
TECHNISCHE UNIVERSITÄT MÜNCHEN
TUM School of Engineering and Design

Harmonic and transient three-dimensional
Structure-Soil-Structure-Interaction applying a

coupled ITM-FEM approach

Julian Maria Freisinger

Vollständiger Abdruck der von der TUM School of Engineering and Design der Technischen
Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Roberto Cudmani

Prüfer*innen der Dissertation:
1. Prof. Dr.-Ing. Gerhard Müller

2. Prof. Dr. ir. Geert Degrande

Die Dissertation wurde am 18.08.2022 bei der Technischen Universität München eingereicht
und durch die TUM School of Engineering and Design am 06.02.2023 angenommen.





III

Abstract

The dynamic interaction of surface and underground structures with each other and the
surrounding soil can have a significant impact on the structural responses and the wave
propagation patterns within the ground. Therefore, the integration of the dynamic Structure-
Soil-Structure-Interaction (SSSI) is essential for an accurate prediction of the structure and
ground borne vibrations.

In this thesis an efficient coupled Integral Transform Method (ITM) – Finite Element Method
(FEM) approach is presented, based on a domain decomposition technique, subdividing the
total system into substructures with different characteristics. The infinite extent of homoge-
nous or layered soils including a cylindrical or spherical cavity or indentation is accounted
for by the semi-analytical solutions of the ITM, whereas structures exhibiting sophisticated
geometries and, if needed, a part of the surrounding soil are modelled by the FEM. Both
substructures are coupled at the each matching interaction surfaces, enforcing the compati-
bility conditions. For length invariant structures, a 2.5D approach is used and the coupling
is performed at the cylindrical interface, whereas for finite bounded structures, a 3D ap-
proach is applied and the coupling is carried out at the spherical boundary. Furthermore,
to investigate the interaction of one or several surface structures with a possibly inhomoge-
neous soil, a methodology is developed that permits the determination of the soil stiffness
at discrete points on the surface of any system that can be modelled with a coupled ITM-
FEM approach. In all cases this leads to a description of the overall system by a complex
dynamic stiffness matrix, enabling the computation of the system response to an arbitrary
load applied on the discretized degrees of freedom.

The proposed approach is validated by comparison with literature results and semi-analytical
solutions for multiple benchmark systems. It is further applied to assess the efficiency of
different vibration mitigation measures in terms of insertion losses, thereby enabling the iden-
tification of the underlying physical mechanisms and relevant design parameters by numerical
computations. Compliance functions of single and multiple adjacent surface foundations are
presented and the influence of their mass and stiffness, the load distribution and different
subsoil conditions on the system response as well as on the power transmission at the soil
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foundation interface is studied. The distribution and wavenumber spectra of the stresses and
displacements on the ground surface and within the soil, resulting from the Soil-Structure-
Interaction (SSI), are computed by means of a postprocessing procedure and used together
with a power flow analysis to deduce frequency dependent and site specific wave propagation
characteristics like radiation directivity, predominant wave types and attenuation behaviour.
Furthermore, the impact of vibration impeding or amplifying effects linked with layer reso-
nance phenomena or the reflection, diffraction or scattering of waves at embedded structures
or inhomogeneities on the foundation impedances and the free field response is illustrated.

In addition to the frequency domain analysis, the proposed approach facilitates also the
investigation of the dynamic interaction of surface and underground structures subjected to
transient loading. The time histories of the system response are either obtained by a Fourier
synthesis of the complex frequency transfer functions or by a discrete convolution of the
transient load with the impulse response functions of the system. An interpolation procedure
is implemented for the transfer functions in order to ensure a sufficient time discretization.
The influence of the hysteretic material damping on the causality of the response is studied
and a confidence measure introduced to quantify the effect of the frequency band limitation.
Time dependent compliance functions for rigid surface foundations are given and compared
with existing solutions for verification. Moreover, an application of the coupled 2.5D ITM-
FEM approach for the computation of the transient response of a twin tunnel system to a
Gaussian modulated sine pulse is shown.

Eventually, a methodology for the incorporation of moving loads into the coupled ITM-FEM
approach is introduced and validated by comparison of the moving load effects with those
of existing analytical solutions for fundamental systems. The formation of shock waves and
the confinement of all disturbances to a region limited by the corresponding Mach lines for
a constant load moving with a velocity exceeding the wave speeds of the soil is illustrated as
well as the Doppler effect in case of a moving oscillating load. Furthermore, these effects are
correlated with the differing solution characteristics in the wavenumber frequency domain,
before lastly the time dependent response of a twin tunnel system with a moving load inside
one of the tunnel tubes is presented.
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Kurzfassung

Die dynamische Wechselwirkung von ober- und unterirdischen Bauwerken untereinander und
mit dem umgebenden Boden kann einen erheblichen Einfluss auf die Strukturreaktionen
und die Wellenausbreitungseigenschaften im Boden haben. Daher ist die Integration der
dynamischen Bauwerk-Boden-Bauwerk-Interaktion (SSSI) für eine genaue Vorhersage der
Struktur- und Bodenschwingungen unerlässlich.

In dieser Arbeit wird ein effizienter gekoppelter Ansatz aus Integral-Transform-Methode
(ITM) und Finite-Elemente-Methode (FEM) vorgestellt, der auf einer Gebietszerlegungsmeth-
ode basiert, bei der das Gesamtsystem in Teilstrukturen mit unterschiedlichen Eigenschaften
unterteilt wird. Die unendliche Ausdehnung homogener oder geschichteter Böden einschließ-
lich eines zylindrischen oder kugelförmigen Hohlraums oder einer Einsenkung wird durch
die semi-analytischen Lösungen der ITM berücksichtigt, während Strukturen mit anspruchs-
vollen Geometrien und, falls erforderlich, ein Teil des umgebenden Bodens durch die FEM
modelliert werden. Beide Teilstrukturen werden an den jeweils passenden Interaktionsflächen
unter Anwendung der Kompatibilitätsbedingungen gekoppelt. Für längeninvariante Struk-
turen wird ein 2,5D-Ansatz verwendet und die Kopplung erfolgt an der zylindrischen Gren-
zfläche, während für endlich begrenzte Strukturen ein 3D-Ansatz angewandt wird und die
Kopplung an der kugelförmigen Grenzfläche durchgeführt wird. Um die Interaktion einer
oder mehrerer Oberflächenstrukturen mit einem möglicherweise inhomogenen Boden zu un-
tersuchen, wird außerdem eine Methodik entwickelt, die die Bestimmung der Bodensteifigkeit
an diskreten Punkten auf der Oberfläche eines beliebigen Systems ermöglicht, das mit einem
gekoppelten ITM-FEM-Ansatz modelliert werden kann. In allen Fällen führt dies zu einer
Beschreibung des Gesamtsystems durch eine komplexe dynamische Steifigkeitsmatrix, die
die Berechnung der Systemreaktion auf eine beliebige, auf die diskretisierten Freiheitsgrade
aufgebrachte Last ermöglicht.

Der vorgeschlagene Ansatz wird durch den Vergleich mit Literaturergebnissen und semi-
analytischen Lösungen für mehrere Benchmark-Systeme validiert. Darüber hinaus wird er
angewandt, um die Effizienz verschiedener schwingungsdämpfender Maßnahmen im Hin-
blick auf Einfügungsdämpfungen zu bewerten, wobei die zugrundeliegenden physikalischen
Mechanismen und relevanten Designparameter durch numerische Berechnungen identifiziert
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werden können. Es werden die Flexibilitäten von einzelnen und mehreren benachbarten
Oberflächenfundamenten dargestellt und der Einfluss der Plattenmasse und -steifigkeit, der
Lastverteilung und der verschiedenen Untergrundbedingungen auf die Systemantwort sowie
auf die Kraftübertragung an der Schnittstelle zwischen Boden und Fundament untersucht.
Die aus der Boden-Bauwerk-Interaktion (BBI) resultierenden Verteilungen und Wellenzahl-
spektren der Spannungen und Verschiebungen an der Bodenoberfläche und im Boden werden
mit Hilfe eines Postprocessing-Verfahrens berechnet und zusammen mit einer Leistungsflus-
sanalyse zur Ableitung von frequenzabhängigen und standortspezifischen Wellenausbreitung-
seigenschaften wie Abstrahlcharakteristik, vorherrschende Wellentypen und Dämpfungsver-
halten verwendet. Darüber hinaus wird der Einfluss von schwingungshemmenden oder -
verstärkenden Effekten im Zusammenhang mit Schichtresonanzphänomenen oder der Reflex-
ion, Beugung oder Streuung von Wellen an eingebetteten Strukturen oder Inhomogenitäten
auf die Fundamentimpedanzen und die Freifeldantwort dargestellt.

Neben der Analyse im Frequenzbereich ermöglicht der vorgeschlagene Ansatz auch die Un-
tersuchung der dynamischen Interaktion von ober- und unterirdischen Strukturen, die einer
transienten Belastung ausgesetzt sind. Die Zeitverläufe der Systemantwort werden entweder
durch eine Fourier-Synthese der komplexen Frequenzübertragungsfunktionen oder durch eine
diskrete Faltung der transienten Belastung mit den Impulsantwortfunktionen des Systems
erhalten. Für die Übertragungsfunktionen wird ein Interpolationsverfahren eingesetzt, um
eine ausreichende zeitliche Diskretisierung zu gewährleisten. Der Einfluss der hysteretischen
Materialdämpfung auf die Kausalität der Antwort wird untersucht und ein Gütemaß zur
Quantifizierung der Wirkung der Frequenzbandbegrenzung eingeführt. Es werden zeitab-
hängige Nachgiebigkeitsfunktionen für starre Oberflächenfundamente angegeben und zur
Verifizierung mit bestehenden Lösungen verglichen. Darüber hinaus wird eine Anwendung
des gekoppelten 2,5D ITM-FEM-Ansatzes für die Berechnung der transienten Antwort eines
Zwillingstunnelsystems auf einen Gauß-modulierten Sinusimpuls gezeigt.

Schließlich wird eine Methodik für die Einbeziehung beweglicher Lasten in den gekoppelten
ITM-FEM-Ansatz vorgestellt und durch den Vergleich der Auswirkungen beweglicher Lasten
mit denen bestehender analytischer Lösungen für grundlegende Systeme validiert. Die Bil-
dung von Stoßwellen und die Begrenzung aller Störungen auf einen durch die entsprechenden
Mach-Linien begrenzten Bereich für eine konstante Last, die sich mit einer Geschwindigkeit
bewegt, die die Wellengeschwindigkeiten des Bodens übersteigt, wird ebenso veranschaulicht
wie der Dopplereffekt im Falle einer sich bewegenden oszillierenden Last. Darüber hin-
aus werden diese Effekte mit den unterschiedlichen Lösungseigenschaften im Wellenzahl-
Frequenzbereich korreliert, bevor schließlich das zeitabhängige Verhalten eines Doppeltun-
nelsystems mit einer sich bewegenden Last in einer der Tunnelröhren dargestellt wird.
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6.6 Soil properties for verification of halfspace with spherical inclusion or inden-

tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.7 Wave lengths and discretization parameters for given excitation frequencies. 126
6.8 Error measures for halfspace with spherical inclusion w.r.t. |ūz(y)| at z = 0. . 126
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ĈL

ITM
Vector of unknowns for discrete soil stratification
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Ŝhs
0ITM

Stress matrix due to unit loads for homog. halfspace for ω = 0
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ûhs sph L

ITM Displ. vector of layered halfspace with sph. cavity
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1 Introduction

1.1 Motivation

Since the middle of the 20th century, continuous urbanisation due to the steady demographic
growth, which has led to a strong aggregation of the inner cities as well as a massive increase
in construction measures and traffic volume has been observed worldwide. Consequently,
in the modern urban environment, there has also been a massive increase in the occurrence
and intensity of ground vibrations caused by a variety of different sources on the ground
surface or within the soil. Earthquakes, the passage of vehicles on uneven roads or tracks,
as well as the operation of heavy machinery or wind induced building vibrations, generate
elastodynamic waves that are transmitted through the ground and cause disturbances in
adjacent structures, leading amongst others to malfunction of sensitive equipment, annoyance
of residents by structure borne vibrations and re-radiated sound or even fatigue problems.

In many existing models for the investigation of the dynamic Soil-Structure-Interaction (SSI),
only the response of individual isolated structures on or embedded in the soil is considered,
and the soil is idealised as an infinite homogeneous medium. However, it has been shown
that the soil composition as well as the presence of local geological inhomogeneities has
a significant influence on the dynamic system response, as they can lead to amplification
effects due to reflection, refraction and scattering phenomena at the material transition
surfaces. Furthermore, the interference of the introduced elastic waves with other surface
or underground structures located in the immediate vicinity, such as a group of adjacent
buildings, an underground tunnel beneath a building or a twin tunnel system, can lead to a
considerable gain in the resulting structural and ground vibrations. Considering the dynamic
behaviour of a high-speed railway line, the interaction of the track with the underlying soil
can lead to very large soil displacements and track deformations if travel speeds are in the
range of the propagation velocity of the surface waves of a soft upper layer. In all these cases,
the inclusion of the dynamic Structure-Soil-Structure-Interaction (SSSI) is indispensable, as
neglecting these effects leads to an estimation of the displacement and stress amplitudes
on the unsafe side. Nonetheless, it is important to notice that the SSSI can also have a
beneficial effect on the soil vibrations and the oscillations of the involved structures and
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a general deduction of the effect of the dynamic interaction is only possible for idealized
cases.

Therefore, adequate approaches for the prediction of the environmental and structural vi-
brations are required which allow on the one hand the detailed modelling of the complex
geometries and material properties of the considered structures and on the other hand the
infinite extension of the surrounding soil exhibiting different compositions and satisfying the
radiation condition. In addition, the approaches need to be able to capture different types
of loading w.r.t. to their distribution and time dependence. Often, the occurring loads can
be represented by means of stationary harmonic loads that exhibit a certain frequency or
a limited frequency spectrum, as it is e.g. the case in the context of machine foundations.
Here, a frequency domain analysis provides a very good insight into the response charac-
teristics of the system and allows to compute the design relevant quantities. However, in
case of transient processes such as suddenly applied, impact and pulse loads or random time
varying loads as e.g. wind or earthquake, an analysis in the time domain allows a better
understanding of the emerging effects. The same applies to moving loads which are mainly
encountered in rail or road traffic applications.

Since analytical methods are generally only applicable for highly idealized systems, differ-
ent coupled approaches are mostly used in the literature. Thereby, the system is divided
into substructures with different characteristics allowing to take advantage of the individual
strengths of the different methods in order to achieve the best conceivable approximation of
the real system behaviour. Therewith, the SSSI can be modelled on a high level of complex-
ity, simultaneously allowing to perform a large spectrum of investigations and thus to gain
insight into the physical behaviour of the systems, their wave propagation characteristics and
the corresponding energy distribution. It is possible to identify important system parame-
ters already at an early stage and the sensitivity of the system response to a change in these
can be evaluated numerically, permitting an optimisation of the final design. Moreover, the
effect of the insertion of additional structures on already existing buildings can be assessed
in advance and, if necessary, the effectiveness of different vibration mitigation measures can
be evaluated.

1.2 Literature review

Before the contents of this thesis are described in detail in Sec. 1.3, an overview of the different
analytical and numerical frequency and time domain methods proposed in the literature is
given. Contributions dealing with elastodynamic wave propagation, dynamic soil-structure
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interaction or cross-interaction between several structures through the common linear-elastic
environment, ground vibrations originating from traffic systems, diffraction and scattering
by obstacles in the soil, etc. are considered. Thereby, a distinction is made not by the applied
methods, considered systems or load scenarios, but by the different types of interfaces where
the load is applied or the structures are coupled to the unbounded linear-elastic environment,
as this reconciles very well with the different systems and problem types investigated later
in this thesis.

Sec. 1.2.1 covers analytical solutions for fundamental elastodynamic systems with finite har-
monic and transient loads applied directly on or inside the soil. Furthermore, methods to
investigate the interaction of single or multiple surface or embedded structures, coupled
through the underlying soil, are presented together with approaches treating the effect of
spatially embedded inclusions on the elastic wave propagation. In contrast, Sec. 1.2.2 deals
with the interaction of structures with unbounded interface to the surrounding soil and the
resulting vibrations. Both, 2D and 2.5D approaches, capable of representing length-invariant
structures, are considered. The focus is on methods for the investigation of ground borne
vibrations and oscillations in adjacent structures resulting from rail and road traffic on the
ground surface or in tunnels, as well as on vibration mitigation measures at the source or in
the transmission path. Eventually in Sec. 1.2.3, some closed form solutions addressing the
physical phenomena due to moving loads on infinite elastic media are presented. Moreover,
methods analysing the interaction of moving vehicles with the supporting infrastructure and
the underlying or surrounding soil as well as the resulting track and ground vibrations are
pointed out.

1.2.1 Interaction on single or multiple bounded interfaces

Fundamental solutions in elastodynamics

"A fundamental solution is an analytical expression for the response anywhere in a solid
elicited by a static or dynamic point source at some arbitrary location. Such expressions can
be thought of as influence functions and can be used as tools to construct other more complex
solutions" [1]. Thus they form the basis of a large part of the today available sophisticated
methods, dealing with complex SSI and SSSI problems.

The problem of loads on or within an infinite or semi-infinite elastic medium was firstly
addressed by Lamé, Clapeyron and Lord Kelvin, who presented a fundamental solution for
the static point load inside an infinite solid. Subsequently, Boussinesq [2] gave a solution
for a vertical point load on the surface of an elastic halfspace and Cerruti [3] deduced an
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approach to treat the response of an elastic solid due to prescribed tractions or displacements
on a defined surface and thus formed the basis for modern boundary value problems. The
first fundamental solution for a time harmonic concentrated load within an infinite elastic
medium was given by Stokes [4]. Thereafter, an analytical solution for the response of an
elastic halfspace due to a suddenly applied load on the ground surface was presented in
Lamb [5], which gave rise to a series of papers [6–8] dealing with normal, tangential or
torsional dynamic loads on the halfspace surface, applying integral transform methods and
the Cagniard-de Hoop technique [9, 10] for the inverse transform. Closed form solutions
for the transient response of an elastic halfspace due to an uniformly distributed strip load
and a rectangular block load were presented in Mitra [11] and Guan and Novak [12]. Semi-
analytical approaches for distributed loads on homogeneous and layered soils were introduced
in [13–16]. A detailed overview of various other fundamental solutions or Green’s functions
for two- and three-dimensional elastodynamic problems is given in [1] and a comprehensive
compendium of these is published in Kausel [17]. Furthermore, collections of analytical
solutions for different canonical problems are gathered e.g. in Eringen and Suhubi [18] and
Achenbach [19].

Soil structure interaction (SSI)

The origin for the development of a variety of methods treating the dynamic Soil-Structure-
Interaction is the publication of Reissner [20], who dealt with the time harmonic response
of a circular plate with frictionless contact to the halfspace surface assuming an uniform
stress distribution at the interface. Bycroft [21] presented an approximate solution for the
frequency dependent impedances of a rigid circular plate attached to the surface of a semi-
infinite elastic solid or stratum, while compliance functions for rectangular foundations were
derived in Thomson and Kobori [22]. The first closed form solutions solving the mixed
boundary value problem were provided by Veletsos and Wei [23], Luco and Westmann [24]
for rigid circular plates and Luco and Westmann [25] for rigid strip footings resting on an
elastic halfspace. Impedance functions for this kind of foundations located on the surface of
a layered soil or an elastic stratum were given by Luco [26] and Gazetas [27].

With increasing computational capacities, numerical methods moved more and more into
the centre of research, as they made it possible to treat also foundations with arbitrary
shapes and limited flexural rigidity, that may be located on or embedded in a possibly
inhomogeneous soil, in contrast to the purely analytical methods which were usually afflicted
with strong simplifications and assumptions.

One widely used tool in this context is the Finite-Element-Method (FEM) which allows a de-
tailed modelling of complicated geometries and loads as well as different material properties.
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However, in order to sufficiently consider the radiation damping of an infinite soil, rather
large domains need to be discretized leading to a significant computational effort. There-
fore, a couple of computational methods have been developed in order to minimize spurious
reflections of waves at the artificial boundaries of the FEM domain and thus allowing the
radiation of the elastodynamic waves to infinity.

One possibility is the coupling of infinite elements to the FEM domain, using decaying
shape functions to model the attenuation of the waves travelling to infinity. Bettess [28] de-
veloped infinite elements with exponentially decaying Lagrange polynomials as shape func-
tions, whereas Kazakov [29] used modified Bessel functions. An infinite element based on the
mapping of a semi-infinite strip onto the finite element domain was presented by Zienkiewicz
et al. [30], whereas Yang et al. [31] introduced a frequency independent infinite element for
semi infinite problems. Alternatively different Absorbing Boundary Conditions (ABC), only
allowing a wave propagation out of the modelled region, could be applied [32, 33]. Higher
order ABCs were presented by Collino et al. [34] and Rabinovich et al. [35], enhanced for
long time stability in [36]. Furthermore, Perfectly Matched Layers (PML), adjoint as addi-
tional surrounding layer which avoid any reflection at the interface and attenuates all waves
within the layer exponentially by means of a complex coordinate stretching [37–39], are of-
ten used. Kausel and de Oliveira Barbosa [40] developed a PML formulation based on the
application of the weighted residual method, in which the stretching functions are directly
applied in the mass and stiffness matrices of a conventional FEM approach. Fathi et al. [41]
derived a three dimensional time domain PML formulation, used in Papadopoulos et al. [42]
to investigate the influence of uncertain local subsoil conditions on the response of buildings
to ground vibration. In Fontara et al. [43] recommendations for a proper selection of the
PML parameters were given and a FEM-PML approach, implemented as macro element
in a commercial FEM software, was used to determine the dynamic flexibility functions of
a rigid foundation embedded in a layered halfspace. In addition, the Thin Layer Method
(TLM), can be used in combination with the FEM to model the infinite extension of the
soil in horizontal direction. It was firstly introduced by Lysmer and Kuhlemeyer [44] and
Waas [45] who discretized the soil layers with linear shape functions in vertical direction and
applied analytical frequency domain solutions for the horizontal direction. Later on TLM
formulations were derived in [46, 47], to obtain Green’s functions for harmonic and impul-
sive sources in laminated media. Park [48] enhanced the TLM formulation for application
to semi-infinite and infinite multilayered media and expanded it to cylindrical and spherical
coordinate systems. Schepers and Kausel [49] showed a method to increase the accuracy of
the Green’s functions for layered media, obtained with the TLM, and de Oliveira Barbosa
et al. [50] combined the TLM with the PML to achieve more accurate results for a layered
halfspace subjected to arbitrary dynamic sources.
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Alternatively, rigorous methods with non-local boundary conditions can be applied using
analytical solutions that implicitly fulfill the radiation condition. They allow to treat the
infinite extent with high accuracy and at the same time minimal modelling and computa-
tional effort [51]. The 3D dynamic SSI of harmonically loaded rigid, massless foundations of
arbitrary shape, was firstly investigated in [52–55]. They obtained the frequency dependent
foundation compliances by imposing the rigid body kinematic conditions on the dynamic
soil stiffness, determined by discretizing the soil foundation contact area into a number of
subregions assuming uniform contact tractions and applying the Green’s functions for the
homogenous or layered halfspace. A frequency domain Boundary Element Method (BEM),
limiting the discretization to the soil foundation interface and thus reducing the size of the
problem by one, was used in [56–58] to investigate the SSI of rigid rectangular founda-
tions at the surface or embedded in a halfspace and to compute the corresponding dynamic
impedance functions.

However, the most common approach to account for SSI problems is to couple different
methods, using analytical solutions obtained e.g. with the BEM to represent the unbounded
soil and model the structure by means of the FEM. Coupled frequency domain FEM-BEM
approaches were used in [59–62] to investigate the SSI of arbitrarily shaped finite plates
with limited flexural rigidity, providing compliance functions at characteristic points of the
foundation and highlighting the influence of the mass and stiffness ratios of the structure
and the soil on the dynamic system response. Following, a whole series of different coupled
3D FEM-BEM formulations in the time domain was published, dealing with the dynamic
interaction of three dimensional structures and different underlying soils due to transient
external loads or seismic motions. Thereby, the direct time domain solutions constitute
the basis for an extension to non-linear soil-structure interaction problems, which is not
feasible with frequency domain methods. Karabalis [63, 64] investigated the response of
flexible surface foundations to vertical and horizontal impulse loads, applying a step-by-step
integration in time assuming the tractions and displacements to be constant over a time
interval as well as each boundary element. In contrast Ahmad and Banerjee [65] used higher
order shape functions w.r.t. space and time to approximate the stresses and displacements
and applied a time stepping in conjunction with a time domain BEM formulation based on
Stoke’s fundamental solution. The transient SSI of 3D structures on a homogeneous halfspace
was addressed in [66–69], employing halfspace Green’s functions for surface point loads with
Heaviside time dependence. This allows to limit the spatial discretization only to the contact
area between the foundation and the ground, since the zero stress boundary condition on
the soil surface is inherently satisfied. Rizos and Wang [70] utilized the B-spline impulse
response function of a homogeneous halfspace, obtained by an adapted BEM formulation in
combination with a Newmark-β time integration, to account for the transient SSI response of
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structures on the soil surface. A FEM-BEM formulation based on halfspace Green’s functions
was also used in Galvín and Romero [71] to analyse the transient response of multi-storey
buildings due to earthquake loading.

Another approach, used together with the FEM to analyse SSI problems and satisfying the
radiation condition exactly, is the Scaled Boundary Finite Element Method (SBFEM). The
approach was firstly derived by Wolf and Song [72–74] in the frequency domain. Thereby
only the boundary of the infinite medium is discretized with doubly-curved finite surface
elements, resulting in an ordinary differential equation w.r.t. radial direction, originating in
a scaling center that can be solved analytically. Thus no fundamental solution is necessary
and no singular integrals need to be evaluated [72]. Later on it was expanded also to the
time domain, wherefore a discretization of the SBFEM equations in unit-impulse response
matrices is required and the transient solution is finally computed by a convolution integral
[75]. In Yann et al. [76] a coupled 3D FEM-SBFEM approach in the time domain was used
to analyse the three dimensional SSI of a massless square plate on a homogeneous halfspace.
Schauer et al. [77] presented a parallelized algorithm to tackle large scale SSI problems
and introduced a technique for the coupling of non-matching meshes at the near-field far-
field interface, allowing different discretizations for the subdomains and thus an optimized
meshing with lower computational costs. Birk and Behnke [78] presented a modified FEM-
SBFEM formulation using a scaling line instead of a scaling center and applied it to study
the SSI of rigid surface and embedded foundations with a horizontally layered soil. Han
et al. [79] expanded the formulation by a mixed variable algorithm to investigate transient
SSI processes. In contrast, Aslmand et al. [80] adapted it, introducing an axisymmetric
geometry of the far field using cylindrical coordinates and expressing the quantities on the
circumferential direction by means of a Fourier series. The resulting coupled FEM-SBFEM
approach was then applied to analyse the transient response of arbitrarily shaped flexible
surface foundations.

Another possibility for the exact description of the infinite extension of the soil is provided
by the Integral Transform Method (ITM). It can be used to derive analytical solutions
for different fundamental systems, which can then be coupled with other methods suitable
for the detailed description of structures in order to investigate the dynamic soil structure
interaction. Müller [81] presented a solution for a homogeneous or layered halfspace coupled
with a beam, using a mixed boundary value formulation. A coupling of the ITM and the
FEM is introduced in Zirwas [82] for a 2D case and expanded by Rastandi [83] for a 3D
system. However, loads could only be applied inside the FEM domain which is restricted to
a limited embedment depth from the halfspace surface [84]. In Freisinger et al. [84] a coupled
ITM-FEM approach to investigate the 3D SSI of a rigid or flexible plate at the ground surface
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or embedded in the homogeneous soil due to time harmonic loads was presented. In contrast
Radišić [85–87] coupled the Spectral Element Method (SEM) to the ITM to analyse the
interaction of a single or multiple foundations on the halfspace or a soil layer over bedrock.

Furthermore, some methods dealing with the dynamic SSI on inhomogeneous or anisotropic
soils were published. Vrettos [88] derived analytical influence functions for a soil considering
a varying soil stiffness with increasing depth and determined frequency-dependent stiffness
and damping coefficients for rigid surface foundations on the latter. In Chen [89], this
method was extended to flexible foundations modelled with the FEM and used to determine
the harmonic and transient foundation responses. An energy method was used in Katebi
and Selvadurai [90] to analyse the SSI of a flexible circular plate on an incompressible elastic
halfspace with an elastic shear modulus varying exponentially with depth. Lin et al. [91]
proposed a hybrid approach based on a precise integration algorithm and a mixed variable
formulation to cope with the dynamic SSI of a rigid square footing on anisotropic stratified
soil. Impedance functions for rigid massless foundations, embedded in an arbitrarily hetero-
geneous halfspace, computed by means of a coupled FEM-PML approach were presented in
Esmaeilzadeh Seylabi et al. [92]. Moreover, a FEM-PML approach was applied in [93, 94]
to investigate the modal characteristics of structures considering the dynamic SSI of 2D and
3D frame structures on and within the soil.

Structure Soil Structure Interaction (SSSI)

Since structures in practical issues are often not well separated from each other, also their
mutual interaction has a significant effect on their dynamic behaviour and needs to be taken
into account. In literature, various approaches have been employed to investigate the in-
teraction of foundations located on or embedded in a homogeneous or layered halfspace.
Warburton et al. [95] were the first to study the dynamic Foundation-Soil-Foundation In-
teraction (FSFI) of two neighbouring massive foundations, resting on a homogeneous half-
space, applying an approximate analytical method based on the Bycroft model. The cross
interaction of multi-foundation systems, located on a viscoelastic stratum, due to different
excitation types has been investigated by Kobori et al. [96]. Wong and Luco [97] analysed
the effect of a layered halfspace on the interaction of two rigid, square surface foundations
subjected to external forces by the boundary integral equation technique. Kausel et al. [98]
and Lin et al. [99] used the FEM together with consistent boundaries to examine the FSFI
of rigid foundations resting on or embedded in a stratum over bedrock for a harmonic force
and moment excitation in all degrees of freedom [100]. An analytical method addressing the
dynamic subsoil coupling between a finite number of rigid, rectangular foundations solving
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the mixed boundary value problem by the Bubnov-Galerkin method has been presented by
Triantafyllidis and Prange [101].

A frequency domain BEM based on quadratic elements and halfspace Green’s functions to
investigate the 3D FSFI of two adjacent, massless rigid foundations on homogeneous soil due
to harmonic external and seismic loads was presented in [64, 102] and [103], while Karabalis
and Mohammadi [104] considered the FSFI on a layered halfspace and gave compliance
functions depending on the dimensionless frequency. Karabalis and Huang [105] and Huang
[106] employed a time domain BEM to investigate the cross interaction of several massive
foundations on a homogeneous soil. A coupled FEM-BEM approach for the 3D dynamic
interaction of two surface foundations was presented by Mohammadi and Karabalis [107] in
the frequency domain and in Rizos and Wang [70] and Aji et al. [108] in the time domain.
Sbartai [109] coupled the BEM to the TLM to account for the interaction of two embedded,
rigid 3D foundations within a layered soil over bedrock. A Precise Integration Method (PIM)
was used by Han et al. [110] to analyse the FSFI of a group of adjacent massless and massive
3D foundations on multilayered ground. Radisic [85] used the ITM together with kinematic
conditions for the deformation of a rigid foundation to investigate the mutual influence of
adjacent foundations. In Bybordiani and Arici [111] a FEM-PML approach was used to
account for the interaction of adjacent buildings subjected to seismic loading.

In addition to the interaction of buildings or their foundations, the mutual influence of
structures on the surface with spatially limited inclusions in the soil is also part of the SSSI’s
scope of application. Initially Chouw et al. [112] investigated the vibration propagation
in a soil layer over bedrock and found that no wave propagation occurs in there, if the
excitation frequency is below the first eigenfrequency of the layer. This effect was used
in Chouw and Schmid [113] where a spatially limited Wave Impeding Block (WIB) was
implemented into the soil in order to mitigate the low frequency vibration transmission,
induced by the active of two foundations and thus to reduce the dynamic response of the
passive foundation. A 3D BEM frequency domain approach was used by Antes and von
Estorff [114] to study the influence of the stiffness of a finite block shaped elastic inclusion
within a homogenous halfspace on the dynamic response of an elastic surface foundation.
The effectivity of a buried honeycomb structure, acting as an wave impeding barrier, was
investigated in Takemiya [115] by means of a 3D FEM simulation. Gao et al. [116] derived
a 3D BEM, based on Green’s functions derived with the TLM, which allows to analyse the
SSSI of a surface foundation with a WIB in a saturated stratified soil and to assess the
screening efficiency of the WIB.[100]
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1.2.2 Interaction on unbounded interface

Besides three dimensional structures with a bounded interaction surface to the infinite sur-
rounding medium, also a large amount of papers has been published dealing with the SSI
resp. SSSI of length invariant structures like tunnels, rail or road tracks, strip foundations,
vibration isolation screens, pipelines or dams. Thereby, firstly 2D approaches assuming a
plane strain condition were used which, apart from the structure, also only allowed the in-
clusion of longitudinally invariant loads or incident wave fields [117]. Thus later on 2.5D
models, enabling a modelling of spatially bounded loads in conjunction with length invariant
structural geometries as well as periodic approaches, were developed.

SSI and SSSI of strip footings

One of the first papers dealing with the two dimensional dynamic SSI of rigid strip foun-
dations on homogeneous and layered soil were published by Luco and Westmann [25] and
Gazetas and Roesset [118], providing semi-analytical expressions for the frequency depen-
dent foundation compliances. Spyrakos and Beskos [119] and Antes and von Estorff [120]
applied pure BEM formulations in the time and frequency domain to compute the response
of a rigid massless strip foundation, while in [121, 122] a coupled time domain FEM-BEM
approach is used. A comprehensive overview of the compliance functions for different foun-
dation shapes and system setups is given in [123, 124]. The cross interaction of several
flexible strip foundations on or embedded in a homogeneous halfspace was addressed in [125]
by means of BEM whereas [126] uses a 2D coupled FEM-BEM approach for the same prob-
lem. A FEM-SBFEM method was utilized in [75, 127] studying the transient response of
two strip foundation subjected to a triangular pulse. Genes [128] applied a coupled FEM-
BEM-SBFEM approach to determine the compliances of a rigid strip foundation on a layered
halfspace. A coupled ITM-SEM method was used in [129] to compute the dynamic response
of rigid and flexible strip foundations on a viscoelastic soil.

Ground borne vibrations

Firstly, the SSI of large underground structures and the resulting ground borne vibrations
was investigated by means of 2D [121] and 3D [130, 131] coupled FEM-BEM approaches
or pure 3D BEM [132]. To reduce the computational effort linked with full three dimen-
sional models, for periodic structures a Floquet transform of the longitudinal coordinate
can be applied, allowing to represent the 3D response on a single bounded reference mesh
[133]. Within the unit cell, the tunnel cross section is modelled by the FEM whereas the
surrounding soil is accounted for by the BEM. These periodic models were used in [134–139]
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to compute the ground-borne vibrations due to a dynamic loading of underground railway
tunnels embedded in homogeneous or stratified media and to identify the influence of tunnel
and soil parameters on the system response. Germonpré et al. [140] employed a periodic
model for the prediction of the soil vibrations due to a parametric excitation on a surface
railway track.

In case of arbitrary length invariant structures, usually 2.5D models are applied which allow
to reduce the originally 3D computations to a series of 2D calculations for each wavenumber
in longitudinal direction. Sheng et al. [141, 142] used a 2.5D FEM-BEM approach to predict
the surface vibrations due to a track located on an embankment as well as a dynamic load
within an underground tunnel in a homogeneous soil. The interaction between different
longitudinally invariant structures and a stratified soil was investigated in François et al.
[143] and Galvín et al. [144] who use a regularized 2.5D boundary integral equation, avoiding
the evaluation of singular traction integrals, in conjunction with 2.5D Green’s functions for
the layered halfspace. Coulier et al. [145] applied a spatial windowing technique within
the latter, enabling to consider finite lengths of the structures, thereby maintaining the
computational efficiency of the 2.5D model. A validation of the numerical results of different
2.5D FEM-BEM approaches by measurement data has been published in Jin et al. [146] and
Kuo et al. [147]. Coulier et al. [145] applied a 2.5D FEM-BEM approach for the investigation
of the dynamic interaction between a four storey building and a railway tunnel as well as
a railway track on the ground surface which is used in [148] to derive coupling loss factors
for buildings subjected to railway induced vibrations. The SSI of a tunnel embedded in a
poroelastic halfspace was investigated in [149].

Lombaert et al. [150] presented a model employing a boundary element method for the soil
and an analytical beam model for the road to model the traffic induced free field vibrations,
which was validated by in situ experiments in [151]. Galvín et al. [152] presented a method-
ology to determine the free field vibrations due to railway traffic by modulating the soil
Green’s function by a correction factor for the track soil interaction, obtained using a neural
network, and combining them with the loads resulting from the train track interaction. An
analytical model for the ground borne vibrations due to the dynamic loading of a tunnel
embedded in a layered halfspace was deduced in [153] while a 2.5D FEM-BEM approach in
combination with the Method of Fundamental Solutions (MFS) is used in [154].

The invariance of the soil structure system is also used in the Pipe-in-Pipe Method (PiP).
Forrest and Hunt [155, 156] presented this semi-analytical method where the tunnel is mod-
elled in the transformed domain with a circular shell while the soil is described by the
analytical solution of the fullspace with circular cavity. In Gupta et al. [137] the results
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of the PiP calculation were used for the validation of a coupled FEM-BEM approach, as it
leads to the exact solution of the problem. Hussein et al. [157] introduced a horizontal plane,
representing a halfspace surface in the system and in [158] extended it also for the computa-
tion of ground borne vibrations from a tunnel in a multilayered soil. For the introduction of
the halfspace surface, they assumed that the near-field displacements of the tunnel surface
are not influenced by the existence of the halfspace surface. [84]

Also the ITM provides exact solutions for fundamental soil systems which are superposed
to derive a semi-analytical solution for a halfspace with cylindrical cavity in [159, 160] and
were coupled with the FEM by Müller et al. [161]. The resulting 2.5D ITM-FEM approach
was used to investigate the soil vibrations induced by traffic loads in an underground tunnel,
while Hackenberg [162] applied the approach to compute the insertion loss for the surface
vibrations due to a floating slab track inside the tunnel in case of a harmonic load.

Twin tunnels

The dynamic interaction of two parallel tunnels with circular cross-section embedded in
a homogeneous fullspace was investigated by Kuo et al. [163]. In the model the SSSI is
accounted for by superposing the solution for a single-tunnel model, originally derived in
[155, 164], and used to calculate the ground borne vibrations due to dynamic train forces. A
similar approach was presented in [165], addressing the interaction of neighbouring tunnels
in a homogenous halfspace. The tunnel was modelled with a thick shell theory while the
surrounding soil was modelled by the BEM. He et al. [133] provided an analytical model
to predict the ground vibrations from two parallel tunnels embedded in a fullspace wherein
the tunnels are modelled by length invariant cylindrical shells and are coupled to a fullspace
including two cylindrical cavities. A 2.5D FEM-BEM model was used by Romero et al. [166]
to investigate the scattered wave field due to the SSSI of two adjacent tunnels while He et al.
[167] proposed a semi-analytical 2.5D model to account for the interaction of twin tunnels
in a multilayered halfspace.

Vibration mitigation measures

Furthermore, a comprehensive amount of studies on vibration mitigation measures can be
found in literature. First field tests on the screening effect of rectangular open and bentonite
filled trenches were conducted by Dolling [168] and further measurements were performed by
Woods [169]. Numerical studies, investigating the amplitude reduction of Rayleigh waves by
open or concrete filled trenches using a 2D FEM in the frequency domain, were presented by
Segol et al. [170] and Haupt [171]. Later, the BEM was employed in [172, 173] to investigate
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the efficiency of open and infilled length invariant trenches within a homogeneous halfspace,
while in [174] a layered halfspace was considered. Ahmad and Al-Hussaini [175] performed
an extensive parametric study on the effects of the dimensions and the filling material of
trenches and barriers, situated in a homogeneous as well as a layered soil [176].

To be able to include more complex barrier and source compositions, still satisfying the
radiation condition, different FEM-BEM formulations were developed. In [177, 178] a 2D
FEM-BEM approach was used to analyse mitigation measures aiming on the reduction of
ground vibrations induced by moving loads. A coupled 2.5D FEM-BEM approach was
applied by Coulier et al. [179] to investigate the effect of subgrade stiffening next to the
track, in François et al. [143] and Thompson et al. [180] for open and soft filled trenches
and in Coulier et al. [181] for stiff wave barriers. Furthermore, François et al. [182] used
the same approach to analyse the efficiency of a composite vibration isolating screen and
validated the results by in situ tests. The mitigation of railway induced ground vibrations
by heavy masses next to the track was studied in [183] using a 2.5D FEM-BEM approach
and in [184] by a 3D FEM with absorbing viscous boundaries. The efficiency of continuous
floating slabs to reduce ground borne vibrations from railway traffic was assessed in [185],
applying the 3D numerical model presented in [150]. Dijckmans et al. [186] investigated the
vibration isolation efficiency of a sheet pile wall by means of numerical simulations with a
2.5D FEM-BEM approach and compare their results with measurement data. The efficiency
of finite and infinite open trenches and infilled barriers was investigated in Freisinger and
Müller [176] by means of a 2.5D ITM-FEM approach. In contrast, a 2.5D displacement
based FEM-PML model was used in François et al. [187] to determine the efficiency of
a vibration isolating screen. François et al. [188] derived a Complex Frequency Shifted
(CFS)-PML formulation accounting for transient elastic wave propagation, thereby avoiding
a convolutional formulation and allowing an easy incorporation into existing FEM code due to
its description by mass, damping, and stiffness element matrices. A comprehensive overview
on the excitation mechanisms, different prediction methods and mitigation measures can be
found in Coulier et al. [189], Lombaert et al. [190] and Thompson et al. [191].

Earthquake engineering and geophysics

Moreover, the effect of buried structures on the propagation of elastic waves is of great im-
portance, as due to diffraction and scattering of these at the structures additional waves
arise, possibly leading to an amplification of the initial vibrations and thus significantly in-
fluencing both the distribution and the amplitude of the stresses and displacements near the
surface and in adjacent structures [51]. Datta et al. [192] showed an exact three dimensional
analysis for a long continuous pipeline in a halfspace by coupling the governing equations
for the elastic medium with a shell model. Wong and Luco [193] analysed a tunnel with a
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non circular cross section by using the FEM to model the tunnel and the soil in its imme-
diate vicinity, combined with an analytical solution for the infinite soil deploying cylindrical
eigenfunctions. The seismic response of a cylindrical shell embedded in a layered halfspace,
subjected to plane waves striking at slanting angle was studied in [194, 195]. They combined
an indirect integral representation, using moving Green’s functions, for the exterior domain
with the Donnell shell theory for the pipeline. Lin et al. [196] presented a formulation of the
boundary value problem for a tunnel with circular cross section in an elastic halfspace, in
which the scattered cylindrical waves are represented by Hankel functions in integral form
in Cartesian coordinates, such that the zero stress boundary condition at the halfspace sur-
face is satisfied exactly. Both, primary and secondary reflected waves at the ground surface
were considered in the solution. The scattering of harmonic P, SV and Rayleigh waves by a
shallow lined, circular tunnel using the image technique and complex variables, was studied
by Liu et al. [197]. In Zhao et al. [198] a semi-analytical method, treating the three dimen-
sional scattering of elastic waves by a infinitely long tunnel in a halfspace, was proposed.
Furthermore, the contributions of the directly scattered field (at the tunnel) and the sec-
ondary scattered field (at the ground surface) on the dynamic response of the system at the
halfspace surface and the interface between tunnel and soil were evaluated.

1.2.3 Interaction on moving interface

The modelling of ground borne vibration due to moving loads is essential for the understand-
ing of the physical phenomena linked with it, especially if the propagation velocity approaches
or exceeds the wave velocities of the underlying soil. A wide range of articles was published
between 1950 and 1970 presenting closed form solutions for loads with constant amplitude
moving along the surface of a semi-infinite elastic medium [199–203]. Therein especially the
change in the dynamic response for transonic and supersonic load speeds was highlighted,
leading to the formation of a shock wave and propagating waves behind the current position
of the load. A load moving with constant velocity after a sudden application was treated in
[204, 205]. Frýba [206] studied the response of moving loads with constant and harmonically
oscillating amplitude on beam structures as well as on an elastic halfspace for different load
distributions. A closed form solution for a moving point load on a hysteretically damped
elastic halfspace was presented in Verruijt and Córdova [207]. Kaplunov et al. [208] deduced
an approximate solution in terms of elementary functions which, however, is only valid in
the near-field of a point force moving approximately with the Rayleigh wave velocity.

Numerical methods were required to determine also the dynamic response of more complex
systems subjected to arbitrarily distributed moving loads. Various wavenumber frequency
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domain methods were developed together with a numerical inverse Fourier transform and
used, e.g. in de Barros and Luco [209] to calculate the response of a homogeneous halfspace
due to a moving point load and in [210] due to a moving harmonic rectangular load. The
ground vibrations in a layered soil due to a moving line load were analysed in de Barros and
Luco [211]. Grundmann et al. [212] used a similar technique to predict the response of a
homogeneous halfspace subjected to traffic loads. Bian and Chen [213] developed an explicit
time domain solution, based on the TLM to compute the response of a soil stratum due to a
harmonic moving load, while Galvín and Domínguez [214] applied a 3D time domain BEM
for the analysis of the soil vibrations induced by high-speed moving loads.

The dynamic interaction between train, track and the elastic underground has been addressed
by Dieterman et al. [215] who introduced the concept of replacing the halfspace by an equiv-
alent stiffness combined with the differential equation of the beam to determine the critical
velocities of a constant load moving along it. The same approach was used in [216, 217],
applying the ITM for the computation of the equivalent halfspace stiffness. In Grundmann
and Lenz [218], the interaction of a vehicle, modelled as a 5 DOF system, moving over the
randomly uneven surface of a slab track on elastic subsoil was investigated while Metrikine
et al. [219] studied the stability of a two-mass oscillator moving along a beam supported by
a halfspace. Madshus and Kaynia [220] described the dynamic behaviour of a high-speed
railway line on soft ground at critical speed and developed a numerical approach based on
Green’s functions for the layered halfspace, coupled with a beam modelled by the FEM.
Sheng et al. [221, 222] derived a dynamic flexibility matrix for the layered halfspace in the
wavenumber frequency domain and coupled it with the Fourier transformed equations for a
layered beam system representing the track to compute the total system response to moving
loads. A 3D periodic model for the simulation of vibrations induced by high-speed trains
based on the Floquet transform was presented in [223], whereas the SSI of a periodically
supported beam under a moving load was treated in Lu et al. [224], applying springs with
frequency dependent equivalent stiffness at the sleepers taking into account the phase shift
of the vibrations of neighbouring supports.

Also the ground borne vibrations due to railway traffic and moving loads in underground
tunnels attained a lot of attention within the last decades. Gupta et al. [225] presented a nu-
merical periodic FEM-BEM model to predict the free field vibrations due to dynamic moving
loads in a subway tunnel together with an experimental validation. A 2.5D finite/infinite
element approach was introduced in Yang and Hung [226] to simulate the soil vibrations
due to moving trains in an underground tunnel, whereas Bian et al. [227] employed a 2.5D
FEM with a gradually damped artificial boundary. Yuan et al. [228] showed a closed form
semi-analytical solution for a moving point source in a tunnel embedded in a halfspace,
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wherein the tunnel is modelled as hollow cylinder surrounded by an elastic continuum. The
total wave field is decomposed in cylindrical outgoing waves and downwards travelling plane
waves, which are forced to satisfy the boundary conditions at the ground surface and the
tunnel soil interface, quite similar to the methodology used in the 2.5D ITM-FEM approach
presented in [84] which also allows to determine the response to moving loads within a tunnel
embedded in the halfspace. A curved 2.5D FEM was proposed in Ma et al. [229] to model the
tunnel-soil system including an appropriate artificial boundary and combined with a 2.5D
analytical method considering the motions of the rail in order to account for the vibrations
of a track-tunnel-soil system in a curved section subjected to moving loads.

1.3 Outline of the thesis

In this thesis the coupled ITM-FEM approach, originally developed in [162, 230], is signifi-
cantly extended as well as optimized with regard to computational efficiency in order to allow
the treatment of a wide range of the issues and demands related to the dynamic SSSI of
different surface and subsurface structures resting on or embedded in a homogeneous, layered
or inhomogeneous soil, addressed in Sec. 1.1. Applying a domain decomposition approach,
the overall system is divided into suitable ITM and FEM substructures and complex stiffness
matrices, completely describing the dynamic behaviour of the respective substructures, are
derived separately before they are coupled at the common interaction surfaces.

For this purpose in Ch. 2, firstly the ITM is applied to obtain analytical solutions for various
fundamental systems from the basic elastodynamic equations (Sec. 2.1), such as a homoge-
neous (Sec. 2.2) or layered halfspace (Sec. 2.3), a discrete soil stratification (Sec. 2.4) as well
as a fullspace with cylindrical (Sec. 2.5) or spherical cavity (Sec. 2.6). The solutions of the
resulting wave equations are each described w.r.t. the most suitable reference system and the
unknown wave amplitudes can be solved, imposing the respective boundary conditions of the
system. Subsequently in Ch. 3, these fundamental solutions are superposed and coupled in
order to deduce semi-analytical solutions for more complex systems like a halfspace with one
(Sec. 3.1) or two (Sec. 3.2) cylindrical cavities or indentations, a halfspace with spherical cav-
ity (Sec. 3.3) or a layered halfspace with cylindrical or spherical cavity (Sec. 3.4). Thereby,
dynamic stiffness representations are deduced for each of the ITM substructures, providing
a direct relation between the stresses applied at the boundaries of the overall system and
the resulting displacements. Lastly, some notes on computational and numerical aspects
within the implementation as well as truncation criteria for the discrete Fourier series and
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error measures for the similarity assessment of the results with literature solutions are given
(Sec. 3.5).

In Ch. 4, element stiffness formulations for a quadrilateral 2.5D finite element (Sec. 4.1), used
to model length invariant structures or geometries, as well as different 3D elements (Sec. 4.2)
for the description of finite structures on the ground surface or within a spherical boundary,
are presented and global dynamic stiffness matrices for the FEM substructures, separated
for the degrees of freedom (DOFs) on the interaction surfaces and inside the structure are
given.

The coupling of ITM and FEM, applying the compatibility conditions at the common inter-
faces, is addressed in Ch. 5, whereby the 2.5D substructures are coupled at the cylindrical
interface (Sec. 5.1) and the 3D substructures at the spherical interaction surface (Sec. 5.2) or
the horizontal soil foundation interface (Sec. 5.3). The latter is used in case the SSI or SSSI of
one or several surface structures with the underlying soil that may comprise finite structures
or inhomogeneities shall be investigated. To this end, a methodology for the determination
of the dynamic stiffness at discrete points on the ground surface of any ITM fundamental
or coupled ITM-FEM subsystem is introduced. Furthermore, a postprocessing procedure
(Sec. 5.4) is illustrated, allowing the prediction of the displacement and stress distributions
on the ground surface and within the soil resulting from the dynamic interaction and thus
also the power input at the soil foundation interface and the power flow through a defined
control volume.

In the last part of the thesis, numerical results obtained with the previously introduced
methodologies are presented for different types of loading. Thereby, the frequency domain
response of different fundamental and coupled systems due to stationary harmonic loads
is initially considered in Ch. 6. After verifying the proposed approaches by comparison of
the results for different benchmark cases with literature solutions (Sec. 6.1), the coupled
ITM-FEM approach is applied for the investigation of finite and length invariant vibration
mitigation measures at the source or in the transmission path (Sec. 6.2), providing insight
into the physical mechanisms and wave propagation characteristics. Subsequently, the dy-
namic SSI of a single rigid/flexible, massless/massive surface foundation with the underlying
homogeneous or layered soil is investigated (Sec. 6.3) and the procedure for determining the
dynamic soil stiffness is verified by comparing the resulting foundation flexibilities with the
results of other methods. Conclusions on the radiation characteristics of the foundations are
drawn from the power input at the soil foundation contact area as well as the wavenumber
spectra of the resulting displacements and the behaviour of a foundation on more complex
soil subsystems with local inhomogeneities is discussed. Moreover, the effects of the SSSI of
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several adjacent surface foundations (Sec. 6.4) and the response of spatial frame structures
with different footing conditions is analysed (Sec. 6.5), before finally the dynamic interaction
of two parallel tunnels is investigated (Sec. 6.6).

Ch. 7 deals with the calculation of the dynamic response of different ITM-FEM systems due
to transient loads. For this purpose, the procedure for the determination of the complex
transfer functions is explained first (Sec. 7.1). The latter are then used to determine the
time histories of the system responses using either a Fourier synthesis approach or a discrete
convolution of the impulse response functions, obtained from the IFFT of the transfer func-
tions, with the transient loads (Sec. 7.2). Following, the transient response of a homogenous
soil due to a load on the ground surface (Sec. 7.3) as well as the frequency dependent flexi-
bilities of a rigid foundation and the resulting time histories of the foundation compliances
(Sec. 7.4) due to a suddenly applied load are investigated and compared with literature. In
addition, some comments on the effects of frequency band limitation and hysteric material
damping on both, the causality and the quality of the results are made. Finally, the 2.5D
ITM-FEM approach is applied to determine the response of a twin tunnel system due to a
Gaussian-modulated sinusoidal pulse within one tunnel tube.

Eventually, the dynamic response of fundamental and coupled ITM-FEM systems due to
moving loads is treated in Ch. 8. Therefore, firstly a methodology to include moving loads
within the proposed approach is derived in the wavenumber frequency domain (Sec. 8.1).
Subsequently, numerical results for the displacement fields on the surface of a homogeneous
halfspace subjected to a constant (Sec. 8.2) or harmonically oscillating (Sec. 8.3) moving
load are presented and the effects, occurring for different load velocities, are explained by
considerations in original as well as Fourier transformed domain. The validity of the im-
plementation for coupled systems is verified by comparison with the previously validated
homogeneous halfspace, before the response of a twin tunnel system with moving load inside
one tunnel is computed by means of the 2.5D ITM-FEM approach (Sec. 8.4).

Ch. 9 concludes the thesis with a summary of the main findings and gives recommendations
for further research.
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2 Fundamental solutions in

elastodynamics

Disturbances introduced into the soil by dynamic loads cause stress and deformation states,
propagating in form of waves. The propagation characteristics and the frequency content
of the waves depend strongly on the local soil composition and geological conditions as well
as the magnitude of the disturbance. For ground borne vibrations, in general, only small
strains occur, such that the soil can be described in good approximation as a linear elastic,
homogeneous and isotropic medium [231].

In order to be able to describe also complex soil systems, such as a layered soil with local
cylindrical or spherical cavities, in this chapter firstly solutions for the basic fundamental
systems such as a halfspace, a layered halfspace, a soil layer over bedrock or a separated
block of soil layers, a fullspace with cylindrical cavity and a fullspace with spherical cavity
are presented in Secs. 2.2 - 2.6. These solutions are based on the fundamental elastodynamic
differential equations introduced in Sec. 2.1. However, in this chapter, which is mainly pred-
icated on Refs. [84] and [51], only the essential equations and correlations will be discussed.
For a more detailed derivation of the fundamental solutions and its characteristics, the reader
is referred to the Ref. [81, 160, 162, 232]. Furthermore, the superposition of the fundamental
systems to the more complex soil systems is illustrated in the subsequent Ch. 3.

2.1 Fundamentals of linear elastodynamics

The dynamic equilibrium in a linear elastic, isotropic continuum is described by the Lamé
differential equation

µui|jj + (λ+ µ)uj|ij − ρüi = 0 (2.1)

with the displacement field ui (with i, j = x, y, z), the Lamé constants λ and µ, the density ρ
and the vertical bar indicating the partial derivatives w.r.t. i and j. The Lamé constants can
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be expressed by the elastic parameters Young’s modulus E, shear modulus G and Poisson
ratio ν as

µ = G = E

2 (1 + ν) (2.2)

λ = Eν

(1 + ν) (1 − 2ν) (2.3)

In order to solve the system of coupled, partial differential equations (2.1), firstly the equa-
tions are decoupled using the Helmholtz approach. Thus, the displacement field u is replaced
by the sum of the rotation free gradient of a scalar field Φ and the source free rotation of a
vector field Ψ, with ∈ikl as the permutation symbol [18].

ui = Φ|i + Ψl|k ∈ikl (2.4)

Inserting Eq. (2.4) into the Lamé equation leads to the following decoupled wave equations

Φ|jj − 1
cp

2 Φ̈ = 0 (2.5)

Ψi|jj − 1
cs

2 Ψ̈i = 0 (2.6)

with the compressional and the shear wave velocity

cp =
√
λ+ 2µ
ρ

and cs =
√
µ

ρ
(2.7)

The material damping in the ground is included in this work via a frequency-independent
hysteretic damping. This damping model has shown in experimental investigations to re-
produce the energy dissipation within the soil sufficiently well [81]. It can be introduced
applying the correspondence principle, which states that the response including material
damping, can be obtained from the pure elastic one, just by replacing the elastic constants
by their complex counterparts [233, 234].

µ̂ = µ (1 + i sign (ω) η) (2.8)

λ̂ = λ (1 + i sign (ω) η) (2.9)

where ω = 2πf is the angular frequency and η represents the loss factor, which is related to
the Lehr’s damping ratio by η = 2D resp. the hysteretic damping ratio by η = 2ζ. Therefore,
in case of material damping both, the material constants and the wave velocities are complex
quantities. For the sake of simplicity, these complex quantities are not marked separately
hereinafter.
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2.2 Fundamental system halfspace

The resulting partial differential Eq. (2.5) and (2.6) can be described in Cartesian coordinates
(x, y, z) to derive the solution of the halfspace depicted in Fig. 2.1, with x and y parallel
to the halfspace surface and z as the depth coordinate [84]. Except the area under the
external load P̄hs

ΛITM
(x,y,z,ω), the halfspace surface is free of tractions and no body forces

occur within the infinite halfspace [51].

y
z

Λ
x

P̄hs
ΛITM

Figure 2.1: Homogeneous halfspace.

After a threefold Fourier transform into the wavenumber frequency domain, defined as

f̂(kx,ky,z,ω) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

f(x,y,z,t) e−ikxx e−ikyy e−iωt dx dy dt (2.10)

four ordinary differential equations for the scalar potential Φ and the components Ψα (with
α = x,y,z) of the vector potential are obtained.

[
−kx

2 − ky
2 + kp

2 + ∂2

∂z2

]
Φ̂ (kx, ky, z, ω) = 0 (2.11)[

−kx
2 − ky

2 + ks
2 + ∂2

∂z2

]
Ψ̂α (kx, ky, z, ω) = 0 (2.12)

Therein the wavenumbers of the compressional and the shear waves are defined as

kp = ω/cp and ks = ω/cs (2.13)

The component Ψ̂z can be set to zero without any loss of information [235]. Furthermore, in
Eqs. (2.11) and (2.12) the z-coordinate stays untransformed in order to be able to introduce
horizontal soil layers later on. Theˆsymbol indicates parameters in the threefold transformed
domain, whereas ¯ indicates those only transformed w.r.t. one dimension.
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Solution for dynamic loading

In the dynamic case Eqs. (2.11) and (2.12) can be solved using the following exponential
approach for the potentials

Φ̂ = A1 eλ1z + A2 e−λ1z (2.14a)

Ψ̂α = Bα1 eλ2z +Bα2 e−λ2z (2.14b)

with the exponents

λ1 =
√
kx

2 + ky
2 − kp

2 and λ2 =
√
kx

2 + ky
2 − ks

2 (2.15)

Due to the external harmonic load P̂hs
ΛITM

(kx,ky,z,ω) spatially propagating and evanescent
waves are introduced into the soil. These are described by Eqs. (2.14) depending on the
relation of kx, ky and ω, which goes into the wavenumbers kp reps. ks. In case of real
exponents λ1 and λ2, which holds for k2

x + k2
y > k2

p resp. k2
s , the potentials Φ̂ and Ψ̂α

represent exponentially increasing or decreasing surface waves. In contrast they describe
spatially propagating compressional or shear waves for imaginary exponents, which holds
for k2

x + k2
y < k2

p resp. k2
s . For negative frequencies, the coefficients relating to non-physical

waves according to the Sommerfeld radiation condition can be uniquely identified and thus
excluded for further analysis (A1 = Bx1 = By1 = 0). Therefore, in this work all dynamic
calculations are performed for ω < 0 and the results for ω > 0 are completed as conjugate
complex counterparts in the Fourier transformed domain. [81, 162]

The corresponding stresses and displacements inside the soil can be expressed in dependency
of the wave amplitudes Ĉhs

ITM
. With the matrices of Appx. A.1.1 they yield

σ̂hs
ITM

= Ŝhs
ITM

Ĉhs
ITM

(2.16a)

ûhs
ITM

= Ûhs
ITM

Ĉhs
ITM

(2.16b)

Thereby, Ŝhs
ITM

and Ûhs
ITM

contain the stresses resp. the displacements inside the soil due to
an unit stress state σ̂hs

ITM
for each combination (kx, ky, ω) at a specific depth z. Applying

the local boundary conditions on the halfspace surface σ̂hs
iz,Λ(kx,ky,z,ω) = −p̂hs

iz,Λ(kx,ky,z,ω)
with i = x, y, z and the Sommerfeld radiation condition [236], the system of equations for
the determination of Ĉhs

ITM
in the halfspace results as

Ŝhs
ΛITM

Ĉhs
ITM

= P̂hs
ΛITM

(2.17)
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With the wave amplitudes, all stresses and displacements at every position in the half-
space can be determined in dependency of (kx, ky, z, ω) in a postprocessing step applying
Eqs. (2.16). The results in the original domain (x,y,z,t) are obtained by a threefold inverse
Fourier transform [51]

f(x,y,z,t) = 1
(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

f̂(kx,ky,z,ω) eikxx eikyy eiωt dkx dky dω (2.18)

If one is only interested in the displacements on the ground surface Λ due to an external load
acting there, it is advantageous to introduce a direct stiffness formulation. By combining
Eqs. (2.16a) and (2.16b) and evaluating them at z = 0, the stiffness matrix for the halfspace
K̂hs

ITM
= Ŝhs

ΛITM
Ûhs −1

ΛITM
in the (kx, ky, z, ω) domain can be derived. This leads to the following

system of equations for the unknown surface displacements ûhs
ΛITM

.

K̂hs
ITM

ûhs
ΛITM

= P̂hs
ΛITM

(2.19)

For the simple system of the homogeneous halfspace this is not essential, however the stiffness
concept in general becomes very important for the coupling of fundamental or superposed
ITM systems to the FEM (cp. Ch. 5).

Solution for static loading

In this work there are two occasions, where it is necessary to determine the static response of
the halfspace in the Fourier transformed domain. Firstly, for the calculation of the Impulse
Response Function (IRF) of the soil in Ch. 7 and secondly for the determination of the
response to moving static or harmonic loads in Ch. 8.

In the static case (ω = 0) the wavenumbers kp and ks become zero, the exponents λ1 and
λ2 get identical and the determinant of K̂hs

ΛITM
becomes zero. Thus, the solution approaches

in Eqs. (2.14) are no longer complete and a solution for the static displacements is not
possible [162]. Lenz [217], in contrast, used an exponential approach instead of the Helmholtz
potentials to solve the Lamé equation in the wavenumber frequency domain. Therewith, after
some sorting and substitutions, it is possible to express the stresses and displacements for
ω = 0 in terms of the unknowns Ĉhs

0ITM
analogously to the dynamic case. With the matrices

of Appx. A.1.2 they yield

σ̂hs
0ITM

= Ŝhs
0ITM

Ĉhs
0ITM

(2.20a)

ûhs
0ITM

= Ûhs
0ITM

Ĉhs
0ITM

(2.20b)
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As the stresses and the displacements have to decay with increasing depth z also for ω = 0,
the contributions of the coefficients with positive exponents can be excluded [217]. Thus the
system of equations can directly be solved in dependency of the boundary conditions at the
halfspace surface Λ.

2.3 Fundamental system layered halfspace

In a horizontally stratified soil, with N elastic layers overlying a homogeneous halfspace,
each layer can be described by the Lamé equation (2.1). Perfect adhesion is assumed at
each interface between the different media and no body forces occur within a layer or the
halfspace. External loads can only be applied on the layer boundaries Λl. [51]

P̄hs L
Λ1 ITM

Λ1

Λ2

Λ3

y
z1x

y
z2x

y
z3x

h2

h1

(a)

P̄hs L
Λ1 ITM

y
z1x

y
z2x

h1

Λ1

Λ2

Λ3
h2

(b)

Figure 2.2: (a) Layered halfspace and (b) layered soil over bedrock.

Solution for dynamic loading

As for the homogeneous halfspace, an exponential approach w.r.t. the vertical coordinate zl

in each layer with the height hl is applied in the wavenumber frequency domain. However,
within a layer all kinds of propagating and evanescent waves can occur. To include also the
waves reflected at the material transition surface as well as the surface waves exponentially
increasing with zl, none of the coefficients in Eqs. (2.14) can be set to zero, but all six need
to be considered in the analysis.

To avoid the occurrence of numerical instabilities due to big arguments of the exponential
functions associated with A1,Ll

and Bα1,Ll
, decaying instead of increasing exponents are used

[237] and thus these coefficients are substituted by

A1,Ll
eλ1l

zl = A1,Ll
eλ1l

(zl−hl) (2.21a)

Bα1,Ll
eλ2l

zl = Bα1,Ll
eλ2l

(zl−hl) (2.21b)
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The stresses and displacements in the (kx, ky, z, ω) domain within one layer l can be expressed
in dependency of the wave amplitudes Ĉhs Ll

ITM
. Including the substitutions of Eqs. (2.21), and

using the matrices from Appx. A.2.1, they yield [51]

σ̂hs Ll

ITM
= Ŝhs Ll

ITM
Ĉhs Ll

ITM
(2.22a)

ûhs Ll

ITM
= Ûhs Ll

ITM
Ĉhs Ll

ITM
(2.22b)

The total system of equations, exemplary shown for the halfspace with two top layers de-
picted in Fig. 2.2a, can be derived applying the local boundary conditions at the ground sur-
face σ̂hs L1

iz,Λ1
(kx,ky,z,ω) = −p̂hs L1

iz,Λ1
(kx,ky,z,ω), the continuity conditions at the layer interfaces

Λ2 and Λ3 û
hs Ll+1
i,Λl+1

(kx,ky,z,ω) = ûhs Ll
i,Λl+1

(kx,ky,z,ω) and σ̂hs Ll+1
iz,Λl+1

(kx,ky,z,ω) = σ̂hs Ll
iz,Λl+1

(kx,ky,z,ω)
all with (i = x, y, z) as well as the radiation condition for the halfspace as [51]



Ŝhs L1
Λ1 ITM

0 0

Ŝhs L1
Λ2 ITM

−Ŝhs L2
Λ2 ITM

0

Ûhs L1
Λ2 ITM

−Ûhs L2
Λ2 ITM

0

0 Ŝhs L2
Λ3 ITM

−Ŝhs
Λ3 ITM

0 Ûhs L2
Λ3 ITM

−Ûhs
Λ3 ITM




Ĉhs L1

ITM

Ĉhs L2
ITM

Ĉhs
ITM

 =



P̂hs L
Λ1 ITM

P̂hs L
Λ2 ITM

0

P̂hs
Λ3 ITM

0


(2.23)

In case of a stratified ground over bedrock, as depicted in Fig. 2.2b the local boundary
conditions on the ground surface Λ1, the continuity conditions at the layer interface Λ2 and
the zero displacement condition at the bedrock Λ3 need to be considered, leading to the
following system of equations



Ŝhs L1
Λ1 ITM

0

Ŝhs L1
Λ2 ITM

−Ŝhs L2
Λ2 ITM

Ûhs L1
Λ2 ITM

−Ûhs L2
Λ2 ITM

0 Ûhs L2
Λ3 ITM



 Ĉhs L1
ITM

Ĉhs L2
ITM

 =



P̂hs L
Λ1 ITM

P̂hs L
Λ2 ITM

0

0


(2.24)

From Eqs. (2.23) or (2.24) it is possible to calculate the unknown wave amplitudes and in
a postprocessing step, applying Eqs. (2.16) resp. (2.22), all stresses and displacements at
every position inside the layered halfspace [51]. The same methodology is also applicable for
an arbitrary number of different soil layers. For this purpose, just the matrices Ŝhs Ll

ITM
and

Ûhs Ll
ITM

for the desired number of layers need be included into the total system of equations
under consideration of the corresponding transition conditions at the layer boundaries Λl.
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In contrast to the homogeneous halfspace, for the layered halfspace and the layered soil over
bedrock, stress and displacement continuity conditions at the layer interfaces are included in
the total system of equations (2.23) or (2.24), leading to non quadratic matrices. Therefore,
it is not straightforward to construct a stiffness matrix for these systems directly from Ŝhs Ll

ITM

and Ûhs Ll
ITM

. Nevertheless, the derivation of a stiffness matrix for the stratified halfspace,
giving a relation between loads and displacements at its surface Λ1, would be possible using
the unit load concept, introduced for the block of discrete layers in Sec. 2.4. This is, however,
omitted here, since the discrete soil stratification can be coupled to any system which is also
described by a wavenumber and frequency-dependent stiffness matrix and is thus much more
universally applicable.

Solution for static loading

To derive the static stresses and displacements within one layer l of a stratified soil, the same
approach as for the homogeneous halfspace is applied. Using the matrices from Appx. A.2.2,
they yield [51]

σ̂hs Ll
0ITM = Ŝhs Ll

0ITM Ĉhs Ll
0ITM (2.25)

ûhs Ll
0ITM = Ûhs Ll

0ITM Ĉhs Ll
0ITM (2.26)

The total system of equations to determine the static response of the layered halfspace is
set up analogously to the dynamic case by applying the boundary conditions on the ground
surface, the continuity conditions at the layer interfaces and the condition of decreasing
amplitudes of stresses and displacements with increasing depth in the underlying halfspace.

2.4 Fundamental system discrete soil stratification

In this section, the stiffness matrix for one or more layers with parallel surfaces and a total
upper and lower boundary Λ1 resp. Λ3, as depicted in Fig. 2.3, is derived as presented in [51].
With Eqs. (2.22) it is possible to determine the stresses and displacements in the (kx, ky, z, ω)
domain at every position within one layer l. [51]

y
z1x

y
z2x

h1

Λ1

Λ2

Λ3
h2

Figure 2.3: Separated block of soil layers.
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As the calculations are carried out numerically, only a limited number of Fourier series
members can be considered and all parameters are evaluated for the discrete wavenumbers

kx = o∆kx with o = −Nx/2,...,(Nx/2 − 1) (2.27)

ky = s∆ky with s = −Ny/2,..., (Ny/2 − 1) (2.28)

where Nx, Ny is the number of series members or sample points in the original domain
respectively. [51]
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(iz,os)
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Figure 2.4: Superposition of (a) stresses and (b) displacements for separated block of layers [51].

If a perfect bond is assumed and therefore continuity conditions can be enforced at the
horizontal transition surfaces between the different materials, it is possible to establish a
system of equations that describes the system of layers only in dependence of the boundary
conditions at Λ1 and Λ3. Subsequently, for each frequency ω, unit stress states σ̂iz,Λ1(o,s) with
i = z, y, x are applied at the upper boundary Λ1 for each combination of the wavenumbers
(kx, ky), whereas the stresses σ̂(iz,os)

jz,Λ3
(o,s) at Λ3 are set to zero, so that an unconstrained

development of the displacements is possible. Finally, the displacements û(iz,os)
iz,Λ1

(o,s) at Λ1

and û
(iz,os)
jz,Λ3

(o,s) at Λ3 are determined for this set of boundary conditions. Analogously,
unit stress states σ̂jz,Λ3(o,s) with j = z, y, x are applied at Λ3, a stress free boundary is
assumed at Λ1 and the resulting displacements û(jz,os)

jz,Λ3
(o,s) on Λ3 and û

(jz,os)
iz,Λ1

(o,s) on Λ1 are
determined. The superposition of the unit stresses scaled with the amplitudes Ĉiz,Λ1(o,s) on
Λ1 and Ĉjz,Λ3(o,s) on Λ3 have to be equal to the there applied external loads p̂iz,Λ1(o,s) and
p̂jz,Λ3(o,s).[51] Thus the amplitudes can directly be calculated from:
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Ĉiz,Λ1(o,s) σ̂iz,Λ1(o,s) = −p̂iz,Λ1(o,s) (2.29a)

Ĉjz,Λ3(o,s) σ̂jz,Λ3(o,s) = −p̂jz,Λ3(o,s) (2.29b)

Eqs. (2.29) can be summarized in matrix notation as
 ŜL

Λ1Λ1 ITM
0

0 ŜL
Λ3Λ3 ITM


︸ ︷︷ ︸

ŜL
ITM

 ĈL
Λ1 ITM

ĈL
Λ3 ITM


︸ ︷︷ ︸

ĈL
ITM

=

 P̂L
Λ1 ITM

P̂L
Λ3 ITM


︸ ︷︷ ︸

P̂L
ITM

(2.30)

The matrices ŜL
αβITM

with α, β = Λ1,Λ3 contain the stresses on the surface α for a unit load
P̂L

βITM
on the surface β as a function of the amplitudes ĈL

βITM
. For the system of separated

layers, the off diagonal terms of ŜL
ITM

get zero and the amplitudes ĈL
Λ1 ITM

and ĈL
Λ3 ITM

for a
given external load P̂L

ITM
can be calculated independently. The corresponding displacements

on the two boundaries Λ1 and Λ3 result as [51]

ûiz,Λ1(o,s) = Ĉiz,Λ1(o,s) û(iz,os)
iz,Λ1

(o,s) +
∑

j

Ĉjz û
(jz,os)
iz,Λ1

(o,s) (2.31a)

ûjz,Λ3(o,s) = Ĉjz,Λ3(o,s) û(jz,os)
jz,Λ3

(o,s) +
∑

i

Ĉiz û
(iz,os)
jz,Λ3

(o,s) (2.31b)

Again Eqs. (2.31) can be written in matrix notation
 ûL

Λ1 ITM

ûL
Λ3 ITM


︸ ︷︷ ︸

ûL
ITM

=

 ÛL
Λ1Λ1 ITM

ÛL
Λ1Λ3 ITM

ÛL
Λ3Λ1 ITM

ÛL
Λ3Λ3 ITM


︸ ︷︷ ︸

ÛL
ITM

 ĈL
Λ1 ITM

ĈL
Λ3 ITM


︸ ︷︷ ︸

ĈL
ITM

(2.32)

The matrices ÛL
αβITM

contain the displacements due to the unit stress states and are scaled
with the amplitudes ĈL

βITM
to gain the actual displacements of the system ûL

ITM
. [51] Com-

bining equations (2.30) and (2.32), the dynamic stiffness matrix K̂L
ITM

= ŜL
ITM

ÛL −1

ITM
of the

block of separated layers can be derived, stating a direct relation between external loads and
resulting displacements on Λ1 and Λ3 [51]

 K̂L
Λ1Λ1 ITM

K̂L
Λ1Λ3 ITM

K̂L
Λ3Λ1 ITM

K̂L
Λ3Λ3 ITM


︸ ︷︷ ︸

K̂L
ITM

 ûL
Λ1 ITM

ûL
Λ3 ITM


︸ ︷︷ ︸

ûL
ITM

=

 P̂L
Λ1 ITM

P̂L
Λ3 ITM


︸ ︷︷ ︸

P̂L
ITM

(2.33)
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2.5 Fundamental system fullspace with cylindrical cavity

The solution of the fullspace with cylindrical cavity, as depicted in Fig. 2.5, is derived in
cylindrical coordinates (x, r, φ). Here, x denotes the longitudinal coordinate of the cylinder,
r the radial and φ the circumferential coordinate. [84]

Γc

(a)

Γc
r
φ

x

(b)

Figure 2.5: (a) Fullspace with cylindrical cavity and (b) cylindrical coordinates.

As the components of the vector potential are not decoupled in the cylindrical coordinate
system, an additional step is necessary to decouple the equations after the Helmholtz de-
composition. Therefore, the vector potential Ψ is replaced by two scalar functions ψ and χ.
As presented by Eringen and Suhubi [18], Ψ is expressed by [84]

Ψ = ψg1 + χ|j ∈ij1 gi (2.34)

with ∈ij1 as the permutation symbol of the cylindrical coordinate system.

After the decoupling, the equations are transformed into the wavenumber frequency domain
(kx, ω) and a Fourier series expansion φ → n regarding the circumferential direction of
the cylinder is carried out [84]. The ˜ symbol denotes parameters in the twofold Fourier
transformed domain, depending on kx and ω.

Φ̃ (kx, r, φ, ω) =
∞∑

n=−∞
Φ̂ (kx, r, n, ω) einφ (2.35a)

ψ̃ (kx, r, φ, ω) =
∞∑

n=−∞
ψ̂ (kx, r, n, ω) einφ (2.35b)

χ̃ (kx, r, φ, ω) =
∞∑

n=−∞
χ̂ (kx, r, n, ω) einφ (2.35c)
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This finally leads to the following system of ordinary differential equations[
−kx

2 + ∂2

∂r2 + 1
r

∂

∂r
− n2

r2 + kp
2
]

Φ̂ (kx, r, n, ω) = 0 (2.36a)[
−kx

2 + ∂2

∂r2 + 1
r

∂

∂r
− n2

r2 + ks
2
]
ψ̂ (kx, r, n, ω) = 0 (2.36b)[

−kx
2 + ∂2

∂r2 + 1
r

∂

∂r
− n2

r2 + ks
2
]
χ̂ (kx, r, n, ω) = 0 (2.36c)

The Eqs. (2.36) are differential equations of Bessel type and can be solved with Hankel
functions of first H(1)

n and second kind H(2)
n given in Appx. A.5.1 [84]

Φ̂ (kx, r, n, ω) = Ĉ1n H
(1)
n (k1r) + Ĉ4n H

(2)
n (k1r) (2.37a)

ψ̂ (kx, r, n, ω) = Ĉ2n H
(1)
n (k2r) + Ĉ5n H

(2)
n (k2r) (2.37b)

χ̂ (kx, r, n, ω) = Ĉ3n H
(1)
n (k2r) + Ĉ6n H

(2)
n (k2r) (2.37c)

in dependency of r and k1
2 = kp

2 − kx
2 resp. k2

2 = ks
2 − kx

2. In case of k1 = k2 = 0, a
different solution approach needs to be applied. However, this case is only possible for an
undamped soil and is thus not further considered [160].

If an external load P̂fs cyl
Γc ITM

is applied at the surface of the cylindrical cavity Γc, spatially
propagating and evanescent waves, w.r.t. the cylindrical coordinate system, are introduced
into the soil. The corresponding stresses and displacements inside the soil can be expressed
in dependency of the wave amplitudes Ĉfs cyl

ITM
. With the matrices of Appx. A.3 they yield

σ̂fs cyl
ITM

= Ŝfs cyl
ITM

Ĉfs cyl
ITM

(2.38a)

ûfs cyl
ITM

= Ûfs cyl
ITM

Ĉfs cyl
ITM

(2.38b)

For negative frequencies, the Hankel functions H(2)
n (k2r) in Eqs. (2.38) are related to waves

increasing with growing distance r or propagating against the radial coordinate back to the
source. Since, for a soil with infinite extension in radial direction this is, according to the
Sommerfeld radiation condition, physically not possible, the coefficients Ĉ4n to Ĉ6n can be
set to zero [160]. Therefore, the remaining unknowns Ĉ1n to Ĉ3n can be determined applying
the local boundary conditions on the cylindrical surface σ̂fs cyl

jr,Γc(kx,r,n,ω) = −p̂fs cyl
jr,Γc(kx,r,n,ω)

with j = r, x, φ. Given the wave amplitudes Ĉfs cyl
ITM

, all stresses and displacements at every
position in the halfspace can be determined in dependency on (kx, r, n, ω) in a postprocessing
step applying Eqs. (2.38). The results for positive frequencies are completed as conjugate
complex counterparts in the transformed domain. The system response in the original do-
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main (x, r, φ, t) is obtained by a Fourier series synthesis n → φ and a twofold inverse Fourier
transform (kx, ω) → (x, t).

However, the solutions for the fullspace with cylindrical cavity derived above are only valid for
the dynamic case, as for a static load the solution approach is not complete. In Konrad [232],
a solution for this case is presented on the basis of the displacement approach introduced by
Papkovich [238] and Neuber [239].

2.6 Fundamental system fullspace with spherical cavity

Using spherical coordinates (r, ϑ, φ) with the radial coordinate r, the elevation angle ϑ and
the azimuth angle φ, the solution of a fullspace with spherical cavity, depicted in Fig. 2.6,
can be derived. [84]

Γs

(a)

Γs

y

ϑ
x

zr

φ

(b)

Figure 2.6: (a) Fullspace with spherical cavity and (b) spherical coordinates.

Analogously to the cylindrical coordinate system, the vector potential Ψ is replaced by two
scalar potentials ψ and χ with [17, 18]

Ψ = rψg1 + (rχ) |j ∈ij1 gi (2.39)

Following the decoupling, the equations are transformed into the frequency domain (r, ϑ, φ, ω)
and the corr. parameters are denoted by the ¯ symbol. [84]

[
∂2

∂r2 + 2
r

∂

∂r
+ 1
r2

(
∂2

∂ϑ2 + cos(ϑ)
sin(ϑ)

∂

∂ϑ
+ 1

sin2(ϑ)
∂2

∂φ2

)
+ kp

2
]

Φ̄ (r, ϑ, φ, ω) = 0 (2.40a)

[
∂2

∂r2 + 2
r

∂

∂r
+ 1
r2

(
∂2

∂ϑ2 + cos(ϑ)
sin(ϑ)

∂

∂ϑ
+ 1

sin2(ϑ)
∂2

∂φ2

)
+ ks

2
]
ψ̄ (r, ϑ, φ, ω) = 0 (2.40b)

[
∂2

∂r2 + 2
r

∂

∂r
+ 1
r2

(
∂2

∂ϑ2 + cos(ϑ)
sin(ϑ)

∂

∂ϑ
+ 1

sin2(ϑ)
∂2

∂φ2

)
+ ks

2
]
χ̄ (r, ϑ, φ, ω) = 0 (2.40c)
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The term in round brackets is associated with the angular part of the Laplace operator and
can be solved using spherical harmonics Y l

m for each combination of the degree m and the
order l [160]

(
∂2

∂ϑ2 + cos(ϑ)
sin(ϑ)

∂

∂ϑ
+ 1

sin2(ϑ)
∂2

∂φ2

)
Y l

m(ϑ, φ) = −m(m+ 1)Y l
m(ϑ, φ) (2.41)

Thereby the spherical harmonics are defined as [84]

Y l
m(ϑ, φ) =

√√√√2m+ 1
2

(m− l)!
(m+ l)! P

l
m (cos (ϑ)) eilφ = P̌ l

m (cos (ϑ)) eilφ (2.42)

with the associated Legendre polynomials defined for l ̸= 0 by

P l
m (x) = (−1)l

2mm!
(
1 − x2

)l/2 dl+m

dxl+m

(
x2 − 1

)m
(2.43)

The spherical harmonics form an orthogonal system on the unit sphere [240, 241]. Therefore,
they generate a complete basis and each continuous function on a spherical surface can be
expressed by a series of spherical harmonics [242]. In order to apply Eq. (2.41) for the
solution of the partial differential Eqs. (2.40), the scalar potentials Φ̄, ψ̄ and χ̄ are further
developed into series of spherical harmonics. [84]

Φ̄ (r, ϑ, φ, ω) =
∞∑

m=0

m∑
l=−m

Φ̂ (r,m, l, ω)Y l
m(ϑ, φ) (2.44a)

ψ̄ (r, ϑ, φ, ω) =
∞∑

m=0

m∑
l=−m

ψ̂ (r,m, l, ω)Y l
m(ϑ, φ) (2.44b)

χ̄ (r, ϑ, φ, ω) =
∞∑

m=0

m∑
l=−m

χ̂ (r,m, l, ω)Y l
m(ϑ, φ) (2.44c)

Substituting the series expansions of the Eqs. (2.44) into the Eqs. (2.40) together with a
comparison of the coefficients with Eq. (2.41), this finally leads to the following system of
ordinary differential equations for each combination of the series members (m,l)

[
∂2

∂r2 + 2
r

∂

∂r
+
(
kp

2 − m (m+ 1)
r2

)]
Φ̂ (r,m, l, ω) = 0 (2.45a)[

∂2

∂r2 + 2
r

∂

∂r
+
(
ks

2 − m (m+ 1)
r2

)]
ψ̂ (r,m, l, ω) = 0 (2.45b)[

∂2

∂r2 + 2
r

∂

∂r
+
(
ks

2 − m (m+ 1)
r2

)]
χ̂ (r,m, l, ω) = 0 (2.45c)
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Eqs. (2.45) are also Bessel differential equations and can be solved using spherical Hankel
functions of first h(1)

m and second kind h(2)
m given in Appx. A.5.1 [84, 162, 243].

Φ̂ (r,m, l, ω) = Ĉ1lm h(1)
m (|kp|r) + Ĉ4lm h(2)

m (|kp|r) (2.46a)

ψ̂ (r,m, l, ω) = Ĉ2lm h(1)
m (|ks|r) + Ĉ5lm h(2)

m (|ks|r) (2.46b)

χ̂ (r,m, l, ω) = Ĉ3lm h(1)
m (|ks|r) + Ĉ6lm h(2)

m (|ks|r) (2.46c)

If an external load P̂fs sph
Γs ITM

is applied at the surface of the spherical cavity Γs, spatially
propagating and evanescent waves, w.r.t. the spherical coordinate system, are introduced
into the soil. The corresponding stresses and displacements inside the soil can be expressed
in dependency of the wave amplitudes Ĉfs sph

ITM
. With the matrices of Appx. A.4 they yield

σ̂fs sph
ITM

= Ŝfs sph
ITM

Ĉfs sph
ITM

(2.47a)

ûfs sph
ITM

= Ûfs sph
ITM

Ĉfs sph
ITM

(2.47b)

Analogously to the fullspace with cylindrical cavity, for negative frequencies the spherical
Hankel functions h(2)

m (|ks|r) in Eqs. (2.46) are related to waves increasing with growing dis-
tance r or propagating against the radial coordinate back to the source. For a fullspace
with spherical cavity exhibiting an infinite extension in radial direction, this type of waves
disobeys the Sommerfeld radiation condition. Therefore, the coefficients Ĉ4lm to Ĉ6lm are
set to zero [160]. The remaining unknowns Ĉ1lm to Ĉ3lm can be determined applying the
local boundary conditions on the spherical surface σ̂fs sph

rj,Γs (r,m,l,ω) = −p̂fs sph
rj,Γs (r,m,l,ω) with

j = r, ϑ, φ. With the wave amplitudes Ĉfs sph
ITM

, all stresses and displacements at every po-
sition in the halfspace can be determined in dependency on (r,m, l, ω) in a postprocessing
step applying Eqs. (2.47). The results for positive frequencies are completed as conjugate
complex counterparts in the transformed domain. The system response in the original do-
main (r, ϑ, φ, t) is obtained by a spherical harmonic series synthesize m, l → ϑ, φ and an
inverse Fourier transform ω → t.

However, the solutions for the fullspace with spherical cavity derived above are only valid for
the dynamic case, as for a static load the used solution approaches are not complete [160].
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3 Integral Transform Method

substructures

In the previous chapter, fundamental solutions of the Lamé equation for systems with either
one or several horizontal, a cylindrical or a spherical boundary were presented. The obtained
fundamental systems are now superposed and coupled in order to derive solutions for more
complex systems. In Sec. 3.1 and 3.2 the halfspace and the fullspace with cylindrical cavity
are used to deduce a stiffness formulation for a halfspace with one or two cylindrical cavities
resp. indentations. The dynamic stiffness matrix for a halfspace with spherical cavity or
indentation is presented in Sec. 3.3. Subsequently the stiffness of the discrete soil stratifica-
tion from Sec. 2.4 is coupled with the above established systems, applying the compatibility
conditions at the common interface, allowing also a representation of multilayered soils with
local cylindrical or spherical excavations. Finally, in Sec. 3.5 some computational and nu-
merical aspects are highlighted, which are important for the interpretation of the results
later on. Furthermore, similarity measures for the assessment of the quality of the obtained
results are introduced and an insight into the parallelized implementation is given.

3.1 Halfspace with one cylindrical cavity

3.1.1 Superposition procedure and dynamic stiffness matrix

In this section, the solution for a halfspace with cylindrical cavity, as depicted in Fig. 3.1c,
is deduced from the superposition of the fundamental systems halfspace and fullspace with
cylindrical cavity. The final system has two boundaries, namely the halfspace surface Λ and
the cylindrical surface Γc. The superposition of the stresses and displacements of the two
fundamental systems on Λ and Γc has to satisfy the boundary conditions σ̂iz,Λ(kx,ky,z,ω) =
−p̂iz,Λ(kx,ky,z,ω) and σ̂jr,Γc(kx,r,n,ω) = −p̂jr,Γc(kx,r,n,ω) present at the resulting system
halfspace with cylindrical cavity. Thus, it is necessary to be able to evaluate both funda-
mental systems on Λ and Γc.

The solution for the fundamental system halfspace is given in the (kx,ky,z,ω) domain, whereas
the solution for the fullspace with cylindrical cavity is defined w.r.t. (kx,r,n,ω). However,
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Figure 3.1: Fundamental systems (a) halfspace and (b) fullspace with cylindrical cavity for the superposi-
tion to the (c) halfspace with cylindrical cavity.

for both subsystems the response and thus also the superposition can be determined in
dependency of (kx,ω). With that and due to the length invariance of the system, it is
possible to reduce the originally three dimensional computations to a series of independent
two dimensional calculations for each combination of kx and ω. The information of the
third dimension is stored in the wavenumber kx and the 3D results in the original domain
are obtained after an inverse Fourier transform. This leads to an extremely efficient 2.5D
approach, allowing a parallelized implementation that considerably reduces the computation
times. [100, 162]

For the evaluation of the stress and displacement states on the two boundaries for both fun-
damental systems, a virtual cylindrical surface δΓc is introduced into the halfspace (Fig. 3.1a)
as well as a virtual halfspace surface δΛ into the fullspace with cylindrical cavity (Fig. 3.1b).
Thereby, the position of the cavity itself within the halfspace has no influence on the super-
position procedure. For a pure translation of the Cartesian reference frame, the stress and
displacement components remain unchanged, since the transformation matrices are equal to
the identity matrix in this case. As the horizontal shift of the cavity can always be per-
formed within the Cartesian reference frame, the transformation matrices from Cartesian to
polar and vice versa (given in Frühe and Müller [160]) do not have to be modified. After
the transformation into a common basis, the stresses and displacements on the boundaries
Λ and Γc can thus be superposed directly.

Fundamental system halfspace

Firstly, unit stress states σ̂iz,Λ(s) with i = x,y,z in dependency of the discrete wavenumbers
ky = s∆ky with s = −Ny/2,..., (Ny/2 − 1) are applied on the halfspace surface Λ. These
lead to resulting stresses σ̂(iz,s)

iz,δΓc(s) on the virtual surface δΓc w.r.t. (kx,ky,z,ω), determined
according to Sec. 2.2. To enable the superposition of these stresses with those of the full-
space with cylindrical cavity, they are transformed into the basis corresponding to the latter
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(kx,r,n,ω). Therefore, initially a Fourier series synthesis ky → y is applied, followed by a
transformation into polar coordinates y,z → r,φ and a Fourier series expansion in the cir-
cumferential direction φ → n. Hence, each unit load σ̂iz,Λ(s) on Λ for a defined wavenumber
s leads to stresses σ̂(iz,s)

jr,δΓc(n) with j = r,x,φ on δΓc for each series member n described in the
(kx,r,n,ω) domain. [84, 162]

Fundamental system fullspace with cylindrical cavity

Analogously, unit stress states σ̂jr,Γc(n) with j = r,x,φ in dependency of the discrete Fourier
series members n = 1,...,Nφ are applied on the cylindrical surface Γc. These lead to resulting
stresses σ̂(jr,n)

jr,δΛ (n) on the virtual halfspace surface δΛ w.r.t. (kx,r,n,ω) determined according
to Sec. 2.5. To enable the superposition of these stresses with those of the halfspace, they
are transformed into the basis corresponding to the latter (kx,ky,z,ω). Therefore, initially
a Fourier series synthesis n → φ is applied, followed by a transformation into Cartesian
coordinates r,φ → y,z and a Fourier series expansion w.r.t. the y−coordinate y → ky.
Hence, each unit load σ̂jr,Γc(n) on Γc for a defined Fourier series member n leads to stresses
σ̂

(jr,n)
iz,δΛ (s) with i = x,y,z on δΛ for each wavenumber s described in the (kx,ky,z,ω) domain.

[84, 162]

Superposition of fundamental systems

The superposition of the stresses on the two surfaces Λ and Γc has to fulfill the external
boundary conditions applied on the halfspace with cylindrical cavity. Thus, the amplitudes
of the unit stresses Ĉiz,Λ(s) on Λ and Ĉjr,Γc(n) on Γc can be determined solving the following
system of equations

Ĉiz,Λ(s) σ̂iz,Λ(s) +
Nφ∑
n=1

∑
j=r,x,φ

Ĉjr,Γc(n) σ̂(jr,n)
iz,δΛ (s) = −p̂iz,Λ(s) (3.1)

Ny/2−1∑
s=−Ny/2

∑
i=x,y,z

Ĉiz,Λ(s) σ̂(iz,s)
jr,δΓc(n) + Ĉjr,Γc(n) σ̂jr,Γc(n) = −p̂jr,Γc(n) (3.2)

Eqs. (3.1) and (3.2) can be written in matrix notation as
 Ŝhs cyl

ΛΛITM
Ŝhs cyl

ΛΓcITM

Ŝhs cyl
ΓcΛITM

Ŝhs cyl
ΓcΓc ITM


︸ ︷︷ ︸

Ŝhs cyl
ITM

 Ĉhs cyl
ΛITM

Ĉhs cyl
Γc ITM


︸ ︷︷ ︸

Ĉhs cyl
ITM

=

 P̂hs cyl
ΛITM

P̂hs cyl
Γc ITM


︸ ︷︷ ︸

P̂hs cyl
ITM

(3.3)

The matrices Ŝhs cyl
αβITM

with α = Λ,Γc and β = Λ,Γc contain the results for the stresses on
the surface α for a unit load P̂hs cyl

βITM
on surface β in dependency of the unknown amplitudes

Ĉhs cyl
α ITM

on surface β. [84]
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With Eqs. (3.3) it is possible to determine the coefficients Ĉhs cyl
ITM

. Thus the displacements
on the halfspace surface ûi,Λ with i = x,y,z and the cylindrical surface ûj,Γc with j = r, x,φ

of the superposed system can be calculated by the following system of equations

ûi,Λ (s) =
∑

k=x,y,z

Ĉkz,Λ(s) û(kz,s)
i,Λ (s) +

Nφ∑
n=1

∑
l=r,x,φ

Ĉlr,Γc (n) û(lr,n)
i,δΛ (s) (3.4)

ûj,Γc (n) =
Ny/2−1∑

s=−Ny/2

∑
k=x,y,z

Ĉkz,Λ(s) u(kz,s)
j,δΓc (n) +

∑
l=r,x,φ

Ĉlr,Γc(n) u(lr,n)
j,Γc (n) (3.5)

In matrix notation, the Eqs. (3.4) and (3.5) can be written as
 ûhs cyl

ΛITM

ûhs cyl
Γc ITM


︸ ︷︷ ︸

ûhs cyl
ITM

=

 Ûhs cyl
ΛΛITM

Ûhs cyl
ΛΓc ITM

Ûhs cyl
ΓcΛITM

Ûhs cyl
ΓcΓc ITM


︸ ︷︷ ︸

Ûhs cyl
ITM

 Ĉhs cyl
ΛITM

Ĉhs cyl
Γc ITM


︸ ︷︷ ︸

Ĉhs cyl
ITM

(3.6)

The matrices Ûhs cyl
αβITM

contain the displacements due to the unit stress states and are scaled
with the amplitudes Ĉhs cyl

βITM
to gain the actual displacements of the system ûhs cyl

ITM
.

Dynamic stiffness matrix

Combining Eqs. (3.3) and (3.6), the complex dynamic stiffness matrix

K̂hs cyl
ITM

= Ŝhs cyl
ITM

Ûhs cyl −1

ITM
(3.7)

of the ITM substructure halfspace with cylindrical cavity can be derived, separated for the
parameters on the two surfaces Λ and Γc. K̂hs cyl

ΛΛITM
K̂hs cyl

ΛΓc ITM

K̂hs cyl
ΓcΛITM

K̂hs cyl
ΓcΓc ITM


︸ ︷︷ ︸

K̂hs cyl
ITM

 ûhs cyl
ΛITM

ûhs cyl
Γc ITM


︸ ︷︷ ︸

ûhs cyl
ITM

=

 P̂hs cyl
ΛITM

P̂hs cyl
Γc ITM


︸ ︷︷ ︸

P̂hs cyl
ITM

(3.8)

3.1.2 Cylindrical indentation at the soil surface

The stiffness matrix for the halfspace with cylindrical indentation can also be derived by the
superposition of the fundamental systems halfspace and fullspace with cylindrical cavity. In
contrast to the case of the fully embedded cavity, for the indentation the virtual cylindrical
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Figure 3.2: Fundamental systems (a) halfspace and (b) fullspace with cylindrical cavity for the superposi-
tion to the (c) halfspace with cylindrical indentation.

surface δΓc is now partly located above the ground surface Λ and the virtual halfspace
surface δΛ is partly located within the boundary Γc of the cylindrical cavity inside the
fullspace (Fig. 3.2).

Therefore, the resulting stresses σ̂(iz,s)
iz,δΓc(s) on the virtual surface δΓc due to the unit stress

states σ̂iz,Λ(s) can only be evaluated below the ground surface z ≥ 0. Analogously, it is
only possible to evaluate the stresses σ̂(jr,n)

jr,δΛ (n), induced by the unit stress states σ̂jr,Γc(n),
outside of the cylindrical cavity r ≥ R. The stresses above the ground surface Λ and inside
the cavity boundary Γc are set to zero, since the superposition of the stresses only needs to
be in equilibrium with the external loads acting on the boundaries of the resulting system
halfspace with cylindrical indentation. As the superposition is carried out in the transformed
domain (kx,ky,z,ω) on Λ and (kx,r,n,ω) on Γc, a Fourier series expansion of the stresses of
both fundamental systems is carried out w.r.t. the y−coordinate on the ground surface and
w.r.t. the circumferential direction on the cylindrical boundary. For this reason, the resulting
stresses σ̂(jr,n)

iz,δΛ (s) and σ̂
(iz,s)
jr,δΓc(n) are not superposed with the unit stress states σ̂iz,Λ(s) and

σ̂jr,Γc(n) directly on discrete points, but the corresponding series members are summed up
(cp. Eqs. (3.1) and (3.2)) to fulfill the boundary conditions of the total system, thereby
satisfying the equilibrium of external and internal stresses approximately in sense of the
series expansion.

In case of a discrete Fourier series expansion, the number of discrete points in the original
domain must always coincide with number of series members in the transformed domain.
Therefore, within the numerical implementation of the superposition procedure, it is neces-
sary to introduce nodes also on the physically not existent parts of the boundaries above the
ground surface and inside the cavity, in order to allow a series expansion of σ̂(jr,n)

iz,δΛ (s) over Λ
and σ̂(iz,s)

jr,δΓc(n) over Γc with the same number of series members s resp. n, as used for the unit
stress states. Since the amplitude of the stresses on the nodes for z ≤ 0 and r ≤ R were set
to zero, a discontinuity at the transition point can occur prior the series expansion. Hence, to
accurately represent the discontinuity in the transformed domain and thus to ensure a good



3.2 Halfspace with two cylindrical cavities 39

quality of the solution, a larger number of series members is needed for the halfspace with
indentation compared to the halfspace with the cavity (i.e. Nφ,ind ≈ 2Nφ,cav for a constant
geometry and discretization).

Also, the displacements due to the unit stress states are only evaluated below the halfspace
surface and outside the cavity. For the superposition on the halfspace surface Λ and the
cylindrical surface Γ they are transformed into the resp. basis and developed into Fourier
series w.r.t. the y−coordinate resp. the circumferential direction φ, with the same number
of series members for both fundamental systems. Thus, in Eqs. (3.4) and (3.5) also the
corresponding series members of the displacements are summed up to fulfill the boundary
conditions of the total system. Finally, with Eqs. (3.3) and (3.6) the dynamic stiffness matrix
for the halfspace with indentation results analogously to the halfspace with cylindrical cavity
as given in Eq. (3.8).

3.2 Halfspace with two cylindrical cavities

In this section, the stiffness matrix for a halfspace with two cylindrical cavities or inden-
tations, depicted in Fig. 3.3 shall be derived. The final system contains three boundaries,
namely the halfspace surface Λ and the two cylindrical surfaces Γc1 and Γc2 . The solution
is deduced from the superposition of the fundamental systems halfspace and two fullspaces
with each one cylindrical cavity [245]. The superposition of the stresses and displacements of
all involved fundamental systems must satisfy the boundary conditions acting on the overall
system. Therefore, each of the fundamental systems needs to be evaluated on the halfspace
surface and the two cylindrical surfaces.

For the evaluation of the stresses and displacements, two virtual cylindrical surfaces δΓc1

and δΓc2 are introduced into the halfspace. Furthermore, a virtual horizontal surface δΛ
and a second virtual cylindrical surface δΓc1 resp. δΓc2 are inserted into the corresponding
fullspaces with cylindrical cavity. Analogous to Sec. 3.1, unit stress states are applied on

r1
φ1x1 r2

φ2x2

yTc 1 yTc 2

2R1 2R2dT1−2

Λ

Γc1 Γc2
H1 H2

y
x z

(a)

r1
φ1x1 r2

φ2x2

yTc 1 yTc 2

2R1 2R2dT1−2

Λ

Γc1 Γc2

y
x z

(b)

Figure 3.3: Halfspace with (a) two cylindrical cavities cp. [244] and (b) two cylindrical indentations.
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Figure 3.4: Fundamental systems (a) halfspace and (b),(c) fullspace with cylindrical cavity for the super-
position to the system halfspace with two cylindrical cavities cp. [244].

the real surfaces Λ, Γc1 and Γc2 within each of the fundamental systems and the resulting
stresses are evaluated on the respective virtual surfaces as illustrated in Fig. 3.4.

Fundamental system halfspace

Due to the unit stress states σ̂iz,Λ(s) with i = x,y,z on Λ, resulting stresses occur on δΓc1 and
δΓc2 , which are firstly determined in the (kx,ky,z,ω) domain according to Sec. 2.2. For the
superposition with the stresses of the two fullspace systems and to comply with the external
boundary conditions on Γc1 and Γc2 , they are firstly transformed into the respective cylin-
drical basis and then expanded into Fourier series along the circumference of the cylinders.
Hence, each unit stress state σ̂iz,Λ(s) leads to the stresses σ̂(iz,s)

jr,δΓc1
(n1) on δΓc1 with j = x,r,φ

and n1 = 1,...,Nφ1 as well as σ̂(iz,s)
kr,δΓc2

(n2) on δΓc2 with k = x,r,φ and n2 = 1,...,Nφ2 defined
in the (kx,r,n,ω) domain. [244]

Fundamental system fullspace with cylindrical cavity Γc1

Due to the unit stress states σ̂jr,Γc1
(n1) on Γc1 , resulting stresses occur on δΛ and δΓc2 , which

are firstly determined w.r.t. the cylindrical basis of the cavity Γc1 in the (kx,r,n,ω) domain
according to Sec. 2.5. For the superposition with the other fundamental systems and to
comply with the external boundary conditions on Λ, the resulting stresses on the virtual
halfspace surface δΛ are firstly transformed into a Cartesian basis and then expanded into a
Fourier series w.r.t. the y−coordinate. Thus each unit load σ̂jr,Γc1

(n1) with j = r,x,φ leads
to the stresses σ̂(jr,n1)

iz,δΛ (s) with i = x,y,z on δΛ. [244]

The resulting stresses on δΓc2 have to be transformed into the cylindrical coordinate system of
the cavity Γc2 in order enable the superposition. Hereby, a transformation of the stresses from
one cylindrical to another cylindrical coordinate system needs to be performed. Although the
base vectors of both cylindrical reference systems are normalized w.r.t. the radial coordinate
r, different base vectors are obtained at the same discretization point depending on the chosen
coordinate system and thus also different components of the stress tensor in dependency on
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the angles φ1 and φ2 result. Thereby the reason for the different base vectors is that the
cylindrical basis in contrast to a Cartesian basis is not stationary. After this transformation
and a Fourier series expansion along the circumferential direction, the stresses σ̂(jr,n1)

kr,δΓc2
(n2)

on δΓc2 with k = r,x,φ and n2 = 1,...,Nφ2 result from each unit stress state σ̂jr,Γc1
(n1) on

Γc1 . [244]

Fundamental system fullspace with cylindrical cavity Γc2

Analogously, unit stress states σ̂kr,Γc2
(n2) are applied on Γc2 and the resulting stresses on δΛ

and δΓc1 are determined firstly w.r.t. the cylindrical basis of the cavity Γc2 in the (kx,r,n,ω)
domain. The stresses on δΛ are transformed into a Cartesian reference system and expanded
into a Fourier series w.r.t. the y−coordinate finally leading to σ̂(kr,n2)

iz,δΛ (s) with i = x,y,z on
δΛ. The stresses on δΓc1 are firstly transformed into the cylindrical basis of the cavity Γc1

and expanded into a Fourier series along the circumferential direction finally leading to the
stresses σ̂(kr,n2)

jr,δΓc1
(n1) with j = x,r,φ and n1 = 1,...,Nφ1 on δΓc1 . [244]

Superposition of fundamental systems

The superposition of the stresses on the three surfaces Λ, Γc1 and Γc2 has to fulfill the
external boundary conditions applied on the halfspace with two cylindrical cavities. Thus,
the amplitudes of the unit stresses Ĉiz,Λ(s) on Λ, Ĉjr,Γc1

(n1) on Γc1 and Ĉkr,Γc2
(n2) on Γc2

can be determined solving the following system of equations

Ĉiz,Λ(s) σ̂iz,Λ(s) +
Nφ1∑
n1=1

∑
j=r,x,φ

Ĉjr,Γc1
(n1) σ̂(jr,n1)

iz,δΛ (s)

+
Nφ2∑
n2=1

∑
k=r,x,φ

Ĉkr,Γc2
(n2) σ̂(kr,n2)

iz,δΛ (s) = −p̂iz,Λ(s) (3.9)

Ĉjr,Γc1
(n1) σ̂jr,Γc1

(n1) +
Ny/2−1∑

s=−Ny/2

∑
i=x,y,z

Ĉiz,Λ(s) σ̂(iz,s)
jr,δΓc1

(n1)

+
Nφ2∑
n2=1

∑
k=r,x,φ

Ĉkr,Γc2
(n2) σ̂(kr,n2)

jr,δΓc1
(n1) = −p̂jr,Γc1

(n1) (3.10)

Ĉkr,Γc2
(n2) σ̂kr,Γc2

(n2) +
Ny/2−1∑

s=−Ny/2

∑
i=x,y,z

Ĉiz,Λ(s) σ̂(iz,s)
kr,δΓc2

(n2)

+
Nφ1∑
n1=1

∑
j=r,x,φ

Ĉjr,Γc1
(n1) σ̂(jr,n1)

kr,δΓc2
(n2) = −p̂kr,Γc2

(n2) (3.11)
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Eqs. (3.9) to (3.11) can be written in matrix notation as


Ŝhs cyl tw
ΛΛITM

Ŝhs cyl tw
ΛΓc1 ITM

Ŝhs cyl tw
ΛΓc2 ITM

Ŝhs cyl tw
Γc1 ΛITM

Ŝhs cyl tw
Γc1 Γc1 ITM

Ŝhs cyl tw
Γc1 Γc2 ITM

Ŝhs cyl tw
Γc2 ΛITM

Ŝhs cyl tw
Γc2 Γc1 ITM

Ŝhs cyl tw
Γc2 Γc2 ITM


︸ ︷︷ ︸

Ŝhs cyl tw
ITM


Ĉhs cyl tw

ΛITM

Ĉhs cyl tw
Γc1 ITM

Ĉhs cyl tw
Γc2 ITM


︸ ︷︷ ︸

Ĉhs cyl tw
ITM

=


P̂hs cyl tw

ΛITM

P̂hs cyl tw
Γc1 ITM

P̂hs cyl tw
Γc2 ITM


︸ ︷︷ ︸

P̂hs cyl tw
ITM

(3.12)

whereby the ”tw” in the superscript indicates the twin cavities or indentations.

With Eqs. (3.12) it is possible to determine the coefficients Ĉhs cyl tw
ITM

. Thus the displacements
on the halfspace surface ûi,Λ with i = x,y,z as well as the cylindrical surfaces ûj,Γc1

with
j = r, x,φ and ûk,Γc2

with k = r, x,φ of the superposed system can be calculated by the
following system of equations

ûi,Λ (s) =
∑

k=x,y,z

Ĉkz,Λ(s) û(kz,s)
i,Λ (s) +

Nφ1∑
n1=1

∑
l=r,x,φ

Ĉlr,Γc1
(n1) û(lr,n1)

i,δΛ (s)

+
Nφ2∑
n2=1

∑
m=r,x,φ

Ĉmr,Γc2
(n2) û(mr,n2)

i,δΛ (s) (3.13)

ûj,Γc1
(n1) =

Ny/2−1∑
s=−Ny/2

∑
i=x,y,z

Ĉiz,Λ(s) u(iz,s)
j,δΓc1

(n1) +
∑

l=r,x,φ

Ĉlr,Γc1
(n1) u(lr,n1)

j,Γc1
(n1)

+
Nφ2∑
n2=1

∑
m=r,x,φ

Ĉmr,Γc2
(n2) û(mr,n2)

j,δΓc1
(n1) (3.14)

ûk,Γc2
(n2) =

Ny/2−1∑
s=−Ny/2

∑
i=x,y,z

Ĉiz,Λ(s) u(iz,s)
k,δΓc2

(n2) +
Nφ1∑
n1=1

∑
m=r,x,φ

Ĉmr,Γc1
(n1) û(mr,n1)

k,δΓc2
(n2)

+
∑

l=r,x,φ

Ĉlr,Γc2
(n2) u(lr,n2)

k,Γc2
(n2) (3.15)

In matrix notation, the Eqs. (3.13) to (3.15) can be written as


ûhs cyl tw
ΛITM

ûhs cyl tw
Γc1 ITM

ûhs cyl tw
Γc2 ITM


︸ ︷︷ ︸

ûhs cyl tw
ITM

=


Ûhs cyl tw

ΛΛITM
Ûhs cyl tw

ΛΓc1 ITM
Ûhs cyl tw

ΛΓc2 ITM

Ûhs cyl tw
Γc1 ΛITM

Ûhs cyl tw
Γc1 Γc1 ITM

Ûhs cyl tw
Γc1 Γc2 ITM

Ûhs cyl tw
Γc2 ΛITM

Ûhs cyl tw
Γc2 Γc1 ITM

Ûhs cyl tw
Γc2 Γc2 ITM


︸ ︷︷ ︸

Ûhs cyl tw
ITM


Ĉhs cyl tw

ΛITM

Ĉhs cyl tw
Γc1 ITM

Ĉhs cyl tw
Γc2 ITM


︸ ︷︷ ︸

Ĉhs cyl tw
ITM

(3.16)
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Dynamic stiffness matrix

Combining Eqs. (3.12) and (3.16), the complex dynamic stiffness matrix

K̂hs cyl tw
ITM

= Ŝhs cyl tw
ITM

Ûhs cyl tw −1

ITM
(3.17)

of the ITM substructure halfspace with two cylindrical cavities or indentations can be derived
separated for the parameters on the three surfaces Λ, Γc1 and Γc2 .


K̂hs cyl tw

ΛΛITM
K̂hs cyl tw

ΛΓc1 ITM
K̂hs cyl tw

ΛΓc2 ITM

K̂hs cyl tw
Γc1 ΛITM

K̂hs cyl tw
Γc1 Γc1 ITM

K̂hs cyl tw
Γc1 Γc2 ITM

K̂hs cyl tw
Γc2 ΛITM

K̂hs cyl tw
Γc2 Γc1 ITM

K̂hs cyl tw
Γc2 Γc2 ITM


︸ ︷︷ ︸

K̂hs cyl tw
ITM


ûhs cyl tw

ΛITM

ûhs cyl tw
Γc1 ITM

ûhs cyl tw
Γc2 ITM


︸ ︷︷ ︸

ûhs cyl tw
ITM

=


P̂hs cyl tw

ΛITM

P̂hs cyl tw
Γc1 ITM

P̂hs cyl tw
Γc2 ITM


︸ ︷︷ ︸

P̂hs cyl tw
ITM

(3.18)

3.3 Halfspace with spherical cavity

3.3.1 Superposition procedure and dynamic stiffness matrix

In this section the solution for a halfspace with spherical cavity or indentation, as depicted
in Fig. 3.5c, is deduced from the superposition of the fundamental systems halfspace and
fullspace with spherical cavity. The final system has two boundaries, namely the halfspace
surface Λ and the spherical surface Γs. The superposition of the stresses and displace-
ments of the two fundamental systems on Λ and Γs has to satisfy the boundary conditions
σ̂iz,Λ(kx,ky,z,ω) = −p̂iz,Λ(kx,ky,z,ω) with i = x,y,z and σ̂rj,Γs(r,m,l,ω) = −p̂rj,Γs(r,m,l,ω)
with j = r,ϑ,φ present at the resulting system halfspace with spherical cavity. Thus, it is
necessary to be able to evaluate the both fundamental systems on Λ and Γs.

The solution for the fundamental system halfspace is given in the (kx,ky,z,ω) domain, whereas
the solution for the fullspace with spherical cavity is defined w.r.t. (r,m,l,ω). Since there is
no common spatial wavenumber coordinate, the full three dimensional system must be solved
and no reduction to a 2.5D calculation is possible [162]. Therewith, no parallel computation
of independent two dimensional problems is possible leading to an increased computational
effort compared to the halfspace with cylindrical cavity.

For the evaluation of the stress and displacement states on the two boundaries for both fun-
damental systems, a virtual spherical surface δΓs is introduced into the halfspace (Fig. 3.5a)
as well as a virtual halfspace surface δΛ into the fullspace with spherical cavity (Fig. 3.5b).
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Figure 3.5: Fundamental systems (a) halfspace and (b) fullspace with spherical cavity for the superposi-
tion to the system (c) halfspace with spherical cavity.

Fundamental system halfspace

Unit stresses σ̂iz (o, s) with i = x,y,z in dependency of the discrete wavenumbers kx = o ∆kx

with o = −Nx/2, ..., (Nx/2 − 1) and ky = s ∆ky with s = −Ny/2, ..., (Ny/2 − 1) are applied
at the halfspace surface Λ. These lead to resulting stresses σ̂(iz,os)

iz,δΓs (o, s) on the virtual surface
δΓs. To enable the superposition and to comply with the boundary conditions, they are
transformed into the basis of the fullspace with spherical cavity (r,m,l,ω). Hence, each unit
load on Λ for a defined combination of kx and ky in the frequency domain leads to stresses
σ̂

(iz,os)
rj,δΓs (m, l) with j = r, ϑ,φ on δΓs. [84]

Fundamental system fullspace with spherical cavity

Unit loads σ̂rj,Γs (m, l) with j = r, ϑ, φ are applied on the spherical surface Γs for the different
spherical harmonics with degree m and order l. The resulting stresses σ̂(rj,ml)

rj,δΛ (m, l) on the
virtual halfspace surface δΛ are calculated and transformed into the coordinate system of
the halfspace (kx,ky,z,ω). Thus, for each spherical harmonic unit load σ̂rj,Γs (m, l) on Γs,
stresses σ̂(rj,ml)

iz,δΛ (o, s) with i = x,y,z on δΛ are obtained. [84]

Superposition of fundamental systems

The superposition of the stresses on the two surfaces Λ and Γs has to fulfill the bound-
ary conditions present at the resulting system. Thus, the amplitudes of the unit stresses
Ĉiz,Λ(o,s) on Λ and Ĉrj,Γs(m,l) on Γs have to be determined such, that they are equal to the
there applied external loads. [84]

Ĉiz,Λ(o,s) σ̂iz,Λ (o,s) +
M∑

m=0

m∑
l=−m

∑
j=r,ϑ,φ

Ĉrj,Γs (m, l) σ̂(rj,ml)
iz,δΛ (o, s) = −p̂iz,Λ (o, s) (3.19)

Nx/2−1∑
o=−Nx/2

Ny/2−1∑
s=−Ny/2

∑
i=z,y,x

Ĉiz,Λ(o,s) σ̂(iz,os)
rj,δΓs (m,l) + Ĉrj,Γs(m, l) σ̂rj,Γs (m, l) = −p̂rj,Γs (m, l)

(3.20)
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Thereby, M is the maximum degree of the Legendre polynomials. Illustratively, this maxi-
mum degree M corresponds to the number of latitudes M + 1 on the spherical surface that
are taken into account for the development into spherical harmonics. Eqs. (3.19) and (3.20)
can be written in matrix notation as [84]

 Ŝhs sph
ΛΛITM

Ŝhs sph
ΛΓsITM

Ŝhs sph
ΓsΛITM

Ŝhs sph
ΓsΓs ITM


︸ ︷︷ ︸

Ŝhs sph
ITM

 Ĉhs sph
ΛITM

Ĉhs sph
Γs ITM


︸ ︷︷ ︸

Ĉhs sph
ITM

=

 P̂hs sph
ΛITM

P̂hs sph
Γs ITM


︸ ︷︷ ︸

P̂hs sph
ITM

(3.21)

With the boundary conditions (3.21), the vector of the unknowns Ĉhs sph
ITM

can be determined
and thus the displacements on the halfspace surface ûi,Λ with i = x,y,z and on the spherical
surface ûj,Γs with j = r, ϑ,φ can be calculated as [84]

ûi,Λ (o, s) =
∑

k=x,y,z

Ckz,Λ(o, s) û(kz,os)
i,Λ (o, s)

+
M∑

m=0

m∑
l=−m

∑
ls=r,ϑ,φ

Clsr,Γs (m, l) û(lsr,ml)
i,δΛ (o, s) (3.22)

ûj,Γs (m, l) =
Nx/2−1∑

o=−Nx/2

Ny/2−1∑
s=−Ny/2

∑
k=x,y,z

Ckz,Λ(o, s) û(kz,os)
j,δΓs (m, l)

+
∑

ls=r,ϑ,φ

Clsr,Γs(m, l) û
(lsr,ml)
j,Γs (m, l) (3.23)

Eqs. (3.22) and (3.23) can be summarized in matrix notation
 ûhs sph

ΛITM

ûhs sph
Γs ITM


︸ ︷︷ ︸

ûhs sph
ITM

=

 Ûhs sph
ΛΛITM

Ûhs sph
ΛΓs ITM

Ûhs sph
ΓsΛITM

Ûhs sph
ΓsΓs ITM


︸ ︷︷ ︸

Ûhs sph
ITM

 Ĉhs sph
ΛITM

Ĉhs sph
Γs ITM


︸ ︷︷ ︸

Ĉhs sph
ITM

(3.24)

Dynamic stiffness matrix

Combining Eqs. (3.21) and (3.24), the complex dynamic stiffness matrix

K̂hs sph
ITM

= Ŝhs sph
ITM

Ûhs sph −1

ITM
(3.25)

of the ITM substructure halfspace with spherical cavity can be derived, separated for the
parameters on the two surfaces Λ and Γs. To ensure the robustness of the results computed
with K̂hs sph

ITM
, the condition numbers of the matrices in Eq. (3.25) should always be monitored

carefully, especially since the inverse of Ûhs sph
ITM

is involved in the computation of the dynamic
stiffness matrix.
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 K̂hs sph
ΛΛITM

K̂hs sph
ΛΓs ITM

K̂hs sph
ΓsΛITM

K̂hs sph
ΓsΓs ITM


︸ ︷︷ ︸

K̂hs sph
ITM

 ûhs sph
ΛITM

ûhs sph
Γs ITM


︸ ︷︷ ︸

ûhs sph
ITM

=

 P̂hs sph
ΛITM

P̂hs sph
Γs ITM


︸ ︷︷ ︸

P̂hs sph
ITM

(3.26)

3.3.2 Spherical indentation at the soil surface

The stiffness matrix of the system halfspace with spherical indentation can be derived ap-
plying the same superposition procedure as illustrated in the previous section. However, in
this case the stresses and displacements on the virtual spherical surface δΓs, due to the unit
stress states σ̂iz(o,s) in the fundamental system halfspace, can only be evaluated below the
halfspace surface. Analogously, in the fundamental system fullspace with spherical cavity
the stresses and displacements on δΛ, due to the unit stress states σ̂rj(m,l), can only be
evaluated outside the cavity. Both, the stresses and displacements above the ground surface
Λ and inside the cavity boundary Γs are set to zero, since the superposition only needs to
satisfy the external boundary conditions on the physically existing surface of the overall
system.

Also here the superposition is not performed point by point, but the quantities are trans-
formed into the (kx,ky,z,ω) domain on the ground surface z = 0 and into the (r,m,l,ω) domain
on the spherical surface r = R. Thereby the stresses and displacements are expanded into
a Fourier series along the x− and y−coordinate on Λ and into spherical harmonics on Γs.
Since the amplitude of the stresses and displacements on the nodes for z ≤ 0 and r ≤ R

were set to zero, a discontinuity can occur at the transition point prior the series expansion.
Hence, to represent this sufficiently in the transformed domain and thus to ensure a good
quality of the solution, a larger number of series members resp. spherical harmonics is needed
for the halfspace with spherical indentation compared to the halfspace with the spherical
cavity. Finally, the amplitudes of the stresses and displacements are determined for the
corresponding series members, such that the boundary conditions are satisfied (Eqs. (3.21)
and (3.24)) and the stiffness matrix can be deduced analogously to Eqs. (3.25) and (3.26).

3.4 Layered halfspace with cylindrical or spherical cavity

In this section, the fundamental system of the discrete soil stratification, introduced in
Sec. 2.4, will be coupled with the halfspace including a cylindrical or spherical cavity, derived
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Figure 3.6: Multilayered halfspace with (a) cylindrical cavity and (b) spherical cavity.

in the previous chapters, in order to deduce a solution for a multilayered halfspace with either
cylindrical or spherical cavity, as depicted in Fig. 3.6.

Preceding, stiffness formulations for all substructures have been derived, linking the dis-
placements at the boundaries of the respective system with the there applied loads. For this
purpose, the degrees of freedom (DOFs) in the matrices are arranged separately according
to the two surfaces at hand. In case of the distinct soil stratification (Eq. (2.33)), it is
distinguished between the DOFs on the upper surface Λ1 and the lower surface Λ3 of the
layering. For the halfspace with cylindrical cavity (Eq. (3.8)) or the halfspace with spherical
cavity (Eq. (3.26)), one differentiates between the DOFs on the halfspace surface Λ3 and the
corresponding cavity surface Γc resp. Γs.

The different substructures are then coupled using the continuity of the displacements

ûL
Λ3 ITM

= ûhs cyl
Λ3 ITM

resp. ûL
Λ3 ITM

= ûhs sph
Λ3 ITM

(3.27a)

and the equilibrium of stresses

P̂L
Λ3 ITM

+ P̂hs cyl
Λ3 ITM

= P̂hs cyl L
Λ3 ITM

resp. P̂L
Λ3 ITM

+ P̂hs sph
Λ3 ITM

= P̂hs sph L
Λ3 ITM

(3.28)

at the common interface Λ3. Thereby, the sum of the stresses of the two substructures on the
coupling surface has to be equal to the given external stresses P̂hs cyl L

Λ3 ITM
resp. P̂hs sph L

Λ3 ITM
applied

at the coupling surface. Since the displacements and the stresses on the lower boundary of
the soil stratification as well as the surface of the halfspace with inclusion are defined with
respect to the same basis (kx,ky,z,ω), no transformations are necessary. However, the size
of the total discretized domain as well as number and spacing of the discretization points
on Λ3 needs to be equal for both substructures, so that the same Fourier series members for
the stresses and displacements are coupled.

Combining the corresponding transition conditions in Eqs. (3.27) and (3.4), the assembled
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total stiffness matrix for the layered halfspace with cylindrical cavity yields
K̂L

Λ1Λ1 ITM
K̂L

Λ1Λ3 ITM
0

K̂L
Λ3Λ1 ITM

K̂L
Λ3Λ3 ITM

+ K̂hs cyl
Λ3Λ3 ITM

K̂hs cyl
Λ3Γc ITM

0 K̂hs cyl
ΓcΛ3 ITM

K̂hs cyl
ΓcΓc ITM


︸ ︷︷ ︸

K̂hs cyl L
ITM


ûhs cyl L

Λ1 ITM

ûhs cyl L
Λ3 ITM

ûhs cyl L
Γc ITM


︸ ︷︷ ︸

ûhs cyl L
ITM

=


P̂hs cyl L

Λ1 ITM

P̂hs cyl L
Λ3 ITM

P̂hs cyl L
Γc ITM


︸ ︷︷ ︸

P̂hs cyl L
ITM

(3.29)

Analogously, the total stiffness matrix for the layered halfspace with spherical cavity yields


K̂L

Λ1Λ1 ITM
K̂L

Λ1Λ3 ITM
0

K̂L
Λ3Λ1 ITM

K̂L
Λ3Λ3 ITM

+ K̂hs sph
Λ3Λ3 ITM

K̂hs sph
Λ3Γs ITM

0 K̂hs sph
ΓsΛ3 ITM

K̂hs sph
ΓsΓs ITM


︸ ︷︷ ︸

K̂hs sph L
ITM


ûhs sph L

Λ1 ITM

ûhs sph L
Λ3 ITM

ûhs sph L
Γs ITM


︸ ︷︷ ︸

ûhs sph L
ITM

=


P̂hs sph L

Λ1 ITM

P̂hs sph L
Λ3 ITM

P̂hs sph L
Γs ITM


︸ ︷︷ ︸

P̂hs sph L
ITM

(3.30)

3.5 Computational and numerical aspects

3.5.1 Numerical Fourier decomposition

In Ch. 2, continuous Fourier transforms were applied to the Lamé equation (2.3) in order
to derive analytical solutions for selected fundamental systems in the transformed domain.
For the superposition of these fundamental systems to more complex systems in Secs. 3.1
to 3.3, a discretization of the solutions in terms of Fourier series expansions was introduced,
such that it can be performed numerically. In this section, the numerical implementation of
the discrete series expansions along the plane horizontal, cylindrical and spherical surfaces,
is presented. Furthermore, the accompanying effects, due to the domain truncation and the
consideration of only a finite number of sample points resp. series members, are illustrated
and linked to the corresponding numerical errors.

Numerical Fourier series expansion

A continuous periodic signal f(x) with period Bx can be represented by a Fourier series as

fn(x) =
∞∑

n=−∞
cnei 2π

Bx
nx with cn = 1

Bx

Bx/2∫
−Bx/2

fn(x)e−i 2π
Bx

nxdx (3.31)

thereby approximating f(x) best in the sense of the quadratic mean.



3.5 Computational and numerical aspects 49

In order to enable a numerical computation of the Fourier series for a given set of data within
a finite interval, a discrete realization of the continuous signal is used. Each discrete signal
in space or time can mathematically be represented by a sequence of numbers x = x[n],
where n is a integer and denotes the nth sample in the sequence. If x̃[n] is a periodic signal
with period N (whereby the ˜ indicates the periodicity) so that x̃[n] = x̃[n + rN ] holds for
integer values of r and n, it is possible to represent it by a Fourier series corresponding to a
sum of harmonically related complex exponentials [246]

x̃[n] = 1
N

N−1∑
k=0

X̃[k] ei 2π
N

nk (3.32)

The sequence of Fourier series coefficients X̃[k] can then be obtained by

X̃[k] =
N−1∑
n=0

x̃[n] e−i 2π
N

nk (3.33)

whereby Eqs. (3.32) and (3.33) are the discrete Fourier series (DFS) representation of a
periodic sequence x̃[n].

Next, a signal of finite length x[n], chosen such that its samples correspond to the N samples
of one period of x̃[n], is considered. The corresponding samples of the finite length sequence
X[k] can be extracted from the discrete Fourier series X̃[k] of the periodic expansion x̃[n] of
x[n], whereby it holds

x[n] =

x̃[n] with 0 ≤ n ≤ N − 1

0 otherwise
(3.34a)

X[k] =

X̃[k] with 0 ≤ k ≤ N − 1

0 otherwise
(3.34b)

The sequence X[k] is referred to as the discrete Fourier transform (DFT) of x[n]. Hence,
the DFS representation of a periodic sequence x̃[n] for n, k = 0,...,N − 1 concurs with the
DFT of the signal and the coefficients of the discrete Fourier series are equal to the sample
values of the discrete Fourier transform [246]. Vice versa, if the DFT is applied to a discrete
signal with N samples, a periodic repetition of the signal in the original and the transformed
domain is inherently introduced [247], as in principle the DFT sample values are only a
cutout of the DFS of a periodic signal x̃[n] = x[n] ∗

∞∑
−∞

δ[n− rN ] formed by adding together
a infinite number of shifted replicas of x[n].
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The DFT analysis and synthesis equations thus result as

X[k] =
N−1∑
n=0

x[n] e−i 2π
N

nk (3.35)

x[n] = 1
N

N−1∑
k=0

X[k] ei 2π
N

nk (3.36)

According to the above stated equality between the coefficients of the DFS and the sample
values of the DFT, the Fourier series expansion along the horizontal and cylindrical surfaces
within the superposition procedure can be computed via the DFT. In this thesis, the Fast
Fourier Transform (FFT) algorithm is used to determine the DFT efficiently. However, the
DFT in general is only an approximation of the continuous Fourier transform. Depending on
the properties of the analysed signal, the DFT can either correspond directly to the samples
of the continuous Fourier transform of the corr. continuous signal at uniformly distributed
evaluation points or be affected by numerical errors, that lead to deviations between the
continuous and the discrete transform. Thereby the size of the error varies strongly depend-
ing on the selected period length and the number of samples resp. the resulting sampling
intervals in the original and the transformed domain.

Subsequently, the most important effects, occurring due to the DFT, are illustrated exem-
plarily for the solution of the homogenous halfspace, which is determined in the threefold
transformed (kx,ky,z,ω) domain. Fig. 3.7a depicts the theoretically obtained continuous re-
sponse f(x) of a homogeneous halfspace at z = 0 and its Fourier transform F (kx) for a
specific combination (ky, ω) due to a harmonic, spatial impulse load. To determine the
Fourier transform pair f(x) F (kx) numerically, it is necessary to introduce a sampling
in the space domain (Fig. 3.7b) and in the wavenumber domain (Fig. 3.7f), as well as to
truncate the signal (Fig. 3.7d) to reduce it to a finite number of samples Nx within a spatial
window of length Bx.

The discretization in the space domain, implemented by a multiplication with a Dirac comb
∆0(x), leads to a convolution of F (kx) with its Fourier transform ∆0(kx) in the wavenumber
domain. If the sampling interval dx = Bx/Nx is chosen too large, the spacing of the impulses
∆0(kx) becomes so small, that their convolution with F (kx) leads to an overlap of the
periodically repeated functions. This effect, known as aliasing and depicted in Fig. 3.7c,
can be avoided for band limited functions, if the sampling interval of ∆0(kx) is twice as
large as the maximum wavenumber kxmax included in F (kx) or resp., if f(x) is sampled
with dx ≤ 2π/(2kxmax), according to the Nyquist criterion [248]. However, if F (kx) doesn’t
converge to zero sufficiently fast, aliasing occurs always, but can nevertheless be reduced by
decreasing the sampling interval dx.
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In case of the homogeneous halfspace the short wave components, linked to large kx, atten-
uate much faster as the long wave components linked to small kx, resulting in a low pass
filter effect. Moreover, material damping is included in the model by means of a frequency
independent hysteretic damping. Therefore, the spatial impulse response function F (kx)
decays relatively fast with increasing kx, so that aliasing can be reduced considerably by
choosing a sufficiently fine spatial discretization.

The truncation of the signal to a finite length with Nx samples results in a convolution
of the aliased wavenumber transform F∆0(kx) with the Fourier transform of the truncation
function [247]. This leads to certain ripples in the progression of the resulting function and
thus an artificial change in the magnitude of the wavenumber components of the signal.
This effect, also known as leakage, can be reduced by choosing a larger window Bx as
then the sinc function gets narrower and thus less ripples occur resp. a smaller numerical
error is introduced. Another possibility would be to select a different window function which
exhibits less side lobes in the wavenumber domain, responsible for the additional wavenumber
contributions.

Summing up, to reduce the effects of the discrete Fourier transform resp. the numerical
errors introduced by the discrete computation, it is favourable to choose a large observation
interval Bx to reduce leakage and simultaneously a small sampling interval dx and thus a
large number of samples Nx. Both measures together result in a significant computational
effort. Therefore, the DFT parameters have to be chosen such, that the numerical errors are
sufficiently small, the dominant waves are adequately represented in both domains and the
necessary computational costs are acceptable. Of course the above illustrated effects and
the related remedies apply also for the series expansions in the second spatial dimension as
well as the circumferential direction of the cylinder.

As far as the discrete Fourier transform with respect to the Fourier pair t f is concerned,
it is evident from the above, that both the leakage and aliasing effects can be eliminated
in the system response due to time-harmonic loads if the window length corresponds to one
period of the signal and the sampling frequency is chosen according to the Nyquist criterion.
If it comes to transient loads, the same effects as outlined for the spatial domain can occur
and are also prevented or reduced in the same manner. Further details on the numerical
computation of the transient soil or soil structure interaction response due to transient loads
are illustrated in Ch. 7.
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Figure 3.7: Schematic sketch of discrete Fourier transform and the associated numerical errors [247].
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Numerical spherical Fourier series expansion

The spherical Fourier transform has applications in many different fields such as geophysics,
meteorology or seismology. It is also used in spectral methods in order to solve partial
differential equations within a spherical reference frame [249]. In this context, an expansion
into a series of spherical harmonics was introduced in the solution of the elastodynamic
problem of a fullspace with spherical cavity in Sec. 2.6. To reduce the computational time
and the effort for the discrete evaluation of the numerical spherical Fourier series expansion,
different algorithms were derived in literature [249–254]. The numerical implementation
applied in this thesis is based on [160, 252] and briefly explained hereinafter.

A function f(ϑ,φ) can be expanded into a series of spherical harmonics on the surface of the
sphere by

f(ϑ,φ) =
M∑

m=0

m∑
l=−m

al,mY
l

m(θ,φ) =
M∑

m=0

m∑
l=−m

al,mP̌
l
ml (cos (ϑ)) eilφ (3.37)

with the normalized associated Legendre functions defined in Sec. 2.6.

The determination of the coefficients al,m is performed in two steps: Firstly, the function is
developed into a Fourier series along the latitudes

al(ϑ) =
2π∫
0

f(θ,φ) e−ilφdφ (3.38)

The numerical computation of this series expansion is implemented via the FFT as outlined
previously in this section. Therefore, the function f(θ,φ) is discretized with Nφ equidistant
samples along the latitude. [160]

Subsequently, a associated Legendre transform along the longitude is carried out

al,m =
π∫

0

al(ϑ)P̌ l
ml (cos (ϑ)) sin(ϑ)dϑ (3.39)

For the numerical computation of this integral the Gauß-Legendre-Quadrature is used. Thus,
the function f(θ,φ) needs to be evaluated on Nϑ discrete positions along a longitude of the
sphere. The position of these discretization points ϑi = acos(xi) ∈ [0,π] is determined from
the location of the Gauß quadrature nodes xi ∈ [−1,1], which are defined as the roots of
the Legendre polynomial of degree n. Consequently, the number of Gauß points n is chosen
equal to the number of latitudes Nϑ. By means of the of the weights wi of the Gauß-Legendre
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integration, one obtains the following equation for the determination of the coefficients al,m

al,m =
Nϑ∑
i=1

al(ϑi)P̌ l
m (cos (ϑi))wi (3.40)

In matrix notation this Eq. (3.40) yields for each series member l


al,l

al,l+1
...

al,M

 =


P̌ l

l (cos (ϑ1)) P̌ l
l (cos (ϑ2)) . . . P̌ l

l (cos (ϑNϑ
))

P̌ l
l+1 (cos (ϑ1)) P̌ l

l+1 (cos (ϑ2)) . . . P̌ l
l+1 (cos (ϑNϑ

))
... ... . . . ...

P̌ l
M (cos (ϑ1)) P̌ l

M (cos (ϑ2)) . . . P̌ l
M (cos (ϑNϑ

))

 diag(wi)


al(ϑ1)
al(ϑ2)

...
al(ϑNϑ

)


(3.41)

The maximum number of series members depends on the total number of sample points
Nφ · Nϑ on the spherical surface, which is given by the intersections of the latitudes and
longitudes. However, to achieve a uniform resolution of waves on the sphere, the maximum
degree of the spherical harmonics M must be chosen as M < min(Nφ/2, Nϑ) [252]. Thus
the amount of sample points is not equal to that of the spherical harmonics, leading to a
different number of unknowns in the system of equations in the (r,ϑ,φ,ω) domain compared
to the (r,m,l,ω) domain. In case of M = Nϑ −1 and Nϑ = Nφ/2, a total number of (M +1)2

spherical harmonics results, leading to non square transformation matrices. Further details
on the treatment of the latter for the coupling of two substructures on the common spherical
surface are given in Sec. 5.2.

The backward transform, as given in Eq. (3.37), is performed numerically also in two phases
[252]. Firstly, the coefficients al(ϑ) are computed from al,m as

al(ϑ) =
M∑

m=l

al,mP̌
l
m (cos (ϑ)) (3.42)

followed by

f(ϑ,φ) =
M∑
l=0

al(ϑ) e−ilφ (3.43)

which is carried out numerically via the IFFT.

3.5.2 Truncation criteria due to radiation characteristics

In the superposition procedure presented in Secs. 3.1 to 3.3, all discrete wavenumbers on
the halfspace, cylindrical and spherical surfaces were coupled respectively. As the amount of
wavenumbers considered increases, this leads to a significantly higher computational effort
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which can, however, be reduced by exploiting the solution properties of the fundamental
systems. Depending on the combination of the wavenumbers resp. the series members on
the cylindrical or spherical boundary and the frequency ω, the solutions describe either slowly
decaying spatially propagating waves (far fields) or strongly attenuating evanescent waves
(near fields). By only considering those combinations that lead to a significant contribution
on the respective virtual surfaces within the halfspace or fullspace, the number of necessary
computation as well as the size of the system of equations to be solved can be reduced
seriously, without affecting the accuracy of the results [160].

In the following, the solution properties for the different fundamental systems are presented
together with the corresponding truncation criteria for the ideal undamped soil, as this
allows easier access to the basic behaviour of the solutions. However, due to the intro-
duced hysteretic damping, the material constants and thus also the wave velocities and the
wavenumbers are actually complex. Therefore, no pure real or imaginary exponents or argu-
ments occur in the analytical solutions of the systems and thus no perfect near or far fields.
Nevertheless, either the real or the imaginary part dominates substantially and the wave
propagation characteristics are dominated either by propagating or decaying waves.

y
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x
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ΛITM

hcyl
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r
φ
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Figure 3.8: Illustration of the different wave propagation characteristics in (a) homogeneous halfspace and
(b) fullspace with cylindrical cavity.

Homogeneous halfspace

In the homogeneous halfspace the propagation behaviour of the waves perpendicular to
the halfspace surface depends for ω < 0 on the exponential functions e−λ1z and e−λ2z

(cp. Eqs. (2.16)). If the wavenumbers k2
L = k2

x + k2
y of the unit stresses on the halfspace

surface Λ are larger than the compressional or the shear wavenumber kp resp. ks, the ex-
ponents λ1 resp. λ2 become real, resulting in evanescent waves attenuating with increasing
depth z (cp. Fig. 3.8a). In contrast for k2

x +k2
y < k2

p resp. k2
s the exponents are imaginary and
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the solution describes spatially propagating waves. Thereby the radiation angles w.r.t. the
ground surface are given by sinαi =

(
ci

√
k2

x + k2
y

)
/ω with i = p, s.

For the superposition procedure only combinations o∆k2
x + s∆k2

y for which the solution has
a considerable influence on the virtual surfaces δΓc resp. δΓs need to be included. Therefore,
all series members for which the unit stress states on Λ lead to stresses |σ̂(kx,ky,z = hcyl,ω)|
at the virtual cylindrical or spherical surface with an amplitude below a certain threshold
ϵ can be excluded from the superposition. This finally leads to the following truncation
criterion

e−λ1hcyl

e−λ10 < ϵ resp. e−λ2hcyl

e−λ20 < ϵ (3.44)

where hcyl is the height of the soil cover over the virtual surface.

Furthermore, since the halfspace solution exhibits a singularity for the Rayleigh wave with
the wavenumber kr in the undamped case, which leads to very large amplitudes of the
stresses and displacements, in general all wavenumber combinations with kL < 1.3 · kr are
considered for the superposition to ensure, that the influence of the Rayleigh wave on the
virtual surfaces is included [160].

Fullspace with cylindrical cavity

In case of the fullspace with cylindrical cavity, the propagation characteristics of the waves in
radial direction depend for ω < 0 on the Hankel functions of first kind H(1)

n (cp. Eqs. (2.37)).
If the wavenumber kx = kL of the unit stress states on the cylindrical cavity surface is smaller
than kp resp. ks, the argument of the Hankel functions k1r and k2r become real, resulting in
spatially propagating waves in the radial direction r (cp. Fig. 3.8b). In contrast for kx > kp

resp. ks, the arguments get imaginary and describe waves strongly decaying with increasing
distance from the surface Γc.

For the superposition procedure only the series members (kx,n) need to be considered, for
which the unit stress states on the cavity surface have a significant impact on the stresses
on the virtual halfspace surface. Therefore, all series members for which the amplitude of
the stresses |σ̂(kx,r = R + hcyl,n,ω)| on δΛ is smaller than the threshold ϵ, chosen as 10−6

within the implementation, can be neglected. This leads to the following truncation criterion
[230]

H(1)
n (k1 · (R + hcyl))
H

(1)
n (k1 ·R)

< ϵ resp. H(1)
n (k2 · (R + hcyl))
H

(1)
n (k2 ·R)

< ϵ (3.45)
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Furthermore, for the system with two parallel tunnels all series members n1 of the unit
stresses on Γc1 , which lead to significant stresses on the virtual second cavity surface δΓc2

and vice versa need to be considered. In this case the truncation criterion yields

H(1)
n (k1 · dT1−2)
H

(1)
n (k1 ·R1)

< ϵ resp. H(1)
n (k2 · dT1−2)
H

(1)
n (k2 ·R1)

< ϵ (3.46)

Fullspace with spherical cavity

For the fullspace with a spherical cavity, only waves propagating spatially in the radial
direction, that are described by the spherical Hankel functions h(1)

m , occur in the undamped
case, while no evanescent waves arise. Since the energy brought into the system by the load
on the spherical surface is spread over a larger area as in case of the cylinder, corresponding
to a larger geometrical damping, the introduced waves are attenuating rather fast. Therefore,
within the superposition procedure the series members (m,l), for which the unit stresses on
the spherical cavity lead to stresses |σ̂(r = R + hsph,m,l,ω)| on the virtual halfspace surface
smaller than the threshold ϵ can be excluded [160]. This leads to the following truncation
criterion

h(1)
m (|kp| · (R + hsph))
h

(1)
m (|kp| ·R1)

< ϵ resp. h(1)
m (|ks| · (R + hsph))
h

(1)
m (|ks| ·R2)

< ϵ (3.47)

3.5.3 Error measures and similarity assessment

In order to enable a quantitative comparison of the numerical values of two arrays, a variety of
different proximity measures like the Dice coefficient, the Manhattan or City Block Metric,
the Pearson correlation coefficient etc. are available in literature [255–257]. Within this
thesis, the Tanimoto coefficient, as introduced in [257], is used to asses the similarity between
two discrete vectors x and y with each n elements defined as

Tan =

n∑
i=1

xiyi

n∑
i=1

x2
i +

n∑
i=1

y2
i −

n∑
i=1

xiyi

(3.48)

Thereby Tan is equal to one, if the vectors are exactly identical. The more the entries of x
and y differ, the more the Tanimoto coefficient deviates from 1 towards lower values [258]. As
shown in [259], the Tanimoto coefficient is an appropriate measure to evaluate the similarity
between results obtained by a numerical computation and the samples of a corresponding
analytical solution by a single valued quantity. Hence, it will be used later on to asses the
quality of the solutions computed with the numerical approaches presented in this work,
compared to either analytical solutions or reference solutions from literature.
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Furthermore, to cover also the deviations in the peak values, in some cases also the relative
and the absolute error of the maximum values of the considered quantities defined as

errmax = |xref,max − xmax| and errrel =
∣∣∣∣∣xref,max − xmax

xref,max

∣∣∣∣∣ · 100% (3.49)

are given, where xref,max is the maximum value of a reference solution, to which the maximum
value xmax of the approximate solution is compared.

3.5.4 Parallel computing and code acceleration

The general idea of parallel computing is to separate the overall problem into many inde-
pendent smaller problems which can be dispersed and solved on several processing elements
simultaneously. Therefore, parallel computing enables the activation of distributed resources,
either within one central processing unit (CPU) through its multiple cores or on several dif-
ferent CPUs within a cluster leading to drastically reduced computation times.

Speed up

However, the reduction of CPU time is always limited, as the total calculation time T is
composed of a sequential part ts = αT and a part that can be parallelized tp = (1 − α)T .
Thus T is given by [260]

T = ts + tp = αT + (1 − α)T (3.50)

The sequential part thereby comprises amongst others the reading of input files, defining
geometry, setting up system matrices, writing the results as well as additional tasks necessary
for the communication between the single processors. The parallelizable part are tasks which
are independent from each other and can be solved separately. The speed up is defined as
the quotient of the computation time T for a pure serial implementation (α = 1) and the
total computation time in case of a parallel computation [77]

ηs = Tα=1

ts + tp

np

≤ lim
np→∞

Tα=1

ts + tp

np

= Tα=1

ts
(3.51)

wherein the parallel part tp is divided by the number of available processing units np. This
relation is also known as Amdahl’s law and states, that the speed up is limited by the
sequential part and the computation time T cannot be reduced below a certain threshold,
regardless the number of available processing elements.
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Parallel implementation for ITM substructures

The division into a sequential and a parallelizable part described above also applies to the
computational processes for the fundamental solutions of Ch. 2, the superposed systems of
Ch. 3 as well as some of the coupled systems that will be presented in Ch. 5. Therefore, the
applicability of a parallelisation for these solutions is illustrated below and an overview on the
parallel implementation within the developed code using the Matlab® Parallel Computing
Toolbox is given which allows to run independent iterations in parallel on multicore CPUs,
GPUs and computer clusters.

For the fundamental system homogeneous halfspace, the Lamé equation was decoupled via
the Helmholtz approach and transformed in the wavenumber frequency domain, in which
the solution of the resulting ordinary differential equations (Eqs. (2.11) and (2.12)) can be
computed independently for each combination (kx, ky, ω). In order to be able to synthesize
the separate contributions to the total response in the original domain, the analytical solution
needs to be evaluated for all wavenumbers and frequencies necessary to describe the system
sufficiently. Instead of determining the solutions sequentially by means of nested loops, due
to the independence of the single problems, the computation can be parallelized w.r.t. to
any of the independent parameters kx, ky or ω.

A parallelization of the problem is generally meaningful, if either a large number of iterations
has to be performed or if there are only a few iterations which require a high computational
effort. In the first case the amount of iterations should be so large, that the distribution
of the tasks onto the separate CPUs does not need more time than the solution processes
on them. In other words, the communication overhead should be small compared to the
actual computation time. Within the thesis, harmonic analyses are performed for single
frequencies as well as the transfer functions are determined for a larger frequency range.
Since the acceleration of the code by the parallelization is to be applied in all cases, it is
implemented in dependence of the wavenumbers kx, whose amount is in any case large enough
to ensure a reasonable speed up. In Matlab, this is accomplished by the use of parallel loops,
dividing the iterations in groups and executing the single iterations in a nondeterministic
order on a parallel pool of workers using the multiple cores of the CPU [261]. A pseudocode
of the parallel implementation for the homogenous halfspace is illustrated in Alg. 1. Therein
procedures 1, 3 and 4 can directly be assigned to the sequential part, whereas in procedure
2 only the loop over the frequencies is performed consecutively. All tasks within the parfor
loop are distributed and executed in parallel.

Analogously, it is possible to implement the parallelization for the halfspace with cylindrical
cavity w.r.t. the wavenumber kx, as the solutions of both involved fundamental systems, the
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halfspace and the fullspace with cylindrical cavity, can be determined independently for each
combination of (kx, ω). In Ch. 4 and 5 it will be shown that also the finite element subsystem,
used to model structures inside the cylindrical cavity, can be described by a 2.5D approach
and thus in dependence on the longitudinal wavenumber and the frequency. Consequently,
the system of equations, representing the entire coupled ITM-FEM model, can be set up
independently for each combination (kx, ω) and be solved in parallel. More details for this
case are given in Sec. 5.1.2.

In the case of the halfspace with spherical cavity, the solutions of the fundamental systems
involved in the superposition procedure do not have a joint wavenumber. Since the halfspace
is solved in dependence of kx, ky and ω and the fullspace with spherical cavity in dependence
of the radius r, the spherical harmonics m,l and ω, a parallelisation is only possible w.r.t. the
common parameter, which is the frequency ω. Therefore, only a parallel computation of the
system transfer functions is possible, whereas a harmonic analysis for a single frequency
cannot be parallelized. This also holds for the halfspace including a FEM substructure with
spherical boundary presented in Sec. 5.2.

Algorithm 1 Parallel implementation of ITM approach for homogeneous halfspace within
the developed Matlab® code

procedure 1 Set up system and loading( )
Initialization and input parameters
Discretization, material and geometry
External loading P̂hs

ΛITM
(kx,ky,z,ω)

procedure 2 Determine displacements ûhs
ΛITM

(kx,ky,ω)
for all ω do

parfor all kx do
for all ky do

Determine K̂hs
ITM

w.r.t. (kx,ky,ω) on Λ
Solve total system of equations ûhs

ΛITM
= K̂hs −1

ITM
P̂hs

ΛITM

procedure 3 Inverse Fourier transform( )
IFFT of ûhs

ΛITM
to ūhs

ΛITM
(x,y,z,ω)

procedure 4 Postprocessing and Plots( )
Plot displacements
Export results

Further measures for code acceleration

The key competence of Matlab® is to work efficiently with potentially large vectors and
matrices. Therefore, first and foremost all calculations should, if it is feasible, be vectorized.
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However, there are cases when this is not possible, cumbersome or time consuming so that
the use of loops is unavoidable. Since Matlab® originally is an interpreted language, meaning
that every line is translated into machine code when executed, it is very beneficial in terms
of performance to use already compiled functions within a loop, especially if a huge amount
of iterations is necessary. Within the software this can easily be accomplished, as compiled
C/C++ code can be created from existing Matlab® code automatically. The resulting MEX
files, can then directly be run using the same input as for the original Matlab® functions.
Hence, execution times of functions within loops can be reduced significantly leading to a
considerable speed up. Within this thesis, MEX files are used for several functions such as
the computation of the element stiffness matrices or the element stresses of the 2.5D FEM
substructure (cp. Sec. 4.1).
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4 Finite Element Method substructures

The Finite Element Method (FEM) is able to represent geometrically complex, finite objects
consisting of various materials by means of a discrete mathematical description. Therefore,
the FEM is used to model structures and a part of the surrounding soil which are then coupled
into the cylindrical or spherical cavity within the ITM substructure and consequently need
to match the shape of the resp. cavity surfaces Γc and Γs. In order to enable a direct stiffness
coupling of the ITM and the FEM, as presented in Ch. 5, the dynamic stiffness matrices of
FEM meshes with a cylindrical and a spherical outer boundary must be computed first.

The dynamic stiffness of the halfspace with cylindrical cavity was derived in the wavenumber
frequency domain in dependency of kx and ω. Exploiting the length invariance of the system,
the 2.5D approach makes it possible to reduce the originally three dimensional calculation
to a series of two dimensional, quasi static calculations for each combination (kx,ω) [176].
It is thus favourable to introduce also a 2.5D FEM description which allows to represent
the 3D response on a two dimensional mesh [262]. Accordingly, plane quadrilateral finite
elements with linear shape functions can be used to discretize the cross section of the FEM
substructure, including additional degrees of freedom in lengthwise direction. However, the
FEM formulation has to be adopted to the wavenumber frequency domain as presented in
[162, 263] and briefly summarized in Sec. 4.1.1.

Since the spherical FEM structure to be coupled to the halfspace with spherical cavity
(Sec. 3.3) is spatially limited and exhibits no invariance in any direction, usual three dimen-
sional solid elements can be used. Therefore, the dynamic stiffness matrix is computed in
the frequency domain w.r.t. Cartesian coordinates (x,y,z,ω) as presented in Sec. 4.2.1.

The Finite Element Method can also be applied for the modelling of structures above the
ground surface, which are subsequently coupled to the soil via the compatibility conditions
at the soil structure interface (cp. Sec. 5.3). The element formulations used to model the
foundations and the multi storey frame in Sec. 6.5 are briefly introduced within this chapter
in Sec. 4.2.2.
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4.1 2.5D Finite Element Method

4.1.1 Element stiffness matrix

The common procedure to derive the stiffness matrix for a finite element is based on the
principle of virtual work. Hereinafter, the latter is applied to deduce a 4-node quadrilateral
element with three degrees of freedom at each node (Fig. 4.1b) from a common three di-
mensional, isoparametric volume element (Fig. 4.1a) with local coordinates (x,η,ζ). Thereby
the additional third degree of freedom is introduced in order to describe the displacements
w.r.t. the x−coordinate, corresponding to the out of plane direction.
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Figure 4.1: (a) Three dimensional 8-node solid element and (b) 2.5 dimensional 4-node element.

The weak form of the internal virtual work of the solid element, with δε as the vector
containing the virtual strains and σ as the vector of the real stress components, yields

δWi = −
∫

(V )

δε(x,η,ζ) σ(x,η,ζ) dV (4.1)

Due to the length invariance of the system in x−direction, the integral over the volume is
substituted by an integral over the cross sectional area A and an integral from −∞ to ∞
w.r.t. x. Moreover, a transformation into the wavenumber domain x → kx according to
Parseval’s identity [264], is performed resulting in

δWi = −
∞∫

−∞

∫
(A)

δε(x,η,ζ) σ(x,η,ζ) dA dx = − 1
2π

∞∫
−∞

∫
(A)

δε̄∗(kx,η,ζ) σ̄(kx,η,ζ) dA dkx

(4.2)

where ∗ signifies the conjugate complex of a parameter.
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To enable a numerical computation, the integration of kx is replaced by a summation over
all discrete wavenumbers kxn leading to the following equation

δWi = − 1
Nx

Nx∑
n=1

∫
(A)

δε̃T ∗(kxn ,η,ζ) σ̃(kxn ,η,ζ) dA (4.3)

The external virtual work and the virtual work of the inertia forces can be adapted analo-
gously, so that the total virtual work δW = δWi + δWe + δWI results as

δW = 1
Nx

Nx∑
n=1

∫
(A)

− δε̃H(kxn ,η,ζ) σ̃(kxn ,η,ζ) + δũH(kxn ,η,ζ) p̃(kxn ,η,ζ)

− δũH(kxn ,η,ζ) ρ ω2ũ(kxn ,η,ζ) dA = 0

(4.4)

with the superscript H denoting the conjugate complex transpose. The virtual work per-
formed by the internal and inertia forces is defined negative, since it is associated with
restoring forces, whereas the external virtual work is defined positive, since energy is intro-
duced into the system.

Eq. (4.4) is especially satisfied if δW = 0 holds for each combination of wavenumber and
frequency (kx,ω). The initial integration over the volume could be replaced by an integration
over the cross sectional area A of the element for all virtual work contributions. Thus, the
original 3D element with infinite extension in x is substituted by a 2D element, that contains
the information about the deformation in longitudinal direction in terms of kx. [162]

Applying the linear shape functions w.r.t. the natural coordinates (η,ζ)

N1 (η, ζ) = 1
4 (1 − η) (1 − ζ) N2 (η, ζ) = 1

4 (1 − η) (1 + ζ)

N3 (η, ζ) = 1
4 (1 + η) (1 + ζ) N4 (η, ζ) = 1

4 (1 + η) (1 − ζ) (4.5)

and using an isoparametric approach, the displacement field ũ(x, η, ζ) = Nũn can be de-
scribed in dependency of the displacements ũn at the element nodes. Assuming linear elastic
material behaviour σ̃ = Dε̃ and replacing the derivatives of the shape functions within B
in x−direction, according to the rules of the Fourier transform, by a multiplication with ikx,
so that ε̃ = B̄ũn, the virtual work for one combination (kx, ω), results as

−δũH
n

∫
(A)

B̄H DB̄ dA


︸ ︷︷ ︸

K̄

ũn + δũH
n

∫
(A)

NHp̃dA


︸ ︷︷ ︸

p̃n

+δũH
n ω

2

∫
(A)

ρNH NdA


︸ ︷︷ ︸

M

ũn = 0

(4.6)
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with the elasticity matrix

D =



λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


(4.7)

the matrix of the shape functions

N =


N1 (η, ζ) 0 0 N2 (η, ζ) 0 0 · · ·

0 N1 (η, ζ) 0 0 N2 (η, ζ) 0 · · ·
0 0 N1 (η, ζ) 0 0 N2 (η, ζ) · · ·

 (4.8)

and the matrix B̄ including the derivatives of the shape functions

B̄ =



ikxN1 (η, ζ) 0 0 ikxN2 (η, ζ) 0 · · ·
0 ∂N1(η,ζ)

∂y
0 0 ∂N2(η,ζ)

∂y
· · ·

0 0 ∂N1(η,ζ)
∂z

0 0 · · ·
∂N1(η,ζ)

∂y
ikxN1 (η, ζ) 0 ∂N2(η,ζ)

∂y
ikxN2 (η, ζ) · · ·

0 ∂N1(η,ζ)
∂z

∂N1(η,ζ)
∂y

0 ∂N2(η,ζ)
∂z

· · ·
∂N1(η,ζ)

∂z
0 ikxN1 (η, ζ) ∂N2(η,ζ)

∂z
0 · · ·


(4.9)

Finally the system of equations can be written as

K̄ũn − ω2Mũn =
(
K̄ − ω2M

)
ũn = p̃n (4.10)

The integral over the element area A for the stiffness matrix K̄, the mass matrix M as well
as the nodal load vector p̃n in Eq. (4.6) is carried out numerically by means of a Gauß
integration with four Gauß points (GP) at the coordinates ηk and ζl and using the weighting
factors wk and wl given in [265]

K̄ =
nGP∑
k=1

nGP∑
l=1

B̄H(kx, ηk, ζl) D B̄(kx, ηk, ζl) det(J) wk wl (4.11)

M =
nGP∑
k=1

nGP∑
l=1

ρNH(ηk, ζl) N(ηk, ζl) det(J) wk wl (4.12)

with J being the Jacobian matrix, relating the global and the local coordinates.
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4.1.2 Dynamic stiffness for cylindrical substructure

In order to be coupled to the halfspace with cylindrical cavity, the overall FEM substructure
must exhibit a cylindrical outer boundary. Therefore, the nodes on the cylindrical coupling
surface Γc are distributed equally over the circumference in order to match with the dis-
cretization points of the ITM substructure, leading to a constant distance ds between the
nodes, as depicted in Fig. 4.2. [176] Inside the FEM domain Ωc, the nodes can in principle
be arranged arbitrarily. Nevertheless, the element size should be so small that the predom-
inant waves at a certain frequency are represented sufficiently. For this purpose, a number
of about five to ten elements per wavelength is often stated in literature [266–268].
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Figure 4.2: Cylindrical FEM substructure consisting of 2.5D elements.

With Eqs. (4.11) and (4.12) it is possible to compute the dynamic stiffness matrix for each
element of the FEM substructure as

K̃(kx,ω) = K̄(kx) − ω2M (4.13)

Assembling all element stiffness matrices into a global stiffness matrix and sorting them
w.r.t. the degrees of freedom at the cylindrical coupling surface Γc and inside the FEM
substructure Ωc the total system of equations, relating the nodal forces and the nodal dis-
placements, results as K̃hs cyl

ΓcΓc FE
K̃hs cyl

ΓcΩc FE

K̃hs cyl
ΩcΓc FE

K̃hs cyl
ΩcΩc FE


︸ ︷︷ ︸

K̃hs cyl
FE

 ũhs cyl
Γc FE

ũhs cyl
Ωc FE


︸ ︷︷ ︸

ũhs cyl
FE

=

 P̃hs cyl
Γc FE

P̃hs cyl
Ωc FE


︸ ︷︷ ︸

P̃hs cyl
FE

(4.14)
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4.1.3 Element stresses for 2.5D formulation

After the computation of the nodal displacements ũhs cyl
FE

by solving Eq. (4.14), the element
stresses can be computed in a postprocessing step. Therefore, firstly the nodal displacements
of a certain element ũn are extracted from the global displacement vector. From them, the
elemental stresses are determined as

σ̃k(kx,ηk, ζk,ω) = D B̄(kx,ηk, ζk) ũn(kx,ω) (4.15)

Usually the stresses are evaluated at the Gauß points initially, as there the results are
most exact, and then extrapolated to the element nodes using the shape functions. As
the displacements, the stresses are evaluated for all discrete wavenumbers kx and negative
frequencies ω. After adding the complex conjugate counter part of the stresses for positive
frequencies, the stresses σ̄n(x,y,z,ω) in the frequency or σn(x,y,z,t) in the time domain are
obtained performing the corresponding discrete inverse Fourier transforms.

In case of the cylindrical finite element substructure the mesh is created using the Ansys®

APDL, whereas the computation of the element and global stiffness matrices, due to the
adaptions, necessary for the 2.5D approach, is preformed in Matlab®. Therefore, one has
to take care that the definition of the Gauß points and the corresponding element nodes
matches within both software applications [269].

4.2 3D Finite Element Method

4.2.1 Dynamic stiffness for spherical substructure

The Finite Element substructure to be coupled to the halfspace with spherical cavity must
exhibit its boundary nodes on a spherical outer surface with the same radius as specified by
the ITM substructure. On this spherical surface Γs, both substructures are coupled applying
the continuity of displacements and the equilibrium of forces. Since the spherical inclusion,
modelled with the FEM, is a finite structure, for the purpose of a harmonic analysis it can
be described with Cartesian coordinates in the frequency domain (x,y,z,ω).

Prerequisites for FEM mesh

The stresses and displacements of the halfspace with spherical cavity on Γs are defined in the
(r,m,l,ω) domain, which is chosen as common basis for the coupling. Thus, the stiffness of the
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FEM substructure, associated with the DOFs on Γs, is transformed in spherical coordinates
and developed in series of spherical harmonics. To be able to apply the same transformation
procedures for the FEM as derived for the ITM substructure (cp. Sec. 3.5.1), the stiffness of
the FEM model must be available at the same discrete points that are used for the numerical
evaluation of the stiffness of the ITM substructure. Therefore, the arrangement of the FEM
nodes on the spherical boundary is chosen such, that they coincide with the intersection
points of the Nϑ latitudes and the Nφ longitudes, as depicted in Fig. 4.3.
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Figure 4.3: (a) 3D finite element mesh with spherical boundary and (b) numbering of nodes.

The z-coordinates of the latitudes are chosen on the Nϑ Gauß points that are distributed
on the z-axis along the diameter of the sphere, in order to allow a numerical integration
of the associated Legendre polynomials, used for the expansion of the parameters on the
spherical boundary Γs into series of spherical harmonics. The longitudes are spaced equally
over the circumference, leading to a constant distance of the nodes dsφ = 2π/(Nφ − 1) on
one latitude. [84]

Restrictions and modelling approach

The freedom in the design of the finite element mesh in total features a couple of restrictions
as the prescribed boundary coupling nodes must be hit. The decreasing distance of the Gauß
points when approaching the poles, enforces the element lengths dsϑ between the latitudes to
diminish as well. Therefore, the element size in the interior is predetermined by the coupling
nodes to a large degree and results in some limitations in the ability to model arbitrary
structures within the FEM subsystem.
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Figure 4.4: (a) Three dimensional 8-node solid element and (b) corresponding FEM mesh for coupling to
halfspace with spherical indentation.

In order to comply with the given boundary conditions, the obvious choice are eight node
solid elements with linear shape functions which allow a coupling of each node of an element
with a coupling node on Γs. The structural configuration of the FE mesh using this element
type is exemplarily depicted in Fig. 4.4. The quadratic core enables to model surface or
embedded foundations with or without elastic bedding as well as a rectangular excavation
inside the soil rather easily. Examples for these cases will be presented later on in Secs. 6.2.3
and 6.2.5.

Higher order rectangular elements are in contrast not easily applicable, since they exhibit
further nodes on their edges which then do not match with the coupling nodes and thus
violate the transition conditions to the surrounding soil.

Alternative meshes and coupling procedures

As an alternative, three dimensional, four node tetrahedron elements could be used to model
the FEM substructure with spherical boundary. This element type permits the generation
of a FE mesh, in which all coupling nodes are hit and simultaneously a refinement of the
mesh towards the interior of the sphere is possible. This allows a more detailed and free
modelling of structures inside. However, the size of the elements connecting to Γs is still
strictly given by the coupling nodes. The arrangement of the FEM mesh is exemplarily
illustrated in Fig. 4.5 and results for tetrahedral elements compared to hexahedral elements
are shown in Sec. 6.1.3.

A further possibility to enable a completely free modelling of structures inside the spherical
boundary, is to approximate the overall solution by coupling only a limited number of the
spherical harmonics, describing the stresses and displacements on the interaction surface of
the ITM and the FEM substructures. However this approach was not implemented within
the scope of this thesis. In this case different algorithms could be used for the development
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Figure 4.5: (a) Three dimensional 4-node tetrahedron element and (b) corresponding FEM mesh for cou-
pling to halfspace with spherical indentation.

of the quantities on Γs in series of spherical harmonics for the two substructures. As pre-
sented in [252, 254] algorithms exist, which allow the numerical evaluation of the associated
Legendre transforms on arbitrary grids. Since therewith neither the number or location of
the boundary nodes nor the element size is predefined by the ITM, an arbitrary distribution
of the FEM nodes on the spherical boundary is possible and a free meshing of any structure
can be performed using standard FEM tools. Developing the stresses and displacements
of the FEM substructure on Γs into series of spherical harmonics, the amount of boundary
nodes and thus also the number of series members m, l obtained is not necessarily equal for
both substructures. For the coupling therefore the upper limit of the spherical harmonics
taken into account is given by the maximum of series members reached by either the ITM
or the FEM substructure. This maximum should be, however, chosen such that all physical
phenomena as reflection, transmission, refraction and scattering of the waves at the spherical
boundary are sufficiently represented.

Another approach would be to use so called Mortar methods [270–272], which enable a
coupling of non conform discretizations on non overlapping subdomains by not satisfying the
continuity conditions at the interface point wise, but reformulating it in a weak variational
manner. In this case again the Finite Element substructure can be meshed arbitrarily, as
the FEM nodes do not have to match with the ITM nodes on Γs. To perform the coupling
of the ITM and the FEM applying the Mortar concept, the stresses and displacements
need to be evaluated for both substructures on their respective discretization points on Γs

w.r.t. to a common reference frame chosen as (x,y,z,ω). By introducing interface fields for
the quantities on Γs with additional degrees of freedom in form of Lagrange multipliers, the
continuity conditions are enforced via conservation of energy at the coupling surface in a
weak form. An application for this kind of indirect coupling of the FEM to a solution using
analytical solution approaches, i.e. the Wave Based Method (WBM), which could similarly
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be applied to the ITM-FEM coupling can be found in [273, 274].

Dynamic stiffness of the FEM substructure

Within this thesis, the approach to use the ITM discretization points as boundary nodes
for the FEM substructure is used, and the coupling is finally performed in the (r,m,l,ω)
domain after the respective transformations. To discretize the volume within Γs, either
hexahedra with 8 nodes or tetrahedra with 4 nodes are used and arranged such that their
nodes coincide with the discretization points of the ITM on the spherical surface. Since no
further modifications on the elements are necessary, as it was the case for the 2.5D elements,
the generation of the mesh as well as the computation of the mass, stiffness and damping
matrices is directly done within a commercial FEM software. The Ansys® Mechanical APDL
is used, as it allows to set up a structured mesh including the given prerequisites very precisely
and also offers enhanced formulations for the employed elements.

For the computation of K̄, C̄ and M, a substructure analysis is used in Ansys®, wherein
a matrix reduction technique is applied to reduce the system matrices to a smaller set
of DOFs, representing a collection of previously assembled elements as one single super
element. Thereby the DOFs of the interface nodes, necessary for the coupling, as well as
the DOFs of nodes at which the results shall be evaluated after solving the system have to
be retained [275]. Since the reduction technique is implemented and executed automatically
within the commercial FEM software and requires only little calculation capacity, it is very
beneficial to apply the substructure analysis regarding the computational effort for the total
solution procedure. Due to the reduced number of nodes and DOFs, the effort for both, the
export of K̄, C̄ and M from Ansys® and the import into the developed Matlab® program,
inside which the coupling of the ITM and the FEM substructures as well as the overall
solution are performed, can be reduced significantly. Furthermore, the amount of sorting
and renumbering operations, due to the necessity to distinguish between nodes on Γs, needed
for the coupling and the interior nodes within Ωs, is minimized. Last but not least, also the
size of the total system of equations describing the coupled ITM-FEM system and thus the
time necessary to solve it decreases considerably.

In Ansys® as standard procedure a Guyan reduction is applied, corresponding to an elimina-
tion of the DOFs not needed for the further analysis [276]. Therefore, the degrees of freedom
in the general structural equation

(
−ω2M + iω sign(ω) C̄ + K̄

)
ū = P̄ (4.16)
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are partitioned in master DOFs ūm, which are retained, and slave DOFs ūs, which are
eliminated [277]. For the static case (ω = 0) the reorganized system of equations yields

 K̄mm K̄ms

K̄sm K̄ss


︸ ︷︷ ︸

K̄full

 ūm

ūs


︸ ︷︷ ︸

ūfull

=

 P̄m

P̄s


︸ ︷︷ ︸

P̄full

(4.17)

Solving the bottom equation of (4.17), substituting the result in top equation and setting
the forces at all interior degrees of freedom P̄s to zero it follows

[
K̄mm − K̄msK̄−1

ss K̄sm

]
︸ ︷︷ ︸

K̄red

[
ūm

]
︸ ︷︷ ︸

ūred

=
[

P̄m − K̄msK̄−1
ss P̄s

]
︸ ︷︷ ︸

P̄red

(4.18)

The foregoing is equivalent to a coordinate transform [276]
 ūm

ūs

 =

 I

Ḡsm

 ūm = T ūm (4.19)

where I is the identity matrix and Ḡsm = K̄−1
ss K̄sm contains the constraint modes that are

mode shapes induced to the interior DOFs by applying successive unit displacements on one
interface DOF, while all other interface DOFs are held fix [278].

Applying the above transformations to the structural potential and kinetic energies, the
reduced stiffness matrix K̄red = TT K̄fullT, mass matrix M̄red = TT M̄fullT and damping
matrix C̄red = TT C̄fullT for the dynamic case can be obtained according to [276], finally
leading to

K̄red = K̄mm − K̄msK̄−1
ss K̄sm (4.20a)

Mred = M̄mm + M̄msḠsm + Ḡms

(
M̄sm + M̄ssḠsm

)
(4.20b)

C̄red = C̄mm + C̄msḠsm + Ḡms

(
C̄sm + C̄ssḠsm

)
(4.20c)

It is important to point out that in case of the stiffness matrix the reduction leads to
no loss of information and complexity, since all elements of the original stiffness matrix
contribute [276]. For the reduced mass matrix, both stiffness and mass elements are used
in the computation, which results in the eigenvalue problem not being preserved exactly in
the reduced system. This can lead to smaller deviations at higher frequencies, compared to
using the complete system matrices for the analysis. Alternatively to the Guyan reduction,
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a Component Mode Synthesis (CMS) could be used to obtain eigenvalue preserving reduced
system matrices. Furthermore, it should be mentioned that, since the master DOFs for the
reduction must always include all degrees of freedom connected to the second substructure,
it is not simply possible to create a freely meshed FEM model and condense all nodes on Γs

that do not match with the ITM coupling nodes, although this might seem like an easy to
handle solution at the first glance.

Since the global, assembled, reduced system matrices are symmetric, for the export it is
sufficient to write the lower triangular part into the export file (Harvel Boeing format) in
order to save writing time. After the import of the matrices into Matlab® the upper part is
supplemented, before the FEM nodes are split in interior nodes and nodes on the spherical
surface. The latter are reordered such that they coincide with the order of the ITM nodes
which are numbered clock wise within one latitude, starting with the bottommost latitude
and then consecutively up to the one next to the upper pole (Fig. 4.3b). With the nodes,
also the DOFs and thus the reduced system matrices in Eqs. (4.20) need to be resorted, so
that they eventually end up in a system of equation with the following form

 K̄hs sph
ΓsΓs FE

K̄hs sph
ΓsΩs FE

K̄hs sph
ΩsΓs FE

K̄hs sph
ΩsΩs FE


︸ ︷︷ ︸

K̄hs sph
FE

 ūhs sph
Γs FE

ūhs sph
Ωs FE


︸ ︷︷ ︸

ūhs sph
FE

=

 P̄hs sph
Γs FE

P̄hs sph
Ωs FE


︸ ︷︷ ︸

P̄hs sph
FE

(4.21)

whereby K̄hs sph
FE

=
(
−ω2Mred + iω sign(ω) C̄red + K̄red

)
is the dynamic stiffness matrix of

the system and ūhs sph
FE

and P̄hs sph
FE

refer to the condensed degrees of freedom ūm.

4.2.2 Dynamic stiffness for structures on the ground surface

In order to model an arbitrary finite, three dimensional superstructure on the ground surface,
generally usual 8-node solid elements with three translatory DOFs can be used. If a plate
like structure is considered, the use of shell elements is favourable concerning computational
efficiency. Therefore, a quadrilateral shell element with six DOFs per node (Fig. 4.6a) is
used to model the foundation and the floor slabs of the multi-storey frame in the present
work. Furthermore, the use of a shell element is advantageous with regard to the coupling
with the 3D beam elements (Fig. 4.6b), used to model the frame columns, as then both, the
translational and the rotational degrees of freedom can be coupled directly at the common
nodes. The coupling to the underlying ground at the soil foundation interface via the con-
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Figure 4.6: Local displacements and rotations of a (a) quadrilateral thin flat layered shell element
(cp. [279]) and (b) spatial beam element with each 6 DOFs per node.

tinuity conditions (cp. Sec. 5.3) is carried out w.r.t. Cartesian coordinates in the frequency
domain (x,y,z,ω).

Thus, also the stiffness and mass matrices of the element formulations presented hereinafter
are derived in this domain applying a common displacement based finite element approach
via the weak form of the equation of motion by means of the principle of virtual work

δW = δWi + δWI =
∫

(V )

δε̄T D ε̄ dV − ω2
∫

(V )

δūT ρ ū dV (4.22)

= δūT

∫
(V )

BT D B dV

 ū − ω2δūT

∫
(V )

NT ρN dV

 ū (4.23)

The numerical integration of the above integrals is carried out via the Gauß quadrature.

Quadrilateral thin flat layered shell element (QTFLS)

The implemented shell element was introduced in [279] as a superposition of a quadrilateral
layered membrane element with drilling degrees of freedom, presented in [280], and the
Discrete Kirchhoff Quadrilateral (DKQ) element, defined in [281]. This combination allows
to incorporate the in-plane stretching and the out of plane bending behaviour within one
4-node quadrilateral thin flat layered shell element (QTFLS), that exhibits 6 DOFs (three
translations and three rotations) per node.
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In order to derive the element stiffness matrix, the membrane and bending kinematics are
superposed, assuming a state of plane stress over the thickness and the Kirchhoff theory for
the bending, thereby neglecting the strain due to shear. This finally leads to an extended
local strain vector, separated for the local membrane strain ε̄

′
m and the local curvature due

to bending ε̄
′
b, defined in dependence of the nodal DOFs u′

sh ε̄
′
m

ε̄
′
b


︸ ︷︷ ︸

ε′
sh

=
 B′

m(x′,y′) 0
0 B′

b(x′,y′)


︸ ︷︷ ︸

B′
sh

 ū′
m

ū′
b


︸ ︷︷ ︸

u′
sh

(4.24)

wherein B′
m(x′,y′) includes the kinematics for the membrane and B′

b(x′,y′) those for the
bending element, as given in [279]. Also the nodal displacement vector is separated w.r.t. the
membrane and the bending DOFs

u′
m = [u′

1, v
′
1, θ

′
z1, ..., u

′
4, v

′
4, θ

′
z4]

T and u′
b =

[
w′

1, θ
′
x1, θ

′
y1,...,w

′
4, θ

′
x4, θ

′
y4

]T
(4.25)

Therewith, the local tangent stiffness matrix of the shell element can be derived as [279]

K′
sh =

∫
(A′)

B′T
sh D′

sh B′
shdA′ =

nGP∑
k=1

nGP∑
l=1

B′T
sh(x′

k,y
′
l) D′

sh B′
sh(x′

k,y
′
l) det(J)wk wl (4.26)

where D′
sh is the section tangent matrix including the contributions of the membrane and

the bending relating the corresponding stresses and the strains.

An usual consistent mass matrix formulation is used to deduce

M′
sh =

∫
(A′)

N′T
sh ρsh N′

shdA′ =
nGP∑
k=1

nGP∑
l=1

N′T
sh(x′

k,y
′
l) ρsh N′

sh(x′
k,y

′
l) det(J)wk wl (4.27)

with N′
sh being the matrix including the usual shape functions for a quadrilateral element

in local coordinates (cp. Eq. (4.5)) and ρsh including the mass density per area and the
rotational inertia on its main diagonal. Structural damping is not included in the current
implementation of the shell element.

3D spatial beam element

The implemented 3D beam element exhibits also three translations and three rotations at
each of its two nodes. A local coordinate system with origin in the center of gravity and
shear of the uniform cross section is used, with axis being equal to the principal axis of
the element. Assuming the Euler Bernoulli beam theory and isotropic material behaviour,



76 4 Finite Element Method substructures

the axial, bending and torsional effects decouple and can be considered independently. The
internal virtual work used to derive the element stiffness matrix thus results as [282]

δWi =
∫

(L)

δε
′ T
beamDbeamε′

beamdx′ =
∫

(L′)

(
EAu

′ 2
,x′ + EIyθ

′ 2
y′,x′ + EIzθ

′ 2
z′,x′ +GIT θ

′ 2
x′,x′

)
dx′

(4.28)

with the comma subscript denoting the derivative w.r.t. a certain coordinate. Eq. (4.28) can
be reformulated in dependency of the nodal displacements and rotations

ū′
beam =

[
u′

1, v
′
1, w

′
1, θ

′
x1, θ

′
y1, θ

′
z1, u

′
2, v

′
2, w

′
2, θ

′
x2, θ

′
y2, θ

′
z2

]T
(4.29)

assuming linear interpolation functions for the axial and the torsional deformation and cubic
Hermite polynomials for the bending deflection finally leading to

K′
beam =

∫
(L′)

B′T
beam D′

beam B′
beamdL′ =

nGP∑
k=1

B′T
beam(x′

k) D′
beam B′

beam(x′
k) det(J)wk

(4.30)

given in Appx. A.6.1 and D′
beam being the isotropic material matrix for the Euler Bernoulli

beam.

For the consistent mass matrix, different shape functions N′
beam are used in order to be able

to consider also the effects of rotational inertia, but neglecting the shear deformation effects
as presented in [283]. This leads eventually to the mass matrix

M′
beam =

∫
(L′)

N′T
beam ρN′

beamdL′ =
nGP∑
k=1

N′T
beam(x′

k) ρN′
beam(x′

k) det(J)wk (4.31)

whereby ρ is the mass density and L the length of the beam element. The mass matrix is
given in Appx. A.6.2.

To include damping, a common Rayleigh damping approach was implemented

C′
beam = αM′

beam + βK′
beam (4.32)

For the coupling with the ITM soil substructure, of course the element stiffness and mass
matrices need to be transformed to a common global reference frame and assembled into a
global stiffness matrix.
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5 Coupling of substructures

In this chapter the previously derived ITM and FEM substructures are coupled, applying
the compatibility conditions at the common interface. In Sec. 5.1 length invariant structures,
either fully or partially embedded in the soil and modelled with the 2.5D FEM approach,
are coupled to the halfspace with cylindrical cavity or indentation. Finite 3D structures
embedded in a portion of soil exhibiting a spherical outer boundary, modelled with the FEM,
are coupled to the halfspace with spherical cavity or indentation in Sec. 5.2. To enable the
investigation of the dynamic interaction of above-ground structures with the underlying soil,
in Sec. 5.3 firstly a procedure to compute the dynamic stiffness matrix at the surface of
an arbitrary soil subsystem, described by the ITM or a coupled ITM-FEM approach, is
introduced. Subsequently, the methodology for the coupling of three dimensional structures
to the underlying ground at the soil foundation interface is presented. In the Sec. 5.4, a
postprocessing procedure is outlined to calculate the stress and displacement distributions
in the subgrade due to the dynamic soil structure interaction. Finally, it is shown how the
power input at the soil foundation interface due to the SSI contact stresses can be determined
and how the radiation directivity of the induced waves can be accounted for by the power
flow through a control volume within the linear elastic homogenous or layered soil.

5.1 Coupling on the cylindrical interaction surface

For the coupling of the ITM and the FEM substructures at the cylindrical interaction sur-
face, the equilibrium of forces and the compatibility of displacements are used as transition
conditions [162]. In order to apply these equations, the quantities on Γc (cp. Fig. 5.1) have
to be described in terms of a common reference frame, for which the ITM basis is chosen.
Within the system of equations (3.8), which describes the halfspace with cylindrical cavity
or indentation, the degrees of freedom are sorted separately according to those on the half-
space surface and the cylindrical coupling surface. The dynamic stiffnesses, displacements
and the loads on Γc are described in the threefold Fourier transformed (kx,r,n,ω) domain in
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cylindrical coordinates. The same holds also for the halfspace with two cylindrical tunnels
or indentations described by Eqs. (3.18) as well as for the multilayered halfspace with cylin-
drical cavity in Eqs. (3.29). Analogously, for the 2.5D FEM substructure, represented by
Eqs. (4.14), it is distinguished between the DOFs on Γc and in the interior Ωc. The quantities
on the cylindrical surface are described in the wavenumber frequency domain w.r.t. Cartesian
coordinates (kx,y,z,ω) and are transformed into the basis of the ITM system for the cou-
pling. The necessary transformation matrices are exemplarily derived for the displacements
hereinafter.

5.1.1 Dynamic stiffness matrix

First, a transformation from Cartesian coordinates (y, z) into polar coordinates (r, φ) is
performed using the transformation matrix Tc1.



ux(y1,z1)
uy(y1,z1)
uz(y1,z1)
ux(y2,z2)

...


=



1 0 0 0 0 0 · · ·
0 − sin(φ1) − cos(φ1) 0 0 0 · · ·
0 cos(φ1) − sin(φ1) 0 0 0 · · ·
0 0 0 1 0 0 · · ·
0 0 0 0 − sin(φ2) − cos(φ2) · · ·
0 0 0 0 cos(φ2) − sin(φ2) · · ·
... ... ... ... ... ... . . .


︸ ︷︷ ︸

Tc1



ux(r1,φ1)
ur(r1,φ1)
uφ(r1,φ1)
ux(r2,φ2)

...



(5.1)

In a second step, the parameters on the cylindrical surface (r1 = r2 = ... = R) are developed
into a Fourier series along the circumferential direction, which is expressed in matrix notation
by the transformation matrix Tc2. [176]



ux(R,φ1)
ur(R,φ1)
uφ(R,φ1)
ux(R,φ2)

...


=



ein1φ1 0 0 ein2φ1 0 0 ein3φ1 · · ·
0 ein1φ1 0 0 ein2φ1 0 0 · · ·
0 0 ein1φ1 0 0 ein2φ1 0 · · ·

ein1φ2 0 0 ein2φ2 0 0 ein3φ2 · · ·
0 ein1φ2 0 0 ein2φ2 0 0 · · ·
... ... ... ... ... ... ... . . .


︸ ︷︷ ︸

Tc2



ux(R,n1)
ur(R,n1)
uφ(R,n1)
ux(R,n2)

...



(5.2)
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Figure 5.1: (a) Displacements of the ITM substructure in the Fourier transformed domain and (b) trans-
formation of the displacements of the FEM substructure on Γc from the (kx,y,z,ω) to the
(kx,r,n,ω) domain.

Combining Eqs. (5.1) and (5.2), the displacements on Γc originally defined in the (kx, y, z, ω)
domain and denoted with the ˜ symbol are expressed by the parameters in the threefold
transformed domain (kx, r, n, ω), as depicted in Fig. 5.1b. [176]

ũhs cyl
Γc FE

= Tc1Tc2 ûhs cyl
Γc FE

= Tc ûhs cyl
Γc FE

(5.3)

The nodal load vector is transformed analogously

P̃hs cyl
Γc FE

= Tc1Tc2 P̂hs cyl
Γc FE

= Tc P̂hs cyl
Γc FE

(5.4)

leading to the transition conditions for the displacements and the equilibrium of forces on
the cylindrical coupling surface w.r.t. (kx, r, n, ω)

ûhs cyl
Γc ITM

= ûhs cyl
Γc FE

= ûhs cyl
Γc (5.5)

P̂hs cyl
Γc ITM

+ 1
dsP̂hs cyl

Γc FE
= P̂hs cyl

Γc (5.6)

The factor ds is the element length of a finite element along the circumference of the cylinder
as illustrated in Fig. 4.2 and is used to transform the nodal loads of the FEM into the
continuous stresses of the ITM. As also visible in this figure, the cylindrical outer boundary
is only approximated by the quadrilateral elements. However, the error caused by this is
relatively small (cp. Sec. 6.1.2) and can be reduced by increasing the number of discretisation
points resp. Fourier series members on Γc. [162]

Using the transformation matrix Tc and the continuity conditions (5.5) and (5.6), the ITM
substructure represented by Eq. (3.8) and the 2.5D FEM substructure with cylindrical outer
boundary described by Eq. (4.14) are coupled, yielding the following system of equations
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describing a halfspace with a cylindrical FEM inclusion [176]


K̂hs cyl

ΛΛITM
K̂hs cyl

ΛΓc ITM
0

K̂hs cyl
ΓcΛITM

K̂hs cyl
ΓcΓc ITM

+ 1
ds

T−1
c K̃hs cyl

ΓcΓc FE
Tc

1
ds

T−1
c K̃hs cyl

ΓcΩc FE

0 K̃hs cyl
ΩcΓc FE

Tc K̃hs cyl
ΩcΩc FE


︸ ︷︷ ︸

K̂hs cyl
ITM FE


ûhs cyl

ΛITM

ûhs cyl
Γc

ũhs cyl
Ωc FE


︸ ︷︷ ︸

ûhs cyl
ITM FE

=


P̂hs cyl

ΛITM

P̂hs cyl
Γc

P̃hs cyl
Ωc FE


︸ ︷︷ ︸

P̂hs cyl
ITM FE

(5.7)

The above presented methodology can analogously be applied for the coupling of FEM
structures to a halfspace with two cylindrical cavities. Thereby the cavities can have varying
radii and different structures can be modelled by the FEM in the interior domains Ωc1 and
Ωc2 . Of course the quantities on both coupling surfaces Γc1 and Γc2 need to be transformed
into the respective ITM basis. Thus also the transformation matrix Tc must be evaluated
separately for both FEM substructures due to the different coordinates and sizes.

In case of the cylindrical indentation, the 2.5D FEM substructure to be included, initially
only exhibits nodes on the fraction of Γc located inside the soil, where a physical coupling
to the surrounding soil takes place. However, the previously derived coupling procedure
enforces the continuity conditions in the basis of the ITM substructure (kx,r,n,ω) for each
Fourier series member n along Γc. To ensure a full coupling, retroactively additional nodes
are introduced along the total cylindrical interaction surface, so that the quantities of the
FEM substructure can be developed into the same number of Fourier series members n on
Γc, as in case of the halfspace with indentation [269]. The FEM nodes are sorted separately
according to those within Ωc and on Γc, which are arranged consecutively with increasing
anti-clockwise angle φ in order to match with the ITM node alignment. Due to the insertion
of the additional degrees of freedom, associated with the auxiliary nodes, a renumbering
and reorganisation of K̃hs cyl

FE
, ũhs cyl

FE
and P̃hs cyl

FE
is necessary before applying the transforma-

tion matrix Tc and the assembling into the total system of equations (5.7). The auxiliary
DOFs and the resulting adjusted arrangement of the system matrices must also be taken
into account, when finally extracting the results after the solution and the inverse Fourier
transform.

Furthermore, a FEM substructure can be coupled into a cylindrical cavity embedded in a
multilayered halfspace using the methodology outlined above. The coupling of ITM and
FEM remains unaffected by the incorporation of additional top soil layers, as these are only
fixed to the surface of the homogeneous halfspace via continuity conditions, as shown in
Sec. 3.4, and do not contribute to the stiffness at the cylindrical cavity. The same applies
to the multilayered halfspace with two FEM inclusions, depicted in Fig. 5.2b, for which the
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Ωc

Γc

Λ

1 2 3 4 ...

ûhs cyl
Γc FE

(a)

Λ1

Λ2

Λ3

Γc1

Ωc1 Ωc2

Γc2
H

h2

h1

2R1 2R2
(b)

Figure 5.2: (a) Displacements of the FEM substructure on Γc w.r.t. (kx,r,n,ω) for the coupling to the
halfspace with cylindrical indentation and (b) multilayered halfspace with two FEM inclusions.

total system of equations is exemplarily given here below

K̂hs cyl L tw
ITM FE

ûhs cyl L tw
ITM FE

= P̂hs cyl L tw
ITM FE

(5.8)

with

K̂hs cyl L tw
ITM FE

=



K̂L

Λ1Λ1 ITM
K̂L

Λ1Λ3 ITM
0 0 0 0

K̂L

Λ3Λ1 ITM

(
K̂

L
Λ3Λ3 ITM

+K̂hs cyl tw
Λ3Λ3 ITM

)
K̂hs cyl tw

Λ3Γc1 ITM
0 K̂hs cyl tw

Λ3Γc2 ITM
0

0 K̂hs cyl tw
Γc1 Λ3 ITM

(
K̂hs cyl tw

Γc1 Γc1 ITM
+K̂hs cyl tw

Γc1 Γc1 FE

)
K̂hs cyl tw

Γc1 Ωc1 FE
K̂hs cyl tw

Γc1 Γc2 ITM
0

0 0 K̂hs cyl tw
Ωc1 Γc1 FE

K̂hs cyl tw
Ωc1 Ωc1 FE

0 0

0 K̂hs cyl tw
Γc2 Λ3 ITM

K̂hs cyl tw
Γc2 Γc1 ITM

0
(

K̂hs cyl tw
Γc2 Γc2 ITM

+K̂hs cyl tw
Γc2 Γc2 FE

)
K̂hs cyl tw

Γc2 Ωc2 FE

0 0 0 0 K̂hs cyl tw
Ωc2 Γc2 FE

K̃hs cyl tw
Ωc2 Ωc2 FE


(5.9)

ûhs cyl L tw
ITM FE

=
(

ûhs cyl L tw
Λ1 ITM

ûhs cyl L tw
Λ3 ITM

ûhs cyl L tw
Γc1

ũhs cyl L tw
Ωc1 FE

ûhs cyl L tw
Γc2

ũhs cyl L tw
Ωc2 FE

)T

(5.10)

P̂hs cyl L tw
ITM FE

=
(

P̂hs cyl L tw
Λ1 ITM

P̂hs cyl L tw
Λ3 ITM

P̂hs cyl L tw
Γc1

P̃hs cyl L tw
Ωc1 FE

P̂hs cyl L tw
Γc2

P̃hs cyl L tw
Ωc2 FE

)T

(5.11)

Herein, the transformation of the stiffnesses, displacements and nodal loads on Γc1 and Γc2

is already included and the corr. matrices in the (kx,r,n,ω) domain are indicated with a .̂

With the system of equations (5.8) it is possible to directly compute the displacements on
Λ1, Λ2, Γc1 , Γc2 , Ωc1 and Ωc2 due to an external load applied on resp. in one, several or all
of these surfaces resp. domains. Thereby, the displacements and the loads on the ground
surface and the transition surface from the stratification to the homogeneous halfspace are
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described in terms of (kx,ky,z,ω), while on the cylindrical ITM-FEM coupling surfaces they
are defined in the (kx,r,n,ω) domain. Both quantities are described w.r.t. (kx,y,z,ω) in the
interior of the FEM substructures. Therefore, the external loads to be applied on the coupled
system firstly need to be transformed into the respective domain, before solving the overall
system of equations. It must be noted that in the case of the ITM substructure, stresses are
applied as external loads, whereas nodal loads are imposed within the FEM structure. The
results for the entire three dimensional system in Cartesian coordinates (x,y,z), either in
the frequency or the time domain, can eventually be obtained via the corresponding Fourier
syntheses resp. inverse Fourier transforms.

5.1.2 Parallel implementation

In the following, some relevant features of the system matrices and their effects on the parallel
computation of the halfspace with cylindrical FEM inclusion are outlined. The pseudocode
of the parallel implementation is illustrated in Alg. 2. Therein, all tasks within the parallel
loop are distributed on several CPUs and executed in parallel for all kx, whereas procedures
1, 3 and 4 and the loop over the frequencies ω in procedure 2 are performed sequentially.
However, in Matlab® functions such as the fast Fourier transform algorithm are parallelised
internally by default.

Since the transformation matrix Tc is independent of the longitudinal wavenumber and
frequency, it can be calculated in advance and then be applied to the dynamic stiffness matrix
K̃hs cyl

FE (kx,ω) for any combination (kx,ω). The mass matrix Mhs cyl
FE is also independent of

kx and ω and the stiffness matrix K̄hs cyl
FE (kx) just depends on kx, so they also could be

computed outside the frequency loop and only be combined to K̃hs cyl
FE (kx,ω) = K̄hs cyl

FE (kx) −
ω2Mhs cyl

FE within each iteration. However, K̃hs cyl
FE (kx,ω) must be assembled into the overall

stiffness matrix K̂hs cyl
ITM FE

(kx,ω) together with the dynamic stiffness of the ITM substructure
K̂hs cyl

ITM
(kx,ω), which is directly dependent on kx and ω and must be computed separately

for each of this combinations before solving the coupled system. Saving, distributing and
reloading the FEM mass and stiffness matrices for the corresponding (kx,ω) thereby affords
more computational effort than directly computing them newly within the parallel kx loop.
This holds at least for common meshes that do not have a conspicuously large number of
elements, since then the effort for calculating the element stiffness matrices is greater than
that for the determination of the dynamic stiffness of the ITM substructure. However,
by using more sophisticated programming languages and parallelisation tools, where the
implementation of nested parallel loops is possible and one has greater influence on the
distribution of tasks as well as memory allocation, the above outlined properties could be
used to further speed up the computation.
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Algorithm 2 Parallel 2.5D ITM-FEM approach for halfspace with cylindrical inclusion
procedure 1 Set up system and loading( )

Initialize and input parameter
Discretization, material and geometry
Finite Element mesh with Ansys® → nodes, elements
External loading P̂hs cyl

ΛITM
(kx,ky,z,ω) and/or P̃hs cyl

ΩFE
(kx,y,z,ω)

procedure 2 Determine displacements ûhs cyl
ITM FE

(kx,ω)
Precompute transformation matrix Tc
for all ω do

parfor all kx do
Compute element matrices K̄hs cyl

FE (kx,y,z) and Mhs cyl
FE (y,z)

Assemble dynamic FEM stiffness K̃hs cyl
FE (kx,y,z,ω)

Transform K̂hs cyl
FE

on Γc to (kx,r,n,ω) for coupling
for all ky and n do

Determine K̂hs cyl
ITM

w.r.t. (kx,ky,z,ω) on Λ and (kx,r,n,ω) on Γc

Assembling global stiffness K̂hs cyl
ITM FE

and load vector P̂hs cyl
ITM FE

Solve total system of equations ûhs cyl
ITM FE

= K̂hs cyl −1
ITM FE

P̂hs cyl
ITM FE

procedure 3 Inverse Fourier transform( )
IFFT of ûhs cyl

ΛITM
(kx,ky,z,ω) to ūhs cyl

ΛITM
(x,y,z,ω) resp. uhs cyl

ΛITM
(x,y,z,t)

IFFT of ûhs cyl
Γc (kx,r,n,ω) to ūhs cyl

Γc (x,y,z,ω) resp. uhs cyl
ΛITM

(x,y,z,t)
IFFT of ûhs cyl

Ωc FE
(kx,y,z,ω) to ūhs cyl

Ωc FE
(x,y,z,ω) resp. uhs cyl

ΛITM
(x,y,z,t)

procedure 4 Postprocessing and Plots( )
Compute σ̂hs cyl

Ωc ITM FE

Plot stresses and displacements
Export results

The parallel computation of the harmonic response of a halfspace with cylindrical FEM
inclusion (cp. Fig. 5.3) for one single frequency applying Alg. 2 on a workstation equipped
with an Intel® Xeon® W-2245 3.90GHz with 8 cores and 64 GB RAM takes in total 140.02 s.
In contrast the completely serial computation of the same system, with the code developed
in Hackenberg [162], requires 288.43 s and thus more than twice as long.

Λ

Γc

Ωc r
φx

y

zx

Γc

H

2R

P̄hs cyl
ΛITM

Dimensions Sampling
Bx = By 128 m Nx = Ny 28

H 2.1 m Nφ 25

R 2.0 m Nf 1

Figure 5.3: Setup and system parameters for comparison of parallel and serial computation times.
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5.2 Coupling on the spherical interaction surface

For the coupling of a three dimensional FEM substructure into a halfspace with spherical
cavity, modelled by the ITM as depicted in Fig. 5.4b, the continuity conditions are applied
on the spherical interaction surface. In the governing equations for the ITM and the FEM
substructure, it is again distinguished between the degrees of freedom on the halfspace surface
Λ, the spherical surface Γs and within the FEM inclusion Ωs. The stresses and displacements
of the homogenous or layered halfspace with spherical cavity on Γs in Eqs. (3.26) resp. (3.30)
are described in terms of spherical harmonics and the frequency in the (r,m,l,ω) domain,
whereas the displacements and the nodal forces of the FEM substructure on Γs in Eqs. (4.21)
are defined in Cartesian coordinates in the (x,y,z,ω) domain. As before the parameters of the
FEM substructure on Γs are transformed into the ITM basis (cp. Fig. 5.4a), which is chosen
as common reference frame for the coupling. The transformations are again performed
by means of matrix multiplications and are exemplarily presented for the displacements
hereinafter. [84]

ûhs sph
Γs FE

ūhs sph
Ωs FE

ūhs sph
Γs FE

ūhs sph
Ωs FE

(a)

Λ

Ωs

Γs

(b)

Figure 5.4: (a) Transformation of displacements of the FEM substructure on Γs from (x,y,z,ω) to the
(r,m,l,ω) domain and (b) halfspace with spherical FEM inclusion.

In a first step, the nodal displacements on Γs are transformed from Cartesian into spherical
coordinates using the relation between the two reference frames given by Ts1



ux(x1,y1,z1)
uy(x1,y1,z1)
uz(x1,y1,z1)
ux(x2,y2,z2)
uy(x2,y2,z2)
uz(x2,y2,z2)

...


=



sin(ϑ1) cos(φ1) cos(ϑ1) cos(φ1) − sin(φ1) 0 · · ·
sin(ϑ1) sin(φ1) cos(ϑ1) sin(φ1) cos(φ1) 0 · · ·

cos(ϑ1) − sin(ϑ1) 0 0 · · ·
0 0 0 sin(ϑ2) cos(φ2) · · ·
0 0 0 sin(ϑ2) sin(φ2) · · ·
0 0 0 cos(ϑ2) · · ·
... ... ... ...


︸ ︷︷ ︸

Ts1



ur(r1,ϑ1,φ1)
uϑ(r1,ϑ1,φ1)
uφ(r1,ϑ1,φ1)
ur(r2,ϑ2,φ2)
uϑ(r2,ϑ2,φ2)
uφ(r2,ϑ2,φ2)

...



(5.12)
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The second transformation matrix Ts2 contains the development of the degrees of freedom
on Γs with r1 = r2 = ... = R into spherical harmonics [84]



ur(R, ϑ1, φ1)
uϑ(R, ϑ1, φ1)
uφ(R, ϑ1, φ1)
ur(R, ϑ2, φ2)
uϑ(R, ϑ2, φ2)
uφ(R, ϑ2, φ2)

...


=



Y l1
m1

(ϑ1, φ1) 0 0 Y l2
m2

(ϑ1, φ1) · · ·
0 Y l1

m1
(ϑ1, φ1) 0 0 · · ·

0 0 Y l1
m1

(ϑ1, φ1) 0 · · ·
Y l1

m1
(ϑ2, φ2) 0 0 Y l2

m2
(ϑ2, φ2) · · ·

0 Y l1
m1

(ϑ2, φ2) 0 0 · · ·
...

...
...

... . . .


︸ ︷︷ ︸

Ts2



ur(R, m1, l1)
uϑ(R, m1, l1)
uφ(R, m1, l1)
ur(R, m2, l2)
uϑ(R, m2, l2)
uφ(R, m2, l2)

...


(5.13)

with the degrees mi and orders li arranged as summarized in Tab. 5.1.

After the transformation of the displacements and the nodal loads

ūhs sph
Γs FE

= Ts1Ts2 ûhs sph
Γs FE

= Tsûhs sph
Γs FE

(5.14)

P̄hs sph
Γs FE

= Ts1Ts2 P̂hs sph
Γs FE

= TsP̂hs sph
Γs FE

(5.15)

the coupling conditions can be formulated as [84]

ûhs sph
Γs ITM

= ûhs sph
Γs FE

= ûhs sph
Γs (5.16)

P̂hs sph
Γs ITM

+ 1
dsϑdsφ

P̂hs sph
Γs FE

= P̂hs sph
Γs (5.17)

with the elements lengths dsϑ and dsφ of the finite elements on Γs in the directions of the
longitudes and the latitudes. They are introduced in order to express the nodal loads of the
FEM domain by the distributed loads of the ITM substructure.

With the Eqs. (5.16) and (5.17), the stiffness matrices can be coupled in general. However,
in contrast to a Fourier series development, the number of parameters is changed by the
development into spherical harmonics, so Ts2 is not square. Therefore, the inversion of Ts

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 . . .

mi 0 1 1 1 2 2 2 2 2 . . .

li 0 -1 0 1 -2 -1 0 1 2 . . .

Table 5.1: Degree and order of the spherical harmonics.
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Λ

Γs

Ωs

(a)

Ωs

Γs

Λ1

Λ2

Λ3

H

h2

h1

(b)

Figure 5.5: (a) Additional nodes above ground surface for coupling of FEM substructure to the halfspace
with spherical indentation and (b) layered halfspace with spherical FEM inclusion.

that is necessary for the transformation of the system of equations is not easily possible.
However, as Ts2 consists of more rows than columns (which are linearly independent), a left
multiplication of Ts2 with its Moore-Penrose pseudoinverse T+

s2 leads to the identity matrix
T+

s2Ts2 = I. Therefore, the inverse of Ts results as Ts
+ = Ts2

+ Ts1
−1. [84]

Introducing the transformation matrices and applying the transition conditions leads to the
coupled system of equations for a halfspace with spherical FEM inclusion. [84]


K̂hs sph

ΛΛITM
K̂hs sph

ΛΓsITM
0

K̂hs sph
ΓsΛITM

K̂hs sph
ΓsΓsITM

+ 1
dsϑdsφ

Ts
+K̄hs sph

ΓsΓsFE
Ts

1
dsϑdsφ

Ts
+K̄hs sph

ΓsΩs FE

0 K̄hs sph
ΩsΓsFE

Ts K̄hs sph
ΩsΩs FE


︸ ︷︷ ︸

K̂hs sph
ITM FE


ûhs sph

ΛITM

ûhs sph
Γs

ūhs sph
Ωs FE


︸ ︷︷ ︸

ûhs sph
ITM FE

=


P̂hs sph

ΛITM

P̂hs sph
Γs

P̄hs sph
Ωs FE


︸ ︷︷ ︸

P̂hs sph
ITM FE

(5.18)

In case of a halfspace with spherical indentation, besides the desired 3D structure only the
part of the surrounding soil matching with the spherical cavity located below the ground
surface needs to be modelled by the FEM. Therefore, the FEM substructure initially only
exhibits nodes on the intersections of the latitudes and longitudes on Γs of a theoretically
complete sphere, which are located inside the soil. It should be noted, that due to the
distribution of the latitudes on the positions ϑi, prescribed by the Gauss-Legendre integration
points, there is no latitude on the equator of the sphere that would bisect it. Consequently,
the FEM substructure must be modelled and located such that the largest existing latitude
below the equator aligns with the halfspace surface z = 0. For a direct full coupling of the two
substructures on the common spherical interaction surface, the parameters of the FEM model
on Γs need to be developed into the same number of spherical harmonics m,l used in the
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ITM solution, since the continuity conditions are applied in the basis of the latter. For this
reason, additional nodes assigned with an unit stiffness, which is orders of magnitude smaller
than the stiffness of the FEM nodes for z > 0, are introduced in the FEM substructure on
the spherical surface Γs above the ground surface, as shown in Fig. 5.5a. The nodes are
located on the intersections of the longitudes and latitudes coinciding with those of the ITM
substructure, in order to be able to use the numerical procedures for the evaluation of the
spherical harmonics outlined in Sec. 3.5.1. As for the halfspace with cylindrical indentation,
the insertion of these auxiliary nodes and the corr. additional DOFs requires a renumbering
and reorganisation of K̂hs sph

FE
, ûhs sph

FE
and P̂hs sph

FE
, before applying the transformation matrix

Ts and assembling them into the total system of equations (5.18).

The coupling procedure presented above can be applied analogously to a layered halfspace
with spherical FEM inclusion depicted in Fig. 5.5b. The additional upper soil layers have
no influence on the stiffness members associated with the cavity surface Γs. Thus, they
can be added over the halfspace with the embedded spherical FEM inclusion by enforcing
the continuity conditions on Λ3, without affecting the ITM-FEM coupling at the spherical
interaction surface.


K̂L
Λ1Λ1 ITM

K̂L
Λ1Λ3 ITM

0 0

K̂L
Λ3Λ1 ITM

(
K̂L

Λ3Λ3 ITM
+

K̂hs sph
Λ3Λ3 ITM

)
K̂hs sph

Λ3Γs ITM
0

0 K̂hs sph
ΓsΛ3 ITM

(
K̂hs sph

ΓsΓs ITM
+

K̂hs sph
ΓsΓsFE

)
K̂hs sph

ΓsΩsFE

0 0 K̂hs sph
ΩsΓsFE

K̄hs sph
ΩsΩsFE


︸ ︷︷ ︸

K̂hs sph L
ITM FE



ûhs sph L
Λ1 ITM

ûhs sph L
Λ3 ITM

ûhs sph L
Γs

ūhs sph L
Ωs FE


︸ ︷︷ ︸

ûhs sph L
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(5.19)

5.3 Coupling on soil foundation interaction surface

5.3.1 Dynamic soil flexibility and stiffness

For the coupling of a foundation to the soil substructure, the soil displacements due to the
transmitted contact stresses need to coincide with the structural displacements at the ground
surface. Furthermore, the equilibrium of forces must be satisfied at the common interface.
Outside the foundation, a traction free surface is assumed, on which the displacements can
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adjust themselves freely. A direct coupling of the foundation stiffness to the soil stiffness in
the wavenumber frequency domain as for the soil stratification, featuring the same extension
as the underlying halfspace, is not directly possible due to the finite size of the foundation.
Therefore, in this case the continuity conditions cannot be enforced over the entire interaction
surface, but a mixed boundary value problem needs to be solved.

Dynamic flexibility at the ground surface

For this purpose, a relation between the concentrated harmonic forces P̄ j
n in direction n

acting at discretization points j and the corresponding displacements ūi
m in direction m at

the discretization points i on Λ needs to be established, which can be formulated by means
of the dynamic flexibilities F̄ ij

mn with m,n = x,y,z [51, 100]
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(5.20)

Since the dynamic load and the resulting displacements are usually out of phase, the dynamic
flexibility matrix takes complex values. Thereby the real part represents the stiffness and
inertia of the soil, whereas the imaginary part is attributed to the radiation and material
damping. In general, the dynamic flexibility matrix F̄ ij

s for a pair of discretization points
i and j is fully populated, since a load in one direction n causes displacements in all three
spatial directions m. However, as the coupling of horizontal and vertical soil displacements
is relatively weak, for many applications relaxed boundary conditions (frictionless contact
between soil and foundation) can be assumed. [51] Therefore the system of equations (5.20)
can be partly decoupled, leading to a significant reduction of computation time [52, 68].

The dynamic flexibilities F̄ ij
mn need to be known at the interaction areas of the foundations

with the ground surface, as the nodal contact forces and displacements of both substructures
must coincide there. For the solution of the soil substructure, the ground surface has been
subdivided into a grid of equidistant discretization points with Cartesian coordinates given
by x = o∆x and y = s∆y, where ∆x,∆y are the incremental distances between the nodes.
The FEM model of the foundations thus must be designed such that the nodes inside the
mutual contact areas match with the discretization points of the soil, at which the flexibil-
ities are known. As the members F̄ ij

mn of the dynamic soil flexibility matrix correspond to
the displacements ūi

m due to a concentrated unit load P̄ j
n, all previously derived stiffness

formulations for the ITM and ITM-FEM systems, giving a direct relation between a load on
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the ground surface and the corresponding displacements, can be used to determine F̄ ij
s for

the respective soil substructure.

The contributions of the unit concentrated loads at all nftot discretization points within the
coupling surfaces are assembled into the overall soil flexibility matrix F̄s, which features
a total size of [3nftot × 3nftot ] and fully represents the reaction of the soil subsystem. To
this end, the ground responses ū i

s have to be evaluated for all points i = 1,...,nftot due to a
harmonic excitation with the concentrated loads P̄ j

s in all spatial directions acting on each
point j = 1,...,nftot in turn. The total amount of discretization points nftot = Nf nf results
from the number of foundations Nf and the number of nodes per foundation nf = nfxnfy ,
where nfx and nfy are the number of discretization points of a foundation in x− and y-
direction respectively. After assembling also the displacements and loads, the overall system
of equations yields

ūs(x,y,ω) = F̄s(x,y,ω) P̄s(x,y,ω) (5.21)

To allow a straightforward direct stiffness coupling with the finite element model of the
foundation, defined w.r.t. a Cartesian reference frame in the frequency domain, it is beneficial
to have the dynamic soil stiffness matrix K̄s at the ground surface z = 0 also defined
w.r.t. (x,y,ω). The latter is obtained by inverting the dynamic flexibility matrix F̄s

K̄s(x,y,ω) = F̄−1
s (x,y,ω) (5.22)

However, the equations to determine the displacements at the surface of the soil substruc-
tures from Secs. 3 and 5 are defined in the (kx,ky,ω) domain. Consequently a twofold inverse
Fourier transformation is necessary to obtain ūs(x,y,ω), which is finally used to set up
K̄s(x,y,ω). As calculations are carried out numerically, only a limited amount of discrete
wavenumbers can be taken into account. By applying a load uniformly distributed over a
small area with an unit resultant (in the following referred to as unit concentrated load)
instead of an unit point load, the appearance of a singularity under the point of load ap-
plication can be avoided. Furthermore, P̄s(kx,ky,ω) in this case decays towards zero at the
limits of the considered wavenumber range in contrast to the constant wavenumber spectrum
of a point load, which helps to minimize the numerical errors introduced by the truncation
of the wavenumbers kx and ky. Therewith it can also be ensured that the displacements
under the point of load application, being of particular importance since they form the main
diagonal of F̄s, are not considerably affected by the discretization of the system. [51]
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Figure 5.6: (a) Discretization points at soil foundation interface and unit concentrated load at center of the
halfspace surface. (b) First and (c) last step of shifting procedure for the population of the
flexibility matrix for a single foundation on homogeneous halfspace.

Shifting procedure for homogeneous and layered halfspace

The computational effort to determine the soil flexibility F̄s of a single or a group of founda-
tions resting on a homogeneous or layered halfspace can be reduced substantially by taking
the symmetry conditions into account. Instead of applying the load at each of the nftot

interaction nodes and evaluating the corresponding displacements, the foundation areas can
be shifted under the center of the concentrated load according to the discretization step
size, such that every interaction node is positioned once under the unit concentrated load.
[51, 100]

A prerequisite for the applicability of the shifting procedure is that the discretized surface
area of the soil substructure is at least twice as large as the area enclosing all available
foundations, so that for any shifting step the displacements at all foundation points can
be evaluated. Apart from that, the dimensions of the discretized area are generally chosen
such that the induced surface waves at the given frequency are mostly attenuated before
reaching the domain boundaries, thus avoiding numerical errors due to the periodic repetition
introduced by discrete calculation applying the FFT.

In case of the homogeneous or layered halfspace, due to the complete rotational symmetry
of the systems, the position of the load on the surface is irrelevant and the displacement
field only needs to be computed once for a vertical and once for one of the horizontal load
directions [51]. Thereby, the necessary number of computations of the soil displacements
ūs(x,y,ω) is reduced from 3nftot to only two and all remaining displacements are supple-
mented by means of symmetry considerations. The first step of the shifting procedure for
the population of the soil flexibility matrix in case of a single foundation resting on a ho-
mogenous halfspace is shown in Fig. 5.6b. Therein the discretization point at the left upper
corner of the foundation is located at the position of the maximum displacement due to the
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Figure 5.7: (a) Original fine and new coarse discretization for the determination of F̄s within the foundation
area. (b) Vertical flexibility F̄ ij

zz at a point i due to a concentrated unit load for two adjacent
shifting steps j and j+1 (left) before and (right) after the introduction of the new discretization.

vertical unit concentrated load at the center of the ground surface, depicted in Fig. 5.6a.
The corresponding displacements at all nodes of the soil foundation interface are sorted into
the first column of the flexibility matrix. The same operation is repeated for each step of the
shifting procedure, until the last foundation node nf is located at the point of load applica-
tion, as illustrated in Fig. 5.6c. Therefore, each column of the flexibility matrix comprises
the displacements of all foundation nodes in x,y and z direction due to an unit load P̄ j

n at a
specific position j = 1,...,nftot in direction n, finally leading to the following structure of F̄s
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(5.23)

The use of the concentrated unit load, which occupies several nodes, in combination with a
small discretization step size leads to numerical issues when applying the shifting procedure
to populate F̄s. A shift of the load position by only one discretization point is not sufficient
to achieve a significant change in the displacement field, so that the adjacent columns of the
flexibility matrix contain very similar values (cp. Fig. 5.7b). Consequently, the determinant
gets close to zero and F̄s features a rather large condition number. This in turn leads to
numerical instabilities and a reduced accuracy when inverting the flexibility matrix to K̄s,
which is finally used to couple the soil substructure to the foundation substructure. To
avoid this, the shifting procedure is performed on a coarser discretization as proposed by
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Figure 5.8: (a) Discretization points at soil foundation interface and vertical unit concentrated load at cen-
ter of the halfspace surface. (b) First and (c) last step of the shifting procedure for the popula-
tion of flexibility matrix for group of two foundation on homogeneous halfspace.

[85], ensuring larger differences of the displacement fields within a shifting step and thus a
better conditioning of F̄s. The displacements on the new coarse mesh, shown in Fig. 5.7a,
are determined as the mean value of all displacements w.r.t. the fine mesh within an area
A = n∆dxn∆dy, whereby dx,dy are the discretization step sizes of the fine mesh and n∆ is
the factor relating the old step size with the new one. To avoid that, due to the averaging,
the displacement under the concentrated load no longer corresponds to the desired point
flexibility, n∆ should be chosen between one and three. Moreover, the discretization step
sizes should be selected sufficiently small to represent the characteristic waves. [51]

In general the shifting procedure used for the single foundation is also applicable to set up F̄s

for a group of two or four foundations on a homogenous or layered halfspace. As illustrated
in Fig. 5.8, again the foundation areas are shifted w.r.t. the discretization step size, such
that each of the nftot nodes is consecutively located under the center of the concentrated
unit load once. Now, however, the displacements at the discretization points of all available
foundations due one specific load position are sorted columnwise into the flexibility matrix.
For this purpose, the coarse mesh with the averaged displacements is employed.

Within the implementation, the numbering of the foundation nodes is used for sorting the
corr. displacements in F̄s instead of their coordinates. Thereby, all nodes in x-direction
of the foundation for the minimum y-coordinate are initially assigned consecutive numbers
and then successively for all further y until the ultimate point at the outer edge of the last
foundation is reached (cp. Fig 5.9a). This allows a straightforward filling up of the flexibility
matrix for a single foundation or two foundations aligned in y-direction, as then all nodes
of one foundation are numbered continuously. As a result, the desired structure of F̄s, with
the contributions related to each foundation Fn arranged blockwise as F̄Fij

s , is obtained.
 ūF1

s

ūF2
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 (5.24)
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The matrices F̄F11
s and F̄F22

s each contain the flexibilities at the nodes of one foundation
due to a load on the nodes belonging to the same foundation and thus after the coupling
characterize the reaction of the soil-foundation system due to a load on the foundation itself.
In contrast the matrices F̄F12

s and F̄F21
s contain the flexibilities on the nodes of foundation F1

due to a load on the nodes of foundation F2 and vice versa. They thus represent the through
soil coupling of the two foundations and will later on be used to assess the SSSI. If both
foundations exhibit the same size and flexural stiffness, it is only necessary to compute F̄F11

s

and F̄F12
s , since all other flexibilities can be supplemented from symmetry considerations.

The shifting procedure then only needs to be applied for the nodes of foundation F1.
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Figure 5.9: (a) Initial numbering of the nodes for a group of four foundations and (c) resulting structure of
Fs after population applying the shifting procedure. (b) Continuous numbering of foundation
nodes after reorganization and (d) corr. blockwise structure of the soil flexibility matrix. [284]
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However, in case of two foundations aligned in x-direction, or a group of four foundations,
due to the used numbering algorithm the nodes of one foundation are no more numbered con-
tinuously (cp. Fig 5.9a). This leads to an alternating arrangement of flexibility components
belonging to different foundations when populating F̄s as illustrated in Fig. 5.9c. There-
fore, a retroactive reorganization of the flexibility matrix is necessary in order to obtain the
common structure of F̄s for the group of four adjacent foundations depicted in Fig. 5.9d, cor-
responding to a successive numbering of the nodes within each foundation shown in Fig 5.9b
[284].

Shifting procedure for soil including a length invariant structure

In case of the halfspace with cylindrical inclusion, the assumption of rotational symmetry no
longer applies, due to the inhomogeneity in the soil. Thus the position of the concentrated
load on the soil surface is significant for the resulting displacement field. [100]
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Figure 5.10: Modified shifting procedure for halfspace with cylindrical inclusion and selection of displace-
ments for (a) concentrated load at first and (b) last load position on discretization points of
soil foundation interface in y-direction of foundation F1. [100]
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However, as the system is length invariant only a different position in y-direction causes a
different system response. Consequently the concentrated load needs to be placed once at
each y−discretization point of the foundations. For two foundations located symmetrically
w.r.t. the x−axis, it is even sufficient to only consider the y−discretization points of one
foundation for the load positions, as the results for the second foundation again can be
gained by symmetry considerations. Nevertheless, loads in the direction of all DOFs have to
be considered. Fig. 5.10 illustrates the modified shifting procedure for the latter case. The
load is positioned one after another on all y−discretization points of the first foundation
F1 and the response at all interaction points of both foundations with the soil surface Λ is
evaluated. A new displacement field is determined for each of this load positions. For the
discretization points of the foundations in x−direction the same system response is used and
only the evaluation points are shifted under the point of load application. [100]

5.3.2 Soil foundation coupling

For the coupling of a finite 3D structure to the underlying ground at the soil foundation
interface, the continuity conditions at the contact surface must be satisfied. Usually those
structures and their foundations are modelled by the FEM and are thus discretized using
the different elements introduced in Sec. 4.2.2. For structures with restricted deformation
patterns, like rigid foundations, a simplified kinematic approach can be applied as outlined
later on. Since the reaction of any linear structure supported by a foundation can be eval-
uated, once the frequency dependent response of the foundation in terms of its dynamic
flexibility or stiffness is known [85], the focus of this work is on the investigation of the
dynamic soil-foundation interaction. Furthermore, for any kind of building the interaction
with the ground takes place via the foundation at the common contact surfaces. Therefore,
the following explanations are limited to the coupling of one or several rigid and flexible
foundations to different soil substructures at the ground surface. Nevertheless, results for
more complex superstructures such as multi-storey frames will be presented later in the
Sec. 6.5.

Flexible foundations

In case of a foundation with rather low flexural stiffness, the deformation of the foundation
has a significant impact on the dynamic soil structure interaction. Therefore, a three dimen-
sional FEM model is used to describe the foundation, as this allows to take the distribution
of the nodal displacements and forces at the contact surface into account. Either solid or
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system halfspace with cylindrical inclusion at the contact areas Λf1 and Λf2 . [100]

shell elements are used, whereby with regard on the coupling in case of shell elements the
rotational DOFs at the coupling interface have to be condensed out, as the discretization
points of the soil substructure only posses the three translatory DOFs [51].

After assembling all elements, the equation of motion for the foundation Fn can be expressed
in discretized form as

(
KFn

f − ω2MFn
f

)
ūFn

f = K̄Fn
f (ω) ūFn

f = P̄Fn
f (5.25)

where KFn
f and MFn

f are the stiffness and the (lumped- or consistent) mass matrix of the
respective foundation leading to the dynamic stiffness matrix K̄Fn

f . ūFn
f is the nodal dis-

placement vector and P̄Fn
f the nodal external force vector, all defined in the (x,y,ω) domain.

The material properties of the linear elastic foundation are fully characterized by the Young’s
Modulus Ef , the Poisson ratio νf and the density ρf . Material damping can be introduced
into the FEM model by replacing Ef by its complex counterpart. [51]

By placing each node of the FEM model to coincide with a discretization point at the interac-
tion surface with the soil, one can combine the two substructures applying the compatibility
conditions. These are enforced for all interaction nodes by assembling the dynamic stiffness
matrix of the soil K̄s at the appropriate positions into the total dynamic FEM stiffness
matrices K̄Fn

f of the foundations resulting in the total system of equations [51]

K̄sys ūsys = P̄sys resp. ūsys = F̄sysP̄sys (5.26)

whereby ūsys, P̄sys and F̄sys = K̄−1
sys are complex valued and comprise the DOFs at all nodes

in the interior of the FEM substructures Ωfn as well as the interface nodes with the soil at
the contact areas Λfn . For two foundations being coupled to a halfspace with cylindrical
inclusion Eq. (5.26) exemplarily results in the system of equations (5.27), which facilitates
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the determination of the displacements of the coupled soil-foundation system due to an
external load on one or both of the foundations fully considering the 3D SSSI.
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ūF1
Λf1
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Within the above outlined coupling approach the dynamic soil stiffness matrix K̄s only
needs to be computed once for a specific soil substructure and can be reused for various
superstructures, provided that the discretization and the size of the contact areas do not
change. The system of equations for a single or a group of four foundations can be set up
analogously by adapting the respective system matrices. The inclusion of further elements
as e.g. for the multi-storey frame, only leads to changes in the matrices associated with the
DOFs in the interior of the FEM domains Ωf1 and Ωf2 . The DOFs of the interaction nodes
on Λf1 and Λf2 and with that the coupling to the soil remain unaffected by these changes.

Rigid foundations

For the rigid foundation, two different modelling approaches are possible. First, a FEM
model as outlined above can be used, with material and geometry adapted to achieve a
reasonable flexural stiffness of the foundation. Here, the Young’s modulus Ef and the height
of the foundation slab Hf are the most important parameters. Second, the foundation can
be considered as rigid body, for which the displacement field at the contact area to the
soil can be expressed in terms of the amplitudes of the displacements and the rotations
around the axis at the center of the respective foundation ūFn

f ,r = (ūx,c ūy,c ūz,c φ̄x,c φ̄y,c φ̄z,c)T

as illustrated in Fig. 5.12a. The corresponding load vector including the amplitudes of
the externally applied forces and moments on the rigid foundation Fn is defined as P̄Fn

f ,r =(
P̄x,c P̄y,c P̄z,c M̄x,c M̄y,c M̄z,c

)T
. Due to the compatibility conditions, the displacements ūFn

s

at each of the discretization points (xFn
i , yFn

i ) with i = 1,...,nf of the soil subsystem at the
interactions surface with the F th

n foundation, must coincide with the rigid body motion of
the respective foundation ūFn

f ,r [285]

ūFn
s = L̄Fn

f ,r ūFn
f ,r with L̄Fn

f ,r =
(
aFn

1 ,...,aFn
nf

)T
(5.28)

Thereby L̄Fn
f ,r is the assemblage of the nf submatrices aFn

i with i = 1,...,nf including the
kinematic relation for each discretization point by means of its coordinates w.r.t. the center
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of the resp. foundation [58]

aFn
i =


1 0 0 0 0 −yFn

i

0 1 0 0 0 xFn
i

0 0 1 yFn
i −xFn

i 0

 (5.29)

Analogously, a relation between the external force vector P̄Fn
f ,r and the nodal contact forces

P̄Fn
s at the positions (xFn

i , yFn
i ) can be established via the kinematic relations, such that the

equilibrium of forces at z = 0 yields [63]

P̄Fn
f ,r = −

[
L̄Fn

f ,r

]T
P̄Fn

s = −
[
L̄Fn

f ,r

]T
AFn P̄Fn

Λfn
(5.30)

where AFn is a diagonal matrix whose elements express the load influence area around the
discretization points of a foundation Fn and P̄Fn

Λfn
is the 3nf × 1 traction vector of the ITM

or the ITM-FEM soil substructure at the contact surfaces Λfn .

Inserting Eqs. (5.28) and (5.30) into the force displacement relationship K̄Fn
s ūFn

s = P̄Fn
s

and applying a left sided multiplication with
[
L̄Fn

f ,r

]T
, a system of equations in terms of the

external forces and the rigid body displacements results as

K̄Fn
f ,r ūFn

f ,r = P̄Fn
f ,r with K̄Fn

f ,r = −
[
L̄Fn

f ,r

]T
K̄Fn

s

[
L̄Fn

f ,r

]
(5.31)

where K̄Fn
f ,r is the 6×6 frequency dependent dynamic stiffness matrix of the rigid foundation

coupled to the subsoil taking the following form

K̄Fn
f ,r =



K̄Fn
xx 0 0 0 K̄Fn

x,φy
0

0 K̄Fn
yy 0 K̄Fn

y,φx
0 0

0 0 K̄Fn
zz 0 0 0

0 K̄Fn
φx,y 0 K̄Fn

φxφx
0 0

K̄Fn
φy ,x 0 0 0 K̄Fn

φyφy
0

0 0 0 0 0 K̄Fn
φzφz


(5.32)

Eq. (5.31) can also be written in the form

ūFn
f ,r = F̄Fn

f ,r P̄Fn
f ,r (5.33)

where F̄Fn
f ,r (ω) = K̄F −1

n
f ,r (ω) is the 6 × 6 compliance matrix of the rigid surface foundation

built up analogously to Eq. (5.32).
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Figure 5.12: (a) Kinematic relation of the discretization points (xFn
i , yFn

i ) to the rigid body degrees of
freedom ūFn

f ,r at the center of the foundation Fn. (b) Dimensions and reference point A for
the mass moments of inertia of a 3D surface foundation.

Furthermore, it is possible to consider the inertia effects due to the mass of the foundations
and the superstructures by substituting the dynamic stiffness matrix with [107]

K̄Fn
f ,rm = K̄Fn

f ,r − ω2MFn
f ,r (5.34)

where MFn
f ,r is the mass matrix including the total mass of the foundation mf = LfBfHfρf

and the mass moments of inertia of the rigid foundation w.r.t. the center A of the foundation
at the ground surface as depicted in Fig. 5.12b and given in [286]

MFn
f ,r =



mf 0 0 0 mfdz 0
0 mf 0 −mfdz 0 0
0 0 mf 0 0 0
0 −mfdz 0 Ix 0 0

mfdz 0 0 0 Iy 0
0 0 0 0 0 Iz


with

IA
x = mf

(
L2

f +H2
f

12 + d2
z

)

IA
y = mf

(
B2

f +H2
f

12 + d2
z

)

IA
z = mf

(
B2

f + L2
f

12

)
(5.35)

The above relations for one foundation Fn can be straightforwardly extended to the inter-
action of several foundations with each other as well as with the underlying soil. Thus,
the dimensions of the total dynamic stiffness and flexibility matrices of the rigid massless
foundations K̄f ,r and F̄f ,r become 6Nf × 6Nf , where Nf is the number of foundations con-
sidered [104]. K̄f ,r is determined from the dynamic soil stiffness matrix K̄s for a group of
foundations applying the kinematic relations introduced above for each rigid foundation

K̄f ,r = L̄T
f ,rK̄sL̄f ,r (5.36)

where L̄f ,r is a block diagonal matrix with each of the blocks defined by L̄Fn
f ,r , as given in
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Eqs. (5.28) and (5.29) [86]

L̄f ,r =



L̄F1
f ,r 0 . . . 0
0 L̄F2

f ,r . . . 0
... ... . . . 0

0 0 . . . L̄FNf
f ,r

 (5.37)

Thus the total dynamic stiffness K̄f ,r can be partitioned in the form

K̄f ,r =


K̄F11

f ,r K̄F12
f ,r . . . K̄F1Nf

f ,r

K̄F21
f ,r K̄F22

f ,r . . . K̄F2Nf
f ,r

... ... . . . ...
K̄FNf 1

f ,r K̄FNf 2
f ,r . . . K̄FNf Nf

f ,r

 (5.38)

in which the submatrices on the main diagonal represent the dynamic stiffness of each rigid
foundation itself, whereas the off diagonal terms express the coupling between the respective
foundations. Each of the submatrices exhibits the structure given in Eq. (5.32). The overall
system of equations for the SSSI of several foundations in terms of the dynamic stiffness or
flexibility results as

K̄f ,r ūf ,r = P̄f ,r resp. ūf ,r = F̄f ,rP̄f ,r (5.39)

The total system equations including the effect of the massive foundation or superstructure
can be derived analogously.

5.4 Postprocessing

5.4.1 Stresses and displacements from Soil Structure Interaction

In order to determine the stresses and displacements due to the SSI inside the complete soil
domain, firstly the displacements ūc at the discretization points within the contact areas Λfn

resulting from an external load on the foundations have to be computed. If the foundations
are modelled with the FEM, these can be obtained from solving Eq. (5.26) and extracting
the displacements at the ground surface ūc = ūsys(z = 0). In case of rigid foundations,
considered via the kinematic boundary conditions, they can be computed as ūc = L̄f ,r ūf ,r

with the rigid body deformations ūf ,r resulting from Eq. (5.39). The displacements ūc
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Figure 5.13: Postprocessing procedure: Application of the contact stresses σ̄c at the soil foundation inter-
faces as external load on the surface of the 2.5D ITM-FEM system halfspace with cylindrical
inclusion (a) in the original domain (x,y,z,ω) and (b) in the transformed domain (kx,ky,z,ω)

are further used to compute the nodal contact forces P̄c = K̄s ūc at the soil foundation
interfaces in the (x,y,ω) domain. P̄c(x,y,ω) generally includes components in all spatial
directions. However, in case of a vertical or rocking load on the foundations, the vertical
displacements at Λfn dominate the SSI response. If additionally relaxed boundary conditions
are assumed, only the vertical contact forces are decisive for the stresses and displacements
induced into the soil, so that the components in x− and y−direction within P̄c are neglected
without introducing a considerable error. Within all equations describing the response of
the different soil substructures, the external loads at the ground surface are applied in
terms of stresses in the (kx,ky,ω) domain. Therefore, the nodal contact forces P̄c(x,y,ω)
need to be divided by their respective load influence areas AFn in a first step, to obtain the
contact stresses σ̄c(x,y,ω). The latter are calculated w.r.t. the coarse discretization, as is the
dynamic soil stiffness K̄s, and exist only at the contact surfaces of the foundations. However,
the governing equations describing the soil substructure were originally calculated w.r.t. the
fine discretization, so the contact stresses must be interpolated to provide a value at each of
these points and are assumed to be zero at all discretization points outside the foundations.
Eventually the contact stresses are transformed into the wavenumber frequency domain and
σ̂c(kx,ky,ω) is applied to the soil substructure as boundary condition at the ground surface
like illustrated in Fig. 5.13.

For a homogeneous or layered halfspace the wave amplitudes due to σ̂c(kx,ky,ω) at z = 0
and with them the stresses σ̂(kx,ky,z,ω) and displacements û(kx,ky,z,ω) in an arbitrary
depth z inside the soil can be determined directly applying Eqs. (2.16) resp. (2.23) followed
by (2.22). The results in the (x,y,z,ω) domain are obtained by a twofold inverse Fourier
transform. In case of a halfspace with cylindrical inclusion, only the displacements at the
ground surface Λ and inside the FEM domain due to the SSI contact stresses can be de-
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termined directly. To compute the stresses and displacements for every possible position
within the soil, a more elaborate postprocessing procedure is necessary. The displacements
ûhs cyl

ITM FE
resp. ûhs cyl L

ITM FE
have to be applied as boundary conditions to the homogeneous or

layered halfspace with cylindrical cavity excluding the coupling to the FEM. The super-
position of all involved fundamental ITM systems has to satisfy these given displacement
boundary conditions. Thus the wave amplitudes needed for the scaling of the displacements
resulting from unit stress states can be computed for each fundamental system. Eventually,
the stresses and displacements at any position of the overall system are determined out of
the superposition of stresses and displacements of all fundamental systems, resulting from
the unit stresses scaled with the calculated amplitudes, which are applied as external loads.
All results are initially obtained in the wavenumber frequency domain and w.r.t. different
reference systems referring to the corresponding fundamental systems. Therefore, different
coordinate and inverse transformations are necessary in order to obtain the resulting stresses
and displacements in Cartesian coordinates (x,y,z,ω). Further details on the postprocessing
concerning the coupled ITM-FEM soil substructure can be found in [162]. [51]

5.4.2 Power flux through a control volume

In order to analyse the energy distribution inside the ground, the stresses σ̄(x,y,z,ω) and
displacements ū(x,y,z,ω) can further be used to compute the power flux through a defined
control volume (CV), as illustrated in Fig. 5.14a. With that, it is possible to get a detailed
insight into the wave propagation characteristics of the soil substructure. Moreover, conclu-
sions about the radiation directivity as well as the attenuation behaviour can be drawn.

Power flux through a plane section

In a first step, the time averaged power input Ps(ω) transmitted through one of the plane
sections of the control volume within one period T = 2π/ω is considered. Ps(ω) can be
calculated from the integral of the intensity Ī(x,y,ω) over the area of the section A, given by
the dot product of the stresses σ̄ and the velocities v̄. Since only negative frequencies are
considered, the latter can be determined directly from the already known nodal displacements
v̄ = iωū.

Ps(ω) = 1
T

∫
(T )

∫
(A)

Ī(x,y,ω) dAdt = 1
T

∫
(T )

∫
(A)

σ̄(x,y,ω) · v̄(x,y,ω) dAdt (5.40)

For the power flux through a plane surface, only the normal and shear stresses in the section
plane need to be considered along with the corresponding velocities w.r.t. a local Cartesian
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Figure 5.14: (a) Power flux through a defined control volume (CV) due to a power input at the soil founda-
tion interface. (b) Numbering of CV surface areas and corr. local coordinate systems.

coordinate system, where z̄ is defined as the out-of-plane direction and x̄, ȳ are defined as
the in-plane directions, as shown in Fig. 5.14b.

Ps(ω) = 1
T

∫
(T )

∫
(A)

σ̄(x,y,ω) · v̄(x,y,ω) dAdt = 1
T

∫
(T )

∫
(A)

(σ̄z̄z̄v̄z̄ + σ̄z̄x̄v̄x̄ + σ̄z̄ȳv̄ȳ) dAdt (5.41)

Since the integral over each of the summands in Eq. 5.41 can be evaluated separately, the
time averaged power for one pair of the complex stress and displacement components

σ = 1
2

(σR + iσI)︸ ︷︷ ︸
σ+

eiωt + (σR − iσI)︸ ︷︷ ︸
σ−

e−iωt

 (5.42)

v = 1
2

(vR + ivI)︸ ︷︷ ︸
v+

eiωt + (vR − ivI)︸ ︷︷ ︸
v−

e−iωt

 (5.43)

can be computed as

Ps(ω) = 1
4T

∫
(T )

∫
(A)

[
(σR + iσI) (vR + ivI) e2iωt + (σR − iσI) (vR + ivI) e0+

+ (σR + iσI) (vR − ivI) e0 + (σR − iσI) (vR − ivI) e−2iωt
]

dAdt (5.44)

With the integrals ∫T
0 e

±2iωtdt becoming zero, σ− and v− being the components associated
with −ω and ∗ denoting the conjugate complex of the corr. quantity it follows

Psi
(ω) = 1

2

∫
(A)

(σRvR + σIvI) dA = 1
2 Re

 ∫
(x̄i)

∫
(ȳi)

(σ− · v∗
−) dȳi dx̄i

 (5.45)
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Thus the overall power flux through the considered area finally results as

Psi
(ω) = 1

2 Re

 ∫
(x̄i)

∫
(ȳi)

σ̄z̄iz̄i
v̄z̄i

+ σ̄z̄ix̄i
v̄x̄i

+ σ̄z̄iȳi
v̄ȳi

dȳi dx̄i


= 1

2Re

 ∫
(x̄i)

∫
(ȳi)

σ̄(x̄i,ȳi,ω) · v̄∗(x̄i,ȳi,ω) dȳi dx̄i

 (5.46)

whereby the phase shift between the contact stresses and velocities is accounted for by the
complex values of σ̄ and v̄. If these exhibit a phase shift of ninety degrees, the time averaged
power Ps(ω) becomes zero and no power is transmitted through the surface.

Numerical computation of the power flux

Due to the numerical computation, the stresses σ̄(x̄i,ȳi,z̄i,ω) and the velocities v̄(x̄i,ȳi,z̄i,ω)
are only available at the equidistant discretization points located on a rectangular grid within
the considered area si (cp. Fig. 5.15a). To determine Ps(ω) in the (x,y,z,ω) domain, the
surface integral in Eq. (5.46) must be solved. For this purpose, two different approaches are
possible.

The first option is to assume a constant distribution of the stresses around each of the
discretization points i within the resp. influence areas dAi, resulting from the product of the
incremental distances dx̄i and dȳi between the neighbouring points in the plane of the surface
under consideration, as depicted in Fig. 5.15b. Therefrom, the equivalent nodal forces P̄ k

n

at the discretization point k in direction n̄ are calculated as P̄ k
n̄ = σ̄k

z̄in̄
dAi. Subsequently

Psi
(ω) can be computed as the component-wise sum of the nodal forces P̄ and the nodal

velocities v̄ over all discretization points n of the considered area si

Psi
(ω) ≊ 1

2Re
(∑

n

P̄(x̄i,ȳi,ω) · v̄∗(x̄i,ȳi,ω)
)

= 1
2Re

(
n∑

k=1
P k

x̄i
v∗ k

x̄i
+ P k

ȳi
v∗ k

ȳi
+ P k

z̄i
v∗ k

z̄i

)
(5.47)

Yet it must be noted, that for a rather coarse discretization this procedure only gives a
relatively rough estimate for Psi

(ω) due to the assumption of the constant stresses. Fur-
thermore, one has to take the different load influence areas at the edges and corners of the
foundations into account when computing the nodal forces from the stresses.

A second option that resolves this problem and in addition allows a more accurate approxi-
mation of the power input is, to integrate the intensity distribution Ī(x̄i,ȳi,ω) directly. For
this purpose, the values of the stresses σ̄(x̄i,ȳi,z̄i,ω) and the velocities v̄(x̄i,ȳi,z̄i,ω) at the
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Figure 5.15: (a) Discretization points on the section planes of the control volume. (b) Constant distribution
of the stresses around each discretization point and (c) approximation of the stress distribu-
tion over each element with linear shape functions in dependency of the nodal values.

discretization points k are assumed to be the nodal values σe
j and ve

j of a four node quadri-
lateral element e and their distribution over the element area is approximated with the help
of the linear shape functions from Eq. (4.5) as

σe(η,ζ) =
4∑

j=1
σe

j ·N e
i (η,ζ) ve(η,ζ) =

4∑
j=1

ve
j ·N e

j (η,ζ) (5.48)

Applying an isoparametric approach, the geometry of the elements is described analogously

xe(η,ζ) =
4∑

j=1
xe

j ·N e
j (η,ζ) ye(η,ζ) =

4∑
j=1

ye
j ·N e

j (η,ζ) (5.49)

As the shape functions are expressed in dependency of the natural coordinates of the element,
the surface integral has to be evaluated also w.r.t. η, ζ instead of x, y

∫
(x̄)

∫
(ȳ)

Ī(x̄,ȳ) dȳ dx̄ =
∫

(η)

∫
(ζ)

Ī(η,ζ) det J dη dζ with J =


∂x̄

∂η

∂x̄

∂ζ
∂ȳ

∂η

∂ȳ

∂ζ

 (5.50)

The power flux through the considered area averaged over time and space finally results as

Psi
(ω) =

∑
e

Pe
si

(ω) =
∑

e

1
2 Re

 1∫
0

1∫
0

(σe
z̄iz̄i
v∗e

z̄i
+ σe

z̄ix̄i
v∗e

x̄i
+ σe

z̄iȳi
v∗e

ȳi
) det J dη dζ

 (5.51)

The integral over the element area in Eq. (5.51) can be solved analytically in advance and
the resulting expression can be evaluated element-wise in dependency on the corresponding
nodal values of the stresses and velocities.
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The pseudocode of the implementation for the calculation of the power flow through a control
volume for the two different approaches is given in Alg. 3.

Algorithm 3 Postprocessing: Power flux through control volume
procedure Compute Power flux CV

Compute contact forces P̄c(x,y,ω) = K̄sūc due to SSI
Determine contact stresses σ̄c(x,y,ω) at z = 0
Interpolate σ̄c(x,y,ω) to fine discretization
Supplement σ̄c(x,y,ω)=0 outside contact areas
Fourier transform to σ̂c(kx,ky,ω)

for all kx, ky, ω do
Determine û(kx,ky,z,ω) and σ̂(kx,ky,z,ω)
at every position within the soil substructure

Inverse Fourier transform to ū(x,y,z,ω) and σ̄(x,y,z,ω)

function Pin and Ptot,cv( ) ▷ Via equivalent nodal forces
Define Control Volumes
Select all σ̄(x̄i,ȳi,z̄iω) on nodes of CV surfaces
Calculate corresponding equivalent forces P̄
Select all ū(x̄i,ȳi,z̄i,ω) on nodes of CV surfaces
Calculate v̄(x̄i,ȳi,z̄iω) = iωū(x̄i,ȳi,z̄iω)
Calculate power flux through CV surface wise
Psi

(ω) = 1
2Re

(
n∑

k=1
P k

x̄i
v∗ k

x̄i
+ P k

ȳi
v∗ k

ȳi
+ P k

z̄i
v∗ k

z̄i

)
function Pin and Ptot,cv( ) ▷ Via integration of intensity

Define Control Volumes
Select all σ̄(x̄i,ȳi,z̄iω) on nodes of CV surfaces
Select all ū(x̄i,ȳi,z̄iω) on nodes of CV surfaces
Calculate v̄(x̄i,ȳi,z̄iω) = iωū(x̄i,ȳi,z̄iω)
Define coordinates and node numbers of discretization points
Create rectangular elements e on CV surfaces
Assign σ̄(x̄i,ȳi,z̄iω) and v̄(x̄i,ȳi,z̄iω) as nodal values of the elements
Compute power flux trough CV for all elements surface wise

Psi
(ω) = ∑

e
Pe

si
(ω) = ∑

e

1
2 Re

(
1∫
0

1∫
0
(σe

z̄iz̄i
v∗e

z̄i
+ σe

z̄ix̄i
v∗e

x̄i
+ σe

z̄iȳi
v∗e

ȳi
) det J dη dζ

)
Surface-wise summation of power contributions

Power input Pin = Ps0 at soil foundation interface
Power transmission through all surfaces of CVs Ptot,cv =

5∑
i=1

Psi

Power ratios Ptot,CV/Pin, Psides/Ptot,CV, Pbottom/Ptot,CV
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Power flux through the control volume

By computing the power fluxes Psi
(ω) through all sectional planes si of the closed hexahedral

control volume of Fig. 5.14 using the methodology outlined above, it is possible to investigate
radiation patterns within a linearly elastic, homogeneous or layered soil. Since a stress free
surface is assumed outside the soil-foundation interface, energy is introduced only by the
contact stresses resulting from a harmonic loading of the foundation and performing work
on the corr. displacements within the contact area.

In case of zero material damping, this energy is only dispersed throughout the soil by elastic
waves so that with increasing distance from the source the energy is distributed over an
enlarging area, resulting in a lower energy density. Yet no dissipation of energy takes place.
Therefore, the power flux through a closed control volume needs to be equal to the sum of
the power fluxes through the sectional planes of the CV inside the soil

Pin(ω) = Ps0(ω) !=
5∑

i=1
Psi

(ω) = Ptot,CV(ω) (5.52)

In contrast, if a displacement proportional, frequency independent, hysteretic material damp-
ing is applied via complex material parameters, a reduction of the power flux with increasing
size of the CV occurs linked to the dissipated energy.

In order to be able to infer information on the directionality of the energy propagation within
different soil subsystems from the power flow through the control volume, as presented in
Sec. 6.3.1 and 6.3.2, the fluxes Psi

(ω) for different ensembles of the sectional planes are
summarised and set in relation to each other

Pin(ω) = Ps0(ω) Psides(ω) = Ps1−4(ω) =
4∑

i=1
Psi

(ω)

Pbottom(ω) = Ps5(ω) Ptot,CV(ω) = Ps1−5(ω) =
5∑

i=1
Psi

(ω) (5.53)

5.4.3 Power input at the soil foundation interface

With the energy flow analysis presented above, a deep insight into the dynamic response of
the soil to the SSI loading is possible. However, this postprocessing requires a quite high
computational effort, wherefore also only the power input at the soil foundation interface
can be used as measure for the vibrational energy that is transmitted into the soil by the
foundation. In the steady state, this power input is related to the energy which is dispersed
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by elastic waves propagating in the soil (geometrical damping) as well as the energy expended
by internal damping mechanisms, leading to an irreversible energy transfer from vibratory
to thermal energy (material damping). Therefore, Pin(ω) characterizes the radiation ability
of the foundation and thus allows to estimate the the potential of adjacent structures to be
interfered by the induced vibrations by means of a single valued quantity. [51]

Since the nodal contact forces P̄c(x,y,ω) = K̄s(x,y,ω)ūc(x,y,ω) and the corresponding ve-
locities v̄c(x,y,ω) at the soil foundation interface are available as a direct result from the SSI
analysis, it is favourable to use these immediately for the determination of the power input
Pin(ω) at the contact surface, which thus results as

Pin(ω) = 1
2Re

 ∫
(A)

σ̄c(x,y,ω) · v̄∗
c(x,y,ω) dA

 ≊
1
2Re

(∑
nf

P̄c(x,y,ω) · v̄∗
c(x,y,ω)

)
(5.54)

Furthermore, as the energy content of a signal in the original and the Fourier transformed
domain can be represented in an analogous manner according to the Parseval-Plancherel
identity [287], the power input of Eq. (5.54) can also be formulated as [51]

Pin(ω) = 1
8π2 Re

 ∞∫
−∞

∞∫
−∞

σ̂c(kx,ky,ω) · v̂∗
c(kx,ky,ω)dkxdky


≊

1
8π2 Re

∑
Ny

∑
Nx

P̂c(kx,ky,ω) · v̂∗
c(kx,ky,ω)dkxdky

 (5.55)

Since the quantities used for the determination of the power input in the wavenumber fre-
quency domain were also computed numerically by means of the FFT, the integrals from
−∞ to ∞ are replaced by a summation over the number of considered series members Nx

resp. Ny. The power for each combination of wavenumbers (kx,ky) at a given frequency thus
yields [51]

Pin(kx,ky,ω) = 1
2 Re

(
P̂c(kx,ky,ω) · v̂∗

c(kx,ky,ω)
)

(5.56)

Correlations between frequencies of high power input Pin(ω) and characteristic features of the
dynamic soil response for different soil substructures are shown in detail later on. Moreover,
the connection between the wavenumber spectra of the contact forces, the resulting displace-
ments and the power input with the radiated elastic waves as well as their directivities will
be illustrated in Sec. 6.3.
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6 Dynamic response to stationary

harmonic loads

In the upcoming chapter, the dynamic responses of multiple different systems, described by
the previously introduced coupled 2.5D and 3D ITM-FEM approaches, due to stationary
harmonic loads are presented. For this end, the system responses are evaluated separately
for selected frequencies or the frequency range of interest for the considered problem and
the results are given in the frequency domain. The main objectives herein are to verify
the proposed approaches and procedures by comparing the obtained results with those of
(semi-)analytical solutions or from the literature for different benchmark cases as well as
to demonstrate the applicability and the suitability of the method for the assessment of
practical issues.

Therefore, in Sec. 6.1, the semi-analytical solutions of the fundamental systems halfspace,
layered halfspace and elastic stratum over rigid subsoil (cp. Sec. 2.2 and 2.3) are firstly
validated by means of literature results. Subsequently, the coupling of ITM and FEM for
different soil substructures with longitudinally invariant cylindrical inclusions (cp. Sec. 5.1) is
verified by comparing the results with those of the previously validated fundamental systems.
Both homogeneous and layered soils with one or two cylindrical inclusions or indentations
are considered for different load scenarios and frequencies. The validation is then carried
out analogously for the coupling of the halfspace with a spherical inclusion or indentation
(cp. Sec. 5.2). Thereby, also results for different meshes of the FEM model of the spherical
enclosure are presented.

Sec. 6.2 shows an application of the coupled ITM-FEM approach for the investigation of
various vibration mitigation measures such as the installation of a heavy weight wall close
to a railway track (Sec. 6.2.1), infilled or open infinite and finite trenches in the transmission
path (Sec. 6.2.2, 6.2.3 and 6.2.4) or elastic building supports (Sec. 6.2.5). The method allows
to predict the vibration reduction at the receiving position by means of numerical simulations
and thus to assess the efficiency of a single measure or to compare the performance of
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different ones. Furthermore, it makes the investigation of the physical mechanisms behind
the mitigation measures possible and enables the identification of the most important design
parameters due to the insights into the wave propagation characteristics obtained, among
others, by the analysis in the wavenumber-frequency domain.

In Sec. 6.3 the coupling of three dimensional superstructures to the underlying ground, out-
lined in Sec. 5.3, is applied to determine the dynamic response of a single surface foundation
for different subsoil and loading conditions. Initially, the main characteristic features of the
frequency dependent foundation flexibilities and the power input at the soil foundation inter-
face are illustrated for the rather simple support conditions of the homogeneous (Sec. 6.3.1)
and the layered halfspace (Sec. 6.3.2). Thereby both, rigid and flexible massless or massive
foundations are considered. Furthermore, wavenumber spectra of the displacements, con-
tact forces and the power input resulting from the SSI are presented and correlations to the
wave propagation characteristics are drawn. The deductions on the radiation directivity and
the attenuation behaviour are further confirmed by the distributions of the displacements
and the energy inside the soil obtained by the postprocessing procedure. The accuracy of
the proposed methodology for the determination of the soil flexibility resp. stiffness matrix
and the coupling is demonstrated by comparison of the obtained results to literature for
standard benchmark cases. Finally, the behaviour of a foundation on more complex soil
subsystems, including local inhomogeneities, is assessed (Sec. 6.3.3) by showing differences
and similarities to the results presented before. [51]

The expansion of the proposed method for the SSSI of several adjacent foundations on
the ground surface is outlined in Sec. 6.4. Thus, for validation purposes, the frequency
dependent compliances of a group of rigid surface foundations on a homogeneous halfspace
is first compared with literature results for standard cases (Sec. 6.4.1). Subsequently, the
results for adjacent foundations resting on a halfspace with cylindrical inclusion, obtained by
applying the modified shifting procedure to determine the soil stiffness matrix, are verified
and a parametric study investigating the wave-impeding effect of a finite, stiff inclusion on the
foundation compliances and the surface displacements is performed (Sec. 6.4.2). Parameters
with a strong influence on the system response are identified and indications, under which
circumstances the influence of the inclusion should necessarily be taken into account, are
given.

In Sec. 6.5 the coupled ITM-FEM approach is applied to investigate the effect of the soil
structure interaction on the dynamic response of spatial frame structures. The influence
of different subsoil and founding conditions on the frequency response functions (FRFs)
at characteristic points of the structure as well as the corr. modal behaviour is discussed.
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Moreover, transfer functions relating the structural response due to a punctual loading of
the soil in the vicinity of the building are presented, which can be used to asses the through
soil coupling of a building and a nearby vibrational source.

Eventually, the effect of the dynamic interaction of two parallel tunnels is investigated in
Sec. 6.6. Thereby, the significant influence on the vibration amplitudes at the ground surface
due to the inclusion of the second tunnel into the model is illustrated by means of the insertion
gains.

6.1 Verification examples

6.1.1 Homogeneous and layered halfspace

In the following, the dynamic responses of a linear elastic, isotropic, homogeneous and layered
soil due to a harmonic load on the ground surface is determined by means of the fundamental
ITM systems introduced in Secs. 2.2 and 2.3. The obtained results are compared with
literature solutions, which have shown to be in good agreement with published measurement
data, for validation purposes. The setup of the system which is investigated for different
soil compositions and loading conditions as well as the associated dimensions are depicted
in Fig. 6.1. The material parameters and the associated velocities of the compressional cp,
the shear cs and the Rayleigh waves cr for the different soil configurations considered are
given in Tab. 6.1. The values were chosen on the basis of the measured soil properties of
a particular British Rail site and therefore correspond to physically realistic values. They
also match the material parameters chosen for the calculation of the surface displacements
in [13, 16, 210], so that a direct comparison of the results is possible.

Λ1

Λ2

P̄ΛITM

by

bx

h1

Figure 6.1: Setup and dimensions for validation of fundamental system layered halfspace.
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Ll h1 (m) Es (Nm−2) νs (−) ρs (kgm−3) ζs (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil A 1 ∞ 2.69 · 108 0.257 1550 0.05 460.00 263.07 242.32
Soil B 1 ∞ 1.07 · 109 0.257 2000 0.05 809.92 463.18 426.64
Soil C 1 7 2.69 · 108 0.257 1550 0.05 460.00 263.07

2 ∞ 1.07 · 109 0.257 2000 0.05 809.92 463.18 426.64
Soil D 1 7 2.69 · 108 0.257 1550 0.05 460.00 263.07

2 ∞ 1.00 · 1011 0.000 10000 0.05 3166.20 2238.90 1947.80

Table 6.1: Soil properties and composition at the reference sites.

Soils A and B each describe a homogeneous halfspace consisting entirely of the resp. material,
while Soil C represents a stratified soil with a moderate stiffness difference between the
upper soil layer and the underlying elastic halfspace, expressed by the ratio of the shear
wave velocities cs2/cs1 ≈ 1.75. Soil D, in contrast, represents an elastic stratum over a rigid
substrate with an inflexible interface at z1 = h1 and thus a large ratio cs2/cs1 ≈ 8.5.

First, the steady state displacements at the surface of Soil A due to a vertical strip load
with by = 1.5 m and bx = Bx and amplitude |p̄zz,Λ(x,y,ω)| = 2π/by applied in the center
of the coordinate axis are determined and compared to the results obtained by Lefeuve-
Mesgouez et al. [210]. Therein, an analytical solution of the differential equation for the given
boundary conditions in the wavenumber frequency domain assuming plane strain conditions
is evaluated for discrete samples and a numerical inverse Fourier transform is applied to
retrieve the results in the spatial domain.
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Figure 6.2: Comparison of |ūz(y)|/by at x = 0 on the ground surface of a homogeneous halfspace (Soil
A) due to a vertical strip load for f = 8 Hz (+), f = 16 Hz (◦), f = 32 Hz (□) and f = 64 Hz
(♢) obtained with the ITM approach ( ) to the results of Lefeuve-Mesgouez et al. [210] ( ).
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Fig. 6.2 shows the absolute value |ūz(y)| of the vertical displacements normalized by the load
width by at x = 0 for different frequencies, computed for a total discretized ITM domain
size of Bx = By = 256 m with Nx = Ny = 212 sample points resp. Fourier series members.
Since the displacement field is symmetric w.r.t. the load, only the values of |ūz(y)| for y > 0
are depicted. For these, a very good agreement between the both solutions regarding all
considered frequencies can be observed.

Second, the response to a harmonic vertical block load for all soil compositions of Tab. 6.1
is computed applying the ITM approach and opposed to the results obtained by Jones et al.
[16]. A square load with side length bx = by = 0.6 m and amplitude |p̄zz,Λ(x,y,ω)| = 1/(bxby),
leading to an unit resultant, is applied at z1 = 0. The rather high frequency of f = 64 Hz
has been chosen, since therewith for the given ground parameters several propagating modes
can occur within the upper 7 m thick soil layer for Soils C and D.
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Figure 6.3: Comparison of |ūz(y)| at x = 0 on the ground surface of Soil A (−), Soil B (+), Soil C (∗) and
Soil D (◦) due to a vertical rectangular block load with f = 64 Hz obtained with the ITM ( )
approach to the results of Jones et al. [16] ( ).

Fig. 6.3 shows the resulting vertical displacements |ūz(y)| along the y-axis up to 25 m from
the load center, whereby the maximum at y = 0 has been cropped to better show the details
of the variation of the displacement w.r.t. the y-direction for the different subsoil conditions.
The responses for the homogeneous Soil A and the two layered Soils C and D are quite
close to each other, since the underlying halfspace at the considered frequency only has little
influence. This also agrees with the findings of Auersch [288], according to whom only the
ground up to half the Rayleigh wavelength λr has an influence on the surface displacements.
Due to its elastic interface at z1 = h1, Soil C represents an intermediate state between Soils
A and D and leads to a less pronounced interference pattern of the modes propagating in
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the layer than in the case of the rigid substrate. The difference between the three results
would, however, be larger at the layer resonance frequencies [16]. The displacements for the
stiffer homogeneous Soil B are much smaller and more concentrated, but like for Soil A show
a strictly monotonic decrease with increasing distance from the load. The computed results
for all different system setups show very good agreement with those presented in Jones et al.
[16] and thus validate the proposed ITM approach for the fundamental systems halfspace
and layered halfspace.

6.1.2 Halfspace with cylindrical inclusions

In order to verify the coupling of the ITM and the FEM at a cylindrical interaction surface
as well as the coupling of a discrete soil stratification to an underlying soil substructure, both
presented in Sec. 5.1, a selection of all possible system setups for different load scenarios is
evaluated in the following and the results are compared to the previously validated semi-
analytical solutions of the fundamental systems halfspace and layered halfspace.

For this purpose both, the cylindrical indentations or cavities are completely filled with finite
elements that have the same material parameters as the surrounding Soil 1, given in Tab. 6.2.
A layered halfspace, with identical material for the layer and the underlying infinite soil, is
chosen as benchmark system for the validation of the embedded inclusions, since it allows to
evaluate the displacements directly at a defined depth z = Htot and compare them to those
within the FEM domain of the coupled approach, additionally to the displacements on the
ground surface. Furthermore, a load P̄hs L

Λ2 ITM
can be applied as transition condition at the

layer interface Λ2 and therefore also a scenario with a load P̃Ωc FE inside the FEM domain
of the coupled approach can be compared to the semi-analytical solution [84]. In case of
the indentation, it is sufficient to use a homogeneous halfspace for the computation of the
reference solution, since only the displacements at the ground surface are considered here.

In all following validation examples, a harmonic square block load with f = 2, 30 and
60 Hz and a width of bx = by = 2 m is applied to both, the coupled approach and the
reference system. For a load within the ITM domain, stresses P̄Λ1 ITM resp. P̄Λ2 ITM with
unit amplitude 1 Nm−2 are used, while in case of a loading inside the FEM substructure
equivalent nodal loads P̃Ωc FE are employed. Furthermore, unless explicitly stated differently,
a total domain size of Bx = By = 128 m with Nx = Ny = 29 sampling points resp. wave
numbers was chosen, resulting in an incremental step size on the ground surface for the ITM
substructure of dx = dy = 0.25 m. This discretization allows an appropriate sampling of
the propagating waves and ensures the attenuation of the displacement amplitudes under a
certain threshold, before reaching the boundary of the discretized area, thus avoiding aliasing
effects [84].
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E (Nm−2) ν (−) ρ (kgm−3) ζ (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil 1 2.60 · 107 0.3 2000 0.05 132.31 70.72 65.60
Soil 2 5.00 · 108 0.3 2000 0.05 580.84 310.47 288.02
Foundation 3.00 · 1015 0.2 0 0.02 − − −

Table 6.2: Soil properties for verification of halfspace with cylindrical inclusion or indentation.

The cylindrical 2.5D FEM inclusion was discretized with Nφ = 64 equidistant nodes resp.
Fourier series members along the circumference, leading to an element size of 0.125 m for
the considered inclusion size of R = 4 m and thus approximately ten elements per shear
wave length λs of the soil at the highest regarded frequency [100]. To decrease the computa-
tional effort, for the low frequency range also a coarser discretization can be chosen for both,
the ITM and the FEM substructure, since the characteristic wave lengths are much larger
and less sampling points are sufficient to cover the corr. waves. However, as the amount
of discretization points on Γc also influences the geometric approximation of the cylindrical
boundary by the FEM model, Nφ must not be reduced too strongly. To ensure that the
influence on the wave propagation is taken into account when evaluating the displacement
response, a rather large size of R = 4 m was chosen for the inclusion and the indentation.
Therefore, even in the low-frequency range the dimension of the FEM substructure is suf-
ficiently large compared to the wavelengths of the elastic waves. Furthermore, the selected
total embedment depth Htot of the inclusion guarantees that it is located within the in-
fluence region of the Rayleigh waves for large parts of the considered frequency spectrum
f = 2 − 60 Hz.

Single inclusion in layered soil

As first validation example a stratified soil with a top layer of h1 = 2 m and a single
cylindrical inclusion with an overall embedment depth of Htot = h1 +H = 8 m shifted from
the center by yTc = 8 m is considered, as illustrated in Fig. 6.4a.
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Figure 6.4: System setup for validation due to harmonic load at the soil surface: (a) Coupled ITM-FEM
system layered halfspace with single cylindrical inclusion and (b) layered halfspace.
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Figure 6.5: Vertical displacements |ūz(y)| at x = 0 for layered halfspace with inclusion ( ) and the
layered halfspace ( ) on the soil surface z1 = 0 (left) and within the soil at z1 = Htot (right)
for (a),(b) f = 2 Hz, (c),(d) f = 30 Hz and (e),(f) f = 60 Hz for setup depicted in Fig. 6.4.
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f (Hz) z (m) maximum value maximum error Tanimoto coefficient
2 0 7.82 · 10−8 2.52 · 10−11 1.00
2 Htot 8.55 · 10−9 4.56 · 10−10 1.00

30 0 3.83 · 10−8 3.39 · 10−12 1.00
30 Htot 1.17 · 10−9 3.28 · 10−12 1.00
60 0 1.02 · 10−8 1.47 · 10−11 0.99
60 Htot 7.58 · 10−10 1.07 · 10−10 0.99

Table 6.3: Error measures for layered halfspace with single inclusion w.r.t. |ūz(y)|.

Both systems of Fig. 6.4 are subjected to a square block load at the ground surface centred
above the inclusion at x = 0. The corr. vertical displacements |ūz(y)| on the ground surface
in the (x,y,ω) domain at x = 0 are presented in the left column of Fig. 6.5. Furthermore,
the results within the soil at z1 = Htot are depicted in the right column of Fig. 6.5, whereby
for the layered halfspace with inclusion the results are only depicted along the center line
of the FEM substructure. For all results a very good agreement between the coupled ITM-
FEM approach and the semi-analytical solution of the layered halfspace can be observed. A
quantitative comparison of the coupled approach and the layered halfspace at the ground
surface and within the soil is presented in Tab. 6.3, where the maximum value, the maximum
error as well as the Tanimoto coefficient refer to the absolute values |ūz(y)| at x = 0.

In addition, the results for both systems are compared due a square block load applied at
depth Htot inside the soil, as shown in Fig. 6.6. Embedment depth, layer thickness and
inclusion size are chosen as before and the results for |ūz(y)| are presented analogously in
Fig. 6.7. Also here a very good accordance between the proposed ITM-FEM approach and
the reference solution can be stated.
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Figure 6.6: System setup for validation with harmonic excitation inside the soil: (a) Coupled ITM-FEM
system layered halfspace with single cylindrical inclusion and (b) layered halfspace.
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Figure 6.7: Vertical displacements |ūz(y)| at x = 0 for layered halfspace with inclusion ( ) and the
layered halfspace ( ) on the soil surface z1 = 0 (left) and within the soil at z1 = Htot (right)
for (a),(b) f = 2 Hz, (c),(d) f = 30 Hz and (e),(f) f = 60 Hz for setup depicted in Fig. 6.6.
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Two inclusions in homogeneous soil

Second, the dynamic response of a homogeneous halfspace with two parallel cylindrical
inclusions, derived in Sec. 5.1 and depicted in Fig. 6.8a, is investigated. The inclusions are,
with yTc1 = 8 m and yTc2 = −8 m, arranged symmetrically around the centre of the soil
domain. The embedment depth is H = 6 m, so that a soil cover of hcyl = 2 m remains for
an inclusion radius of R = 4 m.
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Figure 6.8: System setup for validation with harmonic load on the ground surface: (a) Coupled ITM-FEM
system halfspace with two parallel cylindrical inclusions and (b) layered halfspace.

Analogous to the previous example, the vertical displacements |ūz(y)| along the y−axis at
the surface and at depth z = H inside the soil are evaluated due to the square block load at
z = 0 centred over the inclusion T1 at yTc1 = 8 m and x = 0 and illustrated in Fig. 6.9. At
z = H the displacements of the coupled system are again only depicted on the center lines of
the FEM domains Ωc1 and Ωc2 . The results of the ITM-FEM approach on the ground surface
Λ1 as well as inside the FEM substructures match nicely with the reference solution for all
considered frequencies, proving that the interaction of the cavities through the soil works
correctly and thus validating the superposition and coupling procedure for the halfspace with
two cylindrical inclusions. The corresponding error measures are given in Tab. 6.4, showing
a Tanimoto coefficient being almost consistently one.

f (Hz) z (m) maximum value maximum error Tanimoto coefficient
2 0 7.82 · 10−8 2.63 · 10−11 1.00
2 H 1.20 · 10−8 3.21 · 10−11 1.00

30 0 3.84 · 10−8 2.44 · 10−11 1.00
30 H 2.50 · 10−9 3.84 · 10−11 1.00
60 0 1.01 · 10−8 2.71 · 10−11 1.00
60 H 1.37 · 10−9 5.91 · 10−11 0.98

Table 6.4: Error measures for halfspace with two parallel inclusions w.r.t. |ūz(y)|.



120 6 Dynamic response to stationary harmonic loads

-40-2002040
0

2

4

6

8
10-8

(a)

-40-2002040
0

0.2

0.4

0.6

0.8

1

1.2

1.4
10-8

(b)

-40-2002040
0

1

2

3

4
10-8

(c)

-40-2002040
0

0.5

1

1.5

2

2.5

3
10-9

(d)

-40-2002040
0

0.2

0.4

0.6

0.8

1

1.2
10-8

(e)

-40-2002040
0

0.2

0.4

0.6

0.8

1

1.2

1.4
10-9

(f)

Figure 6.9: Vertical displacements |ūz(y)| at x = 0 for the halfspace with two parallel inclusions ( )
and the layered halfspace ( ) on the soil surface z1 = 0 (left) and within the soil at depth
z1 = Htot (right) at (a),(b) f = 2 Hz, (c),(d) f = 30 Hz and (e),(f) f = 60 Hz for setup
depicted in Fig. 6.8.
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Two indentations in homogenous soil

In order to validate the proposed approach also including the adaptations for the case of a
halfspace with cylindrical indentations, described in Secs. 3.1 resp. 3.2 and 5.1, the system
shown in Fig. 6.10a is investigated in the following.
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Figure 6.10: System setup for validation with harmonic load on the ground surface: (a) Coupled ITM-FEM
system halfspace with two parallel cylindrical indentations and (b) layered halfspace.

The two parallel indentations have the same size R and are located at the same positions yTc1

and yTc2 as in the previous example, yet the embedment depth H is zero in the current case,
so that exactly half of the cylinder lies within the soil. Again Nφ = 64 Fourier members along
Γc are used, which now need to represent the discontinuity of stresses and displacements at
the transition from below to above the ground surface in the series expansion along the
complete cylindrical interaction surface necessary for the coupling. The total domain size
Bx = By is reduced to 64 m for f = 60 Hz, since due to the small wavelengths at higher
frequencies the amplitudes decay much faster towards the edge. At the same time, this
increases the discretization in the spatial domain and higher wavenumbers are taken into
account (cp. Fig 3.7), contributing to a better representation of the shorter wavelengths.

The results for a square block load at the ground surface around the center of the FEM
domain Ωc1 , are illustrated in Fig. 6.11. Thereby, the left column shows |ūz(y)| on the
ground surface along the y−axis at x = 0, while |ūz(x)| in the longitudinal direction of
the cylinder at yTc1 is depicted in the right column. For f = 2 and 30 Hz, the results
of the coupled system and the homogenous halfspace show very good accordance for both
directions. This demonstrates clearly that the transmission of the vibrations from the FEM
domain Ωc1 into the ITM substructure and further into Ωc2 is well represented in the model.

f (Hz) z (m) maximum value maximum error Tanimoto coefficient
2 0 7.84 · 10−8 1.71 · 10− 9 0.99

30 0 3.88 · 10−8 1.03 · 10−10 0.99
60 0 1.11 · 10−8 1.57 · 10− 9 0.85

Table 6.5: Error measures for halfspace with two parallel indentations w.r.t. |ūz(y)|.
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Figure 6.11: Vertical displacements |ūz(y)| at x = 0 (left) and |ūz(x)| at y = yTc1 (right) for the halfspace
with parallel inclusions ( ) and the halfspace ( ) on the soil surface at (a),(b) f = 2 Hz,
(c),(d) f = 30 Hz and (e),(f) f = 60 Hz for the system setup depicted in Fig. 6.10.
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For f = 60 Hz some deviations from the reference solution are visible, especially near the area
of load application, indicating that the chosen discretization is not yet completely sufficient to
maintain the high quality of the coupling and the solution. Thus, considering inclusions with
large dimensions and investigating higher frequencies connected with small wavelengths, a
refinement of the discretization is necessary. However, since this is always linked to a raising
computational effort, a balance between computation time and an acceptable error needs to
be found. Considering the Tanimoto coefficient for the computed solutions in Tab. 6.5, a
quite good overall similarity of the results for the coupled approach and the semi-analytical
reference solution can nevertheless be observed and thus the quality accepted as sufficient.

Response underneath a strip foundation

For the validation of the coupled ITM-FEM approach, also taking into account structures
that extend over the soil surface and feature different material properties, a surface strip
foundation depicted in Fig. 6.12 is investigated subsequently. The two limiting cases of a
massless fully, flexible Ef = 0 and a massless, rigid foundation, represented by a very high
Young’s modulus Ef = 3 · 1015 Nm−2, are considered. All other material parameters of the
foundation are given in Tab. 6.2. The results are compared to those obtained in Radišić
et al. [129], applying a coupled ITM-SEM approach. Therein the SSI problem is solved
by coupling the mode shapes of a spectral Euler Bernoulli beam element with the modal
dynamic stiffness of the soil applying the compatibility conditions at the soil foundation
interface and carrying out a modal superposition approach.

Λy
zx

Bf

Hf

2R

Ωc

Γc

P̃hs cyl
Ωc FE

Figure 6.12: Strip foundation resting on a homogenous halfspace and subjected to uniform load.

A strip foundation with a width of Bf = 1 m and a height of Hf = 0.2 m, uniformly loaded
with |P̃hs cyl

Ωc FE
| = 10 Nm−2 in the vertical direction and resting on a homogeneous halfspace,

with the material of Soil 2 in Tab. 6.2 is considered. A total domain size of Bx = By = 256 m
with Nx = Ny = 210 sample points resulting in an incremental distance of dx = dy = 0.25 m
is chosen. The inclusion exhibits a radius of R = 3 m and Nφ = 48 sampling points are used
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leading to nodal distance of dyFE = 0.125 m and thus a sufficient refinement to properly
model the elastic waves introduced at the load frequency of f = 50 Hz. The real and
imaginary part of the vertical displacement ūz(y) for both limit cases are given in Fig. 6.13.
The uniform displacement distribution under the rigid foundation turns out as expected,
whereas no change in ūz(y) occurs compared to a direct loading of the soil for the flexible
foundation. In general a very good agreement between the ITM-FEM and the ITM-SEM
results can be observed.
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Figure 6.13: Real and imaginary part of ūz(y) at the surface of a homogenous halfspace due to the SSI
of (a),(c) a completely flexible foundation and (b),(d) a rigid foundation for the ITM-FEM ( )
and the ITM-SEM approach ( ).
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6.1.3 Halfspace with spherical inclusion

Analogously to the halfspace with cylindrical inclusion, the superposition procedure for the
halfspace with spherical cavity or indentation and the coupling of the latter with a matching
FEM substructure is verified by comparison of the results to the semi-analytical solution of
the homogeneous or layered halfspace. The material parameters of the soil, applied for the
ITM and the FEM substructures, are given in Tab. 6.6.

Es (Nm−2) νs (−) ρs (kgm−3) ζs (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil 2.60 · 108 0.3 1600 0.05 468.29 250.31 232.21

Table 6.6: Soil properties for verification of halfspace with spherical inclusion or indentation.

Spherical enclosure

First, a spherical inclusion with radius R = 2 m is considered, which is completely buried
within the soil and has a embedment depth of H = 3 m. The thickness of the upper layer
Hlat of the benchmark system is equal to the depth of the nodes inside the FEM structure,
positioned on the first latitude below the equator. A vertical, harmonic square block load
with edge lengths bx = by = 2 m and amplitude |P̄hs sph

ΛITM
| = 1 N m−2 is applied to both

systems on the ground surface, symmetrically distributed around the origin x = y = 0 with
excitation frequencies 2, 30 and 60 Hz. [84]

Λ
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Γs
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ΛITM

H
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by

(a)

Λ1

Λ2

P̄hs L
Λ1 ITM

Hlat

by

(b)

Figure 6.14: System setup for validation with harmonic load on the ground surface: (a) Coupled ITM-FEM
system halfspace with spherical inclusion and (b) layered halfspace.

The dimensions Bx and By of the discretized domain and thus the increments dx, dy in the
ITM substructure were adapted to the Rayleigh wavelengths in dependency of the excitation
frequencies as displayed in Tab. 6.7. Thereby an adequate representation of the elastic waves
and the attenuation to the domain edges is guaranteed, while keeping the computational
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f (Hz) λp (m) λs (m) λr (m) Bx = By (m) Nx = Ny dx = dy (m)
2 234.15 125.16 116.11 128 27 1.00

30 15.61 83.44 7.74 64 27 0.50
60 7.80 4.17 3.87 32 27 0.25

Table 6.7: Wave lengths and discretization parameters for given excitation frequencies.

effort solving the full 3D problem acceptable. The sphere was discretized using Nϑ = 16
latitudes and Nφ = 32 longitudes for all frequencies equally, leading to a maximum element
size of dsϑ = 0.48 m and dsφ = 0.39 m in the FEM substructure. This correlates with
approximately eight finite elements per Rayleigh wavelength λr along the center line of the
sphere at the highest considered frequency f = 60 Hz. [84]

The results for the absolute value of the vertical displacement |ūz(y)| on the ground surface
z = 0 and inside the soil at z = Hlat at x = 0 in the frequency domain (x,y,z,ω) are illustrated
in Fig. 6.16 for both systems and show very good accordance. A quantitative comparison of
|ūz(y)| on the ground surface is presented in Tab. 6.8.

f (Hz) z (m) maximum value maximum error Tanimoto coefficient
2 0 5.88 · 10−9 6.78 · 10−11 0.997

30 0 4.54 · 10−9 1.24 · 10−10 0.998
60 0 3.79 · 10−9 1.26 · 10−10 0.999

Table 6.8: Error measures for halfspace with spherical inclusion w.r.t. |ūz(y)| at z = 0.

In addition, the results of the coupled approach and the layered halfspace are compared for
a load in the depth z = Hlat within the soil. Therefore, the ITM-FEM system is charged
with nodal loads P̄hs sph

Ωs FE
inside the FEM domain. In the layered halfspace an equivalent load

P̄hs L
Λ2 ITM

is applied at the layer interface as depicted in Fig. 6.15. Geometry, soil and load
parameters are chosen analogously as before. The results for |ūz(y)| at z = 0 and z = Hlat

are presented in Fig. 6.17, again exhibiting a very good agreement.
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Figure 6.15: System setup for validation with harmonic load inside the ground: (a) Coupled ITM-FEM
system halfspace with spherical inclusion and (b) layered halfspace.
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Figure 6.16: Vertical displacements |ūz(y)| at x = 0 for the halfspace with spherical inclusion ( ) and
the layered halfspace ( ) on the soil surface z1 = 0 (left) and within the soil at z1 = Hlat
(right) at (a),(b) f = 2 Hz, (c),(d) f = 30 Hz and (e),(f) f = 60 Hz for setup depicted in
Fig. 6.14 with load on the ground surface.
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Figure 6.17: Vertical displacements |ūz(y)| at x = 0 for the halfspace with spherical inclusion ( ) and
the layered halfspace ( ) on the soil surface z1 = 0 (left) and within the soil at z1 = Hlat
(right) at (a),(b) f = 2 Hz, (c),(d) f = 30 Hz and (e),(f) f = 60 Hz for setup depicted in
Fig. 6.15 with load inside the soil.
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Spherical indentation

Hereinafter, the presented approach for the halfspace with spherical indentation (cp. Sec. 3.3.2
and 5.2) with a radius R = 4 m is validated by comparison of the results at the ground sur-
face, with those of a corr. homogenous halfspace. Two load scenarios, depicted in Fig. 6.18,
are considered with an unit square block load bx = by = 2 m once with center at (x,y) =
(0, − 10) besides the inclusion and once centred inside the inclusion Ωs. The inclusion size
and material are chosen as before. The FEM model is positioned such, that the largest
latitude under the equator is aligned with the ground surface.

Λ

Ωs

Γs

P̄hs sph
ΛITM

y

zx

(a)

Λ

Ωs

Γs

P̄hs sph
Ωs FE

y
zx

(b)

Figure 6.18: Validation setup for the halfspace with spherical indentation, subjected to a harmonic load
on the soil surface of (a) the ITM substructure and (b) the FEM substructure.

Firstly, a regular hexahedron mesh as illustrated in Fig. 6.20a and 6.20b is used. In order to
represent the discontinuity in the distribution of the stresses and displacements along Γs at
z = 0 sufficiently in the spherical harmonics expansion, which is needed for the superposition
and the coupling, a higher number of series members is necessary for the indentation, as for
the buried sphere, which shows a rather smooth distribution of the stresses and displacements
over the complete spherical coupling surface.

Due to the non equidistant distribution of the Gauß points along the vertical axis of the
sphere, required for the numerical integration of the spherical harmonics and getting denser
when approaching to the poles, also the finite elements feature different size depending on
their location. The elements close to the ground surface are also for high Nφ, Nϑ rather
large, whereas they get very small close to the lower pole. In the low frequency range this
is not a problem and very good agreement can be achieved with the reference solution, as
visible in Fig. 6.19a-d. However, at high frequencies, smaller element lengths are needed on
the ground surface to cover the small wavelengths. This is due to the computational effort
and the decreasing element quality close to the poles for increasing Nφ, Nϑ not possible
without limit and numerical errors occur, that manifest e.g. in the small ripples inside the
area of the inclusion for f = 60 Hz in Fig. 6.19e. Therefore, the method provides good
results, but its applicability is, for given inclusion size and soil material, limited to a certain
frequency range. The maximum frequency to obtain rather accurate results can be estimated
as fmax ≈ csNl/(32R) with Nl ≤ 48 due to computational effort and element quality.
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Figure 6.19: Vertical displacements |ūz(y)| at x = 0 for the halfspace with spherical indentation ( ) and
the homogeneous halfspace ( ) on the ground surface due to a load P̄hs sph

ΛITM
at y = −10 m

(left) and a load P̄hs sph
Ωs FE

in the FEM domain (right) at (a),(b) f = 2 Hz, (c),(d) f = 30 Hz and
(e),(f) f = 60 Hz for setup depicted in Fig. 6.18.
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Response for different finite element meshes

As outlined in Sec. 4.2.1, alternatively to the regular FEM mesh, a free tetrahedron mesh
depicted in Figs. 6.20c and 6.20d can be used. However, since the elements still have to
match the discretization points on Γs, predefined by the ITM solution, the element size in
the boundary layer is not free and the elements are rather large compared to the center of
the indentation, also for high Nφ, Nϑ. Thus the results of the fine free mesh do not show
a considerable improvement compared to those for the coarse free mesh in Fig. 6.21. The
agreement with the reference solution is worse than for the regular mesh. However, it has to
be noted, that only a few points are directly located on the y-axis in case of the free mesh,
which leads to a not entirely fair representation of the result quality when comparing |ūz(y)|.

(a) (b)

(c) (d)

Figure 6.20: Finite element mesh of the spherical indentation with structured hexahedron elements with
(a) four latitudes corr. to Nφ = 16 and (b) twelve latitudes corr. to Nφ = 48 as well as (c)
coarse and (d) fine tetrahedron elements.
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Figure 6.21: |ūz(y)| at x = 0 on the ground surface for a halfspace with spherical indentation with fine
regular hexahedron FEM mesh ( ), free coarse ( ) and fine ( ) tetrahedron FEM mesh
and homogeneous halfspace ( ) at (a) f = 2 Hz and (b) f = 30 Hz for setup in Fig. 6.18a.
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6.2 Vibration mitigation measures

In this section, the coupled ITM-FEM approach for the halfspace with cylindrical or spherical
inclusions is applied to investigate the effectivity of different vibration mitigation measures
by means of numerical simulations. For this purpose, the absolute values of the vertical
displacements for a reference case |ūref

z | without the measure and the system including the
measure |ūz| are set in relation by means of the amplitude reduction factor (Ar)

Ar(x,y,z,ω) = |ūz(x,y,z,ω)|
|ūref

z (x,y,z,ω)| (6.1)

or the insertion loss ILz defined as

ILz(x,y,z,ω) = 20 log10
|ūref

z (x,y,z,ω)|
|ūz(x,y,z,ω)| (6.2)

Thereby, for the amplitude reduction factor values of Ar < 1 correspond to a reduction of
the vibrations compared to the reference case of (1.0 − Ar) · 100 percent, whereas in case
of the insertion loss, this is indicated by positive values of ILz. The obtained results are
compared to literature results for similar applications to underline the validity and accuracy
of the proposed method.

6.2.1 Heavy masses next to the track

Firstly, the effectivity of heavy masses next to the track as mitigation measure in the trans-
mission path to reduce railway induced ground vibrations is investigated. Therefore, a
wall-like structure is erected in the immediate vicinity parallel to the track, which usually
consist either of gabions or concrete blocks seamlessly lined up. In contrast to trenches,
infilled barriers or wave impeding blocks, walls can additionally act as noise barrier and are
beneficial since they require no modifications of the track.

The setup of the investigated problem as well as the dimensions are given in Fig. 6.22. The
wall is placed on the ground surface at a distance dgab = 4.0 m from the centre of the
track, which is located at y = −2.5 m. Within the 2.5D ITM-FEM approach, the gabions
are modelled as a continuous wall with height hgab and width bgab using equivalent elastic
parameters. Therefore, although in practise the gabions are usually only placed next to
each other and thus are just loosely connected, within the coupled approach the longitudinal
stiffness of the wall is considered fully and a wave propagation within the wall in lengthwise
direction is possible. Gabion walls usually act mainly as an additional mass on the ground
surface as their rigidity is in the same order of magnitude as typical soils. For comparably stiff
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Figure 6.22: (a) Reference system and (b) system with gabion wall for the assessment of the effectiveness
of heavy masses next to the track as vibration mitigation measure (all dimensions in m).

walls also the dimensions play an important role for the vibration mitigation. In the model,
the rails are also monolithically connected to the track bed as well as designed continuously
over the entire length and not connected segmentally or mounted elastically on the track
bed, as it is often the case in practice. The material parameters for the soil, the track and
the gabion are given in Tab. 6.9.

Es (Nm−2) νs (−) ρs (kgm−3) ζs (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil 2.60 · 108 0.30 2000 0.050 418.85 223.89 207.70
Sleeper 3.70 · 1010 0.20 2500 0.020 4056.00 2483.80
Rail 2.10 · 1011 0.20 7850 0.001 6001.00 3207.70
Gabion 3.67 · 108 0.20 1700 0.020 490.00 300.06

Table 6.9: Material properties for heavy masses next to the track.

Both systems in Fig. 6.22 are subjected to harmonic point loads on the top nodes of the
rail over a length bx = 1 m arranged symmetrically around x = 0. The system response is
computed for load frequencies between f = 2 and 100 Hz in steps of ∆f = 2 Hz. A total
domain size of Bx = By = 128 m with Nx = Ny = 29 sample points is chosen for the lower
frequency range, to hold the aliasing error small. For frequencies above f = 30 Hz, the total
domain size is reduced to Bx = By = 64 m to ensure a sufficient resolution of the elastic
waves. The inclusion size is chosen to R = 8 m with Nφ = 64 discretization points along
Γc for all f , as dyFE = 0.25 m leads to approx. ten elements per λr, also at the highest
considered frequency.

Fig. 6.23 shows the insertion loss of the vertical displacements at two different locations
y = 5.5 m and 13.5 m at x = 0 behind the wall over the frequency. In order to avoid
that local variations in the insertion loss are overestimated, when evaluating ILz at a single
position over f , the average of the levels within a range of 2 m around the evaluation point
is computed. Below 30 Hz the gabion wall has only a very little effect on the transmission
of the vibrations, except the peak in the insertion loss at 12 Hz, which can be attributed to
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Figure 6.23: Averaged insertion loss of vertical displacements on ground surface due to the gabion wall
for (a) y = 5.5 m and (b) y = 13.5 m at x = 0 over frequency.

the rocking mode of the wall as given in [183]

ω0,φx =
√
K̄s

φxφx
(ω)/Iφx with I0,φx = ρgab

(
ūzh

3
gab

3 − hgabū
3
z

12

)
(6.3)

whereby K̄s
φxφx

is the rotational dynamic stiffness of the soil under a rigid structure and I0,φx

the mass moment of inertia of the rigid wall around the central axis at the ground surface.
The peak value of ILz is observed around 60 Hz with 11 dB, whereas for higher frequencies
the insertion loss decreases again. Furthermore, the insertion loss turns out to be rather
independent of the distance behind the wall. The results at y = 5.5 m and 13.5 m show
good qualitative agreement with the those obtained by Dijckmans et al. [183] for a similar
system setup, however, with slightly different soil parameters and without the track model.

The distribution of the insertion loss over the soil surface for a case, in which the wall has
almost no influence on the vibration propagation and the case of a maximum effect of the
gabion wall are shown in Fig. 6.24. The gabion wall starts to act as an effective measure
above the mass spring resonance frequency

ω0,z =
√
K̄s

zz(ω)/mgab (6.4)

resulting from the vertical dynamic stiffness of the soil under the wall K̄s
zz(ω), estimated

from a rigid strip foundation, and its mass mgab [289]. If the gabion wall is considered as a
pure line mass with mgab = 3400 kg m−1, the resonance frequency would result to ca. 30 Hz
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(a) (b)

Figure 6.24: Insertion loss ILz of |uz(x,y,ω)| due to the gabion wall at (a) f = 30 Hz and (b) f = 60 Hz.

[183]. Due to the reflection and scattering of the incident waves at the gabion wall, as well
as its relative motion with respect to the soil, destructive interference occurs between the
direct and secondary wave fields when these are out of phase, resulting in reduced vibration
levels behind the wall around the resonance frequency [184, 290].

Since the considered gabion wall has finite dimensions, which cannot be neglected over
the entire frequency range, the resonance frequency in Fig. 6.23 is shifted towards higher
frequencies compared to the line mass model. Furthermore, the resonance peak is less
pronounced due to the higher radiation damping, resulting from the broader footprint. A
considerable insertion loss can also be observed at frequencies above the resonance, which
can be attributed to the restriction of the ground surface movement and the impediment
of the Rayleigh wave propagation, in case the footprint is large compared to λr and the
stiffness of the wall is sufficiently high [184]. This effect is clearly visible in Figs. 6.25 and
6.26, comparing the real part of vertical surface displacements for both cases at f = 60 Hz.

(a) (b)

Figure 6.25: Real part of the vertical displacements in a cross section at x = 0 due to a harmonic load
with f = 60 Hz for (a) the reference system and (b) the system with the gabion wall.
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(a) (b)

Figure 6.26: Real part of the vertical displacements of the three-dimensional system due to a harmonic
load with f = 60 Hz for (a) the reference system and (b) the system with the gabion wall.

Further investigations by means of a parametric study presented in [291] underline that in
order to achieve a good performance of the wall, especially at higher frequencies, rather
heavy and stiff walls with a large footprint should be used. Moreover, in general better
effectiveness is reached if the stiffness contrast between the wall and the soil is large. In
this case also the longitudinal stiffness of the wall leads to an additional wave impeding
effect, since then the wall acts as a stiff wave barrier, hindering the transmission of Rayleigh
waves above the critical frequency, when the bending wave length in the wall is equal to the
Rayleigh wave length in the soil (cp. Sec. 6.2.2) [179, 183].

6.2.2 Infilled barriers and open trench

In the following section, numerical results for length invariant open trenches and infilled bar-
riers are shown, as presented in Freisinger and Müller [176]: "Coupled ITM-FEM approach
for the assessment of the mitigation efficiency of finite and infinite open". Firstly the results
gained with the proposed methodology for a concrete filled trench are compared with those
available in published literature. Second, the effect of subgrade stiffening as a wave imped-
ing barrier is shown, followed by a comparison of the mitigation efficiency and the operating
mechanism of open trenches and soft or stiff barriers.

Concrete filled trench

In this example the Rayleigh wave diffraction by a rectangular trench in the transmission
path, infilled with concrete and depicted in Fig. 6.27a, is investigated. The results are
compared with those obtained by Haupt [171], applying the finite element method, and
Beskos et al. [173] with a constant element based BEM implementation. As the literature
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Figure 6.27: (a) ITM-FEM model for concrete filled trench in transmission path. (b) Comparison of ITM-
FEM results ( ) for amplitude reduction factor Ar of the vertical displacement |ūz| with BEM
solution of Beskos et al. [173] ( ) and FEM solution of Haupt [171] (◦ ). [176]

results were calculated for a 2D case, the ITM-FEM solution is computed only for the
wavenumber kx = 0, which means constant conditions in the longitudinal direction x. [176]

A vertical harmonic load with amplitude |P̄hs cyl
ΛITM

| = 1 N m−2 and a width of by = 2 m is
applied at a distance of yload = −16 m from the trench with a frequency of f = 30 Hz
resulting in a Rayleigh wavelength of λr = 3.18 m. The width and depth of the barrier were
chosen to wtr = 1.25 m and dtr = 3.25 m, prescribed by the FE discretization. Therefore
the normalized dimensions result to Wtr = 0.39, Dtr = 1.02 and Lload = 5.03, which almost
coincide with the dimensions used in [171, 173]. The further discretization and geometry
parameters are given in Tab. 6.10 as well as the material parameters of the soil (Soil B) and
the concrete filling (Infill A) in Table 6.11. [176]

Nx = Ny Bx = By Nφ R dx = dy = dxFE dyFE
Concrete filled trench 29 128 128 8 0.25 0.125
Subgrade stiffening 29 128 96 8 0.25 0.333
Comp. soft-stiff-open 28 64 192 8 0.25 0.166

Table 6.10: Discretization and geometry parameter for coupled ITM-FEM approach.

In Fig. 6.27b the amplitude reduction factor Ar for the absolute value of the vertical dis-
placement |ūz(y)| in the (x,y,z,ω) domain on the halfspace surface is shown at x = 0 over the
dimensionless distance y/λr. Significant amplifications are observed in front of the trench,
caused by the constructive or destructive interference of the incident and reflected Rayleigh
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E (Nm−2) ν (−) ρ (kgm−3) ζ (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil A 26.00 · 106 0.30 2000 0.05 132.5 70.8 65.7
Soil B 46.12 · 106 0.25 1720 0.03 179.5 103.6 95.3
Soil C 21.60 · 107 0.33 2000 0.05 400.5 201.7 188.0
Infill A 15.81 · 108 0.25 2356 0.05 914.6 528.1
Infill B 15.12 · 108 0.248 2000 0.025 950.7 550.3
Infill C 30.00 · 109 0.2 2600 0.01 3580.5 2192.6
Infill D 25.00 · 104 0.4 700 0.05 27.6 11.3

Table 6.11: Material parameters of different soils and infill materials

waves due to their phase difference [175], which is indicated by the peak distances being very
close to λr/2. On the load remote site, a substantial amplitude reduction due to the concrete
barrier of 50 − 70% is achieved. A very good agreement between the literature results and
the ITM-FEM approach can be stated. [176]

Subgrade stiffening as wave impeding barrier

In the following, the coupled approach is used to investigate the efficiency of subgrade stiff-
ening as mitigation measure for ground borne vibrations in the transmission path. A block
of stiffened soil (Infill B) with a width and depth of wtr = dtr = 2 m, located within a
homogeneous halfspace (Soil C), is investigated as illustrated in Fig. 6.28a. The discretiza-
tion parameters are given in Tab. 6.10, whereas the material parameters for the surrounding
and the stiffened soil are presented in Tab. 6.11. A quadratic, harmonic block load with
|P̄hs cyl

ΛITM
| = 1 N m−2 and a width of bx = by = 1 m is applied at a distance of yload = −6 m

from the barrier. The insertion loss ILz and the vertical displacements over the total surface
are evaluated for the reference case |ūref

z | without and the situation in presence of subgrade
stiffening |ūz|. [176]

Coulier et al. [179] showed by an investigation of the insertion loss due to subgrade stiffening
next to a railway track in the wavenumber-frequency domain by means of a 2.5D FEM-
BEM methodology, that the block of stiffened soil can act as a wave impeding barrier.
Considering the stiffened block as an infinitely long beam, it was demonstrated that the
wave impeding effect depends strongly on the trace wavelength of the Rayleigh wave in the
soil in longitudinal direction λx and the free bending wave length in the beam λb. [176]

Fig. 6.28b shows a schematic sketch of the insertion loss ILz(k̄x, y, z = 0, ω) over the dimen-
sionless wavenumber k̄x = kxcs/ω and the frequency f as presented in [179]. A high insertion
loss for the free field response behind the barrier is obtained for wavenumbers k̄x smaller than
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Figure 6.28: (a) Topview of setup for comparison of coupled ITM-FEM system with 2.5D FEM-BEM model
of Coulier et al. [179]. (b) Schematic sketch insertion loss of free field response behind barrier
and dispersion curves of the free bending wave in a Timoschenko beam and the Rayleigh
wave in a homogeneous halfspace. [176]

the dimensionless Rayleigh wavenumber k̄x = k̄r = cs/cr and bigger than the free bending
wavenumber k̄b. The transmission of plane waves in the soil with λx < λb resp. k̄b < k̄x < k̄r

is impeded for f > fc, as the response of the beam is then dominated by its bending stiffness
and the amplitude decreases proportionally to k−4

y for a given frequency.

The contribution of wavenumbers k̄x > k̄r to the total response and especially the response
in the lateral direction is quite limited. This is because if one considers the Rayleigh wave,
which contributes most to the overall response, the wavenumber k̄y = ±

√
k̄2

r − k̄2
x becomes

imaginary and the wave component in the y-direction thus becomes evanescent. Furthermore
one can explain this by the rather low values of the transfer function of a homogeneous
halfspace for k2

x + k2
y > k2

r , which quickly decreases with increasing wavenumbers k̄x > k̄r.

The propagation direction of the elastic waves in the x − y−plane is in general given by
θ = tan−1(k̄x/k̄y). In case of the Rayleigh wave the radiation angle can also be determined
as θr = sin−1(k̄x/k̄r). The trace wavelength λx becomes infinite for plane waves propagating
perpendicular to the barrier and is equal to λr for Rayleigh waves travelling along the barrier.
The ratio of the trace wavelength λx and the bending wave length in the barrier λb thus
depends strongly on the propagation direction θr. Beyond a critical angle of θc = sin−1(k̄b/k̄r)
and assuming f > fc, the wavenumbers k̄x are larger than k̄b and thus λx < λb holds.
Therefore, the impinging plane waves with θ > θc are impeded by the barrier. Below this
angle λx > λb resp. k̄x < k̄b holds. Therefore, large amplitudes of the bending waves occur
in the beam and the Rayleigh wave is able to propagate through the stiffened block with low
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Figure 6.29: Schematic sketch of wave impeding behaviour of a stiff barrier and illustration of the trace
wave length, critical angle as well as areas of high resp. low wave impeding effect.

transmission loss. The critical angle in dependency of the frequency yields [176, 179]

θc(f) = arcsin

cr

√√√√√ρ
E + µκ±

√√√√(E − µκ)2 + 4E(µκ)2A

ρI(ω/2π)2

 (2Eµκ)−1

 (6.5)

As visible in Fig. 6.28b the mitigation measure becomes effective only above a critical fre-
quency fc which can be determined by the intersection of the Rayleigh wave and the free
bending wave dispersion curves either using the Euler-Bernoulli beam equation

fc = c2
r

2π dtr

√
12ρ
E

(6.6)

or the Timoschenko beam equation, additionally considering the shear deformation and the
rotational inertia of the stiffened block of soil

fc = c2
r

2π

√
ρA

EI

√
Eµκ

(E − ρc2
r)(µκ− ρc2

r)
(6.7)

where E is the Young’s modulus, µ the shear modulus, ρ the density, A the cross sectional
area and I the moment of inertia of the beam. κ is the shear coefficient and can be set to
κ = 5/6 for rectangular cross sections. cr is the Rayleigh wave velocity in the soil. This
critical frequency strongly depends on the stiffness contrast between the soil and the block of
stiffened soil. Thus subgrade stiffening is more effective in soft soils. For the given material
parameters the critical frequency results to fc = 12.37 Hz. [176]
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Fig. 6.30a and 6.30c show the real part of the vertical displacement ūz(x,y,z = 0,ω) due to
a harmonic load with f = 5 Hz < fc below the critical frequency for the reference case
and in case of subgrade stiffening. The Rayleigh wave length λr is much larger than the
depth of the barrier and thus a significant part of the Rayleigh wave is able to pass beneath.
For all waves impinging at the stiffened block, k̄x < k̄b holds and therefore they are not
impeded. The wave field in both cases is very similar and the corresponding insertion loss
ILz in Fig. 6.30e is almost zero over the whole surface. [176]

In the case of an excitation frequency of f = 30 Hz > fc, the displacement distribution
ūz(x,y,z = 0,ω) in the reference case, shown in Fig. 6.30b, shows cylindrically propagating
wavefronts. In contrast, when subgrade stiffening is applied, the wave field is no longer
rotationally symmetric due to the interaction between the barrier and the soil, as shown in
Fig. 6.30d. All waves hitting the barrier at an angle greater than the critical angle θc are
impeded, leading to a significant reduction of vibrations in the areas with θ > θc. Hence,
large values of the insertion loss, partly exceeding 10 dB, are observed there. The critical
angle, which results to θc = 43.26◦ at f = 30 Hz, is also sketched in Fig. 6.30f. [176]

However, below the critical angle the amplitude reduction is rather small due to the relatively
shallow barrier (only dtr/λr = 0.32 at f = 30 Hz) and the not so pronounced stiffness contrast
between the barrier and the soil. Nevertheless, lines of increased ILz can be observed in this
area due to the partial destructive interference, caused by the phase shift of the waves
passing below the barrier and the waves transmitted through the barrier with much higher
wave velocity. Therefore, this effect appears mainly for thick barriers of lower depth [292].
For larger depth of the barrier and an increased stiffness contrast also for angles θ < θc a
significant reduction can be achieved, as more reflections occur at the left face of the barrier
and less vibrations are transmitted. Furthermore, a smaller part of the Rayleigh wave passes
below the barrier. In Fig. 6.30f areas with higher and lower vibration levels compared to
the reference case can also be detected on the load facing side of the barrier and be traced
back to constructive or destructive interference of the direct Rayleigh waves and those being
reflected at the barrier due to the impedance difference of the soil and the barrier materials.

On account of the preceding results in the following section the mitigation efficiency for an
open trench, a soft and a stiff barrier are compared, assuming adequate dimensions and a
sufficient stiffness contrast. [176]
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Figure 6.30: Real part of vertical displacement ūz(x,y,z = 0,ω) due to harmonic excitation with block load
at y = −6 m in the reference case (a,b) and in case of subgrade stiffening (c,d) as well as
the corr. insertion loss ILz(x, y, z = 0, ω) (e,f). Left column for fc > f = 5 Hz and right
column for fc < f = 30 Hz. [176]
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Stiff and soft barriers vs. open trench

The vibration screening efficiency of open trenches massively depends on the trench depth.
A satisfactory screening efficiency of Ar < 0.25 can be achieved for depths dtr greater than
about 1.2λr of the soil [169]. Due to stability reasons the construction of ideal open trenches
with vertical sides is limited to shallow depths. To this end, trenches are often filled with
soft material that must be able to withstand the horizontal soil stresses, while still providing
adequate insulation [180]. Open trenches achieve their vibration reduction effect mainly by
the reflection of the incident Rayleigh waves. As no energy can be transferred across the
open trench the vibration reduction usually is higher than for infilled trenches, where a part
of the wave energy is transmitted through the barrier. If a very soft infill material is used,
the behaviour of the filled trench resembles that of an open trench [145], which also yields
for the mitigation efficiency. [176]

However, the physical mechanism, which is responsible for the vibration reduction changes,
when it comes to stiff barriers. Additionally to the reflected and transmitted Rayleigh waves,
the presence of the barrier gives rise to body (P- and S-) waves that are also reflected and
transmitted [175]. Furthermore, body waves radiating downward the barrier occur, acting
like a new wave source at the lower end of the stiff barrier, emitting body waves into the
interior of the halfspace [292]. This transformation of Rayleigh waves into body waves is
called mode conversion. The screening effect of a stiff barrier with adequate depth therefore
is partly based on the reflection of the Rayleigh waves and partly on its transmission into
the interior of the halfspace. For fixed dimensions, the decisive parameter for the vibration
mitigation efficiency of a stiff barrier is the stiffness difference between soil and infilled trench
[179]. The material damping of the infill material has no significant effect on the screening
performance [293]. Therefore, very stiff barriers in relatively soft soils have a mitigation
efficiency close to that obtained by an open trench [187]. [176]

Figure 6.31a shows the vertical displacement |ūz(x = 0,y,z = 0,ω)| for an extremely stiff
(Infill C) and a very soft (Infill D) barrier as well as an open trench and the reference case
of a homogeneous halfspace (Soil A). The material properties of the barriers and the soil
are given in Tab. 6.11, the used discretization in Tab. 6.10. Again a 1x1 m block load with
|P̄hs cyl

ΛITM
| = 1 N m−2 located at yload = −4 was chosen. For the excitation frequency of 20

Hz, λr results to 3.3 m and therefore the normalized dimensions of the trench resp. the
barrier account for Dtr = 1.2 and Wtr = 0.4. The soft barrier and the open trench show
large displacement amplitudes at the load sided edge, whereas in case of the stiff barrier the
deformation is almost zero. This also reflects in the amplitude reduction factor depicted in
Fig. 6.31b, exhibiting Ar≪1 for the open trench and the soft barrier. Due to the larger depth
Dtr as well as the stiffer infill material (Infill C), Ar for the stiff barrier in Fig.6.31b also
shows smaller values than in case of the concrete filled trench, investigated at the beginning
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Figure 6.31: (a) |ūz(x = 0,y,z = 0,ω)| at f = 20 Hz for soft barrier ( ), stiff barrier ( ), open trench ( ),
homogeneous halfspace ( ) and (b) the corr. amplitude reduction factor Ar. The grey bar
indicates the area enclosed by the open trench resp. the barrier. [176]

of Sec. 6.2.2. In general a significant reduction of vibrations is observed behind the trench for
all three cases, albeit the open trench performs best over the largest part of the considered
range [176].

This tendency is also visible in Figs. 6.32(a,c,e), where the amplitude reduction factor Ar

over the surface with dimensions normalized by λr, is depicted. In the graphs, the area
occupied by the barrier is marked by the white lines. The open trench shows the greatest
reduction effect over the entire area on the load averted side. Nearly the same pattern of
Ar develops on the load facing side for the open trench and the soft filled barrier, which can
be explained by the similar physical mechanism for the vibration screening, relying almost
solely on the reflection of the impinging Rayleigh waves. [176]

However, in case of the stiff barrier, due to the very different ratio of wave velocities in the
soil and the barrier, compared to the soft infill material, as well as the larger amount of
mode conversion, a very different interference pattern of the reflected waves occurs before
the barrier. Moreover, in Figs. 6.32(b,d,f) the resultant of the displacements ū(x,y,z,ω) =√
ū2

x + ū2
y + ū2

z within the FEM substructure is illustrated for all three cases in a section at
x = 0. In the considered frequency range, the wave lengths in the soil are considerably larger
than the barrier width and thus impose their displacements to the barrier quasi statically
w.r.t. the y−direction [182]. It is clearly visible that with the soft filling material, large
deformations occur at the edge and within the barrier, similar to the limit case of the
reflection of the incident waves at the free end, as for an open trench. In contrast the stiff
barrier shows no deformation at all and therefore almost acts as fixed boundary [177]. [176]
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Figure 6.32: Amplitude reduction factor Ar (left) and resultant of displacements |ū(x,y,z,ω)| =√
ū2

x + ū2
y + ū2

z (right) for (a,b) soft barrier, (c,d) stiff barrier and (e,f) open trench. [176]
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6.2.3 Finite and infinite open trenches

Unlike the previously presented 2.5D approach, dealing with infinitely long mitigation mea-
sures in longitudinal direction, the 3D approach allows the investigation of spatially limited
open trenches or barriers, closer to practical applications. For the length invariant struc-
tures, the energy transmission is restricted over the whole length, whereas in case of finite
vibration shielding measures much more complex wave interference phenomena occur, as
additionally to the lower trench end diffraction effects arise also at side edges [294]. Thus,
regions on the ground surface with reduced or increased vibration amplitudes can clearly be
observed in Figs. 6.35a and 6.35b. [176]

For the investigation of the finite open trench, the three dimensional ITM-FEM approach
is applied, whereby the open trench is modelled within the half-spherically shaped FEM
substructure, as displayed in Fig. 6.33. A radius of R = 6 m was chosen for the sphere and
an open trench with dtr = 3.8 m, wtr = 1.2 m and ltr = 4.8 m included. A total region
of Bx = By = 64 m was investigated using Nx = Ny = 27 Fourier series members on the
halfspace surface as well as Nφ = 40 longitudes and Nϑ = 20 latitudes for the discretization
of the sphere, leading to a finite element size of dxFE = dyFE = 0.6 m along the surface. The
material properties of Soil A, given in Tab. 6.11, were used for the calculations. [176]

Λ

open trench
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Lload

by

bx

Wtr

Ltr
Dtr

Figure 6.33: Setup of 3D ITM-FEM system for the vibration isolation by an finite open trench.

In the FEM subsystem solid elements with linear shape functions were used, which in general
are not as accurate as higher order elements, if it comes to stress concentrations or detailed
results for the displacement amplitude in the near field around the load are of interest.
However, for the assessment of the vibration mitigation efficiency, the response behind the
trench is more important than the deformation of the trench itself or the stress concentrations
around it [294]. Therefore satisfactory precision is reached for the investigated problem, using
the ITM-FEM approach.
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In the following, the influence of the trench length and depth as well as the distance of the
load from the trench is investigated and finally compared to results obtained for the infinite
trench. [176]

Variation of the excitation frequency

Fig. 6.34a shows the absolute value of the vertical displacements at x = 0 over y due to a
harmonic concentrated load located at yload = −8 m with excitation frequencies of 12 Hz
and 22 Hz. The corresponding amplitude reduction factor Ar is depicted in Fig. 6.34b. As
the frequency changes, also the Rayleigh wavelength and therefore the relative dimensions
of the open trench vary. At f = 12 Hz, λr results in 5.5 m and thus Dtr = 0.69, Wtr = 0.22
and Ltr = 0.87, whereas for f = 22 Hz the Rayleigh wave length is λr = 2.9 m and thereby
Dtr = 1.31, Wtr = 0.41 and Ltr = 1.65. The amplitude reduction for 12 Hz, depicted in
Fig. 6.35c, is rather limited as a significant part of energy passes below the open trench.
With increasing frequency the penetration depth of the Rayleigh wave reduces and therefore
the mitigation efficiency rises, as can be seen in Fig. 6.35d, showing Ar for an excitation
frequency of 22 Hz. Amplifications of the displacement amplitudes can be observed in front
of the trench and at the sides as well as a reduction behind the trench. For small ratios
ltr/λr amplifications occur also directly behind the open trench, a phenomenon which was
also observed in Dasgupta et al. [294]. Due to the small trench length, especially for lower
frequencies, the waves travel around the trench, thereby causing the amplifications visible in
Fig. 6.34b. With increasing dimensionless length and depth, the mitigation efficiency rises
and thus the shadow zone gets more defined. [176]
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Figure 6.34: (a) Absolute value |ūz(x = 0,y,z = 0,ω)| and (b) corresponding Ar for finite open trench due
to a concentrated load at yload = −8 m with f = 12 Hz ( ) and f = 22 Hz ( ). [176]
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(a) (b)

(c) (d)

Figure 6.35: (a,b) Absolute value |ūz(x,y,z = 0,ω)| and (c,d) corresponding Ar for finite open trench due
to block load at yload = −3 m with f = 12 Hz (left) and f = 22 Hz (right). [176]

Variation of load position

Dolling [168] showed, that above a certain trench length the shielding effect no longer changes
significantly and concluded that a radiation angle of 45◦ − 56◦ leads to an effective vibration
reduction. Also Woods [169] found that larger trenches are required at greater distance from
the source to achieve a certain amplitude reduction. Therefore, in this section the variation
of the load position with a fixed open trench length, depth and width is investigated, as
depicted in Figure 6.36a. This leads to a variation of the radiation angle [176]

α = tan−1
(

Ltr/2
Lload −Wtr/2

)
(6.8)
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Figure 6.36: (a) Setup for variation of load position and radiation angle (blue lines). (b) Amplitude reduc-
tion factor Ar of |ūz(x = 0,y,z = 0,ω)| for yload = −3m ( ), −8m ( ), −14m ( ) for the
finite and yload = −3m ( ), −14m ( ) for the infinite open trench at f = 22 Hz. [176]

of the waves on the open trench of 45◦ for yload = −3 to 10◦ for yload = −14 m and therefore a
different shielding zone and mitigation efficiency. Figure 6.36b shows the amplitude reduction
factor Ar(x = 0,y,z = 0,ω) for load positions yload = −3, − 8, − 14 m due to an excitation
with f = 22 Hz. With increasing yload the amplitude reduction at some distance behind the
trench decreases substantially, which fits well to Woods’s [169] statement, that the screening
efficiency is larger if the trench is positioned close to the source. [176]

This is further confirmed, when the amplitude reduction factors for different load positions,
considering the infinitely long trench are opposed to the ones obtained for the finite open
trench, as depicted in Fig. 6.36b as well. The variation of Ar due to different load positions
is very small for the length invariant open trench, because the radiation angle is not relevant
in this case, as there is no possibility for the waves to travel around open trench. A more
exposed peak in front of the trench can be observed in the 2.5D case, because a bigger part
of the incoming waves is reflected, leading to a lower Ar over the whole length behind the
trench as for the finite open trench. [176]

Summing up, the normalized depth of the barrier and the stiffness contrast between infill
material and soil are found to be the most important parameters for the performance of the
screening measure. More shallow barriers with less pronounced stiffness contrast, as in case
of subgrade stiffening, act as wave impeding barrier up from a critical frequency and provide
a significant insertion loss within an area delimited by a critical angle. For deeper stiff or soft
filled barriers with distinct stiffness contrast, the performance is similar to an open trench. In



150 6 Dynamic response to stationary harmonic loads

case of spatially limited open trenches also the dimensionless lengths play an important role.
As diffraction occurs at the sides of the trench additionally to the bottom, more complex
wave interference patterns occur. The radiation angle and therefore the distance of the
source from the trench has fundamental impact on the mitigation efficiency, which is not the
case for length invariant trenches. [176]

6.2.4 Two parallel infinite open trenches

Within this section, the vibration reduction due to one or two infinite open trenches is
investigated (cp. Fig. 6.37). The system is subjected to an unit harmonic, square block load
with bx = by = 1.0 m, located at the center of the ground surface besides resp. between the
two trenches positioned at yTc = ±6 m. The radius of the cylindrical inclusions was chosen
to R = 4 m, thus exhibiting a depth of the open trench of dtr = 2 m. A total domain size
of Bx = By = 64 m with Nx = Ny = 29 and Nφ = 64 discretization points was chosen and
material parameters of Soil A in Tab. 6.11 were used.
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Figure 6.37: Setup for comparison of surface vibrations due to one and two infinite open trenches.

Fig. 6.38 shows a comparison of |ūz(y)| at x = 0 for a homogeneous halfspace and a halfspace
with either one or two open trenches. At f = 30 Hz the trench depth w.r.t. the Rayleigh wave
length yields Dtr = 0.91 which leads to a strong reduction of the surface displacements on
the load averted side(s) of the trench(es). The reduction at the left trench yTc1 = 6m is quasi
equal for the situation with one and two trenches and the amplitude of the displacements
under the load are nearly unchanged. For the halfspace with two open trenches of course
an additional reduction occurs for y < yTc2 = −6 m. However, this only leads to increasing
oscillations in the immediate vicinity of the open trench and has little influence on the
distribution of |ūz(y)| between the trenches elsewhere. At f = 60 Hz, due to the relatively
small wavelengths, the induced waves are largely attenuated by material and geometric
damping before reaching the open trench(es), so that only a small difference is visible in the
progressions of |ūz(y)| in Fig. 6.38b.
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Figure 6.38: Comparison |ūz(y)| for homogeneous halfspace ( ), halfspace with one ( ) or two ( )
open trenches for (a) f = 30 and (b) f = 60 Hz with setup cp. Fig. 6.37.

These observations are confirmed by the results in Fig. 6.39a, showing nearly no difference of
the vertical displacements along the longitudinal x−direction at y = 0 for all three situations.
In contrast, |ūz(x)| at the edge of the open trench at y = −5.5 m in Fig. 6.39b is considerably
larger for the system with two open trenches. For the homogeneous halfspace and the system
with one open trench, |ūz(x)| on the opposite side to the opening is quasi equal.

For a system with two infinite open trenches enclosing the load, the energy is prevented from
dispersing uniformly in all directions. The reduction effect for the surface vibrations outside
the trench(es) can be clearly seen in the Fig. 6.40 and Fig 6.41a, in which the insertion loss
for the system with two trenches is given with reference to the homogenous halfspace.
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Figure 6.39: Comparison |ūz(x)| for homogeneous halfspace ( ), halfspace with one ( ) or two ( )
open trenches for f = 30 Hz at (a) y = 0 m and (b) y = −5.5 m at the edge of the open
trench as shown in Fig. 6.37b.
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(a) (b)

Figure 6.40: Real part of surface displacements Re ūz(x,y) at f = 30 Hz for (a) one and (b) two open
trenches with setup cp. Fig. 6.37.

Furthermore, it is apparent that there is a concentration of vibrations within the trenches,
leading to increased amplitudes mainly in the region immediately adjacent to the openings,
where due to the free edge condition, considerable deformations occur over the entire length
of the trench. This is also reflected in the high levels of insertion gain

IGz = 20 log10
|ūTc2

z (x,y,f)|
|ūTc1

z (x,y,f)| (6.9)

along the trench at yTc2 = −5.5 m in Fig.6.41b, which denotes the increase in amplitudes
when inserting two instead of only one trench. The outliers at the edge of the considered
area result from the division of very similar small numerical values at a greater distance from
the load, which leads to very high values of IGz.

(a) (b)

Figure 6.41: Distribution of (a) insertion loss ILz(x,y,f) for two infinite open trenches compared to homo-
geneous halfspace and (b) insertion gain IGz(x,y,f) for two trenches compared to situation
with only one trench at f = 30 Hz.
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6.2.5 Insertion loss due to elastic bearing

In the following, the 3D-ITM-FEM approach for the halfspace with spherical indentation
is used to model a foundation, possibly supported elastically and resting on the surface of
a homogeneous halfspace, as illustrated in Fig. 6.42. In the numerical model a width of

Λ

Ωs

Γs

Hf

hel

P̄hs sph
Ωs FE

y

zx

(a) (b)

Figure 6.42: (a) Setup for halfspace with spherical indentation and elastically mounted foundation and (b)
FEM mesh for 3D inclusion.

Bf = 4 m and a height of hf = 1 m is considered for the foundation, located inside the
spherical inclusion with R = 4 m and discretized with Nϑ = 20 latitudes and Nφ = 40
longitudes. The inclusion is embedded in a soil with total domain size Bx = By = 64 m and
Nx = Ny = 27 sample points for all frequencies within f = 2 − 30 Hz. A uniform load with
|P̄hs sph

Ωs FE
| = 1 Nm−2 is applied over the entire foundation surface in all cases. The material

parameters for the subsoil, the foundation and the elastic mounting are given in Tab. 6.12.

E (Nm−2) ν (−) ρ (kgm−3) ζ (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil 2.60 · 10 7 0.30 2000 0.05 132.5 70.8 65.7
Elastic layer 5.50 · 10 5 0.36 620 0.10 38.66 18.08
Foundation 3.60 · 1010 0.20 2400 0.05 4.08 · 103 2.50 · 103

Table 6.12: Material parameters of soil, foundation and elastic mounting.

Firstly, a massless (ρf = 0) foundation without elastic mounting is considered. For the given
parameters this results in a dimensionless stiffness and mass ratio as introduced by [60]

K =
EfH

3
f (1 − νs)

12(1 − ν2
f )µsB3

f

and M = Hfρf

Bfρs

(6.10)

of K = 4.44 and M = 0. Thereby a stiffness ratio K > 1 can be considered to represent a
rigid plate for practical applications. [51]
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In order to be able to compare the obtained results for a rigid massless foundation with other
methods or literature solutions, the dimensionless vertical displacements resp. compliances
at the soil foundation interface are considered

∆ij
mm = 2

(1 − νs)
Cij

mm with Cij
mn = ūi

mµs(Bf/2)∑
P̄ j

n sys
(6.11)

where µs is the shear modulus of the soil, ūi
m is the displacement of the rigid foundation

i in direction m = x,y,z and ∑
P̄ j

n sys stands for the resultant of the external load applied
on foundation j in direction n. In case of a flexible foundation, the position resp. the
distribution of the load and the corr. compliances are mentioned explicitly, as they vary
continuously over the foundation area. The compliance functions are evaluated over the
dimensionless frequency a0 = ωBf/cs, whereby in case of a layered halfspace cs refers to the
shear wave velocity of the upper layer [51].

Fig. 6.43 shows the real and imaginary part of the dimensionless vertical compliance of a rigid
massless foundation, obtained with the proposed coupled ITM-FEM approach as well as the
results of Wong and Luco [53] and those computed with the FEM-BEM approach presented
in Taddei [295]. In general, a good agreement between the results of all three methods can
be stated. However, for low frequencies the ITM-FEM and the FEM-BEM approach behave
slightly stiffer than the solution of Wong and Luco [53], converging towards the latter with
increasing a0. One reason for this lies the full coupling of all DOFs between foundation

0 2 4 6 8
0

0.05

0.1

0.15

(a)

0 2 4 6 8
0

0.05

0.1

0.15

(b)

Figure 6.43: (a) Real and (b) imaginary part of the vertical compliance C11
zz of a rigid, massless foundation

on homogeneous halfspace at x = y = z = 0 over the dimensionless frequency a0 obtained
by Wong and Luco [53] ( ), with the 3D ITM-FEM approach ( ) and the FEM-BEM ap-
proach by Taddei [295] ( ).
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Figure 6.44: (a) |ūz(f)| at x = y = 0 and z = −hf for massive foundation without ( ) and with elastic
mounting ( ). (b) Corresponding insertion loss ILz(f) ( +++ ) over frequency.

and soil in the ITM-FEM and the FEM-BEM approach, whereas Wong and Luco [53] used
relaxed boundary conditions setting the shear stresses on the contact area to zero. [84]

The vertical displacements at the interface of a massive foundation, with ρf = 2400 kg m−3

as given in Tab. 6.12, to the soil for the case with and without the elastic mounting are
depicted in Fig. 6.44a. A clear resonance peak for the foundation mass oscillating on the
elastic mounting can be observed, which also leads to the dip in the insertion loss curve in
Fig. 6.44b at approx. 5 Hz. An equivalent Single Degree of Freedom (SDOF) model leads to
a resonance frequency of

fres,el = 1
2π

√√√√Eel/hel

ρfHf

≈ 4.81 Hz (6.12)

The slight deviations can be explained by the negligence of the 3D effects and the material
damping of the elastic mounting in the SDOF model. Due to the restricted lateral strain,
the full-surface elastic layer with νel ̸= 0 behaves stiffer than the equivalent spring model,
leading to a raise in the resonance frequency compared to fres,el. Furthermore, the onset of a
significant reduction of the vibrations, usually expected up from

√
2fres,el ≈ 6.80 Hz [296], is

shifted to higher frequencies, which is due to the elasticity of the underlying soil in contrast
to a rigid support of the elastic layer, assumed typically.
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6.3 Soil structure interaction for single surface foundation

The coupled ITM-FEM approach, presented in Sec. 5.3, is now applied to determine the dy-
namic response of 3D rigid and flexible surface foundations for different subsoil conditions,
as depicted in Fig. 6.45. Thereby, the following section is largely based on Freisinger et al.
[51], but extended by some noteworthy aspects and more detailed explanations. Initially,
the main characteristic features of the frequency dependent foundation flexibilities and the
power input at the soil foundation interface due to different load types (point load, uniform
pressure, moment) are illustrated for the rather simple support conditions of the homoge-
neous (Sec. 6.3.1) and the layered halfspace (Sec. 6.3.2). The accuracy of the proposed
method is demonstrated by comparison of the obtained results to literature for standard
benchmark cases. Finally, the behaviour of foundations on more complex soil subsystems,
including local inhomogeneities (models 3-5), is assessed (Sec. 6.3.3) by showing differences
and similarities to the results presented before. [51]
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Figure 6.45: Investigation setup: (a) homogeneous and (b) layered halfspace, halfspace with (c) cyl. con-
crete inclusion and (d) cyl. tunnel as well as (e) layered halfspace with cyl. tunnel. [51]

For all calculations relaxed boundary conditions, a square foundation with Bf = Lf = 2 m,
Hf = 0.3 m and νf = 0.3 is chosen, while Ef and ρf are each adjusted to result in a desired
dimensionless stiffness ratio K and mass ratio M , as defined in Eq. (6.10). The dimensions
and discretization parameters of the soil were chosen to be identical for all calculations,
unless explicitly stated different. A total domain size of Bx = By = 128 m was considered
with Nx = Ny = 211 sampling points in each direction. Thus an original discretization length
of dx = dy = 0.0625 m is used for the computation of the soil displacements due to an unit
vertical concentrated load (cp. Sec. 5.3). This step size is enlarged by n∆ = 2 to avoid
numerical errors when setting up the soil flexibility matrix F̄s. The material parameters for
all considered soil conditions are given in Tab. 6.13. [51]

E (Nm−2) ν (−) ρ (kgm−3) ζ (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil A 2.60 · 107 0.3 2000 0.020 132.31 70.72 65.60
Soil B 1.06 · 108 0.3 2000 0.020 264.63 141.45 131.22
Soil C 4.16 · 108 0.3 2000 0.020 529.26 282.90 262.44
Soil D 4.68 · 107 0.3 1800 0.025 187.14 100.03 92.79

Table 6.13: Material parameters of different considered soils.
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6.3.1 Foundation on homogeneous halfspace

Compliances of rigid massless foundations

Firstly, the response of a rigid (K = 1000), massless (M = 0) foundation resting on a
homogeneous halfspace (Soil A) is investigated. A harmonic unit vertical point force (|P̄sys| =
1) and an unit rocking moment (|M̄sys| = 1) are applied as external load. The soil foundation
interface is discretized with 16 × 16 = 256 shell elements, yielding an element size of ds =
0.125 m w.r.t. the coarse mesh. [51]

Fig. 6.46a shows the real and imaginary parts of the vertical compliance functions at the
soil foundation interface z = 0 at (x,y) = (0,0), computed with the presented ITM-FEM
approach. Very good agreement to the results obtained by Wong and Luco [53], Hirschauer
[68] as well as Shahi and Noorzad [57] can be observed [51]. In case of the rocking compli-
ance Cφx , depicted in Fig. 6.46b, the ITM-FEM approach returns slightly lower compliances
presumably linked to the non-zero material damping unlike in the other methods. Due to a
concentration of stresses and corresponding large displacement amplitudes within a rather
small area close to the edges of the foundation, in case of a rocking motion the energy
dissipated by the hysteretic material damping plays a bigger role as in case of uniformly dis-
tributed vertical vibrations, thus leading to smaller displacement amplitudes finally resulting
in a decreased rotational flexibility.
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Figure 6.46: (a) Vertical and (b) rocking compliance of a rigid, massless square foundation on a homo-
geneous halfspace (Soil A) obtained with the presented ITM-FEM approach ( × ) and the
results of Wong and Luco [53] ( □□□ ), Hirschauer [68] ( ⋄ ) and Shahi and Noorzad [57] ( ◦
).
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Compliances of flexible massless foundations

Second, the dynamic behaviour of a flexible, massless foundation is studied. The foundation
is subjected to both, a point load and an uniform pressure, since in case of a flexural plate the
load distribution strongly influences the resulting distribution of displacements and stresses
at the contact surface. The considered scope of foundation flexibilities ranges from K =
0.0001 to K = 3.33, corresponding to a very soft and a quasi-rigid plate respectively. [51]

Fig. 6.48 shows the dimensionless vertical displacement amplitude |∆11
zz(a0)| for both load

conditions and different values of K, evaluated at the center, the midside point and the corner
of the plate at the soil foundation interface. The displacement in the center is generally
larger for the flexible plate than for the stiff plate, while it behaves reverse at the corner.
In case of the uniform load this leads to the typical dishing deformation that is clearly
visible in Fig. 6.49a, which illustrates the real part of ∆11

zz(y) along the half length of the
center line of the foundation at x = 0 for a0 = 0. The total displacement consists of a
rigid body indentation and the bending deformation of the flexible plate, which provides a
larger contribution to the total deflection with increasing frequency, whereas the proportion
of the rigid body indentation decreases. Both diminish when approaching higher frequencies
a0 > 2π, where the total deflections are generally lower [60].

In case of the point load, the displacement distribution depends significantly on the stiffness
of the plate (especially for soft foundations) and is very much concentrated under the point of
load application as can be seen in Figs. 6.49b,d,f. This is furthermore illustrated in Fig. 6.47,
where the real part of the vertical displacements on the ground surface z = 0 for a flexible
foundation with K = 0.004 subjected to a uniform pressure and a point load are depicted.
The displacements are much larger directly under the point load and decrease relatively fast
with increasing distance from it, whereas for the uniform pressure the amplitudes of the
radiated surface waves are of similar amplitude as those directly under the foundation.

(a) (b)

Figure 6.47: Real part of ūz(x,y) at z = 0 under flexible foundation (K = 0.004) subjected to (a) uniform
pressure and (b) point load with f = 18 Hz located on homogeneous halfspace (Soil A).
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Figure 6.48: |∆zz(a0)| of a flexible, massless square foundation subjected to a uniform load (left) and
point load (right) evaluated at the (a),(b) center, (c),(d) edge and (e),(f) corner for the stiffness
ratios K = 0.001 ( ), K = 0.004 ( ), K = 0.06 ( ) and K = 3.33 ( ) obtained with the
ITM-FEM approach (X) and the results of Hirschauer [68] (♢♢♢) and Whittaker and Christiano
[60] (◦).
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Figure 6.49: |∆zz(y)| at x = 0 of a flexible, massless square foundation subjected to a uniform load (left)
and point load (right) evaluated for (a),(b) a0 = 0, (c),(d) a0 = 5 and (e),(f) a0 = 10 for the
stiffness ratios K ≈ 0.00 ( ), K = 0.004 ( ) and K = 3.33 ( ) obtained with the ITM-FEM
approach (X) and the results of Whittaker and Christiano [60] (◦).
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A rather large stiffness is needed to avoid displacement and stress concentration under the
load point and to distribute the contact stresses over the soil foundation interface. Thus, for
very stiff foundations the displacement distribution for point and uniform load are almost
equal, as can be seen in Fig. 6.49e,f. For both, the frequency responses in Fig. 6.48 and
the displacement distributions in Fig. 6.49, the results obtained with the coupled ITM-FEM
approach are in very good accordance to the results reported by Whittaker and Christiano
[60] and Hirschauer [68].

Compliances of rigid foundations with mass

The effect of adding mass to a rigid foundation subjected to uniform pressure and resting
on a halfspace (Soil D) is shown in Fig. 6.50. The vertical compliance at the soil-foundation
interface z = 0 was calculated for varying mass ratios M (Eq. (6.10)) and loss factors ηs,
characterising the material damping of the soil, using three different approaches.

Within the coupled FEM-BEM approach developed in Taddei [295] it is possible to use
Greens functions based on the TLM with and without material damping for the fundamental
solution of the soil subsystem, thereby allowing a direct comparison to the ITM-FEM results,
for which the incorporation of material damping is indispensable due to numerical reasons.
Additionally, an equivalent SDOF model based on Vrettos [297] was implemented which uses
the dimensionless, frequency dependent stiffness and damping coefficients kzz and czz for a
rigid, massless rectangular foundation on homogeneous soil as presented e.g. in Gazetas [123]
or Sarfeld [66]. Since the damping values czz only include the geometrical/radiation damping
due to the energy dispersion linked with the expansion of the elastic waves in the halfspace,
material damping is incorporated by means of the correspondence principle introducing a
complex shear modulus Gs, finally leading to the complex stiffness

S̄zz = P̄z

ūz

= K0,zz [kzz(a′
0) + ia′

0 czz(a′
0)] (1 + 2i sign(ω) ζ) (6.13)

with a′
0 = a0/(1 + iζ) for ζ ≪ 1, the absolute value of the external load |P̄sys| = P̄z and the

static stiffness of a rigid rectangular foundation according to Pais and Kausel [298]

K0,zz = ReGs (Lf/2)
1 − νs

[
3.1 (Bf/Lf )0.75 + 1.6

]
(6.14)

Therewith, the complex displacement of the foundation ūz can be computed as

ūz = P̄z

Re S̄zz + i Im S̄zz −mfω2



162 6 Dynamic response to stationary harmonic loads

For all results depicted in Fig. 6.50, the typical shift of the resonance peak towards lower
frequencies with simultaneously increasing amplitude |C11

zz | is clearly observed as well as the
dominating effect of the inertia at limiting high frequencies. However, especially for the
peak values rather large deviations exhibit between the results for ηs = 0 and ηs = 0.05,
showing the strong influence of the hysteretic material damping on the system response
at the resonance frequency of the foundation on the underlying soil. Furthermore, a very
good agreement of the FEM-BEM solution, the equivalent SDOF model and the ITM-FEM
approach for ηs = 0.05 is evident, thus ensuring an accurate representation of the mass and
inertia properties of the foundation in the presented method.
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Figure 6.50: Compliance |C11
zz (a0)| for rigid plate on homogenous halfspace (Soil D) computed with FEM-

BEM approach of Taddei [295] for ηs = 0 ( ) and ηs = 0.05 ( ), the equivalent SDOF
system corr. to Vrettos [297] for ηs = 0 ( ) and ηs = 0.05 ( ) and the ITM-FEM approach
( ) with ηs = 0.05 for mass ratios M = 0 (+), M = 1 (⋄), M = 3 (◦) and M = 5 (−).

Power input and radiation characteristics

Next, an investigation of the frequency dependent power transmission Pin(ω) at the contact
area of a rigid or flexible massless foundation to the soil, as introduced in Sec. 5.4.3, is
presented. The introduced power is calculated from the nodal velocities v̄c and forces P̄c at
the interface (Eq. (5.54)) due to an unit harmonic uniform pressure, point load or rocking
moment on the foundation. As relaxed boundary conditions are assumed, no in plane contact
forces occur and only the vertical velocities need to be taken into account for the calculation
of the transmitted power. Since with increasing frequency, the dimensions of the foundation
get large compared to the wavelengths of the elastic waves in the soil, a strong directivity
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in the excited wave field occurs. If a rigid plate is excited at high frequencies, the particles
cannot elude sideways and the particle velocity in the elastic medium has to be equal to the
velocity of the plate even outside the immediate vicinity of the radiating surface [287]. In
the limit case of a plate with infinite extent only compressional waves perpendicular to the
surface are radiated and the radiated power can be calculated as [287]

Pcp = 1
2ρscpv̄

2
zz,0A = 1

2
p̄2

zz,0

ρscp

A (6.15)

The power transmission at the contact surface of the finite foundation to the soil Pin is
therefore normalized by the power input Pcp obtained for an uniformly loaded halfspace
within an area A = B2

f due to a pressure with amplitude p̄zz,0 = 1/A or the resulting
velocities v̄zz,0.

In Fig. 6.51 the total normalized power input converges to Pin/Pcp = 0.9 relatively fast for
the stiff foundations (K = 0.06, 1000), indicating that a large part of the introduced energy
is radiated into the soil by plane waves propagating mainly in vertical direction. Due to the
finite dimensions of the plate, additionally surface waves are excited in any case as well as
plane waves with non vertical direction are introduced at the edges of the plate.

The reasonability of the asymptotic approximation of the power input at the soil foundation
interface for rigid foundations, resulting from the ITM-FEM approach, can also be confirmed
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Figure 6.51: Normalized power input at the soil foundation interface Pin(a0)/Pcp
(a0) for massless foun-

dation with K = 0.0001 ( ), K = 0.06 ( ) and K = 1000 ( ) on homogeneous halfspace
(Soil A) subjected to (a) uniform pressure, (b) point load (+) and rocking moment (−).
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by a theoretical consideration using the soil impedances of Gazetas [299]

Z̄zz(ω) = P̄z

v̄z

= K0,zz

(
kzz

iω + Bf

cs

czz

)
(1 + 2iζ) (6.16)

which can be derived from Eq. (6.13) replacing ūz by the velocity v̄z = iωūz. The stiffness
related term in Eq. (6.16) converges to zero for high frequencies, whereas czz remains nearly
constant and thus dominates the impedance. Therefore, assuming a constant external force
|P̄sys| = P̄z, the velocity v̄z approaches a constant value, too. Since, for the rigid foundation
it yields ∑i |P̄c,i| = |P̄z| with i = 1...nf and v̄c is constant over the area of the foundation,
also the power Pin ∼ P̄c · v̄∗

c needs to tend to a constant value at high frequencies.

For the flexible plate (K = 0.0001) in Fig. 6.51a some oscillations in Pin(a0) occur, which
nevertheless approaches to a constant value for high frequencies. The oscillations can be at-
tributed to different bending deflection distributions at the contact surface having a different
ability to excite elastic waves and thus to radiate energy into the soil. In case of a point load
on a rigid foundation, the power input is equal as for the uniform pressure due to the load
distribution effect of the plate. Since a relatively high stiffness is required to achieve this
effect, for less stiff plates a concentration of the displacements under the point of load ap-
plication can be observed, which then dominates the system response under the foundation.
This, in combination with an only small increase of the soil resistance for a localized load,
leads to velocities and a power input increasing with frequency (Fig. 6.51b) The rocking
moment is applied as a couple of point forces pointing in opposite direction and located on
the plate mid-axis at x = 0, resulting in an moment with unit amplitude. Therefore, the
same general characteristics can be observed as in case of the point load (Fig. 6.51b). For
the point load and the rocking moment only K = 0.06 and K = 1000 are evaluated, since
for soft plates the singularity in the displacement response under the point load leads to no
reasonable results for the power transmission.

The above presented results are also consistent with the results of the more detailed analysis
of the wave fields in the ground as well as the wavenumber spectra of the surface displace-
ments and the power input, gained from the computationally rather expensive postprocessing
procedure. Therein the displacements on the ground surface and within the complete soil
domain are determined in the wavenumber frequency domain and thus their wavenumber
spectra can be used to deduce characteristic features of the system response that will con-
firm the findings stated before. For this purpose, a flexible foundation (K = 0.0001) resting
on a homogeneous halfspace (Soil A) was excited harmonically with an uniform pressure at
f = 18, 34, 58 Hz, corr. to the first maximum and the two following minima of the power
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Figure 6.52: Wavenumber spectrum of (a)-(c) the contact forces |P̂c(ky)|, real ( ) and imaginary part (
) of (d)-(f) the transfer function TFûz

(ky) (g)-(i) vertical displacements ûz(ky) at the ground
surface z = 0 for a soft foundation (K = 0.0001) subjected to uniform pressure resting on
homogeneous halfspace (Soil A) for f = 18 Hz (left column), f = 34 Hz (middle colum) and
f = 58 Hz (right column).

input in Fig. 6.51a. Due to the finite dimension of the foundation, the wavenumber spectra
of the contact forces |P̂c(ky)| at kx = 0, shown in Figs. 6.52a-c, do not show a single non-zero
value at ky = 0, as it would be the case for an infinite plate, but exhibit side lobes along
with the main peak around ky = 0. The ground substructure is therefore excited over the
entire wavenumber range.

Scaling the transfer functions TFûz(ky) in Figs. 6.52d-f, defined as the system response due to
a unit load over all kx and ky, with the amplitudes of the contact forces |P̂c(ky)|, one obtains
the wavenumber spectra of vertical displacements ûz(ky) at the ground surface, illustrated
in Figs. 6.52g-i. The wavenumber axis are not normalized with respect to e.g. the shear
wavenumber ks, to illustrate the frequency dependent behaviour of TFûz(ky). For all cases
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k (rad m−1) f = 18 (Hz) f = 34 (Hz) f = 58 (Hz)
kp 0.85 1.61 2.75
ks 1.59 3.02 5.15
kr 1.72 3.25 5.54

Table 6.14: Wavenumbers of P-, S- and R-wave in a halfspace (Soil A) for selected frequencies.

ûz(ky) shows considerable peaks at ki = ω/ci (with i = p,s,r), which are listed in Tab. 6.14
and can be attributed to the P-, S- and the Rayleigh wave (R-wave), shifting to higher ky

with increasing frequency. However, |P̂c(ky)| remains almost unchanged with frequency, so
that in all cases the same wavenumber range is amplified by the major lobe of |P̂c(ky)|, but
the peaks in TFûz(ky) are scaled more or less strongly depending on the frequency considered.
This results in rather large amplitudes of ûz(ky) at ky = ±kr at f = 18 Hz in Fig. 6.52g,
indicating a significant contribution of the Rayleigh wave to the overall response. In contrast,
at f = 34 Hz and f = 58 Hz the smaller wavenumbers k < kr are more strongly amplified
by the main peak of |P̂c(ky)| leading to a increasing share of the long wave components,
while the Rayleigh wave provides a smaller relative contribution. This is accompanied by
an ever stronger radiation of plane elastic waves perpendicular to the foundation surface,
as the radiation angle w.r.t. the ground surface is given by sinαi = cik/ω (with i = p,s,r).
The increase in the radiation directivity is clearly visible in Fig. 6.53, showing the real part
of the vertical displacements over the depth. However, due to the finite dimension of the
foundation all wavenumbers are excited in any case and thus also plane elastic waves with
different angles α ̸= 0◦. Furthermore, considerable oscillations at the ground surface can
be observed, which can be attributed to the waves belonging to k ≥ kr in the wavenumber
spectra ûz(ky) in Fig. 6.52g-i.

The observations made for ûz(ky) also apply for the wavenumber spectrum of the power

(a) (b)

Figure 6.53: Vertical displacement ūz(x = 0,y,z,ω) over depth for a soft foundation (K = 0.0001) sub-
jected to uniform pressure resting on homogeneous halfspace (Soil A) for (a) f = 18 Hz and
(b) f = 58 Hz. [51]
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input Pin(ky) for a soft foundation (K = 0.0001) subjected to uniform pressure, depicted
in Fig. 6.54. At f = 18 Hz significant peaks occur at ±kr = ±ω/cr, implying a large
contribution of the Rayleigh wave to the total power input. For f = 34 and 58 Hz only
smaller peaks are observed for Pin(ky = ±kr), whereas with increasing frequency the wave
number spectrum with the major power input becomes increasingly narrow-banded. Thus
the involvement of the long wave components with small radiation angles w.r.t. the ground
surface increases, whereas the Rayleigh wave provides a smaller relative contribution. In
general only very small values of Pin(ky) appear for |k| > |kr|, resulting in a negligible pro-
portion of the total power input from the short wave surface wave components corresponding
to high wave numbers. [51]
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Figure 6.54: Power input at soil foundation interface Pin(ky) at kx = 0 for soft foundation (K = 0.0001)
subjected to uniform pressure resting on homogeneous halfspace (Soil A) for (a) f = 18 Hz,
(b) f = 34 Hz and (c) f = 58 Hz. [51]

Energy distribution under surface foundations of different size

In the previous section, the radiation directivity as well as the contributions of the body
and the surface waves to the total response were shown to depend mainly on the consid-
ered frequency and the dimension of the foundation w.r.t. the wave lengths in the soil. The
conclusions drawn from the investigation of the wavenumber spectra of the surface displace-
ments and power input at the soil foundation interface can be confirmed and interpreted in
more detail by analysing the power flow through a control volume (cp. Sec. 5.4.2). However,
it has to be noted that, since the ratios of the power fluxes depend on the choice of the con-
trol volume, the results only give an insight into the power distribution for the chosen CV.
Nevertheless, the procedure offers a good possibility to get an idea of the energy distribution
inside the ground and the radiation characteristics.

For this purpose two rigid (K = 1000) massless (M = 0) foundations with different width
Bf = 2 m and Bf = 8 m subjected to an unit uniform pressure and resting on a homogenous
halfspace (Soil A) but with ζs = 0.01 are considered. The halfspace was discretized with
Nx = Ny = 210 and Nz = 26 sample points up to Bz = 8 m with dz = 0.125 m. For the
power flux analysis a control volume with lcv = bcv = 8 m and hcv = 2 m was defined equally
for both foundations as depicted in Fig. 6.55.
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Figure 6.55: Setup for power flux analysis of rigid foundations with different size.

Fig. 6.56 shows the ratio of the power flows through all side areas Ps1−4 resp. the bottom sur-
face Ps5 and the total power flow through the control volume Ptot,CV as defined in Eqs. (5.53)
for both foundation sizes at selected frequencies. Furthermore, the portions of the power
flows corresponding to the normal as well as horizontal and vertical shear stresses at the
respective surfaces are given in Fig. 6.57. In case of the large foundation with Bf = 8 m
the overall power flow in the control volume is dominated by the power passing through the
bottom surface already in the low frequency range, indicating that a large portion of the
introduced energy is radiated into the soil via plane elastic waves propagating in vertical
direction. Moreover, Fig. 6.57b shows, that the largest part of Ps5 can be attributed to the
power through the bottom surface due to normal stresses Ps5,n, which further increases with
rising frequency and converges to a constant value of approx. 90%. In contrast the portion
of the power due to the in plane shear stresses Ps5,sh is very low over the entire frequency
range. The dominating radiation of compressional waves propagating perpendicular to the
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Figure 6.56: Power flow through side areas Ps1−4 ( ) and bottom surface Ps5 ( ) in relation to the
power flow through the total control volume Ptot,CV for the foundation with Bf = 2 m (left)
and Bf = 8 m (right).
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Figure 6.57: Ratios of power flux due to normal stresses Ps1−4,n ( ), vertical Ps1−4,sv ( ) and horizontal
Ps1−4,sh( ) shear stresses at the side areas as well as normal stresses Ps5,n ( ) and in
plane shear stresses Ps5,sh at the bottom surface ( ) to the total power flux Ptot,CV through
the control volume for Bf = 2 m (left) and Bf = 8 m (right).

foundation and mainly causing normal stresses is also clearly visible in Fig. 6.58b, illustrating
the distribution of the vertical displacements within the soil at f = 80 Hz.

For the smaller foundation with Bf = 2 m a considerable power flow through the side areas
can be observed in the lower frequency range. Thereby the increase of Ps1−4 between 2 and
40 Hz in Fig. 6.56a correlates with the increase of the portion of the power flow through
the side areas due to normal and vertical shear stresses Ps1−4,n resp. Ps1−4,sv as well as the
decrease of Ps5,n as depicted in Fig. 6.57a. This indicates that a larger share of the introduced
power Pin is radiated horizontally in this frequency range, fitting to the more uniform energy
distribution for small ratios of Bf compared to the λi in the soil. The opposite yields for
the high frequency range f = 60 − 100 Hz, where Ps1−4,n and Ps1−4,sv decrease and Ps5,n

generally increases. This also matches with the total power fluxes through the side and
bottom surfaces in Fig. 6.56a. However, also for higher frequencies approximately 10% of
the total power flux Ptot,CV remain with Ps1−4,n and Ps1−4,sv, which can be attributed to
Rayleigh surface waves, which are almost always excited and are composed of a particular
combination of P and SV waves fulfilling the boundary conditions of the free surface. The
largest contribution of Ptot,CV nevertheless comes from Ps5,n with ca. 80% corresponding
the vertically propagating P-waves (cp. Fig. 6.58a). The power flow associated with the
horizontal shear stresses at the side areas Ps1−4,sh provides only a very small share over the
whole frequency range independent of the foundation size, which is because of the vertical
excitation and would change fundamentally in case of a horizontal loading of the foundation.
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(a) (b)

Figure 6.58: Real part of ūz(x = 0, y, z, ω) in a homogenous halfspace under a rigid massless surface
foundation with Bf = 2 m (left) and Bf = 8 m (right) excited uniformly with f = 80 Hz.

Intensity reduction with source distance

The power flow analysis can also be applied in order to assess the reduction of the energy
density inside the soil with increasing distance or depth as well as to estimate the energy
dissipated by the hysteretic material damping. For this purpose, a vertically oscillating
energy source, modelled by a spot footing with Bf = 0.5 m, on the surface of an elastic
halfspace with material parameters of Soil A but very low material damping ζs = 0.002 is
investigated. Thereby an area of Bx = By = 256 m and a depth of Bz = 4 m has been
discretized with Nx = Ny = 211 and Nz = 25 sample points.

The dispersion of the energy, introduced into the soil by a single radiator at the surface,
by means of compressional, shear and surface waves as well as the distribution of energy
among the different wave types was analysed in detail by Miller and Pursey [300]. Both, the
main wave propagation characteristics and the geometrical damping law for a purely elastic
halfspace (ζs = 0) are summarized in Fig. 6.59a and Tab. 6.15. P- and S-waves propagate
radially into the halfspace outward from the source with wavefronts passing through con-
tinuously increasing spherical surfaces, whereas the Rayleigh waves radiate outward on a

Wave Energy Energy Amplitude wave
type portion decay decay velocity
P-wave 7% 1/r2 1/r cp =

√
( (2G·ν)

(1−2ν) +2·G)/ρ

S-wave 26% 1/r2 1/r cs =
√

G/ρ

R-wave 67% 1/r 1/√
r cr = cs(0.87 + 1.12ν)/(1 + ν)

Table 6.15: Energy portions and geometrical damping of elastic waves and corr. wave velocities.
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Figure 6.59: (a) Distribution of body and surface waves in the elastic halfspace due to vertical excitation
cp. [169]. (b) ITM-FEM model for assessment of intensity decay with power flux analysis.

cylindrical wavefront within a layer of limited thickness of approximately 1.0λr −1.5λr [297].
The amplitude of the body waves generally decay with distance by 1/r, while those of the
Rayleigh waves decay with 1/

√
r, where r is the distance from the source. However, in the

vicinity of the surface the body waves decay stronger (1/r2), wherefore up from a sufficient
distance the vibrations close to the surface are dominated by the Rayleigh waves [169]. Since
the energy in a wave is proportional to the square of the amplitude and the radiated energy
is constant for ζs = 0, the intensity decay (as energy per area) yields I(r) = I0(r0) · (r0/r).

This theoretical decay of the intensity is in very good agreement with the intensity reduction
I(r) = Ps1−4/Acv(r) computed numerically with the ITM-FEM approach as depicted in
Fig. 6.60a. Therefore, the power flux through the side areas of several control volumes with
constant height hcv = λr ≈ 2 m and varying width lcv = bcv = ncv · 10m was evaluated
at f = 34 Hz as depicted in Fig. 6.59b. Integer numbers ncv = 1,2,...,10 where chosen for
the control volume (CV) size and Acv(r) is the total area of the side surfaces of the CV at
a specific distance r. The slight deviations in I(r) are due to the non cylindrical surface
of the rectangular control volumes as well as the non zero material damping in the ITM-
FEM model. The influence of the material damping is shown in Fig. 6.60b, illustrating the
ratio of the total power flow through the control volume to the introduced power at the
soil foundation interface. Due to the very small damping ratio ζs = 0.002 for CV1 with
lcv = bcv = 10 m the ratio Ptot,CV/Pin results to ≈ 99% meaning that nearly no energy
is taken out of the system due to material damping. However, for the large CV8 with
lcv = bcv = 80 m the ratio only yields ≈ 77% and thus nearly 23% of the introduced energy
is dissipated.
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Figure 6.60: (a) Intensity decay I(r) = Ps1−4/Acv(r) resulting from ITM-FEM model for CVs with increas-
ing width and constant depth hcv = λr ( ) and theoretical decay I(r) = I0 · r0

r ( ). (b)
Ratio of total power flux through CV to input power Ptot,CV/Pin.

The power flux analysis can further be used to asses the energy distribution inside the soil
with increasing depth and thus allows e.g. to estimate the effectivity of vibration mitigation
measures in the transmission path. In order to confirm the accuracy of the method, it is
applied in the following to estimate the energy reduction due to an completely reflective wave
barrier of varying depth dtr and the results are compared to those obtained by Dolling [168]
analytically for an open trench (cp. Fig. 6.61a). Therefore, the power flow through the side
areas Ps1−4 of a control volume with lcv = bcv = 48 m and hcv = ncv ·0.25 m inside a halfspace
with Bx = By = 64 m was computed up to depth of Bz = 8 m, whereby Nx = Ny = 210 and
Nz = 26 sampling points were used. The material parameters of Soil A were used, however
with ν = 0.33 and η = 0.01 to be able to compare the results with [168].

Dolling [168] assumed for his analytical approach that the open trench is located at great
distance from the source so that body waves are negligible and only the Rayleigh surface
wave needs to be considered. Therefore, also the CV was chosen sufficiently large to satisfy
this assumption, although with the power flux analysis also the energy of the body waves
could easily be included in the investigation. The ITM-FEM model was evaluated for a
vertically loaded foundation with Bf = 0.25 m resembling a point source for f = 33 Hz,
resulting in a penetration depth of the Rayleigh wave of λr ≈ 2 m. Analogously to [168],
the energy decay over the depth z normalized by λr within one period was computed using
control volumes with different heights hcv, resembling different depth of the open trench
(cp. Fig. 6.61b), as Er = Ps1−4(hcv = dtr)/Ps1−4(hcv = 3λr). Thereby it is assumed that in a
depth of hcv = 3λr the energy of the Rayleigh wave is negligible and thus Ps1−4(hcv = 3λr)
includes the total energy of the surface waves.
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Figure 6.61: (a) Model for estimation vibration mitigation by an open trench in the transmission path in
Dolling [168]. (b) Setup for assessment of energy distribution over depth by means of the
power flux analysis with ITM-FEM approach.

The energy decay Er depicted in Fig. 6.62a shows good agreement with the results of Dolling
[168]. The slightly smaller Er obtained with the ITM-FEM approach for larger depth dtr is
most likely due to the assumption of Ps1−4(hcv = 3λr) as reference value, whereas Dolling
[168] uses the integral over the intensity from the soil surface up to infinity for this. Fig. 6.62b
shows the energy portions of the surface wave in steps of ∆hcv = 0.25 m in relation to the
total energy of the surface wave, thereby confirming the statement of Dolling [168] that the
main part of the energy is contained up to a depth of hcv ≈ λr.
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Figure 6.62: (a) Comparison of energy decay Er for ITM-FEM approach ( ) and Dolling [168] ( ). (b)
Portions of power flow through side areas per ∆hcv = 0.25 m w.r.t. Ps1−4(hcv = 3λr).
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6.3.2 Foundation on a layered halfspace

Hereinafter, the characteristic effects of a soil layering on the dynamic foundation response
are described. Therein the main influencing parameters are given by the ratio of the elastic
properties of the layer and the underlying halfspace as well as the relation between the layer
thickness and the foundation width h1/Bf [26]. [51]

Foundation compliances

In Fig. 6.63 the absolute value of C11
zz (a0) for a rigid, massless foundation resting on a

stratified soil with different ratios h1/Bf is depicted. For h1/Bf = 0, corresponding to a
homogeneous halfspace of Soil B, and h1/Bf = ∞, corresponding to a halfspace of Soil A, the
vertical compliance decreases monotonically with increasing a0. In contrast for the layered
halfspace, fluctuations with significant peaks occur in C11

zz over the frequency. These can be
associated with propagating surface waves and layer resonances, occurring due to interference
effects of the waves reflected at the interface of the two different materials and the primary
waves. The resonance frequencies of the considered layered halfspace with cs1/cs2 = 0.5
are rather close to the eigenfrequencies of an elastic soil layer over bedrock. According to
Kobori et al. [301], the latter are equal to the vertical and horizontal natural frequencies of
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Figure 6.63: Vertical compliance of rigid, massless foundation resting on layered halfspace (cs1/cs2 = 0.5)
for different ratios h1/Bf = 0 ( ⋄ ), h1/Bf = 0.5 ( × ), h1/Bf = 1 ( □□□ ), h1/Bf = 2.5
( ◦ ) and h1/Bf = ∞ ( ∗ ) obtained with ITM-FEM approach ( ) and the results of
Hirschauer ( ) [51].
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an undamped one-dimensional rod of length h1 and are given as in [51]

fres,v = 2m+ 1
4h1

√√√√ (1 − νs)Es

ρ(1 + νs)(1 − 2νs)
and fres,h = 2m+ 1

4h1

√
µs

ρ
with m = 0,1,2,... (6.17)

For the material parameters of the upper soil layer (Soil A) and h1/Bf = 1 the first two
resonance frequencies result in fres,v = 16.54 and 49.62 Hz resp. a0 res,v = 2.93 and 8.81 for
the vertical and fres,h = 8.83 and 26.51 Hz resp. a0 res,h = 1.57 and 4.71 for the horizontal
ones. The decrease in fres,v with increasing layer thickness h1 can also clearly be observed
in Fig. 6.63. Furthermore, comparing the results of the present approach with those of
Hirschauer [68], a very good agreement can be found. [51]

Power input and radiation characteristics

As observed for the foundation flexibilities, the frequency dependent power input at the soil
foundation interface, depicted in Fig. 6.64, also exhibits pronounced maxima in case of the
stratified soil. These peaks can again be linked to the layer specific resonance phenomena,
since at resonance the amplitudes get maximal and the phase shift between the excitation
and the resulting velocities tends to zero resulting in a maximum power input. Due to the
dissipative character of the medium and the non rigid boundary at z = h1, the resonance am-
plitudes remain finite and fres are shifted towards lower frequencies compared to Eq. (6.17).
However, the maxima get more distinct and exhibit higher amplitudes if the stiffness of the
underlying halfspace is increased. [51]
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Figure 6.64: Power input Pin/Pcp at contact surface of massless foundation under uniform pressure with
K = 0.0001 (X), K = 0.06 (◦) and K = 1000 (□) on homogeneous halfspace (Soil A) ( )
and layered halfspaces with cs1/cs2 = 0.5 ( ) or cs1/cs2 = 0.25 ( ) for h1/Bf = 1. [51]
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(a) (b)

Figure 6.65: Distribution of real part of vertical displacement over depth z at x = 0 under a rigid, massless
foundation (K = 1000) subjected to uniform pressure with f = 16 Hz ≈ fres,v1 resting on
a (a) homogeneous halfspace (Soil A) and (b) soft layer (Soil A) over stiffer halfspace with
cs1/cs2 = 0.25. [51]

Furthermore, Fig. 6.64 shows that the power transmission at the contact area is mainly
dependent on the layer resonances and only marginally affected by a change in the foundation
stiffness. Consequently, regardless of the stiffness ratio K, for a small difference between the
material properties of layer and underlying halfspace, the power input resembles very much
that of a homogeneous soil. However, for a large stiffness contrast only a small amount
of energy is radiated into the halfspace, since most incoming waves are reflected at the
transition surface. This in turn leads to a strong localization of the displacements within the
upper layer. The dispersion of energy thus is mainly possible via horizontally propagating
surface waves, corresponding to a 2D cylindrical energy radiation [301]. In contrast, the
radiated energy in case of the homogeneous halfspace for low frequencies is distributed over
a hemispherical volume. This behaviour is clearly visible in Fig. 6.65, which depicts the real
part of the displacements ūz(x = 0,y,z,ω) within the soil, obtained with the postprocessing
procedure outlined in Sec. 5.4. Moreover, significantly larger amplitudes of the radiated
surface waves can be observed in Fig. 6.65b compared to the homogeneous halfspace in
Fig. 6.65a. This can be explained by the considerable reduction of the imaginary part of the
impedance function associated with the damping for ratios cs1/cs2 < 0.6 and intermediate
values of the ratio 1 < h1/Bf < 5, as already outlined by Luco [26]. [51]

Fig. 6.66 shows the setup for the power flux analysis as well as the ratio Ptot,CV/Pin of a rigid
massless foundation with Bf = 2 m subjected to uniform pressure and resting on a layered
halfspace with cs1/cs2 = 0.125 and h1/Bf = 2. The size of the control volume varies in width
and depth as lcv = bcv = ncv · 2 m and hcv = ncv · 1 m with ncv = 1, 2,... 6. The vertical layer
resonance frequencies for the chosen system configuration can be approximated by those of an
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Figure 6.66: (a) Setup for power flux analysis of layered halfspace and (b) ratio Ptot,CV/Pin over fre-
quency for CV1 ( ), CV2 ( ), CV3 ( ), CV4 ( ), CV5 ( ), CV6 ( ).

elastic stratum over rigid bedrock with same dimensions resulting as fres,v = 8.3, 24.8, 41.3
and 57.9 Hz. Below fres,v1 no power is introduced into the soil as also stated by Chouw et al.
[112] and explained in more detail later on (cp. Sec. 6.3.3). Furthermore, considerable dips
are observed in Fig. 6.66b around the layer resonance frequencies. This is due to the rather
large displacement amplitudes occurring at resonance in turn leading to a larger energy
dissipation within the control volume due the displacement proportional hysteretic material
damping.

In summary, the large values of Pin(a0) at the resonant frequencies of the layered ground
indicate a significant immission of energy into the soil. This, in combination with only a
smaller possibility of energy dispersion in the layered soil compared to the homogeneous
halfspace, leads to a significant transmission of vibrations within the upper soil layer, which
can be highly relevant for the assessment of disturbances in neighbouring structures. The
power input Pin(a0) thus represents a suitable tool to infer the radiation capacity of the
foundation and the wave propagation characteristics in the soil and to assess them on the
basis of a single numerical value. [51]

6.3.3 Foundation on layered halfspace with inclusion

In this section, finally the presented coupled ITM-FEM approach is applied to investigate
the influence of longitudinally invariant inclusions on the dynamic response of the foundation
on the ground surface. Therefore, a stiff cylindrical concrete inclusion and a tunnel, located
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within a homogeneous or layered halfspace, are considered (Fig. 6.45). For model 3 and 4,
the inclusion within Soil A has a burial depth of h1 = hcyl = 2 m, equal to the thickness
of the soft layer in model 2, so that the ratio of foundation width to layer thickness results
as h1/Bf = 1. The tunnel in model 5 is additionally embedded by hcyl = 2 m in the stiffer
halfspace (Soil B) w.r.t. the interface with the soft layer (Soil A). The material parameters
of the concrete were chosen equally for the concrete inclusion and the tunnel shell, which
has a thickness of tsh = 0.4 m, as Econcr = 3.4 · 1010 Nm−2, νconcr = 0.2, ρconcr = 2600 kgm−3

and ζconcr = 0.05. [51]

Fig. 6.67 presents the frequency dependent behaviour of |ūz|, |v̄z| and Pin/Pcp of a rigid,
massless square foundation subjected to uniform pressure for all models depicted in Fig. 6.45.
Hereby the radius of the cylindrical structure was chosen as R = 4.5 m in all cases. Compared
to the layered halfspace with cs1/cs2 = 0.5 (model 2), the stiff cylindrical concrete inclusion
(model 3) shows a larger peak in displacement, velocity and power input, slightly shifted to
higher frequencies. This is owed to the rather large stiffness of the concrete structure and
the (with a diameter of 9 m) fairly large dimensions compared to the foundation width of
Bf = 2 m. On the contrary, for the tunnel in the homogeneous halfspace (model 4), which
has a significantly lower stiffness, the main peak occurs at a lower frequency as in case of
the layered halfspace and with smaller amplitude compared to the concrete inclusion. For
both cases the main maxima in the power input can be attributed to vertical resonances of
the soil stratum over the inclusion. [51]

The same features of the dynamic response are visible in Fig. 6.68, which shows the real
and imaginary part of C11

zz for all models. A very high similarity of the vertical flexibilities
for the concrete inclusion (model 3) and the layered halfspace with cs1/cs2 = 0.25 (model 2)
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Figure 6.67: Amplitude of vertical (a) displacement, (b) velocity at x = y = 0 and (c) normalized total
power input at z = 0 for a rigid, massless foundation subjected to uniform pressure for model
1 ( ), model 2 with cs1/cs2 = 0.5 ( +++ ) resp. cs1/cs2 = 0.25 ( ⋄ ), model 3 ( ◦ ), model 4
( □□□ ) and model 5 with cs1/cs2 = 0.5 ( × ) each with R = 4.5 m. [51]
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is observed. The same yields for the tunnel within the layered halfspace (model 5) and the
layered halfspace (model 2) with cs1/cs2 = 0.5 in the frequency range a0 ≳ 3.5, while for low
a0 the presence of the tunnel leads to deviations in the compliances. [51]
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Figure 6.68: Real and imaginary part of compliance C11
zz (a0) at soil foundation interface for rigid, massless

foundation subjected to uniform pressure for model 1 ( ), model 2 with cs1/cs2 = 0.5 ( +++ )
resp. cs1/cs2 = 0.25 ( ⋄ ), model 3 ( ◦ ), model 4 ( □□□ ), and model 5 with cs1/cs2 = 0.5 (
× ) each with R = 4.5 m. [51]

Furthermore, the very low values of the imaginary part of C11
zz (Fig. 6.68b) and the power

input (Fig. 6.67c) for f < fres,v,1 are noticeable. According to [301] and [112], in a perfectly
elastic soil layer over bedrock (ζs = 0), energy attenuation is possible only by free waves
propagating in the radial direction away from the source, since no downward radiation of
the induced body waves is possible due to the perfect reflections at the boundary. As for
frequencies below the first layer resonance frequency fres,1 any propagation of free waves is
impossible, no energy attenuation occurs in this frequency range. This leads to an imaginary
part of the soil flexibility associated with damping of zero. In the case of a viscoelastic
stratum (ζs ̸= 0), no explicit separation of dissipative and radiative energy attenuation is
possible. Although in this case numerous modes of propagating free waves exist even for
f < fres,1, each of them is highly damped, so that the energy attenuation caused by wave
radiation is extremely small and the dissipative one dominates. However, there is a sudden
increase in the imaginary part of C11

zz and thus the energy attenuation from fres,v,1, which
can be associated with the appearance of freely propagating waves that carry off energy to
infinity. This is also accompanied by a significant increase in the power input Pin at z = 0 in
Fig 6.67c. With increasing frequency, layer thickness or embedment depth of the inclusion
respectively, the elastic waves induced by the foundation almost attenuate before they reach
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the layer boundary or buried structure. Consequently, for large ratios h1/λ, the reflected
waves only scarcely affect the behaviour of the foundation and C11

zz converges towards that
of the homogeneous halfspace for all models. [51]

This behaviour is also evident in Fig. 6.69, where the effect of varying embedment depth
h1 = hcyl of the concrete inclusion of Fig. 6.45c with R = 3 m on the compliances C11

xx, C
11
yy

and C11
zz is shown. The distinct peaks in the compliances can be linked to the horizontal and

vertical resonance frequencies of the soil layer over the inclusion depicted in Fig. 6.69 by the
vertical lines. The rather large inclusion diameter leads to a similar behaviour of |C11

xx| and
|C11

yy |. Nonetheless, |C11
xx| shows, due to the length invariance of the system in x−direction,

slightly larger amplitudes and exhibits more peaked maxima which match better to fres,h of
the soil stratum. Because of the finite extend of the embedded structure and its cylindrical
shape, which inevitably lead to a more complex wave field as in case of a horizontal material
transition surface, the peaks of |C11

zz | only approximately coincide with the vertical layer
resonance frequencies. [51]
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Figure 6.69: Absolute value of compliances (a) |C11
xx|, (b) |C11

yy| and (c) |C11
zz | of a rigid, massless square

foundation with Bf = 2 m on a halfspace with cylindrical concrete inclusion (R = 3 m) and
varying embedment depth hcyl = 1 m ( □□□ ), hcyl = 3 m ( × ), hcyl = 5 m ( ◦ ), hcyl = 9 m
( ⋄ ) and on a homogeneous halfspace ( ). [51]

Fig. 6.70 shows the real part of ūz(x, y ,z = 0, ω) for both, a foundation resting on a ho-
mogeneous halfspace (Soil A) and one with a stiff concrete inclusion (model 3). The wave
impeding effect of the inclusion for f = 6 Hz < fres,v,1 can clearly be observed in Fig. 6.70b,
where nearly no surface vibrations occur. For f = 16 Hz ≈ fres,v,1 in Fig. 6.70d larger
vibration amplitudes appear on the soil surface due to waves propagating perpendicular to
the cylindrical inclusion, whereas nearly no oscillations crop up along the inclusion. In con-
trast for the homogeneous halfspace at f = 6 and 16 Hz, an omnidirectional wave field with
considerable amplitudes of the surface waves arises (Figs. 6.70a,c). [51]
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(a)

(b)

(c)

(d)

Figure 6.70: Real part of ūz(x,y,z = 0,ω) for rigid foundation under uniform pressure with (a),(b) f = 6 Hz
and (c),(d) f = 16 Hz resting on (a),(c) homogeneous soil (model 1) and (b),(d) halfspace
with concrete inclusion of R = 4.5 m (model 3). [51]

6.4 Soil structure interaction of several adjacent surface

foundations

6.4.1 Adjacent foundations on homogeneous halfspace

Following, the coupled ITM-FEM approach for the dynamic interaction of a group of four
rigid massless surface foundations resting on a homogeneous halfspace (cp. Sec. 5.3) is val-
idated by comparison of the obtained frequency dependent foundation flexibilities with lit-
erature results. The investigated system setup is depicted in Fig. 6.71 and the material
parameters of the soil and the foundations are given in Tab. 6.16. A total domain size of
Bx = By = 128 m with Nx = Ny = 211 sample points and a factor n∆ = 2 is chosen. The
square foundations, featuring a width Bf = 1 m, a height Hf = 0.3 m and a midpoint
distance dx,f1f2 = 2 m resp. dy,f1f3 = 2 m, are modelled with shell elements and full coupling
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Figure 6.71: Setup for the validation of the ITM-FEM approach for the SSSI of a group of four adjacent
surface foundations on homogeneous halfspace.

of all DOFs between soil and foundations is assumed. Fig. 6.72 shows the real and imagi-
nary part of the vertical compliance of the second C21

zz and the fourth C41
zz foundation due

to an unit harmonic point load on foundation F1. Thereby foundation F2 exhibits larger
amplitudes than F4 because of the lower distance to the loaded footing. The compliance C31

zz

(not shown here) is equal to C21
zz due to symmetry. A very good agreement with the results

presented in Radišić et al. [86] can be observed for all foundations.

0.5 1 1.5
-0.05

0

0.05

(a)

0.5 1 1.5
-0.05

0

0.05

(b)

Figure 6.72: Real (−) and imaginary (+) part of vertical compliance for a group of four adjacent surface
foundations resting on a homogeneous halfspace obtained with the ITM-FEM approach ( )
and the results of Radišić et al. [86] ( ).

6.4.2 Adjacent foundations on a halfspace with inclusion

In the following section, strongly based on Freisinger and Müller [100], the SSSI of two
adjacent rigid, massless square foundations, resting on a soil with a stiff embedded, length
invariant, cylindrical inhomogeneity, is investigated (cp. Fig. 6.73) in order to assess the effect
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Figure 6.73: ITM-FEM model for halfspace with cylindrical inclusion with two surface foundations. [100]

of the inclusion on the dynamic response of the foundations taking into account the through
soil coupling. However, the proposed method is also applicable for more complicated SSSI
and FSFI problems, including flexible and massive structures with rectangular contact area
to the soil as well as more complex inclusion geometries inside the 2.5D FEM substructure
with cylindrical outer boundary. [100]

Due to the higher computational effort when considering also an inclusion, the total domain
size is chosen as Bx = By = 64 m with only Nx = Ny = 29 sample points. The cylindrical
2.5D FEM inclusion was discretized with Nφ = 32 equidistant nodes along the circumference,
leading to an element size between 0.25 and 0.375 m for the considered inclusion sizes R and
thus approx. four elements per shear wave length of the soil at the highest regarded frequency.
The material properties of the foundations, soil and inclusion are given in Tab. 6.16. [100]

Verification example

In order to validate the modified shifting procedure for the computation of the soil flexibility
matrix of several foundations resting on a halfspace including a length invariant structure
(cp. Sec. 5.3), firstly the foundation compliances of two adjacent surface foundations with
Bf = 2 m and a midpoint distance dy,f1f2 = 4 m are computed. Thereby the material param-
eters of the inclusion are chosen to be identical to those of the surrounding soil to reproduce
a homogeneous halfspace. The absolute value of the vertical compliance of the active |C11

zz |
and the passive |C21

zz | foundation, due to an unit harmonic point load on foundation F1, are
depicted in Fig. 6.74. A perfect match of the presented 2.5D ITM-FEM approach applying
shell elements with the ITM approach with the kinematic condition for the rigid foundation
can be observed. Furthermore, the results show good agreement with those obtained by Ra-
disic [85] and Karabalis and Mohammadi [104], who obtained larger compliances in the lower
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E (Nm−2) ν (−) ρ (kgm−3) ζ (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil 26.00 · 106 0.30 2000 0.05 132.5 70.8
Infill A 96.00 · 106 0.20 2000 0.04 231.0 141.5
Infill B 38.40 · 107 0.20 2000 0.04 461.9 282.9
Infill C 15.40 · 108 0.20 2000 0.04 925.2 566.5
Infill D 34.00 · 109 0.20 2000 0.04 4347.0 2661.9
Foundation 34.00 · 1011 0.20 1 0.00 2.142 · 106 1.145 · 106 -

Table 6.16: Material parameters of soil, foundation and different inclusion infill materials.

frequency range due to zero material damping. At higher frequencies, where mainly the geo-
metrical damping dominates the system response, the deviations diminish. [100] The rather
high value of |C21

zz | at the lowest considered frequency as well as the oscillations in the results
of Radisic [85] can be traced back to spatial aliasing, which can be remedied by increasing
the total domain size and the number of sample points. Furthermore, a finer discretization
leads to more precise results and thus a better agreement with literature (cp. Fig. 6.74).
However, this is connected with an considerable increase of the computational effort.
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Figure 6.74: Comparison of |Cij
zz(a0)| for (a) loaded and (b) unloaded of two adjacent rigid foundations

with Bf = 2 m and distance dy,f1f2 = 4 m on a halfspace with cylindrical inclusion (Soil) with
R = 3 m and embedment depth H = 4 m obtained with presented 2.5D ITM-FEM approach
with Nx = Ny = 29 ( ) and Nx = Ny = 211 ( ) applying shell elements and enforcing the
kinematic of a rigid plate as displacement boundary condition ( ) to the results of Radisic
[85] ( ) and Karabalis and Mohammadi [104] ( ). [100]

Overall the comparison with literature results shows, that the proposed method delivers valid
results and can further be applied to determine compliance functions of adjacent foundations
resting on soils with embedded structures or inhomogeneities. [100]
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Parametric study on design parameters

Thus in the following, the influence of the embedment depth, size and stiffness of the in-
clusion is investigated for different configurations of the surface foundations. The frequency
dependent dimensionless compliance functions at the soil-foundation interface are presented
for the different system designs and compared with the results for equivalent foundations
resting on a homogeneous halfspace to illustrate the influence of the inclusion. Furthermore,
the impact of a stiff, length invariant cylindrical confinement on the displacement distribu-
tion over the entire ground surface as a result of a simultaneous harmonic excitation of both
foundations, determined by the postprocessing procedure, is presented. [100]

Variation of embedment depth Firstly the compliance functions of two adjacent surface
foundations with Bf = 2 m and a midpoint distance dy,f1f2 = 8 m, resting on a halfspace with
a stiff cylindrical inclusion (Infill D) of radius R = 3 m and varying embedment depth H are
considered. In the horizontal compliance |C11

xx| of the loaded foundation in Fig. 6.75a only
relatively small deviations from those obtained for the homogeneous halfspace are visible,
because the loaded foundation is located besides the stiff inclusion. The largest deviations
are observed for the smallest embedment depths and in the low frequency range. The
amplifications occurring in that case can be traced back to the effect of waves reflected
at the inclusion. With increasing H and a0, |C11

xx| converges to that for the homogeneous
halfspace. [100]

The compliance of the passive foundation |C21
xx| is very small for small H, as the main

excitation takes place in the direction of the length invariant inclusion and a propagation of
the elastic waves from the excited foundation F1 to the unloaded foundation F2 is disturbed
by the cylindrical inclusion in the transmission path. Furthermore, in the soil layer over
the inclusion propagating waves can occur mainly above the first (here horizontal) layer
resonance frequency, which can e.g. be observed by the increase of |C21

xx| for H = 4 m at
excitation frequencies a0 > 3.14. With increasing H the amplitude of |C21

xx| in the low
frequency range increases due to a smaller shielding effect of the cylindrical inclusion. For
intermediate values of H, |C21

xx| shows to be larger than in case of a homogeneous halfspace,
probably due to reflected waves at the top of the inclusion, amplifying the response at F2.
In case of large H and with increasing frequencies, the compliance again converges to that
obtained for the homogeneous halfspace, as with increasing ratio of the soil layer thickness
to the elastic wave lengths the influence of the inclusion diminishes. [100]

Comparing the results for the compliances in x− and y−direction, it can be stated that
|C11

yy | in Fig. 6.75 converges to the halfspace solution at higher frequencies as |C11
xx| and

the deviations are larger, since the direction of excitation here directly points towards the
inclusion located in the transmission path. Thus a bigger portion of elastic waves is reflected
as for the excitation in x−direction. [100]
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Figure 6.75: Compliance functions |Cij
mn(a0)| for loaded (left column) and unloaded (right column) foun-

dation with Bf = 2 m and distance dy,f1f2 = 8 m on a halfspace with cylindrical inclusion
(Infill D) with R = 3 m for varying embedment depth H = 4 m ( ), H = 6 m ( ), H = 8 m
( ) and on a homogeneous halfspace ( ). [100]
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Concerning the vertical compliances |C11
zz | of the active foundation in Fig. 6.75, only small

deviations occur as the foundation is located besides the inclusion and only a little part of
the induced elastic waves interacts with it. In general small compliances |C21

zz | are observed
over the whole frequency range for small H. However, above the first vertical resonance
frequency of the soil layer over the inclusion at a0 = 5.87 for H = 4 m a slight increase of
|C21

zz | can be observed. The overall trend of the compliances tending to those obtained for
the homogeneous halfspace for increasing H and a0 is also found here. [100]

Variation of the inclusion radius Next, the embedment depth H = 4 m, the foundation
width Bf = 2 m and midpoint distance dy,f1f2 = 8 m are fixed and only the inclusion size R
is varied. Fig. 6.76 shows, that the vertical compliances of the loaded foundation on the soil
with inclusion are very close to |C11

zz | of a homogeneous soil for small inclusion size R. Also
for the largest considered radius R = 3 m, only small deviations occur, as the foundation is
located besides the inclusion and the share of waves travelling downwards or to the inclusion
averted side (thus not affected by it) is quite large. The compliances |C21

zz | of the passive
foundation show low amplitudes for large R and converge, due to the effects already pointed
out earlier, to those for the homogeneous halfspace with decreasing inclusion size. [100]

For the system configuration with the maximum inclusion size of R = 3, the displacements on
the whole ground surface have been determined with the postprocessing procedure. The left
column of Fig. 6.77 shows the results for the real part of the vertical displacements, obtained
for a harmonic excitation with f = 6 Hz of both resp. only one foundation, resting on a
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Figure 6.76: Absolute vertical compliance |Cij
zz(a0)| for (a) first (loaded) and (b) second (unloaded) of two

adjacent rigid, massless square foundations with Bf = 2 m and distance dy,f1f2 = 8 m on
a halfspace with cylindrical inclusion (Infill D) with embedment depth H = 4 m for varying
radius R = 1 m ( ), R = 2 m ( ), R = 3 m ( ) and a homogeneous halfspace ( ). [100]
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homogeneous halfspace. In Fig 6.77a, a wave propagation concentrated on the direction
of the foundation alignment and perpendicular to it can be observed, whereas Fig 6.77c
shows a nearly omnidirectional propagation of the surface waves. The second, unloaded
foundation only hardly influences the displacement field on the ground surface, except the
area directly under it, where a linear displacement distribution arises due to the rigidity of
the foundation plate. In case of a massive foundation the inertia effects would lead to a
much higher influence of the unloaded foundation on the system response. The right column
of Fig. 6.77 shows the results for same foundation and load configuration, but on a halfspace
with stiff inclusion. Fig. 6.77b shows a significant reduction of ūz(x,y,z = 0,ω) in a limited
area along the entire length of the stiff inclusion compared to the case of the homogeneous
halfspace, in turn leading to an increase in amplitudes in the direction perpendicular to the
inclusion on both sides. Furthermore, the behaviour of the stiff inclusion as wave barrier
can clearly be observed in Fig. 6.77d, where a considerable reduction of ūz(x,y,z = 0,ω)
occurs on the load averted side of the inclusion. These effects get even more obvious, when
comparing the displacements ūz(y) for x = 0 for both cases in Fig. 6.78. [100]

(a) (b)

(c) (d)

Figure 6.77: Real part of vertical displacement ūz(x,y,z = 0,ω) on whole ground surface due to harmonic
loading (f = 6 Hz) on (a),(b) both and (c),(d) only one of the adjacent rigid, massless foun-
dations with Bf = 2 m and dy,f1f2 = 8 m resting on the surface of a (a),(c) homogeneous
halfspace and (b),(d) halfspace with a stiff cylindrical inclusion (Infill D) with H = 4 m and
R = 3 m, obtained with the postprocessing procedure. [100]
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Figure 6.78: Real part of vertical displacement ūz(x = 0,y,z = 0,ω) along y−direction for x = 0 due to
harmonic loading with f = 6 Hz on (a) only one and (b) both of the adjacent rigid, massless
foundations with Bf = 2 m and dy,f1f2 = 8 m resting on the surface of a homogeneous
halfspace ( ) and a halfspace with a stiff cylindrical inclusion (Infill D) ( ) with H = 4 m
and R = 3 m, obtained with the postprocessing procedure. [100]

Variation of foundation distance The variation of the midpoint distance dy,f1f2 in Fig. 6.79
for a constant foundation width, inclusion size, location and material shows that the cross
interaction between the foundations decreases with increasing distance regardless the under-
lying soil. For a homogeneous halfspace, |C11

zz | of the loaded foundation is equal for all dy,f1f2 ,
whereas the influence of the inclusion is clearly visible for small distances of the foundations
and decreases with increasing dy,f1f2 , thereby converging to the halfspace solution. In general
larger |C21

zz | are observed for the homogeneous halfspace, which also decrease with increasing
dy,f1f2 and a0. Due to the rather large inclusion located closely to the halfspace surface, only
very low compliance values |C21

zz | show up for larger foundations distances. For the likewise
nearby foundations with dy,f1f2 = 4 m, an increase of the compliance amplitude above the
first horizontal resonance frequency of the soil layer at a0 = 3.14 can be observed and at-
tributed to the in this case possible propagation of surface waves, passing through the soil
over the inclusion and impinging at the second foundation. [100]

Variation of inclusion stiffness Finally, the effect of a varying stiffness of the inclusion
is investigated. Therefore the Young’s modulus Ecyl is adapted such that the ratio of the
shear wave velocity of the infill material and the soil cs,cyl/cs takes values between 2 and 8,
additionally to the very stiff inclusion with cs,cyl/cs = 37.6, investigated previously.

The vertical compliance of the active foundation |C11
zz | in Fig. 6.80a generally differs only

slightly from the results for the homogeneous halfspace. However, an increase of the smooth
peak in the low frequency range and a rising waviness in the compliances is observed for a
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Figure 6.79: Absolute vertical compliance functions |Cij
zz(a0)| for (a) first (loaded) and (b) second (un-

loaded) of two adjacent rigid, massless square foundations with Bf = 2 m on halfspace with
cylindrical inclusion (Infill D) with embedment depth H = 3 m and radius R = 2 m (solid
lines) and on a homogeneous halfspace (dashed lines) for varying distance dy,f1f2 = 4 m
( ), dy,f1f2 = 6 m ( ) and dy,f1f2 = 8 m ( ).

higher stiffness of the inclusion. The compliance of the passive foundation |C21
zz | in Fig. 6.80b

drastically reduces with increasing stiffness Ecyl. The oscillations in |C21
zz | imply, that in de-

pendency of the frequency and with that the corresponding wavelengths, the elastic waves
interact differently with the inclusion and the wave field resulting from the direct and re-
flected waves at the inclusion shows amplification and attenuation effects compared to the
nearly monotonous decay of the compliance |C21

zz | in case of the homogeneous halfspace.[100]
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Figure 6.80: |Cij
zz(a0)| for (a) loaded and (b) unloaded foundation with Bf = 2 m and dy,f1f2 = 8 m on

halfspace with cylindrical inclusion with H = 3 m and radius R = 2 m for varying stiffness
Ecyl: Infill A cs,cyl = 141.4 ms−1 ( ), Infill B cs,cyl = 282.8 ms−1 ( ), Infill C cs,cyl =
565.68 ms−1 ( ), Infill D cs,cyl = 2661.45 ms−1 ( ) and on a homogeneous halfspace ( ).
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In summary, it is of particular importance to take the structure soil structure interaction
into account if inclusions are located closely to the halfspace surface and if the dimensions of
the embedded structure are large, especially in comparison with the size of the foundation
area of the surface structure. Moreover, structures buried deeper in the soil may have a
significant impact on the foundation flexibility if an excitation in the low frequency range is
considered. In this case both, stiff and soft inclusions influence the total dynamic response
of the system, whereby the stiffness contrast between the inclusion and the surrounding soil
together with the size play the most important role. [51]

6.5 Soil structure interaction of frame structures

6.5.1 Dynamic response of a space frame

In the first part of the current section, the soil structure interaction of a three dimensional
frame, which is coupled to the soil by means of different types of surface foundations, is
investigated. For this purpose, the two setups depicted in Fig. 6.81, with a frame resting
on one single large foundation or four small punctual foundations, are considered. Further
research, including the influence of different subsoil conditions on the dynamic behaviour of
multi-storey frames, can be found in [284].
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Figure 6.81: Setup for investigation of the SSI of space frame structures with different footing conditions.

The frame and the foundations are modelled using the FEM and are coupled to the under-
lying ground at the soil foundation contact surface via their dynamic stiffness applying the
compatibility conditions. Shell elements are used for the foundations and the ceiling panel,
while 3D beam elements are employed for the vertical columns (cp. Sec. 4.2.2). Since both
elements feature 6 DOFs per node, all displacements and rotations are coupled at the com-
mon nodes. The geometry of the frame is chosen to be the same for both considered setups.
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E (Nm−2) ν (−) ρ (kgm−3) ζ (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil A 2.60 · 107 0.30 2000 0.05 132.5 70.8 65.7
Soil B 4.16 · 108 0.30 2000 0.05 529.26 282.9 262.4
Concrete 3.00 · 1010 0.20 2500 0.00 3.65 · 103 2.23 · 103

Table 6.17: Material parameters of soil, foundation and frame structure.

Thereby the columns, supporting the 4 × 4 m ceiling slab with hceil = 0.3 m, have a square
cross section with lcol = bcol = 0.3 m and a height of hcol = 4 m. The single foundation has
a size of Lf = Bf = 4 m equal to that of the ceiling. The punctual foundations have a side
length of 1 m and are each arranged with a midpoint distance of 4 m symmetrically to the
origin, such that the columns are connected to them at their midpoints. The discretization
of the foundations and the ceiling panel is equal to that of the soil surface, for which a total
domain size of Bx = By = 64 m with Nx = Ny = 210 sample points and n∆ = 2 was chosen.
Furthermore, the thickness of the foundations is given as Hf = 0.4 m in all cases.

Fig. 6.82a shows the absolute values |ūy(f)| at the midpoint of the ceiling due to an uniform
harmonic loading over the latter in y-direction w.r.t. frequency. To check the validity of the
model in a first step the response of a frame with rigid, massive ceiling and massless columns
clamped at the bottom was computed and compared to the eigenfrequency of an equivalent
SDOF system fres =

√
keq/mceil/(2π) with keq = 4 · 12EIy/h

3
col and mceil as the total mass of

the ceiling. For this case, a clear peak in |ūy(f)| very close to fres = 5.66 Hz can be observed,
while at higher frequencies the response decreases monotonously due to the inertia of the
ceiling slab. This also matches with the first eigenfrequency at 5.61 Hz, corr. to a horizontal
mode (cp. Fig. 6.82b) of the ceiling, obtained by a modal analysis of the system. Since in the
current implementation only a linear eigenvalue solver is implemented, instead of using the
non-linearly frequency dependent soil stiffness matrix K̄s(ω), the latter was approximated
as K̄s(ω = 2π 20 rad s−1) for the solution of the eigenvalue problem

(
−ω2M̄FE + i sign(ω)C̄FE + K̄FE + K̄s(ω)

)
λ = 0 (6.18)

Thereby it could be shown that the lower eigenmodes of the system behave quite robust for
different frequencies of K̄s(ω), which is not the case for the higher modes [284].

Moreover, the results for the space frame with massive columns as well as massive, flexible
foundation and ceiling slabs, consisting completely out of concrete and resting on a homo-
geneous halfspace of Soil A (material parameters cp. Tab. 6.17) are shown in Fig. 6.82a. To
highlight the influence of the SSI and the different founding conditions, also the response
of the frame if the bottom nodes of the columns are fully clamped is depicted as reference
solution. A shift of the horizontal mode peak to lower frequencies can be observed, when
the mass of the columns is taken into account and the footing conditions becomes softer.
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Figure 6.82: (a) Horizontal displacement |ūy(f)| at midpoint of the ceiling due to uniform horizontal load-
ing in y−direction for different footing conditions and (b) first horizontal mode at f = 5.61 Hz
of the frame for single massive flexible foundation and slab as well as massive columns.

6.5.2 Transfer functions soil-frame

Furthermore, the coupled ITM-FEM approach can be used to determine the transfer func-
tions between a specific location on the soil surface and selected points of the frame structure.
For this purpose, the dynamic soil stiffness is calculated for the nodes on the soil surface as
in case of the coupling of two foundations. However, the foundation with the attached frame
structure is coupled only to the interaction nodes required for this purpose and the remaining
calculated potential coupling points are retained for the application of an external harmonic
load, as illustrated in Fig. 6.83. Therewith the dynamic response of the frame structure due
to a load applied directly on the soil surface, taking into account the SSI, can be computed.

Λ
F2 F1

P1

P2P3

y
zx

P̄z

Figure 6.83: Setup for determination of the soil-frame frequency response functions.

Fig. 6.84 shows the frequency response of the horizontal and the vertical displacements for
the points P1 to P3 in Fig. 6.83, considering a soft and a stiff soil with material parameters of
Soil A resp. B in Tab. 6.17, due to an unit vertical block load with bx = by = 0.25 m applied at
(x,y) = (0,− 8) in steps of ∆f = 1 Hz. For the foundation and the frame the same material,
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Figure 6.84: (a) Horizontal and (b) vertical displacement of points P1 ( ), P2 ( ) and P3 ( ) of the frame
structure resting on a homogeneous halfspace of Soil A (straight) and Soil B (dashed).

discretization and geometry were used as in the previous example. However, the center
point of the single foundation was chosen to be located at (x,y) = (0,8). Strong peaks in |ūy|
around 4 Hz are visible for points P2 and P3, situated on the ceiling plate, and can be assigned
to the first horizontal mode of the frame. Also here the horizontal displacements decrease
because of the inertia of the ceiling with increasing frequency, while generally rather small
|ūy| are observed at P1. For low frequencies, a considerable vertical displacement emerges for
all considered points in case of the soft soil and |ūz| is significantly smaller for the stiff soil.
In contrast to |ūy|, for |ūz| several further peaks of different magnitudes appear especially
for the point P3 at the midpoint of the ceiling edge, which can be linked to different higher
modes of the frame structure that are excited by the introduced elastic waves, propagating
through the soil and finally impinging at the foundation.

6.6 Dynamic interaction of twin tunnels

In this section, the dynamic interaction of twin tunnels embedded in a homogenous halfspace
is investigated applying the 2.5D coupled ITM-FEM approach. In order to highlight the
effect of the second tunnel on the dynamic system response, the model is evaluated for both,
a single tunnel and two parallel tunnels, as depicted in Fig. 6.85.

E (Nm−2) ν (−) ρ (kgm−3) ζ (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil 2.60 · 107 0.30 2000 0.05 132.5 70.8 65.7
Concrete 3.40 · 1010 0.20 2000 0.02 4347.0 2662.0

Table 6.18: Material parameters of soil and tunnel.
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Figure 6.85: ITM-FEM model of (a) single and (b) twin tunnel system within a homogeneous soil cp. [244].

The resulting displacements on the ground surface due to the waves radiated from the har-
monically excited tunnel are compared and the change caused by the inclusion of the second
tunnel is quantified by means of the insertion gain IGz, given in Eq. (6.9). [244]

For this purpose one resp. two identical subway tunnels are modelled within the cylindrical
inclusion featuring a radius of R = 4.5 m, an embedment depth H = 6 m and a distance
|yTc1| = |yTc2| = 8 m. The 0.2 m thick tunnel shell and the sleepers are connected monolithi-
cally and consist of concrete, whose material parameters are given in Tab. 6.18 together with
the soil. In all cases only tunnel T1 is loaded by an unit block load with bx = by = 1.0 m
arranged symmetrically to the x−axis. A total domain size of Bx = By = 64 m with
Nx = Ny = 29 sample points was chosen and the cylindrical inclusion discretized with
Nφ = 64 nodes along the circumference.

Figs. 6.86a-d show the absolute value of the vertical displacements on the ground surface
for both systems exemplarily for f = 30 and 60 Hz. In case of the single tunnel system, the
body waves induced by the harmonic load in the tunnel propagate undisturbed through the
soil and lead to Rayleigh waves at the surface of the halfspace [244]. However, the resulting
displacement field exhibits no cylindrical wave fronts emerging from the centre of excitation
but, due to the stiffness of the longitudinally invariant tunnel, a displacement distribution
symmetrical to the tunnel axis. For the twin tunnel system the symmetry is disrupted by
the reflection, diffraction and scattering of the waves at the second tunnel, leading to regions
of significantly increased surface displacements compared to the single tunnel system.

The insertion gains in Fig. 6.86e,f show amplifications up to 20 dB, which occur almost
exclusively on the side facing towards the unloaded tunnel. For both frequencies considered,
a pattern of strong changes in surface displacements can be seen along lines parallel to the
tunnel axis. However, the distribution of areas with very high values of IGz is strongly
dependent on the frequency. At f = 30 Hz these tend to occur at a greater distance from
the centre of load application with respect to the y−direction, whereas at f = 60 Hz the
maximum values of the insertion gain occur much more localised around x = 0 and above
the second tunnel. Furthermore, a certain shielding effect in larger distances behind the
second tunnel, with a reduction of the vibration amplitudes also up to 20 dB, is visible in
Fig. 6.86f.
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Figure 6.86: Absolute value of vertical displacements |ūz(x,y)| on the ground surface for (a),(b) single
tunnel and (c),(d) twin tunnels due to a harmonic block load on the invert of tunnel T1 at
f = 30Hz (left) and f = 60Hz (right) as well as the corr. insertion gain IGz according to the
setup in Fig. 6.85 cp. [244].



197

7 Dynamic response to stationary

transient loads

For many issues in soil dynamics and soil structure interaction, a frequency domain analysis
provides a very good insight into the dynamic behaviour of the system and the wave prop-
agation characteristics. However, as soon as non harmonic processes such as earthquake,
impact or pulse loads shall be considered, an investigation in the time domain is beneficial.
Therein the transient response usually is gained by the convolution of an appropriate impulse
or step response function with the respective transient load.

An alternative approach is to solve the governing equations in the frequency domain first in
order to determine the complex frequency response functions of the system. The methodol-
ogy for calculating these response functions, hereafter referred to as transfer functions (TFs),
in the context of the presented approach is described in Sec. 7.1. Following, in Sec. 7.2 two
equivalent procedures for the determination of the time histories of the system response are
outlined in more detail. Therein Sec. 7.2.1 deals with the Fourier synthesis approach, apply-
ing a IFFT to the discrete frequency spectrum of the system response, whereas Sec. 7.2.2
treats the discrete convolution of the impulse response functions (IRFs), obtained from an
inverse transform of the TFs for a large frequency range, with the transient load in the time
domain. The influence of the restriction of the amount of considered frequencies for the com-
putation of the TFs due to limited computational capacities is discussed and a confidence
measure quantifying the introduced error is defined. Subsequently, the transient response of
a homogeneous halfspace to a superposition of harmonic loads with different frequencies is
presented in Sec. 7.3.1, while Sec. 7.3.2 covers the response to a suddenly applied rectangular
load on the soil surface, illustrating the time dependent displacements at different positions
on the ground surface. Furthermore, the effects introduced by the numerical computation
applying the FFT as well as the influence of the hysteretic material damping on the causality
of the response are discussed. Sec. 7.4 addresses the transient response of rigid massless and
massive surface foundations due to a Heaviside loading. The obtained dimensionless foun-
dation flexibilities are compared to literature solutions for validation. Finally, in Sec. 7.5 the
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transient response of a twin tunnel system, modelled with the 2.5D coupled ITM-FEM ap-
proach, due to a pulse load in one of the two tunnel tubes is investigated and displacements
at the ground surface as well as in both tunnels are presented.

7.1 Frequency transfer functions (TFs)

The transfer function describes the dynamic behaviour of a system as a function of frequency
and can thus be used to calculate the conversion of any input signal through the system and
to determine the corresponding output signals. It thus describes the dynamic response of
the system completely and independently of the respective frequency amplitude spectra of
the input [302]. For the considered systems, the input is specified by a loading P̄(x,y,z,ω)
at selected discretization points of either the ITM or the FEM substructure, while the
corresponding output signals are given by the resulting displacements ū(x,y,z,ω) at all points
(x,y,z) of interest. Thus the TFs for a specific frequency are defined as

TF(x,y,z,ω) P̄(x,y,z,ω) = ū(x,y,z,ω) (7.1)

In order to compute the transfer function matrix TF(x,y,z,ω) of a system, its steady state
response due to a harmonic load with unit amplitude over a sufficiently large frequency range,
whose limits depend on the resp. system characteristics (cp. Sec. 7.2.3), is determined. In
this case the TFs correspond directly to the response ū(x,y,z,ω), which thus can be used to
populate TF(x,y,z,ω).

However, since the solution of the fundamental and coupled systems, presented in Chs. 2,
3 and 5, is performed in the wavenumber frequency domain for negative frequencies, also
the transfer functions are firstly evaluated w.r.t. this domain. Eq. (7.2) exemplarily gives
the rule for the computation of the transfer functions for the soil displacements in case of
a homogeneous halfspace due to a given load distribution |P̄hs

ΛITM
(x,y,z,ω)| = 1 with unit

frequency spectrum on the ground surface Λ

T̂F(kx,ky,z,ω ≤ 0) = K̂hs −1

ITM (kx,ky,z,ω ≤ 0) P̂hs
ΛITM

(kx,ky,z,ω ≤ 0) (7.2)

Obviously, for the solution of the elastodynamic problem, the spatial distribution of the
load firstly needs to be transformed into the wavenumber frequency domain, in which the
dynamic stiffness matrix of the considered system is defined. Eq. (7.2) holds analogously for
all ITM and ITM-FEM systems introduced in this thesis. Depending on the system under
consideration, only the dynamic stiffness matrix needs to be exchanged and the load vector
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adjusted accordingly. Furthermore, it has to be noted, that in case of the cylindrical FEM
substructure embedded in the soil, also the differing reference system in the transformed
domain (kx,r,n,ω) has to be considered.

Before applying the respective coordinate and discrete inverse Fourier transforms, to obtain
the transfer functions in the spatial domain w.r.t. frequency TF(x,y,z,ω), the results for the
positive frequencies ω > 0 are supplemented as the corresponding conjugate complex values
of ω < 0. Thereby the following relations between the complex transfer functions TF and
their conjugate complex counterparts TF∗, deduced in [162], need to be satisfied

TF(+kx,+ ky, ω) = TF∗(−kx,− ky,− ω) TF(−kx,+ ky, ω) = TF∗(+kx,− ky,− ω)

TF(+kx,− ky, ω) = TF∗(−kx,+ ky,− ω) TF(−kx,− ky, ω) = TF∗(+kx,+ ky,− ω)

With TF(x,y,z,ω), valid for the initially chosen load configuration and after the complex
conjugate expansion available over the total frequency range from −ωmax ... ωmax, the basis
for the determination of the transient system response is given.

7.2 Time domain response

7.2.1 Fourier synthesis approach

The most straightforward approach to determine the transient system response is, to scale
the previously computed transfer functions TF(x,y,z,ω) for each discretization point with
the frequency spectrum P̄(ω) of the time history of the load P(t). Since P̄(ω) is applied to
all discretization points equally, the spatial dependency is omitted. The system response for
a given load configuration can thus be determined as ū(x,y,z,ω) = TF(x,y,z,ω) P̄(ω) and
further be transformed back into the time domain u(x,y,z,t) using the IFFT.

However, in order to obtain a sufficiently fine discretization ∆t = 2π/(2ωmax) for the response
u(x,y,z,t) in the time domain by simultaneously long observation times T = Nt∆t, the
system has to be evaluated for a large number of frequencies Nf = Nt to reach a sufficient
ωmax = Nf ∆ω with a small frequency step size ∆ω, leading to a high computational effort.
Depending on the type of load, two approaches were followed in this work to reduce the
necessary calculation costs. In case of a harmonic load consisting of a superposition of sine
or cosine loads with different frequencies and amplitudes, the system response is calculated
only for the load frequencies and sorted into a matrix containing the transfer functions
TF(x,y,z,ω) with a corresponding fine frequency discretization reaching up to a large ωmax

(cp. Fig. 7.1a). In case of a transient loading, the transfer functions are evaluated for a
predefined set of frequencies |ωcalc| ≤ ωmax and the values of TF(x,y,z,ω) for the intermediate
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frequencies, in order to reach the desired ∆ω, are interpolated using a modified Akima cubic
Hermite interpolation inherent in Matlab (cp. Fig. 7.1b). Thereby "the interpolated value
at a query point is based on a piecewise function of polynomials with degree at most three
evaluated using the values of neighbouring grid points in each respective dimension" [303].
This procedure works very well for the smooth transfer functions in case of a homogenous soil.
However, in case of a soft soil layer over a rather stiff underlying halfspace, exhibiting layer
resonances linked to distinct peaks in the transfer functions, the calculated frequencies have
to be carefully chosen with a generally small spacing ∆ω. In general, the interpolation could
also be performed in the wavenumber domain (kx,ky,ω), however, it is much more unstable
there due to the strong peaks at ks and kr. Thus, the integration over the wavenumbers and
the application of the interpolation over the frequency in the spatial domain is advantageous
for the quality of the transient system response.
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TF(ω)

−ωmax

−ω1
−ω2
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Figure 7.1: (a) Sorting of TF(ωcalc) determined for the harmonic load frequencies ωcalc into a fine fre-
quency vector and (b) interpolation of TF(ω) from ωcalc on finer frequency discretization, both
exemplarily depicted for one single discretization point.

The same procedures are also applicable for the computation of the time histories of the
flexibilities of rigid surface foundations Ff ,r(t). In case an external load with unit amplitude,
constant over the entire considered frequency range is chosen, the foundation flexibilities
F̄f ,r(ω), resulting from the frequency domain calculation, can simply be interpolated w.r.t. ω
and then be scaled with the spectrum of the transient load P̄sys(ω) before applying the inverse
Fourier transform.

The main steps of the procedure for the transient soil and rigid foundation response in case
of a homogeneous or layered halfspace are exemplarily gathered in the pseudo code in Alg. 4.

7.2.2 Discrete convolution (Duhamel)

A different but equivalent approach to determine the transient system response is to use
the Duhamel integral, which states that for linear systems the response u(t) to an arbitrary
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Algorithm 4 Transient soil and foundation response for homog. and layered soil
procedure main hs 1L fvar

Initialize and input parameters
Material parameter
Discretization and geometry
Load for TF P̄(x,y,z,ω) → P̂(kx,ky,z,ω) with |P̂(ω)| = 1

function displ itm( )
T̂F(kx,ky,z,ω ≤ 0) = K̂ −1

ITM(kx,ky,z,ω ≤ 0) P̂ΛITM(kx,ky,z,ω ≤ 0)
via fundamental solution for each (kx, ky, ω)

Add conj. complex solution for ω > 0
IFFT w.r.t. space: T̂F(kx,ky,z,ω) → TF(x,y,z,ω)
Load for time domain response P(t) → P̄(ω)

function ifft displ Pt( )
Transient soil response ū(x,y,z,ω) = TF(x,y,z,ω) P̄(ω)
Inverse transform w.r.t. time: u(x,y,z,t) = IFFT ( ū(x,y,z,ω))

function stiff found rigid( )
Soil flexibility at contact surface F̄s(x,y,z,ω)
due to concentrated load with |P̄(x,y,ω)| = 1
Transfer function of rigid foundation flexibility TFFf ,r(ω)
via kinematic condition

function ifft displ Pt found( )
Transient foundation response F̄f ,r(ω) = TFFf ,r(ω) P̄sys(ω)
Inverse transform w.r.t. time: Ff ,r(t) = IFFT

(
F̄f ,r(ω)

)
Postprocessing
Export and save

transient load P(t) can be calculated by superposing the responses H(t − τ) to a sequence
of infinitesimal impulses P(τ) up to the considered time t

u(t) =
τ=t∫

τ=0

P(τ)H(t− τ)dτ = P(t) ∗ H(t)

This superposition is equal to a convolution of the time dependent load P(t) and the impulse
response function (IRF) of the investigated system H(t). For the considered ITM and ITM-
FEM systems, the IRFs are obtained from an inverse Fourier transform of the TFs for a
large frequency range, approximating the spectrum of a temporal Dirac impulse δ(t = 0).
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Since the TFs are calculated numerically and thus the impulse response is not available in
analytical form, the convolution integral must also be computed discretely and is given by

u(k) =
∑

j

P(j) H(k − j + 1) (7.3)

with j = max(1,k+ 1 −n) : 1 : min(k,m), whereby m and n are the number of time samples
of P(t) and H(t) [304].

As before, the discrete convolution can be applied equivalently to the computation of tran-
sient soil displacements as well as foundation flexibilities by using the respective impulse
response functions H(t). The procedure for both possible approaches, the Fourier synthesis
and the discrete convolution are exemplarily depicted in Fig. 7.2 for the computation of the
time histories FF11

f ,r (t) of a rigid massless surface foundation on a homogeneous halfspace.
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Figure 7.2: Procedure for the determination of the transient response of a rigid massless foundation with
(a) the Fourier synthesis approach and (b) the discrete convolution.

7.2.3 Assessment of frequency band limitation

In the numerical evaluation of a system, only a limited number of discrete values can gener-
ally be processed due to computational limitations. Therefore, when dealing with transient
system responses, which were originally obtained from frequency domain solutions, the fol-
lowing question immediately arises: Up to which maximum frequency ωmax must the system
response be calculated so that only a negligible error is introduced into the solution? This
question applies to both, the determination of the time history of the system response from
the frequency spectrum by means of Fourier synthesis and the determination of the impulse
response function used for the discrete convolution. In order to enable a quantitative as-
sessment of this question, a short excursion into system norms, as used in signal theory, is
provided hereinafter.
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Signal processing and energy considerations

In signal processing system norms, measuring the magnitude of the signals involved, are used
to quantitatively estimate the performance of a system. To this end the L2 norm resp. the
root sum square (RSS) for a discrete signal is introduced as

||x(t)||2 =
√√√√ ∞∑

n=−∞
|x[n]|2 (7.4)

with x(t) ϵ L2 and the L2-space being a set of square integrable signals with
∞∫

−∞
|x(t)|2 dt < ∞.

Therewith, the total energy of a signal Esig, defined as the area under the squared magnitude
of the signal can also be expressed as the square of the L2 norm ||x(t)||22.

Esig =
∞∑

n=−∞
|x[n]|2 (7.5)

Furthermore, with the Plancherel theorem, stating that the energy content of a signal in the
time and the frequency domain is equal, and Parseval’s identity, relating the signal energy
to the sum over the squares of its Fourier coefficients, it can be shown that the squares of
the L2 norms of a discrete signal with N samples in time and frequency domain are equal
up to the constant factor N [305].

Esig ≈
N−1∑
n=0

|x[n]|2 = 1
N

N−1∑
k=0

|X[k]|2 (7.6)

Thereby |X[k]|2 is proportional to the energy content of the signal at a specific frequency k
and is further used to introduce an error measure for the frequency band limitation in terms
of the signal energy in the frequency domain. However, it should be noted that the physical
energy of a system, unlike the energy of a signal, is linked to the units of the respective
physical quantities, which can be incorporated via a system related constant factor Z

E = 1
Z
Esig (7.7)

The physical energy of a signal is proportional to the RSS of the signal as long as Z is
constant over the frequency. Since the response of the system and thus the signal in case of
the SSI analysis depends on the soil stiffness K̄s(ω), E is not directly proportional to Esig.
Nevertheless, the RSS still provides a good estimate of the contribution of the signal up to
a certain frequency threshold value regarding its total energy content.
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Confidence measure

For the definition of the confidence measure, it is assumed that all frequencies, providing a
relevant contribution to the transient system response, are included up to a threshold fmax

(following f instead of ω is used for convenience) and thus higher frequency components
f > fmax are quasi negligible. Therefore, the RSS of the signal

√∑fmax
k=0 |X[k]|2 is defined

as reference solution and the difference in the system response, if evaluated only up to a
frequency fev, is quantified by

conf =

√∑fev
0 |X[k]|2√∑fmax

0 |X[k]|2
(7.8)

Fig. 7.3a shows the dimensionless vertical foundation flexibilities |C11
zz (f)| of a rigid massless

square foundation with Bf = 2 m resting on a homogeneous halfspace (Soil A), evaluated
up to fmax = 200 Hz for a total domain size of Bx = By = 256 m with Nx = Ny = 211

sample points and n∆ = 2. The corresponding confidence measure, as defined in Eq. (7.8),
is illustrated in Fig. 7.3b for a maximum evaluation frequency fev = 100 Hz. The confidence
measure increases rather strongly in the low frequency range, indicating a large contribution
of these components to the total system response regarding their energy content. In the
higher frequency range the gain of the confidence measure decreases significantly, indicating
a smaller contribution of these components.

This behaviour can also be explained by the monotonous decaying foundation flexibilities,
converging to zero with increasing f and thus leading to a finite value of the sum over
|C11

zz (f)|2 for f → ∞, corresponding to the system energy. Therefore, the evaluation of the
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Figure 7.3: (a) Vertical dimensionless foundation flexibility |C11
zz | and (b) corr. confidence measure conf of

rigid massless square foundation on homogeneous halfspace ( ) and layered halfspace ( )
with Bf /h1 = 1 and cs2/cs1 = 3.16.
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foundation flexibilities up to conf(fev) until reaching a nearly horizontal slope is sufficient to
obtain the transient system response with only a non significant error due to the frequency
band limitation. The decrease of the slope of conf(f) and its approximation to a horizontal
tangent would be even stronger in case of a massive footing, since |C11

zz (f)| tends to zero for
considerably lower f , due to the mass inertia of the foundation.

In case of a layered ground with a soft layer (Soil A) of h1 = 2 m over a stiffer halfspace (Soil
B), a less monotonous decay of |C11

zz (f)| and clear peaks at the layer resonance frequencies
are observed in Fig. 7.3a. However, the corresponding confidence measure conf(f), shown
in Fig. 7.3b, converges to unity also here, since the peak amplitudes due to the large dimen-
sions of h1 compared to the wavelengths of the elastic waves in the ground diminish with
increasing f and thus the behaviour approaches that of a homogeneous halfspace. Depending
on the layer thickness and the stiffness contrast between layer and halfspace, the maximum
evaluated frequency fev to reach conf ≈ 1 has to be adjusted accordingly.

7.3 Transient response of homogeneous halfspace

In the subsequent section, the transient response of a homogeneous halfspace (Soil A) due
to a vertical, rectangular load on the ground surface Phs

ΛITM
(x,y,t) with a width of bx = by =

2 m and different time histories P(t) is investigated, as depicted in Fig. 7.4. The material
parameters of the soil are given in Tab. 7.1 and results are computed with a total domain
size of Bx = By = 128 m with Nx = Ny = 211 samples.

Λ

Phs
ΛITM

(t)

by

bxy
zx

Figure 7.4: Setup for investigation of transient halfspace response.

7.3.1 Superposition of harmonic loads

Firstly, the soil response due to |Phs
ΛITM

(x,y)| = 1 for a superposition of harmonic loads
with f1 = 6 Hz and f2 = 12 Hz given by P(t) = P01 cos(2πf1t) + P02 cos(2πf2t) with
|P01| = |P02| = 2 is analysed. This investigation is performed to test the implemented discrete
procedure for the determination of the transient system response using the Fourier synthesis
approach for a load case for which the time history of the displacements, after calculating
the transfer function for the chosen frequencies, can be easily determined analytically for
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E (Nm−2) ν (−) ρ (kgm−3) ζ (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil A 2.60 · 107 0.30 2000 0.05 132.5 70.8 65.7
Soil B 2.60 · 108 0.30 2000 0.05 418.8 223.9 207.7

Table 7.1: Material parameters of homogeneous and layered halfspace for transient analysis.

verification. The time history and the frequency spectrum P̄(f) = ∑
i
δ(f − fi) + δ(f + fi) of

the load with i = 1,2 are depicted in Fig. 7.5a,b. The transfer function TF of the vertical
displacements ūz(f) at (x,y,z) = (0,0,0) for the given load distribution P(x,y), shown in
Fig. 7.5d, is further scaled with the load spectrum P̄(f) to obtain the frequency response
ūz(f), which in this case correspond directly to the values of TF of ūz at ±f1 and ±f2.
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Figure 7.5: (a) Time history Pz(t) and (b) frequency spectrum of the transient load P̄z(f) as well as (d)
real ( ) and imaginary part ( ) of the transfer function of the soil displacements at (x,y,z) =
(0,0,0) for the given P(x,y) and (c) corr. transient soil displacements uz(x = 0,y = 0,z = 0,t)
via numerical IFFT ( ) and the analytical inverse transform ( ).
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However, if a discrete inverse Fourier transform is applied, to achieve a sufficient time dis-
cretization for uz(t) the system response ūz(f) needs to be sorted into a finely discretized
frequency vector with |fmax| = 256 Hz in steps of ∆f = 1/T = 2 Hz and thus Nf = Nt = 28

samples. The transient soil displacements, obtained from an IFFT of ūz(f) are illustrated
in Fig. 7.5c for an observation time T = 0.5 s and a time step size of ∆t = T/Nt ≈ 0.002 s.
Additionally to the numerical inverse transform via the IFFT, the analytical inverse Fourier
transform was computed, using the values of ūz(f), at ±f1 and ±f2, which yields

uz(t) =
∑

i

Re (ūz(−fi) + ūz(fi)) cos(ωit) +
∑

i

Im (ūz(−fi) − ūz(fi)) sin(ωit) (7.9)

and is also depicted in Fig. 7.5c. Therein uz(t) at the center of the load (x,y,z) = (0,0,0)
on the ground surface shows a slight phase shift compared to the load Pz(t) because of the
soil damping. Otherwise the vertical soil displacements follow the progression of the load
function rather accurately.

7.3.2 Suddenly applied loading

Soil response due to rectangular block load

Now the setup of Fig. 7.4 is investigated for a suddenly applied horizontal and vertical loading
|Phs

ΛITM
(x,y)| = 1/(bx by), with a time dependence given by the Heaviside step function

(cp. App. A.5.3) and depicted in Fig. 7.6. The soil displacements are evaluated at y = 0 for
different positions xev and presented w.r.t. to the dimensionless time τ = tcs/xev in Fig. 7.7.
The results of the ITM approach were computed up to a maximum frequency fmax = 200 Hz
in steps of 2 Hz. To ensure a sufficient time discretization, the transfer function of the soil
displacements was interpolated (cp. Sec. 7.2), finally providing Nf = Nt = 3200 frequency
samples with ∆f = 0.125 Hz leading to a time increment of
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Figure 7.6: (a) Time history P(t) of the load with a time dependence given by the Heaviside step function
and (b) real ( ) and imaginary part ( ) of the corr. frequency spectrum P̄(f).
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Figure 7.7: Dimensionless (a) horizontal ux,Px(t) and (b) vertical uz,Pz (t) soil displacements due to a
suddenly applied rectangular load (a) Px(t) and (b) Pz(t)t evaluated at different positions
xev = bx/2 ( ), xev = bx ( ) and xev = 2bx ( ) obtained with the ITM approach (straight)
and by Guan and Novak [12] (dashed) w.r.t. dimensionless time τ = tcs/xev.

∆t = 0.0025 s for a total observation time of T = 8 s. For comparison the results presented
in Guan and Novak [12], who derived a closed form solution for the considered problem
by means of a Laplace transform w.r.t. time and Fourier transform w.r.t. space, are also
included in Fig. 7.7. Since the solution in [12] was derived for an undamped soil and ν = 1/3
the parameters of Soil A in Tab.7.1 were adapted to ν = 0.33 and ζ = 0.02.

In the histories of ux,Px(t) and uz,Pz(t) due to a load P(x,y) in x−resp. z−direction, dis-
continuities arise at the arrival and during the passage of the Rayleigh waves, while these
subsequently assume the values of the respective static deformation [12]. In addition, a more
pronounced change in the displacements is observed as the distance of the receiving point
increases, indicating a significant contribution of the Rayleigh wave due to its lower geomet-
rical damping compared to the body waves. In general, a very good agreement between the
ITM and the literature results is observed.

7.4 Transient response of a rigid foundation on

homogeneous halfspace

7.4.1 Response of suddenly loaded massless or massive foundations

Within this section, firstly the response of a rigid massless (M = 0) and massive (M = 1)
surface foundation with the dimensionless mass M given in Eq. (6.10), foundation width
Bf = 2 m and height Hf = 0.5 m, resting on a homogenous halfspace (cp. Fig. 7.8), due to
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Figure 7.8: Setup for transient response of rigid surface foundation on homogeneous halfspace.

a Heaviside step load is investigated. For the soil, material parameters of Soil A in Tab. 7.1,
however with ζ = 0.02, were used in order to allow a better comparison with the literature
solutions obtained for an undamped soil later on. The foundation can either be modelled
via the kinematic condition or by a FEM model with large Ef (cp. Sec. 5.3.2), both leading
to the same results (cp. Fig. 6.74). All calculations in this section were run with a total
domain size of Bx = By = 128 m with Nx = Ny = 212 samples.

The transfer functions of the vertical flexibilities of the massless and the massive foundation
were computed by means of a frequency domain analysis with ∆f = 2 Hz up to |fmax| =
100 Hz. The interpolated TFs of C11

zz (f) with Nf = 800 are depicted in Fig. 7.9a, whereby in
case of M = 1 the resonance peak of the vertical rigid body mode in the low frequency range
is clearly visible as well as the much stronger decay of |C11

zz | towards zero with increasing
frequency, due to the inertia of the foundation. Fig. 7.9b shows the time history of C11

zz
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Figure 7.9: (a) Real (dash), imaginary (dash-dot) and absolute value (straight) of the frequency transfer
function TF of C11

zz of a rigid foundation on homogeneous soil for M = 0 ( ) and M = 1
( ) and (b) transient flexibility C11

zz (t) due to Heaviside load Pz(t) obtained with the ITM-FEM
approach (−) as well as the results of Friedrich [286] (◦) and Bode [67] (×).



210 7 Dynamic response to stationary transient loads

-1 -0.5 0 0.5 1

0

0.01

0.02

0.03

0.04

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.05

0.1

0.15

(b)

Figure 7.10: (a) Impulse response function IRF of C11
zz of a rigid massless foundation on homogeneous

soil and (b) corr. transient foundation flexibility C11
zz (t) obtained with the ITM-FEM approach

applying the Fourier synthesis approach ( ) and the discrete convolution ( ).

computed with the ITM-FEM approach for Nt = 800 time samples, leading to a time step of
∆t = 0.005 s for an observation time of T = 4 s. The static compliance remains unchanged
regardless the foundation mass, yet the time to reach the static state differs considerably
due to pronounced natural vibrations caused by the mass inertia. Tab. 7.2 summarises some
normalised static compliance presented in literature and determined using different time and
frequency domain methods, showing good agreement with the results gained from the ITM-
FEM approach. Furthermore, the time histories of C11

zz for M = 0 and M = 1 in Fig. 7.9b
generally show good accordance with those in Bode [67] and Friedrich [286]. However, for
M = 1, the ITM-FEM results converge to the static solution faster and show a small phase
shift compared to the literature results, which is due to the hysteretic material damping
required in the ITM and not included in [67, 286].

Fig. 7.10a shows the impulse response function for the vertical flexibility C11
zz of a rigid

massless foundation, computed from the interpolated transfer function of Fig. 7.9a. The

|C11
zz (f = 0)| mesh size

Friedrich [286] 0.1458 (5 × 5)
Mohammadi and Karabalis [58] 0.1437 (8 × 8)
Wong and Luco [285] 0.1475 (8 × 8)
Bode et al. [69] 0.1441 (20 × 20)
ITM-FEM approach 0.1463 (16 × 16)
ITM-FEM approach 0.1475 (32 × 32)

Table 7.2: Comparison of the normalized static flexibility |C11
zz (f = 0)| for a rigid square foundation resting

on a homogeneous soil (ν = 0.3).
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IRF exhibits a strong peak at t = 0, when the step load is applied, and then decays rather
quickly due to the large damping effect of the soil. The corresponding time history C11

zz (t),
obtained from the discrete convolution of the IRF with the transient load P(t) is depicted in
Fig. 7.10b. A complete agreement of the results from the convolution and those determined
by means of the IFFT from the frequency spectrum C11

zz (f) is observed.

7.4.2 Causality and FFT effects

Considering the time history of C11
zz (t) in Fig. 7.10b over a longer period of time t instead

of the only very short section in Fig. 7.9b presented w.r.t. tcs/Bf , a small deflection already
before the onset of the load as well as an overshoot beyond the static flexibility is noticeable.
These effects can be traced back to two phenomena that are inherent in the ITM-FEM
approach and are elaborated in more detail hereafter.

Firstly, within the ITM-FEM approach a frequency independent hysteretic material damping
was introduced via complex material parameters applying the correspondence principle. It
was shown in Crandall [306] and is also reported by Veletsos and Verbic [307] and Kausel
[308], that hysteretic oscillators do not rigorously satisfy causality, since when their motions
"are transformed from the frequency domain into the time domain, small non-causal response
precursors may precede the excitation" [308]. This effect is clearly visible in the time histories
of the vertical displacement of a hysteretically damped SDOF system due to a Heaviside
load, depicted in Fig. 7.11b for different ratios ζ. An increase of the precursor effect with
increasing ζ is evident, whereas nearly no non-causal response occurs for low damping ratios.
The corresponding transfer function in the frequency domain

TF(ω) = 1
k (1 + i sign(ω)2ζ) −mω2 (7.10)

for ζ = 0.05 is presented in Fig. 7.11a, showing a non vanishing imaginary part of TF for
ω → 0 related to the hysteretic damping and leading to a phase shift between excitation and
response also for very low frequencies.

Secondly, the Heaviside load function exhibits a discontinuity at t = 0, which cannot be fully
represented by a Fourier series expansion. An over- resp. undershoot up to 9% of the actual
function values occurs at the jump discontinuity (Gibbs phenomenon) regardless the (finite)
amount of considered Fourier members [309]. Since the frequency spectrum of the system
response C11

zz (f) is obtained by multiplying the spectrum P̄(f) of the Heaviside load with
the transfer function TF, these overshoots also occur in the time history of the response
C11

zz (t), obtained from a Fourier synthesis.
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Figure 7.11: (a) Real ( ) and imaginary part ( ) of the frequency transfer function of the SDOF system
for ζ = 0.05 and ωn =

√
k/m. (b) Corresponding time history uz(t) due to a Heaviside load

P(t) for ζ = 0.005 ( ), ζ = 0.025 ( ) and ζ = 0.05 ( ).

The combined effect of both phenomena leads to the time history of C11
zz (t), as it can be

observed in Fig. 7.10b. One possibility to reduce the introduced numerical error due to
Gibbs phenomenon is, to use a continuously defined load function without a jump such as
the logistic function P(t) = (1 + e−t)−1, which still exhibits a very steep slope at t = 0 but
allows a much better approximation by a Fourier series expansion, thus significantly reducing
the overshooting (cp. Fig. 7.12). Furthermore, a decrease of the hysteretic damping ratio ζ
leads to a less pronounced non-causal effect. However, in order to minimize spatial aliasing
and to guarantee a sufficient discretization of the small wavelengths at high frequencies in
this case, large domain sizes Bx, By by simultaneously large sample numbers Nx, Ny need to
be used, which leads to a significant increase in the computational effort.
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Figure 7.12: (a) Time history of load Pz(t) for Heaviside ( ) and logistic ( ) load function. (b) Time
history of corr. vertical flexibilities C11

zz (t) of rigid foundation with Bf = 2 m on homogenous
halfspace (Soil A) for ζ = 0.05 and Bx = By = 128 m, Nx = Ny = 210 with fmax = 100 and
∆f = 2 Hz resulting in ∆t = 0.005 for T = 4 s.
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7.4.3 Transient SSI contact stresses via postprocessing procedure

With the methodology outlined in this chapter, it is possible to determine the transient
response of one or several foundations resting on a homogeneous or stratified soil as well as a
soil with a length invariant inclusion. Thus, the transient contact stresses σc(t) at the soil-
foundation contact surface due to the SSI can also be calculated from the frequency spectrum
σ̄c(f) and used to predict the time dependent propagation of the elastic waves induced in the
soil as well as the corr. deformation states, applying the postprocessing procedure outlined
in Sec. 5.4.

7.5 Transient response of twin tunnels

Finally, the transient response of the twin tunnel system of Sec. 6.6, modelled with the
coupled 2.5D ITM-FEM approach and depicted in Fig. 7.13, is investigated. Geometry,
material and discretization parameter are chosen analogously as before, but instead of a
harmonic load, a Gaussian-modulated sinusoidal pulse with bx = by = 1 m is applied on the
track within the tunnel T1.

Λ

Γc1

Ωc1

by

yTc1
yTc2

2R1 2R2

y
x z

Γc2

Ωc2P̄hs cyl tw
Ωc1 FE

P2

P1

Figure 7.13: ITM-FEM model of a twin tunnel system embedded in homogeneous soil.

The time history as well as the frequency spectrum of the Gaussian-modulated sinusoidal
pulse with a center frequency of fc = 10 Hz and a bandwidth of 0.8 are shown in Fig. 7.14.
The spectrum shows two major peaks around ±fc, while only small amplitudes occur for
low frequencies. Moreover P̄(f) tends to zero in the higher frequency range, i.e. f ⪆ 20 Hz.
This characteristic is very beneficial for the application within the ITM-FEM approach
for two reasons. Firstly, the system response only needs to be computed for a limited
frequency range, since the transfer function is scaled with P̄(f) and thus the spectrum of
the system response also exhibits very small values for f ⪆ 20 Hz, as is clearly visible in
Fig. 7.15a,c. Secondly, the rather small amplitudes of P̄(f) for low frequencies lead to only a
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small contribution of the response in this frequency range, for which the numerical solution
is afflicted with larger numerical errors due to restrictions in the maximum possible size of
the discretized domain, resulting from limited computational resources.

The transfer functions of the system response were originally calculated up to a maximum
frequency |fmax| = 40 Hz in steps of 1 Hz and interpolated subsequently, leading to TF(f)
discretized with Nf = 320 samples and ∆f = 0.25 Hz. A total observation time of T = 4 s
was chosen with Nt = 320 samples resulting in a time step of ∆t = 0.0125 s. The corr. spectra
ūz(f) and time histories uz(t) of the vertical displacements at the upper edge of the roadway
in tunnel T1 beneath the centre of the load as well as on the soil surface at (x, y, z) = (0, 8, 0)
directly over the tunnel T1, indicated as P1 and P2 in Fig. 7.13, are presented in Fig. 7.15.
As expected, the displacements at point P1 follow the load progression very closely, while
at point P2 the influence of the wave propagation in the soil leads to a considerably altered
spectrum as well as a slight temporal offset and a modified pulse shape in the time history
of the displacements.

In addition, the deformation of the tunnels and the corr. distribution of the displacements
on the ground surface are presented in Fig. 7.16 for different time steps t. Fig. 7.16a shows
the first slight deformations in the left tunnel due to the onset of pulse loading, whereas
no displacements occur yet at the surface and in the second tunnel. In the following, the
disturbance propagates very quickly in longitudinal direction of the tunnel due to the high
wave velocities in the concrete, whereas the propagation through the soil towards the second
tunnel and the soil surface proceeds considerably slower. After hcyl/ci, the first shear and
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Figure 7.14: (a) Time history Pz(t) and (b) real ( ) and imaginary part ( ) of frequency spectrum P̄z(f)
of the Gaussian-modulated sinusoidal pulse with fc = 10 Hz and bandwidth of 0.8.
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Figure 7.15: Real ( ) and imaginary part ( ) of ūz(f) (left) and uz(t) (right) due to the Gaussian-
modulated sinusoidal pulse (a,b) at P1 on the top of the slab within tunnel T1 at (x,y) = (0,8)
and (c,d) P2 on the soil surface (x,y,z) = (0,8,0) directly above the loaded tunnel T1.

Rayleigh waves, induced by Pz(t) in T1, reach the ground surface in Fig. 7.16c and prop-
agate outwards from the source with wave fronts stretched in the x-direction, rather than
cylindrically, due to the longitudinal stiffness of the tunnel. Moreover, in Figs. 7.16c,d first
slight displacements are visibile at the second tunnel due to the arrival of the induced P-wave
after dT1−2/cp. First vertical shifts in T2 appear in Figs. 7.16e,f when the S- and R- waves
firstly impinge there. In Figs. 7.16h,i the further expansion of the waves within the soil
and at the soil surface are depicted and the amplification of the displacement amplitudes at
yTc2 = −8 m due to the superposition of the primary and the scattered waves at the second
tunnel gets visible. At the same time, the displacements in the tunnel T1 diminish after the
end of the pulse loading Pz(t) until it is at rest again.



216 7 Dynamic response to stationary transient loads

(a) t = −0.050 s (b) t = −0.025 s (c) t = 0.000 s

(d) t = 0.025 s (e) t = 0.050 s (f) t = 0.075 s

(g) t = 0.100 s (h) t = 0.125 s (i) t = 0.150 s

Figure 7.16: Time evolution of absolute value of total displacements for the entire twin tunnel system
of Fig. 7.13 (upper subplot) and on the ground surface z = 0 (lower subplot) due to the
Gaussian-modulated sinusoidal pulse of Fig. 7.14 for different time steps t (a-i).
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8 Dynamic response to moving loads

After the investigation of the dynamic response of different fundamental and coupled systems
due to stationary harmonic and transient loads, in the upcoming chapter the response to
a constant or harmonically oscillating moving load is considered. For this purpose, firstly
the general methodology for the incorporation of moving loads in the proposed ITM-FEM
approach is derived in Sec. 8.1. Subsequently in Sec. 8.2, the implementation is validated
by comparison of the results for a constant moving load on the homogeneous halfspace with
literature results. Furthermore, the presented approach is applied in order to reproduce
some typical physical phenomena such as the formation of shock waves for load speeds
exceeding the wave velocities in the soil as well as the Doppler effect, occurring in case of
an oscillating moving load, which is outlined in Sec. 8.3. Thereby relations of these effects
to the corr. wavenumber spectra are drawn, highlighting the advantages of the analysis in
the Fourier transformed domain for the interpretation of the wave propagation phenomena.
Eventually, the moving load approach for coupled ITM-FEM systems is validated and a
numerical example for a moving load within one tube of a twin tunnel system, modelled
with the 2.5D ITM-FEM approach, is presented in Sec. 8.4.

8.1 Solution in the wavenumber frequency domain

The computation of the system response in the Fourier transformed domain offers the possi-
bility to take into account dynamic loads moving on a straight line with a constant velocity
very easily. Subsequently the procedure is exemplarily derived for a constant or harmonically
oscillating load with arbitrary spatial distribution PITM(x,y) moving with constant velocity
on the soil surface or within a layered soil. Thus the superscripts, indicating the resp. system,
and the subscripts, indicating the surface on which the load is applied, are omitted. The
procedure can analogously be adapted for moving loads inside a length invariant structure
in case of the 2.5D ITM-FEM approach, whereby within the FEM substructure a Fourier
transform is only necessary w.r.t. x and ω, while y remains untransformed.
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A load Pmov(x,y,t) moving in x−direction and varying in time with P(t) is described by

Pmov(x,y,t) = PITM(x− vt,y) · P(t) (8.1)

Applying a twofold Fourier transform from the spatial (x,y) into the wavenumber domain
(kx,ky) and using the shifting theorem of the Fourier transform one obtains [160]

P̃mov(kx,ky,t) =
∞∫

−∞

P̄ITM(x− vt,ky) P(t) e−i kxx dx = P̃ITM(kx,ky) e−i vtkx · P(t) (8.2)

A further Fourier transform into the frequency domain yields

P̂mov(kx,ky,ω) = P̃ITM(kx,ky)
∞∫

−∞

P(t) e−i vtkx e−i ωt dt = P̃ITM(kx,ky) · P̄(ω + vkx) (8.3)

Thus an axial movement of a load with velocity v oscillating with ω, leads to a wavenumber
dependent frequency shift in the Fourier transformed domain ω̄ = ω + vkx, whereas for a
constant load with ω = 0 simply a shifted frequency ω̄ = vkx results.

In case of P(t) = cos(Ωt) the frequency spectrum yields P̄(ω) = π(δ(ω− Ω) + δ(ω+ Ω)) and
therefore the moving load is given by

P̂mov(kx,ky,ω) = P̃ITM(kx,ky) π(δ(ω + vkx − Ω) + δ(ω + vkx + Ω)) (8.4)

The resulting displacements ûITM in the (kx,ky,z,ω) domain can be calculated using the
fundamental solution K̂ −1

ITM
for an unit load |P̂ITM | = 1 for each tuple (kx,ky,ω)

ûITM(kx,ky,ω) = K̂ −1

ITM
(kx,ky,ω) P̂mov(kx,ky,ω)

= K̂ −1

ITM
(kx,ky,ω) P̃ITM(kx,ky) · π (δ(ω + vkx − Ω) + δ(ω + vkx + Ω))

(8.5)

The displacements uITM(x,y,t) in the original domain are obtained by means of a threefold
inverse Fourier transform. Thereby the transformation into the time domain, applying the
sifting property of the δ−function

∫∞
−∞ f(x)δ(x− x0)dx = f(x0), yields

ũITM(kx,ky,t) = 1
2π

∞∫
−∞

ûITM(kx,ky,ω) eiωtdω

= 1
2P̃ITM(kx,ky)

[
K̂ −1

ITM
(kx,ky,+ Ω − vkx)eit(+Ω−vkx)

]
+1

2P̃ITM(kx,ky)
[
K̂ −1

ITM
(kx,ky,− Ω − vkx)eit(−Ω−vkx)

]
(8.6)
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A subsequent inverse transform from the wavenumber to the space domain results in

uITM(x,y,t) = 1
8π2

∞∫
−∞

∞∫
−∞

P̃ITM(kx,ky)K̂ −1

ITM
(kx,ky,+ Ω − vkx)ei(tΩ−tvkx+yky+xkx)dkxdky

+ 1
8π2

∞∫
−∞

∞∫
−∞

P̃ITM(kx,ky)K̂ −1

ITM
(kx,ky,− Ω − vkx)ei(−tΩ−tvkx+yky+xkx)dkxdky

(8.7)

Introducing a moving coordinate system x̌ = x − vt, which is equivalent to the evaluation
of the displacement ǔ(x̌,y,z,t) at the current position of the load, the following relationship
for the displacement with respect to the moving and a fixed coordinate system holds

ǔITM(x̌,y,t) = uITM(x = x̌+ vt,y,t) (8.8)

Under application of the moving coordinate system and the shifting theorem one obtains

ǔ(x̌,y,t) = eiΩt

8π2

∞∫
−∞

∞∫
−∞

P̃ITM(kx,ky)K̂ −1

ITM
(kx,ky,+ Ω − vkx)ei(x̌kx+yky)dkydkx

+ e−iΩt

8π2

∞∫
−∞

∞∫
−∞

P̃ITM(kx,ky)K̂ −1

ITM
(kx,ky,− Ω − vkx)ei(x̌kx+yky)dkydkx

(8.9)

Because the resulting displacement ǔITM(x̌,y,z,t) in the original domain is a physical quantity,
and therefore has to be real, the integrands in Eq. (8.9) must be conjugate complex. The
two summands in (8.9) can thus be interpreted as pointers in the complex plane rotating in
opposite direction. Hence, it is sufficient to determine only one of the two, as all necessary
information (amplitude and phase) is comprised. To avoid the necessity of a case study, only
the complex pointer related to the negative excitation frequency is taken into account [216].
The total real displacements in the moving coordinate system thus results as

ǔ(x̌,y,t) = 1
4π2 Re

e−iΩt

∞∫
−∞

∞∫
−∞

P̃ITM(kx,ky)K̂ −1

ITM
(kx,ky,− Ω − vkx)ei(x̌kx+yky)dkydkx


(8.10)

Therewith the displacements due to a moving load w.r.t. a moving coordinate system can be
calculated using the spatially transformed load P̃ITM(kx,ky) and the soil stiffness, inserting a
modified angular frequency −Ω − vkx. This wavenumber and velocity dependent frequency
shift leads to a rotation in the kx − ω−spectrum of the system response exemplarily shown
in Fig. 8.1.
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Figure 8.1: Schematic sketch of the kx−ω−spectrum of the system response for (a) a stationary harmonic
load and (b) a moving harmonic load.

The displacements w.r.t. a fixed coordinate system finally result as

u(x,y,t) = ǔ(x̌ = x− vt,y,t) (8.11)

Thereby, due to the complexity of the integrals in equation (8.10), the inverse Fourier trans-
form is not conducted analytically but evaluated numerically using the IFFT for a finite
amount of wavenumbers kx and ky.

8.2 Constant moving load on homogenous halfspace

In this section, the response of a homogeneous halfspace due to a non-oscillating rectangu-
lar block load (P(t) = const.) moving with constant velocity along the surface in positive
x−direction (Fig. 8.2) is investigated. The steady state solution is considered, i.e. the distur-
bance due to the initial application of the load is not taken into account. Thereby three cases
have to be considered, depending on the ratio of the load speed to the velocities of the elastic
waves, expressed in terms of the Mach numbers Mi = v/ci with i = p, s associated with the
compressional resp. shear wave [200]: The subsonic case (Mp, Ms < 1), the transonic case
(Mp < 1, Ms > 1) and the supersonic case (Mp,Ms > 1).

Λ

Pmov(x,y,t)

by

bx

v

y
zx̌

Figure 8.2: Halfspace with moving rectangular load on the soil surface.
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8.2.1 Validation

Firstly, in order to validate the implementation of the ITM-FEM approach for moving loads,
the results obtained for a subsonic load are compared to literature. Therefore, a constant
rectangular block load with a width bx = by of approximately 2 m and unit total ampli-
tude, moving with v = 100 ms−1 on the surface of a homogeneous halfspace with material
parameters of Soil A in Tab. 8.1 is investigated.

E (Nm−2) ν (−) ρ (kgm−3) ζ (−) cp (ms−1) cs (ms−1) cr (ms−1)
Soil A 1.88 · 108 0.30 1800 0.05 375.4 200.7 186.2
Soil B 2.69 · 108 0.257 1550 0.05 460.0 263.1 242.3
Soil C 2.60 · 107 0.30 2000 0.05 132.5 70.8 65.7

Table 8.1: Material parameters of the soil for moving load analysis.

A total domain size of Bx = By = 100 m with Nx = Ny = 29 sample points was chosen,
leading to a maximum angular frequency of |ωmax| = | − vkx| = 1608.5 rad s−1 with a
step size of ∆ω = 2π. Thus in total Nf = 29 frequencies were considered for the Fourier
synthesis, leading to the time history of the displacements uz(t) at x = y = z = 0 depicted
in Fig. 8.3. The time history of uz(t) computed with the ITM-FEM approach shows a rather
similar progression as those obtained by Bian and Chen [310], using an explicit time domain
solution based on the TLM and the analytical solution given by Eason [201]. The differences
in the results can be attributed to the slightly larger dimensions of the block load in the
ITM-FEM approach, as well as the non-causal response due to the frequency-independent
hysteretic damping. The load dimensions cannot be chosen completely arbitrarily, but are
constrained to some extent by the implementation. The non-causality leads to a response,
preceding the excitation, and thus a response prior to the actual passage of the load at
the observation point. The combined effect results in the broader peak as in the literature
solutions.
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Figure 8.3: Vertical displacements uz(t) at (x,y,z) = (0,0,0) due to moving rectangular block load on
the surface of a homogeneous halfspace (Soil A) with v = 100 ms−1 obtained with ITM-FEM
approach ( ), Eason [201] in [310] ( ) and Bian and Chen [310] ( +++ ).
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8.2.2 Effect of varying load speed

Next, the effect of different velocities v of a non-oscillating block load with bx = by = 1 m
and |Phs

ΛITM
| = 1 Nm−2 on the surface displacements of a homogeneous halfspace (Soil B in

Tab. 8.1) is investigated. Within the computations, the total domain size (Bx = By) was
adjusted in the corr. calculation depending on the load velocity in order to avoid spurious
effects coming from the periodic repetition due to the FFT. However, in all cases Nx = Ny =
29 samples were considered and Nf = 29 frequency components up to ωmax = −vkx in steps
of ∆ω = 2πv/Bx Hz were taken into account.

The varying characteristics of the soil reaction in dependence of v become clearly visible in
uz(x,y) on the ground surface for t = 0, when the load passes through the origin (x,y) = (0,0).
The resp. displacement distributions are shown in Fig. 8.4 and are subsequently discussed
separately for the subsonic, the transonic and the supersonic regime.

(a) v = 0 ms−1 resp. Ms = 0.000 (b) v = 128 ms−1 resp. Ms = 0.487

(c) v = 256 ms−1 resp. Ms = 0.973 (d) v = 384 ms−1 resp. Ms = 1.459

Figure 8.4: Vertical displacement uz(x,y) on the halfspace surface z = 0 for t = 0 due to a rectangular
load with f = 0 moving along the x-axis with constant velocity v.
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Subsonic load velocity

The vertical surface displacements in the subsonic regime v < cs < cp are illustrated in
Figs. 8.4a-c, wherein the first two load velocities are smaller than the Rayleigh wave velocity
of the medium and the last one slightly exceeds cr. A comparison of these figures shows,
that the shape of the deflection for subsonic load velocities differs completely, depending
on whether v is smaller or larger than the phase velocity of the surface waves cr [209]. For
v < cr, the displacement uz(x,y) is quite similar to that of the static load, rather symmetric
to both coordinate axes and travelling with the load. The displacements are confined to
a region close to the current position of the load and no propagating waves are excited.
As soon as v exceeds cr, propagating waves are emitted by the moving load, leading to a
sharp discontinuity along two lines, originating in the current load position, which can be
associated with the Mach lines of the Rayleigh wave fronts [209]. As the load propagates
faster than the displacements due to the excited surface waves, no deflection related to the
Rayleigh wave occurs in front of the load.

A simple model to approximate the wave field caused by a concentrated moving load by
placing a sequence of discrete pulses, radiating cylindrical waves, along the line passed by
the load is shown in Fig. 8.5a. Therewith, the response at any point of the surface at a
specific time t can be determined by the superposition of the responses to all impulses that
have been applied previous to that time [203]. Within the time t the load covers a distance
x = v · t, but the disturbances due to the impulses have only propagated up to all points at
a distance ci · t by this time. Therefore, all disturbances are confined to the region that is
bounded by the two Mach lines through the current position of the load with the angle φi

Shockwave

Loadposition

φi

ci

ci(t−τ)

v(t−τ)
vt

cit

x

y

(a)

x

y
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φs

φr

Loadposition

(b)

Figure 8.5: (a) Approximation of the response and shock wave formation due to a moving load by an
impulse model cp. [18] and (b) Mach lines and corr. angles φi cp. [203].
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to the x-axis depicted in Fig. 8.5b and given by

φi = ±
[
π − arcsin

(
ci

v

)]
= ±

[
π − arcsin

( 1
Mi

)]
(8.12)

with φp < φs < φr and Mi the corresponding Mach numbers.

These lines are associated with a jump in the displacement and an impulse in the stress
components, commonly known as shock waves [18]. The largest displacements occur along
the Rayleigh Mach lines, since the Rayleigh wave dominates uz(x,y) on the surface.
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(a) v = 0 ms−1 resp. Ms = 0.000
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(b) v = 128 ms−1 resp. Ms = 0.487
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(c) v = 256 ms−1 resp. Ms = 0.973
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(d) v = 384 ms−1 resp. Ms = 1.459

Figure 8.6: Contour line plots of uz(x,y) on the halfspace surface z = 0 for t = 0 due to a rectangular
load with f = 0 moving along the x-axis with constant velocity v.
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Fig. 8.6 shows the contour line plots corr. to the surface displacements in Fig. 8.4. Therein the
formation of the Rayleigh Mach lines for the load velocities v = 256 ms−1 and v = 384 ms−1 is
clearly visible as well as the increase of φr with raising velocity v. Furthermore, the resulting
angles of the Mach lines φr ≈ 109◦ and φr ≈ 143◦ in Figs. 8.6c,d, are in very good accordance
to the analytical solution for the Mach angles φr = 108.80◦ and φr = 140.88◦ due to a moving
single load obtained by Lansing [203] and thus further validate the implementation of the
moving load problem within the proposed ITM-FEM approach.

Transonic load velocity

If the velocity of the moving load exceeds the propagation velocity of the shear waves cs,
a second Mach line with φs ≈ 139◦ occurs in Fig. 8.6d. All displacements created by the
R- and the S-waves are confined within the two Mach wedges on the halfspace surface.
The maximum displacements are located on the Rayleigh Mach lines as before, while the
displacements linked to the S-wave are comparably small and not so obviously visible, as
they are rather close to the Rayleigh peak. In front of the load, some small undulations
corresponding to the compressional wave can be observed.

Supersonic load velocity

In the supersonic case, not presented here, three Mach lines corr. to the compressional, the
shear and the Rayleigh wave arise and the displacement field in front of the P-wave Mach
line is zero, as the load position is always in front of all expanding waves.

8.3 Harmonic moving load on homogenous halfspace

Following the characteristic response of a halfspace (Soil B) due to the moving block load of
Sec. 8.2.2 depicted in Fig. 8.2, but oscillating harmonically with a frequency f = 64 Hz, is
considered and the results are computed using the same discretization as before. In contrast
to a moving load with constant amplitude, which only generates propagating waves for
v > cr, a load with time varying amplitude induces propagating waves regardless of the load
speed [222]. This is evident in the displacement field uz(x,y) on the halfspace surface in
Fig. 8.7a, which results from a stationary load with v = 0 and causes cylindrical waves that
propagate rotationally symmetric away from the point of load application.
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(a) v = 0 ms−1 resp. Ms = 0.000 (b) v = 128 ms−1 resp. Ms = 0.487

(c) v = 256 ms−1 resp. Ms = 0.973 (d) v = 384 ms−1 resp. Ms = 1.459

Figure 8.7: Vertical displacements uz(x,y) on the halfspace surface z = 0 for t = 0 due to a rectangular
load with f = 64 Hz moving along the x-axis with constant velocity v.

8.3.1 Doppler effect

Moreover, in case of the moving harmonic load in Figs. 8.7b-d, the Doppler effect (cp. Fig. 8.8)
gets clearly visible by the shorter wavelengths in front of the load linked to a higher frequency
registered at a fixed observation point ahead of the source, while longer wavelengths appear
behind the load, corr. to a lower frequency at a fixed position beyond the source [191].

x

y λ λ2 λ1

ci cicici v

Load position Load position

Figure 8.8: Doppler effect for moving load cp. [311].
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As in case of the non-oscillating moving load, for load velocities exceeding cr resp. cs "the
wave field displays a similar Mach cone, however, without the large amplification observed
in the zero frequency case" [191].

8.3.2 Wavenumber characteristics

These features of the system response are also clearly observable in the Fourier transformed
domain. For this purpose, firstly the response of a homogeneous halfspace due to an unit
impulse w.r.t. space and time leading to a constant spectrum |p̂hs

zz,Λ(kx,ky,ω)| = 1 in the
wavenumber frequency domain is considered. Therein, the combinations (kx,ky,ω) for which
the largest amplitudes of the response occur, are located on the limiting lines of a double
cone, as illustrated in Fig. 8.9 [217]. For a stationary time harmonic excitation with angular
frequency Ω the solution in the transformed domain reduces to the two planes slicing the
double cone at ω = ±Ω. Within this plane the largest values of the system response are
located on circles rotationally symmetric to the origin of the kx − ky plane, which can be
associated with the wavenumbers of the compressional, the shear and the Rayleigh wave kp,
ks and kr [217].

In case of a harmonic load moving along the x−axis, the cutting planes, intersecting with
the double cone in Fig. 8.9, are inclined w.r.t kx, whereby the angle depends on the load
speed [217]. This tilt corresponds also to the wavenumber dependent frequency shift in the
fundamental solution K̂ −1

ITM
(kx,ky,− Ω − vkx) described in Sec. 8.1 and leads to a distortion

ω

kx

ky
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kx

ky

v = 0 v < cr v > cr

Figure 8.9: Illustration of the different response characteristics of a homogeneous halfspace in the
(kx,ky,ω) domain due to an impulse load for different load velocities cp. [217].
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of the locations of the maximum values on the cutting plane compared to the circle for v = 0.
If e.g. the Rayleigh wave number kr is considered, the following relationship holds

k2
r = k2

rx + k2
ry = (−Ω − vkrx)2

c2
r

(8.13)

After a transformation to the normal form, the equation indicating the location of the
considered wavenumber results as

(v2 − c2
r)k2

rx − 1
c2

r

(v2 − c2
r)k2

ry + Ω2 = 0 (8.14)

According to Eq. (8.14), the location of the largest amplitudes of û(kx, ky, ω) is given by
ellipses for v < cr and hyperbolas for v > cr [312]. These shapes are also observed in the
sectional planes of the double cone in Fig. 8.9 as well as in the contour line plots of the
displacements in the wavenumber frequency domain in Fig. 8.10, corresponding to the dis-
placement uz(x,y,t) illustrated in Fig. 8.7. Furthermore, the distribution of the transformed
displacements is in good agreement with the results presented in Jones et al. [313].

(a) v = 0 ms−1 resp. Ms = 0.000 (b) v = 128 ms−1 resp. Ms = 0.487

(c) v = 256 ms−1 resp. Ms = 0.973 (d) v = 384 ms−1 resp. Ms = 1.459

Figure 8.10: Real part of vertical displacement ûz(kx,ky,ω) on the halfspace surface z = 0 due to a
rectangular load with f = 64 Hz moving along the x-axis with constant velocity v.
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The change of the transformed displacements in dependence of the wavenumber kx for ky = 0
with increasing load velocity v is shown in Fig. 8.11. For the stationary load, the main peaks
are located at the wave numbers kr, ks and kp. According to Müller [81], the contributions
of ûz(kx,ky,ω) for ω > 0 and kx > 0 can be associated with waves travelling in negative
x−direction, while for kx < 0 they travel in positive x−direction. In Fig. 8.11 the amplitude
of the peaks in the negative wavenumber range decrease and move towards −∞ when the
load speed increases, indicating that their contribution to the waves propagating in front of
the load are not significant. In contrast, the peaks in the positive range of kx increase in
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(c) v = 256 ms−1 resp. Ms = 0.973
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(d) v = 384 ms−1 resp. Ms = 1.459

Figure 8.11: Real part of vertical displacement ûz(kx,ky = 0, + ω) on the halfspace surface z = 0 due to
a rectangular load with f = 64 Hz moving along the x-axis with constant velocity v.
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amplitude and move towards zero [210]. Furthermore, when v exceeds cr, the peak from the
negative wavenumber range jumps to the positive one and approaches from +∞ towards
zero, reflecting the transition from the ellipse to the hyperbola (cp. Fig. 8.10), linked with
the change of the velocity regime [314]. Thus for v > cs in Fig. 8.11d, non zero values of
ûz(kx,ky,ω) occur almost only in the positive kx range, linked to backward running waves,
and nearly no displacements emerge in front of the load (cp. Fig. 8.7d). The evolution of the
transformed displacements, determined with the ITM-FEM approach thereby shows very
good agreement with the results presented in Lefeuve-Mesgouez et al. [210].

8.4 Moving load on coupled systems

8.4.1 Verification

Firstly, in order to verify the implemented approach also for the application to the cou-
pled ITM-FEM systems, the results obtained with the latter are compared to those of the
fundamental system of the homogeneous halfspace presented before. For this purpose, the
harmonically oscillating moving load of Sec. 8.3 is applied to the surface of a halfspace of
Soil B, given in Tab. 8.1, with a cylindrical enclosure of radius R = 4.5 m, consisting of the
same material. An embedment depth of H = 6 m was chosen and the inclusion was dis-
cretized with Nφ = 64 points along the circumference. For both systems in Fig. 8.12 a total
domain size of Bx = By = 128 m with Nx = Ny = 29 sample points was considered and the
response computed for Nf = 29 frequency components up to a maximum shifted frequency
|ωmax| = | − Ω − vkx| = 1206.4 rad s−1 corr. to |fmax| = 192 Hz in steps of ∆f = 1 Hz. The
response for a load velocity of v = 128 ms−1 and f = 64 Hz in the Fourier transformed and
the original domain for both systems are depicted in Fig. 8.13 and show good agreement.
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Figure 8.12: Setup for validation of coupled ITM-FEM approach for moving loads. (a) Halfspace with
cylindrical inclusion of same material as surrounding soil and (b) homogeneous halfspace.
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Figure 8.13: Real part of the vertical displacements on the ground surface of the halfspace with cylindrical
inclusion ( ) and the homogeneous halfspace ( ) due to a moving load with v = 128 ms−1

and f = 64 Hz (a) in the transformed domain ûz(kx) for ky = 0 and (b) the original domain
uz(x) at y = 0 and t = 0.

8.4.2 Moving load in twin tunnel system

Eventually, the response of the twin tunnel system of Secs. 6.6 and 7.5 due to a moving load
with bx = by = 1 m and v = 128 ms−1 oscillating with f = 64 Hz within tunnel T1, as
illustrated in Fig. 8.14, is investigated. The material parameters of Soil C in Tab. 8.1 were
used for the halfspace and the discretization was chosen analogously to Sec. 8.4.1.

The frequency spectrum of the resulting vertical displacements ūz(f) at points P1 and P2 at
the top of the slab in tunnel T1 and at the ground surface directly above the tunnel, both at
x = 0 (cp. Fig. 8.14), is shown in Fig. 8.15a. Due to the velocity dependent frequency shift,
ūz(f) shows a narrowband frequency spectrum around the excitation frequency f = ±64 Hz
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Figure 8.14: Harmonically oscillating moving load in a twin tunnel system.
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Figure 8.15: (a) |ūz(f)| and (b) uz(t) of the twin tunnel system due to a moving load in tunnel T1 with
v = 128 ms−1 and f = 64 Hz at P1 ( ) and P2 ( ) as depicted in Fig. 8.14.

instead of a Dirac characteristic. Moreover, much higher amplitudes are observed on the
tunnel slab than on the ground surface, which can also be seen in uz(t) in Fig. 8.15b. For
P1, the maximum amplitude of uz(t) is reached when the load passes the observation point,
while for P2 the largest displacements occur before and after the passage of the load.

In the contour plot of ûz(kx,ky,ω) on the soil surface, depicted in Fig. 8.16a, the hyperbolic
distribution in the wavenumber-frequency spectrum in case of a load velocity v larger than
cr of the soil is slightly visible. However, this characteristic is, due to the higher complex-
ity of the system and the effects of the SSI, much less pronounced as in case the load is
directly applied on the surface of a homogeneous halfspace. Nevertheless, some conclusions

(a) (b)

Figure 8.16: Real part of the vertical displacements (a) ûz(kx,ky) in the wavenumber-frequency domain
and (b) uz(x,y) for t = 0 on the soil surface due to a moving load in tunnel T1 with v =
128 ms−1 and f = 64 Hz.
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about the composition of the displacement response can be deduced from the wavenumber
spectrum. The rather narrow band spectrum of ûz(kx,ky,ω) w.r.t. kx indicates a large con-
tribution of long wave components associated with small wavenumbers finally leading to a
displacement field uz(x,y) stretched in x−direction. The latter can also be explained by the
stiffness of the tunnel in longitudinal direction. In contrast, a wider range of ûz(kx,ky,ω)
w.r.t. ky, exhibiting considerable amplitudes, is observed, indicating a radiation of waves
with smaller wavelengths in cross sectional direction. This can also be noted in Fig. 8.16b,
showing the displacements uz(x,y) on the soil surface. In addition, some amplification of the
surface displacements is observed over the second tunnel due to the effect of waves reflected
or diffracted as a consequence of the impedance jump at the boundary Γc2. Finally, the
progression of the load in positive x−direction with increasing t is shown in Fig. 8.17. It
illustrates the displacements in the tunnel itself as well as the displacements on the surface
and at the second tunnel, arising due to the Structure-Soil-Structure-Interaction. The latter
occur mainly at the level of the load position and in a limited area before and after the
moving, oscillating load. On the side of the second tunnel facing away from the load, almost
no deformations occur, which is due to a certain shielding effect of the, in comparison to the
surrounding soil, rather stiff tunnel T2. An effect, which has also already been observed for
the stationary and transient loads in sections 6.6 and 7.5. In Fig. 8.17f, the deformation of
the stiff concrete roadway slab (although visualized strongly exaggerated) due to the load
crossing is evident, which is then transmitted to the surrounding soil through the tunnel
shell.
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(a) t = −0.2488 s (b) t = −0.1521 s (c) t = −0.0522 s

(d) t = 0.0101 s (e) t = 0.1365 s (f) t = 0.3237 s

Figure 8.17: Time evolution of absolute value of total displacements for the twin tunnel system within a
homogeneous halfspace (Soil C) due to a rectangular moving block load in tunnel T1 with
v = 128 ms−1 and f = 64 Hz (upper subplot) and on the ground surface z = 0 (lower
subplot).
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9 Summary and Outlook

9.1 Summary

In the present thesis a 2.5D and a 3D coupled ITM-FEM approach are developed, enabling
the investigation of the dynamic interaction of a single surface or underground structure
with the underlying or surrounding soil as well as the interaction of several adjacent surface
and underground structures coupled through the soil. The proposed methodology allows
to predict the dynamic response of a broad range of different systems due to stationary
harmonic or transient loads as well as moving loads. In order to represent the real system
behaviour as accurately as possible and thus allow a modelling on a very high level of
complexity, a domain decomposition approach was employed, subdividing the overall system
into substructures with different characteristics. This facilitates to use different methods to
describe the subsystems and to exploit their respective advantages. Within this work the soil
with its semi-infinite extension is described by the ITM, whereas the structures, exhibiting
a complex geometry and material distribution, are accounted for by the FEM.

To this end, firstly analytical solutions for different fundamental systems are derived from
the basic elastodynamic equations and then superposed and coupled to deduce closed form
semi-analytical solutions for more complex systems with several boundary surfaces as e.g. a
halfspace with one/two cylindrical cavities/indentations or a halfspace with spherical cav-
ity/indentation. This eventually leads to wavenumber and frequency dependent dynamic
stiffness matrices for the ITM substructures, providing a direct relation between the exter-
nal stresses applied at the boundaries of the system and the resulting displacements. To
enable a straightforward integration of the two involved methods to an overall model, the
FEM substructures must exhibit a suitable outer boundary and the dynamic stiffness matri-
ces need to be separated for the DOFs on the interaction surfaces and within the structures.
In case of length-invariant structures, 2.5D quadrilateral elements are used, allowing the
solve the 3D problem by a series of quasi-static 2D computations, while common 3D beam,
shell or solid elements are used to describe the finite structures on or within the ground and
a part of the surrounding soil.

The coupling between the ITM and the FEM is realized by imposing the compatibility
conditions on the common interaction surfaces, leading to a total dynamic stiffness matrix
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describing the overall system. In order to couple a FEM substructure to a cylindrical or
spherical cavity or indentation within the soil, a complete coupling of all quantities along the
entire bounding surface is performed. Since for this a common reference frame is necessary,
the quantities of the FEM subsystem on the interaction surface are transformed into the
respective ITM basis. For the coupling of finite surface structures to any soil substructure,
being able to be modelled by an ITM or coupled ITM-FEM approach, the dynamic soil
stiffness is computed at discrete points on the ground surface by evaluating the displacements
due to a concentrated unit load and applying a special shifting procedure in combination
with the introduction of a coarser discretization. Furthermore, a postprocessing procedure
is introduced, which facilitates the computation of the stress and displacement distributions
on the surface or within the soil, resulting from the dynamic soil structure interaction.
Therewith, it is also possible to determine the power input at the soil foundation interface
and the power flux through a defined control volume.

The proposed method is firstly applied to determine the frequency domain response due to
stationary harmonic loads for different systems. Thereby the validity of the semi-analytical
solutions for the basic ITM systems is demonstrated by comparison with literature results
for certain benchmark cases, before these are used to confirm the accuracy of the results for
different coupled 2.5D and 3D ITM-FEM systems. The latter are employed for the assess-
ment of the vibration reduction efficiency of different finite and length invariant mitigation
measures at the source or in the transmission path as well as the identification of the prevail-
ing physical mechanisms, decisive design parameters and wave propagation characteristics.
Thereby stiff gravity walls with a wide footprint are found to be particularly effective, espe-
cially at higher frequencies, whereas for trenches and infilled barriers the normalised depth
and the impedance contrast between infill material and soil are the most important param-
eters. Shallow barriers with less pronounced stiffness contrast act as wave impeding barrier
up from a critical frequency and provide a significant insertion loss within an area delimited
by a critical angle. In case of finite trenches, due to diffraction phenomena also their length
and the source distance have considerable influence on the performance. The insertion of a
second open trench leads to an energy concentration between these, whereas no significant
changes of the insertion loss occur on the trench averted sides.

A comparison of the compliance functions and displacement curves of rigid and flexible,
massless and massive surface foundations resting on a homogeneous or stratified ground
and subjected to different load types (uniform pressure, point load, rocking moment) with
literature results shows very good agreement, demonstrating the reliability of the proposed
method for the investigation of the dynamic soil structure interaction. Thus the method is
subsequently applied to analyse the influence of different subsoil conditions on the radiation
characteristics of the surface structures, the frequency dependent power transmission into the
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soil as well as the resulting displacement distributions and properties of the wave dispersion
within the ground. The wavenumber spectra of the SSI contact stresses and the surface
displacements are inherently provided by the postprocessing procedure, giving insight into
the contributions of the different wave types and the propagation directivity. By means of the
power flux through a defined control volume, also the direction of the energy dispersion and
the attenuation behaviour due to geometrical and material damping can be predicted. Since
this procedure is computationally rather expensive, the power input at the soil-foundation
interface is introduced as a single-valued quantity, that indicates the radiation ability of the
foundation and characterises the amount of energy, that is introduced into the soil and has
to be dispersed by the induced elastic waves.

For a single foundation on a homogeneous halfspace, at low frequencies the energy is radiated
almost uniformly within the ground. In contrast an increasing proportion of plane elastic
waves with small wavenumbers occurs, propagating increasingly in vertical direction as the
frequency rises. Simultaneously the relative contribution of the Rayleigh waves decreases
and the power input at the soil foundation interface approaches a constant value, close to
the power input associated with a pure compressional wave radiation. In case of a soft
soil layer resting on a rather stiff halfspace, a strong localisation of the energy within the
upper stratum is observed, leading to a considerable radiation in the horizontal direction.
Moreover, a significantly higher power input is observed at the layer resonance frequencies,
whereas below the first layer resonance no propagating waves occur and the power input
tends to zero. The presence of a length-invariant stiff inclusion or an underground tunnel
shows to have a significant impact on the power input and the flexibilities of a single or
several adjacent foundations. The influence is generally higher, when the inclusions are
large, located closely to the ground surface and feature a distinct stiffness contrast to the
soil. However, even structures with greater embedment depth show a considerable effect in
the low frequency range due to the large wavelength, while with increasing frequency the
short-wave elastic waves have usually sufficiently decreased before reaching the embedded
structure. Thus the influence decreases and the flexibilities converge to those obtained
for the homogeneous halfspace. Considering two foundations arranged symmetrically to an
inclusion, the soil layer above the latter plays a decisive role, since below the cut off frequency
no wave propagation through the stratum is possible, which leads in combination with the
wave barrier effect to a very small reaction of the passive foundation. In addition, the effect of
different footing conditions on the dynamic response of a space frame is studied and frequency
transfer functions between a concentrated load on the soil surface close to a structure and
characteristic locations on the latter are given for varying soil properties. Finally, the effect
of the dynamic SSSI of a twin tunnel system, embedded in a homogeneous soil, is illustrated
and quantified by means of the insertion gain of the ground surface displacements.
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To enable the analysis of the dynamic systems response to stationary transient loads under
full consideration of the SSI resp. the SSSI, the proposed 2.5D and 3D ITM-FEM approaches
are applied to compute complex frequency transfer functions. With these, the time histo-
ries of the resulting vibrations can be obtained by either a Fourier synthesis approach or
a discrete convolution of the transient load with the impulse response functions, resulting
from a IFFT of the transfer functions for a large frequency range. Since both techniques
are based on the solution in the frequency domain and require the validity of the superpo-
sition principle, the applicability is limited to linear problems. To ensure a sufficient time
discretization by simultaneously large observation times, a procedure for the interpolation
of the transfer functions is implemented. The influence of considering a restricted amount of
frequencies on the quality of the results is reconsidered and quantified by means of an energy
equivalent confidence measure. Due to the relatively strong decay of the transfer functions
with increasing frequency, the calculation up to a moderately high frequency is sufficient to
cause only a limited error. In case of layered media, the frequency spacing in the range of
the layer resonances has to be selected carefully in order not to neglect components with
a large contribution. Moreover, the hysteretic material damping leads to a non-causal sys-
tem response, which evokes a reaction of the system already before the start of the load
application. Therefore, low damping ratios combined with large discretized areas and high
sampling densities, reducing spatial aliasing, are required in order to achieve an accurate
solution. The transient response of a homogenous halfspace and the time dependent flexi-
bilities of rigid massless or massive surface foundations due to a suddenly applied load are
computed, whereby very good agreement with literature results is achieved. Furthermore,
the transient response of a twin tunnel system, subjected to a Gaussian-modulated sinu-
soidal pulse within one tunnel tube is investigated, demonstrating the applicability of the
ITM-FEM approach for the analysis of the transient SSSI of complex systems.

Eventually, a methodology for the incorporation of constant and oscillating moving loads
within the fundamental and coupled ITM-FEM systems is derived and validated by compar-
ison with other methods and reproducing typical physical phenomena. In case of constant
moving loads, the formation of shock waves for load speeds exceeding the wave velocities
in the soil is illustrated and the resulting Mach cones match well with those predicted by
analytical models. Also for oscillating moving loads, the modified distribution of the surface
displacements due to the Doppler effect and the changes in the wavenumber characteris-
tics for different load speeds correspond well with the results reported in literature. The
implementation for coupled ITM-FEM systems is validated by comparison with the semi-
analytical solutions of the homogenous halfspace and subsequently applied to compute the
response of twin tunnel system with a moving load inside one of the tunnel tubes.
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9.2 Outlook and future work

A perspective continuation, expansion and optimisation of the present work is possible at
several points, as outlined hereinafter. Within the presented approach, it is only possible
to consider horizontal soil layers and the inclusion can only be located within the halfspace
beneath the soil stratification. Therefore, an adaptation of the implementation by super-
posing further fundamental or coupled systems, allowing also cavities within a soil layer or
even across a layer transition, would considerably extend the ability of the method to model
practical issues. The same applies to the possibility of representing oblique layer boundaries
in the model. Furthermore, while the method allows arbitrary external loads to be applied
to the ground surface, the layer boundaries or cavity surfaces of the ITM substructure, or at
any location within the FEM substructure, it is not yet possible to include a seismic wave
excitation. However, this could be achieved by changing the non-local boundary conditions
in the ITM formulation, allowing specified elastic waves to propagate from infinity towards
the ground surface at defined angles of incidence.

Considering the finite element substructure coupled to the halfspace with spherical cavity
or indentation, there are rather strict requirements for the FE model due to the chosen
numerical integration scheme for the spherical harmonics, describing the quantities on the
coupling surface. Therefore, an arbitrary modelling of 3D structures within the FEM do-
main is only possible to a limited extent and the frequency range in which the method is
applicable is restricted due to the prescribed element sizes, increasing towards the equator.
The implementation of a different algorithm for the numerical integration on the spherical
surface, which allows a free distribution of the discretization points on it, would on the one
hand considerably expand the modelling freedom and on the other hand extend the fre-
quency range that can be covered, since the element sizes could be freely chosen within the
entire FEM domain. Alternatively, a technique for the coupling of non-conforming meshes,
as described in the context of the Mortar methods, could be used to enable a coupling of
the ITM and FEM substructures with different discretizations on the spherical interaction
surface and thus lead to the same enhancements.

As pointed out in the thesis, large dimensions for the discretized domain and a high number
of sampling points should be chosen in order to obtain accurate results and minimise spatial
aliasing, which, however, involves considerable computational effort. For this purpose, the
wavenumber characteristic of the system response could be exploited to significantly reduce
the number of calculations required. Since the contribution of the short-wave components,
associated with wavenumbers significantly above the Rayleigh wavenumber, to the overall
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system response is very small, as these are strongly damped and therefore attenuate rapidly, a
fine sampling of the high wavenumber range is not necessary. For the accuracy of the results,
in contrast, it would be more important to sample the low wavenumber range, in which
significant peaks occur, delicately. The application of a non-uniform fast Fourier transform
algorithm, enabling adaptive sampling in the wavenumber domain with non equidistant
samples, could account for this issue, thereby reducing the number of operations for the
inverse Fourier transform and thus the computational cost substantially.

Moreover, currently only finite elements with linear shape functions are employed for the
FEM substructures coupled to the halfspace with cylindrical or spherical cavity, requiring
a large number of elements especially in the higher frequency range in order to guarantee
a sufficient representation of the resulting stresses and displacements. Therefore, the im-
plementation of higher order elements would reduce the amount of elements necessary at
the same time improving the result quality. However, it must be ensured that all nodes of
the elements are coupled with discretization points of the ITM substructure on the common
interaction surfaces, such that the compatibility is satisfied node wise.

In this work the solution of fundamental systems is only derived considering the homogeneous
solution and solving the boundary value problem. However, it would also be possible to
include the volume forces in the Lamé differential equation to compute the forced vibration
response in order to deduce a solution for an excavated soil, which then can be filled with a
FEM substructure again. This approach could be used as an alternative to the coupling of the
FEM to a half-space with spherical indentation in order to investigate the SSI of finite three
dimensional structures embedded in the soil. Finally, an adaptation of the underlying linear
elastic, isotropic material law to anisotropic or porous materials as well as the introduction
of a probabilistic description of the soil properties, to cover local varying ground conditions,
would be conceivable.
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A Appendix

A.1 System matrices for the halfspace

A.1.1 Dynamic case

The stresses σ̂hs
ITM

=
(
σ̂xx σ̂yy σ̂zz σ̂xy σ̂yz σ̂xz

)T
and displacements ûhs

ITM
=
(
ûx ûy ûz

)T
in a

homogeneous, isotropic halfspace can be calculated for each combination (kx, ky, z, ω) as

σ̂hs
ITM

= Ŝhs
ITM

Ĉhs
ITM

(A.1)

ûhs
ITM

= Ûhs
ITM

Ĉhs
ITM

(A.2)

with

Ŝhs
ITM

= µ



−2k2
x − λ

µ
k2

p 0 2ikxλ2

−2k2
y − λ

µ
k2

p −2ikyλ2 0
2λ2

1 − λ
µ
k2

p 2ikyλ2 −2ikxλ2

−2kxky −ikxλ2 ikyλ2

−2ikyλ1 λ2
2 + k2

y −kxky

−2ikxλ1 kxky −λ2
2 − k2

x


(A.3)

Ûhs
ITM

=


ikx 0 λ2

iky −λ2 0
−λ1 −iky ikx

 (A.4)

The vector of the unknown coefficients Ĉhs
ITM

is given by

Ĉhs
ITM

=
(
A2e−λ1z Bx2e−λ2z By2e−λ2z

)T
(A.5)
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A.1.2 Static case

The stresses σ̂hs
0ITM

=
(
σ̂xx σ̂yy σ̂zz σ̂xy σ̂yz σ̂xz

)T
and displacements ûhs

0ITM
=
(
ûx ûy ûz

)T
in

a homogeneous, isotropic halfspace can be calculated for each combination (kx, ky, z, ω) as

σ̂hs
0ITM

= Ŝhs
0ITM

Ĉhs
0ITM

(A.6)

ûhs
0ITM

= Ûhs
0ITM

Ĉhs
0ITM

(A.7)

with

Ŝhs
0ITM

= µ



−2k2
xz + 2 λkr

λ+µ
0 2ikxkr

−2k2
y + 2 λkr

λ+µ
−2ikykr 0

2k2
rz + 2 (λ+2µ)kr

λ+µ
2ikykr −2ikxkr

−2kxkyz −ikxkr ikykr

−2iky

(
krz + µ

λ+µ

)
k2

r + k2
y −kxky

−2ikx

(
krz + µ

λ+µ

)
kxky −k2

r − k2
x


(A.8)

Ûhs
0ITM

=


ikxz 0 kr

ikyz −kr 0
−krz − λ+3µ

λ+µ
−iky ikx

 (A.9)

The vector of the unknown coefficients Ĉhs
0ITM

is given by

Ĉhs
0ITM

=
(
A02e−krz B0x2e−krz B0y2e−krz

)T
(A.10)

with kr =
√
k2

x + k2
y, for which in the static case kr = λ1 = λ2 (cp. Eq.(2.15)) holds. The

zero in the indices of the matrices indicate, that the are associated with the static solution.
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A.2 System matrices for the layered halfspace

A.2.1 Dynamic case

The stresses σ̂hs Ll
ITM

=
(
σ̂xx σ̂yy σ̂zz σ̂xy σ̂yz σ̂xz

)T
and displacements ûhs Ll

ITM
=
(
ûx ûy ûz

)T

within one layer l of a layered soil can be calculated for each combination (kx, ky, z, ω) as

σ̂hs Ll

ITM
= Ŝhs Ll

ITM
Ĉhs Ll

ITM
(A.11)

ûhs Ll

ITM
= Ûhs Ll

ITM
Ĉhs Ll

ITM
(A.12)

with

Ŝhs Ll
ITM = µl



−2k2
x − λl

µl
k2

pl
−2k2

x − λl

µl
k2

pl
0 0 −2ikxλ2l

2ikxλ2l

−2k2
y − λl

µl
k2

pl
−2k2

y − λl

µl
k2

pl
2ikyλ2l

−2ikyλ2l
0 0

2λ2
1l

− λl

µl
k2

pl
2λ2

1l
− λl

µl
k2

pl
−2ikyλ2l

2ikyλ2l
2ikxλ2l

−2ikxλ2l

−2kxky −2kxky ikxλ2l
−ikxλ2l

−ikyλ2l
ikyλ2l

2ikyλ1l
−2ikyλ1l

λ2
2l

+ k2
y λ2

2l
+ k2

y −kxky −kxky

2ikxλ1l
−2ikxλ1l

kxky kxky −λ2
2l

− k2
x −λ2

2l
− k2

x


(A.13)

Ûhs Ll

ITM
=


ikx ikx 0 0 −λ2l

λ2l

iky iky λ2l
−λ2l

0 0
λ1l

−λ1l
−iky −iky ikx ikx

 (A.14)

The vector of the unknown coefficients Ĉhs Ll
ITM

is given by

Ĉhs Ll

ITM
=



A1,Ll
eλ1l

(zl−hl)

A2,Ll
e−λ1l

zl

Bx1,Ll
eλ2l

(zl−hl)

Bx2,Ll
e−λ2l

zl

By1,Ll
eλ2l

(zl−hl)

By2,Ll
e−λ2l

zl


(A.15)

with λ1l
=
√
kx

2 + ky
2 − kpl

2 and λ2l
=
√
kx

2 + ky
2 − ksl

2, where kpl
= ω/cpl

and ksl
= ω/csl

are the wavenumbers of the compressional resp. shear waves for a given frequency ω. The
parameters zl and hl are the vertical coordinate and the height of each layer l. The material
properties are given by the Lamé constants λl and µl of each layer.
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A.2.2 Static case

The stresses σ̂hs Ll
0ITM =

(
σ̂xx σ̂yy σ̂zz σ̂xy σ̂yz σ̂xz

)T
and displacements ûhs Ll

0ITM =
(
ûx ûy ûz

)T

within one layer l of a layered soil can be calculated for each combination (kx, ky, z, ω) as

σ̂hs Ll
0ITM = Ŝhs Ll

0ITM Ĉhs Ll
0ITM (A.16)

ûhs Ll
0ITM = Ûhs Ll

0ITM Ĉhs Ll
0ITM (A.17)

with

Ŝhs Ll
0ITM = µl



−2k2
xz − 2 λlkr

λl+µl
−2k2

xz + 2 λlkr

λl+µl
0 0 −2ikxkr 2ikxkr

−2k2
y − 2 λlkr

λl+µl
−2k2

y + 2 λlkr

λl+µl
2ikykr −2ikykr 0 0

2k2
rz − 2 (λl+2µl)kr

λl+µl
2k2

rz + 2 (λl+2µl)kr

λl+µl
−2ikykr 2ikykr 2ikxkr −2ikxkr

−2kxkyz −2kxkyz ikxkr −ikxkr −ikykr ikykr

2iky

(
krz − µl

λl+µl

)
−2iky

(
krz + µl

λl+µl

)
k2

r + k2
y k2

r + k2
y −kxky −kxky

2ikx

(
krz − µl

λl+µl

)
−2ikx

(
krz + µl

λl+µl

)
kxky kxky −k2

r − k2
x −k2

r − k2
x


(A.18)

Ûhs Ll
0ITM =


ikxz ikxz 0 0 −kr kr

ikyz ikyz kr −kr 0 0
krz − λl+3µl

λl+µl
−krz − λl+3µl

λl+µl
−iky −iky ikx ikx

 (A.19)

The vector of the unknown coefficients Ĉhs Ll
0,ITM

is given by

Ĉhs Ll
0ITM =



A01,Ll
ekr(zl−hl)

A02,Ll
e−krzl

B0x1,Ll
ekr(zl−hl)

B0x2,Ll
e−krzl

B0y1,Ll
ekr(zl−hl)

B0y2,Ll
e−krzl


(A.20)

with kr =
√
k2

x + k2
y, for which in the static case kr = λ1 = λ2 holds.

It must be noted, that for kx = ky = 0 the solution gets singular and cannot be determined
via Eqs. (A.16) and (A.17). However, as this case corresponds to a constant loading of the
whole domain, the corresponding displacement can be obtained from the simple analytical
solution of a rod with equivalent axial rigidity.



A.3 System matrices for the fullspace with cylindrical cavity 245

A.3 System matrices for the fullspace with cylindrical cavity

The stresses σ̂fs cyl
ITM

=
(
σ̂xx σ̂rr σ̂φφ σ̂xr σ̂φr σ̂xφ

)T
and the displacements ûfs cyl

ITM
=
(
ûx ûr ûφ

)T

in a fullspace with cylindrical cavity can be calculated for each combination (kx, r, n, ω) as

σ̂fs cyl
ITM

= Ŝfs cyl
ITM

Ĉfs cyl
ITM

(A.21)

ûfs cyl
ITM

= Ûfs cyl
ITM

Ĉfs cyl
ITM

(A.22)

with the vector of the unknowns Ĉfs cyl
ITM

=
(
C1n C2n C3n C4n C5n C6n

)T
.

Elements of the matrix Ŝfs cyl
ITM

for the computation of the stress component σ̂xx :

Ŝfs cyl
ITM,11

=
(
k 2

1 − 1
2k

2
s

)
2µH(1)

n (k1r)

Ŝfs cyl
ITM,12

= 0

Ŝfs cyl
ITM,13

= i kx k
2

2 2µH(1)
n (k2r)

Ŝfs cyl
ITM,14

=
(
k 2

1 − 1
2k

2
s

)
2µH(2)

n (k1r)

Ŝfs cyl
ITM,15

= 0

Ŝfs cyl
ITM,16

= i kx k
2

2 2µH(2)
n (k2r)

Elements of the matrix Ŝfs cyl
ITM

for the computation of the stress component σ̂rr :

Ŝfs cyl
ITM,21

=
(
n2 − n

r2 + k 2
x − 1

2k
2

s

)
2µH(1)

n (k1r) + 1
r
k1 2µH(1)

n+1(k1r)

Ŝfs cyl
ITM,22

= i n
2 − n

r2 2µH(1)
n (k2r) − i n

r
k2 2µH(1)

n+1(k2r)

Ŝfs cyl
ITM,23

= i
(
n2 − n

r2 − k 2
2

)
kx 2µH(1)

n (k2r) + i 1
r
kx k2 2µH(1)

n+1(k2r)

Ŝfs cyl
ITM,24

=
(
n2 − n

r2 + k 2
x − 1

2k
2

s

)
2µH(2)

n (k1r) + 1
r
k1 2µH(2)

n+1(k1r)

Ŝfs cyl
ITM,25

= i n
2 − n

r2 2µH(2)
n (k2r) − i n

r
k2 2µH(2)

n+1(k2r)

Ŝfs cyl
ITM,26

= i
(
n2 − n

r2 − k 2
2

)
kx 2µH(2)

n (k2r) + i 1
r
kx k2 2µH(2)

n+1(k2r)
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Elements of the matrix Ŝfs cyl
ITM

for the computation of the stress component σ̂φφ :

Ŝfs cyl
ITM,31

= −
(
n2 − n

r2 + 1
2k

2
s − k 2

1 − k2
x

)
2µH(1)

n (k1r) − 1
r
k1 2µH(1)

n+1(k1r)

Ŝfs cyl
ITM,32

= −i n
2 − n

r2 2µH(1)
n (k2r) + i n

r
k2 2µH(1)

n+1(k2r)

Ŝfs cyl
ITM,33

= −i n
2 − n

r2 kx 2µH(1)
n (k2r) − i 1

r
kx k2 2µH(1)

n+1(k2r)

Ŝfs cyl
ITM,34

= −
(
n2 − n

r2 + 1
2k

2
s − k 2

1 − k2
x

)
2µH(2)

n (k1r) − 1
r
k1 2µH(2)

n+1(k1r)

Ŝfs cyl
ITM,35

= −i n
2 − n

r2 2µH(2)
n (k2r) + i n

r
k2 2µH(2)

n+1(k2r)

Ŝfs cyl
ITM,36

= −i n
2 − n

r2 kx 2µH(2)
n (k2r) − i 1

r
kx k2 2µH(2)

n+1(k2r)

Elements of the matrix Ŝfs cyl
ITM

for the computation of the stress component σ̂xr :

Ŝfs cyl
ITM,41

= i n
r
kx 2µH(1)

n (k1r) − i kx k1 2µH(1)
n+1(k1r)

Ŝfs cyl
ITM,42

= − n

2rkx 2µH(1)
n (k2r)

Ŝfs cyl
ITM,43

= n

2r
(
k 2

2 − k 2
x

)
2µH(1)

n (k2r) + 1
2
(
k 2

x k2 − k 3
2

)
2µH(1)

n+1(k2r)

Ŝfs cyl
ITM,44

= i n
r
kx 2µH(2)

n (k1r) − i kx k1 2µH(2)
n+1(k1r)

Ŝfs cyl
ITM,45

= − n

2rkx 2µH(2)
n (k2r)

Ŝfs cyl
ITM,46

= n

2r
(
k 2

2 − k 2
x

)
2µH(2)

n (k2r) + 1
2
(
k 2

x k2 − k 3
2

)
2µH(2)

n+1(k2r)
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Elements of the matrix Ŝfs cyl
ITM

for the computation of the stress component σ̂φr :

Ŝfs cyl
ITM,51

= i n
2 − n

r2 2µH(1)
n (k1r) − i n

r
k1 2µH(1)

n+1(k1r)

Ŝfs cyl
ITM,52

=
(

−n2 − n

r2 + 1
2k

2
2

)
2µH(1)

n (k2r) − 1
r
k2 2µH(1)

n+1(k2r)

Ŝfs cyl
ITM,53

= −n2 − n

r2 kx 2µH(1)
n (k2r) + n

r
kx k2 2µH(1)

n+1(k2r)

Ŝfs cyl
ITM,54

= i n
2 − n

r2 2µH(2)
n (k1r) − i n

r
k1 2µH(2)

n+1(k1r)

Ŝfs cyl
ITM,55

=
(

−n2 − n

r2 + 1
2k

2
2

)
2µH(2)

n (k2r) − 1
r
k2 2µH(2)

n+1(k2r)

Ŝfs cyl
ITM,56

= −n2 − n

r2 kx 2µH(2)
n (k2r) + n

r
kx k2 2µH(2)

n+1(k2r)

Elements of the matrix Ŝfs cyl
ITM

for the computation of the stress component σ̂xφ :

Ŝfs cyl
ITM,61

= −n

r
kx 2µH(1)

n (k1r)

Ŝfs cyl
ITM,62

= −i n

2rkx 2µH(1)
n (k2r) + i 1

2kx k2 2µH(1)
n+1(k2r)

Ŝfs cyl
ITM,63

= i n

2r
(
k 2

2 − k 2
x

)
2µH(1)

n (k2r))

Ŝfs cyl
ITM,64

= −n

r
kx 2µH(2)

n (k1r)

Ŝfs cyl
ITM,65

= −i n

2rkx 2µH(2)
n (k2r) + i 1

2kx k2 2µH(2)
n+1(k2r)

Ŝfs cyl
ITM,66

= i n

2r
(
k 2

2 − k 2
x

)
2µH(2)

n (k2r))
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Elements of the matrix Ûfs cyl
ITM

for the computation of the displacement component ûx:

Û fs cyl
ITM,11

= i kx H
(1)
n (k1r)

Û fs cyl
ITM,12

= 0

Û fs cyl
ITM,13

= k 2
2 H

(1)
n (k2r)

Û fs cyl
ITM,14

= i kx H
(2)
n (k1r)

Û fs cyl
ITM,15

= 0

Û fs cyl
ITM,16

= k 2
2 H

(2)
n (k2r)

Elements of the matrix Ûfs cyl
ITM

for the computation of the displacement component ûr:

Û fs cyl
ITM,21

= n

r
H(1)

n (k1r) − k1 H
(1)
n+1(k1r)

Û fs cyl
ITM,22

= i n
r
H(1)

n (k2r)

Û fs cyl
ITM,23

= i n
r
kx H

(1)
n (k2r) − i kx k2 H

(1)
n+1(k2r)

Û fs cyl
ITM,24

= n

r
H(2)

n (k1r) − k1 H
(2)
n+1(k1r)

Û fs cyl
ITM,25

= i n
r
H(2)

n (k2r)

Û fs cyl
ITM,26

= i n
r
kx H

(2)
n (k2r) − i kx k2 H

(2)
n+1(k2r)

Elements of the matrix Ûfs cyl
ITM

for the computation of the displacement component ûφ:

Û fs cyl
ITM,31

= i n
r
H(1)

n (k1r)

Û fs cyl
ITM,32

= −n

r
H(1)

n (k2r) + k2 H
(1)
n+1(k2r)

Û fs cyl
ITM,33

= −n

r
kx H

(1)
n (k2r)

Û fs cyl
ITM,34

= i n
r
H(2)

n (k1r)

Û fs cyl
ITM,35

= −n

r
H(2)

n (k2r) + k2 H
(2)
n+1(k2r)

Û fs cyl
ITM,36

= −n

r
kx H

(2)
n (k2r)
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A.4 System matrices for the fullspace with spherical cavity

The stresses σ̂fs sph
ITM

=
(
σ̂rr σ̂ϑϑ σ̂φφ σ̂rϑ σ̂rφ σ̂ϑφ

)T
and the displacements ûfs sph

ITM
=
(
ûr ûϑ ûφ

)T
in

a fullspace with spherical cavity can be calculated for each combination (r,m, l, ω) as

σ̂fs sph
ITM

= Ŝfs sph
ITM

Ĉfs sph
ITM

(A.23a)

ûfs sph
ITM

= Ûfs sph
ITM

Ĉfs sph
ITM

(A.23b)

with the vector of the unknowns Ĉfs sph
ITM

=
(
C1lm C2lm C3lm C4lm C5lm C6lm

)T
.

Elements of the matrix Ŝfs sph
ITM

for the computation of the stress component σ̂rr:

Ŝfs sph
ITM,11

=
(
m2 −m

r2 − 1
2 |ks|2

)
P̌ l

m(cosϑ) eilφ 2µ h(1)
m (|kp|r)

+ 2
r

|kp| P̌ l
m(cosϑ) eilφ 2µ h(1)

m+1(|kp|r)

Ŝfs sph
ITM,12

= 0

Ŝfs sph
ITM,13

= m3 −m

r2 P̌ l
m(cosϑ) eilφ 2µ h(1)

m (|ks|r)

− m2 +m

r
|ks| P̌ l

m(cosϑ) eilφ 2µ h(1)
m+1(|ks|r)

Ŝfs sph
ITM,14

=
(
m2 −m

r2 − 1
2 |ks|2

)
P̌ l

m(cosϑ) eilφ 2µ h(2)
m (|kp|r)

+ 2
r

|kp| P̌ l
m(cosϑ) eilφ 2µ h(2)

m+1(|kp|r)

Ŝfs sph
ITM,15

= 0

Ŝfs sph
ITM,16

= m3 −m

r2 P̌ l
m(cosϑ) eilφ 2µ h(2)

m (|ks|r)

− m2 +m

r
|ks| P̌ l

m(cosϑ) eilφ 2µ h(2)
m+1(|ks|r)
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Elements of the matrix Ŝfs sph
ITM

for the computation of the stress component σ̂ϑϑ:

Ŝfs sph
ITM,21

=
[(

−m2

r2 − 1
2 |ks|2 + |kp|2 + l2 −m cos2 ϑ

r2 sin2 ϑ

)
P̌ l

m(cosϑ) eilφ

+ (m+ l) cosϑ
r2 sin2 ϑ

P̌ l
m−1(cosϑ) eilφ

]
2µ h(1)

m (|kp|r) −

− 1
r

|kp| P̌ l
m(cosϑ) eilφ 2µ h(1)

m+1(|kp|r)

Ŝfs sph
ITM,22

=
(

i l(m− 1) cosϑ
r sin2 ϑ

P̌ l
m(cosϑ) eilφ − i l(l +m)

r sin2 ϑ
P̌ l

m−1(cosϑ) eilφ
)

2µ h(1)
m (|ks|r)

Ŝfs sph
ITM,23

=
[(

−m3 +m2

r2 + l2 −m cos2 ϑ

r2 sin2 ϑ
(m+ 1)

)
P̌ l

m(cosϑ) eilφ

+ (m+ l) cosϑ
r2 sin2 ϑ

(m+ 1) P̌ l
m−1(cosϑ) eilφ

]
2µ h(1)

m (|ks|r) +

+
[(

m2 +m

r
|ks| − l2 −m cos2 ϑ

r sin2 ϑ
|ks|

)
P̌ l

m(cosϑ) eilφ

− (m+ l) cosϑ
r sin2 ϑ

|ks| P̌ l
m−1(cosϑ) eilφ

]
2µ h(1)

m+1(|ks|r)

Ŝfs sph
ITM,24

=
[(

−m2

r2 − 1
2 |ks|2 + |kp|2 + l2 −m cos2 ϑ

r2 sin2 ϑ

)
P̌ l

m(cosϑ) eilφ +

+ (m+ l) cosϑ
r2 sin2 ϑ

P̌ l
m−1(cosϑ) eilφ

]
2µ h(2)

m (|kp|r)

− 1
r

|kp| P̌ l
m(cosϑ) eilφ 2µ h(2)

m+1(|kp|r)

Ŝfs sph
ITM,25

=
(

i l(m− 1) cosϑ
r sin2 ϑ

P̌ l
m(cosϑ) eilφ − i l(l +m)

r sin2 ϑ
P̌ l

m−1(cosϑ) eilφ
)

2µ h(2)
m (|ks|r)

Ŝfs sph
ITM,26

=
[(

−m3 +m2

r2 + l2 −m cos2 ϑ

r2 sin2 ϑ
(m+ 1)

)
P̌ l

m(cosϑ) eilφ

+ (m+ l) cosϑ
r2 sin2 ϑ

(m+ 1) P̌ l
m−1(cosϑ) eilφ

]
2µ h(2)

m (|ks|r) +

+
[(

m2 +m

r
|ks| − l2 −m cos2 ϑ

r sin2 ϑ
|ks|

)
P̌ l

m(cosϑ) eilφ

− (m+ l) cosϑ
r sin2 ϑ

|ks| P̌ l
m−1(cosϑ) eilφ

]
2µ h(2)

m+1(|ks|r)
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Elements of the matrix Ŝfs sph
ITM

for the computation of the stress component σ̂φφ:

Ŝfs sph
ITM,31

=
[(

m

r2 − 1
2 |ks|2 + |kp|2 − l2 −m cos2 ϑ

r2 sin2 ϑ

)
P̌ l

m(cosϑ) eilφ

− (m+ l) cosϑ
r2 sin2 ϑ

P̌ l
m−1(cosϑ) eilφ

]
2µ h(1)

m (|kp|r) −

− 1
r

|kp| P̌ l
m(cosϑ) eilφ 2µ h(1)

m+1(|kp|r)

Ŝfs sph
ITM,32

=
(

−i l(m− 1) cosϑ
r sin2 ϑ

P̌ l
m(cosϑ) i + i l(l +m)

r sin2 ϑ
P̌ l

m−1(cosϑ) eilφ
)

2µ h(1)
m (|ks|r)

Ŝfs sph
ITM,33

=
[(

m2 +m

r2 − l2 −m cos2 ϑ

r2 sin2 ϑ
(m+ 1)

)
P̌ l

m(cosϑ) eilφ

− (m+ l) cosϑ
r2 sin2 ϑ

(m+ 1) P̌ l
m−1(cosϑ) eilφ

]
2µ h(1)

m (|ks|r) +

+
(
l2 −m cos2 ϑ

r sin2 ϑ
|ks| P̌ l

m(cosϑ) eilφ

+ (m+ l) cosϑ
r sin2 ϑ

|ks| P̌ l
m−1(cosϑ) eilφ

)
2µ h(1)

m+1(|ks|r)

Ŝfs sph
ITM,34

=
[(

m

r2 − 1
2 |ks|2 + |kp|2 − l2 −m cos2 ϑ

r2 sin2 ϑ

)
P̌ l

m(cosϑ) eilφ

− (m+ l) cosϑ
r2 sin2 ϑ

P̌ l
m−1(cosϑ) eilφ

]
2µ h(2)

m (|kp|r) −

− 1
r

|kp| P̌ l
m(cosϑ) eilφ 2µ h(2)

m+1(|kp|r)

Ŝfs sph
ITM,35

=
(

−i l(m− 1) cosϑ
r sin2 ϑ

P̌ l
m(cosϑ) eilφ + i l(l +m)

r sin2 ϑ
P̌ l

m−1(cosϑ) eilφ
)

2µ h(2)
m (|ks|r)

Ŝfs sph
ITM,31

=
[(

m2 +m

r2 − l2 −m cos2 ϑ

r2 sin2 ϑ
(m+ 1)

)
P̌ l

m(cosϑ) eilφ

− (m+ l) cosϑ
r2 sin2 ϑ

(m+ 1) P̌ l
m−1(cosϑ) eilφ

]
2µ h(2)

m (|ks|r) +

+
(
l2 −m cos2 ϑ

r sin2 ϑ
|ks| P̌ l

m(cosϑ) eilφ

+ (m+ l) cosϑ
r sin2 ϑ

|ks| P̌ l
m−1(cosϑ) eilφ

)
2µ h(2)

m+1(|ks|r)
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Elements of the matrix Ŝfs sph
ITM

for the computation of the stress component σ̂rϑ:

Ŝfs sph
ITM,41

=
(
m cotϑ
r2 (m− 1) P̌ l

m(cosϑ) eilφ

− m+ l

r2 sinϑ (m− 1) P̌ l
m−1(cosϑ) eilφ

)
2µ h(1)

m (|kp|r) +

+
(

−m cotϑ
r

|kp| P̌ l
m(cosϑ) eilφ + m+ l

r sinϑ |kp| P̌ l
m−1(cosϑ) eilφ

)
2µ h(1)

m+1(|kp|r)

Ŝfs sph
ITM,42

= i l

2r sinϑ (m− 1) P̌ l
m(cosϑ) eilφ 2µ h(1)

m (|ks|r)

− i l

2 sinϑ |ks| P̌ l
m(cosϑ) eilφ 2µ h(1)

m+1(|ks|r)

Ŝfs sph
ITM,431

=
[
m cotϑ

(
m2 − 1
r2 − 1

2 |ks|2
)
P̌ l

m(cosϑ) eilφ

− m+ l

sinϑ

(
m2 − 1
r2 − 1

2 |ks|2
)
P̌ l

m−1(cosϑ) eilφ
]
2µ h(1)

m (|ks|r) +

+
(
m cotϑ

r
|ks| P̌ l

m(cosϑ) eilφ − m+ l

r sinϑ |ks| P̌ l
m−1(cosϑ) eilφ

)
2µ h(1)

m+1(|ks|r)

Ŝfs sph
ITM,44

=
(
m cotϑ
r2 (m− 1) P̌ l

m(cosϑ) eilφ

− m+ l

r2 sinϑ (m− 1) P̌ l
m−1(cosϑ) eilφ

)
2µ h(2)

m (|kp|r) +

+
(

−m cotϑ
r

|kp| P̌ l
m(cosϑ) eilφ + m+ l

r sinϑ |kp| P̌ l
m−1(cosϑ) eilφ

)
2µ h(2)

m+1(|kp|r)

Ŝfs sph
ITM,45

= i l

2r sinϑ (m− 1) P̌ l
m(cosϑ) eilφ 2µ h(2)

m (|ks|r)

− i l

2 sinϑ |ks| P̌ l
m(cosϑ) eilφ 2µ h(2)

m+1(|ks|r)

Ŝfs sph
ITM,46

=
[
m cotϑ

(
m2 − 1
r2 − 1

2 |ks|2
)
P̌ l

m(cosϑ) eilφ

− m+ l

sinϑ

(
m2 − 1
r2 − 1

2 |ks|2
)
P̌ l

m−1(cosϑ) eilφ
]
2µ h(2)

m (|ks|r) +

+
(
m cotϑ

r
|ks| P̌ l

m(cosϑ) eilφ − m+ l

r sinϑ |ks| P̌ l
m−1(cosϑ) eilφ

)
2µ h(2)

m+1(|ks|r)
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Elements of the matrix Ŝfs sph
ITM

for the computation of the stress component σ̂rφ:

Ŝfs sph
ITM,51

= i l

r2 sinϑ (m− 1) P̌ l
m(cosϑ) eilφ 2µ h(1)

m (|kp|r)

− i l

r sinϑ |kp| P̌ l
m(cosϑ) eilφ 2µ h(1)

m+1(|kp|r)

Ŝfs sph
ITM,52

=
(

− m cosϑ
2r sinϑ (m− 1) P̌ l

m(cosϑ) eilφ

+ m+ l

2r sinϑ (m− 1) P̌ l
m−1(cosϑ) eilφ

)
2µ h(1)

m (|ks|r) +

+
(
m cosϑ
2 sinϑ |ks| P̌ l

m(cosϑ) eilφ − m+ l

2 sinϑ |ks| P̌ l
m−1(cosϑ) eilφ

)
2µ h(1)

m+1(|ks|r)

Ŝfs sph
ITM,53

= i l

sinϑ

(
m2 − 1
r2 − 1

2 |ks|2
)
P̌ l

m(cosϑ) eilφ 2µ h(1)
m (|ks|r)

+ i l

r sinϑ |ks| P̌ l
m(cosϑ) eilφ 2µ h(1)

m+1(|ks|r)

Ŝfs sph
ITM,54

= i l

r2 sinϑ (m− 1) P̌ l
m(cosϑ) eilφ 2µ h(2)

m (|kp|r)

− i l

r sinϑ |kp| P̌ l
m(cosϑ) eilφ 2µ h(2)

m+1(|kp|r)

Ŝfs sph
ITM,55

=
(

− m cosϑ
2r sinϑ (m− 1) P̌ l

m(cosϑ) eilφ

+ m+ l

2r sinϑ (m− 1) P̌ l
m−1(cosϑ) eilφ

)
2µ h(2)

m (|ks|r) +

+
(
m cosϑ
2 sinϑ |ks| P̌ l

m(cosϑ) eilφ − m+ l

2 sinϑ |ks| P̌ l
m−1(cosϑ) eilφ

)
2µ h(2)

m+1(|ks|r)

Ŝfs sph
ITM,56

= i l

sinϑ

(
m2 − 1
r2 − 1

2 |ks|2
)
P̌ l

m(cosϑ) eilφ 2µ h(2)
m (|ks|r)

+ i l

r sinϑ |ks| P̌ l
m(cosϑ) eilφ 2µ h(2)

m+1(|ks|r)
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Elements of the matrix Ŝfs sph
ITM

for the computation of the stress component σ̂ϑφ :

Ŝfs sph
ITM,61

=
(

i l(m− 1) cosϑ
r2 sin2 ϑ

P̌ l
m(cosϑ) eilφ − i l(m+ l)

r2 sin2 ϑ
P̌ l

m−1(cosϑ) eilφ
)

2µ h(1)
m (|kp|r)

Ŝfs sph
ITM,62

=
[(

m2 −m

2r + m− l2

r sin2 ϑ

)
P̌ l

m(cosϑ) eilφ −

− (m+ l) cosϑ
r sin2 ϑ

P̌ l
m−1(cosϑ) eilφ

]
2µ h(1)

m (|ks|r)

Ŝfs sph
ITM,63

=
(

i l(m− 1) cosϑ
r2 sin2 ϑ

(m+ 1) P̌ l
m(cosϑ) eilφ

− i l(m+ l)
r2 sin2 ϑ

(m+ 1) P̌ l
m−1(cosϑ) eilφ

)
2µ h(1)

m (|ks|r) +

+
(

− i l(m− 1) cosϑ
r sin2 ϑ

|ks| P̌ l
m(cosϑ) eilφ

+ i l(m+ l)
r sin2 ϑ

|ks| P̌ l
m−1(cosϑ) eilφ

)
2µ h(1)

m+1(|ks|r)

Ŝfs sph
ITM,64

=
(

i l(m− 1) cosϑ
r2 sin2 ϑ

P̌ l
m(cosϑ) eilφ − i l(m+ l)

r2 sin2 ϑ
P̌ l

m−1(cosϑ) eilφ
)

2µ h(2)
m (|kp|r)

Ŝfs sph
ITM,65

=
[(

m2 −m

2r + m− l2

r sin2 ϑ

)
P̌ l

m(cosϑ) eilφ − (m+ l) cosϑ
r sin2 ϑ

P̌ l
m−1(cosϑ) eilφ

]
2µ h(2)

m (|ks|r)

Ŝfs sph
ITM,66

=
(

i l(m− 1) cosϑ
r2 sin2 ϑ

(m+ 1) P̌ l
m(cosϑ) eilφ

− i l(m+ l)
r2 sin2 ϑ

(m+ 1) P̌ l
m−1(cosϑ) eilφ

)
2µ h(2)

m (|ks|r) +

+
(

− i l(m− 1) cosϑ
r sin2 ϑ

|ks| P̌ l
m(cosϑ) eilφ

+ i l(m+ l)
r sin2 ϑ

|ks| P̌ l
m−1(cosϑ) eilφ

)
2µ h(2)

m+1(|ks|r)
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Elements of the matrix Ûfs sph
ITM

for the computation of the displacement component ûr:

Û fs sph
ITM,11

= m

r
P̌ l

m(cosϑ) eilφ h(1)
m (|kp|r) − |kp| P̌ l

m(cosϑ) eilφ h
(1)
m+1(|kp|r)

Û fs sph
ITM,12

= 0

Û fs sph
ITM,13

= m2 +m

r
P̌ l

m(cosϑ) eilφ h(1)
m (|ks|r)

Û fs sph
ITM,14

= m

r
P̌ l

m(cosϑ) eilφ h(2)
m (|kp|r) − |kp| P̌ l

m(cosϑ) eilφ h
(2)
m+1(|kp|r)

Û fs sph
ITM,15

= 0

Û fs sph
ITM,16

= m2 +m

r
P̌ l

m(cosϑ) eilφ h(2)
m (|ks|r)

Elements of the matrix Ûfs sph
ITM

for the computation of the displacement component ûϑ:

Û fs sph
ITM,21

=
(
m cotϑ

r
P̌ l

m(cosϑ) eilφ − m+ l

r sinϑ P l
m−1(cosϑ) eilφ

)
h(1)

m (|kp|r)

Û fs sph
ITM,22

= i l

r sinϑ P̌ l
m(cosϑ) eilφ h(1)

m (|ks|r)

Û fs sph
ITM,23

=
(

(m2 +m) cotϑ
r

P̌ l
m(cosϑ) eilφ − (m+ 1)(m+ l)

r sinϑ P l
m−1(cosϑ) eilφ

)
h(1)

m (|ks|r) +

+
(

−m cotϑ |ks| P̌ l
m(cosϑ) eilφ + m+ l

sinϑ |ks| P l
m−1(cosϑ) eilφ

)
h

(1)
m+1(|ks|r)

Û fs sph
ITM,24

=
(
m cotϑ

r
P̌ l

m(cosϑ) eilφ − m+ l

r sinϑ P l
m−1(cosϑ) eilφ

)
h(2)

m (|kp|r)

Û fs sph
ITM,25

= i l

r sinϑ P̌ l
m(cosϑ) eilφ h(2)

m (|ks|r)

Û fs sph
ITM,26

=
(

(m2 +m) cotϑ
r

P̌ l
m(cosϑ) eilφ − (m+ 1)(m+ l)

r sinϑ P l
m−1(cosϑ) eilφ

)
h(2)

m (|ks|r) +

+
(

−m cotϑ |ks| P̌ l
m(cosϑ) eilφ + m+ l

sinϑ |ks| P l
m−1(cosϑ) eilφ

)
h

(2)
m+1(|ks|r)
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Elements of the matrix Ûfs sph
ITM

for the computation of the displacement component ûφ:

Û fs sph
ITM,31

= i l

r sinϑ P̌ l
m(cosϑ) eilφ h(1)

m (|kp|r)

Û fs sph
ITM,32

=
(

−m cotϑ P̌ l
m(cosϑ) eilφ + m+ l

sinϑ P l
m−1(cosϑ) eilφ

)
h(1)

m (|ks|r)

Û fs sph
ITM,33

= i l(m+ 1)
r sinϑ P̌ l

m(cosϑ) eilφ h(1)
m (|ks|r) − i l

sinϑ |ks| P̌ l
m(cosϑ) eilφ h

(1)
m+1(|ks|r)

Û fs sph
ITM,34

= i l

r sinϑ P̌ l
m(cosϑ) eilφ h(2)

m (|kp|r)

Û fs sph
ITM,35

=
(

−m cotϑ P̌ l
m(cosϑ) eilφ + m+ l

sinϑ P l
m−1(cosϑ) eilφ

)
h(2)

m (|ks|r)

Û fs sph
ITM,36

= i l(m+ 1)
r sinϑ P̌ l

m(cosϑ) eilφ h(2)
m (|ks|r) − i l

sinϑ |ks| P̌ l
m(cosϑ) eilφ h

(2)
m+1(|ks|r)
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A.5 Mathematical functions

A.5.1 Bessel functions of integer order

The Bessel differential equation of integer order is defined as [243]

z2 d2f(z)
dz2 + z

df(z)
dz +

(
z2 − n2

)
f(z) = 0 (A.24)

The Bessel functions of first kind Jn(z) and second kind Yn(z) form a fundamental set of
solutions for the Bessel differential equation A.24

f(z) = C1 Jn(z) + C2 Yn(z) (A.25)

with the arbitrary constants C1 and C2 and

Jn(z) =
∞∑

k=0

(−1)k
(

z
2

)n+2k

k!Γ(n+ k + 1) (A.26)

Yn(z) = Jn(z) cosnπ − J−n(z)
sinnπ (A.27)

where Γ is the Gamma function.

The Bessel functions of third kind, also called Hankel functions of the first and second kind,
are defined by linear combinations of the Bessel functions [315]

H(1)
n (z) = Jn(z) + iYn(z) (A.28)

H(2)
n (z) = Jn(z) − iYn(z) (A.29)

Thus, a solution of Eq. (A.24) is also given by

f(z) = C1 H
(1)
n (z) + C2 H

(2)
n (z) (A.30)
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A.5.2 Bessel functions of fractional order

The Bessel differential equation of fractional order is defined as [243]

z2 d2f(z)
dz2 + 2zdf(z)

dz +
(
z2 − n(n+ 1)

)
f(z) = 0 (A.31)

where n is a real constant.

The spherical Bessel functions of first kind jn(z) and second kind yn(z) form a fundamental
set of solutions for the Bessel differential equation A.31

f(z) = C1 jn(z) + C2 yn(z) (A.32)

with the arbitrary constants C1 and C2 and

jn(z) =
√
π

2zJn+ 1
2
(z) (A.33)

yn(z) =
√
π

2zYn+ 1
2
(z) (A.34)

The spherical Bessel functions of third kind, also called spherical Hankel functions of the
first and second kind, are defined by linear combinations of the spherical Bessel functions

h(1)
n (z) = jn(z) + i yn(z) =

√
π

2zH
(1)
n+ 1

2
(A.35)

h(2)
n (z) = jn(z) − i yn(z) =

√
π

2zH
(2)
n+ 1

2
(A.36)

Thus, a solution of Eq. (A.31) is also given by

f(z) = C1 h
(1)
n (z) + C2 h

(1)
n (z) (A.37)

A.5.3 Heaviside function

The Heaviside function is defined as

H(t) =


0 t < 0
1
2 t = 0

1 t > 0

(A.38)

According to [316] its Fourier transform is given by:

H̄(ω) = πδ(ω) + 1
iω (A.39)
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A.6 Finite Element matrices

The dynamic equation of motion in the frequency domain can be solved in a discretized form
applying the Finite Element method

(
K − ω2M

)
u = P (A.40)

A.6.1 Stiffness matrix for beam element

The element stiffness matrix for a 3D beam element with 2 nodes and 12 DOFs, three
translations and three rotations per node, applying the Euler Bernoulli beam theory and
using linear elastic isotropic material yields as given in [282, 317]

Kbeam =



EA
L

0 0 0 0 0 − EA
L

0 0 0 0 0
12EIz

L3 0 0 0 6EIz
L2 0 − 12EIz

L3 0 0 0 6EIz
L2

12EIy

L3 0 − 6EIy

L2 0 0 0 − 12EIy

L3 0 − 6EIy

L2 0
GIT

L
0 0 0 0 0 − GIT

L
0 0

4EIy

L
0 0 0 6EIy

L2 0 2EIy

L
0

4EIz
L

0 − 6EIz
L2 0 0 0 2EIy

L
EA
L

0 0 0 0 0
12EIz

L3 0 0 0 − 6EIz
L2

sym.
12EIy

L3 0 6EIy

L2 0
GIT

L
0 0

4EIy

L
0

4EIy

L


(A.41)

with the local DOFs ūbeam = [u1, v1, w1, θx1, θy1, θz1, u2, v2, w2, θx2, θy2, θz2]T

A.6.2 Mass matrix for beam element

The corresponding mass matrix including the rotational inertia but neglecting the shear
deformation effects as given in [283] yields

Mbeam =
 M11

beam M12
beam

M21
beam M22

beam

 (A.42)
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with

M11
beam =



m
3 0 0 0 0 0

m
(

13
35 + 6Iz

5AL2

)
0 0 0 m

(
11L
210 + Iz

10AL

)
m

(
13
35 + 6Iy

5AL2

)
0 m

(
−11L

210 − Iy

5AL2

)
0

m IT
3A

0 0

sym. m

(
L2

105 + 2Iy

15A

)
0

m

(
L2

105 + 2Iz
15A

)


(A.43)

M12
beam =



m
6 0 0 0 0 0
0 m

(
9

70 − 6Iz
5AL2

)
0 0 0 m

(
−13L

420 + Iz
10AL

)
0 0 m

(
9

70 − 6Iy

5AL2

)
0 m

(
13L
420 − Iy

10AL

)
0

0 0 0 m IT
6A

0 0

0 0 m

(
−13L

420 + Iy

10AL

)
0 m

(
−L2

140 − Iy

30A

)
0

0 m
(

13L
120 − Iz

10AL

)
0 0 0 m

(
−L2

140 − Iz
30A

)


(A.44)

M22
beam =



m
3 0 0 0 0 0

m
(

13
35 + 6Iz

5AL2

)
0 0 0 −m

(
11L
210 + Iz

10AL

)
m

(
13
35 + 6Iy

5AL2

)
0 m

(
11L
210 + Iy

5AL2

)
0

m IT
3A

0 0

sym. m

(
L2

105 + 2Iy

15A

)
0

m

(
L2

105 + 2Iy

15A

)


(A.45)

wherein m = ρAL with A being the cross sectional area and L the length of the beam.
Furthermore it holds M21

beam = M12 T

beam as Mbeam in total is symmetric.
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