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Abstract

Leveraging policy setting, impact measurement and privacy technology for an
increased implementation of Artificial Intelligence in healthcare

The decision of whether and how to implement Artificial Intelligence (Al) in healthcare depends
on an interplay of medical, process, economic and further factors and can also differ
significantly between medical indications. Since there is a significant gap between the very
comprehensive and promising academic results for Al in healthcare and the low level of
practical implementation, this thesis focuses on the identification of success factors and the
deduction of measures for an increased implementation of Al in healthcare.

To achieve that, systematic reviews of academic research and real-world Al use cases,
assessments of policy frameworks for Digital Health (DH) and Al as well as an empirical study
in terms of an implementation of Al in healthcare were conducted.

The analysis of academic research and real-world Al use cases revealed three key success
factor categories, namely policy setting, medical and economic impact measurement, and
technological implementation, which were subsequently analyzed in more detail. First,
successful policy frameworks such as the German Digital Healthcare Act can serve as a
blueprint by providing clear medical and structural guidelines as well as evidence generation
and reimbursement processes, which can serve as an international benchmark for DH and Al.
Second, medical and economic impact assessments have not been conducted to a sufficient
extent. In addition to the quantity, also the quality of such assessments needs to be improved.
In particular, medical impact needs to be measured, for example, through Quality Adjusted
Life Years, taking into account the CHEERS and PRISMA reporting criteria, while economic
impact assessments should include, for example, Net Present Values and Cost Alternative
Scenarios. Third, the technological implementation of Al should take place in a privacy-
preserving manner to circumvent data availability and accessibility issues. In this respect,
federated machine learning (FL) has proven to be one highly useful tool when analyzing the
coronary artery calcification (CAC) scores of ¢.1,500 patients as a basis for the development
of a predictive Al model for CAC risk. Privacy-preserving technologies such as FL can provide
significant benefits in several medical fields, in this case potentially reduced radiation exposure
for patients and cost savings due to a reduction of CT scans.

The identified success factors shall contribute to an overall increased application of Al in
healthcare: Governments can continuously support this development via the first success
factor of facilitating policy frameworks, e.g., through Al regulatory frameworks, reimbursement
models and evidence generation standards. Furthermore, private and public institutions can
leverage the two latter success factor categories, namely standardized medical and economic
impact measurement as well as privacy-preserving technology like FL, to actively steer the
implementation of Al. A close collaboration between governmental, medical and industry
stakeholders as well as further academic research shall support this development to leverage
the full potential of Al in healthcare and to ultimately achieve significant healthcare benefits
globally.

VI



Regulatorische Rahmenbedingungen, Wirkungsmessung und datenschutzkonforme
Technologien als Erfolgsfaktoren fiir eine erhohte Anwendung von Kiinstlicher
Intelligenz im Gesundheitswesen

Die Entscheidung, ob und wie Kunstliche Intelligenz (KI) im Gesundheitswesen implementiert
werden soll, hangt von einem komplexen Zusammenspiel verschiedener Faktoren ab, die in
hohem Male kontextspezifisch sind und sich somit auch je nach Anwendungsfall
unterscheiden kénnen. Da eine offensichtliche Licke zwischen den sehr umfangreichen und
vielversprechenden akademischen Forschungsergebnissen zu Kl im Gesundheitswesen und
der geringen praktischen Umsetzung besteht, wurden Erfolgsfaktoren identifiziert und
MaRnahmen fiir eine erhéhte Anwendung von Kl im Gesundheitswesen abgeleitet.

Diesbezuglich wurden u.a. systematische Literaturibersichten von wissenschaftlichen
Publikationen und realen KI-Anwendungsfallen im Gesundheitswesen erstellt sowie Analysen
von regulatorischen Rahmenbedingungen fur Digital Health (DH) und KI sowie eine
empirische Studie in Form einer eigenstéandigen Kl-Implementierung in medizinischen
Einrichtungen durchgefihrt.

Die Analyse von wissenschaftlichen Publikationen sowie realen Kl-Anwendungsfalle ergab
drei zentrale Kategorien von Erfolgsfaktoren: Regulatorische Rahmenbedingungen,
medizinische und o©konomische Wirkungsmessungen und datenschutzkonforme
Technologien, welche jeweils im Anschluss detaillierter analysiert wurden. Erstens kdnnen
regulatorische Rahmenbedingungen wie das Digitale-Versorgung-Gesetz in Deutschland als
internationaler MafRstab fir DH und Kl dienen, da sie klare medizinische und strukturelle
Endpunkte fur die Evidenzgenerierung und entsprechende Kostenerstattungsprozesse
aufzeigen. Zweitens sind medizinische und Okonomische Effekte bisher nicht in
ausreichendem MalRe gemessen worden. Neben der Quantitat muss auch die Qualitat solcher
Untersuchungen erhdéht werden. Medizinischer Mehrwert sollte z.B. auf der Grundlage von
sog. Quality Adjusted Life Years gemessen werden und die CHEERS- und PRISMA-Kriterien
bertcksichtigt werden, wahrend dkonomische Bewertungen zum Beispiel um Net Present
Values und den Kostenvergleich mit Alternativen erganzt werden sollten. Drittens sollte die
technologische Umsetzung von KI datenschutzkonform erfolgen, um gangige Probleme der
Datenverfugbarkeit und -zuganglichkeit zu umgehen. In diesem Kontext hat sich z.B.
Federated Machine Learning (FL) bei der Analyse der Verkalkung von Herzkranzgefafen von
ca. 1,500 Patienten als ein essentielles Instrument erwiesen. Algorithmen auf Basis von
“Privacy-by-design”-Technologien wie FL kdnnen signifikanten Mehrwert erzeugen, in diesem
konkreten Anwendungsfall potenziell geringere Strahlenbelastung fur die Patienten sowie
signifikante Kosteneinsparungen fir das Gesundheitssystem.

Die identifizierten Erfolgsfaktoren und MaRnahmen sollen zu einer vermehrten Anwendung
von Kl im Gesundheitswesen beitragen. Die Politik kann dies durch die Bereitstellung
geeigneter regulatorischer Rahmenbedingungen kontinuierlich unterstitzen, z.B. durch
Kostenerstattungsmodelle und Standards fir die Evidenzgenerierung. Des Weiteren kdnnen
private und 6ffentliche Einrichtungen die Erfolgsfaktoren standardisierter medizinischer und
o6konomischer Bewertung und datenschutzkonformer Technologien nutzen, um die
Anwendung von Kl aktiv zu steuern. Eine enge Zusammenarbeit zwischen staatlichen
Organisationen, medizinischen Einrichtungen und Industrie sowie weitere akademische
Forschung sollen diese Entwicklung unterstitzen, um das gesamte Potenzial von Kl im
Gesundheitswesen auszuschopfen und damit schlussendlich weltweit erhebliche
Verbesserungen im Gesundheitswesen zu ermdglichen.
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1. Introduction

Prior research has demonstrated that Artificial Intelligence (Al) is highly promising
regarding its improvement potential in healthcare, for example through higher
accuracy levels in diagnostic assessments or time savings in therapeutic processes.
At the same time, researchers also found that Al is not yet implemented to a significant
extent in the day-to-day healthcare processes (e.g., Topol 2019, Kelly et al. 2019,
Panch, Mattie, and Celi 2019).

The European Union (EU) also clearly states in one of its latest research reports that
despite a number of initiatives, healthcare organizations are slow in implementing Al
technologies and that the level of adoption is overall low. To promote the development
and adoption of Al technologies, the European Commission names a variety of
challenges that need to be addressed such as the lack of policy and access to
healthcare data, low investments, the need to upskill healthcare professionals as well

as to educate Al developers on current clinical practices (European Union 2021).

Even when analyzing the situation in specific EU countries, for example, regarding Al
policies in healthcare, the report reveals that most initiatives focus on the research and
innovation area with little activity or initiatives to promote actual adoption within the

healthcare sector itself (European Union 2021).

This gap between the promising academic results on Al in healthcare and its low
practical implementation is based on various circumstances and therefore
corresponding success factors needed to be identified and subsequently leveraged to
increase the real-world implementation of Al in healthcare. In order to achieve that,
systematic reviews of academic research and real-world Al use cases in healthcare,
analysis of governmental DH policies as well as an empirical study in terms of an

actual implementation of Al in healthcare were conducted.



Looking at the market more broadly, namely across different industries, Al research
and real-world implementation has drastically increased over the last years and Al has
already transformed several industries, markets, and business models. One illustrative
example is the retail market in which Al-powered functionalities have become widely
used. Among others, retailers commonly incorporate chatbots into their websites and
online marketplaces, which respond to customers’ inquiries and provide assistance to
their claims. Also, through Al-based customer profiling, companies commonly provide
personalized shopping preference recommendations to their customers (Ameen et al.

2021).

In a similar vein, Al has already significantly transformed the manufacturing industry.
For example, Al is commonly applied in the context of demand prediction to improve
manufacturing planning and logistics. Further, by means of Al-powered optical quality
assurance mechanisms, defects and deviations from standards can be identified at
lower cost. Also, Al has been used for predictive maintenance which aims at
maximizing the useful life of machines and avoiding disruptions in operations (Fahle
2020). The latter is not only commonly applied in factories, but also to avoid, for

example, the failure of rail infrastructure (e.g., by Konux).

In the healthcare industry, Al has also a significant transformation potential and this is
strongly supported by both, academic research (e.g., Triantafyllidis and Tsanas 2019)
and economic figures revealed by market studies (e.g., Grand View Research, 2019).
Also specific physician categories can already be seen as potential frontrunners and
for example research by Lin highlights that primary care providers could be early Al

adopters due to their dominant role in the overall healthcare structure (Lin 2022).

Interviews with industry leaders even suggest that the potential of Al may actually be
most significant in the healthcare industry. For example, in early 2020, Sundar Pichai,
the CEO of Alphabet and its subsidiary Google, announced that healthcare offers the
largest potential over the next five to ten years for using Al to improve outcomes

(Reuters 2020).



Indeed, benefits from Al may arise in numerous different forms and contexts in
healthcare and can provide significant medical value through enhanced procedures in
research, prevention, diagnosis, and therapy. Examples are a higher accuracy and
pace in drug discovery and clinical trials, improved diagnostic decision-making
regarding patient treatment based on automatized data analysis, and decision support
in the context of medical imaging. Further, Al in healthcare may also create significant
economic value in the form of saved time resources on the side of the medical
professionals, less costly clinical trials, more efficient treatment procedures (e.g.,
through Al-powered self-management set-ups), and reduced interventions due to

more accurate disease detection (llan 2020).

Against this background, it seems surprising that Al has not already “conquered”
healthcare to a significant and comparable extent, as opposed to other industries and
markets such as retail, manufacturing or finance. In particular, prior research showed
that there are only a few large-scale real-world cases of Al application in healthcare
(He et al. 2019). The number of real-world and large-scale Al applications lags behind
considering the high number of Al start-ups in healthcare and record numbers in their
funding, as well as the large number of academic studies and their positive predictions
on Al’s value-added in healthcare (Pifer 2019).

This is even more surprising as the right to health and respective equality have moved
more and more into the focus of today’s society (World Health Organization 2008),

e.g., as part of the 2030 Global Agenda for Sustainable Development.

In addition to that, the Corona pandemic has clearly revealed healthcare systems’
insufficiencies and the importance of digitization of healthcare procedures. Given the
urgent need for timely action in this context, the pandemic has considerably increased
people’s comfort with Digital Health (DH) and Al applications for the purpose of safety
and health (MedTech Innovation 2021).



This “controversy®, namely the gap between promising academic research and the low
real-world Al implementation in healthcare, raised the question, which hurdles exist
and which success factors can be leveraged to overcome them to increase the
implementation of Al in healthcare. While the real-world implementation gap can only
be closed over time as a collaborative effort between researchers, medical institutions,
governments and further stakeholders, this research aims to be one first step in this

direction and provide concrete recommendations in this segment.

Several research projects were undertaken which resulted in the four publications of
this thesis:

e “Success Factors of Atrtificial Intelligence Implementation in Healthcare”
highlighting key success factor categories that can be leveraged to
achieve an increase in real-world Al implementation (published in
Frontiers in Digital Health on 16.06.2021, 8 citations)

e “The Impact of Artificial Intelligence on the Healthcare Economy”
elaborating on the current status of Al research, real-world
implementation in healthcare, reimbursement structures and market
trends (under review in Elsevier “Artificial Intelligence and Machine
Learning in Healthcare”)

e “The Economic Impact of Artificial Intelligence in Healthcare: A
Systematic Review” analyzing the quantity and quality of existing
medical and economic impact assessments and deriving respective
areas for improvement (published in Journal of Medical Internet
Research on 20.02.2020, 61 citations)

e “Federated machine learning for a facilitated implementation of Artificial
Intelligence in healthcare — a proof of concept study for the prediction of
Coronary Artery Calcification Scores” representing an actual real-world
implementation case of Al in healthcare (accepted with minor revisions
in Journal of Integrative Bioinformatics on 22.07.2022)

The thesis is structured as follows: The Chapter 2 contains an introduction outlining
the status of the current scientific research. Chapter 3 elaborates on the contribution
of the described research in this landscape. Chapter 4 summarizes the key results and
interconnection between the four publications forming part of this cumulative thesis.
Chapter 5 contains the four individual publications and finally, a discussion and

conclusion are presented in Chapters 6 and 7, respectively.



2. State of the art

There have been various prior academic research projects about Al in healthcare and
the broad existing publication landscape can be segmented into two research fields:
On the one hand healthcare as a market and which medical and economic
advancements are needed, and on the other hand Al as a technology in healthcare
and which medical and economic advancements could be possible. In the middle
between those two segments can the success factors be placed, that shall “unlock”
the potential for advancements through Al technology. An overview about the

segments can be found in Figure 1:
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Figure 1: Overview of key research streams

Market

Accordingly, the first research stream consists of the following two research areas:
“‘Market — Medical Impact”’, which relates to the question of which medical

advancements are needed based on the current healthcare environment, and “Market



— Economic Impact”, which relates to the question of which economic advancements

are needed based on the current healthcare environment.

Overall, this research stream reveals a significant need for both medical and economic
advancements in healthcare, considering the current status quo of the healthcare
environment. As to medical advancements, undersupply for certain groups and / or in
certain regions as well as different demographic developments (e.g., aging population,
increase in chronic diseases) actually require an expansion of both the access to and
the scope of healthcare services. At the same time, in many countries, medical
facilities are facing a shortage of labor, causing delays and pressure on existing
medical staff (e.g., Kumar 2019). With regard to economic advancements, global
healthcare spending has not only grown steadily, but also represents a considerable
burden for economies worldwide, e.g. ca. 18% of the annual GDP are spent on
healthcare in the US and ca. 12% in Germany (World Health Organization 2019),
(Wolff et al., 2020).

As such, taken together, there is an urgent need to to cope with increased demand for
healthcare services and, in many cases, simultaneous labor shortages while
containing the worldwide rise in healthcare spending. In addition, specific needs for
medical and economic advancements have emerged as a consequence of the global
corona pandemic such as to achieve efficient infection chain tracing or to organize

safe vaccination campaigns globally.

Technology

Al can play an important role in order to meet these different needs, especially when
considering how Al solutions have already transformed many other markets and
industries and their respective business models, products and services (Budd et al.
2020). As outlined above, some common examples are Al-powered customer service

offerings such as chatbots, personalized advertising based on each customer’s search



and purchase history in e-commerce, and the predictive maintenance of machines in

manufacturing.

The second research stream also consists of two research areas in parallel to the
above presented first research stream: “Technology — Medical Impact”, which relates
to the question of which medical advancements are possible based on the current Al
and related technology, and “Technology — Economic Impact”, which relates to the
question of which economic advancements are possible based on the current Al

technology.

The potential for medical impact of Al is broad and ranges from drug discovery over
Al driven symptom checkers and decreasing non-adherence costs to shortening of
recovery time (Garbuio and Lin 2019). Additionally, a completely new scope of
diagnostic and therapeutic approaches is possible and, for example, the application of
machine learning for genome analysis is a promising reference case that shall lead to

better medical outcomes with e.g., LQT cardiac rhythm patients (Horizon 2020).

As to economic advancements, previous analyses revealed that Al comes along with
significant cost saving potential in healthcare, e.g., through time savings via procedural
optimizations or the involvement of new diagnostic tools within medical institutions
(Accenture 2017) and also by process improvements like insurance claim approvals
(Accenture 2018). In addition to that, the economic burden of an ageing population
that faces a global labour shortage of over 9,9 Million physician, nurse and midwives
until 2030 shall be encountered through significant Al driven increases in productivity
and efficiency in chronic care management, clinical decision support etc. (McKinsey
2020).

The potential of Al in healthcare also greatly benefits from improvements in general
technological capabilities. These have been achieved over the last years with regard
to data storage capacities, processing power and cloud computing for Al applications

(Mordor Intelligence 2020), (Aguis 2019). Overall, the academic landscape indicates
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that the technical status of Al could be very promising to achieve the medical and

economic advancements that are needed as per the current healthcare environment.

Yet, several authors confirmed that it became visible in their research on the real-world
implementation of Al that, despite the significant growth potential and promising
academic research findings, there are still relatively few actual real-world Al
applications in routine healthcare processes (e.g., He et al. 2019) and that those can
only be found in a limited number of healthcare segments (e.g., MarketsAndMarkets
2020) and regions (e.g., Grand View Research 2019). Further, in the past, the medical
and economic impact of Al has not been measured to a sufficient extent and quality
(Wolff et al. 2020), which makes it difficult to conclusively evaluate or precisely

estimate the actual potential of Al in healthcare (Sanyal et al. 2018).

Several authors also elaborated on the reason for the gap between research and
implementation and the various challenges regarding the real-world use of Al in
healthcare, such as patient consent issues, transparency and ownership of data or
privacy and discrimination regulations (Racine, Boehlen, and Sample 2019). He et al.
(2019), for example, discussed various concrete and practical improvement areas that
would be required related to data sharing, transparency of algorithms, data
standardization and interoperability. Also, Alhashmi et al. surveyed 53 health and IT
specialists and highlighted the importance of managerial, organizational, operational
and IT infrastructure-related factors for applying Al in healthcare (Alhashmi, Salloum,
and Abdallah 2020). A further recent qualitative interview study regarding Al
implementation challenges with 26 healthcare leaders like politicians or hospital
managers in Sweden additionally highlighted, that 1) conditions external to the
healthcare system like liability or quality standards, 2) the internal capacity for change
management like strategy setting or resource allocation, and 3) transformation of
healthcare professions and practice like managing new roles are key hurdles
(Petersson et al. 2022).



3. Own contribution

Despite the previous recognition of the gap between real-world Al implementation in
healthcare, both by the promising academic literature and economic figures in this
field, and analyses of potential improvement areas, this thesis is one of the first
attempts to approach this gap systematically. The aim was to examine both, Al's
potential in healthcare from a multi-stakeholder perspective and common hurdles to
Al implementation, for the deduction of concrete success factor categories and
respective measures. To this end, the chosen research approach is based on
systematic reviews of previous academic publications, market research, assessments
of real-world Al applications in healthcare and existing facilitator frameworks, as well
as an empirical analysis which has been performed through the implementation of an
Al diagnostic application. These success factors and respective recommendations

shall unlock the potential of Al in healthcare, as illustrated in Figure 2:
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Figure 2: Overview of interlinked research streams



In the following, the research approaches of the four publications are presented:

The first paper represents an analysis of academic studies and real-world Al use cases
to systematically identify success factors for Al implementation in healthcare. The
possible success factor categories were derived from a prior World Health
Organization survey about barriers of adoption of Big Data within 125 countries in
which categories such as “Lack of integration”, “Privacy and security”, “Missing
national policy” were mentioned as particularly important for the adoption of Big Data
applications in healthcare. The research was conducted as a systematic literature
review covering the literature databases Scopus and Opac Plus as well as a Google
advanced search query for real-world Al use cases. The inclusion and exclusion
criteria were, among others, a publication date between 2015-2020, a comprehensive
description of an Al functionality as well as its efficiency and outcomes. Following this
systematic search approach, out of 1,494 identified academic studies, 51 were

included, while out of 237 identified real-world Al use cases, 30 were included.

The second paper represents a market analysis of the impact of Al on the healthcare
economy as well as recommendations on how common hurdles to Al implementation
in healthcare can be overcome. The research approach combines a non-systematic
literature review and market research with two assessments of real-world facilitator
framework for Al implementation, namely of the German Digital Healthcare Act and
the EU funded FeatureCloud platform. The paper includes academic, market as well
as real-world case and governmental sources in order to define policy and technology

reference cases.

The third paper elaborates in more detail on medical and economic impact
measurement. As such measurements are crucial for decision-making on Al
implementation, an in-depth evaluation of the quantity and quality of existing studies
has been performed. The research was conducted as a systematic literature review
covering the literature database PubMed using combinations of the most frequently
used search terms related to Al in healthcare based on a 1-year Google Trends

analysis. The inclusion and exclusion criteria were, among others, a publication date

10



in the year 2015-2020, the description of concrete outcomes (e.g., cost savings per
patient per year) and at least one of the following content sectors: a) a comprehensive
description of an Al functionality, b) an evaluation of the economic efficiency and
outcomes of the Al functionality, and c) quantitative outcomes of the Al functionality in
at least one health care system. Following this systematic search approach, out of 66

identified academic studies, 6 were included.

Finally, the fourth paper represents a real-world Al implementation in a privacy-
preserving medical setting to assess whether the success factor category technology
and the abovementioned facilitator framework FeatureCloud for privacy-preserving
data access can successfully be leveraged to circumvent common data-related
hurdles to Al implementation. The paper represents a novel empirical research study
as federated machine learning (FL) was implemented to predict coronary artery
calcification (CAC) scores (CACSs) as a risk indicator for subsequent CT screening.
The prediction model takes the following independent risk factor areas into account:
Age and biological sex, obesity, dyslipidemia, and diabetes mellitus. For the actual
implementation, the FeatureCloud platform was applied in two medical units in
Germany and the model was trained based on medical data of 1,450 patients. The
results were analyzed with regard to sensitivity and specificity in a comparison

between a traditional centralized approach and the FL approach.

Altogether, the thesis is based on different methods and research approaches to
provide answers for the question of how to increase real-world Al implementation in
healthcare. In particular, the aim was a combination of academic and practical insights
through a translational research approach, as both types of insights contribute to an

increased Al implementation in healthcare.

11



4. Results

The main results and interconnection of the four papers forming part of this thesis are

described in what follows.

The first paper, entitled “Success Factors of Artificial Intelligence Implementation in
Healthcare”, assessed the key success factor categories for increased real-world
implementation of Al in healthcare. Three key success factor categories, namely (1)
policy setting, (2) technological implementation, and (3) medical and economic impact
measurement could be identified and for each of them a set of specific
recommendations was deducted: First, a risk-adjusted policy framework is required
that distinguishes between precautionary and permissionless principles, and
differentiates among accountability, liability, and culpability. Second, a “privacy by
design” technological infrastructure is particularly promising to overcome common
hurdles to Al implementation in healthcare as it enables practical and legally compliant
data access. Third, medical and economic impact assessments need to be conducted
at higher frequency and quality as respective evidence represents a key prerequisite
for strategic decision-making, both from a medical and economic perspective. Overall,
the analysis revealed that private and public institutions can already today actively
leverage these success factor categories and follow the provided recommendations
and thereby drive the translation from academic research to real-world application.
There are likely additional key success factors for Al implementation in healthcare
(e.g., trust-building measures), the identified success factors are interlinked, and
different success factors can be relevant under different circumstances. Thus, future
research should elaborate on further success factors, their context-specific relevance,
and how they can be leveraged together to exploit the full potential of Al in real-world

applications.

The second paper, entitled “The Impact of Al on the Healthcare Economy”, assessed
the economic impact from a market perspective. This assessment shows that the

interplay of four key drivers is likely to trigger a transformation of the healthcare market
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through Al. First, there is an urgent need for economies worldwide to limit the rise in
healthcare spending while responding to an increased demand for healthcare
services, which in many cases is particularly challenging due to labor shortages.
Second, significant technological improvements in recent years enable simplified and
scaled Al implementation today more than ever. Third, for the first time, noteworthy
awareness and acceptance levels can be observed for Al applications in healthcare.
Finally, the corona pandemic has significantly increased the need for DH structures,
more generally, and Al, in particular. Indeed, it has put a significant strain on hospitals
and medical staff across the globe, frequently bringing them to the edge of their
resources. Therefore, for example, since the outbreak of the corona pandemic, EU-
backed artificial intelligence has been used to analyze over 20,000 CT scans
(European Commission, 2021). Furthermore, the paper also elaborated on the above
mentioned success factors categories in more depth.

As to categories (1) and (2), the paper presents two concrete facilitator frameworks for
DH and Al implementation. The first facilitator framework is a policy framework that
has recently been adopted in Germany, namely the German Digital Healthcare Act,
which has significantly facilitated reimbursement for DH and Al healthcare services
(so-called ‘Digitale Gesundheitsanwendung’ or ‘DiGa’). In order to prescribe a DiGA,
a comprehensive application submission, validation and reimbursement scheme has
been developed and implemented by the German authorities. Accepted solutions must
fulfill the general requirements of safety, quality, functionality, privacy and data security
as well as demonstrate a so-called “positive care effect”. The latter consists of a
medical benefit and/or structural and procedural effects with clearly defined endpoints.
For all solutions, there are two application forms, differentiating between solutions with
priorly collected data for permanent listing and solutions without priorly collected data
and, thus, only for a preliminary “trial period” in a provisional listing. It was shown that
this reimbursement system, which is open for national and international applications,
and its underlying evidence generation structure, enables market and reimbursement
access even for comparatively new solutions, and will, thus, very likely lead to a

significant increase of real-world DH and Al applications. After one year of existence
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of the law, so far ca. 50,000 DiGAs have been prescribed by physicians to publicly
insured patients in Germany (HIH Presentation, 2021).

The second facilitator framework is the FeatureCloud platform which implements a
software toolkit for privacy preserving data access and model training. The
technological set-up has two key features: (A) no sensitive raw data is exchanged and
(B) data by several institutions are aggregated in a meta model. This technological
infrastructure allows for privacy-preserving data access and therefore has the potential
to lead to a significant increase of real-world Al applications in healthcare. Besides the
direct positive impact of such facilitator frameworks on real-world Al implementation,
it is likely that they will further induce an indirect positive impact by serving as role
models for similar initiatives. As to success factor category (3), the paper elaborated
on the fact that in order to support an Al solution, high-quality and comprehensive
impact measurement is indispensable, which is also assessed in detail in the third

paper.

The third publication, entitled: “The Economic Impact of Al in Health Care: Systematic
Review”, covered the success factor category (3), namely medical and economic
impact measurement, by systematically reviewing existing impact assessments of Al
applications. It revealed that there are only few medical and economic impact
assessments and that these are commonly subject to methodological flaws. The
systematic literature review revealed that only 6 out of 66 publications could be
included in the analysis based on the determined inclusion criteria. Out of these 6
studies, none comprised a methodologically complete cost impact analysis. Thus, to
date, decisions for or against Al implementation often lack a suitable foundation. Due
to the corresponding uncertainty and lack of scientific justifications, decision-makers
likely abstain from implementing Al. To counteract this, the study presents concrete
levers for improvement when conducting impact assessments. In particular, the impact
should be defined based on Quality Adjusted Life Years (QALYs) while applying the
CHEERS and PRISMA quality criteria. In addition to that, the initial investment and

operational costs for the Al solution need to be considered and alternatives to achieve
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a similar impact must be evaluated to allow for a comprehensive comparison as a

basis for strategic decision-making.

The fourth paper, entitled: “Federated machine learning for a facilitated
implementation of Artificial Intelligence in healthcare — a proof of concept study for the
prediction of Coronary Artery Calcification Scores”, describes the success factor
category (2) in more detail, namely technological implementation. It covers the
implementation of FL in a real-world medical context, using the above described
FeatureCloud platform. In particular, the paper addresses with that a way to overcome
one key hurdle to Al implementation, which is the necessity of accessing large, private
and scattered amounts of data. The study is based on real patient data of two medical
institutions in Germany and provides insights on the accuracy of a privacy-preserving
FL approach and the according benefits as compared to a traditional, i.e., centralized,
Al approach. The FL approach slightly outperforms the centralized approach with a
sensitivity of 67% (compared with 69%) while slightly underperforming it with a
specificity of 69% (compared with 70%). Overall, it could be demonstrated that Al-
based prediction of CACSs is feasible via both a centralized and a FL approach, since
their accuracy is very comparable. In order to increase the prediction accuracy and,
thus, enable real clinical value, further patient data are required and FL can be utterly
necessary for that, since these data are otherwise in most cases not accessible. The
developed FL approach “CACulator” serves as proof of concept, and is available as
an open research tool and shall support future research internationally to facilitate Al

implementation.
Taken together, Fig. 3 provides an overview of the unifying conceptual framework and

shows how the four papers are interlinked and contribute to the question of how to

increase real-world Al implementation in healthcare.
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Success Factors of Artificial Intelligence Implementation in
Healthcare Questions

‘What are success factors for the impl ion of Al in Health Method
ic review of real-world cases and academi b Key Findings
Key success factors are policy setting, impact and privacy-p: ving technol Interconnection of results
SF1: SF2: SF3:
Policy Impact Assessment Technology
v v v
The Impact of Al on the The Economic Impact of Al in rivacy-preserving decentralized
Healthcare Economy ealth Care: Systematic Review prediction of CACSs with FL
Which markt?t developmt?ns influence Al o G 4 e A ) How can Al
implementation? growth?
Market and reimbursement system research Sy ic review of academi 1 Empirical study incl. implementation of FL
p ial of Al for health vs. still low Existing economic impact assessments are both FL can significantly facilitate Al implementation while
degree of leveraging this potential today; German DiGA quantitatively and qualitatively insufficient and require demonstrating similar results as a traditional centralized
as one reimbursement reference case improvement machine learning model
A) Growing demand for healthcare induced by need for -
cost savings, new technological capabilities, LB MGG (S 7
25, 8 PADLIMES, A) Medical (e.g. QALYs, applying CHEERS and “Privacy by design” technologies like FL are a crucial
increased acceptance of DH and Al, Covid-19 i)
B) E lary facilitator f - ) PRISMA criteria) ) technology-related success factor Fo overcome common
- B) Economic (e.g. Net Present Values, Cost Alternative data-related hurdles for Al implementation

I) Reimbursement system (DVG) in Germany

II) FeatureCloud platform Scenarios)

Figure 3: Overview about publications, research questions, provided answers and

interconnection between publications

The contribution of this thesis is of both academic and practical nature:

As to the academic contribution, a systematic analysis of success factors for real-world
Al implementation in healthcare based on academic literature and real-world Al use
cases was conducted. In this context, conclusions regarding policy setting,
technological implementation as well as medical and economic impact measurement
could be drawn. Furthermore, the quantity and quality of medical and economic impact
measurement as one central lever and research area to support Al scaling were
analyzed and respective improvement areas identified and described. In addition to
that, translational research was applied since FL as a privacy-preserving Al technology

was implemented in the real-world context of two medical institutions in Germany.

As to the practical contribution, for the identified success factor categories, specific
recommendations for governmental stakeholders, healthcare professionals and
business management have been derived in order to increase real-world application
of Al in healthcare (Details of these recommendations can be found in chapter 7).

Related to this, existing facilitator frameworks and role model use cases, such as a
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successful reimbursement policy framework and reference cases for Al

implementation, were presented.

Taken together, the research aimed at systematically and comprehensively examining
the gap between the promising academic results about Al and the low real-world
implementation, and deducted success factor categories with respective
recommendations for multiple stakeholder groups. In the following, key success
factors and recommendations are summarized:

e Policy settings that contain clear standards with regard to regulatory
requirements such as medical product classes, evidence generation endpoints
and according evidence generation pathways as well as clearly formulated
reimbursement models for DH and Al solutions

e Application of Al technologies that allow for privacy-preserving data access and
data sharing for Al model training in order to circumvent common data-related
hurdles while still maintaining data privacy standards

e High-quality medical and economic impact assessments of Al applications in
order to analyze the benefits of Al and, thereby, enabling more comprehensive

strategic decision-making on medical and business management level
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5. Publications

Paper A: Success Factors of Artificial Intelligence

Implementation in Healthcare

The paper entitled “Success Factors of Artificial Intelligence Implementation in

Healthcare” represents a systematic review of academic studies and real-world Al use

cases and aims at identifying the key success factors for increased real-world

implementation of Al in healthcare.

Research
question

Background

Contribution

Method

Take-away

What are the success factors to achieve a higher level of real-world Al
implementation in healthcare?

Low number of real-world Al implementations in healthcare in general due
to various reasons and significant gap between recent years’ academic
advancements and reality

Shows that there are only very few real-world Al implementations in
healthcare, and presents both barriers to and benefits of Al in healthcare
as well as success factors to increase real-world implementation,
especially from three categories, namely policy, technology, and medical
and economic impact measurement

Systematic review of academic studies and real-world use cases as a
basis for the identification of success factors for real-world implementation;
studies for in-depth analysis are identified and assessed for inclusion via a
systematic search and inclusion process

In light of the key potential of Al in healthcare, on the one hand, and the
low number of real-world Al implementations in healthcare, on the other
hand, in the future, governments, scientists, medical practitioners, industry
and further stakeholders should consider and improve on a range of
success factors that facilitate Al implementation. In this regard, success
factors from the following three categories could be identified: a) a
facilitating policy setting (especially with view to risk allowance), b) a non-
restrictive technological infrastructure (especially with view to data privacy
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preservation), and c) a high-quality medical and economic impact
assessment

Table 1: Overview about the publication “Success Factors of Artificial Intelligence
implementation in healthcare”

Contribution of the doctoral candidate: First authorship including the planning of the
publication structure, a systematic review of academic studies and real-world use
cases and deduction of consequences for governments, scientists, medical

practitioners and industry stakeholders. Manuscript: Writing, review and editing.
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Background: Artificial Intelligence (Al) in healthcare has demonstrated high efficiency in
academic research, while only few, and predominantly small, real-world Al applications
exist in the preventive, diagnostic and therapeutic contexts. Our identification and
analysis of success factors for the implementation of Al aims to close the gap between
recent years’ significant academic Al advancements and the comparably low level of
practical application in healthcare.

Methods: A literature and real life cases analysis was conducted in Scopus and
OpacPlus as well as the Google advanced search database. The according search
queries have been defined based on success factor categories for Al implementation
derived from a prior World Health Organization survey about barriers of adoption of Big
Data within 125 countries. The eligible publications and real life cases were identified
through a catalog of in- and exclusion criteria focused on concrete Al application cases.
These were then analyzed to deduct and discuss success factors that facilitate or inhibit
a broad-scale implementation of Al in healthcare.

Results: The analysis revealed three categories of success factors, namely (1)
policy setting, (2) technological implementation, and (3) medical and economic impact
measurement. For each of them a set of recommendations has been deducted: First,
a risk adjusted policy frame is required that distinguishes between precautionary and
permissionless principles, and differentiates among accountability, liability, and culpability.
Second, a “privacy by design” centered technology infrastructure shall be applied that
enables practical and legally compliant data access. Third, the medical and economic
impact need to be quantified, e.g., through the measurement of quality-adjusted life years
while applying the CHEERS and PRISMA reporting criteria.

Conclusions: Private and public institutions can already today leverage Al
implementation based on the identified results and thus drive the translation from
scientific development to real world application. Additional success factors could include
trust-building measures, data categorization guidelines, and risk level assessments and
as the success factors are interlinked, future research should elaborate on their optimal
interaction to utilize the full potential of Al in real world application.

Keywords: artificial intelligence, digital health, technology assessment, impact measurement, policy framework,
success factor, public health
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INTRODUCTION

Artificial Intelligence (AI) is having the potential for a significant
impact on the entire healthcare industry. Consequently, first
governmental structures for Digital Health and subsequent
Al scaling are currently being defined. For instance, the
German government has published a national law for the
reimbursement of registered Digital Health services by public
health insurances (1, 2). Based on the growing amount of digital
health applications, the high expectations related to medical,
social, and economic improvements, as well as the need for digital
health routines triggered by COVID-19, the success factors for AI
implementation need to be defined now.

The academic literature elaborated in detail on the benefits
and challenges of Al in healthcare. Already in 2015, Deo reported
that “although there are thousands of papers applying machine
learning algorithms to medical data, very few have contributed
to clinical care” and potential obstacles for machine learning
implementation require further research (3). In 2018, Park and
Han provided methodological guidelines to evaluate the clinical
performance of Al for medical diagnosis and prediction (4). In
the same year, Yu et al. described different potential applications
of Al and the clinical integration at different AI development
stages (5).

In 2019, Triantafyllidis and Tsanas noted that still only few real
world Digital Health intervention studies could be identified for
their review of machine learning applications. However, the ones
identified and analyzed were useful and effective (6). In the same
year, Racine et al. highlighted substantial challenges concerning
the use of A, including dynamic information and consent,
transparency and ownership, and privacy and discrimination (7).
Furthermore, He et al. confirmed there are limited real-world
Al applications, and the authors discussed various concrete and
practical improvement areas related to data sharing, transparency
of algorithms, data standardization and interoperability (8).

In 2020, Alhashmi et al. surveyed 53 health and IT
specialists and highlighted the importance of managerial,
organizational, operational and IT infrastructure related factors
for Al applications (9).

Despite the substantial ongoing research regarding the
benefits and improvement of AI in healthcare, there are only a
few real-world application cases covered in academic research or
openly published. These include, among others, major initiatives
such as IBM’s investment of over 4 billion USD into IBM Watson
(10), and Amazon, which agreed with Cerner to establish a range
of Al in healthcare services under Amazon Web Services (11). In
addition, start-ups have also brought successful Al applications
to the market. For example, the FDA approved deep learning
platform Arterys or Babylon Health, which performs ~4,000
clinical consultations on their platform per day (8, 12).

From our perspective, a gap between the promising and
comprehensive academic research on the high potential of Al
in healthcare and the comparably low level of actual practical
implementation can be observed. Despite previous recognition of

Abbreviations: TUM, Technical University Munich; OPAC, Online public
access catalog.
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this gap and isolated analyses of potential areas of improvement,
this is the first attempt to systematically identify success
factors that significantly facilitate the implementation of Al in
healthcare based on previous academic research and real-world
AT applications.

MATERIALS AND METHODS

First, the success factor categories and according database search
queries have been defined and there are several success factors,
that had already been researched in prior publications. For
example in 2016, Ross et al. identified factors that influence
the implementation of eHealth and found that the individual
e-health technology, the outer setting, the inner setting, the
individual health professionals as well as the process of
implementation are key success factors (13).

In our case we derived the success factor categories from
the Big Data section results of the “Global diffusion of eHealth:
Making universal health achievable” report of the World Health
Organization (WHO), as displayed in Figure 1. In this global
survey with 125 WHO member countries the following results
with regard to adoption barriers of Big Data were revealed (14).

Roughly 70% of countries mentioned “lack of integration”
(72%; n = 81) and “privacy and security” (68%; n = 78) as
very or extremely important barriers to adoption. Furthermore,
about 60% of countries considered “information sharing” (61%;
n = 70), “promotion of standards” (61%; n = 70), and “building
capacity” (59%; n = 68) in the same category. In addition to
that, “new analytical methods” were mentioned (55%; n = NA).
Furthermore, only less than a fifth of all countries (17%; n = 21)
reported to have a national policy or strategy regulating the use
of big data in the health sector and thus from our perspective
“Strategy setting” based on consequent impact measurement is
also a key barrier for the adoption.

Based on these results three improvement categories have
been deducted:

» «

1) Technology (“Lack of integration,
“Information sharing”)

2) Policy (“Promotion of standards” and “Building capacity”)

3) Medical and economic impact (“New analytical methods” and
“Strategy setting”)

Privacy and security,” and

Thus, in this paper success factors are defined as facilitators for AI
implementation based on recommendations across the segments
technology, policy as well as medical and economic impact.

Academic Literature

Academic literature was accessed and identified via a research
of the data base “Scopus” with the search terms “Artificial
Intelligence,” “Healthcare} “Health care; “Success factor,
“Technology,” “Policy,” “Medical Impact,” and “Economic
Impact” (Search term query: “artificial intelligence” AND
“healthcare” OR “health care” AND “success factor” AND
“technology” OR “policy” OR “medical impact” OR “economic
impact”). Furthermore, since not every journal is included in
Scopus and the defined success factor categories are covering
a broad spectrum of journal types, additionally also the online
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FIGURE 1 | Barriers to adoption of big data for health globally—survey of 125 countries by the WHO (14).

Category Academic literature Real world cases
1) Scopus and 1) Scopus and . i
Sources 2) Online public access catalogue of| |2) Online public access catalogue of, P";:: alzf‘;iz::: d“::;::ﬁ ::)s(:fi t‘;f
the Technical University Munich the Technical University Munich 9
Source The content has been published in journal articles, in English or German Publicly available website texts
prerequirements language and the publishing age was not more than 5 years ago Published between April 1, 2019 -
(all) (latest from the year 2015) April 1, 2020 (cases up to 2015)
inclu:::::r:l:ritera A comprehensive description of an Al functionality Narr]in_g of the Al provider
(Left: At least one An evaluation of the efficiency and outcomes Description °f_ the tech_nology
. ’ Concrete implementation cases (e.g. on hospital, insurance, other level) Impleme_ntat.lon. location or
Right: all) institution
Article The title or abstract did not mention a topic related to Al . -
exclusion critera The abstract did not contain a description of the Al application Igﬁﬁiﬁnff;:,eme:f :‘3?:';“‘:
(at least one) The full text did not elaborate on the impl itation proce 9

FIGURE 2 | Methodology for the identification of academic literature and real-world Al application cases in healthcare (authors).

public access catalog OPACplus of the Technical University
Munich was used as second database.

The search term “Artificial Intelligence” has not been
exchanged with other options like “Machine Learning” or
“Neural Networks” as the term “Artificial Intelligence” has been

Frontiers in Digital Health | www.frontiersin.org

used by far the most, according to the results of a Google
Trend Analysis comparing the most frequently used search terms
regarding Al in healthcare (15).

The following further inclusion and exclusion criteria
were applied:

June 2021 | Volume 3 | Article 594971
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Academic literature in
1) Scopus, 2) Online public

Real world cases
in Google Advanced

access catalogue Search
. Records identified Records identified
Identification 1: n=1494 (n=237)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2:n=1098
77777777777777777777777777777777777 Title and Abstract Records
screening excluded Title screening Records
Screening (Content, Duplicates, Age) 1: n=997 (Content, Duplicates, Age) luded
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1: n=1081 2: n= 468 (n=237) (n=157)
2: n= 648 .
"""""""""""""""""" Full text
o Full text assessed excluded Full text " Full text
Eligibility 1: n=84 excluded
2: n=180 1: n=57 (n=80) (n=50)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, : 2: n= 156
Studies included Cases included
Included 1: n=27 (n=30)
2:n=24

FIGURE 3 | Prisma flow diagram for academic literature and real world case research (authors).

1) The research is published in a journal article.
2) The publication is written in the English or German language.
3) The publication date was between the years 2015 and 2020.

Further, in terms of content, they were included if at least one of
the following content-related criteria were met:

1) Comprehensive description of an Al application.

2) Evaluation of the efficiency and outcomes
Al application.

3) Description of a concrete real-world Al application.

of an

Subsequently, publications were excluded from the analysis if
they met any of the following criteria:

1) The title or abstract did not mention a topic related to AL

2) The abstract did not contain a description of the
Al application.

3) The full text did not elaborate on the implementation process
of an Al application.

The query returned 1,494 hits out of which 1,081 were published
between the years 2015 and 2020 in Scopus as well as 1,098 hits

Frontiers in Digital Health | www.frontiersin.org

out of which 648 were published in the mentioned time frame
in OpacPlus. Applying the listed in- and exclusion criteria, 26
publications qualified as a basis for the academic literature review
in Scopus and 24 publications in OpacPlus.

Real-World Cases

We identified real-world AI applications covered in academic
literature using the abovementioned search approach. However,
since only a small fraction of the practical AT implementation
cases is covered by academic research, further real-world cases
were identified through a Google-based advanced search for
listings using the following search terms: “Artificial Intelligence,”
“Healthcare,” and “Implementation.” Google listings were
included if they fulfilled all of the following criteria:

1) The AI implementation description was uploaded within the
last year (i.e., results between 1 April 2019 and 1 April
2020), and the described practical case was not implemented
before 2015.

2) The AI implementation is
German language.

written in English or

June 2021 | Volume 3 | Article 594971
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3) The AI implementation has a clear identification of the
real-word Al application (i.e., cited the name of the Al
provider, the technology, and the implementation location
or institution).

Al applications originating from tweets or blogs were excluded.
The query yielded 237 hits in the Google advanced search, of
which 30 hits qualified as a basis for our analysis of real-world
AT applications in healthcare. Figure 2 depicts the methodology
for the identification of academic literature and real-world Al
application cases in healthcare while Figure 3 shows the Prisma
flow diagram.

RESULTS

Barriers to Al Implementation in Healthcare
Based on the academic literature and real-world case analysis,
various barriers to Al implementation were identified. Given
the need to access large amounts of data under strict privacy
regulations and the dependence on managerial acceptance, it
became evident that AI implementation needs to be tailored
further to fit into existing healthcare routines. An illustrative
example of how AI can be integrated into routine healthcare
processes is shown in Figure 4.

As described above, the key identified barriers for Al
implementation relate to the following fundamental issues:
(1) non-privacy focused technological implementation,
(2) shortcomings in current policy settings, and (3) the
lack of medical and economic impact measurements. As
comparison, in a framework about the success factors for Al
implementation in the telecommunication industry in China,
the author concluded that three success factors apply, namely the
external environment, e.g., government involvement or vendor
partnerships, organizational capabilities, e.g., managerial or
technical skills, and innovation attributes, e.g., compatibility or
relative advantage (16).

Our first barrier consists of major technological limitations
that constrain AI implementation. Notably, access to medical
data is commonly too fragmented and limited to Electronic
Health Record (EHR) data and the existing data silos in the
healthcare provider context do not enable complete access for
Al applications (17). Furthermore, some data material, though
available and accessible, may not be useable because of a lack
of precise data requirements. For instance, in medical image
analysis, edges of pictures may be unclearly defined, or high
noise may inhibit the analyses (5). Further examples show that
Al for breast, lung and liver cancer detection would require
significantly enhanced data preprocessing and image processing
or that in general a much more facilitated integration into
existing workflows of EHRs is required to foster the use of clinical
decision support systems (18, 19).

The second barrier shows, that there are major policy
deficiencies that inhibit AI implementation. In numerous
countries, it is neither clear who the regulatory authority for
Al in healthcare is, nor how the ever-changing black box of
AT will be assessed from a policy perspective (13). The General
Data Protection Regulation (GDPR) in the EU and the Food
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and Drug Administration (FDA) regulations in the US for
general data handling are very specific. However, there are no
overarching policies, reporting standards, or recommendations
concerning Al in healthcare. It could even be argued that no
specific regulatory authority would be needed, as for example
there is also no dedicated authority for decision support systems
or treatment algorithms. Still, due to the potential risks of
applying black box AI algorithms, it can be expected that
clinicians will request clear and comprehensive regulations for
increased application.

The third barrier in form of the lack of clinical and economic
impact measurement further contributes to the low level of
practical implementation. Although performance metrics on the
outcomes of Al, such as levels of accuracy of preventive care
or recommendations for therapeutic decisions are abundant,
medical and economic benefits are often not measured, or the
measurement approach is not clearly defined (4). The strategy,
business models and, especially, reimbursement as a core element
for Al application in healthcare are thus, often still unclear (3).

Success Factors for Al Implementation in

Healthcare

Technological Implementation

The academic literature describes in detail the different
technological categories of Al applications, ranging from natural
language processing up to expert systems (20). In certain medical
sectors, specific types of AI applications are more commonly
applied, such as image analysis in radiology or dermatology (21).
Most of the real-world AI application types face the challenge of
combining practicality with privacy since they require complete
data access.

This challenge could successfully be mitigated by several
indication-focused practical cases of real-world AI applications.
For instance, a “Persuasive Communication Tailoring” Al tool
has been implemented to send motivational smoking cessation
messages to adults. The machine learning version of the anti-
smoking application significantly outperformed the prior rule-
based system, and the algorithm was trained using data from
messages, feedback databases, and user profiles (22). Another
example is the pharmaceutical company MSD, which created
an Al-driven communication channel based on the Facebook
messenger for a chatbot about urgent matters in immune-
oncology. The underlying conversational relationship between
the physician and the chatbot is not bound to the data of EHRs,
but is a stand-alone tool focused on the concrete problem-
solution data access (23).

Furthermore, “privacy-by-design” technologies that aim
to integrate privacy concepts in the design phase of an Al
application, are increasingly being used (24). For example, at
the institutional level, a health insurance system in Romania
developed a GDPR compliant cloud-based AI application
using a “SwarmESB-based” architecture with advanced data
protection features. In the cloud infrastructure, multiple small
entities are established, which possess one specific function for
each task, such as ID copying, check of employment status,
or retirement agency verification (25). Another reference case
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FIGURE 4 | Al integration into routine healthcare processes (authors).

TABLE 1 | Comparison of a US and an EU framework related to Al (29, 30).

Title

Key content (excerpts)

Proposed regulatory framework for modifications to
Artificial Intelligence/Machine Learning (Al/ML)—Based
Software as Medical Device (SaMD)

Discussion paper and request for feedback (29)

'

Establishment of quality systems and Good Machine
Learning Practices (GMLP), including usage of only relevant
data, the separation between training, tuning and test

Ethics guidelines for trustworthy Al (30)

Independent high-level expert group on artificial intelligence set up by
the European Commission/April 8, 2019
Ethical principles as foundations of trustworthy Al (respect for human

datasets or transparency of the output

and effectiveness

“Algorithm Change Protocol”

maximized safety and effectiveness

Conduction of initial pre-market reviews to assure safety

Monitoring of the Al devices based on development,
validation, and execution of algorithm changes such as

Post-market real-world evidence performance reporting for -

autonomy, prevention of harm, fairness, and explicability)

Seven key requirements of realizing reliable Al [(1) human agency
and oversight, (2) technical robustness and safety, (3) privacy and
data governance, (4) transparency, (5) diversity, non-discrimination,
and fairness, (6) environmental and societal well-being and (7)
accountability]

Assessing trustworthy Al (assessment list when developing,
deploying or using Al systems)

for privacy by design is “FeatureCloud,” a platform for the
exchange of model parameters instead of raw data in a combined
federated AI model (26). The technological implementation
should  consider  the  recommendations  illustrated
in Table 1.

Policy Setting

Previous publications cover a wide range of policy topics ranging
from the dangers of so-called “black box” AI decisions to the
paradigm shift from almost absolute protection of patient data
to an economy of patient data sharing (27, 28). Nevertheless,
there are almost no laws or standards that comprehensively
regulate the use of AI in healthcare and there are significant
geographical differences as shown in the US and EU propositions
in Table 2.

The European Commission published also a risk-based
legal adoption plan in the “White book for Artificial
Intelligence” regarding training data, data storage, and human
supervision (31).
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In addition to the analysis of various regulatory frameworks,
we also examined geographically independent policy factors.

First, it is expected, that AI, more generally, will evolve
over several stages from the “Artificial Narrow Intelligence”
to the “Artificial General Intelligence” up to “Artificial Super
Intelligence;” and the according use cases will develop from
stand-alone problem-solving over strategic decision-making up
to independent strategy execution (32). To support this evolution
of Al, one should differentiate between a permissionless
approach, where innovation can be tested and problems are
solved as they occur, and a precautionary approach, where Al
applications are banned from the beginning if they impose a
distinct risk (33). Therefore when defining policy principles,
one can build on a “form follows function” (permissionless)
and a “first frame then function” (precautionary) approach,
where the permissionless approach is less restrictive for
AT implementations.

Second, it should be taken into account that AI decision-
making processes are different from human decision-making
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TABLE 2 | Key factors for Al technology development planning (authors).

Application scenario differentiation Data processing structure definition

Indication-focused, e.g., smoking Data access, e.g., EHR, wearables

Data exchange pathways, e.g., connected vs.
stand-alone

Institution-focused, e.g., health insurance

Other Data confidentiality measures, e.g., cloud

infrastructure

Success Factors of Artificial Intelligence

Privacy by design and product class
setting

Al technology implementation with a
“privacy-by-design” structure

Compliance with medical product classification

Adaptability for changing Al regulatory
requirements

Attri-
bution:
‘Accountability, lia-
bility, culpability

Protocolling of data learnt from
for Al decision making

A) Status Quo: Time for decision, accuracy
of results, amount of potential scenarios
B) Status Ante: Prior learning experience

including outcomes, postive and negative
feedback

Principle application:
A) Permissionless: Innovation can be tested and problems are
solved once they occur ("form follows function")
B) Precautionary: Certain applications are banned from the

beginning as they impose a distinct risk ("first frame
then function")

FIGURE 5 | Policy framework pyramid (authors).

processes. Al is able to infer answers more quickly and accurately
and to consider a significantly larger number of scenarios
simultaneously, and can, thus, reach different decision outcomes.
Furthermore, Al learns from “wrong” behavior, and the severity
of such adverse experiences and failures varies from case to case.
Consequently, Al decision outcomes can also differ from that
of human (34). To assess the reasoning process, protocols are
required for the status ante, the status quo concerning the time
taken for a decision, the number of scenarios considered, and the
accuracy of the result obtained by AL

Subsequently, the responsibilities of different stakeholders
in Al processes should be addressed. For instance, in the
real-world case of Al-based automatic robotic surgery, it is
required to differentiate between accountability, liability, and
culpability (35). A clear task differentiation is necessary, so
that accountability can be clearly defined based on the process
steps (e.g., x-ray image analysis), liability can be limited (e.g.,
manufacturer, operator, maintenance) and culpability can be
exclusively attributed (e.g., an obligatory second human check of
a decision obtained by an Al application).

A practical case of a real-world AI application that follows
a permissionless approach is the collaboration between Philips,

image analysis (38).

and international

displayed in Figure 5.
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In an environment
recommendations
implementation guidance, a comprehensive policy is needed.
An overview about a potential policy framework structure is

Salesforce, and Radboud University Medical Center. In this
context, the involved parties extracted specific medical datasets,
such as cancer research or COPD, and established the cloud
software “HealthSuite” as a database on which patients and
physicians can store health data for authorized access (36, 37).
The case complies with the regulatory requirements via data
protection measures, and available data is currently used by ca. 40
deep learning researchers focusing on various topics like medical

of continually evolving national
that lack concrete

Medical and Economic Impact Measurement

Al strategy setting and implementation is a decision that
is based on medical and economic decisions.
research has demonstrated that there are generally too
few economic impact evaluations and, that many available
ones lack critical components such as a net present value
calculation or a comparison of alternative AI applications

Previous
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Success Factors of Artificial Intelligence

Cost Effectiveness Analysis
(CEA)

Cost Aggregation Methods

Cost Benefit Analysis (CBA)

FIGURE 6 | Overview of cost aggregation methods in healthcare (39).

Standard CEA:

Measuring one-dimensional
unit changes (e.g., glucose
level)

Cost Utility Analysis (CUA):
Measuring costs for healthy
years of the patient (e.g.,
lived two years longer
costing X)

Standard CBA: Measuring the
net cost benefit of the
procedure (Result =
Benefit - Costs)

(15). This is particularly relevant in light of the meaningful
investment volumes in the area of AI in healthcare, especially
by large corporate entities, and the difficult economic impact
measurement led to the application of industry-specific
evaluation methods (40). Consequently, precise, accurate
and internationally applicable medical and economic impact
measurements are required.

The approaches to measure the outcomes of Digital Health,
in general, and Al, in particular, can be classified into two
categories: Cost Effectiveness Analysis (CEA) and Cost Benefit
Analysis (CBA) (39). The first category can be further divided
into standard CEA and Cost Utility Analysis (CUA). The CEA
analysis refers to a cost comparison of a new vs. an old method,
for example, regarding blood glucose measurement, wound size,
or symptom-free days. In CUA, the outcome is measured in
healthy years, for example, measured as quality-adjusted life
years (QALYs). Specifically, QALYs provide an estimate of how
many extra months or years of life, a person might gain by
undergoing a specific treatment. Under a cost-minimization
approach and the precondition of an equal medical outcome,
different treatments can be compared. The difference between
the approaches is that while the CBA can answer whether a
new digital service is worthwhile, the CEA can answer the
question of which of the alternative services is less costly to reach
the equivalent outcome. Figure 6 provides an overview of the
different categories.

For a large-scale implementation of Al in healthcare and to
qualify for reimbursement on a broad scale across insurance
systems, the methods to measure medical and economic
outcomes of AI applications have to follow standardized
established procedures. The QALY analysis can be conducted
based on different questionnaires to fulfill these requirements,
and most studies follow the EQ-5D and the SF-6D format (see
Appendix in Supplementary Material) (41).

Still, for existing studies, the quality of the respective
impact measurements was often too low to produce reliable
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and valid results that could serve as basis for a well-
founded decision about an AI implementation. This quality
can be assessed through the so-called Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) and
Consolidated Health Economic Evaluation Reporting Standards
(CHEERS) (42). The PRISMA guidelines should be used to
identify the result report as a systematic review, meta-analysis,
or both. The CHEERS criteria support the assessment, as the
most common mistakes include items that are not reported
in the study. This is of particular relevance as Iribarren
et al. outlined that distinct items were missing in up to
three-quarters of the publications about the impact of AI
applications (43).

The medication selection and dosing company CURATE.AI
reported in a cutting edge publication that, based on
individually collected data, the adequate drug and respective
dosing could be determined with limited side effects. An
additional validation of the medical and economic impact
of this solution using QALYs-based measurement, could
significantly benefit the roll-out process with institutional
payors like insurances and healthcare providers, even
internationally (44).

Although  further approaches such as
evaluation, multi-stakeholder analysis or organizational
impact were discussed  within  prior research, a
concrete approach with QALYs and quality criteria is
needed immediately in order to generate short term
results (45).

comparator

Recommendations for Increased
Implementation of Al in the Success Factor
Categories

As a starting point, concrete measures have been identified
regarding the set-up of the technological infrastructure. First, it
shall be tailored to the application segment, differentiating
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A) Challenge of data access . - A) Low quantity of impact
Al and different options for A) anfedrené p(_)llues apd " evaluations
challenges data storage B) it::k 2;;):]?gt?t'°na Y B) Quality gaps e.g., lack of net
(excerpt) B) Alignment with privacy . . . present values or Al
regulations... G e 2 alternative comparisons...
Technological Policy settin Medical and economic impact
implementation iy ing measurement
« Differentiation between * Permissionless vs. * Quantified endpoints (e.g.,
application segments + precautionary principles + reduction of cardiac arrests)
(indication, institutional) » Al decision protocolling « Cost utility assessments
Success « Infrastructure for data « Definition and attribution of through Quality adjusted life
factors access and confidentiality accountability, liability and year measurements
* “Privacy-by-design” culpability + CHEERS and PRISMA criteria
development approach (e.g., QoL-5D questionnaire)
l = l

FIGURE 7 | Overview of success factors facilitating the implementation of Al in healthcare (authors).

between  indication-focused  and institutional-focused
applications. Second, the data processing structure needs
to focus on data access and exchange pathways as well
as confidentiality measures. Third, a “privacy-by-design”
approach shall be implemented and, the overall technological
infrastructure should feature a high degree of adaptability
in order to also be able to fulfill changing or upcoming
regulatory requirements.

In addition to that, a clear and comprehensive AI policy
framework is required. This should distinguish between
permissionless and precautionary principles, namely between a
risk-allowing “fast response” approach and a more cautious
“safety first” approach. Furthermore, it should contain
principles for AI decision-making protocolling in terms
of the time taken for a decision, the number of scenarios
considered, and the accuracy of the result obtained by Al
to assess Al decisions ex-post. Finally, it must be possible
to attribute accountability, liability, and culpability between
the involved stakeholders, both human and AI, within
the framework.

Furthermore, methodologies and metrics for assessing the
medical and economic impact of Al applications must be refined
and medical and economic impact assessments have to be
intensified significantly. Such assessments should rely on cost-
utility estimates and, in particular, on QALYs. Furthermore,
we believe that it is indispensable that standardized quality
criteria such as the CHEERS and PRISMA criteria (e.g.,
using a EuroQol-5D questionnaire) are applied so that the
results can be evaluated not only by physicians, but also by
institutional players.

An overview of the policy, technology, and impact
measurement success factors is shown in Figure 7.
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DISCUSSION

We systematically identified success factors that significantly
facilitate the implementation of AI in healthcare based on
existing academic research and real-world Al applications. In the
following, we highlight some limitations.

First, an analysis of additional real-life AI application cases
would have provided further relevant insights for the analysis.
However, there is no open-access information or there are
confidentiality clauses about technological features and economic
impact independently of the databases used. Second, academic
publications sometimes provide research results with a significant
time delay due to the elaborated research process, such as
data collection and analysis. Thus, research on very recent
developments such as Al policy frameworks, frequently has not
yet been conducted or published. Third, there are significant
differences across categories. For example, an Al-supported
medication adherence system and an Al-driven robotic surgery
software are subject to different policy, technological and medical
as well-economic impact measurement requirements. As a
consequence, success factors will have to be weighted according
to the Digital Health and AI conditions in each healthcare system.

Due to these limitations, several further success factors could
not be included in the model, but should be a focus of further
research and are here briefly discussed.

First, it is important to build trust and confidence among
health professionals and patients. This can be seen, for example,
in the discussions on COVID-19 tracking solutions. There are
different approaches, e.g., for centralized or decentralized data
storage, and in many countries intense political debates took
place on data storage and tracking. Therefore, trust-building
through open communication with easy to understand and
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well-presented lines of argument is required, and this would also
positively influence the acceptance of physicians as “gatekeepers”
for AL

Second, although the categories for “learned from,” “training,”
“testing,” or “validation” data are clearly defined in machine
learning, in reality often processes are substantially changed
or shortened e.g., no model validation takes place with
independent datasets. This significantly affects the underlying
specificity and sensitivity of AI solutions. Consequently, a
clear set of recommended actions for each category would
simplify the planning, programming and review processes.
Furthermore, continuous reporting also facilitates ex-post
verification processes due to the continuous Al learning process.

Third, the different levels of risk associated with Al need to be
more clearly differentiated and for instance, the existing medical
product classes in Europe could be tailored to AI solutions.
Accordingly, AI solutions associated with higher risk will face
more stringent regulation. Similarly, more stringent regulations
will also be associated with higher costs for registration,
documentation, and regulatory compliance. Thus, the market
size must be reasonably large, and common market standards
for AI risk levels should be established across all states in the
US or all EU countries to provide still convincing arguments for
Al development.

In summary, there are various barriers to Al implementation,
which are likely to significantly have contributed to the
considerable gap between the comprehensive and promising
academic research on the high potential of artificial
intelligence and the comparably low level of its actual
practical implementation. Nevertheless, AI has already been
applied in different healthcare sectors and is likely to have
a meaningful impact on the entire healthcare industry. In
particular, due to intense and steadily growing technological
developments, current political developments, as well as the fast-
evolving industry landscape, we expect a significant Al-driven
transformation of healthcare delivery in the future.

The success factors identified in this paper (1) risk adjusted
policy frame with clear accountability, liability, and culpability,
(2) application scenario specific data processing structures on
the basis of legally compliant and still practical privacy by
design infrastructures, (3) comprehensive quantification of the
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Paper B: The Impact of Artificial Intelligence on the
Healthcare Economy

The paper entitled “The Impact of Artificial Intelligence on the Healthcare Economy”
identifies which trends and circumstances as well as policy frameworks positively
influence Al implementation in healthcare. The paper combines a non-systematic
literature review and market research with two assessments of real-world facilitator
frameworks for Al implementation from the policy and technology area, respectively:
The German Digital Healthcare Act and the FeatureCloud platform. Furthermore, the
paper shows that the interplay of four key drivers is likely to trigger a transformation of

the healthcare market through Al.

Research What is the impact of Al on the healthcare market today and in the future?
question

Background Although various market evaluations clearly point towards a meaningful
impact of Al, the actual real-world Al implementations stem from a limited
number of regions and healthcare segments

Contribution Presents two concrete facilitator frameworks from the policy and
technology areas (e.g., reflecting on the importance of regulation,
evidence generation and reimbursement to scale DH and Al in
healthcare) and describes four key drivers that support Al implementation
in healthcare

Method Non-systematic review of academic literature and market research about
the impact of Al on the healthcare economy and analysis of existing Al-
related facilitator frameworks
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Take-away Four interlinked developments (i.e. demand, technological
improvements, acceptance, global corona pandemic) and existing
facilitator frameworks influence Al growth. In order to support this
transformation, governments, scientists and practitioners need to
demonstrate the impact of Al, leverage privacy-preserving technologies,
and support policy formation for data access, evidence generation and
reimbursement guidelines.

Table 2: Overview about the publication “The impact of Al on the healthcare economy”

Contribution of the doctoral candidate: First authorship including the planning of the
publication structure, a non-systematic review of academic literature and conduction
of market research as well as discussions with the chair members about potential
reference cases like the FeatureCloud platform and the German Digital Healthcare

Act. Manuscript: Writing, review and editing.
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[Chapter Starts Here]

1. Growth history of Artificial Intelligence in
healthcare — more than 4bn USD in funding in
2019

Artificial Intelligence (“Al”) in healthcare is comprehensively analyzed in academic research
and real-world applications are also increasingly covered in the media landscape. Although
precise industry growth figures are not available, it can be assumed that the Al in healthcare
market has grown significantly over the last few years from approx. USD 0.6bn in 2014
(Accenture 2017) to approx. USD 0.7bn in 2016 (DigitalMR 2017) to approx. USD 1.3bn in
2018 (Global Market Insights 2019), implying a CAGR of 21.3% over this time period. In other
words, the Al in healthcare market has more than doubled and has become a billion-dollar
market within a few years only.

Other economic figures such as the significant increase in the number of respective start-ups
over the last few years (Grand View Research 2019) and the significant upward trend in
funding activities also clearly reveal the promising prospects of Al in healthcare. As to the
latter, not only has healthcare consistently represented the top industry for Al investment deals
over the last years (Al in Healthcare 2017; Pifer 2020). Also, while Al start-ups in healthcare
raised funding of approx. USD 2.1bn across 323 deals between 2012 to mid-2017 (Al in
Healthcare 2017), they raised almost double this amount, namely approx. USD 4bn, across
367 deals in 2019 alone (Pifer 2020). Even during the global corona pandemic, which
considerably slowed down financing activities, almost 80 Al start-ups in healthcare raised
approx. USD 1bn in the first quarter of 2020 (CB Insights 2020). Furthermore, tech giants such
as IBM and Amazon have gotten increasingly involved into developing Al algorithms for
healthcare applications (Davenport and Kalakota 2019).

Despite this economic growth, we can currently observe relatively few actual implementations
in terms of real-world Al applications in routine healthcare processes (He et al. 2019; Wolff et
al. 2020). In particular, while enormous research efforts have been made to produce and
analyze algorithms and Al-powered solutions, only a fraction of the respective results has so
far been implemented in the healthcare systems (Lindsell, Stead, and Johnson 2020). Panch,
Mattie, and Celi even went as far as to postulate that prominently featured algorithms “are in
fact not, for the most part, executable at the frontlines of clinical practice” (Panch, Mattie, and
Celi 2019).

Also, the real-world Al applications to date predominantly stem from a limited number of
healthcare segments. In global healthcare research, Al applications have been classified into
categories including diagnosis, patient morbidity, disease outbreak prediction and
surveillance, as well as health policy and planning (Schwalbe and Wahl 2020). Various market
analyses show that Al can mainly be encountered in the context of inpatient care and hospital
workflow management, medical imaging and diagnostics, patient data and risk analysis, virtual
care, and drug discovery (MarketsAndMarkets 2020). For instance, studying over 90 Al start-
ups in healthcare, CB Insights revealed that the areas medical imaging and diagnostics as
well as drug discovery jointly accounted for 52% of the sample start-ups and 45% of disclosed
funding (CB Insights 2019). In a similar vein, a recent scientific review showed that Al and,
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especially, deep learning, has attracted particular attention in medical imaging and diagnostics
(Nakata 2019).

A similar pattern can be observed when analyzing the market across regions. To date, North
America accounts by far for the largest market share (Market Research Future 2019; Grand
View Research 2019), whereof approx. 90% of revenues stem from the U.S. (MarketWatch
2020). The fact that economic growth so far mainly has been driven by one country leaves
room for tremendous growth in other regions. While even in the U.S., further exponential
growth of Al in healthcare is expected (ReportLinker 2020), market analysts largely agree that
the APAC region is likely to become the fastest growing region in the coming years (Meticulous
Research 2019; Market Research Future 2019; Grand View Research 2019). There is also
considerable potential for Al application in low- and middle-income regions as Al-powered
health interventions can lead to better health outcomes, bearing in mind the continued severe
lack of healthcare resources in these regions (Carrillo-Larco et al. 2020).

This moderate level of Al penetration in healthcare will, however, soon be a matter of the past.
The global Al in healthcare market is anticipated to grow at a CAGR of c. 40% over the next
years (Meticulous Research 2019; Mordor Intelligence 2020; Grand View Research 2019),
where the average CAGR may even exceed 50% from 2019 to 2030 (Market Research Future
2019). Also, market studies suggest that, already by 2025, a growing number of Al applications
will especially be found in the areas of chronic disease management, drug discovery, delivery
of healthcare services, and detection of disease (Market Study Report 2019).

Considering the bigger picture, Al will also play a key role in the transformation of the
healthcare market in its very essence. In particular, the healthcare industry is expected to
experience a shift from fragmented and location-driven healthcare to consumer-oriented,
virtual and convenient healthcare, entailing significant changes in value chains and business
models and affecting all actors involved (Cognizant 2019).

INFO BOX 1 (ONLY TEXT) — TO BE FORMATTED AS INFO BOX:

Taken together, significant research efforts have been made to produce algorithms and Al-
powered software and hardware products, and researchers have devoted high attention to
this topic demonstrating promising results on the potential of Al to revolutionize healthcare.
Nonetheless, the current level of practical implementation and economic impact measurement
of Al in healthcare is still relatively low (Wolff et al. 2020). Furthermore, at this stage, only a
limited number of healthcare segments and regions dominate the market and there is
considerable global growth potential over the next years.
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2. Drivers of Artificial Intelligence in healthcare —
Demand, technology, acceptance and corona
pandemic

While the above-mentioned economic factors such as extensive start-up growth as well as
investment activities will continue to make a significant contribution to economic growth in the
future, the interplay of four key drivers is likely to trigger a transformation of the healthcare
market through Al.

First, there is a significant demand for Al in healthcare. In particular, global healthcare
spending has not only grown steadily, but also generally represents a considerable burden for
economies worldwide. In 2017, it amounted to approx. USD 7.8tn, namely 10% of global GDP
and USD 1,080 per capita, up from approx. USD 7.6tn in 2016 (World Health Organization
2019). In the U.S., healthcare spending even accounted for 18% of GDP in 2018 (Hartman et
al. 2020).

However, developments such as the aging population as well as the significant increase in
chronic diseases actually require an expansion of both the access to and the scope of
healthcare services. As to the former development, for instance, in Japan, 38% of the
population is expected to be aged 65 or older by 2050 (Kumar 2019). Thus, for example,
oncology already today represents one of the major application fields of Al (Agrawal and
Prabakaran 2020). As to the second development, it was projected that chronic diseases will
account for almost 75% of global deaths by 2020 (World Health Organization 2002).

At the same time, medical facilities are facing a shortage of labor, causing delays and pressure
on existing medical staff. For instance, the NHS in the U.K. reported almost 100k job vacancies
in 2018 (Kumar 2019). Taken together, there is considerable pressure to reduce healthcare
spending without limiting actual care, which creates a significant demand for Al applications.
For instance, it was forecasted that in the U.S., the top ten Al applications can potentially
create USD 150bn in annual savings and that Al could meet 20% of unmet clinical demand by
2026 (Accenture 2017). In addition, U.S. health insurers could save approx. USD 7bn by
implementing Al, among others, in customer interaction (Accenture 2018b).

Overall, Al applications come along with significant cost saving potential, among others, by
optimizing revenue cycle management (Accenture 2018b; RevCyclelntelligence 2020),
hastening drug discovery, decreasing non-adherence costs and shortening recovery time
(Garbuio and Lin 2019). According to Frost & Sullivan, Al could reduce treatment costs by up
to 50% while improving patient outcomes by 30% to 40% (Ahuja 2019).

As a second driver, Al in healthcare greatly benefits from improvements in technological
possibilities. These have been achieved over years, and sometimes decades, e.g., related to
data storage capacities and processing power, such as cloud computing (Mordor Intelligence
2020), as well as related to Al methods (Aguis 2019). In the healthcare sector, the need for,
but lack of comprehensive data access has proven to be a main obstacle, especially as a
consequence of high fragmentation as well as data protection regulations and data security
concerns (Panch, Mattie, and Celi 2019).
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Recently, however, a wide range of promising initiatives that enhance access to
comprehensive data could be observed. In particular, numerous aggregate health datasets
that can be used by Al researchers and developers for research and programming purposes
have been produced such as by the Radboud University in the Netherlands, (Radboudumc
2019) or the U.S. Department of Veterans Affairs (U.S. Department of Veterans Affairs 2014).
Also, it is generally expected that the amount of health data will grow remarkably, namely at
an average CAGR of 36% between 2018-2025 according to the IDC Data Age 2025 report
(Reinsel, Gantz, and Rydning 2018), paving the way for further Al research and development.

As a third driver, for the first time, there are signs of noteworthy acceptance of Al in healthcare,
both by key decision-makers such as governmental institutions as well as by patients. As to
the former group, Al in healthcare policy frameworks and initiatives have gained considerable
momentum in recent years, both on national and international level. Respective activities
include, but are not limited to, the definition of abstract Al strategies such as the German
Federal Government’s “Al strategy” (European Commission 2019), the definition of sector-
specific policy frameworks such the U.K.’s “Code of conduct for data-driven health and care
technology” (U. K. Department of Health & Social Care 2019) or the provision of budgets for
R&D activities for Al in healthcare such as in the U.S. (OECD 2019).

In addition, governmental institutions have adopted a wide range of targeted legislative
measures that aim to facilitate real-world Al applications in healthcare. One example is
Germany’s Digital Healthcare Act, which paves the way for the reimbursement of Digital Health
(“DH”) applications for over 70mn insured citizens (see section 4 for a detailed description)
(Matthies 2019). Similarly, the U.S. FDA is working with high priority on a regulatory framework
to evaluate Al-powered software as a medical device (U.S. Food and Drug Administration
2020).

In a similar vein, we can observe first meaningful acceptance of Al in healthcare among
(potential) patients. For instance, a consumer survey showed that, as early as 2018,
consumers were on average more likely than not to use a wide range of Al-powered healthcare
services such as to get medical advice or a diagnosis of their symptoms (Accenture 2018a).

As the final driver, there is an accelerated implementation of Al in healthcare settings as a
consequence of the corona pandemic. While the long-standing digital consumer trend has not
been able to trigger a break-through of Al in healthcare until today, this development has just
recently gained new sentiment due to the pandemic. In particular, numerous recent research
results revealed that the pandemic has considerably increased people’s comfort with Al
applications for the purpose of safety and health.

With respect to Al applications applied directly in patient interaction, for instance, a survey
uncovered that 33% of respondents have become more comfortable with the idea of Al helping
doctors and nurses and that 30% of respondents have become more comfortable with the
idea of relying on Al-powered tools such as chatbots to determine their medical needs
(Interactions 2020).

This pattern becomes even clearer when looking at a more aggregate societal level. In
particular, initiatives by governments and healthcare institutions have been significantly
augmented since the hit of the crisis. The application areas comprise, among others, vaccine
development as well as screening, analyzing and predicting disease patterns (Vaishya et al.
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2020). First results regarding the diagnosis of COVID-19 via data mining and machine learning
(“ML”") algorithms revealed that with additional sources, e.g., sensor technologies in outdoor
scenarios, governmental COVID-19 measures can be supported (Albahri et al. 2020) A further
concrete example of Al for COVID-19 is the drug repurposing platform Covex, which integrates
experimentally validated virus-human protein interactions, human protein-protein interactions
and drug-target interactions (Sadegh et al. 2020).

This widespread use of Al in connection with the corona pandemic can be observed globally.
For example, in South Korea, Al is used to trace the spread of COVID-19 via mobile data
(Hunt 2020). In Israel, Al-powered contact tracing algorithms are used to send text alerts to
citizens who have been near someone who was diagnosed with COVID-19. Applications of
Al focused on the pandemic are early detection and diagnosis of the infection, monitoring the
treatment, contact tracing of the individuals, projection of cases and mortality, development
of drugs and vaccines, reducing the workload of healthcare workers and prevention of the
disease (Vaishya et al. 2020).

INFO BOX 2 (TEXT + FIGURE 1) — TO BE FORMATTED AS INFO BOX:

Text: The interplay of four key drivers is likely to trigger a transformation of the healthcare
market through Al in the short term, as illustrated in Fig. 1. First, there is an urgent need for
economies worldwide to limit the rise in healthcare spending while responding to an increased
demand for healthcare services, which in many cases is further impeded by labor shortages.
Second, significant technological improvements in recent years enable simplified and scaled
Al implementation today more than ever. Third, for the first time, noteworthy awareness and
acceptance levels can be observed for Al applications in healthcare. Finally, the corona
pandemic has significantly increased the need for DH structures, more generally, and Al, in
particular.

1) Demand for Al 2) Technological improvements in Al
« Rise in healthcare spending « Enhanced data privacy
« Increased demand for healthcare services « Improved data access
« Labor shortage « Rise in amount of collected & stored data

Transformation of healthcare

market through Al

3) Acceptance of Al 4) Corona pandemic & Al
« Increased number of policy frameworks & * Increased consumer comfort with Al to foster
initiatives as well as legislative measures health & safety
- Increased patient awareness & acceptance * Increased Al implementation, often initiated by
levels governments & healthcare institutions

Caption: Transformation of the healthcare market through Al

Credit: Authors
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3. Impact of Artificial Intelligence on the healthcare
economy - quantity and quality of
measurements still insufficient

Al can significantly impact the healthcare economy, and benefits have become apparent in
the preventive, diagnostic and therapeutic contexts.

The economic significance of Al in healthcare becomes visible in the start-up and industry
landscape, and there are already several young companies that have positioned themselves
as market niche leaders, such as IDx-DR, now called "Digital Diagnostics”, for diabetic
retinopathy screening in the U.S. or mySugr for diabetes management in Europe.
Furthermore, also large corporates and tech giants (Meticulous Research 2019), among
others, IBM Watson (MarketsAndMarkets 2020) and Amazon and their respective activities
clearly demonstrate the importance of Al for the healthcare economy.

Al also has a significant impact on the health insurance industry (McKinsey & Company 2017).
In particular, Al applications entail changes in the product portfolio and insurance coverage,
in the use of data, e.g., regarding price discrimination, and in the necessity of collaborations.
The fact that insurers play a key role for the scalability of Al applications may lead to a stronger
interlinkage between healthcare providers and insurers, which is particularly challenging for
traditional insurers without access to tele-medical infrastructures as well as comparably less
dynamic business models.

Overall, there are different impact areas of Al such as social change, e.g., the interaction
between humans and Al, a disruption in the competitive environment, e.g., advantages
through data access and algorithms, or new business models, e.g., analytics for health data.

Nonetheless, for a sustainable and large-scale economic impact of Al, standardized
integration into healthcare processes and according reimbursement structures in healthcare
systems are required. The lack of these structures is a key inhibitor of real-world Al
applications and hampers respective implementation and scalability.

There is an underlying complexity of impact validation for these implementation processes as
many aspects need to be considered when measuring the value of Al in healthcare. Examples
for parameters include safety, clinical effectiveness, usability as well as a set of ethical and
legal aspects (Kolasa and Kozinski 2020). Out of this broad spectrum, medical and economic
benefits of Al are particularly crucial to justify the human resource and financial investments
that are typically necessary to implement Al.

However, in the past, the medical and economic impact of Al has not been measured to a
sufficient extent and quality. The significant shortcomings in respective assessments lead to
a plethora of performance measures, such as the accuracy of a solution, without providing a
framework for strategic decision-making. In particular, prior research showed that there are
too few and too incomprehensive impact measurements for Al applications in healthcare
(Wolff et al. 2020). Key takeaways of this research were that in addition to intensified research
on medical and economic impact, a net present value calculation and cost alternative
scenarios are required, as displayed in Fig. 2.
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Results of the review of economic
impact studies of Al in health care

Low quantity of studies Low quality of studies

Out of 66 publications, only 6 studies None of the studies comprised a complete

could be included based on the inclusion cost benefit analysis, but rather focused on

and exclusion criteria fragmented cost aspects
Intensified research Net present value Cost alternative scenarios
Significantly more research studies The initial investment and Other options to achieve similar
need to be performed on the operational costs for the Al impact must be benchmarked to
economic impact of Al in infrastructure and service delivery provide a sufficient basis for
health care need to be included informed decision-making

‘ Improvement areas

Caption: Result of the review of economic impact studies of Al in healthcare
Credit: Wolff et al., 2020, p. 16866 (figure 2)

Standardized economic impact measurement requires structured data input about the result
of the digital intervention and this shall be collected based on quality-adjusted life years
(“QALYs”) while applying both the Consolidated Health Economic Evaluation Reporting
Standards (“CHEERS”) statement and the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (“PRISMA”).

An example of the result of a digital intervention would be that an Al-powered software enables
three additional years of healthy living, costing USD 20k per year, based on data collection via
an EQ-5D questionnaire. The questionnaire could be split into “Mobility, Self Care, Usual
Activities, Pain/Discomfort, Anxiety/Depression” criteria, scoring each criterion on a scale from
0 to 100. The sum of costs needs to encompass the initial investment and operating costs
and, if possible, an alternative solution targeting the same result should also be assessed.

Such an assessment could encompass the following steps:

e Collection of patient data based on EQ-5D QALY values and deduction of additional
healthy living years gained via the Al solution
Cost calculation considering initial investment and operating costs of the Al solution
Comparison of the Al solution with existing treatment methods and potential alternative
solutions (e.g., individualized treatment based on genetic profile)

e Overall comparison of costs for the additional healthy living years gained via the Al
solution as compared to the existing treatment methods and/or potential alternative
solutions

e Decision about implementation and tracking of results
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INFO BOX 3 (TEXT + FIGURE 3) - TO BE FORMATTED AS INFO BOX:

Text: In order to support an Al solution, in particular, and overall Al implementation, more
generally, it can be summarized that the impact should be defined based on QALYs while
applying the CHEERS and PRISMA quality criteria. In addition, the initial investment and
operational costs for the Al solution need to be considered and alternatives to achieve a similar
impact must be evaluated to allow for a comprehensive comparison as a basis for strategic
decision-making. The respective line of reasoning is illustrated in Fig. 3.

Status quo: Low level of Call for action: Increase
real-world Al amount & quality of
implementation & scaling medial & economic
impact evaluations

Outcome: Evidence as
key driver of real-world Al
implementation & scaling

Insufficient amount & + Usage of QALYs as key « Basis for strategic

quality of medical & metric decision-making
economic impact + Inclusion of net present « Allowance to justify
evaluations for Al value & cost alternative human resource &
applications as one key scenarios financial investments
inhibitor of real-world Al + Application of CHEERS & + Driving force for
implementation in PRISMA reporting reimbursement & scaling
healthcare guidelines

Caption: Status quo, call for action and outcome of economic impact measurement of Al in
healthcare

Credit: Authors
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4. Selected frameworks to demonstrate facilitation
of Artificial Intelligence implementation —
pathways to reimbursement and data access

The economic growth of Al in healthcare can be fostered through various measures and, in
the following, several international facilitator frameworks are outlined.

One example is the reimbursement scheme established by the German government via the
Digital Healthcare Act (in German: “Digitales Versorgungsgesetz’), a comprehensive
framework effective since May 2020 to foster DH structures. It aims at an easy use of tele-
consultation, access to secure healthcare data networks, and apps on prescription (German
Federal Ministry of Health 2019). The last aspect, in particular, will lead to an increased use
of Alin healthcare, as every physician in Germany is now entitled to prescribe DH solutions in
the same way as a remedy, and the digital apps are reimbursed by the public health insurance
system, covering 90% of the population, i.e., over 70mn citizens.

The law targets DH applications, so-called DiGAs (abbreviation to German term “Digitale
Gesundheitsanwendung”), which are then listed on an official DiGA list, so that doctors can
prescribe them. The definition for such a DiGA is provided in Fig. 4.

Medical Device | Main function ___

Classes | and lla MDR Relies on
(+ provisional rules MDR) digital technologies

Detection (monitoring),

Centered on patients, treatment, palliation /
possibly including treating abatement of pain,
doctors compensation of diseases,

injuries, disabilities

Caption: DiGA definition as by the German government
Credit: Health Innovation Hub, 2021, p. 7

In order to prescribe a DiGA, a comprehensive application submission, validation and
reimbursement scheme has been developed. All solutions must fulfil the general requirements
of safety, quality, functionality, privacy and data security as well as demonstrate a so-called
“positive care effect”. The latter consists of a medical benefit and/or structural and procedural
effects. For all solutions, there are two application forms, differentiating between DH solutions
with priorly collected data for final listing and solutions without priorly collected data and, thus,
for provisional listing. Both application systems are administered by the Federal Institute for
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Drugs and Medical Devices (in German: “Bundesinstitut fir Arzneimittel und Medizinprodukte”
or “BfArM”).

The first system enables application submissions for DH solutions with an already existing
evidence data basis with regard to a medical benefit and/or structural and procedural effects.
This evidence is then assessed by the BfArM in a 3-month time period before making a
decision about final listing into the reimbursement system. In case acceptance is granted, the
DH solution is reimbursed during a 12-month time period with a predefined pricing scheme
which is agreed upon between the manufacturer and statutory health insurance (“SHI”)
associations. After the 12-month period, the price is renegotiated and continues to be placed
on the market with potential annual pricing adaptations.

The second alternative features a key difference, namely in the form of a “probation period” in
the application process. The respective process differs from the first system as only limited
prior evidence of a medical benefit and/or structural and procedural effects of the DH solution
has been generated upfront. Thus, after the 3-month application submission verification, the
solution is listed as DiGA under probation. In this trial period, a plausible hypothesis needs to
be validated based on an evaluation concept which is conducted by an independent scientific
institution. During this trial period, the solution is already reimbursed based on a preliminary
pricing agreement between the above-mentioned associations. After the 12-month period, the
BfArM decides on a final DiGA listing, which, in case of acceptance, is followed by annual
price renegotiations.

It becomes visible that this reimbursement system, which is open for national and international
applications and according evidence demonstration, enables market and reimbursement
access even for comparatively new solutions, and will, thus, very likely lead to a significant
increase of real-world Al applications in healthcare.

In a similar vein, the economic impact of Al will increase significantly throughout technologies
which are able to overcome data access barriers while still maintaining data security. Since
comprehensive data access is crucial for the growth of Al implementation, yet has proven
particularly challenging in the healthcare sector, several approaches have been initiated to
provide data-sharing economies, thereby also creating financial impact.

For instance, the MyHealthMyData (MHMD) project, which was set up to link hospitals and
research centres in Europe and enable the exchange of health data, is based on a blockchain
network and complies with GDPR (Manset et al. 2019).

Another framework which facilitates Al implementation and, thus, increases economic impact
of Alin healthcare is the platform FeatureCloud. This platform simplifies privacy-aware access
to comprehensive data for Al model training instead of relying on repetitive implementation of
machine learning methods in each medical unit. The EU-funded technology targets to provide
a platform for comprehensive data access across hospitals in Europe. Based on a cloud
infrastructure, the local Al model parameters from each hospital can be shared without the
need for any transfer of primary medical data, thus, being anonymous by default. A simplified
procedure overview is listed in what follows and the respective methodology is graphically
displayed in Fig. 5:

e Installation of FeatureCloud on hospital server
e Patient consent to use data or at least part of data in anonymous format

10
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e Data workflow process mapping (depending on ML type, e.g., neural networks for
pictures or decision trees for clinical decision support)
Training of data set in each participating hospital locally
Sharing of the model parameters, i.e., not the primary data but the trained model data
(e.g., weights, decision trees), with one coordinator hospital

e Generation of one new trained model based on the model data of all participating
hospitals

Caption: lllustrative example of hospital data upload in classical cloud setting with the upload
of primary data (left side) vs. federated machine learning setting, i.e., data are not in cloud but
inside the hospital and only model parameter are uploaded (right side)’

Credit: FeatureCloud, 2020

As visible in the figures, only trained model representatives and not the primary hospital data
are exchanged between hospitals in one cloud (FeatureCloud 2020). Based on this privacy-
preserving technology, the Al models can be trained with model parameters and then shared
again with e.g., health care providers and payors. The system contributes significantly to
improved security of data infrastructures as well as to patient trust (FeatureCloud 2020).

INFO BOX 4 (ONLY TEXT) — TO BE FORMATTED AS INFO BOX:

Governmental frameworks and platforms, such as the German Digital Healthcare Act which
facilitates reimbursement of DH solutions, incl. Al-powered healthcare services, or the
FeatureCloud platform which enhances data access while ensuring data privacy, will
significantly contribute to increased real-world Al implementation in healthcare. Besides their
direct positive impact on real-world Al implementation, it is likely that they will further induce
an indirect positive impact by serving as role models for similar initiatives as well as by raising
awareness and increasing acceptance of Al in healthcare.

" FeatureCloud ©.

11
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5. Summary and outlook — the transformation of
the healthcare market through Artificial
Intelligence has started

The Al in healthcare market has more than doubled and became a billion-dollar market within
a few years only. The promising prospects are, for instance, also reflected in the significant
upward trend in funding activities which have amounted to approx. USD 4bn across 367 deals
in 2019 (Pifer 2020). Nonetheless, real-world application is still in its early phase and only in
some regions and healthcare segments first market traction can already be observed.

In particular, real-world Al applications to date predominantly stem from a limited number of
healthcare segments such as medical imaging, diagnostics and drug discovery
(MarketsAndMarkets 2020). In a similar vein, North America, by far accounts for the largest
market share (Market Research Future 2019; Grand View Research 2019), where approx.
90% of revenues stem from the U.S. (MarketWatch 2020). However, there is significant growth
potential for Al applications globally, including in low- and middle-income regions (Carrillo-
Larco et al. 2020).

Specifically, the interplay of four key developments is likely to trigger a transformation of the
healthcare market through Al in the short term. First, there is an urgent need to contain the
worldwide rise in healthcare spending and to cope with increased demand for healthcare
services and these challenges are, in many countries, further exacerbated by labor shortages.
Second, improvements with regard to technological capabilities in recent years enable
simplified and scaled Al implementation today more than ever. Third, for the first time,
noteworthy awareness and acceptance levels can be observed for Al application in healthcare,
both among key decision-makers such as governmental institutions as well as among patients.
Finally, the corona pandemic has significantly increased the need for DH structures, more
generally, and, in particular, Al has already been subject to large-scale testing in a range of
different settings.

In order to close the significant gap between the considerable amount of promising academic
research results on Al and the comparatively small number of actual real-world applications
as well as to foster economic growth, intensified research on the medical and economic impact
of Al is needed. In the past, this has neither been investigated to a sufficient extent nor at a
high quality. While medical impact assessments have to some extent already yielded valid
and reliable results, the economic impact has commonly been neglected in assessments of Al
solutions, leading to a plethora of performance measures without providing a framework for
strategic decision-making (Wolff et al. 2020). In fact, standardized economic impact
measurement requires structured data input about the result of the digital intervention and this
can be collected for example based on QALYs while applying the CHEERS and PRISMA
quality criteria.

In addition to increased and improved economic impact measurement, reference cases for
reimbursement, such as the Digital Healthcare Act in Germany, and for privacy-aware data
access, such as the FeatureCloud platform, can serve as facilitators for increased
implementation.
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Paper C: The Economic Impact of Artificial Intelligence
in Health Care: Systematic Review

The paper entitled “The Economic Impact of Artificial Intelligence in Health Care:
Systematic Review” represents a systematic literature review of existing economic
impact assessments of Al applications in healthcare and assesses how economic
impact is and should be measured. The study reveals that there are only few economic
impact assessments and that these are commonly subject to methodological flaws.
Therefore, it presents concrete levers for improvement when conducting economic

impact assessments.

Research To what degree and in what quality has the medical and economic impact
question of Al in healthcare been assessed and which areas could be improved?

Background Evidence on benefits of Al is not sufficiently measured and this hinders the
implementation in medical routine on various levels

Contribution Shows that there are only few studies analyzing the impact of Al in
healthcare and that these studies lack quality and consistency in their
evaluation procedures

Method Systematic review of academic studies analyzing the economic impact of
Al by benchmarking them against a predefined set of quality criteria for
cost-effectiveness assessments; studies for in-depth analysis are
identified and assessed for inclusion via a systematic search and inclusion
process

Take-away In light of the high relevance of medical and economic impact
assessments, on the one hand, and the low number of impact
assessments for Al and significant methodological deficits, on the other
hand, scientists and practitioners should undertake more and higher
quality impact assessments, In this context they should, for example apply
QALYs based on EQ-5D questionnaires as well as the CHEERS and
PRISMA criteria and include a Net Present Value calculation as well as
Cost Alternative Scenarios into their assessments



Table 3: Overview about the publication “The economic impact of Al in healthcare: A
systematic review”

Contribution of the doctoral candidate: First authorship including the planning of the
publication structure (in particular the designing and application of in- and exclusion
criteria as well as analysis of academic studies) and deduction of consequences for
improvements of medical and economic impact measurements. Manuscript: Writing,

review and editing.
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Abstract

Background: Positive economic impact is a key decision factor in making the case for or against investing in an artificial
intelligence (AI) solution in the health care industry. It is most relevant for the care provider and insurer as well as for the
pharmaceutical and medical technology sectors. Although the broad economic impact of digital health solutions in general has
been assessed many times in literature and the benefit for patients and society has also been analyzed, the specific economic
impact of Al in health care has been addressed only sporadically.

Objective: This study aimed to systematically review and summarize the cost-effectiveness studies dedicated to Al in health
care and to assess whether they meet the established quality criteria.

Methods: In a first step, the quality criteria for economic impact studies were defined based on the established and adapted
criteria schemes for cost impact assessments. In a second step, a systematic literature review based on qualitative and quantitative
inclusion and exclusion criteria was conducted to identify relevant publications for an in-depth analysis of the economic impact
assessment. In a final step, the quality of the identified economic impact studies was evaluated based on the defined quality criteria
for cost-effectiveness studies.

Results: Very few publications have thoroughly addressed the economic impact assessment, and the economic assessment
quality of the reviewed publications on Al shows severe methodological deficits. Only 6 out of 66 publications could be included
in the second step of the analysis based on the inclusion criteria. Out of these 6 studies, none comprised a methodologically
complete cost impact analysis. There are two areas for improvement in future studies. First, the initial investment and operational
costs for the Al infrastructure and service need to be included. Second, alternatives to achieve similar impact must be evaluated
to provide a comprehensive comparison.

Conclusions: This systematic literature analysis proved that the existing impact assessments show methodological deficits and
that upcoming evaluations require more comprehensive economic analyses to enable economic decisions for or against implementing
Al technology in health care.
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Introduction

Background

In times of value-based health care and also because of the high
share of the health care industry in the overall economy,
economic impact assessment is of increasing importance. For
instance, health care expenditures account for approximately
US $3.5 trillion out of US $19.4 trillion (18%) of the overall
gross domestic product (GDP) in the United States and for
approximately US $0.4 trillion out of US $3.7 trillion (11.5%)
of the overall GDP in Germany [1,2]. Accordingly, the cost
impact of digital health applications has also been analyzed in
several studies.

In 2002, in a review of cost-effectiveness studies in the context
of telemedicine interventions, Whitten et al [3] revealed that
only 55 out of 612 identified articles presented actual
cost-benefit data, which were required to be included in a
detailed review. In addition, after analyzing these articles, the
authors concluded that the provided evidence was not sufficient
to assess whether telemedicine represents a cost-effective mean
of delivering health care [3].

More than a decade later, in 2014, Elbert et al [4] described in
a review of systematic reviews and meta-analyses regarding
electronic health (eHealth) interventions in somatic diseases
that out of 31 reviews, 7 papers concluded that digital health is
effective or cost-effective, 13 underlined that evidence is
promising, and the other 11 found only limited or inconsistent
proof. They also highlighted that the development and evaluation
of strategies to implement effective or cost-effective eHealth
initiatives in daily practice needed to be significantly enhanced

[4].

In another systematic review study on the economic evaluations
of eHealth technologies from 2018, Sanyal et al [5] analyzed
multiple databases with publications between 2010 and 2016.
On the basis of 11 studies that fulfilled the inclusion criteria,
the authors found that most of the studies demonstrated efficacy

Wolff et al

and cost-effectiveness of an intervention using a randomized
control trial and statistical modeling. However, there was
insufficient information provided on the feasibility of adopting
these modeling technologies. Thus, the paper emphasizes that
the current level of evidence is inconclusive and that more
research is needed to evaluate possible long-term cost benefits

[5].

Research in this segment has been continuously intensified, and
in several studies, the digital health cost-effectiveness, for
example, of telemedicine for remote orthopedic consultations
[6], digital behavioral interventions for type 2 diabetes and
hypertension [7], and internet-based interventions for mental
health [8] was analyzed in detail.

As significant medical quality enhancements and cost-saving
improvements through artificial intelligence (Al) as one of the
key emerging technologies in digital health are expected, the
economic impact assessment of Al in health care has a crucial
role for all stakeholders in health care and, thus, needs to be
analyzed in detail.

Objective

It was systematically investigated whether the existing
cost-effectiveness evaluations meet the established quality
criteria to enable comprehensive decision making regarding the
implementation of Al in health care. On the basis of these
thorough economic assessments, the necessary information to
decide for or against the application of Al in hospitals, industry,
and payer context will be provided.

Methods

A systematic literature review was performed as described in
the following sections.

Search Strategies

A literature search was conducted utilizing the PubMed database
and using the search terms provided in Table 1.

Table 1. Search terms (title and abstract) in the PubMed analysis (conducted on July 29, 2019).

Components Syntax

Hits, n

Artificial intelligence OR machine learning AND cost
effectiveness

Artificial intelligence OR machine learning AND
economic impact

Artificial intelligence OR machine learning AND cost
saving

(Artificial intelligence [title/abstract] OR machine learning [title/abstract]) AND
cost effectiveness [title/abstract]

54

(Artificial intelligence [title/abstract] OR machine learning [title/abstract]) AND 9
economic impact [title/abstract]

(Artificial intelligence [title/abstract] OR machine learning [title/abstract]) AND 3
cost saving [title/abstract]

The search terms Artificial Intelligence and Machine Learning
for the overall segment are not exhaustive as eg, Decision trees,
Support vector machines, or Deep neural networks could also
have been used as search terms for the database queries.
Nonetheless, as strategic decisions based on economic impact
are mostly made on a strategic managerial and medical level
without a specific technological background, the most frequently
used search terms regarding Al in health care have been used.
In addition, it is highly probable that papers about, for example,
deep neural networks would also include such terms as artificial

http://www.jmir.org/2020/2/e 16866/

intelligence, support vector machines, and machine learning at
least in the abstract. Finally, it was decided to use a Google
Trends analysis comparing the most frequently used search
terms regarding Al in health care over the last 12 months
globally [9]: The terms Artificial Intelligence and Machine
Learning have been used the most by far, as illustrated in
Multimedia Appendix 1.
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Inclusion Criteria

For the publications identified through the PubMed searches,
the titles, abstracts, and full texts have been reviewed.
Publications were included into the subsequent analysis if they
were (1) published journal articles, (2) written in English
language, and (3) published no more than 5 years ago. With
regard to the content, the publications were included if they
focused on at least one of the following content sectors: (1) a
comprehensive description of an Al functionality, (2) an
evaluation of the economic efficiency and outcomes of the Al
functionality, and (3) quantitative outcomes of the Al
functionality in at least one health care system. Furthermore,
only publications describing concrete medical and economic
outcomes, such as cost savings per patient per year, and reviews
or meta-analyses comparing Al solutions have been included.

Exclusion Criteria

Exclusion criteria for an article were defined as follows: (1) the
title did not cover a topic related to Al in health care; (2) neither

Figure 1. Study selection and identification flowchart.
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the title nor the abstract contained a description of an Al
application in health care; or (3) the title, abstract, or full text
did not elaborate on the quantitative economic outcome of Al
in health care application in any health care system. In contrast
to other previous research review approaches, such as those
chosen by Elbert et al [4] or Ekeland et al [10], the third
exclusion criterion was covered. Although this significantly
limited the number of cost-effectiveness studies included, it
was applied to compare the different cost-effectiveness analysis
approaches and not only the health- or process-related outcomes
without quantified economic impact from a national or
international health care perspective.

After identifying potential studies for inclusion via the PubMed
search, as previously described, the evaluation took place in
two steps (Figure 1). First, all titles, abstracts, and full texts
were screened for the fulfillment of the inclusion and exclusion
criteria. Second, publications viable for inclusion were assessed
with a quality criteria catalog, which is explained in section
Quality Criteria for Economic Impact Assessment.

Records identified through
Identification PubMed research (terms 1, 2 and 3;
n 66)

Title and abstract screening
. . Records excluded
Screening (Content, duplicate and age) (n21)
(n 66)
Full text assessed Full text excluded
Eligibility (n 45) (n 39)

"""""" T = Studies included
(n 6)

Included

Quality Criteria for Economic Impact Assessment

A combined criteria catalog for cost-effectiveness studies was
designed. Besides own criteria, additional evaluation aspects
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from classical health care effectiveness studies and digital health
assessments were considered [5,11]. The quality criteria are
summarized in Table 2.
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Table 2. Quality criteria for economic impact assessment.

Wolff et al

Criteria Explanation

Source

Description of cost-effectiveness

of AI* solution

Hypothesis formulation

Cost-effectiveness perspective
of care

Consideration of cost alternative
strategy

Benefit today

Verification of base case
data

Level of detail of cost-effectiveness explanation

Analysis if a comprehensive question has been formulated that allows Al cost-effective-
ness evaluation (eg, comparing the Al approach with the recommended guideline routine)
Impact of change in the cost of stand-alone functionality vs overall reduction of burden
Analysis if the cost-saving results could also have been achieved with an alternative

Net present value of the Al service, including upfront investments and running costs

Analysis of cost-effectiveness of the Al solution based on benchmarking with base case

Authors

Study by Haycox and
Walley [11]

Study by Haycox and
Walley [11]

Study by Haycox and
Walley [11]

Study by Haycox and
Walley [11]

Study by Sanyal et al
[5]

Al artificial intelligence.

Results

Quality Criteria Evaluation

Quality criteria have been applied to assess the economic impact
assessments on a scale of 1 to 3 (1=superficial coverage, 2=solid
coverage, and 3=detailed explanation). As outlined above, 6
publications have been assessed regarding the described quality
criteria for economic impact evaluation. An overview of the
analysis of the publications [12-17] is given in Multimedia
Appendix 2.

Quality Assessment Results

We first conclude that the level of detail of description of the
cost-effectiveness measurement was overall high as the
descriptions were for the most part precise and detailed, for
instance, “for an incremental cost effectiveness threshold of
€25,000/quality-adjusted life year, it was demonstrated that the
Al tool would have led to slightly worse outcomes (1.98%), but
with decreased cost (5.42%)” [14]. Overall, 5 out of the 6
publications had a very high level of detail, and only 1 study
had a medium level of detail in the general description (only a
positive/negative cost-saving impact description and no further
outcome explanations have been provided [13]).

Second, the hypothesis formulation (eg, cost saving through
machine learning—based prediction models to identify optimal
heart failure patients for disease management programs to avoid
30-day readmissions [17]) was clear and accurate across all
publications. All comprised well-explained and coherent
hypothesis formulations.

Third, the cost-effectiveness perspective had in all cases a health
care system context, although additional perspectives could
have been included, such as ambulant or nurse perspectives.
Furthermore, 5 studies demonstrated a comprehensive health
care system perspective, whereas 1 could have been extended
from a hospital to an overall system view [13].

Fourth, the cost alternative consideration, that is, the analysis
of whether the cost-saving results could also have been achieved
alternatively, was mostly missing. Only 2 papers elaborated on
the different alternatives in detail, for example, differentiating

http://www.jmir.org/2020/2/e 16866/

on the levels of risks of the respective patient groups or different
treatment options. Besides these 2 publications [12,16] that
covered various alternatives to achieve a similar cost saving,
the remaining 4 publications did not elaborate on such cost
alternative considerations at all.

Fifth, the benefit achieved today, that is, in terms of a net present
value (NPV) including not only the benefits but also the
necessary investment for the AI implementation and the
operational costs of an Al service delivery, was not covered in
any of the 6 studies. Only 1 study compared Al vs non-Al
scenarios but without providing a NPV calculation. Hence, all
6 studies included a quantification of economic outcomes but
failed to calculate an overall NPV.

Finally, the verification of the base case was conducted using
different approaches across the 6 studies. Mostly solid data
sources have been collected in dedicated Al-focused studies
based on, for example, comparison of cost with/without the
algorithm, reimbursement code analysis, or benchmarking of
the result with the reported performance of other clinics. All
papers presented a cost-effectiveness measurement based on a
comprehensive comparison dataset.

One additional aspect that emerged throughout the analysis was
the measurement of resource usage, which was (almost) in all
papers conducted via a top-down approach, meaning from an
overall health care perspective but not from a single cost split
per task. In this way, important cost drivers of potentially hidden
stakeholders could have been missed (eg, additional workload
for ambulatory care if a hospital treatment is altered).

Discussion

Principal Findings

Opverall, the outcomes of the analysis described above can be
split into two result categories, namely, general feedback from
the analysis and detailed assessment of the studies that have
been included in the review process based on the study’s
inclusion and exclusion criteria.

Generally, only a few publications can be found for the
economic impact assessment of Al in health care. On the basis

J Med Internet Res 2020 | vol. 22 | iss. 2 | ¢16866 | p. 4
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of the different search terms that include the most frequently
searched phrases by far in this segment (Artificial Intelligence
and Machine Learning) in combination with the economic
impact (Cost effectiveness, Economic impact, Cost saving),
there were only 66 PubMed hits. As Al strategies and
consequent decision-making processes depend on solid data as
the basis for decision making, this is a significant challenge for
both the management and medical staff, for example, when
general pro and contra decisions and specific implementations
regarding Al are discussed.

When accounting for the details given in the identified Al in
health care publications, the economic assessment quality shows
several deficits that need to be overcome in the future. Only 6
out of the 66 publications (9%) could be included in the detailed
assessment. Out of these 6 studies, none comprised a complete
cost-benefit analysis; rather, they all focused on fragmented
cost or cost-saving aspects.

Wolff et al

Room for improvement (Figure 2) has been identified in two
main areas:

e  First, initial investment and operational costs for the Al
infrastructure and service need to be included in the
assessment. This is a core element for any strategic
decision-making process, and the complete initial and
operational investment costs for an Al solution must be
compared with the expected economic benefits to provide
concrete decision-making support.

¢ Second, further options to achieve similar impact must be
evaluated to reach a sufficient basis for comprehensive and
transparent decision-making, allowing comparisons among
different strategic and investment options (eg, a genetic
sequencing process or different medical expertise allocation
for a diagnosis and treatment outcome improvement could
also be applied instead of an Al-driven patient screening).

Figure 2. Result of the literature review and improvement areas for economic impact assessment of artificial intelligence (AI) in health care.

Results of the review of economic
impact studies of Al in health care

Low quantity of studies

Low quality of studies

Out of 66 publications, only 6 studies
could be included based on the inclusion
and exclusion criteria

None of the studies comprised a complete
cost benefit analysis, but rather focused on
fragmented cost aspects

Intensified research

Significantly more research studies
need to be performed on the
economic impact of Al in

health care

Net present value

need to be included

The initial investment and
operational costs for the Al
infrastructure and service delivery

Cost alternative scenarios
Other options to achieve similar
impact must be benchmarked to
provide a sufficient basis for
informed decision-making

Improvement areas

The conducted review has a rather narrow focus on economics
and business perspectives of Al in health care. However, the
literature review revealed further significant success factors for
Al, for example, regarding the legal framework, such as
compliance with data security, protection, and privacy policies,
and also universally accepted technological requirements to
enable comprehensive data collection and to analyze content
while complying with data privacy requirements. Despite the
benefits in assisting diagnostic and therapeutic decisions, so
far, no standards for these legal and technological issues have
been defined, and these aspects should be analyzed in future
research with a broader focus.

Furthermore, aside from the sole economic quantitative aspects,
the qualitative aspects of Al in health care for patients and the

http://www.jmir.org/2020/2/e¢16866/

society require further research. For instance, in rural areas
where the availability of primary care physicians is limited, Al
can replace processes through focused test support, for example,
for type 2 diabetes, thus addressing the challenges of
demographic change [18]. The comparison between Al and
physicians with regard to diagnosis performance demonstrated
that Al can deliver equal results, for example, in image
recognition—related fields [19]. This can, among others, also
support a reallocation of medical capacities. In addition, Al can
also enable a shift from a generalized to a more personalized
treatment. Al-steered outcome prediction and clinical decision
support processes are already used today, for instance, for
patients in radiation therapy [20].
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Prior reviews in the digital health segment categorized the results
into groups, for example, computerized decision support system,
Web-based physical activity intervention, internet-delivered
cognitive behavioral therapy, and telehealth. In addition, user’s
age was differentiated (eg, children vs old patients), and
shortcomings such as a missing difference between short- and
long-term cost savings were highlighted [5]. They also covered
challenges that go beyond the cost-effectiveness aspect and
mentioned, for instance, that the way to implement digital health
in daily practice is still unclear [4] or that patient perspectives
and collaborative approaches among a variety of stakeholders
are needed [10].

Note that the focus on Al in health care required considering
novel factors and a refined search strategy as compared with
typical reviews on digital health resulting in differential results.
First, in contrast to other reviews, Google Trends has proven
to be an effective tool to narrow the search space for a
representative collection of results. On the basis of the Google
Trends analysis, the key phrases Artificial Intelligence and
Machine Learning could be identified as the most frequently
used terms by far. Second, the review covered a higher
percentage of included studies after applying the defined
inclusion and exclusion criteria (9% of the analyzed papers were
included), whereas prior reviews had much lower inclusion
rates—8% (55/612) in the study by Whitten et al [3], 2%
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(31/1657) in the study by Elbert et al [4], or 0.1% (11/1625) in
the study by Sanyal et al [5]). This was because of two reasons:
(1) Al as a subsegment of digital health in business and industry
is still not covered well in scientific publications and (2) the
high importance of quantitatively reported outcomes required
as inclusion criterion. Third, the evaluation of cost-effectiveness
studies has been conducted with a quality criteria catalog from
a management perspective. As Al implementation is cost- and
labor-intensive and decisions are not exclusively driven by
medical improvement rates, the business management decision
making basis has been chosen as crucial for positive
implementation  decisions and subsequent widescale
applications. The addition of the business management view
includes classical cost factors (onetime and running expenses)
as well as decisions among different strategies to deliver cutting
edge health services.

Conclusions

Current research covers impact assessments of Al in health care
rather moderately and shows qualitative deficits in methodology.
Future cost-effectiveness analyses need to increase in number
and quality. They should include initial investment and running
costs as well as the comparison with alternative technologies.
This way a comprehensive and clearly segmented cost-benefit
evaluation can be provided, which will serve as a sufficient
basis for decision making regarding Al implementations.
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Paper D: Federated machine learning for a facilitated
implementation of Artificial Intelligence in healthcare — a
proof of concept study for the prediction of Coronary
Artery Calcification Scores

The paper entitled “Federated machine learning for a facilitated implementation of
Artificial Intelligence in healthcare — a proof of concept study for the prediction of
Coronary Artery Calcification Scores” represents a real-world Al implementation in a
privacy-preserving medical setting and addresses the question of how a rather novel,
yet promising “privacy by design” technology can influence Al implementation growth
in healthcare. The study is based on real patient data of two medical institutions in
Germany and provides insights on the accuracy of a privacy-preserving FL approach

compared with a traditional, i.e., centralized, Al approach.

Research Is FL, as a privacy-preserving approach to overcome data access issues
question for Al implementation in healthcare, a potential pathway for increased Al
implementation in healthcare?

Background Technological limitations as one key reason for the low number of real-
world Al applications; FL can be a potential pathway for privacy-preserving
data access and, thus, increased Al implementation

Contribution Shows that FL vyields similar accuracy levels as a traditional, i.e.,
centralized, Al algorithm, thus indicating that FL can be a very valuable
pathway for Al implementation due to facilitated data access across
different medical institutions

Method Empirical study comparing the results of a centralized locally trained
random forest model with a FL random forest model based on the data of
two medical facilities, using the FeatureCloud platform
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Take-away Access to privacy-sensitive and fragmented data is commonly required for
Al implementation and scaling in real-world settings. In particular,
practitioners need to comply with regulations (even more than scientific
researchers since there is no clinical trial/research environment) and can,
to this end, apply “privacy by design” technologies. The FL accuracy was
very comparable to a centralized model and can serve as a reference case
for future Al implementations in healthcare

Table 4: Overview about the publication “Federated machine learning for a facilitated
implementation of Al in healthcare - a proof of concept study for the prediction of
Coronary Artery Calcification Scores”

Contribution of the doctoral candidate: First authorship including the collaboration
planning with the medical institution and a close collaboration with the members of the
chair for the planning of the implementation of FeatureCloud (in particular Julian

Matschinske) and the data analysis. Manuscript: Writing, review and editing.

61



Federated machine learning for a facilitated implementation
of Artificial Intelligence in healthcare — a proof of concept
study for the prediction of Coronary Artery Calcification
Scores

Justus Wolff'2, Julian Matschinske?, Dietrich Baumgart*, Anne Pytlik*, Andreas Keck?,
Arunakiry Natarajan®, Claudio E. von Schacky®, Josch K. Pauling'7, Jan Baumbach?3?
'Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan,
Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
2Syte — Strategy Institute for Digital Health, Hohe Bleichen 8, 20354 Hamburg, Germany
3Chair of Computational Systems Biology, University of Hamburg, Notkestreet 9-11, 22607
Hamburg, Germany

“Preventicum Essen, Theodor-Althoff-Strasse 47 45133 Essen and Preventicum Duesseldorf,
Koenigsallee 11, 40212 Duesseldorf, Germany

SIndependent researcher, Digital Health, Informatics and Data Science, Germany
8Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical
University of Munich, Ismaningerstr. 22, 81675 Munich, Germany

"LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical
University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
8Computational BioMedicine Lab, Institute of Mathematics and Computer Science, University

of Southern Denmark, Campusvej 55, 5230 Odense, Denmark

* Correspondence:
Justus Wolff

Justus.wolff@syte-institute.com

62



Abstract

The implementation of Artificial Intelligence (Al) still faces significant hurdles and
one key factor is the access to data. One approach that could support that is
federated machine learning (FL) since it allows for privacy preserving data
access. For this proof of concept, a prediction model for coronary artery
calcification scores (CACS) has been applied. The FL was trained based on the
data in the different institutions, while the centralized machine learning model was
trained on one allocation of data. Both algorithms predict patients with risk scores
>=5 based on age, biological sex, waist circumference, dyslipidemia and HbA1c.
The centralized model yields a sensitivity of c. 66% and a specificity of c. 70%.
The FL slightly outperforms that with a sensitivity of 67% while slightly
underperforming it with a specificity of 69%. It could be demonstrated that CACS
prediction is feasible via both, a centralized and a FL approach, and that both
show very comparable accuracy. In order to increase accuracy, additional and a
higher volume of patient data is required and for that FL is utterly necessary. The
developed “CACulator” serves as proof of concept, is available as research tool

and shall support future research to facilitate Al implementation.

Keywords: Artificial intelligence, Privacy-preserving data processing, Federated

machine learning, Coronary artery calcification
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1 Introduction

Benefits and objectives

The real world usage of Atrtificial intelligence in healthcare routines is still in its
beginning and several success factors for a facilitated implementation have been
defined in the past.(1) One key success factor is the technological implementation, as
the data access and algorithm training is crucial in order to generate reliable results.
In our study a federated and centralized machine learning model approach for the early

detection of coronary artery diseases (CADs) were compared with each other.

Physicians commonly assess the CAD risk of patients based on coronary artery
calcification scores (CACSs), obtained via non-contrast computed tomography (CT)
scans. However, CT produces high costs and exposes patients to radiation and,
hence, unnecessary scans must be avoided. Therefore, an effective decision support
tool predicting coronary artery calcification (CAC) risks and, thus, CT necessity can

provide significant benefits.

In this study we aim to analyse 1) whether it is possible to predict CACSs with Artificial
Intelligence (Al) and 2) how a privacy-preserving machine learning (ML) approach
based on federated data sources, namely federated machine learning (FL), performs
as compared to a conventional ML approach that is based on centralized data. Based
on these results, improvement options for the particular indication and FL in general

are discussed.
Coronary artery calcification scores (CACSs)

Cardiovascular diseases are the leading cause of death worldwide and coronary artery
diseases (CADs) represent the leading cause of cardiovascular mortality.(2),(3) In
order to counteract its significant mortality rates, treatment regimens should be
adapted as early as possible.(4) For individuals with no symptoms or known pre-
existing conditions, various factors (e.g. age, behavioral characteristics) can be used
to determine the risk of a cardiovascular disease and increased CAC levels have been
found to be significantly positively associated with cardiovascular diseases.(4) In this
regard, prior research revealed that 27% of radiologists in the US already rely on CAC

CT scans on a regular basis, making it the most common type of CT scan in the
3
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country.(5) This does not seem surprising in light of the fact that there are guidelines
recommending CAC CT screening for asymptomatic men aged 45-75 and woman
aged 55-75 (except for those with very low risk).(5),(6),(7) This translates into c. 30
million citizens being generally eligible for CAC CT screening in the US.(8),(9)
However, many of them may not actually have elevated CACSs, which causes the
discussion on whether too many CACS CT scans are conducted.(10)

Application of Artificial Intelligence for CACSs prediction

Considering this risk/benefit trade-off, we assessed whether an Artificial Intelligence
(Al)-based decision support tool could potentially contribute to reducing cases of CAC
CT screening where patients do not actually have elevated CACSs. To this end, we
used datasets from two medical institutions with a total of 1,450 patients and analyzed
the following four independent CAC risk factor areas - those are also in detail explained
in the supporting information section:

I) Age and biological sex
Il) Obesity (measured through waist circumference)

I) Dyslipidemia (measured through cholesterol, triglycerides, high-density
lipoprotein HDL, low-density lipoprotein LDL)

IV) Diabetes mellitus (measured through HbA1c)

Further potential risk factors were not included, as the selected factors are A) reflecting
some of the major named risk factors in literature and B) the algorithm should serve as
a tool for physicians in daily routine. (11)

We used Al for the purpose of our study as Al can lead to significant benefits in
healthcare and has, for example, already proven to be valuable in the area of
cardiology, but also in the context of other medical indications, such as Covid-19 as
well as of personalized treatment.(12),(13),(14)

However, conventional Al approaches generally require access to large amounts of
data to achieve precise prediction and are, therefore, often not easy to be
implemented. To circumvent this issue, the concept of FL can be applied as this
enables data access across different units without requiring the exchange of raw data,

4

65



thus, maintaining data privacy. Therefore, besides assessing whether Al can generally
be useful to predict CACSs, we assessed how FL as a privacy-preserving ML approach

performs as compared to a conventional ML approach.

The concept of FL goes back many decades, where it did not initially relate to Al, but
was supposed to assist in the discovery and access of learning content from the
diverse collection of content repositories.(15) Only in 2017, Google proposed to apply
the concept of FL in the ML context where the main idea was to generate ML models
based on datasets that are distributed across multiple devices, while at the same time
preventing data leakage.(16)

Today, the term FL refers to Al model training based on multiple local datasets, yet
without the exchange of the participating units’ primary data but instead only model
parameters. The key goal is to enable multiple actors to jointly build an aggregated ML
model without facing the difficulties of data sharing.(17)

Altogether, an FL model represents a decentralized ML approach where the
participating units’ respective ML models are locally trained in a first step, and the
model parameters are subsequently shared by all units, commonly via a central
coordinating server, and merged into an aggregated model.(18),(19) Consequently, FL
can provide significant advantages as compared to conventional ML approaches as
the privacy-sensitive medical patient data must not be shared across participating
units, enabling FL applications even where data-related restrictions prevent the
application of conventional ML approaches.

There are already some first FL applications in healthcare, for example, in the context
of the prediction of mortality and hospital stays, the medical diagnosis classification of
diabetes and heart failure, and the prediction of the hospital readmission
risk.(20),(21),(22),(23). One major real world example is Owkin, a startup which has
raised > 300 Million USD in funding for their federated learning platform and which
works for example in their EU project Melloddy in a collaboration with 10
pharmaceutical companies on a federated learning driven drug discovery process with
molecule data (24). For the described CACS prediction, an Al model based on risk
factors for elevated CACSs could serve as a valuable decision support tool and in order
to circumvent data privacy challenges, the benefits of FL shall be leveraged.

66



Materials and Methods

To apply FL, we used the FeatureCloud platform, which targets to simplify privacy-
preserving access to comprehensive medical data across medical institutions.(25)
FeatureCloud, which is publicly available under http:/featurecloud.ai, is supported by

the European Union Horizon 2020 program and was developed as a joint effort
between several European universities and companies, including the Technical
University of Munich, the Philipps University of Marburg, the University of Maastricht,
the Medical University of Graz, the University of Hamburg, the University of Southern
Denmark and Gnome Design SRL, Romania.

After the FeatureCloud app has been installed by all participating medical institutions,
the procedure is as follows - as also illustrated in Figure 1:

1. Obtaining patients’ consent for the usage of their anonymized data
2. Creation of the FL project in FeatureCloud and assembling the workflow
3. Inviting other medical institutions to participate and starting the project

ﬁ 1. Obtain consent a
R

Patients Institution 1

e )
?—2 ,\ssemb|e workflow ?— )

3.1 Invite Calc. Scofe Project
4

1. Obtain consent
I — ~—320in_| 5 Evaluation

Patients Institution 2

A\ J

Figure 1. Two institutions used the FeatureCloud platform and Institution 1 has
been the FL project leader (Authors)

Since we aimed at shedding light on whether it is possible to predict CAC with
conventional Al and FL as a privacy-preserving ML approach performs as compared
to a conventional ML approach, an according FeatureCloud app has been developed
and can be accessed via https:/featurecloud.ai/ai-store/71. FeatureCloud is an

6
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integrative solution since multiple medical institutions can join the platform to share
their data for Al model training and thus by each new institution the ML training data
setis increased and higher prediction accuracies or additional prediction usecases can
be defined — currently there are already more than 20 applications available on the
FeatureCloud application store.

Study design - Conventional Al for CACS prediction

As to the first research question, we trained the algorithm for the decision support tool
using an anonymized dataset of the above mentioned two medical institutions that in
total comprises 1,450 patients. The pre-processing resulted in 680 remaining patient
samples. For the centralized ML approach, the Al model was trained based on the
entire dataset, i.e. on all patient samples of the two medical institutions, as if the data
stemmed from the same source in the first place. Further details can be found in the
supporting information section.

Study design - FL for CACS prediction

In addition, we analysed how FL performs as compared to a conventional ML
approach, namely whether a similar performance in terms of sensitivity and specificity

can be achieved when the Al model is trained in a FL (rather than a centralized) setting.

The local data is pre-processed by each medical institution before the local model
training takes place. The model parameters are subsequently shared by both medical
institutions and merged into an aggregated ML model. This aggregated model is then
shared with both institutions for their own use. During the entire process, FeatureCloud
does not require any transfer of the medical institutions’ underlying primary medical
data, but only the exchange of model parameters. Accordingly, in our particular use
case, participating physicians would not need very extensive data of their own, but
could use the aggregated ML model to predict patients' CACSs and, based on this,
assess the need for CAC CT screening.

In order to demonstrate the likelihood analysis of a CACS >=5, we trained two random
forest models locally, i.e. based on each of the medical institution’s own local dataset.

The resulting decision trees are visualized in Figure 2.
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Figure 2. Decision trees trained with the data from Institution 1 and 2; both trees
are first split by age, but already diverge at the next level (Authors)

The parameters of the locally trained Al models from both medical institutions are
aggregated into one joint FL model, via sharing of the local model parameters rather
than the medical institutions’ primary data as it would be required when applying the
conventional ML approach. Additional information regarding the training process is
described in the following section.



For the conventional centralized ML model, a random forest model with all 680 patient
samples (i.e. from both medical institutions) was trained. For the FL model, an
aggregated random forest model was computed based on the model parameters of
the locally trained models of the two medical institutions with 477 and 202 samples,
respectively.

We pre-processed our data in terms of removing samples with missing values and
transforming the continuous CACSs into two categories: Elevated and normal,
representing values above or equal (CACS =>5) and below a CACS threshold of 5
(CACS <b5), respectively. We investigated how the results change when replacing
missing values with their mean or median values to allow for using incomplete samples
during the training of the random forest model without distorting the results too heavily.
This led to no improvement and was, therefore, not pursued for the subsequent steps.
After removing the incomplete samples, 680 patients remained. The score threshold
of 5 was chosen because it both indicates a health risk and divides the dataset into
two equally large groups of 340 patients each.

For the classification, we selected a random forest model for our analysis as such
models are frequently used as classifiers due to their ability to cope with categorical
and continuous features alike and due to their general versatility. To conduct a FL
analysis with the two participating medical institutions, we first trained a random forest
at each institution locally using only their local data. To obtain the aggregated model,
the decision trees of both random forests were merged into one random forest model.
Institution 1 and 2 contributed 67 and 33 decision trees, respectively, proportional to
their number of samples. During training, gini index minimization was used for splitting

and the number of selected random features for each tree was 4.

To evaluate the models, we developed a tailored cross-validation which takes all
possible combinations of splits into consideration (see figure 3). This type of cross-
validation was performed ten times to further reduce random effects in the evaluation,

leading to 1,000 test runs in total.
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Figure 3. Training and evaluation of the FL model

The yellow random forests have been trained on the local data only. The green random
forest model emerges from aggregation of the local random forest models. To reflect
the different size of the training data, Institution 1 contributes twice as many trees to
the aggregated model as Institution 2. The blue reference model is the conventional
centralized ML model, which was trained on the whole dataset, i.e. of both institutions.

Each institution performed ten even splits on their data, as illustrated in Figure 4. To
assess the performance of the aggregated model, each combination of splits from both
institutions was used for validation, mirroring the conventional cross-validation
approach in a FL federated setting, leading to 100 cross-validation steps.

Unit 1: 10-fold cross validation

Unit 2: 10-fold cross validation
I I I I I I ) 4

Y

Figure 4. Cross-validation in the FL setting
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The application is available on the FeatureCloud Al Store and allows for running the
analysis for an arbitrary number of participants. Each participant contributes a number
of decision trees proportional to their share of the total data. A web frontend allows for
checking the number of valid samples and monitoring progress. The final accuracy,
obtained through cross-validation, is displayed as well. The global random forest,
consisting of all decision trees, can be downloaded by each participant for further

evaluation or to predict CAC classes on unseen data.

Results

It has been assessed if and to what extend the existing “classical” analogue CACS
assessments via CT screening could be improved through an Al based prediction
model and the according processes as well as potential benefits are displayed in Figure
5:

CT screening: Measurement of CACS
° Medical High
H U
‘_g' appointment A A CAgCS Treatment |
b o 4 » Treatment based on CT ;
8 [ 3 ] A scan i
: W . j i
Low - N
T " Radiation & i
o - @ _CACS | No treatment costs although i
CACS? CT scan not |
needed |
i
1
i
o o CACulator: Al-based CACS prediction s e o A :
@ !
t appointment O O Predicted Y - ) i
i3 o @ AT | e &
== > S Predicted
T o - No CT scan, no
) - 2 featurecloud ik flcal ot low . No treatment unnecessary
o e rom app CACS radiation & costs
CACS? different units

Figure 5: Comparison of the “analogue” and “digitally” supported CACS patient

assessment and according benefits (Authors)

The results of both, the centralized ML and the FL approach and the respective
sensitivity and specificity values are displayed in Table 1 and the median values of all

patient characteristics are tabulated in Table 2:
[Insert Table 1 and 2 here: All tables below main text]
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As visible, it can be derived that the centralized ML and the FL random forest models
showed similar sensitivity of 65.5% and 66.7% as well as specificity of 69.7% and

68.6%, respectively.

With regard to the main research questions, the following conclusions can be drawn:
1) It is technically possible that an Al model is used for the prediction of CACS, which
itself is based on the five risk factors age, sex, obesity, dyslipidemia and diabetes.
Although the sensitivity and specificity is with ca. 70% not very high and further factors
for improvement need to be identified and included, such an algorithm can already
provide some value add, since existing CAC CT scan assessments entail a significant

risk of erroneous patient risk group classification.

2) The FL-based decision support tool would essentially be comparably useful as both
of the approaches, the centralized and FL approach, deliver very similar outcomes in
terms of sensitivity and specificity. However, given FL’s significant advantage of
allowing privacy-preserving data access without actual primary data sharing across
different institutions, FL might often represent the much more feasible approach in daily
practice. Thus, FL can provide a significant benefit for future Al model training,

especially where data is privacy-sensitive and scattered across medical institutions.

Discussion and conclusion

This publication focused on the data access and algorithm training through federated
machine learning using the example of CACS prediction. While our results suggested
that an Al-based decision support tool can generally be constructed and that the
performance of the FL approach is similar to the one of the conventional ML approach,
it should be highlighted that we did neither aim at creating a completely new risk
indicator for the measurement of CACSs, i.e. choosing the optimal combination of risk
factors, nor at replacing CAC CT scans or other assessment processes currently
undertaken by physicians. Especially for the second one, a significantly higher

accuracy of a prediction model would be required.

The obtained results with sensitivity and specificity levels of close to 70% still require
further improvement in order to actually enable true benefits in clinical practice;
suggestions to achieve such improvements are presented as part of this discussion.
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Thus, in the following, 1) an embedding of the work in the research landscape, 2)
improvement areas for the developed FL CACS prediction model, and 3) overarching
facilitators for FL application are discussed and the results are aggregated in a

conclusion and outlook.

Research landscape

Prior studies also reflected on FL and for example Chamikara et Al. highlighted that
FL can require additional measures to guarantee data privacy or that computational
IT bottlenecks can occur and thus supporting algorithms inside the FL platform can
be applied (26).

One of these privacy measures can be so called “Differential Privacy”. Adnan et Al.
have analyzed The Cancer Genomce Atlas dataset, which is particularly interesting
since the images are derived through diverse imaging methods as well as devices
and are marked differently. Since, as mentioned, FL can not provide a privacy
guarantee because private information could in theory also be traced based on the
shared model parameters, they applied differentially private FL. This framework
quantifies the privacy of provided protocols and thus focusses on extracting as much
information as possible while consuming the least privacy. (27)

Also the accuracy difference between centrally trained models and FL has been
analyzed and Kirienko et Al. described in their literature research covering 26
publications that the prediction accuracy between both approaches is “equal” (28).

This has also been confirmed when FL was specifically applied for data access of
electronic health records. Dang et. Al could show that it was possible to apply FL for
in-hospital mortality prediction by analysing gender, ethnicity, lab tests for blood urea
nitrogen, the Glasgow Coma Scale, surgery type, heart rate, blood pressure and
others out of in total 82 parameters for their model training (29)

In addition to that, Zerka et Al. mentioned in their research that the convincing of
medical centers to join a FL approach can be a hurdle and that also regulators need

to be actively involved as suitable safeguards, since also with FL it remains a

significant task to collect enough patient samples for ML training (30).
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Furthermore, the analysis of CAC systems with support of technology has been
researched in the past. Rogers and Aikawa for example focussed on both, the
advances in molecular imaging and big data technology to map the disease more
comprehensively. They described that Al models can improve diagnostics and risk
assessment and that they could include additional biological data like vesicle release,
mineral deposition or inflammation data as well as the analysis of omics data, which

can contribute to a CAC development (31).

In addition to that, Sandstedt et Al. evaluated an Al based CACS software for the
scanning of tomography scans and came to the conclusion that calcified lesions
could be accurately detected by the Al compared with conventional methods. They
also highlighted that Al could be a crucial success factor for this global disease

burden and that it should be applied in the real world clinical setting (32).

Our publication focussed not on a tool for the assessment of diagnostic scans, but
medical parameters as input factors that could even be analyzed before a CT scan is
conducted and thus potentially the algorithm can enable patient screening without
exposure to radiation and its according costs. The prediction accuracy of 70% is not
yet high enough for a clinical day to day implementation and improvement areas for
an increased prediction capability are described in the following paragraph.

Improvement areas for FL-based CACS prediction

The accurate FL prediction of elevated CACSs could provide a very meaningful value-
add, as this would allow to adopt treatment regimens at an early stage.

There are various means by which the model’s prediction power could be further

improved, both quantitatively and qualitatively:

1) Quantitative enhancement measure: An extension of the 1,450 patient
collective, out of which only 680 patient samples could be included after
data pre-processing, could improve accuracy. This could be achieved
through the inclusion of additional medical institutions which grant access
to their respective patient data.

2) Qualitative enhancement measure: Several medical parameters can

influence CACS and the prediction accuracy of the trained Al algorithms
14
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demonstrates, that further parameters are required e.g. from medical
practice and laboratories. The prediction model’s accuracy could be
improved through the inclusion of these additional CAC risk factor areas
and extension examples could be family history, diet, hypertension,
smoking, chronic kidney disease, psychosocial factors, elevated
lipoprotein and elevated apolipoprotein.(33),(34)

Both of these measures shall be addressed through open access to the CACulator app

on the FeatureCloud website (https:/featurecloud.ai/ai-store/71). The input of

additional and new model parameters by various medical institutions shall be fostered

through this international research collaboration.

Furthermore, the developed FL model could be compared with other scores for the
identification of cardiovascular risk, but the American College of Cardiology and the
American Heart Association published in their review, that current risk scores were
found to vary widely with regard to the populations from which they were derived, risk
marker inputs/covariates, and outcomes of interest (35). One example is the ASCVD
score — a calculation of the patient’s 10-year risk of having a cardiovascular problem,
such as a heart attack or stroke, but also this scores has pitfalls, like overestimation of
10 year risk (36).

Overarching facilitators for FL application

In addition to that, there are more general improvement areas that could increase the
real-world application of FL in healthcare, irrespective of this particular use case:

First, easy access to the software should be ensured by implementing it into daily
medical routines, e.g. in the form of a smartphone application or by integration into the
electronic health record (EHR) system of the participating medical institutions. To this
end, several practical challenges need to be overcome. For example, the software
would need to comply with the respective regulatory requirements, such as the GDPR
in Europe or the FDA guidelines in the US, as well as medical product class guidelines.
Furthermore, the solution would need to fulfil the requirements for app downloads (e.g.
in the Google Playstore or Apple’s App Store) and the requirements of EHR providers
(e.g. Cerner or Siemens).
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An additional practical challenge for the application of FL is that its implementation
requires human and financial resources on the clinical side and is, thus, also a
business / economic decision. In order to also provide a compelling case from this
perspective, the economic benefits and costs of implementing the FL solution should
be assessed and measured. Such quantitative evidence would often contribute to a
faster scaling of the respective solution and additionally pave the way for public grants
and for better access to external resources.(37) This commercial aspect is also
reflected in the fact that FL research is currently mostly driven by large and primarily
tech-oriented industry players and not academia.(38) An increased amount of research
by industry-independent scientific institutions would likely entail a number of benefits,

including increased trust and application levels.

Furthermore, when applying FL in this research project, we also identified several
administrative steps that would significantly contribute to achieving higher levels of FL

application in real-world contexts in the future:

1) Implementation: The first installation of FeatureCloud or a similar solution
has to comply with legal standards, e.g. in the form of a contract between
the medical institution and the software provider. This process should
follow an automatized legal compliance process adapted to every
country’s legal framework. It could even differentiate between research
and operational implementation.(39) Furthermore, the software
installation needs to be compatible with the local IT infrastructure
specifications (e.g. firewalls) of the participating medical institutions. To
avoid technical issues and lengthy and complex adaptation processes as
well as mitigate the risk of delays, respective guidelines are required and
should be made available upfront.

2) Understandability: The processes for the application of the different ML
models should be easy to understand and designed in a way for them to
be initiated as well as steered by the participating medical institutions’
staff. To this end, explanations and training materials need to be provided
by the FL provider. Potentially, even governmental institutions may get
involved and support this process as this could further increase the trust
level as to the application of Al in healthcare.
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3) Scaling: Al can and should be applied in the context of different medical
indications. Patient data could be collected and, at best, be evaluated
automatically for different medical indications (e.g. asthma, diabetes and
electric implant monitoring). This requires the input of key decision-
makers on medical and business management level and, as a basis for
their decision-making, an objective and comprehensive overview of the
opportunities and risks of Al in healthcare is needed. This could be
enabled by a simple-to-use “entry point”, such as a functionality that
evaluates existing datasets with regard to their applicability for an Al use

case.

Progress in these improvement areas, namely the practical IT implementation in
existing EHR structures, measurement of medical and economic impact as well as
administrative support tools for implementation, understandability and scaling could

significantly contribute to an increased usage of FL.

Conclusion and outlook

An overall facilitated implementation of Al in healthcare depends on several factors,
but with regard to technological implementation, the access to data for the application
of algorithms is crucial. This publication focused on the data access and algorithm

training through federated machine learning using the example of CACS prediction.

It can be concluded that, Al can be used for CACSs prediction with a moderate
accuracy using the mentioned five data points (age, sex, obesity, dyslipidemia,
diabetes) and that a decentralized FL approach, which allows for privacy-preserving
data access across medical institutions, demonstrated a similar performance as a

conventional ML approach.

The current model performance of the proof of concept is still too limited for a clinical
setting and further improvements are needed to allow for clinical implementation. The
prediction accuracy of the CACS model could be improved through a) a more
comprehensive patient collective and b) an extension to further CAC risk factor areas.
These improvements require data access across institutions and are only possible in
a privacy preserving context, thus federated machine learning can be a very important

success factor regarding Al application for CACS prediction.
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In addition to the use case-specific improvement areas, we also identified several
general improvement areas that could increase the real-world application of FL in
healthcare: First, medical institutions should be able to access the FL software in the
context of daily medical routines and electronic patient records. Second, a reliable
economic impact assessment is needed to support the strategic decision to apply FL,
especially given the required medical team and financial resources. Third,
administrative support in terms of legal and technological implementation standards,
training material for the participating medical institutions’ staff and simple data

validation mechanisms for the verification of Al suitability can facilitate implementation.

Overall, it can be concluded that FL can provide significant value across different
indications as it allows to exploit data from different sources in Al model training via its
privacy-preserving design and can thus support an overall increased implementation

of Al in healthcare.
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Tables:

Metric Institution 1 Institution 2 Centralized Federated
Accuracy 68.12 % 64.71 % 67.65 % 67.65 %
ROC AUC 75.22 % 7114 % 75.52 % 75.09 %
Sensitivity 64.86 % 66.67 % 65.52 % 66.67 %
Specificity 71.61 % 63.64 % 69.70 % 68.57 %
Samples 477 202 680 477 + 202

Table 1. Results of the centralized and FL analysis, showing the mean accuracy, ROC

AUC, sensitivity, specificity and number of patient samples for Institution 1 and 2

individually, the FL model and the centralized ML model

All CACS<5 |CACS>=5 |Inst.1 Inst. 2
Age 57.0 54.0 61.0 57.0 57.0
Height 179.0 179.0 178.0 179.0 178.0
Weight 87.0 86.0 87.0 87.0 86.0
Waist 98.0 96.0 101.0 99.0 98.0
Chol. 228.0 230.0 224.0 228.0 224.5
Tri. 129.0 122.0 136.0 127.0 131.0
HDL 51.0 53.0 49.0 50.0 53.0
LDL 156.0 158.0 152.0 160.0 149.5
HBA 5.5 5.4 5.6 5.5 5.5
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Table 2. Median values for age, height, weight, waist, cholesterol, triglycerides, HDL,
LDL, HBA and BMI in the complete group, the group of patients with a CACS below
and above 5, and the patients from Institution 1 and Institution 2 individually
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Supporting information

Medical parameters

This section covers the relationship between the included models parameters and the

CACS and outlines our rationale for including them in our prediction model:
1) Age and biological sex

The extent of CAC is strongly associated with age in men and women. Calcification is
first detected in most men at around age 40, whereas women first show calcification
around age 50.(40) The incidence in women is delayed by 10 to 15 years as compared
to men, likely attributable to the protective effects of estrogen.(41)

The effect of estrogen and, also, according therapy on CAC has been examined, for

example, for women aged 50 to 59 years during a 7-year period of treatment. The CAC
25
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was significantly lower for women assigned to estrogen substitution as compared to

those receiving placebo.(42)
Il) Obesity (measured through waist circumference)

Further, obesity was shown to be strongly associated with an elevated risk of chronic
heart diseases across several clinical studies.(43),(44),(45),(46),(47),(48) In this
regard, the waist circumference, rather than the body mass index, is more likely directly
associated with mortality.(49),(50)

lll) Dyslipidemia (measured through cholesterol, triglycerides, HDL, LDL)

A prior study assessing CAD risk scores for 2,599 participants of the Dutch-Belgian
Lung Cancer Screening Trial revealed nominally significant associations for genetic
risk scores of low-density lipoprotein-cholesterol, total cholesterol, and obesity.(49)

Furthermore, in a multi-ethic cross-sectional analysis, 4,917 atherosclerosis
participants were classified into six groups defined by specific LDL-c, HDL-c, or
triglyceride cut-off points. Multivessel CAC was defined as the involvement of at least
two coronary arteries. This study revealed that all groups except for the one exhibiting
hypertriglyceridemia had statistically significant prevalence ratios of having multivessel
CAC as compared to the normo lipidemia group.(52)

IV) Diabetes mellitus (measured through Hba1c)

CAC tends to be higher in diabetic patients and represents an independent risk factor
for adverse outcomes.(53),(55) In different studies, the average CACS for subjects with
and for those without diabetes was 281 +/- 567 and 119 +/- 341, respectively. Also, the
death rate was 3.5% and 2.0% for subjects with and without diabetes, respectively. In
a risk-factor-adjusted model, there was a significant interaction of CACSs with
diabetes, indicating that, for every increase in CACS, there was a greater increase in
mortality for diabetic than for non-diabetic subjects. However, patients suffering from
diabetes with no CAC demonstrated a survival rate similar to the one of individuals
without diabetes and no detectable CAC (98.8% and 99.4%, respectively).
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6. Discussion

This chapter is split into a discussion of (1) academic research about Al
implementation in healthcare, (2) the identified success factor categories, i.e., risk-
allowing policy framework, privacy-preserving data access, evidence on impact, and

(3) limitations of this thesis.
Academic research

The implementation of Al in healthcare can contribute to solve significant medical and
economic challenges, for example to cope with the growing need for healthcare
services of an ageing population, the shortage of medical staff and the increasing
amount of healthcare expenses. It has also been the subject of numerous academic
research projects in the past.

For example, Park et al. argue that for a range of Al applications, from digital
secretaries over voice recognition to predictive modeling, further action is needed in
terms of a) a better utilization of healthcare data, especially by tackling the privacy
issue, b) adequate policies for new devices, and c) the prevention of safety and liability
issues (Park et al. 2020). Also, concrete roadmaps for building effective, reliable and
safe Al systems have been developed in previous publications. For example, Bajwa
et al. propose a process that consists of the following steps/phases: Design and
development, stakeholder @ engagement, human-centered Al  approach,
experimentation, validation, scaling and maintenance (Bajwa et al. 2021). Another
approach is the design-thinking mixed methods approach by Smith et al. The authors
propose for the process to be broken down into four steps, namely plan, do, study and
adjust, where each Al implementation team shall conduct as many cycles as
necessary to refine the workflow and model in order to successfully implement an Al
solution (Smith et al. 2021).



While these studies also presume a high potential for Al in healthcare if the necessary
actions are undertaken to unlock its full potential, other authors are rather critical about
the potential scope and value-added of Al. For example, Shaw et al. consider a
breakthrough of Al in healthcare in the short term only likely in the form of machine
learning applications for the purpose of decision-making support. However, the
authors argue that even for that, first, an appropriate environment, for example, with
view to privacy and scalability, needs to be established (Shaw et al. 2019). Also, Gama
et al. analyzed in a review implementation frameworks for Al and came to the
conclusion that many existing Al implementation frameworks do not fully include the
unique requirements that Al require and they propose to leverage existing knowledge
from implementation science as well as significantly increase empirical research in this

area for implementation uptake (Gama et. al 2022).

The existing research shows product focussed improvement areas, workflow
suggestions and expected limitations and this thesis tries to approach the gap between
the promising academic research and the low practical implementation systematically
by examining both, Al's potential from a multi-stakeholder perspective and real world
cases. The different success factor categories which have been identified are

discussed in the following.

Risk-allowing policy framework

The healthcare industry is generally highly regulated and, thus, policy frameworks play
a key role when developing healthcare hardware and software solutions. As one
example, medical product class certifications like the MDR in Europe affect numerous
steps from R&D to admission including clinical trial procedures, reimbursement as well

as data safety and interoperability.

Therefore, it is not surprising that first attempts towards Al policies can already be
observed, for example through US and EU frameworks. While both have an Al policy

framework, it must be noted that these differ significantly:
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The EU published for example two key documents: The Commission Whitepaper “On
Artificial Intelligence — A European approach to excellence and trust” from 19 February
2020 and the “Proposal for a regulation of the European Parliament and of the Council
- Laying down harmonized rules on Atrtificial Intelligence and amending certain Union
Legislative Acts” from 21 April 2021 (EU Commission 2020, EU Commission 2021).
With regard to the first document, the aim of the EU was adequate compensation in
the event of damage, fair distribution of liability and no worse treatment of victims of
Al systems compared to those of other products. The EU Commission plans its own
proposal to initiate the legislative process from 2022. The objective of the second
document was to create a legal framework for trustworthy intelligence while enhancing
European competitiveness. There is a discussion of the draft and opinions in the
European Parliament and the European Council, although the entry into force is not
expected before 2023 (CMS 2021).

The EU applies in these documents a hazard/risk-based approach in which a
differentiation of Al applications takes place between A) low or minimal risk, B) high
risk and C) unacceptable risk. Possible penalties for serious infringements (use of
prohibited Al system practices and non-compliance with the quality criteria for data
used) can be up to EUR 30 million or 6% of the last year's global turnover of a
company.

The following differentiation of Al systems shall take place:

e Low or minimal risk: Can be applications like chatbots, where the users
themselves still can take decisions on their own
e High risk:

o A) Risk to the health or safety of natural persons, e.g., through
biomedical identification, access to critical infrastructure, HR
applications, law enforcement or administration of democratic processes

o B) Al systems as safety components of products covered by certain
sectoral Union legislation and as such products themselves, e.g.,
medical devices or in vitro diagnostics

e Unacceptable risk: A use is considered unacceptable as contravening Union
values, for instance, by violating fundamental rights, e.g., manipulation of
persons beyond consciousness or exploitation of vulnerabilities of specific
groups such as children
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In order to assess the risk, a conformity assessment shall take place with strict and
binding requirements regarding: Quality of the data sets used, technical
documentation and other records, transparency and provision of user information and

human oversight as well as robustness, accuracy and cybersecurity.

The process is displayed as followed:

Step 1 Step 2
Development of high-risk Al %T(‘; EQ Registration of stand-alone

Al system in a EU database
system

If substantial
changes happen
in the Al system's
lifecycle, go back

Assessment of conformity and DG

compliance with Al requirements

Signature of declaration of conformity

Note: Al system should bear the CE marking

Note: For some systems, a notified body is

involved too — - Placement on the market

Step 3 —9 Step 4

Figure 4: Process of market placement of a high-risk Al system by the EU (CMS 2021,
adapted by author)

The process raises concerns of challenging requirements, especially for Small and
Medium Sized Enterprises, as well as its wide room for interpretation/judgment in

terms of classification.

In the US, there is currently no federal regulation on Al, but there is an agency-by-
agency approach, with several institutions that publish guidelines and documents. For
example, the US Food and Drug Administration published the “Proposed Regulatory
Framework for Modifications to Artificial Intelligence/Machine Learning - Based
Software as Medical Device” in 2019 (U.S. Food and Drug Administration 2019). This

document refers to:
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e Establishment of Quality Systems and Good Machine Learning
Practices (GMLP), including usage of only relevant data, the separation
between training, tuning and test datasets or transparency of the output

e Conduction of initial pre-market reviews to assure safety and
effectiveness

e Monitoring of the Al devices based on development, validation, and
execution of algorithm changes such as “Algorithm Change Protocol”

e Post-market real-world evidence performance reporting for maximized
safety and effectiveness

The White House (via the Trade and Technology Council (TTC)) stated, that it is
committed to cooperate on developing “Al systems that are innovative and trustworthy
and that respect universal human rights and shared democratic values” as well as to
“‘uphold and implement the OECD Recommendation on Artificial Intelligence” and to
discuss “measurement and evaluation tools (...) to assess the technical requirements

for trustworthy Al” (Orric 2021).

The Department of Commerce (DoC) demonstrated through the National Institute of
Standards and Technology (NIST) a risk management framework: They announced
the development of the “Al Risk Management Framework”, which could influence how
companies and organizations approach Al-related risks, including avoiding bias and
promoting accuracy, privacy, and security. Furthermore, the NIST established a
National Artificial Intelligence Advisory Committee (NAIAC) and will “advise the
President and other federal agencies on a range of issues related to artificial
intelligence” and will offer recommendations on the “current state of U.S. Al
competitiveness, the state of science around Al, issues related to the Al workforce”

(US Department of Commerce 2021).

As demonstrated in the approaches of the EU and US, the risk-allowing policy
frameworks are still under development and are vital components for implementation,
because they influence the deployment process. Policy frameworks need to address
specificities of the healthcare industry with a crucial balance between data security
and privacy as well as feasibility of technological progress and Al application. In a

similar vein, especially in healthcare systems with statutory health insurance,
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appropriate organizational structures e.g., for market access and reimbursement need
to be established.

While industrial institutions have some freedom with regard to the policy environment
(e.g., when choosing where to locate their research centers or choosing the market
for a healthcare solution), there is a need for action by governments to facilitate Al
implementation in healthcare internationally. Indeed, looking at the population growth
development and the need for healthcare globally, Al will play a crucial role in public
policy. Based on the current trends and needs of the global population, by 2030, there
will be ca. 10 million fewer healthcare professionals, including ca. 5 million fewer
doctors than society will require (World Health Organization 2016). As one country
example, until 2030, the gap between supply of and demand for staff employed by
National Health Service trusts in the United Kingdom (UK) could increase to almost
250,000 full-time equivalent positions (The Health Foundation 2018). Furthermore, the
World Health Organization has predicted that by 2030, 30% of global death will be
caused by lifestyle diseases and this can be prevented with an appropriate
identification of associated risk factors and intervention plans, where especially
behavioral change plays a major role (Chatterjee, Gerdes, and Martinez 2020). Key
associated indications are cardiovascular diseases, obesity and diabetes type Il and
for each of those, Al can be vital for their early diagnosis and respective treatment. In
this context and against the background of the clear and global need for Al in
healthcare, it is essential that governments create frameworks that facilitate Al
implementation across the medical value chain, i.e., from R&D over market access to

scaling.

Privacy-preserving technology
As to the technological implementation, it has become evident that a key challenge in

healthcare is that on the one hand Al requires large data sets and on the other hand
medical data is of utmost privacy-sensitivity and also scattered across institutions.
Therefore, a privacy-preserving technological infrastructure is required to enable

large-scale data access for the purpose of high-quality Al model training.
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This thesis presented FL as one promising approach in this respect. Yet, the extent to
which FL can be applied across medical data types as well as combinations of different
data types has not been assessed within this study and should be assessed going
forward. For example, one study already showed that a FL approach for medical
images showed the same classification performance as a centralized Al approach
(Chatterjee, Gerdes, and Martinez 2020; Kaissis et al. 2021).

In another study, COVID-19 case data were analyzed in a FL setting to predict
infectious cases and recovery rates using chest x-ray data (Abdul Salam, Taha, and
Ramadan 2021). The FL model demonstrated a better prediction accuracy and loss
while requiring higher performance time than the traditional machine learning model -
this parameter has not been considered in the conducted publication of this thesis.

Such a specific trade-off of requirements is therefore suggested for future studies.

In addition to that, there are alternative approaches that may be more appropriate than
the proposed FL approach, in general or under specific circumstances. Some first
examples from the area of precision medicine are based on the “Swarm Learning”
methodology, a different decentralized machine-learning approach that unites edge
computing and blockchain-based peer-to-peer networking. First results for COVID-19,
tuberculosis, leukemia and lung pathologies showed positive results while maintaining

privacy laws (Warnat-Herresthal et al. 2021).

Future research should compare different privacy-preserving approaches to shed
more light on their suitability in different medical environments. In this context, different
dimensions should be considered such as data types, costs, quality from a
methodological perspective (e.g., accuracy), process complexity (e.g., in terms of
feasibility for the medical staff involved at the participating medical institutions) and

capacity (e.g., in terms of feasibility with “regular” servers at medical institutions).
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Medical and economic impact measurement

Regarding impact measurement, the thesis showed that there are only few medical
and economic impact assessments and that these are commonly subject to
methodological flaws. This implies that to-date, strategic decisions for or against Al
implementation by different institutions commonly lack evidence on the impact
consequences of applying Al. Given this uncertainty, decision-makers could likely
abstain from implementing Al to avoid financial downside risk, competitive
disadvantage, investor discontent etc. However, considering the promising evidence
as to the benefits of Al in the context of the global corona pandemic in the last years,
impact assessments would likely often indicate that there is actually a high financial

upside potential (Wang et al. 2021).

The overall limited evidence on the economic benefits of Al in healthcare may also
more generally disincentivize actors from engaging in costly innovation activities in the
first place. As such, the quantity and quality of impact assessments should be
increased not only to support decision-makers with view to the concrete solution under
analysis, but also to generally improve knowledge on the medical and economic
benefits of Al. Public institutions, governments, academic researchers, medical
institutions and also the industry could contribute to such a knowledge base by

according data collection in reference cases.

In particular, appropriate quantitative approaches, e.g., in terms of uniform and well-
established outcome measures, and qualitative approaches with standardized
reporting processes should be applied. A higher amount of reliable evidence on the
value-added of Al would likely also increase patients’ trust in Al solutions in healthcare
and, thus, market acceptance. Although medical impact is likely more relevant for
patients, some positive economic impacts are also rewarding for them. For example,
an Al chatbot for healthcare advice can be efficient from the doctor’s perspective and

simultaneously generates time savings (e.g., no waiting or travel time) and reduced
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costs (e.g., transport costs) for patients when no medical intervention is needed or

when it is simply unavailable at the point of care.

As some decision-makers such as private institutions could prefer to keep their impact
assessment results private, academic researchers can play a particularly valuable role
to improve the state of knowledge in this area. In addition, governments could support
by setting incentives for publication of impact data of private institutions or by
publishing the results, where available to them, in an anonymous, less granular or

aggregated form.

Limitations of this thesis

While this thesis identified and elaborated on three key success factor categories to
increase Al implementation in healthcare, there are of course additional success

factors that are not addressed or could be further elaborated on.

First, further success factor categories could be researched. One option could be
“responsible” Al as well as according ethical standards. In this regard, key aspects
comprise strong ethical practices, information security, well-being of the society,
workers’ skills, and organizations’ Al-culture (Fosso Wamba and Queiroz 2021).
Responsible Al could contribute to the likelihood of successful Al implementation, both
in terms of compliance, but also patient acceptance and support by governments and
payors. A further parameter could be social or environmental dimensions (e.g.,

contribution to lower emissions through reduced traveling).

Second, this thesis elaborated on how Al implementation in healthcare can be
increased overall, yet does not focus in particular on the perspective of patients or
physicians, which could be further highlighted. In particular, a prior study showed that
patients have multiple concerns regarding Al in healthcare, for example regarding the
safety of Al, threats to patient choice, potential increases in healthcare costs, data-

source bias, and data security and the authors highlighted, that patient acceptance of
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Al need to be improved (Richardson et al. 2021). These patient concerns are also
affecting physicians and their role as “gatekeepers” for healthcare access. There are
significant confidence building measures required which should be elaborated further.
Governments and national public authorities could for instance help to reduce such
concerns and increase trust by establishing appropriate policy frameworks and by
publicly promoting successful Al application cases. Furthermore, medical institutions
likely need to take this into account as well and, next to high-quality impact
assessments, they could also develop communication strategies for patients, e.g., with
regard to Al benefits in their treatment regimen. In any case, given the need to achieve
Al acceptance, future research should assess the patient and physician perspective

in more detail.

Third, reimbursement frameworks need to be analyzed further. There is a constantly
developing reimbursement landscape for DH and Al, for example with the DiGA
reimbursement in Germany or the mHealthBelgium M1-M3 reimbursement system.
These requirements also significantly shape the regulatory frameworks, for example
the German law requires a medical product class | or IIA classification as obligatory
requirement for approval as also elaborated in the publication “The impact of Al on the
Healthcare Economy”. Still there could be further research on the overall development
of DH reimbursement frameworks and also the interconnection between country
specific systems, e.g., in order to conduct one Al clinical trial for internationally

accepted evidence generation.

In addition to these three points relating to success factors, future research could
elaborate on a) how the assessed success factors are interlinked and b) their context-
specificity, namely which success factors are particularly relevant under which
circumstances. Exemplary dimensions are preventive care vs. chronic diseases or
low-resource vs. high-resource healthcare countries. This could provide further
context-specific guidance and recommendations to medical institutions and thereby
likely further contribute to closing the gap of real-world Al implementation. In addition

to that, Al in healthcare is a very dynamic field and recent developments show already
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some hints about future development in this sector: The scientific landscape is fastly
developing and, for example, health services management, predictive medicine,
patient data and diagnostics, and clinical decision-making are key research areas,
while in the US, China, and the UK so far the highest number of academic studies
have been published (Secinaro et al. 2021). Also the technological development is
ongoing and, for example, first architectures that contain blockchain-based loT
platforms and use FL have been introduced, which shall enable faster scaling of
solutions (Singh et al. 2022). Long et. al also give a broader outlook by stating that FL
can enable a new chapter of “Open Innovation” since it can be the next general Al
model training framework within the research community, but also with external
partners (Long et al. 2022). Overall, additional success dimensions, the patient and
physician perspective, future reimbursement models, the case specific interconnection
of success factors categories as well as key technological trends could be areas of

future research.
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7. Conclusions

This thesis examines how real-world Al implementation in healthcare can be
increased. It sheds light on the current status quo of Al implementation within the
healthcare industry, showing that there are currently only few large-scale real-world Al
use cases and it elaborates on key success factors and measures for increased
implementation. While various barriers have hindered such a transformation to take
place in the healthcare market yet, this thesis suggests that this development can be

actively steered.

In particular, four current developments are likely to trigger the transformation of the
healthcare market: First, there is an urgent demand for Al to support in coping with the
worldwide healthcare challenges of rising costs, increased demand for services and
labor shortages in this sector. Second, improvements with regard to technological
capabilities in recent years have simplified access to and scaling of Al applications.
Third, for the first time, noteworthy awareness and acceptance levels can be observed
for Al application in healthcare, both among key decision-makers such as
governmental institutions as well as among patients. Finally, the global corona
pandemic has demonstrated the significant need for DH and Al structures and

accelerated the development of reference cases.

Yet, to facilitate the transition, concrete steps need to be undertaken by governments,
researchers, medical practitioners and industry key decision-makers. In this regard,
this thesis lays out three key success factors for Al implementation: 1) A facilitating
policy setting 2) A privacy preserving technological infrastructure and 3) A high-quality

medical and economic impact assessment.

The first success factor category, namely policy setting, can be influenced through
continuous support by governments in the form of facilitating policy frameworks, such
as the German Digital Healthcare Act, providing clear structures for the approval of

DH services (e.g., regarding safety, medical product class, etc.), medical and
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structural endpoints for evidence generation processes, and the reimbursement

through public health systems in order to support the growth of DH and Al.

The latter two success factor categories, privacy preserving technological
implementation as well as medical and economic impact measurement, can be
actively steered by researchers and practitioners to increase the likelihood of success

of Al implementation.

As to technological implementation, data access across medical institutions is a key
factor for the real-world use of Al and given its privacy preservation characteristic, FL
is a promising potential pathway for Al application. This could be demonstrated in a
concrete Al use case in the context of CACSs prediction. Accordingly, the thesis
suggests that privacy preserving technology should be applied for Al implementation
and a suitability differentiation between medical contexts would contribute to actual

real-world use.

With regard to impact measurement, both medical and economic impact represent key
factors in strategic Al decision-making. The thesis shows that impact has so far been
assessed rarely and with insufficient quality. Since high-quality evidence
measurement is crucial for increased real-world scalability this should be collected in

standardized assessments.
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In the following figure a short summary is provided:

1  Success Factors of Artificial Intelligence Implementation in Healthcare

a) The research revealed that there are currently only few (large-scale) real-world Al use cases in healthcare

b) Several success factors for real-world use could be identified, namely from the following three categories: a) A facilitating policy setting
(e.g. technical requirement, endpoints, reimbursement), b) A privacy by design technological infrastructure (e.g. using federated machine
learning), and ¢) Medical and economic impact measurement
While the first one is politically driven, the latter two categories can be actively steered by scientist, the medical and industry community

Impact of Artificial Intelligence on the Healthcare Economy

a) Al has already transformed other markets / industries and has immense potential for the healthcare economy

b) The interconnection of cost cutting needs while facing increased demand for healthcare, significant technological advancements, increasing
acceptance and awareness for Al and the increased need for digital health structures through Covid 19 support AI growth

c) A policy framework in form of the ”Digital Healthcare Act” of the ministry of health in Germany has been provided to demonstrated the
requirements and process for digital health validation and reimbursement as a basis for AI growth

Economic Impact of Artificial Intelligence in Health Care: Systematic Review

a) Medical and economic impact are both key factors in strategic decision-making for or against Artificial Intelligence implementation
b) The medical and economic impact has so far barely been assessed and with insufficient quality
c) Next to more impact assessments, QALY measurement, Net Present Value and Alternative Investment Comparison shall take place

4  Privacy preserving methods of Machine Learning for the Training of Artificial Intelligence Models

a) Broad data access is a key factor for the real-world use of Al yet data in healthcare are highly private and often fragmented
b) Given its mechanism for privacy preservation, FL is a potential pathway for Al data access across medical institutions
¢) The accuracy of a centralized and federated ML model proved to be almost identical — while FL simplifies access to scattered data sources

- In addition to the currently developing political environment (e.g. Al frameworks in EU and US, facilitating policy settings for evidence
generation or reimbursement and the corona pandemic), scientists, the medical community and the industry can take own concrete actions
immediately to leverage Al implementation through increased medical and economic impact measurement as well as the application of privacy
by design technologies in order to increase the real-world usage of Al in healthcare

Figure 5: Overview about overarching conclusions in the publications

With view to the above-described conclusions, this thesis provides suggestions for
governments, researchers, medical practitioners and the healthcare industry. The
specific recommendations for increased real-world Al implementation in healthcare

were derived directly from the research results and | recommend the following actions:

Governments/regulators:

e Governments shall set concrete and transparent frameworks for the
implementation of DH and Al, including regulatory requirements with view
to e.g., medical products classes, evidence generation requirements (split
into medical and economic data) as well as guidelines for the
reimbursement in the same form as for classical healthcare services like
drugs/ medtech devices

e Clear risk assessments and evaluation should be implemented to enhance
the trust levels of physicians and patients

e The existing Al regulatory frameworks in the US and Europe will likely serve

as a benchmark or even a reference case for other regions and, thus,
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require extensive research in their currently ongoing completion process;
the real-world insights from medical practitioners, industry and academics
about Al should be integrated and systematically evaluated (one example is

the collaboration with notified bodies)

Academic research:

Through increased and open access translational research on Al driven
diagnosis and treatment processes, researchers can significantly contribute
to closing the current implementation gap

Medical and economic impact measurement of DH and Al needs to be
extended both from a quantitative perspective and a qualitative perspective
e.g., via the inclusion of reporting standards inside publications or even
requirements of publishers for assessments

Existing datasets should be used to assess the accuracy of Al technologies
and their respective value-added in terms of a medical decision-making
support tool; a reference case is the decentralized Al-based CACS
prediction model that contains > 1.500 patient data

FL may also represent a valuable tool in other medical contexts and future

research should analyze the benefits of FL in different applications

Medical practitioners:

e DH and Al offer significant improvement potential and should be an integral

part of the innovation strategy within the medical unit and contain concrete

implementation goals

e Assessments of the medical and economic impact of DH and Al applications

should serve as evidence basis for budget decisions, e.g. with the hospital
management

Medical impact should be measured and standardized, for example, by
applying QALYs based on EQ-5D as well as the CHEERS and PRISMA

criteria
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Industry:

Economic impact should be measured through Net Present Value
calculations and respective assessments should include Cost Alternative
Scenarios

The medical and economic impact is also a crucial requirement for
reimbursement, like in the DVG example from Germany, and provides room
for external collaboration with the industry. Therefore these impact
assessments should be integrated in a way to facilitate engagement with
other healthcare stakeholders such as insurance providers and government

agencies.

Although there is significant market potential, only very few real-world cases
of Al in healthcare exist yet - the significant business opportunity is also
visible in a comparison with other industries that have used Al applications,
such as e-commerce, and measurable growth goals for Al solutions shall be

integrated in the company’s growth strategy

e There are concrete market needs such as the need for cost savings in

healthcare, shortage of medical staff and increased need for medical care
due to population growth that Al can at least partially solve - these are
opportunities for large-scale industrial application

FL can be even more important in industrial applications due to stricter
regulations (esp. with regard to data privacy) as compared to a merely
academic or hospital research context - thus the application should be
fostered early and with a comprehensive roll out plan

Industry providers should structure Al applications in the most user-friendly
way to allow for easy and efficient integration into the existing day-to-day
business e.g., via smartphone apps, integration into EHR systems etc. while

complying with regulatory frameworks
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Altogether, it can be stated that many of the abovementioned recommendations could
be directly implemented and there is of course also an interconnection between the
stakeholders and their interests: For example the data about medical and economic
impact assessments and the real-world implementation processes inside the medical
facilities are urgently needed by the regulators to provide according frameworks that
in turn support real-world implementation. The necessity to take account of this
interconnection can be seen in yet unsuccessful digital infrastructure projects that
have been imposed by governments or the slow development of Al regulatory
frameworks as well as the generally low level of large-scale Al use cases induced by

a lack of government policy.

Considering the significant potential to positively impact people’s lives and the
economies worldwide, a fast acceleration of Al in healthcare should be enabled as
quickly as possible. A close collaboration between governmental institutions,
academic research, medical practitioners and industry stakeholders could actively
support this development in order to leverage the full potential of Al in healthcare and

to ultimately obtain significant medical and economic benefits globally.
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