
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Framework for Performance Regression
Evaluation of Serverless Applications

Hady Yasser Dossoki Mohamed

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Framework for Performance Regression
Evaluation of Serverless Applications

Umgebung zur Erkennung von
Performance-Regressionen bei Serverless

Anwendungen

Author: Hady Yasser Dossoki Mohamed
Supervisor: Prof. Dr. Michael Gerndt
Advisor: M.Sc. Anshul Jindal
Submission Date: 15.07.2022

Acknowledgments

I want to start by thanking my supervisor Anshul Jindal, who allowed me to work on
such an exciting topic. Thank you for everything you have taught me throughout this
thesis and the constant helpful feedback. It has been a pleasure working with you.

I would also like to thank Prof. Dr. Gerndt, who introduced me to cloud computing
through his lectures, which turned out to be the field I am currently working in. Thank
you for everything.

Furthermore, I would like to thank my colleagues and friends, especially Mohamed
El Zarei. In addition, I would also like to thank my family for their constant support
throughout this journey.

Finally, I would like to thank my partner, Rania, for inspiring and pushing me through
this journey. I would not have been able to make it without your constant support.

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Hady Yasser Dossoki MohamedMunich, 15.07.2022

Abstract

Recent developments in cloud computing have allowed for the rise of Function-as-a-
Service (FaaS), which has been increasing in popularity. This popularity results from
its various features in terms of scalability and removing the burden of maintaining
the underlying infrastructure. Despite its increasing popularity, the performance
of Function-as-a-Service (FaaS) based application over a prolonged period remains
understudied. With the increased adoption of FaaS, such performance insights become
essential. FaaS based applications also introduce an increased overhead for debugging
performance issues due to their sparse nature and the lack of control over the underlying
infrastructure. In this thesis, we present RegX: An implementation of an automatic,
serverless regression testing framework. This framework measures different metrics
after every change introduced to a serverless application. Throughout this thesis, we
showcase how RegX can provide additional performance insights and help detect
performance issues as they are introduced. Using RegX, we track the performance of
two applications over different commits. The results we collected from RegX show
that the first application, where the developers actively made an effort to improve the
architecture at the expense of more resources, results in improved performance. On
the other hand, the other application witnessed a degradation in performance and an
increase in resource usage. This suggests that performance is dependent on developer
choices. Using a tool such as RegX can help identify specific code changes that result
in performance degradation.

iv

Abstrakt

Die neuesten Entwicklungen im Cloud-Computing haben den Aufstieg von Function-
as-a-Service (FaaS) ermöglicht, das immer beliebter wird. Diese Popularität ergibt
sich aus seinen verschiedenen Merkmalen in Bezug auf Skalierbarkeit und Beseitigung
der Belastung durch die Wartung der zugrunde liegenden Infrastruktur. Trotz ihrer
zunehmenden Popularität bleibt die Leistung von FaaS-basierten Anwendungen über
einen längeren Zeitraum zu wenig untersucht. Mit der zunehmenden Einführung von
FaaS werden solche Einblicke in die Leistung unerlässlich. FaaS-basierte Anwendun-
gen führen aufgrund ihrer spärlichen Natur und der fehlenden Kontrolle über die
zugrunde liegende Infrastruktur auch zu einem erhöhten Overhead für das Debuggen
von Leistungsproblemen. In dieser Arbeit stellen wir RegX vor: Eine Implementierung
eines automatischen, serverlosen Regressionstest-Frameworks. Dieses Framework misst
verschiedene Metriken nach jeder Änderung, die an einer serverlosen Anwendung
vorgenommen wird. In dieser Arbeit zeigen wir, wie RegX zusätzliche Einblicke in
die Leistung liefern und dabei helfen kann, Leistungsprobleme zu erkennen, sobald
sie auftreten. Mit RegX verfolgen wir die Leistung von zwei Anwendungen über
verschiedene Commits hinweg. Die Ergebnisse, die wir von RegX gesammelt haben,
zeigen, dass die erste Anwendung, bei der sich die Entwickler aktiv bemüht haben, die
Architektur auf Kosten von mehr Ressourcen zu verbessern, zu einer verbesserten Leis-
tung führt. Auf der anderen Seite erlebte die andere Anwendung eine Verschlechterung
der Leistung und eine Zunahme der Ressourcennutzung. Dies deutet darauf hin, dass
die Leistung von den Entscheidungen des Entwicklers abhängt. Die Verwendung eines
Tools wie RegX kann dabei helfen, bestimmte Codeänderungen zu identifizieren, die
zu LeistungseinbuSSen führen.

v

Contents

Acknowledgments ii

Abstract iv

Abstrakt v

Acronyms ix

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Statement . 2
1.3. Contributions . 3
1.4. Outline . 3

2. Background 5
2.1. Cloud Computing . 5

2.1.1. Cloud Providers . 5
2.1.2. Function As A Service (FaaS) . 5
2.1.3. Amazon Web Services (AWS) . 6
2.1.4. Serverless Computing and Applications 8

2.2. FDN . 8
2.3. Load Testing . 10

2.3.1. K6 . 10
2.4. DevOps . 10

2.4.1. Gitlab . 11
2.4.2. Continuous Integration and Development (CI/CD) 11
2.4.3. Infrastructure As Code (IAC) . 11

2.5. Time Series Database . 12
2.5.1. InfluxDB . 12

2.6. Monitoring . 13
2.6.1. CloudWatch . 13
2.6.2. Grafana . 13

vi

Contents

3. Related Work 15
3.1. Automatic performance monitoring and regression testing during the

transition from monolith to microservices 15
3.2. The Serverless Application Analytics Framework 15
3.3. Implementation of a DevOps Pipeline for Serverless Applications 16
3.4. FaaS optimization . 17

4. RegX: Serverless Regression Framework 18
4.1. System Architecture . 18
4.2. RegX Components . 20

4.2.1. GitLab . 20
4.2.2. Testing and Data Collector Unit 22
4.2.3. Data Visualization and Storage Unit 27

5. Evaluation Settings 32
5.1. Benchmark Serverless Applications . 32

5.1.1. Serverless Restaurant Application 32
5.1.2. AWS Lambda Typescript . 33

5.2. Performance Metrics . 34
5.3. Testing process . 36

5.3.1. Traces . 36
5.4. Evaluation Questions . 37

6. Results 39
6.1. Serverless Restaurant Application . 39

6.1.1. Commit Specific Results . 39
6.1.2. Cross Commit Results . 42

6.2. AWS Lambda Typescript application . 45
6.2.1. Commit specific Results . 46
6.2.2. Cross Commit Results . 48

7. Discussion 52
7.1. Serverless Restaurant Application Performance 52
7.2. AWS Lambda Typescript Application Performance 52

8. Conclusion 54
8.1. Future Work . 54

8.1.1. Heterogeneous Platform Support 55
8.1.2. Minimum Accepted Performance Threshold 55
8.1.3. Cross CI/CD platform Support . 55

vii

Contents

A. Commit specific plots 56

List of Figures 62

List of Tables 65

List of Listings 66

Bibliography 67

viii

Acronyms

AWS Amazon Web Services. 5–8, 25, 28, 56

CDK Cloud Development Kit. 12, 23

CQRS Command and Query Responsibility Segregation. 34

FaaS Function-as-a-Service. iv, v, 1–3, 5, 6, 8, 9, 16–18, 24, 25, 30, 56

FDN Function Delivery Network. 30

IAC Infrastructure As Code. 3, 11, 12

IAM Identity and Access Management. 8, 22, 23

PaaS Platform-as-a-Service. 5

PPTAM Production and performance application monitor. 16

S3 Simple Storage Service. 6, 7, 20, 22–24

SAAF Serverless Application Analytics Framework. 17

SNS Simple Notification service. 6, 7, 34

VM Virtual Machines. 5

VUs Virtual Users. 30

ix

1. Introduction

Serverless computing is an execution model in which a cloud service provider dynami-
cally maintains the server’s computational resources [43]. An example is Function-as-
a-Service (FaaS) - A form of serverless computing that allows the execution of pieces
of code encapsulated within a function to be executed upon function invocation [3].
FaaS and serverless architectures, in general, have increased in popularity over the
past few years. This increase in popularity is due to the fine granularity over billing
and scalability provided by most providers (e.g., Amazon Web Services and Google
Cloud) [43]. They also remove the burden of maintaining the infrastructure, as this
responsibility shifts to the provider.

Since FaaS introduces different ways of structuring and implementing applications,
some decisions become subjective and can be influenced by the developer’s knowledge.
This can result in a suboptimal performance that underperforms after introducing a
change. The result may be a symptom of the golden hammer antipattern [46] or simply
a newly introduced limitation due to new options, such as introducing new services to
a given architecture that require additional overhead to use. Subtle underperformances
introduced by a given change can introduce bottlenecks. However, this often goes un-
detected during the development and deployment processes, which could compromise
the overall performance in the long run as the technical debt accumulates [36]. Finding
the tipping point (or points) that resulted in underperformance becomes more tedious
in later stages and relatively harder to mitigate [35]. Working around these introduced
bottlenecks can introduce complexity in the architecture.

1.1. Motivation

With the increased usage of serverless applications spanning a wide variety of industries
ranging from chatbots and IoT to machine learning [20], it became more important to
study and understand the different performance trends in different ways. This helps us
understand how the different FaaS platforms behave and work. Learning how FaaS

1

1. Introduction

works can help us find new ways to utilize this new paradigm and potentially make it
more efficient, secure, or reliable.

The main premise of FaaS and serverless architectures is that they are code snippets that
request computing resources on-demand. It is interesting to observe how FaaS based
applications perform under different loads and mature over time. This is particularly
interesting given that FaaS is still in its infancy, which raises concerns about how the
aforementioned FaaS based applications will perform in the long run.

1.2. Problem Statement

This thesis addresses the question of how different changes in a serverless architecture
impact its performance during the development and deployment history. To the best of
our knowledge, few tools address this question for FaaS and serverless architectures,
such as the pipeline proposed by Vitalii et al. in their work [29]. Furthermore, there
does not seem to be enough research on the topic despite the increased interest in
FaaS and serverless architectures. Building a framework that captures the change
in performance with every change made to a target serverless application not only
helps in capturing the different performance trends to further study how a serverless
application matures, but it also addresses the following:

• Bottlenecks: The framework, by design, would capture bottlenecks and help
to pinpoint the exact change that caused it once it is introduces, which should
save significant time that would normally be spent tracing the root cause of the
performance dip.

• Capturing Errors: While having extensive testing for an application can prevent
most changes that break the application from making it to the live system,
this is not always the case. Reasons such as being unable to afford the live
system replication or a slight difference in the configuration in the different stage
environments can result in broken code being pushed to the live system. The
framework proposed in this thesis would add an additional layer to capture such
errors.

• Vendor Lock-in: Since the framework is built on top the monitoring framework
from FDN (§2.2), which was built specifically to enable heterogeneous develop-
ment in different ways, it supports most FaaS platforms that currently exist, thus
not forcing the users into a vendor lock-in.

2

1. Introduction

1.3. Contributions

This thesis aims to develop a framework that continuously monitors the performance
change during a serverless application’s development and deployment process. The
framework also aims to compare how the different changes, such as introducing a new
feature or modifying or deleting an existing one, impact performance over time. Our
key contributions are:

• We develop and present a novel serverless regression framework called RegX,
which aims to capture the change in performance after every commit made to a
FaaS based serverless application. We develop RegX using Infrastructure As Code
(IAC) to allow ease of deployment and distribution. To the best of our knowledge,
this is the first work that addresses the question of how different changes in
a serverless application impact its performance during the development and
deployment history.

• As part of RegX, we extend the FDN-Monitor to work with AWS Lambda to
collect various metrics of the individual functions (§4).

• We integrate RegX with a load testing framework based on K6 (for load testing
the deployed application) and Grafana for providing the visual representation of
the application’s performance throughout the development cycle.

• Although our approach is generic and RegX can be easily extended to support
other commercial and open-source serverless platforms, we demonstrate the
functionality of RegX only with AWS Lambda (§2.1.3) on multiple serverless
applications. We further present the performance results of the applications at
various commit points (§5).

1.4. Outline

We introduce and discuss the different background topics needed to develop, deploy
and run the proposed test framework in Chapter 2. We then discuss the different related
works and how they inspired this work in Chapter 3. In Chapter 4 we discuss the
implementation and deployment details of RegX: the serverless regression framework
proposed in this thesis. Chapter 5 proceeds to break down and define the set of target
test applications, metrics, and steps used to evaluate the set of target applications using
RegX. The results of the evaluation from Chapter 5 are portrayed in Chapter 6 along

3

1. Introduction

with the relevant graphically plotted results. We then discuss the results from Chapter 6
in Chapter 7 and the conclusions drawn from the work done in this thesis in Chapter 8.

4

2. Background

2.1. Cloud Computing

Before virtualization, developers had to spend significant time acquiring, maintaining,
and creating the underlying physical infrastructure relative to the time spent on actual
software development [27]. This process changed with the introduction of virtualization
and containerization, allowing cloud computing to emerge.

Cloud computing is a model where cloud providers offer on-demand remote access
to different resources with the ability to configure and modify them to fit their use.
Examples of resources range from networks and servers to storage and fully managed
services [18]. The cloud computing model removes a significant amount of overhead
that would have been required to acquire, set up, and maintain these resources.

2.1.1. Cloud Providers

Cloud providers are generally companies that offer cloud computing services. Ama-
zon’s Amazon Web Services (AWS) and Microsoft’s Azure Cloud are examples of
companies providing cloud services. These providers usually provide a range of ser-
vices from basic low-level Virtual Machines (VM) to Platform-as-a-Service (PaaS) and
Function-as-a-service (FaaS) [37]. The services differ between providers. Despite the
increasing number of cloud providers, we are only interested in Amazon Web Services
(AWS) in this thesis as it is the most popular cloud provider [47].

2.1.2. Function As A Service (FaaS)

FaaS further extends the abstraction offered by serverless computing by introducing
a newer layer of abstraction. This new layer allows the user to write event-triggered
functions without maintaining the underlying environment setup, function, or scala-

5

2. Background

bility. The cloud service providers handle running and scaling the triggered function
based on minimal configuration input from the user, such as choosing the runtime
environment from a list of predefined environments [47].

These functions have allowed developers to shift their focus to writing code snippets to
implement the business logic without having to worry about managing the underlying
infrastructure. As a result, a new paradigm for structuring applications emerged. The
developers break the application into functions while primarily relying on FaaS and
other serverless services, such as serverless databases. This is further discussed in the
section §2.1.4.

2.1.3. Amazon Web Services (AWS)

Amazon’s Amazon Web Services (AWS) is one of the most popular cloud platforms,
with around 200 services provided [12]. Throughout this thesis, we are more focused
on Lambda, Simple Storage Service (S3), Simple Notification service (SNS) and Dynamo DB.

Lambda

AWS Lambda is a service that falls under the compute category of AWS services, which
allows developers to write and execute functions without having to perform any server
setup or management. Code snippets published on Lambda run on highly available
infrastructure, fully maintained and managed by AWS. Lambda also scales according
to usage, but can be configured to throttle or increase concurrency if needed. Lambda
offers support for most of the common programming languages [14].

Simple Notification Service (SNS)

Amazon’s Simple Notification service (SNS) implements the publish/subscribe design
pattern, which is managed by AWS. The service allows different entities to publish
different events for different topics to SNS. The subscribers are all notified in different
ways, such as email and text messages. Simple Notification service (SNS) also accepts
other AWS services as subscribers. SNS can be used to trigger different functions, such
as AWS Lambda (§2.1.3) [15].

6

2. Background

Simple Storage Service (S3)

Amazon’s Simple Storage Service (S3) is a highly reliable object storage service offering
secure and scalable data storage [11]. It is also possible to use S3 to trigger different
AWS services, such as AWS Lambda, when a file is uploaded, modified, or deleted [7].

DynamoDB

Amazon Dynamo DB is a highly available and durable serverless NoSQL database that
offers fast access speed by utilizing different access patterns [48, 10] and other features,
such as using SSD for storage [49].

APIGateway

API Gateway is an abstraction analogous to a reverse proxy, which lies between a client
and different back-end applications to direct requests accordingly and retrieve the
response [44, 51].

AWS offers its own implementation of an API gateway that allows for building REST
and web socket APIs while providing an added layer of security, monitoring, and
scalability [8].

Boto3

Boto3 is a python implementation of the AWS SDK [2], which can be used to build
applications utilizing the different AWS resources, such as storage services like S3 and
compute services like lambda. Using Boto3, one can collect CloudWatch metrics and
log insights for the various log namespaces.

Identity and Access Management (IAM)

Identity and Access Management (IAM) is a service that manages access between
different entities, such as AWS console users and other AWS services. Identity and
Access Management (IAM) achieves this by using user groups, roles, and resource
access policies [13]. AWS offers predefined IAM configurations but allows users to

7

2. Background

Figure 2.1.: A basic overview of a basic serverless application

create their custom configurations and policies. IAM everywhere in AWS, such as
allowing lambda functions to access S3 buckets (§2.1.3).

2.1.4. Serverless Computing and Applications

Serverless computing is a model which takes advantage of the FaaS paradigm. The
application logic in this model is broken down into functions, which respond to
different events. In case an application uses a database, a serverless database such as
Amazon’s DynamoDB (§2.1.3). It is also quite common to use an API gateway (§2.1.3)
for functions that should respond to HTTP requests (e.g., REST APIs). Figure 2.1 shows
an example of what a serverless application could look like.

2.2. FDN

In their work, Jindal et al. [32] propose a solution that extends serverless computing
to heterogeneous clusters. It achieves this by introducing different tools to allow
deployment and monitoring, among other features, on different FaaS platforms based
on a set of user-provided configurations. The different cross-platform clusters are

8

2. Background

Figure 2.2.: An overview of a Function Delivery Network (FDN) architecture presented
by Jindal et al. [32]

coupled through the control plane component in Figure 2.2, allowing the developers
to quickly deploy serverless functions across other platforms with minimal platform-
specific configuration.

Within the previously mentioned control plane module lies a monitoring sub-module,
which collects different metrics for heterogeneous serverless applications. For example,
the monitoring module can be used to fetch the average execution time for a lambda
function hosted on AWS through the collected CloudWatch logs and log insights. We
extract this module and utilize its capabilities throughout this thesis.

9

2. Background

2.3. Load Testing

One way to obtain insights into an application is to see how it performs under different
loads. This ideally simulates real-life user interactions with similar services that already
exist. The application is closely monitored during this process to collect various metrics
about an application.

2.3.1. K6

Unlike most traditional load testing tools, which have a graphical user interface (e.g.,
Jmeter), K6 allows users to write test scripts in JavaScript files [40]. This makes it a
more powerful tool for power users, as it can generate dynamic load testing logic using
JavaScript capabilities. K6 also uses less memory, enabling deploying it in most virtual
machines [40]. Once K6 completes running a script, it outputs the different metrics it
collected to the terminal. K6 also supports exporting the results to various destinations,
such as Influx DB.

Virtual Users (VUs)

Virtual Users simulate how real users would interact with a website, defined as a
concurrent connection to a service, similar to how a user would interact through a
browser [33]. The number of requests made by virtual users can be tuned to allow for
more flexible testing for APIs.

2.4. DevOps

DevOps is a model aiming to bridge two previously different teams within an organi-
zation. The teams are development and operations, derived from the word DevOps [4].

DevOps aims to achieve the goal of integrating these two teams by automating the
different processes within development, deployment, and automated monitoring for
applications and infrastructure. As a result, these different tasks are no longer the
responsibility of any isolated team within an organization on its own, but rather a
collaborative effort comprised of cross-functional teams [19]. The paradigm introduced
by DevOps increased the velocity of delivering value continuously.

10

2. Background

Throughout this thesis, we use different DevOps tools, such as "Continuous Integration
and Development" §2.4.2 and Infrastructure As Code (IAC) (§2.4.3), to help with the
development and ease the process for any upcoming work to work created in this
thesis.

2.4.1. Gitlab

GitLab is a git repository manager with a web interface and a wide range of tools.
These tools help developers develop and ship their applications to different hosting
platforms [25]. A subset of these tools is the DevOps tools and services offered by
GitLab, which are discussed in more detail in the following sections §2.4 and §2.4.2.

2.4.2. Continuous Integration and Development (CI/CD)

As previously mentioned, automation and continuously delivering changes to a code
base are some tasks required by DevOps to increase development velocity (§2.4).
CI/CD is a way to help achieve these goals, which introduces the ability to automate
the workflow necessary at different stages [45].

GitLab offers its implementation of CI/CD, where the configuration and instructions
required are provided by the user in a file named .gitlab-ci.yaml [26]. The files
describe the stages that make up a pipeline, the different jobs within a stage, and the
relation between stages if one exists (e.g., the test stage relies on the build stage).

2.4.3. Infrastructure As Code (IAC)

Infrastructure As Code (IAC) is a way to automate infrastructure, allowing users
to write the components that make up the underlying infrastructure as code, the
same way a developer writes code. This is one of the basic principles of the DevOps
model [5]. Infrastructure As Code (IAC) allows for quick infrastructure deployment
and redeployment across different vendors or regions if needed. It also makes the
experience more homogeneous than alternative ways of achieving it through scripts [5,
39].

11

2. Background

Cloud Development Kit (CDK)

Cloud Development Kit (CDK) is an open-source framework that allows users to write
infrastructure as code using popular languages, such as TypeScript, Python, Java, and
.NET. This allows Cloud Development Kit (CDK) users to take advantage of the existing
support for these languages when defining their infrastructure [1].

2.5. Time Series Database

To obtain meaningful insight into the performance of a given system, we usually
monitor its performance consistently throughout a given period. To get the most insight
into a data set, we need to define the metrics of interest and the rate at which the data
is collected (e.g., every 10 seconds). This type of data is often referred to as time-series
data [42].

While time-series data can theoretically be stored using most databases, it is usually
stored using time-series databases. This is because time series databases are specifically
designed for this type of data. Time series databases take advantage of the characteris-
tics of this data, thus having more optimizations in mind compared to other kinds of
databases. For example, time-series databases optimize storing data points by taking
advantage of the fact that prefixes of the Unix timestamp are usually repeated for
consecutive data points and only storing the common prefixes for such points. Other
databases, such as relational databases, do not take advantage of the different features
present in time-series data. This lack of time-series-specific optimization results in
sub-optimal data storage and retrieval.

Time-series databases are collections of values, which are periodically calculated or
retrieved [23]. The data stored in time series databases are typically extensive. Through-
out this thesis, we will use Influx DB (§2.5.1) to store time-series events and metrics for
the different serverless functions [41].

2.5.1. InfluxDB

InfluxDB is an open-source implementation of time series databases. It was built on top
of an open-source core that was implemented explicitly to create a time series database
rather than modify an existing database to accommodate time series data, which made
different optimizations possible [28].

12

2. Background

InfluxDB integrates with different tools that allow data collection, monitoring, and
different optimizations. However, we are more concerned with the data collection and
storage aspects of influx DB in this thesis.

2.6. Monitoring

In this section, we discuss the different monitoring tools that will be used throughout
this thesis.

2.6.1. CloudWatch

CloudWatch is an AWS monitoring tool that integrates seamlessly with the different
AWS services, like previously mentioned, which collects different metrics for each
service and resource [9]. CloudWatch also allows for building and creating different
types of dashboards and setting up alarms, among other features.

CloudWatch, like many AWS services, can be reached via an API1 which makes it
possible to collect data from an external source for further processing or visualization
if needed. Throughout this thesis, we collect metrics captured by CloudWatch using
the API provided by AWS.

2.6.2. Grafana

Grafana is open-source software that offers multiple visualization tools for time series
databases, which can be used to create dashboards from various data sources. It also
allows users to execute their queries, set alarms, and create annotations [41]. Figure 2.3
shows what a dashboard in Grafana would look like.

1https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/Welcome.html

13

2. Background

Figure 2.3.: An example of a Grafana panel with different dashboards showing different
metrics collected by K6 §2.3.1.

14

3. Related Work

3.1. Automatic performance monitoring and regression testing
during the transition from monolith to microservices

In their work, Andrea Janes et al. introduce an approach to monitor the negative
impact on performance over time throughout the process of breaking down a monolith
application into an equivalent microservice application [30] . Their goal was to attempt
and avoid the adverse effects on performance during the transition from a monolith
architecture to a microservice architecture. For example, suppose the new microservice
architecture underperforms by a certain threshold. In that case, the developers can
opt to shift their focus on the degradation in performance to avoid further impact. To
achieve this, Production and performance application monitor (PPTAM), a testing-based
application monitoring tool, was modified to monitor all user interactions. PPTAM
was also used to store the response time metric for the existing monolith architecture
and the new monolith system. The tool then plots both performances and alerts the
developers if the performance of the new microservice architecture drops past the
threshold set up by the developer. An alert is raised for the developers. The tool
also offers a user interface for interested stakeholders to view the different graphs
mentioned above. Figure 3.1 shows an example of the tool setup.

Throughout this thesis, we seek to create a performance monitoring framework with
the aim of tracking performance degradation in serverless and FaaS-based applications,
similar to the tool discussed here. We benefit from the general idea and the approach
introduced by this work.

3.2. The Serverless Application Analytics Framework

In their work Robert et al. discuss the impacts of different languages on the performance
of FaaS, specifically AWS Lambda [17]. To achieve this, they introduce Serverless

15

3. Related Work

Figure 3.1.: Performance monitoring design presented in [30])

Application Analytics Framework (SAAF). SAAF collects forty-eight different metrics,
including, but not limited to, memory, total execution time, and latency, which are
compared across other FaaS platforms.

In this thesis, we build a similar tool that collects a subset of the metrics collected in
work proposed by Robert et al. in [17]. However, our serverless regression framework
performs that in an automated manner. It aims to compare the change in performance
throughout the different iterations of the application, regardless of the programming
language or the FaaS platform.

3.3. Implementation of a DevOps Pipeline for Serverless
Applications

Vitalii et al. discuss the impact of serverless applications on the DevOps pipeline and
propose a CI/CD and monitoring pipeline [29]. In their work, they research how the
serverless model impacts the DevOps role and processes. While they suggest that the
serverless application model introduces useful DevOps tools, it also presents some
monitoring challenges. These challenges are due to generally having tight coupling
with other cloud services and no access to the underlying infrastructure for debugging.
Their research findings introduce a GitLab pipeline, which is automatically triggered
when a change is pushed. A runner then picks up the job and runs the script for the

16

3. Related Work

given stage. If the right stage is triggered, end-to-end testing is triggered automatically.

In this thesis, we build a CI/CD pipeline similar to the one proposed in this work to
automate the deployment and load testing processes. However, we modify it to fit our
framework. We use the GitLab CI/CD pipelines to deploy our developed framework.
We also use GitLab’s CI/CD pipelines to upload test scripts on the target application
and to trigger load testing and cloudwatch metric collection.

3.4. FaaS optimization

Most previous work [21, 38] focus on working around the cold start problem for
serverless applications. This might be useful to overcome such a well-known problem
that stems from the current design of the FaaS model offered by most providers.
However, it does not consider any performance issues resulting from the change in the
complexity of a FaaS-based serverless application as it matures and how the increased
coupling with other serverless services impacts performance.

In this thesis, we aim to capture any potential sub-optimal performance resulting from
design changes to a FaaS based serverless application that results from the serverless
application maturing over its lifetime. This tackles the performance issues for lambda
from a different perspective by capturing performance issues as they occur.

17

4. RegX: Serverless Regression Framework

This chapter covers the implementation details of the Serverless Regression Framework
called RegX1, which is an open-source automatic test framework that automatically
performs regression testing, collects metrics, and publishes the results to grafana
dashboards upon every change introduced to a code repository. This framework
represents one of the main contribution for this thesis.

RegX is created as a serverless application using Amazon’s CDK (§2.4.3) with Type-
script2, making it easy to deploy. To further ease deployment, we configured the
framework to use different DevOps tools, such as GitLab’s CI (§2.4.2), to automatically
deploy any changes made to the framework. Throughout this chapter, we will discuss
the system architecture, different technical design choices, and implementation details
of every component within RegX.

4.1. System Architecture

The architecture of RegX is shown in figure 4.1 and consists of three main parts: 1) A
GitLab repository, which holds the code base and acts as a CI/CD tool to automate
the deployment process and upload the test script, 2) the core test runner data collector
component, which runs uploaded test scripts and collects CloudWatch (§2.6.1) metrics,
and 3) a visualization and storage component, which stores the collected time-series (§2.5.1)
metric data and offers different dashboards to view this data. The Figure 4.1 also
includes a sample serverless application, which acts as a test subject but is not a part of
the framework.

The core components in this framework are robust enough to work with other elements
that offer similar interfaces. For example, GitLab can be replaced with any repository
management tool and a service that provides CI pipeline tools, such as Travis CI or

1https://gitlab.com/hady1100/Framework-for-Performance-Regression-Evaluation-of-Serverless-
Applications

2https://www.typescriptlang.org/

18

4. RegX: Serverless Regression Framework

Figure 4.1.: A high-level overview of the different components that make up the infras-
tructure for the test framework

GitHub and GitHub Actions3. The test runner and data collector component only expects a
K6 test script to be uploaded to the correct bucket and can export the results in different
formats. The visualization component is the only component that could require some
parameter tuning to display the correct data on the dashboards.

The general flow starts when a developer pushes changes to a repository of a serverless
application that has a K6 test script and CI/CD configured. This action triggers the CI
pipeline, which deploys the new changes made to the application on the relevant cloud
platform and proceeds to upload the K6 test script to the testscriptbucket. The Simple
Storage Service (S3) bucket then triggers the K6RunnerHandler, which runs regression
tests using the previously mentioned K6 test script against the target serverless applica-
tion. Once the regression testing is complete, the K6RunnerHandler pushes the collected
user-centric metrics (§5.2) to influx DB and invokes the DataCollectorHandler, which
collects the different CloudWatch (§2.6.1) metrics produced as a result of running the K6
script and pushes it to influx DB as well. Further details regarding this component can
be found in (§4.2.2).

3https://github.com/features/actions

19

4. RegX: Serverless Regression Framework

Figure 4.2.: A sequence diagram of RegX showcasing the entire flow of the framework.

4.2. RegX Components

This section breaks down the different components that make up RegX. We start by
explaining the role of GitLab as a repository management tool and a CI/CD tool. We
then proceed by discussing the Testing and Data Collector, which is responsible for
running tests and data collection, followed by the Data Vsizualization and Storage Unit,
which presents the collected data graphically.

4.2.1. GitLab

This section explains how the different features and tools offered by GitLab are used in
the implementation of RegX. We consider GitLab to be its own component, which is
used to automate the deployment of RegX and trigger the Testing and Data Collection
Component.

GitLab, in this architecture, serves as a repository manager and a CI pipeline for the
serverless regression framework’s source code and any potential target applications we
expect to be tested. It is important to note that any other repository manager and CI
tool can replace GitLab in this architecture.

GitLab CI pipeline is made up of logical steps called stages. Each stage can be broken
down into multiple jobs, where a job executes a given set of commands. Each job

20

4. RegX: Serverless Regression Framework

can independently use any container image as a base for executing all following
commands. This allows the commands to run in any containerized environment,
such as an environment with NodeJS or python configured. The GitLab CI pipeline
is configured through a YAML file named .gitlab-ci.yml and has to exist at the
repository’s root [24]. The CI pipeline used for the framework is configured to be
comprised of 3 stages: 1) deploy any changes made to the infrastructure, 2) run a
sample test to ensure the framework is working, 3) manually trigger the deletion of the
deployment stack for the entire test framework infrastructure when the prototyping is
over.

As previously mentioned in this chapter, the serverless regression framework expects
the user to have a K6 test script in the root of their repository that is uploaded upon
every deployment-ready change. The CI pipeline is configured to achieve automatic
uploads for the K6 test script, using the sample code in Code listing 1.

1 uploadTests:
2 stage: test
3 image:

registry.gitlab.com/gitlab-org/cloud-deploy/aws-base:latest↪→

4 script:
5 - aws –version
6 - ls
7 - aws s3 cp ./test.js s3://serverlessscriptbucket/

Listing 1: An example .gitlab-ci.YAML configures a job within a test stage in the GitLab
Ci pipeline.

The code snippet includes a job with the name uploadTests, which belongs to a stage
called test. The base image for the job is the aws-base, provided by GitLab itself, among
many other images officially hosted by GitLab on their container registry 4. The script
includes a list of scripting commands to run in a given order. In this case, it includes
the commands required to upload the test script to the testscriptbucket. For this to work
properly, the user needs to configure GitLab CI by providing the correct IAM (§2.1.3)
role or credentials to locate and upload files to the S3 (§2.1.3) bucket5.

4https://docs.gitlab.com/ee/user/packages/container_registry/
5https://aws.amazon.com/blogs/apn/using-gitlab-ci-cd-pipeline-to-deploy-aws-sam-applications/

21

4. RegX: Serverless Regression Framework

Figure 4.3.: A sequence diagram describing the flow of the Testing and Data collection
Unit.

4.2.2. Testing and Data Collector Unit

This component handles running regression tests against different serverless applica-
tions intended to be tested. It then collects the different types of metrics produced from
testing the serverless target application. Figure 4.3 shows a close up of this component.

The component can be conceptualized as the back-end of the test framework. It can
be further broken into the following components: 1) an S3 bucket to hold the test
script that will be run against the target application, 2) a lambda function that runs
the test script and collects user-centric metrics, and 3) a data collector lambda function
which collects platform-centric metrics. The following subsections discuss the different
components that make up this unit in greater detail.

K6 Runner

The K6 runner is represented by the K6RunnerHandler in the Figure 4.1 and contains
a simple wrapper, which is written in Javascript, over the K6 CLI6 tool. The k6
wrapper is a modified version of the code discussed in [50]. Upon file upload to the
testscriptbucket S3 bucket, the K6RunnerHandler is triggered. The lambda function
then fetches the test script file from the S3 bucket and saves it locally. The appropriate
IAM roles and permissions (§2.1.3) are assigned to the S3 bucket and are defined using
CDK (§2.4.3). The IAM roles allow S3 to trigger lambda functions and allow lambda

6https://k6.io/

22

4. RegX: Serverless Regression Framework

Figure 4.4.: An example of an automatically generated annotation for running different
traces. The metric shown in this example is for the average execution time.

functions to access S3.

With the test file saved locally, the function creates a sub-process that runs the K6
CLI tool to run the test script, saving the output in Influx DB. Once the sub-process
completes execution, the function creates an annotation with the commit number using
Grafana’s API. The K6RunnerHandler function then invokes the DataCollectorHandler
function and responds with a success message (or a failure message if something goes
wrong). The annotation created spans the entire execution time of the K6 test script,
making it easier to identify the impact of every commit on the different performance
trends. Figure 4.4 shows an example of this annotation.

Data Collector

The data collector component is responsible for collecting the different platform-
centric metrics produced from executing different FaaS functions within a serverless
application. This section will discuss what the component does and its implementation
details.

23

4. RegX: Serverless Regression Framework

When a serverless function with proper monitoring setup7 is triggered, the FaaS plat-
form hosting this function collects different platform-centric metrics. For example,
when an AWS Lambda function is triggered, different metrics, such as execution
time and memory usage, are collected by Amazon’s CloudWatch (§2.6.1). The com-
ponent discussed in this section can then be used to retrieve these metrics from
CloudWatch (§2.6.1), or other similar services for different FaaS platforms, to aggregate
all of this data in a central place. To store all the collected metrics, we use InfluxDB8, a
dedicated time series database that is well maintained and highly scalable.

The component discussed in this section is a modified version of the work proposed
by Jindal et al. in [31], which can be found in the FDN-Monitor repository 9. While
working on this component, various contributions were made to the FDN-Monitor
repository. The component discussed in this section is written in python and supports
the following FaaS platforms: AWS, Google, Open FaaS, and Open whisk. Throughout
this thesis, we focus more on AWS. However, most concepts and functions that the
AWS data collector is based on are similar across the different data collectors. Figure 4.5
shows the UML diagram describing the structure of the other data collectors with AWS
and Google data collectors filled with showcasing the similarity above.

The module takes advantage of different python libraries and SDKs, such as boto3 (§2.1.3)
for AWS. These libraries and SDKs take advantage of the APIs provided by different
FaaS platforms and cloud providers to collect different types of metrics. The general
flow of the data collector module starts with the user defining the environment vari-
ables and configurations. These variables and configurations include all information
required by the modules, such as the credentials required to connect to influx DB, the
credentials required to connect to the FaaS platform, and the cluster type (e.g., AWS).
Upon reading the environment variables, the main function instantiates the correct
type of data collector. For example, if the cluster type is set to AWS, an instance of
AWSDataCollector is instantiated with the correct AWS account credentials. In the case
of AWS, the different collect_<metric_name>(), from Figure 4.6, functions are then called
asynchronously. The primary function responsible for collecting the platform-centric
metrics from AWS can be seen in the code listing 2. Once the metrics are collected,
they are combined into one data frame. The collected metrics are filtered during the
combination process to remove any empty results. The collect_data_from_logs() function
is then called, which collects additional metrics provided by log insights - A feature
for parsing logs provided by AWS. This allows for further platform-centric metric

7Some platforms automatically setup and configure monitoring, such as AWS, while others require that
the user configure monitoring.

8https://www.influxdata.com/
9https://github.com/Function-Delivery-Network/FDN-Monitor

24

4. RegX: Serverless Regression Framework

extraction, such as billed duration and maximum Memory Used. Responses from log
insight queries are then processed and combined once again with the data frame from
the previous steps, based on the timestamp. Further post-processing, such as converting
time columns to seconds, calculating mean values, and column renaming, take place.
This is done to prepare the data for influx DB and to match the names of the different
Grafana dashboard variables to maintain cross-platform compatibility.

25

4. RegX: Serverless Regression Framework

1 async def get_and_convert_data_frame(self, start: int, end: int,
stat_type: str,↪→

2 feature_col_name: str, save_feature_col_name: str) -> DataFrame:
3 """ Get and Convert the timeseries data values to a dataframe .
4 Args:
5 start: Integer - A timestamp, where the query range should

start↪→

6 end: Integer - A timestamp, where the query range should end
7 feature_col_name: String - the name of the feature column

name↪→

8 Returns: DataFrame - Query result as DataFrame - with columns:
'timestamp', 'action', 'region', 'memory',↪→

9 'feature_col_name'
10 """
11 stats = self.cloudwatch_client.get_metric_data(
12 MetricDataQueries=[
13 {
14 'Id': 'metric_data',
15 'Expression': "SEARCH('{" +
16 self.metric_namespace+",FunctionName}

"↪→

17 "MetricName=\""
+↪→

18 feature_col_name+"\"', '"+stat_type+"',
"+str(self.period)+")",↪→

19 'ReturnData': True
20 },
21],
22 StartTime=start,
23 EndTime=end,
24 ScanBy='TimestampDescending'
25)
26 values = []
27 for record in stats['MetricDataResults']:
28 for idx, inner_record in enumerate(record['Timestamps']):
29 values.append(
30 {"action": record['Label'], "timestamp":

inner_record, save_feature_col_name:
record['Values'][idx]})

↪→

↪→

31 return DataFrame(values)

Listing 2: A code snippet from the DataCollectorHandler that handles the primary logic
for retrieving CloudWatch (§2.6.1) metrics using boto3 (§2.1.3)

26

4. RegX: Serverless Regression Framework

Figure 4.5.: A simplified UML showcases the different data collectors for the different
platforms.

A wrapper had to be introduced to get the data collector module from FDN-Monitoring,
working on lambda, before integrating it into RegX. This wrapper acts as an entry point
to comply with lambda requirements and acts as a lambda handler. A few changes,
such as updating queries and modifying retrieved fields, were made before finally
containerizing the module using docker to include all environmental requirements and
dependencies.

All function details were defined using CDK (§2.4.3), which is An open-source develop-
ment framework that allows developers to define their cloud resources for AWS [1].
All necessary IAM roles and permission (§2.1.3) required to deploy and modify the
function were configured and assigned to the CI pipelines, while the permissions to
invoke the function were assigned to the K6RunnerHandler.

4.2.3. Data Visualization and Storage Unit

The unit discussed in this section is responsible for storing the collected metrics in a
time-series database and providing the user with a visual representation of this data.

This component relies on two open-source projects: Grafana (§2.6.2), which is a data
visualization tool, and Influx DB (§2.5.1), which is a time series database. Influx DB
is responsible for storing the data collected by both the K6RunnerHandler and the
DataCollectorHandler functions from the test runner and data collector component from
§4.2.2, which can be seen in Figure 4.1. Grafana reads this data and updates two
dashboards that were explicitly selected for the work conducted in this thesis.

27

4. RegX: Serverless Regression Framework

Influx DB

Throughout this thesis, we use influx DB, a database built specifically to handle time-
series data with high efficiency and scalability (§2.5.1). InfluxDB is responsible for
persisting platform and user-centric metrics produced by the Testing and Data Collection
Unit (§4.2.2). InfluxDB is also used by Grafana (§2.6.2) as a data source to plot and
update the different data points.

Grafana

Grafana is an open-source data visualization tool [41], which can collect data from differ-
ent sources to create different dashboards. Grafana supports various query languages
to obtain the desired data points from the relevant data source. We used different
dashboards to visualize the aforementioned metric data produced by the serverless
regression framework. In this section, we will discuss the different dashboards we
used.

Platform Specific Dashboard

This dashboard aims to represent the platform-specific metrics collected by the data
collector unit §4.2.2. This includes the following metrics:

• Invocation: The number of times the function got invoked.

• Average execution time: The average time it takes to execute the code snippet
contained within the lambda function.

• Average memory used: The average memory resources needed to execute the
code snippet contained within the lambda function.

• Concurrent Executions: The sum of concurrent lambdas required to fulfill con-
current requests.

The dashboard template from the FDN-Monitoring repository 10 was used to display
the platform-specific data [22]. Throughout this thesis, different contributions and
upgrades have been made to the FDN-monitoring repository to make it more robust
and to test some of its features more thoroughly. Since the dashboard builds on top

10https://github.com/Function-Delivery-Network/FDN-Monitor

28

4. RegX: Serverless Regression Framework

of the FDN-Monitor repository, a part of Function Delivery Network (FDN) that was
previously mentioned §2.2, it is robust enough to handle platform-specific metrics
collected from different FaaS (§2.1.4) providers, not just AWS Lambda.

The dashboard takes advantage of the variable template feature offered by Grafana to
allow it to display the same dashboard for each function within a serverless application.
An overview of the dashboard discussed in this section can be seen in the Figure 4.7
and its JSON definition for Grafana [22].

User Specific Dashboard

This dashboard aims to represent the User-centric metrics collected from running the K6
test script by the K6RunnerHandler function. This dashboard includes the following
metrics: Number Virtual Users (VUs), URL response times, errors rate HTTP duration
with heat maps and summaries to show an appropriately detailed overview. This can
be seen in Figure 2.3.

29

4. RegX: Serverless Regression Framework

Figure 4.6.: A simplified UML showcasing the AWSCollector class details.

30

4. RegX: Serverless Regression Framework

Figure 4.7.: An overview of the Grafana dashboard showing different platform-specific
metrics.

31

5. Evaluation Settings

In this chapter, we discuss the methodology used to test a set of serverless applications
using the Serverless Regression Framework (§4). To properly showcase the usecase of
Serverless Regression Framework, we need different sample serverless applications with
a realistic development history to be tested at different points in their development
lifetime. Therefore, We first introduce the benchmarked applications that we use to test
RegX in §5.1. Following this, we present the performance metrics collected from AWS
Lambda in §5.2.

5.1. Benchmark Serverless Applications

We define eligible applications as the set of serverless applications with at least five
or more commits with incremental feature development or bug fixes. Serverless
application with too few commits, i.e. below 5 or with all the code pushed in one
commit, are not eligible to be chosen for testing. After careful consideration, the
following two applications are chosen and deemed eligible for testing.

5.1.1. Serverless Restaurant Application

The first application is a serverless-restaurant1 application, and its architecture can be
seen in Figure 5.1. It consists of 3 main similar components, which simulate a specific
set of tasks relating to one of the following entities: Orders, Menus and Customer. For
example, the component responsible for tasks related to customers, is responsible for
registering a new customer.

Each of the components consists of an API Gateway, which handles incoming HTTP
request. This allows triggering lambda using HTTP requests. The components also
contains different Simple Notification Service (SNS) (§2.1.3), that notifies all subscribers

1https://github.com/vvgomes/serverless-restaurant

32

5. Evaluation Settings

when a publisher publishes a message to these topics. SNS topics act as a trigger for
the subset of the lambda functions that are not triggered by the API Gateway. The set
of functions that use SNS topics as triggers are the ones responsible for inserting and
updating the different Dynamo DB table. All the aforementioned resources produce
different logs, which are pushed to cloudwatch. However, we are only interested in the
logs produced by the lambda functions. The applications are deployed with the server-
less framework, with each component deployed separately in its own configuration file.
An example of a single component can be seen in Figure 5.1.

Upon inspecting the different commits for this application, we notice that the devel-
opers started with a simple architecture that did not include all the aforementioned
resources in figure 5.1. The application started with a single working component for
the Customer related requests, which included an API Gateway and a single lambda
function. The developers then proceeded to introduce more lambda functions and SNS
topics to trigger the new lambda functions, as well as Dynamo DB tables to persist the
different data. This introduced more complexity and increased coupling with different
serverless services. The final result is an implementation of the Command and Query
Responsibility Segregation (CQRS) architectural pattern [52], which segregates the read
and update operations for a given storage layer.

5.1.2. AWS Lambda Typescript

The second application2 aims to provide a working example of how a serverless
application would be implemented in typescript from the perspective of the developers
who created it.

Similar to the previous serverless application (§5.1.1), this application is packaged and
deployed using the serverless framework. However, it uses a simpler architecture,
which can be seen in Figure 5.2. The application consists of a single API gateway and a
lambda function. Over time, the developers introduce a few more lambda functions,
the implementation details of which are not relevant to this section. Despite the huge
number of commits and contributions to this application, its design remains relatively
simple throughout its lifetime compared to the application discussed in the previous
section.

2https://github.com/balassy/aws-lambda-typescript

33

5. Evaluation Settings

Figure 5.1.: An overview of the architecture of the serverless-resturant application in
the latest commit.

5.2. Performance Metrics

As mentioned in the previous sections, the goal of the serverless regression framework
is to measure the performance of any target serverless application through the different
changes over time. In order to achieve this, we have to first define the performance
metrics we intend to collect. Table 5.1 defines a set of metrics, which we refer to as

Metric Type Description

http_response_time user-centric Total time to receive a response for a given
request.

Replicas
platform-centric

Number of total lambda instances.

Memory Maximum Memory required to run a func-
tion.

Table 5.1.: A list of the metrics used, their different types and description

34

5. Evaluation Settings

Figure 5.2.: An overview of the lambda typescript application architecture.

platform-centric metrics. To define this set of performance metrics, we conceptualize
serverless applications as code snippets that request computing resources on demand,
which are provisioned by the serverless platform provider [16]. We focus on the
different metrics that measure the change in demands for the different computing
resources, such as memory usage, CPU usage, or the time it takes to execute the
function. This set of metrics is referred to as platform-centric metrics, as they are
specific to the platform of the serverless functions (e.g., AWS).

We also define a different set of performance metrics in Table 5.1, which we refer to as
user-centric metrics. This set of metrics is conceptualized from the perspective of how a
client, or a user, interacts with a service as a black box. The faster and more frequently
a client gets an expected response, the better the service is. The HTTP response time
is an excellent example of this type of metric. This set of metrics is referred to as
user-centric metrics, as they refer to a set of metrics that measures performance from
the perspective of a user or a client acting on a user’s behalf.

35

5. Evaluation Settings

5.3. Testing process

In this section, we discuss how RegX is used to collect the aforementioned set of
metrics from the set of application defined in the previous sections. We achieved this
by choosing n different commits for each application, where n was set to 5. RegX is
then run with a set of different load testing configurations for each commit. This allows
us to test the application at different points in time throughout its development cycle.
The set of commits is chosen such that they are as equally apart from each other as
possible to ensure enough changes are captured.

The same set of configuration for regression testing is used when running RegX to test
the different results. To achieve this, scripts from k6-fdn-load-generator3 were used after
various contributions were made to the repository. The k6-fdn-load-generator can be used
to generate load test configuration, using k6, for different kinds of HTTP applications.

After going through the git history and choosing the appropriate commits, k6 scripts
tests are created with the relevant HTTP request methods, payloads and the aforemen-
tioned load configuration. The results are then sent to influx DB and exported into CSV
files, which are used to create various bar and line graphs, which will be discussed
in the next chapter. To obtain further insight on the metric data collected, different
kinds of aggregation, such as average, 90th percentile, min and max, are calculated
and plotted for each trace per each commit. GitLab’s CI/CD (§2.4.2) is used to ease the
process of deploying each commit from the set of chosen commits, as well as destroying
them automatically when the tests are done to prepare for the next set of load tests.

5.3.1. Traces

As previously mentioned in (§5.3), different scripts from k6-fdn-load-generator are
used to configure the load tests. The configuration is based on the following Table 5.2,
which includes the page visit count for different popular Wikipedia articles (also known
as traces). These traces are good examples of real-world interaction between users
and services. This data was obtained from Kaggle, the world’s largest data science
community [34]. To properly simulate real world user behavior and test the target
applications mentioned earlier, a diverse set across the different traces was used. In this
thesis, traces, 2, 4 and 5 were chosen since they represent diverse traffic with different
user trends.

3https://github.com/Function-Delivery-Network/k6-serverless-load-generator

36

5. Evaluation Settings

Page 2015-07-01 2015-07-02 2015-07-03 2015-07-04
The_Avengers_(2012_film)_en 3698 3470 3519 4057
Avengers:_Infinity_War_en 54 59 40 46
Bayern_Munich_fr 338 280 261 300
Interstellar_de 6 5 2 8

Table 5.2.: A table showcasing a small sample of the different traces used to generate
virtual users. This was chosen as it represents real life user interaction with
different web pages (i.e., Wikipedia articles in this case)

5.4. Evaluation Questions

We design RegX to answer the following questions for an application under evaluation:

• Q1. Individual Commit Performance: how does an application perform at the
given commit ID ? In this case, we analyze the performance of the application
at the given commit ID using all the three traces representing different varieties
of user-load patterns. In this regard, we perform analysis from two types of
perspectives:

1. User Centric: here the user-centric metrics (§5.2) are calculated for the
application at the given commit ID for all the different traces. This is done
to see how the current changes in the application affect the user at different
levels of user workloads.

2. Platform Centric: here the platform-centric metrics (§5.2) are calculated for
the application at the given commit ID for all the different traces. This is
done to see how the current changes in the application affect the functions’
usage on the platform at different levels of user workloads.

• Q2. Cross Commit Performance: how does an application performance vary
overtime at different commits? In this case, we analyze the performance of the
application at the different commits using all the three traces. In this regard,
again, we perform analysis from two types of perspectives:

1. User Centric: here the user-centric metrics (§5.2) are calculated for the
application for the different commit IDs for all the different traces. This is
done to see how the changes in the application overtime affect the user at
different levels of user workloads.

37

5. Evaluation Settings

2. Platform Centric: here the platform-centric metrics (§5.2) are calculated for
the application at the different commit IDs for all the different traces. This is
done to see how the changes in the application overtime affect the functions’
usage on the platform at different levels of user workloads.

38

6. Results

In this chapter, we analyze the different results and data collected from evaluating the
set of chosen applications using the evaluation method explained in Chapter 5. For
each of the applications, we will analyze both the user and platform-centric metrics
(§5.4) for the first commit of the application, followed by the analysis of the same
metrics over the five chosen commits for each application. This process is repeated for
the three traces (§5.3.1).

6.1. Serverless Restaurant Application

In this section, we will analyze the different user and platform-centric metrics (§5.4) for
the serverless Restaurant application (§5.1.1).

6.1.1. Commit Specific Results

In this section, we analyze the user-centric and platform-centric (§5.4) metrics collected
for the first commit of the application.

User Centric Results

We start by inspecting how the response time changes for each trace in Figure 6.1. We
notice that the lambda functions react differently to different trends of user requests.
For example, the response time for running the first trace (Trace 2 Figure 6.1) shows
that the application’s response time remains relatively low with small spikes, similar to
the pattern of requests it receives. On the other hand, we notice three significant spikes
in response time for trace 4, which are caused by the sudden spike in requests towards
the end of the trace after a consistently low number of requests. This is likely a result
of lambda instantiating new lambda instances and the cold start each instance has to

39

6. Results

Figure 6.1.: Results of running three different traces (also known as load testing config-
urations) against serverless restaurant application

go through. These new lambda instances are instantiated to accommodate the increase
in requests. The last trace (trace 5) shows an initially high response time, which likely
results from lambda’s cold boot for the first few requests in addition to the cold start of
concurrently instantiating more lambda instances to handle the surge in requests. This
can be seen at the beginning of the last trace.

To obtain further insights into the collected metrics, we also analyze the average (avg),
the 90th percentile P(90), the minimum (min), and maximum (max) aggregates for the
response time in Figure 6.2. The figure shows that the highest response time recorded
for this commit happens at trace 4, which aligns with the spikes seen in Figure 6.1.
This confirms that the response time increases significantly after a sudden spike in
requests. However, the value of the P(90) suggests that this increase in response time is
short-lived and does not significantly impact performance over time. The minimum
response time remains similar across the traces, implying that this is the least amount
of time required for the application to run, given that enough lambda warm lambda
instances exist to accommodate the incoming number of requests and that the request
is valid.

40

6. Results

Figure 6.2.: Different aggregates for the response time collected from running the three
traces (§5.3.1) against the first commit of the application.

Figure 6.3.: A stacked area graph showing the total number of replicas (also known as
concurrent executions) for the first commit of the serverless-restaurant for
the different traces (§5.3.1)

Platform Centric Results

Figure 6.3 shows a stacked area graph for the replicas of the first commit’s functions.
Upon inspecting the graph, we notice that the general shapes of the plot are very similar
to the shapes of the traces, which can be seen in the first row of Figure 6.1. In fact, after
further inspecting the data used to plot the graphs, we noticed a near 1:1 mapping.

Figure 6.4, on the other hand, shows a stacked graph for the memory usage metric
for each application across the different traces. Unlike the replicas, the memory usage
seems to be relatively consistent across the various traces for this commit. Since the
minimum amount of memory allocated for lambda is 128 MB [6], all functions only

41

6. Results

Figure 6.4.: A stacked area graph showing the total memory used in MB for the first
commit of the serverless-restaurant for the different traces (§5.3.1)

require around this amount, with the total memory usage falling between 500 MB and
750 MB and a somewhat similar area for each function within the application for this
commit.

6.1.2. Cross Commit Results

In this section, we analyze the user-centric and platform-centric (§5.4) metrics collected
for the five chosen commits of the serverless restaurant application (§5.1.1).

User Centric Results

Figure 6.6 shows that the performance time across the five different commits consistently
decreases from commits 1 to 5, respectively, until it eventually plateaus. We also notice
that trace 4 is the worst performing trace, likely due to the previously mentioned
pattern of requests that start consistently low, followed by a sudden spike. These
results are further supported by Figure 6.5, which shows the most significant increase
in frequency of response time spikes occurring in trace 4. Despite trace 5 having the
highest spike in response time, the response time remains relatively low for most of
the time it takes to execute trace 5. This is reflected in Figure 6.6 having a lower P(90)
value for trace five compared to trace four across the different commits.

42

6. Results

Figure 6.5.: A bar graph showing the P90 response time in seconds for commits 1-5 for
the three selected traces from §5.3.1 for the serverless restaurant application.

Platform Centric Results

Figure 6.7 shows that the total number of concurrent executions increases as we move
from the first to the fifth commit. This is a direct result of increasing the number
of lambda functions across the five commits. The new functions can also be seen in
the same figure. The figure also shows that the applications’ functions were changed,
which introduced complexities in the data collection, yet it was still possible to capture
using RegX.

On the other hand, Figure 6.8 shows the stacked area graph for the memory usage for
each function across the different traces for each commit. Similar to the Figure 6.7, this
graph shows an increased total memory usage over the different commits as a result of
the increase in the number of lambda functions. However, upon close inspection, we
notice that the amount of memory used per function remains relatively similar. This
suggests that each function requires around the minimum 128 MB allocated to it to run
successfully.

43

6. Results

Figure 6.6.: A bar graph showing the response time in seconds for commits 1-5 for the
three selected traces from §5.3.1 for the serverless restaurant application.

Figure 6.7.: A stacked area graph showing the total number of replicas (also known as
concurrent executions) for commits 1-5 of the serverless-restaurant applica-
tion.

44

6. Results

Figure 6.8.: A stacked area graph showing the total memory in MB for commits 1-5 of
the serverless-restaurant application.

6.2. AWS Lambda Typescript application

This section analyzes the different user and platform-centric metrics (§5.4) for the
Serverless Typescript application (§5.1.2). The metrics collected are the output of executing
the testing process mentioned in §5.3. Similar to the analysis in section 6.1, different
results per commit, followed by the results across the different commits for each of the
traces (§5.3.1).

45

6. Results

Figure 6.9.: Results of running the three different traces (§5.3.1) for commits 1-5 against
lambda-typescript application

6.2.1. Commit specific Results

In this section, we analyze the user-centric and platform-centric (§5.4) metrics collected
for the first commit of the application.

User Centric Results

We start by analyzing the HTTP response time metric for the previously mentioned traces
(§5.3.1). Similar to the serverless restaurant application (§6.1), we start by analyzing
a line graph of the http response time. This can be seen in Figure 6.9, which shows a
consistently low response time for the different traces. Upon inspecting the state of the
application at this commit, we notice that that application only consisted of one lambda
function, which will be discussed in the upcoming section. The low response time at
this commit is justified given the state of the application. This is further supported by
the values of the different aggregates in Figure 6.10, which shows similar values for all
aggregates across the different traces.

46

6. Results

Figure 6.10.: Results of running three different traces (also known as load testing
configurations) against lambda-typescript application

Figure 6.11.: A stacked area graph showing the total number of replicas (also known as
concurrent executions) for the first commit of the lambda-typescript for the
different traces (§5.3.1)

Platform Centric Results

Figure 6.11 and Figure 6.12 confirm that the application starts with a single Lambda
function, with the number of replicas in the first figure having a similar pattern to
the number of requests in each trace. The second figure shows relatively low memory
usage. The number of replicas and the memory used remains relatively low across the
different traces.

47

6. Results

Figure 6.12.: A stacked area graph showing the total Memory used in MB for the first
commit of the lambda-typescript for the different traces (§5.3.1)

6.2.2. Cross Commit Results

In this section, we analyze the user-centric and platform-centric (§5.4) metrics collected
for the five chosen commits of the application.

User Centric Results

Figure 6.14 shows an increase in the HTTP response time for all commits after the first
commit, except for trace 4. This is also shown in Figure 6.13, which shows consistently
higher values for all commits than the first commit.

Platform Centric Results

Figure 6.15 shows that the number of replicas increases significantly after the first
commit and remains similar from the second to the fifth commit while retaining the
similarity in shape with the different trace line graphs, which can be seen in the first
row of Figure 6.13. Similar to the replicas, the memory usage also increases in the
application after the first commit. However, the memory usage and replica count per
function remain identical, except for the serverless-sample-demo-getSwaggerjson function,
which consistently has a higher number of replicas and memory used since it was
introduced in the second commit.

48

6. Results

Figure 6.13.: A bar graph showing the P90 response time in seconds throughout the
different commits for the three selected traces from §5.3.1 for the serverless-
typescript application

Figure 6.14.: A bar graph showing the response time in seconds throughout the dif-
ferent commits for the three selected traces from §5.3.1 for the serverless-
typescript application

49

6. Results

Figure 6.15.: A stacked area graph showing the total memory in MB for commits 1-5 of
the lambda-typescript for the different traces (§5.3.1)

50

6. Results

Figure 6.16.: A stacked area graph showing the total number of replicas (also known
as concurrent executions) for commits 1-5 of the lambda-typescript for the
different traces (§5.3.1)

51

7. Discussion

In this chapter, we discuss the results analyzed in Chapter 6 and what they mean for
the performance of each of the applications over the different chosen commits. We also
discuss their performance against the three different traces (5.4). We start by discussing
the results for the serverless restaurant application followed by the AWS Lambda Typescript
application. For each application, we discuss how the change in total computing resource
requirements, represented by the total memory used and the total number of concurrent
executions, impact the application’s overall performance.

7.1. Serverless Restaurant Application Performance

The results analyzed in §6.1 show that the application’s total resource requirements
increase in commits one through five. This increase is a result of the newly introduced
function. Despite the increase in total resource requirement for the application, the
resource consumption per function remains relatively similar. The results also show
consistent improvements in the response time from commits one through five under
different loads. These improvements show that the changes introduced by the de-
velopers to this application over different commits consistently contributed to better
performance at the expense of more resources.

7.2. AWS Lambda Typescript Application Performance

The results analyzed in (§5.1.2) show that the application’s resource requirements
increased after the first commit and remained relatively similar from commits two
through five. Similar to the first application, this is a result of the developers introducing
new lambda functions to the applications. While most of the introduced functions
require similar resources, the serverless-sample-demo-getSwaggerJson function consistently
required more resources and had the worst response time. The response time of

52

7. Discussion

this application also seemed to degrade for all commits after the first commit. The
response fluctuated in commits two through five but remained worse than the first.
The application ended up consuming more resources and degrading in performance.

53

8. Conclusion

This thesis presented an automatic regression testing framework for serverless ap-
plication, which was named RegX (§4). This framework was used to observe the
performance of a set of applications over different load testing configurations.

From the results and discussions in the previous sections, we can conclude that the per-
formance of serverless applications highly depends on the developers’ implementation
and the changes they introduce with each commit. We observe this in the Serverless
Restaurant Application (§5.1.1), where the changes introduced consistently resulted in
higher performance at the expense of more computing resources. On the other hand,
the changes introduced for the Lambda Typescript Application resulted in higher com-
puting resources and degradation in performance. Based on these results, we also
conclude that RegX (§4), the automatic, serverless regression framework proposed in
this thesis, can be used to help developers avoid degradation in performance and keep
track of resource consumption, both on an application level and a function level. RegX
achieves this by annotating each change in performance with the commit ID of the
commit that introduced this change. The users can then decide if the performance is
acceptable if it falls within their SLO by setting a certain threshold to be notified when
the performance goes below it.

8.1. Future Work

The RegX framework (§4) we developed in this thesis is an initial implementation
of an automatic, serverless regression testing framework. There are many possible
improvements and upgrades that could be made to the current implementation of
RegX, which will be discussed in the following sections.

54

8. Conclusion

8.1.1. Heterogeneous Platform Support

While RegX does include different data collectors for different FaaS platforms, our
current implementation only uses the AWS Data Collector. This should allow for
interesting data collection and comparisons in cases where the same application is
deployed on different FaaS providers. It should also allow for capturing performance
degradation across different FaaS providers.

8.1.2. Minimum Accepted Performance Threshold

Current static code analysis tools, such as sonarqube 1, can be used to prevent a CI/CD
pipeline from passing if the test coverage for a given code base drops below a specific
threshold. The RegX framework could greatly benefit from this feature. This would
ensure that the performance does not go below a given SLO by preventing inefficient
code from making it to the code base in the first place. The current implementation of
RegX only allows the user to inspect the performance, find the commit responsible for
a specific change in performance, and set up notifications through Grafana (§2.6.2).

8.1.3. Cross CI/CD platform Support

While the current version of RegX uses GitLab’s CI (§2.4.1) tool, it can also work with
any tool that provides similar services, such as Travis CI2 and GitHub actions3. This
should make RegX more robust and easier to deploy on different platforms, making it
platform-agnostic.

1https://www.sonarqube.org/
2https://www.travis-ci.com/
3https://github.com/features/actions

55

A. Commit specific plots

56

A. Commit specific plots

Figure A.1.: A table of images showing the performance of the first commit against the
three different traces (§5.3.1)

Figure A.2.: A table of images showing the performance of the second commit against
the three different traces (§5.3.1)

57

A. Commit specific plots

Figure A.3.: A table of images showing the performance of the third commit against
the three different traces (§5.3.1)

Figure A.4.: A table of images showing the performance of the fourth commit against
the three different traces (§5.3.1)

58

A. Commit specific plots

Figure A.5.: A table of images showing the performance of the fifth commit against the
three different traces (§5.3.1)

Figure A.6.: A bar graph comparing the average, p(90), minimum and maximum
aggregate for the response time of the first commit

59

A. Commit specific plots

Figure A.7.: A bar graph comparing the average, p(90), minimum and maximum
aggregate for the response time of the second commit

Figure A.8.: A bar graph comparing the average, p(90), minimum and maximum
aggregate for the response time of the third commit

Figure A.9.: A bar graph comparing the average, p(90), minimum and maximum
aggregate for the response time of the fourth commit

60

A. Commit specific plots

Figure A.10.: A bar graph comparing the average, p(90), minimum and maximum
aggregate for the response time of the fifth commit

61

List of Figures

2.1. A basic overview of a basic serverless application 8
2.2. An overview of a Function Delivery Network (FDN) architecture pre-

sented by Jindal et al. [32] . 9
2.3. An example of a Grafana panel with different dashboards showing

different metrics collected by K6 §2.3.1. 14

3.1. Performance monitoring design presented in [30]) 16

4.1. A high-level overview of the different components that make up the
infrastructure for the test framework . 19

4.2. A sequence diagram of RegX showcasing the entire flow of the framework. 20
4.3. A sequence diagram describing the flow of the Testing and Data collection

Unit. 22
4.4. An example of an automatically generated annotation for running differ-

ent traces. The metric shown in this example is for the average execution
time. 23

4.5. A simplified UML showcases the different data collectors for the different
platforms. 27

4.6. A simplified UML showcasing the AWSCollector class details. 30
4.7. An overview of the Grafana dashboard showing different platform-

specific metrics. 31

5.1. An overview of the architecture of the serverless-resturant application in
the latest commit. 34

5.2. An overview of the lambda typescript application architecture. 35

6.1. Results of running three different traces (also known as load testing
configurations) against serverless restaurant application 40

6.2. Different aggregates for the response time collected from running the
three traces (§5.3.1) against the first commit of the application. 41

62

List of Figures

6.3. A stacked area graph showing the total number of replicas (also known
as concurrent executions) for the first commit of the serverless-restaurant
for the different traces (§5.3.1) . 41

6.4. A stacked area graph showing the total memory used in MB for the first
commit of the serverless-restaurant for the different traces (§5.3.1) 42

6.5. A bar graph showing the P90 response time in seconds for commits
1-5 for the three selected traces from §5.3.1 for the serverless restaurant
application. 43

6.6. A bar graph showing the response time in seconds for commits 1-5 for the
three selected traces from §5.3.1 for the serverless restaurant application. 44

6.7. A stacked area graph showing the total number of replicas (also known
as concurrent executions) for commits 1-5 of the serverless-restaurant
application. 44

6.8. A stacked area graph showing the total memory in MB for commits 1-5
of the serverless-restaurant application. 45

6.9. Results of running the three different traces (§5.3.1) for commits 1-5
against lambda-typescript application . 46

6.10. Results of running three different traces (also known as load testing
configurations) against lambda-typescript application 47

6.11. A stacked area graph showing the total number of replicas (also known
as concurrent executions) for the first commit of the lambda-typescript for
the different traces (§5.3.1) . 47

6.12. A stacked area graph showing the total Memory used in MB for the first
commit of the lambda-typescript for the different traces (§5.3.1) 48

6.13. A bar graph showing the P90 response time in seconds throughout
the different commits for the three selected traces from §5.3.1 for the
serverless-typescript application . 49

6.14. A bar graph showing the response time in seconds throughout the dif-
ferent commits for the three selected traces from §5.3.1 for the serverless-
typescript application . 49

6.15. A stacked area graph showing the total memory in MB for commits 1-5
of the lambda-typescript for the different traces (§5.3.1) 50

6.16. A stacked area graph showing the total number of replicas (also known
as concurrent executions) for commits 1-5 of the lambda-typescript for the
different traces (§5.3.1) . 51

A.1. A table of images showing the performance of the first commit against
the three different traces (§5.3.1) . 57

63

List of Figures

A.2. A table of images showing the performance of the second commit against
the three different traces (§5.3.1) . 57

A.3. A table of images showing the performance of the third commit against
the three different traces (§5.3.1) . 58

A.4. A table of images showing the performance of the fourth commit against
the three different traces (§5.3.1) . 58

A.5. A table of images showing the performance of the fifth commit against
the three different traces (§5.3.1) . 59

A.6. A bar graph comparing the average, p(90), minimum and maximum
aggregate for the response time of the first commit 59

A.7. A bar graph comparing the average, p(90), minimum and maximum
aggregate for the response time of the second commit 60

A.8. A bar graph comparing the average, p(90), minimum and maximum
aggregate for the response time of the third commit 60

A.9. A bar graph comparing the average, p(90), minimum and maximum
aggregate for the response time of the fourth commit 60

A.10.A bar graph comparing the average, p(90), minimum and maximum
aggregate for the response time of the fifth commit 61

64

List of Tables

5.1. A list of the metrics used, their different types and description 34
5.2. A table showcasing a small sample of the different traces used to generate

virtual users. This was chosen as it represents real life user interaction
with different web pages (i.e., Wikipedia articles in this case) 37

65

List of Listings

1. An example .gitlab-ci.YAML configures a job within a test stage in the
GitLab Ci pipeline. 21

2. A code snippet from the DataCollectorHandler that handles the primary
logic for retrieving CloudWatch (§2.6.1) metrics using boto3 (§2.1.3) . . 26

66

Bibliography

[1] AWS. AWS Cloud Development Kit. https://docs.aws.amazon.com/whitepapers/
latest/introduction-devops-aws/aws-cdk.html.

[2] AWS. AWS SDK for Python (Boto3) Documentation. https://docs.aws.amazon.
com/pythonsdk/.

[3] AWS. Building Applications with Serverless Architectures. https://aws.amazon.
com/lambda/serverless-architectures-learn-more/. 2021.

[4] AWS. DevOps Model Defined. https : / / aws . amazon . com / devops / what - is -
devops/. 2022.

[5] AWS. Infrastructure as Code. https://docs.aws.amazon.com/whitepapers/
latest/introduction-devops-aws/infrastructure-as-code.html.

[6] AWS. Memory and computing power. https://docs.aws.amazon.com/lambda/
latest/operatorguide/computing-power.html.

[7] AWS. Transforming objects with S3 Object Lambda. https://docs.aws.amazon.
com/AmazonS3/latest/userguide/transforming-objects.html.

[8] AWS. What is Amazon API Gateway? https://docs.aws.amazon.com/apigateway/
latest/developerguide/welcome.html.

[9] AWS. What is Amazon CloudWatch? https://docs.aws.amazon.com/AmazonCloudWatch/
latest/monitoring/WhatIsCloudWatch.html.

[10] AWS. What Is Amazon DynamoDB? https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/Introduction.html. 2022.

[11] AWS. What is Amazon S3? https://docs.aws.amazon.com/AmazonS3/latest/
userguide/Welcome.html.

[12] AWS. What Is AWS? https://aws.amazon.com/what-is-aws/. 2022.

[13] AWS. What is IAM? https://docs.aws.amazon.com/IAM/latest/UserGuide/
introduction.html. 2022.

[14] AWS. What Is Lambda? https://docs.aws.amazon.com/lambda/latest/dg/
welcome.html. 2022.

67

https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/aws-cdk.html
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/aws-cdk.html
https://docs.aws.amazon.com/pythonsdk/
https://docs.aws.amazon.com/pythonsdk/
https://aws.amazon.com/lambda/serverless-architectures-learn-more/
https://aws.amazon.com/lambda/serverless-architectures-learn-more/
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/infrastructure-as-code.html
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/infrastructure-as-code.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/lambda/latest/operatorguide/computing-power.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/transforming-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/transforming-objects.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://aws.amazon.com/what-is-aws/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

Bibliography

[15] AWS. What Is SNS. https://docs.aws.amazon.com/sns/latest/dg/welcome.
html. 2022.

[16] M. Chadha, A. Jindal, and M. Gerndt. “Architecture-Specific Performance Op-
timization of Compute-Intensive FaaS Functions.” In: 2021 IEEE 14th Interna-
tional Conference on Cloud Computing (CLOUD). 2021, pp. 478–483. doi: 10.1109/
CLOUD53861.2021.00062.

[17] R. Cordingly, H. Yu, V. Hoang, Z. Sadeghi, D. Foster, D. Perez, R. Hatchett, and
W. Lloyd. “The Serverless Application Analytics Framework: Enabling Design
Trade-off Evaluation for Serverless Software.” In: Proceedings of the 2020 Sixth
International Workshop on Serverless Computing. WoSC’20. Delft, Netherlands: As-
sociation for Computing Machinery, 2020, pp. 67–72. isbn: 9781450382045. doi:
10.1145/3429880.3430103.

[18] T. Dillon, C. Wu, and E. Chang. “Cloud Computing: Issues and Challenges.” In:
2010 24th IEEE International Conference on Advanced Information Networking and
Applications. 2010, pp. 27–33. doi: 10.1109/AINA.2010.187.

[19] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. “DevOps.” In: IEEE Software
33.3 (2016), pp. 94–100. doi: 10.1109/MS.2016.68.

[20] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski. “Status of serverless
computing and function-as-a-service (faas) in industry and research.” In: arXiv
preprint arXiv:1708.08028 (2017).

[21] A. Fuerst and P. Sharma. “FaasCache: Keeping Serverless Computing Alive with
Greedy-Dual Caching.” In: Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
2021. Virtual, USA: Association for Computing Machinery, 2021, pp. 386–400.
isbn: 9781450383172. doi: 10.1145/3445814.3446757.

[22] g3force. k6 Load Testing Results. https://grafana.com/grafana/dashboards/
15786.

[23] Garima and S. Rani. “Review on time series databases and recent research trends
in Time Series Mining.” In: 2014 5th International Conference - Confluence The Next
Generation Information Technology Summit (Confluence). 2014, pp. 109–115. doi:
10.1109/CONFLUENCE.2014.6949290.

[24] GitLab. Get started with GitLab CI/CD. https://docs.gitlab.com/ee/ci/quick_
start/.

[25] Gitlab. GitLab. https://about.gitlab.com/.

[26] Gitlab. GitLab CI/CD. https://docs.gitlab.com/ee/ci/.

68

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://doi.org/10.1109/CLOUD53861.2021.00062
https://doi.org/10.1109/CLOUD53861.2021.00062
https://doi.org/10.1145/3429880.3430103
https://doi.org/10.1109/AINA.2010.187
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1145/3445814.3446757
https://grafana.com/grafana/dashboards/15786
https://grafana.com/grafana/dashboards/15786
https://doi.org/10.1109/CONFLUENCE.2014.6949290
https://docs.gitlab.com/ee/ci/quick_start/
https://docs.gitlab.com/ee/ci/quick_start/
https://about.gitlab.com/
https://docs.gitlab.com/ee/ci/

Bibliography

[27] M. GroSSmann, C. Ioannidis, and D. T. Le. “Applicability of Serverless Computing
in Fog Computing Environments for IoT Scenarios.” In: Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing Companion. UCC
’19 Companion. Auckland, New Zealand: Association for Computing Machinery,
2019, pp. 29–34. isbn: 9781450370448. doi: 10.1145/3368235.3368834.

[28] InfluxDB. Time series database (TSDB) explained. https://www.influxdata.com/
time-series-database/.

[29] V. Ivanov and K. Smolander. “Implementation of a DevOps Pipeline for Server-
less Applications.” In: Product-Focused Software Process Improvement. Ed. by M.
Kuhrmann, K. Schneider, D. Pfahl, S. Amasaki, M. Ciolkowski, R. Hebig, P. Tell, J.
Klünder, and S. Küpper. Cham: Springer International Publishing, 2018, pp. 48–64.
isbn: 978-3-030-03673-7.

[30] A. Janes and B. Russo. “Automatic Performance Monitoring and Regression
Testing During the Transition from Monolith to Microservices.” In: 2019 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW).
2019, pp. 163–168. doi: 10.1109/ISSREW.2019.00067.

[31] A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, and P. Chen. “Function deliv-
ery network: Extending serverless computing for heterogeneous platforms.” In:
Software: Practice and Experience (Mar. 2021). doi: 10.1002/spe.2966.

[32] A. Jindal, M. Gerndt, M. Chadha, V. Podolskiy, and P. Chen. “Function deliv-
ery network: Extending serverless computing for heterogeneous platforms.” In:
Software: Practice and Experience 51.9 (2021), pp. 1936–1963.

[33] K6. K6 Glossary: Virtual users. https://k6.io/docs/misc/glossary/#virtual-
users. 2022.

[34] Kaggle. Wikipedia Traffic Data Exploration. https://www.kaggle.com/code/
muonneutrino/wikipedia-traffic-data-exploration/notebook.

[35] D. Khatri, S. K. Khatri, and D. Mishra. “Potential Bottleneck and Measuring Per-
formance of Serverless Computing: A Literature Study.” In: 2020 8th International
Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Di-
rections) (ICRITO). 2020, pp. 161–164. doi: 10.1109/ICRITO48877.2020.9197837.

[36] P. Kruchten, R. L. Nord, and I. Ozkaya. “Technical Debt: From Metaphor to Theory
and Practice.” In: IEEE Software 29.6 (2012), pp. 18–21. doi: 10.1109/MS.2012.167.

[37] A. Li, X. Yang, S. Kandula, and M. Zhang. “CloudCmp: Comparing Public Cloud
Providers.” In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Mea-
surement. IMC ’10. Melbourne, Australia: Association for Computing Machinery,
2010, pp. 1–14. isbn: 9781450304832. doi: 10.1145/1879141.1879143.

69

https://doi.org/10.1145/3368235.3368834
https://www.influxdata.com/time-series-database/
https://www.influxdata.com/time-series-database/
https://doi.org/10.1109/ISSREW.2019.00067
https://doi.org/10.1002/spe.2966
https://k6.io/docs/misc/glossary/#virtual-users
https://k6.io/docs/misc/glossary/#virtual-users
https://www.kaggle.com/code/muonneutrino/wikipedia-traffic-data-exploration/notebook
https://www.kaggle.com/code/muonneutrino/wikipedia-traffic-data-exploration/notebook
https://doi.org/10.1109/ICRITO48877.2020.9197837
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1145/1879141.1879143

Bibliography

[38] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhomlinov.
“Agile Cold Starts for Scalable Serverless.” In: 11th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 19). Renton, WA: USENIX Association, July
2019.

[39] K. Morris. Infrastructure as code: managing servers in the cloud. " O’Reilly Media,
Inc.", 2016.

[40] k. D. A. Nicole van der Hoeven. Comparing k6 and JMeter for load testing. https:
//k6.io/blog/k6-vs-jmeter/. 2021.

[41] k. D. A. Nicole van der Hoeven. Comparing k6 and JMeter for load testing. https:
//k6.io/blog/k6-vs-jmeter/. 2021.

[42] R. Pagliuca. “Extending Serverless Computing for Heterogeneous Edge Devices.”
Masterarbeit. Technische Universität München, 2021.

[43] R. A. P. Rajan. “Serverless Architecture - A Revolution in Cloud Computing.” In:
2018 Tenth International Conference on Advanced Computing (ICoAC). 2018, pp. 88–93.
doi: 10.1109/ICoAC44903.2018.8939081.

[44] Redhat. What does an API gateway do? https://www.redhat.com/en/topics/
api/what-does-an-api-gateway-do.

[45] Redhat. What is CI/CD? https://www.redhat.com/en/topics/devops/what-is-
ci-cd.

[46] V. Sarcar. “AntiPatterns: Avoid the Common Mistakes.” In: Java Design Patterns:
A Hands-On Experience with Real-World Examples. Berkeley, CA: Apress, 2019,
pp. 467–474. isbn: 978-1-4842-4078-6. doi: 10.1007/978-1-4842-4078-6_28.

[47] J. Scheuner and P. Leitner. “Function-as-a-Service performance evaluation: A mul-
tivocal literature review.” In: Journal of Systems and Software 170 (2020), p. 110708.
issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2020.110708.

[48] S. Sivasubramanian. “Amazon DynamoDB: A Seamlessly Scalable Non-Relational
Database Service.” In: Proceedings of the 2012 ACM SIGMOD International Con-
ference on Management of Data. SIGMOD ’12. Scottsdale, Arizona, USA: Associ-
ation for Computing Machinery, 2012, pp. 729–730. isbn: 9781450312479. doi:
10.1145/2213836.2213945.

[49] W. Tan, L. Fong, and Y. Liu. “Effectiveness Assessment of Solid-State Drive Used
in Big Data Services.” In: 2014 IEEE International Conference on Web Services. 2014,
pp. 393–400. doi: 10.1109/ICWS.2014.63.

[50] M. turan. How to add k6 load test to Gitlab CI pipeline with AWS Lambda Containers.
https://medium.com/modanisa-engineering/how-to-add-k6-load-test-to-
gitlab-ci-pipeline-with-aws-lambda-containers-2096278d5711. 2022.

70

https://k6.io/blog/k6-vs-jmeter/
https://k6.io/blog/k6-vs-jmeter/
https://k6.io/blog/k6-vs-jmeter/
https://k6.io/blog/k6-vs-jmeter/
https://doi.org/10.1109/ICoAC44903.2018.8939081
https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do
https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://doi.org/10.1007/978-1-4842-4078-6_28
https://doi.org/https://doi.org/10.1016/j.jss.2020.110708
https://doi.org/10.1145/2213836.2213945
https://doi.org/10.1109/ICWS.2014.63
https://medium.com/modanisa-engineering/how-to-add-k6-load-test-to-gitlab-ci-pipeline-with-aws-lambda-containers-2096278d5711
https://medium.com/modanisa-engineering/how-to-add-k6-load-test-to-gitlab-ci-pipeline-with-aws-lambda-containers-2096278d5711

Bibliography

[51] R. Xu, W. Jin, and D. Kim. “Microservice Security Agent Based On API Gateway
in Edge Computing.” In: Sensors 19.22 (2019). issn: 1424-8220. doi: 10.3390/
s19224905.

[52] G. Young. “Cqrs documents by greg young.” In: Young 56 (2010).

71

https://doi.org/10.3390/s19224905
https://doi.org/10.3390/s19224905

	Acknowledgments
	Abstract
	Abstrakt
	Contents
	Acronyms
	Introduction
	Motivation
	Problem Statement
	Contributions
	Outline

	Background
	Cloud Computing
	Cloud Providers
	Function As A Service (FaaS)
	Amazon Web Services (AWS)
	Serverless Computing and Applications

	FDN
	Load Testing
	K6

	DevOps
	Gitlab
	Continuous Integration and Development (CI/CD)
	Infrastructure As Code (IAC)

	Time Series Database
	InfluxDB

	Monitoring
	CloudWatch
	Grafana

	Related Work
	Automatic performance monitoring and regression testing during the transition from monolith to microservices
	The Serverless Application Analytics Framework
	Implementation of a DevOps Pipeline for Serverless Applications
	FaaS optimization

	RegX: Serverless Regression Framework
	System Architecture
	RegX Components
	GitLab
	Testing and Data Collector Unit
	Data Visualization and Storage Unit

	Evaluation Settings
	Benchmark Serverless Applications
	Serverless Restaurant Application
	AWS Lambda Typescript

	Performance Metrics
	Testing process
	Traces

	Evaluation Questions

	Results
	Serverless Restaurant Application
	Commit Specific Results
	Cross Commit Results

	AWS Lambda Typescript application
	Commit specific Results
	Cross Commit Results

	Discussion
	Serverless Restaurant Application Performance
	AWS Lambda Typescript Application Performance

	Conclusion
	Future Work
	Heterogeneous Platform Support
	Minimum Accepted Performance Threshold
	Cross CI/CD platform Support

	Commit specific plots
	List of Figures
	List of Tables
	List of Listings
	Bibliography

