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Abstract

Coronary artery disease (CAD) is the leading cause of death globally, which is in part caused
by genetic variants. The majority of risk loci of CAD identified by genome-wide association
study (GWAS) are located in non-coding regions that hamper their function interpretation. So,

follow-up studies are needed.

Polygenic risk score (PRS) is a genetic estimate of an individual’s liability to a trait or
disease, calculated from a set of independent risk variants based on large-scale GWASSs. The
PRS has been widely applied to study the genetic association between complex traits.
Mendelian randomization (MR) uses genetic variants as instrumental variables to infer whether
risk factors (exposures) causally affect a health outcome, which is broadly used in
observational epidemiology. The combination of PRS and MR (‘PRS+MR’ strategy) could
improve detection rates for causal relationships which can be particularly useful when
evaluating associations between genetic liability for a given trait and hundreds of diverse health
outcomes. Transcriptome-wide association studies (TWAS) have been recently proposed as an
invaluable tool for annotating GWAS risk loci by investigating the potential gene expression
regulatory mechanisms underlying variant-trait associations. The signals identified by TWAS
reflect associations between genetically regulated expression (GReX) and complex traits. In
this dissertation, we applied these two bioinformatic approaches to study the genetic
association between intelligence and CAD and to filter risk genes for CAD in a tissue-specific

fashion.

The first work is to study the genetic association between intelligence and CAD using
the ‘PRS+MR’ strategy. In this study, we first estimated a genetic intelligence score (glQ) in
samples from ten CAD case-control studies (n=34,083) from CARDIoGRAMplusC4D cohorts
and UK Biobank (UKB) (n=427,306) based on 242 variants independently associated with
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intelligence. Meta-analysis using a fixed-effect size model indicated the increase of glQ by one
standard deviation (SD) led to a relative decrease of CAD risk by 5% (95% confidence interval
[CI], 0.93 to 0.98; P=4.93e-5). From UKB, we observed significant inverse correlations
between glQ and lifestyle factors of CAD including smoking, body mass index (BMI), type 2
diabetes (T2D), hypertension, and a positive correlation with high-density lipoprotein
cholesterol (HDL-C). We also observed positive correlations for glQ with measured
intelligence and educational attainment. The association between glQ and CAD risk was
largely attenuated after the adjustment of lifestyle factors, suggesting mediatory roles of these
lifestyle factors in the pathway of linking high glQ and low risk of CAD. The effects of glQ
on lifestyle factors were also largely attenuated after the adjustment of measured intelligence
and educational attainment, suggesting their mediatory roles in the pathways between glQ and
lifestyle factors. Finally, the associations between intelligence and CAD as well as its lifestyle
factors were confirmed through the two-sample MR method. In conclusion, using genetic
approaches, we depicted a pathway from glQ to CAD risk. The higher glQ is associated with
the higher measured intelligence and longer educational attainment, both of which appear to
reduce the prevalence of unfavourable factors of CAD including BMI, smoking, T2D, and

hypertension, and increase HDL-C, which subsequently reduce the incidence of CAD.

The second work applied the TWAS methodology for filtering risk genes of CAD as
well as for identification of the tissues in which differential expression affect rise. In this study,
we first trained expression prediction models for nine risk tissues of CAD from the two largest
reference panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task
(STARNET) and the Genotype-Tissue Expression (GTEX). We next applied these prediction
models to imputing individual-level GReX from genotype data of 11 cohorts. By performing
association analysis between GReX and CAD risk, we identified 114 transcriptome-wide

significant genes (P<3.85e-6). Of these, 96 resided within GWAS loci of CAD (known), and
Vv



18 independent of GWAS loci (novel). Stepwise analyses bridged the known genes with a
series of pathophysiological pathways related to CAD, including lipid metabolism,
inflammation, angiogenesis, high blood pressure, etc. The in-silico analyses showed that the
novel genes were associated with lipid metabolism in both genotype data of human samples
and expression data of an atherosclerosis mouse model. Of these novel genes, KPTN and RGSI9,
which were rarely studied before, gave significant signals in liver tissue by TWAS analysis.
The CRISPR/Cas9-based gene knockdown of the two genes in the human hepatocyte cell line
resulted in reduced secretion of APOB100 and lipids in the cell culture medium. In conclusion,
our CAD TWAS work i) prioritized candidate genes in a tissue-specific fashion, and ii)

identified 18 novel genes to be associated with CAD by their connection to lipid metabolism.

In summary, the two studies of my dissertation using different genetic approaches, on
the one hand depicted the genetic pathway from high intelligence to low risk of CAD, and on
the other hand pinpointed risk genes for CAD in a tissue-specific fashion. These studies expand

our knowledge scope of the genetic etiology of CAD from different perspectives.
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Abbreviations

CAD Coronary artery disease

GWAS Genome-wide association study

PheWAS Phenome-wide association study

TWAS Transcriptome-wide association study

MR Mendelian randomization

PRS Polygenic risk score

GReX Genetically regulated expression

NGS Next-generation sequencing

1KG The 1000 Genome project

HRC The Haplotype Reference Consortium

WGS Whole-genome sequencing

WES Whole-exome sequencing

RNAseq RNA sequencing

eQTL Expression quantitative trait locus

GTEX The Genotype-Tissue Expression project

STARNET The Stockholm-Tartu Atherosclerosis Reverse Network Engineering
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glQ Genetic intelligence score
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I Introduction

| Introduction

1.1 Coronary artery disease (CAD)

1.1.1 Epidemiology of CAD

Epidemiologic and experimental cardiovascular research has improved the understanding of
coronary artery disease (CAD) pathophysiology. Preventive and therapeutic strategies based
on this knowledge decreased age-adjusted CAD mortality by over 50% in the past 30 years[1].
However, CAD remains the leading cause of death worldwide. Globally, CAD affects ~126
million individuals globally (1,655 persons per 100,000) representing 1.72% of the world
population, and caused ~9 million deaths in 2017[2]. With the aging of the population,
prevalence is expected to exceed 1845 persons per 100,000 by 2030. According to the
European Commission and European Society of Cardiology (ESC), CAD causes 12.5% of all
death and costs over €100 billion yearly in Europe. The enormous health care and economic

burdens urge better preventive and therapeutic approaches to tackle the disease.

1.1.2 Biological mechanisms underlying CAD

CAD is clinically presented as the accumulation of atherosclerotic plaques within the wall of
coronary arteries that provide nutrients and oxygen to the heart. CAD can be caused by
dyslipidemia, dysfunction of endothelial cells (EC), vascular smooth muscle cells (VSMC) or
fibroblasts, immune-inflammatory reactions, hyperinsulinism, and abnormal glucose
metabolism[3]. Although the underlying mechanisms of CAD are intensively investigated the
pathophysiology of CAD has not been fully elucidated yet. Generally, EC damage is thought
to be the initial step of CAD, which may start early in life. These cells show dysfunction in
regulating vascular tone via nitric oxide signaling. The increased amount of lipoprotein

particles enhances activation and adhesion of monocytes and promotes the cholesterol-loading
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of macrophages, or ‘foam cells’. VSMC and fibroblasts underlying the EC layer proliferate,
migrate and remodel the vessels. In addition, inflammation and immune response trigger the
vicious cycle of EC damage and deposition of fat and calcium inside the artery wall, all of
which accelerate atherosclerotic plaque formation, narrow the vessels, and eventually obstruct

the blood flow[4].

1.1.3 Risk factors for CAD

Various risk factors affect the multifactorial etiology of CAD. Risk factors of CAD could be
classified into non- and modifiable types[5—7]. Non-modifiable risk factors include increased
age, male gender, ethnicity, and family history of CAD. Modifiable risk factors include
dyslipidemia, smoking, body-mass index (BMI), hypertension, diabetes mellitus, obesity, poor
diet, lack of physical activity, and stressful lifestyle. Dyslipidemia could be caused by
dysregulated levels of lipoprotein (a) (LPA), low-density lipoprotein cholesterol (LDL-C),

high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), and other lipoproteins.

1.2 Genome-wide association study (GWAS)

Genome-wide association study (GWAS) is a methodology for studying associations between
genetic variants and phenotypes across the entire genome by testing allele frequency
differences of genetic variants among individuals with and without the trait. Importantly,
ancestry background needs to be similar between affected and control individuals[8]. Genetic
variants in GWAS include mainly single-nucleotide polymorphisms (SNPs) and a small
portion of structured variants, e.g., insertion/deletion polymorphism (InDel). The classic
workflow of conducting a GWAS test is shown in Figure 1[9]. First, researchers need to recruit
appropriate participants, from whom they collect phenotype data and tissue samples for DNA
extraction and genotyping. Second, genetic data will be obtained using microarray genotyping

technology, or next-generation sequencing (NGS) technology like whole-genome sequencing
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I Introduction

(WGS) and whole-exome sequencing (WES). In addition, currently, targeted sequencing is
becoming a rapid and cost-effective way of detecting known and novel variants in selected
genomic regions. Third, researchers have to conduct quality control (QC) on both variant and
sample levels after calling genotype from the array or NGS platforms. The QC is an essential
step to remove factors that might cause bias on association test, such as removing low-quality
variants, removing variants and individuals with low calling rate, detecting the population
strata, and removing samples of genetically related. Fourth, the imputation step predicts
undetected variants from detected variants based on genetics reference panels. The 1000
Genome (1KG) from the International Genome Sample Resource[10] and the Haplotype
Reference Consortium (HRC)[11] are the two most popular genetic reference panels. Fifth, the
imputed genotype data will be used for testing associations between genetic variants and
phenotypes. According to the International HapMap project and other studies, the human
genome has approximately one million independent common genetic variants on average[12],
which makes the Bonferroni correcting threshold of P<5e-8 (false discovery rate 0.05/1e6) the
most popular significance threshold of GWAS. PLINK[13] and CGTA[14] (Genome-wide

Complex Trait Analysis) are the two most popular tools of GWAS analysis.
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Figure 1 Overview of steps for conducting GWAS. The figure was adopted from Emil
Uffelmann[9]

GWAS tests associations of genetic variants with traits on the basis of the single-SNP
model at a genomic scale. A group of significant variants in the same locus are frequently
observed in association tests because of the linkage disequilibrium (LD) relationship among
common variants, which challenges the identification of the causal variants. Several attempts
could help to prioritize the candidate causal variants at a locus. The simplest method is to pick
the lead SNP (the one with the lowest association P-value) in a genomic region (e.g., a 1-Mb
window centered on the locus). The method is based on the hypothesis of a single causal variant
at a genomic region, and the top SNP captures the maximum amount of variation by its LD
relations with other significant SNPs in the vicinity. Yet, the hypothesis may have several

limitations. First, even if the hypothesis is true, the genotyping and imputation may not capture
4
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all the variants at a locus. Second, the hypothesis might not be true given that multiple causal
variants could exist at a locus. In this case, a single SNP does not fully represent potential
causal variants, especially the ones not LD-linked with the lead[15]. To overcome these
limitations, a tool, conditional and joint multiple-SNP analysis of GWAS summary statistics
(COJO), was developed to identify additional variants associated with complex diseases in a
genomic locus[15]. COJO, embedded in CGTA, requires two inputs, the GWAS summary
statistics, and the reference genome of the same ethnic background, to estimate LD-correlations
between SNPs, which largely facilitate the studies without individual-level genotype data[14,
15]. COJO starts with conditional analysis of the lead-associated SNPs, followed by a stepwise
selection of regional SNPs by conditioning the effects of lead SNPs. COJO performs a stepwise
model to select independently associated SNPs (e.g., P<5e-8) based on conditional P values
and estimates the joint effects of all selected SNPs after the model has been optimized.
Compared with the method of regional lead SNP picking, COJO may identify multiple
independent candidate causal variants in the same regions and can capture larger phenotype

variations in the genomic regions.

1.3 Post-GWAS era
1.3.1 Fine-mapping

A decade of GWASs have uncovered thousands of genomic variants associated with complex
human traits and diseases. In the post-GWAS era, efforts were directed to delineate the
biological mechanisms underlying the associations between risk variants and traits/diseases.
The biggest challenge originates from the non-coding feature of the majority of the GWAS
loci, which hampers their functional interpretation. To address this, many different approaches
have been developed including expression quantitative trait loci (eQTL) analysis,

colocalization analysis, and tissue of action (TOA) analysis. Many collective resources, like
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NIH Roadmap consortium, ENCODE, FANTOM, and the IHEC consortium provide
functional annotation to genetic variants and regions. These indispensable context-specific
resources can be integrated into fine-mapping methods to pinpoint regulatory mechanisms of

GWAS variants on disease risk.

A direct way of understanding the effects of variants showing association by GWAS is
to test the effects of these variants on gene expression of cells or tissues, namely eQTL analysis.
An eQTL explains a fraction of gene expression regulated by genetic variants at this locus[16].
The genetics-of-gene-expression panels, such as the Stockholm-Tartu Atherosclerosis Reverse
Network Engineering Task (STARNET)[17] and the Genotype-Tissue Expression (GTEX)[18],
have largely facilitated eQTL studies. These panels usually collected genotype and tissue or
cell-type transcriptomic data from hundred participants. Standard eQTL analysis firstly maps
GWAS variants to a gene region and then tests the association between individual respective
genotypes and expression levels in a tissue- or cell-type-specific manner. Based on the distance

between variants and genes in genome architecture, eQTLs have been classified into cis and

trans. Conventionally, variants residing within £1Mb of a gene’s transcription starting site

(TSS) or gene-body regions are classified as cis variants; otherwise, variants are classified as
trans variants. Although most studies to date focus on cis-eQTLs, trans-eQTL studies are
catching up[17, 19]. Besides eQTL, splicing QTL (sQTL), protein QTL (pQTL), and
methylation QTL (mQTL) are increasingly investigated driven by the need of detangling the

complexity of variants’ function and availability of corresponding omics datasets[20—22].

A QTL variant is sometimes associated with multiple genes and a gene often has
multiple QTL variants, which challenges the identification of causal variants and genes. Based
on QTL analysis, scientists have introduced another strategy, colocalization, to prioritize
variants and genes by integrating GWAS and QTL signals[23-25]. Colocalization seeks to

6
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identify shared causal variants between a molecular profile (e.g., gene expression or protein
level) and a disease trait in a genomic locus, therefore prioritizing candidate causal genes from
GWAS loci. COLOC is a popular tool for colocalization between pairs of genetic association
studies using the Bayesian model (Figure 2)[26]. COLOC takes summary data of eQTL and
GWAS as input to compute the probability of five hypotheses: HO corresponding to no eQTL
and no GWAS association in the region; H1 corresponding to association with eQTL but no
GWAS association, or vice-versa (H2); H3 corresponding to eQTL and GWAS association but
independent signals; H4 corresponding to shared eQTL and GWAS associations[23, 27].
MOLOC, a multi-trait extension of COLOC, was designed to compare association signals for
multiple traits which could be used to pinpoint the regulatory mechanism of GWAS
variants[26]. In the case of colocalization among eQTL, mQTL, and GWAS signals, the eQTL
signal helps pinpoint the responsible genes in GWAS loci, while the mQTL signal helps
identify the epigenetic mechanisms that impact gene expression, and which in turn affect

disease risk[28].
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Figure 2 Example of one configuration under different hypotheses. A configuration is
represented by a binary vector for each trait of (0,1) at a length of n=9, the number of shared
variants in a region. The two traits shown in the figure are eQTL and GWAS signal. The value
of 1 means the variant of the position is causally related to the trait, 0 vice versa. The top plot,
corresponding to hypotheses 1 and 2, means that only one trait has a causal variant in the locus.
The middle plot, corresponding to hypothesis 3, means that two traits have different causal
variants in the locus. The bottom plot, corresponding to hypothesis 4, means that both traits

share the same causal variant in the locus. The figure was adapted from Giambartolomei[26].

The tissue of action (TOA) score exerts a new strategy to partition the effects of variants
on disease in the context of tissues or cell types[29]. For each GWAS signal, the TOA method

systematically partitions posterior probabilities from the Bayesian fine-mapping method by
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integrating tissue-specific functional annotation and expression data. The TOA score reflects
the probability of genetic variant functioning in a specific tissue or cell type. As complex
diseases are usually multiple tissues or cell types involved, the TOA score provides valuable

guidance for in vivo/vitro experiment validation in the post-GWAS era.

1.3.2 Phenome-wide association study (PheWAS)

Phenome-wide association study (PheWAS), an alternative/complementary approach to the
GWAS methodology, is to estimate associations of single genetic variants with a wide range
of phenotypes. A fundamental difference between GWAS and PheWAS designs is the direction
of inference: PheWAS studies pleiotropy of SNPs, a genotype-to-phenotype strategy; GWAS

studies causality of SNPs, a phenotype-to-genotype strategy[30].

The PheWAS approach was originally developed due to the widespread availability of
both anonymized human clinical electronic health record (EHR) data and matched genotype
data. One of the main components of EHR is the International Classifications of Diseases
version 9 (ICD9) codes, which includes information of 17,000 phenotypes binned into different
hierarchy codes. In most cases, PheWASs divide cohorts into “cases” if participants have ICD9
codes related to a specific trait/disease, or “controls” if participants do not. Usually, GWAS
SNPs are logical starting points for PheWAS because of the availability of association data.
Staring with a known disease-associated SNP, a PheWAS study performs association tests for
the specific SNP with a series of related traits. The significance level of PheWAS analysis is

estimated via a Bonferroni correction as 0=0.05/N (N the number of feasible models tested).

One of the major advantages of PheWAS is its potential to identify genomic variants
with pleiotropic properties. Investigating cross-phenotype associations of SNPs makes
PheWAS an important tool for understanding genetic associations among diseases/traits and

gene-disease associations, as well as elucidating mechanisms of GWAS risk loci[31-34]. For

9
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instance, a PheWAS work revealed that CCDC92, a novel GWAS risk locus of CAD, likely
affected CAD through insulin resistance pathways[31]. PheWAS has been proposed as a
possible aid in drug development through elucidating mechanisms of action, identifying

alternative indications, or predicting adverse drug events[35].

PheWAS design has challenges. PheWAS is a hypothesis-generating approach, which
is challenged by multiple comparison testing. The N used for calculating the significance
threshold can be varied greatly in different PheWAS designs. Suppose a SNP is tested for
associations with all traits listed in the ICD9, and the Bonferroni significance is 2.94e-
6=0.05/17,000. If we had multiple SNPs tested at the same time, the threshold would be even
higher. If we only tested associations of SNPs or SNP sets with several phenotypes, the
threshold would be lower. This phenomenon could lead to false positive or false negative
associations. Since PheWAS heavily relies on the annotation of traits/diseases, the depth and
breadth of annotation data influence the PheWAS results. Like GWAS, association regression
in PheWAS faces the problem of covering all possible covariates, which makes further

validation of PheWAS findings necessary.

1.3.3 Mendelian randomization (MR)

As mentioned in section 1.1.3, many risk factors are associated with CAD, such as LDL-C,
HDL-C, TG, inflammatory cytokines, larger BMI, Diabetes, and blood pressure. Finding the
causal nature of risk factors on the disease process is critically important in epidemiology
because these modifiable risk factors represent promising targets for primary intervention and
drug development[36]. Mendelian randomization (MR) uses genetic variants as instrumental
variables (1Vs) to infer whether risk factors (exposures) causally affect a health outcome which

is CAD in our case (Figure 3)[37]. In addition, the associations between exposures and

10
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outcomes reflected by MR analyses are genetic associations that are independent of

confounding factors.

In MR studies variants must fulfil three assumptions if they shall be used as
instrumental varbles: i) the genetic variants are associated with the exposure (i.e. the risk factor
- relevance assumption); ii) the genetic variants are associated with the outcome through the
studied exposure only (exclusion restriction assumption); iii) the variants are independent of
other cofounders which could affect the outcome (independence assumption)[37, 38].
Mendel’s Law of Independent Assortment that the alleles segregate randomly when passed
from parents to offspring, forms the foundation of MR. In addition, the germline genotypes are
determined at conception, they precede the investigated outcomes, and therefore observed
associations cannot be explained by reverse causation[39]. However, the wide existing
pleiotropy of genetic variants and the LD association among genetic variants raise scientists’

caution when performing MR analysis.

There are two types of MR designs: one-sample MR and two-sample MR (Figure 3)[39].
For one-sample MR analysis, the SNP-exposure associations and SNP-outcome associations
are estimated from the same sample, set. In two-sample MR, the SNP-exposure associations
are estimated in one sample set and the SNP-outcome association is estimated in a second
sample set. Compared with the one-sample MR study, the two-sample MR study doesn’t
require exposure and outcome to be measured in all data sets, which allows researchers to use
GWAS summary statistics from large consortia. This also improves transparency and

reproducibility.

The classic steps of performing two-sample MR analysis are: i) identify genetic variants
from a well-conducted GWAS; ii) obtain SNP-exposure associations from data set 1; iii) obtain

SNP-outcome associations from data set 2; iv) harmonize SNP effects on exposure and

11
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outcome; v) generate MR estimates; vi) perform sensitivity analyses. The inverse variance
weighted (IVW) method is the most efficient estimate of the causal effect when all genetic
variants are valid instruments[40]. IVV causal estimates could be biased when genetic variants
exhibit horizontal pleiotropy because it violates the assumption of exclusion restriction. As
mentioned in section 1.3.2, pleiotropy of genetic variants is inevitable in most MR studies with
the increased knowledge of the genetic basis of complex diseases. For sensitivity analysis,
scientists developed other robust methods, like MR Egger[41] and weighted median[42], that
can provide valid causal inferences under weaker assumptions than the standard VW
mythology. Egger regression can identify the presence of ‘directional’ pleiotropy and provide
a less biased causal estimate. The weighted median estimator provides a consistent estimate of
the causal effect even when up to 50% of the information contributing to the analysis comes

from genetic variants that are invalid 1Vs[42].

A
Confounders
Genetic instrument |
e.g. SNP Exposure > Outcome
Sample 1 Y, Sample 1 Y
B
Confounders
Genetic instrument
e.g. SNP Exposure Outcome
\ Sample 1 J Sample 2

Figure 3 One-sample and two-sample Mendelian randomization designs. (A) One-sample

Mendelian randomization (MR) measures both exposure and outcome in the same population.
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(B) In two-sample MR, associations of genetic variants with exposures and outcomes are

measured in non-overlapping populations. The Figure was adapted from Zheng[39].

The MR studies have identified many risk biomarkers, traits, and diseases relevant to
the pathogenesis of CAD (Figure 4)[43]. Risk factors displaying confirmation by MR may be
considered causal and include LDL-C, TG, LPA, IL6, non-fasting glucose, diabetes, obesity,
adiponectin, blood pressure, and telomere length. Vice versa, MR studies challenged the roles
of many biomarkers including HDL-C, CRP, lipoprotein-associated phospholipase A2 (LP-
PLA>), homocysteine, fibrinogen, bilirubin, and uric acid. Drugs targeting causal risk factors
defined by MR are attractive treatment targets for CAD. For example, statins are well-known
to reduce cardiovascular events and mortality in CAD patients because of their significant
lipid-lowering functions[44]. We have shown in our MR studies that genetically modulated
educational attainment may have implications for a series of unfavorable risk factor profiles,
such as BMI and hypertension, and, subsequently, affects the prevalence of CAD[45]. These
findings strengthen the importance of campaigns for enabling adequate schooling for

preventing CAD.
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MR studies
Negative/ Positive/
merely biomarkers true risk factors
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Diabetes (94)
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1 Telomere length
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Pentraxin 3 (s2)

Figure 4. Risk factors of coronary artery diseases identified by MR analyses. The figure was

adapted from Jansen[43].

1.4 Genetics-of-gene-expression panels

In the post-GWAS era, studying GWAS variants’ effects on gene expression is a critical step
to elucidating the genetic basis of common diseases or traits, which makes large-scale
examination of genotype and transcript data in the context of disease-relevant tissues or cell
types indispensable. The fast development of high-throughput technologies, such as the
genotyping array, whole-genome sequencing (WGS), whole-exome sequencing (WES), RNA
sequencing (RNA-seq), and single-cell RNA sequencing (scRNA-seq) accelerates the

efficiency and affordability of generating such massive genotype and gene expression data.

The Genotype-Tissue Expression project (GTEx) is one of the most popular
comprehensive public resources to study tissue-specific gene expression and regulation[18].
Samples of the GTEX project were collected from 54 non-diseased tissue sites of up to 1000

individuals for molecular assays including genotyping, WGS, WES, and RNA-seg. Among all
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GTEx donors, 84.6% are white, 67.1% are male, 32.1% are between 50-59 years old, and 36%
are between 60-70 years old. Furthermore, the GTEX consortium has also profiled SCRNA data
for eight tissues including breast, esophagus mucosa, esophagus muscularis, heart, lung,
skeletal muscle, prostate, and skin. Scientists can download the processed data, such as
expression and eQTL data, from the project portal, or apply for the secured data, such as
genotyping data and phenotype data, from the dbGAP platform. The GTEX portal also provides

a user-friendly interface and search engine at https://gtexportal.org/home/.

Different from GTEx which collected samples from healthy tissues, the Stockholm-
Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) represents the unique
genetics-of-gene-expression panel for CAD study[17]. Tissue samples of STARNET were
obtained from ~600 CAD patients during open thorax surgery, including atherosclerotic aortic
root (AOR), atherosclerotic-lesion-free internal mammary artery (MAM), blood (BLD),
subcutaneous fat (SF), visceral abdominal fat (VAF), skeletal muscle (SKLM), and liver (LIV).
The STARNET patients are mainly Caucasians (31% females), 32% had diabetes, 75% had
hypertension, 67% had hyperlipidemia, and 33% had an M1 before age 60. By New York Heart
Association criteria, 45% were class |, 42% class 11, 9% class 111, and 1% class IV CAD. DNA
was genotyped with the OmniExpress Exome array (lllumina, ~900k SNPs), and RNA was
sequenced using the HighSeq2000 platform. Researchers could apply the data from the dbGAP
database. A study comparing tissue-specific eQTLs between STARNET and GTEs showed
that STARNET had more eQTLs coinciding with CAD-associated risk SNPs suggesting that
risk SNPs were more active in the focus of infection[17]. STARNET also provides a browser
for exploring co-expression models inside and between tissues, which is at

http://starnet.mssm.edu/[46].
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1.5 UK Biobank (UKB)

UK Biobank (UKB) is the largest publicly available resource with deep phenotyping and
genomic data of around 500,000 UK residents aged 40-69 years old initially recruited from
2006 to 2010[47]. The study continuously collects extensive phenotypic and genotypic data
from all participants, including data from questionnaires, physical measures, sample assays,
accelerometry, multimodal imaging, genome-wide genotyping, and longitudinal follow-up for

a wide range of health-related outcomes.

The genome-wide genotyping data of ~500,000 participants released in 2016 was
performed using the UK Biobank Axiom Array. Approximately 850,000 variants were directly
measured, with>90million variants imputed using the HRC and UK10K + 1KG reference
panels. UKB provides different levels of genotyping data, such as before or after imputation,
to meet the needs of most applicants. Starting from 2016, UKB gradually released WES data
of participants. By the fourth season of 2021, the WES data of ~500,000 participants were
available for all participants[48]. The WES data measures the regions of the genome (about
2%) that encode proteins and is particularly suitable for identifying disease-causing rare
variants (see section 1.6). By 2021, the database also released telomere data for the ~500,000
participants and metabolic data for ~127,000 participants. UKB’s imaging study includes
measures such as white matter hyper intensities derived from the brain scans, visceral fat
derived from the abdominal scans, and left ventricular ejection fraction derived from the
cardiac scans. The imaging data of ~50,000 participants were released in 2020, extra 50,000
participants’ data could be expected in the near future. All data release information can be

found at https://www.ukbiobank.ac.uk/enable-your-research/about-our-data. UKB also

developed a Research Analysis Platform (RAP) powered by the DNAnexus

(https://www.dnanexus.com/), providing a secure, scalable, and cloud-based environment for

researchers to use UKB biomedical resources.
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The greatest sample size and widest scope of phenotype data make UKB the most
valuable resource for researchers of multiple fields. According to their statistics, the number of
annual publications using data of UKB increased from only one in 2012 to 690 in 2021. The
UKB resource was applied to multiple investigations of CAD revealing novel risk loci for
CADI49], identifying risk loci associated with aortic valve area from genotyping and imaging
data[50], and studying the interaction between polygenetic risk scores and monogenic

mutations[51], etc.

1.6 Rare mutation association study in complex disease

There are two controversial hypotheses about the contribution of genetic variants to individual
susceptibility to common complex diseases: the common diseases common variant (CDCV)
hypothesis, and the common disease rare variant (CDRV) hypothesis. The CDCV assumes that
common variants (e.g., MAF>0.01) are major contributors to complex diseases. The CDRV
supposes that rare genetic variants (e.g. MAF<0.01) play a more important role compared to
common variants[52]. Many studies have shown that rare variants usually have a larger effect
size on disease development than common variants which empowers the unique role of rare
variants in investing genetic pathogenesis of complex diseases[53]. Same to GWAS, the
association test for rare variants is a kind of hypothesis-free approach in which researchers do
not start with a certain functional hypothesis. The enrichment of rare variants provides
hypothesis-free evidence for gene causality. The rare missense, loss-of-function (LoF), and
gain-of-function (GoF) variants mimic the impact of gene knocking out or enhancing
experiments, which are ideal for functional analysis to elucidate new disease mechanisms. Rare
variants showing association for a disease could provide favorable targets for drug
development as their alleles mimic the effect of a modulated drug target. In addition, rare
variants with larger effect size on disease development could be biomarkers for personalized

medicine.
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The workflow of the rare variant association study is shown in Figure 5[54]. The first
step is to set up a work target that determines the variant calling platforms, genotyping, or
sequencing. Compared to the genotyping array, the NGS technology has the advantages of
massive scaling and high sensitivity in identifying rare variants. The next step is to call
genotype data and perform quality filtering on the raw data. For data called from genotyping
array, the quality control (QC) step is similar to GWAS, except that rare variants would be kept.
When data is called from NGS platforms, extra QC parameters are required, such as sequencing
depth, coverage, heterozygosity/contamination rate, etc. The third step is to assay function of
rare variants using different in-silico methods, such as LRT score[55], MutationTaster[56],
PolyPhen-2 HumDiv, PolyPhen-2 HumVar[57], and SIFT[58]. There is a variety of annotation
sources to predict the consequence of genetic variants. SAONSFP (v4.1) is the largest database
designed to facilitate the functional annotation step by providing deleteriousness prediction and
functional annotation for all potential non-synonymous and splice-site single nucleotide
variants (a total of 84,013,093) in the human genome[59]. ClinVar is a freely accessible, public
archive of reports of the associations of genetic variations with human phenotypes, with
supporting evidence[60]. Tools like Variant Effect Predictor (VEP)[61], snpEff[62], and
ANNOVAR[63] assemble these tools and resources into a set providing a single-line command

to annotate the effect of genetic variants.

The next step is to perform an association test between functional variants and
diseases/traits. The models designed for association analysis can be generally classified into
two types: single-variant level and gene- or region-based aggression tests. In single-variant
tests, the association is typically evaluated by linear regression for continuous traits and by
logistic regression for binary traits. Single variant tests for rare variants are only suitable when
the sample size is large enough; otherwise, they are less powerful than the tests for common

variants. Different from single-variant tests, gene- or region-based aggression tests increase the
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statistical power by evaluating the cumulative effects of multiple genetic variants in a gene or
region. Based on varying assumptions about the underlying genetic models, methods for
aggression test can be broadly categorized into five classes: burden test, adaption burden test,
variance-component test, combined burden and variance-component (VC) test, and
exponential-combination (EC) test[54]. Fisher’s exact test for categorical phenotypes is the
simplest combined test. The Sequence Kernel Association Test (SKAT), a widely used score-
based VC test, is robust to groupings including variants with both positive and negative

effects[64].

Set up analysis plan

Choose a genotyping/sequencing
~ platform

Variant calling and QC

Check DNA contamination,

e global QC, and per-variant QC

Bioinformatics assay and functional annotation
&
Test for rare-variant association
v

Prioritization of association signals

Select genes or variants
v on the basis of statistical significance
and biological relevance
Replication of the top regions

Figure 5 Workflow of rare variant association study. The figure was adapted from Lee[54].

The association test of rare variants informs the posterior probability of the disease
relevance of a gene, which could guide the decision-making for biological validation. By
performing a meta-analysis of exome-chip studies of European descent involving 42,335
patients and 78,240 controls, the CARDIOGRAMplusC4D Consortium identified associations

of variants in ANGPTL4, LPL, and SVEP1 with CAD[65]. Following the genetic study, an in-
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vivo investigation was carried out to elucidate the mechanism of the novel gene SVEP1 in CAD

development[66].

1.7 Transcriptome-wide association study

Transcriptome-wide association studies (TWAS) have been recently proposed as an invaluable
tool for annotating GWAS risk loci by investigating the potential gene regulatory mechanisms
underlying variant-trait associations. The expression level of a gene can be decomposed into
three components: a genetically determined component, a component altered by the trait itself,
and a component determined by the remaining factors (including environment)[67]. Based on
the assumption, TWAS reflects associations between genetically regulated gene expression

(GReX) and diseases or traits.

The TWAS methodologies are broadly separated into two categories: the individual-
level predictor and the GWAS summary-based predictor. The first step of both methodologies
is to train prediction models from reference genetics-of-gene-expression panels which scale
genotype and expression data simultaneously (Figure 6). Then the individual-level predictors
would apply prediction models to impute expression profiles from individual genotypes of
GWAS cohorts and perform association test between predicted expression and traits (section
1.7.1). However, the GWAS summary-based predictors take GWAS summary data as input to
examine associations between intermediate gene expression levels and phenotypes (section

1.7.2).
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Expression reference
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Figure 6 An overview of the TWAS. Briefly, TWAS involves i) training tissue-specific
prediction models from references; ii) predicting genetically regulated expression (GReX)
from genotype data using prediction models; iii) associating GReX with phenotypes. The

figure was adapted from Wainberg[68].

1.7.1 Individual-level predictors

PrediXcan was the first individual-level predictor which aggregates impacts of variant set on
gene expression[67]. Studies have suggested that aggregating variants by integrating gene
expression or other omics may better explain underlying biological mechanisms and increase
the power of association studies beyond GWAS[7]. Based on PrediXcan, Gao developed
EpiXcan[69] which outperformed PrediXcan in prediction performance by integrating
epigenome annotation from Roadmap Epigenomics Mapping Consortium (REMC)[70]. It
firstly calculates SNP priors by using a hierarchical Bayesian model (qtIBHM) that jointly
analyzes REMC epigenome annotations and eQTL statistics. Then, priors are transformed with
an adaptive mapping function to penalty factors, which are then utilized by the weighted elastic

net (WENet), a model selection technique that combines LASSO and Ridge regression and
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seeks to identify which predictor variables to include in a regression model. The WENet model
analyzes SNP priors, genotypes, and gene expression traits to estimate genetically regulated

expression across different. The simulated expression value for each gene is

y=XXp + ¢

Here, X denotes the genotype matrix of cis-SNPs included in the prediction model, £ denotes

the coefficient vector of the cis-SNPs, X’ denotes matrix-vector product, and & denotes

residual value. The criterion of the WENet model can be written as:

Cwener (0,4 @) = Xity[yi — Xif]? + Aalflw + M1 — )BTWB,

Blo= ), B

In the above equations, n is the number of samples used for training model; Xi, 1 £ i < n, is

the i-th row-vector of matrix X containing genotypes with dosages from 0 to 2; m is the number
of cis-SNPs included in the model; w is the weight matrix that stores the penalty factors for

SNPs. The a parameter is set to 0.5 and .7 is estimated via cross-validation (CV).

We could apply the EpiXcan pipeline to train prediction models in a tissue-specific
fashion from genetics-of-gene-expression panels, such as GTEx and STARNET (see section
1.4), and use these models to predict gene expression from individual-level genotype data.
Finally, we can perform association analyses on predicted expression using regular models,

such as logistic regression for categorical traits, and linear regression for quantitative traits.
1.7.2 Summary-based predictors

In many cases, the individual-level genotype data are not available, but the GWAS summary

data are accessible via general collective resources, such as the GWAS catalog, or trait-specific
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consortia, such as CARDIOGRAMplusC4D for CAD and GLGG for lipid traits[71]. In this
case, the GWAS summary-based predictors become valuable. The tool Summary PrediXcan
(S-PrediXcan) was derived from PrediXcan by the same research group[27]. S-PrediXcan uses
prediction models trained by PrediXcan, takes summary data as input, and estimates the Z-
score (Wald statistic) of the association between predicted gene expression and a phenotype.
The Z-score for gene g is estimated as:

3 6. B

m
9™ zi )
In this formula, m is the number of cis-SNPs included in a gene’s prediction model, w;; is the
weight of i-th SNP in the expression prediction model, 4, is the estimated variance of i-th SNP,
ag Is the estimated variance of gene g, B, is the estimated effect size of i-th SNP from GWAS
summary data, and se(j3,) is the standard error of i-th variant in GWAS summary data. The
weights of cis-SNPs on gene expression derived from EpiXcan can also be applied.
FUSION is another summary-based TWAS tool[72]. Different from the elastic-
net(ENet) model used by PrediXcan or EpiXcan, FUSION uses the Bayesian sparse linear
mixed model (BSLMM)[73] in estimating weights for cis-SNPs. The FUSION package also
provides other weights-estimating models including BLUP, ENet, and top SNPs. A comparison
study has shown that FUSION and S-PrediXcan are consistent and complementary to each
other[74]. Different from most TWAS tools focusing on cis-SNPs, Bayesian genome-wide
TWAS (BGW-TWAS) leverages both cis- and trans-eQTL information for a TWAS[75]. With
the accumulation of knowledge about functional genomics, the strategy of integrating multi-
omics is en vogue. MOSTWAS is the recently published multi-omics strategy for TWAS

analyses[76].
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1.7.3 Opportunities and challenges of TWAS

TWAS, on the one hand, is a promising approach to prioritizing causal genes at GWAS loci in
a tissue-specific fashion, on the other hand, the method can identify novel risk genes residing
outside of GWAS risk loci. For instance, Wu prioritized 48 risk genes for breast cancer by
performing TWAS analyses on 229,000 participants, of which 14 genes were independent of
any reported GWAS loci[77]. Gene silence experiments on novel genes identified 11 novels
that had effects on cell proliferation and/or colony-forming efficiency. In another work, the
gene expression imputations across multiple brain regions in over one million participants
identified 67 non-MHC (major histocompatibility complex) risk genes for schizophrenia, of

which 14 did not fall within previous GWAS loci[78].

Despite the great contribution of providing insights into complex diseases, TWAS has
certain limitations. TWAS combines eQTL reference panels with large-scale genotype data to
test associations between genes and diseases. The pleiotropy features of eQTLs, and LD
associations among eQTLs often result in multiple gene hits at the same locus[68]. In some
cases, multiple genes significant at the same locus are due to co-expression with causal genes
or co-regulated by the same set of eQTLs or those in high LD. Therefore, further validation is
needed to check the causality. Another big challenge of TWAS is how to select appropriate
tissues for testing association with diseases. Most candidate causal genes drop out after
switching to tissue with has no clear mechanistic relationship to the trait due to the lack of
sufficient expression or sufficiently heritable expression[68]. For TWAS analysis, the eQTL
reference panels are critical in building prediction models. The differences in sample
collections, expression scaling techniques, disease status of panel samples, etc., could create

consistent outcomes of TWAS but might also be complementary to each other. Therefore,
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combing TWAS results from different reference panels could provide richer insights into

diseases[17].

1.8 Polygenic risk score (PRS)

1.8.1 Definition and analysis pipeline of PRS

A polygenic risk score (PRS) is a genetic estimate of an individual’s liability to a trait or disease,
calculated from a set of independent variants usually based on large-scale GWAS data[79]. For
each individual, PRS is a sum of the number of risk alleles at each variant (0, 1, 2), which could

be unweighted, or weighted by its effect size estimated derived from GWAS[80].

The PRS analysis process is shown in Figure 7[79]. PRS can be characterized by the
use of base and target data. The risk loci and betas or odds ratio (OR) weights are retrieved
from base data and then applied to calculate PRS for target data. The QC for both base and
target data sets are similar to standards of classic GWAS. In addition, the “QC checklist”
specific to PRS analysis has to be outlined: i) using base GWAS data with heritability h?>0.05;

ii) specifying effect and non-effect alleles from base GWAS data; iii) using target data with

sample size of 2100 individuals (or effective sample sizes>100 for case/control data) if PRS

would be applied for association test[79]. There are two main options for approximating PRS.
The classic method is called the clumping + thresholding (‘C+T”) method, which clumps SNPs
passing the GWAS significance threshold (see section 1.2) so that SNPs retained are largely
independent of each other. Another method is beta shrinkage which all SNPs are included,
accounting for the LD between them. Many tools have been developed for calculating PRS,

like PLINK[81], PRSice-2[82], LDpred[83], lassosum[84], etc.
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Figure 7 The PRS analysis process. The figure was adapted from Choi[79].

1.8.2 Application of PRS

In basic science, PRS has been used to evaluate associations between phenotypes and to

elucidate risk factors that may play a mediating role along the causal pathway to disease[85].
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The MR method has the advantage of featuring causal relationships among traits (see section
1.3.3). Therefore, the combination of PRS and MR analysis can improve detection rates for
causal relationships which can be particularly useful when evaluating associations between
genetic liability for a given trait and hundreds of diverse health outcomes[85]. We named this
‘PRS+MR’ strategy. Zeng et al. detected a negative association between PRS of education
attainment and CAD risk, then they used the MR method to deduct the causal pathway of how
genetic education attainment reduces CAD risk through its impacts on a series of risk
factors[45]. This strategy was also applied to one of my PhD works which studied the genetic

association between intelligence score and CAD risk (see section 3.1)[86].

In the clinical setting, PRS can be implemented in three key stages (Figure 8)[87]. First,
PRS contributes to risk stratification in an apparently healthy population by screening for high-
risk groups followed by intensified strategies for disease prevention and early intervention.
Second, PRS could be used in clinical diagnosis when people are in the early phase of diseases
without significant clinical diagnostic signs. Third, it is possible that in the future, PRS could

contribute to personalized medicine and outcome prediction.

There is a long way to go before PRS could be massively applied in clinical settings.
PRS itself is not strong enough in the prediction of disease incidence. In CAD, PRS didn’t
outperform in predicting subsequent CAD events as compared to other clinical risk predictors.
But when both were combined, it was more accurate than either PRS or clinical risk predictors
alone[87]. Studies also showed that the combination of PRS in subjects affected by monogenic
variants with low to moderate penetrance could increase the accuracy of risk prediction. The
average probability of CAD by the age of 75 years old subjects was found to increase from 13%
in noncarriers of familial hypercholesterolemia (FH) variants to 41% in carriers of FH

variants[88]. Likewise, in carriers of FH variants, a substantial gradient of risk was observed
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depending on the PRS. Similar trends were also observed in breast cancer[88] and prostate

cancer[89].

where PRS
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Figure 8 An overview of the population cohorts where polygenic risk scores could be applied.

The figure was adapted from Wray[87].

1.8.3 Further discussion about PRS

Ethnicity

By far, most GWAS studies were conducted on individuals of European decedent, and genomic
research of the non-European population is significantly underrepresented. More and more
scientists put their attention to trans-ethnic GWASs because of genetic diversity among
ethnicities[49, 90]. Along with increased identification of ethnicity-specific and trans-ethnic
loci, a question about PRS study was raised: which is better, ethnicity-specific or trans-ethnic
PRS? The latest work about CAD GWAS identified 8 novel Japanese-specific risk loci as well

as 35 novel trans-ethnic loci[90]. This work also suggested that PRS derived from trans-ethnic
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loci outperformed PRS derived either from Japanese or European risk loci. However, further

work is needed to confirm this phenomenon.
Multi-PRS strategy

In classic studies, the PRS is estimated based on risk loci associated with the target trait.
Inspired by the pleiotropy feature of genetic variants and genetic correlations between complex
traits, the multiple polygenic risk score (multiPRS) approach improved prediction performance
by using the joint predictive power of multiple polygenic scores in one regression model[91,

92]. For instance, the formula of multiPRS for CAD could be represented as

multiPRScap = B1PRScap + B2PRSpiabetes + BsPRSHypertension + BsPRS1pL—c¢

+ .- covrs

, In which multiPRS;,p is a weighted combination of CAD and other risk traits’ PRS. The
mulitPRS approach may be useful in investigating developmental, multivariate and gene-
environment interplay issues, stratifying individuals according to the risk of conditions, and

eventually, improving performance in personalized medicine.
Polygenic resilience score

Polygenic resilience is a reverse concept of PRS. It studies genetic variants that promote
resistance to disease by reducing the penetrance of risk loci, wherein resilience and risk loci
operate orthogonally to each other[93]. Currently, there is only one study about polygenic
resilience score conducted by Hess et al[93]. Based on schizophrenia PRS, they stratified
samples into different risk groups. The controls from high PRS groups were defined as high
resistance controls. From the high-risk group, they retrieved genetic resilience variants by
performing GWAS analysis. The works suggested that positive correlation between polygenic

resilience score and PRS in the whole cohort, but no correlation in case samples. The
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correlation coefficient reached the highest in controls of the high PRS group which verified the
hypothesis of the orthogonal relation between genetic risk and resilience. Studying polygenic
resilience factors could give us extra insights into why participants in the high PRS group are
resilient to developing disease and might promote a more sophisticated PRS model with better

performance than the current one.

1.9 Genetics of CAD

1.9.1 GWAS of CAD

Decades of GWASSs have generated wealthy knowledge of genetic factors contributing to CAD
etiology. Due to the endeavor of large CAD consortia, as well as national and international
collaboration, 321 genome-wide significant loci have been associated with CAD (Figure 8)[94].
The sample size and diversity of participants are still increasing in multiple biobanks, such as
CARDIoGRAMplusC4D, UKB, Japanese biobank, Million Hearts GWAS, Million Veteran
Program, and All of Us Research Program. A combination of these biobanks would increase
the possibility of identifying novel risk loci and studying ethnicity-specific risk lock. Current
knowledge of CAD GWAS brings us to the post-GWAS era to i) elucidate the disease-
associated mechanisms underlying CAD loci, ii) prioritize potential causal genes and novel
drug targets for the disease, and iii) harness CAD genetic variations as the age-independent

biomarkers for risk stratification, disease prevention, and personalized medicine.
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Figure 9 Genes mapped to 321 CAD risk loci and related pathophysiological pathways of

atherosclerosis. The figure was adapted from Chen[94].

1.9.2 Prioritization of CAD causal genes by in-silico methods

The in-silico methods of prioritizing risk genes have been discussed in section 1.3. Strategies
of pinpointing causal genes for CAD include but are not limited to i) vicinity of genes to risk
loci; ii) eQTL mapping in CAD-relevant tissues according to reference panels like GTEx and
STARNET,; iii) monogenic mutations on candidate genes associated with CAD or its risk
factors; iv) fine-mapping with functional annotation; v) colocalization between GWAS signal
and genes’ eQTL or other quantitative signals; vi) phenome-wide screening for pleiotropy of
risk loci; vii) cross-mapping with consortia of mouse models like Hybrid Mouse Diversity

Panel (HMDP)[95], the International Mouse Phenotyping Consortium (IMPC)[96] or Mouse
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Genome Informatics database (MGI)[97]; viii) integrative genomic analysis (IGA) to combine
results from multiple in-silico methods, which has emerged as a powerful strategy for
identifying causal genes[98]. Moreover, the fast accumulation of single-cell data and
metabolomics data would greatly benefit causal gene selections and pathogenic mechanism
study[99, 100]. However, TWAS of CAD, which could systematically identify tissue-specific
risk genes for CAD has not been performed yet. This forms the rationale of my PhD research

on CAD TWAS.

Il Methods

2.1 Preprocessing of 11 GWAS cohorts

Genotype data of ten CARDIOGRAMplusC4D[86, 101-109] cohorts and UKB[47] were used

in both projects building the PhD thesis (Table 1).
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Table 1 Overview of eleven individual-level genotype cohorts.

Il Methods

Wide Human SNP Array 6.0

CAD case Control
Study Array N_case_female( N_control_femal
N_case N_control
%N _cases) e(%N_controls)
GerMIFSI Affymetrix Mapping 500K Array Set 207(33.3) 622 795(51.3) 1551
Affymetrix Genome-
GerMIFSII _ 244(20.5) 1192 604(48.1) 1256
Wide Human SNP Array 6.0
Affymetrix Genome-
GerMIFSIII _ 212(20.1) 1055 696(48.3) 1441
Wide Human SNP Array 5.0/6.0
Affymetrix Genome-
GerMIFSIV _ 336(35.2) 954 697(61.4) 1136
Wide Human SNP Array 6.0
GerMIFSV Illumina HumanOmniExpress/Omniuni_2.5 593(24.3) 2437 827(52.5) 1574
GerMIFSVI [llumina PsychChip_v1-1 492(30) 1639 609(51.3) 1186
GerMIFSVII Infinium Global Screening Array-24 1031(33.7) 3062 1886(54.5) 3462
Affymetrix Genome-
WTCCC 395(20.8) 1900 1481(50.9) 2911
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Cardiogenics Illumina Human660W-Quad 49(12.8) 382 239(59.2) 404

MIGen Affymetrix Mapping 500K Array Set 646(22.3) 2901 733(24.3) 3018
UK BILEVE Axiom array n~=50,000

UKB 4465 (22.0) 20310 231869(57.0) 406996

UK Biobank Axiom array n~=450,000
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2.1.1 Ten CARDIoOGRAMplusC4D cohorts

Individua-level genotyping data of 17,687 cases and 17,854 controls were collected from ten
CARDIoGRAMplusC4D cohorts including the German Myocardial Infarction Family Studies
(GerMIFS) 1-VI11[86, 101-106], Wellcome Trust Case Control Consortium (WTCCC)[107],
LURIC[108] study and Myocardial Infarction Genetics Consortium (MIGen)[109]. All
samples were of European descent, mostly from Germany or UK. The subjects building the

MIGen cohort were from several European countries and the United States.

All studies went through the following quality filtering steps (as mentioned in section
2) using plink (v1.9)[13] before imputation: individual-level calling rate>0.98, SNP-level
calling rate>0.95, MAF>0.01, sex consistency between the reported and the genotype-derived,
deviation from HWE P>1e-5, Identity By Descent (IBD)<0.125 (individuals were distant to
each other more than the third generation), heterozygosity rate within mean + 3*SD. After
quality filtering of genotype level, all studies except GerMIFS VII were imputed according to
the reference of 1000 Genomes Phase | integrated variant (v3)[10] using SHAPEIT2[110] and
IMPUTEZ2[111]. For GerMIFS VI, the reference data was HRC[11]. All SNPs were mapped
to NCBI GRCh37/hg19. After genotype imputation, we conducted quality filtering again using
the following parameters: SNP-level calling rate>0.98, MAF>0.01, and deviation from HWE

P>1e-5.
2.1.2 Genotype data of UKB

The UKB is globally the largest biobank with deep phenotypic and genomic data (see section
1.5)[47]. We obtained imputed genotype data from 3" release of UKB. The data were imputed
using a combination of two reference panels. The first panel is the HRC reference panel[11].
The second is a merged reference panel of the UK10K haplotype panel and the 1000 Genomes

references. If variants were imputed from both reference panels, the HRC imputation result
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was retained. A series of QC were done on the imputed data: MAF>0.00001, imputation
info>0.4, SNP-level calling rate>0.95, individual-level calling rate>0.98, sex consistency,

kinship coefficient<0.088, and deviation from HWE P>1e-5.

All phenotypes were defined by either self-reported, hospital episode, and/or death
registry data. The definition of CAD encompassed individuals with fatal or normal myocardial
infarction (MI), percutaneous transluminal coronary angioplasty (PTCA), or coronary artery
bypass grafting (GABAD). MI was defined as hospital admission or cause of death due to
ICD10 121-124, 125.2, ICD9 410-412, and self-reported 1075. PTCA, CABG, and triple heart
bypass were defined as hospital admission or cause of death due to OPCS-4 K40-K46, K49,
K50.1, K75, and self-reported 1070, 1095, 1523. Finally, we got 20,310 hard CAD cases and

randomly selected 25,000 non-CAD samples as controls.

2.2 Methods used in the Intelligence-CAD project

In this work, we firstly constructed a genetic intelligence score (glQ) based on 242 SNPs
independently  associated  with  intelligence[112] for participants from ten
CARDIoGRAMplusC4D[86, 101-109] cohorts and UKB[47]. The ‘C+T’ method (see section
1.8.1) of PRS estimating was applied to estimate glQ. In short, glQ is a sum of the weighted
dosage of effect alleles of 242 independent intelligence variants. As to missing variants in the

genotype data, we replaced them with reference allele frequencies.

We tested the association between glQ and CAD risk in eleven cohorts using logistic
regression models. For all cohorts except UKB, two principal components were added to the
regression model to adjust the bias of population stratification. As the genotype data of UKB
was scaled from two array platforms and has a relatively more complicated ethnic background,

the top five principal components and array platform were added to the regression model.

36



Il Methods

In UKB, we also studied associations between glQ and serial risk factors of CAD
including smoking, hypertension, BMI, T2D, HDL-C, and LDL-C. Logistic regression models
were applied for binary traits, and linear regression models were applied for quantitative traits.
All regression models were adjusted by the top five principal components and array platforms.
Next, the significant risk factors were applied as adjustments of regression models between

glQ and CAD to study their mediatory roles.

Because of genetic overlaps between intelligence and educational attainment, the
effects of intelligence on CAD and its risk factors might be false positive. We defined the direct
effect of intelligence as the effect of intelligence that was not mediated by educational
attainment. Lee et al. reported 1271 independent SNPs associated with educational attainment
through a meta-analysis in 1.1 million persons[113]. Seven SNPs associated with both
intelligence and educational attainment were excluded during recalculating glQ. Then same

regression analysis was performed to study the direct effects of intelligence.

To further study causal pathways from intelligence/education to CAD risk, a
multivariable two-sample MR analysis was carried out. The GWAS summary data of CAD and
its risk factors, educational attainment were acquired from CARDIoGRAMplusC4D
(CAD)[104], GIANT (BMI)[114], TAG (smoking)[115], GLGC (HDL-C, LDL-C)[71],
SSGAC (educational attainment)[113], and DIAGRAM (T2D)[116]. Three MR methods were
used including IVW, MR-egger, and weighted median. Lastly, MR sensitivity analyses were
performed for intelligence and educational attainment respectively. SNPs moderately
associated with CAD and risk factors (P<0.001) were removed from intelligence SNP and

education SNPs respectively.
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2.3 Methods used in the TWAS project

As introduced in section 1.7.1, the first step was to train prediction models for risk tissues of
CAD. We adopted the existing expression prediction models trained using the EpiXcan
pipeline by Zhang et al., including models of AOR, MAM, LIV, SF, VAF, BLD, and SKLM
based on the STARNET panel[17], and models of AOR, LIV, BLD, SF, VAF, and SKLM
based on the GTEXx panel[18]. We trained prediction models for another two risk tissues of
CAD, arterial wall coronary (COR) and tibial artery (T1B) datasets which are only available in
the GTEX panel (V7), using the EpiXcan pipeline. All individuals used for prediction models
were restricted to European descent. First, genetic variants were filtered out if they matched
one of the QC parameters: calling rate<0.95, MAF<0.01, and HWE<1e-6. Second, for
expression data, we did sample-level quantile normalization and gene-level inverse quantile
normalization using preprocess codes of the PredicDB pipeline. Third, we calculated SNP
priors using gtIBHM that jointly analyzed epigenome annotations of aorta derived from
REMC[70]. Lastly, the SNP priors, genotype data, and expression data were jointly applied to
10-fold cross-validated WENet to train predicting models by deploying the EpiXcan

pipeline[69]. The predictors were filtered by cross-validated prediction RZ>0.01.

Next, we applied prediction models of nine risk tissues to impute GReX from individual
genotype data of ten CARDIOGRAMplusC4D cohorts[86, 101-109] and UKB[47], which, in
total, having of 37,997 cases and 42,854 controls. For each tissue, we performed association
tests between GReX and CAD using the logistic regression model in 11 genotype cohorts and
performed meta-analysis for all cohorts to get summarized TWAS statistics. In total, we
identified 114 genes representing 193 gene-tissue pairs thresholding Bonferroni-corrected

significance.
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Then, we did a series of in-silico analyses to check the plausibility of the TWAS gene
list. i) We compared the genomic position between TWAS genes and GWAS loci using
MAGMA[117]. ii) We compared TWAS genes with gene lists resulting from colocalization
analyses. In this part, the tool coloc[23, 27] integrated eQTL data from either GTEXx or

STARNET and GWAS summary data from CARDIoGRAMplusC4D[65], providing

significant gene-tissue pairs which posterior probability of hypothesis 4, PP4>0.55 (section

1.3.1). iii) To check the biological function and pathogenicity of TWAS genes, we did pathway
enrichment analysis using ClueGO[118] and disease enrichment analysis based on
DisGeNET[119]. iv) We also performed gene-based rare variant association analysis using
WES data from UKB on 200,632 participants. The damaging rare variants residing in TWAS
genes were defined by one of five in-silico methods (LRT score, MutationTaster, PolyPhen-2
HumDiv, PolyPhen-2 HumVar, and SIFT) by the annotation resource dbNSFP 4.1a[59] using
the VEP tool[61]. For gene-based tests, we used Fisher’s exact test for binary traits and the

linear regression model for quantitative traits.

Finally, our attention was focused on 18 genes that resided outside known GWAS loci,
which we called “novel”. To study the susceptibility of novel genes, we did in-silico analyses
and in-vitro validation. We studied the genetic association between novel genes and a series of
lipids traits in human genotype data from UKB. We also studied their association with lipid
traits in atherosclerosis mouse models from the Hybrid Mouse Diversity Panel (HMDP). Both
human genotype data and mouse expression data suggested connections between novel genes
and lipid traits. Of these novel genes, KPTN and RGSI9, which were rarely studied before, gave
significant signals in liver tissue by TWAS analysis. So, we finally carried out knockdown
experiments in human hepatocytes using dual CRISPR strategy for KPTN and RGS19. Cells

for measurement of secretion of triglycerides, cholesterol, and APOB100 were cultured for 16
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hours in serum-free medium. Medium triglycerides and cholesterol were enriched five times
by vacuum centrifuge and measured with colorimetric kits, triglycerides (cobas) and CHOL2

(cobas), respectively.

111 Discussion

3.1 Genetic association between Intelligence and CAD

This work applied ‘PRS+MR’ strategy which firstly use PRS to filter genetic association

between traits, then apply MR method to study casual effects on associated traits (see section

1.8.2).

We firstly tested association of glQ with CAD and its risk factors. In this part, we
observed that one standard deviation (SD) increase of glQ was related to a 5% decrease of
CAD risk (odds ratio [OR] of 0.95; 95% confidence interval [CI] 0.93 to 0.98; P=4.93e-5),
which was validated in UKB (OR=0.97; 95% CI 0.96 to 0.99; P=6.4e-4). In UKB data, we
also observed significant inverse correlations between glQ and risk factors of CAD including
BMI (OR=0.899; 95% CI 0.886 to 0.911; P=5.4e-49), smoking (OR=0.981; 95% CI 0.975 to
0.987; P=8.3e-10), T2D (OR=0.966; 95% CI 0.951 to 0.980; P=4.1le-6), hypertension
(OR=0.987; 95% CI 0.981 to 0.993; P=3.8e-5), and a positive correlation with HDL-C
(OR=1.007; 95%CI 1.006 to 1.008; P=1.3e-29). The associations of glQ with CAD and its risk
factors were largely attenuated after the adjustment of measured intelligence and educational
attainment. Same phenomena happened between glQ and CAD risk with the adjustment of risk
factors significantly associated with glQ. These findings suggested intermediate role of risk

factors, measured intelligence, and educational attainment between glQ and CAD.

Next, we applied two-sample MR analyses to depict casual pathway from genetic

intelligence to CAD risk. One SD increase of intelligence resulted in decrease of CAD risk by
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25% (OR=0.75; 95% CI1 0.69 to 0.81; P<1e-10), decrease of BMI by 0.1 kg/m2 (95% CI -0.16
to -0.14; P=1.02e-3), decrease of T2D risk by 15% (OR=85; 95% CI 0.77 to 0.95). One SD
increase in the education years resulted in decrease of risk of CAD by 38% (OR=0.62; 95% ClI
0.58 to 0.66; P<1e-10), decrease of BMI by 0.32 kg/m2 (95%CI -0.37 to -0.27; P<1e-10),
increase of HDL-C by 0.19 mmol/L(95% CI 0.14 to 0.25; P<1e-10), decrease of the risk of
smoking by 43% (OR=0.57; 95%CI 0.501 to 0.642; P<1e-10), and decrease of T2D risk by
47% (OR=0.53; 95%CI 0.49 to 0.57; P<1e-10). The effects of educational attainment on CAD

and its risk factors displayed the same direction as intelligence but were stronger in magnitude.
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Figure 10 Pathways from Pathway from higher glQ to lower risk of CAD.

In conclusion, using genetic approaches, we depicted a pathway from glQ to CAD risk
The higher glQ is associated with the higher measured intelligence and longer educational
attainment, both of which appear to reduce the prevalence of risk factors of CAD including
BMI, smoking, T2D, and hypertension, and increase HLD-C, which in concert subsequently
reduce the prevalence of CAD (Figure 10). Moreover, the effects of educational attainment on
risk factors and CAD appear to be stronger than the effects of intelligence. Thus, repetitive
campaigns throughout schooling may be worthwhile for preventive reasons as they may

ameliorate the association between glQ and unhealthy lifestyle.
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3.2 TWAS for CAD

Our work is the first to systematically identify susceptibility genes of CAD in tissue-specific
fashion using TWAS method. The main findings of this work were summarized in Figure 11.
We first trained gene expression prediction models for nine CAD-relevant tissues using
EpiXcan based on two largest genetics-of-gene-expression panels, STARNET and GTEx. We
next explored these prediction models on individual level genotype data of 37,997 CAD cases

and 42,854 controls. Our TWAS identified 114 CAD risk genes to be differentially expressed

by genetic means. Of these, 96 genes were resided within £1Mb region of previously identified

by GWAS loci (a sort of positive control) and 18 were novel. For 114 TWAS genes, we
performed stepwise analyses to prove their plausibility, biological function, and pathogenicity
to CAD, including analyses for colocalization, damaging mutation, pathway enrichment,
phenome-wide associations with human data and expression-traits correlations using mouse
data. Finally, we focused on two novel genes, RSG19 and KPTN, and conducted
CRISPR/Cas9-based knockdown experiments for them in human hepatocytes. We observed
reduced secretion of APOB100 and lipids in the cell culture medium, i.e., a functional

explanation for the association findings.

42



111 Discussion

COR AOR Liv SF VAF SKLM
i ——
i @
| STARMET f GTEx |
EpiXcan tissue models
’ N
\
A
TWAS
e B
1
[
i
i
¥
Controls _ CAD cases
Damaging
mutation . ) 3
analysis W, DisGaMET
e - P _.~W  analysis
3. : e
L X
:F EEFL :'-_::_.-
" [ — HOMERY Rasd .
et Tkl it S— > ratiy
Colocalization e analysis
by wille im ml i 13 z;a i ;i}ﬂfi:
/r ‘-\.‘H
'y 'l
PhewAs [UKB) Expression-traits correlation {(HMDP) Functional validation [CRIS-PR}
_ : T et bt chelester:-ll lﬁ:hulesteml
ot P I ertielon o anea Triglycerides APQBL0D
J,;.x 15 '%}.5’9 ‘i/hgs“*);s‘ %\f%ﬂg’;ﬁi e APOE100

w n
novel CAD risk genes

Figure 11 Schematic illustration of CAD TWAS.

This work discovered 18 novel genes to be associated with CAD, and functionally

evaluated 96 genes within CAD GWAS loci, for example by indicating their tissue(s) of action.

The downstream analyses of these genes revealed their intermediate cardiometabolic
phenotypes bridging gene variants with their effects on CAD. Our result provides a substantial
step towards prioritization of genes at respective GWAS loci as well as their tissues of actions.
In this respect, 46 genes identified by this TWAS are known for effects in pathophysiological

pathways related to CAD, including lipid metabolism, inflammation, angiogenesis,
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transcriptional regulation, cell proliferation, NO signaling, and high blood pressure, to name a

few giving credibility to the association findings.

Our in-silico analyses on novel genes suggested they were associated with lipid traits

in both human genotype data and mouse expression data. The hypothesis was furtherly

confirmed by the latest lipid GWAS paper conducted by GLGLC consortium (Table 2)[120].

Two novel genes, KPTN and RGS19, were firstly confirmed to be associated with lipid

metabolism from both in-silico and in-vitro data. So, we believe that our study on novel genes

may provide novel insights into molecular etiology of CAD.

Table 2 8 novel genes were within 500kb of lipid risk loci

Gene Lipid risk loci
EUR_TC _rs10423802;EUR_HDL _rs60570301;EUR_logTG_rs1966500;HIS_nonHDL
_rs2238675;HIS_TC_rs150641967;rs376645231;EAS_logTG_rs58542926;EAS_nonH
DL_rs58542926;EUR_LDL _rs58542926;EUR_logTG_rs58542926;EUR_nonHDL _rs5
HOMER3
8542926;EUR_TC_rs58542926;HIS_LDL_rs58542926;SAS_LDL_rs58542926;SAS_n
onHDL_rs58542926;SAS_TC_rs58542926;SAS_logTG_rs8107974;EAS_TC_rs10401
969
EUR_HDL_rs12609461;EUR_logTG_rs10408163;EUR_nonHDL _rs12461923;EUR_H
Ak DL _rs3112494;EUR _logTG_rs62129968
NLRC4 EUR_TC_rs62142080
EUR_TC_rs35201382;EUR_LDL _rs6090040;EUR_nonHDL_20_62692060_C_A;EUR
RESIP _HDL _rs8126001;EUR_logTG_rs8126001;EUR_TC rs73147887
SDCCAG3 EUR_nonHDL_rs3780190;EUR_TC_rs3780190;EUR_LDL_rs13301660
EUR_TC rs1870293;EUR_LDL rs35468353;EUR_nonHDL_rs73530203;EUR_logTG
o _rs7196161;EUR_HDL _rs41440449
TXNRD3 EUR_LDL_rs9862203;EUR_TC_rs9862203
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EUR_TC_rs76116020;EUR_HDL _rs141904578;EUR_logTG_rs6499240;EUR_LDL r
WWP2 5181501802;EUR_TC rs181501802;EUR_nonHDL _rs62049432;AFR_LDL rs200535

533;rs374818812

*EUR, European; EAS, east Asian; SAS, South Asian; AFR, African.

We must admit that our study has limitation embedded in TWAS mythology. Since
TWAS are strongly dependent on the reference panel linking genetic signatures with gene
expression, it had to be expected that STARNET- and GTEx-based predictive models display
differences in gene-CAD associations. The difference may be due to different sample sizes
used for training predictions models, different disease states (subjects with and without CAD),
intravital or postmortem sample collection, as well as different transcript abundance and
genotype coverage leading to differences in expression associated SNPs in our reference panels.
Even so, a fair consistency of TWAS results between STARNET- and GTEx-based models
gave us rationality of combing results derived from both panels to increase the power of
capturing risk genes. Second, although TWAS facilitates candidate risk gene prioritization,
LD-link between SNPs, co-regulation or co-expression in cis at a given locus limits the precise
determination of the culprit gene. Indeed, at 12 loci we observed signals for three or more
TWAS genes. This strengthens the importance of integration of other genetic analyses to
improve risk gene prioritization. In our work, a series of stepwise analyses were performed on
TWAS gene list to furtherly study their disease-causing mechanism, like damaging variant
association, pathway enrichments, genetic association with other phenotypes and expression-
traits association statistics. Lastly, all findings by in-silico methods have to be furtherly
validated and functionally explained by in-vitro or in-vivo methods. Our prove-of-concept
experiment on KPTN and RGS19 in human hepatocytes validated our hypothesis about their
associations with lipid traits. But extra efforts are necessary to clearly depict the molecular
mechanisms.
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IV Conclusion and outlook

In summary, our TWAS study based on two genetics-of-gene-expression panels created
a set of gene-centered and tissue-annotated associations for CAD, providing insightful

guidance for further biological investigation and therapeutic development.
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IV Conclusion and outlook

| conducted two original research on post-GWAS studies during my graduate training,
including a PRS study and the CAD TWAS. In the PRS study, | used genetic methods to
firstly verify the epidemiology phenomenon of reverse association between intelligence and
CAD risk and depicted a pathway between them. In the TWAS study, we pinpointed risk
genes of CAD as well as their action tissues which empowered our understanding of the
molecular mechanisms of CAD. The positive experimental validations of two novel genes
might lay the foundation of the therapeutic development of CAD. The two projects inspired
me to explore potential transcriptome changes due to the polygenic risk in a tissue-specific

fashion.

Emerging wave of TWAS studies focuses on investigating the role of spicing variants

and transcripts in CAD. The data sets of tissue splicing variants (sQTL) and transcripts are
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IV Conclusion and outlook

available in several public resources, such as STARNET and GTEx. However, the lack of
cellular level omics data is a disadvantage of the current TWAS analysis. The CAD risk linked
to the cell-type specific function of a gene might be obscured due to the mix cellular profile in
a tissue. The booming single-cell technology will soon tackle the current disadvantage and
TWAS analysis will be performed in a cell type- or subtype-specific manner. Moreover, the
concept of TWAS analysis will be applied to several other omics datasets, such as epigenomics,
proteomics, and metabolomics, when tissue- or cell-specific data will be available in scale. The
different layers of biological data could be integrated for a multi-omics TWAS analysis to
uncover the interaction among the layers of cellular profiles. The increasing complexity in the
data integration will undoubtedly challenge the statistic algorisms. In this scenario, machine

learning (ML) will embark to unlock the myth of complex common diseases.

Finally, I"d like close my thesis using poetry from a Chinese famous poet Qu Yuan:

Long, long had been my road and far, far was the journey; | would go up and down to seek

my heart's desire FEEEEIRE , T L TMEKR).
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Abstract

Background Epidemiological studies have shown inverse association between intelligence and coronary artery disease
(CAD) risk, but the underlying mechanisms remain unclear.

Methods Based on 242 SNPs independently associated with intelligence, we calculated the genetic intelligence score (gIQ)
for participants from 10 CAD case—control studies (n=34,083) and UK Biobank (n=427,306). From UK Biobank, we
extracted phenotypes including body mass index (BMI), type 2 diabetes (T2D), smoking, hypertension, HDL cholesterol,
LDL cholesterol, measured intelligence score, and education attainment. To estimate the effects of glQ on CAD and its related
risk factors, regression analyses was applied. Next, we studied the mediatory roles of measured intelligence and educational
attainment. Lastly, Mendelian randomization was performed to validate the findings.

Results In CAD case—control studies, one standard deviation (SD) increase of glQ was related to a 5% decrease of CAD
risk (odds ratio [OR] of 0.95; 95% confidence interval [CI] 0.93 to 0.98; P =4.93e-5), which was validated in UK Biobank
(OR=0.97; 95% CI 0.96 to 0.99; P =6.4e—4). In UK Biobank, we also found significant inverse correlations between gIQ
and risk factors of CAD including smoking, BMI, T2D, hypertension, and a positive correlation with HDL cholesterol. The
association signals between gIQ and CAD as well as its risk factors got largely attenuated after the adjustment of measured
intelligence and educational attainment. The causal role of intelligence in mediating CAD risk was confirmed by Mendelian
randomization analyses.

Conclusion Genetic components of intelligence affect measured intelligence and educational attainment, which subsequently
affect the prevalence of CAD via a series of unfavorable risk factor profiles.
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Introduction

Epidemiological studies have shown an inverse associa-
tion between intelligence score and risk of coronary artery
disease (CAD) [1, 2]. Higher intelligence is also inversely
associated with risk factors of CAD, like smoking and
obesity [3-5]. Moreover, there is evidence for association
between higher intelligence and longer educational attain-
ment [6, 7] which may be an important mediator in reduc-
ing CAD risk [8]. However, the mechanisms linking higher
intelligence with a decreased risk of CAD remain unclear.

Genome wide association studies (GWAS) have iden-
tified large numbers of genetic variants, typically single
nucleotide polymorphisms (SNPs), associated with a wide
range of complex traits providing opportunities of explor-
ing the relationships between traits. Polygenic risk scores
defined as sum of trait-associated SNPs weighted by effect
size derived from large-scale GWAS measure the liabil-
ity of individuals developing such traits [9, 10]. Thereby
polygenic risk scores become an important genetic tool
for studying association between traits [8, 11]. Two-sam-
ple Mendelian randomization (MR) is another genetic
method of accessing causal relationships among traits
which requires summary statistics of GWAS instead of
full individual level genotype data and phenotypic meas-
urements [12].

Savage et al. performed genome-wide association
meta-analysis in 269,867 individuals and identified 242
SNPs independently associated with intelligence [13]. We
used the statistics of these intelligence SNPs to perform
both regression analysis of the individual-level polygenic
score and two-sample MR analysis to study the associa-
tion between intelligence and CAD risk, and to explore
potential pathways from a higher genetic intelligence score
to lower CAD risk.

Methods

Cohorts description of individual-level genotype
data

Individual level genotype data were collected from ten
case—control studies of CAD as discovery set [14-21].
All participants were of European descent, mostly from
the Germany and UK. The replication set was from UK
Biobank [22] which includes genotypes of 487,409 indi-
viduals derived from two different genotyping array
platforms.

The data of UK Biobank were also applied to character-
ize interplay between intelligence and risk factors of CAD
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including body mass index (BMI), type 2 diabetes (T2D),
HDL cholesterol, LDL cholesterol, hypertension, and
smoking behavior. These traits were either self-reported
or extracted from hospital episodes or death registries as
reported by UK Biobank [22]. Intelligence scores were
measured in UK Biobank through a 13-item verbal-
numeric reasoning test designed to assess the ability of
solving problems that require logic and reasoning abil-
ity, independent of acquired knowledge (field ID 20016).
The total range of intelligence as measured by this score
was from 0 to 13 arbitrary unit. Details of corresponding
studies, data preprocessing and traits definition of data
from UK Biobank are shown at Supplementary Notes and
Table S1.

Intelligence associated variants

Savage et al. performed GWAS meta-analysis of 14 inde-
pendent epidemiological cohorts of European descent and
reported 242 independent SNPs with genome-wide signifi-
cant association (P < 5e-8) to intelligence scores [13]. We
estimated effect size for each SNP from GWAS summary
statistic table using method by Zhu et al. [23]. Details are
shown at Supplementary Notes and Table S2.

Statistics

The summary statistics of 242 independent SNPs of intelli-
gence were applied to calculate the individual-level weighted
genetic score of intelligence for each study. Firstly, each var-
iant was given a value from 0 to 2 according to the presence
of the intelligence allele in the imputed genotype data of
each participant, which was then multiplied with the effect
size of the variant on intelligence. For variants with missing
genotypes in the imputed data, the reference allele frequency
was applied. Then we summed these values of 242 variants
for each participant as the polygenic score of intelligence,
namely the genetic intelligence score (g1Q). Afterwards, the
continuous gIQ was standardized into z-scores with mean of
0 and standard deviation (SD) of 1. By logistic regression
analyses, we estimated effects of gIQ on CAD risk for each
study separately. To control the bias due to population strati-
fication or different genotyping platforms, the first two prin-
ciple components for 10 CAD studies were added as adjust-
ments of the regression model. In UK Biobank, because of
more complex population structure, we employed top five
principle components and array platforms for this data set.
Lastly, the fixed-effect size meta-analysis was performed
to estimate the combined effects across all CAD studies.
Based on gIQ, all individuals were evenly separated into
low, medium and high groups to study the distribution of
cases and controls along with increasing glIQ.
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Albeit the gIQ reflects intelligence at first place, the
SNPs utilized in this score may be pleiotropic and thus
affects other traits [24-26]. Seven of 242 intelligence SNPs
were reported to be associated with educational attainment
through a large scale GWAS cohort which detected 1271
education-associated SNPs [27]. We thus re-evaluated the
association between gIQ and CAD risks after exclusion of 7
SNPs overlapping with educational attainment to estimate
the direct effects of intelligence.

In UK Biobank, we estimated effects of glQ on meas-
ured intelligence, educational attainment, risk factors of
CAD including BMI, T2D, smoking, HDL cholesterol,
LDL cholesterol and hypertension. Definitions of these traits
are shown at Supplementary Notes and Table S3. Logistic
regression was applied to binary traits like T2D, smoking,
hypertension; and linear regression was for continuous traits
like measured intelligence, educational attainment, BMI,
HDL cholesterol, and LDL cholesterol. Top five principle
components and array platforms were used as adjustment of
regression models. We also studied phenotypical association
of measured intelligence with educational attainment and
CAD incidence in UK Biobank. Additionally, to avoid the
genetic influence of education derived from genetic over-
laps between intelligence and education, we re-estimated
the effects of intelligence on CAD and its risk factors by
eliminating seven overlapping SNPs [27].

Two-sample Mendelian randomization analysis

Mendelian randomization (MR) is a method using genetic
variants as instruments to study causal relationships between
exposures and outcomes [28]. We introduced the multivari-
able two-sample MR analysis to investigate the direct casual
effects of intelligence and educational attainment on CAD
and its risk factors. This approach taking GWAS summary
statistics as input measures effects of one standard devia-
tion (SD) change in intelligence or educational attainment.
As bias can be introduced in two-sample MR when using
genetic consortia that have partially overlapping sets of
participants, we selected consortia without overlaps. The
GWAS summary statistics of CAD and its risk factors, edu-
cational attainment were acquired from CARDIOGRAM-
plusC4D (CAD) [17], GIANT (BMI) [29], TAG (smok-
ing) [30], GLGC (HDL cholesterol, LDL cholesterol) [31],
SSGAC (educational attainment) [27], and DIAGRAM
(T2D) [32]. Elaborate description of these five studies can
be found at Supplementary Notes and Table S4.

To address the influence of genetic overlaps between
education and intelligence, we eliminated seven SNPs
that are both associated with intelligence and educational
attainment in MR analysis. Three MR methods including
inverse-variance-weighted average (IVW) [33], MR-egger
[34] and weighted median [35] were applied. Relationships

significant (P <0.05) in at least two of three methods were
identified to be reliable and shown by IVW results. Lastly,
sensitivity analysis of effects of intelligence and educational
attainment on CAD were performed by excluding SNPs
that were moderately associated with risk factors of CAD
(P <0.001) from intelligence SNPs and education SNPs
respectively. Details are shown at Supplementary Notes.

Results
Effect of glQ on the risk of CAD

Ten case—control studies of CAD with 16,144 CAD cases
and 17,939 controls were included in this study. Majority of
participants were from the Germany and UK. Individual-
level genotype data and elaborate phenotype data from UK
Biobank were used as validating set containing 20,310 CAD
cases which were defined by either self-reported, or hospital
episode and death registry data, and 406,996 controls. (Sup-
plementary Notes and Table S1). For each cohort, we gener-
ated gIQ based on 242 SNPs reported to be genome-wide
significantly associated with intelligence [13].

The score in participants of the 10 CAD studies was nor-
mally distributed (Fig. S1). Meta-analysis using fixed-effect
size model indicated relative decrease of CAD risk by 5%
(95% confidence interval [CI], 0.93 to 0.98; P=4.93¢-5)
along with per 1-SD increase in gIQ (Fig. 1). When indi-
viduals were equally grouped into a low, medium and high
group of glIQ, risk of CAD steadily decreased with an odds
ratio (OR) of the high group vs low group being 0.89 (95%
CI0.84 t0 0.93; P=6.2e-6, Fig. 2).

Data from the UK Biobank confirmed the inverse asso-
ciation between gIQ and CAD risk with an OR=0.97 (95%
CI0.96 to 0.99; P=6.4e—4, Fig. 1). The risk of high glQ
group was 7% lower than the low gIQ group (P=0.0005)
in UK Biobank. As expected, the association between glQ
and CAD risk was abolished after adjustment for measured
intelligence defining measured intelligence as an intermedi-
ary trait between gIQ and CAD risk (Fig. 3).

Bidirectional association between intelligence
and education

In UK Biobank, we found that 1-SD increase of glQ
increased measured intelligence score by 0.29 unit
(P < 1e-10) and prolonged years spent in school by 0.45 year.
In addition, one more year spent in school increased the
measured intelligence score by 0.16 unit (P < 1e-10). Vice
versa, one unit increase in measured intelligence prolonged
years spent in school by 0.98 year (P < le-10). Both the
measured intelligence and educational attainment had
inverse effects on CAD risk. See results in Table S5.
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Study N CAD cases N controls Odds ratio[95% CI]

GerMIFSI 622 1551 1.00[0.90,1.12] _—
GerMIFSII 1192 1256 0.90[0.83,0.98] —_—

GerMIFSIII 1055 1441 0.97[0.89,1.06] —_—
GerMIFSIV 954 1136 0.80{0.73,0.88] —F—

GerMIFSV 2437 1574 1.05(0.99,1.12] ——>
GerMIFSVI 1639 1186 0.97(0.90,1.05) —_—l
GerMIFSVII 3062 3462 1.02[0.96,1.08] —_—
Cardiogen 382 404 0.79[0.67,0.93] —.—

wrcc 1900 2911 1.01[0.95,1.07] —
MiGen 2901 3018 0.87(0.83,0.92] —a—

FE meta-analysis p =4.93e-05 0.95[0.93,0.98] =

UK Biobank 20310 406996 0.97(0.96,0.98] -

FE meta-analysis p =7.55e-07 0.97[0.95,0.98] -

020 085 100 105 1.05
Odds ratio

Fig.1 Association of gIQ and CAD risk. The genetic intelligence effect size meta-analysis was performed to combine all studies. Forest
score was calculated in 10 case-controls studies of CAD and UK plot shows regression result in each study and the overall effect size.
Biobank respectively. Logistic regression was performed to evalu- The gIQ was inversely associated with CAD risk

ate the association between gIQ and CAD risks in each study. Fixed-

w15 Effects of glQ on risk factors of CAD

We next asked, in UK Biobank data, whether the association
ia between gIQ and CAD risk was mediated by traditional risk
factors of CAD, and whether such effects were dependent of
measured intelligence and educational attainment. We found
strong associations of gIlQ with BMI, smoking, T2D, HDL
cholesterol, and hypertension (Fig. 3). The effects of gIQ on

28 "."‘"’ CAD risk factors were largely attenuated after adjustment for
case=t6144 A : : : :
§ B o179 measured intelligence or educational attainment (Fig. 3 and
s

Table S6), suggesting that measured intelligence and edu-
cational attainment mainly mediated associations between
¢IQ and these risk factors. The analyses after removal of
seven SNPs overlapping between intelligence and educa-
tional attainment obtained quantitatively and qualitatively
similar effects of glQ on CAD and its risk factors (Fig. S2).
We also studied the mediatory roles of these risk factors

o7 on the association between gIQ and CAD risk by apply-
ing them as adjustments to the regression model. Adjusting

for individual risk factor or risk factors combined mark-

Fig.2 Distribution of cases and controls according to gIQ. Individu-  edly attenuated association signal between gIQ and CAD
als in 10 CAD studies were evenly grouped into a low (score=1),  risk (Fig. S3), indicating these risk factors were involved in

medium (score =2) and high (score =3) group according to their gIQ. o e o e .
The OR is incidence of CAD relative to low group. Risk of CAD mediating the association between glQ and CAD risk.

decreases along the increases of glQ

Mendelian randomization validation

To substantiate our observations, we performed multi-
variable two-sample MR analysis taking intelligence or
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Tratis

OR[95%CI] Pvalue Adjusted

BMI 0.899[0.886,0.911] 5.4e-49
BMI 0.933(0.912,0.955] 5.3e-09
BMI 0.946[0.932,0.961] 1.0e-12

No ——
Q —_—
Edu —_—

T2D 0.966[0.951,0.980] 4.1e-06
T2D 0.986[0.961,1.011] 0.278
T2D 0.997(0.981,1.014] 0.742

Edu e

LDL chol. 0.999[0.996,1.001] 0.341
LDL chol. 0.998[0.993,1.002] 0.274
0.999[0.996,1.002]

3
.

Fig.3 Associations of gIQ with CAD and it risk factors including
BMI, smoking, T2D, HDL chol ol, LDL chol ol, and hyper-
tension in UK Biobank. The OR for BMI is shown as logarithm of
the linear regression coefficient. ‘Adjusted” indicates the regression
model between gIQ and trait after adjustment for measured intelli-

educational attainment as exposures, CAD and its risk fac-
tors as outcomes. The estimates of the direct effects on out-
comes for intelligence and education were generally in a
consistent direction (Fig. 4). 1-SD increase of intelligence
resulted in decrease of CAD risk by 25% (OR=0.75; 95%
CI0.69 to 0.81; P < 1e~10), decrease of BMI by 0.1 kg/m2
(95% CI — 0.16 to — 0.14; P=1.02e-3), decrease of T2D
risk by 15% (OR =85; 95% CI10.77 t0 0.95). A SD increase
in the education years resulted in decrease of risk of CAD
by 38% (OR=0.62; 95% CI 0.58 to 0.66; P < le-10),
decrease of BMI by 0.32 kg/m? (95%CI — 0.37 to — 0.27;
P < 1e-10), increase of HDL cholesterol by 0.19 mmol/L
(95% CI 0.14 to 0.25; P < 1e—10), decrease of the risk
of smoking by 43% (OR =0.57; 95%C1 0.501 to 0.642;
P < 1e-10), and decrease of T2D risk by 47% (OR =0.53;
95%CI 0.49 to 0.57; P < 1e-10). The effects of educational
attainment on CAD and its risk factors displayed the same
direction as intelligence but were stronger in magnitude.
See details at supplementary notes and Table S7.

088 090 092 094 096 098 100 1.02 1.04
Odds ratio

gence (IQ), or length of school years completed (Edu), or neither of
the two (No). The gIQ had inverse effects on BMI, T2D, smoking,
and hypertension and a positive effect on HDL cholesterol. The asso-
ciation signals were largely attenuated by measured intelligence and
educational attainment

Lastly, MR sensitivity analysis were performed for
intelligence and educational attainment respectively. For
intelligence, SNPs moderately associated (P <0.001) with
CAD (n=5), BMI (n=45), and HDL cholesterol (n=35)
were removed from intelligence SNPs. The sensitivity
analysis showed 1-SD increase in intelligence to decrease
the risk of CAD by 22% (OR for IVW method of 0.78; 95%
CI10.72 to 0.84; P=5.6e-10). Same as intelligence, SNPs
moderately associated (P <0.001) with CAD (n=13),
BMI (n=155), HDL cholesterol (n =6), LDL cholesterol
(n=5), and smoking (n=2) were removed from education
SNPs. The sensitivity analysis showed 1-SD increase in
education years to decrease the risk of CAD by 34% (OR
for IVW method of 0.66; 95%CI 0.62 to 0.70; P < 1e-10).
Results are shown at Table S8.
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Fig.4 The result of MR analyses. Error bars indicate 95% confidence
intervals around the estimated effects calculated using multivariable
two-sample MR. The effects on outcomes for intelligence and edu-
cational attai were g lly in cc directions. But the
effects of educational attainment are quantitatively stronger than
intelligence

Discussion

Epidemiological studies have revealed that increased intel-
ligence correlates with reduced CAD risk [1, 2]. Consist-
ently, our study shows that 1-SD increase of glQ based on
accumulated effects of genetic variants associated with intel-
ligence, results in 5% decrease in the risk of CAD. The CAD
risk in the high group of gIQ is relatively lower by 11% than
in the low group. The observation was replicated in the UK
Biobank. Interestingly, the inverse association got largely
attenuated after adjustment for measured intelligence and
educational attainment supporting the hypothesis that these
traits play a role in modulating CAD risk.

Our study also shows the inverse effects of gIQ on health-
related outcomes including BMI, smoking, T2D, hyperten-
sion, and a positive effect on HDL cholesterol, which are
well-known for their influences on CAD risk [36—40]. Same
as for CAD, these association signals appear to be largely
mediated by measured intelligence and educational attain-
ment. It can be concluded that these risk factors mediate
the association between gIQ and CAD risk individually and
collectively.

Our study confirms that intelligence and educational
attainment are genetically and phenotypically associated
with each other [6, 7]. Like in the present study, a recent
study by our group states that educational attainment is
inversely associated with CAD risk which appears to be

@ Springer

mediated by risk factors such as BMI and smoking [8, 26].
Interestingly, our current study indicates that the effects of
educational attainment on CAD and its risk factors are quan-
titatively stronger than respective effects of intelligence. All
these findings indicate that improving educational attain-
ment can have potential benefits in improving decision-mak-
ing regarding health-relevant lifestyle factors and reducing
risk of CAD and other health-related outcomes.

Polygenic risk score and two-sample MR are two genetic
approaches of investigating association between traits.
Compared with the traditional epidemiologic approach, the
genetic approach is unlikely to be confounded by lifestyle or
environmental factors as genotypes are stable over lifetime
[11]. The utilization of genetic methods is limited, however,
by false discovery because of horizontal pleiotropy, a phe-
nomenon explained by the fact that variants may affect mul-
tiple traits through different pathways [9, 10]. The complex
interplay of intelligence and educational attainment caused
by their genetic roots limits a precise causal relationship
between intelligence and CAD as well as its risk factors. In
our study, we aimed to exclude genetic overlaps between
intelligence and education to highlight putative causal
effects of intelligence on CAD and its risk factors. Indeed,
this notion was furtherly confirmed by MR analysis and the
MR sensitivity analysis after excluding SNPs marginally
associated with risk factors of CAD from intelligence (or
education).

There are some limitations in our study. First, the intel-
ligence SNPs utilized in this study were identified from a
large GWAS meta-analysis based 14 independent epidemio-
logical cohorts of European ancestry [13]. To avoid bias
due to difference in population genetics, we restricted our
analysis to cohorts from Germany, UK, and others of Euro-
pean ancestry. Second, there might be other health-related
or socioeconomic factors that interplay with intelligence and
CAD risk [26]. Specially, environmental exposures can be
important confounders of association between intelligence
and CAD risk. Third, the measured intelligence obtained in
UK Biobank through a 13-item verbal-numeric reasoning
test does not equal to real intelligence whose full scopes are
unspecifiable. Moreover, educational attainment defined as
years spent in schools in this study has a wide spectrum in
various countries. Last, the two-sample MR analyses are
likely to be biased if two studies contains overlapping par-
ticipants or cohorts which are quite common in large-scale
GWAS meta-analysis [41]. We tried best to choose studies
that are of European ancestry and have minimal overlaps to
avoid such bias in two-sample MR analysis.

In conclusion, using genetic approaches, we depicted a
pathway from gIQ to CAD risk (Fig. 5). The higher gIQ is
associated with the higher measured intelligence and longer
educational attainment, both of which appear to reduce the
prevalence of risk factors of CAD including BMI, smoking,
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Fig.5 Pathway from higher glQ
to lower risk of CAD. Our study
shows inverse effects of genetic
determinants of intelligence on
CAD and its risk factors includ-
ing BMI, smoking, hyperten-
sion, and T2D and positive
effects on HDL cholesterol.
These association signals

are mediated by measured
intelligence and educational
attainment, which two are
bidirectionally associated with
each other

Genetic
determintants
of intelligence

T2D and hypertension, and increase HDL cholesterol, which
in concert subsequently reduce the prevalence of CAD.
Moreover, the effects of educational attainment on risk fac-
tors and CAD appear to be stronger than the effects of intelli-
gence. Thus, repetitive campaigns throughout schooling may
be worthwhile for preventive reasons as they may ameliorate
the association between gIQ and unhealthy lifestyle.
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Abstract

The majority of risk loci identified by genome-wide association studies (GWAS) are in non-coding regions, hampering their
functional interpretation. Instead, transcriptome-wide association studies (TWAS) identify gene-trait associations, which
can be used to prioritize candidate genes in disease-relevant tissue(s). Here, we aimed to systematically identify susceptibil-
ity genes for coronary artery disease (CAD) by TWAS. We trained prediction models of nine CAD-relevant tissues using
EpiXcan based on two genetics-of-gene-expression panels, the Stockholm-Tartu Atherosclerosis Reverse Network Engi-
neering Task (STARNET) and the Genotype-Tissue Expression (GTEx). Based on these prediction models, we imputed
gene expression of respective tissues from individual-level genotype data on 37,997 CAD cases and 42,854 controls for the
subsequent gene-trait association analysis. Transcriptome-wide significant association (i.e. P < 3.85e—6) was observed for
114 genes. Of these, 96 resided within previously identified GWAS risk loci and 18 were novel. Stepwise analyses were
performed to study their plausibility, biological function, and pathogenicity in CAD, including analyses for colocalization,
damaging mutations, pathway enrichment, phenome-wide associations with human data and expression-traits correlations
using mouse data. Finally, CRISPR/Cas9-based gene knockdown of two newly identified TWAS genes, RGS19 and KPTN,
in a human hepatocyte cell line resulted in reduced secretion of APOB100 and lipids in the cell culture medium. Our CAD
TWAS work (i) prioritized candidate causal genes at known GWAS loci, (ii) identified 18 novel genes to be associated with
CAD, and iii) suggested potential tissues and pathways of action for these TWAS CAD genes.

Keywords Coronary artery disease - Transcriptome-wide association study - Genome-wide association study - Genetically
regulated expression

Introduction

Coronary artery disease (CAD), a leading cause of prema-
ture death worldwide, is influenced by interactions of life-
style, environmental, and genetic risk factors [43]. Genome-
wide association studies (GWAS) have identified over 200
risk loci for CAD [11, 17, 35]. Most of them are located in
non-coding regions which hampers their functional interpre-
tation. Expression quantitative traits loci (eQTLs) to some
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4 Heribert Schunkert
schunkert@dhm.mhn.de

Extended author information available on the last page of the article

extent explain the genomic effects of GWAS signals [19,
61, 64]. By leveraging effects of multiple cis-eQTL variants
on gene expression, transcriptome-wide association studies
(TWAS) search primarily for gene-trait associations. The
approach first builds on prediction models of gene expres-
sion from reference panels that correlate genotype patterns
with transcript levels in tissues which are relevant for the
phenotype. Prediction models are then used to impute
tissue-specific gene expression based on genotypes with
a given trait in individuals of GWAS cohorts [21]. Since
TWAS signals reflect association between transcriptome-
wide genetically regulated expression (GReX) and traits or
diseases, the approach can be used to prioritize candidate
genes across disease-relevant tissues. Thereby, TWAS may
point to causal genes at risk loci identified by GWAS and
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thus provide further insights into biological mechanisms [62,
70]. Moreover, TWAS increase the sensitivity to identify
susceptibility genes missed by traditional GWAS analyses.
Here we performed a TWAS to identify novel susceptibility
genes for CAD comprising more than 80,000 individuals
with genotype data along with validation and exploratory
analyses for the associated genes.

Materials and methods

Prediction models of nine tissues based on two
reference panels

The starting point of this investigation was two large human
biobanks with individual-level data on genome-wide geno-
types as well as mRNA expression levels in multiple tissues
with relevance for CAD. These include atherosclerotic aortic
wall (AOR), atherosclerotic-lesion-free internal mammary
artery (MAM), liver (LIV), blood (BLD), subcutaneous fat
(SF), visceral abdominal fat (VAF), and skeletal muscle
(SKLM) in the Stockholm-Tartu Atherosclerosis Reverse
Network Engineering Task (STARNET) [20], and AOR,
LIV, BLD, SF, VAF, and SKLM in the Genotype-Tissue
Expression (GTEx) [1] (Supplementary Table 1). Arterial
wall coronary (COR) and tibial artery (TIB) datasets were
only available in the GTEx. The pipeline used for training
prediction models was EpiXcan which was built on the basis
of PrediXcan but with improved prediction performance by
integrating epigenomic annotation data into model-training
process [21, 70]. The samples used for training models were
restricted to European ancestry. We adopted the existing
expression prediction models established by Zhang except
COR and TIB tissues which were not covered yet [70].

We established predictive models for COR and TIB tis-
sues using the same parameters as other tissues [70]. In
brief, we first filtered the genotype and expression data of
COR and TIB from GTEx v7 [1]. For genotype data, variants
with call rate <0.95, minor allele frequency (MAF) <0.01,
and Hardy Weinberg equilibrium (HWE) < le—6 were
removed. For expression, we used quality-controlled data
and performed sample-level quantile normalization and
gene-level inverse quantile normalization using preproc-
ess codes of PredicDB pipeline [21]. We then calculated
SNP priors using hierarchical Bayesian model (qtIBHM)
[40] that jointly analyzed epigenome annotations of aorta
derived from Roadmap Epigenomics Mapping Consortium
(REMC) [5], and eQTL statistics. The SNP priors (Supple-
mentary Table 2), genotype data and expression data were
jointly applied to tenfold cross-validated weighted elastic-
net to train prediction models [70].

Both STARNET- and GTEx-based models were fil-
tered by cross-validated prediction R*>0.01 [28, 68]. The

@ Springer

summary statistics of sample sizes used for training models
and the transcript numbers of genes covered by each predict-
ing model are shown in Supplementary Table 1.

GWAS cohorts

For the discovery cohort, individual-level genotyping data
were collected from ten CAD GWAS, a subset of CARDIo-
GRAMplusC4D, including the German Myocardial Infarc-
tion Family Studies (GerMIFS) I-VII [16, 18, 38,47, 48, 52,
56], Wellcome Trust Case Control Consortium (WTCCC)
[7], LURIC [65], and Myocardial Infarction Genetics Con-
sortium (MIGen) [2]. We used a part of individual-level data
from UK Biobank (UKB) as the replication cohort [8], by
extracting 20,310 CAD cases according to hospital episodes
or death registries as reported and randomly selecting 25,000
non-CAD participants as controls. The detailed information
about selection criteria of case and control were described
at elsewhere [38]. In total, genotypes of 37,997 cases and
42,854 controls were included in our transcriptome-wide
association studies (TWAS) of CAD (Supplementary
Table 3). The preprocessing steps of genotyping data are as
previously described [38].

TWAS analysis

The transcriptome-wide association analysis was performed
using prediction models of nine tissues for imputing individ-
ual-level GReX from CAD cases and controls of 11 GWAS
cohorts and by association of these tissue-specific GReX
with CAD risk in each cohort. To test the replicability of
TWAS results, we used ten GWAS cohorts as discovery set
and UKB as the replication set to test replicability within
STARNET- and GTEx-based models, respectively. We com-
pared the consistency of TWAS results between STARNET-
and GTEx-based models of the six overlapping tissues using
all genotype data. Then, we merged TWAS genes resulted
from two reference-based panels as the final list. Finally,
we annotated the TWAS genes list by over 200 CAD loci
identified by GWASs [17, 35] using MAGMA [37]. Gene
resided in the +1 Mb regions around known GWAS loci
were marked as the known, otherwise genes were marked
as the novel.

Colocalization of the eQTL and GWAS signals

Colocalization analysis was performed using COLOC,
a Bayesian statistical methodology that takes GWAS and
eQTL data as inputs, and tests the posterior probabilities
of hypothesis #4 (PP4) that there are shared casual vari-
ants for each locus [23]. The summary statistics of GWAS
meta-analysis were obtained from CARDIoGRAMplusC4D
Consortium [47], and the eQTL data of nine tissues from
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STARNET [20] and GTEx [1]. The significance threshold
is PP4>0.55.

Co-expression network for protein coding
and IncRNA genes

We used RNA-seq data of STARNET [20] to calculate
expression correlations between long non-coding RNA
(IncRNA) genes and protein-coding genes in seven tissues.
Co-expression pairs with absolute Pearson correlation coef-
ficient larger than 0.4 were considered to be significant. The
co-expression network was displayed by cytoscape [34].

Gene set enrichment analyses

Pathway enrichment analysis was carried out using ClueGO
(v2.5.2) [6], a plugin of cytoscape [34], based on collated
gene sets from public databases including Gene Ontology
(GO) [26], KEGG [30], Reactome [12], and WikiPathways
[55]. Gene sets with false discovery rate (FDR) by right-
sided hypergeometric test less than 0.05 were considered to
be significant.

Furthermore, we also studied the diseases or traits asso-
ciated with risk genes by performing disease enrichment
analysis based on DisGeNET [50], the largest publicly avail-
able datasets of genes and variants association of human
diseases. FDR <0.05 was used for thresholding.

Rare damaging variants association analysis

To investigate association of damaging variants in TWAS
genes with CAD, we used whole-exome sequencing (WES)
data of 200,632 participants from UKB [27]. The WES
data were processed following the Functional Equivalence
(FE) protocol. We performed quality control on the WES
data by filtering variants with calling rate <0.9 and vari-
ants with HWE < le—6. For the relevant traits, besides CAD,
we considered i) three lifestyle factors including body mass
index (BMI), diabetes, hypertension; ii) seven categories
of blood lipids including low-density lipoproteins choles-
terol (LDL-C), high density lipoproteins cholesterol (HDL-
C), apolipoprotein A (APOA), apolipoprotein B (APOB),
Lipoprotein(a) (LPA), total cholesterol (TC) and triglycer-
ides (TG); iii) four inflammation related factors including
C-reactive protein (CRP), lymphocyte count (Lymphocyte),
monocyte count (Monocyte) and neutrophil count (Neutro-
phil). In total, 15 traits were studied.

We defined damaging variants as (i) MAF <0.01; (ii)
annotated into following one of the three classes: loss-
of-function (LoF) variants (stop-gained, splice site dis-
rupting, or frameshift variants), pathogenic variants in
ClinVar [36], or missense variants predicted to be damag-
ing by one of five computer prediction algorithms (LRT

score, MutationTaster, PolyPhen-2 HumDiv, PolyPhen-2
HumVar, and SIFT). The Ensembl Variant Effect Predic-
tor (VEP) [45] and its plugin loftee [31], and annotation
databases dbNSFP 4.1a [14] and ClinVar (GRCh38) [36]
were used for annotating damaging mutations.

For each analysis, samples were classified into carri-
ers or noncarriers of the gene’s damaging mutations. For
binary traits, we used Fisher’s exact test to check if there
was incidence difference of mutation carrying between
case and controls. For the quantitative traits, we used lin-
ear regression model with adjustments of sex, first five
principal components, and lipid medication status to
investigate the associations between mutation carrying
status and traits. We used nominal significance threshold
(P <0.05), given that coding variants are rather rare, and
the case—control sample sizes were not balanced which
might increase false negative rate.

Association of variants in novel genes with lipid
traits

For 18 novel risk genes, we performed association analysis
for variants located in respective loci (+1 Mb) with lipid
traits using genotyping data of UKB. The lipid traits include
levels of LDL-C, HDL-C, APOA, APOB, LPA, TC, and TG.
The variants were filtered by MAF > 0.01, and imputation
info score > 0.4. The association test was performed using
PLINK?2 [10] with adjustment of sex, age, first five principal
components, and lipid medication status. The numbers of
independent SNPs were estimated using Genetic type 1 error
calculator (GEC) tool [39].

Expression-trait association study using mouse data

The hybrid mouse diversity panel (HMDP) is a set of 105
well-characterized inbred mouse strains on a 50% C57BL/6]
genetic background [42]. To specifically study atheroscle-
rosis in the HMDP, transgene implementation of human
APOE-Leiden and cholesteryl ester transfer protein was
performed, promoting distinct atherosclerotic lesion forma-
tion [4]. A Western diet containing 1% cholesterol was fed
for 16 weeks. Subsequently, gene expression was quantified
in aorta and liver of these mice and lesion size was assessed
in the proximal aorta using oil red O staining. Fourteen other
related traits were measured too, including liver fibrosed
area, body weight, TC, VLDL-C (very low-density lipopro-
tein cholesterol) + LDL-C, HDL-C, TGs, unesterified cho-
lesterol, free fatty acid (FFA), II-1b, I1-6, Tnfa, Mcp-1, and
M-csf. From HMDP, we extracted significant association
pairs between TWAS genes and 15 risk traits by applying
significance P <0.05.
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Experimental validation of KPTN and RGS19
in human cells

To knock down KPTN and RGS19, two sgRNAs target-
ing shared exons of all transcription isoforms were deliv-
ered by lentivirus into a Cas9-expression huh7, a human
hepatoma cell line. Exon 4 of KPTN and exon 5 of RGS19
were targeted by a dual CRISPR strategy to create a 40 bp
and 130 bp frame shift deletion, respectively. SgRNAs were
carried by Lenti-Guide-Puro vector (addgene, #52963) and
infected cells were treated with 10 ug/ml puromycin treat-
ment for 3 days to eliminate the negative cell. Positive tar-
geted cells were expanded in culture and passaged for assays.
Cells for measurement of secretive triglycerides, cholesterol,
and APOB100 were cultured for 16 h in serum-free medium.
Medium triglycerides and cholesterol were enriched for five
times by vacuum centrifuge and measured with colorimetric
kits, triglyceride (cobas), and CHOL2 (cobas), respectively.
The amount of medium APOB100 was measured with an
ELISA kit (MABTECH).

RNA isolation and sequencing

Total RNA from huh7 cells was isolated using RNEasy Plus
Mini Kit (Qiagen) (control cells, n=3; knockout cells, n=3).
Quantity and quality of the isolated RNAs were measured by
Fragment Analyzer (Agilent). RNA sequencing (RNA-seq)
was performed by BGI TECH SOLUTIONS (HONGKONG)
using strand specific library preparation with mRNA enrich-
ment, paired-end sequencing with 100 bp read length on the
DNBSEQ platform and 20 M clean read pairs per sample.
Clean reads were mapped onto the GRCh38.p12. Expression
quantifications, differential expression, and gene set enrich-
ment were performed according to BGI RNA-seq pipeline.

Results
Transcriptome-wide significant genes for CAD

The study design is shown in Fig. 1. Expression predic-
tion models of nine tissues were derived from two refer-
ence panels, STARNET [20] and GTEx [1], using EpiXcan
pipeline [70] (Materials and methods). We applied these
models to impute transcriptome-wide GReX of nine tissues
from individual-level genotype data of 11 GWAS cohorts
(Supplementary materials; Supplementary Fig. 1-2; Sup-
plementary Tables 1-3) [2, 7, 8, 16, 18, 38, 47, 52, 56, 65].
We next associated the GReX with CAD risk in each cohort
(Supplementary materials). The results revealed replica-
bility of TWAS genes when taking ten CARDIoGRAM-
plusC4D cohorts as discovery and UKB as replication set
within the STARNET- and GTEx-based prediction models,
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respectively (Supplementary Fig. 2I-1I; Supplementary
Fig. 3). The results also showed consistency and comple-
mentarity of TWAS findings in six shared tissues between
two reference-based prediction models (Supplementary
Fig. 2I1I-1V; Supplementary Figs. 4-5). Therefore, we com-
bined the results based on the two reference models for the
final list of TWAS genes (Supplementary Fig. 2 V).

From STARNET-based models 129 gene-tissues pairs
and from GTEx-based models 106 gene-tissue pairs were
significantly associated with CAD (Bonferroni-corrected
significance based on 12,995 genes, P <3.85e—6). Since 42
pairs overlapped between the two panels (Supplementary
Fig. 5), the total number of gene-tissue pairs was 193. Given
that some genes displayed association in multiple tissues, the
final list of significant TWAS genes for CAD was 114 genes
(Fig. 2; Supplementary Fig. 6; Supplementary Table 4). Of
these, 95 gene-tissue association pairs were confirmed using
another commonly used fine-mapping tool (COLOC) [23]
with posterior probabilities of shared causal variants in each
locus larger than 0.55 (PP4 > 0.55; Materials and methods;
Supplementary Table 5; Supplementary Fig. 7).

Of the 114 TWAS genes, 46 genes displayed genetically
mediated differential expression in AOR, 28 in MAM, 25 in
LIV, 23 in VAF, 22 in SKLM, 18 in SF, 16 in BLD, 10 in
TIB, and 5 in COR (Fig. 3a). Most genes revealed significant
associations in only a single tissue; 38 were significant in
more than one, almost all having consistent directions of
association between predicted expression levels and CAD
across tissues (Fig. 3b).

Among the 114 genes, 102 were protein-coding and 12
were InRNA genes (Supplementary Table 4). The STAR-
NET data showed that most IncRNAs were positively co-
expressed with a surrounding gene in affected tissues (Sup-
plementary Fig. 8). LINC00310 was the only exception,
which displayed complex co-expression patterns with other
genes.

Respective genes were found in 63 genomic regions, thus
several regions represented multiple genes with significant
associations. Six regions had multiple TWAS genes with
shared GWAS and eQTL signals in respective tissues, like
1p13.3 and 2p33.2 (Supplementary Figs. 9-10; Supplemen-
tary Table 5). On the other hand, in 39 regions expression
of only a single gene was found to be significantly associ-
ated, which makes these genes likely candidates for mediat-
ing causal effects, particularly, if these genes reside within
GWAS risk loci for CAD (these genes are indicated in Sup-
plementary Table 6).

Most TWAS genes (n=96) could be positionally
annotated to the 1 Mb region around one of the over 200
GWAS loci that are currently known to be genome-wide
significantly associated with CAD [11, 17, 35]. There-
fore, we marked these as known genes (Supplementary
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Fig. 1 The study design. Step 1, we trained prediction models using
EpiXcan from two eQTL panels, the Stockholm-Tartu Atherosclero-
sis Reverse Network Engineering Task (STARNET) and the Geno-
type-Tissue Expression (GTExX) for nine tissues. Step 2, the predic-
tion models were applied to impute genetically regulated expression
(GReX) from individual-level genotype data of ten CARDIoGRAM-
plusC4D sets and UK Biobank (UKB). Step 3, we associated tran-
scriptome-wide GReX with risk of coronary artery disease (CAD)
(Supplementary Results) and identified 114 transcriptome-wide sig-
nificant genes (TWAS genes). Of these, 96 resided within genome-
wide significant (GWAS) loci and 18 outside of known GWAS loci

Table 6). On the other hand, 18 genes resided outside of
these regions and were labeled as novel genes (Table 1).
Most novel genes were tissue-specific, except RGS/19,
FAM114A1 and UFLI which displayed evidence for dif-
ferential expression in multiple tissues.

(novel genes). Step 4, we tested the plausibility of novel TWAS genes
by conducting colocalization analysis and studying effects of damag-
ing mutations, as well as gene set enrichment analyses. Step 5, we
explored potential mechanisms of novel genes by testing association
with risk traits of CAD in human genotype data of UKB, and asso-
ciation between expressions and risk traits of CAD in atherosclero-
sis mouse models from the Hybrid Mouse Diversity Panel (HMDP).
Lastly, we carried out CRISPR/Cas9-based knockdown experiment
for two novel genes RGS19 and KPTN in human hepatocyte cell lines
to experimentally validate related functions

Pathways and diseases enriched by TWAS genes

We carried out two types of gene set enrichment tests to
further study the biological relevance of genes giving sig-
nals in this TWAS. First, we studied disease-gene sets from
the DisGeNET platform which is one of the largest publicly
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Fig.2 Manhattan plot of CAD TWAS results. The association results
from STARNET- and GTEx-based models were integrated by lowest
P values. The blue line marks P=3.85e—6, i.e. transcriptome-wide
significance. Each point corresponds to an association test between
gene-tissue pair. 18 novel TWAS genes were highlighted. Supplemen-
tary Fig. 6 identifies all genes identified by their genetically-modu-

lated association signals. The color code identifies the tissue in which
the genes were differentially expressed by genetic means: AOR aorta,
COR coronary artery, MAM mammary artery, BLD blood, LIV liver,
SF subcutaneous fat, VAF visceral abdominal fat, SKLM skeletal
muscle
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Fig.3 Tissue distribution of 114 TWAS genes of CAD. a Number
of transcriptome-wide significant genes across tissues. b Heatmap
plot of 38 genes identified in more than one tissues. The color codes
indicate direction of effects. Cells marked with * represent significant

available collections of genes and variants associated with
human diseases [50]. The results showed that genes discov-
ered by TWAS were primarily enriched for CAD, coronary

@ Springer

gene-tissue pairs (P<3.85e—6). AOR aorta, COR coronary artery,
MAM mammary artery, BLD blood, LIV liver, SF subcutaneous fat,
VAF visceral abdominal fat, SKLM skeletal muscle, 77B tibial artery

atherosclerosis, and hypercholesterolemia (Supplementary
Table 7), adding to the plausibility of our TWAS findings.
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Tab_le‘ 118 T_WAS gene_s Cytoband Gene Tissue Z score SE P value From*

residing outside of published

GWAS loci 2p22.3 NLRC4 LIV -3.383 0.044 3.04E-06 STARNET
3q21.3 TXNRD3 VAF 2.566 0.059 1.36E-06 STARNET
4pl4 FAM114A1 VAF 4.026 0.050 3.44E-09 GTEx
4pl4 FAM114A1 BLD 4.845 0.037 1.80E-06 GTEx
5p13.2 EGFLAM COR 5.596 0.047 7.70E-10 GTEx
6q16.1 UFLI MAM —5.246 0.038 1.62E-06 STARNET
6ql6.1 UFLI BLD —4.687 0.038 8.70E-05 STARNET
6ql6.1 UFLI BLD —4.955 0.042 3.96E-07 GTEx
6421 WASFI SF 4.320 0.059 1.91E-06 STARNET
6q25.3 EZR LIv -3.187 0.025 3.53E-06 STARNET
9p21.3 FOCAD VAF 8.348 0.068 144E-12 GTEx
9q34.3 SDCCAG3 SKLM -3.015 0.061 1.74E-06 STARNET
12p11.21 TSPANI11 VAF 2.285 0.065 1.79E-07 STARNET
12p12.3 MGP SF -3.412 0.040 5.67E-07 GTEx
12q14.3 CAND1 VAF -2.355 0.030 1.19E-07 GTEx
16p11.2 STX4 COR 3.347 0.056 2.59E-06 GTEx
16¢22.1 Wwp2 AOR 4.491 0.029 5.67E-06 STARNET
16¢22.1 WWP2 AOR 6.570 0.031 1.19E-07 GTEx
16q24.3 GASS LIV 0.189 0.041 8.32E-07 GTEx
19p13.11 HOMER3 SKLM 4.647 0.030 3.52E-08 GTEx
19q13.32 KPTN LIV -3.076 0.076 2.17E-06 STARNET
20q13.33 RGS19 LIV -4913 0.028 1.52E-06 GTEx
20q13.33 RGS19 VAF —4.545 0.030 4.63E-07 GTEx
20q13.33 RGS19 SKLM -5.026 0.024 1.42E-06 STARNET
20q13.33 RGSI19 SKLM -5.298 0.018 9.29E-07 GTEx

TWAS transcriptome-wide association study, STARNET the Stockholm-Tartu Atherosclerosis Reverse Net-
work Engineering panel, GTEx the Genotype-Tissue Expression panel, AOR aorta, COR coronary artery,
MAM mammary artery, BLD blood, LIV liver, SF subcutaneous fat, VAF visceral abdominal fat, SKLM

skeletal muscle

“Association statistics from either STARNET- or GTEx-based models

In line with these results, gene set enrichment analysis
based on GO [26], KEGG [30], Reactome [12], and WikiP-
athways [55] databases showed that the TWAS genes were
highly enriched for pathways involved in cholesterol metabo-
lism and regulation of lipoprotein levels. To a lesser extent,
risk genes were enriched in regulation of blood pressure as
well as development and morphogenesis of the heart and the
aortic valve (Supplementary Table 8).

Effects of damaging variants in TWAS genes

We next searched in exome-sequencing data of 200,643 par-
ticipants from UKB for rare damaging variants in TWAS
genes (either loss-of-function mutations or mutations pre-
dicted to be adverse by one of five in-silico methods, allele
frequency < 0.01) (Materials and methods). In 97 genes we
detected such variants. Expectedly these damaging muta-
tions were very rare which limits the power of gene-based
burden tests to observe association with risk of CAD or
one of 14 CAD-related cardiometabolic traits we tested (15

traits in total). Nevertheless, associations of eight genes
with risk traits reached Bonferroni-corrected significance
(P <3.44e-5: 0.05/97genes X 15traits) (Fig. 4; Supplemen-
tary Tables 9-10). Mutations of lipoprotein lipase (LPL),
a critical regulator of lipid metabolism [29, 60], were evi-
dently associated with lipid traits, including levels of HDL-C
(beta=—0.106; P=4.54e—68), APOA (beta=—0.062;
P=6.25e—47), APOB (beta=0.025; P=1.38e—12), and
TG (beta=0.241; P=1.47e—68). ABCGS5, encoding a
sterol transfer protein [69], was associated with LDL-C
(beta=0.12; P=3.66e—10), TC (beta=0.16; P=8.63e—10).
PCSK9, a drug target for cholesterol lowering [13], was asso-
ciated with LDL-C (beta=—0.01; P=4.29¢—7) and APOB
(beta=—0.03; P=4.4e—10). A mutation of SARS was asso-
ciated with APOB (beta=—-0.02; P=5.92e-7), MAT2A
with lymphocyte counts (beta=1.34; P=3.41E-28),
and JCAD (odds ratio [OR]=1.31; 95% confidence inter-
val [CI] 1.18-1.46; P=5.77e—7) as well as ARHGAP42
(OR =2.08; 95% CI 1.65-2.59; P=2.22e—9) were asso-
ciated with risk of diabetes. We also observed nominally
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Fig.4 Effects of damaging variants in TWAS genes on CAD and its
risk traits. Sign(beta)*—logl0(p) displays direction and significance
of gene-trait associations. When the Sign(beta)*—log10(P)> 8, they
were trimmed to 8. The gene-trait association pairs reached Bonfer-
roni-significance P < 3.44e—5 were highlighted in box. CAD coronary
artery disease, LDL-C low-density lipoproteins cholesterol, VLDL-C
very low-density lipoprotein cholesterol, HDL-C high density lipo-
proteins cholesterol, APOA apolipoprotein A, APOB apolipoprotein
B, TC total cholesterol, TG triglycerides, CRP C-reactive protein,
BMI body mass index

Fig.5 Novel risk genes were a
associated with lipid traits. a
Data from UK Biobank (UKB)
indicated that lead variants
inside the boundary of risk
genes were associated with
lipid traits with Bonferroni-
corrected significance levels
(*P<8.09e—6), or by genome-
wide significance (**P <5e—8).
b Expression levels of novel
genes were likewise associ-
ated with lipid traits and aortic
lesion area in an atherosclerosis
mouse model from the hybrid
mouse diversity panel (HMDP).
*P<0.05; **FDR <0.05.
LDL-C low-density lipopro-
teins cholesterol, VLDL-C

very low-density lipoprotein
cholesterol, HDL-C high
density lipoproteins cholesterol,
APOA apolipoprotein A, APOB - - v

significant associations of several genes with CAD: LPL [29,
60] (OR=1.168; CI 1.034-1.036; P=0.016), NOS3 [15]
(OR=1.143;95% CI 1.109-1.279; P=0.02), and ADAMTS7
[32] (OR=1.062;95% CI 1.011-1.115; P=0.016) (Supple-
mentary Tables 9-10).

Novel genes associated with risk factors in human
and mouse data

We next associated single nucleotide polymorphisms (SNPs)
in the regions of +1 Mb around the 18 novel TWAS genes
to study their associations with a series of lipid traits includ-
ing LDL-C, HDL-C, APOA, APOB, LPA, TC, and TG in
UKB (Materials and methods). There were 883 independent
SNPs estimated by GEC. Bonferroni-corrected significance
P <8.09e—6 (0.05/883 x 7 lipid traits) was observed for
numerous respective lead variants, of which RGS19, SDC-
CAG3, EZR, HOMER3, and WWP2 reached genome-wide
significant association (P <5e—8) with multiple lipid traits
(Fig. 5a; Supplementary Table 11).

Next, we extracted expression-trait association statis-
tics of TWAS genes from HMDP, which brings together
genotypes and expression data from atherosclerosis mouse
models [42]. Based on the expression data from mouse
aorta and liver tissues, 55 TWAS genes were significantly
associated with aortic lesion area and 14 further cardiovas-
cular traits (P <0.05; Supplementary Table 12). Expression
levels of seven novel genes, i.e. Rgs19. Kptn, Ezr, Stx4a,
Candl, Focad, and Wasf1, were associated with aortic lesion
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Fig.6 Targeting of KPTN and RGSI9 reduced lipids and APOB
secretion of human liver cells. a Two sgRNAs were used to target the
exon4 of KPTN (shared exon among isoforms) in a Cas9-expressing
huh7 liver cell line. The dual CRISPR strategy created a 40 bp frame
shift deletion in the gene and profound reduction of KPTN at both
mRNA and protein levels (Supplementary Fig. 11c¢, d). The primers
(P-Fw and P-Rv) used for analyzing the CRISPR editing as indicated.
b The same strategy was used for RGS/9 targeting, which resulted in

area (Fig. 5b), a commonly used measure for atheroscle-
rotic plaque formation in mice. Additionally, we found the
novel genes were associated with at least one lipid trait in
the mouse model.

Knockdown of RGS79 and KPTN in human liver cells

Potential functional implications of all novel genes, based on
the literature, are summarized in Supplementary Table 13.
We additionally aimed to validate two exemplary novel
TWAS genes by in vitro studies. Based on the above in-
silico annotations we focused these studies on novel genes
identified in liver with potential effects on lipids, the top risk
factor for CAD (Fig. 5). Among the five genes identified
in liver including NLRC4, EZR, GASS, KPTN, and RGS19,
the last two were, not only the least studied but also associ-
ated with nearly a full spectrum of lipid traits in human or
mouse data (Fig. 5). In addition, both KPTN and RGS19 are
indeed expressed in hepatocyte (Supplementary Fig. 11a,
b). Finally, both KPTN and RGS19 are located within lipid

KPTNAO RGSI19XO  CTR

KPTN-KO RGS19XO  CTR

a 130 bp frame shift deletion in the gene, and reduction of mRNA
and protein (Supplementary Fig. 11c, d). ¢ Reduced triglyceride and
cholesterol levels in knockout (KO) cell lines were detected by col-
orimetric method and APOB100 secretion was measured by human
APOB100 Elisa (n=6). Triglyceride, cholesterol, and APOB100 lev-
els were normalized to total protein and compared between the KO
and control (CTR) cell lines

loci identified recently in more than one million individuals
[24]. Therefore, we decided to test the influence of KPTN
and RGS19 on lipid metabolism of liver cells.

We generated gene knockout (KO) huh7 cell lines by a
dual CRISPR strategy (Materials and methods), which sub-
stantially reduced expression of the respective genes (Sup-
plementary Fig. 11c, d). We measured secretion levels of
TG, cholesterol and APOB in gene-targeted versus control
cells. Notably, under normal circumstances, human hepato-
cytes synthesize cholesterol, assemble TG and APOB100,
and secrete these particles in form of VLDL-C [58]. Com-
pared to control huh7 cells, we found reduced APOB and
cholesterol levels in culture medium of KPTN-KO cells
(Fig. 6a, ¢). In culture medium of RGS79-KO cells we also
detected reduced levels of APOB100, cholesterol, and TG
(Fig. 6b, ¢), in line with strong associations of this gene with
an array of lipid traits in both human genotyping and mouse
expression data sets (Fig. 5).

We further corroborated our experimental results by
performing RNA sequencing (RNA-seq) on KPTN-KO and
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RGS19-KO hepatocytes. In comparison to control cells,
dysregulated genes in KPTN-KO and RGS19-KO hepato-
cytes (P <0.05; Supplementary Tables 14—15) were indeed
enriched for lipid metabolism (Supplementary Fig. 12). For
KPTN-KO hepatocytes, the top four significantly enriched
pathways plausibly contribute to CAD risk. Pathways ranked
1 and 3, ‘regulation of cholesterol esterification’ and ‘LDL
particle remodeling’, strongly suggested that KPTN can
affect CAD risk via cholesterol metabolism (Supplementary
Fig. 12a, b). For RGS19-KO hepatocytes, the dysregulated
genes were enriched for both cholesterol and triglycerides
metabolisms (Supplementary Fig. 12¢, d) and eight of the
top ten significant enriched pathways were related to lipid
metabolism, consistent with the reduced secretion of choles-
terol and triglyceride of RGS79-KO cells (Fig. 6¢).

Discussion

In a stepwise approach, we first generated models which
allow to predict gene expression based on genotypes in nine
tissues. Next, we applied these models to individual-level
genotype data on more than 80,000 CAD cases and controls
to perform a transcriptome-wide association analysis. We
identified 114 genes with differential expression by genetic
means in CAD patients. Many signals were highly plau-
sible as they resided within loci displaying genome-wide
significant association with CAD by traditional GWAS. By
in-silico analyses, these genes were markedly enriched in
established pathways for the disease. Moreover, damaging
variants in these genes showed association with CAD risk
or its underlying traits in whole exome sequencing data from
UKB. Importantly, we also identified 18 genes without prior
evidence for their involvement in CAD by GWAS, many of
which were found to be associated with lipid metabolism in
human and mouse data.

Only a minority of genes residing within published CAD
GWAS loci have been validated experimentally for their
underlying causal role in atherosclerosis. Our data provide
a substantial step towards prioritization of genes at respec-
tive GWAS loci [17, 35], because the TWAS association
finding is based on expression levels of specific genes in
defined tissues. In this respect, 46 genes identified by this
TWAS are known for effects in pathophysiological pathways
related to CAD, including lipid metabolism, inflammation,
angiogenesis, transcriptional regulation, cell proliferation,
NO signaling, and high blood pressure, to name a few (Sup-
plementary Table 6), giving credibility to the association
findings.

Interestingly, our TWAS uncovered eight novel gene-
CAD associations in fat tissue, including MGP and WASF!
in SE, and CAND1, FAM114A1, FOCAD, RGS19, TSPAN11,
and TXNRD3 in VAF, representing half of the novel genes.
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All these genes also showed significant association with
multiple lipid traits in a mouse atherosclerosis model
(Fig. 5b). Given many CAD patients that are overweight
or obese, it will be of great interest to identify how these
genes modify cardiometabolic traits leading to cardiovascu-
lar disorders. In this respect our TWAS could provide a list
of candidate genes and related targetable cardiometabolic
traits. In addition, it is of surprise to unveil 22 genes linking
SKLM to CAD risk, and eight were unique to this tissue,
including HOMER3, SDCCAG3, MTAP, NME9, PSMA4,
SLC2A12, UNCI119B, and VAMPS, the first two being novel.
SDCCAGS3 or ENTR1 encodes endosome associated traffick-
ing regulator 1 and involves in recycling of GLUTI (glucose
transporter type 1), supplying the major energy source for
muscle contraction. SKLM-based metabolism may have a
protective role in CAD as suggested by the many cardio-
protective effects of sports [44, 54]. Gene targets enhancing
SKLM function in this respect might be effective in CAD
prevention, a field relatively unexplored thus far. Here, for
the first time, quantitative traits regulated genes in SKLM
were associated with CAD by TWAS, providing novel evi-
dence for genes that could modulate CAD risk by their func-
tions in SKLM.

Many novel TWAS genes revealed association with lipid
traits in both genotype-trait data of human biobank and
expression-trait data of atherosclerosis mouse model. For
example, KPTN and RGS19, both novel genes displaying sig-
nificant TWAS results for CAD—based on their genetically-
modulated expression profiles of liver tissue—also showed
significant association with various lipid traits as well as
aortic lesion area in the atherosclerosis mouse model. More-
over, both gene loci harbor SNPs which are significantly
associated with several lipids including LDL-C, HDL-C,
TC, and/or TG in human genotype data. Based on these
observations, we functionally validated the roles of these
two novel genes by studying lipid levels in human liver cells,
i.e. the tissue that displayed evidence for differential expres-
sion by TWAS. Indeed, we observed that knockout of the
two genes lowered secretion of APOB and lipids into culture
medium. KPTN, kaptin (actin binding protein), a member of
the KPTN, ITFG2, C120rf66, and SZT2 (KICSTOR) protein
complex, is a lysosome-associated negative regulator of the
mechanistic target of rapamycin complex 1 (mTORC1) sign-
aling [67]. By investigating dysregulated genes of KPTN-KO
hepatocytes, we found many genes of mMTORCI1 pathway to
be upregulated (Supplementary Fig. 12b), including a subu-
nit of mMTORCI1, namely, MLSTS (MTOR associated protein,
LST8 Homolog). Interestingly, many lysosome genes were
also significantly upregulated including LAMP1 (lysosomal
associated membrane protein 1), ACP2 (acid phosphatase 2,
lysosomal), AP1B/1 (adaptor related protein complex 1 subu-
nit beta 1), ATP6VOC (ATPase H+ transporting VO subunit
¢), CTNS (cystinosin, lysosomal cystine transporter), CTSA
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(cathepsin A), and CLTB (clathrin light chain B). Lysosomes
promote lipid catabolism and transport, and maintain cel-
lular lipid homeostasis [57]. Activated mTORCI located
on lysosome membrane [67], acts as a sensor of lysosomal
lipids [57], such as cholesterol and phosphatidic acid, which
exert as building block for cellular and subcellular mem-
brane system. In fact, cholesterol mediates mTORC] activa-
tion at the lysosome [9]. The interaction of mTORCI and
lysosome may promote lipid-sensing and lipid-trafficking to
support the function of other subcellular organelles [46, 57].
These results hint the enhanced cellular usage of cholesterol
via mTOR-lysosome axis in KPTN-KO hepatocytes. In addi-
tion, several lipoprotein genes were downregulated as well,
including APOA1, APOA2, APOA4, and APOB. Both pro-
cesses might contribute to the reduced cholesterol secretion
and the association with CAD.

RGS19 belongs to the RGS (regulators of G-protein sign-
aling) family, who are regulators for G-protein-coupled
receptors (GPCRs) [49]. RGS19 inhibits GPCR signal trans-
duction by increasing the GTPase activity of G-protein alpha
subunits, thereby transforming them into an inactive GDP-
bound form [53, 59]. The targeting GPCR of RGS79 has not
been observed before, and how RGS19 regulates lipid metab-
olism remains unclear. The RGS19 locus was first reported to
be associated with TC and TG in 2017 [33, 41]. We observed
significant association of this gene with CAD and function-
ally validated its role in TG and cholesterol secretion. A
potential mechanism could be related to PPAR«a pathway
that regulates the expression of genes involving hepatic lipo-
genesis and lipid storage [63, 66]. PPAR« also regulates cho-
lesterol, bile acid homeostasis, and sphingolipid metabolism
in the liver [22]. Many genes in PPAR« pathway were sig-
nificantly downregulated in RGS79-KO hepatocytes, includ-
ing FABPI (also known as liver fatty acid binding protein),
PLTP (phospholipid transfer protein), APOAI, APOA2, and
APOC3 (Supplementary Fig. 12d). RGS19 is a regulator
for G-protein-coupled receptors (GPCR). Interestingly, we
found six dysregulated GPCRs in RGS79-KO hepatocytes,
including, ADGRL2, CELSR1, ADGRVI, OXERI, LGRS,
and LGR4 (Supplementary Fig. 12d). Furthermore, one of
them, OXER], an activator PPAR« [51], was also downregu-
lated in RGS19-KO cells. All in all, one hypothesis could be
that RGS19 associated GPCR signaling affects the PPAR«
pathway, and thereby lipid metabolism and CAD risk. Previ-
ous and current studies concordantly suggest from different
angles that RGS19 has a role in lipid metabolism and our
data further indicate that this function might meditate its
effects on CAD risk.

There are certain limitations in our study. First, we
observed that about 15% of gene-tissue pairs displayed
some degree of heterogeneity in the association findings
with CAD risk across the cohorts (Supplementary Table 4).
While this number is relatively low and likely result from

a play of chance when association findings are being com-
pared across individuals with relatively small case—control
samples, it might also indicate some degree of population
specific effects within European ancestries from UK, Ger-
many, France, and Italy. Second, since TWAS are strongly
dependent on the reference panel linking genetic signatures
with gene expression, it had to be expected that STARNET-
and GTEx-based predictive models display some differences
in gene-CAD associations. STARNET-based TWAS iden-
tified 129 gene-tissue pairs, whereas GTEx-based TWAS
identified 106 gene-tissue pairs. Yet, 42 gene-tissue pairs
were shared between the two analyses, and effect sizes for
the shared genes were highly concordant (p=0.97). An aver-
age of 62% overlapping genes was observed in the matched
tissues of two reference-based models, and the resulting size
of expression-CAD associations was linearly consistent with
an average p =0.72. The relatively small differences may
be due to different sample sizes used for training predictive
models [70], different disease states (subjects with and with-
out CAD), intravital (STARNET) or post mortem (GTEx)
sample collection, as well as different transcript abundance
and genotype coverage leading to differences in expression
associated SNPs in our reference panels [20, 25]. Given a
fair consistency between the two data sources, we combined
results derived from both panels to increase the power for
capturing risk genes. Third, although TWAS facilitates can-
didate risk gene prioritization, co-regulation or co-expres-
sion in cis at a given locus limits the precise determination
of the culprit gene [62]. Indeed, at 12 loci we observed sig-
nals for three or more TWAS genes. For instance, in LIV
tissue TWAS identified five genes at 1p13.3, ATXN7L2,
CELSR2, PSMAS, PSRC1, SARS, and SORT! which were
co-regulated by same risk variant set, confusing prioritiza-
tion of the causal gene. While CELSR2, PSRC1, and SORT]
were previously shown to act on lipid metabolism [3], we
found that damaging mutations in SARS were also associated
with serum levels of HDL-C and APOA. Thus, a combined
effects of some or all genes at this locus may contribute
to the association signal. In addition, all IncRNA genes
identified by our study displayed co-expression with their
neighboring coding genes, which makes it difficult to deter-
mine their casual effects. Nevertheless, in combining TWAS
data with other genetic analyses, e.g. effects of damaging
mutations, genetic association with other phenotypes and
expression-traits association statistics, we aimed to improve
risk gene prioritization, and to provide deeper insights of
possible disease-causing mechanisms. For instance, LPL is
well-known for its protective role against CAD by lower-
ing lipids [29, 60], and our analyses showed that damaging
LPL mutations were associated with higher lipid levels. Last,
as with all statistical methods, there are certain limitations
and assumptions associated with TWAS. Further evolution
and improvement of these methods, as well as functional
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validation experiments, will assuredly improve the accuracy
of these studies.

In summary, our TWAS study based on two genetics-of-
gene-expression panels identified 114 gene expression-CAD
associations, of which 18 were novel. The extended analyses
with multiple datasets supported the reliability of the CAD
TWAS signals in prioritizing candidate risk genes and iden-
tifying novel associations in a tissue-specific manner. Func-
tional validation of two novel genes, RGS19 and KPTN, lend
support to our TWAS findings and provide strong evidence
for their role in lipid metabolism. Thus, our study created
a set of gene-centered and tissue-annotated associations for
CAD, providing insightful guidance for further biological
investigation and therapeutic development.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00395-022-00917-8.
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