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Abstract 

Coronary artery disease (CAD) is the leading cause of death globally, which is in part caused 

by genetic variants. The majority of risk loci of CAD identified by genome-wide association 

study (GWAS) are located in non-coding regions that hamper their function interpretation. So, 

follow-up studies are needed. 

Polygenic risk score (PRS) is a genetic estimate of an individual’s liability to a trait or 

disease, calculated from a set of independent risk variants based on large-scale GWASs. The 

PRS has been widely applied to study the genetic association between complex traits. 

Mendelian randomization (MR) uses genetic variants as instrumental variables to infer whether 

risk factors (exposures) causally affect a health outcome, which is broadly used in 

observational epidemiology. The combination of PRS and MR (‘PRS+MR’ strategy) could 

improve detection rates for causal relationships which can be particularly useful when 

evaluating associations between genetic liability for a given trait and hundreds of diverse health 

outcomes. Transcriptome-wide association studies (TWAS) have been recently proposed as an 

invaluable tool for annotating GWAS risk loci by investigating the potential gene expression 

regulatory mechanisms underlying variant-trait associations. The signals identified by TWAS 

reflect associations between genetically regulated expression (GReX) and complex traits. In 

this dissertation, we applied these two bioinformatic approaches to study the genetic 

association between intelligence and CAD and to filter risk genes for CAD in a tissue-specific 

fashion.  

The first work is to study the genetic association between intelligence and CAD using 

the ‘PRS+MR’ strategy. In this study, we first estimated a genetic intelligence score (gIQ) in 

samples from ten CAD case-control studies (n=34,083) from CARDIoGRAMplusC4D cohorts 

and UK Biobank (UKB) (n=427,306) based on 242 variants independently associated with 
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intelligence. Meta-analysis using a fixed-effect size model indicated the increase of gIQ by one 

standard deviation (SD) led to a relative decrease of CAD risk by 5% (95% confidence interval 

[CI], 0.93 to 0.98; P=4.93e-5). From UKB, we observed significant inverse correlations 

between gIQ and lifestyle factors of CAD including smoking, body mass index (BMI), type 2 

diabetes (T2D), hypertension, and a positive correlation with high-density lipoprotein 

cholesterol (HDL-C). We also observed positive correlations for gIQ with measured 

intelligence and educational attainment. The association between gIQ and CAD risk was 

largely attenuated after the adjustment of lifestyle factors, suggesting mediatory roles of these 

lifestyle factors in the pathway of linking high gIQ and low risk of CAD. The effects of gIQ 

on lifestyle factors were also largely attenuated after the adjustment of measured intelligence 

and educational attainment, suggesting their mediatory roles in the pathways between gIQ and 

lifestyle factors. Finally, the associations between intelligence and CAD as well as its lifestyle 

factors were confirmed through the two-sample MR method. In conclusion, using genetic 

approaches, we depicted a pathway from gIQ to CAD risk. The higher gIQ is associated with 

the higher measured intelligence and longer educational attainment, both of which appear to 

reduce the prevalence of unfavourable factors of CAD including BMI, smoking, T2D, and 

hypertension, and increase HDL-C, which subsequently reduce the incidence of CAD. 

 The second work applied the TWAS methodology for filtering risk genes of CAD as 

well as for identification of the tissues in which differential expression affect rise. In this study, 

we first trained expression prediction models for nine risk tissues of CAD from the two largest 

reference panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task 

(STARNET) and the Genotype-Tissue Expression (GTEx). We next applied these prediction 

models to imputing individual-level GReX from genotype data of 11 cohorts. By performing 

association analysis between GReX and CAD risk, we identified 114 transcriptome-wide 

significant genes (P<3.85e-6). Of these, 96 resided within GWAS loci of CAD (known), and 
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18 independent of GWAS loci (novel). Stepwise analyses bridged the known genes with a 

series of pathophysiological pathways related to CAD, including lipid metabolism, 

inflammation, angiogenesis, high blood pressure, etc. The in-silico analyses showed that the 

novel genes were associated with lipid metabolism in both genotype data of human samples 

and expression data of an atherosclerosis mouse model. Of these novel genes, KPTN and RGSI9, 

which were rarely studied before, gave significant signals in liver tissue by TWAS analysis. 

The CRISPR/Cas9-based gene knockdown of the two genes in the human hepatocyte cell line 

resulted in reduced secretion of APOB100 and lipids in the cell culture medium. In conclusion, 

our CAD TWAS work i) prioritized candidate genes in a tissue-specific fashion, and ii) 

identified 18 novel genes to be associated with CAD by their connection to lipid metabolism.  

 In summary, the two studies of my dissertation using different genetic approaches, on 

the one hand depicted the genetic pathway from high intelligence to low risk of CAD, and on 

the other hand pinpointed risk genes for CAD in a tissue-specific fashion. These studies expand 

our knowledge scope of the genetic etiology of CAD from different perspectives. 
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I Introduction  

1.1 Coronary artery disease (CAD) 

1.1.1 Epidemiology of CAD  

Epidemiologic and experimental cardiovascular research has improved the understanding of 

coronary artery disease (CAD) pathophysiology. Preventive and therapeutic strategies based 

on this knowledge decreased age-adjusted CAD mortality by over 50% in the past 30 years[1]. 

However, CAD remains the leading cause of death worldwide. Globally, CAD affects ~126 

million individuals globally (1,655 persons per 100,000) representing 1.72% of the world 

population, and caused ~9 million deaths in 2017[2]. With the aging of the population, 

prevalence is expected to exceed 1845 persons per 100,000 by 2030. According to the 

European Commission and European Society of Cardiology (ESC), CAD causes 12.5% of all 

death and costs over €100 billion yearly in Europe. The enormous health care and economic 

burdens urge better preventive and therapeutic approaches to tackle the disease. 

1.1.2 Biological mechanisms underlying CAD  

CAD is clinically presented as the accumulation of atherosclerotic plaques within the wall of 

coronary arteries that provide nutrients and oxygen to the heart. CAD can be caused by 

dyslipidemia, dysfunction of endothelial cells (EC), vascular smooth muscle cells (VSMC) or 

fibroblasts, immune-inflammatory reactions, hyperinsulinism, and abnormal glucose 

metabolism[3]. Although the underlying mechanisms of CAD are intensively investigated the 

pathophysiology of CAD has not been fully elucidated yet. Generally, EC damage is thought 

to be the initial step of CAD, which may start early in life. These cells show dysfunction in 

regulating vascular tone via nitric oxide signaling. The increased amount of lipoprotein 

particles enhances activation and adhesion of monocytes and promotes the cholesterol-loading 
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of macrophages, or ‘foam cells’. VSMC and fibroblasts underlying the EC layer proliferate, 

migrate and remodel the vessels. In addition, inflammation and immune response trigger the 

vicious cycle of EC damage and deposition of fat and calcium inside the artery wall, all of 

which accelerate atherosclerotic plaque formation, narrow the vessels, and eventually obstruct 

the blood flow[4]. 

1.1.3 Risk factors for CAD  

Various risk factors affect the multifactorial etiology of CAD. Risk factors of CAD could be 

classified into non- and modifiable types[5–7]. Non-modifiable risk factors include increased 

age, male gender, ethnicity, and family history of CAD. Modifiable risk factors include 

dyslipidemia, smoking, body-mass index (BMI), hypertension, diabetes mellitus, obesity, poor 

diet, lack of physical activity, and stressful lifestyle. Dyslipidemia could be caused by 

dysregulated levels of lipoprotein (a) (LPA), low-density lipoprotein cholesterol (LDL-C), 

high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and other lipoproteins. 

1.2 Genome-wide association study (GWAS) 

Genome-wide association study (GWAS) is a methodology for studying associations between 

genetic variants and phenotypes across the entire genome by testing allele frequency 

differences of genetic variants among individuals with and without the trait. Importantly, 

ancestry background needs to be similar between affected and control individuals[8]. Genetic 

variants in GWAS include mainly single-nucleotide polymorphisms (SNPs) and a small 

portion of structured variants, e.g., insertion/deletion polymorphism (InDel). The classic 

workflow of conducting a GWAS test is shown in Figure 1[9]. First, researchers need to recruit 

appropriate participants, from whom they collect phenotype data and tissue samples for DNA 

extraction and genotyping. Second, genetic data will be obtained using microarray genotyping 

technology, or next-generation sequencing (NGS) technology like whole-genome sequencing 
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(WGS) and whole-exome sequencing (WES). In addition, currently, targeted sequencing is 

becoming a rapid and cost-effective way of detecting known and novel variants in selected 

genomic regions. Third, researchers have to conduct quality control (QC) on both variant and 

sample levels after calling genotype from the array or NGS platforms. The QC is an essential 

step to remove factors that might cause bias on association test, such as removing low-quality 

variants, removing variants and individuals with low calling rate, detecting the population 

strata, and removing samples of genetically related. Fourth, the imputation step predicts 

undetected variants from detected variants based on genetics reference panels. The 1000 

Genome (1KG) from the International Genome Sample Resource[10] and the Haplotype 

Reference Consortium (HRC)[11] are the two most popular genetic reference panels. Fifth, the 

imputed genotype data will be used for testing associations between genetic variants and 

phenotypes. According to the International HapMap project and other studies, the human 

genome has approximately one million independent common genetic variants on average[12], 

which makes the Bonferroni correcting threshold of P<5e-8 (false discovery rate 0.05/1e6) the 

most popular significance threshold of GWAS. PLINK[13] and CGTA[14] (Genome-wide 

Complex Trait Analysis) are the two most popular tools of GWAS analysis.  
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GWAS tests associations of genetic variants with traits on the basis of the single-SNP 

model at a genomic scale. A group of significant variants in the same locus are frequently 

observed in association tests because of the linkage disequilibrium (LD) relationship among 

common variants, which challenges the identification of the causal variants. Several attempts 

could help to prioritize the candidate causal variants at a locus. The simplest method is to pick 

the lead SNP (the one with the lowest association P-value) in a genomic region (e.g., a 1-Mb 

window centered on the locus). The method is based on the hypothesis of a single causal variant 

at a genomic region, and the top SNP captures the maximum amount of variation by its LD 

relations with other significant SNPs in the vicinity. Yet, the hypothesis may have several 

limitations. First, even if the hypothesis is true, the genotyping and imputation may not capture 

Figure 1 Overview of steps for conducting GWAS. The figure was adopted from Emil 

Uffelmann[9] 
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all the variants at a locus. Second, the hypothesis might not be true given that multiple causal 

variants could exist at a locus. In this case, a single SNP does not fully represent potential 

causal variants, especially the ones not LD-linked with the lead[15]. To overcome these 

limitations, a tool, conditional and joint multiple-SNP analysis of GWAS summary statistics 

(COJO), was developed to identify additional variants associated with complex diseases in a 

genomic locus[15]. COJO, embedded in CGTA, requires two inputs, the GWAS summary 

statistics, and the reference genome of the same ethnic background, to estimate LD-correlations 

between SNPs, which largely facilitate the studies without individual-level genotype data[14, 

15]. COJO starts with conditional analysis of the lead-associated SNPs, followed by a stepwise 

selection of regional SNPs by conditioning the effects of lead SNPs. COJO performs a stepwise 

model to select independently associated SNPs (e.g., P<5e-8) based on conditional P values 

and estimates the joint effects of all selected SNPs after the model has been optimized. 

Compared with the method of regional lead SNP picking, COJO may identify multiple 

independent candidate causal variants in the same regions and can capture larger phenotype 

variations in the genomic regions.  

1.3 Post-GWAS era 

1.3.1 Fine-mapping  

A decade of GWASs have uncovered thousands of genomic variants associated with complex 

human traits and diseases. In the post-GWAS era, efforts were directed to delineate the 

biological mechanisms underlying the associations between risk variants and traits/diseases. 

The biggest challenge originates from the non-coding feature of the majority of the GWAS 

loci, which hampers their functional interpretation. To address this, many different approaches 

have been developed including expression quantitative trait loci (eQTL) analysis, 

colocalization analysis, and tissue of action (TOA) analysis. Many collective resources, like 
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NIH Roadmap consortium, ENCODE, FANTOM, and the IHEC consortium provide 

functional annotation to genetic variants and regions. These indispensable context-specific 

resources can be integrated into fine-mapping methods to pinpoint regulatory mechanisms of 

GWAS variants on disease risk.  

 A direct way of understanding the effects of variants showing association by GWAS is 

to test the effects of these variants on gene expression of cells or tissues, namely eQTL analysis. 

An eQTL explains a fraction of gene expression regulated by genetic variants at this locus[16]. 

The genetics-of-gene-expression panels, such as the Stockholm-Tartu Atherosclerosis Reverse 

Network Engineering Task (STARNET)[17] and the Genotype-Tissue Expression (GTEx)[18], 

have largely facilitated eQTL studies. These panels usually collected genotype and tissue or 

cell-type transcriptomic data from hundred participants. Standard eQTL analysis firstly maps 

GWAS variants to a gene region and then tests the association between individual respective 

genotypes and expression levels in a tissue- or cell-type-specific manner. Based on the distance 

between variants and genes in genome architecture, eQTLs have been classified into cis and 

trans. Conventionally, variants residing within ±1Mb of a gene’s transcription starting site 

(TSS) or gene-body regions are classified as cis variants; otherwise, variants are classified as 

trans variants. Although most studies to date focus on cis-eQTLs, trans-eQTL studies are 

catching up[17, 19]. Besides eQTL, splicing QTL (sQTL), protein QTL (pQTL), and 

methylation QTL (mQTL) are increasingly investigated driven by the need of detangling the 

complexity of variants’ function and availability of corresponding omics datasets[20–22].  

 A QTL variant is sometimes associated with multiple genes and a gene often has 

multiple QTL variants, which challenges the identification of causal variants and genes. Based 

on QTL analysis, scientists have introduced another strategy, colocalization, to prioritize 

variants and genes by integrating GWAS and QTL signals[23–25]. Colocalization seeks to 
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identify shared causal variants between a molecular profile (e.g., gene expression or protein 

level) and a disease trait in a genomic locus, therefore prioritizing candidate causal genes from 

GWAS loci. COLOC is a popular tool for colocalization between pairs of genetic association 

studies using the Bayesian model (Figure 2)[26]. COLOC takes summary data of eQTL and 

GWAS as input to compute the probability of five hypotheses: H0 corresponding to no eQTL 

and no GWAS association in the region; H1 corresponding to association with eQTL but no 

GWAS association, or vice-versa (H2); H3 corresponding to eQTL and GWAS association but 

independent signals; H4 corresponding to shared eQTL and GWAS associations[23, 27]. 

MOLOC, a multi-trait extension of COLOC, was designed to compare association signals for 

multiple traits which could be used to pinpoint the regulatory mechanism of GWAS 

variants[26]. In the case of colocalization among eQTL, mQTL, and GWAS signals, the eQTL 

signal helps pinpoint the responsible genes in GWAS loci, while the mQTL signal helps 

identify the epigenetic mechanisms that impact gene expression, and which in turn affect 

disease risk[28].  
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Figure 2 Example of one configuration under different hypotheses. A configuration is 

represented by a binary vector for each trait of (0,1) at a length of n=9, the number of shared 

variants in a region. The two traits shown in the figure are eQTL and GWAS signal. The value 

of 1 means the variant of the position is causally related to the trait, 0 vice versa. The top plot, 

corresponding to hypotheses 1 and 2, means that only one trait has a causal variant in the locus. 

The middle plot, corresponding to hypothesis 3, means that two traits have different causal 

variants in the locus. The bottom plot, corresponding to hypothesis 4, means that both traits 

share the same causal variant in the locus. The figure was adapted from Giambartolomei[26].  

The tissue of action (TOA) score exerts a new strategy to partition the effects of variants 

on disease in the context of tissues or cell types[29]. For each GWAS signal, the TOA method 

systematically partitions posterior probabilities from the Bayesian fine-mapping method by 
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integrating tissue-specific functional annotation and expression data. The TOA score reflects 

the probability of genetic variant functioning in a specific tissue or cell type. As complex 

diseases are usually multiple tissues or cell types involved, the TOA score provides valuable 

guidance for in vivo/vitro experiment validation in the post-GWAS era.  

1.3.2 Phenome-wide association study (PheWAS) 

Phenome-wide association study (PheWAS), an alternative/complementary approach to the 

GWAS methodology, is to estimate associations of single genetic variants with a wide range 

of phenotypes. A fundamental difference between GWAS and PheWAS designs is the direction 

of inference: PheWAS studies pleiotropy of SNPs, a genotype-to-phenotype strategy; GWAS 

studies causality of SNPs, a phenotype-to-genotype strategy[30]. 

 The PheWAS approach was originally developed due to the widespread availability of 

both anonymized human clinical electronic health record (EHR) data and matched genotype 

data. One of the main components of EHR is the International Classifications of Diseases 

version 9 (ICD9) codes, which includes information of 17,000 phenotypes binned into different 

hierarchy codes. In most cases, PheWASs divide cohorts into “cases” if participants have ICD9 

codes related to a specific trait/disease, or “controls” if participants do not. Usually, GWAS 

SNPs are logical starting points for PheWAS because of the availability of association data. 

Staring with a known disease-associated SNP, a PheWAS study performs association tests for 

the specific SNP with a series of related traits. The significance level of PheWAS analysis is 

estimated via a Bonferroni correction as α=0.05/N (N the number of feasible models tested).  

 One of the major advantages of PheWAS is its potential to identify genomic variants 

with pleiotropic properties. Investigating cross-phenotype associations of SNPs makes 

PheWAS an important tool for understanding genetic associations among diseases/traits and 

gene-disease associations, as well as elucidating mechanisms of GWAS risk loci[31–34]. For 
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instance, a PheWAS work revealed that CCDC92, a novel GWAS risk locus of CAD, likely 

affected CAD through insulin resistance pathways[31]. PheWAS has been proposed as a 

possible aid in drug development through elucidating mechanisms of action, identifying 

alternative indications, or predicting adverse drug events[35].  

 PheWAS design has challenges. PheWAS is a hypothesis-generating approach, which 

is challenged by multiple comparison testing. The N used for calculating the significance 

threshold can be varied greatly in different PheWAS designs. Suppose a SNP is tested for 

associations with all traits listed in the ICD9, and the Bonferroni significance is 2.94e-

6=0.05/17,000. If we had multiple SNPs tested at the same time, the threshold would be even 

higher. If we only tested associations of SNPs or SNP sets with several phenotypes, the 

threshold would be lower. This phenomenon could lead to false positive or false negative 

associations. Since PheWAS heavily relies on the annotation of traits/diseases, the depth and 

breadth of annotation data influence the PheWAS results. Like GWAS, association regression 

in PheWAS faces the problem of covering all possible covariates, which makes further 

validation of PheWAS findings necessary.  

1.3.3 Mendelian randomization (MR) 

As mentioned in section 1.1.3, many risk factors are associated with CAD, such as LDL-C, 

HDL-C, TG, inflammatory cytokines, larger BMI, Diabetes, and blood pressure. Finding the 

causal nature of risk factors on the disease process is critically important in epidemiology 

because these modifiable risk factors represent promising targets for primary intervention and 

drug development[36]. Mendelian randomization (MR) uses genetic variants as instrumental 

variables (IVs) to infer whether risk factors (exposures) causally affect a health outcome which 

is CAD in our case (Figure 3)[37]. In addition, the associations between exposures and 
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outcomes reflected by MR analyses are genetic associations that are independent of 

confounding factors.  

 In MR studies variants must fulfil three assumptions if they shall be used as 

instrumental varbles: i) the genetic variants are associated with the exposure (i.e. the risk factor 

- relevance assumption); ii) the genetic variants are associated with the outcome through the 

studied exposure only (exclusion restriction assumption); iii) the variants are independent of 

other cofounders which could affect the outcome (independence assumption)[37, 38]. 

Mendel’s Law of Independent Assortment that the alleles segregate randomly when passed 

from parents to offspring, forms the foundation of MR. In addition, the germline genotypes are 

determined at conception, they precede the investigated outcomes, and therefore observed 

associations cannot be explained by reverse causation[39]. However, the wide existing 

pleiotropy of genetic variants and the LD association among genetic variants raise scientists’ 

caution when performing MR analysis.  

 There are two types of MR designs: one-sample MR and two-sample MR (Figure 3)[39]. 

For one-sample MR analysis, the SNP-exposure associations and SNP-outcome associations 

are estimated from the same sample, set. In two-sample MR, the SNP-exposure associations 

are estimated in one sample set and the SNP-outcome association is estimated in a second 

sample set. Compared with the one-sample MR study, the two-sample MR study doesn’t 

require exposure and outcome to be measured in all data sets, which allows researchers to use 

GWAS summary statistics from large consortia. This also improves transparency and 

reproducibility. 

 The classic steps of performing two-sample MR analysis are: i) identify genetic variants 

from a well-conducted GWAS; ii) obtain SNP-exposure associations from data set 1; iii) obtain 

SNP-outcome associations from data set 2; iv) harmonize SNP effects on exposure and 
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outcome; v) generate MR estimates; vi) perform sensitivity analyses. The inverse variance 

weighted (IVW) method is the most efficient estimate of the causal effect when all genetic 

variants are valid instruments[40]. IVV causal estimates could be biased when genetic variants 

exhibit horizontal pleiotropy because it violates the assumption of exclusion restriction. As 

mentioned in section 1.3.2, pleiotropy of genetic variants is inevitable in most MR studies with 

the increased knowledge of the genetic basis of complex diseases. For sensitivity analysis, 

scientists developed other robust methods, like MR Egger[41] and weighted median[42], that 

can provide valid causal inferences under weaker assumptions than the standard IVW 

mythology. Egger regression can identify the presence of ‘directional’ pleiotropy and provide 

a less biased causal estimate. The weighted median estimator provides a consistent estimate of 

the causal effect even when up to 50% of the information contributing to the analysis comes 

from genetic variants that are invalid IVs[42]. 

 

Figure 3 One-sample and two-sample Mendelian randomization designs. (A) One-sample 

Mendelian randomization (MR) measures both exposure and outcome in the same population. 
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(B) In two-sample MR, associations of genetic variants with exposures and outcomes are 

measured in non-overlapping populations. The Figure was adapted from Zheng[39]. 

 The MR studies have identified many risk biomarkers, traits, and diseases relevant to 

the pathogenesis of CAD (Figure 4)[43]. Risk factors displaying confirmation by MR may be 

considered causal and include LDL-C, TG, LPA, IL6, non-fasting glucose, diabetes, obesity, 

adiponectin, blood pressure, and telomere length. Vice versa, MR studies challenged the roles 

of many biomarkers including HDL-C, CRP, lipoprotein-associated phospholipase A2 (LP-

PLA2), homocysteine, fibrinogen, bilirubin, and uric acid. Drugs targeting causal risk factors 

defined by MR are attractive treatment targets for CAD. For example, statins are well-known 

to reduce cardiovascular events and mortality in CAD patients because of their significant 

lipid-lowering functions[44]. We have shown in our MR studies that genetically modulated 

educational attainment may have implications for a series of unfavorable risk factor profiles, 

such as BMI and hypertension, and, subsequently, affects the prevalence of CAD[45]. These 

findings strengthen the importance of campaigns for enabling adequate schooling for 

preventing CAD. 
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Figure 4. Risk factors of coronary artery diseases identified by MR analyses. The figure was 

adapted from Jansen[43].  

1.4 Genetics-of-gene-expression panels 

In the post-GWAS era, studying GWAS variants’ effects on gene expression is a critical step 

to elucidating the genetic basis of common diseases or traits, which makes large-scale 

examination of genotype and transcript data in the context of disease-relevant tissues or cell 

types indispensable. The fast development of high-throughput technologies, such as the 

genotyping array, whole-genome sequencing (WGS), whole-exome sequencing (WES), RNA 

sequencing (RNA-seq), and single-cell RNA sequencing (scRNA-seq) accelerates the 

efficiency and affordability of generating such massive genotype and gene expression data. 

 The Genotype-Tissue Expression project (GTEx) is one of the most popular 

comprehensive public resources to study tissue-specific gene expression and regulation[18]. 

Samples of the GTEx project were collected from 54 non-diseased tissue sites of up to 1000 

individuals for molecular assays including genotyping, WGS, WES, and RNA-seq. Among all 
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GTEx donors, 84.6% are white, 67.1% are male, 32.1% are between 50-59 years old, and 36% 

are between 60-70 years old. Furthermore, the GTEx consortium has also profiled scRNA data 

for eight tissues including breast, esophagus mucosa, esophagus muscularis, heart, lung, 

skeletal muscle, prostate, and skin. Scientists can download the processed data, such as 

expression and eQTL data, from the project portal, or apply for the secured data, such as 

genotyping data and phenotype data, from the dbGAP platform. The GTEx portal also provides 

a user-friendly interface and search engine at https://gtexportal.org/home/. 

 Different from GTEx which collected samples from healthy tissues, the Stockholm-

Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) represents the unique 

genetics-of-gene-expression panel for CAD study[17]. Tissue samples of STARNET were 

obtained from ~600 CAD patients during open thorax surgery, including atherosclerotic aortic 

root (AOR), atherosclerotic-lesion-free internal mammary artery (MAM), blood (BLD), 

subcutaneous fat (SF), visceral abdominal fat (VAF), skeletal muscle (SKLM), and liver (LIV). 

The STARNET patients are mainly Caucasians (31% females), 32% had diabetes, 75% had 

hypertension, 67% had hyperlipidemia, and 33% had an MI before age 60. By New York Heart 

Association criteria, 45% were class I, 42% class II, 9% class III, and 1% class IV CAD. DNA 

was genotyped with the OmniExpress Exome array (Illumina, ~900k SNPs), and RNA was 

sequenced using the HighSeq2000 platform. Researchers could apply the data from the dbGAP 

database. A study comparing tissue-specific eQTLs between STARNET and GTEs showed 

that STARNET had more eQTLs coinciding with CAD-associated risk SNPs suggesting that 

risk SNPs were more active in the focus of infection[17]. STARNET also provides a browser 

for exploring co-expression models inside and between tissues, which is at 

http://starnet.mssm.edu/[46].  

https://gtexportal.org/home/
http://starnet.mssm.edu/
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1.5 UK Biobank (UKB) 

UK Biobank (UKB) is the largest publicly available resource with deep phenotyping and 

genomic data of around 500,000 UK residents aged 40-69 years old initially recruited from 

2006 to 2010[47]. The study continuously collects extensive phenotypic and genotypic data 

from all participants, including data from questionnaires, physical measures, sample assays, 

accelerometry, multimodal imaging, genome-wide genotyping, and longitudinal follow-up for 

a wide range of health-related outcomes.  

The genome-wide genotyping data of ~500,000 participants released in 2016 was 

performed using the UK Biobank Axiom Array. Approximately 850,000 variants were directly 

measured, with>90million variants imputed using the HRC and UK10K + 1KG reference 

panels. UKB provides different levels of genotyping data, such as before or after imputation, 

to meet the needs of most applicants. Starting from 2016, UKB gradually released WES data 

of participants. By the fourth season of 2021, the WES data of ~500,000 participants were 

available for all participants[48]. The WES data measures the regions of the genome (about 

2%) that encode proteins and is particularly suitable for identifying disease-causing rare 

variants (see section 1.6). By 2021, the database also released telomere data for the ~500,000 

participants and metabolic data for ~127,000 participants. UKB’s imaging study includes 

measures such as white matter hyper intensities derived from the brain scans, visceral fat 

derived from the abdominal scans, and left ventricular ejection fraction derived from the 

cardiac scans. The imaging data of ~50,000 participants were released in 2020, extra 50,000 

participants’ data could be expected in the near future. All data release information can be 

found at https://www.ukbiobank.ac.uk/enable-your-research/about-our-data. UKB also 

developed a Research Analysis Platform (RAP) powered by the DNAnexus 

(https://www.dnanexus.com/), providing a secure, scalable, and cloud-based environment for 

researchers to use UKB biomedical resources. 

https://www.ukbiobank.ac.uk/enable-your-research/about-our-data
https://www.dnanexus.com/
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  The greatest sample size and widest scope of phenotype data make UKB the most 

valuable resource for researchers of multiple fields. According to their statistics, the number of 

annual publications using data of UKB increased from only one in 2012 to 690 in 2021. The 

UKB resource was applied to multiple investigations of CAD revealing novel risk loci for 

CAD[49], identifying risk loci associated with aortic valve area from genotyping and imaging 

data[50], and studying the interaction between polygenetic risk scores and monogenic 

mutations[51], etc.  

1.6 Rare mutation association study in complex disease 

There are two controversial hypotheses about the contribution of genetic variants to individual 

susceptibility to common complex diseases: the common diseases common variant (CDCV) 

hypothesis, and the common disease rare variant (CDRV) hypothesis. The CDCV assumes that 

common variants (e.g., MAF>0.01) are major contributors to complex diseases. The CDRV 

supposes that rare genetic variants (e.g. MAF<0.01) play a more important role compared to 

common variants[52]. Many studies have shown that rare variants usually have a larger effect 

size on disease development than common variants which empowers the unique role of rare 

variants in investing genetic pathogenesis of complex diseases[53]. Same to GWAS, the 

association test for rare variants is a kind of hypothesis-free approach in which researchers do 

not start with a certain functional hypothesis. The enrichment of rare variants provides 

hypothesis-free evidence for gene causality. The rare missense, loss-of-function (LoF), and 

gain-of-function (GoF) variants mimic the impact of gene knocking out or enhancing 

experiments, which are ideal for functional analysis to elucidate new disease mechanisms. Rare 

variants showing association for a disease could provide favorable targets for drug 

development as their alleles mimic the effect of a modulated drug target. In addition, rare 

variants with larger effect size on disease development could be biomarkers for personalized 

medicine. 
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 The workflow of the rare variant association study is shown in Figure 5[54]. The first 

step is to set up a work target that determines the variant calling platforms, genotyping, or 

sequencing. Compared to the genotyping array, the NGS technology has the advantages of 

massive scaling and high sensitivity in identifying rare variants. The next step is to call 

genotype data and perform quality filtering on the raw data. For data called from genotyping 

array, the quality control (QC) step is similar to GWAS, except that rare variants would be kept. 

When data is called from NGS platforms, extra QC parameters are required, such as sequencing 

depth, coverage, heterozygosity/contamination rate, etc. The third step is to assay function of 

rare variants using different in-silico methods, such as LRT score[55], MutationTaster[56], 

PolyPhen-2 HumDiv, PolyPhen-2 HumVar[57], and SIFT[58]. There is a variety of annotation 

sources to predict the consequence of genetic variants. sdbNSFP (v4.1) is the largest database 

designed to facilitate the functional annotation step by providing deleteriousness prediction and 

functional annotation for all potential non-synonymous and splice-site single nucleotide 

variants (a total of 84,013,093) in the human genome[59]. ClinVar is a freely accessible, public 

archive of reports of the associations of genetic variations with human phenotypes, with 

supporting evidence[60]. Tools like Variant Effect Predictor (VEP)[61], snpEff[62], and 

ANNOVAR[63] assemble these tools and resources into a set providing a single-line command 

to annotate the effect of genetic variants. 

 The next step is to perform an association test between functional variants and 

diseases/traits. The models designed for association analysis can be generally classified into 

two types: single-variant level and gene- or region-based aggression tests. In single-variant 

tests, the association is typically evaluated by linear regression for continuous traits and by 

logistic regression for binary traits. Single variant tests for rare variants are only suitable when 

the sample size is large enough; otherwise, they are less powerful than the tests for common 

variants. Different from single-variant tests, gene- or region-based aggression tests increase the 
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statistical power by evaluating the cumulative effects of multiple genetic variants in a gene or 

region. Based on varying assumptions about the underlying genetic models, methods for 

aggression test can be broadly categorized into five classes: burden test, adaption burden test, 

variance-component test, combined burden and variance-component (VC) test, and 

exponential-combination (EC) test[54]. Fisher’s exact test for categorical phenotypes is the 

simplest combined test. The Sequence Kernel Association Test (SKAT), a widely used score-

based VC test, is robust to groupings including variants with both positive and negative 

effects[64]. 

 

Figure 5 Workflow of rare variant association study. The figure was adapted from Lee[54].  

 The association test of rare variants informs the posterior probability of the disease 

relevance of a gene, which could guide the decision-making for biological validation. By 

performing a meta-analysis of exome-chip studies of European descent involving 42,335 

patients and 78,240 controls, the CARDIoGRAMplusC4D Consortium identified associations 

of variants in ANGPTL4, LPL, and SVEP1 with CAD[65]. Following the genetic study, an in-



I Introduction 

20 

 

vivo investigation was carried out to elucidate the mechanism of the novel gene SVEP1 in CAD 

development[66]. 

1.7 Transcriptome-wide association study 

Transcriptome-wide association studies (TWAS) have been recently proposed as an invaluable 

tool for annotating GWAS risk loci by investigating the potential gene regulatory mechanisms 

underlying variant-trait associations. The expression level of a gene can be decomposed into 

three components: a genetically determined component, a component altered by the trait itself, 

and a component determined by the remaining factors (including environment)[67]. Based on 

the assumption, TWAS reflects associations between genetically regulated gene expression 

(GReX) and diseases or traits.  

 The TWAS methodologies are broadly separated into two categories: the individual-

level predictor and the GWAS summary-based predictor. The first step of both methodologies 

is to train prediction models from reference genetics-of-gene-expression panels which scale 

genotype and expression data simultaneously (Figure 6). Then the individual-level predictors 

would apply prediction models to impute expression profiles from individual genotypes of 

GWAS cohorts and perform association test between predicted expression and traits (section 

1.7.1). However, the GWAS summary-based predictors take GWAS summary data as input to 

examine associations between intermediate gene expression levels and phenotypes (section 

1.7.2).  
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Figure 6 An overview of the TWAS. Briefly, TWAS involves i) training tissue-specific 

prediction models from references; ii) predicting genetically regulated expression (GReX) 

from genotype data using prediction models; iii) associating GReX with phenotypes. The 

figure was adapted from Wainberg[68].  

1.7.1 Individual-level predictors 

PrediXcan was the first individual-level predictor which aggregates impacts of variant set on 

gene expression[67]. Studies have suggested that aggregating variants by integrating gene 

expression or other omics may better explain underlying biological mechanisms and increase 

the power of association studies beyond GWAS[7]. Based on PrediXcan, Gao developed 

EpiXcan[69] which outperformed PrediXcan in prediction performance by integrating 

epigenome annotation from Roadmap Epigenomics Mapping Consortium (REMC)[70]. It 

firstly calculates SNP priors by using a hierarchical Bayesian model (qtlBHM) that jointly 

analyzes REMC epigenome annotations and eQTL statistics. Then, priors are transformed with 

an adaptive mapping function to penalty factors, which are then utilized by the weighted elastic 

net (WENet), a model selection technique that combines LASSO and Ridge regression and 
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seeks to identify which predictor variables to include in a regression model. The WENet model 

analyzes SNP priors, genotypes, and gene expression traits to estimate genetically regulated 

expression across different. The simulated expression value for each gene is 

𝑦 = 𝑋 × 𝛽 +  𝜀 

Here, X denotes the genotype matrix of cis-SNPs included in the prediction model, β denotes 

the coefficient vector of the cis-SNPs, ‘×’ denotes matrix-vector product, and 𝜀  denotes 

residual value. The criterion of the WENet model can be written as: 

𝐶𝑊𝐸𝑁𝑒𝑡(θ, λ, α) =  ∑ [𝑦𝑖 −  𝑋𝑖𝛽]2𝑛
𝑖=1  +  λα|𝛽|𝑤 +  λ(1 −  α)𝛽𝑇W𝛽, 

|𝛽|𝑤 =  ∑ 𝑤𝑗|𝛽𝑗|
𝑚

𝑗=1
 

In the above equations, n is the number of samples used for training model; Xi, 1 ≤ 𝑖 ≤ 𝑛, is 

the i-th row-vector of matrix X containing genotypes with dosages from 0 to 2; m is the number 

of cis-SNPs included in the model; w is the weight matrix that stores the penalty factors for 

SNPs. The 𝛼 parameter is set to 0.5 and 𝜆 is estimated via cross-validation (CV).  

 We could apply the EpiXcan pipeline to train prediction models in a tissue-specific 

fashion from genetics-of-gene-expression panels, such as GTEx and STARNET (see section 

1.4), and use these models to predict gene expression from individual-level genotype data. 

Finally, we can perform association analyses on predicted expression using regular models, 

such as logistic regression for categorical traits, and linear regression for quantitative traits.  

1.7.2 Summary-based predictors 

In many cases, the individual-level genotype data are not available, but the GWAS summary 

data are accessible via general collective resources, such as the GWAS catalog, or trait-specific 
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consortia, such as CARDIoGRAMplusC4D for CAD and GLGG for lipid traits[71]. In this 

case, the GWAS summary-based predictors become valuable. The tool Summary PrediXcan 

(S-PrediXcan) was derived from PrediXcan by the same research group[27]. S-PrediXcan uses 

prediction models trained by PrediXcan, takes summary data as input, and estimates the Z-

score (Wald statistic) of the association between predicted gene expression and a phenotype. 

The Z-score for gene g is estimated as: 

𝑍𝑔 ≈ ∑ 𝑤𝑖𝑗

𝜎𝑖̂

𝜎𝑔̂
 

𝛽𝑖̂

𝑠𝑒(𝛽𝑖̂)

𝑚

𝑖
 

In this formula, m is the number of cis-SNPs included in a gene’s prediction model, 𝑤𝑖𝑗 is the 

weight of i-th SNP in the expression prediction model, 𝜎𝑖̂ is the estimated variance of i-th SNP, 

𝜎𝑔̂ is the estimated variance of gene g, 𝛽𝑖̂ is the estimated effect size of i-th SNP from GWAS 

summary data, and 𝑠𝑒(𝛽𝑖̂) is the standard error of i-th variant in GWAS summary data. The 

weights of cis-SNPs on gene expression derived from EpiXcan can also be applied.

 FUSION is another summary-based TWAS tool[72]. Different from the elastic-

net(ENet) model used by PrediXcan or EpiXcan, FUSION uses the Bayesian sparse linear 

mixed model (BSLMM)[73] in estimating weights for cis-SNPs. The FUSION package also 

provides other weights-estimating models including BLUP, ENet, and top SNPs. A comparison 

study has shown that FUSION and S-PrediXcan are consistent and complementary to each 

other[74]. Different from most TWAS tools focusing on cis-SNPs, Bayesian genome-wide 

TWAS (BGW-TWAS) leverages both cis- and trans-eQTL information for a TWAS[75]. With 

the accumulation of knowledge about functional genomics, the strategy of integrating multi-

omics is en vogue. MOSTWAS is the recently published multi-omics strategy for TWAS 

analyses[76].  
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1.7.3 Opportunities and challenges of TWAS 

TWAS, on the one hand, is a promising approach to prioritizing causal genes at GWAS loci in 

a tissue-specific fashion, on the other hand, the method can identify novel risk genes residing 

outside of GWAS risk loci. For instance, Wu prioritized 48 risk genes for breast cancer by 

performing TWAS analyses on 229,000 participants, of which 14 genes were independent of 

any reported GWAS loci[77]. Gene silence experiments on novel genes identified 11 novels 

that had effects on cell proliferation and/or colony-forming efficiency. In another work, the 

gene expression imputations across multiple brain regions in over one million participants 

identified 67 non-MHC (major histocompatibility complex) risk genes for schizophrenia, of 

which 14 did not fall within previous GWAS loci[78].  

 Despite the great contribution of providing insights into complex diseases, TWAS has 

certain limitations. TWAS combines eQTL reference panels with large-scale genotype data to 

test associations between genes and diseases. The pleiotropy features of eQTLs, and LD 

associations among eQTLs often result in multiple gene hits at the same locus[68]. In some 

cases, multiple genes significant at the same locus are due to co-expression with causal genes 

or co-regulated by the same set of eQTLs or those in high LD. Therefore, further validation is 

needed to check the causality. Another big challenge of TWAS is how to select appropriate 

tissues for testing association with diseases. Most candidate causal genes drop out after 

switching to tissue with has no clear mechanistic relationship to the trait due to the lack of 

sufficient expression or sufficiently heritable expression[68]. For TWAS analysis, the eQTL 

reference panels are critical in building prediction models. The differences in sample 

collections, expression scaling techniques, disease status of panel samples, etc., could create 

consistent outcomes of TWAS but might also be complementary to each other. Therefore, 
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combing TWAS results from different reference panels could provide richer insights into 

diseases[17].  

1.8 Polygenic risk score (PRS) 

1.8.1 Definition and analysis pipeline of PRS 

A polygenic risk score (PRS) is a genetic estimate of an individual’s liability to a trait or disease, 

calculated from a set of independent variants usually based on large-scale GWAS data[79]. For 

each individual, PRS is a sum of the number of risk alleles at each variant (0, 1, 2), which could 

be unweighted, or weighted by its effect size estimated derived from GWAS[80].  

 The PRS analysis process is shown in Figure 7[79]. PRS can be characterized by the 

use of base and target data. The risk loci and betas or odds ratio (OR) weights are retrieved 

from base data and then applied to calculate PRS for target data. The QC for both base and 

target data sets are similar to standards of classic GWAS. In addition, the “QC checklist” 

specific to PRS analysis has to be outlined: i) using base GWAS data with heritability h2>0.05; 

ii) specifying effect and non-effect alleles from base GWAS data; iii) using target data with 

sample size of ≥100 individuals (or effective sample sizes>100 for case/control data) if PRS 

would be applied for association test[79]. There are two main options for approximating PRS. 

The classic method is called the clumping + thresholding (‘C+T’) method, which clumps SNPs 

passing the GWAS significance threshold (see section 1.2) so that SNPs retained are largely 

independent of each other. Another method is beta shrinkage which all SNPs are included, 

accounting for the LD between them. Many tools have been developed for calculating PRS, 

like PLINK[81], PRSice-2[82], LDpred[83], lassosum[84], etc.  
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Figure 7 The PRS analysis process. The figure was adapted from Choi[79].  

1.8.2 Application of PRS 

In basic science, PRS has been used to evaluate associations between phenotypes and to 

elucidate risk factors that may play a mediating role along the causal pathway to disease[85]. 
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The MR method has the advantage of featuring causal relationships among traits (see section 

1.3.3). Therefore, the combination of PRS and MR analysis can improve detection rates for 

causal relationships which can be particularly useful when evaluating associations between 

genetic liability for a given trait and hundreds of diverse health outcomes[85]. We named this 

‘PRS+MR’ strategy. Zeng et al. detected a negative association between PRS of education 

attainment and CAD risk, then they used the MR method to deduct the causal pathway of how 

genetic education attainment reduces CAD risk through its impacts on a series of risk 

factors[45]. This strategy was also applied to one of my PhD works which studied the genetic 

association between intelligence score and CAD risk (see section 3.1)[86].  

In the clinical setting, PRS can be implemented in three key stages (Figure 8)[87]. First, 

PRS contributes to risk stratification in an apparently healthy population by screening for high-

risk groups followed by intensified strategies for disease prevention and early intervention. 

Second, PRS could be used in clinical diagnosis when people are in the early phase of diseases 

without significant clinical diagnostic signs. Third, it is possible that in the future, PRS could 

contribute to personalized medicine and outcome prediction.  

There is a long way to go before PRS could be massively applied in clinical settings. 

PRS itself is not strong enough in the prediction of disease incidence. In CAD, PRS didn’t 

outperform in predicting subsequent CAD events as compared to other clinical risk predictors. 

But when both were combined, it was more accurate than either PRS or clinical risk predictors 

alone[87]. Studies also showed that the combination of PRS in subjects affected by monogenic 

variants with low to moderate penetrance could increase the accuracy of risk prediction. The 

average probability of CAD by the age of 75 years old subjects was found to increase from 13% 

in noncarriers of familial hypercholesterolemia (FH) variants to 41% in carriers of FH 

variants[88]. Likewise, in carriers of FH variants, a substantial gradient of risk was observed 
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depending on the PRS. Similar trends were also observed in breast cancer[88] and prostate 

cancer[89].  

 

Figure 8 An overview of the population cohorts where polygenic risk scores could be applied. 

The figure was adapted from Wray[87]. 

1.8.3 Further discussion about PRS  

Ethnicity  

By far, most GWAS studies were conducted on individuals of European decedent, and genomic 

research of the non-European population is significantly underrepresented. More and more 

scientists put their attention to trans-ethnic GWASs because of genetic diversity among 

ethnicities[49, 90]. Along with increased identification of ethnicity-specific and trans-ethnic 

loci, a question about PRS study was raised: which is better, ethnicity-specific or trans-ethnic 

PRS? The latest work about CAD GWAS identified 8 novel Japanese-specific risk loci as well 

as 35 novel trans-ethnic loci[90]. This work also suggested that PRS derived from trans-ethnic 
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loci outperformed PRS derived either from Japanese or European risk loci. However, further 

work is needed to confirm this phenomenon.  

Multi-PRS strategy 

In classic studies, the PRS is estimated based on risk loci associated with the target trait. 

Inspired by the pleiotropy feature of genetic variants and genetic correlations between complex 

traits, the multiple polygenic risk score (multiPRS) approach improved prediction performance 

by using the joint predictive power of multiple polygenic scores in one regression model[91, 

92]. For instance, the formula of multiPRS for CAD could be represented as  

𝑚𝑢𝑙𝑡𝑖𝑃𝑅𝑆𝐶𝐴𝐷 =  𝛽1𝑃𝑅𝑆𝐶𝐴𝐷 +  𝛽2𝑃𝑅𝑆𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 + 𝛽3𝑃𝑅𝑆𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛 + 𝛽3𝑃𝑅𝑆𝐿𝐷𝐿−𝐶

+ ⋯ 𝑐𝑜𝑣𝑟𝑠 

, in which 𝑚𝑢𝑙𝑡𝑖𝑃𝑅𝑆𝐶𝐴𝐷 is a weighted combination of CAD and other risk traits’ PRS. The 

mulitPRS approach may be useful in investigating developmental, multivariate and gene-

environment interplay issues, stratifying individuals according to the risk of conditions, and 

eventually, improving performance in personalized medicine. 

Polygenic resilience score 

Polygenic resilience is a reverse concept of PRS. It studies genetic variants that promote 

resistance to disease by reducing the penetrance of risk loci, wherein resilience and risk loci 

operate orthogonally to each other[93]. Currently, there is only one study about polygenic 

resilience score conducted by Hess et al[93]. Based on schizophrenia PRS, they stratified 

samples into different risk groups. The controls from high PRS groups were defined as high 

resistance controls. From the high-risk group, they retrieved genetic resilience variants by 

performing GWAS analysis. The works suggested that positive correlation between polygenic 

resilience score and PRS in the whole cohort, but no correlation in case samples. The 
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correlation coefficient reached the highest in controls of the high PRS group which verified the 

hypothesis of the orthogonal relation between genetic risk and resilience. Studying polygenic 

resilience factors could give us extra insights into why participants in the high PRS group are 

resilient to developing disease and might promote a more sophisticated PRS model with better 

performance than the current one.  

1.9 Genetics of CAD 

1.9.1 GWAS of CAD 

Decades of GWASs have generated wealthy knowledge of genetic factors contributing to CAD 

etiology. Due to the endeavor of large CAD consortia, as well as national and international 

collaboration, 321 genome-wide significant loci have been associated with CAD (Figure 8)[94]. 

The sample size and diversity of participants are still increasing in multiple biobanks, such as 

CARDIoGRAMplusC4D, UKB, Japanese biobank, Million Hearts GWAS, Million Veteran 

Program, and All of Us Research Program. A combination of these biobanks would increase 

the possibility of identifying novel risk loci and studying ethnicity-specific risk lock. Current 

knowledge of CAD GWAS brings us to the post-GWAS era to i) elucidate the disease-

associated mechanisms underlying CAD loci, ii) prioritize potential causal genes and novel 

drug targets for the disease, and iii) harness CAD genetic variations as the age-independent 

biomarkers for risk stratification, disease prevention, and personalized medicine.  
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Figure 9 Genes mapped to 321 CAD risk loci and related pathophysiological pathways of 

atherosclerosis. The figure was adapted from Chen[94].  

1.9.2 Prioritization of CAD causal genes by in-silico methods  

The in-silico methods of prioritizing risk genes have been discussed in section 1.3. Strategies 

of pinpointing causal genes for CAD include but are not limited to i) vicinity of genes to risk 

loci; ii) eQTL mapping in CAD-relevant tissues according to reference panels like GTEx and 

STARNET; iii) monogenic mutations on candidate genes associated with CAD or its risk 

factors; iv) fine-mapping with functional annotation; v) colocalization between GWAS signal 

and genes’ eQTL or other quantitative signals; vi) phenome-wide screening for pleiotropy of 

risk loci; vii) cross-mapping with consortia of mouse models like Hybrid Mouse Diversity 

Panel (HMDP)[95], the International Mouse Phenotyping Consortium (IMPC)[96] or Mouse 
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Genome Informatics database (MGI)[97]; viii) integrative genomic analysis (IGA) to combine 

results from multiple in-silico methods, which has emerged as a powerful strategy for 

identifying causal genes[98]. Moreover, the fast accumulation of single-cell data and 

metabolomics data would greatly benefit causal gene selections and pathogenic mechanism 

study[99, 100]. However, TWAS of CAD, which could systematically identify tissue-specific 

risk genes for CAD has not been performed yet. This forms the rationale of my PhD research 

on CAD TWAS.  

II Methods 

2.1 Preprocessing of 11 GWAS cohorts 

Genotype data of ten CARDIoGRAMplusC4D[86, 101–109] cohorts and UKB[47] were used 

in both projects building the PhD thesis (Table 1).  
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Table 1 Overview of eleven individual-level genotype cohorts.  

Study Array 

CAD case Control 

N_case_female(

%N_cases) 
N_case 

N_control_femal

e(%N_controls) 
N_control 

GerMIFSI Affymetrix Mapping 500K Array Set 207(33.3) 622 795(51.3) 1551 

GerMIFSII 
Affymetrix Genome-

Wide Human SNP Array 6.0 
244(20.5) 1192 604(48.1) 1256 

GerMIFSIII 
Affymetrix Genome-

Wide Human SNP Array 5.0/6.0 
212(20.1) 1055 696(48.3) 1441 

GerMIFSIV 
Affymetrix Genome-

Wide Human SNP Array 6.0 
336(35.2) 954 697(61.4) 1136 

GerMIFSV Illumina HumanOmniExpress/Omniuni_2.5 593(24.3) 2437 827(52.5) 1574 

GerMIFSVI Illumina PsychChip_v1-1 492(30) 1639 609(51.3) 1186 

GerMIFSVII Infinium Global Screening Array-24 1031(33.7) 3062 1886(54.5) 3462 

WTCCC 
Affymetrix Genome-

Wide Human SNP Array 6.0 
395(20.8) 1900 1481(50.9) 2911 
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Cardiogenics Illumina Human660W-Quad 49(12.8) 382 239(59.2) 404 

MIGen Affymetrix Mapping 500K Array Set 646(22.3) 2901 733(24.3) 3018 

UKB 

UK BiLEVE Axiom array n~=50,000 

UK Biobank Axiom array n~=450,000 

4465 (22.0) 20310 231869(57.0) 406996 
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2.1.1 Ten CARDIoGRAMplusC4D cohorts 

Individua-level genotyping data of 17,687 cases and 17,854 controls were collected from ten 

CARDIoGRAMplusC4D cohorts including the German Myocardial Infarction Family Studies 

(GerMIFS) I-VII[86, 101–106], Wellcome Trust Case Control Consortium (WTCCC)[107], 

LURIC[108] study and Myocardial Infarction Genetics Consortium (MIGen)[109]. All 

samples were of European descent, mostly from Germany or UK. The subjects building the 

MIGen cohort were from several European countries and the United States.  

 All studies went through the following quality filtering steps (as mentioned in section 

2) using plink (v1.9)[13] before imputation: individual-level calling rate≥0.98, SNP-level 

calling rate>0.95, MAF>0.01, sex consistency between the reported and the genotype-derived, 

deviation from HWE P>1e-5, Identity By Descent (IBD)<0.125 (individuals were distant to 

each other more than the third generation), heterozygosity rate within mean ± 3*SD. After 

quality filtering of genotype level, all studies except GerMIFS VII were imputed according to 

the reference of 1000 Genomes Phase I integrated variant (v3)[10] using SHAPEIT2[110] and 

IMPUTE2[111]. For GerMIFS VII, the reference data was HRC[11]. All SNPs were mapped 

to NCBI GRCh37/hg19. After genotype imputation, we conducted quality filtering again using 

the following parameters: SNP-level calling rate>0.98, MAF>0.01, and deviation from HWE 

P>1e-5.  

2.1.2 Genotype data of UKB 

The UKB is globally the largest biobank with deep phenotypic and genomic data (see section 

1.5)[47]. We obtained imputed genotype data from 3rd release of UKB. The data were imputed 

using a combination of two reference panels. The first panel is the HRC reference panel[11]. 

The second is a merged reference panel of the UK10K haplotype panel and the 1000 Genomes 

references. If variants were imputed from both reference panels, the HRC imputation result 
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was retained. A series of QC were done on the imputed data: MAF>0.00001, imputation 

info>0.4, SNP-level calling rate>0.95, individual-level calling rate≥0.98, sex consistency, 

kinship coefficient<0.088, and deviation from HWE P>1e-5.  

 All phenotypes were defined by either self-reported, hospital episode, and/or death 

registry data. The definition of CAD encompassed individuals with fatal or normal myocardial 

infarction (MI), percutaneous transluminal coronary angioplasty (PTCA), or coronary artery 

bypass grafting (GABAD). MI was defined as hospital admission or cause of death due to 

ICD10 I21-I24, I25.2, ICD9 410-412, and self-reported 1075. PTCA, CABG, and triple heart 

bypass were defined as hospital admission or cause of death due to OPCS-4 K40-K46, K49, 

K50.1, K75, and self-reported 1070, 1095, 1523. Finally, we got 20,310 hard CAD cases and 

randomly selected 25,000 non-CAD samples as controls.  

2.2 Methods used in the Intelligence-CAD project  

In this work, we firstly constructed a genetic intelligence score (gIQ) based on 242 SNPs 

independently associated with intelligence[112] for participants from ten 

CARDIoGRAMplusC4D[86, 101–109] cohorts and UKB[47]. The ‘C+T’ method (see section 

1.8.1) of PRS estimating was applied to estimate gIQ. In short, gIQ is a sum of the weighted 

dosage of effect alleles of 242 independent intelligence variants. As to missing variants in the 

genotype data, we replaced them with reference allele frequencies.  

 We tested the association between gIQ and CAD risk in eleven cohorts using logistic 

regression models. For all cohorts except UKB, two principal components were added to the 

regression model to adjust the bias of population stratification. As the genotype data of UKB 

was scaled from two array platforms and has a relatively more complicated ethnic background, 

the top five principal components and array platform were added to the regression model. 
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 In UKB, we also studied associations between gIQ and serial risk factors of CAD 

including smoking, hypertension, BMI, T2D, HDL-C, and LDL-C. Logistic regression models 

were applied for binary traits, and linear regression models were applied for quantitative traits. 

All regression models were adjusted by the top five principal components and array platforms. 

Next, the significant risk factors were applied as adjustments of regression models between 

gIQ and CAD to study their mediatory roles. 

 Because of genetic overlaps between intelligence and educational attainment, the 

effects of intelligence on CAD and its risk factors might be false positive. We defined the direct 

effect of intelligence as the effect of intelligence that was not mediated by educational 

attainment. Lee et al. reported 1271 independent SNPs associated with educational attainment 

through a meta-analysis in 1.1 million persons[113]. Seven SNPs associated with both 

intelligence and educational attainment were excluded during recalculating gIQ. Then same 

regression analysis was performed to study the direct effects of intelligence.  

 To further study causal pathways from intelligence/education to CAD risk, a 

multivariable two-sample MR analysis was carried out. The GWAS summary data of CAD and 

its risk factors, educational attainment were acquired from CARDIoGRAMplusC4D 

(CAD)[104], GIANT (BMI)[114], TAG (smoking)[115], GLGC (HDL-C, LDL-C)[71], 

SSGAC (educational attainment)[113], and DIAGRAM (T2D)[116]. Three MR methods were 

used including IVW, MR-egger, and weighted median. Lastly, MR sensitivity analyses were 

performed for intelligence and educational attainment respectively. SNPs moderately 

associated with CAD and risk factors (P<0.001) were removed from intelligence SNP and 

education SNPs respectively. 
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2.3 Methods used in the TWAS project  

As introduced in section 1.7.1, the first step was to train prediction models for risk tissues of 

CAD. We adopted the existing expression prediction models trained using the EpiXcan 

pipeline by Zhang et al., including models of AOR, MAM, LIV, SF, VAF, BLD, and SKLM 

based on the STARNET panel[17], and models of AOR, LIV, BLD, SF, VAF, and SKLM 

based on the GTEx panel[18]. We trained prediction models for another two risk tissues of 

CAD, arterial wall coronary (COR) and tibial artery (TIB) datasets which are only available in 

the GTEx panel (V7), using the EpiXcan pipeline. All individuals used for prediction models 

were restricted to European descent. First, genetic variants were filtered out if they matched 

one of the QC parameters: calling rate<0.95, MAF<0.01, and HWE<1e-6. Second, for 

expression data, we did sample-level quantile normalization and gene-level inverse quantile 

normalization using preprocess codes of the PredicDB pipeline. Third, we calculated SNP 

priors using qtlBHM that jointly analyzed epigenome annotations of aorta derived from 

REMC[70]. Lastly, the SNP priors, genotype data, and expression data were jointly applied to 

10-fold cross-validated WENet to train predicting models by deploying the EpiXcan 

pipeline[69]. The predictors were filtered by cross-validated prediction R2>0.01.  

 Next, we applied prediction models of nine risk tissues to impute GReX from individual 

genotype data of ten CARDIoGRAMplusC4D cohorts[86, 101–109] and UKB[47], which, in 

total, having of 37,997 cases and 42,854 controls. For each tissue, we performed association 

tests between GReX and CAD using the logistic regression model in 11 genotype cohorts and 

performed meta-analysis for all cohorts to get summarized TWAS statistics. In total, we 

identified 114 genes representing 193 gene-tissue pairs thresholding Bonferroni-corrected 

significance.  
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 Then, we did a series of in-silico analyses to check the plausibility of the TWAS gene 

list. i) We compared the genomic position between TWAS genes and GWAS loci using 

MAGMA[117]. ii) We compared TWAS genes with gene lists resulting from colocalization 

analyses. In this part, the tool coloc[23, 27] integrated eQTL data from either GTEx or 

STARNET and GWAS summary data from CARDIoGRAMplusC4D[65], providing 

significant gene-tissue pairs which posterior probability of hypothesis 4, PP4≥0.55 (section 

1.3.1). iii) To check the biological function and pathogenicity of TWAS genes, we did pathway 

enrichment analysis using ClueGO[118] and disease enrichment analysis based on 

DisGeNET[119]. iv) We also performed gene-based rare variant association analysis using 

WES data from UKB on 200,632 participants. The damaging rare variants residing in TWAS 

genes were defined by one of five in-silico methods (LRT score, MutationTaster, PolyPhen-2 

HumDiv, PolyPhen-2 HumVar, and SIFT) by the annotation resource dbNSFP 4.1a[59] using 

the VEP tool[61]. For gene-based tests, we used Fisher’s exact test for binary traits and the 

linear regression model for quantitative traits.  

 Finally, our attention was focused on 18 genes that resided outside known GWAS loci, 

which we called “novel”. To study the susceptibility of novel genes, we did in-silico analyses 

and in-vitro validation. We studied the genetic association between novel genes and a series of 

lipids traits in human genotype data from UKB. We also studied their association with lipid 

traits in atherosclerosis mouse models from the Hybrid Mouse Diversity Panel (HMDP). Both 

human genotype data and mouse expression data suggested connections between novel genes 

and lipid traits. Of these novel genes, KPTN and RGSI9, which were rarely studied before, gave 

significant signals in liver tissue by TWAS analysis. So, we finally carried out knockdown 

experiments in human hepatocytes using dual CRISPR strategy for KPTN and RGS19. Cells 

for measurement of secretion of triglycerides, cholesterol, and APOB100 were cultured for 16 
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hours in serum-free medium. Medium triglycerides and cholesterol were enriched five times 

by vacuum centrifuge and measured with colorimetric kits, triglycerides (cobas) and CHOL2 

(cobas), respectively.  

III Discussion  

3.1 Genetic association between Intelligence and CAD 

This work applied ‘PRS+MR’ strategy which firstly use PRS to filter genetic association 

between traits, then apply MR method to study casual effects on associated traits (see section 

1.8.2). 

  We firstly tested association of gIQ with CAD and its risk factors. In this part, we 

observed that one standard deviation (SD) increase of gIQ was related to a 5% decrease of 

CAD risk (odds ratio [OR] of 0.95; 95% confidence interval [CI] 0.93 to 0.98; P=4.93e–5), 

which was validated in UKB (OR=0.97; 95% CI 0.96 to 0.99; P=6.4e–4). In UKB data, we 

also observed significant inverse correlations between gIQ and risk factors of CAD including 

BMI (OR=0.899; 95% CI 0.886 to 0.911; P=5.4e-49), smoking (OR=0.981; 95% CI 0.975 to 

0.987; P=8.3e-10), T2D (OR=0.966; 95% CI 0.951 to 0.980; P=4.1e-6), hypertension 

(OR=0.987; 95% CI 0.981 to 0.993; P=3.8e-5), and a positive correlation with HDL-C 

(OR=1.007; 95%CI 1.006 to 1.008; P=1.3e-29). The associations of gIQ with CAD and its risk 

factors were largely attenuated after the adjustment of measured intelligence and educational 

attainment. Same phenomena happened between gIQ and CAD risk with the adjustment of risk 

factors significantly associated with gIQ. These findings suggested intermediate role of risk 

factors, measured intelligence, and educational attainment between gIQ and CAD.  

 Next, we applied two-sample MR analyses to depict casual pathway from genetic 

intelligence to CAD risk. One SD increase of intelligence resulted in decrease of CAD risk by 
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25% (OR=0.75; 95% CI 0.69 to 0.81; P<1e-10), decrease of BMI by 0.1 kg/m2 (95% CI -0.16 

to -0.14; P=1.02e-3), decrease of T2D risk by 15% (OR=85; 95% CI 0.77 to 0.95). One SD 

increase in the education years resulted in decrease of risk of CAD by 38% (OR=0.62; 95% CI 

0.58 to 0.66; P<1e-10), decrease of BMI by 0.32 kg/m2 (95%CI -0.37 to -0.27; P<1e–10), 

increase of HDL-C by 0.19 mmol/L(95% CI 0.14 to 0.25; P<1e-10), decrease of the risk of 

smoking by 43% (OR=0.57; 95%CI 0.501 to 0.642; P<1e-10), and decrease of T2D risk by 

47% (OR= 0.53; 95%CI 0.49 to 0.57; P<1e-10). The effects of educational attainment on CAD 

and its risk factors displayed the same direction as intelligence but were stronger in magnitude.  

 

Figure 10 Pathways from Pathway from higher gIQ to lower risk of CAD.  

In conclusion, using genetic approaches, we depicted a pathway from gIQ to CAD risk 

The higher gIQ is associated with the higher measured intelligence and longer educational 

attainment, both of which appear to reduce the prevalence of risk factors of CAD including 

BMI, smoking, T2D, and hypertension, and increase HLD-C, which in concert subsequently 

reduce the prevalence of CAD (Figure 10). Moreover, the effects of educational attainment on 

risk factors and CAD appear to be stronger than the effects of intelligence. Thus, repetitive 

campaigns throughout schooling may be worthwhile for preventive reasons as they may 

ameliorate the association between gIQ and unhealthy lifestyle. 
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Author contributions 

Heribert Schunkert and Ling Li designed the study and wrote the manuscript. Shichao Pang, 

Lingyao Zeng, and Ulrich Güldener provided technical support and gave conceptual advice.  

3.2 TWAS for CAD  

Our work is the first to systematically identify susceptibility genes of CAD in tissue-specific 

fashion using TWAS method. The main findings of this work were summarized in Figure 11. 

We first trained gene expression prediction models for nine CAD-relevant tissues using 

EpiXcan based on two largest genetics-of-gene-expression panels, STARNET and GTEx. We 

next explored these prediction models on individual level genotype data of 37,997 CAD cases 

and 42,854 controls. Our TWAS identified 114 CAD risk genes to be differentially expressed 

by genetic means. Of these, 96 genes were resided within ±1Mb region of previously identified 

by GWAS loci (a sort of positive control) and 18 were novel. For 114 TWAS genes, we 

performed stepwise analyses to prove their plausibility, biological function, and pathogenicity 

to CAD, including analyses for colocalization, damaging mutation, pathway enrichment, 

phenome-wide associations with human data and expression-traits correlations using mouse 

data. Finally, we focused on two novel genes, RSG19 and KPTN, and conducted 

CRISPR/Cas9-based knockdown experiments for them in human hepatocytes. We observed 

reduced secretion of APOB100 and lipids in the cell culture medium, i.e., a functional 

explanation for the association findings. 
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Figure 11 Schematic illustration of CAD TWAS.  

This work discovered 18 novel genes to be associated with CAD, and functionally 

evaluated 96 genes within CAD GWAS loci, for example by indicating their tissue(s) of action.  

The downstream analyses of these genes revealed their intermediate cardiometabolic 

phenotypes bridging gene variants with their effects on CAD. Our result provides a substantial 

step towards prioritization of genes at respective GWAS loci as well as their tissues of actions. 

In this respect, 46 genes identified by this TWAS are known for effects in pathophysiological 

pathways related to CAD, including lipid metabolism, inflammation, angiogenesis, 
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transcriptional regulation, cell proliferation, NO signaling, and high blood pressure, to name a 

few giving credibility to the association findings.  

Our in-silico analyses on novel genes suggested they were associated with lipid traits 

in both human genotype data and mouse expression data. The hypothesis was furtherly 

confirmed by the latest lipid GWAS paper conducted by GLGLC consortium (Table 2)[120]. 

Two novel genes, KPTN and RGS19, were firstly confirmed to be associated with lipid 

metabolism from both in-silico and in-vitro data. So, we believe that our study on novel genes 

may provide novel insights into molecular etiology of CAD.  

Table 2 8 novel genes were within 500kb of lipid risk loci 

Gene Lipid risk loci 

HOMER3 

EUR_TC_rs10423802;EUR_HDL_rs60570301;EUR_logTG_rs1966500;HIS_nonHDL

_rs2238675;HIS_TC_rs150641967;rs376645231;EAS_logTG_rs58542926;EAS_nonH

DL_rs58542926;EUR_LDL_rs58542926;EUR_logTG_rs58542926;EUR_nonHDL_rs5

8542926;EUR_TC_rs58542926;HIS_LDL_rs58542926;SAS_LDL_rs58542926;SAS_n

onHDL_rs58542926;SAS_TC_rs58542926;SAS_logTG_rs8107974;EAS_TC_rs10401

969 

KPTN 

EUR_HDL_rs12609461;EUR_logTG_rs10408163;EUR_nonHDL_rs12461923;EUR_H

DL_rs3112494;EUR_logTG_rs62129968 

NLRC4 EUR_TC_rs62142080 

RGS19 

EUR_TC_rs35201382;EUR_LDL_rs6090040;EUR_nonHDL_20_62692060_C_A;EUR

_HDL_rs8126001;EUR_logTG_rs8126001;EUR_TC_rs73147887 

SDCCAG3 EUR_nonHDL_rs3780190;EUR_TC_rs3780190;EUR_LDL_rs13301660 

STX4 

EUR_TC_rs1870293;EUR_LDL_rs35468353;EUR_nonHDL_rs73530203;EUR_logTG

_rs7196161;EUR_HDL_rs41440449 

TXNRD3 EUR_LDL_rs9862203;EUR_TC_rs9862203 
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WWP2 

EUR_TC_rs76116020;EUR_HDL_rs141904578;EUR_logTG_rs6499240;EUR_LDL_r

s181501802;EUR_TC_rs181501802;EUR_nonHDL_rs62049432;AFR_LDL_rs200535

533;rs374818812 

*EUR, European; EAS, east Asian; SAS, South Asian; AFR, African. 

 We must admit that our study has limitation embedded in TWAS mythology. Since 

TWAS are strongly dependent on the reference panel linking genetic signatures with gene 

expression, it had to be expected that STARNET- and GTEx-based predictive models display 

differences in gene-CAD associations. The difference may be due to different sample sizes 

used for training predictions models, different disease states (subjects with and without CAD), 

intravital or postmortem sample collection, as well as different transcript abundance and 

genotype coverage leading to differences in expression associated SNPs in our reference panels. 

Even so, a fair consistency of TWAS results between STARNET- and GTEx-based models 

gave us rationality of combing results derived from both panels to increase the power of 

capturing risk genes. Second, although TWAS facilitates candidate risk gene prioritization, 

LD-link between SNPs, co-regulation or co-expression in cis at a given locus limits the precise 

determination of the culprit gene. Indeed, at 12 loci we observed signals for three or more 

TWAS genes. This strengthens the importance of integration of other genetic analyses to 

improve risk gene prioritization. In our work, a series of stepwise analyses were performed on 

TWAS gene list to furtherly study their disease-causing mechanism, like damaging variant 

association, pathway enrichments, genetic association with other phenotypes and expression-

traits association statistics. Lastly, all findings by in-silico methods have to be furtherly 

validated and functionally explained by in-vitro or in-vivo methods. Our prove-of-concept 

experiment on KPTN and RGS19 in human hepatocytes validated our hypothesis about their 

associations with lipid traits. But extra efforts are necessary to clearly depict the molecular 

mechanisms.  
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 In summary, our TWAS study based on two genetics-of-gene-expression panels created 

a set of gene-centered and tissue-annotated associations for CAD, providing insightful 

guidance for further biological investigation and therapeutic development. 

Author contributions 

Heribert Schunkert, Ling Li, and Zhifen Chen designed the study and wrote the manuscript. 

Ling Li ran the bioinformatic analyses. Zhifen Chen, Shuangyue Li, and Andrea Steiner 

performed the wet lab experiments. Julien Gagneur, Moritz von Scheidt, Ulrich Güldene1, 

Simon Koplev, Angela Ma, Ke Hao, Calvin Pan, Aldons J. Lusis, Shichao Pang, Thorsten 

Kessler, Raili Ermel, Katyayani Sukhavasi, Arno Ruusalepp, Jeanette Erdman, Jason C. 

Kovacic, Johan L.M. Björkegren provided research data, technical support and gave conceptual 

advice.  

IV Conclusion and outlook 

I conducted two original research on post-GWAS studies during my graduate training, 

including a PRS study and the CAD TWAS. In the PRS study, I used genetic methods to 

firstly verify the epidemiology phenomenon of reverse association between intelligence and 

CAD risk and depicted a pathway between them. In the TWAS study, we pinpointed risk 

genes of CAD as well as their action tissues which empowered our understanding of the 

molecular mechanisms of CAD. The positive experimental validations of two novel genes 

might lay the foundation of the therapeutic development of CAD. The two projects inspired 

me to explore potential transcriptome changes due to the polygenic risk in a tissue-specific 

fashion. 

Emerging wave of TWAS studies focuses on investigating the role of spicing variants 

and transcripts in CAD. The data sets of tissue splicing variants (sQTL) and transcripts are 
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available in several public resources, such as STARNET and GTEx. However, the lack of 

cellular level omics data is a disadvantage of the current TWAS analysis. The CAD risk linked 

to the cell-type specific function of a gene might be obscured due to the mix cellular profile in 

a tissue. The booming single-cell technology will soon tackle the current disadvantage and 

TWAS analysis will be performed in a cell type- or subtype-specific manner. Moreover, the 

concept of TWAS analysis will be applied to several other omics datasets, such as epigenomics, 

proteomics, and metabolomics, when tissue- or cell-specific data will be available in scale. The 

different layers of biological data could be integrated for a multi-omics TWAS analysis to 

uncover the interaction among the layers of cellular profiles. The increasing complexity in the 

data integration will undoubtedly challenge the statistic algorisms. In this scenario, machine 

learning (ML) will embark to unlock the myth of complex common diseases.  

Finally, I’d like close my thesis using poetry from a Chinese famous poet Qu Yuan: 

Long, long had been my road and far, far was the journey; I would go up and down to seek 

my heart's desire (路漫漫其修远兮，我将上下而且求索).

https://link.zhihu.com/?target=http%3A//bs.dayabook.com/poetry/chu-ci-songs-of-the-south/encountering-sorrow
https://link.zhihu.com/?target=http%3A//bs.dayabook.com/poetry/chu-ci-songs-of-the-south/encountering-sorrow
https://link.zhihu.com/?target=http%3A//bs.dayabook.com/poetry/chu-ci-songs-of-the-south/encountering-sorrow
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