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Abstract—Robot learning through Kkinesthetic teaching is a
promising way of cloning human behaviors, but it has its lim-
its in the performance of complex tasks with small amounts
of data, due to compounding errors. In order to improve the
robustness and adaptability of imitation learning, a hierarchical
learning strategy is proposed: low-level learning comprises only
behavioral cloning with supervised learning, and high-level learn-
ing constitutes policy improvement. First, the Gaussian mixture
model (GMM)-based dynamical system is formulated to encode
a motion from the demonstration. We then derive the sufficient
conditions of the GMM parameters that guarantee the global
stability of the dynamical system from any initial state, using the
Lyapunov stability theorem. Generally, imitation learning should
reason about the motion well into the future for a wide range of
tasks; it is significant to improve the adaptability of the learn-
ing method by policy improvement. Finally, a method based on
exponential natural evolution strategies is proposed to optimize
the parameters of the dynamical system associated with the stiff-
ness of variable impedance control, in which the exploration
noise is subject to stability conditions of the dynamical system
in the exploration space, thus guaranteeing the global stability.
Empirical evaluations are conducted on manipulators for differ-
ent scenarios, including motion planning with obstacle avoidance
and stiffness learning.

Index Terms—Dynamical system, exponential natural evolu-
tion strategies (NESs), imitation learning, policy improvement of
robustness and adaptability.
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I. INTRODUCTION

VER since the onset of pioneering research into robot

learning methods of learning by demonstration have
attracted much attention. Robot learning can facilitate applica-
tions in industry, manufacturing area, healthcare, etc., because
it directly clones motor skills by extracting task-relevant
information that can be transferred to the robot [1]-[3].
Generally, traditional imitation methods use supervised learn-
ing to obtain the regression parameters by modeling dynamic
motion primitives (DMPs) [4] and Gaussian mixture models
(GMMs) [5]. However, a major drawback of these methods is
that they are not so adaptable and highly dependent on large
amounts of data [2]-[6]. Therefore, they tend to be restricted
to real-world robotic applications. In a real-world scenario, it
is significant to design a more efficient learning policy based
on the finite expert data.

Imitation learning has two central properties: 1) pol-
icy robustness and 2) adaptability. Among the many
research papers contributing to this issue, some focus on
parameter learning to improve robustness and adaptability.
Khansari-Zadeh and Billard [7] presented a Gaussian model-
based stable estimator called SEDS for learning the parameters
of the dynamical system, which can ensure global stability
at the goal point. Khansari-Zadeh and Billard [8] extended
the dynamical system to cover various regression models and
proposed a learning strategy for optimizing the valid Lyapunov
function, which displays strong robustness in terms of distur-
bance from a random initial state [9], [10]. Duan et al. [11] and
Jin et al. [12] employed various modification tricks to improve
the metrics of a dynamical system subjected to global stability,
for example, improving the learning speed using an extreme
learning machine or improving accuracy means of manifold
immersion and submersion. Although the above works have
made some progress in improving the robustness of imitation
learning, they suffer from a limited adaptability. Specifically,
we want the robot might be perform specific special tasks
that are not covered by in expert data. For example, a robot
is expected to perform obstacle-avoidance tasks taking the
shortest path, in which obstacles are configured along expert
trajectories.

One possible solution is to combine policy-based high-
level learning strategies with imitation learning [13]. Several
learning strategies have been investigated for improving adapt-
ability for different scenarios. In [14] and [15], the path
integral policy improvement (PI?) algorithm was tailored to
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learn the parameters of robot trajectories, in which reinforce-
ment learning could adapt to learning tasks, such as via-points
or obstacle-avoidance tasks. Indeed, these policy improve-
ment methods were explored with the aim of optimizing the
parameters with the feedback of a cost function set by users,
in which the update rule was in the form of a probability-
weighted average [16]. In addition to the aforementioned
work, reinforcement learning could also be used to acquire
the parameters of variable impedance control [17]-[19], with
the robot’s stiffness being changed according to the task
requirements. In [20], reinforcement learning was proposed for
learning the impedance parameters, in which the stiffness of
the impedance controller was modeled as a dynamical equa-
tion and updated in accordance with rewards from the cost
function. Similarly, in [21], a covariance matrix adaptation
evolution strategy (CMA-ES) is proposed for learning the vari-
able impedance control of robotic grasping, which provides a
theoretical rule for assigning the highest weight to the best
population for parameter updating.

Inspired by these works, we propose the exponential natural
evolution strategies (NESs) algorithm to learn the stiffness
of a stable nonlinear dynamical system. This combines the
two properties of robustness and adaptability from kinesthetic
teaching. As reported in [22], the NES provides a principled
way of formulating the optimization problem based on the
natural gradient. The proposed exponential NES is a more
efficient learning algorithm than the previously mentioned
CMA-ES method, because it obtains all parameter updat-
ing for covariance matrix adaptation from a single principle.
Moreover, unlike the original NES, the parameter updat-
ing depends on the natural coordinate, which can reduce
the computation of the inverse Fisher information matrix in
NES [23].

In this article, we incorporate algorithms of exponential
NES with a stable dynamical system into the imitation learn-
ing framework. First, the motions of the robot are encoded
using the GMM from kinesthetic teaching, which is a nor-
mal behavioral cloning process. Then, the GMM-based stable
dynamical system is derived from the Lyapunov stability the-
orem such that the optimized parameters of the dynamical
system can be obtained from the stable condition. This pro-
cess can improve the robustness of the dynamical system.
Finally, the exponential NESs are explored for learning the
parameters of the policy, which can further improve the sta-
bility and adaptability of the dynamical system for different
tasks. The contributions of this article are summarized as
follows.

1) Exponential NESs are proposed for learning the param-
eters of a policy that can improve the robustness and
adaptability of the dynamical system, where the low-
level learning is for behavioral cloning using GMM,
and the high-level learning refers to the parameter learn-
ing of policy improvement considering robustness and
adaptability.

2) Exponential NESs are also explored for learning the
stiffness of the variable impedance control, where the
stiffness of the controller can be modified online accord-
ing to the task’s requirements.
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3) The proposed method can learn the covariance matrix
parameter which is used to modify the exploration noise
in the parameter space.

4) Offline learning and online robot experiments are con-
ducted to demonstrate the effectiveness of the proposed
scheme.

II. RELATED WORK AND MOTIVATION

In this section, we will briefly discuss the motivation of the
study and the related work in the areas of imitation learning
and policy improvement in learning.

A. Imitation Learning From Demonstrations

Learning from demonstrations is a popular approach in
robot motion imitation. Several classical supervised learn-
ing methods have been widely applied to behavioral cloning,
such as Gaussian mixture regression (GMR) [24], Gaussian
process regression (GPR) [25], and hidden Markov models
(HMMs) [26]. However, these statistical approaches found
locally optimal parameters by maximizing the likelihood such
that failed to ensure global stability because they were not the
theoretical solution to ensure the stability of the dynamical
system. Dynamical system-based learning methods were there-
fore presented to ensure global stability, such as DMP in [27]
and SEDS in [7]. In particular, the time-invariant dynamical
system in [7] and the constraints of stability condition accord-
ing to the Lyapunov stability are taken into consideration in
the context of learning.

B. Policy Improvement With Learning

On the other hand, we focus on parameter learning to spec-
ify the task using policy improvement methods. The evolution
strategies algorithm is one candidate solution for parameter
learning, such as CMA-ES and NES. In contrast to P12 [28],
the CMA-ES algorithm can modify the exploration noise dur-
ing learning by updating its covariance matrix [21]. However,
CMA-ES is not able to measure the proximity between the cur-
rent policy and the updated policy on the basis of distribution
in the learning process. We, therefore, consider exponential
NES for this purpose. Generally, the NES learns the parame-
ters of policy by following the natural gradient toward higher
expected fitness [29]. Indeed, the traditional NES method
involved computing the inverse Fisher information matrix,
which can affect the efficiency of the learning process. The
proposed exponential NES is a more efficient learning algo-
rithm, because all the parameters updating for covariance
matrix adaptation are obtained from a single principle [30].

III. LEARNING PROBLEM

In this section, we will introduce the first learning problem,
using GMR to model trajectories by kinesthetic teaching in
Section III-A. To learn different tasks in imitation learning,
we formulate the second problem to learn the parameters
of the dynamical system in Section III-B. The control flow
framework is shown in Fig. 1.
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Fig. 1. Control flow of the learning-control framework using the proposed

methods to derive a stable and robust control policy for the robot system. ©®
denotes the policy parameter, K, is the stiffness of the impedance controller,
g, q are the joint angle and velocity, and x, x are the state variable dynamical
system.

A. Nonlinear Dynamical System From Demonstration

To imitate human skills, a data-driven kinesthetic teaching
method is explored for learning motor skills, where the robot
performs a repetitive task multiple times. Generally, the robot’s
motion can be encoded by learning methods, such as linear
regression, support vector regression, and GMR. In this article,
we formulate the robot’s motions as an autonomous dynamical
system with the state variable x and the output variable x as

i =f(x) (1)

where x is the end-effector’s trajectory in the Cartesian space,
and x is the velocity; f (x) is the nonlinear continuous and
continuously differentiable function.

The data points from demonstrations are defined as
Xty X))@ =0 , T), where T is the time of the goal point
and N(n = 1,...,N) is the number of samples. Each data-
point includes a position value x; , and a velocity value x; .
To encode the dataset of position distribution p(x; ,, X;.»), the
following GMM model is defined as:

P(Xens Xens

K
¢) =Y pUop(xe.n: xinlk) ©)

k=1

where K is the number of the Gaussian model; p(k) denotes the
prior probability, and p(x,n, X, ,|k) is the conditional probabil-
ity density function; ¢ = {Ax, pk, D5}, where Ag, pg, and ),
are prior probability, mean variable, and covariance variable,
respectively. The parameters are defined as ¢ = {¢1, ..., ¢k},
and the details are expressed as

pk) = Ag
1

p(xn, Fonlk) = ——e
J DY

1 .
- exp (—5 (Dxts ] — i)

-1

Z([xt,na Xenl — Mk)

k

For multiple demonstrations from kinesthetic teaching,
the GMM encodes the set of trajectories of the robot in
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function (4) can be further written as

i=fe) = Z o () (Agx + dy) )
k=1
where
p)p(xk)
o = — 0 (6)
S pipali
A= () @
di = p — Mg ®)

It is clear that (5) is a nonlinear dynamical system with non-
linear weighting terms wy, which can represent a wide variety
of motions.

B. Parameterized Policy Learning for the Dynamical System

The dynamical system-based control law method is highly
robust for motor skills learning, because it is a time-
variant dynamical system and globally converges to the goal
points [7]. However, it cannot perform complex tasks with
current parameters, such as via-point or obstacle-avoidance
tasks.

To improve the policy parameters from the demonstra-
tions, the evolution strategies learning algorithm is applied
to the dynamical system in (5). In this section, a param-
eterized control policy for the dynamical system in (5) is
defined as

X =fx, )+ P0x) - (O + ) 9

where © is the learning parameter; ®(x;) denotes the control
matrix; and @, ~ A(0, ¥) denotes the Gaussian exploration
noise.

Considering the special case of a 3-D dynamical system to
model the policy parameter, the dynamical system of GMR
in (5) is reformulated as

D(xp) = [P1(x), Palxr), ..., Pr(xr)] (10)
L O R )
Qr(x)=wr| 0 0 0 x| X X
0 0 0 0 0 0
0 0 0 1 0 O
o 0 0 0 1 ol an
xj )ct2 X 0 0 1
® =[01,0,,....,0]" (12)

Restrictions apply.
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_ 1,1 1,2 1.3 2,1 2,2 2,3
O = [A¢h AT AP AT A A

Az’l,Ai’z,A,fj,d,l,dz,di]. (13)
From the definition in (10)—(13), the learning parameter ®
includes the matrices Ay and dj of the GMR, which is given
in the dynamical system in (5). It should be noted that the
parameters M’; and X are the components of weighted wy,
which shows the nonlinear mapping relationship. To avoid
nonlinear factors in the learning policy, the policy parameters
only have ,ujlg and Z,f’x. Therefore, the learning goal is to find
the optimization solution of the mean of the velocity 4 and
covariance between position and velocity ;™ in the GMR.
The mean and covariance of position are set as fixed parame-
ters. The control matrix ®(x;) contains the nonlinear features
of the policy. The features consist of the Gaussian basis func-
tions multiplied by the input variables. The Gaussian basis
functions are positioned in the input space during learning.

Generally, the policy parameters ® are updated such that the
cost function of motion trajectories [x;, Xtjyps - e , Xty lo from
the start time #; can be minimized

IN 1
S(®) = ¢(xiy) + / (rt,- + Epf (®)Rpt(®)) (14)
ti

where ¢ (x;,) is the terminal cost; r;; is the immediate cost;
01(®) = &(x;)(® 4 @) denotes the control cost; and R is the
positive constant weight matrix.

In the learning process, the evolution strategies learn-
ing method will be explored to minimize the control
cost (1 /2),0,T (®)Rp:(®)). Once optimum control has been
obtained, the update item 6®; can be computed at each
time step. To obtain a single update vector §®, a time
averaging method can then be used. The details of the
update rule for the learning process will be presented in
Section IV.

IV. METHODOLOGY FOR POLICY IMPROVEMENT

In this section, the NES algorithm is introduced for learning
the parameters ® in (12). The natural gradient of expected fit-
ness is first deduced to update the policy parameters, and then
the updating rule of exponential parameterization is presented.

A. Natural Evolution Strategies

NESs are based on search gradients for updating the pol-
icy parameters. The sampled gradient of the expected fitness
function is treated as a search gradient. In this article, we
aim to minimize the fitness/cost function, which is defined
in (14). The search distribution is mainly considered as
the multinormal Gaussian distribution with a full covariance
matrix.

First, we define the mean and covariance of the search distri-
bution as ue and X and the learning variable ® = {ug, X}
To simplify the distribution expression, we define CCT = g,
and then & = pue + Cs, where variable s is the standard
normal distribution s ~ N(0,I). The sample & is then:
& ~ N(ne, o). The search distribution of expected fitness
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function S = —S is expressed as
3©) = [ SeEien

p&10)

e —u@>)2).

15)

1
T @2n)"™? det(C) eXp(

The gradient of J(®) is obtained according to the log-
likelihood trick

Vol(®) = Ve / SE)p(E1@)dE

_ / 5(E)Vep(E|©)dt

R p10)
= | S(§)Veg ®)———=d
/ (¢)Vep(| )p($|®) §

= [ $(§)Vo log p(¢|©)p(§|©)dk
= E[S(§)Vo logp(¢1©)].

According to the Monte Carlo estimation [31], the function
in (16) can be approximated as

(16)

!
1 -
Vol(©) ~ - 3 | S(E)Ve logp(&10©) (17)
i=1
where the parameter / represents the population size. The gra-
dient VaJ(®) offers a search direction in parameter space.

Finally, the update rule is written as

O™ =0 +1nVel(©) (18)

where 7 is the learning rate parameter.

However, the traditional stochastic search gradient method
in (18) is difficult to precisely determine the quadratic opti-
mum. The natural gradient-based method is a good solution
and it helps mitigate the slow convergence of the plain gradient
in optimization landscapes with ridges and plateaus. Actually,
the natural gradient is based on Riemannian geometry, and it
learns the information from the manifold of probability dis-
tributions. The traditional gradient VeJ directly follows the
steepest descent in the parameter space © in the distribution.
For the maximum process of J, it will generate a new dis-
tribution associated with updating the parameters from the
hypersphere of radius ¢ and center ®, and thereby comput-
ing the Euclidean distance of two distributions. However, it
creates a new problem that the updating relies on the partic-
ular parameterization of the distribution, where the gradients
and updates follow the change in parameterization.

The natural gradient algorithm computes the natural dis-
tance D(®]|® + 5§®) between P(£|®) and P(§|® +§®) using
the Kullback—Leibler (KL) divergence. The natural gradient of
J can thus be reformulated as an optimization problem with a
KL divergence constraint

J(© +80) ~ J(©) + (60) Vel
s.t.  KL(O+80||0) =c¢

19)
(20)

max

where (19) is the Taylor expansion and (20) is the constraint
of KL divergence approximated [32]; ¢ is a small increment
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size. The KL divergence is a measure of the distance of two
probabilities. In this constraint, we want to hold new and old
policies close in parameter space. The goal of optimization
is to find the update direction with the largest ascent of the
objective in the KL divergence.

Since the KL divergence can be approximated with second-
order Taylor expands using Fisher information matrix, the
function (20) is reformulated as

KL(®]|® + §0) ~ KL(0||®)

+(Vo150KL(O]|® +50))" 50

1 T
+5(30) 56 1)

= KL(©]|0) — E[Ve log p(§16)] 60
—i—%((SG))TFS@ A %(5@)%5@ (22)
with
F= /p($|®)V@ log p(£1©) (Ve log p(£1©))" d

= E[Ve logp(§1©) (Ve logp(£]10))"].

The Lagrange function of optimization in (19) and (20) is
written as

(23)

L3O, B) = J(©) + VeI (0)§0 + ﬂ(%(c - 8®)TF8®>
(24)

where F denotes the Fisher information matrix, and B is
the Lagrange multiplier. From the saddle-point theorem, the
optimal solution §® satisfies the following condition:

9L _ VI(©®) — BF(30) = 0.

25
0(8O) (25)

Then, the optimal solution is obtained as
80 = 7' Fv](0). (26)

Finally, when the Lagrange multiplier 8 > 0 is given, the
direction of the natural gradient is written as

Vol(©®) = F~1Vv](0). (27)

B. Fitness Shaping and Exponential Parameterization

NES adopts rank-based fitness functions (object functions)
to keep the method invariant with monotonically increasing
transformations of the fitness function. Here, we define the
utility-weighted values v = [vy, ..., v;] with sort ascending to
transform the fitness of the population. Invariance against a large
set of transformations of the fitness function and/or the underly-
ing search space is a desirable property of evolution strategies.
Rank-based fitness shaping makes the algorithm invariant under
monotonic transformations of the fitness function, and the
natural gradient is invariant under linear transformations of the
search space [30]. Therefore, when the same linear transfor-
mation is applied to the search space and the initial search
distribution, the natural gradient will also be transformed.

First, the population is sorted in descending order, which
means that &; is the best and & is the worst individual. Then,

we replace the fitness function as the utility values, and thus
the estimation equation in (17) can be reformulated as

1
Vol(®) = Y uiVe logp(&il©).

i=1

(28)

C. Exponential NES Update Rule

In traditional CMA-ESs, the policy parameters follow the
gradient step of covariance matrix § g, so the new covariance
matrix g + 6Xe should hold the positive-definite matrix
property. However, since the gradient § ¥g can be any symmet-
ric matrix, we cannot guarantee this property. To address this
issue, the covariance matrix is represented with an exponen-
tial map for symmetric matrices. We first give the exponential
map function as

Sp = (M € R™™"MT = M} (29)

and

P =M € Splu’ Mu > 0 for all u € R™\{0}}  (30)

where S, is the symmetric vector space, and P, is the mani-
fold of a symmetric positive-definite matrix. The exponential
map is defined as

Mﬂ

n!’

o0
exp : Sm — P, M—>Z
n=0

€29

The map is a diffeomorphism, and “exp” and its inverse oper-
ation log : P, — S, are continuous. The covariance matrix
Y can be represented as exp(¢) by exp map P, — Sy,. The
properties of the gradient update are given in Remark 1.

Remark 1: The updating of exp map has the following
properties: Xg + §X¢@ is the valid covariance matrix due to
the vector space updating of S,,;; the gradient step is invariant
with respect to linear transformation, due to the updating of
the ¢ of exp operation.

To reduce the burden of computation of the Fisher matrix,
we do not directly compute the global coordinate g =
exp(¢), and replace it with a linear transformation to another
coordinate system that the current search distribution is
the standard normal distribution with zero mean and unit
covariance. We first define the current search distribution as
(ne, C) € R™ x P, and satisfy CCT = Xg. In the tangent
space, we define the updated search distribution as

1
6. M) > (ug™. C") = (u@ +C3, Cexp(§M>>. (32)

The coordinate frame is natural, because the Fisher matrix
with respect to an orthonormal basis of (§, M) is the identity
matrix. Hence, the distribution A (e, CCT) is converted into
(8, M) = (0, 0). The trick of obtaining updates in the natural
coordinate frame is an option of exponential parameteriza-
tion, which is used to keep the algorithm invariant under the
linear transformation in the searching space. The log density
mapping is written in the new coordinate system

log(p(€[8, M)) = —% log(27) — tr(C)

2
‘ . (33)

1
—EHexp(—l/ZM)C_l(g — 1e)
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Considering the population & = pue + C - s;, where s; ~
N(0, I), the gradient is formulated as

1
Vsl =) virVsls=olog(p(&IM = 0, 8))
i=1

_ gwm_o[_%wc] @

2
(ne +9)) H }

I
=) UiVsls=0C " - (& — (o +6)
=1

(34)

1
= Zviosi.
i=1

The gradient of M is

1
Vmd =) vi-Vilu=o log(p(&l8 = 0, M))
i=1
!

= Z U,"VM|M:0 |:_tr(c)

i=1

1 —1
—EHexp(l/ZM)C (&

=i§l;vi~[—l— (C_

(—1/21) - (C—

]
L6~ po))-
T
L&~ o)) ]
(35)

From the gradient update of VsJ in (34), it can be seen that e
depicts the center updating of search distribution. Similarly, o
describes the updating of step size of Vo] as

Vo] = tr(VJ))

m
Vil = Vil — Vo .

(36)
(37

Finally, the updating rule with learning rates is given as

new

He = pe +nu- Vsl

l

= 1o +rlu'ZUiSi
i=1
o™ =0 -exp(ns/2 - Vo)

I
=0- exp(% ~tr<z Ui(sisiT — I))/m) 39
i=1

B™W — B. exp(%B . VBJ>

[
=B exp(%} . (Z vi(sisiT -
i=1

1
1 T — ).
- tr(g Vi (sis! 1)) 1)) (40)

(38)

IEEE TRANSACTIONS ON CYBERNETICS

V. LEARNING VARIABLE IMPEDANCE CONTROL OF
STABLE DYNAMICAL SYSTEM

In this section, we derive the stability conditions of the
dynamical system using the exponential NES to learn the
stiffness of variable impedance control. To guarantee global
stability, the exploration noise of exponential NES is subjected
to the stability conditions of the dynamical system.

A. Shaping With Stable Exploration

For imitation learning, the dynamical system in (5) can
generate the trajectories according to the reference skills.
Generally, an unstable dynamical model will cause unexpected
motion, such as deviation from the goal position. Therefore,
it is necessary to determine the optimal parameters to regulate
the dynamical system.

Theorem 1: If the state trajectories are generated accord-
ing to the dynamical system in (5), the dynamical model is
globally asymptotically stable at the goal point x; under the
sufficient conditions

dr = —Apxg
A+ AT <0Vk=1,... K.

Proof: To obtain the stability conditions of the dynamical
system in (5), we first define a candidate Lyapunov function as

(x - xg)T(x — Xg).

According to the Lyapunov stability theorem of function
in (42), we should set the parameters that satisfy the following
conditions:

(41)

Vix) = (42)

V(x) > 0 Vx € R\ {x,}
V(x) <0 Vx € R\ {x,} (43)

V(xg) =0 & V(xg) =0.

Obviously, V(x) > 0 except for goal position x = x,. The time
derivative of V(x) is written as

d(V) dvV dx
dt dx dt
1d T .
2 dx ((x - .Xg) (X - xg))x
= (x— xg)ij

= (r—x)" @

K
=(x— xg)T Z wr (X) (Agx + dy)
k=1

K
= (x — xg)T Z wi(x) (Ak(x — Xg) + Agxg + dk)
k=1

K
Zwk(x) X — xg Ak(x — xg).
k=1

Since the parameter wy is positive, the condition V(x) < 0
should be constrained with the condition Ax + (Ax)Y < 0.
I.t is then easy to conclude that the condition V(x,) = 0 &
V(xg) = 0 is satisfied. The proof of (41) is thus concluded. ®

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:21:46 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU et al.: ROBOT POLICY IMPROVEMENT WITH NESs FOR STABLE NONLINEAR DYNAMICAL SYSTEM 7

We still need to obtain the parameters ¢ = {¢1,..., ¢k}
with the item ¢x = {Ak, i, Y ;) in (5). Common methods
use the expectation maximization (EM) algorithm to determine
the optimum parameters of the GMM. However, they cannot
ensure global stability at the goal position, because they do
not consider the constraint in (41) in the optimization. Here,
the log-likelihood-based objective function of the optimization
problem with constraints is defined as

1 N T
min F(§) = =7 > Y 10gP(xin G1nl)

n=1 t=0

dip = —Apxg
T
5t. ng ;L E)A") <0 (44)
S o=1wr€(0,1).
The constraint is from the Lyapunov theory, where dy =
—&2x, represents the stable point; Ax+ (AT < 0 denotes the
negative-definite matrix; and Xx > 0 and Y & 0 =1,y €
(0, 1) are the properties of covariance matrix and weights.

It should be noted that the parameter is added to the explo-
ration noise in (9), which may become unstable due to random
noise. To maintain the stability of the dynamical system in the
learning process, we need to shape the exploration noise. The
noise can be separated into ka and w]f, which are added to
parameters A and d, respectively, resulting in di , = di —i—w,f’ a
and Agq = Ax+ wk“\a. The stable conditions of the dynamical
system can then be rewritten as

dk,a = _Ak,axg (45)
T
Aga+ (A
k,a ; k,a) <0
Vk=1,...K, a=1,...N,. 46)

The Aj matrix can be written as
M+ (AT LAk (A"
= 3 > .
(@) (b)
Actually, item (a) in (47) is the symmetric component and (b)
is the skew-symmetric matrix, and it can be easily determined
that the quadratic form of (b) is 0. Hence, we just need to
keep the negative definite of (a). Similarly, the noise of zzr/k\’“
can be constructed as the sum of the skew symmetric and the
symmetric noise matrix

Ak (47)

A __ skew
Tq = Dy, + Dy

,a

(48)

So, we only need to design the symmetric matrix wks’yam
in the learning process. We sample the Gaussian noise,
and obtain the symmetric matrix (w,j’yam)’ and construct the
matrix (Ax + (Ak)T)/Z + N (w]?:a)/’ where the parameter
Ne 1S decreasing from 1 to O until it is negative definite.
For condition (45), the exploration noise should satisfy the
following:

d _
wk,a -

(49)

After obtaining the optimal parameters from (44), the param-
eters can always preserve the conditions (45) and (46) when
the noise is constrained.

A
wk’axg.

Noise exploration Motion & stiffness

Cost function

Policy parameters

||

Kinesthetic —{+ DS with GMR
teaching

dynamical
system

Global stabilit;

4

Policy parameters
o

High level: policy improvement
with Exponential NES

|
|
|
|
|
Optimization for l
|
|
|
|

Low level: behaviors clone |
with GMR

Fig. 2. Learning scheme of the dynamical system using exponential NES.

B. Variable Impedance Control Learning Policy

For the dynamical system, the variable impedance controller
is written as

U= —Kp(x —xq) — Kp(k — xq) + Uy (50)
Kp = diag(Z\/KTo) (51)

where Uy is the feedback feedforward signal; Kp and Kp
are the positive-definite matrix which represents the stiff-
ness and damping matrices, respectively; and U is the con-
trol input. For Cartesian space tracking tasks, x denotes
the trajectory in the task space, giving us the following
relationship:

Kpq=J"Kp,cT, Kpq=JT KpcJT (52)

where J is the Jacobian matrix of the robot; and Kp 4 and
Kp,.c denote the joint space and the Cartesian space stiff-
ness matrices, respectively. Similarly, Kp , and Kp ¢ denote
the damping matrices in joint space and Cartesian space,
respectively.

According to the relationship in (51), we just need to learn
the stiffness parameters. The parameterized policy of stift-
ness learning associated with a 3-D dynamical system can be
reformulated as

D(x) = [D1(xr), Paxp), ..., Pr(xr)] (53)
X X, x5 0 0 0 0 0 O

0O 0 0 xX x xx 0 0 0
Pi(x) = wx 0O 0 0 01 ()2 ()3 xoxh X
0 0 0 0 0 0 0 0 0
0 0 o 1 0 0 O
0 0 O o0 1 0 O
0 0 o 0 0 1 0 (54)
XX, x5 0 0 0 1
®=[0,...,0...,0¢]" (55)

ClALl a12 13 W20 22 x23 3.0 ,32
O =[A¢h A% AL AT AP A AN A
3.3 4,1 4,2 43 41 2 3 4

A AL AN d ] (56)

4,1 42
where Ap, Ay

parameters.

s A2‘3, and d,‘(t coincide with the stiffness
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Online Performance

Fig. 3. Physical experiments are conducted using Franka Emika robot, where (D) is the expert data from human demonstrations; and @-@ are the different

running phases at the final policy.

To fit the stiffness parameters into the learning process, we
encode the Kp with the auxiliary dynamical system. Motivated
by [16], the dynamical system of stiffness Kp is defined as

Kp.j = o, (&) (0K + o) —Kpj)  (57)
T

oKr = [A;.“, AF2 AR, d]‘.‘] (58)

[ ] 59

8k [ X1 X2 X3 (59

where j is the index of the case of 3-D dimension space; w Kpi

is the noise added to the dynamical equation of stiffness; the
parameter oy, is a large positive constant scalar so that causes
the time derivative of Kp to converge to zero quickly, thus
enabling (57) to be rewritten as

Ky = () (0% + ),

Therefore, the required stiffness can be obtained by learning
the parameter okr = [®K”", ekr2 .]. The learning scheme
is shown in Fig. 2.

Finally, for learning stiffness tasks, the details of the cost
function in (14) are given as

(60)

2 Nvia
B(xiy) = [xp — vy [P+ D min|

n=1
Jj=liy

1
r, = anlfy | + e |Key | +R- Lol ©Rn(©)

= ai %y = dy | + o2 [Kpy |

1
+R - 3 (©)Rp,(O)

R=os-1 61)

where o1, o, and a3 are the weights of the various com-
ponents of the cost function, which is designed for users
according to the tasks; N, is the number of via-points, that
is, the set points through which the dynamical system should
pass in the learning tasks. In the special case of trajectory
learning, we want the robot to go through points that did not
appear in the primary experience. Finally, the details of the
NES learning dynamical system are given as Algorithm 1.

VI. EXPERIMENTAL DEMONSTRATION

In the following, we describe the application of the
proposed algorithm in imitation learning. Two scenarios
are demonstrated: the first case is motion learning with

1N e— demonstrations
—

0.4+

0 after learning f

initial -0.05
-0.2- 0

0 0.1 02 03 g4 005 _

Fig. 4. Robot is controlled to repeat the motion six times from human
demonstration. The initial position of the reproduction is selected randomly
and learned by policy improvement.

an obstacle; the second is stiffness learning of a variable
impedance controller.

A. Motion Learning With Obstacle Avoidance

The robot is first driven to perform the sampling tasks by
human demonstration and executes the final learning results
online as shown in Fig. 3. In our case, the robot executes
a reaching motion into a bucket and collects the data from
five repetitions, as shown in Fig. 4. Then, the first learning
strategy associated with the GMR-based nonlinear dynamical
system is used to clone the motor skills. To test adaptabil-
ity and stability, we randomly set the initial position and
reproduce the motor behavior with the condition constraints
of the nonlinear dynamical system. The cost function is
detailed

o) = lg — 0y [

ry, = onldy =g | +aoft |

j

1
+ a3 Lk 5p] (O)R/(O)

o = 0.00001, ap = 0.1, a3z = 0.001. (62)

The iteration number is 200, and the number of roll-outs at
each iteration is 10. When the robot collides with the bucket,
the motion will stop and step into the next roll-out. The
learning process is shown in Fig. 5. It can be seen that the
robot reaches the goal position without collision and obtains
the shortest possible path under the condition constraints
in (44).
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-0.05

Fig. 5.

(b)

-0.05

0.2

7] 03 005 X [m]

(©

Learning process of the dynamical system for obstacle avoidance. The first roll-outs collide with the bucket, the 300 roll-outs reach into the bucket

but still collide with the bucket, and the 2000 roll-outs reach the goal without collision and obtain the shortest possible path under the condition of (44).

(a) 1 roll-outs. (b) 300 roll-outs. (c) 2000 roll-outs.

Algorithm 1: Learning With Exponential NES

Input: Dataset {Xtns Xn}s 1os M52 mB2 M, puinit,
Tgr=Ccrc
o < J/|det(C)|
B« C / o
Low-level Learning
Regression with GMR from human demonstration
and get parameter ¢y = {Ak, Mk, Zk} ;
Obtain the optimal parameter ¢ = {¢1, --- , px} by
optimization in (44);
end;
High-level Learning
while until stopping criterion do
for i=1 --- [ do
Sampling: @; ~ N(0,1); /* To
guarantee the stability of
dynamical system, we shape
the noise as in (48) (49)
& <« pe +oB oy
Evaluation of the cost function S(&;);
end
Sort {w;, &} with respect to S(&D;
Compute gradients:
/

Vsl < > v - oy

i=1

l

ud <~ Y v (zzr,-wiT - I);
Vol < (V) /m:
Vel <~ Vyul — VoI -I;
Update mean: pug < ue + ns - 0B - ViJ;
Update covariance matrix:
0 <0 -exp(s/2 - Vol);
B < B-exp(ng/2 - Vpl);
end
end;

*
~

Fig. 6 depicts the learning results of the cost value, with
all items, including total cost, via-goal cost, acceleration cost,
control cost of parameters ®, and convergence cost of veloc-
ity. It can be seen that all the cost items converge to a small
stable value and achieved the optimization results. Fig. 7(a)

051
——total cost
—via-goal
04 ——acceleration
——parameters
0.3 ——convergence
=
o
(@]
0.2
0.1
0 N\
0 500 1000 1500 2000

Number of roll-outs

Fig. 6. Obstacle-avoidance case: learning process of cost value.

X Y z
11 003 0.02 0.5
1 0
002 0.1
0.9 9 -0.02
%) E
u >
z08 2 0.01 -0.04 0.05
B 5
0.7 S -0.06
0 0
06 -0.08
05 -0.01 0.1 -0.05
0 50 100 150 200 0510 051 0510
Update numbers ts]
(a) (b)
Fig. 7. Obstacle-avoidance case: o and velocity. (a) Learning process of o

along the update numbers. (b) Velocity of 10 samples at final iteration.

describes the learning results of the parameter o in (39).
Fig. 7(b) shows the velocity trajectories at the final policy.
Moreover, due to the dynamical system constraints, the motion
can globally converge to the goal position. Consequently, the
learning strategy can limit the state of the dynamical system
under the condition constraints, which is important in a real
system considering the safe state. It should be noted that the
learning method can modify the exploration noise by updating
the covariance matrix, which is a convenient way of shaping
the noise in a large exploration space.
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Fig. 8. Learning process of the dynamical system for stiffness learning. The first roll-outs deviate from the original trajectories with the disturbance, while

the 200 roll-outs gradually converge to the original trajectories along with the iterations but still with a high error rate, and 1000 roll-outs coincide with the
original trajectories and adaptation toward via-points under the condition of (44). (a) 1 roll-outs. (b) 200 roll-outs. (c) 1000 roll-outs.

B. Learning Stiffness of Variable Impedance Control

In this case, the robot should pass through the via-points,
and the variable impedance controller is explored to control
the robot with the external disturbance. The external force field
is set as Fexy = [0, 8]7, which means the force is only applied
to the y-axis. The cost function is detailed

Nyia

#50) = g —xo |2+ 3 min |

n=I
Jj=lity

= ai [ty =k, | + 2| K |

\
|

1
+ a3 1k 5 p (O)RPI(O)

a; = 0.001, ap = 0.0002, 3 = 0.000001.  (63)

The learning process is shown in Fig. 8, where the trajectory
deviates from the original trajectory in the first roll-outs due
to the force field (gray dotted line) and gradually converges to
the original trajectory, passing through the desired via-points
(4 via-points and goal point) along with the iterations after 200
roll-outs, and slightly deviating from the original trajectory
and passing more precisely through the via-points after 1000
roll-outs. Fig. 9 shows the learning process cost value, where
all cost items, including total cost, via-points cost, accelera-
tion cost, parameters cost, and stiffness cost. We obtain similar
results as the obstacle-avoidance case that all the cost items
converge quickly, especially the total cost decreasing rapidly
and achieving the optimization policy. Specifically, the via-
points cost, convergence cost, and total cost performance mean
that the final policy can pass through a set of points with high
accuracy under perturbation. Fig. 10(a) also converged reason-
ably quickly and reached a steady state after 80 iterations. The
performance and convergence behavior of the policy suggests
that the proposed policy is a good match for our case.

Figs. 10(b) and 11(a) show the position and velocity trajec-
tories at the last iteration, respectively. It can be seen that the
trajectories pass through the via-points at the final policy with
external disturbance and globally converge to the goal posi-
tion under the constraints of the dynamical system (shown
in streamlines). The results of stiffness learning are shown in
Fig. 11(b). At the beginning phase, the stiffness level increases

7
——total cost
6 ——via-points
acceleration
5 ——parameters
——stiffness
B4
o
(©] 3
2 .
" M
Y, o W e ——— ]

200 400 600

Number of roll outs

800

Fig. 9. Disturbance case: learning process of cost value.

0.7
0 20 40 60 80 100

Update numbers

(a)

Fig. 10. Disturbance case: o and trajectory. (a) Learning process of ¢ along
the update numbers. (b) Learning trajectory at the final policy of variable
impedance control.

to resist external perturbations and then decreases as the robot
gradually approaches the target position.

C. Autonomous Motion Generation and Comparative
Experiment

In this case, the robot is performed to grasp the object in
terms of the new initial position and new goal position. Fig. 12
depicts the learning results of the dynamical system. Fig. 12(a)
and (b) shows the robot can converge to the goal position from
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25

Velocity [m/s]
Stiffness

(b)

Fig. 11. Disturbance case: cost value and o. (a) Velocity at the final policy.
(b) Stiffness value at the final policy.

.

1\ N\
2 N\ ) f
\ //goal//

‘e
2 *a

(a) ' (b)

Fig. 12.  Autonomous motion planning from the random initial position to
the goal position. (a) Motion generation from the random initial position.
(b) Demonstration with the robot.

(b)

Fig. 13.  Autonomous motion planning from goal, position to goalg posi-
tion. (a) Motion generation from the new starting position to the new goal
position. (b) Demonstration with the robot.

the random initial position, which demonstrates the global con-
vergence properties. Fig. 13 shows that the robot can adapt to
the new goal position from the new initial position.

To demonstrate the proposed approach, we conduct a com-
parative experiment for the via-point task. From Fig. 14, it
can be seen that our method has a smoother trajectory and
smaller error than the traditional method in [21], and keep a
better imitation shape at the final policy. From Fig. 15, we
observe that our method converges after 1000 roll-outs (100
updates) and [21] converges after 2000 roll-outs (200 updates).
Therefore, it can be concluded that our method has a faster
convergence speed than [21].

0.3

Eoz
N demonstration ) <~ via-point
02
048 5 ~
046 / 72
044 7 04
Y (m) X (m)
(a)

Fig. 14. Comparative experiment: trajectory after learning for via-point task
at the final policy. (a) Trajectory learning with our method. (b) Trajectory
learning with method in [21].

x10'°
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508 «
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04 55
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number of roll-outs Number of roll-outs
@ (b)
Fig. 15. Comparative experiment: cost value for via-point task at the final

policy. (a) Total cost value with our method. (b) Total cost value with method
in [21].

D. Discussion

With imitation learning, classical approaches based on
behavioral cloning can imitate the motor skills, but lack adapt-
ability and robustness. Based on Section VI-A, the robot
can avoid the obstacle and follow the streamlines to match
the expert trajectories of the dynamical system. Based on
Section VI-B, we design the new cost function to counter the
external disturbance and learn the variable impedance control.
The experiment indicates that the proposed learning methods
can improve the adaptability and robustness of the dynamical
system. It is interesting to note that the cost function can be
adjusted by users according to the task requirements. This
means that the proposed method can be applied much more
broadly than those presented in this article and only requires
the design of a reasonable cost function. For instance, it will be
interesting to explore a method for learning puncturing skills
in surgery.

In addition, although exploration of a large policy space will
benefit the learning performance in the virtual environment,
the system may be unstable or become a singularity, leading
to security issues. Indeed, the constraints of the dynamical
system address the problem: the robot’s trajectories follow
the streamline, running in a safe state when exploring policy
space.

VII. CONCLUSION

This article focuses on improving the adaptability
and robustness of robot learning. We propose a policy

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:21:46 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

improvement-based hierarchical learning strategy to imitate
and motor skills from human demonstration. The low-level
learning method only focuses on behavioral cloning, while
the high-level one aims to enhance adaptability and robust-
ness through policy improvement. To obtain the optimal policy
parameters, the exponential NES method is presented for
learning the parameters of the dynamical system. In the exper-
iment section, we design two scenarios that are not covered
by the expert data, with which to demonstrate the proposed
methods. Our experiments indicate that our approach can suc-
cessfully avoid obstacles and counter disturbances through
learning stiffness. The first limitation is that the Gaussian com-
ponent of GMM and length of demonstrations should not be
too large, which will slow down the runtime. Another one
is that the exploration noise should not be set too large in
learning, because the robot should run in the workspace.
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