentalists, which can try to confirm those
predictions in targeted lipidomics and improve their lipidomics coverage.

After computation of a lipid species network, LINEX combined the network visualization
with statistical measures to facilitate interpretation of the data. We showed that such a
network visualization could reveal systematic changes in the lipidome and put them into a
pathway context [22]. The LINEX approach to put the interactive network visualization in the
center and project additional characteristics onto the network for an exploratory functional
analysis is novel in the computational lipidomics field. Usability for lipidomics researchers
was also a high priority in the development to make the workflow accessible. Recently,
Pérez-Marti et al. [282] visualized compositional fatty acid saturation changes on a lipid class
network. Borgmeyer et al. [283] mapped lipid species to a Reactome and KEGG lipid class
network to show associations to enzymes. This shows that other researchers also utilize
networks’ potential to assess the lipidome. LINEX can profit from these ideas and could be
updated in the future to include innovative approaches for lipidome analysis on one platform.
This was already done by adapting a glycan substructure methodology [284] for lipid moieties
and integrating it with the LINEX framework.

One of the main goals of LINEX? was the development of an enrichment methodology that
can infer enzymatic dysregulation from lipid networks. We showed how a proof of principle
of MBOAT7 knock-out data and created hypotheses for lipid alterations in adipocytes [23].
LINEX? assumes that a few changing multispecific enzymes should impact many lipid
species reactions. In future work, probability distributions for reaction changes can be used
to more accurately depict the candidates for enzymatic dysregulation systematically over
the entire network. The LINEX? enrichment methodology might be improved with more
quantitative data about lipid enzyme specificity. So far, LINEX? predicts candidates from
dysregulated enzymes but cannot automatically rank those. With more knowledge about,
e.g., fatty acyl preferences of lipid enzymes, enzyme candidates could be ranked based on
the fatty acid composition of the lipids in the predicted subnetwork. Preferably, quantitative
enzyme dynamics should be measured experimentally, but docking or molecular dynamics
simulations also could provide approximations for these values. In contrast to MoSBi,
LINEX/LINEX? was only previously validated on previously published data were used. As
already explained, such data does not always reflect the challenges of new experimental data.
Future studies will have the chance to prove the approach’s potential in new data.

In a systems medicine context, inferring mechanisms can help uncover potential drug
targets. The possibility of generating hypotheses of potential mechanisms is crucial to
understanding diseases. Therefore, LINEX? is a critical contribution to integrating lipidomics
into the field of systems medicine. It can also be a basis for integrating lipidomics with other
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omics disciplines, such as proteomics data.

Computational drug repusposing

Revealing disease mechanisms and subgroups is essential for understanding diseases, but
the final goal is treatments. As already presented in the introduction, drug repurposing can
be a possible solution that is cheaper than new development and certification of drugs. I
contributed to a publication about drug repurposing in SARS-Cov-2 [27] (contribution shown
in appendix A.5.1). In this work, we presented a network-based approach to finding drug
targets inhibiting human interactions with viral proteins. A web interface increased the
accessibility for every researcher to create hypotheses for follow-up experiments or simula-
tions. However, despite many efforts in computational drug repurposing, the predictions
did not make it into clinical trials. We address this discrepancy in a review paper, to which I
contributed [26] (contribution shown in appendix A.5.2). In this work, we identified the lack
of standardized data and computational results as the primary source for this problem. As a
solution, we proposed a unified drug repurposing strategy. It includes standardized data,
accessible workflows for computational repurposing methods, the proposal of combinatorial
treatments, expert guides analysis, and experimental candidate validation. Of the many
studies we reviewed, most included only parts of this strategy and had no follow-up research
that experimentally investigated the proposed candidates. Using the unified repurposing
strategy, I believe drug repurposing has a vast potential for systems medicine.

An integrated computational workflow

The computational methods presented in this dissertation work independently and address
different research questions. However, a systems medicine workflow is more complex and
cannot be addressed by individual methods that solve only specific problems. The previously
mentioned steps of subgrouping, biomarker detection, and disease mechanism identification
require multiple methods that work hand in hand. The approaches MoSBi, LINEX/ LINEX?,
and drug repurposing are parts of combined workflow to tackle disease complexity. This
combined workflow is shown in Figure 6.1.

For gaining insight from (multi-)omics data of a disease cohort, MoSBi is an initial ex-
ploratory analysis step. Different omics datasets can be analyzed individually or combined,
as we showed in the publication [20]. This results in patient subgroups with characteristic
signatures. In combination with supervised learning, predicted signatures can serve as
biomarkers for stages or subtypes of a disease. Such an application was already depicted in
the NAFLD publication [21]. In the next step, LINEX? can be utilized to interpret lipidomic
changes between subgroups. Of course, this is only possible if lipidomics has been measured.
Especially for metabolic diseases, functional lipidomic differences between subgroups within
a disease are essential to understand. Lipid networks can reveal systematic alterations in
the lipidome composition between subgroups. Trends towards certain lipid classes or fatty
acyl desaturation can indicate changes in cellular metabolism. With the enrichment anal-
ysis, hypotheses for altered enzyme activity can be generated. This can provide potential
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Figure 6.1.: Integration of MoSBi, LINEX?, and computational drug repurposing in a systems
medicine context for a disease cohort with multi-omics data.

mechanistic explanations for some observed differences in lipid abundances. The functional
analysis of lipidomics data can be used to refine biomarker predictions by putting them into
an interpretable and mechanistic context.

Hypotheses from LINEX? can then be supported or falsified with transcriptomics or
proteomics data. LINEX? predictions also do not include a directionality, meaning if the
predicted enzymes increase or decrease activity. This can be further investigated with enzyme
protein or transcript abundances. Lipid-enzyme dysregulation can also be combined with
transcriptional regulatory networks or signaling pathways. Such analysis can be based
on interaction networks in combination with characteristic subgroup features predicted by
MoSBi.

Predictions of MoSBi and LINEX? together with further downstream analysis can be used as
potential biomarkers and serve as drug targets. This is where computational drug repurposing
starts. As presented in the review [26], such repurposing could be done based on interaction
networks, where drugs are predicted that target proteins directly or indirectly interact with
the protein of interest. We presented several options for utilizing such an interaction network-
based analysis workflow [27]. Another option is based on docking between potential drugs
and proteins. Computational drug repurposing requires extensive experimental validation
but can significantly decrease the time to bring potential treatments to the clinic [26].

An integrated workflow of all computational methods, part of this dissertation, for accessing
complex diseases can benefit future individualized treatments. In every molecular biological
research, where samples can be subgrouped and lipidomic alterations are investigated, a
combined application of MoSBi and LINEX? can offer additional insights into lipidomic
regulation.

Challenges of lipidomics for clinical research

Lipidomics is playing a growing role in clinical research. Cancer research has shown its
potential to facilitate understanding, prognosis, and treatment [285, 286, 287]. Similarly,
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it is gaining importance in metabolically-related disease research such as diabetes and
cardiovascular disease [288]. For non-alcoholic fatty liver disease (NAFLD), we showed that
lipidomics could also be used for disease stratification and identifying potential biomarkers
[21]. The work can serve as a starting point for adding another dimension to the diagnosis of
the disease, typically based on histology. Lipidomics can provide more quantitative support
for the different stages of the disease.

However, the systematic use of lipidomics in clinics has a few obstacles. This is summarized
very well by a publication title of Liebisch et al. [133]: "Reporting of lipidomics data should be
standardized". The work was published in 2017, but problems in lipidomics data standardiza-
tion continue to exist. The authors discuss many aspects of lipidomics, but here I want to
focus on the lacking standardization for computational research. Different nomenclatures for
lipids are usually the first challenges that occur in the development of lipidomics software.
The introduction has already mentioned nomenclatures (Section 2.2). Methods such as LINEX
require a standardized format of lipid names to work. Software packages that address
this problem have been developed and can convert between nomenclatures and decompose
complex lipid structures [270, 289]. However, this requires constant software updates when
new nomenclatures are added or updates in naming conventions must be implemented. For
new researchers entering the field, these differences can cause challenges for the usage of
computational methods.

Another challenge that impacted this dissertation’s work was the lack of standardization in
lipid databases. For example, LIPID MAPS [290] and SwissLipids [291] are two comprehensive
lipid databases that list various information for lipid species. They are cross-linked, meaning
if a lipid is available in both databases, they contain the link to the other resource. But
there are also inconsistencies. For instance, LIPID MAPS contains only molecular species
with a defined sn and double bond positions. In current lipidomics experiments, lipids are
typically not identified on such a level. Developing software that can consistently work with
all databases is not straightforward.

The situation is even more challenging for lipids in reaction databases. Earlier in the
discussion, I mentioned inconsistencies in reaction databases, where some reactions are
confirmed for certain molecular species. In the Reactome database [272], reactions are mainly
provided on the lipid class level but have varying identifiers for the same lipid classes. For
LINEX?, this required an extensive manual curation of the resources to make them compatible
for usage in the algorithmic framework.

For the processing of lipidomics data, standardization is another crucial aspect. In the
NAFLD study [21], I observed strong batch effects related to the lipid extraction date of the
samples. For such a significant cohort, sample processing usually has to be spread over several
days, processed by several people, or chemical solutions have to be renewed in between.
More sources for batch effects can be drift in MS sensitivity, LC column performance, or
ionization efficiency, which are likely to occur in big cohorts where the instrument is running
for several days [292, 293]. All these factors influence the peak size and position during
mass spectrometry. Our study showed that internal lipid standards could help reduce batch
effects but not entirely. Standardized reporting of all experimental parameters, randomization
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during sample collection, and regular quality control runs will make lipidomics experiments
more reproducible. As we did in the NAFLD study, batch effects can be computationally
removed but require knowledge of all potential sources.

With the foundation of the Lipidomics Standards Initiative [294], the field moves towards
more standards and naming conventions. This will also facilitate the development of new
computational approaches for lipidomics data analysis. As discussed in the drug repurposing
review [26], standardization is not only a problem of lipidomics. We identified this lacking
standardization also as the main obstacle to the success of drug repurposing. Standardization
has advantages in identifying lipids and connecting them on a systems biological level.
However, these standards always need to be adapted to allow CB approaches to incorporate
more detailed information. The latest developments in lipid fragmentation using electron-
activated dissociation make it possible to resolve lipid structures fully [295]. New efforts must
standardize the terminology for these fragmentation patterns such that identification software
can utilize them. Also, downstream lipidomics analysis approaches must be adapted to work
with such data.

A general challenge of computational biology that is not only limited to lipidomics is
non-standardized software interfaces and data types. Such incompatibilities often require
individual solutions for each computational biology research project, where methods must be
combined into one pipeline. There are several approaches to make bioinformatics methods
compatible, such as the scverse for single-cell data [296] or the systems biology markup
language. Of course, there are always new data types and computational goals which cannot
always be compatible with other methods. However, using standard data formats and provid-
ing interfaces for specific downstream analysis can make the tools more usable for researchers,
prevent reimplementations, and reduce mistakes because of a limited understanding of the
software. A central part of MoSBi is the compatibility layer for all the included biclustering
methods. This makes it possible to analyze all biclustering predictions using a standardized
bicluster format. LINEX uses compatibility software for lipid nomenclatures to work out of
the box with various lipid formats.

Prospects for computational lipidomics

Computational analysis for the functional interpretation of lipidomics data is still in its infancy.
Integration of lipidomics with other data such as transcriptomics or proteomics is typically
done individually [297]. LINEX? is a step toward a multi-omics integration of lipidomics
data. While the approach itself cannot be used directly for multi-omics data, networks with
annotated enzymes have the potential for network integration. Network models, such as
Recon 3D, have already started integrating lipid species reactions in genome-scale metabolic
models [279]. However, data-specific lipid networks are more flexible and can account for
newly identified lipids in experiments. Lipid network enrichment in combination with multi-
omics data, e.g., supported by enzyme abundances, can improve the quality of hypothesis
generation.

New perspectives for computational lipidomics come with the more widespread use of
MS2. Only with fragmentation can lipid species be resolved structurally. This usually means
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identifying the fatty acid composition. With current technology, lipids can be fully structurally
identified [298, 295]. Computational methods can utilize this information to provide an in-
depth analysis of the lipidome. This is especially important for understanding changes in
the fatty acid metabolism, where double bond positions have an impact on the function
[299]. Complex lipids result from fatty acid metabolism, lipid class metabolism, and all their
metabolic precursors. Therefore, diseases can have an impact on all these moieties of lipid
species. A complete understanding of the dynamics of the lipidome can only be achieved if a
significant proportion of the lipidome can be quantified on a structural level. MS? is crucial
to achieving this. Fully characterized lipid species are also a basis for dynamic modeling of
the fatty acid and complex lipid metabolism because they reflect the structural differences
that affect enzymatic constants at the lowest level. Of course, this only works with detailed
functional information about lipid reactions in databases, which are currently many on the
lipid class level. This probably has historical reasons. Before using MS for lipidomics, TLC
was typically used for measuring lipids. With this technique, lipids were only identified on
the lipid class level. Therefore, lipid enzymes were also only studied at the lipid class level.
In the future, quantitative enzyme assays are necessary that provide quantitative information
about the association constants for molecular lipid species. This will be of great value for the
computational analysis of lipid metabolism.

Another area for novel computational methods is spatial lipidomics, also known as MS
imaging. Spatial metabolomics/lipidomics can reveal, for example, heterogeneous metabolic
profiles within cancers [300]. Omics independent workflows and methods for spatial data
have been developed (e.g. [301, 302, 303]), which can also be applied to lipidomics. Functional
analysis for spatial lipidomics is more challenging because MS imaging is usually only
performed on the MS1 level without fragmentation. This does not allow the identification of
the fatty acid composition of complex lipids and limits the possibilities for functional analysis
and interpretation. Spatial MS2 lipidomics could enable a detailed functional understanding
of lipidomic processed on the sub-tissue level. For transcriptomics, a combination of single-cell
data has been used to decompose cell types in spatial transcriptomics [304]. For lipidomics,
high-resolution lipid identification on bulk data could be used to infer fatty acid compositions
of spatial lipidomics. Computational analysis of spatial and single-cell lipidomics, typically
based on MS imaging, [187, 305] has an enormous potential to model the heterogeneity within
tissues or between cells but has to overcome many challenges, including sparsity and lower
levels of identification.

Computational approaches for personalized medicine

Incorporating molecular information into therapy and diagnosis is the primary goal of
personalized or systems medicine. As explained in the introduction, computational methods
are integral to developing systems medicine approaches. They can create hypotheses for
molecular disease mechanisms, patient stratification, or prognosis prediction. A big challenge
of bringing patient stratification into the clinics is interpretability [210]. Computational
decision-making must be understandable if physicians base their decisions on them. Therefore,
many approaches focus on the explainability of their results [306, 210]. Consensus methods,
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such as MoSBi can also be a solution since they base predictions on the results of multiple
algorithms.

Artificial intelligence methods based on neural networks are also gaining relevance for
biomedical research. They are commonly used to interpret imaging data, predict biochemical
structures, or discover drugs [307]. They can yield more accurate predictions with enough
data available but often lack explainability. Computational methods are not the only limiting
factors for personalized medicine. Data bias, socio-environmental factors, and data privacy
can impact research [308].

Another area where metabolism research is becoming more critical for personalized
medicine is drug research [309]. The effect of a drug depends not only on the perfor-
mance of the active substance but also on how the patient metabolizes it. This can be modeled
with pharmacokinetic models that try to predict drug safety and efficacy [310]. Also, the
gut microbiome plays a crucial role in drug metabolism [311]. All these factors have to be
considered for a truly personalized drug treatment. Computational models can potentially
integrate various information to predict the optimal dosage or substance for each patient if
enough data is available.

The importance of data availability for systems medicine research cannot be overstated.
For instance, where large amounts of samples are stored, biobanks can provide cohorts for
medical research [312]. Of course, privacy concerns regarding sensitive patient data have to
be considered. Federated machine learning approaches have been developed, which spread
the training of computational models over several institutions and generate consensus models
[313]. Only model parameters and not patient data are then shared. In this way, sensitive
data does not leave, e.g., a hospital, but can be used to improve computational predictions in
a privacy-conserving way by multiple research institutions.
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In this dissertation, computational strategies for the functional analysis of lipidomics data
and disease subtyping have been developed. The work was driven by the lack of approaches
to integrating lipidomics into systems medicine workflows. Lipids and their metabolism are
highly relevant, especially for metabolic diseases, and can yield new insights into disease
processes and serve as markers. Approaches to analyzing vast amounts of lipids must be
interpretable to be of value for clinical research.

To address these issues, two computational frameworks were presented. The MoSBi method
is a biclustering ensemble method that reduces the need for the selection of biclustering
algorithms. With its network visualization, results from large datasets can be efficiently
visualized and interpreted. Its ability to stratify patients de novo was proven on lipidomics
data from a NAFLD cohort. This analysis also revealed potential biomarkers for the dis-
ease progression. The LINEX framework was presented, which can functionally interpret
lipidomics data by creating data-specific lipid metabolic networks. With a novel enrichment
algorithm, hypotheses for enzymatic dysregulation can be predicted from lipidomics data.
Further, I presented contributions to computational drug repurposing, which is an essential
step from disease mechanisms to precision treatments.

Both MoSBi and LINEX/LINEX? are crucial advances for disease subtyping and functional
lipidomics analysis. In an extensive evaluation of synthetic and experimental omics data,
MoSBi showed robust and scalable results. With the work on NAFLD stratification, I showed
that MoSBi is suitable for de-novo patient stratification and explorative analysis of large clinical
cohorts. While the lack of alternative methods prevented the systematic comparison of LINEX,
the power of the approach was shown on knock-out data and various clinically relevant
lipidomics datasets. All methods were designed, keeping accessibility and interpretability in
mind. By utilizing networks in both methods, complex relations can be visualized to reveal
global and local relationships. In LINEX, this is achieved by adding statistical measures to
networks, and in MoSBi through visualizing clinical or experimental confounders. LINEX
also showed that networks offer a benefit for lipidomics analysis, which can reveal previously
unknown trends. Furthermore, LINEX? serves as a proof of principle that it is possible to
derive hypotheses of enzymatic dysregulation from lipidomics data through an automated
computational algorithm. Networks are also crucial for the presented drug repurposing
method. They make it possible to visualize drug targets, drug candidates, and related proteins.
With web services, these advanced algorithms are accessible to all researchers. Furthermore,
MoSBi can be directly used for a multi-omics analysis, and functional connections between
lipids and enzymes, provided by LINEX?, can be a starting point for downstream analysis
with proteomics or transcriptomics data.

The approaches can systematically provide new insights but are, of course, also limited
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in specific aspects. MoSBi overcomes algorithm specificities by integrating their results but
still relies on the performance of each algorithm. As shown, perfect algorithm parameters,
which are difficult to estimate, can significantly improve the predictions. Patterns captured
by none of the included algorithms will also not be a part of MoSBi predictions. Therefore,
novel biclustering algorithms can still be valuable for MoSBi. A central limitation of LINEX
and LINEX? is the creation of lipid networks. The lipid metabolism is of high complexity,
which can only be partially evaluated in the process of computing networks. This makes
creating networks for less studied parts of the lipidome challenging. The problem also holds
for the enrichment, which is based on these networks and can potentially propagate this
bias. Large-scale quantitative lipid enzyme assays can help to overcome this. Computational
drug repurposing also comes with many limitations, which are the main focus of the review
I contributed to [26]. These mainly lack standardized data, reporting, and experimental
evaluation of predicted repurposing candidates.

Despite the mentioned limitations, my work showed new workflows to mine clinical
(lipid-)omics data. Automatically creating hypotheses for enzymatic dysregulation from lipid
data can provide opportunities for applying lipidomics in clinical research. This includes
biomarker detection and identifying disease mechanisms related to lipid metabolism. With
MoSBi biclustering is more accessible for disease subtyping. As shown on liver lipidomics
of NAFLD patients with MoSBi, the approaches can promote a molecular understanding
of highly relevant diseases in our modern society. Potential applications of MoSBi go even
beyond molecular biology. It can work with any numerical data to stratify samples, e.g., for
disease subtyping with electronic health records. MoSBi can be utilized for multi-dimensional
clinical research to advance disease understanding. With LINEX? high-resolution lipidomics
data can be mined to study perturbations of the lipid metabolism. This gives lipidomics
research an even higher potential to identify disease mechanisms directly related to lipid
metabolism. Analytical progress will make it possible to identify all structural features
of lipids systematically. From this LINEX? can profit by providing more accurate lipid
network representations that will make it possible to discover more about the regulation of
the lipidome. Applications for the methods are also outside systems medicine. In all areas of
systems biology research, molecular mechanisms can be identified with MoSBi and LINEX.
With all the presented methods, a systems medicine workflow shows how clinical research
benefits from computational methods to systematically gain knowledge about the molecular
state of diseases.

Computational biology has the potential to have a significant impact on the future of
medicine. Data availability and algorithmic advances facilitate new applications, but many
challenges in standardization, explainability, and robustness must be overcome. Lipidomics
still faces many challenges before it can be routinely employed for precision medicine [314].
However, it has vast potential to provide biomarkers or prognostic indicators [315]. With
an increasing prevalence of metabolic diseases, the need to understand lipid-based disease
mechanisms and markers will also increase. Patients will profit from this by receiving more
personalized diagnoses and precise treatments with fewer side effects. With the work of
this dissertation, I hope to contribute to making lipidomics analysis more interpretable and
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facilitating patient stratification. I look forward to seeing computational biology thrive in the
future to provide more possibilities for understanding the nature of molecular biology and
diseases.
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A.1. MoSBi: Automated signature mining for molecular
stratification and subtyping
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The improving access to increasing amounts of biomedical data provides completely new
chances for advanced patient stratification and disease subtyping strategies. This requires
computational tools that produce uniformly robust results across highly heterogeneous
molecular data. Unsupervised machine learning methodologies are able to discover
de novo patterns in such data. Biclustering is especially suited by simultaneously
identifying sample groups and corresponding feature sets across heterogeneous omics
data. The performance of available biclustering algorithms heavily depends on individual
parameterization and varies with their application. Here, we developed MoSBi (molecu-
lar signature identification using biclustering), an automated multialgorithm ensemble
approach that integrates results utilizing an error model-supported similarity network.
We systematically evaluated the performance of 11 available and established biclustering
algorithms together with MoSBi. For this, we used transcriptomics, proteomics, and
metabolomics data, as well as synthetic datasets covering various data properties.
Profiting from multialgorithm integration, MoSBi identified robust group and disease-
specific signatures across all scenarios, overcoming single algorithm specificities. Fur-
thermore, we developed a scalable network-based visualization of bicluster communities
that supports biological hypothesis generation. MoSBi is available as an R package
and web service to make automated biclustering analysis accessible for application in
molecular sample stratification.

stratification | biclustering | subtyping | multiomics | pathomechanism

Optimizing treatments and improving patients * health is the goal of precision medicine.
In contrast to canonical medicine, where treatments are prescribed empirically (1),
precision medicine aims to identify individually adapted treatments. Nowadays, diseases
are commonly diagnosed based on the International Classification of Diseases. This
assumes that diseases show similar symptoms in every individual; hence treatments are
meant to act on the majority of symptoms. Patient stratification for precision medicine
builds on the idea that a cohort of patients with varying or similar symptoms might
have different molecular causes. They can then be stratified on the molecular level and
divided into subgroups (2). Therefore, precision medicine wants to move away from
classical disease definitions to characteristic signatures of molecular alterations which
enable individualized treatments.

Achieving this requires an understanding of molecular disease mechanisms. Unsuper-
vised machine learning methods are best suited since they uncover the inherent structure
of the given data and do not require labeled data, which might be biased toward classical
disease understandings (3). Unsupervised clustering methods seck to identify distinct
subgroups over the entire features set, but it is unrealistic to assume that diseases manifest
in all features. Instead, they are limited to a subtype-specific subset. Biclustering algorithms
can meet this requirement.

Molecular data is usually available in data matrices with patient samples as columns and
biomolecular features as rows. Biclustering algorithms cluster samples and biomolecules
of a data matrix simultaneously. This results in sample groups with a molecular subset that
characterizes the group. Numerous algorithms have been published, which try to tackle
the problem from different angles. An overview of important concepts was published by
Madeira and Oliveira (4).

Similar to clustering (5), evaluations of biclustering algorithms have shown differences
in performance under various real-life and synthetic conditions (6, 7). A common way to
improve the results of machine learning techniques is ensemble approaches, for example,
for biomarker discovery (8). The goal is to improve robustness, consistency, novelty, and
stability over what single algorithms could achieve (9). Also, for biclustering problems,
ensemble algorithms have been proposed (10-16). Most of these ideas are adaptations
of approaches for ensemble clustering. Some of the proposed methods have not been
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implemented (10, 13) and therefore not easily accessible, while
others are single-algorithm ensemble approaches that cannot over-
come the limitations of one algorithm.

The analysis and interpretation of biclustering results can profit
from visualizations, which show the content or relations between
biclusters. Many approaches have been developed (17-23), which
are often bound to specific algorithms or do not scale well for
many biclusters (18).

Here we propose a multialgorithm biclustering ensemble
approach for the stratification of molecular samples. In the
manuscript, we 1) introduce the methodology and network visu-
alization; 2) evaluate the performance on multiple experimental
metabolomics, proteomics, and transcriptomics datasets; 3) with
a framework for synthetic data generation, evaluate the approach
on synthetic data; 4) apply our approach in a multiomics context;
and 5) present open-source software to make biclustering more
accessible for research.

Results

A Multialgorithm Ensemble Biclustering Approach. The steps of
our ensemble approach (MoSBi—molecular signature identifica-
tion using biclustering) are described in Fig. 14; for full details,
please refer to Materials and Methods. At first, we selected a
set of established or recently developed biclustering algorithms
(Table 1), which are executed independently. Next, similarities
between all biclusters are calculated. The similarity is described
by the degree of overlap, meaning the more samples and features
shared between biclusters, the higher their similarity. Highly
similar biclusters point toward the same pattern in the data. Simi-
larities are filtered for random overlaps, and a bicluster network
is generated with biclusters as nodes and connections between
them if they exceed a higher than random similarity (for details,
see Materials and Methods). This removes overlaps of biclusters
that are likely to occur randomly and do not carry meaningful
overlaps. The same network without the filtered random overlaps
is shown in SI Appendix, Fig. S1. While biclusters with similar
disease subtypes are still close together, the overall connectivity in
the network is significantly higher. The example network shown
in Fig. 14 reveals several highly connected communities in the
network, which are not as strongly connected with each other.
By using the Louvain modularity, such communities can be
extracted and converted into ensemble biclusters. Two thresholds
control the size of the resulting ensemble biclusters. We previously
successfully utilized the principle of MoSBi to identify de novo
subtypes of nonalcoholic liver disease based on clinical lipidomics
data (34).

Before evaluating the performance of MoSBi on multiple omics
datasets, we selected a public thymic epithelial tumor dataset (35)
to show the application and potential of our approach. Ku et
al. (35) measured the proteome of 134 tumor, tumor-adjacent,
and normal thymus samples and revealed significant differences
in the proteome signatures of thymoma subtypes. In Fig. 14,
the similarity network of predicted biclusters colored by sample
groups can be seen. Node sizes were scaled according to the
number of samples. It provides an overview of the match of
predicted biclusters with known information about samples, in
this case, cancer subtypes/tissues. While being a central part of the
workflow, to compute ensemble biclusters, networks also serve as
a visualization of biclustering predictions.

It is immediately obvious that clusters of nodes can be found
in the network, indicating biclusters with a similar set of samples
and features. This can be observed by similar color distribu-
tions of biclusters clustering together. The clusters show high
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intraconnectivity, but also connections to other clusters. This
means that some signatures are shared between network commu-
nities. After applying the Louvain modularity, these clusters result
in network communities.

Some communities, in particular, communities 2, 4, and 8, pre-
dominantly consist of type A, B, and AB thymoma. We performed
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment of protein sets from the ensemble biclusters (Fig. 1B).
All selected communities showed significant repair mechanism
pathways, which is well known for tumors to influence those
pathways. Additionally, community 2, which includes samples
of all thymoma subtypes, indicating a common signature on the
proteomic level, showed two cancer-related terms.

We investigated the occurrence of proteins and samples in
biclusters belonging to one community (Fig. 1C). A difference
in the distributions of samples and features can be observed. The
distribution of features is strongly positively skewed with a very
low mode. In contrast, the sample distribution, for example, for
communities 5 and 8, has a mode close to one. This shows that
biclusters inside the same community (after filtering edges for
random overlaps) can carry very different features and samples. By
setting thresholds, ensemble biclusters can be restricted to point
to consistent patterns in the data or to allow for variability.

In Fig. 1D, we visualize the affiliation of biclusters to algo-
rithms, which predicted them. This reveals that biclustering algo-
rithms tend to identify overlapping regions in the data, resulting in
highly connected communities consisting only of one algorithm.
This shows the necessity of taking the results of multiple biclus-
tering algorithms into account and relying on not one but many
different algorithms to capture patterns in the data beyond the
specificities of a single algorithm. While we observe a good overlap
of some network communities with the tumor subtypes, some
individual (unconnected) biclusters also show high overlaps, for
instance, with the type B thymoma. The strength of the MoSBi
algorithm lies in the aggregation of biclusters. The visualization
also helps to identify and analyze these individual biclusters, if
they exhibit a high consensus with relevant information such as
biological factors.

The results above demonstrate the power and utility of the
workflow to establish a sophisticated biclustering analysis, to
generate biological hypotheses.

Individual Biclustering Algorithms vs. MoSBi. Next, we com-
pared the individual performances of available biclustering algo-
rithms and contrasted them with the performance of MoSBi. For
that, we selected six published and publicly available datasets from
the metabolomics, transcriptomics, and proteomics disciplines
(details in S7 Appendix, Table S1). All datasets were analyzing
cancer tissues or investigated cancer subtypes. As a gold standard,
we used the condition match score to quantify the overlap be-
tween predicted biclusters and sample labels (see Materials and
Methods), where the relevance describes how well predicted bi-
clusters correspond to known labels, and recovery describes how
well the labels were recovered by predictions. Additionally, Gene
Ontology (GO) and KEGG pathway enrichment was performed
to evaluate the gene sets in predicted biclusters.

‘The match between predictions and sample groups can be seen
in Fig. 2A. It reveals a heterogeneous performance of the individ-
ual biclustering algorithms. Spectral only predicted biclusters in
two out of the six scenarios. The iterative signature algorithm (Isa)
has the highest recovery on the Tang et al. (36) metabolomics and
Ku et al. (35) proteomics data and both transcriptomics datasets
but has a poor performance on Yang et al. (37) metabolomics
and Wisniewski et al. (38) proteomics data. While having a good
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Fig. 1. Workflow of MoSBi with exemplary network visualizations. (A) Steps of the MoSBi approach. First, biclusters are predicted by multiple algorithms, and
a similarity matrix is computed, which is then filtered for larger than random overlaps, using an error model. The matrix is then converted to a network that
can be visualized with metainformation about samples or features. Louvain communities are then extracted and converted into ensemble biclusters. As an
example, the bicluster network of proteomics data from Ku et al. (35) is shown. Nodes represent biclusters, with edges between them if their overlap exceeds
the error threshold. (B) KEGG pathway enrichment for features of selected communities 2, 4, and 8. (C) Frequency of features (Upper) and samples (Lower) in
biclusters that belong to one community. (D) Bicluster network of proteomics data from Ku et al. (35). Node colors represent algorithms, by which they were
predicted.
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Table 1. List of evaluated biclustering algorithms in
alphabetical order

Algorithm Publication

BicARE Gestraud et al. (24)
Bimax Prelic et al. (25)

CcC Cheng and Church (26)
Fabia Hochreiter et al. (27)

Isa Bergmann et al. (28)
Plaid Lazzeroni and Owen (29)
QuUBIC Zhang et al. (30)

Quest Murali and Kasif (31)
Spectral Kluger et al. (32)

UniBic Wang et al. (33)

Xmotifs Murali and Kasif (31)

The results of algorithms can be imported and accessed with our MoSBi R package or
executed using the webtool.

recovery, Isa never scores best on relevance. Similar behavior can be
observed for Plaid, which, on average, performs very well for rel-
evance, but shows low recoveries. It can also be observed that Plai
is the only algorithm that reached a relevance and recovery higher
than 0.5, and achieved this in one proteomics dataset. We then
applied our ensemble approach to the predictions of all algorithms
per dataset (Fig. 24, black marker). The ensemble approach is one
of the two best performing tools in either recovery or relevance in
all other datasets, except for the Tang et al. (36) metabolomics
data, where we could observe high overlaps with other clini-
cal confounders (SI Appendix, Fig. S2). On metabolomics data,
with fewer features compared to sequencing data, the commu-
nities can additionally be visualized as cooccurrence networks
(SI Appendix, Fig. S3). Over all six datasets, MoSBi performed
second best, on average, by relevance and second best by recovery
after Plaid and Isa, which both have poorer performances on the
other scale.

To investigate the performance of the algorithms on the gene
level, we performed KEGG pathway and GO biological process
enrichment for the proteomics and transcriptomics datasets. In
KEGG enrichment (Fig. 2B), The Biclustering Analysis and Re-
sults Exploration (BicARE) algorithm predicted the most biclus-
ters with at least one significantly enriched term in three datasets.
Interestingly, it did not stand out when investigating sample group
labels. The ensemble method again showed a better performance
than the average of biclustering algorithms. The same holds for the
enrichment of biological processes with GO terms (Fig. 2C). Since
all investigated proteomic and transcriptomic datasets were cancer
related, we searched specifically for enriched KEGG pathways
including the word “cancer,” “carcinoma,” or “tumor” (Fig. 2D).
On the Wisniewski et al. (38) proteomics data, only Isa and
BicARE found significant terms for biclusters, but only at very
low frequencies. In the Ku et al. (35) proteomics data, MoSBi
found the most significant terms and, on the two transcriptomics
datasets, the second most after Fabia (factor analysis for bicluster
acquisition) and BicARE.

This reveals that individual biclustering algorithms peak in one
or another measure or dataset, but in an unpredictable manner.
However, the MoSBi ensemble approach is more consistent and
therefore more reliable for biclustering analysis.

Performance on Synthetic Data. Evaluation on experimental
data is preferable since it accurately resembles the real-life
application of biclustering and stratification. Unfortunately,
two-dimensional (2D) gold standards are usually not available,
since many factors are influencing the molecular state of samples.
Synthetic data can overcome this problem. This is frequently done
to evaluate biclustering algorithms (6, 25, 39).

40f 10 https://doi.org/10.1073/pnas.2118210119

Based on the synthetic data generation of Preli¢ et al. (25),
we developed a workflow to create synthetic scenarios, where
one or multiple properties can be investigated (S Appendix,
Synthetic Evaluation Scenarios). We repeated previous scenarios
from Preli¢ et al. (25) and added scenarios, covering sparsity,
overlaps, and mixed sizes (87 Appendix, Table S2), and evaluated
them on biclustering algorithms (Materials and Methods and
SI Appendix, Figs. S6-S10). Since molecular omics data can
include missing values, we investigated the effect of sparsity on
the performance of biclustering algorithms (Fig. 34). While the
overall performance of all algorithms decreases with increased
sparsity, Fabia and Isa showed a higher resilience until a sparsity
0f 20% (percentage of missing values in the matrix; ST Appendix),
after which the results deteriorated. The relevance was more robust
against sparsity and did not decrease as strongly as the recovery.

So far, synthetic evaluation has focused on the assessment of
individual characteristics of the data (e.g., noise or size). Using
our workflow and knowledge from previous synthetic scenar-
ios, we defined a complex scenario, incorporating all previously
mentioned manipulations to the data (Fig. 3B). We evaluated all
approaches in this scenario and added a negative binomial back-
ground to simulate unique molecular identifier RNA sequencing
(RNAseq) data (Fig. 3 B, Lef?). Performance analysis separated the
tools into two groups: clearly higher performing tools consisting
of Fabia, Isa, and MoSBi, and the rest performing significantly in-
feriorly. Fabia shows the best recovery, and the ensemble approach
shows the best relevance, but only marginally above Fabia and Isa.
Even with the poor performance of many algorithms, MoSBi can
still achieve high recovery and relevance. Algorithm selection has
an influence on every ensemble approach; therefore, excluding the
worst-performing algorithms from the ensemble approach yields
a high increase of the relevance of the ensemble approach, while
the recovery remains similar (S/ Appendix, Fig. S114).

Being an average, the relevance does not characterize every
distribution correctly, but is widely used in biclustering evalu-
ation studies. We investigated the relevance distribution of all
algorithms independently (Fig. 3C) and combined (Fig. 3D).
Some distributions are skewed. The combined distribution is
positively skewed, showing that the majority of biclusters have
a very low overlap with the gold standard. Predictions by the
ensemble approach show a different distribution (Fig. 3£), where
the majority of biclusters have a score above 0.5. Since an ensemble
approach is sensitive to the performance of the underlying biclus-
tering algorithms, we selected the best-performing algorithms and
repeated the analysis (S/ Appendix, Fig. S11 C and D). As can be
seen, the performance of MoSBi is even more evident, showing
the importance of the utilized algorithms. On the other hand, it
shows that the approach can achieve a good performance, even
with some poorly performing algorithms included. By combining
highly overlapping biclusters, MoSBi can reduce the number of
mismatched biclusters. This also shows that the relevance distribu-
tion can give more detailed insights into algorithm performance.
MOoSBi additionally reduces the number of biclusters drastically,
making an investigation of all predictions more manageable. Ana-
lysis of the MoSBi parameters (S/ Appendix, Fig. S12) showed that
the row and column thresholds should be in the range of 0.02 and
0.2. The relevance increases with higher minimum community
size thresholds, whereas the recovery decreases. An application-
specific trade-off has to be decided by users. The number of
randomizations for the similarity cutoff estimation does not affect
the performance of MoSBi.

To investigate the performance of all algorithms under the
best conditions, we optimized their parameters to achieve the
best possible performance (SI Appendix, Fig. S13). This showed
that algorithms can produce markedly better results given correct
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Fig. 2.

significant cancer-related terms

Performance of MoSBi and individual biclustering algorithms on cancer-related omics data. Data was used from Ku et al. (35), Wisniewski et al. (38),

Berger et al. (41), Curtis et al. (44), Tang et al. (36), and Yang et al. (37). For further information about the data, see S/ Appendix, Table S1. (A) Recovery and
relevance for the condition match score of biclustering tools based on samples for cancer (subtypes). (B) Frequency of predicted biclusters per algorithm, with
one or more significant KEGG terms (adjusted P value cutoff < 0.05). (C) Frequency of biclusters with one or more significant GO terms from the “biological
process” category. (D) Frequency of predicted biclusters per algorithm, with one or more cancer-related KEGG terms.

parameters compared to their standard parameters, in Fig. 3B.
However, this is time consuming and only possible for data with
an existing gold standard. The differences between the two com-
plex synthetic scenarios showed that parameters and performances
vary widely between datasets. Therefore, an ensemble method of-
fers an easier method to achieve good performance independently
of parameter optimization.

Biclustering in a Multiomics Context. Since biclustering requires
a data matrix as input, it can naturally be applied to multiomics
data, when merged into one data matrix. To investigate the
performance of MoSBi in a multiomics context, we used the

PNAS 2022 Vol. 119 No.16 2118210119

TCGA breast cancer cohort from the Xena Platform (40), which
provides omics data for multiple breast cancer subtypes. RNAseq,
microRNA (miRNA), and protein data were run independently
and combined for all biclustering algorithms. All resulting biclus-
ter networks (Fig. 44) appear similar, with big basal communities
and multiple communities consisting mainly of the LumA or
LumB subtype, often highly interconnected. The protein data net-
work shows a less distinct basal community, whereas the miRNA
data network shows Her2 samples mixed with LumB samples.

In the next step, we evaluated the performance of the biclus-
tering algorithms on the different data types. A consistent perfor-
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Fig. 3. Evaluation of biclustering algorithms on synthetic data. (A) Recovery and relevance of biclustering algorithms with increasing sparsity, for one hidden

shift bicluster. (B) Performance of biclustering algorithms and ensemble approach on a synthetic scenario including different bicluster types, sizes, sparsity, and
noise with a negative binomial distributed background (Left) and normally distributed background (Right). (C) Relevance distribution of biclustering algorithms
for the scenario shown in B, Right. (D) Relevance distribution of all algorithms summed up from C. (E) Relevance distribution of the predictions of the ensemble

approach using the biclusters from D.

mance of most algorithms can be observed (Fig. 4B), with only
Plaid showing a high increase in relevance on the multiomics data
compared to the other datasets, and not identifying any biclusters
on the protein data. Only with MoSBi, a relevance and recovery
higher than 0.25 could be observed in all four datasets. This
shows that the multiomics data did not yield a big performance
increase for most algorithms, but rather that all data types carry

60of 10 https://doi.org/10.1073/pnas.2118210119

the information to identify subtypes, with the ensemble approach
being the most robust throughout all data types.

While we did not find big differences in the overall perfor-
mance, we next looked at the recovery of the subtypes individually
(Fig. 4C). Most algorithms did not recover all subtypes equally
well. Isa has the highest recovery for basal (above 0.75 for RNAseq
and multiomics) and worst for normal (all below 0.25). Fabia
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Fig. 4. Biclustering on breast cancer multiomics data. (A) Bicluster similarity networks on TCGA breast cancer miRNA, Protein expression, RNAseq, and

combined data. Biclusters are colored by subtype, and node size is proportional to sample size. (B) Relevance and recovery for the condition match score
on the datasets from A for each algorithm individually and combined with MoSBi. All algorithms were executed 10 times. (C) Recovery for subtypes on the
datasets from A for each algorithm individually and combined with MoSBi. All algorithms were executed 10 times.

exhibits a more equal distribution, except for normal, which has a
low recovery throughout all algorithms. It can again be observed
thatall data types are similarly able to identify subtypes. In MoSBi,
the basal subtype has a better recovery in RNAseq and multiomics
data. Another interesting observation is that BicARE consistently
recovers the LumA subtype through all data types.

In this analysis, we can show that multiomics biclustering is
possible and can add value to the results. However, an individual
biclustering analysis on all data types is also possible and yields

PNAS 2022 Vol. 119 No.16 2118210119

similar performance. However, a combined analysis might be ben-
eficial for a biological interpretation of biclusters, which consists
of features from different omics types.

The MoSBi Software Suite. To make our ensemble approach
and biclustering algorithms, in general, accessible for scientists
and provide an easy-to-use interface, we developed the MoSBi
suite for the identification of molecular signatures using
biclustering. MoSBi is available as an R package on biocon-
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ductor (https://bioconductor.org/packages/mosbi/) and web-app
(hteps://exbio.wzw.tum.de/mosbi).

Many biclustering algorithms, such as Isa (41) and Fabia (27)
or the biclust package, use different result formats for returning
biclusters. Therefore, we developed a unified framework, which is
able to import predictions from various biclustering algorithms
to simplify the analysis of biclustering algorithms and apply
our ensemble approach. Our network-based visualizations are
also available in MoSBi, which can be used with our ensemble
approach or single biclustering algorithms. The framework can
be extended to offer support for new biclustering algorithms and
integrate them into the workflow. Networks can be exported as
graphML for compatibility with tools such as Cytoscape (42).

The web app allows users without programming knowledge
to stratify samples with our ensemble approach and profit from
visualizations. Additionally, all biclustering algorithms can be
accessed and executed with all parameters independently, if users
are interested in specific algorithms. We also provide a docker
image of the web tool, which allows it to be deployed locally.

Discussion

Stratification of patients based on molecular omics data is a
challenging task and requires modern computational tools. Unsu-
pervised approaches are suited to identify novel subgroups in the
data. Biclustering is able to find meaningful patterns in modern
omics data. In contrast to traditional clustering, algorithms not
only output sample subgroups but, additionally, feature subsets
that characterize this similarity and can be further analyzed, for
example, for functional associations to find disease mechanisms.
We developed a biclustering ensemble approach, which takes the
results of multiple biclustering algorithms and computes ensemble
biclusters using a network-based approach. This is based on the
assumption that biclustering algorithms predict highly overlap-
ping biclusters, which we could validate in our work. Various
biclusters pointing to the same underlying data structures can
indicate robust biclusters, which are then identified with MoSBi.
We showed this on thymic epithelial tumor data (35), where we
were able to retrieve known cancer subtypes.

We demonstrated the application of MoSBi on cancer-related
datasets and showed the possibility of performing a multiomics
analysis using biclustering. On various synthetic and experimental
datasets, we assessed the performance of different biclustering
algorithms and compared them to our ensemble approach. While
Fabia and Isa, on average, performed best of all considered biclus-
tering algorithms, no algorithm performed best in all scenarios
and can be universally recommended. MoSBi did not always
stand out, but it achieved a robust good performance in most
scenarios. While the optimization of algorithm parameters on
synthetic data could significantly improve the results, it leads
to extensive run times and requires gold standard annotations,
which are usually not available in real data, indicating that MoSBi
is a preferable choice for biclustering. Additionally, it markedly
reduces the number of biclusters. The network visualization gives
an overview of the results and, compared to other methods (18),
scales well with an increased number of biclusters.

The advantage of our ensemble approach over other biclus-
tering ensemble approaches is that it is not algorithm specific
and, via the MoSBi suite, is accessible as an application program-
ming interface (API) and graphical user interface. Unfortunately,
some proposed approaches lack implementation (10, 13). An
ensemble method based on the calculation of similarities between
biclusters was proposed by Hanczar and Nadif (12), where the
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authors calculated overlaps based on sums of overlaps of rows and
columns, which can result in nonzero similarities for biclusters
that share rows but no columns and are, in fact, not overlapping
(SI Appendix, Fig. S14). They proposed the method as a single-
algorithm ensemble approach that applied hierarchical clustering
on the similarity matrix. This introduces another parameter for
the number of consensus biclusters and assigns each bicluster
to an ensemble bicluster, even with low overlap. Our approach
avoids this by using the Louvain modularity to find the optimal
split of the network into communities. We also introduce an
error model for ensemble biclustering that removes random,
and therefore misleading, overlaps from the similarity network.
Additionally, MoSBi makes further analysis easier, since it reduces
the number of predictions while maintaining similar performance.
With MoSBi, we provide a tool to make the application of
multialgorithm ensemble biclustering with scalable visualizations
applicable for all kinds of noninformatics users possible. However,
as an ensemble approach, MoSBi relies on the performance of
multiple biclustering algorithms. We showed how the selection
of biclustering algorithms can influence the results of MoSBi
(SI Appendix, Fig. S11 C and D). While MoSBi is robust against
a few badly performing algorithms, the majority of algorithms
need to identify reasonable biclusters for MoSBi in order to
work correctly. With new developments and available algorithms,
MOoSBi can be extended to improve performance in the future.

Similar to other unsupervised methods such as clustering,
biclustering is often only the first step in data analysis. This
comes with the challenge to inspect and interpret the results be-
fore further deciding about follow-up analysis steps. A particular
challenge can be the difference in sizes of (ensemble) biclusters.
It is important to consider the number of samples included
for a molecular signature that corresponds to a phenotype, to
evaluate its robustness. A direct comparison of biclusters with
big differences in size should therefore be handled with care. The
MoSBi framework allows for simple visualization of this but still
requires manual supervision.

Our methodology offers an advanced perspective on biclus-
tering and can visualize detailed properties of predictions. We
demonstrated how a bicluster network analysis provides additional
biological and structural insights into data. Clinical or experimen-
tal conditions can be associated with biological features. Using our
approach, biclustering has the potential to play a significant role
in disease subtyping and understanding.

Materials and Methods

The biclustering ensemble algorithm consists of four major steps. These are the
execution of multiple biclustering algorithms, followed by a similarity compu-
tation for all returned biclusters, filtering of the similarity matrix for random
overlaps, and community detection on the similarity network. In the following,
all steps are described in detail.

Algorithms. Given an input matrix M € RF*, we utilize different biclustering
algorithms (Table 1) and collect their results in one combined list of biclusters
B=[By,B,,., By], where B; = (B, B) and B; _ [1, ., R], B; _ [1,., C] is a set
of row and column indices of the matrix M that belongs to a bicluster 8. We
implemented interfaces for all algorithms in our R package to generate this list
using one unified API.

Similarity Metrics. Inthe nextstep, pairwise similarities between all biclusters
in B are computed. This is done using common similarity metrics, where the
similarity is expressed as a 2D overlap between biclusters. To do so, we treated
a bicluster matrix as a 2D area and computed their similarity in terms of overlap-
ping areas. This is different than the additive similarity as proposed by Hanczar
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and Nadif (12). One implemented metric is the Jaccard index. Our adaption
resulted in the following formula:
‘31 n le
J(B1,B)) = ——
( ! 2) ‘Bw U le
|B5 N 85| x |BY N By
(1851 [B51) + (18] x [Bs[) — (1BS "B > [Bf M BY)”

Besides the widely used Jaccard index, also the Bray-Curtis similarity, overlap co-
efficient, and Fowlkes-Mallows index were implemented in a similar 2D fashion.
This results in a similarity matrix S with 5;; = J(B;, B;). Note that MoSBi can use
any other definition of similarity as well. Biclusters fully contained in other ones
are evaluated with the same metric. Hence, they exhibit a similarity based on their
overlap as described above.

Error Model. Since biclusters can have random overlaps that do not represent
meaningful interactions, we estimate a cutoff to filter for such overlaps in the
similarity matrix. This is done by randomly generating a list of biclusters B
such that B = [B}, By, ., By, |B'| = |B|, and B/ = (B{’,B"), where B} and
B are randomly drawn without replacement from [1,...,R] and [1,...,C]
correspondingly such that |B{'| = |Bj| and |B{'| = |Bf|. To estimate the best
cutoff ¢* for the values in the similarity matrix S, we treat the S as an adjacency
matrix and optimize c* for the biggest ratio between remaining edges in $ and
§', where S;; = J(B/, B)) (to increase robustness, multiple randomizations K of

Bare used),
= argmaxizf" Ocb)
o (208 /K

with
O R—{0,1}

X 0:
1:

This results in the final and filtered similarity matrix S where

x<c-
X>c

« 0: S§j<c*
s U
U {S,,,: S;>c

Community Detection. Finally, 5 is used as an adjacency matrix with biclus-
ters as nodes, and edges representing similarities. We compute the weighted
Louvain modularity (43), with similarities as weights, to find bicluster communi-
ties in the network. These highly similar bicluster communities can then be con-
verted into ensemble biclusters using three parameters: min_size (default = 2)
which defines the minimum number of biclusters in a community to convert
a community into a bicluster, where smaller communities are not considered;
and row_threshold and col_threshold (default = 0.1), the minimum frequency
of occurrence of a row/column element in a bicluster community to be taken
over into an ensemble bicluster: For example, with values of 0.5, only genes and
samples will be part of the new ensemble bicluster if they occur in at least 50%
of all biclusters in the corresponding community.

Implementation. MoSBi is free software. The workflow was implemented in
the R programming language (version > 3.6) and C++17. The web interface
was realized with the Shiny web framework for R (version 1.4.0.2). The workflow
can be executed from our web app on our servers or on a local machine using a
public Dockerimage. For higher throughput or for the integration of ourapproach
into a bioinformatics pipeline, the R package can be used directly.

Visualizations. Network visualizations of the MoSBi package are implemented
in R using the "igraph” package. Interactive plots in the web tool use the "visNet-
work” library. All other visualizations use the “ggplot2” library in R.

Cooccurrence Networks. Forcooccurrence networks, biclusters from one com-
munity were selected. From this, a new network is computed with samples and
features as nodes. Edges can occur between samples and samples, samples
and features, and features and features. An edge is drawn between two nodes
if they occur together in at least one bicluster of the community. Edges are

PNAS 2022 Vol. 119 No.16 2118210119

weighted by the number of biclusters, where two nodes cooccur. For the vi-
sualization, a network layout is computed, which takes the edge weights into
account.

Match Score. The performance of biclustering algorithms and MoSBi was eval-
uated by comparing their overlap to labeled gold standard data. We used the
commonly applied gene match score,

|61 ﬁGz‘

1
MS(A M2) = {37 @ 6 UGl

M|
(61,C1) €M
where M; and M, are two sets of biclusters, with each bicluster consisting
of a set of genes G; and conditions C; (rows and columns) (25). To inves-
tigate sample/condition overlaps, we define the according condition match
score,

1 ‘Q ﬁCz‘

MSc(My, Mp) = —— .
(M, o) M| G0)em |G UGl

(61,G)eM

On synthetic data, where a 2D gold standard is available, we define the 2D match
score as the multiplicative score of both dimensions,

i ‘Cw ﬂCQ‘
[M4] (G.G)em, |G U G|

|61 ﬁGz‘
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The scores can be used to compute relevance and recovery. Let My be a set of
implanted biclusters or a gold standard, and let M be the output of a biclustering
algorithm. Then, the average bicluster relevance is defined as MS(M, Moyt) and
describes to what extent the biclusters found by the algorithm correspond to
the true hidden biclusters in the gene, condition, or both dimensions. Similarly,
the average bicluster recovery is defined as MS(Mop, M) and describes how
well each of the true biclusters is recovered by the algorithm. The recovery and
relevance score both have an optimal value of one, indicating a perfect overlap,
and zero, indicating no overlap.

The match scores describe a normalized sum of values. To investigate how
wellallindividual biclusters predicted by one algorithm match the gold standard,
we investigated the relevance distribution RD = [rds, rd, . . ., rd,] with n as the
number of biclusters in set of biclusters M and

|C,‘ n Cgp[l
(Gopt,Copt) €Mopt ICI u Cuptl

|Giﬁ60p1‘
1d; = —_—
! [G; U Gopt]

where C; and G; are the columns and rows of bicluster M;.

Experimental Omics Data. We evaluated the biclustering algorithms and
MoSBi on six publicly available metabolomics (36, 37), proteomics (35, 38), and
transcriptomics (41, 44) datasets (S/ Appendix, Table S1). Feature-wise z scores
were computed for all datasets, and, prior to that, log2 transformed [except
for Ku et al. (35) and Curtis et al. (44), which already showed a normal distri-
bution]. Transcriptomics data were filtered for genes with 80% coverage in all
samples and filtered the 5,000 most variant genes, to reduce algorithm run-
time. Gene set/pathway enrichment was performed using the “clusterProfiler” R
package using the "enrichGO" (biological process enrichment) and “enrichKEGG"
functions.

TCGA breast cancer data were downloaded from the Xena Platform (40, 45).
RNAseq transcriptomics data were processed as described above, and miRNA
and protein data were filtered for 80% coverage in all samples and z-score
transformed. Only samples occurring in all three datasets were considered for
the individual and multiomics analysis, which resulted in 484 samples with
measurements for all three data types.

Synthetic Data Generation. To investigate the performance of tools in a
controlled environment with a fully known gold standard, we developed a
pipeline to generate synthetic datasets with implanted biclusters and additional
properties such as noise and sparsity. The pipeline is shown in S/ Appendix,
Fig.S1. A detailed description of all synthetic scenarios is available in
SI Appendix.

https://doi.org/10.1073/pnas.2118210119 9 of 10
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Downloaded from https://www.pnas.org by University of Floridaon April 18, 2022 from |P address 128.227.11.67.

Data Availability. The source code is available for the R package (https://
github.com/tdrose/mosbi) and for the web application (https:/gitlab.lrz.de/
lipitum-projects/mosbi-webapp). Both are published under the aGLPv3 license.
The code and all used data for the evaluation that was performed for this work is
available on figshare: https://doi.org/10.6084/m9.figshare.19096070.v1 (46).
Previously published data were used for this work (35-38, 40, 41, 44).
All other study data are included in the article and/or S/ Appendix.
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Abstract Nonalcoholic fatty liver disease (NAFLD)
is a common metabolic dysfunction leading to hepatic
steatosis. However, NAFLD's global impact on the
liver lipidome is poorly understood. Using high-
resolution shotgun mass spectrometry, we quanti-
fied the molar abundance of 316 species from 22 ma-
jor lipid classes in liver biopsies of 365 patients,
including nonsteatotic patients with normal or
excessive weight, patients diagnosed with NAFL
(nonalcoholic fatty liver) or NASH (nonalcoholic
steatohepatitis), and patients bearing common muta-
tions of NAFLD-related protein factors. We
confirmed the progressive accumulation of di- and
triacylglycerols and cholesteryl esters in the liver of
NAFL and NASH patients, while the bulk composi-
tion of glycerophospho- and sphingolipids remained
unchanged. Further stratification by biclustering
analysis identified sphingomyelin species comprising
n24:2 fatty acid moieties as membrane lipid markers
of NAFLD. Normalized relative abundance of sphin-
gomyelins SM 43:3;2 and SM 43:1;2 containing n24:2
and n24:0 fatty acid moieties, respectively, showed
opposite trends during NAFLD progression and
distinguished NAFL and NASH lipidomes from the
lipidome of nonsteatotic livers.Hl Together with
several glycerophospholipids containing a C22:6 fatty
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acid moiety, these lipids serve as markers of early and
advanced stages of NAFL.

Supplementary key words NAFLD . shotgun lipidomics » lipid
biomarkers « sphingomyelins « liver biopsies « NAFL; « NASH -«
biclustering analysis « steatosis « liver lipidome

Nonalcoholic fatty liver disease (NAFLD) is a meta-
bolic dysfunction histologically characterized by he-
patic fat accumulation (hepatic steatosis) in the absence
of heavy alcohol consumption in past medical history
(1). NAFLD affects up to 30% of adults and up to 80% of
obese and diabetic individuals worldwide (2). The
prevalence and severity of NAFLD are higher in men
although in postmenopausal women, the NAFLD rate
increases (3). NAFLD is subdivided into nonalcoholic
fatty liver (NAFL), nonalcoholic steatohepatitis (NASH),
cirrhosis, and hepatocellular carcinoma (4, 5). In
contrast to NASH, hepatic steatosis in NAFL may occur
with no significant inflammation.

The molecular background and pathophysiology of
NAFL and why and how it progresses to NASH are
poorly understood (6-9). While the intracellular accu-
mulation of triacylglycerols (TG), diacylglycerols (DG)
and free fatty acids (FFA) is a metabolic hallmark of
NAFLD, it is unclear whether the disease also alters a
broader scope of lipids (10-16). Mutations in NAFLD risk
factors, eg., PNPLA3 or MBOAT7, affect the liver
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lipidome (17-31). It is also conceivable that lipidome
remodeling may contribute to or be associated with the
onset and propagation of NAFLD (15). However, lip-
idomic evidence is mostly semiquantitative and based
on limited lipid class coverage (32). Previous studies
were often focused on the composition of energy stor-
age lipids (12, 13, 33), while membrane and signaling
lipids received less attention (28, 34, 35). Chiappini et al.
(36) used TOF-SIMS imaging to analyze 104 lipid species
in biopsies of 61 NAFLD patients and suggested a NASH
lipidomic signature comprising 32 lipid species,
although the analysis was biased to most abundant and
best ionized classes, e.g., phosphatidylcholines (PC) and
TG. The study by Gorden et al. (13) covered 186 lipids in
liver biopsies and plasma of 91 patients and revealed a
combination of plasma biomarkers (including poly-
unsaturated glycero- and glycerophospholipids together
with long-chain ceramides (Cer)) that distinguished
NASH from NAFL. However, lipid markers and their
fold changes between disease states reported by inde-
pendent studies were not concordant. Also, if NAFLD
globally alters the liver lipidome and if changes in the
abundance of glycerophospho- and sphingolipids (for
convenience, here we termed them as membrane lipids)
corroborate major clinical indices and correlate with
disease severity is an open question, particularly because
no reference values for individual liver lipids and their
physiological variation are available.

To better understand how NAFLD is transforming
the human liver lipidome, we assembled a cohort of 365
histologically characterized biopsies reflecting its pro-
gression from nonsteatotic obesity to overt NASH,
together with appropriate nonsteatotic and nonobese
controls. We then used shotgun mass spectrometry
(37, 38) to systematically quantify the molar abundance
of 316 species from 22 major lipid classes that encom-
passed membrane and energy storage lipids including
cholesterol. Biclustering analysis of the curated lip-
idomics  dataset recognized several signatures
comprising specific membrane lipids that enabled pa-
tient's stratification at different stages of NAFLD inde-
pendently of progressive accumulation of DG and TG.

MATERIALS AND METHODS

Cohort recruitment, study design, and ethic
approval

The study protocol accords the ethical guidelines of the
1975 Declaration of Helsinki and was approved by the au-
thority of Universitit Kiel (D425/07, All1/99) before the
study commenced. All patients had given their written
informed consent. In total, 365 individuals (124 males; 241
females) from 17 to 85 years of age and whose BMI was in the
range of 14.8-836 (kg/m? were recruited within the time
period of 2007-2016. NASH and NAFL were defined by the
NAFLD activity score (NAS) as described (39). Phenotyping of
the entire cohort was performed using standardized histology
protocol (17) in a blinded fashion by a board-certified surgical

2 J. Lipid Res. (2021) 62 100104

pathologist (C. R.) having the specialization in hepatopathol-
ogy (details are in supplemental data, Histology).

Alcohol consumption was assessed by self-reporting; sub-
jects with average alcohol consumption of more than 30 g/
day in men or 20 g/day in women (an equivalent of three and
two standard alcoholic drinks per day, respectively) were not
enrolled (40). The collected metadata included age, sex, BMI,
blood test, including gamma-glutamyl transferase (GGT),
medication taken by each patient, and mutation status of the
following genes: PNPLA3, TM6SF2, MBOAT7, HSD17B13, SER-
PINAI (SERPINA S and SERPINA 7). Evidence for insulin resis-
tance was not available.

Common chemicals and lipid standards

Synthetic lipid standards (see supplemental data, Common
chemicals and lipid standards for complete list) were purchased
from Avanti Polar Lipids (Alabaster, AL, USA). Individual
standards were mixed and diluted with methyl-tert-butyl ether
(MTBE)/methanol (MeOH) 10:3 (v/v) (see supplemental data,
Common chemicals and lipid standards for details).

Annotation of lipid classes and species

Glycerolipids are referred to TG and DG; glycer-
ophospholipids and lyso-glycerophospholipids to phospha-
tidic acids (PA), phosphatidylinositols (PI), phosphatidylserines
(PS), phosphatidylglycerols (PG), phosphatidylethanolamines
(PE), phosphatidylcholines (PC), ether phosphatidylethanol-
amines (PE O-), ether phosphatidylcholines (PC O-), lyso-
phosphatidic acids (LPA), lyso-phosphatidylinositols (LPI),
lyso-phosphatidylcholines (LPC), and lysophosphatidyletha-
nolamines (LPE); sphingolipids to ceramides (Cer) and sphin-
gomyelins (SM); sterols to cholesterol (Chol) and cholesteryl
esters (CE). Species of glycero- and glycerophospholipids and
cholesteryl esters are annotated as <lipid class> <total num-
ber of carbon atoms> : <total number of double bonds> in
both (or, for lyso-lipids and cholesteryl esters, in one) fatty
acid or fatty alcohol moieties (moiety). Sphingolipids are an-
notated as <lipid class> <total number of carbon atoms> :
<total number of double bonds>; <total number of hydroxyl
groups> at the ceramide backbone.

Sample preparation for shotgun lipidomics

Biopsies (wet weight of 4.2-21.9 mg) were shock-frozen in
liquid nitrogen ensuring an ex vivo time of less than 40 s and
stored at —80°C freezer. Prior to lipid extraction, the tissues
were homogenized in 300 pl of isopropanol using zirconium
beads; the total protein content was determined by Pierce 660
assay (Thermo Fisher Scientific, USA). Lipids were extracted
from aliquots containing an equivalent of 50 pg of total
protein by adding 700 pl of MTBE/MeOH 103 (v/v) con-
taining the internal standard mix (41, 42) (see details in
supplemental data, Sample preparation). After evaporation of
the organic phase, lipid extracts were reconstituted in 600 pl
of 21 (v/v) MeOH / CHCl; and stored at —20°C. Ten micro-
liters of a lipid extract were diluted with 90 pl of the spray
solution (4:2:1 isopropanol/MeOH/CHClI; (v/v/v) containing
7.5 mM ammonium formate) for mass spectrometric analysis.
Samples were analyzed in technical duplicates.

Lipid identification and quantification by shotgun
mass spectrometry

The mass spectrometric analysis was performed on a Q
Exactive instrument (Thermo Fisher Scientific, Bremen,

SASBMB
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Germany) equipped with a robotic nanoflow ion source
TriVersa NanoMate (Advion BioSciences, Ithaca, NY) using
nanoelectrospray chips with spraying nozzle diameter of
4.1 pm. The ion source was controlled by the Chipsoft 83.1
software  (Advion  BioSciences).  Ionization  voltage
was +0.96 kV in positive and —0.96 kV in negative mode;
backpressure was 1.25 psi in both modes (43). Temperature of
the ion transfer capillary was 200 °G; $-lens RF level was 50%.
FT MS spectra were acquired within the range of m/z
400-1,000 in positive and m/z 350-1,000 in negative ion
mode at the target mass resolution of R ./, 200=140,000;
automated gain control (AGC) of 3 x 10° and maximal in-
jection time of 3 s. In both modes #SIM spectra were acquired
at the same mass resolution and m/z range as above; AGC of
5% 10% maximum injection time of 650 ms; width of isolation
window of 20 Th. The inclusion list of masses targeted by
+-SIM started at m/z 355 in negative and m/z 405 in positive ion
mode and other masses were computed by adding 10 Da
increment (i.e., m/z 355, 365, 375) up to m/z 1,005. Free choles-
terol was quantified by parallel reaction monitoring (PRM)
FT MS/MS (41, 44, 45) during the same analysis. The number
of micro-scans was set to 1; width of precursor isolation win-
dow of 0.8 Th; normalized collision energy (nCE): 12.5%;
AGC: 5 x 10* and maximum injection time of 3 s.

Raw +SIM spectra were subjected to repetition rate
filtering by PeakStrainer software (46) and then stitched
together by SIMStitcher software (47). Lipids were identified
by LipidXplorer software (48) by accurately determined m/z
(mass accuracy better than 5 ppm) and quantified by
comparing the isotopically corrected abundances of their
molecular ions with the abundances of internal standards of
the same lipid class. All internal standards were detected in all
samples. MS? validation of selected species by HCD FT MS/
MS was applied as described in supplemental data, MS?
validation.

Raw data processing

The LipidXplorer output was processed using several steps.
Technical replicates were averaged and spectra of QC sam-
ples (details in supplemental data, Pilot sub-cohort and
Quality Control) set aside. In each sample lipid abundances
for which the standard deviation (SD) exceeded 40% were set
to Not-a-Number (NaN). Lipids whose abundance exceed the
minimal value determined for this species by less than 2-fold
were exempted from SD filtering (supplemental data, Raw
data processing and supplemental Fig. SI). Also, cholesterol
values were not SD-filtered because they were determined by
PRM. Next, we grouped the patient samples according to their
disease status (normal control, healthy obese, NAFL, NASH,
and none). The abundance of lipid species that were detected
in less than 15% of all patient samples of the same group was
set to zero. Finally, we applied plate bias correction using the
ComBat approach (49) as detailed in supplemental data, Raw
data processing. The final dataset comprised the molar
abundance of 316 lipid species from 22 lipid classes in 365
patients (supplemental dataset SI).

Bioinformatics and data mining
Biclustering analysis was performed using the isa (50) and
qubic (51) algorithms. To eliminate redundancy of biclusters,
we screened them wusing a consensus approach (see
supplemental data, Bioinformatics and data mining).
Classifications were performed using random forest clas-
sifiers from the “randomForest” R package. Hundred
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classifiers were trained per scenario on bootstrapped lip-
idomics data. The models were evaluated using precision
recall (PR) and receiver operator characteristics (ROC) area
under the curve (AUC) values on the test set. Feature impor-
tance was computed using gini index averaged over all
bootstrapped models (For further details, see supplemental
data, Bioinformatics and data mining).

Lipidomics impact of mutations

The impact of mutations was probed within each group
(supplemental data, Genotyping), in which the lipidomes of
homozygotes, heterozygotes, and normal genotypes were
compared pairwise (details are in supplemental data, Statisti-
cal analysis of mutation-correlated lipidome changes).

RESULTS

Study cohort

Percutaneous or surgical liver biopsies were taken
from in total of 365 Caucasian patients (124 males and
241 females) admitted to the University Hospital
Schleswig-Holstein, Kiel, Germany during 2007-2016.
Control biopsies were collected during gastrointestinal
surgery for pathologies having no direct association
with NAFLD. Each biopsy was examined by the same
surgical pathologist (C. R.) (17) and assessed according to
the NAFLD activity score (NAS) (39).

Patients were further sorted into four basal and one
additional group (52) as outlined below. Biopsies were
classified according to the presence of steatosis and
inflammation as the main criteria to differentiate
simple steatosis (NAFL) from steatohepatitis (NASH)
(52). Therefore, individuals whose biopsies were having
histological fat content <5%; BMI <30 kg/m2; no his-
tologically proven liver pathology; no lobular inflam-
mation and absence of significant (stage 2 or higher)
fibrosis formed the normal control (NC) group. Healthy
obese (HO) group comprised patients having no
NAFLD per clinical and histological evidence, yet their
BMI exceeded 30 kg/m?% Patients were assigned to
NASH and NAFL groups if the histological examina-
tion revealed steatosis with or without inflammation,
respectively. In total, 337 patients were sorted into NC
(n = 49), HO (n = 51), NAFL (n = 143), and NASH (n =
94) groups (Table 1; supplemental Table Sl, age and
BMI distribution is in supplemental Fig. S4).

Within the cohort, 28 patients who did not receive
NAS because of serious liver conditions, such as histo-
logically confirmed cancer with abnormal and higher
than control levels of GGT, alkaline phosphatase (AP),
and bilirubin, were assigned to the additional group
“None.” Their lipidomes helped to delineate the impact
of a broader spectrum of liver diseases different from
NAFLD. The impact of obesity (53) was evaluated by
comparing lipidomes of NC and HO groups. Since
mean BMI of HO, NAFL, and NASH groups was
similar, their lipidomes could be compared with no
further adjustment. The mean age of NC group was
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TABLE 1.

Clinicopathological characteristics of the study cohort

Number of patients

NAS Parameters”

Group  Total Female Male NASFat NAS Ballooning NAS Inflammation ~NAS Average Fibrosis' Mean age, years Mean BMI kg/m?
NC 49 25 24 0 0 0 0 0 67.7 24.1
HO 51 47 4 0 0 0 0 0 423 46.7
NAFL 143 94 49 1 0 0 0 0.35 456 471
NASH 94 62 32 2 0 1 4 1 45.1 493
None 28 13 15 na. na. na. na. na. 571 33.7

“Median values, in arbitrary units assigned according to (39).

12 years higher than of NAFL/NASH/None groups
because of fewer younger people undergoing gastro-
intestinal surgery.

Shotgun lipidomics of liver biopsies

Although surgical biopsies were similar in size, they
varied in weight by as much as 5-fold and also differed
in fat and fibrotic content (Table 1). Since they were
unique and histologically inhomogeneous, each spec-
imen was analyzed as a single sample with no inde-
pendently processed replicates. In an aliquot of each
biopsy lysate, we first determined the total protein
content and used it for subsequent normalization of
molar lipid abundances.

To quantify the lipidomes, we employed high-
resolution shotgun Fourier transform mass spectrom-
etry (FT MS) that relies on direct nanoflow infusion of
total lipid extracts (37, 38). During shotgun analysis, in-
ternal standards spiked into biopsy lysates prior lipid
extraction are ionized together with endogenous lipids
and enable their absolute (molar) quantification
(17, 42, 54-56). Because of high and variable content of
TG together with abundant chemical background, we
analyzed liver extracts by the method of #SIM (for tar-
geted single ion monitoring) (47). In each analysis FT MS
spectra were successively acquired from partially over-
lapping m/z windows of 20 Th and then these spectra
were stitched together into a master spectrum by SIM-
Stitcher software. Although typical #SIM acquisition
(supplemental Fig. S5) required ca. 11 min per sample
(compared with less than 1 min required for conventional
FT MS analysis), it increased the number of quantifiable
lipid species by ca. 45% (57).

To ensure spectra acquisition consistency and enable
batch correction of lipid abundances, we created a QC
standard by pooling equal aliquots of 36 extracts that,
according to a preliminary experiment, reflected
extreme values of the total lipid content and repre-
sented both genders, stages of inflammation and
fibrosis. In each aliquot of the QC sample, we quanti-
fied 255 lipid species from 19 lipid classes. The molar
abundance of more than 98% of lipid species differed
by less than 5% and only cholesterol (quantified by the
method of PRM (57-59)) and a few TG species were
detected with higher SD (supplemental Fig. S2).

The final dataset covering 365 biopsies comprised
normalized molar abundances (in pmol per pg of total

4 J Lipid Res. (2021) 62 100104

protein) of 316 lipid species from 22 lipid classes: Out of
the total of 316 lipid species, only 114 were detected in
more than 98% of biopsies (supplemental dataset S2).

Liver lipidome of the normal control group

The NC group (n = 49) combined patients with no
apparent liver pathology and obesity, whose lipidome
we assumed as basal (Fig. 1). The mol% of lipid classes
generally  corroborates  previous reports  (13)
(supplemental Table S2), although we detected consid-
erably more Cer, PS, SM, and lyso-lipids.

Since the liver is a hub of lipoprotein biosynthesis, we
further examined if the NC lipidome differs from
plasma lipidome (42, 56, 60). While both lipidomes have
similar mol% proportions of PC, SM, and Chol, plasma
contained 10-fold more CE (supplemental Fig. S6). Liver
lipidome contains a larger variety of lyso-species (liver-
specific are LPG, LPI, LPS, LPA), while LPC is more
abundant in mol%. TG and DG are also more abundant
in the liver, as well as PE, PG, PI, PS, and Cer. Lipid class
profiles in the liver showed no pronounced gender bias
(supplemental Fig. S6) that was apparent in healthy
plasma (42).

Mutation-associated changes of the liver lipidome

We further evaluated how common mutations in
NAFLD risk genes: TM6SF2 variant rs58542926
(hcv89463510), PNPLA3 variant rs738409 (hcv7241),
MBOAT7 variant rs641738 (hcv8716820), SERPINAI
variant PiZ (Glu342Lys) rs28929474 (hcv34508510),
SERPINAI variant PiS affected the liver lipidome.
Within NC and NASH groups liver lipidomes of ho-
mozygotes, heterozygotes and normal genotype carriers
were compared pairwise (Table 2). Note that, for con-
sistency, we compared absolute (in moles per pg of total
protein) rather than relative (in mol% within each class)
lipid abundances, although the latter could reveal more
affected species (17) (supplemental Dataset SI).

MBOAT7 mutation-dependent changes were only
detected in the NC group and confined to PI 36:1
(Table 2), consistent with its phosphatidylinositol O-
acyltransferase activity and the role in NAFLD patho-
genesis (17). In the NASH group PNPLA3 rs738409 mu-
tation elevated the levels of CE 22:2 and TG 56:7, while
the total abundance of CE and TG classes did not
change (supplemental Figs. S7, S8A,B) (19, 20, 29, 31,
61-63).
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Fig. 1.

Lipid class composition (in pmol per pg of total protein; logs scaled ) of liver biopsies in the four main groups of patients. The

total abundance of each lipid class was calculated by adding up molar abundances of lipid species. Boxing highlights values between
25% and 75% quartiles; vertical lines connect minimum and maximum values excluding outliers. Filled circles stand for the lipid
class abundance in individual biopsies (average of three technical replicates); black lines within boxes indicate median values. Color

coding is shown in the inset at the right-hand side.

Condition-associated changes in lipid classes

There was no marked difference between the total
abundance of lipid classes in disease groups compared
with NC (Fig. 1), except significantly higher levels of TG
and, to lesser extent, of DG and CE in NAFL and NASH
patients (supplemental Figs. S9-S11). Although the mean
BMI of HO patients was almost 2-fold higher compared
with NC and was as high as in NAFL and NASH pa-
tients, the abundance of TG in HO and NC was similar.

In principal component analysis (PCA) plots of pa-
tients' lipidomes, the gradient across PCl (principal

component 1) from NC (at the left) to NASH (at the
right) (Fig. 2A) reflected the increased abundance of
glycerolipids and CE (Fig. 2B). Interestingly, the profiles
of hydrocarbon chain length and unsaturation of fatty
acid moieties in TG and DG species were the same in all
patient groups (Fig. 2C).

We further looked if TG and DG accumulated in the
liver of NAFL and NASH patients were composition-
ally different from the adipose tissue. The ten most
abundant TG species in liver (current dataset) and
white adipose tissue (WAT) (64, 65) (supplemental

TABLE 2. PNPLA3 and MBOAT7 mutation-dependent changes of lipidome in NASH and NC groups

Lipid* Mutation Group Mutation Status Abundance Ratio
CE 22:2 PNPLA3 rs738409 NASH Heterozygote/No mutation 40"

TG 56:7 PNPLA3 rs738409 NASH Heterozygote/No mutation 6.8°

TG 567 PNPLA3 rs738409 NASH Homozygote/No mutation 151°

TG 56:7 PNPLA3 rs738409 NASH Homozygote/Heterozygote 22"

PI 36:1 MBOAT7 rs641738 NC Heterozygote/No mutation 22"

PI 36:1 MBOAT?7 rs641738 NC Homozygote/No mutation 457

“Significantly changed lipid in the two compared groups.
"Significance P < 0.05.

“Significance P < 0.005.

9Significance P < 0.01.
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Fig. 2. Segregation of patient groups by the composition of lipidomes. A: PCA plot for full lipidomes of liver biopsies of 365
patients, whose disease group is indicated by color (coding scheme is in the inset); (B) PCA plot of lipidomes from which glycerolipids
and CE were omitted. C: Length and unsaturation of fatty acid moieties in TG and DG species. Circle size and color reflect lipid
abundances. D: Similarity network of biclusters. Node size is proportional to the number of patients in the bicluster. Highlighted are
four network components (annotated) comprising the largest number of connected biclusters attributed to steatotic (in red and
amber for NASH and NAFL) or nonsteatotic patients (in blue and green for NC and HO).

Table S3) were almost the same suggesting that TG
metabolism in tissues is not organ-specific. However,
they differed from TG in plasma of obese patients (66),
presumably because in tissues TG accumulation se-
questers lipotoxic FFA, while plasma TG are packed
into lipoproteins for transporting via bloodstream (65).

6 J- Lipid Res. (2021) 62 100104

Molecular stratification of patient groups by
biclustering

Lipid class composition of liver biopsies (Figs. 1, 2)
appears to be conserved and, apart from major increase
in glycerolipids and CE, offers limited molecular
insight or diagnostic perspective. We reasoned that
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better molecular stratification of patients could rely on
clusters of individual species spanning multiple lipid
classes whose molar abundance coherently changes
with the disease progression. Specifically, we employed
a biclustering ensemble approach (Bioinformatics and
data mining), in which lipidome compositions are
clustered and the results consolidated into networks of
connected components comprising lipid compositions
specific for a selection of patients (Fig. 2D;
supplemental Figs. S13, S14). Lipid compositions and
meta-data could be compared across biclusters and
reveal lipid signatures specific for a disease condition
or patient group. Within all patients' lipidomes, we
recognized two components comprising higher pro-
portion of steatotic (NASH and NAFL) and two com-
ponents with mostly nonsteatotic (NC and HO) patients
(Fig. 2D, supplemental Table S4). Their lipidomes were
clearly separated by PCA (supplemental Fig. SI2A).
We first tested if lipids identified by biclustering
could detail the trend toward steatosis and identify
markers distinguishing nonsteatotic from steatotic
groups by training random forest-based classifiers.

These groups were not separated by common clinical
indices, e.g, total bilirubin, GGT, AP, alanine amino-
transferase (ALT), and aspartate transaminase (AST)
(supplemental Fig. S15B), but were readily distinguished
by lipidome compositions (Fig. 3A). Classification per-
formance was evaluated using the precision recall and
ROCGs (supplemental Fig. SI16).

Lipids most significant for the classification were
mono- and diunsaturated TG and DG (e.g.,, TG 50:1, TG
52:2, or DG 34:1) (supplemental Fig. SI5A). To further
test if unsaturation of fatty acid moieties in TG plays a
role, we trained two classifiers with TG having in total
1-4 and 5-8 double bonds, respectively. Both models
performed significantly better than random. However,
the median Precision Recall Area Under the Curve (PR
AUC) of the model with more saturated TG showed
better performance (supplemental Fig. S15C, D).

Taken together, our analysis revealed several mono-
and diunsaturated DG and TG species as lipid markers
of steatosis while common membrane lipids (including
glycerophospholipids (GPL), Chol, or Cer) were not in
the markers list with one notable exception of two SM
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Fig. 3. Classification of disease groups by lipid markers. A: Classification of steatotic and nonsteatotic patients reported as an area
under the curve (AUC) for precision recall (PR) and receiver operator characteristics (ROC). Classification based on all lipids (upper
panel) and only by the ratio of SM 43:1;2 and SM 43:3;2 normalized to SM 38:2;2 (lower panel). B: Changes in the abundance of SM
species in steatotic (red background) and nonsteatotic (blue background) components. SM 38:2;2 belongs to none of the two com-
ponents (gray background). Lines indicate disease progression: NC (blue), HO (green), NAFL (yellow), and NASH (red) patient
groups. Axes indicate relative abundances of SM species; data points per species sum up to 100%. C: Medians of the ratios of the
abundance of SM 43:1;2 to SM 38:2;2 and SM41:3;2 to SM 38:2;2 for the patient groups, including subgroups of NAFL (D) Classifi-
cations of all patient groups against each other using the two SM ratios.
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species (supplemental Fig. SI5A) that also showed clear
NAFLD-dependent profile (Fig. 3B).

Sphingomyelin species sharing n24:2 fatty acid
moiety are same-class membrane lipid markers of
NAFLD

We plotted the relative abundances of all SM species
found in steatotic and nonsteatotic groups (Fig. 3B). The
abundance of species from the nonsteatotic group
(such as SM 42:2,2, SM 40:1;2, SM 42:1;2) either changed
marginally or, as for SM 43:1;2, markedly decreased
with NAFLD progression with the exception of SM
34:0;2 (Fig. 3B & supplemental Fig. S17).

In contrast, the abundance of SM 41:3;2, SM 43:3;2,
and SM 42:4;2 from the steatotic group followed the
opposite trend: it consistently increased with NAFLD
progression. To elaborate on this finding, we first vali-
dated their identification by high-resolution HCD FT
MS/MS (supplemental Materials and Methods, MS?
validation). We note that these lipids were previously
identified in human plasma by the method of LC-MS™
Major species of SM 41:3;2 and SM 43:3;2 were recog-
nized as SM d17:1/n24:2 and SM d19:1/n24:2, respec-
tively (67); and SM 42:4;2 was SM d18:2/n24:2 (60),
suggesting that these three SM may be sharing n24:2
fatty acid moiety. In contrast to SM 41:3;2, another
compositionally related yet more saturated sphingo-
myelin SM 43:1;2 was attributed to nonsteatotic group
and its abundance dropped with NAFLD progression.

To validate the molecular composition of liver
sphingomyelins, we subjected a few combined extracts
of steatotic and nonsteatotic biopsies to targeted LC-
MS" (67) (method details are in supplemental data,
Identification of SM molecular species by LC-MS"). The
analysis (supplemental Table S5) confirmed that SM
34:0;2 belongs to dihydrosphingomyelins, the lipid class
associated with fat deposition in organs, including the
liver and pancreas (68). SM 42:4;2 and SM 4312
comprised unsaturated (n24:2) and saturated (n24:0)
fatty acid moieties, respectively (supplemental Fig. S19;
supplemental Table S5). Because of their low abun-
dance, LC-MS" analysis of SM 43:3;2 and SM 41:3;2 was
inconclusive.

We noticed that the abundance of SM 41:3;2 and SM
43:3;2 (both comprising n24:2) as compared with SM
41:1;2 (comprising n24:0) followed opposite trends
(Fig. 3B), and we examined if their ratio to some un-
changed SM species could distinguish different stages
of NAFLD. We computed the ratios of SM 431;2
(decreasing in NAFLD) and of SM 43:3;2 (increasing in
NAFLD) to SM 38:2;2 (SM d18:2/1n20:0; see supplemental
Table S5) that did not associate with steatotic and
nonsteatotic groups and whose abundance was not
affected by NAFLD (Fig. 3B). These ratios could be
determined directly from a shotgun spectrum of a total
lipid extract without prior adjustment to the abundance
of internal standards or biopsy size (Fig. 3C). Strikingly,
they distinguished nonsteatotic and steatotic subcohorts

8 J- Lipid Res. (2021) 62 100104

with only slightly lower specificity than all lipids
(Fig. 3A). SM-based classification was unaffected by
obesity: it marginally distinguished NC and HO, but
readily delineated NC from NAFL and NASH (Fig. 3D).
To corroborate these findings, we further examined
mol% profiles of species of SM and Cer classes in the
four patient groups (supplemental Figs. S17, SI8). They
confirmed the notable decrease in the marker SM 41:1:2
as well as of the most abundant SM 34:1;2 together with
the concomitant increase of SM 41:3;2 and SM 43:3;2 in
NAFL and NASH subgroups, as compared with NC and
HO. This, however, did not affect the abundance of
matching Cer species: the mean value of Cer 34:1;2 was
unchanged and none of Cer with odd number of car-
bon atoms was detectable.

We noted that SM ratios were less specific when we
compared HO and NAFL (Fig. 3D). At the same time,
HO and NASH were distinguished notably better albeit
there was no global difference between their lipidomes
except higher abundance of neutral lipids. Therefore,
we hypothesized that the cohort of NAFL patients may
be compositionally heterogeneous and consist of
smaller, yet compositionally distinct subcohorts
reflecting some intermediate stages of NAFLD patho-
genesis. In this way, SM ratios and likely other lipid
markers could reflect the transition from initial and,
likely, reversible stage(s) of NAFL towards NASH.

Heterogeneity of NAFL lipidome and its molecular
markers

We noticed that a component “Non-steatotic 1”
(Fig. 2C) covers the largest number of nonsteatotic
(NC+HO) patients, but also some patients with NAFL
and NASH. Similarly, “Steatotic 2” mainly covers stea-
totic (NAFL and NASH) patients and almost no patients
of NC and HO groups. We hypothesized that lipidomes
of some NAFL patients may have higher similarity to
the lipidomes of HO or of NASH. Based on the simi-
larity of lipidome compositions, we used biclustering to
divide NAFL patients into four subgroups that clus-
tered together with nonsteatotic (h- for healthy) in-
dividuals, with NASH (s- for sick) individuals or neither
h- nor s- (hs-) (Fig. 4). To test if this lipidome-based
clustering reflects the disease progression also within
the NAFL group, we compared the median values of
individual histopathological indices (e.g., liver fat mass,
ballooning, fibrosis, and inflammation) that were used
for calculating NAS. We observed clear disease-related
trends for each index and also for the total NAS
(supplemental Table S6). Within NAFL subgroups, fat
and ballooning expectantly increased from h-NAFL to
s-NAFL, whereas fibrosis and inflammation did not,
indicating that developing steatosis has not yet led to
NASH. Expectantly, BMI did not change progressively
between the subgroups.

Next, we subjected the patients subgroups to random-
forest classification according to the following scenarios:
(@) h-NAFL versus HO, (b) hs-NAFL versus HO, (c)
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Fig. 4. Classification of NAFL subgroups. A: Classification of NAFL subgroups against HO and NASH groups by ratios of SM 43:1;2
to SM 38:2;2 and SM41:3;2 to SM 38:2;2 whose trend lines are shown in Fig. 3C. B: Violin plots of logs-scaled abundances of CE 18:3, DG
34:1,and PE O- 38:7 in the three NAFL subgroups. Color coding of in panels A and B is the same as in Fig. 3C. C: Distribution of NAFL
patients in bicluster components indicating the representative number of patients in each subgroup.

s-NAFL versus. HO, (d) s-NAFL versus NASH and (e) hs-
NAFL versus NASH, (f) h-NAFL versus NASH on the full
lipidome (supplemental Fig. S20). As anticipated, we
observed that the classifications performance increased
from (a) to (c) and from (d) to (f) indicating that the lip-
idome of NAFL subgroups consistently changed with the
disease progression. The change of SM ratios in sub-
groups of NAFL and also in four major groups of pa-
tients visualized this trend (Fig. 3C).

In these classifications DG 34:1, but also CE 18:3 and
CE 182 were the most discriminating markers
(supplemental Fig. S21). We next tested, if h-NAFL, hs-
NAFL, and s-NAFL patients, selected solely by
comparing their lipidomes, are also distinguishable
histologically? If so, what marker lipids could reflect the
transition from h-NAFL to s-NAFL and further toward
NASH? The examination of histological indices indi-
cated gradual increase in both inflammation and stea-
tosis (supplemental Table S6). However, none of them
reached typical NASH values, apart from % of accu-
mulated fat. In their lipidomes, the abundance of CE
18:3 and DG 34:1 gradually increased from h-NAFL to
s-NAFL (Fig. 4B).

We also classified lipidomes of NAFL patients from
the steatotic bicluster component against all remaining
NAFL patients and identified PE O- 38:7 as the most
discriminating marker (supplemental Fig. 522). Exami-
nation by HCD FT MS/MS identified it as plasmalogen

SASBMB

PE O-16:1/22:6 (supplemental Fig. S23 and supplemental
Materials and Methods, MS? validation) whose abun-
dance dropped already in hs-NAFL subgroup down to s-
NAFL level. Another three polyunsaturated glycer-
ophospholipids: LPE 22:6, PC 38:6, and PC 40:7 showed
similar classification power (supplemental Fig. S20).
Their sum formula suggests that, similar to PE O- 387
and LPE 22:6, they also comprise C22:6 fatty acid moiety.
We argue that stepwise decrease in the abundance of
(C22:6 - containing glycerophospholipids might indicate
the onset of transition of h-NAFL toward s-NAFL,
despite that there was only a marginal difference be-
tween histological indices of h-NAFL and hs-NAFL
subgroups (supplemental Table S6). Interestingly, the
classifications based on the SM ratios showed similar
specificity (supplemental Fig. S17).

Taken together, our analysis distinguished non-
steatotic (NC and HO) and steatotic (NAFL and NASH)
cohorts by the accumulation of storage lipid markers TG
50:1, DG 34:1, CE 18:3 and, independently, by the ratios of
sphingomyelins SM 43:3;2 and SM 41:3;2 SM to the
reference SM 38:2;2. Furthermore, the SM ratios together
with coherently changing C22:6 - containing glycer-
ophospholipids (most specifically PE O-38:7, but also LPE
22:6, PC 38:6 and PC 40:7) revealed the compositional
heterogeneity of the NAFL lipidome and how it changes,
once the progressing disease gradually remodels HO-like
lipidome toward NASH (Fig. 5).
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DISCUSSION

Excessive accumulation of TG is the histological
hallmark of NAFLD. While this alone links NAFLD to
altered lipid metabolism, little was known if and how
NAFLD globally alters the liver lipidome, particularly
its membrane and signaling complements.

Our study confirmed the accumulation of neutral
lipids along with NAFLD progression. Interestingly, the
molecular composition of TG and DG species did not
change and, altogether, was similar to white adipose
tissue (WAT). Accordingly, biclustering analysis identi-
fied monounsaturated TAG 50:1 and DAG 34:1, but also
unsaturated CE 18:3 as most specific markers of NAFLD
progression whose abundance steadily increases from
HO to NASH (Figs. 3-5). The impact of five risk genes
implicated in NAFLD development corroborated the
molecular specificity of PNPLA3 and MBOATY7, but did
not alter the liver lipidome globally.

Interestingly, the levels of glycerophospholipids and
of sphingolipids, eg., Cer and (with a few notable ex-
ceptions) SM were not perturbed significantly (Fig. 1).
Also, no apparent association with altered SM/Cer
metabolism emerged from the transcriptomics analysis
(69). Although liver inflammation and apoptosis in
NASH are supposed to increase the levels of Cer also by
cleaving SM (9, 13, 32, 70, 71), we did not observe it in the
biopsies. However, if SM directly contributed to or are
associated with steatosis and its transformation to
NASH was an open question (72). Specific bidirectional
changes of the four SM species supported the robust
same lipid class disease state classification. Conve-
niently, ratios of SM markers could be computed from
raw intensities of corresponding molecular peaks: they
did not depend on the biopsy size and did not require
the full lipidome quantification. To the best of our
knowledge, the prospective marker lipids SM 43:3;2, SM
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41:3;2, and SM 42:4;2 were not previously spotted in the
pathophysiological context of metabolic syndrome.
Therefore, it seems promising to use targeted quanti-
fication to follow their levels in plasma as it might yield
a convenient marker for independent and noninvasive
stratification of NAFLD.

Sphingolipids with n24:2 moities are produced from
linoleic (C18:2) fatty acid (73). CE 182 is the most
abundant cholesteryl ester in both the liver and plasma,
and it is also enriched in NAFLD patients. It is therefore
conceivable that enhanced biosynthesis of SM
comprising n24:2 reflects increasing availability of free
linoleic acid, while the abundance of SM with saturated
or monounsaturated fatty acid moieties tends to
decrease (Fig. 3B). However, relative changes of the
abundance of SM species between steatotic and non-
steatotic conditions are not proportional to their abso-
lute (molar) content and are also sphingosine-backbone
dependent. We noticed that two out of three marker
SM comprise sphingosine backbone having odd num-
ber of carbon atoms. Therefore, it would be interesting
to assess the contribution of microbiome lipids
(reviewed in (74)) or de novo synthesis from branched
amino acids (75).

One of the most intriguing findings of this work was
the lipidomics evidence of the NAFL cohort heteroge-
neity (Figs. 3-5) that was not apparent from the histo-
logical examination (Table 1). In the NAFL subgroups
that we conveniently termed as hs- and s-NAFL the
levels of plasmalogen PE O- 387, but also PC 38:6, PC
40:7 and LPI 22:6 (all comprising C22:6 moiety) dropped
down to the level typical for NASH patients. In the
same NAFL subgroups the dynamics of histopatholog-
ical indices (supplemental Table S6) was concordant
with progressive steatosis with no hallmarks of fibrosis
and inflammation. We therefore speculate that altered
SM ratios together with decreased levels of (C22:6-
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containing glycerophospholipids might indicate a
turning point in NAFLD pathogenesis, where the
transition from NAFL to NASH becomes irreversible.

While at this stage we cannot offer a suitable mecha-
nistic explanation, we hypothesize that depletion of C22:6
containing GPL might affect the levels of PPARa (76) and
SREBPIc (77) and, eventually, promote steatosis and
inflammation. Also, we cannot rule out that the decreased
abundance of these lipids hints at enhanced oxidative
stress, despite that shotgun profiling revealed no notable
accumulation of oxidized TG and glycerophospholipids.

Irrespective of NAFLD stage, the organism strived to
maintain the compositional identity of the hepatocyte
membrane lipidome and changes were limited in both
molecular scope and magnitude. The unexpected link
between species-specific SM metabolism and NAFLD
progression, together with NAFL-specific change in the
levels of C22:6 - containing glycerophospholipids could
contribute to both patients stratification and mecha-
nistic understanding of the lipidome regulation during
the disease.

Last but not least, this work created an open and
transparent lipidomic resource that could be expanded
with or cross-validated by further independent studies
reporting molar abundances of liver lipids, irrespective
of their research objectives and employed analytical
methods. Studies design and reported evidence should
enable direct comparison of lipidomics data, rather
than their context-dependent interpretations and
trends. Eventually, this may help to establish reference
values of molar lipid abundances and use them for
molecular diagnostics of a broad spectrum of liver pa-
thologies. It will also complement ongoing efforts to
create harmonized lipidomic resources for liquid and
solid biopsies sharing similar principles of collecting
and organizing the data (41, 44, 55, 60, 78).

Data availability
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within the manuscript, supplemental data, and
supplemental datasets. Bl
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Abstract: Lipids play an important role in biological systems and have the potential to serve as
biomarkers in medical applications. Advances in lipidomics allow identification of hundreds of
lipid species from biological samples. However, a systems biological analysis of the lipidome, by
incorporating pathway information remains challenging, leaving lipidomics behind compared to
other omics disciplines. An especially uncharted territory is the integration of statistical and network-
based approaches for studying global lipidome changes. Here we developed the Lipid Network
Explorer (LINEX), a web-tool addressing this gap by providing a way to visualize and analyze
functional lipid metabolic networks. It utilizes metabolic rules to match biochemically connected
lipids on a species level and combine it with a statistical correlation and testing analysis. Researchers
can customize the biochemical rules considered, to their tissue or organism specific analysis and
easily share them. We demonstrate the benefits of combining network-based analyses with statistics
using publicly available lipidomics data sets. LINEX facilitates a biochemical knowledge-based
data analysis for lipidomics. It is availableas a web-application and as a publicly available docker
container.

Keywords: computational lipidomics; computational systems biology; network biology; bioinfor-
matics; lipidomics; lipids; metabolic networks

1. Introduction

Lipids play a central role in biology for membranes, energy metabolism and signaling
processes. Lipidomics is gaining impact in systems biology and medicine as lipids are an
important molecular dimension for the investigation of biological mechanisms, stratifi-
cation of patients, and disease subtyping. Recent advances in extraction protocols, high
resolution Mass Spectrometry (MS) and methods for the identification and quantification
of lipids allow for more comprehensive and complex lipidomes to be measured. However,
the analysis of lipidomics data does not end with quantification. To interpret changes of
the lipidome and embed them into a systems biological context, dedicated computational
approaches are necessary. The software tools lipidr [1] and LipidSuite [2] provide statistical
methods to mine and perform differential analysis of lipidomics data. They implement a
“Lipid Set Enrichment Analysis” and “Lipid chain analysis” to investigate the regulation of
lipid classes, carbon chains or saturations. These approaches incorporate lipid-specific char-
acteristics into the statistical analysis. However, the possibility to investigate associations
between lipids is missing.

Association networks from molecular omics data can offer benefits for data analysis,
as biological networks carry information about functional interactions of biomolecules.
Examples are Protein-Protein Interaction (PPI) networks, Gene Regulatory (GR) networks,
or metabolic networks. In the case of lipid metabolic networks, these characterize trans-
formations of lipids catalyzed by enzymes. Dedicated bioinformatics tools such as Key-
PathwayMiner [3,4], DOMINO [5] or HotNet2 [6] have been developed, which extract
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functionally associated network modules enriched with deregulated genes/proteins from
PPI networks in a case/control setting. Such network modules can hint towards bio-
chemical mechanisms, which connect a phenotype to its underlying molecular machinery.
Applying network-based computational methods on lipidomics data remains challenging.
One reason is that reaction databases carry information mainly on a lipid class level but
not on a molecular species level [7,8]. Since modern lipidomics experiments provide mea-
surements on the sum or molecular species level, more fine-grained reaction information
can be utilized. Therefore, (partial) correlation networks of lipids species can be used to
investigate data-driven interactions between lipids.

Correlation networks are a common method for the analysis of metabolomics/lipidomics
data [9-11]. They show relationships between lipids entirely based on pairwise correlations
over all measured samples. While they can reveal novel relationships between lipids, they
do not describe functional associations between them. Recently it was shown that corre-
lation networks can profit from incorporating prior knowledge into cut-off selection [12],
providing an alternative to purely data-driven or purely knowledge-driven metabolic
networks. An interplay between functional and data-driven associations could therefore
be beneficial for the analysis of lipidomics experiments.

Functional analysis of lipid data is already possible with tools such as LION /web [13]
or BioPAN [14], which enrich lipids based on an ontology or pathways. LION/web
identifies lipid-associated terms in lipidomes [13] and associates biological functions to
lipidomics data. BioPAN visualizes biochemical pathways of lipids, which can be investi-
gated on the lipid class, species or fatty acid (FA) metabolism level. Additionally, BioPAN
provides quantitative scores for the activity of pathways. However, they focus on the
enrichment of pathways or reaction chains rather than on a global analysis of the lipidome.

Another approach for the global qualitative analysis of the lipidome is the LUX
Score [15]. The methodology embeds the lipidome in a chemical space, such that lipids are
close to each other if they exhibit a high chemical similarity (based on SMILES notation of
chemical structures). The LUX Score also operates on the lipid species level. It provides an
overview of chemical properties and a qualitative comparison of lipidomes.

Here we present the Lipid Network Explorer (LINEX), a flexible web-application (app)
to create, visualize and analyze functional lipidomics networks. It combines enzymatic
transformations between lipids with correlations and statistical properties that can be
superimposed onto the network. This enables a global and a local view on the lipidome.
The tool thereby provides a basis for introducing graph-theoretical and network-topological
approaches into the analysis of lipidomics data. We further present applications of LINEX
on available lipidomics data sets and show the benefits of a network-based analysis.

2. Results

We developed LINEX to visualize and analyze functional associations of lipids on
networks (Figure 1), enabling the investigation of lipidomics data in the context of metabolic
reactions. In such networks, lipids are represented as nodes, while edges indicate a
connection via enzymatic reactions of lipid classes or FAs (Figure A2a in Appendix A).
These reactions are encoded as rules customizable by the user. This way, condition-,
tissue-, or organism-specific lipid metabolic properties can be incorporated into an analysis
with LINEX. As default settings, common reactions of glycero-, glycerophospho- and
sphingolipids as well as typical FA modifications are included. LINEX then combines
reactions of lipid class and FA metabolism into one network to give a comprehensive
overview of lipid species metabolism.

On the basis of experimental lipidomics data, and optional sample group annotation,
data specific metabolic networks are computed. Supported by a data driven lipid network
exploration, correlation analysis and hypothesis testing can be added to the network
representation (Figure 1) for a combined analysis.
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Figure 1. Workflow of the LINEX approach. Lipidomics data and optionally customized metabolic rules are uploaded

by the user. The data are used to generate an experiment-specific lipid network, which can be visualized together with

statistical measures such as correlation and fold change.

LINEX is available as a web-app (https:/ /exbio.wzw.tum.de/linex/ (accessed on 27
July 2021)), where lipidomics data can be uploaded (Figure A2a), networks computed
and interactively visualized (Figure A2b). The lipidomics data have to be uploaded as
one table (data from two ion modes have to be processed and combined by the users to
one table prior to the analysis with LINEX). Additionally, the networks and all computed
statistical measures can be downloaded (Figure A2c). In the following, we apply LINEX to
three publicly available lipidomics datasets. They were selected to cover technical aspects
such as MS1, MS2 and lipidome coverage and experimental designs such as case-control,
time series and multi-group conditions. On those, we present our workflow to analyze
combined metabolic and data driven lipid networks.

All networks shown in the results section are available as interactive HTML files
(Supplementary Data 1-3).

2.1. Lipidomics of Colorectal Cancer

We investigated lipidomics data from Wang et al. [16] about a lipidomics characteriza-
tion of colorectal cancer patients. The authors identified and quantified 342 lipid species
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from 20 different lipid classes. According to the authors, no global changes of the lipidome
were detected, but alterations in individual lipids were observed.

The network computed by LINEX (Figure 2a, interactive network: Supplementary
Data 1) shows a global view on the changes of the lipidome between colorectal tumor
and normal mucosa. In the network, each node represents a lipid species, and each edge
between a pair of lipids indicates a biochemical reaction capable of transforming the lipids
into each other on the class or FA level. Edges are colored by changes of correlation from
healthy to cancer condition. Node colors represent the log fold change between healthy
and cancer samples, with red indicating increased and blue indicating decreased lipid
levels under healthy conditions. Node sizes indicate the negative log10 FDR-values of
a lipid between the two conditions, where more strongly altered lipids are displayed as
larger nodes.
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Figure 2. Lipid network of colorectal cancer lipidomics data from Wang et al. [16]. (a) Full lipid
network with node size scaled by negative log10 of p-values for comparison between healthy and
cancer tissue. Lipids are colored by log fold change between healthy and cancer tissue. Blue colors
indicate lower levels of lipids in the healthy condition compared to the tumor and red higher levels
in healthy samples. Edges are colored by changes of correlation for lipids from the healthy to cancer
condition. For example, green indicates a non-statistically significant correlation in the healthy
condition and a statistically significant correlation in the tumor, where the correlation has the same
sign. (b) Subnetwork showing PC and LPC nodes. (c) Subnetwork showing mainly unsaturated
glycerophospholipids.
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At first glance, it can be observed that the majority of reactions (edges) between lipid
species do not represent significant correlations in either of the two conditions (FDR < 0.05,
used throughout the manuscript as the significance cut-off). However, highly intracon-
nected parts of the network (local communities) can be observed, which exhibit significant
correlations, indicated by colored edges. Some examples are triacylglycerol (TG) and
diacylglycerol (DG) species (Figure A3a). While the fold changes of individual species are
heterogeneous, a trend of higher unsaturated TG species increasing in tumor tissue and
higher saturated TG species decreasing is observable. In particular, correlations between
highly unsaturated TGs (52:5, 54:5, 54:6, 54:7) remain significant over both conditions,
while others occur (green) or disappear (cyan) when comparing normal mucosa to tumor
mucosa. This indicates changes in the regulation of the FA metabolism related to neutral
lipids.

A big part of the network comprises the metabolism of GPLs. The network shows
a set of phosphatidylcholine (PC) and lyso-phosphatidylcholine (LPC) species, which
decrease in tumor samples and are metabolically closely related via reactions catalyzed by
the MBOAT7 and PLA2 enzymes (Figure 2b). MBOAT? expression has previously been
associated with gastrointestinal cancer risk [17] as well as lipid-linked liver diseases [18],
which we were able to link to lipidome alterations by only considering the LINEX network.
The respective set of lipids is surrounded by PC, phosphatidylethanolamine (PE) and LPC
species, which show the opposite behavior. We could also observe an interesting pattern
of correlation of poly-unsaturated GPLs (Figure 2c). Here, PC, phosphatidylserine (PS)
and PE species which have a sum composition of 40:4, and were all found to be signifi-
cantly upregulated in the original publication additionally show functional correlations
between each other, independent of the condition. This is a strong indication of a common
mechanism regulating these lipid species.

In the metabolism of phosphatidylinositol (PI), high fold changes could be observed
in poly-unsaturated PI species, while some highly connected lyso-phosphatidylinositol
(LPI) species 18:2 and 16:0 did not seem to be influenced by the tumor (Figure 2a, left).
The authors argued that ether lipids might play a role in tumor progression, especially
lower levels of phosphatidylethanolamine ether (PEO) indicating higher oxidative stress.
Our analysis shows a close biochemical connection between downregulated PEO species
(Figure A3c). Other PEO species (e.g., PE(O-38:5) to PE(O-36:5), or PE(O-40:6) to PE(O-
40:7)), which increase in the tumor condition only show significant correlation in healthy
samples, revealing a diverging pattern in ether-PE. A reaction chain of ceramides with
significant correlations could be observed in the sphingolipid metabolism component of the
network (Figure A3b). While the Cers themselves are not significant, their correlations show
a clear co-regulation. This shows that changes of individual lipids might not always be
significant, but a combined network analysis with functional interactions and correlations
can nevertheless reveal interesting relations between lipids as well as indicate putative
common regulatory mechanisms.

2.2. Lipidome Alterations in Aging Brain of Mice

Next, we investigated a lipidomics experiment from Tu et al. [19] about lipidome
changes in the aging brain of mice between the age of 4 weeks to 52 weeks. Although
not compatible with the LipidLynxX [20] converter, we manually added Sulfatide and
Hex2Cer to the metabolic rules. In contrast to the previous data set, we could observe
very few correlations between lipids (Figure A4). To standardize the coloring of lipids in
networks, we developed a unified color scheme on the lipid class level (see Section 4). The
types of reactions forming edges between lipids are mainly chain length modifications
and desaturations. Lipid headgroup modifications can be observed primarily between
GPLs (Figure 3, interactive network: Supplementary Data 2). FA additions/removals are
only found between DG(18:1_22:0) and three TG species. Figure 3 shows a subnetwork of
highly saturated TG species, which are only connected via FA reactions. We first observed a
decrease of TG species from 4 to 12 weeks, followed by a strong increase of TG levels starting
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from the age of 32 weeks. This may be an indication for increased de novo lipogenesis,
which might be explained with FAS (fatty acid synthase, preferentially synthesizes palmitic
and stearic acid) , SCD-1 (stearoyl-CoA desaturase, synthesizes palmitoleic and oleic acid),
and GPAT-1 (glycerol-3-phosphate acyltransferase, preference for saturated FAs) enzyme
activity [21]. This is an advantage of LINEX, which can depict relations of lipids also
based on FA metabolism. The example also shows the importance of coverage of the
lipidome. The more species available, the better connections between lipids can be inferred,
ultimately helping to understand lipid metabolic alterations. The particular example lacks
lyso-glycerophospholipids, which play a central role in the metabolism. Many lipids
remain unconnected in this example or form components of less than four lipids, which
makes the biological interpretation of the lipidome in the network context challenging
(Figure A4).
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Figure 3. Part of the lipid network of the lipidomics data from Tu et al. [19]. Shown are the two
main components of the GPL metabolism. Nodes are colored by lipid class, and edges are colored by
reaction type. Node sizes represent the degree.

In the previous example on the lipidome of colorectal cancer patients, one GPL
component could be observed. Based on the data of Tu et al. [19], multiple such components
can be found. The two biggest components can be seen in Figure 3. Both share a similar
set of FAs from C16 to C22. The topological structures of both components also show
similarities. Many triangles of PC, PE and PS species can be found, which share the
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same FA signature and are converted into each other by headgroup modifications (e.g.,
PC(18:0_18:1), PE(18:0_18:1), PS(18:0_18:1) or PC(18:0_20:4), PE(18:0_20:4), PS(18:0_20:4)).
In some cases, additional connections to phosphatic acid (PA) or phosphatidylglycerol
(PG) can be found. Other GPLs are connected purely via FA reactions (e.g., PE(22:5_22:6)).
This pattern shows that certain FA combinations for GPLs seem favorable for enzymatic
reactions, because they do not only occur in pairs but directly for up to five different lipid
classes, which can be converted into each other.

Tu et al. [19] reported an overall decrease of GPLs and increase of sphingolipids
and neutral lipids. With LINEX, we could visualize this trend on the whole lipidome
(Figure A5). The global changes from the 4 week to the 12 week measurements were
specific on the molecular species level, with small fold changes from 12 to 24 week old mice.
The next change from 24 to 32 week probes showed the previously mentioned effect clearly
with the GPL components being mainly decreased (red) and the rest mainly increased
(blue). Interestingly, the ether lipids increased and therefore behaved opposite to the other
GPLs. Finally, the comparison of 32 to 52 week old mice showed a similar pattern as the
previous comparison, but with increased fold changes, especially in highly connected GPL
such as PE(18:1_18:1), PC(16:0_20:4) or PE(22:4_22:6).

2.3. Healthy Human Reference Plasma Lipidome in Aging

As a third example, we are showcasing plasma lipidome data from a human reference
population presented in Kyle et al. [22], which comprises 136 samples and 302 lipids,
mostly identified as molecular species. All patients do not suffer from any diagnosed
disease and represent the United States population in terms of age and sex distribution. To
enable statistical comparisons, we grouped the patients by age (see Section 4 for details)
and investigated the changes of the lipidome from young to old.

Many edges in the network (Figure 4, interactive network: Supplementary Data 3)
show non-statistically significant correlations in any of the age groups, as indicated by the
large fraction of gray edges, especially in the area rich in PCs and PEs in the upper right part
of the lipid network (compare Figure A6). Those areas, which show statistically significant
correlations, do so in half of the groups, namely at the “Toddler’, ‘Child” and ‘Elder” stage.
While these reactions affect PCs and PEs with a variety of molecular compositions, most
of these reactions are FA related, which becomes especially clear for PC species with odd-
chain FA on the lower right side of the subnetwork. Interestingly, many lipids in this
subnetwork show differential abundances between toddlers and children (Figure A6a),
which is accompanied by a higher density of strong correlations. For comparisons including
young adults (Figure A6c,d), both the number of lipid species with a higher probability
of being different between sample groups and the number of edges with changes in
correlation are much lower in this area of odd-chain PCs. Considering the general structure
of the subnetworks shown in Figure A6, these two groups show an interesting behavior
with respect to the position of lipid species with high absolute fold changes, which are
located mostly on the outside of the network, corresponding to lower node degree and
betweenness centrality. Most changes in correlation, however, are happening in the inner
part around higher connected nodes, especially lyso-species. A possible explanation for this
phenomenon is that changes in the center of the network are propagated to more peripheral
parts, while intermediate nodes stay nearly unaffected in their abundances, as reactions
producing and transforming them are changing their activities to the same degree.

In contrast to the part of the network shown in Figure A6, the subnetwork depicted
in Figure A7 mainly comprises TG species and is only lightly connected. This is possibly
due to few reported DG species, which would be connected to multiple TGs similar
to LPC species connecting PCs. Considering all four age comparisons ((i) Toddler vs.
Child (ii) Child vs. Teenager (iii) Teenager vs. Adult (iv) Adult vs. Elder), most edges
are either statistically significantly correlated in multiple comparisons or in none. This
indicates constant metabolic activities shared across different age stages. Generally patients
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grouped as children, teenagers and young adults (see Section 4 for details) only show
minor differences in TG levels (Figure A7b,c).

g - - 2
*-o - *Q ¢

Figure 4. Global age-related plasma lipidome changes in a healthy human reference population
from Kyle et al. [22]. Node colors represent log fold-changes with blue being negative, i.e., lower
in the first condition, and red being positive. Node sizes are proportional to -log10(FDR) values.
Edge colors indicate changes in correlation values between the respective conditions. For edge color
groups see legend in Figure 2b. (a) Toddler vs. Child (b) Child vs. Teenager (c) Teenager vs. Adult
(d) Adult vs. Elder.

Investigating the changes from toddler to child in Figure A7a, shows that most TGs,
which are differentially abundant, exhibit a chain length of 44 to 48 and 0 to 3 double
bonds. On the one hand, most of these lipids are connected by edges representing strong
correlations in both age groups. On the other hand, connections to unchanged lipids are
mostly connected via edges that are only significant in the children group and represent FA
elongations. As most of the species are only identified as sum species, potential FA-specific
patterns cannot be observed. However, because the described changes apply to a very
limited set of total chain lengths, FA-specific elongation patterns may play a major role in
changing TG levels between toddlers and children.

For the comparison of adults to elder (Figure A7d), the previously described TG
species are not differentially abundant, even though they are strongly correlated with each
other. However, the few species with low p-values in the subnetwork comprise longer
fatty acyls (a sum of 54 to 58 hydrocarbons), are more unsaturated (6 to 11 double bonds),
and are located in two separate areas of the subnetwork. These lipids are sequentially
connected via edges of the same type of correlation change ("ssignificant to insignificant”,
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referring to a statistically significant correlation in younger adults between two lipids,
which is not statistically significant in older adults), e.g., TG(58:9), TG(58:10) and TG(58:11).

3. Discussion

Existing bioinformatics tools for lipidomics data analysis are mainly based on the
lipid class metabolism, ontologies, the chemical space or correlations. With LINEX, a new
type of analysis for lipidomics is available. We combined established statistical measures
as already used in other lipidomics analysis approaches such as lipidr [1] and functional
associations between lipids. The tool BioPAN [14] offers an analysis of lipid networks
and aims to find active reaction chains. LINEX takes a different approach and focuses on
visualizing statistics on networks and hence revealing global trends of the lipidome and
local shifts of lipids through metabolic reactions. The LUX Score [15] also visualizes global
alterations of the lipidome but does not show functional associations between lipids as
LINEX does.

We applied LINEX to publicly available lipidomics data and were able to reveal new
insights into the regulation of lipid metabolism in addition to the originally reported ones
showing the advantages of a combined lipid network analysis for the biological interpreta-
tion of lipidomics experiments. Going beyond statistical comparisons of individual lipids,
but considering functional associations between lipids together with correlations and a
differential analysis of sample groups, we move towards a systems biological approach for
the analysis of complex lipidomes.

With its versatile visualization options, LINEX offers lipid researchers the possibil-
ity to investigate lipidome changes on a global scale while also revealing specific local
associations of lipids. Furthermore, the possibility to visualize changes in (partial) cor-
relations between lipid pairs along with reaction types allows for a more holistic view
on enzymatic changes affecting lipid metabolism to develop hypotheses about biological
mechanisms. The visualized networks can be downloaded and shared as fully interactive
standalone files.

As with all correlation analyses, LINEX can suffer from induced spurious correlation
through indirect effects. Especially in the case of unmeasured reaction partners, both
correlations and partial correlations are subject to possible false-positives. Therefore,
results based on these metrics should always be interpreted with caution. Beyond the issue
of spurious, undetectable lipids and low coverage can limit the interpretability of LINEX
results, as important connections between different parts of the network may be missing.
Future work on lipid metabolic networks has to aim at reducing the impact of these effects
on data interpretation and the selection of putatively interesting subnetworks.

A particular challenge is the multi-specificity of many enzymes catalyzing lipid
metabolic reactions, meaning they can catalyze conversions of multiple molecular lipid
species belonging to the same lipid class. Hence, lipid metabolic networks have to be
generated specifically for each dataset. This makes the workflow for lipid-metabolic net-
works fundamentally different to working with PPI or GR networks. Dedicated algorithms
such as KeyPathwayMiner [3,4], DOMINO [5] or HotNet2 [6] perform an enrichment of
deregulated genes on the whole network of possible interactions. However, with lipid
species networks, the networks themselves carry information about the composition of
the lipidome and its associations. Therefore, a direct application of common network
enrichment tools for other biological networks is not possible. With the availability of
molecular reaction networks by LINEX, we enable a combined analysis of lipidomics data
and provide a basis to develop algorithms specifically for lipid networks, which integrate
network (topological) approaches with statistical techniques. They hold the potential to
associate changes in individual lipid species with global patterns in the lipid reaction
network, thereby allowing them to go beyond pathway enrichment algorithms. This lays
the foundation for further improvements in the analysis of lipid metabolic networks, in-
tegrating biochemical and statistical measures. With such approaches, the discovery of
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condition-specific network motifs will be possible. These motifs can then be used to define
disease (sub-)types and to link conditions similar in their molecular lipid network patterns.
LINEX can be used to compare multiple conditions and switch between different
network views to investigate systemic trends of lipidome changes. The versatility of LINEX
allows users to create dataset-specific lipid-reaction networks, visualize and analyze the
networks utilizing topological and statistical properties, as well as a standardized lipid class
color scheme, and adapt the analysis to specific organisms, compartments or conditions,
without requiring any programming knowledge, making it accessible not only to bioinfor-
maticians but all lipidomics researchers. LINEX provides a novel view on the lipidome
and can help to mechanistically understand remodeling of the lipidome. It can assist the
community in mechanistic interpretation of lipid alterations and hypothesis generation.

4. Materials and Methods
4.1. Webtool

The LINEX web tool was implemented in python using the Django web framework.
It is publicly available at https://exbio.wzw.tum.de/linex/ (accessed on 27 July 2021). The
code is available at https:/ /gitlab.Irz.de/lipitum-projects/linex (accessed on 27 July 2021).
Interactive network visualizations were generated using the visjs-network library along
with utilities from the pyvis [23] package. To achieve simple portability to other platforms
with all dependencies, LINEX is running in a Docker environment and can be deployed
locally.

4.2. Lipid Name Conversion

Lipidomics data often uses different lipid naming conventions. LINEX uses Lipid
LynxX [20] to convert and standardize lipid names in order to recognize them. All lipids
recognized by Lipid LynxX can be used by LINEX, if lipid class information and lipid class
conversions are available. If they are not available by default, they can be extended by
the user.

4.3. Dynamic Network Creation

The inference of lipid metabolic networks in LINEX is implemented in a modular
way by splitting transforming reactions into two broad categories: class or headgroup-
related transformations and fatty acid-related (FA-related) transformations. Two given
lipid species are connected in the network if they either share all their FA(s) and their
headgroups are connected by a reaction, or if both lipids have the same headgroup and
exactly one FA pair is transformable, according to a set of input rules. If two lipids from
different classes only differ in the number of FAs, e.g., a PC and a LPC, a connection is
drawn if the “larger” (PC) lipid species contains all FAs present in the “smaller” (LPC) lipid
and the missing FA is in a user-defined pool of possible FAs. The decision process with
pre-defined FA rules is depicted in Figure Ala. Additionally, FA reactions are evaluated
(elongation, desaturation and oxidation), connecting lipids of the same class if they differ
in a chain length of two, a desaturation or oxidation (on the molecular species level this
is considered for individual FAs). While this type of inferred connection is based on
biochemical reactions, it only represents a heuristic. All edges of this type can interactively
be hidden with one click. Further details for matching between lipids of different structural
resolutions with examples can be found in Appendix B.

Due to the nature of the matching procedures, it is not possible to cover many-to-
many reactions such as the modification of a ceramide with a phosphocholine group from
a phosphatidylcholine to a sphingomyelin and a diacylglycerol.

Default rules for both lipid class reactions and FA reactions are available. The default
lipid classes and their connections are shown in Figure Alb. Because of the versatility of
the implementation, user-defined customization to any desired condition and organism are
possible for both sets of rules. Furthermore, it is possible to manually customize enzyme
annotation for all headgroup modifying reactions.
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LINEX can handle three levels of FA resolution, sum composition, molecular species
and sn-specific lipid annotations, but profits from identification of all FAs, due to higher
specificity of the assigned edges. In order to utilize the maximum amount of informa-
tion, mixed identification levels within a dataset are allowed. When matching species
on sum composition level to species of higher structural resolution, the list of allowed
FAs (Table A1) is used to determine whether a FA addition is possible under the given
conditions. The only requirement for using LINEX is a lipid nomenclature compatible with
Lipid LynxX [20], as internal lipid mapping depends on a unified nomenclature.

4.4. Lipid Class Color Scheme

We developed a color scheme to color lipids based on their class. This scheme is
available in Supplementary Data 4 and on the linex website: https:/ /exbio.wzw.tum.de/
linex/download (accessed on 27 July 2021). It supports colors for 46 common lipid classes.
Groups of lipids have similar colors, with lyso-species being brighter and ether classes
darker. Colors are available as hex codes.

4.5. Statistical Methods

For analyzing changes between sample groups, multiple statistical measures are
included, which can be separated into lipid species, i.e., nodes, specific and reaction, i.e.,
edge, specific metrics.

To compare lipid abundances, (log) fold-changes and binary statistical tests are avail-
able. End-users can choose between parametric (f-test) and non-parametric (Wilcoxon
signed-rank test [24]) depending on their data distributions. All p-values are automatically
reported as Benjamini-Hochberg corrected False Discovery Rates (FDR) [25]. These can be
visualized as node color or size.

Additionally, three theoretical graph measures are computed for each note, namely
degree, betweenness centrality [26] and closeness centrality [27]. These are, in contrast to
the above metrics, independent of sample groups and visualized as node size or color.

Edge-related measures are based on correlations and partial-correlations. In order
to compare two groups, (partial) correlation changes are sorted into five discrete groups,
which represent whether the correlation between two lipids stayed (in-)significant, turned
(in-)significant or changed its sign. In the network visualization, they are represented by
the coloring of edges.

All statistical measures were computed using scipy [28] and scikit-learn [29]. For
graph-related measures, the NetworkX [30] package was used.

LINEX does not provide data pre-processing options. Therefore, input data has to
be readily processed (sample normalization, batch correction, normalization to internal
standards or log-transformation). Future updates will be announced on the website:
https:/ /exbio.wzw.tum.de/linex/(accessed on 27 July 2021).

4.6. Experimental Data Processing

For the evaluation, publicly available lipidomics datasets were used. The data from
Wang et al. [16] was reformatted and lipid names converted with Lipid LynxX [20]. No
further modifications were done to the quantified measurements. Lipidomics data from
Tu et al. [19] was downloaded from the MetaboLights database [31] (Study ID: MT-
BLS562 and MTBLS495). Prior to uploading the data, reported as peak areas, it was
quotient-normalized [32] and generalized log2 transformed. Healthy human reference
population data of the plasma lipidome was taken from Kyle et al. [22]. Unsupported lipid
classes, namely Sulfatide and Carnitine, two Endocannabinoids and Co-Enzyme Q10 were
removed, and LPE-P was manually added to the lipid class settings file. Three ceramide
species were measured in positive and negative mode. For these, only the negative mode
information was used. Lipidomics data were downloaded from the MassIVE repository
at https:/ /doi.org/10.25345/C5P11F (MSV000085508; accessed on 27 July 2021). Patient
metadata used can be found on figshare [33]. In order to compare age-related changes,
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patients were grouped into 4 groups. Toddler: 0 to 36 months; Child: 4-12 years; Teenager:
13-19 years; Adult: 2049 years; Elderly: 50-81 (old patient).

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/metabo11080488/s1, Supplementary Data 1: Interactive HTML of the network shown in
Figure 2, Supplementary Data 2: Interactive HTML of the network shown in Figure 3, Supplementary
Data 3: Interactive HTML of the network shown in Figure 4, Supplementary Data 4: Lipid Class
Color Scheme.
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Abbreviations

FA fatty Acid

GPL  glycerophospholipid

GR Gene Regulatory

LGPL  lyso-glycerophospholipid

LPC lyso-phosphatidylcholine

LPE lyso-phosphatidylethanolamine
LPI lyso-phosphatidylinositol

MS Mass Spectrometry

PA phosphatic acid

PC phosphatidylcholine

PE phosphatidylethanolamine
PEO  phosphatidylethanolamine Ether
PG phosphatidylglycerol

PI phosphatidylinositol

PPI Protein-Protein Interaction

PS phosphatidylserine

Appendix A

Table Al. LINEX Default Fatty Acids. This list is used when lipids from different classes that
only differ in the number of FAs are matched. Users can customize this list for their specific
experimental conditions.

Saturated FAs Monounsaturated FAs Polyunsaturated FAs
14:0 16:1 18:2
15:0 18:1 20:2
16:0 20:1 20:3
17:0 20:4
15:0 20:5
20:0 22:4
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Figure Al. LINEX Default Reaction Rules. (a) Decision workflow for lipid connections with default
fatty acid reaction rules. Due to the internal logic, lipid classes with different numbers of fatty acids

have to have the same head group if they are connected. (b) Default lipid class connections. PEP:
PE—Plasmalogen; PCP: PC—Plasmalogen.
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Figure A2. Main interfaces of the LINEX web-app. (a) Upload of lipidomics data with optional
group labels for samples. Statistical methods can be selected for the visualization on the resulting

network. Additionally, information about metabolic reactions and lipid classes can be uploaded to
extend the network. (b) Analysis page. Here, the lipid networks can be interactively investigated

and statistical or biochemical properties can be shown. (¢) Download page. The network can be

downloaded including all computed statistical measures.
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Figure A3. Detailed views on subnetworks of the lipidomics data of Wang et al. [16] showing the
metabolism of (a) TG and DG, (b) ether lipids, and (c) sphingolipids. The full network can be seen
in Figure 2. Nodes are colored by fold change and node size is scaled by —log10 of multiple testing
corrected p-value. Edges are colored by correlation changes (see Figure 2).
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4 weeks 12 weeks

.88 -
Figure A4. Lipid networks of the lipidomics data from Tu et al. [19]. Nodes are colored by lipid
class and edges show correlations between lipids for each mouse age group. Significant and negative
correlations are blue, significant and positive correlations red, and insignificant correlations gray.

Other time points show similarly less significant correlations (not shown here).
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Figure A5. Fold changes of lipids visualized on lipid networks of the lipidomics data from
Tu et al. [19]. Node size scaled by negative log10 of the p-values for comparison between healthy and
cancer tissue. Lipids are colored by log fold change between mouse brain age groups. Blue indicates
negative fold changes and red positive fold changes (e.g., higher levels in 12 weeks compared to
4 weeks are red). Edges are colored by reaction type. Chain length modification (blue), desaturation
(orange), fatty acid addition (green) and head group modification (red).
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Figure A6. Detailed view on the PC/PE subnetwork from Kyle et al. [22] comparing (a) Tod-
dler to Children, (b) Children to Teenager, (c) Teenager to Young Adults and (d) Young Adults to
Older Adults.

Figure A7. Neutral lipid subnetwork based on Kyle et al. [22] comparing (a) Toddler to Children,
(b) Children to Teenager, (c) Teenager to Young Adults and (d) Young Adults to Older Adults.

Appendix B

In order to give a better intuition on how the rules work, we want to give three examples
representing the basic types of reactions possible based on molecular species annotations.
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PC(16:0_18:0—PC(18:1_16:0): Both lipids share the same headgroup and have the
same number of FAs. Therefore, the only possible reaction can be on FA level. Since 16:0
is shared in both, the remaining FAs need to be transformable. According to the default
rules (Figure Ala), 18:0 — 18:1 fulfills the criteria for a desaturation, because the number
of carbon atoms as well as the number of hydroxy groups stay the same, while the number
of double bonds is changed by exactly one. As such fatty acid modifications are not known
for esterified fatty acids, this edge represents a heuristic rather than a direct biochemical
reaction. Users can remove all edges of this type in the interactive network visualization.

DG(16:0_18:0)—TG(18:1_18:0_16:0): While these lipids share the same headgroup
they differ in the number of FAs. The first step in the further workflow is now to check
whether the FAs in the DG, the species with fewer FAs, are both present in the putative
reaction partner. As this is the case, we know that DG(16:0_18:0) and TG(18:1_18:0_16:0)
are connected via the addition of an 18:1 FA. If these lipids were given as sum species, the
difference between their sum compositions—34:0 and 52:1, respectively—would have been
used to find the missing FA and a subsequent check of whether the resulting FA 18:1 is
in the list of allowed FAs (see Table A1 for the default values) would have decided over
whether the reaction is considered possible or not.

PE(16:0_18:0)—PC(16:0_18:0): The two species are composed of different headgroups;
hence, the only possible reaction is a headgroup modification. For such a reaction, the
lipids need to have the exact same FA composition. On sum species level, this requirement
is loosened to both lipids having to have the same number of FAs and the same sum
composition. Subsequently, the lipid class connection table (Figure Alb) is queried to
validate whether a reaction transforming one headgroup into the other exists. Because
this is the case, based on default settings, PE(16:0_18:0) and PC(16:0_18:0) are connected in

the network.
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Abstract

Lipidomics is of growing importance for clinical and biomedical research due
to many associations between lipid metabolism and diseases. The discovery of
these associations is facilitated by improved lipid identification and quantifica-
tion. Sophisticated computational methods are advantageous for interpreting
such large-scale data for understanding metabolic processes and their underly-
ing (patho)mechanisms. To generate hypothesis about these mechanisms, the
combination of metabolic networks and graph algorithms is a powerful option to
pinpoint molecular disease drivers and their interactions. Here we present LINEX?
(Lipid Network Explorer), a lipid network analysis framework that fuels biological
interpretation of alterations in lipid compositions. By integrating lipid-metabolic
reactions from public databases we generate dataset-specific lipid interaction net-
works. To aid interpretation of these networks we present an enrichment graph
algorithm that infers changes in enzymatic activity in the context of their multi-
specificity from lipidomics data. Our inference method successfully recovered the
MBOAT7 enzyme from knock-out data. Furthermore, we mechanistically interpret
lipidomic alterations of adipocytes in obesity by leveraging network enrichment
and lipid moieties. We address the general lack of lipidomics data mining options
to elucidate potential disease mechanisms and make lipidomics more clinically
relevant.

Keywords Network Enrichment - Lipid metabolic networks - Lipidomics - Disease mechanisms
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LINEX? (Lipid Network Explorer) is a framework to visualize and analyze quantitative lipidomics
data. The included algorithms offer new perspectives on the lipidome and can propose potential
mechanisms of dysregulation.

Using the Reactome and Rhea databases, a comprehensive set of lipid class reactions is
included and utilized to map the lipidome on custom data-specific networks.

With a novel network enrichment method, enzymatic dysregulation can be recovered from
lipidomics data.

We validate its usability on data with a central lipid enzymatic deficiency.

LINEX? is the first tool capable of such analysis and includes complimentary analysis
options for structural lipid analysis. It is freely available as a web service (https://exbio.
wzw.tum.de/linex2).

1 Introduction

Lipids play a fundamental role in cells across all domains of life. They are not only crucial for the
long-term storage of energy but can also influence the activity and occurrence of membrane proteins
[1], as well as signalling and inflammatory processes [2, 3]. Therefore, diseases are also influenced
by lipids. This is known not only for liver and metabolic diseases [4, 5] but also e.g. various cancers
[6, 7, 8, 9]. Despite their essential role in many biological processes, excessive accumulation of
lipids, especially in non-adipose tissues can lead to lipotoxicity [10, 11]. Hence, to fully understand
diseases on the molecular level, changes in the lipidome have to be characterized and their regulation
understood.

Nowadays, an increasing part of the lipidome can be identified and quantified using mass spectrometry
(MS). The field, also known as lipidomics, is becoming more relevant for clinical applications and
biomarker research [12]. While MS-based lipidomics is not yet used for diagnoses, potential
biomarkers have been discussed [13, 14, 15] and disease stratifications based on lipidomics proposed
[16, 17]. To gain more insights into disease mechanisms, it is necessary to go beyond classification
and prediction by proposing functional interpretations of lipid changes and links to other omics
layers. Due to the complexity of both acquired lipidomics data as well as the regulatory mechanisms
behind lipid metabolism, dedicated computational tools are of great importance for unraveling these
associations.

Such interactions can be studied through biological networks. On the metabolic level, these networks
describe reactions between metabolites that are catalyzed by enzymes. When considering lipid
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metabolic networks an additional constraint is the inherent complexity of the lipidome and its
chemical reactions. Lipid enzymes commonly catalyze more than one reaction, this is referred to
as multispecificity [18]. This usually means that one enzyme catalyzes a reaction for a group of
lipids that e.g. belong to one lipid class but differ in their fatty acyl composition. The combinatorial
complexity makes generating lipidome scale metabolic networks for an organism inefficient but
instead requires data-specific networks [19, 20, 21].

Metabolic networks are commonly studied with dynamic modeling or constraint based modeling.
These techniques allow predictions of the system dynamics, for example the distribution of energy
resources. Parameterization of such models requires large amounts of data covering the entire molec-
ular state [22]. Especially metabolic fluxes and well-characterized enzyme kinetics are important,
which are often not available in a clinical setting.

Another way to analyze biological networks is through network enrichment. By comparing two
experimental conditions, the goal is to find highly connected molecular subnetworks that are enriched
with significant genes, proteins, or metabolites. The rationale behind this approach is to propose a
mechanistic hypothesis for observed dysregulations. Many algorithms have been developed over the
years [23, 24, 25, 26, 27], mainly with a focus on protein-protein interaction (PPI) or gene-regulatory
networks. A dedicated method for metabolomics data is included in the MetExplore analysis and
visualization software [28]. Their MetaboRank [29] algorithm is an enrichment and network-based
fingerprint recommendation method. For lipid networks, an algorithm implemented in the BioPAN
software is available, which is capable of creating lipid networks and running de-novo pathway
enrichment on them [20, 21]. However, it does not consider reactions involving (de-)esterification.
LINEX (Lipid Network Explorer) is a network-based method, which we previously developed [19],
addressing this. It combines lipid class and fatty acid metabolism to provide comprehensive networks
for computational analysis and lipidomics data interpretation. Using the LINEX framework we
previously showed in several studies [19] that new insights into lipidome-wide data can be generated
using lipid networks and that central alterations are often metabolically highly related. A limitation of
this method is that lipid class reactions have to be entered by users. This requires detailed knowledge
about lipid metabolism if reactions beyond the default are required. In contrast to de-novo enrichment
on large-scale biological networks, pathway enrichment identifies significantly altered categorized
pathways. For metabolites, this can be performed with the KEGG [30] or Reactome database [31].
A recent lipid-specific method is the Lipid Ontology web service (LION/web), which performs an
ontology-based enrichment incorporating biological and chemical properties of lipids [32]. So far,
no method is available, that puts the multispecifity of lipid enzymes into the center of interpreting
lipidomic changes.

Here we present LINEX?2, a redesigned and extended framework, which addresses the shortcomings
of lipid-network based methods. Lipid reactions are based on database information. This provides
links to other omics disciplines. Furthermore, we developed a lipid-network enrichment algorithm,
that incorporates multispecific enzyme links. The method enables the generation of mechanistic
hypothesis from lipidomics data. We successfully applied our method to lipidomics data of a knock-
out study and reveal potential dysregulations of the lipid metabolism in the adipose tissue of obese
humans. This can help to better translate lipidomics into clinical application [33, 34] and improve
our understanding of the role of lipid metabolism in disease mechanisms.

2 Results

2.1 A framework for lipid network analysis

The workflow of a lipidomics experiment can be divided into five steps: sampling, sample preparation,
data acquisition, data processing, and data interpretation [35]. LINEX? is aiming at the biological
interpretation of lipidomics data (Figure 1). The LINEX? builds data-specific lipid metabolic
networks. To obtain these networks, we developed a network extension algorithm (Figure 1, purple
box), where metabolic reactions on the lipid class level and fatty acid reactions are extended to the
lipid species level. Network extension is possible with molecular species (e.g. DG(16:0_18:1)) or
sum species data (e.g. DG(34:1)). Sum species are internally converted to molecular species, to
incorporate modifications or additions/removals of fatty acids. This is achieved by finding sets of
fatty acyls matching the sum composition using common fatty acids defined per lipid class (e.g.
DG(16:0_18:1), DG(16:1_18:0), or DG(14:0_20:1) for DG(34:1)). If molecular species are identified
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Figure 1: Lipidomics data is used as an input to LINEX?. The lipids are then utilized to perform
network extension that converts lipid class and fatty acid metabolic networks to lipid species, which
are then visualized together with statistical measures such as t-tests or correlations. The network is
also used as a basis for lipid substructure, compositional, and lipid chain analysis. A lipid network

enrichment algorithm, that takes enzymatic multi specificity into account, can be used to generate

hypotheses for enzymatic dysregulation.

Lipid chain
analysis

AN

but not quantified they can be used instead of inferring fatty acyl sets, as reported in some studies
[16]. An example for the network extension is the lipid class reaction between a Phosphatidylcholine
(PC) and a Diacylglycerol (DG) (PC — DG), where the phosphocholine headgroup is cleaved off, is
applied to the molecular lipid species PC(16:0_18:1) — DG(16:0_18:1) (for a detailed description
see Materials & Methods section Network extension). Also, fatty acid reactions, such as elongation or
desaturation can optionally be added to the network as heuristics, e.g. for Lyso-PC(18:0) (LPC(18:0))
— LPC(18:1). Since such reactions usually do not occur on complex lipids directly, but rather as
activated fatty acids, they help to visualize fatty acid-specific effects on the network, as previously
shown [19], and facilitate computational network analysis.

2.2 Comprehensive curation of lipid-metabolic reactions

The basis for our network extension are publicly available metabolic reaction databases. To provide a
comprehensive overview of lipid metabolism, we curated lipid class reactions from the Rhea [36]
and Reactome [31] databases (Figure 2A). As a reference for lipid classes, we updated the lipid
classes from the ALEX123 lipid database [37] (see Data Availability section). During curation,
we removed all transport reactions and specialized modifications such as oxidations or fatty acid
branching, which cannot be annotated to standardized lipid classes or are not generalizable for
automated network extension. Curation resulted in over 3000 annotated reactions from both databases
combined (Figure 2A) across organisms, including organism-specific reactions from Reactome. The
top three organisms including the most reactions from Reactome are Homo sapiens (HSA), Rattus
norvegicus (RNO), and Mus musculus (MMU) (Figure 2B).
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Figure 2: A Number of lipid-reactions parsed from Reactome and Rhea databases (black), after
curation for available lipid classes and number of curated reactions (dark-grey), which Uniprot or
gene name annotations were available (light-grey). B Curated reactions per organism from the
Reactome database (Rhea does not list details about organisms). C Top ten lipid classes with the
most curated class reactions.

In cellular lipid metabolism multiple enzymes may catalyze the same lipid class reactions but exhibit
different substrate affinities based on the molecular fatty acyl composition. We made all annotated
enzymes per class reaction available. After database processing, LPC is the lipid class participating in
most reactions (Figure 2C), followed by DG. All reaction identifiers are individually linked, providing
a reference to the original database entries in the network.

To keep the freely available LINEX? software up-to-date, user contributions for new lipid classes
and lipid-metabolic reactions can be made using an online form (https://exbio.wzw.tum.de/
linex?2). This way LINEX? can be updated in a community effort to enhance support for less studied
parts of the lipidome.

2.3 An approach to analyzing lipid networks

For interpreting quantitative changes in molecular networks, network enrichment can be a powerful
approach. In the context of metabolic or lipid networks, such methods can reveal underlying changes
in enzymatic activity. However, it is more challenging than network enrichment of e.g. proteomics
data on PPI networks where changes in protein amounts correspond directly to functional changes
of the nodes in the network. In PPI networks changes in protein abundances correspond directly to
functional changes of the nodes, representing proteins, in the network. However, when analyzing
(lipid-)metabolic networks enzymatic changes can only be approximated from changes in metabolite
abundances between experimental conditions. In lipid-metabolic networks, an additional challenge
comes from the multispecificity of involved enzymes. In LINEX2-networks (as implemented in
the network extension) every edge between two lipid species corresponds to an enzymatic reaction,
therefore enzymes can correspond to multiple edges.

Our method is designed to explicitly take multispecificity into account. Therefore, a hypernetwork,
establishing connections not only between lipids but also reactions, is required. In the hypernetwork
more than two nodes can be connected with one (hyper)edge. Based on this representation, the
enrichment algorithm can easily connect solutions from the same class reaction, promoting solutions
explainable by a few metabolic reactions. Figure 3A shows the workflow of the enrichment analysis
(for details see the Materials & Methods section Network enrichment). We start with a LINEX?-
network, where reactions are represented as edges (1). In the next step, we add lipid class reactions
as a second type of nodes to the network (2). Edges between a class reaction node and all lipid
species participating in this reaction are introduced, in addition to lipid-lipid edges, that represent
conversions. This network is converted to a hypernetwork, where each hyperedge represents a lipid
species reaction with lipid-substrates, -products, and reaction nodes (3). For each hyperedge (lipid
species reaction), the dysregulation is quantified by the relative change of the lipid substrate-product
ratio or difference between two experimental conditions (4). Considering both substrates and products
is especially important for reversible reactions [39]. The reaction network is then used to find a
maximally dysregulated subnetwork by employing a simulated annealing-supported local search (5).
Heuristic reactions are penalized in the objective function of the network enrichment and serve only
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Figure 3: A Description of network enrichment workflow. In brief, the lipid network is converted
into a hypernetwork, in which hyperedges correspond to lipid species reactions. Based on the
computed dysregulation per hyperedge, an optimization algorithm finds the subnetwork with the
maximum dysregulation B Optimal subnetwork predicted by the enrichment algorithm for mice liver
lipidomics data by Thangapandi et al. [38]. The comparison is between wild-type and MBOAT7
knock-out samples. The resulting subnetwork shows the LPI <+ PI reaction at the center, surrounded
by polyunsaturated PI species and two LPI species. C Progression of the objective function score
during optimization that yielded the subnetwork in B. D Substrate-product ratio distribution for the
LPI < PI class reaction for all lipid species reactions per genotype (MBOAT?7 deficient (KO) and
wild type (WT)). E Principal component analysis of full lipidomics data and F of a subset of the
lipidomics data containing only the lipids from the enriched subnetwork from B. The color code is
the same as in D for both plots.
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to increase connectivity. Additionally, the number of class reactions in the network can be penalized
to favor parsimonious solutions with a simple mechanistic explanation.

2.4 Inferring known enzymatic dysregulation from a knock-out study

As a proof of principle for the enrichment, we selected data from Thangapandi et al. [38]. In this study,
the authors compared liver lipidomics of mice with a hepatospecific deficiency of MBOAT7 (KO) to
wild-type (WT) mice under non-alcoholic fatty liver disease (NAFLD) condition. MBOAT7 catalyzes
the class reaction fatty acyl-CoA + LPI — PI + CoA with a specific preference for Arachidonic acid
(20:4(w-6), AA) [40]. The data from Thangapandi et al. [38] is well suited for testing our enrichment
algorithm because the enzymatic origin of lipidomic changes in liver tissue is known and the lipidome
is affected by the disease.

Figure 3B shows the score progression during the optimization of the algorithm. The temporary
plateau at a score of 25 shows the need for global approximation methods such as simulated annealing.
In Figure 3C the optimal subnetwork is shown (full network available in the supplement). It consists
only of PI, LPI species, and one class reaction. This class reaction represents the transformation
between LPI and PI. LINEX? cannot differentiate between the exact enzyme for this reaction.
However, in contrast to e.g. PLA2, MBOAT7 only catalyzes LPI — PI class reactions. Additionally,
MBOAT?7 is known for a higher affinity for AA [40]. This preference can also be observed in the
solution in Figure 3C for the edge between LPI(18:1) and PI(38:5), under the assumption that this
reaction can only occur if the molecular composition of PI(38:5) is PI(18:1_20:4). Furthermore, all
other reactions between LPIs and PIs are only possible for the addition/removal of fatty acyls with at
least 20 carbon atoms and 4 double bonds. These results are not surprising, because of the structural
similarity of AA to other (very)-long-chain polyunsaturated fatty acids (Supplementary Figure S1).
While LINEX? is not able to directly pinpoint MBOAT'7, the results demonstrate its capability to find
strong hypotheses for enzymatic dysregulation from lipidomics data.

To evaluate the enrichment results, we implemented an empirical p-value estimation procedure
(detailed description in Materials & Methods section Network enrichment). This is computed by
comparing the score of the final solution to a distribution of sets of unconnected reactions of the
same size, to evaluate whether the final connected subnetwork has a significantly higher score. The
MBOAT?7 enrichment result (Figure 3C) has a p-value of 0.0018, indicating the likeliness of the
mechanistic solution.

When investigating the distributions of the LPI <+ PI class reaction (i.e. over all respective lipid
species reactions) per genotype (Figure 3D), no strong distribution shift in one direction can be
observed. The distributions show a peak around zero, indicating that many reaction ratios are not
influenced by the MBOAT?7 knock-out (KO). However, two more peaks around 1 and -1 can be
observed for both conditions, where the peaks of the KO are shifted slightly more towards absolutely
higher values. Despite these subtle differences, it is not possible to draw a hypothesis towards a
mechanistic explanation including fatty acid-specific effects. In Figure 3E we plotted the principal
component analysis (PCA) of the full lipidomics data. In contrast, Figure 3F shows the PCA plot based
only on the lipidomics data for the lipid species present in the enrichment subnetwork (Figure 3C). In
the PCA of all lipids, PC2 reflects the variance corresponding to the genotype, explaining 23% of
the total variance. However, after selecting the LPI and PI species from the enrichment solution, the
genotypic difference makes up for the majority of the variance with almost 86%. This means that the
lipids in the subnetwork (Figure 3C) represent the effect of the MBOAT7 knock-out almost entirely.

These results demonstrate the ability of the enrichment analysis to develop reasonable hypotheses on
enzymatic dysregulation based on lipidomics data. The result not only shows an increased variance
corresponding to the genotype but also allows mechanistic lipid species-specific explanations.

2.5 A mechanistic hypothesis for adipocyte expansion in obesity

We further aimed at improving our understanding of the changes in lipid-metabolism of lipid-related
diseases. For this purpose, we selected the AdipoAtlas [41], a reference lipidome of adipose tissue in
lean and obese humans. The authors identified 1636 molecular lipid species, out of which 737 were
quantified. Out of all semi-absolutely quantified lipid species, only 26 - solely carnitines - could not
be mapped out of the box, showing that a full reference lipidome can be analyzed with the LINEX?
database integration.
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Figure 4: LINEX? application on the AdipoAtlas data. A Subnetwork returned by the introduced
enrichment algorithm. The enriched subnetwork contains three reaction nodes, all representing fatty
acid transfer between lysophospho- and phospholipids. Furthermore, the network shows a preference

for long-chain polyunsaturated fatty acids. B LION enrichment using the lipids in the subnetwork

(A) as targets in the “target list mode’. C Distribution of the substrate to product changes (see
Methods - Substrate-product change calculation) for the three reactions present in A over all possible
lipid species combinations from the AdipoAtlas data. D Distribution of the substrate to product
changes using only the lipid species combinations identified in A. Both C and D ratios are shown as
per-reaction z-scores.

2.5.1 Network analysis indicates a mechanism for adipocyte expansion

We used our network enrichment algorithm, which resulted in the subnetwork shown in Figure 4A.
The subnetwork contains three reactions, which all represent an acyl-transferase reaction between
Lyso-Phospholipids. Investigating the reaction ratios of these three class reactions over all possible
species reactions shows equal distributions between obese and lean (Figure 4C). However, considering
the species reactions present in the subnetwork reveals differences between the groups with respect
to the reaction ratios (Figure 4D). These reactions are catalyzed by the Phospholipase A2 Group
IVC (PLA2G4C) and the asparaginase (ASPG), which both have lipase and acyl-transferase activity.
It has been shown that PLA2 Group IV members preferably act on the sn-2 position and that
polyunsaturated fatty-acyls are commonly transferred by them [42]. This preference is reflected
in the subnetwork. Literature research shows that PLA2G4C has been reported to be differentially
expressed in obese individuals [43, 44] and products of (c)PLA2 activity are known mediators of
adipose tissue metabolism [45].

The prevalence of acyl-transferase reactions in the subnetwork suggests a transfer of FAs between
lipids with a Phosphocholine and a Phosphoethanolamine headgroup and their respective Lyso-
Phospholipid species. The ratio of LPC/LPE to PC/PE as well as the ratio of lipids with a Phos-
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Figure 5: Lipidomics data from the AdipoAtlas visualized with LINEX. In the network lipids are
represented as circular nodes. The red color of lipid nodes represents a positive fold change from
lean to obese condition, and blue a negative fold change. Edge color indicates the type of reaction
connecting two nodes. An interactive version of the network as well as all other analyses conducted
with LINEX are available in an HTML file in the supplement.

phocholine headgroup to lipids with a Phosphoethanolamine headgroup influences the membrane
curvature [46, 47]. This property is important because adipocytes expand in obesity [48]. A change
in this ratio has also been associated with altered membrane integrity and fluidity [49, 50]. We
confirmed this with a Lipid Ontology (LION) enrichment analysis [32], where we used the lipids of
the enriched subnetworks as a target list (Figure 4B). The analysis resulted in membrane curvature
and other membrane-related terms. Additionally, we observed similar behavior in the development
of mesenchymal stem cells to adipogenic cells based on data from Levental et al. [S1] (Supplemen-
tary Figure S2B). These insights further support the practical feasibility of our reaction enrichment
approach.

2.5.2 Lipid moieties show alterations in neutral lipid composition

Despite changes in the Glycerophospholipid composition that are an indication for adipocyte expan-
sion, accumulation of neutral storage lipids is a major hallmark for obesity. This is also reflected
in the network representation of the AdipoAtlas lipidome (Figure 5). It shows increased TG and
DG levels in obese samples, and an overall decrease in Glycerophospholipids. Neutral lipid species
containing poly-unsaturated FAs have especially high fold changes (Figure 5, Supplementary Figure
S3). Concerning chain length, we observe that TG species with a sum length >30 and <57 are accu-
mulated in obese samples (Supplementary Figure S4A). Since this pathway of the lipid metabolism
was not picked up by the network enrichment as the strongest dysregulated part, we wanted to further
investigate the compositional changes of neutral lipids. For this, we developed a lipid moiety analysis.
It quantifies common substructures of lipids across the lipidome to show trends in changes of the
lipidome composition (Supplementary Figure S5). As moieties, we define sum length, number of
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double bonds, head groups, and their combinations. The results go in hand with the observations on
the lipid network. Especially lipid species with a sum length >45 and 2 to 3 double bonds show a
sharp increase in obesity, predominantly TG species with a length of 49 and 53. Also Sterol esters
show significant changes in disease progression. The observed changes in the TG composition are in
accordance with previously published results [52]. This analysis can provide additional insights into
the lipid metabolism and complement the network analysis.

2.6 LINEX? Software

The LINEX? software framework for analysis and visualization of lipid networks is available as a
web service at https://exbio.wzw.tum.de/linex2. Lipidomics data and sample annotations
can be uploaded as .csv files, to perform not only network enrichment and visualization, but also
summarizing statistics, lipid chain analysis [53], and moiety analysis. Results can be viewed and
downloaded in an interactive format. For high-throughput analysis, a python package is also available
(https://pypi.org/project/linex2/).

3 Discussion

We present a method to generate and analyze lipid-metabolic networks. Using curated lipid class
reactions from common metabolic databases our method computes data-specific lipid networks.
Furthermore, we developed a network enrichment algorithm, to propose hypotheses for enzymatic
dysregulation from lipidomics data. As a proof of principle, we applied the approach to liver
lipidomics data, where the deficient MBOAT7 enzyme was successfully identified from the data.

Network enrichment for molecular biological data analysis has first been applied in 2002 [54] and
a variety of methods have been developed since then. The challenge in generating mechanistic
hypothesis from metabolomics or lipidomics data lies in the fact that dysregulation on the enzymatic
level is not measured directly. Instead it can only be inferred based on changes in the metabolome,
unless full-scale proteomics experiments are run in addition. For lipid networks, only one tool,
BioPAN, is available so far [20]. In contrast to our proposed network enrichment algorithm, this
method is searching for activated reaction chains between lipids of the same sum composition. The
scope of the LINEX? enrichment differs from BioPAN, by searching for dysregulation of multispecific
enzymes that likely affect lipids of the same class with different sets of fatty acyls. Another difference
is in the network computation. LINEX? includes fatty acyl addition/removal, enabling insights such
as the MBOAT7 example we show in this work. To illustrate how LINEX? compares to BioPAN
[20], we computed the BioPAN network (Supplementary Figure S6A) as well as the predicted list
of active reactions. The results do not include LPI species and only one reaction chain with a PI
species (Supplementary Figure S6B). Therefore a hypothesis on MBOAT7 dysregulation cannot be
drawn from this method. Nguyen et al. [21] performed a network optimization based on changes
in lipid abundances and literature mining of lipid-enzyme interactions. However, they do not infer
quantitative values for reactions and no implementation is available.

Hence, LINEX? lipid network enrichment is the only available method that aims at inferring enzymatic
dysregulation from lipidomics data. An important aspect of the method is the usage of hypernetworks,
to take the multispecificity of lipid enzymes into account, which increases confidence in the retrieved
mechanism. Beyond its role in lipid metabolism multispecificity also plays a role in other biological
processes, for instance in the glycan metabolism, where enzymes extend various branched glycan
structures [55] or DNA methylation [56]. Our principle of network analysis and enrichment could be
extended into these fields and help to discover underlying dysregulation.

A limitation of our enrichment algorithm is that it computes substrate-product ratios independent
from each other. In reality, however, reactions are linked through shared substrates or products and
metabolic changes are propagated through the network. These effects can be due to, e.g. metabolic
self-regulation [57] and structural or signaling functions. Since each lipid species takes part in a
plethora of reactions, results of altered enzymatic activity might not be observed directly for the
substrates and products of that reaction. This is also the case for multiple reactions, which form a
consecutive transformation sequence that change at the same time. However, assuming the principle
of maximum parsimony, disordered conditions are most likely caused by alterations in only a few
enzymatic steps, making the settings for such inaccurate approximations rare cases. Our network
extension method depends on generalizable reaction rules. Therefore, manual curation of reaction
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databases was necessary. Due to a better coverage of commonly measured lipid classes, metabolic
databases may be susceptible to research bias. We address this bias by using lipid class reactions
instead of enzymes, to prevent well-studied enzymes participating in many reactions from being
favourably selected. Additionally, the network enrichment is avoiding bias by correcting for the
number of lipid participants in the reaction.

A limitation for the generated hypothesis is the missing knowledge about enzymatic specifity. There-
fore, our method is constrained to returning a set of candidate enzymes, which are attributed to the
same type of reaction, without pinpointing individual enzymes. With more data available, such as the
work from Hayashi et al. [42], better estimates for fatty acid-specific subnetworks can be made.

Lipids exhibit a plethora of structural and signaling functions, beyond energy metabolism. Therefore
it is important to not only consider the biosynthesis of lipids, but also the change of biophysical
properties. Consequently, a comprehensive computational analysis of the lipidome should include
both network-based as well as lipid property-related methods. We also showed this by generating
additional insights through the use of LION [32], lipid chain analysis [53], and lipid moiety analysis,
which quantifies common lipid substructure features.

With the ability to connect enzymatic activity to lipidomics data, LINEX? provides the basis for
a knowledge-driven integration of lipidomics with proteomics data. The inclusion of quantitative
proteome information could further improve the performance of the enrichment algorithm presented
in this paper and open up the possibility of directly identifying causal proteins. This could be of great
value for the causal interpretation of lipidome changes, which would directly translate into relevance
for clinical applications, due to the many associations of lipids with various disorders [44, 13, 8, 7,
16].

With our LINEX? web service, we offer new analysis methods for lipidomic data, ranging from
network visualization to generating hypotheses for dysregulation. Freely available through a user-
friendly interface, lipidomics researchers do not need to be experts in bioinformatics to perform
sophisticated analyses of the lipidome in a metabolic context. Moreover, LINEX? networks can be
the basis for further methodological developments that help to enhance the biological interpretability
of lipidomics experiments by enabling inference of metabolic regulation from lipid data.

4 Materials & Methods

4.1 Database parsing & curation

We obtained lipid-related reactions from the Rhea [36] and Reactome [31] databases. From Rhea,
all reactions involving lipids were parsed (based on ChEBI ontology, a subclass of CHEBI:18059).
All reactions included in the category “Metabolism of Lipids” for all available organisms (e.g.
R-HSA-556833 for Homo sapiens) were parsed from Reactome.

After parsing, all lipids and reactions were manually curated. Lipids were annotated and assigned to
classes according to an updated version of lipid nomenclature from Pauling et al. [37] (Supplementary
Table 1). Lipids that could not be annotated were not considered. Lipids are commonly composed
of a headgroup, a backbone, and a set of attached fatty acids. From the databases, we extracted
reactions showing conversions between common lipid classes, which are usually based on changes
in one of these three attributes of lipids. We classified these lipid class reactions with at least
one annotated lipid available into different categories: headgroup modification (e.g. PS <> PE),
headgroup addition/removal (e.g. DG <> PA), fatty acid addition/removal (e.g. LPC <> PC), lipid
merging (e.g. PA + PG < CL) (see next section and Supplementary Figure S7 for more detailed
descriptions). Fatty acid reactions on complex lipids are heuristics and can be manually added or
banned by the user. Default available reactions are fatty acid elongation (increasing the chain length
by 2), fatty acid desaturation (adding one double bond), and hydroxylation/oxidation (adding one
hydroxylation/oxidation to a fatty acid).

4.2 Network extension to species level
Curated class reactions from databases are used to infer lipid species networks. All steps of this

network extension are explained below. To properly evaluate the reactions, molecular lipid species
are required. This means that for each lipid the attached fatty acid must be available. Therefore, all
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lipid species, which are only available as sum species, are converted into a set of possible molecular
species. As an example, a PC(40:2) has to be converted into possible molecular species such as
PC(20:0_20:2) or PC(22:2_18:0). For this, possible common (class-specific) fatty acids can be added
by the user. Only if at least one molecular species can be generated that has the same sum formula as
the original sum species, it is considered for the network extension.

Extension of lipid class metabolic networks to lipid species networks can be divided into two steps:
extension of the class metabolism and fatty acid metabolism.

Extension of class metabolism Lipid class reactions are evaluated using the defined reaction
categories (headgroup removal/addition, headgroup modification, fatty acid addition/removal, and
lipid merging) plus ether heuristic. For each reaction, all lipids from the user data, which match the
lipid classes that participate in a reaction are selected. Reactions with more than one lipid class as
substrate and product are only possible or available for certain reaction categories. If possible, these
are explicitly mentioned. The reaction evaluations are under the condition that a lipid class reaction
for the substrate-product set exists. For a “Headgroup modification” reaction the substrate and product
lipids require the same set of fatty acids, e.g. PS(18:0_16:0) <+ PE(18:0_16:0, (Supplementary Figure
S7A). A “Headgroup addition/removal” also requires the substrate and product lipids to have the same
set of fatty acids, e.g. DG(18:0_18:1) <> PA(18:0_18:1) (Supplementary Figure S7B). The reaction
is also possible for two lipids as substrates and two lipids as products, e.g. PC + Cer <» DG + SM
(Supplementary Figure S7C). In this case, the headgroup is shifted from one lipid to another. For this
evaluation, two substrate product pairs are matched for the lipid donating the headgroup (PC < DG)
and the lipid accepting it (Cer <> SM). These are then evaluated independently if at least one reaction
per pair can be found. The “Fatty acid addition/removal” reactions in the case of one lipid as substrate
and product require one lipid with one less fatty acid and the fatty acids of the lipid with fewer fatty
acids to be contained in the other lipid, e.g. DG(18:0_18:1) <+ TG(18:0_18:1_16:0) (Supplementary
Figure S7D). For two substrates and two products, a fatty acid is shifted from one lipid to another, e.g.
PE + MLCL < CL + LPE. Again, two substrate product pairs are matched for the lipid donating the
fatty acid (PC <> LPC) and the lipid accepting it (MLCL < CL). They are evaluated independently
and the edges are added to the network if two pairs can be found which donate/accept the same fatty
acid. Another case exists for reactions with two substrates and one product (e.g. LPC + LPC <> PC).
Also here, a fatty acid is shifted from one lipid to another, however, the donor is not considered a lipid,
after the fatty acid is removed. Similarly, a pair of lipids accepting the fatty acid is formed (LPC <>
PC). Edges are then added to the network if the accepting and donating lipids have combined the same
fatty acids as the resulting lipid. The reaction type “Lipid merging” describes two lipids that are bound
together by a reaction, e.g. PG + PA <+ CL (Supplementary Figure S7E). The molecular species of
the substrates require the same combined fatty acids as the resulting lipid for this reaction to occur
and be added to the network. We additionally consider fatty acid ether exchange as heuristics. These
optional connections are edges between lipid classes and their corresponding ether classes if they
share the same set of fatty acids, e.g. LPA(18:1) <» LPA(O-18:1), to improve network connectivity
and stress fatty acid-specific effects in the network. Edges in the network are undirected since we
cannot conclude the net flux of a reaction from the lipidomics data, especially since for most reactions,
counterparts in the opposite direction exist.

Extension of fatty acid metabolism Fatty acid synthesis and modification occurs commonly
on activated fatty acids and they are not bound to complex lipids. However, to increase network
connectivity, fatty acid reactions on complex lipids can be added to the network. As described
earlier, this is done through user-defined reactions. A fatty acid reaction, e.g. PC(18:0_16:0) —
PC(18:1_16:0), here fatty acid desaturation for the fatty acid 18:0 to 18:1, requires two lipids of the
same lipid class and all but one identical fatty acid. Only one fatty acid modification is considered per
reaction. In the case of elongation, the non-identical fatty acids require the same amount of double
bonds, and other modifications have to differ by the length of two carbon atoms, e.g. 18:0 - 20:0. A
desaturation requires fatty acids, which differ by a double bond, with all other attributes being the
same. Custom fatty acid metabolism rules can be added, by providing the numeric changes of fatty
acid attributes, such as length, double bonds, or modifications. Additionally, reactions between two
specific fatty acids can be excluded. For example, the desaturation of fatty acyl 18:2 to 18:3 is not
possible in humans.

In the network representation lipids are shown in the provided resolution. In the case of sum species,
lipid nodes can also be shown as molecular species (based on the possible molecular species, as
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explained earlier). Sum species including their statistical properties are then projected onto multiple
potential molecular species.

4.3 Network enrichment

We developed a novel network enrichment algorithm for lipid networks. It aims to find the most
dysregulated lipid subnetwork between two experimental conditions providing a hypothesis for
enzymatic alteration/dysregulation. The methodology involves 1. building a reaction network from a
standard LINEX network and calculation of substrate-product changes per reaction. 2. Utilization of
a local search algorithm to find the heaviest connected subgraph (i.e. the subgraph with the largest
average substrate-product change) and 3. an empirical p-value estimation. All steps are described
below.

Reaction network building To convert the lipid network to a reaction network, we generate a
unique reaction identifier for each reaction (edge) in the network extension. This is especially
important for reactions with more than one substrate and product, with multiple edges corresponding
to one lipid species reaction. In the next step, all lipid species reactions are converted to a new
network representation with reactions as nodes. Edges between two reaction nodes are drawn, if the
reaction belongs to the same lipid class reaction or at least one lipid species can be found in both
reactions.

Substrate-product change calculation The Substrate-product change is calculated independently
for each reaction r; of the set of all reaction nodes R in the network. It describes the relative substrate
to product change between two experimental conditions. It can be calculated using absolute or relative
substrate-product change. The data for the calculation consists of a set of measured samples N. With
C denoting the subset of samples belonging to the control condition and D the samples belonging to
the disease condition. The absolute substrate product difference I'* for reaction r; for of the disease
samples D is calculated as

Sen (B Soer Pn = 4 Seer, o)
D]

a,D __
L=

with ﬁ Eper, pp, as the mean of all lipid products concentrations from reaction r; in sample n and
ﬁ > scr, Sn corresponding for substrates. We choose the mean over the sum here to avoid a bias

towards reactions with unequal numbers of lipid products or substrates. The relative substrate-product
difference I'“ is calculated by

Seo (M) 7/ (M 50) ™ )
D]
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The |p|th- and |s|th-root are used as bias correction factors in an analogous fashion to using the mean
over the sum in the absolute difference calculation. From the user, the absolute or relative score
can be used to compute the final reaction score that compares both experimental sets C' and D. It is
calculated as follows: | 5 o
> —-Ts,
Score(r;) = — "4
() = o

This can be done with the relative or absolute substrate-product change. As previously explained,
reactions of the fatty acid metabolism or ether lipid conversions are heuristic, to improve network
connectivity. They do not occur directly on the lipid level. For that reason, They are also considered
in the network enrichment but penalized (default = -1) to favor the selection of the non-heuristic
reactions.

Local search and simulated annealing Local search is a heuristic approach that is usually applied
to hard optimization problems [58]. Local search investigates the search space by applying local
changes to candidate solutions, such that the objective function value is increasing. The changes are
applied until no more local improvements can be made. To avoid stagnation in a local maximum, the
simulated annealing procedure [59] allows non-optimal solutions and thus increases the exploration
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space. The probability of accepting a suboptimal solution depends on the temperature parameter 7',
which decreases over time at rate o

T = TU s
where 7y is the initial temperature, « is the rate of decrease and n is the iteration number. If no more
local improvements are possible, a random solution is accepted under the following condition:

O0p_1—0

e~ -7 > uniform(0, 1)
where and are objective function scores at iterations n-1 and n correspondingly.

We employ local search on the reaction network G = (V, E). Starting from a (random) set of
connected starting nodes, also called seed, the local search can perform three actions for improvement
in the objective function scores: node addition, node deletion, and node substitution. A minimum
and maximum size for the subnetwork have to be entered as parameters, preventing the algorithm
from selecting too small or big solutions. The action that allows improving the current value of
the objective function is accepted, and thus a candidate solution is modified at each iteration. The
algorithm terminates when a) no further improvements are possible, b) the simulated annealing
condition is not satisfied, or ¢) the number of maximum iterations is reached. The best-identified
subnetwork is returned. The objective function score of a reaction subnetwork G* = (V*, E*) is

computed as follows:
D u,cv- Score(v;)

o=
V¥ x (p x |CR(V¥)[)

with a user defined penalty p for the number of different lipid class reactions in the subnetwork and

CR(V*), the set of different lipid class reactions in the set nodes V*. If the reaction network consists

of unconnected components, the local search is run for each component independently and a subgraph

for each component is returned.

Subnetwork p-value The network enrichment algorithm results in a subnetwork with a score for
each run. To indicate if this subnetwork/score provides a significant insight compared to an equally
sized random set of reactions, we compute an empirical p-value. For that, we sample reactions in
the range of the minimum and maximum subnetwork size. These reactions are not connected, as
in the subnetwork of the enrichment. This creates a distribution of scores. The distribution is then
used to estimate a p-value for the solution found by the enrichment. The number of samples can
be decided by the user, with more samples giving a better estimate of the distribution at increased
runtime. The rationale behind sampling unconnected solutions is to estimate how much the connected
(mechanistic) subnetwork scores compared to unconnected (non-mechanistic) solutions.

In the implementation for the LINEX? web service, the local search is run multiple times (default=5),
each with random seeds. The best result can then be optionally used as a seed for another local search
run, to improve this result. The best score achieved in all local search runs is then returned to the user.

4.4 Reaction ratio plots

Visualizations of reaction ratios were performed for each lipid class reaction individually. Reaction
ratios per sample are computed in the same as for the substrate-product change calculation, without
averaging over all individuals:

1

(Hperl pn> Ipl
(ILer, 50)™

All ratios per experimental condition are compiled into a list and the density for each considered
experimental condition is plotted.

4.5 Lipid moiety analysis

The (combined) abundance of lipid features was implemented inspired by the glycan substructure
method by Bao et al. [S5]. We used the same vectorization and weighting as the authors, but with
lipid substructures as features. These were: headgroup, backbone, independent fatty acyls, sum length
of fatty acyls, sum double bonds of fatty acyls, and fatty acyl hydroxylations. The features were
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weighted independently or in combination of pairs by occurrence in each lipid per sample. To find the
most discriminative feature combinations, we train a regression model with sample groups as target
variables and extract its coefficients. A summary of the workflow can be found in Supplementary
Figure S5.

4.6 Lipid chain analysis

We implemented lipid chain analysis in python according to the proposed method by Mohamed,
Molendijk, and Hill [53]. For each lipid class, lipid species with the same sum length of fatty acids
are summed up per sample and a mean over all samples of one experimental condition is calculated.
After that, the fold change between a selected control and e.g. a disease condition is calculated for
each sum length per lipid class. The result is then plotted with an ascending fatty acid length on the
x-axis, showing class-specific fatty acid length fold changes between conditions.

4.7 Webtool and data upload

The web service is built with the Django web framework (https://www.djangoproject.com/) in
the python programming language (version 3.8, https://www.python.org/). PostgreSQL (https:
//www.postgresql.org/) is used as a back-end database for Django, to store data, networks,
and all computed attributes. Cookies are used to connect a browser session to uploaded data,
their corresponding computed networks, and analyses. For interactive network visualizations, vis-
network [60] is used and other interactive plots are done with Plotly [61]. All other user-site
functionalities are implemented in plain JavaScript. PDF versions of networks are generated with
the NetworkX package [62] in conjunction with the matplotlib library [63]. The backend was
implemented in python. To achieve compatibility across operating systems, LINEX? can be built
in a Docker environment. In the public LINEX? version, uploaded user data is temporarily stored
on our server for a certain time or can be deleted manually by the user (for further information see
https://exbio.wzw.tum.de/linex/request-data-delete). However, using the provided
Dockerfiles LINEX? can also be easily run locally on any computer (for instructions check the
source code repository). LINEX? is free software, published under the aGPLv3 license. The source
code is available at https://gitlab.lrz.de/lipitum-projects/linex. While we adapted
the procedure to generate lipid species networks, the original LINEX version can still be accessed
through the website (marked as version 1).

Identified and quantified lipidomics data with optional sample labels can be uploaded to LINEX?2.
Lipidomics data must be uploaded as a table with samples, lipids, and their corresponding concentra-
tions/amounts. To convert lipids into our internal programming model, we recommend the LIPID
MAPS nomenclature [64]. However, we integrated the LipidLynxX [65] software, which can convert
multiple lipid nomenclatures, increasing the compatibility of LINEX? with multiple formats. A
tutorial is available on the website (https://exbio.wzw.tum.de/linex/tutorial).

4.8 Statistical measures implemented in LINEX?

To enable a combined visualization of the biochemical connections between lipid species and
quantitative lipidomics measurements, LINEX? offers the possibility to project different statistical
metrics onto the species networks.

To characterize the changes in lipid levels between different experimental conditions, we provide
unpaired parametric (t-test), non-parametric (Wilcoxon rank-sum test) test options, and a paired
parametric test (Wilcoxon signed-rank test). All resulting p-values are automatically false-discovery
rate (FDR) corrected using the Benjamini-Hochberg procedure [66]. Furthermore, fold changes are
computed to showcase effect size. For the computation of these metrics, we used the scipy package
[66, 67] in conjunction with the statsmodels package [68]. All measures can be visualized either as
node sizes or node colors.

Measures for lipid connections (i.e. edges in the network) are correlation-based. Specifically, the
options provided are spearman’s correlation and partial correlation. All correlations above a user-
specified significance threshold (default = 0.05) are set to O automatically. Correlation values can be
visualized in the network representation through edge colors.
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4.9 Analyzed data sets

The lipidomics data for MOBAT7 WT and knockout mice were taken from Thangapandi et al. [38].
No further processing was done and the data was analyzed as provided by the authors. Data for the
Adipo Atlas was used as provided in the supplement of Lange et al. [41]. The comparison of MCS to
adipogenic cells is coming from the supplement of Levental et al. [51]. Lipid species measured in
less than 50% of all samples were removed before analysis with LINEX?. For all data sets analyzed
with LINEX?, HTML files with the LINEX? output are available in the supplement.

Data Availability Statement

LINEX is free software. Source code: GitLab (aGPLv3 License): https://gitlab.lrz.de/
lipitum-projects/linex

Figure reproducibility: https://gitlab.lrz.de/lipitum-projects/LINEX2-paper-code

ALEX123 lipid classes and curated database reaction: https://gitlab.lrz.de/
lipitum-projects/LINEX2_package/-/tree/master/LINEX2/data
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A.5.1. Exploring the SARS-CoV-2 virus-host-drug interactome for drug
repurposing

Citation

"Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing" Sepideh
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Markus List, Reza Nasirigerdeh, Mhaned Oubounyt, Andreas Pichlmair, Tim D. Rose, Marisol
Salgado-Albarran, Julian Spath, Alexey Stukalov, Nina K. Wenke, Kevin Yuan, Josch K.
Pauling, and Jan Baumbach; In: Nature Communications 11, 3518 (2020); doi: https://doi.
org/10.1038/s41467-020-17189-2

Summary

The global pandemic of the Sars-CoV-2 virus required the development of new treatments
and vaccinations in a short time. A way to achieve this is drug repurposing, where drugs,
previously developed for other diseases, are used for COVID-19 patients.

In this publication, the interaction network-based method CoronaVirus Explorer (CoVex)
was developed. It visualizes the virus-host-drug interactome and can suggest drug repurpos-
ing candidates. The interaction network was built, by combining, identified virus-host protein
interactions, protein-protein interaction networks, and drug-target interactions. Researchers
can explore the interactome and utilize network algorithms that prioritize drug repurposing
candidates from seeds. Such seeds can emerge from previous research results or hypotheses.
They can be drugs, human proteins, or viral proteins. The network algorithms are able to find
the shortest paths or network communities that connect seeds, with drugs, or viral proteins.
This can identify potential pathways that potentially inhibit viral replication. Different scenar-
ios are showcased in the manuscript that shows applications of the web-based software. The
results of a CoronaVirus Explorer (CoVex) analysis can then be used to further investigate the
mechanisms and potential of key interactions between viral-, human proteins, and drugs.

Contribution

I contributed to the inegration of the interactome and data analysis. Further, I contributed to
the writing and Figures.

As stated in the publication: "S.S., ] M., |.B., M.L., TK., ] K.P., A.P., and A.S. conceived and
designed the study. S.S. and ].M. were in charge of overall direction, planning, and supervision. S.S.,
G.G., I.D.R., M.S.-A., and N.K.W. performed the acquisition, integration, and interpretation of data.
S.S., D.B.B., M.L., and K.Y. developed and adapted the algorithms for network-based drug repurposing.
J.M., R.N., M.O., and ].S. implemented the web platform. All authors provided critical feedback and
helped in the interpretation of data, manuscript writing, and the improvement of the platform." [27].
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A.5.2. Lessons from the COVID-19 pandemic for advancing computational drug
repurposing strategies

Citation
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Summary

During the COVID-19 pandemic, many scientific efforts focused on drug repurposing. In this
review, we summarized and discussed, how drug repurposing research was performed and
what challenges occurred.

First, common data resources for drug repurposing were assessed. Then, computational
repurposing work was divided into virus-targeting and host-targeting approaches. Virus-
targeting approaches commonly utilized docking simulations or neural networks, to find
potential inhibitors for viral proteins. Host-targeting approaches used quantitative omics data
to match signatures of drug application or interaction networks to find closely connected to
drug targets. Furthermore, we compared their predictions to drugs in a trial at the point of
publication.

Finally, a unified drug repurposing strategy was proposed to overcome the problems we
observed in the literature. This included standardized molecular data and result reporting, a
combination of host- and virus targeting approaches, combinatorial treatment suggestions,
expert-guided analysis, and candidate validation.

Contribution

I focused with M.S.A. on the evaluation of virus-targeting approaches and comparison of
their predictions to clinical trials. Together with all other co-authors, I equally contributed to
the unified repurposing strategy.

As stated in the publication "G.G., .M., .D.R., S.S., M.S.A., ].S., ].B. and ].K.P. contributed
equally to the manuscript writing. |.B. and J.K.P. were in charge of overall direction, planning and
supervision. All authors provided critical feedback and helped to improve the manuscript." [26].
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FAD flavin adenine dinucleotide. 8, 13, 14
FBA Flux Balance Analysis. 33

FFA free fatty acids. 17, 18, 21

G3P Glyceraldehyde 3-phosphate. 6, 7, 14
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Acronyms

GC Gas chromatography. 21
GO Gene Ontology. 31
GSEA Gene Set Enrichment Analysis. 31, 32

GTP Guanosine triphosphate. 8

H* Proton. 7, 134

HDL high-density lipoprotein. 16-18
IMS Ion mobility spectrometry. 21, 22
KEGG Kyoto Encyclopedia of Genes and Genomes. 31

LC Liquid chromatography. 18, 20-22, 59

LDL low-density lipoprotein. 16, 18

LINEX Lipid Network Explorer. iii, iv, 2, 35-40, 47, 49, 53, 55-57, 59, 60, 63, 64, 135
LINEX? Lipid Network Explorer 2. iii, iv, 37, 39, 41, 49-51, 53, 55-60, 63, 64, 135
LPA Lyso phosphatidic acid. 14, 15, 39, 134

LPA-O Ether Lyso Phosphatidate. 15

m/z Mass-to-charge. 19, 21-26, 134

MALDI Matrix-assisted laser desorption/ionization. 21, 22, 26
MBOAT Membrane-bound O-acyltransferase. 16, 49, 50, 56, 135
MG Monoacylglycerol. 14

MoSBi Molecular Signature identification using Biclustering. iii, iv, 2, 10, 30, 35, 37, 38, 43,
53-58, 60, 62-64, 135

mRNA messenger RNA. 4, 25, 33

MS mass spectrometry. 18-23, 25, 26, 59-61

NAD™ oxidized Nicotinamide adenine dinucleotide. 7, 8, 14, 134
NADH reduced Nicotinamide adenine dinucleotide. 7, 8, 134

NADPH reduced nicotinamide adenine dinucleotide phosphate. 9, 10, 13
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Acronyms

NAFLD non-alcoholic fatty liver disease. iii, 1, 2, 18, 20, 29, 30, 34, 36, 38, 45, 54, 55, 57, 59,
60, 63, 64

NASH non-alcoholic steatohepatitis. 45, 54
NGS next-generation sequencing. 25

NMR nuclear magnetic resonance spectroscopy. 26
ORA Opver-representation Analysis. 31, 32

PA Phosphatidic acid. 14, 15, 17, 39, 134

PA-O Ether Phosphatidate. 15, 134

PC Phosphatidylcholine. 11, 12, 14, 15, 17, 51, 134
PCA Principal Component Analysis. 29

PE Phosphatidylethanolamine. 14, 15, 39, 51, 134
Pl Phosphatidylinositol. 14, 16, 17, 49

PLA; Phospholipase A;. 16

PPP Pentose phosphate pathway. 9, 10, 13, 32

PS Phosphatidylserine. 15, 16, 39

RNA ribonucleic Acid. 4, 10, 26, 43

SM Sphingomyelin. 15, 45, 54
sn stereospecifically numbered. 12, 59

SWATH Sequential window acquisition of all theoretical fragment ion spectra. 23

TCA tricarboxylic acid. §, 10, 14

TG Triacylglycerol. 12, 14-18, 134

TLC thin-layer chromatography. 18, 61

TOF time-of-flight. 22

t-SNE t-Distributed Stochastic Neighbor Embedding. 29

UMAP Uniform Manifold Approximation and Projection. 29
VLDL very-low-density lipoprotein. 16, 17

WT wild type. 49-51, 135
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