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DOCTORAL THESIS
Perspectives on the Warehouse of the Future

1 Introduction

This doctoral thesis develops new perspectives for the warehouse of the
future. It presents a research agenda and theoretical foundation for the
optimization of human-machine interactions, introduces a goal-setting in-
tervention for a semi-automated pick-to-light human-machine interaction,
and finally develops a mathematical optimization model for the selection of
the most suitable order picking solution (OPS).

In this first chapter, warehousing and its role in modern supply chains is
explained (Section 1.1). Given the transformational character of automation
and resulting human-machine interactions for warehousing, these topics are
introduced in 1.2.

The remainder is organized as follows. Chapter 2 gives an overview on
the three contributions (articles) that compose the main body of this
dissertation. In this way, involved authors and status of publication are
provided, while the purpose, methodology and findings of the contributions
are summarized. Chapter 3 to Chapter 5 each contain one of the three
articles. Finally, Chapter 6 synthesizes the findings and outlines areas of
future research.
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1.1 The role of warehousing in modern supply

chains

Warehousing is the intermediate storage of physical goods between different
stages of a supply chain. The basic functions of a warehouse are receiving
and inspection, put away, order picking, packing, and shipping (De Koster
et al., 2007). Bartholdi III and Hackman (2020) specify two main purposes
of warehouses. First, they are crucial to satisfy customer demand by having
supply on stock. Second, warehouses are required to consolidate products
for cheaper transportation costs and higher customer service levels. In this
way, warehouses form a critical part of a firm’s logistic setup (De Koster
et al., 2007), being responsible for more than 20% of total logistics cost
(Rodrigue, 2020). Warehousing thus constitutes a critical research field
within operations management (see Azadeh et al. (2019); Boysen et al.
(2019, 2021); Fragapane et al. (2021); Jaghbeer et al. (2020); Vanheusden
et al. (2022) for recent overviews).

In the last years, warehousing has experienced a substantial transformation
from a cost center to a central component in the value proposition of firms.
Not only the ever increasing volumes of e-commerce orders has put the
efficient orchestration of warehousing operations at the focus of operations
managers (Schiffer et al., 2022). Additionally, growing customer demands
and delivery expectations are fueling the necessity to push products faster
and cheaper through warehouses and supply chains. Hence, they gained
a pivotal role to ensure an efficient and effective material flow, especially
to create resilient supply chains when facing volatile markets or increasing
customer expectations on product range, availability and lead times. To
establish efficient warehousing operations, managers recently implemented
a large variety of semi- and fully automated warehousing systems, often
resulting in novel human-machine interactions (see, for example, Fottner
et al. (2021)). We focus on these two topics due to their transformational
character for warehousing operations in the following.

2
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1.2 Automation, robotics, and

human-machine interactions

Expanding automation and robotization has been the focal point of oper-
ations in the recent years (IFR, 2020). Enabled by advances in Internet
of Things devices and artificial intelligence, coupled with the advent of
new system providers and decreased price points, one surging change in
operations evolved to be in the arena of warehousing. In fact, the size of
the warehouse automation industry has been increasing by 12% annually
between 2014 and 2019 (Statista, 2020; The Logistics iQ, 2020). This
market growth goes along with an increasing number of automated and
robotized warehousing solutions, especially for order picking. A search on
an independent comparison platform delivers more than 200 results for
warehousing robots from more than 80 different solution providers (Lots
of Bots, 2022). But this may only be the beginning: Huge sums of ven-
ture capital investments span over the last years and continue to rise in
an unprecedented magnitude and speed (see, for example, Forbes (2021);
TechCrunch (2021).) It comes thus at no surprise that the global size of the
warehouse automation market is expected to reach USD 41 billion within
six years, with an average annual increase of 14% from 2022 to 2027 (The
Logistics iQ, 2022). Automated warehousing systems are gaining this large
momentum because they enable faster throughput times, reduced cost,
higher pick quality, more efficient space utilization, improved ergonomics,
and lower dependence on human workers to cope with the ongoing labor
shortage (Azadeh et al., 2019; McKinsey & Company, 2021a; Pazour et al.,
2014). Innovations in warehouse automation thus play a crucial part in
delivering products efficiently and effectively throughout supply chains.

Despite these technological developments, human operators will still be
necessary to fulfill operational activities. Humans have distinctive character-
istics, skills and capabilities that robots are not able to replicate or perform
cost efficiently. For instance, they excel in flexibility when swift reactions
are needed to volatility of the picking workload (e.g., during high-peak sales

3



Introduction Fabian Lorson

seasons). As automated picking solutions are generally linked to a specific
capacity, human operators compensate for these fluctuations and persist
to play a decisive role in aligning supply and demand. They are also able
to handle a larger product variety along different criteria such as product
dimensions, weight, special handling requirements (for fragile products for
instance) or packaging types (Gutelius and Theodore, 2019). Automated
and robotized systems are typically fixed for certain product specifications,
while humans continue to complement or even outperform those in dynamic
circumstances with changing specifications (Sgarbossa et al., 2020). Thus,
manual workforces and machines will be working alongside each other in the
warehouse of the future (Olsen and Tomlin, 2020), leading to the necessity
to optimize collaborations among humans and machines.

In this dissertation, these resulting human-machine interactions and the
large variety of order picking solutions are addressed (see Figure 1.1). Specif-
ically, Chapter 3 (Article 1) develops a research agenda for human-machine
interactions in warehousing including behavioral issues, theoretical foun-
dations and unifying themes. This is the first necessary step to generate
a holistic and accurate understanding of this nascent, yet emerging area.
The formulation of research questions as well as the development of theo-
retical foundations and unifying themes is imperative to guide the way for
future research. By doing so, incorporating behavioral issues into future
optimization approaches for human-machine interactions is required to
account for the human factor and to ultimately establish efficient operating
policies. One of those issues, that is mental impoverishment and stagnating
system performance, is tackled utilizing an intervention-based research
(IBR) approach in Chapter 4 (Article 2). Solving this issue is particu-
larly important as maximizing performance for repetitive and monotonous
operational activities plays a major role in many organizations’ success
(Bernstein, 2012; KC, 2020; Staats and Gino, 2012). Especially in emerging
human-machine interactions for warehousing tasks, human workers often
perform such repetitive assignments (e.g., physical retrieving of items or
erecting and folding cartons (Bai et al., 2021; Sun et al., 2021; Wang et al.,
2021)). Hence, it is crucial to maximize both human factors and system per-

4
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formance. Finally, a novel mathematical optimization model is introduced
and formalized for the strategic OPS selection and assignment problem
(Chapter 5, Article 3). This decision support is imperative for warehouse
planners, as no suitable model exists that addresses recent development
and challenges such as the skyrocketing number of novel OPSs, the ongoing
labor shortage, the enlarging product diversity or the increasing importance
of space utilization. Thus, Chapter 5 contributes scholars and practition-
ers alike, particularly by deriving the conceptual background to establish
necessary decision variables and constraints, conducting a case study to
prove a large cost saving potential, and applying numerical experiments to
generate managerial insights.

Figure 1.1: Relationship of the three articles

Given the complexity of warehousing and the underlying decision problems,
research in this thesis is not limited to one specific research methodology.
Instead, a variety of approaches (such as qualitative interviews, litera-
ture review, conceptual theory building, mathematical optimization or
intervention-based research) are applied to develop a holistic understand-
ing.
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2 Contributions

This chapter introduces the three articles (Chapter 3 to Chapter 5) that
compose the main body of the doctoral thesis. For each of the articles, it
gives an overview on the purpose, methodology and findings. Additionally,
Table 2.1 lists the co-authors and states the current status of publication,
while Table 2.2 provides the co-author roles along the contributor roles
taxonomy provided by Brand et al. (2015).

Article Co-authors Status

1 New team mates in the
warehouse: Human inter-
actions with automated
and robotized systems

Andreas Fügener and
Alexander Hübner

Accepted and published
online in IISE Transac-
tions (forthcoming)

2 It’s in your hands: Ele-
vating performance at the
cost of social discord in an
intervention-based human-
machine interaction study

Andreas Fügener and
Alexander Hübner

In the process of submis-
sion to Journal of Oper-
ations Management as of
09.08.2022

3 Finding the right one: De-
cision support for selecting
cost-efficient order picking
solutions

Fabian Schäfer and
Alexander Hübner

In the process of submis-
sion to IISE Transactions
on 09.08.2022

Table 2.1: Status of publication
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Article & Author Contributor roles

1 Lorson, Fabian Conceptualization, Methodology, Validation, In-
vestigation, Data Curation, Writing - Original
Draft, Writing - Review & Editing, Visualization,
Project administration

Fügener, Andreas Conceptualization, Methodology, Validation,
Writing - Review & Editing

Hübner, Alexander Conceptualization, Methodology, Validation,
Writing - Review & Editing, Supervision

2 Lorson, Fabian Conceptualization, Methodology, Validation, For-
mal analysis, Investigation, Data Curation, Writ-
ing - Original Draft, Writing - Review & Editing,
Visualization, Project administration

Fügener, Andreas Conceptualization, Methodology, Validation, For-
mal analysis, Writing - Review & Editing, Super-
vision

Hübner, Alexander Conceptualization, Methodology, Validation,
Writing - Review & Editing, Supervision, Partner
acquisition

3 Schäfer, Fabian Methodology, Software, Validation, Formal anal-
ysis, Investigation, Resources, Data Curation,
Writing - Original Draft, Writing - Review &
Editing

Lorson, Fabian Conceptualization, Methodology, Formal analy-
sis, Investigation, Writing - Original Draft, Writ-
ing - Review & Editing, Visualization, Project
administration

Hübner, Alexander Writing - Review & Editing, Visualization, Su-
pervision

Table 2.2: Co-authors roles along the taxonomy of Brand et al. (2015)

Remark The versions of Chapter 3 to Chapter 5 may differ slightly from
the versions that were published or submitted to the respective journals.
This is due to journal-specific guidelines such as formatting or spelling as
well as changes that may be undertaken in the course of the peer review
process. Yet, relevance and contributions remain unchanged.

8



Contributions Fabian Lorson

2.1 New team mates in the warehouse:

Human interactions with automated and

robotized warehousing systems

Purpose Research on human-machine interactions in warehousing, and
specifically the role of human behavior in operational activities, is a nascent
area with a small, yet growing, body of literature. Hence, the goal of this
article is to first establish a systematic framework to analyze and discuss
identified behavioral issues in human-machine interactions. To account for
the novelty of the topic, a research agenda including theoretical foundations
and unifying themes is developed to guide future research.

Methodology To generate a holistic and comprehensive understanding
of a novel research field, the triangulation of multiple methods (see Figure
2.1) is imperative. A conceptual foundation is first developed to denote
the relationship among important building blocks of human-machine in-
teractions. Expert interviews are conducted to identify the most relevant
human-machine interactions and associated behavioral issues. A systematic
literature review finally links existing work with the identified issues.

Figure 2.1: Research methodology of Contribution 1

Findings We establish a systematic framework to describe, identify, char-
acterize and derive consequences for human-machine interactions. This
framework is used to discuss seven identified behavioral issues with 18
associated research questions across all operational warehousing activities.

9
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In this way, theoretical and managerial insights involving human factors and
behavior (e.g., mental workload or satisfaction) are provided for the specific
issues. Finally, four unifying themes were derived including theoretical
foundations. These themes (such as assigning tasks and developing oper-
ating policies among humans and machines, or designing engaging direct
interactions) each illustrate a common behavioral aspect across identified
issues. The theoretical foundations underpin those themes with prevalent
behavioral theories (e.g., goal-setting theory or peer effects) to highlight
causalities among the various interconnections (such as human factors and
interaction setup component). Figure 2.2 gives an overview.

Figure 2.2: Poster summary of findings for Contribution 1

10
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2.2 It’s in your hands: Elevating performance

with goals at the cost of social discord in

an intervention-based human-machine

interaction study

Purpose Low satisfaction, self-determination, and perceived fairness
(which we call mental impoverishment) paired with stagnating worker per-
formance constitutes a common problem in human-machine interactions for
repetitive operational warehouse activities. To tackle this behavioral issue,
a goal-setting intervention is introduced which lets the human picker choose
out of five different goals (pick amounts) at each workstation. The purpose
is to enhance above-mentioned human factors and system performance
based on goal-setting mechanisms and theory.

Methodology An IBR approach is utilized to ensure a practice-driven
methodology that impacts such a real-world operation policy. By performing
a study in the field, a unique opportunity to increase relevance for operations
management research is created. To explain findings, IBR approaches often
rely on abductive reasoning to iterate between theory and evidence. In this
way, plausible explanations about how and why the intervention affected
human behavior can be derived.

Findings We find 5.6% performance improvement of worker productivity
compared to historical data and a control warehouse (see Figure 2.3). This
can be explained by triggered goal-setting mechanisms (such as the higher
effort with which workers were engaged in the order picking task) and demon-
strates the power of goal-setting theory even in highly physical, operational
activities without any kind of monetary incentives. However, scores of
worker satisfaction, self-determination, and perceived fairness deteriorated
during the intervention. By triangulating surveys, focus interviews, and

11
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discussions, we establish the suspension of informal agreements due to the
goal-setting intervention as the main reason. Specifically, we find that the
goal-setting intervention diminished possibilities for humans to informally
organize themselves in their working day, with negative repercussions on
the analyzed human factors. Our assessment of both system performance
and human factors shows the necessity to account for behavioral aspects
when designing human-machine interactions.

Figure 2.3: Poster summary of findings for Contribution 2

12
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2.3 Finding the right one: Decision support

for selecting cost-efficient order picking

solutions

Purpose Warehouse managers have to select the most suitable OPSs
based out of large variety of potential technologies. To facilitate this
decision-making process, a cost-minimizing model that simultaneously
selects suitable OPSs and assigns them to available spaces and products is
developed. The model is aimed to provide warehouse managers a viable
framework for the OPS selection problem, while ensuring all decision-
relevant factors and constraints are considered.

Methodology To first account for the novelty of the problem, the concep-
tual background including decision-relevant costs and constraints is derived
by conducting expert interviews and reviewing related literature. The
decision problem is then formalized as a mixed-integer program (MIP). By
leveraging proprietary data from a business partner, the model selects the
most suitable OPSs to minimize total cost while assigning OPS to spaces
and products, and adhering to crucial constraints. Numerical experiments
are conducted to further produce theoretical and managerial insights.

Findings Decision-relevant cost (e.g., setup, module, labor and error
costs) as well as managerial relevant constraints (such as accounting for
individual product properties) are first established to conceptualize the
innovative OPS selection and assignment problem. The developed mixed-
integer cost minimization model solves the problem efficiently, even with
varying problem sizes. Utilizing data from a case study retrieved through an
industry partner evidences substantial savings potential (up to 57%) when
applying the optimal OPS mix of the decision model. In this case, for the
underlying set of products and warehouse specifications, the model selects

13
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45 shelve-moving robots (SMRs) and 4 human workers for manual picking
as the most suitable OPS. Figure 2.4 provides an overview. Additionally,
numerical experiments based on the case study highlight the robustness of
the solution and the need to retain human operators until full automation
is possible on a large and cost-efficient scale.

Figure 2.4: Poster summary of findings for Contribution 3

14
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3 New team mates in the
warehouse: Human
interactions with automated
and robotized warehousing
systems

Co-authors: Andreas Fügener and Alexander Hübner
Accepted in IISE Transactions on April 10, 2022
(forthcoming, DOI: https://doi.org/10.1080/24725854.2022.2072545)

Abstract Despite all the technological progress in the arena of automated and
robotized systems, humans will continue to play a significant role in the warehouse
of the future due to their distinctive skills and economic advantages for certain
tasks. While industry and engineering mainly dealt with the design and function-
alities of automated warehouses, the role of human factors and behavior is still
underrepresented. Yet, many novel warehousing systems require human-machine
interactions, leading to a growing scientific and managerial necessity to consider
human factors and behavior, particularly for operational activities. This is the first
paper that comprehensively identifies and analyzes relevant behavioral issues of
interactions between warehouse operators and machines. To do so, we develop a
systematic framework that links human-machine interactions with behavioral issues
and implications on system performance across all operational warehouse activities.
Insights generated by interviews with warehousing experts are applied to identify
the most important issues. We develop a comprehensive research agenda, consisting
of a set of potential research questions associated to the identified behavioral issues.
The discussion is enriched by providing theoretical and managerial insights from
related domains and existing warehousing research. Ultimately, we consolidate our
findings by developing overarching theoretical foundations and deriving unifying themes.
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3.1 Introduction

Over decades, warehouse operations have traditionally relied on manual
processes, due to human operators being more efficient in many aspects such
as handling and picking a large variety of products. Enabled by advances in
Internet of Things devices and artificial intelligence coupled with the advent
of new system providers and more cost-efficient solutions, warehousing
has been revolutionized during the last decade: Human operators found
themselves next to new robotized and automated teammates (Olsen and
Tomlin, 2020). The size of the warehouse automation industry has been
growing by 12% annually between 2014 and 2019, and is predicted to double
its size from USD 15 billion to USD 30 billion in the next six years (IFR,
2020; Statista, 2020; The Logistics iQ, 2020). The resulting development
and utilization of novel automated and robotized systems are boosting the
transformation of warehousing from a cost center to a central component
in the value proposition of firms. Automated warehousing systems help
in this process by enabling faster throughput times, higher service levels,
labor cost reductions, efficient space utilization, and improved ergonomics
for human workers (see, e.g., Azadeh et al. (2019); Lamballais et al. (2020);
Zaerpour et al. (2017)). For instance, Amazon is currently employing more
than 200,000 warehouse robots to accelerate its growth in online retail and
logistics, driven by faster picking times and lower operating costs (IHCI,
2020). There are many other examples including Hermes, a leading logistics
provider, who optimized its return handling processes by installing a new
automated inspection and handling system, increasing the capacity by 50%
(Logistics Manager, 2020). Innovations in warehouse automation thus play
a crucial part in delivering products efficiently and effectively throughout
supply chains.

Despite the growing and ubiquitous presence of automated and robotized
systems in warehouses, human operators will still be necessary to fulfill
operational activities. Tye Brady, the chief technologist of Amazon Robotics,
described this with the following words: “The efficiencies we gain from our
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associates and robotics working together harmoniously – what I like to call
a symphony of humans and machines working together – allows us to pass
along a lower cost to our customer” (IEEE, 2020). This statement is just
one of many anecdotes evidencing that manual workforces and machines
will be working alongside each other in the warehouse of the future (Olsen
and Tomlin, 2020). Humans have distinctive characteristics, skills and
capabilities that robots are not able to replicate or perform cost efficiently.
For instance, they excel in flexibility when swift reactions are needed to
volatility of the picking workload (e.g., during high-peak sales seasons).
As automated picking solutions are generally linked to a specific capacity,
human operators compensate for these fluctuations and persist to play a
decisive role in aligning supply and demand. They are also able to handle
a larger product variety along different criteria such as product dimensions,
weight, special handling requirements (for fragile products for instance) or
packaging types (Gutelius and Theodore, 2019). Automated and robotized
systems are typically fixed for certain product specifications, while humans
continue to complement or even outperform those in dynamic circumstances
with changing specifications (Sgarbossa et al., 2020).

Figure 3.1: Simultaneous picking with
robots (Source: Magazino)

Figure 3.2: Picking at workstations
(Source: Knapp)

As workers collaborate with automated and robotized systems on many tasks
across the main operational activities (i.e., receiving, storing, picking and
packing - see Fig. 3.1 and Fig. 3.2 for examples), new models, frameworks
and concepts are needed to efficiently manage human-machine interactions
(De Koster et al., 2020; Olsen and Tomlin, 2020). Such interactions at the
operational execution level are part of a socio-technical system with many
variables (Monostori et al., 2016; Yang et al., 2019), including human factors
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and behavior. These systems are usually developed considering the views of
engineers or programmers, while the perspectives of the actual blue-collar
workers in the loop and corresponding behavioral aspects are often neglected
(Moniz and Krings, 2016). However, actions and decisions of the operators
may deviate from engineers’ expectations and thus impact operations
management metrics in both positive and negative directions (Bendoly
et al., 2006; Boudreau et al., 2003; Croson et al., 2013; Papadopoulos et al.,
2019; Udenio et al., 2017). To establish efficient automated and robotized
warehousing systems, it is imperative to understand and account for human
factors of workers in operational activities (Donohue et al., 2020), and to
consider behavioral methodologies since they provide the opportunity to
solve emerging issues in human-machine interactions (Kumar et al., 2018).
Combining machine-centric operations management (OM), i.e., the design,
plan, control and management of systems and processes, with human-
centric behavioral science (BS), i.e., the exploration and integration of
human actions, factors and behavior, becomes indispensable to improve
decisions and capabilities in automated and robotized warehouses. Fig. 3.3
visualizes the blending of two required perspectives to efficiently manage
operational warehouse activities using human-machine interactions.

Figure 3.3: Necessary blending of research streams to establish efficient interactions

However, the current literature on such interactions and their behavioral
implications on OM in warehousing is rather scarce. Four recent review
articles exist from the first literature stream on operational management
for automated and robotized warehousing systems (the left of Fig. 3.3):
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Azadeh et al. (2019) structure novel systems for storage and picking ac-
tivities along design and control of technologies, modeling techniques, and
research opportunities. Boysen et al. (2019) and Boysen et al. (2021) discuss
warehousing systems for their suitability to e-commerce and bricks-and-
mortar retailing, respectively. Fragapane et al. (2021) review pertinent
work on autonomous mobile intralogistic robots and provide guidance and
methods for their planning and control. Additional studies in this stream
focus on the development of mathematical operation models and decision
support for specific applications in automated storage and order picking
systems (see Tappia et al. (2019), Yuan et al. (2019), Lamballais et al.
(2020) or Xie et al. (2021) for examples). Azadeh et al. (2019) conclude
that further research should be conducted on novel warehousing systems to
cope with rapid developments of technologies and increased implementation
in practice. Most importantly, none of above-mentioned studies incorporate
human factors and behavior into their analysis, nor do these articles focus
on the specifics of interactions between operators and depicted systems.
Regarding the second stream and the behavioral perspective in warehouses
(the right of Fig. 3.3), human factors and behavioral issues for operational
activities are discussed by Grosse et al. (2015, 2017) in a content analysis
and literature review on human factors in manual order picking. Besides
that, only few selected use cases involving behavioral aspects in manual
order picking exist (see De Vries et al. (2016a,b), Matusiak et al. (2017),
Batt and Gallino (2019) or Glock et al. (2019) for examples). This means
that even for conventional warehouses, human factors have not even been
adequately addressed up to now. In this sense, it also remains unclear which
human-machine interactions and behavioral mechanisms are crucial in au-
tomated warehouses, although their analysis and optimization is important
to ensure efficient operations.

The controllable and structured environment in warehouses makes many
of them incubators for the development and application of automated and
robotized systems in supply chains (Azadeh et al., 2019; Fragapane et al.,
2021). Specific requirements for operational activities and the necessary
collaboration of operators with a growing diversity of machines expose
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warehousing as a unique research area at the intersection of OM and BS.
Despite several calls for research on behavioral implications of operational
human-machine interactions in warehousing (see e.g., Azadeh et al. (2019),
Boysen et al. (2019), or Jaghbeer et al. (2020)), the amount of existing
studies is very limited. Exploring a new research area at an intersection
of research domains requires developing a common understanding across
literature streams. This needs to be accomplished with a comprehensive
identification and ordering of the nascent topics before they can be ana-
lyzed in depth and in a structured manner. Naturally, such new areas are
insufficiently explored and require the formulation of research questions.
Hence, this is the first paper that comprehensively compiles a research
agenda for human-machine interactions in the warehouse including theoreti-
cal foundations and unifying themes. To ensure a structured approach that
connects all relevant dimensions and variables in this domain, we develop a
systematic framework. This forms the foundation to identify and analyze
the most relevant behavioral issues for these interactions (for the sake of
brevity we use the term “issue” in the following), including open research
questions. This is amended with theoretical and managerial insights from
related domains and existing warehousing research, serving as starting
points to improve operational decision-making for human interactions with
automated and robotized systems. Ultimately, we consolidate the findings
by providing theoretical foundations and unifying themes, guiding the way
for future research in human-machine interactions in the warehouse.

Our paper aims at helping OM, and in particular warehousing, researchers
to identify potential effects of human behavior. Furthermore, we want
to encourage scholars from the field of BS and human factors to consider
warehousing as an interesting area of application. When discussing issues in
detail, we first identify the issue and associated research questions, before
elaborating on the mechanism and consequences on system performance.
The latter provides in-depth insights for researchers planning to analyze
those or related issues. The overarching theoretical foundations and unifying
themes provide causal and salient relationships in warehousing interactions
as starting points for further studies.
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The remainder begins with Section 3.2, detailing the methodological ap-
proach. We build a systematic framework in Section 3.3 to analyze human-
machine interactions and behavioral issues in Section 3.4. The findings
are summarized by developing theoretical foundations and unifying themes
in Section 3.5. Section 3.6 concludes with managerial and theoretical
implications, and provides limitations as well as a brief outlook on our
study.

3.2 Research methodology

Research on human-machine interactions in warehousing, and specifically
the role of human behavior in operational activities, is a nascent area with a
small but growing body of literature. As we want to generate a holistic and
accurate understanding for this matter, we rely on multi-method approaches
which are imperative in such cases (see e.g., Boyer and Swink (2008); Flick
et al. (2004)). Further, Lewis-Beck et al. (2004, p. 1142) argue that using
methodological triangulation when probing issues “offers the prospect of
enhanced confidence” in the ensuing findings. Consequently, we triangulate
three research methods for issue identification (see Fig. 3.4). We first follow
well-established guidelines for emerging topics (Webster and Watson, 2002)
and start with the development of a conceptual foundation, which is based on
central theories in related fields of OM, BS and human-machine interaction.
This research step delivers the foundation for the systematic framework
in Section 3.3, which denotes the relationships among important building
blocks of human-machine interactions in warehousing. Secondly, we conduct
expert interviews with practitioners to identify the most important human-
machine interactions and associated behavioral issues as recommended
by Edmondson and Mcmanus (2007). These empirical findings build the
main source to derive seven categories (each category represents one issue).
Section 3.4 is then structured along the seven issues. A systematic literature
review is the last, pivotal step to deepen links among managerial issues
and existing work (DeHoratius and Rabinovich, 2011). We identify 13
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articles that are matched to the identified issues. Only the continuous and
comprehensive triangulation of these sources provides the opportunity to
structurally identify and analyze relevant issues, create a comprehensive
research agenda, and ultimately develop overarching theoretical foundations
and unifying themes. For details on the research approach please see the
Appendix.

Figure 3.4: Overview of research methodology applied

3.3 Systematic framework to investigate

human-machine interactions in

warehouses

The systematic framework is designed to structure the investigation of
issues by providing a set of important components for human-machine
interactions in warehousing and its interconnections. It synthesizes seminal
literature and theories from machine-centric OM, human-centric BS, and
human-machine interactions outside the warehouse domain. As human-
machine interactions in warehousing constitutes a novel area, this exposure
to conceptual foundations is essential for comprehensive and structured
future research. As such, it constitutes the first contribution of our study
and is applied to our analysis at the same time. In this way, we ensure an
end-to-end perspective, create a suitable structure for the issue investigation,
and uncover open research. We identify important building blocks to discuss
behavioral issues which are summarized in Figure 3.5. For the (i) description

22



Human interactions with automated and robotized warehousing systems Fabian Lorson

of interaction, it is necessary to analyze involved automated and robotized
systems, operational warehouse activities and corresponding interaction
setups. Subsequently to the (ii) identification of issues mainly driven by
expert interviews, we follow with the (iii) characterization of those with
involved human factors and behavior. Finally, the interaction and associated
issue have (iv) consequences on system performance.

Figure 3.5: Framework to investigate behavioral issues of human-machine interactions

(i) Description of interaction We regard interactions between at least
one human worker and one or multiple involved automated or robotized sys-
tems. Automated systems are defined as machines that carry out a function
by themselves that was previously performed by a human (Parasuraman
and Riley, 1997). Additionally, physical robots or robotic devices are able
to perform tasks with a certain degree of autonomy, and may be able to
move within a specific environment (ISO, 2012). Besides these robotized
systems, we also regard embedded artificial intelligence in machines as fit-
ting systems for our analysis (Glikson and Woolley, 2020). For an overview
we refer to Azadeh et al. (2019), Boysen et al. (2019, 2021) and Fragapane
et al. (2021) who cover many potential systems involved. As we deal with
human-machine interactions in operational warehouse activities for physical
flow, we exclude instances in which humans modify standard workflows
without any significant interaction with the machine (e.g., changing picking
route).
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The main blue-collar, operational warehouse activities are receiving and
inspection, storing, order picking, packing and shipping (De Koster et al.,
2007). Receiving and inspection includes the unloading of products from
the delivery vehicle, checking for any quantity or quality inconsistency,
and entering master data into the warehousing management system. Ad-
ditionally, it contains the handling of returns. Subsequently, incoming or
returned products are transferred from the unloading to designated put
away areas. This process may also include any re-packaging before storing
the goods. Once customer orders arrive, the process of order picking consists
of retrieving the right products from storage. This may include batching,
routing and sequencing. After goods have been retrieved, they are packed
(and potentially categorized) for delivery before being shipped to customers.
Note that in some cases it is necessary to consolidate orders before packing
(e.g., if batch picking is utilized). Packing activities cover boxing or pal-
letizing, packaging (e.g., to protect from transport damage), value-added
services (such as labelling, serialization, kitting), or a final quality check.
Ultimately, the products are loaded onto the means of transportation to
be shipped to the customers or the next step of the supply chain. Similar
to Gu et al. (2007b), shipping activities are included in our discussion on
receiving and inspection.

The interaction setup classifies interactions along proximity and dependency
(Schmidtler et al., 2015). In the least intense form, coexistence, the interac-
tion takes place in the same space and time. In cooperation setups, humans
and machines also work jointly on the same aim. Collaboration additionally
requires physical contact. To translate this for our purposes, we define the
space and time as the same warehouse zone and shift. The condition of the
same aim is fulfilled if humans and machines work on the same job (e.g.,
customer order). For physical contact, we consider actions that include
either direct physical contact (e.g., wearing a device) or handovers.

(ii) Identification of issue We analyze the described interactions and
identify potential behavioral issues based on our expert interviews and
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theoretical BS foundations. We develop open research questions using the
following characterization and consequences of the framework elements.

(iii) Characterization of issue Human factors and behavior are the core
of the investigation of human-machine interactions. We base our analysis
on human factors theory (Sanders and McCormick, 1993; Karwowski, 2005;
Salvendy, 2012) and behavioral aspects (e.g., Gino and Pisano (2008)).
As a first step, a differentiation needs to be made between physical hu-
man factors and parameters and psychosocial human factors and behavior
(Karwowski, 2005). The former are clustered into perceptual, mental and
physical. Perceptual parameters include seeing, hearing or perceiving other
agents (i.e., humans or machines). Mental or cognitive parameters are
processes such as remembering, thinking, judging, decision-making or rea-
soning. Finally, physical parameters are connected to human movements or
activity, such as using body parts, operating, walking or carrying. These
physical human factors and parameters are determined by the interaction
among humans and machines. Additionally, they may impact and change
psychosocial factors and behavior (Karwowski, 2005). These include but
are not limited to motivation, acceptance, workload, stress, situational
awareness, job satisfaction, trust, reaction to incentives or fairness (see
Boudreau et al. (2003), Loch and Wu (2005), Gino and Pisano (2008), Glik-
son and Woolley (2020), or Parasuraman et al. (2008) for examples). The
degree and magnitude of these behavioral aspects may also be decisive for
resulting actions and decisions (including biases and heuristics, see Udenio
et al. (2017) for instance), and depend on individual human characteristics
(such as personality types).

(iv) Consequences of issue The final outcome of the interaction is
assessed using system performance criteria. For direct measures, a differ-
entiation is made among efficiency and service-level (Staudt et al., 2015).
Efficiency measures include the time (such as processing or lead time) or
cost of a certain warehouse activity (e.g., the number of order lines picked
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per time and cost unit). Service level criteria include the quality (e.g.,
shipped orders without damages) or accuracy (e.g., share of orders delivery
without errors). Further, safety metrics (such as number of occupational
accidents, see De Koster et al. (2011) and De Vries et al. (2016c)) are
another performance criterion as safety issues among blue-collar workers
are common, especially in the logistics sector. Finally, we consider criteria
for human resource management such as retention or number of sick days.
These performance criteria are regarded to acknowledge and account for
the impact of human well-being.

The different parts of the systematic framework are utilized in the following
to structure the issue analysis in the next section.

3.4 Behavioral issues in human-machine

interactions

This section discusses seven issues that have been identified. Fig. 3.6
orders the issues based on the elements operational warehousing activity
and interaction setup of step (i) of our systematic framework. We structure
the discussion of concrete behavioral issues along those two dimensions,
where we use a subsection for each operational activity. Each subsection
starts with the (i) description of the interaction with involved automated
and robotized systems. Along the interaction setup, we continue with the
(ii) identification of associated issues, including potential open research
questions for each issue. Following with the (iii) characterization and (iv)
consequences of those issues, we provide theoretical and managerial insights
involving human factors and behavior and impact on system performance
based on warehousing and related literature. A number of issues may also
be applicable to other activities and the generalization and transfer to those
is discussed in Section 3.5. We formulate the future research questions in
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a generalizable manner to represent challenges and opportunities across
multiple activities.

Figure 3.6: Overview of behavioral issues identified in human-machine interactions

3.4.1 Receiving and inspection: interactions and
issues

The inspection process has important human interactions with automated
control machines, whereas receiving processes are either manual or fully
automated with no relevant human-machine interactions. As such, we focus
here on inspections and quality control.

(i) Description of interactions Visual inspection systems that are re-
sponsible for checking the quantity or quality as well as measuring product-
related data have made great advances in the last years, and many auto-
mated systems have been installed in warehouses. However, as these systems
are often not able to fully cover a large range of products, human operators
complement the process with their input on non-feasible or unclear cases,
often by receiving an error message that manual help is required. The
products in question are either separated and transported on a conveyor
belt to a workstation, or the human worker needs to troubleshoot right at
the machine. As no direct physical contact with the machine is required, but
the human operator and the machine work on the same incoming products
in these instances, the interaction is classified as a cooperation setup.
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(ii) Issue identification - [1] Controlling quality using human-
machine complementarities Warehouse operators and system
providers made it clear in their interviews that leveraging the comple-
mentary strengths when checking the quality (e.g., identifying defects),
quantity or dimensions of incoming products attains higher performance,
and is crucial to establishing efficient operating policies. As an example,
one warehousing manager [12WO] highlighted the need to combine both
human and machine skills: “We are able to process the basic products
with our automated inspection machine. However, we still rely on one
additional employee when it comes to SKUs that are hard to distinguish for
the machine, for example, if it is a small defect or natural variation, fragile
or inconsistent, or unknown such as promotional products.” Humans thus
complement the machine’s ability, function as the final decision maker
by judging whether the products meet pre-defined criteria, and act as a
supervisor or troubleshooter. Such hybrid settings are needed in many
cases, as neither unaided humans nor full automation is as effective as
combined work. As humans enhance the process through advantages in
flexibility and skill ranges, the following research questions evoke:

[1.1] What is the impact of setup choices (such as communication, con-
trol criteria and process order) on performance, and what are the
underlying mechanisms and psychological factors?

[1.2] What is the degree of perceived transparency and feedback influenc-
ing inspection performance, what behavioral aspects may explain
individual reactions to those factors, and why?

(iii) Characterization and (iv) Consequences of issue Building on
knowledge from cognate applications in OM, decision-making biases (such
as anchoring) may be present when troubleshooting is required. Setup
choices that influence these include the communication (e.g., should the
machine give a recommendation when delegating), distribution of the
products (e.g., which products should be delegated to the human based on
experience) or the design of the control criteria (e.g., unrealistic or complex
accept or reject criteria).
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The behavioral influence of these choices need to be analyzed and may
depend on individual characteristics of the employees. Some may be prone
to anchoring biases, some may be robust to potential false indications of the
machines, and some tend to lower their effort by exhibiting a high degree
of automation complacency (Parasuraman and Manzey, 2010). It is also
important to understand the order of the process to decrease throughput
times (e.g., when should the human pro-actively prepare incoming goods
for the inspection machine due to bulky items or broken pallets). As in
similar setups inspection systems show better performance when combining
human and machine skills (see See et al. (2017) for instance), it is necessary
to find the optimal incorporation of the above-mentioned setup choices
to stimulate human action and minimize inspection errors in warehousing
settings, too. Moreover, human motivation, mood and satisfaction can be
impacted in this process (Bainbridge, 2002; Lughofer et al., 2009). For
example, system performance increases when operators know that their
input will be included in the algorithm of the system ex-ante (Lughofer et al.,
2009), or when they feel a machine is making intelligible decisions (Kellogg
et al., 2020). Motivation may be particularly impacted by the technical
architecture (Bendoly et al., 2010). As such, the ability to provide feedback
to the machine and to the operator is crucial to increase the interest and
willingness for smooth joint work, and emphasizes the machine’s ability
to learn from the human as an expert (Kadir and Broberg, 2020). Also,
it is important to create cognitive and emotional trust to enhance the
success of automation integration, particularly by achieving high system
transparency and reliability (Glikson and Woolley, 2020). Clearly, analyzing
setup choices, process order and motivational, trust and feedback aspects
are promising starting points for future research. Note that in some cases
this inspection activity may also be classified as collaboration depending
on the specific machine that is utilized.
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3.4.2 Storing: interactions and issues

Instead of storing goods either manually with a forklift or with automated
storage and retrieval systems (AS/RS), semi-automated solutions are uti-
lized that result in significant interactions between humans workers and
automated or robotized storing systems.

(i) Description of interactions In such a hybrid setup, humans are
supported in filling storage shelves by automated guided vehicles (AGVs)
or autonomous mobile robots (AMRs). As main aspects of the following
discussion are connected to AGVs and AMRs, the findings may also be
applicable for order picking as the reverse application to storing. In general,
these machines transport the products when traveling through the aisles
next to shelves (Fragapane et al., 2021). In some cases, certain types offer a
seating possibility, or even assume the lifting aspect of the storing activity
(via a robotic arm or lift). Both the flexibility of the human operator to
store a variety of products on shelves and the technological advances of the
machines can be leveraged in such systems. This is particularly suitable
when individual items need to be handled instead of full pallets. Examples
of applications include spare parts warehouses, micro fulfillment centers,
and supermarket shelves. Such hybrid approaches require the hand-over of
products from machine to human, and we therefore focus in the following
on a collaboration setup.

(ii) Issue identification - [2] Filling shelves with autonomous mobile
robots As the replenishment process frequently accounts for a large share
of working time of employees (Boywitz et al., 2019), the efficient orchestra-
tion of human and machine leads to several open research questions:

[2.1] What are optimal design choices of collaborative robots for replenishing
products, and how and why do psychosocial factors, incentive schemes
or personality traits influence such setups?
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[2.2] Which incentive schemes or personality traits are beneficial for human
employees in a fixed or a floating AMR operational policy, and what
mechanisms may explain individual differences?

(iii) Characterization and (iv) Consequences of issue The operator
moves with the robot to the storing locations. The physical put away process
is conducted by the human, but strenuous bending down is prevented as the
machine elevates the product towards a comfortable position for the human.
Finally, the operator needs to decide where to place the product, while
the robot supports the human with physically demanding tasks (walking,
carrying and lifting the products). Such machines (and in particular their
arms and lifts) are able to work in different speed settings, often deviating
from natural levels of physical human movement. The robot configuration
may thus be limited by human abilities that may differ between individual
operators.

As a starting point, Roy and Edan (2018) found out that the working pace
or default speed of such robots should be the average working speed of the
operator to reduce fatigue and stress. The authors base their judgment on
human-human experiments and directly derive the implication from their
findings. While this may hold true for human-human handover tasks, a
further analysis needs to be conducted on the human-machine specifics, and
most importantly, on their impact on system performance criteria. Further,
when evaluating the behavioral benefits of fixed (AMRs are assigned to
a specific worker) or free-floating (AMRs serve multiple pickers) policy
(Boysen et al., 2019), it is important to understand which prove to be
more efficient depending on individual personality traits (see De Vries
et al. (2016a) for a related manual warehouse example). Sauppé and Mutlu
(2015) show that employees like to treat robots as a social entity, eventually
boosting the perception of their coworker. A fixed strategy thus may increase
individual human acceptance as the machine is assigned to the specific
employee and satisfies the desire of monopolizing the support (Gombolay
et al., 2015). In this light, incentive schemes, that also incorporate potential
robot throughput, are interesting research inquiries as they may have a
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large influence on overall performance. Pasparakis et al. (2021) study
another policy option of AMRs: Should the human lead or follow the
robot to the picking (or storing) spots. The authors find that for larger
efficiency, human leading is superior, while greater accuracy is achieved
when humans follow the robots. Further, prevention regulatory focus (as
a personality traits) moderates the effect of the different policies on pick
speed. However, there is no clear theoretical foundation why these concepts
should be interrelated, and hence, it would be interesting to understand
which other behavioral mechanisms may play a significant role in this setup.
Moreover, the underlying slotting strategy also impacts the interaction. For
example, humans may improve performance in dedicated approaches due to
learning effects (Weidinger and Boysen, 2018a). Additionally, the benefits
of exploiting favorable storing (and consequently picking) locations when
deciding on the slotting strategy provides further research potential given
ergonomic benefits (Petersen et al., 2005).

3.4.3 Order picking: interactions and issues

Recent warehouse automation efforts have been heavily concentrated on
robotized order picking (e.g., Lamballais et al. (2020)), and a large number
of companies are offering a variety of systems for this purpose. In particular,
focus has been put on minimizing traveling time, as this is the most time
consuming task in the picking activity (Tompkins et al., 2010).

(i) Description of interactions We differentiate between picker-to-parts
and parts-to-picker solutions, as well as along the degree of automation
(Boysen et al., 2019). In picker-to-parts setups, the picker (or in the case of
full automation the robot) moves to the storage area to retrieve the products,
while in parts-to-picker designs the products are carried to the picker by
a transportation system. The degree of automation is the ability and
intelligence of the machine to fulfill a single picking task autonomously. Fig.
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3.7 provides an overview. Note that regardless of the degree of automation,
significant interactions exist.

Figure 3.7: Relevant human-machine interactions at order picking

In fully automated picker-to-parts setups, robots are able to fulfill the
picking process autonomously without the help of humans (Fottner et al.,
2021). Interactions occur when employees are deployed in the same area
(see Fig. 3.1), where both an autonomous mobile picking robot and an
operator pick in the same aisle. In semi-automated picker-to-parts setups,
AMRs, AGVs or trolleys hanging from a monorail help to reduce travel
time by allowing pickers to put items on machines that travel to the base.
Additionally, virtual and augmented reality applications can support pickers.
These systems indicate instructions using perception (via head-mounted
displays for instance). In automated parts-to-picker systems with human
interaction, pickers are located at advanced workstations and interact using
various interfaces (such as buttons or touch screens). Fig. 3.2 shows an
example in which a human operator receives input from a display to pick
items from arriving totes. Parts are supplied via AS/RS, pouch sorter,
shuttle-based technology or shelve-moving mobile robots (Azadeh et al.,
2019; Boysen et al., 2021; Yuan et al., 2019). In the latter case, the
robots bring back the shelves to a repository or to the next picker after
the successful picking process (Weidinger and Boysen, 2018b). Typically,
humans fulfill the picking task supported by visualization methods such as
pick-to-light. All types of interaction setup are found given the variety of
systems and design options available for order picking. We start with an
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analysis of a coexistence issue, follow with cooperation, and end with the
most proximate and dependent setup in a collaboration setup.

(ii) Issue identification - [3] Building teams in human-robot picking
setups Beginning at human interactions with autonomous picking robots,
one key challenge revealed in our expert interviews is determining the
team structure, that is, how many humans and how many autonomous
picking robots to employ for a given picking zone during the same shift:
“I will have to form new teams, and this will change the human dynamics
significantly depending on how many robots I will include [3WO].” This
results in interesting research questions:

[3.1] How does the share of robots impact efficiency and retention of human
operators, which behavioral mechanisms govern the differences, and
what is the optimal composition and policy in which constellations?

[3.2] Which behavioral traits and skills impact performance when team-
ing with autonomous robots, what behavioral aspects may explain
differences, and why?

(iii) Characterization and (iv) Consequences of issue In such mixed
teams, humans see the robots, hear their noises, and maybe even smell
their robotic odour (see Fig. 3.1). Humans think about robots as team
mates, their role within the team, and how to deal with them. Movements
need to be orchestrated to both ensure human safety and robot productiv-
ity. Many experts reported different ways employees have of coping with
such human-machine coexistence, with one manager [13WO] pointing to
unknown consequences: “We do not know yet what the short- and long-term
influence on human social components will be when we employ more and
more robots.”

Insights from BS regarding team composition in general and for human-
machine interactions in particular serve as a starting point to analyze this
issue. One key aspect of managing teams is to deal with interpersonal
processes such as conflict and affect management or collective motivation
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building to avoid performance problems (Marks et al., 2001). Employees
care about human relationships and identify with colleagues (Urda and
Loch, 2013), and these social interactions have a large impact on motivation
and performance (Cantor and Jin, 2019). In line with that, Stein and Scholz
(2019) encourage automation-oriented diversity management when building
groups and Gombolay et al. (2015) establish that people value humans
more than robots as team members. Hence, psychosocial factors such as
motivation, satisfaction or loyalty of employees may vary depending on the
human-robot team structure in warehouse operations, too. Additionally,
findings about peer effects (Mas and Moretti, 2009; Schultz et al., 2010; Tan
and Netessine, 2019) may also exist for such human-machine teaming and
impact optimal operating policies. The physical presence of autonomous
robots further influences trust and actions, depending on the individual
human being (Glikson and Woolley, 2020). Consequently, a thorough under-
standing of which personalities (see Kaplan et al. (2019) for an extroversion
example), behavioral traits or skills prove to enhance performance criteria
are promising research directions.

(ii) Issue identification - [4] Distributing work in human-robot pick-
ing teams with substitutable tasks System providers and warehouse
operators further addressed that allocating or distributing work among
humans and robots is an essential topic. For example, one system provider
[15SP] raised the question of “which jobs should I give to robots, and which
to my [human] employees?” Compared to issue [1] in which humans and
machines complement each other for quality control, this topic now deals
mainly with the potential substitution of human and machine work forces,
also leading to novel research opportunities:

[4.1] Do performance differences between robots and humans have an impact
on the performance of humans, and, if so, which psychosocial factors
influence the deviations?

[4.2] What might be optimal operating policies for distributing tasks among
robots and humans when accounting for human preferences and be-
havior?
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[4.3] Who (human or robot) should distribute tasks, and how does this
impact psychosocial factors?

[4.4] Under which conditions should human employees work with lower or
higher perceived autonomy (in task execution and allocation) when
teaming with robots?

(iii) Characterization and (iv) Consequences of issue Pickers and
robots share the same zone, shift and customer order in such a cooperation.
Humans see and hear the robots performing tasks, and consequently question
the nature and allocation of the respective jobs (e.g., which items are picked
by robots, and which by humans).

A starting point of a behavioral analysis could be to determine both the
preference and performance of humans for each specific type of job to decide
on the allocation. For the former, this includes an investigation of tasks by
product type or location (Larco et al., 2017) in terms of human desirability
and comfort, also to avoid devaluation feelings (Gombolay et al., 2015).
In this sense, warehouse managers reported the common phenomenon
that employee motivation and performance increased when robots were
introduced, but the effect diminished over time. On the other hand, if
humans see robots performing the undesirable jobs, psychosocial factors
(such as satisfaction or acceptance) are improved. In this case the trade-
off with physical, ergonomic job-rotation benefits (see Otto and Battaïa
(2017) for an assembly example) needs to be evaluated. For the latter,
each human has individual skills (see Matusiak et al. (2017)) that affect
performance in different job types. This requires an understanding of the
jobs in which human performance is generally lower, and should therefore
be transferred to robots (for instance to promote specialization, see Schultz
et al. (2003) in a production setup). Further, Sanders et al. (2019) find that
humans tend to distribute a picking task to humans rather than to robots,
mainly due to trust issues and the fear of financial loss for the human.
Also, as humans value it when their preferences are taken into account
(Gombolay et al., 2017), it is crucial to analyze the influence on performance
criteria depending on whether humans or robots distribute tasks in the
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warehouse. When humans decide on the allocation, the level of trust in
humans and machines has a major impact on the decision-making (Sanders
et al., 2019). In the reverse setup (i.e., task assignment from a human
or an algorithm), Bai et al. (2021) studied the influence on fairness and
efficiency. Their results indicate higher perceived fairness when machines are
distributing work, even yielding in a persistent boost of picking performance.
It remains open how these findings may be different depending on the level of
transparency in the distribution process, a significant research opportunity
also mentioned by one expert [10WO]. Moreover, Cragg and Loske (2019)
compare different picking technologies and find that the lower the human’s
experienced work autonomy, the higher the picking efficiency. However, the
effects of work autonomy on key performance criteria may have a different
degree or even magnitude depending on additional human factors (e.g.,
mental workload) and individual characteristics (e.g., personality traits) of
the subjects. Hence, it is relevant to incorporate such factors in further
studies as well.

(ii) Issue identification - [5] Overcoming mental impoverishment and
physical overload at advanced workstations For parts-to-picker se-
tups, a key issue divulging from practice is how to balance mental and
physical workload at advanced picking workstations. Warehouse system
providers focused in the past on reducing mental workload and achieved
progress in improving ergonomics and safety: “We were able to reduce the
physical strain and also designed the systems in a manner that limits the
necessary input of employees via several ergonomic initiatives,” as a system
provider [16SP] reported. However, the reduction of mental workload for
humans also led to several psychosocial problems in the mid- and long-term.
For example, one warehouse operator [14WO] reported: “Unfortunately we
see mental impoverishment of our people at the workstations.” This requires
addressing the following research questions:

[5.1] What is the optimal amount of perceived decision-freedom and machine
support-level for human operators to avoid mental impoverishment?
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[5.2] What is the optimal throughput model to maximize both operational
efficiency and psychosocial well-being factors?

[5.3] What are efficient incentive schemes to maximize worker and machine
productivity?

[5.4] Does backlog design have an impact on psychosocial factors and
performance, and if so, what is the optimal design and why are the
underlying mechanisms impacting such setups?

(iii) Characterization and (iv) Consequences of issue In collabora-
tive interactions at advanced workstations, humans receive visual input
from screens, light or voice indications, including the number of items to
be picked within a certain time frame. Based on the perceived information,
humans perform their picking task, often by putting items from one bin
to another, and confirming the operations executed either via buttons
or voice commands. Fig. 3.2 shows an example. Usually, the standard
processes are predefined and no mental effort is required. Physical effort
(such as the speed of movement) is high as companies usually want to
maximize machine output. Behavioral analyses show that performance
criteria suffer from mental impoverishment, including lower accuracy (de-
spite visual support of the workstation such as pick-to-light, see D’Addona
et al. (2018) in a manufacturing example) and retention as jobs are in-
creasingly unattractive: “No one wants to do this job anymore [14W0].”
To counteract reduced attention (situational awareness) or job satisfaction
as well as increased boredom or fatigue, managers need to innovate the
human-machine interaction and account for mental stimulus (for example by
providing more decision autonomy or information, including gamification).
Moreover, practitioners (e.g., [1SP] [5C], [7WO]) frequently mentioned
mounting performance pressures at workstations. Reported consequences
are higher stress and physical overload paired with lower job satisfaction.
System performance criteria such as a lower service level (see Kostami
and Rajagopalan (2014) for a service operations setting) and increased
fluctuation are experienced by interview participants (e.g., [2WO], [15SP],
[19WO]). In this sense, Batt and Gallino (2019) find insights on how pick
times are reduced when humans are more experienced, proving a great
need for higher retention. Another related example is provided by Tan and
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Netessine (2014), who discover an inverted-U-shaped relationship between
workload and performance of service operators. As considering new ways
of balancing the physical and mental workload has proven successful in
warehousing (see Kudelska and Niedbal (2020), who find decreased mental
and physical workload and improved efficiency with shelve-moving robots)
and in other settings (see Delasay et al. (2019), Gombolay et al. (2017),
Parasuraman et al. (2008), Proctor and van Zandt (2018) or Teigen (1994)
for examples), similar analyses on advanced workstations seem promising.
Further, different setups of backlog (or perceived workload) at advanced
workstations influence efficiency and even motivation or satisfaction: “We
see differences in our shift performance depending on the backlog of open
orders on the display at the workstations,” stated a warehouse manager
[10WO]. In a related setting, Wang and Zhou (2018) show that workers
operate faster in dedicated compared to shared backlogs in a supermarket
context, mainly due to the social loafing effect. Delasay et al. (2019) de-
fine the relationship between backload and skill level as an open research
avenue. Performance criteria are additionally influenced by other design
elements, such as displaying backlog privately or publicly. Also at advanced
workstations, it is critical to model and understand actual human behavior
when analyzing such parameters (see Wang et al. (2021) in their conclusion
on human interactions with shelve-moving robots).

3.4.4 (Consolidation) & packing: interactions and
issues

As order consolidation is not a necessary step in all warehouses, we focus on
the packing process in the following. Note that human-machine interactions
also exist for consolidation (e.g., with put walls or sorting systems, see
Boysen et al. (2022)). While fully automated packing lines exist, many
warehouses run on semi-automated solution with significant human-machine
interactions.
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(i) Description of interactions In this paper, we differentiate between
two main interactions in packing. First, robots and human workers jointly
work at a packaging line by distributing tasks for each sub-activity, which
results in a cooperative setup. Second, humans are supported by wearing
virtual and augmented reality (VR/AR) systems in collaborative interac-
tions. We focus on head-mounted-devices (or AR glasses) as a common
application. For instance, AR systems are able to support the operator in
the multiple-bin-size bin-packing problem to load parcels onto a pallet or
into a truck. Another use case is the selection of the most efficient container
(often the one that minimizes material use), but still perfectly packs and
protects all the items to be shipped. Note that AR glasses are also used for
picking (pick-by-vision) and findings may be transferable (see Egger and
Masood (2020) for an overview).

(ii) Issue identification - [6] Forming dyads with robot-assisted pack-
ing machines When deciding on semi-automated packing lines, ware-
house managers are faced with the decision on which sub-activity to assign
to robots and how to design the interaction among humans and machines.
In such hybrid work cells, robots take the role of the helping hand for the
humans when packing a container for delivery, leading to open research
questions:

[6.1] Which sub-activity should be performed by robots and which by
humans based on individual personality types and skills, and what is
the allocation mechanism?

[6.2] Do perceptional factors of robots impact mental workload and system
performance, and if so, why?

(iii) Characterization and (iv) Consequences of issue In such inter-
actions, humans and robots operate in the same space to finalize orders.
Workers see, hear, and exchange information with the packing machines.
Their new coworker focuses on routine tasks without showing any fatigue
(such as erecting the cartons or sorting the products), while humans excel by
performing activities that do not always follow structured patterns (such as
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troubleshooting (Banerjee et al., 2015) or special labeling). When switching
from a robot sub-task to a human sub-task (or vice versa), interactions
need to be orchestrated and adjusted to fit both the technical skills of the
robot and the natural physical movements of the human. Humans need
to anticipate and understand why a robot is reacting and behaving in a
particular way. This is crucial to mentally anticipate the next move of the
robot to ensure safe standard operating procedures.

Banerjee et al. (2015) conduct human-robot kitting experiments and achieve
faster execution times and comparable quality by implementing visual in-
dication when human troubleshooting is required. By letting the robot
assume repetitive tasks, physical workload is reduced and task duration
times lowered. Maettig and Kretschmer (2019) and Maettig et al. (2019)
also study the influence of visual indications in a packaging line by mini-
mizing the perceived information to reduce mental workload and improve
quality. As the reduction of mental workload or difficulty may evoke differ-
ent consequences for different people (Schulz et al., 2018), it still remains
open which sub-activity of the packing process should be performed by a
robot, depending on personality traits, human knowledge or skill. Further,
if we assume that the order of tasks within packing is fixed (due to the
line setup), and robots and humans jointly solve a task (e.g., robot erects
the carton, humans inserts items, robot seals it), humans prefer to work
with robots that are pro-active (they know and prepare which task to do
next) and information- or intent-sharing (Baraglia et al., 2016). Humans
also favor leading the interaction, except when mental workload is high
(Schulz et al., 2018). The overall setup consequently impact psychoso-
cial factors such as job satisfaction as well as both physical and mental
workload, leading to interesting research possibilities on the influences on
performance criteria (e.g., throughput times of the packing line). Besides
that, cooperating (or in some instances also collaborating) in such a close
proximity with robots may influence perceptual factors (such as noise levels)
in the warehouse, and this consequently needs to be addressed as well.
Regarding the above-mentioned multiple-bin-size bin-packing problem, Sun
et al. (2021) observe that humans deviate from algorithmic suggestions due
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to superior information or complexity issues. They install a human-centric
intervention that incorporates such anticipated deviations, leading to a
reduction of deviations and an improved performance. Future research
may explore the observed worker heterogeneity (e.g., in terms of traits
or preferences) or the possibility to provide additional information. One
possible way for this are AR devices, which we discuss next.

(ii) Issue identification - [7] Solving the quest of augmented real-
ity for packing Mark Zuckerberg, the CEO of Facebook, expects AR
glasses to redefine the relationship with technology (CNBC, 2020), and
many collaborative AR applications already exist for packing and other
activities (see Stoltz et al. (2017) for an overview). However, for extensive
implementations and safe interactions, the following research questions need
to be answered:

[7.1] How can human factors be improved when operating AR devices, what
is the performance impact of such behavioral aspects depending on
individual workers, and why?

[7.2] What are optimal operating policies (e.g., which tasks to conduct) for
operational activities when incorporating preferences and psychosocial
effects of employees wearing AR devices?

(iii) Characterization and (iv) Consequences of issue Using AR, the
operator sees through the head-mounted device and receives the respective
information on the display. These may be the location where to put an
item, or which container to choose based on a pre-selection. The human is
required to process the information and to act on given instructions (such
as putting items into a bin or erecting the carton). In some cases voice
commands, gesture or touch screen input are required, depending on the
type of AR support.

Three related experiments offer starting points to find answers to above-
mentioned questions. Stoltz et al. (2017) analyze human factors and
behavior in a parcel-categorizing task using a head-mounted device, while
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Kretschmer et al. (2018) and their follow-up study in Plewan et al. (2021)
investigate the performance and usability of an AR head-mounted device for
palletization. The authors compare the systems to traditional approaches
(such as paper based or tablet methods) in all three setups. Stoltz et al.
(2017) encounter a potential ephemeral motivational effect given the novelty
of the AR glass and the useful information displayed, linking to reduced
mental workload as the decision-making processes are assumed by the
machine. In line with this, Kretschmer et al. (2018) find a lower mental
and temporal demand and experienced effort, but no significant reduction
in perceived workload, which is confirmed by Plewan et al. (2021). Note
that the results indicate that workload was lowest for the AR condition
despite the missing effect significance. Regarding usability, Kretschmer et al.
(2018) and Plewan et al. (2021) report lower scores compared to traditional
approaches, resulting in a key challenge for practitioners. Interestingly,
performance metrics vary across the studies. While Stoltz et al. (2017) and
Plewan et al. (2021) find improvement in quality, time (as the efficiency
indicator) is not reduced in Kretschmer et al. (2018), and is even negatively
impacted in Stoltz et al. (2017) and Plewan et al. (2021). Concluding, it is
evident that AR devices help to increase the quality, but efficiency criteria
need to be assessed further. In particular, relationships with perceived
mental and physical workload, usability and acceptance seem visible, and
are also of highest relevance (Masood and Egger, 2019). Wearing a head-
mounted device for a whole shift increases physical workload, and users are
visually limited and may be distracted due to visual and audio information.
Thus, situational awareness and consequently safety is negatively impacted
(see Aromaa et al. (2020) in a related lab experiment). Also, understand-
ing the long-term motivational effect given lower decision discretion and
competence requirements needs to be understood, and findings are always
dependable on the individual hardware, subjects, and their personalities
(see De Vries et al. (2016b)). In any case, there are many possibilities to
further conduct field experiments with real warehousing workers to answer
above-mentioned questions and assess movement towards the expectations
Zuckerberg voiced.
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3.5 Theoretical foundations and unifying

themes

This section provides an aggregated view on the empirical findings through a
behavioral lens. In our systematic framework, we characterized each human-
machine interaction by its setup components space, time, aim, and contact.
We now develop theoretical foundations by discussing which behavioral
theory informs potential effects based on each interaction setup component.
By combining the theoretical foundation with both our insights obtained
in the previous section and further coding of our data sources, we derive
a set of four unifying themes (A)-(D) for the warehousing context. Each
theme illustrates a common behavioral aspect relevant in human-machine
interactions in warehousing across operational activities. The theoretical
foundations underpin unifying themes with prevalent behavioral theories to
highlight the causalities among the various interconnections (such as inter-
action setup and human factors). Fig. 3.8 summarizes those connections,
and Table 3.1 delineates links to issues, interviews and literature.

Figure 3.8: Overview of theoretical foundations and unifying themes
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Table 3.1: Interconnection among unifying themes, issues, and data sources
Unifying themes Related issues Evidence from inter-

views
Related literature

A Hiring and train-
ing the right hu-
man employees for
the right interac-
tion

[1], [2], [3], [4],
[5], [6], [7]

[2WO], [3WO], [4WO],
[5C], [6C], [8WO], [9SP],
[11SP], [12WO], [13WO],
[14WO], [15SP], [17C],
[18SP], [19WO]

Pasparakis et al. (2021), Plewan
et al. (2021), Roy and Edan (2018)

B Forming effective
human-machine
warehousing teams

[1], [2], [3], [4],
[6]

[2WO], [3WO], [4WO],
[6C], [8WO], [9SP],
[10WO], [13WO], [14WO],
[15SP], [16SP], [17C],
[18SP], [19WO]

Sanders et al. (2019), Stoltz et al.
(2017)

C Assigning tasks
and developing
operating policies
among humans
and machines

[1], [2], [4], [5],
[6], [7]

[1SP], [2WO], [3WO],
[7WO], [10WO], [11SP],
[12WO], [13WO], [14WO],
[15SP], [17C], [18SP],
[19WO]

Banerjee et al. (2015), Bai et al.
(2021), Cragg and Loske (2019),
Maettig and Kretschmer (2019),
Maettig et al. (2019), Pasparakis
et al. (2021), Sun et al. (2021), Roy
et al. (2019)

D Designing en-
gaging direct
human-machine
interactions

[2], [5], [7] [2WO], [4WO], [5C], [6C],
[7WO], [10WO], [11SP],
[13WO], [14WO], [16SP],
[17C]

Kretschmer et al. (2018), Kudelska
and Niedbal (2020), Plewan et al.
(2021), Roy and Edan (2018), Stoltz
et al. (2017)

In the following, along the unifying themes, we elaborate on behavioral
theories connected to the interaction setup components, and outline which
behavioral aspects and mechanisms play a significant role. We further
specify our findings from our empirical observations regarding the respective
unifying theme. By highlighting which human factors are salient to which
consequences, we show causal relationships for research going forward.

(A) Hiring and training the right human employees for the right
human-machine interaction As the human-machine interaction is hap-
pening in the same space and time, humans react to the presence of auto-
mated machines and robots in warehouses, and hence, theories of cognitive
psychology and individual differences of employees inform human behav-
ior within interactions (Croson et al., 2013; Kihlstrom and Park, 2018).
Particularly, aspects such as personality traits, preferences and skills vary
among humans (Donohue et al., 2020), and thus, play a crucial role in
managing efficient warehouse setups. The vast majority of interviewees
emphasized the need to hire, train, and employ suitable humans, depending
on the operational task at hand (see Table 3.1). The required skills include,
but are not limited to, professional (e.g., programming capabilities for
warehousing robots), methodological (e.g., trouble shooting skills to resolve
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workstation blockages), and personal competencies (e.g., eagerness to adapt
to adjusted tasks). This preference and competence based view is required
to account for the heterogeneity and individual differences of employees,
and necessary as job profiles are changing given adjusted or novel activities
in human-machine interactions with automated or robotized systems (also
driven by the rise of specific types of warehouses such as fulfillment centers
for e-commerce, see Boysen et al. (2019)). Examples for salient relation-
ships exist in the moderating effect of specific traits and preferences on
efficiency (see Pasparakis et al. (2021) for a picking example) and retention,
potentially triggered by differences in human motivation and satisfaction.
Further, recognizing individual’s skill set is important to understand which
worker to deploy for which task, as individual human performance varies
even in standardized activities (see Matusiak et al. (2017) for a related
picking study). Given high fluctuation rates in general, and large temporary
labor needs during peak demand periods, it is crucial to learn how to attract
and retain labor for human-machine interactions. Hence, analyzing this
first theme certainly leads to important understandings around individual
differences that can be utilized to hire and train the right human at the
right interaction across warehousing activities.

(B) Forming effective human-machine warehousing teams Having
new team mates in the same space and time triggers human behavior from
social psychology and group dynamics. For instance, theories around trust
and (technological) acceptance (Glikson and Woolley, 2020) as well as peer-
effects (Tan and Netessine, 2019) inform the behavior within the group,
and consequently also the outcome of the human-machine interaction. To
manage effective human-machine teams, interviewees describe trust and
acceptance as key success factors to implement warehouse automation
efficiently. This has been further accentuated by several practitioners that
reported failed automation attempts, with large negative outcomes on
system performance only due to lack of trust and acceptance by humans.
Salient factors to consider are in particular perceptual factors (e.g., how
robots are perceived and introduced) and their relationship to trust and
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acceptance of the employees in warehouse interactions. It is important how
team or firm loyalty may vary given emerging human-machine setups, and
how this moderates efficiency (potentially changed due to peer effects) and
particularly retention. Only by including such behavioral mechanisms into
optimization efforts will ensure to build efficient teams in the warehouse of
the future.

As space and time are by nature components of coexistence, cooperation,
and collaboration setups, themes (A) and (B) are of relevance for all
human-machine interactions.

(C) Assigning tasks and developing operating policies among hu-
mans and machines Adding the interaction component aim sparks
further mechanisms from social psychology. In particular, the same aim
creates (task) interdependence, making the performance of humans and
machines dependant on reciprocal actions (Bendoly et al., 2010). Thus,
humans compare themselves with the machines, show social preferences
(for example in task distribution or job execution), and react to process
information and setup choices (see Gombolay et al. (2017) or Loch and
Wu (2005) for related examples). The insights from practice regarding
task assignment and policy development show that addressing how to best
leverage the strengths of humans and machines, how to distribute the
workload within human-robot teams, and how to design the workflow (such
as communication and operating policies) becomes indispensable. When
solving related issues, mental factors are salient as humans think about
the tasks, process and setup choices (e.g., information provision). In this
way, feedback, transparency and perceived autonomy influence motivation
and satisfaction, and moderate the effect on performance in warehouses.
This constitutes the pathway to explore different avenues in cooperation
and collaboration setups such as the role of above-mentioned factors in
substitutable versus complementary tasks.
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(D) Designing engaging direct human-machine interactions Direct
contact provokes further behavioral mechanisms from social psychology and
physical environment (Bendoly et al., 2010; Vischer, 2007). Specifically, the-
ories explaining behavioral factors such as engagement (e.g., goal-setting or
incentive theories), workload (e.g., speed-accuracy trade-off) and situational
awareness inform interactions, particularly in collaboration setups. Insights
from the interviews show that, with increasing automation, experts see
issues around designing engaging interactions and thus, struggle to create
an attractive workplace for human employees in warehouses. While in coop-
eration setups mental and physical workload are mostly regarded separated,
the direct contact among human and machines makes the balance of both
factors a key relationship to optimize. For example, high physical workload
(or speed-up pressure, see Schultz et al. (2003) or Wang and Zhou (2018))
and low mental workload may both reduce efficiency and quality. Hence,
finding the optimal equilibrium (e.g., by adjusting decision-discretion) is a
key area of future research. Goal-setting theory and incentive theories are
starting points to inform more engaging (for higher usability and efficiency)
and more sustainable (for higher retention) solutions. On top of that, a
salient relationship exists between situational awareness and quality or
safety (e.g., see Aromaa et al. (2020) for a related lab experiment), and
needs to be taken into account when designing attractive interactions.

To summarize, the unifying themes (A)-(D) provide an aggregated view
on the detailed issue discussion in Section 3.4 while the prevailing theo-
ries constitute the foundation for human-machine interaction research in
warehousing going forward. This offers a cohesive body of knowledge to
better understand causalities within human-machine interactions and to ul-
timately provide more efficient warehousing setups when behavioral factors
are influencing the system and its performance. Addressing the research
questions for the specific issues will therefore also result in transferable
findings to other issues. The main rationale for this generalization materi-
alizes from analogous behavioral mechanisms that are triggered through
similar interaction setups and, in some cases, systems involved. For instance,
findings on fixed versus floating AMR policies when storing shelves [RQ
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2.2] may be transferred to picking as the interaction setup and systems
are comparable. Further, results on backlog design studies at advanced
workstations for picking [RQ 5.4] are applicable for receiving and inspection
as well as packing applications due to the potentially similar setup of the
system and interaction. Also, insights on efficient operational policies that
incorporate human usability and situational awareness when packing with
AR glasses [RQ 7.2] are transferable to picking tasks. These three examples
and the comprehensive overview in the Appendix indicate that findings
generated for one issue provide opportunities in additional activities.

3.6 Conclusion

Interactions between human operators and automated or robotized systems
in the warehouse are developing into a multi-disciplinary field of research.
This has recently evolved and gained momentum due to the rapid growth
of automation in logistics. As humans still excel in specific tasks due
to flexible skills and economic advantages, new issues related to the role
of workers in warehousing and in operations of the future emerged. To
optimize system design and operations, it has become essential to investigate
human-machine interactions in operational warehouse activities. This
paper develops the pathway to necessary research within this nascent
research area by identifying key interactions, corresponding behavioral
issues, theoretical foundations, and unifying themes. We first developed
a systematic framework to investigate issues in such interactions, and
additionally presented our empirical findings from expert discussions. The
developed research agenda unfolds open areas and related questions to
better manage human-machine interactions in automated warehouses. The
analysis of the warehousing literature revealed significant gaps across the
identified issues. In addition to the novelty of the warehousing systems
involved, a predominant reason is the research focus on either OM or BS,
but interdisciplinary methods are missing to tackle those behavioral issues.
It becomes evident that more synergistic approaches among OM and BS
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are required. Hence, we enriched the discussion to allow a cross-disciplinary
perspective, which is in line with the call for interdisciplinary OM and BS
research in Moniz and Krings (2016). We elaborated specifically on the type
of human-machine interaction setup, and how its component are connected
with prevailing theories. This overarching theoretical foundation particularly
informs four emerging unifying themes for human-machine interactions
in warehousing going forward. To conclude, we outline managerial and
theoretical implications, and provide limitations as well as an outlook of
our study.

3.6.1 Managerial and theoretical implications

Insights on the identified issues and themes could inspire practitioners when
designing and planning modern warehouses. For example, the implications
help warehouse systems providers and engineers to design better products
(such as incorporating behavioral findings in design and setup choices
of advanced workstations) and assist warehouse managers with better
decision-making by accounting for human-machine interaction effects (such
as hiring employees with a specific skill set or deciding on the type and
number of robots for a team). These findings can also enhance project
managers’ awareness of behavioral issues when drafting implementation
projects for warehouse automation (overcoming motivation and acceptance
issues, for instance). Ultimately, insights into the issues and themes will
facilitate the application of efficient OM models and tools that are grounded
in empirical observations and behavioral theories, aimed at increasing
system performance via enhanced human-machine interaction and associated
factors. Furthermore, we demonstrate that interactions with systems of a
robotic nature are prevalent, showing the enhanced relevance of autonomy
in intralogistics (see Fottner et al. (2021)), also given their flexibility and
scalability. Hence, managers need to prepare themselves and their teams for
further human-robot interactions. Moreover, as unifying themes exist across
activities, it is crucial to optimize interactions beyond picking (i.e., the
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activity with the largest cost share), as focusing on one individual activity
may create bottlenecks in others, leaving behind untapped opportunities for
improving an efficient material and information flow, and making a holistic
research approach necessary (see also Boysen et al. (2021) or Van Gils et al.
(2018)).

The systematic framework, theoretical foundation, and unifying themes also
build a structure to advance human-machine interaction research. They
can be applied in other contexts, particularly in both different activity
levels and related OM fields. For the former, they can be transferred to
the analysis of non-operational warehousing activities (such as interactions
with intelligent maintenance software in automated warehouses). For the
latter, the concepts remains valid for manufacturing (e.g., collaboration with
assembly robots), transportation (e.g., supervising automated truck driving),
health care (e.g., interactions with care robots) or other applications in
supply chain management (see Perera et al. (2019) for a forecasting example).
Consequently, this work opens up a broad variety of relevant topics as
human-machine interaction continues to progress in many OM fields.

When finding solutions to above-mentioned issues and unifying themes,
blending research of machine-centric OM with human-centric BS by ap-
plying the systematic framework and theoretical foundations is vital to
establish efficient human-machine interactions in the warehouse. In order
to enhance decision-making as well as OM principles and theories for such
interactions, it is also important to utilize a variety of methods to address
the research questions proposed. While we acknowledge that selected issues
may be resolved using a single method, it becomes indispensable to apply
an integrated research approach for the majority. This requires utilizing
quantitative methods (such as simulation, optimization or analytics) and
transferring principles from OM to human-machine interactions. These need
to be based on empirical insights using experimental and field research or
surveys to capture the actual behavior of agents involved and test existing
and nascent theories (DeHoratius and Rabinovich, 2011). Using our devel-
oped systematic framework and theoretical foundation, the combination of
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both lenses will inform OM models, theories and principles (Bendoly et al.,
2006), which ultimately enhances system performance to a greater extent.
We refer to the 3.6.2 for two examples how future research can take such
an integrated path.

3.6.2 Limitations and outlook

The list of research questions in one paper can never be exhaustive. We
mitigate this problem by conducting expert interviews to detect the most
relevant issues to explore this emerging field. By the design of this research,
we have concentrated our efforts on blue-collar, operational activities and
have not extended our perspective on white-collar planning tasks (whether
tactical or strategic). For instance, in control rooms of automated ware-
houses, a common issue is overwriting optimal parameters for automated
systems by operators. This often happens based on individual human pref-
erences, or unknown information. Consequently, future work could explore
issues in these directions. Additionally, we did not focus on integrative
topics for human-machine interactions when the systems are in the early
phase of technological developments and implementation. However, the
systematic framework, theoretical foundation, and unifying themes can
also serve to solve such matters including the alignment of human-machine
navigation (e.g., how to avoid the dominance of humans at intersections
with AMRs), the supervision of robotic systems such as inventory counting
drones (e.g., how to deal with low situational awareness), and the inte-
gration of robotic exoskeletons (e.g., how to increase the acceptance and
usability of such supportive devices). Moreover, due to the novelty of the
systems and interactions, it is not yet possible to derive any inference on the
long-term implications driven by behavioral mechanisms, which constitutes
a further research opportunity.

In conclusion, we see growing opportunities for managerially relevant and
theoretically challenging investigations in the field of human-machine
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interactions in general, and in the context of warehousing in particular.
Elon Musk, CEO of Tesla Inc. and one of the strongest advocates of
technologically induced change, fittingly said: “Humans are underrated.” It
was a reaction to over-automation without balancing human and machine
skills at Tesla’s production facility in California (Edwards and Edwards,
2018). Our contribution will serve to stimulate this line of research and
further enhance the blending of novel automated or robotized warehousing
systems with human factors and behavior.

Appendix

Appendix A: Research Methodology

In the following, we provide additional information on our research method-
ology along the steps within our triangulation approach. We start with
details on how we developed our (1) conceptual foundation, follow with com-
prehensive information on our (2) expert interviews, and finally highlight
the procedure of the conducted (3) systematic literature analysis.

A.1 Conceptual foundation

By analyzing seminal research, we sketch out fundamental literature and
concepts to rely on accepted definitions and relationships, and generate
a common understanding across the related research domains of human-
machine interactions in warehousing:

• First, machine-centric operations management offers recent works on
novel automated and robotized systems (including Azadeh et al. (2019)
or Boysen et al. (2019, 2021)), and seminal research on warehousing (such
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as Gu et al. (2007b) or De Koster et al. (2007)). These sources help to
identify which systems and activities result in important interactions and
issues.

• Second, we draw on theories from the human-centric behavioral science
stream that are relevant for behavioral operations (see discussion papers
of Bendoly et al. (2006, 2010), Croson et al. (2013), or Loch and Wu
(2005) for instances). These include, but are not limited to, cognitive
psychology (such as anchoring or framing), social psychology (such as
feedback and control theory, or technological acceptance), experimental
economics (such as incentive schemes or nudging), and group dynamics
(such as teamwork dynamics). In this way, we incorporate existing behav-
ioral theory from related fields, particularly to uncover behavioral aspects
in human-machine interactions (Boyer and Swink, 2008). Additionally,
we leverage the heterogeneity of such theories based on individual char-
acteristics such as personal skills, competencies, behavioral traits (e.g.,
personality types) or demographic aspects (e.g., culture and age). This is
reflected at a later stage by varying such factors in the respective research
questions. We also screen behavioral work in manual warehouses as part
of the analysis (e.g., Batt and Gallino (2019), or Grosse et al. (2015,
2017)).

• Finally, we additionally study foundations of human-machine interac-
tion outside the warehousing domain (e.g., Karwowski (2005); Salvendy
(2012); Sanders and McCormick (1993); Schmidtler et al. (2015); Schulz
et al. (2018)). This way, we also examine the links of theories and vari-
ables within such interactions, and finally, can propose a novel research
approach applied to the context of warehousing.

This research step delivers the foundation for the systematic framework
in Section 3.3, which denotes the relationships among important building
blocks of human-machine interactions in warehousing.
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A.2 Expert interviews

To ensure external validity and enhance the practical relevance, we collect
primary data and conduct semi-structured interviews (McCutcheon and
Meredith, 1993). According to Qu and Dumay (2011), this is particularly
suitable when disclosing important facets of human behavior (see Smith et al.
(2009) or Wu and Pullman (2015) for similar approaches). We interviewed in
total 19 warehouse system providers, warehouse managers and intralogistics
consultants. We applied theoretical sampling for our interviews (Eisenhardt,
1989; McCutcheon and Meredith, 1993), which took place between March
and June 2020 with ongoing data analysis after each interview. We hosted
audio and video conferences that lasted 50 minutes on average. Table
3.A1 provides an anonymous overview of the participants including the
order of the interviews. The selection process resulted in a sample that
shares internal homogeneity (i.e., experts in human-machine interactions for
operational warehousing activities) and external heterogeneity (i.e., experts
from different steps of the value chain) to ensure a holistic approach (see
Wu and Choi (2005) or Trautrims et al. (2012) for examples). The interview
questions (see Table 3.A2) were probing which human-machine interactions
exist in the different operational warehouse activities, and which associated
behavioral issues the experts observe. All interviews were subsequently
transcribed and coded using data analysis software (Miles et al., 2013). At
regular meetings, all authors discussed the codes, categories, and findings
to set aside subjective impressions and come to an objective meaning of
interviewee perceptions to ensure repeatability of our insights (Lincoln and
Guba, 1985). Further information on the interview procedure can be found
in Table 3.A1 and 3.A2. The empirical findings build the main source
for describing the human-machine interactions and identifying the issues.
Seven categories (each category represents one issue) were derived from
the interpretation of the data. Section 3.4 is structured along the seven
issues.
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Table 3.A1: Anonymous overview of interviewees and supplementary information
Code # Company type Interviewee role Warehouse experience

years
Gender

1 SP 1 System provider Managing Director > 20 Male
2 WO 2 Warehousing operator COO 10 - 20 Male
3 WO 3 Warehousing operator Head of Intralogistics 10 - 20 Male
4 WO 4 Warehousing operator Operations Manager < 5 Female
5 C 5 Consultancy Partner 10 - 20 Male
6 C 6 Consultancy Senior Expert > 20 Male
7 WO 7 Warehousing operator Supply Chain Manager 10 - 20 Male
8 WO 8 Warehousing operator Warehousing Manager > 20 Female
9 SP 9 System provider CEO 5 - 10 Male
10 WO 10 Warehousing operator Warehousing Manager 10 - 20 Male
11 SP 11 System provider Senior Product Manager 10 - 20 Male
12 WO 12 Warehousing operator Warehousing Manager 5 - 10 Male
13 WO 13 Warehousing operator Logistics Manager < 5 Male
14 WO 14 Warehousing operator Warehousing Manager > 20 Male
15 SP 15 System provider CTO > 10 Male
16 SP 16 System provider Senior Product Manager 10 - 20 Male
17 C 17 Consultancy Senior Expert > 20 Male
18 SP 18 System provider Head of R&D 10 - 20 Male
19 WO 19 Warehousing operator Supply Chain Manager > 20 Male

Supplementary information on sampling. We started by screening the global top 20
system providers (Modern Materials Handling, 2019). Four of them reported prominently
about implementing major warehouse automation projects in the press and on conferences.
We invited these four and three participated. We also mirrored the dynamic landscape
for warehouse automation and reached out to three innovative smaller providers for
novel systems identified through press clippings, conferences, and further references.
Two of those joined us for interviews. In the same manner we identified potential
warehouse operators and managers as well as intralogistics consultants, and screened
recent implementations (see e.g., WEKA (2020)), too. We reached out to fourteen
contacts, of which eight operators and three consultants participated. After these 16
interviews many issues and interactions were identified, and the repeatability already
increased from session to session. To ensure we achieved information saturation, we
conducted three more interviews (system provider, warehouse manager and consultant).
As these did not reveal any new insights (i.e., new codes that resulted in interactions or
issues identified), we concluded information saturation for the most relevant interactions
and issues (Holton, 2012). Nineteen interviews is in-line with recommendations to ensure
academic rigor and generalizability (see e.g., Eisenhardt (1989), Guest et al. (2006)).
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Table 3.A2: Guiding questions for interviews and supplementary information

# Guiding questions

1 In which areas or activities in the warehouse do you see significant interactions
among humans and automated machines or robots?

2 In the identified areas or activities, which (behavioral) issues do you see in the
human-machine interaction?

3 In which activities do humans and machines substitute each other; in which
activities do humans and machines work complementary?

4 What behavioral influences does the interaction have on humans (e.g., motivation,
acceptance, attention)?

Supplementary information on interview procedure and analysis. We deal with
the investigation of new structures and processes. Qualitative research is particularly
suitable for such settings (Bryman and Bell, 2015). A semi-structured interview approach
with open-ended questions has been applied to retrieve relevant information and gain
sufficient flexibility, which is appropriate when exploring a rather little-known area of
research (Creswell, 2009; DeHoratius and Rabinovich, 2011; Edmondson and Mcmanus,
2007). We referred to the main operational warehouse activities and potential systems
involved derived from the theoretical foundations to guide through the discussion. After
asking open-ended questions about interactions and issues, probes were informed by
potential associated human factors and behavior. Interviews were conducted in German
with German-speaking participants and in English with other participants. We based
our inductive analysis neither on a deductive logic nor a strict grounded theory approach
(Randall and Mello, 2012), as “data are inextricably fused with theory” (Alvesson and
Kärreman, 2007, p. 1265). The interviews were analyzed in two layers. First, an
objective content analysis was conducted focusing on the identification of relevant human-
machine interactions. In a second layer, we concentrated on the behavioral issues
identified, associated human factors, and the impact on system performance to extract
the underlying behavioral aspect in those interactions (Trautrims et al., 2012). After
establishing relevant human-machine interactions available from the content analysis
in the first layer, the second layer of analysis required deconstruction of the data for
the extraction of tacit knowledge from the interviews. The transcripts were rephrased,
reflected on and compared to create meaningful categories (Eisenhardt, 1989; Trautrims
et al., 2012).
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A.3 Systematic literature analysis

To match the identified issues with existing warehousing research, we per-
form a systematic literature analysis. This ensures a comprehensible and
objective process (Snyder, 2019). We utilize a fourfold approach, starting
with a keyword-based search on Scopus and Business Source Premier. For
the sake of focus, only peer-reviewed articles written in the English language
from 2010 or later that conduct experiments in the context of human factors
or behavioral issues in interactions with automated and robotized ware-
housing systems are considered. Initial screening and selection (including
eliminating duplicates) is conducted by three team members based on title,
abstract and keywords. Subsequently, suitable articles are read and either
included (if they match the above-mentioned criteria) or excluded. Second,
the reference sections of selected articles were screened to identify further
matching work (snowball method). Third, we use Google Scholar to analyze
any articles that cited selected research from step one and two to further
find matching articles. Fourth, manual searches of leading journals in the
field are carried out. As an outcome, we screened a very large number of
papers (2,218) to reflect the interdisciplinary nature of the research. For
further information on the process we refer to Table 3.A3. Ultimately, we
identify 13 articles that are matched to the identified issues in Section 3.4
to mirror state-of-the art research.

To summarize, we utilize the interviews and literature in Section 3.4 within
our issue identification approach. The systematic framework in Section 3.3
developed from the conceptual foundation lines up this discussion
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Table 3.A3: Keywords utilized in literature review and supplementary information
Area A: Area B: Area C:
Warehousing Interaction Human Factors and Behavior

Warehous* Autonom* Behavio* Situational Awareness Training
Intralogistics Robot Human Factor* Motivation Supervisi*
Distribution center Automat* Human Considerati* Satisfaction Moving

AGV Ergonomics Loyalty Operating
Human-machine Psychosocial Fairness Learning
Human-robot Physical Confidence Team structure
Machine Decision making Skills Team setup

Cogniti* Percept* Diversity
Safety Sens* Resistance
Bias Augment* Commitment
Heuristics Mental Adoption
Trust Think* Stress
Acceptance Information process* Emotion
Workload Boredom Attention

Supplementary information. Any combination of the keywords from the first, second
and third area in the abstract, title or keywords qualified for a hit. The keywords from the
first area have been chosen to ensure we target warehouses, while the second area mirrored
the interdisciplinary nature of human-machine interactions. The third area was used to
ensure behavioral experiments and settings were researched. We excluded any paper with
the word data warehouse in the abstract, title or keywords. Additional manual searches
were carried out in the following journals: Management Science, Production and Operations
Management, Journal of Operations Management, Manufacturing and Service Operations
Management, European Journal of Operational Research. A sample of approximately ten
percent of all articles are initially screened by two people in parallel to ensure consistency.
No significant deviations in terms of the articles selected could be identified among the
three members. In the rare event of different classifications, articles are marked as relevant
to avoid missing related research. The search have been updated in December 2021 during
the revision to include recently published papers.

Appendix B: Transferability of findings and integrated
research approaches

In the following Table 3.A4, we show how findings generated for one issue
provide opportunities in additional activities. Subsequently, we highlight
two examples for integrated research approaches when tackling the identified
issues.
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B.1 Transferability of findings

Table 3.A4: Findings on relevant issues may be transferred to other operational activities
Operational activities

Issue Interaction
setup

Systems in-
volved

R&I S OP P Related literature

[1] Controlling quality
using human-machine
complementarities

Cooperation Automated in-
spection and
control system

X (X)

[2] Filling shelves with
autonomous mobile
robots

Collaboration AMRs with
storage function
(and potentially
lift & seat)

X (X) Pasparakis et al.
(2021), Roy and Edan
(2018)

[3] Building teams in
human-robot picking
setups

Co-existence Fully au-
tonomous
mobile pick-
ing robots

(X) X (X)

[4] Distributing work in
human-robot picking
teams with substi-
tutable tasks

Cooperation Fully au-
tonomous
mobile pick-
ing robots, Pick
assignment
machine

(X) X Bai et al. (2021),
Sanders et al. (2019),
Cragg and Loske
(2019)

[5] Overcoming mental
impoverishment and
physical overload at
advanced workstations

Collaboration Advanced pick-
ing workstations

(X) X (X) Kudelska and Niedbal
(2020)

[6] Forming dyads with
robot-assisted packing
machines

Cooperation Robotic packing
systems

(X) (X) X Banerjee et al.
(2015), Maettig and
Kretschmer (2019),
Maettig et al. (2019),
Sun et al. (2021)

[7] Solving the quest of
augmented reality for
packing

Collaboration Augmented-
reality head-
mounted display

(X) (X) (X) X Stoltz et al. (2017),
Kretschmer et al.
(2018), Plewan et al.
(2021)

Examined activity X, Transferable to (X); R&I = Receiving & Inspection, S = Storing, OP = Order picking, P = Packing

B.2 Integrated research approaches

As mentioned above, it is important to apply an integrated research approach
for many of the identified issues. For example, when finding the optimal
team structure [3.1], field experiments are suitable for analyzing behavioral
aspects (such as peer effects) and performance metrics with a varying share
of robots. These behavioral aspects can then be included in mathematical
optimizations (e.g., Solow et al. (2020)) that model performance as a
function of the proportion of robots being used by accounting for the actual
human behavior. Hence, decision-making on the optimal number of humans
and robots including the resource allocation can be empirically enhanced to
improve organizational capabilities and system reliability. Moreover, when
finding the most efficient operating model for advanced workstations [5.4],
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behavioral implications of design and setup choices need to be assessed.
One could start analyzing the impact of backlog design options (and the
underlying reasons) on human performance criteria by conducting field
or lab experiments. The results could then be implemented in simulation
studies (e.g., using digital twins) on which backlog design options are
preferred, even with different personality types. Ultimately, this results in
a multi-criteria model that optimizes both throughput and human factors.
These were just two examples out of many that show how future research
can take such an integrated path.
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Abstract In course of the digital transformation, activities in operations management
contexts are prone to automation. Still, humans play an important role in many settings,
and human-machine interactions need to be managed efficiently to ensure smooth
operations. In many of those interactions, machines determine the assignment and
sequencing of tasks, while human workers mainly execute repetitive and monotonous
activities. One downside of such settings is the mental impoverishment of workers which
relates to stagnating productivity coupled with undesired effects on human factors
such as low satisfaction, self-determination, and perceived fairness. To address these
shortcomings, we perform an intervention-based research field study in a semi-automated
grocery warehouse, where we enable human workers to decide the number of picks they
want to perform at their current workstation. While we observe a 5.6% increase in
performance, workers report decreased levels of satisfaction, perceived fairness, and
self-determination. Triangulating surveys, focus interviews, and practitioners’ discussions
revealed that the intervention led to the suspension of informal work arrangements,
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resulting in the deterioration of the human factors. Our insights contribute to the
growing field of addressing behavioral issues in human-machine interactions, and provide
new insights to merits and potential pitfalls of applying goal-setting interventions.
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4.1 Introduction

The interaction of human workers and machines is increasingly becoming
a central component of operations management research (e.g., Sun et al.
(2021)). For decades, expanding automation and robotization has been
the focal point across operations contexts to achieve faster throughput
times, reduced costs, and higher service levels (IFR, 2020). Still, automated
systems are often jointly utilized with humans as manual workers have
certain advantages in flexibility and skills, resulting in a variety of human-
machine interactions (Lorson et al., 2022; Olsen and Tomlin, 2020). In many
of those interactions, machines determine the assignment and sequencing
of tasks, while human workers mainly execute repetitive and monotonous
activities (see, e.g., Bai et al. (2021); Sun et al. (2021); Wang et al. (2021)).

This particular division of work causes novel behavioral issues within human-
machine interactions. Mentally, the machine governs most steps of the
working process and dominates the decision-making, whereas simple, repet-
itive, and physically exhausting tasks need to be completed by the humans.
Among others, many companies across operations and logistics experience
lower levels of human satisfaction (McKinsey & Company, 2021b), self-
determination (Parasuraman et al., 2000), and perceived fairness (Langer
and Landers, 2021; Newman et al., 2020; Robert et al., 2020) that can
relate to the mental impoverishment of employees (Lorson et al., 2022).
Not surprisingly, stagnating operational worker productivity and overall
system performance paired with high employee turnover are common con-
sequences (McKinsey & Company, 2021b). While maximizing performance
for repetitive and monotonous operational activities plays a major role
in many organizations’ success (Bernstein, 2012; KC, 2020; Staats and
Gino, 2012), little research is available to account for the particularities
of human-machine interactions. Thus, existing empirical findings and be-
havioral theories on managing human factors and worker productivity (see
Bendoly et al. (2006, 2010); Croson et al. (2013); KC (2020)) need to be
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leveraged and extended to solve this behavioral issue for human-machine
interactions.

One promising approach is the introduction of goal-setting interventions for
human workers. Working towards goals has successfully increased perfor-
mance across different contexts, subject groups, geographies, and sources
of the goal (Corgnet et al., 2015; Goerg and Kube, 2012; Schultz et al.,
2010; Van Lent and Souverijn, 2020). Particularly, goal-setting applications
also improved human factors (Locke and Latham, 2002) within operations
management contexts. For example, Doerr et al. (1996) demonstrate how
individual goals improve worker satisfaction. Setting participative goals
includes the human worker into the decision-making process of her activities,
which has shown to be a source for self-determination (see Deci and Ryan
(2000); Deci et al. (2017) for overviews) and a significant factor in the
evaluation of fairness (Cropanzano et al., 2008). Given that goal-setting is
an important facet within operations management (Bendoly et al., 2010)
with potential to solve mental impoverishment and stagnating performance
of workers, an extension of the theory towards human-machine interactions
of blue-collar workers in operational activities is promising.

Our research aim is to improve the human-machine interaction by intro-
ducing a participative goal-setting intervention in a blue-collar operational
context. We hypothesize that such intervention improves both system
performance and satisfaction, self-determination, and perceived fairness.
This leads to the research question: How is a participative goal-setting inter-
vention impacting performance and human factors within a human-machine
interaction for an operational, monotonous activity?

To approach this, we conduct a field study within an Intervention-Based
Research (IBR) approach (Chandrasekaran et al., 2020; Olivia, 2019),
which has been successfully utilized in behavioral research questions across
operations management contexts (Akkermans et al., 2019; Chun et al.,
2022). It particularly provides the opportunity to observe human actions
and behavior in monotonous processes over a longer period. We choose

66



Elevating performance in an intervention-based human-machine interaction study Fabian Lorson

order picking within a warehouse as our research context where humans and
machines jointly work together to finish the picking task, with human
activities being highly monotonous and repetitive. The presence and
importance of behavioral issues within the human-machine interaction
in this setting will allow us to obtain generalizable insights. To do so,
we collaborate with a warehouse to introduce an intervention within a
semi-automated order picking zone. We design a participative goal-setting
intervention in which pickers are able to choose how many items they
want to pick at their current workstation out of a set of five pick numbers
(goals).

To facilitate the intervention, we draw upon the “Context-Intervention-
Mechanisms-Outcomes” (CIMO, see Denyer et al. (2008)) framework, which
is frequently used in IBR (e.g., Akkermans et al. (2019); Friesike et al.
(2019); Groop et al. (2017)). We analyze the effect of the intervention in
a real-world field study with pickers over the course of eight weeks. The
picking performance improved by 5.6% during the intervention compared
to pre-intervention, suggesting that goal-setting is a suitable approach to
increase system performance in monotonous human-machine interactions.
This result is replicated across a set of robustness checks, including a
Difference-in-Differences analysis considering a control warehouse. However,
employee satisfaction, self-determination and perceived fairness deteriorated
compared to pre-intervention scores and to a control group that was not
part of our intervention. The negative impact on human factors was
further explored by triangulating two types of human factor surveys, focus
interviews, in-depth process analyses, and discussions with the respective
practitioners. We could observe that the goal-setting intervention suspended
informal arrangements among workers. Specifically, the intervention affected
possibilities for humans to informally organize themselves in their working
day and to overrule the machine, with repercussions on satisfaction, self-
determination and perceived fairness.

Our research offers theoretical and practical contributions to operations
management. First, we demonstrate that the goal-setting intervention
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indeed has the potential to improve performance in highly physical, opera-
tional activities without any kind of monetary incentives, and extend the
theory given the potential pitfall of affecting informal arrangements and
their influence on human factors. Second, we demonstrate that behavioral
aspects of individuals and teams are important and need to be accounted for
when designing human-machine interactions and the associated workflows
and processes. This is in particular a contribution to the warehousing
literature where human factors have been mostly ignored in prior work
related to automation (Azadeh et al., 2019; Boysen et al., 2020; Yuan
et al., 2019). Third, we illustrate the value of conducting an IBR study
in warehousing. Running interventions during the regular course of action
in a warehouse setting enables us to draw robust inferences and general
insights that normal lab experiments are not able to reveal, such as effects
of informal work arrangements as in our study.

The remainder is organized as follows. Section 4.2 details our research
methodology. We follow with a detailed explanation of the empirical setting
and research design using the CIMO framework in Section 4.3. Section
4.4 highlights results, while Section 4.5 discusses those from a managerial
and theoretical perspective. We close in Section 4.6 with a conclusion and
outlook.

4.2 Research methodology

This study follows an IBR approach (Chandrasekaran et al., 2020; Olivia,
2019) which has been applied to tackle complex behavioral research questions
in many operations management contexts such as inventory management
(Land et al., 2021), scheduling (Öhman et al., 2021), manufacturing (Heden-
stierna et al., 2019) or healthcare (Anand et al., 2021; Chun et al., 2022;
Song et al., 2018). As we aim to explore reasons behind potential changes
in system performance and human factors, an IBR study is appropriate to
identify how individual workers and teams behave and are affected during
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the intervention (Langley et al., 2013; Olivia, 2019). In this way, following
an IBR approach requires further in-depth analyses of observed human
behavior, interactions, and processes to better understand and explain
unknown phenomena. This supports detecting unexpected findings and
triggers abductive reasoning to elaborate on the outcome of the research.
We leverage the IBR approach across our study to obtain empirical findings,
analyze the outcomes, and enhance existing theories. By doing so, the
continuous iteration among empirical evidence obtained within an IBR
study and existing behavioral theories enhances the theoretical insights in
operations management (Chandrasekaran et al., 2020).

Analyzing repetitive and monotonous operational activities requires to
capture agent and team behavior over a longer term during the normal course
of business. Working monotony and behavioral issues related to mental
impoverishment develop over time and thus require investigations in settings
where agents are already active for a longer period. Furthermore, these
repetitive and monotonous activities are subject to distinctive characteristics
(such as mental and physical impact within the human-machine interaction),
workflows and processes (such as developed job routines), and specific team
dynamics (such as pre-existing relationships among workers or informal team
arrangements for working procedures). Field research allows to effectively
investigate such behavioral facets in established team settings and human-
machine interactions. It further offers the opportunity to demonstrate
external validity and still understand phenomena in detail (Ibanez and
Staats, 2018). In this way, an IBR field study offers the chance to move
away from the quintessential “ivory tower” syndrome (Van Aken et al.,
2016; Van Mieghem, 2013) and also to go beyond expected results as some
influencing factors on operational performance and human behavior may
not be obvious before. IBR in the field thus can generate new empirical and
theoretical insights by closely iterating between practice and theory (Van
Aken et al., 2016). Accordingly, a field study with an industry cooperation is
well suited for enhancing empirical findings in operations management and
behavioral science by observing human actions and behavior in monotonous
daily working processes over a longer period of time.
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To do so, we choose order picking in warehouses as our research context
for three main reasons. First, the controllable and structured environment
makes warehouses popular incubators for the development and application of
innovative automated and robotized systems (Azadeh et al., 2019; Fragapane
et al., 2021). As of now, such systems often only take over part of the
operational activity (e.g., order picking), since humans have distinctive
characteristics, skills and capabilities that robots are not able to replicate
or able to perform cost efficiently (Gombolay et al., 2015; Schäfer et al.,
2022; Sgarbossa et al., 2020). As a consequence, humans and machines work
alongside each other, resulting in a variety of human-machine interactions
and behavioral issues (Lorson et al., 2022; Olsen and Tomlin, 2020). The
necessary collaboration of human operators with a growing diversity of
machines including resulting behavioral issues thus exposes warehousing
as an unique research area for human-machine interactions. Second, the
human task of order picking consists of repetitive physical motions such
as walking, grabbing, scanning and putting, making it a generic example
of a monotonous task where issues related to mental impoverishment and
stagnating worker performance are present. While our direct context of
research is warehousing, we expect our findings to be generalizable across
similar tasks in different applications across operations management. Third,
enhancing the value of human factors becomes increasingly relevant in
warehousing. Given the ongoing labor shortage and high worker turnover,
a recent shift in the perspective on blue-collar labor from an exchangeable
resource for completing open jobs to a valuable asset for smooth and
sustainable operations with the potential for productivity improvement,
was observed in warehousing, but holds true as well as for other operations
areas (McKinsey & Company, 2021b).

Table 4.1 summarizes the phases of our IBR study that are highlighted
below.
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Table 4.1: Research phases and timeline
(1) Pre-intervention (2) Intervention (3) Post-intervention
Aug 2020 - Jan 2022 Feb - Mar 2022 Apr - Aug 2022

• Interview warehouse, • Brief pickers about • Analyze the effect of the
provider, warehouse adjustments in workflow intervention and report on
manager, and pickers • Conduct intervention results

• Explore and identify • Collect system performance • Identify how individual
behavioral issues in data pickers and team leaders
order picking • Survey human factors participated and are

• Determine type including control group affected
of intervention • Host focus interviews with • Provide theoretical

• Program intervention and pickers explanations for outcomes
adjust front-end for login

• Beta-testing intervention

(1) Pre-intervention A leading warehouse system provider served as
business and thought partner to identify relevant behavioral issues in the
field. Upon selecting a suitable research site of a grocery retailer and
embarking on the project jointly with the respective warehouse manager,
we conducted a series of interviews, ran data analyses, and picked on-site
with the employee group to gain first-hand experience. After identifying
the most prevalent issues, we started analyzing potential approaches and
designed an intervention based on feasibility, impact, and research gap.
A software engineer programmed the intervention in the back-end of the
warehousing software and created a suitable front-end design based on
the conceptual input of the research team. Within this process, several
beta-tests have been conducted to ensure a smooth execution.

(2) Intervention The intervention was started within a representative
period to avoid any operational and load-related distortions (e.g., due to
public holidays). Before going live, we had detailed group briefings on the
functionalities. We started the intervention with the goal to conduct the
study for five weeks, however, were able to run it for eight weeks. During
this time, we collected the system performance data in the same manner
as pre-intervention to ensure a comparable data foundation. To survey
human factors, the pickers filled out weekly questionnaires one week prior
and during the implementation. Additionally, we hosted focus interviews
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five weeks after the intervention. We also run the surveys with a control
group of employees in a different part of the warehouse that was not part
of our intervention.

(3) Post-intervention After completion of the intervention study, we
analyzed the effect of the intervention and elaborated on the outcomes.
The conducted focus interviews with pickers and shift leaders as well as
discussions with the warehouse manager and department head about the
observed findings allowed us to generate tacit knowledge about picker
actions and behavioral aspects.

4.3 Research design and empirical setting

The CIMO framework of Denyer et al. (2008) is used to develop our study
and lines up this section. It is one of the dominantly used research designs
in IBR studies (see, e.g., Akkermans et al. (2019); Groop et al. (2017);
Ilk et al. (2020); Johnson et al. (2020)), and structures the analysis and
implementation of organizational interventions including information on
the specific context (C) in which the intervention (I) is implemented, while
elaborating on the mechanisms (M) that drive the expected outcomes (O)
(Friesike et al., 2019). Figure 4.1 shows an overview.

Figure 4.1: CIMO logic lining up Context, Intervention, Mechanisms and desired
Outcomes
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4.3.1 Context (C) and research problem

Picking in a semi-automated human-machine interaction The field
study takes place in a large and modern distribution center of a leading
grocery retail chain in Western Europe. The site is jointly run by the
retailer and the warehouse system provider. The provider is a global market
leader in the design and operation of automated warehouses. The retailer
and warehouse operator supplies more than 1,000 stores from the warehouse
every day. After the receiving and inspection of incoming pallets, products
are stored and subsequently retrieved when required. We consider the
retrieval of items with a semi-automated pick-to-light order picking system
as the ideal research context. Humans and machines jointly work together
to finish the picking task, with human activities being highly monotonous
and repetitive. The picking process under investigation operates as follows.
When one or more units of a product are needed, a conveyor-based system
sends a transport box to the picking area, consisting of two aisles with six
advanced workstations each. The system lines up the boxes (with items
inside) either to the left, to the right or behind the respective workstation,
where displays and lights guide the human picker in retrieving the right
amount and the right product (see Figure 4.2 for a layout overview). Items
are then placed into a box at the workstation and, once the picker retrieved
all necessary items, transported either to another workstation or to a
consolidation area. Typical products are cigarettes, drugstore articles or
canned food. Employees work usually in three shifts per day (night, early
and late shift) and five days per week.

We refer to Figure 4.3 for exemplary images of the picking zone. Usually,
nine to ten pickers work in one shift on twelve workstations. To serve all
workstations and as the workstation replenishment takes longer than the
picking, pickers need to switch between workstations. Human pickers thus
frequently change those, depending on the workload distribution or schedule,
with an average of every 14 minutes. The assignment of human pickers
to the workstations is centrally steered by a “machine”. An algorithm,
the so-called picker guide, defines the sequence of workstations for each
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Figure 4.2: Layout of picking area

picker. The priority of each workstation is continuously updated by the
algorithm and based on workstation workload, picker proximity or delivery
deadlines, among other criteria. After a picker has logged into the assigned
workstation, she completes the number of picks defined by the algorithm.
In this standard operating procedure, the picker has no decision discretion
where or how many items to pick before she needs to move on to the
next workstation. The twelve workstations inhibit differences driven by
their allocated products and mechanisms. Two workstations deal with
“slow-mover” items, leading to larger than average waiting time between
arriving boxes. In general, one aisle has lighter products (e.g., deodorants),
while the other one deals with the heavier items (e.g., ketchup bottles).
These characteristics lead to different human preferences and performances
along workstations. Most of the pickers favor to pick in the light gear aisle,
especially at the cigarette workstations as a high picking efficiency is easiest
to achieve. Contrary, pickers dislike the heavy gear aisle as well as the two
slow-mover workstations.

Performance and human factors issues Human workers are exposed
to monotonous and repetitive operational activities in warehousing due to
the setup of the human-machine interaction. This may cause performance
and behavioral issues, particularly where an algorithm determines the job
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Figure 4.3: Close-up view (left) and distant view (center) on advanced picking work-
stations, and aisle view (right)

sequence and amount of work at a workstation such as in our applica-
tion. Our starting point to comprehensively identify behavioral issues in
human-machine interactions were several semi-structured interviews with
the warehouse manager, the department head, shift leaders and individual
pickers from the retail chain as well as with system designers and man-
agement from the warehouse provider. These interviews were conducted
via video/audio-conferencing tools and on-site field meetings. Also, one
author joined the picker group pre-intervention to experience the activity
first-hand. Additionally, we complemented our qualitative findings from
the interviews with data analyses on quantitative system data to validate
reported issues and completed a literature review. Table 4.2 summarizes
the main observations. We discuss the issues along the framework of Lorson
et al. (2022) and differentiate between performance and human factors.
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Table 4.2: Gaining insights into human-machine interaction problems across sources to
identify prevalent issues

Source Important problem statements Identified Issues

Warehouse “There is often a general dissatisfaction, it’s just a hard job.” 

manager “Pickers are not involved in any decision-making processes, maybe
only in micro decisions. The picker guide algorithm decides for each
picker where to pick and when to switch workstations.”
“As in many other companies in the logistics sector, we have a high
employee turnover and need to improve our retention.”
“Picker have own tally charts to check when someone worked in which
aisle. They often feel unfairly treated.”
“The performance overall did not change much over the last years.”
“We have individual performance information for each picker, but we
typically do not share details with them.”
“We often see pickers questioning the decisions of the picker guide.”

Department
head

“Sometime pickers have to wait for the replenishment at a worksta-
tion and that is very boring and frustrating, particularly at the slow
mover workstations 6 and 12.”

Performance

“There are conflicts and discussions between pickers, mostly about
break time and workstation assignment.”

Stagnating performance

“Some colleagues use the log-off function or go to the bathroom
many times. When they come back, they choose the workstation
they want.”

Human Factors

“The performance among pickers is different. We have very strong
ones, but some also work slower than the average. Overall, perfor-
mance stays mostly the same.”

Low satisfaction

Shift lead-
ers

“I want to ensure that workstation 6 and 12 are always occupied not
to miss delivery deadlines.”

Little self-determination

“With some colleagues I have to pay attention that they do not spend
too much time at the preferred workstations 1 and 2 or in the easy
aisle.”

Perceived unfairness

Pickers “We do not get any reward for picking faster. We only have the fixed
salary.”
“Work is work and it is always the same.”
“Some colleagues always want to stay longer at workstation 1 and 2
because there you can get many picks.”

Data Non-uniform picking performance across workstations
analyses Measurable deviation of picking performance across pickers

High employee turnover
No significant differences in the workstation assignment across em-
ployees
Stagnating overall picking performance over the last years

The warehouse manager and the department head indicated that the overall
picking performance was stagnating. A data analysis of the previous four
years confirms these observations. A linear regression indicated a very
small (0.02% of the constant) and insignificant (p=0.72) slope over time.
Further, the human-machine interaction has not been innovated over the
last years, and the work of the human pickers remained unchanged. Please
note that other performance metrics such as quality of work within the
picking process was not of relevance, as before and during the intervention
only a negligible number of picking errors occurred. The same holds true
for safety related metrics (De Koster et al., 2011).

As common in the logistics sector, turnover among employees is high. For
example, 40% of the employees that were active in the respective study
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weeks in 2021 were not present in 2022. Related to this is the low satisfaction
of the employees. One obvious reason is the monotonous work of the pickers:
“Work is work and it is always the same”, to cite an employee. Also, missing
performance feedback was mentioned several times, as pickers do not receive
direct, consistent, and comparable feedback on their picking performance.
Furthermore, a perceived unfairness among the pickers with respect to the
allocation to less or more preferred workstations has been raised as an
issue by the pickers and leadership. Many of them verbalized an unequal
assignment to the different workstations. However, with a look into the
data, this unfairness can be labelled as perceived, but not actual. All pickers
have a similar share of assignments across workstations including preferred
and unfavorable ones. Little self-determination constitutes a further human
factor issue, as the “machine” is taking all necessary decisions within the
work task: “Pickers are not involved in any decision-making processes”, to
cite the warehouse manager.

4.3.2 Designing and implementing the intervention (I)

The system under investigation showed issues of stagnating picking per-
formance and human factors related to low job satisfaction, perceived
unfairness and little self-determination. The goal of the behavioral interven-
tion was to efficiently tackle these identified issues, while being conscious
about the overall technical change effort and the possibility to implement the
solution. For this purpose, we defined each variable involved in the under-
lying issue, and explored options how to improve those. We jointly created
with the management team of the warehouse operator and the warehouse
provider a list of potential interventions that are suitable to address those
issues, and subsequently evaluated them along feasibility of implementation,
expected impact on operations, and research gap. As we jointly found
evidence that a goal-setting approach may solve the identified issues while
being technically minimal invasive, the ultimately selected intervention is
based on goal-setting theory and can be simplified as follows:
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Instead of being extrinsically dictated by the machine and algorithm,
human workers can now choose at each workstation login how many
items they want to pick at their workstation out of a set of five goals
(pick numbers). In this way, pickers are able to indirectly control how
long they want to stay at the respective workstation. The goal-setting
intervention includes additional information about the progress of
picking towards the selected goal (i.e., goal attainment status).

Design of the intervention A picker is now required to select one out of
five possible goals whenever she logs in (either when switching to another
workstation, at the start of the shift, or after a break). This is shown on
the login display (see Figure 4.4), next to workstation priority information
compared to other workstations. Figure 4.A1 in the Appendix compares
the pre-intervention and intervention designs. The chosen goal is shown
on the picking display, during normal course of operation. Right below,
the goal-setting intervention provides a tracker which counts the picks con-
ducted since choosing this goal. This goal-attainment status is particularly
important for workers to track their progress and to trigger goal-setting
mechanisms (Locke and Latham, 1990). The five goals (25, 35, 45, 65,
105 items to pick) have been jointly determined with the retailer based on
historical number of picks at a workstation and some initial tests. The mini-
mum was determined by the warehouse manager to avoid excessive changes.
Based on picker feedback, the largest number should be substantially higher
to also allow longer times at workstations.

Figure 4.4: Intervention design - login (left) and picking display (right) at the worksta-
tions
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Implementation of the intervention Figure 4.5 shows the detailed time-
line of the implementation. We first explain the final preparation of the
intervention and then turn to data collection.

Figure 4.5: Implementation timeline of intervention and data collection

Final preparation. To enable a smooth transition from the old (pre-
intervention) to the new (intervention) system, the department head briefed
all shift leaders regarding timeline and functionality of the intervention,
while one author additionally conducted nine meetings (4-5 pickers each for
all three shifts) to emphasize the changes. Overall, 41 pickers were active
during the intervention. The intervention was uploaded on the system prior
to the start week and finalized with minor corrections of technical bugs and
small adjustments.

Performance data collection. The intervention was planned to run for five
weeks, but was extended for another three weeks, totaling in eight weeks of
intervention time. We automatically collected hourly data retrieved from
the warehouse system. These included time stamps and performance values
such as (i) workstation ID, (ii) worker ID, (iii) conducted picks, as well as
(iv) time spent and (v) pick time at the respective workstation. For the
purpose of our study, we regard the conducted picks per person pick hour
(i.e., how many items were picked when picking was technically possible)
as the main performance indicator. This allows us to exclude any external
influences of the technical system and measure only the human action. This
also strengthens the accuracy of outcomes when comparing pre-intervention
and intervention metrics. These data points are available for 24 months
prior and during the intervention.
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Human factors data collection. To measure the human factors under in-
vestigation (satisfaction, perceived fairness and self-determination), we
conducted weekly surveys. We started two weeks before the intervention
with a base questionnaire that also included questions to identify personal-
ity traits such as regulatory focus (Higgins, 1997) and big five inventory
(Digman, 1990), retrieve demographic information (sex, age, height and
picking experience), and explore workstation preferences to validate our
observations from picker discussions. We followed Larson (2019) to reduce
social desirability bias in the questionnaire. For example, pickers were
briefed that their employer has no access to individual answers, and that
no individual evaluations of their answers will be performed. Also, before
filling out the questionnaires, pickers received instructions that answers
are not differentiated between correct and wrong, and that they should
provide honest self-evaluations. From calendar weeks 3 to 9, we surveyed
the pickers each week on the same day. Participants had to choose on a
5-point-likert scale (no, rather no, neither/nor, rather yes, yes) if they were
(i) generally satisfied with their work, (ii) working in a self-determined way,
which means making decisions, and (iii) believing that the assignment of
pickers to the workstations is fair. We additionally surveyed a control group
(n=14) within the same warehouse that worked in a different activity and
that did not experience any change in their daily work during that time. As
the warehouse manager promised his employees to make a democratic vote
if the intervention will be implemented after the initially planned five weeks,
we hosted individual focus interviews with 31 pickers from the night, early
and late shift. In this way, we were able to retrieve individual thoughts and
feedback with the absence of group dynamics that the research team could
observe during the intervention study. After discussions on (dis-)advantages,
pickers had to answer three simple questions. We asked them if they were
(i) more satisfied, (ii) more self-determined, and (iii) perceiving a fairer
workstation assignment with the old or new system. Additionally, they
had to vote with which system they want to continue working: the new
system, the new system with adjustments (which they had to define by
themselves), or the old system. While the questions about the new system
were matched to worker IDs, the vote was confidential. The outcome of the
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vote was communicated directly the day after by the department head and
warehouse manager.

4.3.3 Triggering goal-setting mechanisms (M)

As goal-setting is a well-researched field in other contexts, we can draw on
a large body of knowledge to formulate the expected triggered mechanisms.
Additionally, the intervention might lead to a change in the average time
at a workstation, that is, the time a worker is assigned for picking to a
particular workstation. We thus also discuss this potential mechanism.

Goal-setting mechanisms Locke and Latham (2002) deconstruct mech-
anisms that play a significant role when setting goals. Out of those, three
are relevant for our intervention. To start with, goals increase effort and
reduce behavior that is irrelevant towards achieving the goal. Second, they
energize people, also for physical and repetitive tasks. Third, goals boost
persistence, which, for example, enables workers to increase work pace when
confronted with tight deadlines. If we apply these three mechanisms to our
goal-setting intervention, we expect pickers to increase their effort during
the picking process to reach the selected goal, while they may also cut down
on behavior that is irrelevant for this (such as chatting with co-workers
or logging out in the middle of the picking process). The mechanisms are
likely to trigger more energy and persistence, meaning pickers try physically
harder to reach the goal as soon as possible. Overall, this can also be
denoted as higher engagement as a broader term of these mechanisms.

Reduced time at workstation Additionally, while we did not change
any operational processes, we acknowledge a possible indirect mechanism
of the intervention which is a change in the average time a picker spends at
a workstation. Before the intervention, a change of workstation was only
triggered if no more picks were available, or if another workstation was
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assigned a higher priority by the picker guide. By introducing a maximum
goal of 105 as well as different goals to select from, we expect to decrease
the average number of picks at a workstation. This leads to an increase of
the number of changes per worker per shift and a decrease of the average
time at a workstation.

4.3.4 Expecting improved outcomes (O)

We derive the expected outcomes and formulate hypotheses based on the
mechanisms and specific setup. We discuss expected outcomes on system
performance and the three human factors.

System performance Introducing goal-setting options have successfully
increased performance across contexts, subject groups, geographies, or
goal sources (Corgnet et al., 2015; Goerg and Kube, 2012; Locke and
Latham, 2002; Schultz et al., 2010; Van Lent and Souverijn, 2020). For the
latter, research differentiates among external (set by an outsider), internal
(self-set), and participative (cooperatively set) goals (Locke and Latham,
2019; Van Lent and Souverijn, 2020). Our intervention comes closest to
participative goals: While the system sets the five different choices of
numbers of picks, each worker has the freedom to choose any of them
without further restrictions. Related research provides clear evidence for
expected performance improvement. For example, Latham et al. (1978)
and Downing and Geller (2012) show that the introduction of participative
goals results in higher performance. While some studies combine monetary
incentives with goal-setting (e.g., Doerr et al. (1996) or Friebel et al. (2017)),
performance enhancements were also achieved without any financial benefit
for the subjects (e.g., Goerg and Kube (2012); Van Lent and Souverijn
(2020)). To improve the chances of increasing performance, we apply
suitable design elements mentioned in related literature. To name a few,
we propose very specific goals (Locke and Latham, 1990), make sure pickers
have the skills to reach the goal (Latham and Locke, 2006), and provide
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goal-attainment status by showing the tracker on the picking display (Jung
et al., 2010).

Furthermore, as we outlined before, the goal-setting intervention might
trigger a larger number of workstation changes. Interestingly, two important
findings in operations management are relevant when estimating the influ-
ence on the picking performance. On the one hand, workers may experience
a loss of rhythm, which may result in deteriorating performance due to
a break in the rhythm of the operations process (see e.g., Schultz et al.
(2003) and Staats and Gino (2012)). On the other hand, the more frequent
changes may reduce the monotony and boredom of the picking process.
This can be seen as an accelerated job rotation for the human picker which
may increase the picking performance (Grosse et al., 2015). With a look
on the historical data, we identified a negative relationship between the
average time spent at a workstation and the picking performance. Hence,
we ultimately expect that more frequent changes triggered by our interven-
tion will increase picking performance, supporting the argument based on
goal-setting theory. This leads to our first hypothesis:

Hypothesis 1: The goal-setting intervention increases the picker perfor-
mance measured in picks per hour.

Human factors We further hypothesize that our intervention will be
beneficial to all three identified human factors. First, goals have been
successfully established to increase job satisfaction (e.g., see Doerr et al.
(1996) for a production line setting). Specifically, Zhang (2008) defines goal-
setting and information on goal-attainment as a source for satisfaction within
human-machine interactions. Also, pickers will not experience negative
effects of goal-setting approaches (such as dissatisfaction when goals are not
reached) as they either pick until the selected goal is achieved or until all
available items in the workstation are picked. Hence, pickers are expected
to generate a feeling of goal success (Locke and Latham, 1990), which serves
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as a strong foundation that the intervention increases satisfaction, resulting
in:

Hypothesis 2a: The goal-setting intervention increases picker job satis-
faction.

Further, we expect a positive effect on self-determination given the intro-
duced ability to choose five different pick quantities at each workstation
login. Compared to the status quo, in which human employees are purely
steered by the assignment algorithm and hence, do not have any possibility
of process co-determination, they are now faced with a decision: Do I want
to pick 25, 35, 45, 65 or 105 at this workstation? This increased freedom of
choice enables workers to design an important element of their work, which
further boosts the higher engagement into the task itself (see Deci et al.
(2017)). Hence, we derive:

Hypothesis 2b: The goal-setting intervention increases picker self-
determination.

Finally, the intervention might also affect the perceived (un)fairness. Now,
pickers are able to influence the distribution of workstations by deciding
on the picking goal (and consequently on the time spent) at the respective
workstation. For example, if a picker thinks that she is currently being sent
too much to a workstation that she does not prefer, she may select small
goals (e.g., 25 or 35) to reduce her time at that workstation. Thus, she is
able to change the assignment of workstations in a way she perceives to be
fairer. As individuals often evaluate the fairness of an event by taking into
account the assignment process (Cropanzano et al., 2008), the intervention
should increase the perceived fairness of pickers, leading to:

Hypothesis 2c: The goal-setting intervention increases the perceived fair-
ness of workstation distribution for pickers.
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4.4 Outcomes of the intervention

After having established the triggered mechanisms and expected outcomes,
we turn now to the observed intervention results and highlight first the
impact on performance, and then on the human factors.

4.4.1 Impact on system performance

A two-sample t-test is applied to investigate the effect on human performance
(i.e., picks per person pick hour). The application of several linear regression
models including different control variables allow obtaining robust results.
Additionally, we conduct a Difference-in-Differences (DiD) analysis including
data from a comparable warehouse.

Change of performance during intervention period We compare the
eight weeks of the intervention in 2022 with the respective eight weeks in
2021 (calendar weeks 5-12) to ensure a like-for-like comparison (see similar
approaches in Kaipia et al. (2017)). Comparing the same weeks avoids any
demand distortions due to seasonality, public holidays, and other factors
that are especially important in grocery retail. Focusing on week level
also ensures all working days and shifts are covered within one aggregation
point. Within this time, no technical or organizational changes have been
conducted that may have resulted in performance and workload changes.
The workload in the respective weeks of both years was comparable since
the demand for the grocery retail sector in general, and for our warehouse
under investigation in particular, stayed similar. There was no demand shift
between these two years caused by the Covid-19 pandemic or other external
factors. Furthermore, the order structure and the workload across different
workstations did not deviate between the two periods under investigation.
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Figure 4.6 plots the performance from the beginning of the year (starting
with week 2 to avoid distortions from the holiday season) until the end of
the intervention in week 12. The pick performance during the intervention
exceeds clearly the pre-intervention performance. A two-sample t-test
(weeks 5-12) shows also a significant improvement after introducing the
intervention. The difference between the means before and during the
intervention is 24.70 (465.58-440.89) picks per person pick hour, and these
means are statistically different from each other (p<0.01). This results in
a performance improvement of 5.60%, which is also indicated by higher
picking performance after introducing the intervention when conducting
a Mann-Whitney test (p<0.01). These findings also hold if we use other
temporal aggregation of our data (e.g., day or shift level). It is astonishing
that the intervention achieved such a high and significant performance
improvement in a system that suffered under stagnating performance over
years.

Figure 4.6: Performance comparison on week level between pre-intervention and inter-
vention study

Robustness checks: Regression models on hourly data Because
the performance of human pickers might be influenced by several variables,
a regression analysis is applied for robustness checks (see also Donohue
et al. (2018)). We estimate the effect of the intervention on the picking
performance first with a linear OLS regression and add the following five
control variables successively:
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(i) Load factor. The actual load of the system may play a crucial role
on the performance of groups and individuals (Delasay et al., 2019).
In our application, the workload is determined by how many picks
are required to fulfill all orders in the system. The received orders
are known for each day, and hence, we can assign each data point the
load factor of that respective day. The average load is around 53.000
picks per day with a standard deviation of 7.340 picks.

(ii) Time at workstation. The average time spent at a workstation changes
during the intervention as pickers select their maximum number of
picks at each workstation before they move on to the next station. We
observed a reduction of the average time at a workstation by 12% from
14.39 minutes (pre-intervention) to 12.62 minutes (during intervention).
This results in approximately 4 more workstation changes per picker
during a shift.

(iii) Workstation ID. Different products are picked at twelve workstations.
This may result in different difficulty levels to pick the respective
products, resulting in distinctive human performances (and prefer-
ences) for each station. For this reason, the variable workstation ID
is included as a fixed effect to remove any potential influences due to
these different characteristics.

(iv) Worker ID. There is a substantial variation among workers in terms
of performance and behavior. Also, given the high employee turnover,
only 29 out of 42 employees from 2021 were active during the inter-
vention period in 2022. To control for individual worker effects, we
include the worker ID as a fixed effect in our model.

(v) Calendar week. To handle seasonality effects, we include the respective
calendar week of the data point as a fixed effect.

The pick performance for each pick hour is the dependent variable to capture
the effects of the time spent at workstation, worker ID and workstation ID.
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To gain a more robust indication, we consider two different time horizons.
First, and similar to the initial t-test, we regard data from the intervention
study and the respective same eight weeks from 2021 in regression set (1).
For regression set (2), we include data from calendar week 13 in 2020 until
the end of the intervention.

Regression set (1) We compare again the eight weeks during the inter-
vention with the same calendar weeks in the previous year. This results
in 23,381 data points for 2021 and 27,618 for 2022. Note that the larger
number of observations for 2022 results mainly from the increased number
of workstation changes. Table 4.3 provides an overview of the six different
models. The main independent variable (i.e., the intervention dummy
variable) as well as the F-statistic show significant values (p<0.01) for all
models. Model 5 results show that our intervention improves performance
by almost 22 additional picks per person pick hour. This is in line with the
observed improvement in Figure 4.6. Running the linear regression set (1)
replicates the positive impact of our intervention on picking performance.

While load does not seem to have a significant influence on the picking
performance, the time at workstation is significant across all three models in
which we included the variable. The negative sign confirms our expectation
that shorter times at a workstation and consequently a higher number of
workstation changes improve the picking performance across pickers. While
this effect is significant (p<0.01), the magnitude on the overall picking
performance is rather small. In Model 5, for example, increasing the time at
workstation by 1 hour reduces the expected picking performance by 92.55
picks per hour for pickers. Translating this to the observed reduction of
the average time at workstation of 1.77 minutes (difference between 14.39
and 12.62, see above), the time at workstation effect is expected to improve
picking performance by approximately 3 picks per person hour. That means
one significant, but small part of the improvement can be explained by the
more frequent changes of workstations.

88



Elevating performance in an intervention-based human-machine interaction study Fabian Lorson

Table 4.3: 8 weeks in 2022 compared with 8 weeks in 2021 – Dependent variable: Pick
performance

Base Model 1 Model 2 Model 3 Model 4 Model 5

Intervention 18.73*** 18.87*** 16.34*** 12.32*** 22.01*** 21.96***
(1.94) (1.95) (1.95) (1.82) (2.20) (2.20)

Load 0.00 0.00 0.00 0.00 -0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Time at workstation -89.21*** -112.80*** -92.47*** -92.55***
(5.32) (5.16) (5.02) (5.02)

Workstation ID X X X
Worker ID X X
Calendar week X
Constant 467.66*** 458.97*** 479.38*** 615.08*** 630.73*** 624.70***

(1.42) (8.48) (8.55) (8.63) (9.87) (10.13)
Observations 50,999 50,465 50,465 50,465 50,465 50,465
R2 0.0018 0.0019 0.0074 0.1384 0.1930 0.1938
Adjusted R2 0.0018 0.0018 0.0073 0.1381 0.1918 0.1925
F-statistic 93.15*** 47.37*** 125.48*** 578.65*** 158.54*** 145.90***

Note: Standard errors (SE) are in parentheses; *** p < 0.01

Regression set (2) In order to capture a larger time horizon of two full
years, we extend the data set and include hourly data from calendar week
13 in 2020 to calendar week 12 in 2022, with the last eight weeks being our
intervention period. This gives 304,039 pre-intervention data points. Table
4.4 reports on the results.

The intervention variable and the F-statistic are significant (p< 0.01) across
all six models, and after introducing the fixed effects, the model fit improves
(higher R2 value). Regression set (2) also confirms that the intervention
improves picking performance in a similar amount. The load factor shows
significant values (p<0.01) for Model 3 and 4, but not for Model 5, which
shows the highest model fit. Similar to regression set (1), time at workstation
is significant (p<0.01) in all three involved models and the R2 value is
enhanced when introducing fixed effects of workstation ID and worker ID,
with only little improvement when adding the fixed effect of the calendar
weeks.
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Table 4.4: 8 weeks in 2022 compared with 97 prior weeks – Dependent variable: Pick
performance

Base Model 1 Model 2 Model 3 Model 4 Model 5

Intervention 27.25*** 27.42*** 25.61*** 20.32*** 21.69*** 20.78***
(1.42) (1.43) (1.43) (1.30) (1.38) (1.88)

Load 0.00 0.00 0.00*** 0.00*** 0.00
(0.00) (0.00) (0.00) (0.00) (0.00)

Time at workstation -84.77*** -97.91*** -82.81*** -83.26***
(2.00) (1.89) (1.85) (1.84)

Workstation ID X X X
Worker ID X X
Calendar week X
Constant 459.14*** 458.52*** 476.32*** 595.63*** 602.81*** 602.10***

(0.41) (2.33) (2.36) (2.54) (3.56) (4.59)
Observations 331,657 330,718 330,718 330,718 330,718 330,718
R2 0.0011 0.0011 0.0065 0.1384 0.2209 0.2245
Adjusted R2 0.0011 0.0011 0.0065 0.1381 0.2206 0.2241
F-statistic 369.58*** 4183.58*** 724.63*** 5128.59*** 699.50*** 514.57***

Standard errors (SE) are in parentheses; ***p < 0.01.

Difference-in-Differences analysis with control warehouse To
substantiate the robustness of the performance improvement based on
our intervention, we compare the performance development to a control
warehouse using a DiD approach (see e.g., Anand et al. (2021); Chun et al.
(2022); Patel et al. (2021) for similar analyses in IBR). The warehouse
system provider was able to share data of the eight weeks in 2021 and 2022
from a similar warehouse that is comparable due to the identical picking
automation, workstation setup and operating principles and hence, the
identical human-machine interaction. The warehouse is operated by the
same retailer with a similar size and product portfolio, the same function
(i.e., central warehouse), as well as shift and data system. We run the
analysis using weekly data points. Figure 4.7 plots the results of the DiD
regression within a linear-trends model to have equalized values for both
warehouses in calendar week 5 in 2021 for better comparability. Both
warehouses have a very similar development over the eight weeks in 2021.
However, the introduction of the intervention leads to a significant increase
in performance, which cannot be identified in the control warehouse. In
fact, the regression output shows an average increase during the eight
weeks of 36.07 picks per hour compared to the control warehouse (p<0.01).
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Figure 4.7: Linear-trends model of DiD approach with a similar control warehouse

We have gathered evidence across a t-test, a Mann-Whitney test, two sets
of linear regressions with six models each, and a DiD approach that our
intervention indeed significantly improves to a large extend the picking
performance. Hence, we find a clear support for Hypothesis 1. Picker
statements from the focus discussion mentioned several aspects that are
related. For example, many appreciated the goal attainment tracker to
understand when the next workstation change is coming. Moreover, the
number of pickers that preferred the higher number of workstation changes
exceeds the ones that did not like the additional walking distance. We also
confirmed that the number of workstation changes increased. While the
reduction of the time spent at a workstation has a significant impact on
performance, the magnitude was low.

4.4.2 Impact on human factors

This section analyzes the impact on satisfaction, self-determination, and
perceived fairness. We structure this section along the three human factors,
but start with a description on how we obtained the insights. In fact, we
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retrieved observations across two types of surveys (see Section 4.3.2). First,
pickers filled out a questionnaire each week (starting one week prior to the
implementation). We compare the weekly survey scores from calendar week
3 (pre-intervention) with the the average of calendar weeks 5-9 (intervention).
We discard the score of calendar week 4 as the technical implementation
including minor adjustments took place during this period. Second, we
hosted 31 individual focus interviews with a subsequent survey (denoted as
final consideration) on whether the three human factors have improved due
to the intervention study. Figure 4.8 provides an overview of the survey
results. We also surveyed the control group in the same warehouse. They
showed neutral or positive developments over the course of time and thus,
does not contradict any of the mentioned implications.

Surprisingly, there is an overall deterioration of the human factors. To
explore this unexpected result, we apply an abductive logic (Chandrasekaran
et al., 2020; Sætre and Van den Ven, 2021; Van den Ven, 2007). Particularly,
we follow Olivia (2019) and explain the underlying reasons how we ended
up in a different situation as expected by describing and interpreting how
pickers participated and reacted individually, and within the team to the
intervention. The impact on the team interaction requires also to analyze
the role of the shift leaders as well as formal and informal arrangements
within the team. In the following, we first report on the primary data
collected across the two surveys. Then, we provide insights on how and why
those outcomes emerged. Specifically, we triangulate the primary data with
insights obtained in the focus interviews as well as from in-depth discussions
with the department head, warehouse manager, and warehouse provider
(we refer to this below as triangulation of sources). Deliberating with the
different stakeholders about the unexpected results gave us the opportunity
to obtain additional insights in working behavior and decision discretion
that was not obvious before (i.e., observations were previously unknown
to or have been underestimated by the warehouse manager and operator).
To better understand unexpected pickers reactions, we further investigated
the boundaries and degree of freedoms in the workflow during and before
the intervention by an in-depth process analysis.
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Figure 4.8: Outcome across two surveys for human factors

Satisfaction Figure 4.8 shows a decreasing satisfaction of pickers from
pre-intervention to intervention. This contradicts our hypothesis, as we
expected satisfaction to be improved by the opportunity of setting own goals.
We can establish several reasons that we identified during and after the
intervention by triangulating our sources. To start with, the goal-setting
intervention affected informal arrangements among the team members,
which was the main contributor to the general satisfaction decrease. In
fact, the intervention revealed underestimated workarounds that the pickers
used to overrule the automated picker guide algorithm in many instances in
the pre-intervention phase. The extend of informal arrangements became
only transparent through the intervention. The manipulation of the picking
sequence (i.e., the pickers logged out manually and changed the workstation
instead of following the proposed sequence and assignment) was organized
by the pickers themselves and their shift leaders along three possible ways.
The first informal arrangement was to daily alternate between the hard and
easy aisle. The aisle alternation was ensured by overruling the proposed
workstation sequence of the algorithm by the shift leaders and the pickers.
For example, if one picker was sent to the hard aisle while being assigned to
the easy aisle for the respective day, she manually logged herself out after a

93



Elevating performance in an intervention-based human-machine interaction study Fabian Lorson

couple of picks in the hard aisle and went back to the easy aisle. Second,
pickers changed bilaterally when one picker perceived that a colleague
spent too much time on the most preferred workstations (i.e., 1 or 2).
This was executed by manually logging out of the system and switching
the workstation. Third, shift leaders tried to ensure that the slow-mover
workstations 6 and 12 were occupied during the entire working hours in
order to avoid a sudden large number of open orders for these workstations.
For this purpose, each picker had to spend approximately 1.5 hours per shift
at such a workstation, and the shift leader managed manually the changes
and overruled the picker guide. All three options were taken to bypass the
proposed workstation sequence of the picker guide algorithm. However, the
overruling of the proposed workstation sequence was suspended with the
intervention as pickers now changed workstation only when prompted by
the machine, either due to achieving the picking goal or in case of an empty
workstation. Despite the aim of the goal-setting intervention to enlarge the
participation and decision power of pickers, they themselves perceived the
intervention as an suspension of self-invented options to overrule the system
and existing informal agreements. The perceived suspension of own-created
options can be manifested as the main reason for the general dissatisfaction
of pickers. Further explanations that were identified through process insights
are aggregated to general resistance against process changes, doubts because
of initial technical issues, and lower perceived picking performance. In
terms of process changes, pickers frequently mentioned that they did not
appreciate the increased number of workstation changes given the extra
walking time and distance as well as a lower perceived picking performance.
Further, some pickers also reported that given the change of the occupancy
at workstations 6 and 12 (recall that pre-intervention, always one picker
was assigned there all time), the products at those workstations were picked
with delay. However, no evidence for any increase in delays is given. In
terms of technical issues, some blockages of transport boxes as well as
delays when logging in at a workstation occurred in the beginning of the
intervention. The research team fixed both issues within the first days.
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However, the lower left part of Figure 4.8 shows a slightly different view than
the strong deterioration on the upper left part. In fact, 16 out of 30 pickers
(53%) ticked off that their job satisfaction is higher with the new system
(i.e., during the intervention) in their final consideration. To understand
this difference, we turn to a shift level analysis of the satisfaction score,
where each of three shift types (A, B, C) inhibit different group dynamics.
Figure 4.9 highlights a clear distinction of shift A compared to shift B and
C. While for A, average satisfaction scores are even slightly higher than
pre-intervention, for B and C these values decrease. The lower part of
Figure 4.9 shows a similar picture. For shift A, most of the pickers (82%)
believe that the intervention improved satisfaction, while this value is only
40% and 33% for shift B and C, respectively. Hence, we can determine
that the intervention had different implications on the general satisfaction
depending on the respective shift. To understand this observation, we
further draw on derived in-depth process insights. Specifically via the focus
interviews with individual pickers, we found out that shift leaders and other
opinion leaders from shift B and C emphasized their negative view on the
intervention. These group dynamics led to very similar, negative results of
the questionnaires in many instances. In shift A on the other hand, where
some disagreements between the pickers and the shift leader existed, higher
satisfaction scores were often chosen, potentially as a defiance response
towards their shift leader.

Figure 4.9: Shift level analysis for satisfaction across two surveys
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Summing up, we can establish that the intervention led to an overall
decrease of satisfaction. The main reason for this negative development
was the suspension of options to overrule the system. The low satisfaction
scores were particularly driven by pickers in shift B and C, potentially
resulting from unfavored group dynamics. Further reasons are disliked
process changes, technical issues at the beginning, and perceived lower
performance.

Self-determination Figure 4.8 shows that the pickers perceive self-
determination slightly lower during the intervention, despite it was par-
ticularly expected to increase this human factor, due to the possibility
for pickers to self-determine goals. The above-mentioned suspension of
options to overrule the system also led pickers to experience a lower decision
discretion. More specifically, pickers mentioned that the adherence to the
set goals did not allow them to make workstation changes on their own.
Before the intervention, this was possible in cases of bilateral agreements
when someone spend much time at favorable workstations, or when pickers
were sent to a workstation on the opposite aisle. Consistently, only about
40% of pickers voted in their final consideration that they work in a more
self-determined way during the intervention compared to the old system.
This was confirmed by the focus interviews and the data analysis of the
selected goals, both revealing a high tendency for selecting the highest goal
and social peer pressure (not to choose low goals at unfavored workstations).
This keeps the positive effect on perceived self-determination rather low.
Also the department head and the warehouse manager confirmed this ten-
dency, who enforced that pickers often chose the largest goal, and expected
colleagues to do the same. Contrary to the satisfaction observations, a
significant difference among the shifts did not exist. Hence, although pickers
received decision power through the participative goal-setting intervention,
in-depth process insights obtained afterwards show that the suspension
of managing workstation changes on their own diminished the positive
effect stemming from goal-setting theory. In the presence of unfavored
group dynamics and consistently selected high goals across participants, the
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goal-setting approach may go along with a feeling of social pressure which
ultimately resulted even in a decrease of perceived self-determination.

Perceived fairness Also the perceived fairness has deteriorated as a
result of the intervention (see upper right part of Figure 4.8). This is again
contrary to our expected outcome as we initially hypothesized that the inter-
vention would increase the perceived fairness of the workstation assignment
by providing options to influence those assignments. 17 pickers directly
mentioned in the focus interviews that they experienced a higher unfairness
due to the intervention. Specifically, many of those felt that colleagues tend
to choose smaller goals at the unfavored workstations, which reduced the
perceived fairness of the new system for them. Interestingly, the actual
share of small goals across workstations identified in the data was overall
rather low, showing that pickers had an overly pessimistic assumptions of
colleagues’ choice of goals. In other words, there seemed to be some kind
of mistrust among the group of pickers as many expected their colleagues
to choose small goals at unfavored workstations such as 6 or 12. Moreover,
the above-mentioned suspension of informal arrangements also influenced
the perceived fairness. Before the intervention, pickers often informally
organized themselves to avoid spending too much time at unfavored worksta-
tions. In this way, pickers and shift leaders overruled sometimes the picking
sequence with aisle changes (when pickers were assigned to another aisle),
bilateral changes (when pickers felt that colleagues spent too much time at
favored workstations), and the self-adjusted fixed assignment to unfavored
workstations for a given time. These agreements led to a supposedly fairer
workstation distribution for the individual pickers and for the team as
whole. This means that pickers preferred the re-assignment to be done
either by the shift leader or by themselves, instead of following the proposed
sequence of the automated picker guide. Now, given the intervention, these
self-established, informal re-assignment practices have been not available
anymore. Because workstation changes and sequences were now solely de-
termined by the automated picker guide after goal achievement (compared
to having the decision discretion to leave the workstation earlier by simply
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logging out), many pickers felt that they are spending too much time at
unfavorable workstations. This reduced the perceived fairness. Interestingly,
we could not find evidence in the time spent at workstations that would
confirm these assumptions of the pickers. For instance, the time spent in
the hard aisle with respect to the easy aisle did not change significantly on
average.

Similar to the outcome of satisfaction, the vote in the final consideration
shows a different picture than the deterioration of the perceived fairness
observed in the weekly survey during the intervention. This can be explained
by the clear differences between shifts (see Figure 4.10). While the weekly
survey score for shift A did not change much (from 2.8 to 2.5), pickers in
shift B and C filled out much lower values during the intervention period
(from 4.1 to 2.3 and from 4.0 to 1.6, respectively). This trend can also be
seen in the final consideration (lower part of Figure 4.10). While 80% of
the pickers in shift A favored the new system, more than half of the workers
in shift B and C believe that the assignment of pickers is fairer in the
old system, where the shift leader had a greater influence on workstation
assignment. Many pickers in shift A mentioned in the focus interviews
that they actually perceive a fairer workstation distribution with the new
system, specifically at the favored workstations. Additionally, many of the
workers stated that the increased number of workstation changes is also
beneficial for the overall fairness. However, even some pickers in shift A
reported that colleagues often choose small goals at unfavored workstations,
potentially explaining the lower weekly scores. The intervention also led to
overly pessimistic assumptions of colleagues’ actions (e.g., overestimating
the share of small goals at unfavored workstations). For shift B and C,
more than half of the pickers were focusing on this particular unfairness in
their focus interviews, while only seven out of 18 mentioned the positive
fairness aspects.

To summarize, pickers from shift A favored the intervention in terms of
perceived fairness, while pickers from shift B and C did not. The latter two
groups were decisive for the overall deterioration, mainly driven by the
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perceived unfairness due to the suspension of the informal arrangements
and the perceived choice of small goals from colleagues at unfavored
workstations.

Figure 4.10: Shift level analysis for perceived fairness across two surveys

The surveys show that satisfaction, self-determination, and perceived fair-
ness deteriorated during the intervention compared to pre-intervention.
Thus, we cannot confirm Hypotheses 2a-c. The in-depth analyses of ob-
served human behavior, interactions, and processes via further interviews,
process analyses, and discussions with workers and leadership enabled us to
better understand and explain unexpected findings. We applied abductive
reasoning to establish the suspension of manual workarounds as the main
reason why the human factors under investigation decreased. Because the
intervention diminished possibilities for the pickers to informally organize
themselves in their working day, negative repercussions on satisfaction, self-
determination, and perceived fairness emerged. Additionally, a shift level
analysis showed that shift A actually favored the intervention, resulting in
higher satisfaction and perceived fairness scores for those pickers. However,
the majority of shift B and C experienced negative developments of these
human factors driven by group dynamics among pickers and shift leaders,
leading to the overall negative outcome.
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4.5 Discussion, implications and way forward

The purpose of this research is to overcome behavioral and system perfor-
mance challenges in a semi-automated human-machine interaction for an
operational, monotonous activity. Our IBR of introducing a participative
goal-setting policy results in a performance improvement of human workers.
However, these efficiency gains come at the cost of social discord, that
is, lower satisfaction, self-determination, and perceived fairness, as prior
informal agreements to self-manage working processes are suspended. In
this section, we discuss our findings along theoretical and managerial impli-
cations. Finally, we sketch out limitations and future areas of research.

4.5.1 Implications for theory

Our study makes multiple empirical contributions to the literature. To start
with, we establish a positive impact of goal-setting on worker productivity
in highly operational, monotonous tasks within human-machine interactions.
Given the stagnating picking performance over years, this constitutes an
substantial contribution to the improvement of the operations in an area
that is the most cost intensive part in warehousing (De Koster et al., 2007).
Our study thus joins the rank of successful demonstrations of the power of
goal-setting theory (Locke and Latham, 2019). However, it remains unique
in elevating the performance for a repetitive, monotonous, and operational
task within a human-machine interaction in the absence of any kind of
monetary incentive for blue-collar workers. While goal-setting in operations
management has often been applied for many tasks involving white-collar
employees with a higher degree of task complexity or variety (see Latham
et al. (1978); Friebel et al. (2022); Linderman et al. (2006)), the application
for blue-collar workers is rather scarce, and novel for human-machine
interactions. Our research sheds light into the optimization of such kind of
activities in operations management when other well-known mechanisms
may be not applicable (such as managing task complexity or task variety,
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see KC (2020) for other related mechanisms). The utilized performance
metric (i.e., picks per person hour) allows us to center our understanding
of the performance improvement on the behavior of the human worker.
We can derive that despite receiving no higher financial compensation nor
any type of reward, human workers are getting incentivized to speed up
compared to pre-intervention (i.e., having no goal). It is demonstrated that
the goal-setting mechanisms triggered a higher achievement motivation,
leading to superior performance of human workers (see Locke and Latham
(2019) for similar results). Figure 4.6 shows that the effect did not diminish
over time and thus, we may assume that the effect based on goal-setting
could be sustainable.

Furthermore, we reveal the existence, and demonstrate the importance of
informal arrangements among workers which generates important theoretical
insights into human behavior and its implications on worker productivity.
On the one hand, we can conclude that these informal agreements are
essential for human workers with respect to satisfaction, self-determination,
and perceived fairness. Hence, the suspension of these informal agreements
leads to social discord for individuals and groups. Under the assumption that
an organization wants to avoid this, the suspension of informal agreements
is not advisable, and these may be incorporated into the operational policies
when goals are implemented. Hence, not respecting informal agreements
and team structures may be an additional pitfall of the goal-setting theory
(Latham and Locke, 2006). Building up on this, we find evidence that
goal-setting approaches may trigger additional pressure to behave according
to the group’s expectations. For example, the many comments regarding
the choice of goals at unfavored workstations show that workers expected
colleagues to make decisions that are conform with the groups’ wishes.
On the other hand, a better performance does not necessarily go along
with a higher satisfaction or enjoyment. As goal-setting theory is based on
achievement motivation, and not intrinsic motivation (Locke and Latham,
2019), workers do not have to love their job while improving their results.
Our study goes in the same direction and reports a higher performance
paired with lower human factors scores. Hence, one may question if there
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is any cost of social discord, at all? Due to the IBR approach we learned
that human workers engaged prior to the intervention in activities that
were not aligned with the firm’s goal to pick as fast as possible. For
example, the informal arrangements did not have any justification for a
higher performance, but rather for individual self-optimization. One could
thus argue that lower human factor scores can be accepted, if human
behavior is now more aligned with the ultimate firm goal. However, this
comes at a big caveat as the true cost of the social discord will be only
visible long-term, potentially in even higher employee turnover.

Taking a deeper look into the establishment of these informal arrangements
shows that they originally evolved as a reaction to the decisions of a
“machine”. However, our findings may be extended to settings in which
operational decisions are made by humans. In particular, we find evidence
that people particularly disliked the loss of being able, or having autonomy,
to influence their working day (i.e., in our case the workstation distribution).
Similar, the focus interviews revealed that in both periods (pre-intervention
and during intervention), people showed signs of distrust towards the
decisions of both the “machine” and the shift leaders. Additionally, this
is extended to the perception of the goal choices of colleagues (recall the
overly pessimistic assumptions of colleagues’ choice of goals at unfavored
workstations). This has implications for self-determination and perceived
fairness of the employees, as it seems that humans tend to deviate from
fixed operating structures and perceive them unfair whether these policies
were made by humans or machines.

Another contribution comprises the demonstration of the importance to
understand human factors and behavior within human-machine interactions.
A key issue when humans and machines are collaborating is the design
of engaging interactions in order to achieve an efficient performance level
(Lorson et al., 2022). Goal-setting theory proved to be a solid approach to
produce cognitive achievement levels (Zhang, 2008). While we do not claim
that goal-setting mechanisms are the only way to improve human-machine
interactions, they certainly showed a significant and positive performance
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impact on human workers. This can inform a wide range of human-machine
interaction studies in warehousing, as the human behavior has so far widely
been neglected (e.g., Wang et al. (2021)).

Finally, we contribute to the broader operations management literature of
using IBR studies. Implementing an intervention during the normal course
of action delivered a variety of theoretical insights that researchers using
lab experiments would have missed (such as the differences between shifts
based on pre-existing team dynamics). Furthermore, abductive reasoning
allowed us to capture the reasons for the contradictions to our Hypotheses
2a-2c formulated in Section 4.3.4, showing the potential of IBR to detect
unexpected findings. While we acknowledge the informal arrangements may
differ from case to case, their existence whenever humans and machines
form teams is likely. This fact and given that order picking is a generic
task, make our findings transferable to other fields where the operational
productivity of human workers is important. We hope that our study
encourages more operations and warehousing scholars to utilize IBR to
tackle behavioral issues, crucial to innovate human-machine interactions in
the future.

4.5.2 Implications for practice

Our findings have managerial implications for the development, design, and
execution of human-machine interactions, including their integration into
the operations of a firm. The increasing number of cooperations between
human operators and automation establishes human-machine interactions
as a centerpiece of operations management (Olsen and Tomlin, 2020).
Despite all the technological progress of automated and robotized systems,
we show that humans, their actions, and behavior will continue to play
a significant role in the operational efficiency of firms. While industry
and engineering (such as in our application) mainly dealt with the design
and technical functionalities of automated systems, the role of human
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factors and behavior is still underrepresented in management decisions.
For example, stagnating worker performance and high employee turnover
are obvious problems nowadays in operations and logistics (McKinsey &
Company, 2021b). This may be also traced back to a limited consideration
of human factors of blue-collar workers in the past, particularly in highly
monotonous interactions with advanced automated and robotized systems.
Our intervention demonstrates that considering the implications of human
behavior is decisive for the effectiveness of human-machine interactions.
It thus becomes indispensable to anticipate human behavior with all its
facets, and to put it at the center of companies’ operations when striving
to increase system performance.

Behavioral implications need to be considered not only in the design of
human-machine interactions, but also in the management of related work-
flows, particularly across operational activities on the shop floor level. For
example, we found that there is a significant and negative relationship
between the average time spent at a workstation and worker productivity.
Given the nature of repetition and monotony in the task at hand, we
find evidence that operating policies should be comprehensively defined to
reduce boredom, or to increase task variability, of blue-collar workers.

Our intervention further establishes that integrating human factors into
such systems does not need to be invasive in current operations, and can
be achieved by managers with rather simple methods which proved to
be effective in related domains. Practitioners can thus innovate human-
machine interactions with an easy to implement participative goal-setting
option, which yields in a significant productivity gain for repetitive and
monotonous tasks.

Moreover, the deterioration of satisfaction, self-determination, and perceived
fairness shows the necessity to acknowledge informal work arrangements,
structures, and decision discretion within operational groups. This calls for
a deeper understanding of individual workers and groups, team dynamics,
and informal arrangements. Managers, system engineers, and planners
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will need to be mindful about of such tacit knowledge and implicit team
rules, and include these in operational policies and design principles of
human-machine interactions when suitable. For example, the picker guide
algorithm which steers the workstation distribution may incorporate the
informal agreements of aisle change by fixing each picker for one day to a
specific aisle.

Implications for study warehouse Subsequently to our IBR study, the
retailer’s warehouse management and the warehouse provider became more
concerned that human factors matter in the design and execution of the semi-
automated picking. In fact, the warehouse provider understood the value of
integrating behavioral aspects in the design of the workflow and algorithm
that regulates the assignment and sequence among pickers. The retailer’s
management further build up on the behavioral learnings and introduced
immediately an upper limit on the number of picks at each workstation to
enforce faster workstation changes, reduce monotony, and increase fairness.
Moreover, the senior management teams of both firms appreciated that
minimal invasive interventions can already achieve a significant performance
impact (in our case of 5.6% higher picking performance). Combining all
these considerations, at our suggestion, both practice partners will try to
enhance operating procedures and include human factors in the design
and operations of the workflows in the warehouse, particularly for human-
machine interactions. This will aim the path for expanding and testing
further non-monetary incentives for workers to create a more attractive
environment for repetitive and monotonous tasks, and to increase the
performance levels like in our intervention.

4.5.3 Limitations and future research

Research in human-machine interactions with monotonous and repetitive
tasks is still nascent due to the very recent implementation and growth
of automated and robotized solutions (Lorson et al., 2022). Our IBR
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study builds the starting point for future research at the intersection of
operations management and behavioral science in this area. We now discuss
limitations and future avenues for research along the context of our study
and beyond.

As the goal-setting intervention included five possible goals, we could not
analyze if the number of different goals or their respective values may have
an influence on the worker productivity. The same holds true for the impact
of other design options (e.g., external set goals) or interaction effects between
selected goals and worker productivity. Future research can explore such
directions. Moreover, we established that human factors mainly deteriorated
because informal agreements were suspended. To further disentangle reasons
for this finding, future studies can explore if the deterioration is based on
the change of the process (i.e., loosing autonomy or decision-discretion,
see Dietvorst et al. (2018)) or outcome (i.e., having the subjective feeling
of spending more time at unfavored workstations). Furthermore, another
limitation is our sample size (n=41 pickers). Given the nature of this field
study, we were limited in the maximum size of participants in the respective
human-machine interaction. It would be interesting to replicate our findings
in a randomized controlled trial setting with several treatment and control
entities (i.e., installing the intervention across multiple warehouses with a
similar amount of control warehouses). Additionally, one could argue that
the performance increase of the human workers is partly based on demand
effects. However, we mitigated this potential impact by avoiding at any
time during the intervention the communication of our research hypotheses
or questions regarding picking performance (see Eckerd et al. (2021)). Our
study further focused on the aggregate effect of the goal-setting intervention
on performance. Future endeavors can explore worker heterogeneity (by
defining subgroups based on skills, personality traits, or other criteria) in
terms of performance and how individual pickers reacted differently to the
intervention. Finally, our study is limited to the eight weeks intervention
period. Further research may investigate the long-term impact on worker
productivity and human factors as well as worker retention. Future IBR
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studies can make use of archival data to analyze such an issue (see, for
example, Oliva and Watson (2011)).

There are also further related research opportunities beyond the context of
our study. Despite that order picking in a semi-automated warehouse is
prototypical for many other human-machine interactions across different
operations areas, the transfer of the findings and implications should be
tested also, for example, in a manufacturing (e.g., production line with
automated robots) or service operations (e.g., call centers with automated
task assignment) setup. Furthermore, it would be interesting to see how goal-
setting interventions work in human-machine interactions with operational,
but less monotonous and repetitive tasks (e.g., in healthcare operations).
Finally, we have concentrated our efforts on blue-collar, operational activities
and have not extended our perspective on white-collar planning tasks that
need to deal with repetitive activities. For instance, in control rooms of
operations, a common issue is overwriting optimal parameters for automated
systems by human operators. This often happens based on individual
human preferences, or unknown information. Consequently, future work
could explore issues in these directions and leverage findings obtained in
this study.

4.6 Concluding remarks

We performed an IBR study to explore solutions to a practical problem
faced by a warehouse operator within a human-machine interaction at order
picking. Based on goal-setting theory, we proposed a new operating policy,
which enables human pickers to participate in the decision how many items
they want to pick at the specific workstations. Our research strategy aimed
to improve both human performance (conducted picks per pick hour) and
human factors (satisfaction, self-determination, and perceived fairness).
While we find support for our hypothesis on increasing human performance
with the goal-setting intervention, we did not observe a positive effect on
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human factors. We triangulated sources and observed underlying processes
to detect that the effects on informal arrangements were the main reason
for the deterioration of human factors. Reflecting on the design of efficient
operational human-machine interactions shows the necessity to incorporate
human behavior into decision models. While deviations of human actions
from expected outcomes are nothing new (Boudreau et al., 2003), their
appearance are still very recent (Roels and Staats, 2021), and crucial for
the performance in human-machine interactions (Lorson et al., 2022). We
hope to stimulate further studies on human behavior when interacting
with novel automated and robotized systems. While we acknowledge that
many research methodologies are suitable to uncover behavioral issues in
worker productivity (Bendoly et al., 2010), applying an IBR approach for a
real-world field study allowed us to both solve a complex practice issue and
deploy operations management theory. This way, interesting and surprising
findings (such as the effects on informal arrangements) can be revealed to
enrich existing theories. Thus, we encourage scholars to adopt IBR in future
studies on human-machine interactions in warehousing, and beyond.

Appendix

Figure 4.A1: Comparison between pre-intervention and intervention study (display
changes highlighted in red)
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Abstract Enabled via recent advances in technology coupled with the advent of new
systems providers and decreased price points, automated and robotized order picking
solutions (e.g., pick assisting autonomous mobile robots) have evolved as a surging
market. Such innovative picking technologies aim at reducing labor costs, using available
space more efficiently, and increasing throughput rates. As implementation projects and
the variety of solutions rise, managers face the decision of which ones to select for their
specific warehouse and products. However, comprehensive decision models for this strate-
gic problem are lacking in pertinent literature. We propose an innovative mathematical
optimization model that selects and sizes order picking solutions and assigns them
products as well as warehouse spaces. Expert interviews are used to comprehensively
identify the decision-relevant costs and constraints. In particular, we minimize setup,
module, labor and error costs while adhering to characteristics related to the area (e.g.,
available space), technology (e.g., throughput, handling capabilities of certain products)
and product (e.g., physical dimensions). We conduct a case study and complement
our findings with numerical experiments. We find significant cost reduction potential
of up to 57% by selecting a mix of different order picking solutions. Further analyses
highlight the need to retain human workers and to account for maximum labor capacity.
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5.1 Introduction and motivation

Expanding automation and robotization has been the focal point of oper-
ations in recent years (IFR, 2020). Enabled via advances in Internet of
Things devices and artificial intelligence coupled with the advent of new
providers and decreased price points, one surging change in operations
evolved to be in the arena of warehousing. In fact, the size of the ware-
house automation industry increased 12% annually from 2014 to 2019, and
is predicted to reach double its size in 2026 compared to 2019 (Statista,
2022). A search on an independent comparison platform delivers more than
200 results for warehousing robots from more than 80 different providers,
showing the wide range of automated and robotized options for warehouse
operators (Lots of Bots, 2022). Such solutions are deployed to achieve faster
throughput times, reduced costs, higher pick quality, more efficient space
utilization, improved ergonomics, and lower dependence on human workers
to cope with ongoing labor shortages (Azadeh et al., 2019; Pazour et al.,
2014). Many such automation initiatives start at order picking since it is
the most labor, and cost-intensive warehouse activity (De Koster et al.,
2007; Boysen et al., 2019). Warehouse operators therefore invest heavily in
a wide range of semi- and fully-automated order picking solutions (OPSs).
Examples include shuttle-based storage and retrieval systems or a variety
of pick-assisting autonomous mobile robots. This trend of implementing
automated OPSs will doubtless continue in the future. In a survey of Banker
(2020), almost 80% of the respondents stated that their organization is likely
or very likely to invest in warehouse automation within the next three years.
This requires diligently selecting the most appropriate OPS technology that
suits to the warehouse capacity and product portfolio (De Koster et al.,
2007; Marchet et al., 2015; Van Gils et al., 2018).

Selecting OPSs on a large scale among hundreds of variants constitutes a
novel problem as in the past only manual pickers have been used, or individ-
ual (semi-)automated picking technologies have been applied for restricted
parts of the assortment. The increasing maturity and the advent of a large
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variety of advanced, flexible, and cost-efficient OPSs allow their application
to the entire warehouse and its assortment, but make this selection problem
a much more complex matter. However, no comprehensive decision support
exists yet (Azadeh et al., 2019; Van der Gaast and Weidinger, 2022). In
fact, OPS selection in practice has up to now largely been based on gut
feeling and planners’ experiences (Gu et al., 2007a; Pazour et al., 2014; Van
der Gaast and Weidinger, 2022). This cannot result in optimal decisions as
manifold developments and challenges need to be considered, including:

• Intensifying cost pressure and labor shortages: The growth of e-commerce
and the demand for faster and cost-efficient deliveries make warehouses
the focal point of companies (Hübner et al., 2015, 2019; Boysen et al.,
2019, 2021). Warehouse operators typically suffer from cost pressure
and labor shortages (Instawork, 2022). This makes it important to find
cost minimal solutions and manage the capacity of the human workforce,
which continues to be required for activities such as supervision, inventory
replenishment or semi-automated picking.

• Skyrocketing number of novel OPSs: A growing number of automated
and robotized OPSs are becoming available. These OPSs differ in many
dimensions such as picker-to-parts or parts-to-picker setups, investment
and operating costs, throughput time, technical capabilities or pick
quality.

• Enlarging product diversity and assortments: Driven by ever growing
online sales, wholesalers and retailers are offering larger assortments. The
resulting diversity of products makes it challenging to find matching OPSs,
as each machine is typically limited in its technical product processing
capabilities (in contrast to humans, who have greater flexibility) and
throughput specifications. As a result, multiple OPSs, including manual
solutions, are often implemented in the same warehouse to cope with the
large variety of physical product properties.

• Increasing importance of space utilization: The application of multiple
OPSs requires dividing the picking zone into separate units as usually
only one OPS type can be operated in one area. This means, OPS
selection and space assignment need to be performed simultaneously.
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Space efficiency is decisive given that OPSs differ in terms of space
utilization, and also because available land for warehousing is becoming
increasingly scarce and cost intensive (Prologis, 2022).

We introduce and formalize this novel decision problem to incorporate the
recent developments and to answer several calls for research (e.g., Boysen
et al. (2019); Davarzani and Norrman (2015); Jaghbeer et al. (2020)).
Choosing suitable OPSs can be classified as a simultaneous selection (of the
appropriate OPSs) and assignment problem (of products and warehouse
spaces to the OPSs selected). We derive the conceptual background of
the novel problem by conducting expert interviews and review related
literature in Section 5.2. This builds the foundation for formalizing a cost
minimization model in Section 5.3. We additionally conduct a case study
using proprietary cost data from a business partner, evidence substantial
savings potential and apply numerical experiments to generate managerial
insights in Section 5.4. Section 5.5 concludes the study and provides future
areas of research.

5.2 Conceptual background and related

literature

The application of different picking technologies is an innovative concept
both in practice and in academia (Boysen et al., 2021). Section 5.2.1 derives
the context and structure of the novel selection and assignment problem.
After clarifying the decision problem at hand, a review of related literature
highlights existing research in Section 5.2.2. Finally, Section 5.2.3 connects
the practice requirements and literature, resulting in the identification of
the research gap.
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5.2.1 Description of the novel problem and setting

This section delineates the novel problem based on multiple data sources.
First, we draw on essential elements identified in warehousing literature on
OPSs (e.g., Azadeh et al. (2019); Boysen et al. (2019, 2021); De Koster et al.
(2007); Rouwenhorst et al. (2000)) and transfer relevant insights to our
problem context. The goal is to capture generalizable data on the selection
problem, decision-relevant costs and managerial-relevant constraints. For
this purpose, we additionally interviewed eight experienced warehouse
planners (see Table 5.A1 in the Appendix) that frequently work on the OPS
selection task, either from a provider or an operator perspective. Further
insights from a case study with an industry partner are incorporated into
the description of the problem setting.

Overview of the selection and assignment problem

Planning problems in warehousing can be classified into strategic (e.g.,
material flow design or warehouse management system implementation),
tactical (e.g., storage assignment, zoning or order consolidation) and op-
erational decisions (e.g., batching, workforce planning or pick assignment)
(Davarzani and Norrman, 2015; Van Gils et al., 2018). Our underlying
decision problem belongs to strategic planning as it defines the technolog-
ical equipment for a long-term investment horizon (Marchet et al., 2015;
Vanheusden et al., 2022). In our setting, the warehouse planner needs to
perform the (1) selection and sizing of the OPSs, (2) assignment of
products to OPSs, and (3) assignment of warehouse picking space
units to OPSs. Figure 5.1 illustrates the selection and assignment prob-
lem. It shows that not all products can be processed by every OPS (e.g.,
bulky products can only be processed manually). However, each product
needs to be assigned to a possible OPS and each OPS selected needs to be
assigned to a space in the warehouse. The following sections delineate the
specific associated decisions (1) to (3).

113



Decision support for selecting cost-efficient order picking solutions Fabian Lorson

Figure 5.1: Simplified illustration of the OPS selection and assignment problem

(1) Selection and sizing of OPSs OPSs are differentiated between man-
ual, semi-automated and fully automated OPSs. Note that manual picking
is also included in our analyses and constitutes a potential OPS. Table
5.1 classifies semi- and fully automated OPSs. We highlight the most
common ones and refer for extensive reviews on the particular technicalities
to Azadeh et al. (2019), Boysen et al. (2019, 2021) and Fragapane et al.
(2021), for example.

Table 5.1: Overview of common semi- and fully automated order picking solution types
Picker/Robot-to-parts Parts-to-picker/robot

• Fully autonomous picking robots (FAPRs) • Advanced picking workstations
• Pick-supporting autonomous mobile robots (AMRs) • Shelf-moving robots (SMRs)
• Pick-supporting automated guided vehicles (AGVs) • Aisle-/grid based shuttle systems

• Automated storage & retrieval systems (AS/RS)
• Carousels, vertical lifts, dispensers

OPSs are differentiated by the material flow into picker/robot-to-parts and
parts-to-picker/robot configurations (Boysen et al., 2021). In the former,
the picker (or in the case of full automation, the robot) moves to the storage
area to retrieve the products, while in parts-to-picker designs the products
are carried to the picker (or the robot) by a transportation system. In fully
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automated robot-to-parts setups, FAPRs fulfill the process without the
help of humans (Fottner et al., 2021). They navigate through the picking
area, stop at the respective pick location and retrieve the product. After
performing several picks, the robot moves to a repository or consolidation
spot. In semi-automated picker-to-parts setups, AMRs or AGVs support
the picking process by performing the transportation of goods, while the
human removes the product from the shelf and puts it in the bin carried
on the robotic device. In simplified terms, AGVs are steered centrally
and follow predefined paths, while novel AMRs move flexibly within a
given area and decentralize the decision-making processes (Fragapane et al.,
2021). Novel OPSs have emerged particularly within this classification
(Pasparakis et al., 2021). In automated parts-to-picker/robot solutions,
goods are transported to advanced picking workstations where piece picking
is performaned manually or in a fully automated manner using a robotic
arm (Azadeh et al., 2019; Füßler and Boysen, 2019). Parts are supplied
via conveyor systems, SMRs (Lamballais et al., 2020; Wang et al., 2021),
aisle-based (Ekren, 2017) or grid-based shuttle systems (Zaerpour et al.,
2017), AS/RSs (Roodbergen and Vis, 2009) as well as carousels/vertical
lifts (Meller and Klote, 2004) or dispenser solutions (Pazour and Meller,
2011).

Technological processing restrictions hinder any OPS from picking any
product, and using certain OPSs for certain products may be more cost-
efficient (Boysen et al., 2021). As each OPS has different advantages (e.g.,
manual picking can handle a large variety of products but usually goes
along with higher pick errors, while SMR-assisted picking has one of the
highest throughput rates), a mix of OPSs is required. In this regard, Boysen
et al. (2021) describe the combination of a parts-to-picker bulk solution for
fast-moving products with a picker-to-parts solution for the slow movers,
selecting the most suitable OPSs depending on demand. Another example is
the fashion retailer Zalando, which implemented FAPRs for shoes (alongside
an existing manual picking setup and shuttle system), differentiated by
the physical property of the products in this case (TGW, 2016; Magazino,
2021). Usually only one type of OPS technology is applied within one
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warehouse (e.g., not multiple different FAPRs of different providers), but
different OPSs (e.g., FAPRs and AGVs) may be used in parallel in different
areas of the warehouse.

When selecting OPSs, each of them can be sized in terms of their picking
capacity (e.g., using one or multiple FAPRs). Sizing is done by defining
the number of modules per OPS.

(2) Assignment of warehouse picking spaces to OPSs Each OPS
needs to be installed at a certain location within the warehouse, that is,
specifying the warehouse space units where the OPS operates. The total
picking zone in the warehouse is limited and divided into different space
units, which may differ in terms of size. A number of adjacent spaces may
be combined to one joint area for one OPS. That means an area covers one
or more space units, different areas may exist in a warehouse, and only one
OPS operates in each area. For example, a leading German grocery retailer
has three distinct areas within a central warehouse for three different OPSs,
which are all separated from each other. While the AS/RS is located at
the heart of the warehouse and sized with several high-bay storage racks, a
semi-automated picking system with various workstations is placed next to
it, while a manual picker-to-parts setup with multiple aisles is located close
to the packing zone to avoid long travel distances.

(3) Assignment of products to OPSs OPS selection requires the as-
signment of products to OPSs. As denoted above, each product may be
picked by different OPSs, but not all products can be technically and
cost-efficiently picked by every OPS. This makes it necessary to perform
the OPS selection on an individual product level. If the assignment is
done without acknowledging the individual physical properties (such as
dimensions) of the products, the selected OPS may not be able to handle
all the assigned products in the end. For instance, this may be the case
for the assignment of voluminous products to AMR-assisted solutions, as
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robots typically have smaller stockpiling options than manual picking with
forklifts. OPS-to-product assignment is therefore always a trade-off between
different criteria.

Summarizing problem definition The warehouse stores a set of prod-
ucts with given product characteristics (e.g., product dimensions). To pick
these products, there is a set of OPSs that the warehouse planner can choose
from, and can scale the size of the OPS by selecting multiple modules. Each
OPS has defined characteristics in terms of throughput rates, processing
capabilities, pick quality, space requirements and costs. That means the
related product characteristics and the technological capabilities of the
OPSs determine whether a product can be picked both physically and cost
efficiently by a certain OPS. Furthermore, the total warehouse picking space
is given in different available space units and each OPS has a certain space
requirement. The selected OPSs need to be assigned to the different spaces,
while a number of spaces may be grouped to an area if the same OPS is
utilized. In summary, warehouse managers need to simultaneously select
the optimal mix of OPSs and their modules, assign both the products to
OPSs and the OPSs to spaces to find feasible and cost-minimal solutions.

Decision-relevant costs in OPS selection and assignment

Given the novelty of the problem, it is imperative to identify decision-
relevant costs. Overall, the OPS expenses are composed of (i) setup, (ii)
module, associated (iii) labor, and (iv) error costs:

1. Setup costs may include one-time expenses for technical implementation,
overhead and software as well as services required along the procure-
ment process (Usher et al., 2001). The former need to be incorporated
to ensure compatibility with existing systems (such as warehouse man-
agement systems). Some integrated OPSs may also require changes of
up- and downstream warehouse processes. For instance, when installing
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large fixed systems like an AS/RS, the entire storage setup needs to be
adapted.

2. Module costs refer to any expense that can be attributed to the invest-
ment in one unit (i.e., one module) of each OPS. Multiple modules
can be selected to define the total size of an OPS. The major share
of the costs is the purchase price (or rental price in the event of a
leasing contract) for one AMR, for example. Other essential elements
are maintenance, energy (particularly for automated and robotized
systems) and ancillary costs that occur during operation.

3. Associated labor costs are necessary to consider for all OPSs, and
depend on the OPS itself. These are particularly workers’ wages for the
support during picking (e.g., picking with AMRs or from SMRs) and
for the additional pre- and post-processing activities such as inventory
replenishment or some additional tasks after the picking.

4. Error costs occur for picking inaccuracies detected downstream in the
supply chain. The OPSs have different error rates. Higher error rates
and lower pick quality of an OPS lead to an increase of incorrect
orders, and consequently extra handling effort (e.g., external returns
processing).

The costs typically occur with different frequencies and time periods (e.g.,
setup costs are one-time expenses while module costs also have running
expenses that occur over a certain time horizon). To account for this, the
combination of the costs is widely established in warehousing academia
(Rouwenhorst et al., 2000), for example, through the consideration of annual
costs (Pazour et al., 2014). The one-time setup costs are transferred to
annual costs by dividing them across the expected lifetime. In these cases,
an annual present worth economic factor is applied to account for the
different time periods. The module costs are available on an annual level
(e.g., annual energy costs, annual depreciation). Labor and error costs can
be totaled to annual levels as well.
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Related constraints in OPS selection and assignment

To ensure feasible solutions, constraints are identified along three domains
(see Figure 5.2).

Figure 5.2: Parameters and constraints identified for the selection and assignment
problem

(i) Area-related constraints Only one OPS is operated in a distinctive
area of the picking zone. As a result, the number of OPS types in one
area needs to be restricted. If multiple different OPSs are used within
a warehouse, the picking zone needs to be separated into different areas
with a number of associated space units. Space units can only be merged
if the same OPS is installed given individual characteristics and specific
setup requirements (e.g., for storage racks, product diversity or human-
machine interactions). Moreover, at least one space unit needs to be
directly connected to the packing and shipping zone (or any other type
of consolidation spot) to reduce travel time and ensure the material flow.
The OPS selection problem is thus also constrained by the individual space
layout and the packing zone connection. To illustrate these two factors,
Figure 5.3 shows both (i) feasible and (ii) non-feasible combinations for
this area-related constraint. For example, the violation on the lower left
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layout occurs as Area 1, consisting of Space 1 and 2, does not have direct
access to the packing and shipping zone. The violation on the lower right
materializes as only edge-to-edge combinations are possible (diagonal or
corner-to-corner connections between spaces are not sufficient because they
do not allow OPS intermobility in an area).

Figure 5.3: Illustration of area constraints including feasible and non-feasible space
combinations

(ii) OPS-product-related constraints OPSs are classified into different
OPS types (see Table 5.1) and come with distinctive technical characteristics,
performance levels and associated labor considerations. Products within
a warehouse are characterized by their product characteristics (such as
dimensions and other physical properties) and their underlying demand
structure. To fulfill a customer order, each product must be retrieved
by an OPS. However, especially when dealing with automated OPSs, not
every product can be picked by every OPS. For example, not all OPSs are
able to deal with every physical product property. These may be product
dimensions such as length, width, height, volume or weight or other product
characteristics such as shape, unit load, packaging material, hardness, and
auxiliary requirements (e.g., if the product requires bin transportation or
is bulky, fragile, hazardous, refrigerated or perishable). Physical product
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properties of each individual product need to be matched with the product
processing capabilities of the OPS. That means ensuring that OPSs are
physically able to retrieve the products (Mohsen, 2010) as the process would
otherwise result in many additional manual activities (Binos et al., 2020;
Marchet et al., 2015; Yoon and Sharp, 1996).

Both piece level demand and order line demand determine the workload
and thus throughput rates on piece and order line level need to be included
(Rouwenhorst et al., 2000). Experts also frequently mentioned the average
downtime of OPSs, in particular of robotized ones (e.g., for maintenance
or battery charging), which reduces the actual productive time and the
average throughput rate. The capacity required for each OPS is obtained by
matching the demand rates of assigned products and the throughput rates
(Pazour et al., 2014). The possibility of assigning further products to an
OPS also depends on the remaining OPS capacity. A further performance
criterion is the error rate of each OPS. This represents the pick quality and
is expressed as the share of wrongly picked (and shipped) order lines.

As most of the OPSs need additional manual support (Lorson et al., 2022),
labor requirements need to be considered. Each OPS has a required hu-
man picking support (assessed via the amount of manual input needed to
run one module of an OPS). Picking with robotized AMRs, for instance,
typically requires one human worker for three or four robots (Trebilcock,
2020). Additionally, OPS-specific replenishment (e.g., the restocking effort
required) and rework activities (e.g., correcting the potential errors of an
OPS detected in a quality check) result in pre- and post-processing time
of human operators. For example, Pazour et al. (2014) assume that re-
plenishment takes about a quarter of the picking time. Furthermore, our
interviewees particularly emphasized that labor shortages had evolved to be
a main reason for the growing number of automation projects and constitute
a relevant limiting factor when running warehouses, often resulting in a
desired level of automation. Companies thus tend to decide on a specific
share of products or orders to be picked by automated machines or robots.
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Also, managers are forced to consider the maximum available labor capacity
within the perimeter of the warehouse.

(iii) Area-OPS-product-related constraints The best use of the spatial
area can be made by combining area-, OPS- and product-related factors.
OPS automation within a warehouse is naturally constrained by the total
available size, i.e., available spatial capacity expressed in the amount of
square meters or cubic meters available. This is particularly important when
either picking areas are being upgraded or the space under consideration
is pre-determined (e.g., automation in existing warehouses). The total
space required for one OPS depends on the number of modules selected.
Each module has different OPS space requirements in terms of operating
space, determined through technical characteristics such as necessary aisle
width or maximum lift height, and the necessary storage space for assigned
products. The latter is determined by the physical product properties
(which are in this case the physical dimensions) and the inventory for
each product. Hence, warehouse managers need to ensure that assigned
products and their resulting storage volume do not exceed the maximum
OPS space capacity available for product storage as well as the total
available size. Finally, usually only one specific technology of an OPS type
is applied within one warehouse (e.g., not multiple different FAPRs of
different providers), restricting the number of OPSs technologies of an OPS
type in a warehouse.

5.2.2 Related literature on OPS selection

This section relates literature to the decision problem identified above. While
there is a wide range of publications dealing with the design and control of
individual OPSs (see, e.g., Van der Gaast and Weidinger (2022)), there is
only a nascent and small field of research concerning OPS selection (Boysen
et al., 2019; Azadeh et al., 2019). We concentrate on literature published
in the last decade since the advent of advanced automation and robotized
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technologies. A first related OPS selection model was introduced by Shen
et al. (2010). They compare manual picker-to-parts and semi-automated
parts-to-picker setups (i.e., AS/RS and a carousel solution). Other OPSs like
SMRs, AGVs or FAPRs are not evaluated. They minimize costs by reducing
throughput time and apply a genetic algorithm to allocate orders to OPSs.
While the authors consider the number of space units necessary for the
respective OPS, they only partly acknowledge physical product properties
(i.e., the space devoted to the respective product and its length). It therefore
cannot be guaranteed that the technical characteristics of the selected OPSs
match the product dimensions and characteristics. Although manual picking
is included as a potential OPS, not all labor considerations (e.g., for pre-
and post-picking activities) are modeled. Ekren and Heragu (2012) compare
the performance of two OPSs (namely an aisle-based shuttle system with a
crane-based AS/RS). They simulate different scenarios in which the number
of modules of the two OPSs are varied and cost implications assessed.
They simplify the scenarios by allowing both OPSs to process all products.
Space assignment is only partially considered by including the available
size via constraints for the number of aisles, tiers and bays per aisle, and
a maximum warehouse capacity. They only focused on pallets, making
the study hard to generalize for other types of warehouses where product-
level considerations are necessary. Pazour et al. (2014) developed the first
decision model to minimize setup, module, labor and error costs while
simultaneously allocating product groups to selected OPSs. By doing
so, they consider space capacities of one module in number of products,
acknowledging the importance of differences among OPSs, but not of the
total available size. Although the authors compare different solutions (A-
frame and parts-to-picker workstation setups) with a variety of manual
picking solutions, they do not include novel OPSs. Furthermore, physical
properties are not considered. Specifically, the number of products one
OPS module can hold is not based on physical product properties (such as
dimensions or other characteristics), but only on an average. Also, products
are clustered into different demand groups, neglecting the fact that similar
demanded products may have totally different physical product properties.
Hence, necessary OPS-product-related constraints are not considered. Bozer
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and Aldarondo (2018) analyze an SMR setup and a miniload aisle-based
shuttle solution using a simulation with the objective of minimizing the
number of modules based on different performance criteria. They do not
directly assign products or spaces to the OPS as they simulate each OPS
separately. While they categorize the products into small, medium and
large (depending on their size), physical characteristics or exact dimensions
as well as product level information are lacing, and demand is assumed to
be equal for each category.

5.2.3 Summary and research contribution

The pertinent literature is scarce, but serves as a starting point for the
advanced OPS selection and assignment problem. A review shows that only
two optimization approaches and two simulations are currently available.
However, not all decisions and constraints identified for the problem at
hand have yet been considered. Section 5.2.1 reveals the necessity of
performing OPS, product and space decisions simultaneously. While all of
the contributions identified covered at least the selection and sizing of the
OPSs, the assignment of products and spaces to the selected OPSs is only
partially covered. Each OPS requires a dedicated space, and different OPS
cannot operate technically and efficiently within one area. The separation
of the order picking zone into dedicated areas for each OPS selected and
the assignment of space units to the area constitutes an open research gap.
Only Shen et al. (2010) also determine also the space units required, but
do not include the particularities of the warehouse layout (see Figure 5.3).
The assignment of products to OPSs based on physical product properties
and the product processing capabilities of the OPSs is not specified in any
current contribution. Shen et al. (2010) and Bozer and Aldarondo (2018)
only partially consider some product characteristics, whereas Pazour et al.
(2014) make product assignments on a product group level where the groups
are based on demand data and not product properties. This shows that
research did not consider the assignment of the items to the OPS on an
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individual product level. This bears the risk that products are allocated
to an OPS, but the OPS may not be capable of processing it in the end
and non-feasible solutions are obtained as a result. Furthermore, only the
simulation model of Bozer and Aldarondo (2018) covers novel OPSs, (i.e.,
SMRs) while Shen et al. (2010) and Pazour et al. (2014) are the only ones
who compare more than two different OPS types in their model. FAPRs
or AMRs are not considered in any model. Two of the contributions are
restricted to the selection of two OPSs (Ekren and Heragu, 2012; Bozer
and Aldarondo, 2018). The comparison with manual picking is included in
Shen et al. (2010) and Pazour et al. (2014), while only Pazour et al. (2014)
diligently considered costs for manual labor tasks in semi-automated, pre-,
and post-picking activities. Also, none of the existing research considered
labor availability.

As it is an imperative to include the selection and assignment decisions as
well as important characteristics to mirror novel developments and necessary
constraints, existing literature on the OPS selection problem is limited in
its practicability and comprehensibility. Table 5.2 highlights these findings
and the research gap.
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5.3 Development of the decision model

This section formalizes the selection and assignment problem and develops
an MIP model to minimize total costs while adhering to area, OPS-product
and area-OPS-product constraints. It defines the optimal technology mix
of OPSs (o ∈ O) and assigns warehouse areas (a ∈ A), warehouse space
units (s ∈ S) and products (j ∈ J) to the technologies selected. The
related decisions made by the warehouse planner are the determination
of the number of modules of an OPS (expressed by the integer number
of modules selected for an OPS no), the assignment of a product to an
OPS (expressed by binary assignment variable xj,o), and the assignment
of an OPS to a dedicated warehouse area and space (expressed by the
binary assignment variable za,s,o). Because OPSs can be fully automated
or require some manual support, we divide the set of OPSs O into fully
automated OPSs (O+) and human-supported OPSs (O−) in the following,
such that O+, O− ⊆ O, O+ ∪ O− = O and O+ ∩ O− = �. Each product
j ∈ J has certain product specifications and each OPS o ∈ O has certain
technology specifications. We define the subset O(j) that denotes an index
set of all OPSs o that are compatible and can pick the product j. Table
5.3 summarizes the notation.

Table 5.3: Notation
Sets and indices
A Set of areas with a = 1, ..., |A|
E Set of OPS types with e = 1, ..., |E|
J Set of products with j = 1, ..., |J |
O Set of OPSs with o = 1, ..., |O|, with subset O+ for fully automated OPSs

and subset O− for human-supported OPSs
O(j) Subset of OPSs O(j) ⊆ O depending on product j ∈ J , if OPS o ∈ O is

able to pick product j ∈ J
S Set of space units with s = 1, ..., |S|
Area-related parameters
bs,s′ Binary; 1 if space unit s ∈ S is a bordering neighbour (i.e., adjacently

located) to space unit s′ ∈ S, 0 otherwise
gs Space size of unit s ∈ S [in space units]
ps Binary; 1 if space unit s ∈ S is located next (has access) to the packing

zone, 0 otherwise
OPS-related parameters

Continued on next page
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Table 5.3 – Continued from previous page
cerr

o Annual downstream error costs per module of OPS technology o ∈ O
depending on the number of order lines processed [currency units]

clab Annual labor costs of one human worker [currency units]
cmod

o Annual total costs per module of OPS technology o ∈ O [currency units]
cset

o Annualized, one-time setup costs of OPS o ∈ O [currency units]
fo Space-volume utilization coefficient of an OPS o ∈ O, which is dependent

on the maximum operating height of the OPS
ko Integer number of modules of an OPS o ∈ O that one human worker may

operate simultaneously when supporting picking
te,o Binary; 1 if OPS o ∈ O belongs to OPS type e ∈ E, 0 otherwise
αo Degree of automation of an OPS o ∈ O, with 0 ≤ α ≤ 1 (0 if manual and

1 if fully automated)
βmin (βmax)Minimum (maximum) share that should be picked by automated OPS
δo Post-processing time of one order line at OPS o ∈ O [in time units]
ε Maximum number of different OPS types in one area
λo Pre-processing time of one unit at OPS o ∈ O [in time units]
ρo (ρ

o
) Throughput rate of OPS o ∈ O [in order lines per period] ([in units per

period])
Ψ Maximum integer number of available human workers [in number of

workers]
Product-related parameters
dj (Dj) Total demand of product j ∈ J [units per period] ([order lines per period])
mj Volume-coefficient of the product j ∈ J , depending on the dimensions

(i.e., width, length and height) and the space needed to store the inventory
of the product

Decision variables
no Integer number of modules selected for OPS o ∈ O
xj,o Binary; 1 if product j ∈ J is assigned to OPS o ∈ O, 0 otherwise
za,s,o Binary; 1 if space unit s ∈ S is located in area a ∈ A which is served by

OPS o ∈ O, 0 otherwise
Auxiliary variables
uo Integer number of human workers required to support picking of semi-

automated OPS o ∈ O−
vo Integer number of human workers required for pre- and post-picking tasks

of OPS o ∈ O
wo Binary; 1 if OPS o ∈ O is selected, 0 otherwise
ya,o Binary; 1 if OPS o ∈ O is assigned to area a ∈ A, 0 otherwise

Objective function Equation (5.1) represents the objective function to
minimize total annual decision-relevant costs TC. It consists of four parts.
The first part accounts for one-time setup cost cset

o of each OPS o ∈ O if
an OPS is utilized. The binary variable wo is equal to 1 if the OPS o ∈ O
is applied and otherwise 0. The related costs are implementation costs
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independent of the number of OPS modules that are selected. To account for
an annual cost level, the one-time costs are offset by an annual given present
worth economic factor. The second part comprises the annual module
operating costs cmod

o of one OPS module. It contains annual depreciation
(e.g., purchase price of one module) and volume- and product-independent
operating costs (e.g., maintenance, insurance and other module costs that
occur during operation). The variable no denotes the integer number of
modules selected. The third part includes the constraint that human
workers may be necessary to support and execute operational activities
that depend on the OPS o. The labor costs are denoted by clab. The
related number of workers required is expressed by the integer variable
uo (denoting the number of employees required to support the picking
process) and the integer variable vo (denoting the number of employees
required for pre- and post-picking tasks). For example, these costs arise
for additional OPS-specific replenishment, picking and packing time. The
final part represents error expenses which occur when incorrectly picked
products are identified and claimed after they have left the warehouse. The
downstream error costs per order line are denoted by cerr

o and depend on
the OPS o. They may arise once a product j is assigned to a specific OPS o,
xj,o = 1. Since the correction processes are usually outsourced to external
service providers, this constitutes a separate cost element.

Min TC =
∑
o∈O

Å
cset
o · wo + cmod

o · no + clab · (uo + vo) +
∑
j∈J

cerr
o ·Dj · xj,o

ã
(5.1)

(i) Area-related constraints Constraints (5.2) to (5.8) ensure that areas
and OPSs are properly connected to the picking space. The total picking
space of the warehouse is divided into space units s ∈ S. The space units
can be grouped into flexibly large areas a ∈ A. Not all available spaces
s ∈ S and areas a ∈ A have to be used. Constraints (5.2) ensure that
each area opened, indicated by ya,o = 1, can only be served by one OPS.
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Constraints (5.3) ensure that each space unit s ∈ S can only be assigned to
a maximum of one area a ∈ A. In Constraints (5.4), an area a ∈ A, space
s ∈ S, and OPS o ∈ O combination za,s,o is excluded as long as no OPS
is assigned to an area and ya,o = 0. If more than one space unit s ∈ S is
assigned to an area, then at least one edge-to-edge connection of a space
unit s ∈ S to another space unit within the same area is required. This is
maintained by Constraints (5.5). Diagonal (corner-to-corner) connections
between space units are not sufficient since an area-wide movement of the
OPSs cannot be guaranteed. To ensure that at least one space unit s ∈ S
within an area a ∈ A has access to the packaging area (denoted by ps = 1),
Constraints (5.6) is introduced. Additionally, Constraints (5.6) state that
only areas a ∈ A served by an OPS o ∈ O, ya,o = 1 can be occupied by
space units. To avoid symmetrical solutions, we use areas with a lower
index first and impose Constraints (5.7). From a practical point of view,
a lower index might represent better access to the packaging area. These
constraints also have the efficiency advantage of eliminating permutations
and thus preventing an exponentially increasing solution space. The binary
variables are denoted in Constraints (5.8).

∑
o∈O

ya,o ≤ 1 ∀a ∈ A (5.2)
∑
a∈A

∑
o∈O

za,s,o ≤ 1 ∀s ∈ S (5.3)

za,s,o ≤ ya,o ∀a ∈ A, s ∈ S, o ∈ O (5.4)∑
s′′∈S

bs,s′′ · za,s′′,o ≥ za,s,o + za,s′,o − 1 ∀a ∈ A, s ∈ S,

s′ ∈ S : s′ 6= s, o ∈ O (5.5)∑
s∈S

∑
o∈O

ps · za,s,o ≥
∑
o∈O

ya,o ∀a ∈ A (5.6)
∑
o∈O

ya,o ≥
∑
o∈O

ya+1,o ∀a ∈ {0, 1 . . . |A| − 1} (5.7)

ya,o; za,s,o ∈ {0, 1} ∀a ∈ A, s ∈ S, o ∈ O (5.8)
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(ii) OPS-product-related constraints Constraints (5.9) ensure that
each product j ∈ J has to be picked by exactly one OPS o that is capable of
processing this product, ensured by the subset O(j). Constraints (5.9) thus
allow products to be assigned only to an OPS that is capable of processing
this product. For instance, a manual worker cannot pick a heavily packed
pallet without assistance or an SMR cannot pick a product that exceeds the
maximum shelf space of its rack. Constraints (5.10) ensure that capacity is
sufficiently available and not exceeded, which can be scaled via the number
of modules deployed no to pick the period demand dj of the products
j ∈ J that are assigned to it. Similarly, Constraints (5.11) determine the
capacity needed with regard to the number of order lines Dj of a product j.
The actual picking process may involve human-supported activities before,
during or after the picking that all depend on the selected OPS o ∈ O.
Constraints (5.12) guarantee that sufficient workers vo are available for any
manual work that may arise for tasks before picking (denoted by λo for
processing time of tasks before picking) and after picking (denoted by δo
for processing time of tasks after picking). The first term on the left-hand
side represents the capacity required for preparing the picking (e.g., for
inventory replenishment), calculated by the demand dj divided by the rate
λo required for one unit at OPS o ∈ O. The second term comprises the
post-processing time that depends on a post-picking effort δo for each order
line Dj of a product processed by OPS o. For some semi-automated OPS
(o ∈ O−), it may be necessary to employ extra human workers uo to support
the picking activity. Constraints (5.13) determine the associated number of
employees required, whereby ko represents a parameter for the number of
modules no that one person may operate simultaneously of a certain OPS
o ∈ O. Constraints (5.14) are intended to meet potential labor shortages
where the total number of available workers is represented by the parameter
Ψ. Constraints (5.15) enable a certain minimum (maximum) level of picking
automation βmin (βmax) to be enforced, if there is a desired limit on the
degree of automation due to labor law requirements, for example. The
parameter αo represents the degree of automation of each OPS o ∈ O.
Constraints (5.16) define the domains of the decision variables.
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∑
o∈O(j)

xj,o = 1 ∀j ∈ J (5.9)

∑
j∈J

dj
ρ
o

· xj,o ≤ no ∀o ∈ O (5.10)

∑
j∈J

Dj

ρo
· xj,o ≤ no ∀o ∈ O (5.11)

∑
j∈J

dj
λo
· xj,o +Dj · δo · xj,o ≤ vo ∀o ∈ O (5.12)

no
ko
≤ uo ∀o ∈ O− (5.13)∑

o∈O
(uo + vo) ≤ Ψ (5.14)

βmin ·
∑
o∈O

∑
j∈J

xjo ≤
∑
o∈O

∑
j∈J

αo · dj · xj,o ≤ βmax ·
∑
o∈O

∑
j∈J

xj,o (5.15)

xj,o ∈ {0, 1}; no, vo, uo ∈ N0 ∀j ∈ J, o ∈ O (5.16)

(iii) Area-OPS-product-related constraints Constraints (5.17) relate
the number of modules used no to the variable wo for the selection of
certain OPS o ∈ O, where M represents a large coefficient (“Big M”).
Constraints (5.18) ensures that each selected OPS o ∈ O can only be
operated in one area ya,o = 1, a ∈ A, with ya,o expressing the area assignment
variable for all areas a ∈ A. As products are uniquely assigned to one OPS
and each OPS to an area (cf. Constraints (5.2) and (5.9)), the products are
directly assigned to an area. Constraints (5.19) ensure that only selected
OPSs no > 0 can be assigned to an area a ∈ A. Each OPS o ∈ O belongs to
exactly one OPS type e ∈ E (e.g., AMR, AGV). Only a maximum number
ε of different OPSs belonging to one type of OPS can be applied within the
warehouse (see Constraints (5.20)). This keeps the technical complexity
within the warehouse manageable for the operator. To accommodate the
products j ∈ J in the designated areas a ∈ A, the available area volume
(total of the space volumes assigned to the area) must be greater than
the total stored product volumes (Constraints (5.21)). The defined area
volume (left side of Constraints (5.21)) is calculated from the assigned
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spaces s ∈ S with their square meters gs and the space-volume utilization
coefficient fo of the OPS o ∈ O, whereas the demand volume (right side of
Constraints (5.21)) is composed of the demand dj and a volume coefficient
mj. Constraints (5.22) define wo as a binary variable.

no ≤M · wo ∀o ∈ O (5.17)∑
a∈A

ya,o = wo ∀o ∈ O (5.18)
∑
a∈A

ya,o ≤ no ∀o ∈ O (5.19)
∑
o∈O

te,o · wo ≤ ε ∀e ∈ E (5.20)
∑
a∈A

∑
s∈S

gs · fo · za,s,o ≥
∑
j∈J

dj ·mj · xj,o ∀o ∈ O (5.21)

wo ∈ {0, 1} ∀o ∈ O (5.22)

5.4 Numerical experiments and case study

This section will first present a case study where the model has been applied
to optimize the OPS selection and assignment for an e-commerce warehouse.
The second part derives managerial insights using sensitivity analyses and
further data sets that are based on the case study setting. All numerical
experiments were conducted on Windows 10 64-bit with Intel Core i7-8550U
processor and 16-GB memory. The tests are implemented in Python 3.10
and solved with Gurobi 9.5.1.

5.4.1 Case study

Data sources Area- and product-related data as well as labor considera-
tions are obtained by a case study with a Western European e-commerce
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warehouse (e.g., product and demand data) and a warehouse planning
company (e.g., OPS data). In the representative warehouse, 180 manual
workers are required to conduct the picking, while an additional 32 are
necessary for the pre- and post-picking tasks, totaling 212 manual workers.
The warehouse runs two shifts a day for eight hours each. The related
manual OPS and its costs constitute the benchmark. Information about
different OPS systems are retrieved from a warehouse planning company.
The partner company specializes in robotic implementations and has access
to comprehensive information across multiple OPS providers. This enabled
us to retrieve technical, performance and financial data across a variety of
OPSs. Please note that some specific costs and performance data of OPSs
are subject to confidentiality and proprietary information. In the following,
we first describe the data along area-, product- and OPS-related factors.
We then analyze the solution of the decision model.

Area-related data of the e-commerce warehouse The order picking
zone of the warehouse under investigation consists of six equally sized space
units with gs = 1, 000 square meters each (which is the space for both
storing and picking). Three space units are next to each other with direct
access to the packing area with p1 = p2 = p3 = 1, and three arranged in
the same manner just behind the first row with p4 = p5 = p6 = 0. Hence,
space unit 1 may be combined with 2 and 4, space unit 2 with 1, 3 and 5,
and so forth.

Product-related data of the e-commerce warehouse Daily piece
level demand dj (in order lines Dj) per product varies from a minimum of
1(1) to a maximum of 1,325(982), with a median of 6(2). The average order
size amounts to 1.96 items, typical for e-commerce warehousing (Boysen
et al., 2019). The demand data of the products results in a product-demand
curve of 17/80, meaning that 17% of the 8,522 products (i.e., 1.399) are
responsible for 80% of the total demand (i.e., 198,912 out of 250,186). In
terms of order lines, 15% of the products are responsible for 80% of the total
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order lines (i.e., 101,539 out of 127,705). The median product is 10cm long,
8cm wide, 10cm high, and weighs 0.88kg. 11% of the products are round,
while 89% are rectangular shaped. None of the products need to be picked
with a corresponding box or pallet, and only a few are classified as bulky.
Half of the products have cardboard packaging, while a quarter have plastic
or no packaging, respectively. Only 9% of the items are fragile, while none
are hazardous, perishable or refrigerated. These physical product properties
(such as dimensions and other product characteristics) have been available
for most of the products. In cases where information is lacking, the data
set has been supplemented with simulated data based on representative
product sets.

OPS-related data from warehouse planner We obtained data for four
OPS types that are relevant for e-commerce warehousing. Manual picking,
AMR-assisted picking, SMRs with advanced workstations, and FAPRs are
usual OPSs in the context of our application. For example, AMRs and
SMRs are particularly suitable as they are able to handle small orders and
large assortments (Boysen et al., 2019). Also, robotic solutions are highly
scalable, a major point raised in the expert discussions. Only one OPS
type can operate in one area (i.e., ε = 1). We obtained detailed technical,
performance and cost data on manual picking, 5 AMRs, 1 SMR and 1
FAPR. We consider a floor space utilization (rack height) of 0.55(2.7m)
for manual picking and AMR-assisted picking, while SMRs have a better
utilization but lower racks (0.65(1.8m)) (see also Roser (2021)). For FAPRs,
the values obtained are 0.60(1.80m). Further, about 70% of the rack space
volume can be utilized by products. This results in a total space-volume
utilization coefficient (fo) of 1.04 for manual picking, 1.04 for AMR-assisted
picking, 0.82 for SMR-assisted picking and 0.76 for FAPRs. In terms of
product dimensions and characteristics, the OPSs naturally differ, with
manual picking being the most flexible (100% of products can be picked)
and FAPRs being the least flexible (43% can be retrieved). The hourly
throughput rate ρ

o
in units (ρo, in number of order lines) is 175(88) for

manual picking, 245(123) for AMR-assisted picking, 350(175) for SMRs
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and 84(42) for FAPRs. Related pre-picking times (λo) are represented by
replenishment rates. These are 1,000 units per hour for all OPSs, except
for SMRs with 900. In the case study there is no further post-picking effort
required and hence δo = 0, ∀o ∈ O. The observed error rates are 0.4% for
FAPRs, 0.35% for manual picking, 0.2% for AMRs, and 0.15% for SMRs,
while one wrongly delivered order line results in a customer return. This
extra process for each error that occurs is penalized with 10 cost units (EHI,
2019). The setup costs cset

o for SMRs are 100,000 cost units, irrespective
of the number of modules. For other solutions, setup costs are included in
module costs as they depend on a single module and not the entire OPS.
Total module costs cmod

o consist of purchasing costs, annual operating costs
and annual maintenance costs. The purchasing costs are 40,000 cost units
per AMR, 25,000 per SMR, and 80,000 per FAPR. For (semi-)automated
picking, annual operating costs (e.g., for energy spending) vary between
5,000 and 8,000 cost units. Annual maintenance costs are in the same range
for all (semi-)automated OPSs. One human is able to work with three
AMRs and four SMRs, respectively (i.e., ko ∈ {3; 4}; see also e.g., Barry
(2022) or Trebilcock (2020)). For manual picking, module costs consist of
the annual labor wage (27,300 cost units) and maintenance costs (1,000
cost units) as well as one-time costs for hiring and training one human
employee (4,000 cost units). The labor costs for one worker for pre- and
post-picking tasks are equivalent to the labor costs for one manual picker.
To take into account the costs on an annual basis, the minimum attractive
rate of return (MARR) is used to calculate the annual given present worth
economic factor, which also considers the underlying planning horizon in
terms of years. This is then used as the depreciation coefficient for the setup
and module costs. The MARR for the case study is set to 6% and spans
a time horizon of five years. To obtain a best possible view on potential
solutions, we do not apply labor restrictions (i.e., Ψ = ∞) nor a desired
level of automation (i.e., βmin = 0; βmax = 1) in the base case.

Analysis of the case study solution An optimal OPS selection and
product and area assignment leads to a total cost reduction of 57% compared
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to the status quo (i.e., manual picking only, see Figure 5.4). This represents
annual savings of approximately 4.2 million cost units. The cost-optimal
solution for this case study is a combination of SMRs and manual picking.
Sometimes, warehouse operators prefer solely picker-to-parts solutions
instead. When only picker-to-parts OPSs become available, this results in
a savings potential of 42% (by mainly utilizing AMR-assisted picking).

Figure 5.4: Comparison of annual costs, in million cost units

Figure 5.5 illustrates the optimal OPS selection and space assignment. Two
OPSs across two areas and four spaces were selected: SMRs are assigned for
Area 1, which combines Spaces 1, 2 and 4. Manual picking is selected for
Area 2, which only consists of Space 3, manual picking is selected. Spaces 5
and 6 are not allocated, as the spatial volume is not required to store and
retrieve the products.

Table 5.4 summarizes the results. The optimal number of modules (no) for
Area 1 is determined as 45 SMRs, while Area 2 is equipped with four human
pickers per day. About 98% of the products are assigned to SMRs, while
only about 2% remain for manual picking. 24 employees in total support
the picking activities (uo) in Area 1 per day to jointly retrieve the products
with the robots. For pre- and post-picking tasks (vo), 34 workers per day
for Area 1 and two per day for Area 2 are necessary. While 212 human
operators were required prior to the implementation of robots, now only
64 per day are needed, resulting in a manual workforce reduction of 70%.
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Figure 5.5: Illustrative assignment of OPSs to areas and spaces in the case study

This proves the necessity of diligently modeling the labor costs for both
picking with semi-automated OPSs and working on pre- and post-picking
activities. These costs are responsible for the highest expenses compared
to setup, module and error costs. In the case example, the associated labor
costs for the optimized mix of OPS amount to 54% of the total costs.

Table 5.4: Overview of the solution structure of the optimized mix versus the benchmark
Area 1 Area 2 Benchmark

Decision no 45 SMRs 4 human pickers 180 human pickers
variables xj,o 8,342 products 180 products 8,522 products

za,s,o Space 1, 2 & 4 for SMRs Space 3 for MP Space 1 & 2 for MP

Auxiliary uo 24 workers - -
variables vo 34 workers 2 workers 32 workers

MP = Manual picking

For Area 1, where SMRs were selected, 72% of the space is utilized. For
Area 2, this is only 16%, indicating that SMRs better utilize the available
space in this setting. Interestingly, the model did not decide to choose
only two spaces for SMRs. Although space utilization overall would have
been improved, the higher numbers of human pickers for Area 2 would have
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resulted in higher costs. Turning to the individual product assignment, more
voluminous items are assigned to manual picking. The average volume for
a product stored and retrieved in Area 1 is 0.002m3, while this value totals
0.01m3 in Area 2. Given that SMRs carry racks that are split into shelves
(Lamballais et al., 2020), this result makes sense as humans can generally
put retrieved products on a picking cart, allowing for a larger flexibility of
product dimensions. However, no products were automatically assigned
to manual picking given volume capabilities. Instead, only 11 products
are retrieved via manual picking given bulky product characteristics which
SMRs cannot handle. This also shows that it was necessary to open at least
one space for manual picking, and proves the necessity to include product
processing capabilities of OPSs as well as physical product properties in
optimization approaches. 50% of the products assigned to SMRs are from
slow-moving items. This accords with a common advantage of transferring
slow-moving products from manual to automated picking: Long travel times
with little reward (i.e., small number of picks) are avoided by automating
the many slow-moving products (see also Pazour et al. (2014)).

5.4.2 Run time evaluation based on case study data

We performed run time analyses based on case study data to investigate
the solvability of the model. To increase the problem scope, the number
of products is varied while the remaining parameters remain constant or
are adjusted proportionally. To determine the number of products, we
randomly draw from the total of 8,522 products with equal probability for
all products, including lay-back. To ensure that demand and spatial volume
increase proportionally with the number of products, we place theses values
in the same ratio as with the original total demand and volume. The sizes of
the individual spaces increase proportionally with the number of products.
All other parameters remain unchanged. As for the number of products,
we start with 4,000 and increase each by a factor of 5 until we reach a
total of 100,000 products, resembling a very large warehouse (Logistics

139



Decision support for selecting cost-efficient order picking solutions Fabian Lorson

Management, 2018). For each number of products, we drew 20 samples and
obtained 3× 20 = 60 further data sets. Table 5.5 summarizes the results.
For 100,000 products, a maximum run time of 741.3 seconds is required.
Given the strategic nature of the problem, it can be confirmed that the
exact solution of the MIP implemented in Gurobi is efficient with regard to
run time and solvability of the problem.

Table 5.5: Run time analysis of 20 samples for each product set, in seconds

Run time (seconds)
Number of products min max median

4,000 4.0 26.0 7.0
20,000 48.2 91.4 58.6

100,000 236.6 741.3 390.7

Summing up, our case study shows that the proposed model produces a
feasible solution that significantly reduces total costs. Second, we prove that
the underlying problem and varying problem sizes can be efficiently solved
with Gurobi. The results are consistently optimal and can be generated
time-efficiently.

5.4.3 Further numerical experiments

In this section we run four further numerical experiments to understand
the robustness of solutions and obtain managerial insights. In particular,
we vary total demand, area constraints, manual labor-related data, and the
performance and cost data of a fully automated OPS.

Demand variations Many warehouses are also likely to see changes in
their total demand (Boysen et al., 2019). As a result, we analyze the impact
of varying total demand and order lines. We apply four different multipliers
for the piece-level and order line demand per product to the data of the case
study for this purpose. We further increase space capacity proportional to
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focus on the implications of the demand. Table 5.6 summarizes the results
of this analysis.

Table 5.6: Implications across variations of total demand and order lines

Demand Selected modules Cost share compared
multiplier SMRs Human pickers to base case1 to status quo2

0.50 22 2 52% 23%
0.75 35 2 76% 33%
1.00 45 4 100% 43%
1.25 56 4 122% 53%
1.50 68 4 146% 63%

1 Base setting in case study (i.e., demand multiplier 1.00)
2 Setting before optimization approach with manual picking only

If the cost share compared to the status quo (i.e., manual picking only) is
analyzed, it becomes apparent that significant cost savings are generated
even with a demand multiplier of 1.5. The same OPSs (i.e., SMRs and
human pickers) are selected across all variations, emphasizing the robustness
of our case study solution. The number of modules for SMRs changes almost
proportionally to the demand multiplier. This seems logical due to the
constant throughput rate for all of the potential OPSs and as the major
parts are module and labor costs that scale with demand. When looking at
the selected modules for manual picking, we see results that resemble the
low utilization of manual pickers in our case study. Specifically, reducing
the total demand by 0.75 and 0.50 is sufficient to remove one human picker.
Also, increasing total demand by 1.25 or 1.50 does not lead to an additional
picker compared to the base case because the additional throughput can be
handled with the existing capacity. On the other hand, the costs compared
to the base case react similarly to the number of modules as module costs
decrease or increase depending on the number of modules purchased. Slight
deviations from a linear relationship exist due to the number of modules
(i.e., number of pickers) for manual picking. Although human workers are
responsible for a lower number of products compared to the automated
SMRs, they are necessary given their flexibility in being able to handle all
products.
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Importance of area constraints We run further numerical experiments
to understand the magnitude of the area constraints, in particular the avail-
able size and the number of space units. We first reduce the available size by
half (recall that originally 6.000 square meters were available), and continue
to decrease it throughout six sets of analyses. At the same time we allow
one, two, three and six space units respectively for the total available space,
equally distributed in size. We focus on eight potential OPSs. Alongside
the selected manual picking and SMR (SMR1), we introduce six additional
SMRs (SMR2-7). We generate their technical data (e.g., throughput) by
multiplying the original value with a randomly drawn uniformly distributed
number between 0.8 and 1.2. For each of the OPSs product processing ca-
pability (e.g., capability to process fragile products), we set the probability
to 90% that they can process one specified product characteristic. Table 5.7
reports that the optimal solution is very sensitive to both available size and
number of space units, showing the dependence of available space in the
OPS selection task and the importance of incorporating area constraints.
First, the partitioning of the available square meters into different quantities
of space units influences the choice of OPS technologies. Second, if the
available space drops below the space requirement of the best possible OPS
configuration, the selected OPS technologies will change.

Table 5.7: Implications of changes across available size and space distribution1

SMR types and modules selected across different space units

Size in sqm 1 space 2 spaces 3 spaces 6 spaces

3,000 35x SMR4 15x SMR2, 20x SMR4 29x SMR2, 6xSMR6 29xSMR2, 6x SMR6
2,700 35x SMR4 15x SMR2, 20x SMR4 29x SMR2, 6xSMR6 29xSMR2, 6x SMR6
2,400 35x SMR4 15x SMR2, 20x SMR4 29x SMR2, 6xSMR6 29xSMR2, 6x SMR6
2,100 manual only 18x SMR4, 18x SMR6 23x SMR4, 12x SMR6 23x SMR4, 12x SMR6
1,800 inf. inf. inf. inf.

sqm = square meters; inf. = infeasible solution
1 Note that the number of human workers (modules for manual picking) are not displayed

Implications of labor shortages The logistics sector has an enormous
issue hiring and retaining suitable workers, particularly for labor intensive
activities such as order picking (Logistics Management, 2021). Hence, we
analyze the impact of increasing labor shortages in the following. For this
purpose, we both increase the labor costs (we focus on labor wages only in
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the following) (+15%; +30%) and decrease the available labor (90%; 80%).
The baseline for the latter is the figure of 64 human pickers required for
two shifts in our case study.

Table 5.8 and Table 5.9 confirm that the ongoing labor shortages are costly
for businesses, even when automation is introduced. When only 90% labor
is available on the market (in our case study this would mean only 58
manual pickers may be utilized), the warehouse would need to introduce
FAPRs to complete all picking jobs. This would result in a 33% cost increase
compared to the optimized solution of our case study. When comparing
the cost implications between increasing labor costs and increasing labor
shortages, it further becomes evident that managers are advised to focus
on the retention of employees as losing labor (and not rehiring the same
number of staff) is very costly. In our case study, increasing labor costs of
15%(30%) would only result in an 8%(16%) overall cost increase. However,
not having enough labor increases costs more dramatically (33% - 48%).
Also, manual pickers are necessary to fulfill all customer orders due to
necessary pre- and post-picking activities and particular physical product
properties. When reducing the available labor to 80%, there are not enough
employees available for these tasks and no feasible solutions are obtained.

Table 5.8: Cost changes with varying labor costs and availability

Available labor
Labor costs 100% 90% 80%

0% 33% inf.
+15% 8% 40% inf.
+30% 16% 48% inf.

inf. = infeasible solution

Table 5.9: Optimal OPS and module number when varying labor costs and availability

Available labor
Labor costs 100% 90% 80%

0% 2 MPs, 45 SMRs 1 MP, 39 SMRs, 35 FAPRs inf.
+15% 2 MPs, 45 SMRs 1 MP, 39 SMRs, 35 FAPRs inf.
+30% 2 MPs, 45 SMRs 1 MP, 39 SMRs, 35 FAPRs inf.

inf. = infeasible solution; MP = manual pickers
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The quest for full automation From a theoretical standpoint, the nu-
merical experiment on labor availability proves the necessity of including
manual labor in the OPSs selection problem. From a managerial perspective,
despite the introduction of automated and robotized systems in warehous-
ing, retaining labor should be a priority for businesses. On the other side
of the scale are fully automated robotic implementations. Based on the
proprietary data analyzed, FAPRs are still too expensive, too inefficient
in operations and too inflexible in terms of physical characteristics to be
employed cost efficiently for our case study. However, many companies and
research institutes are investing to achieve fully automated robotic solutions
for piece-level picking (see also Correll et al. (2018)). In the following, we
analyze this issue and estimate when FAPRs are a solid choice in terms of
cost, throughput and product processing capabilities. For this purpose, we
increase the reported throughput and decrease the cost data (we only focus
on the purchase cost of one module in the following) of FAPRs until they
are selected (see Table 5.10). If the overall cost level were kept the same,
FAPRs would need to increase the throughput rate by a factor of four until
they were included in the optimal set of OPSs. The same holds true if
an FAPR only cost 75% of the current reported module cost. Also, when
reducing the module costs to 50% or even 25%, FAPRs are only selected
when the throughput rate is increased by a factor of 3 or 4, while factors of
1 and 2 (irrespective of the cost changes) do not trigger any change in the
optimal solution. This shows that the technology is currently too immature
to be implemented on a larger scale.

Table 5.10: Optimal OPS selection for varying module costs and throughput of FAPRs
Throughput rates of FAPRs (ρo, ρo

)

Module cost of FAPRs (cmod
o ) 3× higher 4× higher

100% 1 MP, 40 SMRs, 6 FAPRs
75% 1 MP, 40 SMRs, 6 FAPRs
50% 1 MP, 40 SMRs, 8 FAPRs 1 MP, 40 SMRs, 6 FAPRs
25% 1 MP, 40 SMRs, 8 FAPRs 1 MP, 39 SMRs, 9 FAPRs

Only changes compared to case study solution are displayed; MP = Manual picking
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5.5 Conclusion

Contribution and managerial implications Boosted by novel techno-
logical developments and new players in the industry, a skyrocketing number
of automated and robotized OPSs have become available on the market
with distinctive characteristics. This calls for more comprehensive decision
support when implementing automation and robotics in warehouses. To
assist warehouse managers in this novel OPS selection problem, we identify
decision-relevant costs and constraints based on a variety of sources (e.g.,
literature review, interviews, case study). Using a set of selected novel solu-
tions such as AMRs, SMRs and FAPRs, we find significant cost reduction
potential (up to 57%) compared to manual picking for a representative case
study in an e-commerce warehouse. We further show that despite ongoing
automation efforts, retaining labor is still important until fully automated
solutions are ready to be implemented cost efficiently across a variety of
products. Our model and findings contribute to the strategic decision-
making process of selecting the most appropriate OPSs. The numerical
study makes it clear that physical characteristics of products and space
constraints should not be neglected to produce feasible solutions. This
requires simultaneous OPS selection and space and product assignment. Ad-
ditionally, analyses of automated or robotized OPSs should ensure a holistic
approach, including the option of manual picking. On the managerial side,
we provide efficient decision support for the selection of suitable OPSs for
warehousing managers, system providers and planners. The model can be
utilized to inform the decision process of practitioners across a variety of
warehousing environments, and gives clear cost minimization potential. The
model is highly adaptable to specific business cases, can be altered based
on company preferences (e.g., degree of automation), and is applicable for a
variety of warehousing types. These can be centralized distribution centers,
but also micro or nano fulfilment centers.
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Further areas of research This paper introduces a novel decision
problem and serves as a starting point for future research. For example,
the model takes a strategic standpoint. Future research can build on this
and expand the model to achieve a more integrated, hierarchical planning
approach by also including tactical and operational planning issues (Shen
et al., 2010; Van der Gaast and Weidinger, 2022; Van Gils et al., 2019).
Particularly, slotting or batching policies (see Muter and Öncan (2021))
may be integrated. Reiteration in the hierarchical planning of our solution
is naturally still necessary (such as allocating spaces to manual pickers,
including the length of pick waves, see (Dallari et al., 2009)). The same
reasoning is valid for the assumed performance rate of each OPS. While
we take an average performance rate that is based on reported data, we
acknowledge that the actual throughput depends on many other criteria
(e.g., batch size, see Russell and Meller (2003)). Furthermore, we base the
decisions on static and stationary demand. A valuable research path will
be to investigate the impact of demand variations, seasonality and demand
trends on technology selection. We mitigated this issue by varying demand
across different scenarios, showing robust solutions with our model. A
further validation of the results with advancing technologies that impact
OPS capabilities and throughput appears interesting. These may be a
decline in OPS prices with a simultaneous throughput increase based
on Moore’s law (see also Bogue (2016)) or improved space utilization
coefficients required to satisfy the characteristics of micro and nano
fulfilment centers (Eriksson et al., 2019).

In conclusion, the ever-growing range of automated and robotized OPSs is
a current and significant challenge for warehouse managers. As literature
on any feasible model that directly and quantifiable compares the OPSs is
lacking, we developed a decision model to support the strategic planning
going forward. Our contribution will serve to stimulate more research in
this context and enhance the importance of analyzing novel automated and
robotized solutions from both managerial and theoretical perspectives.
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Appendix

Table 5.A1: Anonymous overview of interview participants
Code # Company type Interviewee role Warehouse experience years

1C 1 Consultancy Partner 10-20
2WO 2 Warehouse operator Director Logistics Development 10-20
3C 3 Consultancy Expert 5-10
4SP 4 System provider Manager Picking Solution Design >20
5C 5 Consultancy Partner >20
6SP 6 System provider Head of Dynamic Systems 10-20
7SP 7 System provider Product and Sales Manager 10-20
8SP 8 System provider Group Leader Sales Engineering 10-20

The eight interviews were conducted between November 2020 and January 2021. Additionally, several discus-
sions and interviews with our partner company were held throughout 2021.
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6 Conclusion and outlook

This doctoral thesis deals with recent challenges in warehousing, particularly
the optimization of human-machine interactions and the selection of suitable
OPSs. It equally supports practitioners and researchers in planning and
optimizing warehousing operations. Each individual contribution (Chapter
3 – 5) concludes by summarizing theoretical and managerial insights. Ad-
ditionally, within each of those chapters, potential extensions and future
research opportunities are detailed. Aggregated findings and a joint outlook
are thus outlined in a more broader context in the following.

6.1 Summary of findings and contributions

The application of automated and robotized systems for operational
activities is transforming warehouse operations. Compared to tra-
ditional, manually operated warehouses, automated systems influence op-
erating policies across warehousing activities. In this way, novel strategic
(e.g., which automated solutions to deploy), tactical (e.g., which items to
store at which location of the shuttle system), and operational (e.g., which
worker to staff at which picking workstation) problems arise.

In a similar manner and magnitude, resulting human-machine inter-
actions exist across activities and have a significant impact on
human behavior and system performance. In fact, Chapter 3 es-
tablished behavioral issues across all operational activities, making the
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optimization of such interactions an imperative for warehouse managers
and scholars.

However, human factors and behavior are often disregarded when
establishing novel automated solutions for human-machine inter-
actions. Through many statements in experts interviews and the scarcity
of literature, it gets clear that both scholars and practitioners alike often
miss to incorporate behavioral aspects of human-machine interactions, po-
tentially resulting in undesired and negative impacts on human factors and
system performance.

As a starting point to tackle this problem, Chapter 3 established a system-
atic framework, identified behavioral issues, and developed four unifying
themes including theoretical foundations. In this way, causal rela-
tionships among the various interconnections (such as interaction setup
and human factors) and salient variables (such as decision-discretion or
motivation) guide future researchers and managers to understand behavioral
consequences in their optimization efforts. Moreover, the research agenda
helps operations management, and in particular warehousing, researchers
to identify potential effects on behavior, while scholars from the field of be-
havioral science and human factors are encouraged to consider warehousing
as an interesting area of application.

Applying one such theory in Chapter 4, that is goal-setting, proves to
engage workers in repetitive activities and to be a source of per-
formance improvement. In fact, human picking performance is elevated
by 5.6% in a human-machine interaction within a semi-automated order pick-
ing activity through a goal-setting intervention. As such, goal-setting mech-
anisms can be established to have a positive effect on human engagement,
leading to superior picking results without any kind of monetary incentives.
However, the goal-setting intervention diminished possibilities for
humans to informally organize themselves in their working day,
with repercussions on satisfaction, self-determination and per-
ceived fairness. This unexpected, but explainable outcome shows the
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importance to observe and understand human factors in human-machine
interactions. Additionally, the often-advocated support for humans from
automated and robotized systems may lead to undesired human behavior
because workers prefer to have some kind of decision autonomy.

Chapter 5 turns then to a novel warehousing planning problem by introduc-
ing and formalizing the innovative OPS selection and assignment
problem. In this way, the developed decision-support establishes important
decision variables and constraints. Among others, it is demonstrated that
the assignment of both spaces and products to OPSs is imperative given the
large variety of product properties and the importance of space efficiency.
Applying the decision model results in cost savings up to 57%,
but also ensures a viable and efficient assignment across spaces, OPSs, and
products, which previous research has neglected. Furthermore, although
the application of automated and robotized systems will continue in the
future, retaining labor is established as a key factor to manage operating
costs.

6.2 Future areas of research

The findings of this dissertation lead to numerous further research opportu-
nities across three fields.

First, Chapter 3 detailed 18 research questions that guide the way for
subsequent studies on behavioral issues in human-machine interactions. In
this way, scholars can profit from the developed theoretical foundations
and unifying themes to design and implement their research. Additionally,
those also serve as starting points for the exploration of behavioral issues
beyond operational activities, specifically for tactical and strategic tasks in
the warehouse.
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Second, while the conducted study in Chapter 4 answered one of the above-
mentioned research questions, it also developed new pathways for future
endeavours. Particularly, the identified informal agreements, which are
determined to be the main reason for the deterioration of the human factors,
may be integrated into further operating policies. This serves as a pool for
future studies not only in the setting of the semi-automated picking system,
but for many interactions where humans and machines collaborate with
each other.

Third, the introduction of the novel OPS selection and assignment
model in Chapter 5 opens future areas of research as well. For example,
the optimization effort can be extended with a larger range of OPSs,
different types of warehouses, or stochastic demand. Additionally,
integrative approaches that combine this strategic problem with tactical
or operational facets (such as batching policies) may yield to further insights.

The development and implementation of automated and robotized ware-
housing systems indeed transform the way warehouses work. What has
been seen in the past as a pure cost center of firms is now a focal point in
the value contribution of companies. The large variety of human-machine
interactions and order picking solutions deliver significant challenges to
establish an optimized material and information flow. This doctoral thesis
has both delivered valuable insights and set the pathway for more research
towards impactful perspectives on the warehouse of the future.

152



Conclusion and outlook Fabian Lorson

Acknowledgements I want to tremendously thank Alexander Hübner for
supervising my doctoral journey. Not only his dedication and academic acumen
are unparalleled, but also his mentoring and kindness. I truly appreciated the
collaboration and look back with joy on the multiple workshops, working sessions,
and celebrations. I also want to thank in this context Andreas Fügener for
providing excellent guidance on my academic path as well as for contributing on
an exceptional level as a co-author in two articles. Also, thank you to Fabian
Schäfer for patiently joining me as a co-author in my third article.

Further, I want to express my thankfulness towards all practitioners involved
in the expert discussions and cooperations for their valuable time and insights.
Particularly, the dedication of the warehouse manager involved in the second
contribution has to be mentioned. My acknowledgements also extend to editors
and reviewers for helpful ideas on improving the submitted papers.

I am also very thankful for the generous support of the Hanns-Seidel-Stiftung
that included a scholarship for outstanding students from funds of the German
Federal Ministry of Education and Research (Bundesministerium für Bildung
und Forschung).

Finally, I want to express my deepest gratitude to Anna for always believing in
me and for always being by my side. I am beyond grateful to always felt the
support and encouragement from my whole family including my parents, siblings,
and grandparents. Each and every one of you made my doctoral journey possible,
and I thank you all from the bottom of my heart.

153





DOCTORAL THESIS
Perspectives on the Warehouse of the Future

Bibliography

Akkermans, H., Oppen, W., Wynstra, F., Voss, C., 2019. Contracting
outsourced services with collaborative key performance indicators. Journal
of Operations Management 65 (1), 22–47.

Alvesson, M., Kärreman, D., 2007. Constructing mystery: Empirical matters
in theory development. Academy of Management Review 32 (4), 1265–
1281.

Anand, G., Chandrasekaran, A., Sharma, L., 2021. Sustainable process
improvements: Evidence from intervention–based research. Journal of
Operations Management 67 (2), 212–236.

Aromaa, S., Väätänen, A., Aaltonen, I., Goriachev, V., Helin, K., Kar-
jalainen, J., 2020. Awareness of the real-world environment when using
augmented reality head-mounted display. Applied ergonomics 88, 103145.

Azadeh, K., De Koster, R., Roy, D., 2019. Robotized and automated
warehouse systems: Review and recent developments. Transportation
Science 53 (4), 917–945.

Bai, B., Dai, H., Zhang, D., Zhang, F., Hu, H., 2021. The impacts of
algorithmic work assignment on fairness perceptions and productivity.
Academy of Management Proceedings 2021 (1), 12335.

Bainbridge, H., 2002. Best Practice for the Procurement and Conduct of
Non-destructive Testing. Health and Safety Executive, Bottle, UK.

Banerjee, A. G., Barnes, A., Kaipa, K. N., Liu, J., Shriyam, S., Shah, N.,
Gupta, S. K., 2015. An ontology to enable optimized task partitioning in

xvii



BIBLIOGRAPHY Fabian Lorson

human-robot collaboration for warehouse kitting operations. In: Proceed-
ings of SPIE, Next-Generation Robotics II; and Machine Intelligence and
Bio-inspired Computation: Theory and Applications IX. International
Society for Optics and Photonics, Bellingham, WA.

Banker, S., 2020. Automation is the future of warehousing. https://www.
forbes.com/sites/stevebanker/2020/07/31/automation-is-the-
future-of-warehousing/?sh=3b70633230f4 [08.08.2022].

Baraglia, J., Cakmak, M., Nagai, Y., Rao, R., Asada, M., 2016. Initiative
in robot assistance during collaborative task execution. In: 2016 11th
ACM/IEEE International Conference on Human-Robot Interaction (HRI).
IEEE, New York, pp. 67–74.

Barry, B., 2022. 4 considerations for employing picking robotics and automa-
tion in fulfillment. https://www.fcbco.com/blog/4-considerations-
for-employing-picking-robotics-and-automation [01.08.2022].

Bartholdi III, J. J., Hackman, S. T., 2020. Warehouse & distribution science.
release 0.98.1. Supply Chain and Logistics Institute.

Batt, R. J., Gallino, S., 2019. Finding a needle in a haystack: The effects of
searching and learning on pick-worker performance. Management Science
65 (6), 2624–2645.

Bendoly, E., Croson, R., Goncalves, P., Schultz, K., 2010. Bodies of knowl-
edge for research in behavioral operations. Production and Operations
Management 19 (4), 434–452.

Bendoly, E., Donohue, K., Schultz, K. L., 2006. Behavior in operations
management: Assessing recent findings and revisiting old assumptions.
Journal of Operations Management 24 (6), 737–752.

Bernstein, E. S., 2012. The transparency paradox. Administrative Science
Quarterly 57 (2), 181–216.

Binos, T., Adamopoulos, A., Bruno, V., 2020. Decision support research
in warehousing and distribution: A systematic literature review. Inter-

xviii

https://www.forbes.com/sites/stevebanker/2020/07/31/automation-is-the-future-of-warehousing/?sh=3b70633230f4
https://www.forbes.com/sites/stevebanker/2020/07/31/automation-is-the-future-of-warehousing/?sh=3b70633230f4
https://www.forbes.com/sites/stevebanker/2020/07/31/automation-is-the-future-of-warehousing/?sh=3b70633230f4
https://www.fcbco.com/blog/4-considerations-for-employing-picking-robotics-and-automation
https://www.fcbco.com/blog/4-considerations-for-employing-picking-robotics-and-automation


BIBLIOGRAPHY Fabian Lorson

national Journal of Information Technology & Decision Making 19 (03),
653–693.

Bogue, R., 2016. Growth in e-commerce boosts innovation in the warehouse
robot market. Industrial Robot: An International Journal 43 (6), 583–587.

Boudreau, J., Hopp, W., McClain, J. O., Thomas, L. J., 2003. On the
interface between operations and human resources management. Manu-
facturing & Service Operations Management 5 (3), 179–202.

Boyer, K. K., Swink, M. L., 2008. Empirical elephants–Why multiple
methods are essential to quality research in operations and supply chain
management. Journal of Operations Management 26 (3), 338–344.

Boysen, N., De Koster, R., Füßler, D., 2021. The forgotten sons: Ware-
housing systems for brick-and-mortar retail chains. European Journal of
Operational Research 288 (2), 361–381.

Boysen, N., De Koster, R., Weidinger, F., 2019. Warehousing in the e-
commerce era: A survey. European Journal of Operational Research
277 (2), 396–411.

Boysen, N., Füßler, D., Stephan, K., 2020. See the light: Optimization of
put–to–light order picking systems. Naval Research Logistics 67 (1), 3–20.

Boysen, N., Konrad, S., Weidinger, F., 2022. Efficient order consolidation
in warehouses: The product-to-order-assignment problem in warehouses
with sortation systems. IISE Transactions 54 (10), 963–975.

Boywitz, D., Schwerdfeger, S., Boysen, N., 2019. Sequencing of picking or-
ders to facilitate the replenishment of A-Frame systems. IISE Transactions
51 (4), 368–381.

Bozer, Y. A., Aldarondo, F. J., 2018. A simulation-based comparison of
two goods-to-person order picking systems in an online retail setting.
International Journal of Production Research 56 (11), 3838–3858.

Brand, A., Allen, L., Altman, M., Hlava, M., Scott, J., 2015. Beyond
authorship: Attribution, contribution, collaboration, and credit. Learned
Publishing 28 (2), 151–155.

xix



BIBLIOGRAPHY Fabian Lorson

Bryman, A., Bell, E., 2015. Business Research Methods, 4th Edition. Oxford
University Press, Oxford, UK.

Cantor, D. E., Jin, Y., 2019. Theoretical and empirical evidence of behav-
ioral and production line factors that influence helping behavior. Journal
of Operations Management 65 (4), 312–332.

Chandrasekaran, A., Treville, S., Browning, T., 2020. Editorial:
Intervention–based research ( IBR )—What, where, and how to use
it in operations management. Journal of Operations Management 66 (4),
370–378.

Chun, Y., Harris, S. L., Chandrasekaran, A., Hill, K., 2022. Improving care
transitions with standardized peer mentoring: Evidence from intervention
based research using randomized control trial. Journal of Operations
Management 68 (2), 185–214.

CNBC, 2020. Mark Zuckerberg just made a bold claim: We’re going to
get a ‘breakthrough’ in tech glasses this decade. https://www.cnbc.
com/2020/01/09/zuckerberg- expects- breakthrough- augmented-
reality-glasses-this-decade.html [03.07.2022].

Corgnet, B., Gómez-Miñambres, J., Hernán-González, R., 2015. Goal setting
and monetary incentives: When large stakes are not enough. Management
Science 61 (12), 2825–3096.

Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo, A., Hauser,
K., Okada, K., Rodriguez, A., Romano, J. M., Wurman, P. R., 2018.
Analysis and observations from the first Amazon picking challenge. IEEE
Transactions on Automation Science and Engineering 15 (1), 172–188.

Cragg, T., Loske, D., 2019. Perceived work autonomy in order picking
systems: An empirical analysis. IFAC-PapersOnLine 52 (13), 1872–1877.

Creswell, J. W., 2009. Research Design: Qualitative, Quantitative, and
Mixed-Method Approaches, 3rd Edition. Sage Publications, Thousand
Oaks, CA.

xx

https://www.cnbc.com/2020/01/09/zuckerberg-expects-breakthrough-augmented-reality-glasses-this-decade.html
https://www.cnbc.com/2020/01/09/zuckerberg-expects-breakthrough-augmented-reality-glasses-this-decade.html
https://www.cnbc.com/2020/01/09/zuckerberg-expects-breakthrough-augmented-reality-glasses-this-decade.html


BIBLIOGRAPHY Fabian Lorson

Cropanzano, R., Paddock, L., Rupp, D. E., Bagger, J., Baldwin, A., 2008.
How regulatory focus impacts the process-by-outcome interaction for
perceived fairness and emotions. Organizational Behavior and Human
Decision Processes 105 (1), 36–51.

Croson, R., Schultz, K., Siemsen, E., Yeo, M. L., 2013. Behavioral opera-
tions: The state of the field. Journal of Operations Management 31 (1-2),
1–5.

D’Addona, D. M., Bracco, F., Bettoni, A., Nishino, N., Carpanzano, E.,
Bruzzone, A. A., 2018. Adaptive automation and human factors in manu-
facturing: An experimental assessment for a cognitive approach. CIRP
Annals 67 (1), 455–458.

Dallari, F., Marchet, G., Melacini, M., 2009. Design of order picking system.
The International Journal of Advanced Manufacturing Technology 42 (1-
2), 1–12.

Davarzani, H., Norrman, A., 2015. Toward a relevant agenda for warehousing
research: Literature review and practitioners’ input. Logistics Research
8 (1), 1–18.

De Koster, M. B. M., Roy, D., Lim, Y. F., Kumar, S., 2020. Managing
autonomous and IoT-driven intralogistics operations: Call for papers.
Production and Operations Management.

De Koster, R., Le-Duc, T., Roodbergen, K. J., 2007. Design and control
of warehouse order picking: A literature review. European Journal of
Operational Research 182 (2), 481–501.

De Koster, R. B., Stam, D., Balk, B. M., 2011. Accidents happen: The
influence of safety-specific transformational leadership, safety conscious-
ness, and hazard reducing systems on warehouse accidents. Journal of
Operations Management 29 (7-8), 753–765.

De Vries, J., De Koster, R., Stam, D., 2016a. Aligning order picking
methods, incentive systems, and regulatory focus to increase performance.
Production and Operations Management 25 (8), 1363–1376.

xxi



BIBLIOGRAPHY Fabian Lorson

De Vries, J., De Koster, R., Stam, D., 2016b. Exploring the role of picker
personality in predicting picking performance with pick by voice, pick
to light and RF-terminal picking. International Journal of Production
Research 54 (8), 2260–2274.

De Vries, J., De Koster, R., Stam, D., 2016c. Safety does not happen by
accident: Antecedents to a safer warehouse. Production and Operations
Management 25 (8), 1377–1390.

Deci, E. L., Olafsen, A. H., Ryan, R. M., 2017. Self-determination the-
ory in work organizations: The state of a science. Annual Review of
Organizational Psychology and Organizational Behavior 4 (1), 19–43.

Deci, E. L., Ryan, R. M., 2000. The "what" and "why" of goal pursuits: Hu-
man needs and the self-determination of behavior. Psychological Inquiry
11 (4), 227–268.

DeHoratius, N., Rabinovich, E., 2011. Field research in operations and
supply chain management. Journal of Operations Management 29 (5),
371–375.

Delasay, M., Ingolfsson, A., Kolfal, B., Schultz, K., 2019. Load effect on
service times. European Journal of Operational Research 279 (3), 673–686.

Denyer, D., Tranfield, D., van Aken, J. E., 2008. Developing design propo-
sitions through research synthesis. Organization Studies 29 (3), 393–413.

Dietvorst, B. J., Simmons, J. P., Massey, C., 2018. Overcoming algorithm
aversion: People will use imperfect algorithms if they can (even slightly)
modify them. Management Science 64 (3), 983–1476.

Digman, J. M., 1990. Personality structure: Emergence of the five-factor
model. Annual Review of Psychology 41 (1), 417–440.

Doerr, K. H., Mitchell, T. R., Klastorin, T. D., Brown, K. A., 1996. Impact
of material flow policies and goals on job outcomes. Journal of Applied
Psychology 81 (2), 142–152.

xxii



BIBLIOGRAPHY Fabian Lorson

Donohue, K., Katok, E., Leider, S. (Eds.), 2018. The Handbook of Behav-
ioral Operations. Wiley online library. John Wiley & Sons, Inc, Hoboken,
NJ, USA.

Donohue, K., Özer, Ö., Zheng, Y., 2020. Behavioral operations: Past,
present, and future. Manufacturing & Service Operations Management
22 (1), 191–202.

Downing, C. O., Geller, E. S., 2012. A goal-setting and feedback intervention
to increase ID-checking behavior: An assessment of social validity and
behavioral impact. Journal of Organizational Behavior Management 32 (4),
297–306.

Eckerd, S., DuHadway, S., Bendoly, E., Carter, C. R., Kaufmann, L.,
2021. On making experimental design choices: Discussions on the use
and challenges of demand effects, incentives, deception, samples, and
vignettes. Journal of Operations Management 67 (2), 261–275.

Edmondson, A. C., Mcmanus, S. E., 2007. Methodological fit in management
field research. Academy of Management Review 32 (4), 1246–1264.

Edwards, H., Edwards, D., 2018. How Tesla “shot itself in the foot” by trying
to hyper-automate its factory. https://qz.com/1261214/how-exactly-
tesla-shot-itself-in-the-foot-by-trying-to-hyper-automate-
its-factory [25.07.2022].

Egger, J., Masood, T., 2020. Augmented reality in support of intelligent
manufacturing – A systematic literature review. Computers & Industrial
Engineering 140, 106195.

EHI, 2019. Studie: Versand- und Retourenmanagement im e-commerce
2019. EHI study, available at https://www.ehi.org/produkt/
studie-versand-und-retourenmanagement-im-e-commerce-2019-
pdf-version/.

Eisenhardt, K. M., 1989. Building theories from case study research.
Academy of Management Review 14 (4), 532–550.

xxiii

https://qz.com/1261214/how-exactly-tesla-shot-itself-in-the-foot-by-trying-to-hyper-automate-its-factory
https://qz.com/1261214/how-exactly-tesla-shot-itself-in-the-foot-by-trying-to-hyper-automate-its-factory
https://qz.com/1261214/how-exactly-tesla-shot-itself-in-the-foot-by-trying-to-hyper-automate-its-factory
https://www.ehi.org/produkt/studie-versand-und-retourenmanagement-im-e-commerce-2019-pdf-version/
https://www.ehi.org/produkt/studie-versand-und-retourenmanagement-im-e-commerce-2019-pdf-version/
https://www.ehi.org/produkt/studie-versand-und-retourenmanagement-im-e-commerce-2019-pdf-version/


BIBLIOGRAPHY Fabian Lorson

Ekren, B., Heragu, S. S., 2012. Performance comparison of two material
handling systems: AVS/RS and CBAS/RS. International Journal of
Production Research 50 (15), 4061–4074.

Ekren, B. Y., 2017. Graph-based solution for performance evaluation of
shuttle-based storage and retrieval system. International Journal of Pro-
duction Research 55 (21), 6516–6526.

Eriksson, E., Norrman, A., Kembro, J., 2019. Contextual adaptation of
omni-channel grocery retailers’ online fulfilment centres. International
Journal of Retail & Distribution Management 47 (12), 1232–1250.

Flick, U., von Kardorff, E., Steinke, I. (Eds.), 2004. A Companion to
Qualitative Research. Sage Publications, London, UK.

Forbes, 2021. Meet the billionaire robot overlord reinventing Walmart’s ware-
houses. https://www.forbes.com/sites/amyfeldman/2021/12/13/
meet- the- billionaire- robot- overload- reinventing- walmarts-
warehouses/?sh=77850f7878f4 [08.08.2022].

Fottner, J., Clauer, D., Hormes, F., Freitag, M., Beinke, T., Overmeyer, L.,
Gottwald, S. N., Elbert, R., Sarnow, T., Schmidt, T., Reith, K. B., Zadek,
H., Thomas, F., 2021. Autonomous systems in intralogistics – State of
the art and future research challenges. Logistics Research 14 (1).

Fragapane, G., de Koster, R., Sgarbossa, F., Strandhagen, J. O., 2021.
Planning and control of autonomous mobile robots for intralogistics:
Literature review and research agenda. European Journal of Operational
Research 294 (2), 405–426.

Friebel, G., Heinz, M., Krueger, M., Zubanov, N., 2017. Team incentives
and performance: Evidence from a retail chain. American Economic
Review 107 (8), 2168–2203.

Friebel, G., Heinz, M., Zubanov, N., 2022. Middle managers, personnel
turnover, and performance: A long–term field experiment in a retail chain.
Management Science 68 (1), 211–229.

xxiv

https://www.forbes.com/sites/amyfeldman/2021/12/13/meet-the-billionaire-robot-overload-reinventing-walmarts-warehouses/?sh=77850f7878f4
https://www.forbes.com/sites/amyfeldman/2021/12/13/meet-the-billionaire-robot-overload-reinventing-walmarts-warehouses/?sh=77850f7878f4
https://www.forbes.com/sites/amyfeldman/2021/12/13/meet-the-billionaire-robot-overload-reinventing-walmarts-warehouses/?sh=77850f7878f4


BIBLIOGRAPHY Fabian Lorson

Friesike, S., Flath, C. M., Wirth, M., Thiesse, F., 2019. Creativity and
productivity in product design for additive manufacturing: Mechanisms
and platform outcomes of remixing. Journal of Operations Management
65 (8), 735–752.

Füßler, D., Boysen, N., 2019. High-performance order processing in picking
workstations. EURO Journal on Transportation and Logistics 8 (1), 65–90.

Gino, F., Pisano, G., 2008. Toward a theory of behavioral operations.
Manufacturing & Service Operations Management 10 (4), 676–691.

Glikson, E., Woolley, A. W., 2020. Human trust in artificial intelligence:
Review of empirical research. Academy of Management Annals 14 (2),
627–660.

Glock, C. H., Grosse, E. H., Abedinnia, H., Emde, S., 2019. An integrated
model to improve ergonomic and economic performance in order picking
by rotating pallets. European Journal of Operational Research 273 (2),
516–534.

Goerg, S. J., Kube, S., 2012. Goals (th)at work. Goals, monetary incentives,
and workers’ performance. Preprints of the Max Planck Institute for
Research on Collective Goods 2012/19.

Gombolay, M., Bair, A., Huang, C., Shah, J., 2017. Computational design of
mixed-initiative human–robot teaming that considers human factors: Situ-
ational awareness, workload, and workflow preferences. The International
Journal of Robotics Research 36 (5-7), 597–617.

Gombolay, M. C., Gutierrez, R. A., Clarke, S. G., Sturla, G. F., Shah,
J. A., 2015. Decision-making authority, team efficiency and human worker
satisfaction in mixed human–robot teams. Autonomous Robots 39 (3),
293–312.

Groop, J., Ketokivi, M., Gupta, M., Holmström, J., 2017. Improving home
care: Knowledge creation through engagement and design. Journal of
Operations Management 53-56 (1), 9–22.

xxv



BIBLIOGRAPHY Fabian Lorson

Grosse, E. H., Glock, C. H., Jaber, M. Y., Neumann, W. P., 2015. Incor-
porating human factors in order picking planning models: Framework
and research opportunities. International Journal of Production Research
53 (3), 695–717.

Grosse, E. H., Glock, C. H., Neumann, W. P., 2017. Human factors in
order picking: A content analysis of the literature. International Journal
of Production Research 55 (5), 1260–1276.

Gu, J., Goetschalckx, M., McGinnis, L. F., 2007a. Research on warehouse
design and performance evaluation: A comprehensive review. European
Journal of Operational Research 203 (3), 539–549.

Gu, J., Goetschalckx, M., McGinnis, L. F., 2007b. Research on warehouse
operation: A comprehensive review. European Journal of Operational
Research 177 (1), 1–21.

Guest, G., Bunce, A., Johnson, L., 2006. How many interviews are enough?
Field Methods 18 (1), 59–82.

Gutelius, B., Theodore, N., 2019. The future of warehouse work: Technolog-
ical change in the U.S. logistics industry. Working Partnerships USA, UC
Berkeley Labor Center, available at https://laborcenter.berkeley.
edu/pdf/2019/Future-of-Warehouse-Work.pdf.

Hedenstierna, C. P. T., Disney, S. M., Eyers, D. R., Holmström, J., Syntetos,
A. A., Wang, X., 2019. Economies of collaboration in build–to–model
operations. Journal of Operations Management 65 (8), 753–773.

Higgins, E. T., 1997. Beyond pleasure and pain. American Psychologist
52 (12), 1280–1300.

Holton, J. A., 2012. The Coding Process and Its Challenges. In: Bryant, A.,
Charmaz, K. (Eds.), The SAGE Handbook of Grounded Theory. Sage
Publications, London, UK, pp. 265–289.

Hübner, A., Holzapfel, A., Kuhn, H., 2015. Operations management in
multi-channel retailing: An exploratory study. Operations Management
Research 8 (3), 84–100.

xxvi

https://laborcenter.berkeley.edu/pdf/2019/Future-of-Warehouse-Work.pdf
https://laborcenter.berkeley.edu/pdf/2019/Future-of-Warehouse-Work.pdf


BIBLIOGRAPHY Fabian Lorson

Hübner, A., Holzapfel, A., Kuhn, H., Obermair, E., 2019. Distribution
in omnichannel grocery retailing: An analysis of concepts realized. In:
Gallino, S., Moreno, A. (Eds.), Operations in an omnichannel world.
Springer series in supply chain management. Springer Nature Switzerland
AG, Cham.

Ibanez, M. R., Staats, B. R., 2018. Behavioral Empirics and Field Exper-
iments. In: Donohue, K., Katok, E., Leider, S. (Eds.), The Handbook
of Behavioral Operations. Wiley online library. John Wiley & Sons, Inc,
Hoboken, NJ, USA, pp. 121–147.

IEEE, 2020. Symphony of humans and machines or “Modern Times”?
https://cmte.ieee.org/futuredirections/2020/01/03/symphony-
of-humans-and-machines-or-modern-times [07.08.2022].

IFR, 2020. Executive summary world robotics 2020 industrial robots.
World Robotics Report, IFR, available at https://ifr.org/img/
worldrobotics/Executive_Summary_WR_2020_Industrial_Robots_1.
pdf.

IHCI, 2020. Amazon has >200,000 kiva robots navigating through its
warehouses across the globe. https://ihci.sbf.org.sg/docs/default-
source/application-guides/ag28-rfw/app-guide-28_case-1.pdf?
sfvrsn=8e119260_2 [06.08.2022].

Ilk, N., Shang, G., Goes, P., 2020. Improving customer routing in contact
centers: An automated triage design based on text analytics. Journal of
Operations Management 66 (5), 553–577.

Instawork, 2022. State of warehouse labor. https://info.instawork.com/
state-of-warehouse-labor [25.07.2022].

ISO, 2012. ISO 8373:2012. Robots and robotic devices — Vocabulary.
ISO/TC 299 Robotics.

Jaghbeer, Y., Hanson, R., Johansson, M. I., 2020. Automated order picking
systems and the links between design and performance: A systematic
literature review. International Journal of Production Research 58 (15),
4489–4505.

xxvii

https://cmte.ieee.org/futuredirections/2020/01/03/symphony-of-humans-and-machines-or-modern-times
https://cmte.ieee.org/futuredirections/2020/01/03/symphony-of-humans-and-machines-or-modern-times
https://ifr.org/img/worldrobotics/Executive_Summary_WR_2020_Industrial_Robots_1.pdf
https://ifr.org/img/worldrobotics/Executive_Summary_WR_2020_Industrial_Robots_1.pdf
https://ifr.org/img/worldrobotics/Executive_Summary_WR_2020_Industrial_Robots_1.pdf
https://ihci.sbf.org.sg/docs/default-source/application-guides/ag28-rfw/app-guide-28_case-1.pdf?sfvrsn=8e119260_2
https://ihci.sbf.org.sg/docs/default-source/application-guides/ag28-rfw/app-guide-28_case-1.pdf?sfvrsn=8e119260_2
https://ihci.sbf.org.sg/docs/default-source/application-guides/ag28-rfw/app-guide-28_case-1.pdf?sfvrsn=8e119260_2
https://info.instawork.com/state-of-warehouse-labor
https://info.instawork.com/state-of-warehouse-labor


BIBLIOGRAPHY Fabian Lorson

Johnson, M., Burgess, N., Sethi, S., 2020. Temporal pacing of outcomes
for improving patient flow: Design science research in a National Health
Service hospital. Journal of Operations Management 66 (1-2), 35–53.

Jung, J. H., Schneider, C., Valacich, J., 2010. Enhancing the motivational
affordance of information systems: The effects of real-time performance
feedback and goal setting in group collaboration environments. Manage-
ment Science 56 (4), 724–742.

Kadir, B. A., Broberg, O., 2020. Human well-being and system performance
in the transition to Industry 4.0. International Journal of Industrial
Ergonomics 76, 102936.

Kaipia, R., Holmström, J., Småros, J., Rajala, R., 2017. Information
sharing for sales and operations planning: Contextualized solutions and
mechanisms. Journal of Operations Management 52, 15–29.

Kaplan, A. D., Sanders, T., Hancock, P. A., 2019. The relationship between
extroversion and the tendency to anthropomorphize robots: A Bayesian
analysis. Frontiers in Robotics and AI 5, 135.

Karwowski, W., 2005. Ergonomics and human factors: The paradigms
for science, engineering, design, technology and management of human-
compatible systems. Ergonomics 48 (5), 436–463.

KC, D., 2020. Worker productivity in operations management. Foundations
and Trendsr in Technology, Information and Operations Management
13 (3), 151–249.

Kellogg, K. C., Valentine, M. A., Christin, A., 2020. Algorithms at work:
The new contested terrain of control. Academy of Management Annals
14 (1), 366–410.

Kihlstrom, J. F., Park, L., 2018. Cognitive psychology: Overview. Reference
Module in Neuroscience and Biobehavioral Psychology, 1–14.

Kostami, V., Rajagopalan, S., 2014. Speed–Quality trade-offs in a dynamic
model. Manufacturing & Service Operations Management 16 (1), 104–118.

xxviii



BIBLIOGRAPHY Fabian Lorson

Kretschmer, V., Plewan, T., Rinkenauer, G., Maettig, B., 2018. Smart Pal-
letisation: Cognitive Ergonomics in Augmented Reality Based Palletising.
In: Karwowski, W., Ahram, T. Z. (Eds.), Intelligent Human Systems
Integration. Advances in Intelligent Systems and Computing. Springer,
Cham, Switzerland, pp. 355–360.

Kudelska, I., Niedbal, R., 2020. Technological and organizational innovation
in warehousing process – Research over workload of staff and efficiency of
picking stations. E&M Economics and Management 23 (3), 67–81.

Kumar, S., Mookerjee, V., Shubham, A., 2018. Research in operations man-
agement and information systems interface. Production and Operations
Management 27 (11), 1893–1905.

Lamballais, T., Roy, D., De Koster, R., 2020. Inventory allocation in robotic
mobile fulfillment systems. IISE Transactions 52 (1), 1–17.

Land, M. J., Thürer, M., Stevenson, M., Fredendall, L. D., Scholten,
K., 2021. Inventory diagnosis for flow improvement—A design science
approach. Journal of Operations Management 67 (5), 560–587.

Langer, M., Landers, R. N., 2021. The future of artificial intelligence at
work: A review on effects of decision automation and augmentation on
workers targeted by algorithms and third-party observers. Computers in
Human Behavior 123, 106878.

Langley, A., Smallman, C., Tsoukas, H., van de Ven, A. H., 2013. Process
studies of change in organization and management: Unveiling temporality,
activity, and flow. Academy of Management Journal 56 (1), 1–13.

Larco, J. A., De Koster, R., Roodbergen, K. J., Dul, J., 2017. Managing
warehouse efficiency and worker discomfort through enhanced storage as-
signment decisions. International Journal of Production Research 55 (21),
6407–6422.

Larson, R. B., 2019. Controlling social desirability bias. International
Journal of Market Research 61 (5), 534–547.

xxix



BIBLIOGRAPHY Fabian Lorson

Latham, G. P., Locke, E. A., 2006. Enhancing the benefits and overcoming
the pitfalls of goal setting. Organizational Dynamics 35 (4), 332–340.

Latham, G. P., Mitchell, T. R., Dossett, D. L., 1978. Importance of par-
ticipative goal setting and anticipated rewards on goal difficulty and job
performance. Journal of Applied Psychology 63 (2), 163–171.

Lewis-Beck, M. S., Bryman, A., Liao, T. F. (Eds.), 2004. The Sage Encyclo-
pedia of Social Science Research Methods. Sage Publications, Thousand
Oaks, CA.

Lincoln, Y. S., Guba, E. G., 1985. Naturalistic Inquiry. Sage Publications,
Thousand Oaks, CA.

Linderman, K., Schroeder, R. G., Choo, A. S., 2006. Six Sigma: The role of
goals in improvement teams. Journal of Operations Management 24 (6),
779–790.

Loch, C. H., Wu, Y., 2005. Behavioral operations management. Foundations
and Trendsr in Technology, Information and Operations Management
1 (3), 121–232.

Locke, E. A., Latham, G. P., 1990. Work motivation and satisfaction: Light
at the end of the tunnel. Psychological Science 1 (4), 240–246.

Locke, E. A., Latham, G. P., 2002. Building a practically useful theory of
goal setting and task motivation: A 35-year odyssey. American Psycholo-
gist 57 (9), 705–717.

Locke, E. A., Latham, G. P., 2019. The development of goal setting theory:
A half century retrospective. Motivation Science 5 (2), 93–105.

Logistics Management, 2018. 2018 Warehouse / Distribution center survey:
Labor crunch driving automation. https://www.logisticsmgmt.com/
article / 2018 _ warehouse _ distribution _ center _ survey _ labor _
crunch_driving_automation [09.06.2022].

Logistics Management, 2021. There is no way to dodge the ongoing labor
shortage issues. https://www.logisticsmgmt.com/article/there_is_
no_way_to_dodge_the_ongoing_labor_shortage_issues [01.08.2022].

xxx

https://www.logisticsmgmt.com/article/2018_warehouse_distribution_center_survey_labor_crunch_driving_automation
https://www.logisticsmgmt.com/article/2018_warehouse_distribution_center_survey_labor_crunch_driving_automation
https://www.logisticsmgmt.com/article/2018_warehouse_distribution_center_survey_labor_crunch_driving_automation
https://www.logisticsmgmt.com/article/there_is_no_way_to_dodge_the_ongoing_labor_shortage_issues
https://www.logisticsmgmt.com/article/there_is_no_way_to_dodge_the_ongoing_labor_shortage_issues


BIBLIOGRAPHY Fabian Lorson

Logistics Manager, 2020. Hermes increases returns capacity with L.A.C.
https://www.logisticsmanager.com/hermes-increases-returns-
capacity-with-l-a-c-conveyors-automation [08.08.2022].

Lorson, F., Fügener, A., Hübner, A., 2022. New team mates in the ware-
house: Human interactions with automated and robotized systems. IISE
Transactions (forthcoming).

Lots of Bots, 2022. We help you find the right robot. https://www.
lotsofbots.com/en/robot-finder// [05.06.2022].

Lughofer, E., Smith, J. E., Tahir, M. A., Caleb-Solly, P., Eitzinger, C.,
Sannen, D., Nuttin, M., 2009. Human–Machine interaction issues in
quality control based on online image classification. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans 39 (5),
960–971.

Maettig, B., Hering, F., Doeltgen, M., 2019. Development of an intuitive,
visual packaging assistant. In: Nunes, I. L. (Ed.), Advances in Human
Factors and Systems Interaction. Vol. 781 of Advances in Intelligent
Systems and Computing. Springer, Cham, Switzerland, pp. 19–25.

Maettig, B., Kretschmer, V., 2019. Smart packaging in intralogistics: An
evaluation study of human-technology interaction in applying new col-
laboration technologies. In: Hawaii International Conference on System
Sciences. HICSS, Grand Wailea, Hawaii, pp. 739–748.

Magazino, 2021. Magazino extends robot fleet at Zalando. https://www.
magazino.eu/magazino-extends-robot-fleet-at-zalando/?lang=
en [25.07.2022].

Marchet, G., Melacini, M., Perotti, S., 2015. Investigating order picking
system adoption: A case-study-based approach. International Journal of
Logistics Research and Applications 18 (1), 82–98.

Marks, M. A., Mathieu, J. E., Zaccaro, S. J., 2001. A temporally based
framework and taxonomy of team processes. Academy of Management
Review 26 (3), 356–376.

xxxi

https://www.logisticsmanager.com/hermes-increases-returns-capacity-with-l-a-c-conveyors-automation
https://www.logisticsmanager.com/hermes-increases-returns-capacity-with-l-a-c-conveyors-automation
https://www.lotsofbots.com/en/robot-finder//
https://www.lotsofbots.com/en/robot-finder//
https://www.magazino.eu/magazino-extends-robot-fleet-at-zalando/?lang=en 
https://www.magazino.eu/magazino-extends-robot-fleet-at-zalando/?lang=en 
https://www.magazino.eu/magazino-extends-robot-fleet-at-zalando/?lang=en 


BIBLIOGRAPHY Fabian Lorson

Mas, A., Moretti, E., 2009. Peers at work. American Economic Review
99 (1), 112–145.

Masood, T., Egger, J., 2019. Augmented reality in support of Industry 4.0—
Implementation challenges and success factors. Robotics and Computer-
Integrated Manufacturing 58, 181–195.

Matusiak, M., De Koster, R., Saarinen, J., 2017. Utilizing individual picker
skills to improve order batching in a warehouse. European Journal of
Operational Research 263 (3), 888–899.

McCutcheon, D. M., Meredith, J. R., 1993. Conducting case study research
in operations management. Journal of Operations Management 11 (3),
239–256.

McKinsey & Company, 2021a. Automation in European grocers’
supply chains has reached its tipping point. https : / / www .
mckinsey.com/industries/retail/our-insights/automation-in-
european - grocers - supply - chains - has - reached - its - tipping -
point [07.08.2022] .

McKinsey & Company, 2021b. Navigating the labor mismatch in US
logistics and supply chains. =https://www.mckinsey.com/business-
functions/operations/our-insights/navigating-the-labor-mismatch-in-us-
logistics-and-supply-chains [16.06.2022].

Meller, R. D., Klote, J. F., 2004. A throughput model for carousel/VLM
pods. IIE Transactions 36 (8), 725–741.

Miles, M. B., Huberman, A. M., Saldaña, J., 2013. Qualitative Data Analysis.
A Methods Sourcebook, 4th Edition. Sage Publications, Thousand Oaks,
CA.

Modern Materials Handling, 2019. Top 20 worldwide materials han-
dling system suppliers in 2019. https://www.mmh.com/article/top_
20_ worldwide_materials_ handling_system _suppliers_in _2019
[08.08.2022].

xxxii

https://www.mckinsey.com/industries/retail/our-insights/automation-in-european-grocers-supply-chains-has-reached-its-tipping-point
https://www.mckinsey.com/industries/retail/our-insights/automation-in-european-grocers-supply-chains-has-reached-its-tipping-point
https://www.mckinsey.com/industries/retail/our-insights/automation-in-european-grocers-supply-chains-has-reached-its-tipping-point
https://www.mckinsey.com/industries/retail/our-insights/automation-in-european-grocers-supply-chains-has-reached-its-tipping-point
=
https://www.mmh.com/article/top_20_worldwide_materials_handling_system_suppliers_in_2019
https://www.mmh.com/article/top_20_worldwide_materials_handling_system_suppliers_in_2019


BIBLIOGRAPHY Fabian Lorson

Mohsen, M. D. H., 2010. A framework for selection of material handling
equipment in manufacturing and logistics facilities. Journal of Manufac-
turing Technology Management 21 (2), 246–268.

Moniz, A., Krings, B.-J., 2016. Robots working with humans or humans
working with robots? Searching for social dimensions in new human-robot
interaction in industry. Societies 6 (3), 1–23.

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Rein-
hart, G., Sauer, O., Schuh, G., Sihn, W., Ueda, K., 2016. Cyber-physical
systems in manufacturing. CIRP Annals 65 (2), 621–641.

Muter, İ., Öncan, T., 2021. Order batching and picker scheduling in ware-
house order picking. IISE Transactions 54 (5), 435–447.

Newman, D. T., Fast, N. J., Harmon, D. J., 2020. When eliminating bias
isn’t fair: Algorithmic reductionism and procedural justice in human re-
source decisions. Organizational Behavior and Human Decision Processes
160, 149–167.

Öhman, M., Hiltunen, M., Virtanen, K., Holmström, J., 2021. Frontlog
scheduling in aircraft line maintenance: From explorative solution design
to theoretical insight into buffer management. Journal of Operations
Management 67 (2), 120–151.

Oliva, R., Watson, N., 2011. Cross-functional alignment in supply chain
planning: A case study of sales and operations planning. Journal of
Operations Management 29 (5), 434–448.

Olivia, R., 2019. Intervention as a research strategy. Journal of Operations
Management 65 (7), 710–724.

Olsen, T. L., Tomlin, B., 2020. Industry 4.0: Opportunities and chal-
lenges for operations management. Manufacturing & Service Operations
Management 22 (1), 113–122.

Otto, A., Battaïa, O., 2017. Reducing physical ergonomic risks at assembly
lines by line balancing and job rotation: A survey. Computers & Industrial
Engineering 111, 467–480.

xxxiii



BIBLIOGRAPHY Fabian Lorson

Papadopoulos, A.-A., Kordonis, I., Dessouky, M., Ioannou, P., 2019. Coor-
dinated freight routing with individual incentives for participation. IEEE
Transactions on Intelligent Transportation Systems 20 (9), 3397–3408.

Parasuraman, R., Manzey, D. H., 2010. Complacency and bias in human
use of automation: an attentional integration. Human Factors 52 (3),
381–410.

Parasuraman, R., Riley, V., 1997. Humans and automation: Use, misuse,
disuse, abuse. Human Factors 39 (2), 230–253.

Parasuraman, R., Sheridan, T. B., Wickens, C. D., 2000. A model for types
and levels of human interaction with automation. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans 30 (3),
286–297.

Parasuraman, R., Sheridan, T. B., Wickens, C. D., 2008. Situation aware-
ness, mental workload, and trust in automation: Viable, empirically
supported cognitive engineering constructs. Journal of Cognitive Engi-
neering and Decision Making 2, 140–160.

Pasparakis, A., de Vries, J., de Koster, M., 2021. In control or under control?
Human-Robot collaboration in warehouse order picking. Available at
SSRN: https://ssrn.com/abstract=3816533.

Patel, P. C., Baldauf, C., Karlsson, S., Oghazi, P., 2021. The impact of free
returns on online purchase behavior: Evidence from an intervention at
an online retailer. Journal of Operations Management 67 (4), 511–555.

Pazour, J.A., Meller, R. D., 2014. A framework and analysis to inform the
selection of piece-level order-fulfillment technologies. Progress in Material
Handling Research.

Pazour, J. A., Meller, R. D., 2011. An analytical model for A-frame system
design. IIE Transactions 43 (10), 739–752.

Perera, H. N., Hurley, J., Fahimnia, B., Reisi, M., 2019. The human factor
in supply chain forecasting: A systematic review. European Journal of
Operational Research 274 (2), 574–600.

xxxiv

https://ssrn.com/abstract=3816533


BIBLIOGRAPHY Fabian Lorson

Petersen, C. G., Siu, C., Heiser, D. R., 2005. Improving order picking
performance utilizing slotting and golden zone storage. International
Journal of Operations & Production Management 25 (10), 997–1012.

Plewan, T., Mättig, B., Kretschmer, V., Rinkenauer, G., 2021. Exploring
the benefits and limitations of augmented reality for palletization. Applied
ergonomics 90, 103250.

Proctor, R. W., van Zandt, T., 2018. Human factors in simple and complex
systems, 3rd Edition. CRC Press, Boca Raton, FL.

Prologis, 2022. Logistics real estate: Highest demand, fastest rent growth in
history. https://www.prologisgermany.de/en/logistics-industry-
research/logistics-real-estate-highest-demand-fastest-rent-
growth-history [05.05.2022].

Qu, S. Q., Dumay, J., 2011. The qualitative research interview. Qualitative
Research in Accounting & Management 8 (3), 238–264.

Randall, W. S., Mello, J. E., 2012. Grounded theory: An inductive method
for supply chain research. International Journal of Physical Distribution
& Logistics Management 42 (8/9), 863–880.

Robert, L. P., Pierce, C., Marquis, L., Kim, S., Alahmad, R., 2020. Designing
fair AI for managing employees in organizations: A review, critique, and
design agenda. Human–Computer Interaction 35 (5-6), 545–575.

Rodrigue, J.-P., 2020. The Geography of Transport Systems, 5th Edition.
Taylor & Francis Group, Milton.

Roels, G., Staats, B. R., 2021. OM Forum—People-centric operations:
Achievements and future research directions. Manufacturing & Service
Operations Management 23 (4), 745–757.

Roodbergen, K. J., Vis, I. F., 2009. A survey of literature on automated
storage and retrieval systems. European Journal of Operational Research
194 (2), 343–362.

Roser, C., 2021. Amazon Kiva storage strategies. https : / / www .
allaboutlean.com/amazon-kiva-storage-strategies/ [09.02.2022].

xxxv

https://www.prologisgermany.de/en/logistics-industry-research/logistics-real-estate-highest-demand-fastest-rent-growth-history
https://www.prologisgermany.de/en/logistics-industry-research/logistics-real-estate-highest-demand-fastest-rent-growth-history
https://www.prologisgermany.de/en/logistics-industry-research/logistics-real-estate-highest-demand-fastest-rent-growth-history
https://www.allaboutlean.com/amazon-kiva-storage-strategies/
https://www.allaboutlean.com/amazon-kiva-storage-strategies/


BIBLIOGRAPHY Fabian Lorson

Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G. J., Mantel,
R. J., Zijm, W., 2000. Warehouse design and control: Framework and
literature review. European Journal of Operational Research 122 (3),
515–533.

Roy, D., Nigam, S., De Koster, R., Adan, I., Resing, J., 2019. Robot-storage
zone assignment strategies in mobile fulfillment systems. Transportation
Research Part E: Logistics and Transportation Review 122, 119–142.

Roy, S., Edan, Y., 2018. Investigating joint-action in short-cycle repetitive
handover tasks: The role of giver versus receiver and its implications for
human-robot collaborative system design. International Journal of Social
Robotics 12, 973–988.

Russell, M. L., Meller, R. D., 2003. Cost and throughput modeling of
manual and automated order fulfillment systems. IIE Transactions 35 (7),
589–603.

Salvendy, G. (Ed.), 2012. Handbook of Human Factors and Ergonomics,
4th Edition. Wiley, Hoboken, NJ.

Sanders, M. S., McCormick, E. J., 1993. Human Factors In Engineering
and Design, 7th Edition. McGraw-Hill, New York, NY.

Sanders, T., Kaplan, A., Koch, R., Schwartz, M., Hancock, P. A., 2019.
The relationship between trust and use choice in human-robot interaction.
Human Factors 61 (4), 614–626.

Sauppé, A., Mutlu, B., 2015. The social impact of a robot co-worker in
industrial settings. Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, 3613–3622.

Schäfer, F., Lorson, F., Huebner, A., 2022. Finding the right one: Decision
model to select cost-efficient order picking solutions. Working paper TU
Munich.

Schiffer, M., Boysen, N., Klein, P. S., Laporte, G., Pavone, M., 2022.
Optimal picking policies in e-commerce warehouses. Management Science
(forthcoming).

xxxvi



BIBLIOGRAPHY Fabian Lorson

Schmidtler, J., Knott, V., Hölzel, C., Bengler, K., 2015. Human centered
assistance applications for the working environment of the future. Occu-
pational Ergonomics 12 (3), 83–95.

Schultz, K. L., McClain, J. O., Thomas, L., 2003. Overcoming the dark side
of worker flexibility. Journal of Operations Management 21 (1), 81–92.

Schultz, K. L., Schoenherr, T., Nembhard, D., 2010. An example and a
proposal concerning the correlation of worker processing times in parallel
tasks. Management Science 56 (1), 176–191.

Schulz, R., Kratzer, P., Toussaint, M., 2018. Preferred interaction styles
for human-robot collaboration vary over tasks with different action types.
Frontiers in Neurorobotics 12 (36).

See, J. E., Drury, C. G., Speed, A., Williams, A., Khalandi, N., 2017. The
role of visual inspection in the 21st Century. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting 61 (1), 262–266.

Sgarbossa, F., Grosse, E. H., Neumann, W. P., Battini, D., Glock, C. H.,
2020. Human factors in production and logistics systems of the future.
Annual Reviews in Control 49, 295–305.

Shen, C., Wu, Y., Zhang, D., 2010. A selection method of manual and
semi-automated order picking systems based on filling curve and time
model. 2010 IEEE International Conference on Automation and Logistics,
169–176.

Smith, A. D., Plowman, D. A., Duchon, D., Quinn, A. M., 2009. A qualita-
tive study of high-reputation plant managers: Political skill and successful
outcomes. Journal of Operations Management 27 (6), 428–443.

Snyder, H., 2019. Literature review as a research methodology: An overview
and guidelines. Journal of Business Research 104, 333–339.

Solow, D., Ning, J., Zhu, J., Cai, Y., 2020. Improved heuristics for finding
balanced teams. IISE Transactions 52 (12), 1312–1323.

xxxvii



BIBLIOGRAPHY Fabian Lorson

Song, H., Tucker, A. L., Murrell, K. L., Vinson, D. R., 2018. Closing the
productivity gap: Improving worker productivity through public rela-
tive performance feedback and validation of best practices. Management
Science 64 (6), 2628–2649.

Staats, B. R., Gino, F., 2012. Specialization and variety in repetitive tasks:
Evidence from a Japanese bank. Management Science 58 (6), 1141–1159.

Statista, 2020. Global warehouse automation market size. https://www.
statista.com/statistics/1094202/global-warehouse-automation-
market-size/ [03.02.2022].

Statista, 2022. Global warehouse automation market size. https://www.
statista.com/statistics/1094202/global-warehouse-automation-
market-size/ [09.08.2022].

Staudt, F. H., Alpan, G., Di Mascolo, M., Rodriguez, C. M. T., 2015.
Warehouse performance measurement: A literature review. International
Journal of Production Research 53 (18), 5524–5544.

Stein, V., Scholz, T. M., 2019. Manufacturing revolution boosts people issues:
The evolutionary need for ’Human–Automation Resource Management’
in smart factories. European Management Review 17 (2), 391–406.

Stoltz, M.-H., Giannikas, V., McFarlane, D., Strachan, J., Um, J., Srini-
vasan, R., 2017. Augmented reality in warehouse operations: Opportuni-
ties and barriers. IFAC-PapersOnLine 50 (1), 12979–12984.

Sun, J., Zhang, D. J., Hu, H., van Mieghem, J. A., 2021. Predicting
human discretion to adjust algorithmic prescription: A large-scale field
experiment in warehouse operations. Management Science 68 (2), 846–865.

Sætre, A. S., Van den Ven, A., 2021. Generating theory by abduction.
Academy of Management Review 46 (4), 684—-701.

Tan, T. F., Netessine, S., 2014. When does the devil make work? An empir-
ical study of the impact of workload on worker productivity. Management
Science 60 (6), 1574–1593.

xxxviii

https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/
https://www.statista.com/statistics/1094202/global-warehouse-automation-market-size/


BIBLIOGRAPHY Fabian Lorson

Tan, T. F., Netessine, S., 2019. When you work with a superman, will you
also fly? An empirical study of the impact of coworkers on performance.
Management Science 65 (8), 3495–3517.

Tappia, E., Roy, D., Melacini, M., De Koster, R., 2019. Integrated storage-
order picking systems: Technology, performance models, and design
insights. European Journal of Operational Research 274 (3), 947–965.

TechCrunch, 2021. Attack of the $200M robotic raises. https :
//techcrunch.com/2021/09/23/attack- of- the- 200m- robotic-
raises/ [09.08.2022].

Teigen, K. H., 1994. Yerkes-Dodson: A law for all seasons. Theory &
Psychology 4 (4), 525–547.

TGW, 2016. Latest TGW technologies for Zalando. https://www.
tgw - group . com / us / news / press - releases / 2016 / latest - tgw -
technologies-for-zalando [25.07.2022].

The Logistics iQ, 2020. Warehouse automation market. https://www.
thelogisticsiq . com / research / warehouse - automation - market/
[24.02.2022].

The Logistics iQ, 2022. Warehouse Automation Market. https://www.
thelogisticsiq . com / research / warehouse - automation - market/
[03.08.2022].

Tompkins, J. A., White, J., Bozer, Y., Tanchoco, J., 2010. Facilities Plan-
ning. John Wiley & Sons, Hoboken, NJ.

Trautrims, A., Grant, D. B., Cunliffe, A. L., Wong, C., 2012. Using the
“documentary method” to analyse qualitative data in logistics research.
International Journal of Physical Distribution & Logistics Management
42 (8/9), 828–842.

Trebilcock, B., 2020. Robotic software takes control. https://www.mmh.
com/article/robotic_software_takes_control [09.08.2022].

xxxix

https://techcrunch.com/2021/09/23/attack-of-the-200m-robotic-raises/
https://techcrunch.com/2021/09/23/attack-of-the-200m-robotic-raises/
https://techcrunch.com/2021/09/23/attack-of-the-200m-robotic-raises/
https://www.tgw-group.com/us/news/press-releases/2016/latest-tgw-technologies-for-zalando 
https://www.tgw-group.com/us/news/press-releases/2016/latest-tgw-technologies-for-zalando 
https://www.tgw-group.com/us/news/press-releases/2016/latest-tgw-technologies-for-zalando 
https://www.thelogisticsiq.com/research/warehouse-automation-market/
https://www.thelogisticsiq.com/research/warehouse-automation-market/
https://www.thelogisticsiq.com/research/warehouse-automation-market/
https://www.thelogisticsiq.com/research/warehouse-automation-market/
https://www.mmh.com/article/robotic_software_takes_control
https://www.mmh.com/article/robotic_software_takes_control


BIBLIOGRAPHY Fabian Lorson

Udenio, M., Vatamidou, E., Fransoo, J. C., Dellaert, N., 2017. Behavioral
causes of the bullwhip effect: An analysis using linear control theory.
IISE Transactions 49 (10), 980–1000.

Urda, J., Loch, C. H., 2013. Social preferences and emotions as regulators
of behavior in processes. Journal of Operations Management 31 (1-2),
6–23.

Usher, J., Kamal, A., Kim, S., 2001. A decision support system for economic
justification of material handling investments. Computers & Industrial
Engineering 39 (1-2), 35–47.

Van Aken, J., Chandrasekaran, A., Halman, J., 2016. Conducting and
publishing design science research. Journal of Operations Management
47-48 (1), 1–8.

Van den Ven, A., 2007. Engaged scholarship: A guide for organizational and
social research. Press on demand. Oxford University, Oxford, England.

Van der Gaast, J. P., Weidinger, F., 2022. A deep learning approach for the
selection of an order picking system. European Journal of Operational
Research 302 (2), 530–543.

Van Gils, T., Caris, Ramaekers, K., Braekers, K., De Koster, R. B., 2019.
Designing efficient order picking systems: The effect of real-life features
on the relationship among planning problems. Transportation Research
Part E: Logistics and Transportation Review 125, 47–73.

Van Gils, T., Ramaekers, K., Caris, A., De Koster, R., 2018. Designing
efficient order picking systems by combining planning problems: State-
of-the-art classification and review. European Journal of Operational
Research 267 (1), 1–15.

Van Lent, M., Souverijn, M., 2020. Goal setting and raising the bar: A
field experiment. Journal of Behavioral and Experimental Economics 87,
101570.

xl



BIBLIOGRAPHY Fabian Lorson

Van Mieghem, J. A., 2013. OM Forum—Three Rs of Operations Man-
agement: Research, relevance, and rewards. Manufacturing & Service
Operations Management 15 (1), 2–5.

Vanheusden, S., van Gils, T., Ramaekers, K., Cornelissens, T., Caris, 2022.
Practical factors in order picking planning: State-of-the-art classification
and review. International Journal of Production Research, 1–25.

Vischer, J. C., 2007. The effects of the physical environment on job per-
formance: Towards a theoretical model of workspace stress. Stress and
Health 23 (3), 175–184.

Wang, J., Zhou, Y.-P., 2018. Impact of queue configuration on service time:
Evidence from a supermarket. Management Science 64 (7), 3055–3075.

Wang, Z., Sheu, J.-B., Teo, C.-P., Xue, G., 2021. Robot scheduling for
mobile–rack warehouses: Human–Robot coordinated order picking sys-
tems. Production and Operations Management 31 (1), 95–116.

Webster, J., Watson, R. T., 2002. Analyzing the past to prepare for the
future: Writing a literature review. MIS Quarterly 26 (2), xiii–xxiii.

Weidinger, F., Boysen, N., 2018a. Scattered storage: How to distribute
stock keeping units all around a mixed-shelves warehouse. Transportation
Science 52 (6), 1412–1427.

Weidinger, F., Boysen, N., 2018b. Storage assignment with rack-moving
mobile robots in KIVA warehouses. Transportation Science 52 (6), 1479–
1495.

WEKA, 2020. Materialfluss Martkübersichten. https : / / www .
materialfluss . de / materialfluss - marktuebersichten . htm
[01.08.2022].

Wu, Z., Choi, T. Y., 2005. Supplier-supplier relationships in the buyer-
supplier triad: Building theories from eight case studies. Journal of
Operations Management 24 (1), 27–52.

Wu, Z., Pullman, M. E., 2015. Cultural embeddedness in supply networks.
Journal of Operations Management 37 (1), 45–58.

xli

https://www.materialfluss.de/materialfluss-marktuebersichten.htm
https://www.materialfluss.de/materialfluss-marktuebersichten.htm


BIBLIOGRAPHY Fabian Lorson

Xie, L., Thieme, N., Krenzler, R., Li, H., 2021. Introducing split orders
and optimizing operational policies in robotic mobile fulfillment systems.
European Journal of Operational Research 288 (1), 80–97.

Yang, H., Kumara, S., Bukkapatnam, S. T., Tsung, F., 2019. The internet
of things for smart manufacturing: A review. IISE Transactions 51 (11),
1190–1216.

Yoon, C. S., Sharp, G. P., 1996. A structured procedure for analysis and
design of order pick systems. IIE Transactions 28 (5), 379–389.

Yuan, R., Graves, S. C., Cezik, T., 2019. Velocity-based storage assign-
ment in semi-automated storage systems. Production and Operations
Management 28 (2), 354–373.

Zaerpour, N., Yu, Y., de Koster, R. B., 2017. Optimal two-class-based
storage in a live-cube compact storage system. IISE Transactions 49 (7),
653–668.

Zhang, P., 2008. Motivational affordances: Reasons for ICT design and use.
Communications of the ACM 51 (11), 145–147.

xlii


	Perspectives on the Warehouse of the Future
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	The role of warehousing in modern supply chains
	Automation, robotics, and human-machine interactions

	Contributions
	New team mates in the warehouse: Human interactions with automated and robotized warehousing systems
	It's in your hands: Elevating performance with goals at the cost of social discord in an intervention-based human-machine interaction study
	Finding the right one: Decision support for selecting cost-efficient order picking solutions

	New team mates in the warehouse: Human interactions with automated and robotized warehousing systems
	Introduction
	Research methodology
	Systematic framework to investigate human-machine interactions in warehouses
	Behavioral issues in human-machine interactions
	Receiving and inspection: interactions and issues
	Storing: interactions and issues
	Order picking: interactions and issues
	(Consolidation) & packing: interactions and issues

	Theoretical foundations and unifying themes
	Conclusion
	Managerial and theoretical implications
	Limitations and outlook


	It's in your hands: Elevating performance with goal-setting at the cost of social discord in an intervention-based human-machine interaction study
	Introduction
	Research methodology
	Research design and empirical setting
	Context (C) and research problem
	Designing and implementing the intervention (I)
	Triggering goal-setting mechanisms (M)
	Expecting improved outcomes (O)

	Outcomes of the intervention
	Impact on system performance
	Impact on human factors

	Discussion, implications and way forward
	Implications for theory
	Implications for practice
	Limitations and future research

	Concluding remarks

	Finding the right one: Decision support for selecting cost-efficient order picking solutions
	Introduction and motivation
	Conceptual background and related literature
	Description of the novel problem and setting
	Related literature on OPS selection
	Summary and research contribution

	Development of the decision model
	Numerical experiments and case study
	Case study
	Run time evaluation based on case study data
	Further numerical experiments

	Conclusion

	Conclusion and outlook
	Summary of findings and contributions
	Future areas of research

	Bibliography



