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Phenomenology of Baryogenesis and Neutrino Physics:
From Effective Field Theory to Simplified Models

Phänomenologie der Baryogenese und Neutrinophysik:
Effektive Feldtheorien und vereinfachte Modelle

Karl Kåre Fridell

Abstract

This work focuses on lepton- and baryon-number-violating interactions in simplified models
and effective field theory. Using both high- and low-scale observables, lepton number violation
is constrained in dimension-7 operators and their tree-level UV-completions. Moreover, novel
ways are proposed to disentangle the nature of neutrinos using rare kaon decays and coherent
elastic neutrino-nucleus scattering. Finally, baryogenesis is studied in a model that induces
baryon-number-violating neutron-antineutron oscillation.

Kurzfassung

Diese Arbeit untersucht Lepton- und Baryonzahlverletzung in vereinfachten Modellen und
effektiven Feldtheorien. Es werden sowohl Observablen an großen sowie niedrigen Skalen
genutzt, um Leptonzahlverletzung in Operatoren mit Massendimension 7 und deren UV-
Vervollständigung zu beschränken. Des Weiteren werden neue Tests der Leptonzahlverletzung
in Kaonzerfällen und Neutrino-Nukleus-Streuung präsentiert. Außerdem wird Baryogenese
in einem Model untersucht in dem die Baryonzahl durch Neutron-Antineutron-Oszillationen
verletzt wird.
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1. Introduction

Matter and antimatter do not exist in equal quantities in the Universe. This fact is in conflict
with leading theories of quantum field theory and cosmology, which predict that the inequality
between matter and antimatter should be at least one billion times smaller than what we
observe. Every structure we see, such as the Earth, the Sun, the Milky Way, etc., is made out
of matter. Upon contact with antimatter, the two would annihilate and result in an output of
energy in the form of radiation. We owe our very existence to the lack of antimatter in the
Universe, but there has so far been no experimentally verified theory that explains its absence.
Why is there more matter than antimatter?

To answer this question we can try to construct quantum field theory models that lead
to mechanisms by which an asymmetry can arise dynamically. In doing so we may then
predict the outcomes of different experiments, and if we are right we could have discovered
something deep about nature. One problem is that the energy scales involved in the very
early Universe, when the asymmetry between matter and antimatter is expected to have been
generated, are up to a billion times higher than what can be probed in terrestrial experiments.
To test such theories directly is therefore currently impossible, and we must resort to more
indirect methods.

The role of phenomenology in particle physics is to bridge the gap between theory and
experiment. A phenomenological study of the matter-antimatter asymmetry therefore asks
how the different models can be experimentally identified, differentiated, or falsified. Different
indirect signatures of models that could lead to an asymmetry generation include the violation
of certain charges that are unique to matter particles, namely lepton number L or baryon
number B. Experimentally, such signatures can be sought for in processes that involve
low energy scales, substituting the high energy for large volumes and long exposure times.
Examples of such experimental observables include e.g. neutrinoless double beta-decay, rare
kaon decays, or coherent elastic neutrino-nucleus scattering for L-violation, and proton decay
or neutron-antineutron oscillation for B-violation.

Lepton number violation can be studied model-independently in effective field theories, in
which a higher quantum-field-theory model is assumed to lead to effective processes at lower
energy scales. One advantage of this method is its general applicability, we can easily increase
or decrease the complexity of the interactions such that it suits our analysis, without having
to worry about the details of the underlying model. For a given set of effective-field-theory
interactions, we can then derive a complete list of quantum-field-theory models that can
generate them. In this way, connecting an experimental observable to effective-field-theory
interactions can lead to the systematic analysis of a large set of high-scale models.

Our main line of investigation in this thesis is the question of how lepton- and baryon-
number violation can be constrained using current and near-future observables. We ask how

1



1. Introduction

the Standard Model can be extended in minimal ways that lead to distinct signals in future
experiments, but that do not contradict existing experimental constraints. The study of lepton
number violation is in particular interesting to us due to its connection to both the baryon
asymmetry and neutrino masses.

In this thesis we discuss a wide range of different high- and low-scale lepton-number-
violating observables. We present a new study of dimension-7 lepton number violation at
the LHC, leading to the currently most stringent limits on the muon-flavour component
of the corresponding Wilson coefficients. Furthermore, we describe a novel method of
probing lepton number violation based on the distribution of final state particles in neutrino
experiments. In two concrete examples, that of rare kaon decays and radiative coherent elastic
neutrino-nucleus scattering, we show how the energy spectrum of final state particles can
hint at the presence of lepton number violation, and thereby also reveal the Dirac/Majorana
nature of neutrinos.

Lepton number violation is often studied in either effective field theories or in concrete mod-
els. In this thesis we combine these analyses by systematically deconstructing lepton-number-
violating operators up to dimension-7. Using the full range of tree-level UV-completions, we
show all simplified models that lead to dimension-7 lepton number violation. We demonstrate
how the neutrino mass generated by such models differs from the conventional effective-field-
theory-based estimation. A previously undefined dependence on the hierarchy between the
different heavy degrees of freedom in a higher-dimensional operator leads to more accurate
neutrino masses that can lie several orders of magnitude below earlier estimates. This new
analysis opens up large regions of parameter space that were previously considered excluded.

As a compliment to our lepton-number based analysis we finally also consider baryon
number violation. We derive a new set of Boltzmann equations that describe the evolution of
baryon asymmetry in a generic simplified model connected to neutron-antineutron oscillation.
By systematically analysing different washout channels we show how successful baryogenesis
can be realised in models that can lead to observable neutron-antineutron oscillation as well
as future LHC signals. This new result goes beyond the effective-field-theory based result
that a neutron-antineutron oscillation signal is incompatible with high-scale baryogenesis due
to severe washout. Instead, we find that an observation of neutron-antineutron oscillation
could hint at new physics around 1014 GeV that can lead to the successful generation of a
baryon asymmetry.

This thesis covers a wide range of different aspects regarding the phenomenology of a
matter-antimatter asymmetry. It is based on original work, Refs. [1–9], presented in existing
publications

[1] F. F. Deppisch, K. Fridell and J. Harz, Constraining lepton number violating interactions in
rare kaon decays, JHEP 12 (2020) 186, [2009.04494].

[2] K. Fridell, J. Harz and C. Hati, Probing baryogenesis with neutron-antineutron oscillations,
JHEP 11 (2021) 185, [2105.06487].

[3] P. D. Bolton, F. F. Deppisch, K. Fridell, J. Harz, C. Hati and S. Kulkarni, Probing active-
sterile neutrino transition magnetic moments with photon emission from CEνNS, Phys. Rev. D
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106 (2022) 035036 [2110.02233].

material to be published

[4] K. Fridell, L. Graf, J. Harz and C. Hati, in preparation.

and conference proceedings

[5] F. F. Deppisch, K. Fridell and J. Harz, Implications of Rare Kaon Decays on Lepton Number
Violating Interactions, PoS ICHEP2020 (2021) 130, [2012.14825].

[6] K. Fridell, J. Harz and C. Hati, Neutron-antineutron oscillations as a probe of baryogenesis, J.
Phys. Conf. Ser. 2156 (2021) 012015.

[7] P. D. Bolton, F. F. Deppisch, K. Fridell, J. Harz, C. Hati and S. Kulkarni, Transition
neutrino magnetic moments in CEνNS, J. Phys. Conf. Ser. 2156 (2021) 012218.

[8] K. Fridell, J. Harz and C. Hati, Probing Baryogenesis using Neutron-Anti-Neutron Oscillation,
PoS ICHEP2020 (2021) 243.

[9] C. Hati, P. Bolton, F. F. Deppisch, K. Fridell, J. Harz and S. Kulkarni, Distinguishing Dirac
vs Majorana Neutrinos at CEνNS experiments, PoS EPS-HEP2021 (2022) 225.

In Ch. 2 we cover the background relevant for subsequent chapters by first introducing
the Standard model and the Λ Cold dark matter model, after which we describe different
directions in which New Physics beyond these well-established theories may lead. In Ch. 3
we introduce the concept of baryogenesis, the dynamical generation of a matter-antimatter
asymmetry, and describe different models in which it can be accommodated. In Ch. 4 we
set up a formalism to describe lepton number violation using effective field theories, and
present new limits coming from collider searches that are subject for publication in Ref. [4].
In Ch. 5, which also stems from the work to appear in Ref. [4], we systematically analyse
all models coming from the second-to-most simple realisations of lepton-number-violating
effective-field-theory interactions, and for the first time show how a hierarchy in the internal
degrees of freedom of such models can affect the phenomenology of lepton number violation
and neutrino masses. In Ch. 6 we show how the details of the rare kaon decay dynamics can
reveal the presence of lepton-number-violating interactions. This work led to the publication
in Ref. [1]. In Ch. 7 we propose a novel search method for potentially detecting the presence
of lepton number violation in coherent elastic neutrino-nucleus scattering, which led to
the publication in Ref. [3]. In Ch. 8 we derive new equations that describe the dynamical
generation of a matter-antimatter asymmetry in a model that also induces B-violating neutron-
antineutron oscillation. These results were published in Ref. [2]. Finally, we conclude in
Ch. 9.
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2. The Standard model and beyond

In this introductory chapter, we cover background topics relevant for the subsequent chapters.
In Sec. 2.1 we introduce the Standard model, with a discussion of the relevant particle content
in Secs. 2.1.1 to 2.1.4, followed up with anomaly cancellation in Sec. 2.1.5, sphalerons in
Sec. 2.1.6, and finally electroweak symmetry breaking in Sec. 2.1.7. In Sec. 2.2 we review the
relevant modern cosmology, with a thermal timeline of our Universe given in Sec. 2.2.2. Lastly,
in Sec. 2.3 we discuss theories beyond the current framework, by first motivating extensions
to the Standard model in Sec. 2.3.1, after which we discuss the relevant phenomenology in
Secs. 2.3.2 and 2.3.3.

2.1. The Standard model

The Standard model (SM) [10–12] is a model based on quantum field theory that has a very
firm phenomenological footing. It predicts to a great accuracy different properties of particles
and particle interactions such as e.g. dipole moments [13] and branching ratios (BRs) of
decays [14]. After the observation of the Higgs boson [15, 16], all fundamental particles of
the SM had been discovered, and not one particle more. Whether the SM is beautiful and
elegant [17] or hässlich1 [18] is an open question, but irrespective of that, it has withstood a
thorough experimental scrutiny and therefore remains an accurate description of high energy
physics to date.

2.1.1. Field content of the Standard model

In the SM, three of the four fundamental forces of nature are described as arising from
interactions via gauge bosons. The electromagnetic force is mediated via the electromagnetic
gauge field Aµ corresponding to the symmetry group U(1)em. The weak nuclear force
is mediated via W±µ and Zµ fields. At energies above the scale of electroweak symmetry
breaking (EWSB), corresponding to the vacuum expectation value (vev) of the Higgs boson2

v = 174 GeV, these two forces are united into a single electroweak force with the gauge fields
Bµ and Waµ, for a ∈ {1, 2, 3}, which is described by the symmetry group SU(2)L ×U(1)Y.
Here L stands for left, stressing that only the left-handed chiral fermions of the SM have an
SU(2)L structure, an Y stands for hypercharge. When the electroweak symmetry is broken,
W3µ and Bµ mix to create the Z boson and photon fields, and SU(2)L ×U(1)Y is then no

1German for ugly or hideous.
2Note that the Higgs vev is often taken as v = 246 GeV = 174×

√
2 GeV. This is a matter of convention, and we

here choose v = 174 GeV to best match with the most relevant literature.
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2. The Standard model and beyond

longer a valid symmetry. Instead, there is a new symmetry described by U(1)em, where
em stands for electromagnetic. The strong nuclear force is mediated via the gluon field Gaµ,
for a ∈ {1, 2, . . . , 8}, and is related to the symmetry group SU(3)c, where c stands for
colour, the charge corresponding to the strong force. A quanta of the electromagnetic field
Aµ is called a photon and is represented by γ, while a quanta of the gluon field Gaµ is
called a gluon, and is represented by g. The fields Gaµ, Waµ and Bµ are all vector boson
fields related to gauge symmetries, where the total gauge symmetry group of the SM is
GSM = SU(3)c × SU(2)L ×U(1)Y. Of the fundamental forces, only gravity is not described
by the SM.

All fermion fields in the SM are chiral, implying that there is a distinction between fields
that transform as the left- or right-handed representations of the Poincaré group (such fields
are then respectively called left- or right-handed). Furthermore, they all have three generations
or families, and to each fermion there exists a corresponding anti-fermion with the opposite
charges under the GSM symmetry group, as well as opposite baryon number B and lepton
number L. There are two types of SM fermions: leptons and quarks, with one major difference
being that leptons are not charged under the SU(3)c symmetry while quarks are. Leptons
have a non-zero lepton number L, and they can be classified into charged leptons (e, µ, τ)
and neutrinos (νe, νµ, ντ). Quarks have a non-zero baryon number B and can be classified
into up-type quarks (u, c, t) and down-type quarks (d, s, b). Left-handed fermions combine to
form SU(2)L doublets in the following way

L =

(
νL

eL

)
, Q =

(
uL

dL

)
. (2.1)

For all SM fermions except for the neutrinos there also exist right-handed analogue fields. In
Tab. 2.1, the different fermion fields of the SM are summarised, including their representations
under the relevant subgroups of the SM gauge group as well as their baryon and lepton
numbers.

The shorthand notation we use for describing the representation in which a particle resides
goes as follows: a field ψ is written as belonging to a set of digits ψ ∈ (X, Y, Z), where X, Y
and Z describe the fields representation under SU(3)c, SU(2)L and U(1)Y respectively, unless
otherwise stated. For example, the quark doublet Q is described as Q ∈ (3, 2, 1

6 ) (c.f. Tab. 2.1).
If a parenthesis is written after the representation, it corresponds (unless otherwise stated) to
the baryon number B multiplied by 3, such that Q ∈ (3, 2, 1

6 )(1). For more details regarding
the notations used in this thesis, see Appendix A.

Finally, the only scalar field of the SM is the Higgs boson. Above the scale of EWSB, the
Higgs field is a complex scalar field ϕ that is a doublet under SU(2)L. Below the EWSB scale,
the Higgs field ⟨ϕ⟩ has settled into the minimum of its potential, and the neutral component
acquires a vacuum expectation value (vev) v, with a small perturbation h denoting the real
physical Higgs in the unitarity gauge, such that

ϕ =

(
ϕ+

ϕ0

)
, ⟨ϕ⟩ =

(
0

v + h

)
. (2.2)

The boson fields of the SM are summarised in Tab. 2.2.
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2. The Standard model and beyond

SU(3)c SU(2)L U(1)Y B L

Q 3 2 1/6 1/3 0
L 1 2 -1/2 0 1
u 3 1 2/3 1/3 0
d 3 1 -1/3 1/3 0
e 1 1 -1 0 1

Table 2.1.: Representations of the SM fermion fields under the SM gauge group GSM =

SU(3)c × SU(2)L ×U(1)Y, as well as their baryon- and lepton numbers.

SU(3)c SU(2)L U(1)Y B L

Gaµ 8 1 0 0 0
Waµ 1 3 0 0 0
Bµ 1 1 0 0 0
ϕ 1 2 1/2 0 0

Table 2.2.: Representations of the SM boson fields under the SM gauge group GSM = SU(3)c×
SU(2)L ×U(1)Y, as well as their baryon- and lepton numbers.

2.1.2. The Standard model Lagrangian

The Standard model Lagrangian is given by [17]

LSM = −1
4

BµνBµν − 1
4

WaµνWµν
a −

1
4

GaµνGµν
a

+ iQ̄i /DQi + iūRi /DuRi + id̄Ri /DdRi + iL̄i /DLi + iēRi /DeRi

+
(
−yℓij L̄

a
i ϕaeRj − yd

ijQ̄
a
i ϕadRj − yu

ijQ̄
a
i ϕ̃auRj + h.c.

)
+
(

Dµϕ
)†

(Dµϕ)− µ2ϕ†ϕ− λ(ϕ†ϕ)2 .

(2.3)

Here several things need clarification. To begin with, the first row contains the field strengths

Bµν = ∂µBν − ∂νBµ,

Waµν = ∂µWaν − ∂νWaµ − gϵabcWbµWcν ,

Gaµν = ∂µGaν − ∂νGaµ − gs fabcGbµGcν ,

(2.4)

where ϵabc is the Levi-Civita symbol, which is the structure constant for SU(2), and similarly
fabc is the structure constant for SU(3), such that

[la, lb] = iϵabclc , [ta, tb] = i fabctc , (2.5)

where li and ti are the generators of SU(2) and SU(3) respectively, which in the fundamental
representation are given by 1

2 times the Pauli matrices σi for SU(2) and 1
2 times the Gell-Mann
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2. The Standard model and beyond

matrices λi for SU(3). Furthermore, g is the coupling constant for the weak interaction, and
gs is the coupling constant for the strong interaction.

The second row of Eq. (2.3) contains terms called kinetic terms for the quarks and leptons3.
Covariant derivatives Dµ include terms coming from the three gauge interactions,

Dµ ≡ ∂µ + ig′BµY + igWaµla + igsGaµta . (2.6)

Here g′ is a coupling constant corresponding to the hypercharge symmetry group4 U(1)Y,
and Y is the hypercharge of the field that the covariant derivative acts on. Furthermore, la

and ta are the generators of the fundamental representation for SU(2)L doublets and SU(3)c

triplets, and as the structure constants for SU(2)L adjoints (triplets) and SU(3)c adjoints
(octets), respectively. For covariant derivatives acting on SU(2)L or SU(3)c singlet fields, la

or ta should correspondingly be taken as to be zero (trivial representation). For example, a
covariant derivative acting on a quark doublet gives

DµQi =

(
∂µ +

i
6

g′Bµ +
i
2

gWµ
a σa +

i
2

gsGµ
a λa

)
Qi . (2.7)

Next, yℓij, yd
ij, and yu

ij are the charged lepton, down-type quark and up-type quark Yukawa
coupling constants, respectively. Terms involving these couplings describe interactions
between the fermions with the Higgs boson, such that e.g.

−yℓij L̄
a
i ϕaeRj = −yℓij

(
ν̄a

Liϕ
+eRj + ēa

Liϕ
0eRj

)
. (2.8)

After EWSB, when the Higgs acquires a vev, ϕ should be replaced by ⟨ϕ⟩, such that the
Yukawa terms lead to mass terms for the respective fermions5, as well as interactions between
the fermions and the physical Higgs field h.

The last row in Eq. (2.3) describes the Higgs self-interaction and gauge interactions, where
ϕ with a tilde is given by ϕ̃a = ϵabϕ∗b. A covariant derivative acting on the Higgs field is
given by

Dµϕ =

(
∂µ +

i
2

gWaµσa +
i
2

g′Bµ

)
ϕ , (2.9)

and when the Higgs gets its vev, we have

Dµ⟨ϕ⟩ = (v + h)
( i

2 gWµ
1 − 1

2 gWµ
2

∂µ − i
2 gWµ

3 + i
2 g′Bµ

)
, (2.10)

leading to

(Dµ⟨ϕ⟩)† Dµ⟨ϕ⟩ = (v + h)†(v + h)
(

1
4

g2W2
2 +

1
4

g2W2
1 + ∂2 +

g2

4
W2

3 +
g′2

4
B2 − gg′

2
W3µBµ

)
.

(2.11)
3The first term in the last row of Eq. (2.3) is the kinetic term for the Higgs boson.
4The coupling constants g and g′ mix to form the electromagnetic coupling constant e in EWSB. For details see

e.g. Refs. [17, 19–21].
5Note that, in the SM, neutrinos do not acquire a mass term in this way. However, by a small extension to the

SM, a Yukawa term for neutrinos could be introduced along with a new field νR ∈ (1, 1, 0), see Sec. 2.3.
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2. The Standard model and beyond

Now identifying

W±µ =
1√
2
(W1 ± iW2)µ , Zµ = cos θWW3µ − sin θW Bµ, Aµ = sin θWW3µ + cos θW Bµ ,

(2.12)
where

tan θW ≡
g′

g
(2.13)

for the Weinberg angle θW
6, we find the masses of the different bosons to be

mW± =
1
2

g2v2, mZ =
1
2
(

g2 + g′2
)

v2, mA = 0 . (2.14)

In this procedure, the symmetry group of the SM has broken,

SU(3)c × SU(2)L ×U(1)Y → SU(3)c ×U(1)em . (2.15)

The gauge boson Aµ (photon) remains massless and corresponds to the unbroken electromag-
netic symmetry.

Lastly, by writing

v2 = − µ2

2λ
, (2.16)

we can rewrite the last two terms of the last row in Eq. (2.3), up to a constant, as

−µ2(ϕ†ϕ)− λ(ϕ†ϕ)2 → −λ
(

ϕ†ϕ− v2
)2

. (2.17)

After EWSB, when the Higgs field acquires a vev and ϕ is replaced by ⟨ϕ⟩, the above term
describes a quartic coupling of the physical Higgs h.

2.1.3. Flavour in the Standard model

All fermions of the SM come in three generations or families, as indicated by the indices
i ∈ {1, 2, 3} and j ∈ {1, 2, 3} in Eq. (2.3). After EWSB, the quark Yukawa terms of the SM
Lagrangian give masses to the quarks,

LSM ⊃ −yd
ijQ̄

a
i ϕadRj − yu

ijQ̄
a
i ϕ̃aūRj + h.c.→ −md

ijd̄LidRj −mu
ijūLiuRj + h.c. , (2.18)

where
mu

ij = yu
ijv, md

ij = yd
ijv . (2.19)

We can diagonalise both mass matrices mu
ij and md

ij,

mu → m̂u = VuLmuV†
uR, md → m̂d = VdLmdV†

dR , (2.20)

6The value of the Weinberg angle is usually given in the form sin2 θW = 1− (mW /mZ)
2 ≈ 0.22 [14].
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2. The Standard model and beyond

such that the mass eigenstates correspond to flavour eigenstates for the quarks. In doing this
we are redefining the quark fields as

uLi → (VuL)ijuLj, dLi → (VdL)ijdLj

uRi → (VuR)ijuRj, dRi → (VdR)ijdRj .
(2.21)

Up-type quarks have the families up (u), charm (c), and top (t); down-type quarks have down
(d), strange (s), and bottom (b) flavour states,

ui ∈ {u, c, t}, di ∈ {d, s, b} , (2.22)

and their respective masses are given by

mu/c/t = yu/s/tv, md/s/b = yd/s/bv . (2.23)

Diagonalising the quark mass matrices has consequences for the charged current interaction
matrix between quarks and W±µ bosons in the broken SM. From the relation between W±µ and
Waµ,

W±µ =
1√
2
(W1 ± iW2)µ , (2.24)

we note from the definition of the covariant derivative in Eq. (2.6) and the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
(2.25)

that

Dµ ⊃ i
g
2

W1µσ1 + i
g
2

W2µσ2 → i
g√
2

W+
µ

(
0 0
1 0

)
+ i

g√
2

W−µ

(
0 1
0 0

)
. (2.26)

From the matrices on the RHS of Eq. (2.26) and the appearance of the kinetic term for the
quark doublet in the SM Lagrangian,

LSM ⊃ iQ̄i /DQi , (2.27)

it is evident that the W±µ bosons act on the pairs of quarks in the broken SM Lagrangian
through the terms (in the old definition of the quarks)

LSM, broken ⊃ i
g√
2

ūLiγµdLiW+µ + i
g√
2

d̄LiγµuLiW−µ. (2.28)

We see that, in the interactions between W± bosons and quarks, there is always one up-type
and one down-type quark involved, never two of the same type7. Now redefining the quarks
as in Eq. (2.21) we have

LSM, broken ⊃ i
g√
2

ūLjγµ

(
VdLV†

uL

)
ji

dLiW+µ + i
g√
2

d̄Ljγµ

(
VuLV†

dL

)
ji

uLiW−µ . (2.29)

7This can of course also be seen from the U(1)em charge: it is impossible to combine two instances of ± 2
3 or

∓ 1
3 from the quarks with the ±1 charge from the W± bosons to create a term that preserves electromagnetic

charge by having a vanishing total charge.
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2. The Standard model and beyond

Here we encounter a matrix
V ≡ VdLV†

uL = VuLV†
dL , (2.30)

which is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix [22, 23]. Unlike the redefined
Yukawa matrices, the CKM matrix is not diagonal8. It therefore connects different quark
flavours to each other, and we can conclude that quark flavour transitions are mediated by
W±-bosons in the SM.

In the leptonic sector of the SM, upon EWSB, the Yukawa term can, as with the quarks, be
written as a mass term,

LSM ⊃ −yℓij L̄
a
i ϕaeRj + h.c.→ −mℓ

ijd̄LidRj + h.c. , (2.31)

where
mℓ

ij = yℓijv . (2.32)

In the SM, there is no Yukawa term for the neutrinos, therefore we only have the charged
lepton term in the leptonic sector. We can again diagonalise the mass matrix,

mℓ → m̂ℓ = VeLmℓV†
eR , (2.33)

and subsequently redefine the charged lepton fields,

eLi → (VeL)ijeLj, eRi → (VeR)ijeRj . (2.34)

From the kinetic term
LSM ⊃ iL̄i /DLi , (2.35)

we then find

LSM, broken ⊃ i
g√
2

ν̄Ljγµ (VeL)ji eLiW+µ + i
g√
2

ēLjγµ

(
V†

eL

)
ji

νLiW−µ . (2.36)

Here we have ended up with a matrix VeL that is not necessarily unitary like the CKM matrix.
We can absorb it by also redefining the neutrinos,

νLi → (V−1
eL )†

ijνLj . (2.37)

Now the leptonic kinetic term can be written as

LSM, broken ⊃ i
g√
2

ν̄LiγµeLiW+µ + i
g√
2

ēLiγµνLiW−µ , (2.38)

where the charged lepton mass states correspond one-to-one to their flavour states, and the
neutrinos only have flavour states since they are massless in the SM. In case the neutrinos
were massive, their flavour states and mass states would not align, but rather mix, where

8In principle, we could have chosen to only diagonalise one of the Yukawa matrices. We would then be free to
also diagonalise the CKM matrix, but for one type of quark the flavour states would not directly correspond
to the mass states [24]. This strategy is employed for the leptonic sector of the SM, as can be seen later in this
section.
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2. The Standard model and beyond

the mixing is described by a leptonic equivalent of the CKM matrix called the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix. As discussed in Sec. 2.3.1, observations of neutrino
oscillations indeed lead to the conclusion that non-zero neutrino masses are realised in nature.
For the charged leptons and neutrinos, the flavour states are electron e, muon µ, and tau τ,

ei ∈ {e, µ, τ}, νi ∈ {νe, νµ, ντ} . (2.39)

Unlike in the quark sector, the leptons always conserve flavour as they interact with the W±

boson in the SM.

2.1.4. Mesons and baryons

In Eq. (2.7) we see the covariant derivative acting on a quark doublet, with the gauge fields
Bµ, Wµ

a σa and Gµ
a λa shown explicitly, along with their corresponding couplings g′, g, and gs,

respectively. From renormalisation group evolution we know that these couplings run, i.e.
their values do not stay constant as the energy at which they are evaluated changes. With
increasing energy, the U(1)Y and SU(2)L gauge interactions grow stronger, while the SU(3)c

interaction gets weaker. Since SU(3)c remains unbroken in the SM all the way down to low
scales, this means that there is some scale ΛQCD ∼ 200 – 300 MeV where the strong interaction
diverges, and becomes very strong indeed. Below this scale, the quarks are so attracted to
each other that it is not possible to observe them individually, instead they are all locked up
in colour-neutral bound states called hadrons9 (see e.g. Refs. [14, 19, 24, 25]). This isolation of
quarks inside bound states is called confinement, which is a condition that the only free states
are those that are colour singlets.

Hadrons can be subdivided into mesons (containing a quark and an antiquark), (anti)baryons
(containing three (anti)quarks), and exotic hadrons (with more than three quarks, i.e. tetraquarks
with two quark-antiquark pairs, pentaquarks with three quarks plus one quark-antiquark
pair, and so on10). The commonest hadrons are the nucleons, which are the first generation
spin- 1

2 baryons, namely protons p and neutrons n. They approximately11 preserve an SU(2)
symmetry called isospin, where a π-rotation in isospin space takes a proton to a neutron and
vice versa. Baryons are made up of three quarks, and antibaryons of three antiquarks. In
the case of nucleons these are the u and d quarks, which in terms of isospin I and its third
component I3 can be written as

u =
∣∣ 1

2
1
2

〉
, d =

∣∣ 1
2 − 1

2

〉
,

ū =
∣∣ 1

2 − 1
2

〉
, d̄ = −

∣∣ 1
2

1
2

〉
.

(2.40)

9Hadrons can also form from quarks who’s individual masses are above ΛQCD, the relevant condition for bound
state formation is rather that the kinetic energies of the quarks be sufficiently low.

10Note however that this is a simplified picture. In principle, a bound state of hadrons also consists of a lot of
gluons and quark-antiquark pairs, in what can be described as a quark sea, or quark-gluon plasma. In addition
to this sea are the valance quarks, which in common speech is what is said to make up the hadron, but which
due to confinement are impossible to observe on their own at low energies, where the bound state lies. The
term valance quark here draws analogies to valance nucleons in the shell model of nuclear physics, or valance
electrons in atomic physics.

11Isospin symmetry in nucleons is broken by the mass difference between p and n as well as the difference in
electromagnetic charge.
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Here the quark with the largest electromagnetic charge is assigned the positive I3. Note that
the minus sign on d̄ comes from our desire to have a π-rotation of the antiquark isopsin
doublet around the 2-axis (−d̄′

ū′

)
=

(
0 −1
1 0

)(−d̄
ū

)
(2.41)

behave in the same way as the quark doublet(
u′

d′

)
=

(
0 −1
1 0

)(
u
d

)
. (2.42)

In terms of the quarks, the proton and neutron can then be written as uud and udd respec-
tively12, while antiprotons and antineutrons can be written as ūūd̄ and ūd̄d̄, respectively.
Simpler hadrons can be formed out of a quark-antiquark pair rather than three quarks or
antiquarks, where the first generation spin-0 isospin I = 1, I3 = − 1

2 , 0, + 1
2 triplet of states are

the pions13 ∣∣π+
〉
=
∣∣ud̄
〉

,∣∣π0〉 = 1√
2

(
|uū⟩ −

∣∣dd̄
〉)

,∣∣π−〉 = |ūd⟩ .

(2.43)

The mesons above constitute the charged and neutral pions. The SU(2) equation 2⊗ 2 = 1⊕ 3
tells us that there should also be an isospin singlet state, which indeed is given by

|00⟩ = 1√
2

(
|uū⟩+

∣∣dd̄
〉)

. (2.44)

This state does not, however, directly correspond to a meson. Instead, the situation is changed
due to a member of the next generation of SM fermions, namely the s-quark. Firstly, the u-,
d-, and s-quarks are the only coloured SM fermions with masses below ΛQCD, such that the
hadrons they form mainly get their mass from the binding energy rather than the individual
quark masses14. Secondly, in quantum mechanics any two states that have the same quantum
numbers generally mix, where the degree to which the mixing occurs depends on the mass
splitting between the two states. The relevant quantum numbers for quarks are: electric
charge Q, isospin I, third component of isospin I3, strangeness S, charm C, bottomness B, and
topness T, where the different flavour quantum numbers (I3, S, C, B, and T) have an absolute

12Note that protons and neutrons are both spin- 1
2 particles, therefore the spins if the individual quarks have to

partially cancel, such that, for a |↑⟩ nucleon, the allowed spin combinations of the quarks are |↑↑↓⟩, |↑↓↑⟩, and
|↓↑↑⟩. Writing out the full states |p⟩, and |n⟩ requires combining these different spin possibilities which yields
quite long expressions. For details see e.g. Ref. [26]. Having all quark spins aligned yields spin- 3

2 baryons,
which are generally less stable than spin- 1

2 ones [14].
13Similarly to the baryons, mesons may be divided into spin-0 and spin-1, corresponding to spin combinations
|↑↓⟩ or |↓↑⟩ and |↑↑⟩ (or |↓↓⟩ depending on the spin state of the meson) respectively.

14Note that, in gauge interactions that lead to confinement, such as QCD, the mass of a bound state is generally
greater than the mass of the constituent particles. This is in opposition to e.g. atomic physics, where the
binding of an electron very slightly reduces the mass of the bound state as compared to the sum of the ion
and electron masses.
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value 1 and the same sign as the electric charge Q for each quark. In an overcomplete basis
we can also include baryon number B which can be solved for via

B = 2Q− 2I3 − S− C−B − T . (2.45)

For mesons we additionally have the principal quantum number n, orbital angular momentum
ℓ, spin J (where |ℓ− s| ≤ J ≤ |ℓ+ s|, and where s = 0 and s = 1 for antiparallel and parallel
quark spins respectively), parity P = (−1)ℓ+1, and charge conjugation parity C = (−1)ℓ+s.
Note however that C is only defined for mesons where the quark and antiquark are the
antiparticles of each other. For ud̄ and dū bound states one can similarly define another parity
G = (−1)I+ℓ+s. Conventionally these meson-specific quantum numbers are written in the
form IG(JPC) (with G and/or C omitted when not applicable), such that e.g. the charged and
neutral pions π± and π0 have IG(JP) = 1−(0−) and IG(JPC) = 1−(0−+), respectively. For
mesons, it is enough to have them same I and JPC in order for two states to mix, their flavour
quantum numbers are only conserved to the extent that the mass splitting between two states
is large, such that for mesons qq̄′ with mq + mq̄′ ≪ ΛQCD their flavour is not well preserved
(making isospin a relatively good symmetry). Note that not all combinations of quantum
numbers lead to mesons that can be observed as such. Some quark-antiquark bound states
decay so quickly that they are seen as resonances in a detector rather than having a certain
lifetime. These resonances are nevertheless referred to as mesons15. Now, the reason that
the state in Eq. (2.44) is not a good description of any meson is that this state mixes with
|ss̄⟩. Since also the mesons containing s-quarks (but no heavier quarks) mainly get their mass
from ΛQCD, same as for the u- and d-quarks, this mixing should be significant. Now that
we are considering three quarks instead of just two, the SU(2) isospin symmetry should be
promoted to a (also broken) SU(3) symmetry, where 3⊗ 3̄ = 1⊕ 8 tells us that we should
expect 9 mesons, where one of them is a singlet. This singlet ψ1 mixes with one of the I = 0
states ψ8 from the octet such that(

η

η′

)
=

(
cos θ − sin θ

sin θ cos θ

)(
ψ8

ψ1

)
, (2.46)

where
ψ8 =

1√
6

(
uū + dd̄− 2ss̄

)
,

ψ1 =
1√
3

(
uū + dd̄ + ss̄

)
.

(2.47)

Together with the three pions, the mesons η and η′ make up five out of the nine mesons. The
remaining four are the charged and neutral kaons

K0 = |ds̄⟩, K+ = |us̄⟩ ,
K− = |sū⟩, K0

=
∣∣sd̄
〉

.
(2.48)

15One rule of thumb in order to determine whether a meson is stable on detector timescales, due to Ref. [24], is
that if the U(1)Y and SU(2)L interactions are turned off such that g, g′ → 0, mesons that now have infinite
lifetime are otherwise also stable on detector timescales, while mesons that can still decay are resonances.
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We may now suspect that K0 and K0 also mix. To the extent that our SU(3) flavour symmetry
is obeyed, the neutral kaons are both negative under parity conjugation P and positive under
charge parity conjugation C. We may then form eigenstates |K1⟩ and |K2⟩ of the combined
transformation CP such that

|K1⟩ = 1√
2

(∣∣K0〉− |K0⟩
)

, CP |K1⟩ = |K1⟩ ,

|K2⟩ = 1√
2

(∣∣K0〉+ |K0⟩
)

, CP |K2⟩ = − |K2⟩ .
(2.49)

Assuming that CP is conserved in kaon decays, K1 can only decay to CP positive states
(such as two pions) and K2 can only decay to CP negative states (such as three pions). The
departure from this ideal K1–K2 picture is parametrised by the CP-violating parameter ϵ,
such that experimentally the states |KL⟩ and |KS⟩ are found16, where

|KL⟩ =
1√

1 + |ϵ|2
(|K2⟩+ ϵ |K1⟩) ,

|KS⟩ =
1√

1 + |ϵ|2
(|K1⟩+ ϵ |K2⟩) .

(2.50)

This completes the s = 0 nonet of n = 1, ℓ = S mesons. For s = 1, the I = 1 mesons are
correspondingly called ρ, the I = 1

2 mesons17 K∗, and the I = 0 mesons ϕ and ω. For higher
n and ℓ the mesons quickly become very unstable. A similar statement can be made for
non-nucleonic baryons, where the most stable SU(3) flavour symmetric ones have J = 1

2 , and
they are are18 Λ0 = uds, Σ+ = uus, Σ0 = uds, Σ− = dds, Ξ0 = uss, Ξ− = dss, and Ω− = sss.
Involving also the next two quarks in the mass hierarchy (now leaving any kind of flavour
symmetry behind us), namely the c- and b-quarks, yields many more mesons. For example,
including the c-quark gives the s = 0 charmed D+ = cd̄, D0 = cū, D0

= c̄u and D− = c̄d
mesons, as well as strange charmed mesons Ds exchanging d for s. Similar constructions with
the b-quark yields bottom mesons B, strange bottom mesons Bs, and charmed bottom mesons
Bc, as well as charmonium ηc = cc̄ and bottomonium ηb = bb̄. For the baryons the naming
convention including c- and b- quarks follows that of the SU(3) flavour symmetric baryons,
with indices c and b included to denote this modified quark content, such that we have e.g.
Σ0

b = udb and Ξ+
cb = ucb.

The t-quark does not form hadrons on detector timescales. In fact, the t-quark is so massive
that it can decay into an on-shell W± boson, which significantly increases the decay rate with
respect to the less massive quarks, since the final state phase space is that of a two-body
rather than a three-body.

2.1.5. Anomaly cancellation

Chiral fermions require cancellation of chiral anomalies in order for the theory to be consistent.
Classically, left- and right-handed fermion number are two separately conserved charges for
16The indices L and S here stand for long and short, since KL has a long lifetime of τKL ≈ 5× 10−8 s while KS has

a short lifetime of τKS ≈ 9× 10−11 s.
17A star ∗ typically denotes an excited state.
18Note that Λ0 and Σ0 do not mix since Λ0 has I = 0 while Σ0 has I = 1.
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2. The Standard model and beyond

Figure 2.1.: Triangle diagrams that lead to the chiral anomaly. For any combination of gauge
bosons in the three external legs, the sum of all diagrams (all possible fermions in
the loop) must lead to an equal contribution from left- and right-handed fermions.

massless fermions, with the associated currents19 Jµ = ψ̄γµψ and Jµ5 = ψ̄γµγ5ψ. Note that Jµ

and Jµ5 do not correspond directly to left- and right-handed fermion number respectively.
Rather, left-handed fermion number is associated with the current Jµ

L = 1
2 (Jµ− Jµ5), and right-

handed fermion number with Jµ
R = 1

2 (Jµ + Jµ5). Since the sign in front of Jµ5 differentiates Jµ
L

from Jµ
R, the conservation of Jµ5 leads to what is known as a chiral symmetry. However, at one-

loop level in the presence of a gauge coupling to the fermions, Jµ5 is no longer conserved, and
the chiral symmetry is anomalously broken. For a non-abelian gauge theory, the divergence
of the chiral current is given by [21]

∂µ Jaµ5 = − i
64π2 tr

(
γ5ta{tb, tc}

)
ϵµνσρFb

µνFc
ρσ , (2.51)

where tα are the generators of the gauge theory, and where the anticommutator arises from
the sum of two diagrams with their final legs crossed, as seen in Fig. 2.1. Loop diagrams like
these lead to chiral anomalies for any combination of external bosons. The chiral current is
given by

Jaµ5 = igψ̄taγµγ5ψ, (2.52)

where g is the gauge coupling. The factor γ5 in Eq. (2.51) is given by γ5 = −1 for left-handed
fermions and γ5 = +1 for right-handed fermions. For abelian gauge theories, the generators
are simply replaced by the corresponding charge. In fact, in case the fermion ψ obeys several
different gauge symmetries, the generators ta, tb, and tc may not correspond to the same
gauge group, in which case the trace containing the generators can be simplified using group
theoretical relations [27]. In order for a given theory to be consistent, the sum of all chiral
current divergences must vanish. That is, when evaluating the RHS of Eq. (2.51) for each
fermion ψ that is part of the theory, the different contributions must cancel each other for
each possible combination of generators from each gauge symmetry, including the mixing
of different gauge symmetries. In the SM, this cancellation occurs consistently [28]. For the
case where all generators correspond to SU(3)c, the sum vanishes since there is no difference
between left- and right-handed fermions in QCD. Furthermore, when there is only a single
gluon present, each term vanishes individually due to the relation tr(ta) = 0, where ta is now

19Note that the quantities Jµ etc. are technically current densities and not currents.
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a generator of20 SU(3). The same is true for SU(2)L, where we have tr(τa) = 0, where τa is
a generator of SU(2). For combinations where we have two SU(3)c bosons and one U(1)Y
boson, the sum of divergences is proportional to

∑
quarks

tr
(

tatbY
)
=

1
2

δab ∑
quarks

Y , (2.53)

where the sum only goes over the quarks since the leptons are uncharged under SU(3)c.
Evaluating the sum, including colour and SU(2)L multiplicities, and assigning a factor −1 to
left-handed fields leads to

∑
quarks

Y = −3 · 2 · 1
6 + 3 · 2

3 + 3 ·
(
− 1

3

)
= 0 . (2.54)

Next, in the case where we have two SU(2)L bosons and one U(1)Y boson, the sum of
divergences is proportional to

∑
left-handed

tr
(

τaτbY
)
=

1
2

δab ∑
left-handed

Y , (2.55)

where the sum goes over all left-handed fermions, since the right-handed ones are uncharged
under SU(2)L. This sum of hypercharges can be evaluated as

∑
left-handed

Y = −2 ·
(
− 1

2

)
− 3 · 2 · 1

2 = 0 . (2.56)

For the case where all three bosons belong to U(1)Y we have the sum

∑
fermions

(
Y3) = −2 ·

(
− 1

2

)3
+ (−1)3 − 3 · 2 ·

( 1
6

)3
+ 3 ·

( 2
3

)3
+ 3 ·

(
− 1

3

)3
= 0 . (2.57)

Finally, we need to also consider the case where we have one U(1)Y gauge boson and two
gravitons21 [29]. This leads to the sum22

∑
fermions

Y = −2 ·
(
− 1

2

)
+ (−1)− 3 · 2 ·

( 1
6

)
+ 3 ·

( 2
3

)
+ 3 ·

(
− 1

3

)
= 0 . (2.58)

Fantastically, each anomalous contribution vanishes, and the SM remains consistent.

20It is an unfortunate notation to use ta as a general generator of an undetermined gauge group in Eqs. (2.51)
and (2.52) while later using it specifically for SU(3)c. However, this is the notation usually followed in the
literature.

21Gravitons are not part of the SM but we know that the SM fermions must couple to gravity somehow.
22Note that we started out this section by assuming that the fermions are massless, but they can still couple to

gravity by having a non-zero kinetic energy.

16



2. The Standard model and beyond

2.1.6. Sphalerons

Baryon number B and lepton number L are both classically conserved in the SM [30, 31].
These charges can be expressed as [32]

B =
∫

d3xJB0(x), L =
∫

d3xJL0(x) , (2.59)

where the currents JBµ and JLµ are given by

JBµ =
1
3 ∑

i

(
Q̄iγµQi − ūc

Riγµuc
Ri − d̄c

Riγµdc
Ri
)

,

JLµ = ∑
i

(
L̄iγµLi + ēRiγµeRi

)
,

(2.60)

where i denotes the flavour and a superscript c denotes the charge conjugate (see Appendix B).
Classically the divergence of these currents vanishes,

∂µ Jµ
B = ∂µ Jµ

L = 0 , (2.61)

but at one-loop level, the divergence is non-zero due to the Adler-Bell-Jackiw triangular23

anomalies [34, 35] (c.f. Sec. 2.1.5),

∂µ Jµ
B = ∂µ Jµ

L =
N f

32π2

(
g2WaµνW̃µν

a − g′2BµνB̃µν
)

, (2.62)

where N f is the number of fermion generations, and therefore B and L are anomalous24 [36].
Since their divergences are equal, we know that ∂µ Jµ

B and ∂µ Jµ
L can cancel each other such that

B− L is still conserved at the quantum level. We can now write the RHS of Eq. (2.62) as the
divergence of a current25 Kµ,

∂µ Jµ
B = ∂µ Jµ

L = N f ∂µKµ , (2.63)

where

Kµ = − g2

16π
ϵµνρσWaν

(
∂ρWaσ +

g
3

ϵabcWbρWcσ

)
+

g′2

32π
ϵµνρσBνBρσ . (2.64)

The change in B and L over time can be obtained by integrating over the divergence of the
current,

∆B = ∆L = N f

∫ t1

t0

dt
∫

d3xKµ = N f (Ncs(t1)− Ncs(t0)) (2.65)

where Ncs is the Chern-Simons number

Ncs(t) =
g3

96π2

∫
d3xϵijkϵabcWaiWbjWck , (2.66)

23Triangular here refers to the fact that the one-loop diagrams look like triangles with the sides made up of
fermions, and one boson sticking out of each vertex. See e.g. Fig. 6.3 in Ref. [33].

24An anomalous charge here means that it is conserved classically but not at the quantum level.
25Introducing Kµ is not necessary here for the purpose of showing the effect of the sphaleron, and is sometimes

not done in the literature, but it is useful in solving the integral over the divergence of the current using
Gauss’s theorem by choosing a gauge where K⃗ = 0 at spatial infinity.
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for spatial indices i, j, k, it can be shown that [37]

∆Ncs = Ncs(t1)− Ncs(t0) = ν , (2.67)

where ν is an integer, and we therefore have

∆B = ∆L = νN f . (2.68)

We see that baryon- and lepton number can change in the SM in units of26 ±N f = ±3. Stable
configurations of B + L exist as the minima of the total potential energy of the system, with
energy barriers separating the minima. A transition between different configurations can
occur in two ways: tunnelling can occur through the barrier via instanton effects [38–40], or
the energy of the system can be high enough such that the energy barrier can be surmounted,
which is known as an electroweak sphaleron transition [41, 42]. The electroweak sphaleron,
therefore, is an interaction involving one field each from the three lepton fermion doublets, and
three each from the quark doublets, as seen in Fig. 2.2 (left). The Gauge fields configurations
that give non-zero ∆ (B + L) at zero temperature are instantons, and their rate27

ΓIns ∝ e−4π/αW ∼ 10−170 , (2.69)

where αW is the weak analogy of the fine structure constant, is unobservably small [43]. If
it were only due to instantons, the transition between different states of B + L is so rare
that it should never have happened a single time in the observable Universe [44]. At higher
temperatures, B + L transitions can occur more rapidly via electroweak sphalerons, as their
rate is temperature dependent [45, 46],

ΓSph ∝ e−ESph/T , (2.70)

where ESph ∼ O(1)×mW/αW , with mW being the mass of the W boson. At high temperatures
mW ≲ T ≲ 1012 GeV, the electroweak sphaleron rate is significant, and can be considered to
be in equilibrium [47, 48].

Apart from electroweak sphalerons, there are also QCD sphalerons corresponding to the
SU(3)c symmetry of the SM [49–51]. As illustrated in Fig. 2.2 (right), QCD sphalerons only
involve the quarks, and they do not break B, L, or B + L.

2.1.7. Electroweak phase transition

As detailed in Sec. 2.1.2, the electroweak symmetry of the SM is broken at low temperatures,
and restored at high temperatures. There is strong evidence that the Universe was hotter
in the past than it is now28, so hot in fact, that in the past the electroweak symmetry was

26Note that a change in L implies a change in B. For this reason, the sum B + L is often considered for the change
of baryon- and lepton number in the SM, rather than the two charges separately.

27The dimension of Γ is here inverse time. It is proportional to e−4π/αW due to this factor appearing in the cross
section for this instanton transition.

28See Sec. 2.2.2 for more details.
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Figure 2.2.: Electroweak (left) and QCD (right) sphalerons. For the electroweak sphaleron, the
SU(2)L indices can be changed so long as the vertex remains a singlet.

completely unbroken throughout the Universe. Since the Universe today is cool, and the
electroweak symmetry is broken, there must have been some transition period when the
electroweak symmetry went from being unbroken to being broken. This is the electroweak
phase transition, and it is expected to take place around the weak scale29.

The electroweak phase transition can be seen as arising as a consequence of the temperature
dependence of the Higgs potential. For high temperatures, the minimum of the Higgs
potential lies at the field value ϕ = 0, while for low temperatures the minimum is at ϕ = v.
At zero temperature the Higgs potential at one-loop order is given by

V(ϕ)
∣∣∣
T=0

= −1
2

m2
ϕϕ2 +

1
4

λϕ4 + V1(ϕ) , (2.71)

where V1(ϕ) contains the one-loop corrections,

V1(ϕ) =
gi(−1) fi

64π2 Mi(ϕ)
4 ln

(
Mi(ϕ)

2

µ2

)
. (2.72)

Here fi is the fermion number30, µ is a cut-off scale, and Mi(ϕ) is the mass of particle i in
terms of the Higgs field ϕ. For a particle i, the temperature-dependent contribution is given
by [52]

VT(ϕ, T) =
gi(−1) fi T4

2π2

∫ ∞

0
dxx2 ln

(
1− (−1) fi exp

[
−
√

x2 +
Mi(ϕ)2

T2

])
. (2.73)

The one-loop- and temperature-dependent contribution to the Higgs potential includes
interactions with all particle species i that have couplings to the Higgs boson. However, the
29The weak scale is here loosely defined as an energy scale somewhere between the Higgs vev v = 174 GeV and

the mass of the W boson mW = 80.4 GeV.
30If i is a fermion we have fi = 1, while if i is a boson fi = 0.
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effects are larger for more massive particles than for lighter ones. Therefore, we choose to
only include contributions from the heaviest particles in the SM, namely the W±, Z and Higgs
bosons, as well as the top quark31. Explicitly, the ϕ-dependent masses of these particles are
given by [53]

MW(ϕ)2 =
1
2

g2ϕ2 , (2.74)

MZ(ϕ)
2 =

1
2
(

g2 + g′2
)

ϕ2 , (2.75)

Mϕ(ϕ)
2 = −m2

ϕ + 6λϕ2 , (2.76)

Mt(ϕ)
2 = y2

t ϕ2 . (2.77)

We then obtain the potential

V(ϕ, T) = −1
2

m2
ϕϕ2 +

1
4

λϕ4 +
1

64π2

(
3λϕ2 −m2

ϕ

)2
ln

(
3λϕ2 −m2

ϕ

µ2

)

+
3

1024π2

(
2g2 + (g2 + g′2)2) ϕ4 ln

(
ϕ2

µ2

)
− 3

64π2 y4
t ϕ4 ln

(
ϕ2

µ2

)
+

T4

2π2

(
6I+

(
g2ϕ2

4

)
+ 3I+

(
(g2 + g′2)ϕ2

4

)
+ I+(−m2 + 3λϕ2) + 12I−

(
y2

t ϕ2

2

))
,

(2.78)
where

I±(Ψ) = ±
∫ ∞

0
x2 ln

(
1∓ exp

[
−
(

x2 +
Ψ
T2

)1/2
])

. (2.79)

The minima of the Higgs potential, c.f. Eq. (2.78), are found via the conditions

V ′(T, ϕ)
∣∣∣
ϕ=ϕmin

= 0, V ′′(T, ϕ)
∣∣∣
ϕ=ϕmin

> 0 . (2.80)

At high temperatures, the minimum of the Higgs potential is at ϕmin = 0, while at low tem-
peratures it is at ϕmin = v. For some intermediate temperature, there are local minima at both
ϕ = 0 and ϕ = v. If tunnelling effects are neglected, the electroweak phase transition occurs
at a temperature T2 when the potential barrier between the two local minima disappears. This
temperature can be found via the condition

V ′′(0, T2) = 0. (2.81)

To find an expression for T2, we simplify the temperature-dependent contribution to the
potential using Taylor expansion,

f
(

µ2

T2

)
= ln

(
1± exp

[
−
√

x2 +
µ2

T2

])
≈ f (0) +

µ2

T2 f ′(0) . (2.82)

31These particles, W, Z, ϕ and t, are commonly referred to as The big four, in reference to the heavy metal bands
Anthrax, Megadeth, Metallica and Slayer, which are historically also known as The big four. These four particles
all have masses of O(100 GeV), which is significantly higher than the mass of the fifth most massive particle in
the SM (the bottom quark at 4.18 GeV).
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Now using the standard integrals∫ ∞

0
dx

x
2

e−x

1− e−x =
π2

12
, (2.83)∫ ∞

0
dx

x
2

e−x

1 + e−x =
π2

24
, (2.84)∫ ∞

0
dxx2 ln

(
1− e−x) = −π4

45
, (2.85)

we find that

T2 =

√√√√ 12m2
ϕ

1
4 λ + 9

4 g2 + 3
4 g′2 + 6y2

t
. (2.86)

We see that the phase transition temperature T2 depends on the couplings of the Higgs
boson to the particles that we included in the one-loop and thermal effects. Furthermore, we
expect the transition to occur at a temperature of roughly the same order of magnitude as
the Higgs mass mϕ. However, the exact temperature at which the transition occurs depends
on tunnelling effects, and on any other particles the Higgs interacts with which have not
been included in deriving Eq. (2.86). Often the transition is simply assumed to occur at
ΛEW ≈ 100 GeV.

2.2. The Λ Cold Dark Matter Model

In this section, we review the standard cosmological theory of modern times, the Λ Cold
Dark Matter (ΛCDM) model. Here, the cosmological constant Λ refers to a term in Einstein’s
equations [54]

Rµν − 1
2 gµνR + Λgµν = 8πGTµν . (2.87)

These equations32 relate the curvature of spacetime (LHS) with the matter content of the
Universe (RHS).

2.2.1. Modern cosmology

Our modern cosmology states that the Universe was created 13.787± 0.020 billion years
ago [55] in an event known as the Big Bang. According to this view, the Universe evolved
from a singularity by increasing its size and cooling down. Exactly from where our Universe
came is not relevant to this thesis33, and neither is the question of how the Universe might
end.

As is described in more detail in Sec. 2.2.2, the term in Eq. (2.87) containing Λ describes
what is known as dark energy, a constant expansion of space that dominates the energy content

32Even though it looks like a single equation, Eq. (2.87) actually contains 4× 4 = 16 equations, since the indices µ

and ν can take on one time dimension and three space dimensions each.
33With one exception, which is discussed briefly in the introduction to Ch. 3.
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of the Universe at late times34 [56, 57]. The Cold Dark Matter part of ΛCDM refers to an
invisible form of matter, dark matter, that interacts via gravitation to form structures such
as galaxies35. Dark matter is thought to be Cold in the sense that its velocity distribution is
tilted towards the low end during the time of structure formation. The velocity distribution is
affected by the mass of the individual dark matter components36, as less massive particles are
generally more relativistic than heavier ones37.

Einstein’s equations in Eq. (2.87) are central in General relativity and in cosmology. For a
given metric gµν, Einstein’s equations reveal the details of the time evolution of the Universe.
However, providing a metric that accurately describes our Universe is non-trivial, and usually
some simplifying assumptions have to be made. On large enough scales38, the Universe
is often taken to be both homogeneous and isotropic, adhering to what is known as the
Cosmological principle, which states that there are no special cosmological observers in the
Universe: everyone should see the same thing when they look deep enough into space, no
matter where they are. Isotropy and homogeneity are often seen as valid assumptions [58–60].
However, some large objects have been observed that brings into question at which scale
the Universe should be seen as homogeneous [61–63], and the large scale structure of the
Universe is being explored in large galaxy surveys [64]. Under the assumption of the
cosmological principle, a good metric to use is the Friedmann–Lemaître–Robertson–Walker
(FLRW) metric [65–68]

gµν =

(
1 0

0 −a(t)2
(

δij + k xixj

1−kx2

)) , (2.88)

where a(t) is a dimensionless time-dependent scale factor, and k is the Gaussian curvature of
the Universe39. We can use Eq. (2.88) in the Ricci tensor

R µν =
∂Γ ρ

ν µ

∂xρ
− ∂Γ ρ

ρ µ

∂xν
+ Γ η

η ρΓ ρ
ν µ − Γ η

ν ρΓ ρ
η µ , (2.89)

34In this chapter, late times or late Universe refers to a time comparable to present day, rather than something
beyond present time (further in the future).

35The terms dark matter and dark energy are a bit unfortunate. Firstly, the two phenomena have little to do with
each other apart from both being relevant to cosmology, and the fact that both are called dark is therefore
misleading. Secondly, neither of them are strictly speaking dark, they can both more accurately be described as
invisible, or transparent.

36Note that the nature of dark matter is not determined by the ΛCDM model. Dark matter may be a new particle
beyond the SM, or it may be some compact object like black holes, or something else entirely.

37The temperature of dark matter, i.e. hot vs cold, may sound like it should refer to the kinetic energy of the
individual dark matter components, rather than their velocity (at least if dark matter is in thermal equilibrium
with the SM bath). Structure formation however relies on the ability of dark matter to form clumps, which in
turn depends on the velocity of the dark matter components with respect to the escape velocity of the clumps,
rather than the kinetic energy. Nevertheless it is conventional to use hot and cold, rather than something like
speedy and slow, even if it could be thought that the latter more accurately captures the relevant physics.

38On scales larger than ∼ 100 Mpc.
39If we drop the assumption of homogeneity but keep isotropy, the co-moving distance a(t) and curvature k

in the FLRW metric can be promoted to functions A(r, t) = a(t)/r and k(r) = kr2 that depend on the radial
coordinate r. Such a metric is known as the Lemaître-Tolman-Bondi (LTB) metric [69–71].
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and the Ricci scalar
R = gµνR µν , (2.90)

where the Christoffel symbols Γ ρ
ν µ are given by

Γ ρ
ν µ =

1
2

gρη
(
∂νgµη + ∂µgνη − ∂η gνµ

)
. (2.91)

The only remaining tensor to determine in Einstein’s equations is the stress-energy tensor
Tµν, which is given by

Tµν =

(
ρ(t) 0

0 −p(t)gij

)
, (2.92)

where gij is the spatial part of the FLRW metric at the origin x⃗ = 0. Furthermore, p(t) is
the pressure, and ρ(t) is the energy density. Plugging everything in, the time-component of
Einstein’s equations leads to [65, 72](

ȧ(t)
a(t)

)2

=
8πG

3
ρ(t)− k

a(t)2 +
Λ
3

, (2.93)

and the spatial part leads to

ä(t)
a(t)

= −4πG
3

(ρ(t) + 3p(t)) +
Λ
3

. (2.94)

Eqs. (2.93) and (2.94) are known as the Friedmann equations, and they appear as a natural
consequence of the cosmological principle applied to General relativity. Therefore, they are
central components of the ΛCDM model. To interpret the Friedmann equations, we must
first have an interpretation of the scale factor a(t). From Eq. (2.88), we see that we would
recover the standard Minkowski metric for a(t) = 1 and k = 0. A larger a(t) would then
mean that space is bigger with respect to time, and vice versa, such that a positive ȧ(t)
describes an expanding universe, and a negative ȧ(t) describes a contracting universe. The
Gaussian curvature k = −1, 0, +1 describes the geometry of the universe, whether it is a
negatively curved 4-dimensional hyperboloid (k = −1, open universe), completely flat with
no curvature into a 4th dimension (k = 0, flat universe), or a positively curved 4-dimensional
sphere (k = +1, closed universe). Recently it has been claimed that there is evidence for a
positive curvature [73, 74] but this claim has also been disputed [75–77]. Historically, it has
often been assumed that k = 0 applies to our Universe, which we also assume for the rest of
this thesis. We can then interpret the first Friedmann equation (Eq. (2.93)) as showing that a
positive energy density ρ(t) leads to an expansion of the universe. In the second Friedmann
equation (Eq. (2.94)), we see that a positive energy density, as well as pressure p(t), leads
to a deceleration of the expansion. The pressure and energy density may be related via the
equation-of-state parameter

w(t) =
p(t)
ρ(t)

, (2.95)

where for non-relativistic particles we have w(t) = 0, and for ultra-relativistic particles we
have w(t) = 1/3. We see therefore that, for both matter and radiation, the energy density and
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pressure act to slow down the expansion of the Universe. A positive cosmological constant Λ
(dark energy) acts to increase the rate of expansion, as well as the acceleration of expansion.

Now, since we know that the Universe is expanding, we also know that the wavelength of
light travelling from very distant sources is stretched, and visible colours are shifted towards
red. This redshift is a useful tool to measure distances in cosmology, where the ridiculous
length scales involved often make meters and even lightyears lose their intuitive connection40.
The redshift is parametrised by z, which is given by41

z =
λ0

λs
− 1 , (2.96)

where λ0 is the wavelength of light at Earth, and λs is the wavelength at its source. The
redshift z then describes the distance between Earth and the source of the light. We can now
express the scale factor as42

a(z) =
1

1 + z
. (2.97)

Next, the the first law of thermodynamics gives us43

dU = −pdV , (2.98)

where U is the energy that resides inside the volume V. We can rewrite this law in terms of
our cosmological parameters such that

d(a3ρ) = −pdV

a3dρ + 3ρa2da = −3wρa2da

d ln ρ = −3(1 + w)d ln a∫ z

0
dz′

d ln ρ(z′)
dz′

=
∫ z

0
dz′3(1 + w)

d ln(1 + z′)
dz′

ρ(z)
ρ(z = 0)

= exp
(

3
∫ z

0
dz′(1 + w(z′))(1 + z′)−1

)
.

(2.99)

For a constant w we get

ρ(z)
ρ(z = 0)

= exp (3(1 + w) ln z) = z3(1+w) . (2.100)

Introducing the Hubble parameter

H(z) =
ȧ(z)
a(z)

≈
√

8πρ(z)
3

(2.101)

40Interestingly, it was the redshift of distant galaxies that led to the discovery of the expansion of the Universe [78,
79], which in turn led to the Big Bang theory.

41Unfortunately, z is also used as a time variable in astroparticle physics (see e.g. Appendix E). This time-variable
z has nothing to do with redshift.

42Since light from far away was emitted at an earlier time and since light travels at a fixed velocity, the redshift z
is a measure of both time and space.

43Here we have assumed that the Universe expands adiabatically.

24



2. The Standard model and beyond

and the Hubble constant

H0 =

√
8πρcrit

3
, (2.102)

where ρcrit is the critical energy density of the Universe44, we can rewrite the first Friedmann
equation as

H2(z)
H2

0
= ∑

i
Ωi

ρi(z)
ρi(z = 0)

, (2.103)

where the index i denotes different forms of energy. Using w = 0, 1/3, −1 for matter,
radiation and dark energy, respectively, we have

H2(z)
H2

0
= Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ . (2.104)

Due to their varying dependence on z, different forms of energy dominate at different
times. Using the observed values H0 = 67.4 (km/s)/Mpc, Ωr = 8.5× 10−5, Ωm = 0.3, and
ΩΛ = 0.7 [55], we see that radiation dominates from the beginning until z ≈ 3500, then matter
dominates until z = 0.33, after which dark energy dominates45.

In Eq. (2.104), we neglected some forms of energy, e.g. gravitational waves and topological
effects of phase transitions such as domain walls or cosmic strings, since their energy content
is thought to be relatively small on large timescales. We also did not include inflation, which
is a hypothetical process before radiation domination where the Universe undergoes rapid
expansion [80, 81]. Inflation is conventionally not part of the ΛCDM model, but it does
offer solutions to some of the problems that the ΛCDM model cannot explain, such as the
Flatness problem (why is k ≈ 0 so small, when even a very tiny deviation from zero in the
early Universe would have led to a vastly different number today?) and the Horizon problem
(why is the Universe almost the same temperature everywhere, when parts of it that are far
from each other should never have been in thermal contact?). The details of inflation are not
relevant for this thesis. However, the conditions for the end of inflation, known as reheating46,
play an important role. Unfortunately, the time of reheating, as well as the particle content of
the Universe at that time, are both largely unknown. Therefore, even though it does play a
role, from here on we neglect any effects coming from the details of reheating.

44This energy density is defined as the exact current energy density of the Universe that makes the first Friedmann
equation hold using the observed value for H0, as well as k = 0 and Λ = 0.

45The very recent (in cosmological terms) transition from matter domination to dark-energy domination highlights
the so-called Coincidence problem. If dark energy continues to dominate more and more, light from distant
sources (e.g. the Cosmic Microwave Background (CMB), see Sec. 2.2.2) will eventually not reach the Earth,
because space expands faster than the light can travel (i.e. the photon wavelength is redshifted to infinity).
There is a short window of time where dark energy is dominant enough to be detected, but weak enough
such that we can still se light from very far away. The Coincidence problem then asks how it can be the case
that we coincidentally happen to exist in this short window of time.

46Reheating contains the re- since the Universe should have at first been very hot when the inflatons are created
(an inflaton is an inflation quanta), but later cooled down during inflation. As the inflaton decays, the decay
products are hot, therefore the Universe is again heated.
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T (GeV) Process

≫ 1013 Gauge interactions + t Yukawa

> 1013 QCD sphaleron

∼ 1013 EW sphaleron + b Yukawa

∼ 1012 τ, c Yukawa

∼ 1010 µ, s Yukawa

≪ 108 u, d, e Yukawa

Table 2.3.: Temperatures where different SM processes enter into equilibrium in the early
Universe [86]. This table is taken from Ref. [2].

The ΛCDM model has many problems [82]. However, it is currently the leading theory of
cosmology, and it does offer an explanation for many observed astrophysical phenomena.
From here on we assume that the ΛCDM model is true.

2.2.2. Thermal history of the Universe

Here we briefly summarise the timeline of our Universe, from its creation until today. Since
the Universe gradually became cooler as it aged, different stages of the evolution of the
Universe can be described in terms of the temperature rather than how long ago they
occurred. Furthermore, since physical processes often depend on the energy scale of the
system in question, and since temperature is a form of energy, we categorise the different
eras of cosmology in terms of the energy scale. This section follows Refs. [53] and [83].

Super-Planckian era: T ≳ 1019 GeV

Quantum field theory applied to gravitation is non-renormalisable. This can be seen from
dimensional arguments: the gravitational constant G has the dimensions m−2, where m
denotes mass. Therefore, any term proportional to Gn appearing in a probability density
diverges as

∫
dpp2n−1, where p is the momentum [84]. However, this is not a problem if

the masses m of the particles that interact in the probability density are small, leading to
a small dimensionless gravitational coupling constant αG ∝ Gm2, since we can then claim
that the gravitational effect of the interaction is negligible. This assumption holds if αG ≪ 1,
leading to m≪ G−1/2 ≈ 1.2× 1019 GeV. Since, at high temperatures, the thermal mass of a
particle is proportional to the temperature m ∝ T [85], the condition for neglecting quantum
gravitational effects only holds for temperatures T ≲ 1.2× 1019 GeV. Above this temperature
scale, in the super-Planckian era, there is no satisfactory theory to describe what is going on.
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High-energy era: 1019 GeV ≳ T ≳ 102 GeV

The fundamental free variables of the SM, such as the coupling constants of the three gauge
interactions, run with increasing or decreasing energy. This means that, due to renormalisation,
the values of the coupling constants are different at different energy scales. In the presence
of New Physics (NP), it is possible that this running is modified, such that the constants all
meet in a single point at some high scale leading to a single gauge coupling. Such a scenario
would correspond to a Grand Unified Theory (GUT), and is motivated from theoretical
considerations of symmetry and simplicity of nature. If such a unification does occur, it
should do so at a very high energy scale ΛGUT ∼ 1016 GeV in order to avoid rapid proton
decay, and there should be a plethora of Goldstone bosons coming from the broken generators
of the GUT symmetry group.

Apart from the unification of forces, several unsolved problems of physics are thought to
have solutions lying in the energy regime of the high-energy era. Inflation and reheating, the
decoupling of DM with matter, as well as the generation of an asymmetry between matter
and antimatter, could all occur in the high-energy era according to many theories (but there
are several exceptions). It is also possible, as is discussed in Sec. 2.3.1, that the explanation for
neutrino masses lies around the GUT scale. However, one reason why these problems are
still unsolved is that the energy scales involved in the high-energy era are generally speaking
outside current experimental reach. The LHC has a centre-of-mass energy of 13 TeV, which is
not enough to probe the GUT scale, and low-scale observables do not have the sensitivity
required to see the subtle effects of some GUT-scale particles directly.

Different SM processes come into equilibrium at different times, due to the different size of
the corresponding coupling constants (larger coupling constants imply that the interaction is
stronger and therefore it comes into equilibrium earlier). In Tab. 2.3, different SM processes
can be seen along with the temperature at which they reach chemical equilibrium. All
particles which are in equilibrium quickly thermalise among each other (this also includes
the massless gluons, Wa, and B bosons), such that they become part of what is called the
thermal bath. Radiation is the dominant energy content of the Universe during this era, apart
from a possible inflationary period during which the inflaton should dominate.

At the end of the high-energy era there is the EWSB, which is known to occur, but apart
from this the high-energy era is veiled in mystery. According to most theories, an asymmetry
between matter and antimatter, with a ratio of about 1.000000001:1, is generated sometime
during the high-energy era. A large part of this thesis deals with possible effects of NP during
the high-energy era that leads to an asymmetry between matter and antimatter, and how they
could possibly be probed experimentally.

Era of quark-gluon plasma: 102 GeV ≳ T ≳ 1.5× 102 MeV

After the electroweak symmetry has broken into the electromagnetic symmetry, quarks are
part of the thermal bath, along with all other particles of the broken SM. There are distinct up-
and down-type quarks, as the doublet Q = (uL dL)

T no longer exists. The number densities
of the massive gauge bosons W± and Z, along with that of the Higgs boson and the top
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quark, significantly drop towards the end of the era of quark-gluon plasma.

Hadron era: 1.5× 102 MeV ≳ T ≳ 102 keV

At a temperature around 1.5× 102 MeV, quarks bind into hadrons. Instead of quarks, the
Universe is now filled with mesons and baryons. However, the number densities of mesons
drop heavily towards the end of the hadron era, as do the number densities of tau and muons.
Neutrinos decouple from their chemical equilibrium with the SM thermal bath, and from
here on they have a separate temperature as compared to the rest of the SM particle content.

BBN era: 102 keV ≳ T ≳ 1 keV

Eventually the temperature drops low enough for protons and neutrons to bind into nuclei,
which denotes the start of Big Bang nucleosynthesis (BBN). A nucleus i can form if the
temperature is low enough, according to the relation [53]

TNUC =
Bi/(Ai − 1)

ln
(

η−1
B

)
+ 1.5 ln

(
mp/T

) , (2.105)

where Bi is the binding energy and ηB = nB/nγ is the ratio of baryons to photons. The
binding energy per nucleon is given by

Bi/Ai = (Zimp + (Ai − Zi)mn −mi)/Ai . (2.106)

Here Zi and Ai are the number of protons and nucleons, and mp, mn, mi are the masses of
protons, neutrons and the nucleus i, respectively. For deuterium 2H, being the first nucleus to
form, the binding energy B2H//2 ≈ 1.1 MeV is quite low in comparison to the next nuclei to
form, which are 3He with B3He/3 ≈ 2.5 MeV and 4He with B4He/4 ≈ 7 MeV. We could then
naively expect deuterium to start forming much later than helium. However, helium cannot
fuse without deuterium, as it is created in e.g. 2H + p → 3He and 2H + 3He → 4He + n.
Therefore, synthesis of helium is delayed until there is a sufficient abundance of deuterium in
the Universe. At the end of BBN, the matter in the Universe consists of 75% hydrogen, 25%
helium, and trace amounts of lithium [83].

Era of electron-ion plasma: 1 keV ≳ T ≳ 0.4 eV

Right after the primordial elements have formed, the Universe was too hot for electrons to
settle into atomic shells around nuclei, and it remained so for several hundred thousand
years (in contrast, BBN ended roughly 3 minutes after the Big Bang). During this time,
in which the matter content of the Universe consisted of an electron-nucleus plasma, DM
was forming haloes that would later serve as seeds for galaxies. Depending on the mass
of the dark matter particle, these haloes either formed in the disintegration of bigger DM
haloes (top-down structure formation, light DM particles) or by coalescence of smaller clumps
(bottom-up structure formation, heavy DM particles). The visible matter consisted of charged
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particles (positive nuclei and negative electrons), and could not form structures due to the
repelling effect of Compton scattering. The rate of atomic hydrogen formation is described by
the Saha equation [83, 87]

1− X
X2 =

4
√

2× 1.2√
π

ηB
T

me
eB/T , (2.107)

where
X ≡ np

nB
= 1− nH

nB
(2.108)

is the relative abundance of protons to baryons, and where B = mp + me −mH = 13.6 eV is
the binding energy of hydrogen. Solving Eq. (2.107) gives a temperature of around 4000 K, or
0.4 eV, as the transition temperature from a plasma to a hydrogen gas. We see the light from
the plasma at the time around this transition (z ∼ 1100) as the Cosmic Microwave Background
(CMB).

During the era of electron-ion plasma, at a temperature around 1 eV, radiation stops being
the dominant form of energy in the Universe, being overtaken by matter (DM + visible
matter).

Hydrogen era: 0.4 eV ≳ T

After the transition from a plasma to a gas, the Universe becomes transparent, and visible
matter can fall into the DM haloes. This initiates star formation, which continues until present
day. At 9.8 billion years after the Big Bang, dark energy takes over as the dominant energy
source of the Universe. Presently, 13.8 billion years have passed since the Big Bang, and the
Universe has reached a temperature of 2.7 K, or 2× 10−4 eV.

2.3. Neutrino masses and physics beyond the Standard model

In Secs. 2.1 and 2.2, we outlined the most commonly accepted theories for particle physics
and cosmology. In this chapter we go through the reasons why the former is not enough for
a full description of nature. We also show some of the possible extensions that could solve
issues in the current framework, focusing mainly on the particle physics aspect of the modern
theories, rather than cosmology.

2.3.1. Motivations to go beyond the Standard model

To many physicists, the SM is simultaneously both exciting and boring. It’s exciting in the
sense that it accurately predicts the outcome of experiments, and provides us with a picture of
how nature works on very short distances. The boring part comes from this ability to predict:
the SM is so good that very few observations are left unexplained. Yet there are a plethora of
theoretical problems that motivate the venture beyond the SM into different extensions.
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Baryon asymmetry of the Universe

As is discussed at some length in Ch. 3, the observed difference in the number density of
baryons vs antibaryons in the Universe motivates the search for New Physics (NP), as the
SM does not explain how such an asymmetry came about. This problem has many solutions,
which are also covered in Ch. 3.

Neutrino mass

Neutrinos are massless in the SM, but as inferred from neutrino oscillation experiments [88,89]
at least two of the neutrinos have non-zero masses. The SM charged lepton weak gauge
interactions and Yukawa interactions are both diagonalised, at least conventionally, and
therefore it is not possible to diagonalise the neutrino mass matrix (c.f. Sec. 2.1.3). The
connection between the neutrino flavour states and mass states is parametrised by the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix U [90, 91], such that

|νi⟩ = U∗i1 |ν1⟩+ U∗i2 |ν2⟩+ U∗i3 |ν3⟩ , (2.109)

where i ∈ {e, µ τ} denotes the neutrino flavour, ν1, ν2, ν3 are the neutrino mass eigenstates,
and Uab is an element of the unitary PMNS matrix. The connection between masses and
oscillations can be seen by letting the state in Eq. (2.109) travel a distance L in the direction x̂,

|ψi(Lx̂, t)⟩ = U∗i1 |ν1⟩ e−iϕ1 + U∗i2 |ν2⟩ e−iϕ2 + U∗i3 |ν3⟩ e−iϕ3 , (2.110)

where ϕa = pµ
a xµ, and where pa is the 4-momentum of particle a. We can also express

Eq. (2.110) in terms of the flavour states,

|ψi(Lx̂, t)⟩ = cie |νe⟩+ ciµ
∣∣νµ

〉
+ ciτ |ντ⟩ , (2.111)

for coefficients
cij = (U∗i1Uj1e−iϕ1 + U∗i2Uj2e−iϕ2 + U∗i3Uj3e−iϕ3) . (2.112)

The probability to oscillate from νi to νj is now given by

P(νi → νj) = |
〈
νj
∣∣ψi(Lx̂, t)

〉
|2 = cijc∗ij . (2.113)

From the structure in Eq. (2.113), the oscillation probability is proportional to the differences
between the phases ϕ1, ϕ2 and ϕ3, which can be expressed as

ϕi − ϕj = (p0
i − p0

j )t− ( p⃗i − p⃗j)L =

(
(Ei − Ej)t−

(
p2

i − p2
j

pi + pj

)
L

)
=

(m2
j −m2

i )L

2Eν
, (2.114)

where we have assumed Ei = Ej = Eν and pi + pj = 2Eν. Clearly, Eq. (2.114) depends on the
mass difference between νi and νj. The observed neutrino oscillation involves three flavours,
which necessitates two mass splittings, implying that at least two out of the neutrinos are
massive.
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Solutions to the neutrino mass problem may involve introducing BSM fields, which can
generate a neutrino mass via tree- or loop-level diagrams. Perhaps the simplest solution is to
introduce to the SM a coupling

L ⊃ −yν
ij L̄

a
i ϕ̃aνRj + h.c. , (2.115)

where νR ∈ (1, 1, 0) is a right-handed neutrino. A problem with this solution is that in order
to get the correct neutrino mass mν ∼ O(10−2) eV, the coupling yν

ij ∼ O(10−13) has to be very
small47. Another problem is that the field νR, being a complete SM singlet, has the potential
to participate in a Majorana term

L ⊃ −1
2

Mν
ijν̄

c
RiνRj + h.c. , (2.116)

where Mν
ij can in principle be quite large. This is a problem because Eq. (2.116) induces lepton

number violation (LNV), which has not been observed, though it can easily be solved by
assuming that the scale of LNV is simply inaccessible to current experiments.

Dark matter

As detailed in Sec. 2.2, many of the most established modern theories of cosmology include a
DM component, but the detailed nature of DM is often not directly relevant. The experimental
evidence for the existence of DM is overwhelming: there is a wide range of astrophysical
observations that can be simultaneously explained by the introduction of a non-interacting
matter component (see Ref. [92] for an historical overview). It is not necessary for cosmology
that DM is a new particle, it could e.g. be made up of black holes [93, 94]. Alternatively,
some of the effects of DM could also be due to modified gravity [95, 96]. Many BSM theories
(often by construction) include a particle or a set of particles that can act as DM, by being
sufficiently non-interacting and stable, as well as having the correct mass. If DM does have a
particle nature, it could be involved in the solution to other unsolved problems of particle
physics, such as the origin of the matter-antimatter asymmetry or the generation of neutrino
masses. One motivation to consider DM as a particle is being able to explain the correct DM
abundance via thermal freeze-out or freeze-in. This provides a relatively simple explanation
for how the DM energy density came about. The energy density of DM is very close to that
of baryons [55]

ΩDM ≈ 5×ΩB , (2.117)

and many theories therefore postulate that they have a common origin [97–100]. Since baryons
have a particle nature, it is, in such a scenario, often believed that DM does as well. Finally,
the weak interaction strength between DM and visible matter could explain why neutrinos
have such a small mass. The generation of neutrino masses could occur via loop diagrams
involving DM particles [101], where the small coupling between DM and neutrinos, necessary
to explain the experimental non-detection of DM, naturally leads to a tiny neutrino mass.

47It can be argued that the smallness of the neutrino Yukawa coupling is not a problem at all, and that there is no
inherit reason to expect that all free parameters of the next theory beyond the SM are O(1).
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Anomalies

The above mentioned motivations to look for theories beyond the SM all have to do with
extending the currently established framework to explain observed phenomena, such as
neutrino oscillations or the gravitational effects of some invisible matter component. A more
straight-up version of this approach is to actively look for experimental results that deviate
from theoretical expectations, and find extensions to the SM that explain the discrepancy.
Historically this hunting for anomalies48 has been unsuccessful, the SM has prevailed through
very thorough scrutiny. For example, in 2015 both the ATLAS and CMS experiments at the
LHC in CERN reported an excess of diphoton events at an invariant mass of 750 GeV [102,103].
What looked like a signal of NP disappeared a few years later [104,105]. More recently, in 2020,
preliminary results from the KOTO experiment at J-PARC showed an excess of events in the
rare meson decay KL → πνν̄ [106], and later the same year this excess also disappeared [107].
We discuss this rare decay mode in more detail in Chs. 4 and 6.

There are further anomalies in the semileptonic decays of B-mesons that are still standing
to this day [108, 109]. In 2012, the BaBar collaboration reported a deviation from the expected
value in the ratio RD(∗) ≡ BR(B→ D(∗)τ−ν̄τ)/BR(B→ D(∗)ℓ−ν̄ℓ) [110], where a superscript ∗
denotes an excited meson. Similarly, in 2014, the LHCb collaboration reported an anomaly in
RK ≡ BR (B+ → K+µ+µ−) /BR (B+ → K+e+e−) [111]. For the former mode, a more recent
experimental result from the Belle collaboration is in less tension with the SM [112]. However,
combined with the initial results, RD(∗) still remains anomalous. For RK the story is different.
The 2021 result from LHCb RK = 0.846+0.042+0.013

−0.039−0.012 [113] is consistent with the 2019 result
RK = 0.846+0.060+0.016

−0.054−0.014 [114], while in the SM, RK should be equal to 1 up to O(1%) corrections
from electromagnetic effects and the mass difference between e and µ [115, 116]. This leads to
a discrepancy between the SM expectation and LHCb experimental result with a statistical
significance49 of 3.1σ [113]. The consistent discrepancy between theory and experiment has
led to RK being one of the more well-studied anomalies.

Another anomaly related to muons is the discrepancy between the theoretical and experi-
mental values for the anomalous muon magnetic moment aµ ≡ (gµ − 2)/2, where gµ is the
gyromagnetic ratio of the muon50. In 2006 the Muon g-2 collaboration obtained an experi-
mental value for aµ that differed from the SM with a significance of 3.7σ [117]. This deviation
was confirmed in 2021, increasing the significance to 4.2σ [118, 119]. However, a recent result
from the Budapest-Marseilles-Wuppertal (BMW) collaboration regarding the calculation of
the leading hadronic contribution to the muon magnetic moment significantly reduced the
tension between the experimental result and the SM [120], turning the significance of the

48Note that the type of anomaly that is referred to here has little to do with the anomalies that are discussed in
Sec. 2.1.5.

49The statistical significance of an experimental result in particle physics is usually given in terms of standard
deviations (σ). For a result to be claimed as a discovery, a significance of 5σ is usually required.

50The gyromagnetic ratio is related to the magnetic moment M⃗ via M⃗ =
gµe
2mµ

S⃗, where S⃗ is the spin vector. At
tree-level it has the value gµ = 2, such that aµ ≡ (gµ − 2)/2 only captures the loop-induced effects. Magnetic
moments are generated at loop level because none of the SM particles have a magnetic charge (i.e. there are no
magnetic monopoles). An excess in the magnetic moment of the muon can therefore be seen as a hint that
there are more particles running in the loop than we have accounted for, leading to evidence for BSM particles.
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anomaly into 1.5σ.
Regarding neutrinos, there is an anomaly that started with a result from the LSND ex-

periment in 2001 [121]. In this experiment, a search was conducted to observe ν̄µ → ν̄e

oscillations, and the number of observed events was consistent with an oscillation probability
P = (0.264± 0.112). However, this oscillation probability implied a mass squared difference
∆m2 ∼ 1 eV2 in the three-flavour model, inconsistent with solar and atmospheric data [122].
The MiniBooNE experiment was built to investigate the LSND anomaly, and it eventually
lead to a confirmation of the excess [123, 124]. However, in MiniBooNE the observed excess
could be caused by a range of different processes. Being a Cherenkov detector, MiniBooNE
cannot distinguish between a single electron and an electron-positron pair coming from
a converted photon [125]. To resolve this issue, the liquid argon time projection chamber
experiment MicroBooNE was commissioned, sitting upstream of MiniBooNE in the very same
neutrino beam but featuring superior event reconstruction capabilities [126]. A first result
from MicroBooNE rules out the underestimation of ∆-baryon production as the source of
the MicroBooNE excess at 94.8% CL [127]. One of the most common explanations for the
LSND/MiniBooNE anomaly is the existence of a light sterile neutrino [128–130], and this
explanation is still not ruled out, with the anomaly still being there. Future measurements
might shed light on the origin of the LSND/MiniBooNE anomaly, but for now there is no
definite answer.

There are more anomalies in the fields of particle physics and cosmology than the ones
listed above, too many to all be treated in detail here. These anomalies include e.g. an
underabundance of cosmological 7Li [131], a discrepancy between different measurements of
the Hubble constant [132, 133], a deviation from the expected signal in nuclear transitions
of 8Be and 4He [134, 135], an excess of cosmic rays [136–139], and a difference in the CP
asymmetry between the decay B+ → K+π0 and B− → K+π− [140].

Gauge unification

As discussed in Sec. 2.2.2, there are reasons to believe that the gauge group of the SM SU(3)c×
SU(2)L ×U(1)Y comes from the breaking of some larger gauge group at a very high energy,
often through some intermediate extended symmetry. In this case, the fundamental forces
of the SM could be unified into a single force, in what is known as a Grand Unified Theory
(GUT) [141–143]. If such a breaking does occur, the fermions of the SM could be explained as
being different incarnations of a small number or even a single type of fermion. The coupling
constants of the SM would no longer be free parameters, but rather they would depend on the
coupling constant of the GUT gauge group, as well as running effects. However, according to
Goldstone’s theorem, there is a massless Goldstone boson for each broken generator of the
GUT gauge group, and depending on the model these can be quite many. In order to explain
the experimental non-appearance of such degrees of freedom, they are often assumed to be
eaten by new massive gauge bosons via a Higgs-like mechanisms, and these gauge bosons
are assumed to be too massive to have been detected. Many GUT models also lead to proton
decay, which is constrained by the stringent limit on the proton lifetime of τ > 2.4× 1034 years
for the p→ e+π0 mode, set by the Super-Kamiokande collaboration [144]. There are several
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different candidate gauge groups which can achieve unification of the SM forces. Examples of
these are SU(3)c × SU(2)L × SU(2)R ×U(1)B−L [145–147], SU(4)× SU(2)L × SU(2)R [148],
SU(4)× SU(2)L ×U(1)R [149–151], SU(5) [152], SO(10) [153], E6 [154], and many more.

Hierarchy problem

One of the historically most firmly believed signs for the need of BSM physics is a theoretical
problem known as the Hierarchy problem51 [155–157]. This problem is connected to the
quantum corrections to the Higgs mass, which depend on the momentum as well as the
masses and couplings of all fields that the Higgs boson couples to. The momentum-dependent
quantum corrections appear as loop-level diagrams, where any field that the Higgs couples
to can contribute in a loop, and therefore provide a correction to the Higgs mass52. Assuming
that the SM is valid up to the high energy scale M ∼ 1015 GeV, corrections to the Higgs mass
can only come from terms proportional to M2. At the scale M, there are many contributions
to the Higgs mass, including the classical mass as well as quantum corrections. Since we
assumed M to be the cut-off of the SM, the parameter mh ∼ 125 GeV should arise even when
the momentum scale in the quantum fluctuations is taken to be M. The problem here then
lies in the large hierarchy between M and mh, since quantum corrections with momentum M
are expected to produce mass parameters of order M. In order for different contributions at
the scale M to approximately cancel each other such that the mass scale mh is produced, the
physics at the scale M has to be extremely fine-tuned. In fact, different terms at M have to
cancel up to 26 decimal places [158]. There is nothing inherently inconsistent with such a fine
tuning, but it is believed by many that it is a sign that something is wrong with the current
theory.

The Hierarchy problem is not unique to the Higgs boson, as can be seen in the following
example, which is taken from Ref. [159]. Consider the pion π, which approximately obeys an
SU(2) symmetry containing a neutral and charged component π0 and π±, respectively, with
masses mπ0 = 135 MeV and mπ± = 140 MeV, such that π = exp(∑i=0,± πiσi/ fπ), where σi
are the Pauli matrices and fπ is a structure constant. The SU(2) symmetry is broken by the
mass difference between π0 and π±, but it is approximately conserved. The mass term in the
Lagrangian of this model respects the SU(2) symmetry, and is given by

L ⊃ 1
2

m2
π f 2

π Tr π =
1
2

mπ(π
0)2 +

1
2

mππ+π− + . . . . (2.118)

However, the charged pions have electromagnetic interactions while the neutral ones do not,
as can be seen in the kinetic part of the Lagrangian

L ⊃ 1
2
(
∂µπ0

)2
+ |
(
∂µ + ieAµ

)
π+|2 . (2.119)

51Hierarchy here refers to a hierarchy of mass scales.
52Note that not all contributions appear with the same sign. In fact, bosons and fermions in the loop lead to

different signs, such that if the contributions from one increases the mass, those from the other will reduce it.
In the SM, the biggest quantum correction comes from the top quark.
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It could be possible to account for the observed mass difference between π0 and π± by the
electromagnetic interaction of π±. Using an Effective field theory53 (EFT) description of the
electromagnetic contribution, we can estimate its size as

δL =
e2

(4π)2 Λ2
ππ+π− , (2.120)

where Λπ is the energy scale of the electromagnetic contribution. If Λπ ≈ 750 MeV, the
term in Eq. (2.120) could precisely explain the observed mass difference between π0 and π±.
However, if we had excluded the existence of any new particles below some very high scale
M ≫ Λπ, and found no new particles around Λπ, there would be nothing to mediate the
electromagnetic interaction that we think explains the pion mass difference. Hypothetically,
particles could still exists at scales similar to M, but the electromagnetic contribution from
these particles would be huge, and we would then be in a tough situation to explain why their
presence is not more clearly seen in the pion mass splitting. There is a way out if we assume
that there is some other NP occurring at M, which contributes to the pion mass difference via

δL = −δ2
mπ+π− . (2.121)

If δ2
m ≈ M2e2/(4π)2, this term would almost cancel the term in Eq. (2.120). However,

we then have a Hierarchy problem, since the involvement of physics at the scale M in a
mass difference ∆mπ ≪ M begs an explanation: why is the physics at the high scale M
affecting the low-scale physics at δm? Luckily, there is the ρ meson, which comes in at
mρ = 775 MeV [14]. This particle mediates the electromagnetic interaction, which explains
the pion mass difference [160], and therefore we do not have a Hierarchy problem among the
pions in the SM.

For the Higgs boson, the quantum correction to its mass coming from the top quark can be
written as

δL = 6
λ2

t
(4π)2 Λh|h|2 . (2.122)

In order for the quantum correction to stay below the scale of EWSB, we would require
Λh ≲ 500 GeV. However, unlike in the pion example, no new particles that fit the criteria
have been found at this scale. Finding a solution to the Hierarchy problem was one of the
main motivations for Supersymmetry (SUSY) [161–164]. However, the non-observation of
supersymmetric particles at the LHC has lead to its gradual decrease in popularity as a
solution. Other solutions include extra dimensions [165, 166] or the treatment of the Higgs as
a Nambu-Goldstone boson of a broken global symmetry [167, 168].

This concludes our list of some of the most commonly encountered motivations to go
beyond the SM. In Sec. 2.3.2 we discuss the different fields that we consider as possible
extensions to the SM in subsequent chapters, and in Sec. 2.3.3 we describe the effective field
theory framework, in which SM extensions can be studied model-independently.

53See Sec. 2.3.3.
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Figure 2.3.: Type I (left), Type II (centre), and Type III (right) seesaw diagrams.

2.3.2. Phenomenology of beyond-the-Standard-model particles

There is a wide range of models that incorporate BSM physics in order to explain different
observed phenomena or to solve theoretical issues. Many such models involve new particles,
which can be sought for experimentally. There are too many different kinds of BSM models
to go through each of them here. Instead, this section deals with the BSM particles that are
most relevant for the later chapters.

Many of these particles can play significant roles in cosmological evolution. Some of
the scalar fields could potentially act as inflatons, and some particles could be dark matter
candidates. Rather than focusing on such aspects, we are instead interested in lepton/baryon
number violation and neutrino masses, and in terms of cosmology we mainly concentrate on
the generation of a baryon asymmetry of the Universe. Notable examples of BSM phenomena
that will not be mentioned further is the axion [169–171] and Kaluza-Klein states [172–174].

In Sec. 2.3.2 we list the different BSM fields that are considered in this thesis, most notably
in Ch. 5. In Sec. 2.3.2 we discuss the three seesaw fields, after which we describe different
BSM scalar-, fermion-, and vector fields in Secs. 2.3.2, 2.3.2, and 2.3.2, respectively.

Seesaw particles

As discussed in Sec. 2.3.1, there is experimental evidence for the existence of neutrino masses
but the mechanism that generates them remains unknown. Neutrinos could acquire their
mass though a Dirac term via an interaction with the Higgs boson,

LDirac = −yν
ijL

a
i ϕaν̄Rj + h.c. (2.123)

with νR being the right-handed neutrino, or through a Majorana mass term

LMajorana = −C(5)ij
1

Λ(5)
1

La
i Lb

j ϕaϕb + h.c. , (2.124)

where the factor C(5)ij
1 /Λ(5)

1 has mass dimension −1 and encodes effects of NP (see Sec. 2.3.3).
In fact, Eq.(2.124) is not renormalisable, and in order to find a satisfactory theory for neutrino
Majorana masses we need to add BSM fields, since the absence of NP would lead to Cij/Λ = 0.
One such NP scenario can be realised by adding to Eq. (2.123) a bare mass term54 for the

54Bare mass here refers to a term with a coefficient M of mass dimension 1, such that L ⊃ −Mψ̄cψ. The mass is
bare in the sense that it does not come from an interaction with any other particle. Only field bilinears that are
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right-handed neutrino, which we now rename νR → N to signify this modification55, such
that

LType-i = −yνN
ij La

i ϕaNj −
1
2

MijNiNj + h.c. , (2.125)

where we have identified N = N̄c and therefore written only N. In Eq. (2.125) we wrote the
Lagrangian with an index Type-i in anticipation of realising a Majorana mass term in the spirit
of Eq. (2.124) via the so-called Type-i seesaw mechanism [175]. Diagrammatically, the this
mechanism can be understood as two instances of an interaction between the lepton doublet
L and the Higgs doublet H, in-between which there is a right-handed neutrino N with a
Majorana mass insertion, as illustrated in Fig. 2.3 (left). In this way the left-handed neutrino
mixes with the right-handed one to produce an effective left-handed neutrino mass. We can
then redefine the fields νL and N in order to obtain fields with definite masses that do not
mix. To see this, we first observe that Eq. (2.125) can be written in matrix form,

LType-i = −
1
2
(
νT

L NT
) (mL mT

D
mD mR

)
C−1

(
νL

N

)
+ h.c. . (2.126)

where C is the charge conjugation matrix. Note that Eq. (2.126) is written after EWSB, and
that the fields νL and N are written as vectors in flavour space. This promotes the masses
from Eq. (2.125) to matrices such that

(mD)ij = yij⟨ϕ⟩, (mR)ij = Mij . (2.127)

For completeness we have also introduced mL as a Majorana mass matrix for νL that could
arise in different models. We now wish to redefine the fields νL → ν′L and N → N′ according
to (

νL

N

)
= W

(
ν′L
N′

)
, (2.128)

where W is defined such that the mass matrix is diagonalised,

WT
(

mL mT
D

mD mR

)
W =

(
m′L 0
0 m′R

)
. (2.129)

This leads to ν′L and N′ being separate mass eigenstates that do not mix. For W we now use
the ansatz of a rotation matrix56

W =

(√
1− sin2 θ sin θ

− sin θ
√

1− sin2 θ ,

)
(2.130)

complete singlets under the gauge group of the model under consideration can have bare mass terms, since
such a term would otherwise violate the gauge symmetry.

55Though it is a convention not strictly subscribed to by some, the notation νR is often reserved for light
right-handed neutrinos in the literature, and N is instead used for higher mass neutrinos.

56Note that in Eq. (2.130) each entry should be thought of as being multiplied by an identity matrix, though this
is not shown explicitly. By writing Eq. (2.130) in this way we have assumed that the different generations of
νL and N do not mix with each other. In general, we can promote the mixing angle to a matrix sin θ → B,
sin2 θ → B†B to treat also inter-generational mixing [176].
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where for small angles θ we use the approximation√
1− sin2 θ ≈ 1− 1

2
sin2 θ. (2.131)

Inserting Eq. (2.130) in Eq. (2.129) now gives the following set of equations:

m′L = (1− 1
2

sin2 θ)

(
mL(1−

1
2

sin2 θ)−mT
D sin θ

)
− sin θ

(
mD(1−

1
2

sin2 θ)−mR sin θ

)
,

(2.132)

0 = (1− 1
2

sin2 θ)

(
mT

D(1−
1
2

sin2 θ) + mL sin θ

)
− sin θ

(
mR(1−

1
2

sin2 θ)−mD sin θ

)
,

(2.133)

0 = (1− 1
2

sin2 θ)

(
mD(1−

1
2

sin2 θ)−mR sin θ

)
+ sin θ

(
mL(1−

1
2

sin2 θ)−mT
D sin θ

)
,

(2.134)

m′R = (1− 1
2

sin2 θ)

(
mR(1−

1
2

sin2 θ) + mD sin θ

)
+ sin θ

(
mT

D(1−
1
2

sin2 θ) + mL sin θ

)
,

(2.135)

which, assuming mL ≪ mR and mL ≪ mD, gives us57 mD = mR sin θ and subsequently

m′L ≈ mL −mT
Dm−1

R mD, (2.136)

m′R ≈ mR . (2.137)

Note that the second term comes with an inverse power of mR. This tells us that the heavier
N is, the lighter νL will be58.

A similar analysis can be performed for the Type-iii seesaw mechanism [177, 178], which is
illustrated in Fig. 2.3 (right), and for which the Lagrangian is given by

LType-iii = −yνΣ
ij La

i ϕbΣab
j −

1
2

MijΣab
i Σab

j + h.c. . (2.138)

The main difference between the Type-i and Type-iii seesaw mechanisms is that the latter is
mediated by an SU(2)L-triplet fermion Σ rather than a right-handed neutrino N as in the
former case. Below EWSB the tree-level neutrino mass Lagrangian is identical between these
two seesaw types, if the neutral component of Σ is substituted for N. The remaining seesaw
mechanism, Type-ii [179–181], is illustrated in Fig. 2.3 (centre) and its Lagrangian is given by

LType-ii = −y∆ν
ij La

i Lb
j ∆ab − µϕ̃aϕ̃b∆ab + h.c. . (2.139)

For Type-ii seesaw there is no additional fermion for the neutrino to mix with. Instead,
neutrinos get their mass from the mL-entry in Eq. (2.129).

57Note that since we assumed there to not be any mixing between the generations, mD and mT
D are the same

matrix (mD is diagonal).
58This effect is what gives the name to the seesaw mechanism. When one side of a seesaw goes up the other goes

down, and when one neutrino goes massive the other goes light.
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Field Representation

N F(1, 1, 0)(0)
∆ S(1, 3, 1)(0)
Σ F(1, 3, 0)(0)

Table 2.4.: The three seesaw fields N, ∆, and Σ, along with their representation under the SM
gauge group. Here X(a, b, c)(3B), where B is the baryon number, should be read
as X ∈ {S, F, V} denoting whether the field is a scalar (S), fermion (F), or vector
(V), and (a, b, c) denoting the representation of the field under the SM gauge group
GSM = SU(3)c × SU(2)L ×U(1)Y, such that the field is an a-plet under SU(3)c,
b-plet under SU(2)L, and carries a hypercharge c.

There is no other possibility to generate a tree-level neutrino Majorana mass with only two
mass insertions and one mediator. Therefore, the three seesaw types constitute the simplest
realisations of neutrino Majorana masses, relying only on the addition of a single BSM field
each. These fields are listed in Tab. 2.4 along with their representation under the SM gauge
group.

Extended scalar sector

The scalar potential59 VSM(ϕ) of the broken SM consists only of the physical Higgs field, and
contains two self-interaction terms and a mass term

VSM(ϕ) =
1
2

m2
hh2 + λ3h3 + λ4h4 . (2.140)

The Higgs vev v and the mass mh of the physical Higgs field are related to the couplings λ3

and λ4 in the SM according to the relations

λ3 =
m2

h
2v

, λ4 =
m2

h
8v2 . (2.141)

The value for the mass mh = 125.25 ± 0.17 GeV at 95% CL is obtained experimentally
at the LHC [14], and the value of the vev is related to the Fermi constant GF via v =

(2GF)
−1/2 = 173.35 GeV, where GF in turn is measured from the lifetime of the muon [182].

Therefore, values for the Higgs self-couplings are obtained indirectly as λ3 ≈ 45 GeV and
λ4 ≈ 0065. Direct measurements of these couplings could be possible [183], notably so in
future colliders such as FCC-hh [184], FCC-ee [185], ILC [186], CLIC [187], and CEPC [188].
Such measurements could shed light on possible BSM scenarios, since these couplings can
have different values with the introduction of new particles, or with modifications of the
Higgs boson as e.g. in composite Higgs models [189–191].

Modifications of the potential VSM(ϕ) → VBSM(ϕ, . . . ) can include a number of different
scalar fields depending on the model. They may be charged under any SM subgroup (colour,

59Technically VSM(ϕ) is a potential density in three dimensions and not a potential.
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Field Representation

S S(1, 1, 0)(0)
ξ S(1, 1, 0)(6)
Ξ S(1, 3, 0)(0)
h′ S(1, 1, 1)(0)
φ S(1, 2, 1/2)(0)

Θ1 S(1, 4, 1/2)(0)
Θ3 S(1, 4, 3/2)(0)
S1 S(3, 1, 1/3)(−1)
R̃2 S(3, 2, 1/6)(1)
S3 S(3, 3, 1/3)(−1)

Xdd S(3, 1, 2/3)(−2/3)
Xuu S(3, 1,−4/3)(−2/3)
Xud S(3, 1,−1/3)(−2/3)

Table 2.5.: A list of non-seesaw BSM scalar fields that are used in subsequent chapters, along
with their representation under the SM gauge group. Here X(a, b, c)(3B), where B
is the baryon number, should be read as X ∈ {S, F, V} denoting whether the field
is a scalar (S), fermion (F), or vector (V), and (a, b, c) denoting the representation of
the field under the SM gauge group GSM = SU(3)c× SU(2)L×U(1)Y, such that the
field is an a-plet under SU(3)c, b-plet under SU(2)L, and carries a hypercharge c.

electroweak, or hypercharge) and could carry a non-zero lepton/baryon number. Some of
these fields (the ones that are also used in subsequent chapters) are listed in Tab. 2.5, but note
that this is by no means a complete list of possible BSM scalar fields. Scalar extensions of the
SM are relatively harmless as compared to fermionic or vector extensions, since no anomaly
cancellation is needed (as with chiral fermions), and no higher gauge symmetry is needed in
order to motivate their existence (as some argue is the case for massive vector fields).

Vector-like fermions

As seen in Sec. 2.1.5, chiral fermions require anomaly cancellation in order for the theory to
be consistent. If the anomalies cancel, there has to be a delicate balance between the charge
assignments of the different chiral fermions under each gauge group considered in the theory.
In the SM, which contains chiral fermions, the different charges of SU(3)c, SU(2)L, and U(1)Y
distributed among the fermions lead to cancellations in each scenario separately, leading to a
cancellation of anomalies. Suppose now that we want to extend the SM by a chiral fermion
that is charged under any of the SM gauge groups. We would then disrupt the balance in
at least one anomalous diagram, and to make up for it we could have to add more chiral
fermions with particular charge assignments until the theory becomes consistent again, which
is not an easy task given how many different anomalous diagrams exist. It would be far easier
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Field Representation

Σ1 F(1, 3,−1)(0)
∆1 F(1, 2,−1/2)(0)
∆3 F(1, 2,−3/2)(0)
F4 F(1, 4, 1/2)(0)
U F(3, 1, 2/3)(1)
Q5 F(3, 2,−5/6)(1)
Q7 F(3, 2, 7/6)(1)
T1 F(3, 3,−1/3)(1)
T2 F(3, 3, 2/3)(1)

Table 2.6.: A list of non-seesaw BSM fermion fields that are used in subsequent chapters, along
with their representation under the SM gauge group. Here X(a, b, c)(3B), where B
is the baryon number, should be read as X ∈ {S, F, V} denoting whether the field
is a scalar (S), fermion (F), or vector (V), and (a, b, c) denoting the representation of
the field under the SM gauge group GSM = SU(3)c× SU(2)L×U(1)Y, such that the
field is an a-plet under SU(3)c, b-plet under SU(2)L, and carries a hypercharge c.

to accommodate additional fermions if they were vector-like60, since they would then simply
cancel their own contributions to the chiral anomalies61. Many BSM models that include new
fermions therefore consider them to be vector-like. Some such fermions that are commonly
considered are listed in Tab. 2.6.

New heavy vector bosons

As seen in Sec. 2.2.2 and Sec. 2.3.1, there are reasons to believe that the SM gauge group is not
the final symmetry of our Universe. Instead, it is possible that another symmetry is found at
higher energy scales, which subsequently breaks into the SM. If this is the case, there would
be associated gauge bosons and massless Goldstone bosons that appear as a consequence of
the symmetry breaking. If the process of going from the higher symmetry to the SM is similar
to the electroweak phase transition, the new gauge bosons would eat the Goldstone modes
and become very massive62, which would explain their non-appearance in experimental
searches. Consider e.g. the Georgi-Glashow model [152], in which the symmetry group SU(5)
is used to unify the forces of the SM. Following Ref. [20] we see that one generation of SM

60Vector-like here means that the left-and right-handed components of the fermion are equally charged under all
gauge groups. Note that in this way, if the field that we add is a non-singlet of SU(2)L, this must also be true
for the right-handed component, even though the L supposedly stands for left.

61Note however that if we have a chiral fermion that is uncharged under U(1)Y it does not contribute to any
anomalous diagram (c.f. Sec. 2.1.5). As a consequence of this, one can simply add fermions such as Σ and N
from Tab. 2.4 and let them be chiral without disturbing the consistency of the model.

62The mass of the new gauge bosons is usually considered to be around the scale at which the symmetry breaks,
which is true unless the mixing angle between them takes some peculiar value.
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Field Representation

W ′1 V(1, 1, 1)(0)
V3 V(1, 2, 3/2)(0)
U1 V(3, 1, 2/3)(1)
V̄2 V(3, 2,−1/6)(−1)
U3 V(3, 3, 2/3)(1)
Z′1 V(1, 1, 0)(0)

Table 2.7.: A list of BSM vector fields that are used in subsequent chapters, along with their
representation under the SM gauge group. Here X(a, b, c)(3B), where B is the
baryon number, should be read as X ∈ {S, F, V} denoting whether the field is a
scalar (S), fermion (F), or vector (V), and (a, b, c) denoting the representation of the
field under the SM gauge group GSM = SU(3)c × SU(2)L ×U(1)Y, such that the
field is an a-plet under SU(3)c, b-plet under SU(2)L, and carries a hypercharge c.

fermions appear63 from the 10 and 5 of SU(5) according to64

10→
(
3, 1,− 2

3

)
⊕
(
3, 2, 1

6

)
⊕ (1, 1, 1) ,

5→
(
3, 1, 1

3

)
⊕
(
1, 2,− 1

2

)
.

(2.142)

The gauge bosons are appropriately found in the adjoint 24 which breaks as

24→ (8, 1, 0)⊕ (1, 3, 0)⊕ (1, 1, 0)⊕
(
3, 2,− 5

6

)
⊕
(
3, 2, 5

6

)
. (2.143)

In addition to the SM gauge bosons, we here find two new fields under the
(
3, 2,− 5

6

)
and

(
3, 2, 5

6

)
representations, which both acquire masses in the SU(5) breaking. These

representations are associated with the vector leptoquark65 V2, which has a number of
phenomenological detection prospects. Perhaps most notably, it can lead to rapid proton
decay in the channel p+ → π0e+, which has so far avoided detection up to a half time of
τp+→π0e+ > 2.4× 1034 years [144]. In GUT models, the mass of new heavy gauge bosons
is typically assumed to lie around the unification scale MGUT, which is usually taken to be
MGUT ≳ 1014 GeV. Therefore, if the V2 leptoquark is found at the LHC close to current limits
(∼ O(few) TeV [193]), it is unlikely to come from SU(5), but it could come from a similar
symmetry breaking involving another gauge group. In this way, heavy vector bosons are
theoretically motivated since their origin is similar to that of the SM gauge bosons. However,
a Lagrangian can very well contain both kinetic and interaction terms involving a heavy
vector field without requiring that this field is part of the covariant derivative or has an

63Note that right-handed neutrinos can be found in the singlet 1→ (1, 1, 0).
64Comparing to other sources, e.g. [192], there is a mismatch in the U(1) charge of the SM representation in

Eq. (2.142). This is due to a different normalisation convention of the SU(5) coupling constant g5, which is

here matched to the U(1)Y coupling constant as g5 =
√

5
3 g1 at the breaking scale.

65Though we here refer to them as leptoquarks in order to tie them into a broader picture of BSM phenomenology,
these SU(5) gauge bosons are often referred to as the X and Y bosons.
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associated gauge symmetry. In this agnostic approach, the origin of the vector field from
a theoretical perspective is of secondary interest, while its phenomenology is primary. In
subsequent chapters this philosophy is employed, and the vector fields considered are those
shown in Tab. 2.7.

This concludes our (partial) list of BSM fields that could serve as extensions to the SM. In
Sec. 2.3.3 we describe a framework in which the effects of these fields can be studied in an
effective and model-independent way.

2.3.3. Effective field theory

A separation of scales in physical systems often leads to an isolation of macroscopic from
microscopic phenomena, in the sense that the physics at short distances does not significantly
affect relatively large structures. This holds true also in particle physics [194, 195]. For
example, the gravitational interaction between two protons is neglected at colliders such as
the LHC, where the beam energy per proton is much less than that needed to resolve structure
at scales short enough for gravity to be important66. Less extremely, the gauge bosons W± of
the SM are much more massive than any other energy scale involved in β-decays of nuclei,
such that predictions for the rate of this process can be made without needing to know the
dynamics of W±. In the first example, the small-scale interaction (gravitation) is weak enough
to not affect the collision process at all, and it can be safely ignored. In the second example
however, the W± boson is what actually mediates the β-decay, which would not be possible
without it. We can therefore not ignore the W± boson, but what we can do is ignore its
dynamics, and instead treat the interaction as being point-like. In fact, this is how β-decay
was first successfully described in 1933 [196], long before the discovery of the W± boson in
1983 [197]. Rather than using the kinetic terms from the SM Lagrangian,

LSM ⊃ −
1
2

gQ̄γµ

(
Wµ

1 σ1 + Wµ
2 σ2
)

Q− 1
2

gL̄γµ

(
Wµ

1 σ1 + Wµ
2 σ2
)

L , (2.144)

we write an effective interaction

Leff = −
4GF√

2

(
ēγµPLνe

)
(ūγµPLd) , (2.145)

where GF =
√

2g2/8m2
W is the Fermi constant. In fact, Eq. (2.145), as well as the fully leptonic

analogue, is often referred to as the Fermi interaction. In going from Eq. (2.144) to Eq. (2.145),
we expand the W±-mediator in terms of its momentum p divided by its mass mW , and keep

66Note that in the wave-particle duality of quantum excitations, a high energy corresponds to short wavelengths
λ ≪ ℓ0, which in turn can resolve structures at smaller scales ℓ0. Longer wavelength particles λ ≫ ℓ0 are
blind to the details of structures at short distances. This is why in e.g. medical physics electron spectroscopy is
used where X-rays cannot reveal enough detail, and neutron spectroscopy is used where even electrons fail.
The increasing typical energy of the particle Eγ < Ee < En associated with the mass hierarchy mγ < me < mn
leads to a shorter wavelength λ ∝ 1/m.
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only the zeroth order term,

−i
(

ηµν − pµ pν

m2
W

)
p2 −m2

W
=

i
m2

W

ηµν − p̂µ p̂ν
p2

m2
W

1− p2

m2
W

≈ iηµν

m2
W

. (2.146)

This was done under the assumption that the momentum is small, p2 ≪ m2
W , which is indeed

the case in β-decay67. This way of treating the W±-mediated process as an effective point
interaction does lead to accurate predictions, and it is our first example of an effective field
theory (EFT). One drawback of this treatment is that the effective Lagrangian in Eq. (2.145)
is not renormalisable, and therefore it does not lead to a consistent theory on its own. This
can be seen by noting that the operator in Eq. (2.145) has mass dimension68 6 in order to
match the dimension of the Lagrangian density of the LHS, since GF has dimension −2
([GF] = −2). A full UV-complete69 Lagrangian is needed in order to have a consistent theory,
but an effective Lagrangian can still be used to connect models to experiment. Furthermore,
the EFT formalism is only valid so long as the energy scales involved in a given process
are below the mass of the particle of which the dynamics are neglected. This is the case in
β-decay, where the observable energy scale involved in the process | p⃗e| is much less than the
mass scale of the heavy physics mW . If this were not the case the whole formalism would
have been invalid, since we could not expand in powers of p2/m2

W in Eq. (2.146). It is also not
enough that the interaction strength is weak, such that e.g. GF is small in Eq. (2.145). Since
GF depends on both the coupling g2 and the mass m2

W , it could be small as a consequence of
small couplings rather than a large mass, but the consistency condition with regards to the
expansion of the mediator depends only on the mass and momentum, not on the coupling.

Standard model effective field theory

There are many different EFTs used in different branches of particle physics. For example,
in chiral perturbation theory (ChPT or χPT) the dynamics above ΛQCD are neglected. This
EFT assumes a chiral SU(3)L × SU(3)R symmetry among the u-, d-, and s-quarks, and is
used in the physics of light hadrons. Another example is low-energy effective field theory
(LEFT), in which the broken SM symmetry SU(3)c ×U(1)em is used and the dynamics of
the weak gauge bosons W± and Z are neglected70. In subsequent chapters, one EFT that
is reoccurring is Standard Model effective field theory (SMEFT) [198–201]. In this EFT it is
assumed that the SM gauge symmetry GSM = SU(3)c × SU(2)L ×U(1)Y is obeyed, and the
fields for which the dynamics is neglected are those that are heavier that the EWSB scale.

67This can be seen by noting that the kinetic energy available in the decay is roughly equal to the mass difference
between the neutron and proton

√
p2 ∼ |mn −mp| ∼ O(1 MeV), while the W± mass mW ≈ 80.4 GeV is much

greater.
68The term mass dimension is often simply abbreviated as dimension in the EFT literature. Note however that this

has nothing to do with spacetime dimensions.
69The term UV-complete means that a theory is not effective, no new fields or interactions need to be introduced

at ultraviolet (UV) energy scales.
70The Fermi interaction in Eq. (2.145) is therefore an example of LEFT.
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This means that all SM particles are fully taken into consideration, while it is assumed that
some heavy BSM fields could mediate interactions that would not be present in the SM alone,
as long as each interaction is Lorentz invariant and obeys the gauge symmetry GSM. All
possible combinations of fields can then be clumped together in operators similar to the
Fermi interaction operator in Eq. (2.145). These operators Oi are usually sorted by mass
dimension, and since the SM already contains every possible 4-dimensional term that can
be constructed out of the SM fields, the SMEFT operators all have mass dimensions D ≥ 5.
In fact, at dimension-5 there is only a single SMEFT operator O(5)

1 that can be constructed,
the Weinberg operator given in Eq. (2.124). At higher dimensions there are significantly more
operators, where as a rule of thumb their number increases with increasing dimension. The
full SMEFT Lagrangian may then be written as a sum,

LSMEFT = LSM +
∞

∑
D=5

ND

∑
i

C(D)
i

ΛD−4
i

O(D)
i . (2.147)

Here D is the dimension of the operators Oi for i ∈ {1, . . . , ND}, where ND is the number of
operators at dimension D, C(D)

i is a dimensionless coefficient called the Wilson coefficient71,
and Λi is the energy scale at which the BSM mediators lie. The dimensions of Λ−(D−4) and
O(D)

i perfectly balance, since we have [Λi] = 1, [C(D)
i ] = 0, and [Oi] = D. The dimension of

an operator reveals what combinations of fields and derivatives it could possibly contain, via
the relations72

[ψ] = 3
2 , [ϕ] = 1, [Vµ] = 1, [Dµ] = 1, [Xµν] = 2 . (2.148)

Here ψ is a fermion, ϕ is a scalar, Vµ is a vector, Dµ is a covariant derivative, and Xµν is a
field strength. As a rule of thumb, the higher the dimension of an operator the less stringent
any experimental constraints on the scale of NP Λi will be. This can be seen by noting that
experimental constraints are generally put on observable quantities such as cross sections σ,
where

σ ∝ |M|2 ∝ | ⟨out| Oi |in⟩ |2 ∝ Λ−(2D−8) . (2.149)

An experimental limit on the cross section σ < X then translates into a limit Λ < X2D−8. For
larger D, this limit increases, resulting in less stringent limits on Λ. The sum over dimensions
in Eq. (2.147) should therefore be truncated at a certain dimension depending on the accuracy
sought. Using EFTs such as SMEFT therefore allows for a systematic treatment of BSM
physics without being primarily concerned with models. It leads to a model-independent
way of connecting experiment to theory, where different models lead to different operators,
which in turn have distinct experimental signatures.

71Sometimes C(D)
i /ΛD−4

i is simply written as Ci, in which case Ci is sometimes also called the Wilson coefficient,
with mass dimension [Ci] = 4− D.

72By using these relations we can now confirm that the operators in Eqs. (2.124) and (2.145) are dimension 5 and
6 respectively.
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All SM particles behaved as radiation right after the Big Bang, since they were ultra-relativistic,
and the number density n f of a given thermalised fermion f was close to that of photons γ.
Today the story is very different, the ratio ηB = nB/nγ of baryon to photon number densities
is1 [55]

ηB = (6.20± 0.15)× 10−10 68% C.L , (3.1)

showing that light-particles are much more abundant than matter2. What happened was
that the fermions and antifermions that both existed very numerously in the early Universe
annihilated each other almost completely, such that only one part in a billion remained one
trillionth of a second after the Big Bang. This small excess in fermions over antifermions
that survives to this day is the reason that the baryon to photon ratio in Eq. (3.1) is not zero.
It’s entirely possible that this asymmetry between matter and antimatter was there from
the very beginning, such that it was an initial condition for the big bang. However, due
to the rapid expansion of space during inflation, this primordial asymmetry would have
largely been erased by the time of reheating. If the baryon asymmetry was primordial, then
n∆B = (NB − NB̄)/x3 decreases significantly during inflation when space x3 expands. When
the inflaton decays into a SM thermal bath the nγ increases3, such that the relative baryon
number density ηB decreases. We see then in a multi-pronged way how an initial baryon
asymmetry would be eradicated. However, this argument relies on the fact that we have
inflation, which is not guaranteed. As discussed in Sec. 2.2, inflation is the leading theory to
explain how the structure of our Universe could arise the way it is from an initial singularity,
but it is not the only theory, and there are arguments as to why it might not be the true
one [202, 203]. There is also another argument against the primordial asymmetry, coming
from potential washout4 sources in NP models. In Sec. 2.3.1 we saw that the SM needs to be
extended in order to fit the experimental data. Many such extensions involve violation of
lepton number or baryon number. If such models are realised, the additional BSM processes
would be active also in the early Universe, where they would largely erase the asymmetry
between baryons and antibaryons. Therefore, extensions of the SM that even modestly violate

1Here we write ηB as a measure of the normalised baryon number density while in the early Universe we are
interested in the difference between baryons and antibaryons η∆B = ηB − ηB̄. At present time, the antibaryon
number density nB̄ ≈ 10−4nB [37], due to cosmic rays, falls within the error bars of the measured value of ηB,
so we might treat them as the same.

2In terms of number density, photons are much more abundant than baryonic matter, but in terms of energy
density baryons make up a much larger part of our Universe.

3The entropy density s and photon number density nγ are related in the early Universe via s ≈ 1.8g∗nγ, where
g∗ is the number of degrees of freedom of the Universe.

4Washout is explained in more detail in Sec. 3.3.
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lepton- or baryon number would lead to any initial baryon asymmetry being removed. But
this argument again hinges on the existence of NP of a certain kind, which is not guaranteed
to be there either. Therefore a primordial baryon asymmetry remains a viable option5, but we
do not pursue this hypothesis further here. Instead, in subsequent chapters we assume that
the baryon asymmetry was created dynamically. A dynamical mechanism that generates a
baryon asymmetry is called baryogenesis. If baryogenesis occurs via lepton number violation
coupled to sphalerons, the mechanism is instead called leptogenesis.

In this section we give a phenomenological overview of baryogenesis. In Sec. 3.1 we discuss
different observational evidence for the presence of a baryon asymmetry in our Universe,
and in Secs. 3.2 to 3.4 review the conditions needed for successful baryogenesis. Finally, in
Secs. 3.5 and 3.6 we discuss different baryogenesis models from a phenomenological point of
view.

3.1. Evidence of a matter-antimatter asymmetry

Here we review the three main reasons why it is believed that there is an asymmetry between
the number densities of baryons and antibaryons, or equally between matter and antimatter6,
in our Universe.

The existence of structure

Just like Descartes, we can be certain that there is matter in the Universe because we are
made of it. Matter is all around us, but for antimatter we have to look very hard. Between
the stars lies the interstellar medium, and between the galaxies similarly lies the intergalactic

5One common argument that speaks for a primordial asymmetry comes from the possibility that our Universe is
a black hole in some larger universe. When black holes form from the collapse of massive stars, the matter that
goes into it is that which the star is made of, which in our Universe would be baryons, and not antibaryons. If
black holes are other universes, they could then potentially be seeded with an initial baryon number. If our
Universe was similarly created in the universe above, it too could have received such a seed.

6The technical difference between an matter-antimatter asymmetry and a baryon asymmetry lies in the leptons.
Firstly, in Sec. 2.2.2 we saw that neutrinos decouple from the rest of matter at some point in the early history
of the Universe. Efforts have been made to investigate how this background can be probed [204–208], but so
far the Cosmic Neutrino Background (CNB) has never been detected. It is therefore not known whether the
CNB consists of only neutrinos or antineutrinos, or if it is a mixture of them, and because of this the total
lepton number density of the Universe is not known, though hints of a large lepton asymmetry can come
from 4He measurements of distant galaxies [209]. Some baryogenesis models conserve B− L, the difference
between baryon number and lepton number, while other models violate either B or L separately. Measuring
the CNB could help in scrutinising between these two classes of models. Secondly, the mass of leptons is much
smaller than that of protons and neutrons. If we go by energy density, practically all matter content of the
Universe lies in the baryons, and it is therefore appropriate to refer to matter simply as baryons. In the very
early Universe, what is relevant is B− L, since this is what is conserved by the sphaleron. Because neutrinos
decoupled from matter after the sphaleron became inactive, it could be expected that there is an asymmetry
between neutrinos and antineutrinos in the CNB that together with the charged leptons perfectly cancel the
baryon number, such that the total B and total L are the same in our Universe, but this is not guaranteed,
partially because there could also be processes that are active after the sphalerons shut off that could disrupt
such a balance.
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medium, both made up of ordinary atoms. If there should be also some antimatter around, it
would annihilate on contact with this medium, producing x-rays that have not been seen [210].
Potentially there could also be macroscopic antimatter objects such as antistars, but they
have not been observed either [211]. Our visible Universe is full of matter, and without any
antimatter around we can rest assured that there is an asymmetry between the two. This
argument however does not lead to any quantifiable number density of baryons, it is merely
illustrative of our need for a theory that can explain the origin of such an asymmetry.

CMB

The Cosmic Microwave Background (CMB) is a remnant from the time at which our Universe
was filled completely with plasma. When the temperature dropped and electrons were
bound to nuclei in an event called recombination (see Sec. 2.2.2), light no longer scattered like
it used to when there were charged particles around. This light has then travelled all the
way to us, creating a background beyond which light cannot reach us. Although extremely
homogeneous, there are small temperature variations in the CMB that reveal how patches
of over- and underdensities were distributed in the plasma back then, which reveals a lot
about the matter content of the Universe at that time. Since protons are charged they repel
each other, which inhibits structure formation. Protons also have mass, so they do attract
each other slightly through gravity, but forming prominent structures requires particles that
interact almost exclusively through gravitation. We have just such a candidate particle, namely
dark matter. The more dark matter we have in the early Universe, the more structure we can
naively expect. Baryons then fall into these structures until they repel each other too much via
their electromagnetic interactions. The story then goes as follows: dark matter forms clumps
due to its gravitational interaction, which attracts the baryons. When the baryons fall very
deep into the gravitational well, their density becomes too large and they repel each other,
flying out of the well again. When they are sufficiently far out they are no longer affected by
the electromagnetic repelling and they can again fall into the well. This goes on and on. Both
the amount of baryons and that of dark matter determines how this formation of over- and
underdensities in the plasma proceeds. The density fluctuations lead to pressure fluctuations
in the plasma and therefore temperature fluctuations in the CMB. Based on the amplitude of
the CMB temperature fluctuations, it is therefore possible to infer the baryon density at the
time of recombination [212].

BBN

Protons and neutrons fuse to form stable nuclei at sufficiently high temperatures. This
happened in the early Universe in a process called Big Bang Nucleosynthesis (BBN). The final
abundance of different elements is sensitive to the density of baryons, as can be seen below,
following Ref. [53]. The number density ni of a nuclear species i is given by

ni = gieµi/T
(

miT
2π

)3/2

e−mi/T , (3.2)
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where gi is the number of degrees of freedom, T is the temperature, mi is the mass, and

µi = Ziµp + (Ai − Zi) µn (3.3)

is the chemical potential, where p and n denote the proton and neutron, and where i consists
of Zi protons and Ai nucleons. Next we normalise the number density in Eq. (3.2) to that of
nucleons,

Xi ≡
ni

nNucleons
, (3.4)

where we have nNucleons ≈ nB in the approximation Xp ≈ Xn ≈ 1. We now want to find the
temperature where Xi ≈ 1/Ai, i.e. where most nucleons are bound. To do this we define the
binding energy

Bi = Zimp + (Ai − Zi)mn −mi (3.5)

and write the normalised number density as

Xi =
gi

2
XZi

p XAi−Zi
n A3/2

i

(
1
2

nN(2π)3/2 (mNT)−3/2
)Ai−1

eBi/T . (3.6)

Now using nB = ηBnγ, where the photon number density is given by

nγ = 2
ζ(3)
π2 T3 , (3.7)

we find7

TNUC
i ∼ Bi/(Ai − 1)

ln
(

η−1
B

)
+ 1.5 ln

(
mN/TNUC

i

) . (3.8)

Here TNUC
i is the nucleation temperature of i, which corresponds to the temperature at which

the nuclei forms. We see that this temperature depends on the baryon number density ηB, and
as a consequence the final abundance of a given element also depends on ηB. The role of the
binding energy Bi in Eq. (3.8) is highlighted if we acknowledge that we have so far assumed
that nuclei always follow their equilibrium number densities, which is not necessarily true.

Deuterium 2H has a very low binding energy compared to other low-mass nuclei, and
therefore it forms quite late in the thermal history. Larger nuclei such as 3He or 4He cannot
form without deuterium, and due to the late onset of deuterium production, their abundances
are lower than what would be expected from equilibrium calculations alone, being instead
largely determined by the rate of Deuterium production. This effect is often referred to as the
deuterium bottleneck.

By measuring the densities of different elements in primordial gas clouds, where very
little stellar nucleosynthesis has taken place, it is possible to match the observed number

7Note that here we used the approximation

g
2

A5/2
(

ζ(3)
π2 (2π)3/2

)A−1
∼ 1

which indicates that our result in Eq. (3.8) is not to be taken as an exact relation.
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densities of different nuclei with a certain value of ηB [213,214]. Such observations agree with
CMB measurements of ηB [215]. There is however an anomaly in the BBN prediction for the
abundance of 7Li, which is found to be a factor O(few) below the SM prediction, leading to
the so-called Lithium problem [131].

The combination of CMB and BBN leads to a well established value for ηB = (6.20± 0.15)×
10−10 at 68% C.L [55]. Having a high certainty regarding the value of this non-trivial parame-
ter leads to only one problem remaining: how it came to be.

3.2. Sakharov conditions

Dynamical baryon asymmetry generation can only occur via mechanisms that fulfil the three
Sakharov conditions [216]. It is not enough that the three conditions are fulfilled in different
parts of the model, they have to be connected to the same mechanism: being once out of
equilibrium and then violating CP conservation in a totally disconnected sector does not
yield any baryon asymmetry. Below, we outline the three Sakharov conditions and present
classes of models in which they are typically present.

3.2.1. Baryon number violation

The first Sakharov condition is violation of baryon number B. To generate an asymmetry
between baryons and antibaryons, it is paramount that baryon number is not a fundamental
symmetry, and that the conservation of B is violated. This is perhaps the most obvious of the
Sakharov conditions, since a totally B-conserving model cannot change the initial B charge of
the Universe, which we are assuming to be zero.

In the SM, sphalerons are expected to be highly active above the EWSB scale. Since
sphalerons violate B conservation we are already given this condition for free, but to make
use of it we need a model in which the out-of-equilibrium condition as well as C and CP
violation are directly connected to them. What sphalerons do not violate is B− L, where
L is the lepton number, rather they violate the sum B + L. Therefore, if a new source of B
violation is added to the SM which also violates B− L, the sphaleron can redistribute the
B− L charge also to the lepton sector. The reverse mechanism also works: L violation can
lead to an asymmetry in B. This latter effect is crucial in leptogenesis models (see Sec. 3.5),
where the three Sakharov conditions are all fulfilled in the lepton sector.

3.2.2. C and CP violation

The second Sakharov condition is violation of charge conjugation (C) symmetry and8 charge-
parity conjugation (CP) symmetry. Acting with the operator C on a particle takes it to its
antiparticle, and therefore if C symmetry is conserved in a given process the cross section

8Technically it can be argued that these are two separate conditions: one being the violation of C and the
other that of CP. However, they are so similar that they are usually considered together. In fact, many
model-building theorists worry only about having sufficient CP violation, and assume that the C violation
follows along, or that it comes from the C violation in the SM.
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Figure 3.1.: Illustration of why both C and CP violation are needed in order to generate a
baryon asymmetry in a particle Ψ. If there is no C violation, there will be equal
numbers of particles and antiparticles. If there is no CP violation, there will be
equal amounts of left-handed particles and right-handed antiparticles, and vice
versa.

is equal for particles and antiparticles. A parity transformation P flips one spatial axis: it
is what happens to you when you look in the mirror. A left-handed field will look like a
right-handed field after P has been applied, and a CP transformation then takes a particle
into its parity conjugated antiparticle. As illustrated in Fig. 3.1, both C and CP are needed
in order to create an asymmetry between the total amount of particles ∑i Ψi = ΨL + ΨR and
antiparticles ∑i Ψ̄i = Ψ̄L + Ψ̄R. If C is conserved but CP is violated, we have the conditions
NΨL = NΨ̄L

and NΨR = NΨ̄R
, where Ni is the number of particles i. This leads of course to the

sums also being conserved, ∑i NΨi = ∑i NΨ̄i
. If CP is conserved but C is violated, we instead

have the conditions NΨL = NΨ̄R
and NΨ̄L

= NΨR , again leading to ∑i NΨi = ∑i NΨ̄i
. Only if

both C and CP are violated can we have ∑i NΨi ̸= ∑i NΨ̄i
. However, in the SM all fermions

are chiral. For chiral fermions, ΨL/R and Ψ̄L/R are completely different fields, such that they
may not take part in the same interactions, and there is no worry in creating equal amounts of
ΨL/R and Ψ̄L/R. Therefore, only CP violation is relevant for baryogenesis processes in which
the asymmetry is generated in chiral fields such as the SM fermions. One can say that C is
already explicitly violated in the SM.

One common source of CP violation is the interference between tree- and loop-level decay
diagrams. Consider a decay process described by the sum of the tree- and one-loop level
complex matrix elementsM0 andM1 such that

M =M0eiϕ0 +M1eiϕ1 , (3.9)

where the CP conjugate matrix element is given by

M =M0e−iϕ0 +M1e−iϕ1 . (3.10)
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Squaring Eq. (3.9) we have

|M|2 =
(
M0ei(ϕ0) +M1ei(ϕ1)

) (
M0ei(ϕ0) +M1ei(ϕ1)

)∗
= |M0|2 + |M1|2 +M0M∗

1ei(ϕ0−ϕ1) +M∗
0M1ei(ϕ1−ϕ0)

= |M0|2 + |M1|2 + 2 Re
(
M0M∗

1ei(ϕ0−ϕ1)
)

,

(3.11)

and similarly the CP conjugate matrix element in Eq. (3.10) gives

|M|2 = |M0|2 + |M1|2 + 2 Re
(
M0M∗

1ei(ϕ1−ϕ0)
)

, (3.12)

such that
|M|2 − |M|2 = 4 Im (M0M∗

1) sin (ϕ0 − ϕ1) . (3.13)

we see that the difference between the squared decay matrix element and its CP conjugate is
proportional to the imaginary part of the product of the tree-level matrix elementM0 and
the loop-level matrix elementM1. This source of CP violation is common in many different
types of baryogenesis models.

Another source of CP violation that is commonly used in baryogenesis mechanisms comes
from the quark sector of the SM. In Sec. 2.1.3 we saw that the mass and flavour bases of the
quarks can be transformed via the CKM matrix V, which is given by

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (3.14)

Some constraints on the CKM matrix are weak universality

∑
k
|Vik|2 = ∑

k
|V2

ki| = 1 (3.15)

for any i, and universality
∑

k
VikV∗jk = 0 (3.16)

for any i ̸= j. These constraints let us write the CKM matrix as a product of three rotation
matrices, such that we can parametrise it as

V =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 . (3.17)

Here δ is a CP-violating phase, and we have defined s12 ≡ sin θ12, c23 ≡ cos θ23, and so on,
where θ12 and θ23 are mixing angles. Now writing the CKM matrix as V = VdLV†

uL, we can
diagonalise the quark mass matrices as

VuL MuV†
uL =

mu 0 0
0 mc 0
0 0 mt

 , VdL MdV†
dL =

md 0 0
0 ms 0
0 0 mb

 . (3.18)
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If we now take the commutator of the undiagonalised mass matrices

[Mu, Md] = iC , (3.19)

and subsequently take the determinant of C, we get

det C =− 2(mt −mc)(mt −mu)(mc −mu)(mb −ms)(mb −md)(ms −md)

× c12c2
13c23s12s13s23 sin δ .

(3.20)

What we have ended up with in Eq. (3.20) is the Jarlskog determinant. It is a measure of how
much CP violation there is in the quark sector of the SM9. If det C vanishes there is no CP
violation, while if det C is non-zero there definitely is [217]. Often the masses are omitted
when considering the CP violation of the quarks, and one instead considers the Jarlskog
invariant J, which is given by10

J ≡ c12c2
13c23s12s13s23 sin δ = Im(VudVcsV∗usV

∗
cd) . (3.21)

For only two generations of quarks, there would be no CP violation since the corresponding
determinant would vanish. The CP violating kaons as mentioned in Sec. 2.1.4 could then be
considered a hint for a third generation of quarks, even though they only consist of the first
and second generation.

3.2.3. Out-of-equilibrium dynamics

The third Sakharov condition is that the baryogenesis mechanism has to occur out of thermal
equilibrium. Since all particle reactions can happen in reverse, there is a process that creates
an antibaryon overabundance for each process that can create a baryon overabundance. If all
particles involved in a reaction are in thermal equilibrium, the process and its reverse occur
at equal rates, thereby not creating any asymmetry. There is a distinction between thermal11

and chemical equilibrium. A particle i that is in thermal but not chemical equilibrium has a
temperature-dependent number density neq

i given by

ni =
∫ ∞

0

dp3
i

(2π)3
gi

e(Ei−µi)/T ± 1
, (3.22)

where pi is the momentum, gi the number of degrees of freedom, Ei the energy, and µi the
chemical potential of i, and T is the temperature. If µi = 0, the particle is also in chemical
equilibrium. The chemical potential µi can only be defined for particles which have a number
density that follows Eq. (3.22), i.e. particles that are in thermal equilibrium. In order to
generate a baryon asymmetry, a departure from thermal equilibrium is needed. Being out

9One can similarly construct a Jarlskog invariant for the lepton sector.
10Note that due to the unitarity of the CKM matrix, the specific combination of CKM matrix elements that

appears on the RHS of Eq. (3.21) is not unique. One could similarly have written J = Im(VijVkℓV∗kjV
∗
iℓ) for any

i, j, k, ℓ, where no Einstein summation is implied.
11Also known as kinetic equilibrium.
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of chemical equilibrium simply means having a difference between the number density of a
particle i and its antiparticle ī, as can be seen from the relation

µi = −µī . (3.23)

Generating such an asymmetry in particles that have baryon number is precisely the point
of baryogenesis. For a baryon asymmetry to arise from an out-of-equilibrium state would
then be equivalent to it being primordial, unless some dynamical mechanism generated the
chemical non-equilibrium, i.e. baryogenesis.

One can also see this by noting that the baryon number B of a particle is opposite to that
of its antiparticle, and is also spacetime translation invariant. This means that B is odd
under charge conjugation C and positive under parity transformation P and time reversal
T. Along with the fact that the Hamiltonian H of any theory must be invariant under CPT
transformations, we find

⟨B⟩ = Tr
(

e−H/TB
)
= Tr

(
(CPT)(CPT)−1e−H/TB

)
= Tr

(
e−H/T(CPT)−1B(CPT)

)
= −Tr

(
e−H/TB

)
,

(3.24)

where he have used [H, CPT] = 0 and Tr (AB) = Tr (BA), and where Eq. (3.24) is only
applicable in a thermal distribution of B. Since ⟨B⟩ = Tr

(
e−H/TB

)
= −Tr

(
e−H/TB

)
, the only

solution is ⟨B⟩ = 0, and we see that the average of the baryon number charge is zero for states
in thermal equilibrium.

3.2.4. Toy model example

Here, following Ref. [32], we give an illustrative example of how the three Sakharov conditions
can all be simultaneously satisfied in one mechanism. Consider the interaction Lagrangian

Lint = g1X f †
2 f1 + g2X f †

4 f3 + g3Y f †
1 f3 + g4Y f †

2 f4 + h.c. , (3.25)

where the scalar fields X and Y are much more massive than the fermions fi for i ∈ {1, 2, 3, 4}.
The field X can then decay into fermions f̄1 and f2 via the the tree- and loop-level diagrams
in Fig 3.2. Including both tree- and loop-level contributions, the decay widths of X and X̄ can
be written as

Γ
(
X → f̄1 + f2

)
= g1g∗2 g3g∗4 IX + c.c. ,

Γ
(
X̄ → f1 + f̄2

)
= g∗1 g2g∗3 g4 IX + c.c. ,

(3.26)

where IX is a complex-valued integral over phase space and c.c. stands for complex conjugate.
A non-vanishing difference between the X and X̄ decay widths, given by

∆Γ
(
X → f̄1 + f2

)
= Γ

(
X → f̄1 + f2

)
− Γ

(
X̄ → f1 + f̄2

)
= 4 Im (IX) Im(g∗1 g2g∗3 g4) , (3.27)

is a consequence of CP violation in the theory. The field X can also decay into f̄3, and f4, for
which we find the decay width difference to be

∆Γ
(
X → f̄3 + f4

)
= Γ

(
X → f̄3 + f4

)
− Γ

(
X̄ → f3 + f̄4

)
= −4 Im (IX) Im(g∗1 g2g∗3 g4) , (3.28)
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X

f1

f2

X

f1

f2

f3

f4

Y

Figure 3.2.: Tree-level (left) and loop-level (right) decay of the scalar field X into fermions f̄1

and f2 in the toy model described by Eq. (3.25).

perfectly cancelling the one in Eq. (3.27) if we add them up12. The total asymmetry created in
the decay of X is then given by

ϵX = ∑
a

∆B(a)∆ΓX(a)
Γtot

, (3.29)

where a ∈ {X → f̄1 + f2, X → f̄3 + f4} denotes a decay mode, and ∆B(a) is the difference in
baryon number that is generated in the decay. If we assign to X a vanishing baryon number,
while giving fi a baryon number Bi, we then have

ϵX =
(B1 − B2)∆Γ

(
X → f̄1 + f2

)
+ (B3 − B4)∆Γ

(
X → f̄3 + f4

)
Γtot

. (3.30)

Therefore we see that we need CP violation as well as baryon number violation in or-
der to generate an asymmetry, since without CP violation we have ∆Γ

(
X → f̄1 + f2

)
=

∆Γ
(
X → f̄3 + f4

)
= 0 and without baryon number violation we would have B1 = B2 and

B3 = B4, leading to ϵX = 0. Yet if decays X → · · · happen at equal rates to inverse decays
· · · → X, any asymmetry created according to Eq. (3.30) is destroyed. An out-of-equilibrium
condition that ensures that decays happen more frequently than inverse decays can come
from the expansion and subsequent cooling of the Universe. As the temperature drops below
roughly the mass of X, the average energy of a pair of fermions is not sufficient to create
a particle X, and the inverse decay is suppressed. Any X particles that are still around are
then out of thermal equilibrium, and they decay without there being an equal rate of inverse
decays. This effect is not visible in Eq. (3.30) alone.

3.3. Washout

With the three Sakharov conditions out of the way, we can move on to developing specific
frameworks in which to explicitly evaluate the time-evolution of the baryon asymmetry. But
before we do that, let us first discuss one more ingredient in baryogenesis models, namely
the washout.
12This is necessary in order for the decay to conserve CPT, since otherwise the total width of X would not equal

that of X̄.
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Figure 3.3.: Left: Washout process f̄1 + f2 → X → f̄3 + f4 in the toy model for baryogenesis
described by the Lagrangian in Eq. (3.25). Right: washout process X + f1 → f2 →
Y + f4 in the same model.

A washout is a process that reduces the baryon asymmetry of the Universe. During and
after baryogenesis, washout processes can be active, and their presence brings some particle
number densities closer to their equilibrium. The inverse of an asymmetry generating process
is a washout, and the reason baryogenesis has to occur out of equilibrium is to overcome
this washout process. Washout processes are necessarily there in most models, because the
conditions needed to realise them, B violation and out-of-equilibrium dynamics, are already
satisfied automatically by the Sakharov conditions. No CP violation is necessary since we
do not need to create a difference between particles and antiparticles, all that is needed is to
go towards equilibrium for the baryon-number carrying particles. Any given baryogenesis
model already contains B violation, and the baryon asymmetry itself is in a state of being out
of equilibrium if it is non-zero. Therefore, washouts can, and often will, be present in most
baryogenesis models.

Let us consider the toy model is Sec. 3.2.4. If we for simplicity assume that B3 = B4 = 0
and B1 ̸= B2, the baryon asymmetry generation is driven by the decay X → f̄1 + f2. The
reverse process f̄1 + f2 → X is also allowed, provided that the fermion pair has enough
centre-of-mass energy to produce an X particle. This inverse decay is a washout process as it
reduces the baryon asymmetry that is generated by the decay. Both processes violate baryon
number by the same amount but with different sign. If the decay and inverse decay occur
at equal rates no asymmetry is generated, but if the Universe has an overabundance of X
particles they decay more rapidly than the inverse decay can occur, thereby leading to a
baryon asymmetry. In the same toy model, there are other washout processes as well. The
scattering f̄1 + f2 → X → f̄3 + f4, as illustrated in Fig. 3.3 (left), violates baryon number and
can be mediated by an off-shell X particle, such that it could still be active at temperatures that
are too low for the inverse decay of X to occur. In Fig. 3.3 (right) we have another scattering
washout X + f1 → f2 → Y + f4, which similarly violates baryon number, but is only active at
high temperatures where the number density of X and Y have not significantly dropped due
to decays. There are many more scattering diagrams that are possible, so long as they violate
baryon number and are allowed by the model they lead to washout. If the participating fields
are charged under the SM gauge group also gauge fields can be involved as mediators or
external particles. If the washout processes are weak enough a baryon asymmetry can still
arise, but if they are strong they can completely remove any asymmetry that was around
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before they got active13.
In the next section we show how the different processes that are involved in a baryogenesis

mechanism can interact dynamically.

3.4. Boltzmann equations

Here we show how the equations governing baryogenesis can be obtained using classical
mechanics and the FLRW metric, following Refs. [53, 218, 219]. These classical equations do
not take quantum effects into account, and are not applicable in all baryogenesis scenarios.
Another approach is to use the closed time-path formalism [220–222] (see e.g. Ref. [223] for a
review).

Solutions to the classical time evolution of particle distributions can be found using the
Boltzmann equation, which is given by

L[ f ] = C[ f ], (3.31)

where L is the Liouville operator, f is a time-dependent particle distribution, and C is a
collision operator. In classical mechanics the Liouville operator is given by

L[ f ] =
d
dt

f + p⃗/m · ∇⃗x f + F⃗ · ∇⃗p f , (3.32)

where p⃗ is the momentum of a particle, F⃗ the force that the particle is subjugated to, m its
mass, and ∇⃗i =

(
∂/∂ix, ∂/∂iy, ∂/∂iz

)
is the derivative vector, where i ∈ {x, p} and where x⃗ is

the position vector. The relativistic version of the Liouville operator is given by

L[ f ] = pα ∂

∂xα
f − Γα

βγ

∂

∂pα
f , (3.33)

where Γα
βγ is the Christoffel symbol, and in a universe that is described by the FLRW metric

we then have
L[ f ] = E

∂

∂t
f − Hp2 ∂

∂E
f , (3.34)

where E is the energy and H is the Hubble rate. Using Eq. (3.34) we can rewrite Eq. (3.31) in
terms of the number density14

n = 4πg
∫

dpp2 f , (3.35)

where g is the number of degrees of freedom, such that

4πg
∫

dpp2 L[ f ]
E

=
dn
dt
− 4πHg

∫
dp

p4

E
∂ f
∂E

=
dn
dt

+ 4πHg
∫

dp
∂p3

∂p
=

dn
dt

+ 3Hn , (3.36)

13This is one of the arguments against a primordial baryon asymmetry, as discussed in the beginning of this
chapter.

14Note that we are here assuming isotropy, which is a valid assumption since we are using the FLRW metric.
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where in the second step we used integration by parts as well as the assumption that p2 ≫ m2

such that E2 ≈ p2. Our Boltzmann equation now looks like15

dn
dt

+ 3Hn =
g

(2π)3

∫ d3 p
E

C[ f ] . (3.37)

To evaluate the collision term, we now denote the particle for which we want to evaluate the
number density by ψ, such that in Eq. (3.37) we have n→ nψ, g→ gψ, on so on. For a general
interaction ψ + a + b + · · · ↔ i + j + · · · we can write the RHS of Eq. (3.37) as

gψ

(2π)3

∫ d3 pψ

Eψ
C[ fψ] = −

∫
dΠψdΠadΠb · · · dΠidΠj · · ·

× (2π)4δ4 (pψ + pa + pb · · · − pi − pj · · ·
)

×
(
|M|2ψ+a+b+···→i+j+··· fψ fa fb · · · (1± fi)(1± f j) · · ·

− |M|2i+j+···→ψ+a+b+··· fi f j · · · (1± fψ)(1± fa)(1± fb) · · ·
)

.

(3.38)

Here p are four-momenta,M are matrix elements, f are the phase space distributions, where
a + (−) sign should be used for bosons (fermions), and the integrands are given by

dΠ =
g

(2π)3
d3 p
2E

. (3.39)

Assuming that we can neglect the effects of Pauli blocking and Bose condensation we can
write 1± f ≈ 1. For each particle we now insert a factor f eq/ f eq and integrate f / f eq over
the phase space to obtain a factor n/neq, leaving a factor f eq inside the integral instead of f .
Assuming a Maxwell-Boltzmann distribution we have f eq = e−E/T, which gives us

gψ

(2π)3

∫ d3 pψ

Eψ
C[ fψ] = −

nψnanb · · ·
neq

ψ neq
a neq

b · · ·

∫
dΠψdΠadΠb · · ·

× (2π)4δ4 (pψ + pa + pb · · · − pi − pj · · ·
)

× |M|2ψ+a+b+···→i+j+···e
−Eψ/Te−Ea/Te−EB/t · · ·

+
ninj · · ·

neq
i neq

j · · ·

∫
dΠidΠj · · ·

× (2π)4δ4 (pψ + pa + pb · · · − pi − pj · · ·
)

× |M|2i+j+···→ψ+a+b+···e
−Ei/Te−Ej/T · · · .

(3.40)

From here on we define the equilibrium reaction rate density γeq as

γeq(ψ a b · · · → i j · · · ) =
∫

dΠψdΠadΠb · · ·

× (2π)4δ4 (pψ + pa + pb · · · − pi − pj · · ·
)

× |M|2ψ+a+b+···→i+j+···e
−Eψ/Te−Ea/Te−EB/t · · · .

(3.41)

15Note that in the RHS of Eq. (3.37) we have not yet assumed isotropy in the collisions.
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Finally, we adapt the notation from Ref. [224] using the brackets

[ψab · · · → ij · · · ] ≡ nψnanb · · ·
neq

ψ neq
a neq

b · · ·
γeq(ψ + a + b + · · · → i j · · · )

− ninj · · ·
neq

i neq
j · · ·

γeq(i + j + · · · → ψ + a + b + · · · ) .
(3.42)

Assuming that the particle ψ partakes in many different interactions, we must sum over all
the collision terms that affect the number density of ψ. The final expression for the Boltzmann
equation for a general particle ψ that we end up with is then given by

dnψ

dt
+ 3Hnψ = − ∑

a,b,i,j,...
[ψab · · · → ij · · · ] . (3.43)

In Appendix E we further evaluate Eq. (3.43) by writing it in terms of the normalised number
density ηψ as well as giving general expressions for the brackets on the RHS depending on
the number of particles involved in an interaction. In the remainder of this chapter we go
through different models for generating a baryon asymmetry.

3.5. Models of leptogenesis and baryogenesis

The class of models where a matter-antimatter asymmetry is first generated in the leptonic
sector and then translated into the baryons via sphaleron processes is called leptogenesis [225].
Many such models include a right-handed neutrino N, which is a natural candidate for a
Majorana particle realised in nature. Since it is a complete SM singlet, N ∈ {1, 1, 0}, there is
nothing forbidding a term

L ⊃ −1
2

MijN̄c
iNj , (3.44)

which would violate lepton number conservation. This is of course only true provided that
N carries a lepton number charge, but in case we do not assign it one, the Yukawa term
L ⊃ −yijLiϕNj + h.c. would violate it instead. Violation of lepton number L coupled to
sphalerons leads to baryon number violation, which is one of the three Sakharov conditions.
The way in which the other two are fulfilled varies between the different leptogenesis models.

3.5.1. Standard leptogenesis

Leptogenesis via the L- and CP-violating out-of-equilibrium decay of heavy right-handed
neutrinos N1 is one of the most studied baryogenesis models [226–230]. It is often referred to
as Standard leptogenesis or Vanilla leptogenesis (see e.g. Refs. [32, 47, 224, 231–233] for reviews).
This model follows naturally from the Type-i seesaw mechanism: the right-handed neutrino
has to be sufficiently heavy such that it generates a tiny left-handed neutrino mass, which
means that it should fall out of equilibrium quite early in the thermal history of the Universe,
precisely what is needed in order to create a sizeable asymmetry. If the mass of N1 is too
low, not enough asymmetry is generated, since the out-of-equilibrium decay of N1 occurs at
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Figure 3.4.: Decay diagrams for a right-handed neutrino N1 into a lepton- and Higgs doublet
in the standard leptogenesis scenario.
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Figure 3.5.: Scattering diagrams involving N1 (here denoted as N) that are relevant in standard
leptogenesis.

relatively late times when the Universe has expanded enough to dilute the N1 number density.
Violation of CP occurs via the interference of tree- and loop-level decay diagrams, which are
illustrated in Fig. 3.4. A second generation of the right-handed neutrino N2, where the first
generation is denoted by N1, is needed in order for the interference to be CP-violating. If N1

and N2 are degenerate there may be resonant enhancement of the CP-violating decay, which
effectively lowers the mass of N1 needed for successful leptogenesis [234, 235]. A typical scale
for N1 in standard leptogenesis is mN1 ∼ 1014 GeV, while in resonant leptogenesis it can be as
low as mN1 ∼ OTeV [234].

To illustrate an application of the Boltzmann equation formalism in Eq. (3.43), we now
derive equations governing the evolution of a matter-antimatter asymmetry in the standard
leptogenesis model, using some results taken from Appendix E. Our first step is to identify
N1, which we now denote simply as N, as the particle being responsible for generating an
asymmetry, and it is therefore the particle for which we wish to evaluate the Boltzmann
equation. We also note that the asymmetry is generated in the number density of L, so we
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also want to solve for the difference in number density between L and L̄. The second step is
then to identify the interactions of N that are relevant for leptogenesis, i.e. which diagrams
we can draw that would affect the time-evolution of the number density of either N itself or
the lepton asymmetry. Apart from the decay diagrams in Fig. 3.4, we also have the scattering
diagrams shown in Fig. 3.5. Here A denotes a gauge boson, either Wµ

a or Bµ, and we have
only included the up-type quark singlet since we anticipate that we can discard any SM
Yukawa interaction apart from that of the top quark, which is dominant. To shorten the
notation we can group together interactions of the type L + N → X + Y for any X and Y
that lead to allowed scattering diagrams according to Fig. 3.5, and similarly for interactions
N + X → L̄ + Y, and give the other interactions shorter names, such that

γD
→ ≡ γeq(N → L + H)

γSS→ ≡ γ
eq
s (NL→ uQ̄) + γ

eq
s (NL→ H† A) + γ

eq
s (NH → L̄A)

γST→ ≡ γ
eq
t (Nūc → L̄Q) + γ

eq
t (NQc → L̄uc) + γ

eq
t (NL→ H† A)

+ γ
eq
t (NA→ L̄H†) + γ

eq
t (NH → L̄A)

γXS→ ≡ γ
eq
s (LH → L̄H†)

γXT→ ≡ γ
eq
t (LH → L̄H†) + γ

eq
t (LL→ H†H†) .

(3.45)

Here the arrow denotes the flow of the process, where an arrow in the opposite direction
would indicate the reverse reaction, such that

γ→ ≡ γeq (ψ a b · · · → i j · · · ) ⇒ γ← ≡ γeq (i j · · · → ψ a b · · · ) , (3.46)

such that γD
← ≡ γeq(L + H → N) and γSS← ≡ γeq(uQ̄ → NL) + γeq(H† A → NL) and so on.

A subscript s and t in Eq. (3.45) denotes that the scattering is mediated in the s- or t-channel
respectively, such that e.g. the first term in the last row in Eq. (3.45) corresponds to the
top-centre diagram in Fig. 3.5, while the term in the second-to-last row corresponds to the
top-left diagram. We now let a bar denote the corresponding process for the antiparticles,
such that

γeq (ψ a b · · · → i j · · · ) ≡ γeq (ψ̄ ā b̄ · · · → ī j̄ · · ·
)

. (3.47)

Assuming that all SM particles are in chemical equilibrium16, we obtain from Eq. (3.43) and
Appendix E the following Boltzmann equation for N:

zHnγηN = − ηN

η
eq
N

γD
→ +

ηL

η
eq
L

γD
← −

ηN̄

η
eq
N

γD
→ +

ηL̄

η
eq
L

γD
←

− ηNηL

η
eq
N η

eq
L

γSS→ + γSS← −
ηN̄ηL̄

η
eq
N η

eq
L

γSS→ + γSS←

− 2
ηN

η
eq
N

γST→ + 2
ηL̄

η
eq
L

γST← − 2
ηN̄

η
eq
N

γST→ + 2
ηL

η
eq
L

γST← .

(3.48)

Here ηx denotes the number density of x normalised to the photon number density, such
that ηx ≡ nx/nγ, H is the Hubble rate and z ≡ T/mN is a time-parameter, where mN is the

16More on this in Appendix D.
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mass of N and T is the temperature. The additional factor 2 in the last row accounts for the
u-channel scatterings which are also present for any of the t-channel diagrams in Fig. 3.5.
Using η rather than n lets us rewrite the LHS of the Boltzmann equation as a single term
rather than two (c.f. Eq. (3.43) with Eq. (3.48), see Appendix E for details). We have used the
fact that the equilibrium number densities of particles and antiparticles are the same, such
that η

eq
x = η

eq
x̄ . We can now simplify Eq. (3.48) by making several assumptions. First, we note

that N is a Majorana particle, such that N = N̄c, and we therefore have ηN = ηN̄ . Secondly
we assume that the sum of the lepton and antilepton doublet number densities is conserved,
such that ηL + ηL̄ = 2η

eq
L . This assumption is motivated from the fact that L and L̄ are in

thermal equilibrium, for details see Appendix D. Next, we note that from CPT-invariance we
have

M(ψ a b · · · → i j · · · )CPT
=M(ī j̄ · · · → ψ̄ ā b̄ · · · ) , (3.49)

and for any CP-conserving process we also have

M(ψ a b · · · → i j · · · ) CP
=M(ψ̄ ā b̄ · · · → ī j̄ · · · ) CP

=M(i j · · · → ψ a b · · · ) . (3.50)

Assuming that the interaction N → L + H is the only CP-violating vertex that we have, we
obtain the relations

γSS→ = γSS← = γSS→ = γSS← ≡ γSS

γST→ = γST← = γST→ = γST← ≡ γST .
(3.51)

For the decay we can parametrise the CP-violation in terms of the parameter ϵ, such that

γD
→ = γD

← ≡
1
2

γD(1 + ϵ)

γD
← = γD

→ ≡
1
2

γD(1− ϵ) .
(3.52)

With these assumptions, we can rewrite Eq. (3.48) as

zHnγηN = − ηN

η
eq
N

1
2
(1 + ϵ)γD +

ηL

η
eq
L

1
2
(1− ϵ)γD

− ηN

η
eq
N

1
2
(1− ϵ)γD +

ηL̄

η
eq
L

1
2
(1 + ϵ)γD

− 2
ηN

η
eq
N

γSS + 2γSS − 4
ηN

η
eq
N

γST + 4γST ,

(3.53)

which finally gives us

zHnγηN = −
(

ηN

η
eq
N
− 1

)
(γD + 2γSS + 4γST ) . (3.54)

Next, we wish to find an equation for η∆L ≡ ηL − ηL̄, and to do that we first need equations
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for both ηL and ηL̄. For ηL we have

zHnγηL = − ηL

η
eq
L

1
2
(1− ϵ)γD +

ηN

η
eq
N

1
2
(1 + ϵ)γD

− ηL

η
eq
L

γsub
XS

+
ηL̄

η
eq
L

γsub
XS
− 2

η2
L

(η
eq
L )2

γXT + 2γXT

− ηNηL

η
eq
N η

eq
L

γSS + γSS − 2
ηL

η
eq
L

γST + 2
ηN

η
eq
N

γST ,

(3.55)

and similarly for ηL̄ we have

zHnγηL̄ = − ηL̄

η
eq
L

1
2
(1 + ϵ)γD +

ηN

η
eq
N

1
2
(1− ϵ)γD

− ηL̄

η
eq
L

γsub
XS

+
ηL

η
eq
L

γsub
XS
− 2

η2
L̄

(η
eq
L )2

γXT + 2γXT

− ηNηL̄

η
eq
N η

eq
L

γSS + γSS − 2
ηL̄

η
eq
L

γST + 2
ηN

η
eq
N

γST .

(3.56)

The superscript sub in Eqs. (3.55) and (3.56) denotes that the on-shell part of γSS has to be
subtracted, as otherwise it would be double counted, since it is the same contribution as the
decay and inverse decay described by γD (see Appendix E). This subtraction can be achieved
by writing [224]

γsub
XS

= γXS − (1− ϵ)2 1
4

γD .

γsub
XS

= γXS − (1 + ϵ)2 1
4

γD .
(3.57)

Here the CP-violating parameter ϵ again appears since the γXS interaction involves the
CP-violating vertex between N, L, and H. With this treatment we properly subtract the
CP-violating on-shell contribution of γXS , while neglecting any CP-violation in the off-shell
part since these only appear at loop-order17. In terms of η∆L we can combine Eqs. (3.55) and
(3.56) to get

zHnγη∆L = −η∆L

η
eq
L

1
2

γD + ϵγD +
ηN

η
eq
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ηL
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eq
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η
eq
L

γsub
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η∆L

η
eq
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ηNη∆L

η
eq
N η

eq
L

γSS − 2
η∆L

η
eq
L

γST .
(3.58)

Finally using the relations in Eq. (3.57) we have

zHnγη∆L = ϵγD

(
ηN

η
eq
N
− 1

)
− η∆L

η
eq
L

(
2γXS − 2γXT −

ηN

η
eq
N

γSS − 2γST

)
. (3.59)

17This treatment is indeed consistent since we are only concerned with CP-violation when it comes to the
generation of a baryon asymmetry. For washouts, like the one we get from γXS , the CP-violating effects do
not significantly affect the final result in most baryogenesis models.
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Here we neglected terms of O(ϵ2), and used the relation η2
L − η2

L̄ = η∆Lη
eq
L . Eqs. (3.54) and

(3.59) together describe the dynamical generation of a matter-antimatter asymmetry in the
lepton sector, where Eq. (3.54) describes the number density evolution of N, and Eq. (3.59)
the number density evolution of ∆L, which depends non-trivially on the density of N. These
equations are usually called the first and second Boltzmann equations respectively. Note
however that the result from Eq. (3.59) is given in terms of a lepton asymmetry, while the
relevant experimentally measured quantity is the baryon asymmetry. The conversion between
these two is explained in Sec. 2.1.6 and Appendix D. On a similar note, the result obtained
from Eq. (3.59) is typically valid within a few orders of magnitude around the temperature
T∗ where the asymmetry is generated, usually near the mass scale of N. Again, the observed
quantity is the baryon asymmetry at the time of recombination18, when the temperature
is T0. To convert between these two temperatures, we assume that the Universe evolves
adiabatically, such that the entropy

s×V =
2π2

45
gs(T)T3 ×V , (3.60)

where V is the volume, remains constant. To account for the change in photon number
density nγ ∝ T3, we can convert the normalised number density according to

η∆B(T0) =
gs(T∗)
gs(T0)

η∆B(T∗) ≡ ddilη∆B(T∗) . (3.61)

Assuming that all SM species were relativistic at T∗, and that photons as well as three neutrino
generations were relativistic at T0, we have19 [53]

ddil =
gs(T∗)
gs(T0)

=
103.75

2 + 7
8 × 2× 3× 4

11

≈ 1
27

. (3.62)

The general scheme of things is often quite similar between the different models of baryogene-
sis/leptogenesis. The rest of this chapter deals with some of the most popular and historically
most relevant such models.

3.5.2. Electroweak baryogenesis

The SM already contains a mechanism for baryogenesis that successfully incorporates all three
Sakharov conditions, namely electroweak baryogenesis [45] (for reviews see e.g. Ref. [236–238]).
In this mechanism, a baryon asymmetry is generated quite dramatically as the Universe
departs from its electroweak symmetry [239–243]. The only problem with it is that the
resulting asymmetry is too small, since the Higgs field is not sufficiently light (the requirement
is mh ≲ 70 GeV) [244, 245]. Electroweak baryogenesis requires that the phase transition is
strongly first order, but with the Higgs mass mh ≈ 125 GeV [246, 247] it instead appears that

18Assuming that CMB data is used to observe the value of η∆B.
19Note that the factor 7/8 in Eq. (3.62) accounts for fermion statistics as opposed to boson statistics, and the

factor 4/11 comes from the temperature difference between neutrinos and photons, see e.g. Refs. [53, 83].

64



3. The baryon asymmetry of the Universe

the electroweak phase transition was second order. However, in some BSM extensions, e.g.
modifications to the Higgs potential, electroweak baryogenesis is still viable.

During the electroweak phase transition the Universe went from being symmetric under
the SM gauge group SU(3)c × SU(2)L ×U(1)Y to being symmetric only under the subgroup
SU(3)c ×U(1)em. This transition occurred as the temperature dropped low enough for the
neutral component of the Higgs field ϕ0 to settle into the minimum of its potential ⟨ϕ0⟩ = v
(see Sec. 2.1.7). Due to temperature fluctuations, the transition happened slightly earlier in
some places than in others, forming local pockets of broken phase called bubbles, which were
separated from the rest of the Universe in the sense that some particles may be kinematically
forbidden to enter the bubbles20. The border between the bubble and the rest of the universe
is called a domain wall, and it’s mainly the CP-violating interaction between the domain walls
and top quarks which can drive the baryon asymmetry generation in this scenario, though
the resulting amount of CP-violation from this source may not be enough [248, 249]. The
baryon number violation comes from the sphalerons, which are active at the domain wall,
but not inside the bubble, and the out-of-equilibrium condition is fulfilled by the additional
energy coming from the domain wall sweeping through the Universe.

The SM scalar potential itself is not enough to create the strongly first order phase transition
that is needed for successful baryogenesis, but with modifications to the scalar sector, this
picture can change [250–255]. Electroweak baryogenesis therefore motivates the search for
scalar particles other than the Higgs, as well as careful experimental determination of the
different Higgs couplings to SM particles.

If the electroweak phase transition was strongly first order, gravitational waves from
collisions of expanding bubbles could be seen at the future LISA mission [256–258].

3.5.3. Leptogenesis via oscillations

There are other possible sources of CP-violation than interference of tree- and loop-level
decay diagrams as in standard leptogenesis. In Sec. 3.2.2 we saw that there is a non-zero
CP-violating parameter associated with the weak interaction of quarks, due to there being
three generations. A similar effect is present in the lepton sector, but due to the convention
of having the charged lepton weak interactions flavour diagonal, this CP-violation appears
in the oscillations of the neutrinos, as can be seen if we pick up from where we left off in
Sec. 2.3.1. We can use the following identity for complex numbers zi, i ∈ {1, 2, 3}:

|z1 + z2 + z3|2 = |z1|2 + |z2|2 + |z3|2 + 2 Re(z1z∗2 + z1z∗3 + z2z∗3) , (3.63)

20Note that it’s the non-zero vev of the Higgs field which gives a zero-temperature mass to the SM fermions.
If say a massless top-quark has too little momentum to enter the broken phase bubble and become massive
without violating conservation of energy, it would bounce off and for a time be trapped in the symmetric
universe (until it gains enough momentum by bouncing off bubbles).
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such that we can write the oscillation probability P(νe → νµ) from Eq. (2.113) as

P(νe → νµ) = |U∗e1Uµ1|2 + |U∗e2Uµ2|2 + |U∗e3Uµ3|2

+ 2 Re
(

U∗e1Uµ1Ue2U∗µ2e−i(ϕ1−ϕ2)
)

+ 2 Re
(

U∗e1Uµ1Ue3U∗µ3e−i(ϕ1−ϕ3)
)

+ 2 Re
(

U∗e2Uµ2Ue3U∗µ3e−i(ϕ2−ϕ3)
)

.

(3.64)

Now using the unitarity of the PMNS matrix

U∗e1Uµ1 + U∗e2Uµ2 + U∗e3Uµ3 = 0 , (3.65)

we obtain

P(νe → νµ) = −4 ∑
i<j

Re
(

U∗eiUµiUejU∗µj

)
sin2 ∆ij + 2 ∑

i<j
Im
(

U∗eiUµiUejU∗µj

)
sin 2∆ij . (3.66)

Here we have also used the identity cos(2θ) = cos2(θ)− sin2(θ) as well as having defined

∆ij ≡
ϕi − ϕj

2
=

(m2
j −m2

i )L

4Eν
. (3.67)

Again using the unitarity condition, but this time in the form of

Im
(

Ue3U∗µ3
(
U∗e1Uµ1 + U∗e2Uµ2 + U∗e3Uµ3

))
= 0 , (3.68)

we can define the CP-violating parameter J as

J ≡ − Im
(

U∗e1Uµ1Ue3U∗µ3

)
= Im

(
U∗e2Uµ2Ue3U∗µ3

)
= Im

(
U∗e1Uµ1Ue2U∗µ2

)
. (3.69)

Now using the identity ∆12 + ∆23 = ∆13 as well as

sin α + sin β− sin(α + β) = 4 sin
(

α
2

)
sin
(

β
2

)
sin
(

α+β
2

)
(3.70)

we can write

P(νe → νµ) = −4 ∑
i<j

Re
(

U∗eiUµiUejU∗µj

)
sin ∆ij + 8J sin ∆12 sin ∆13 sin ∆23 . (3.71)

Finally, CPT-invariance tells us that

P(νe → νµ) = P(ν̄µ → ν̄e) . (3.72)

We can use this fact to get an expression for P(ν̄e → ν̄µ) by changing e↔ µ in Eq. (3.71). We
then get an expression for the difference between an oscillation νe → νµ and its CP-conjugated
process as

P(νe → νµ)− P(ν̄e → ν̄µ) = 16J sin ∆12 sin ∆13 sin ∆23 . (3.73)
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This shows that there is a non-vanishing CP-violating contribution to the SM neutrino
oscillations. The amount of CP-violation depends on the mass splitting between the neutrinos,
as well as the specific structure of the PMNS matrix as parametrised by J in Eq. (3.69).
Assuming that we also have three generations of heavy right-handed neutrinos Ni, i ∈ {1, 2, 3},
a similar mechanism could exist for them as for the SM neutrinos. Oscillations between the
flavour-eigenstates of N then provide a possible source of CP-violation, fulfilling one of the
Sakharov conditions and therefore possibly being able to lead to leptogenesis. This kind of
mechanism is often appropriately referred to as leptogenesis via oscillations, or ARS leptogenesis
after the authors of the original paper [259] (see e.g. Ref. [260] for a review).

In leptogenesis via oscillations, three right-handed neutrinos are introduced with a CP-
violating oscillation. They start out with vanishing number densities, and are slowly brought
into thermal equilibrium through a coupling to the SM Higgs and Lepton doublets. While
coming into equilibrium, the neutrinos are oscillating between the three flavour eigenstates,
where the τ flavour has the strongest coupling to the SM and e the weakest. The τ-flavoured
N then reaches equilibrium before the µ and e flavours, since its coupling to the SM is stronger.
Because the oscillation is CP-violating, the anti-τ right-handed neutrino does not come into
equilibrium at the same time as the τ-flavoured right-handed neutrino, while still being earlier
than the anti-µ and anti-e ones. Since any N in equilibrium changes the chemical potential
of the lepton doublet L it couples to via the Higgs, this difference in the time at which the
τ- and anti-τ-flavoured N comes into equilibrium leads to a lepton number asymmetry in
the τ-flavoured sector, which can spread to the other flavours via the Higgs coupling to the
lepton singlets and via the electroweak sphaleron, the latter also spreading the asymmetry to
the baryon sector. Since CPT is conserved, the total strength of the τ-, µ-, and e-flavoured
couplings of the right-handed neutrinos has to be equal to the total strength of the anti-τ,
anti-µ, and anti-e. Therefore, any asymmetry generated via oscillations is then removed by
the time the e- and anti-e-flavoured right-handed neutrinos come into equilibrium. However,
if the electroweak sphaleron shuts off before that happens, i.e. if the e-flavoured N comes
into equilibrium after EWSB, an asymmetry remains in the baryon sector, being unable to
be converted into the lepton sector any more. This remaining asymmetry would in this case
survive until today, leading to successful baryogenesis.

3.5.4. Affleck-Dine Baryogenesis

Supersymmetry is a symmetry for which the corresponding transformation takes a fermion
to a boson and vice versa [161, 163] (for reviews see e.g. Refs. [164, 261, 262]). According to
supersymmetry, there is a corresponding scalar superpartner for every fermion, and similarly
there is a fermionic partner for each boson. In supersymmetric models, such superpartners
are used to solve theoretical issues or explain experimental observations. Since we do not
observe it today, if supersymmetry is realised in nature it has to have been broken at some
point during the cosmological evolution of the Universe [263–267].

One implementation of supersymmetry is a mechanism in which the baryon asymmetry of
the Universe can be generated, namely via Affleck-Dine baryogenesis [268] (see Ref. [269] for a
review). Since all quantum numbers of a given field and its superpartner are the same except
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Figure 3.6.: Decay diagrams of S1 in SU(5) that violate both B and CP.

for the spin, even in minimal supersymmetric models there would exist scalar fields with
baryon- or lepton number, namely the superpartners of quarks and leptons21. A condensate
⟨χ⟩ ̸= 0 of a colourless and electrically neutral combination of such fields is able survive
inflation [270, 271], and when ⟨χ⟩ subsequently decays it can lead to the generation of a
baryon asymmetry [272, 273].

An attractive feature of this type of model is that it does not rely on high-scale reheating. It
may turn out from cosmological observations that a low reheating temperature is preferable,
and in such a scenario any high-scale baryogenesis mechanism would be effectively ruled
out, possibly favouring models such as Affleck-Dine.

3.5.5. GUT baryogenesis

Many theories of BSM physics incorporate a unification of the SM forces into a higher frame-
work (see also Sec. 2.3.1), which leads to the possibility of generating a baryon asymmetry
via the GUT degrees of freedom [36, 274–280]. In many such models, though not all, the
conservation of the difference between baryon number and lepton number, B− L, is explicitly
broken at some high scale. This difference is what is conserved by the sphaleron, such
that in combination with a GUT model, B and L can be both independently broken. By
combining leptons and quarks in the same multiplet under the GUT symmetry22, coloured
gauge bosons23 arise that can transform them to each other while conserving B− L. Breaking
the GUT symmetry in this way therefore also breaks the B− L symmetry, fulfilling the first
Sakharov condition. Various GUT baryogenesis mechanisms fulfil the second and third
conditions in different ways, but commonly they involve the CP-violating out-of-equilibrium
decay of heavy particles similar to standard leptogenesis24 (see Sec. 3.5).

In the example of SU(5) from Sec. 2.3.2, the simplest representation that could contain a
scalar Higgs field is the 5 [152, 281]. The component of 5 that does not become the Higgs

21These scalar fields are called squarks and sleptons. The naming convention for superpartners of fermionic fields
is to put an s- in front, as in e.g. stop squark and selectron. For bosons, the convention is instead to put an -ino
at the end of the superpartner’s name, as in e.g. higgsino and gluino. Note however that the neutrino is not the
superpartner of any SM field.

22Such a combination often occurs in GUT models since one of the main points is to unify the SM forces (colour,
electroweak, and hypercharge) into a single force, thereby making colour no longer a separate interaction.

23Since these gauge bosons interact with leptons and quarks in a single vertex, they fall under the category of
vector leptoquarks.

24In fact, many GUT models contain a singlet fermion N which can be identified as the right-handed neutrino.
Vanilla leptogenesis can in this sense also be embedded in a GUT framework.
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field is the S1 leptoquark, which has the representation (3, 1,− 1
3 ) under the SM gauge group.

This field has baryon number violating interactions with the SM quarks and leptons, and
could potentially drive the baryogenesis mechanism via its decays if it is sufficiently heavy25.
However, with only one copy of S1, it is not possible to have CP-violating decays via the
interactions of the tree- and loop-level diagrams shown in Fig 3.6 [37, 282, 283]. In order to
have baryogenesis via the decay of S1 in SU(5), additional fields can be introduced, the easiest
solution perhaps being to add another 5 giving a second leptoquark S′1 or to simply use the
SU(5) gauge boson V2 ∈ (3, 2,− 5

6 ). In this case, a non-vanishing CP-violating contribution to
the decay is possible. Similar baryogenesis mechanisms via decays of heavy particles can be
embedded in many different GUT models.

3.5.6. Asymmetric dark matter

In terms of the densities Ωi from Sec. 2.2, it is remarkable that the two matter components of
the Universe, dark matter (DM) and baryonic matter (B), are so close in their energy densities

ΩDM ≈ 5×ΩB . (3.74)

Since the two densities are of the same order of magnitude, they might have a common origin,
such that a single mechanism could have created both a baryon asymmetry and a dark matter
abundance [97, 98, 284–287]. Models that attempt to explain this possible common origin go
by many names, as there are several different kinds of models, one being asymmetric dark
matter [100, 288, 289] and another26 WIMPy baryogenesis [290–293]. In many models, baryons
and dark matter particles are both the decay product of some other particle, but it is also
possible that the asymmetry is created via scatterings [294, 295].

As an example, consider a modification of the standard leptogenesis scenario where N
decays into L and ϕ′, and where N and ϕ′ are now charged under a global Z2 symmetry [296–
304]. If there is no additional lighter particle with a Z2 charge, ϕ′ is stable and therefore
a dark matter candidate27, as long as it is massive or weakly-interacting enough to avoid
experimental constraints. In the CP-violating decay of N we now generate both a baryon
asymmetry and a dark matter abundance.

3.5.7. Other models

There are more models of baryogenesis than can be discussed in detail here. In this section
we have covered some of the more popular ones, and we here lastly mention a few others.
For in-depth reviews of different baryogenesis mechanisms, see e.g. Refs. [305–309].

25Having S1 sufficiently heavy while keeping the SM Higgs field at its observed mass would require significant
fine-tuning, in the absence of additional modifications to the model [20]

26WIMP stands for Weakly Interacting Massive Particle, which is a popular class of dark matter candidates with
masses around the electroweak scale and interaction strengths similar to the weak interaction.

27Note that if N ∈ (1, 1, 0) is the right-handed neutrino, ϕ′ has to have the quantum numbers (1, 2, 1
2 ), similar to

the SM Higgs field. It may look strange that we have a dark matter particle with an electric charge, but keep
in mind that after EWSB ϕ′ is split into its charged and neutral components, where the neutral component is
the dark matter particle.
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• B-ball baryogenesis If the condensate ⟨χ⟩ in Affleck-Dine leptogenesis (described
above) decays mainly into Q-balls [310], which are extended objects that in this case are
principally made up of squarks that carry a non-zero baryon number B, the Q-balls28

could decay after EWSB into neutralinos and quarks, creating a baryon asymmetry and
a dark matter29 abundance at the same time [311, 312].

• Baryogenesis via low-scale gravity Quantum gravity is often assumed to be unim-
portant at scales below the Planck mass mPl. However, some models lead to gravity
effects at much lower scales, which could have implications for baryogenesis e.g. via the
gravity-mediated decay of heavy particles [313–315].

• Black hole capture It could be possible that black holes absorb particles in the presence
of a process that violates CP and B, creating a baryon asymmetry by sucking up all the
antibaryons [316–319].

• Black hole evaporation Black holes emit particles via Hawking radiation [320]. In some
models of baryogenesis, Hawking radiation in the early Universe can violate CP and B
to create a baryon asymmetry (the event horizon already fulfils the out-of-equilibrium
condition) [321–326].

• Cosmic string decay Local topological defects can form during different kinds of
phase transitions. In the early Universe, this could lead to magnetic monopoles or
cosmic strings being created in the transition from some higher symmetry into e.g.
the SM. Cosmic strings may then decay into particles [327–330], possibly creating an
over-abundance of e.g. right-handed neutrinos N, which could decay and generate a
baryon asymmetry according to standard leptogenesis.

• Dirac leptogenesis It could be possible that a small Dirac mass for the right-handed
neutrino could lead to a baryon asymmetry being generated via the electroweak
sphaleron [331, 332].

• Exotic sphalerons In some models with additional symmetries, new exotic sphalerons
such as dark sphalerons [333] or right-handed SU(2)R sphalerons [334] could lead to a
baryon asymmetry.

• Gravitational baryogenesis Some BSM Lagrangians include couplings between massive
fields and either the Ricci scalar R or Ricci tensor Rµν. In such models, it may be possible
to generate a baryon asymmetry, if these terms also violate B− L [335–340].

• Inflationary baryogenesis In a wide class of models, baryogenesis has been considered
to occur either during inflation or in the decay of the inflaton [341–351].

28Q-balls that carry baryon number are sometimes referred to as B-balls.
29Dark matter is here made up of the neutralinos (an electrically neutral fermionic composition of the super-

partners of the Higgs, Wa
µ, and Bµ bosons), which in this case is the Lightest Supersymmetric Particle (LSP),

and therefore stable unless R-parity is broken (R-parity is a hypothetical Z2-symmetry under which all
supersymmetric partners but no SM particles are charged).
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• Mesogenesis The baryon asymmetry and dark matter could both be generated in the
oscillation and decay of B-mesons, in a mechanism called Mesogenesis [352, 353]. This
mechanism can be tested at B-factories such as LHCb [354] and Belle-II [355].

• Post-sphaleron baryogenesis The baryon asymmetry of the Universe is often considered
to be generated at a high scale where the sphalerons are active. In post-sphaleron models,
the baryon asymmetry can be generated after EWSB via high-dimensional operators,
leading to observable experimental predictions [356, 357].

• Spontaneous baryogenesis Promoting baryon number B to a broken global U(1)B

symmetry, it could be possible that the pseudo-Goldstone boson from the U(1)B break-
ing obtains random space-dependent initial values θ0(x), and subsequently relaxes
to the ground state θ = 0. In this process of relaxing, a baryon asymmetry may be
generated locally depending on the value of θ0 [358–361], and during inflation this local
asymmetry is stretched out to a large volume, while keeping the total baryon number
of the Universe zero due to the existence of antimatter domains (see e.g. [362, 363]).

• Types ii and iii seesaw Not only the right-handed neutrino N can generate a baryon
asymmetry via its decays. The other two tree-level realisations of the Weinberg operator
O1 can similarly lead to baryogenesis, via the out-of-equilibrium decay of the mediator
of the Type-ii [364–371] or Type-iii [371–374] seesaw mechanisms (for a review, see
Ref. [375]).

3.6. Phenomenology of baryogenesis models

The great variety between the different baryogenesis and leptogenesis models makes them
difficult to probe in a model-independent way. Instead, more specific approaches can be
used for the different models, e.g. searching for extra scalar fields in order to probe the
validity of a strong first order phase transition in electroweak baryogenesis, or searching for
supersymmetric partners in order to probe Affleck-Dine leptogenesis. However, since any
model that explains the existence of a baryon asymmetry has to fulfil the three Sakharov
conditions, we know that an experimental signature of baryon- or lepton number violation30

is inevitably tied to baryogenesis. Since the SM alone cannot lead to a baryon asymmetry,
searches for NP also constrain baryogenesis models. Having the possibility of being Majorana,
the nature of neutrino masses could hold the key to knowing which mechanism generated
the baryon asymmetry of the Universe. The rest of this thesis addresses different probes of
NP and lepton/baryon number violation, and how to connect these probes to baryogenesis
and neutrino masses using simplified models and effective field theory.

30The other two Sakharov conditions can also be probed in the lab, but perhaps the most straight-forward one is
baryon number violation, since it can more readily be studied in a model-independent way.
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As discussed in Sec. 2.3.3, the EFT approach is a powerful tool to study BSM physics.
Specifically, Standard Model EFT (SMEFT) is a general framework that is used extensively to
describe NP effects generated at mass scales higher than the scale of EWSB. In this chapter
we discuss in detail how LNV can be studied phenomenologically in SMEFT, by connecting
∆L = 2 operators to different experimental probes.

We put special emphasis on dimension-7 operators. One of the main motivations for this
choice is the wide applicability these operators have in terms of experimental searches for
LNV, while still being generated at a relatively low dimension. Seven is the second-lowest
dimension at which ∆L = 2 operators can be realised, and dimension-7 ∆L = 2 operators
therefore offer the second-simplest possible solution to describe LNV processes. The only
lower-dimension operator is the one found at dimension-5. However, this operator does
not couple to the same range of SM fields as the dimension-7 operators, and therefore its
connection to some LNV observables may be less direct. Furthermore, dimension-7 LNV
offers a broader range of possible underlying tree-level UV-completions than dimension-5.

The phenomenology of dimension-5 LNV has been well studied in the literature, including
loop corrections [376–378]. LNV at dimension-7 has been explored in terms of specific
neutrino mass models [379, 380], operator classification, matching, and renormalisation
group evolution [381–384], extensions using right-handed neutrinos [385, 386], different
LNV observables [387, 388], and model-independent neutrino mass classifications [389–391].
We seek to continue this work here, especially that of Ref. [391], in which constraints on
LNV neutrino-mass operators were compared with constraints on the different NP fields
that generate them. In this chapter, as well as in Ch. 5, we extend the work of Ref. [391]
by considering a different set of LNV probes, and by performing an analysis in terms of
simplified models containing pairs of NP fields rather than one NP field at a time. In Sec. 4.1
we describe SMEFT and its connection to low-energy probes in different bases. In Secs. 4.2
and 4.3 we give a broad overview of different low-scale LNV probes, and in Sec. 4.4 we
derive new collider limits that are subject for publication in Ref. [4]. In Secs. 4.5 to 4.7
we discuss various other aspects of ∆L = 2 operators, after which we finally combine the
different analyses in Sec. 4.8. As a complement to our EFT-based description in this chapter,
we categorise all tree-level UV-completions of dimension-7 ∆L = 2 operators in Ch. 5.

4.1. LNV SMEFT operators

SMEFT contains all fields of the unbroken SM, and describes all interactions that are Lorentz
invariant as well as invariant under the SM gauge group SU(3)c × SU(2)L ×U(1)Y [392].
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Starting at low mass dimension, the first operator that appears is the dimension-5 Weinberg
operator [198]

O(5)
1 = LαLβHρHσϵαρϵβσ , (4.1)

where Greek letters denote SU(2)L indices. LNV operators can generally only appear at odd
mass dimension [393, 394], such that the ∆L = 2 interaction Lagrangian can be written as

L = LSM +
C(5)1
Λ1
O(5)

1 + ∑
i

C(7)i

Λ3
i
O(7)

i + ∑
i

C(9)i

Λ5
i
O(9)

i + · · · , (4.2)

where O(D)
i corresponds to a SMEFT operator at dimension D ≥ 5, where i denotes an

individual operator, and where D only takes odd values. Note however that D can take on
even values for lepton number conserving operators. Furthermore, C denotes a dimensionless
Wilson coefficient, and Λi represents the scale at which the given operator is generated. The
product of a given operator and its Wilson coefficient always yield a mass-dimension four
object.

The fields that are used in SMEFT operators are all the SM fermions and bosons,

L =

(
νL

eL

)
, Q =

(
uL

dL

)
, H =

(
h+

h0

)
, ec, uc, dc, W I

µ, Bµ , (4.3)

where Bµ is the SM U(1)Y gauge boson, I ∈ {1, 2, 3} numbers the different SU(2)L gauge
bosons W I

µ, and the fields L, Q, and H are SU(2)L doublets. All fermion fields that appear in
Eq. (4.3) are left-handed two-component Weyl spinors, and a superscript c denotes that the
field is charge-conjugated. For the purposes of studying LNV, we assume in this chapter that
the neutrino is a Majorana particle, such that we can construct it as a four-component spinor
ν = νL + νc

L. If any of the ∆L = 2 SMEFT operators is realised in nature, it could indeed
induce a Majorana mass for the neutrino.

Note that we have not included the gluon field in Eq. (4.3) since it is not relevant for any
of the operators that enter into our analysis. Gluons do however appear in lepton-number
conserving (LNC) SMEFT operators and at higher dimension in the case of LNV. Note also
that the fields in Eq. (4.3) are only defined at energies above the electroweak scale, where
the SM gauge group is a valid symmetry. Any NP fields that generate the SMEFT operators
also have to have masses above this scale, since otherwise there would be an inconsistency in
terms of which fields are considered heavy and which are considered light. Before discussing
the different SMEFT bases we use, a few remarks on the notation are warranted:

• A Wilson coefficient written in calligraphy C ijkn
i is dimensionless.

• A Wilson coefficient written without calligraphy Cijkn
i has the dimension 4− D, where

D is the dimension of the associated operator.

• A scale written with flavour indices, Λijkn, has absorbed the associated dimensionless

Wilson coefficient, such that 1/(Λijkn)
D−4 = C ijkn

i /ΛD−4 = Cijkn
i .
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• A short range interaction is one where no external vertices are needed to mediate the
process, while a long range interaction uses external vertices. A concrete example of this
distinction is given in Sec. 4.3.2.

All LNV operators up to D = 11 have been classified in the literature [393–395], except
those that include covariant derivatives. Such operators may be more difficult to include in
UV-complete models, but are interesting from a phenomenological point of view. In Tab. 4.1
we list some of the dimension-5, -7, and -9 operators that are used for the analysis in this
chapter. These operators are written in the basis introduced in Ref. [395], which we here refer
to as the Babu-Leung basis. Another basis that is used in this thesis, given for dimension-7
in Sec. 4.3, is the one introduced in Ref. [381] and modified in Ref. [382], which we call
the Lehman basis. In the LNV literature, the Babu-Leung basis has often been used for
large surveys of operators up to dimension 11 [393, 394], while the Lehman basis has often
been used to study LNV at dimension-7 [383, 384, 388, 396]. In order to match with existing
literature, we switch between these bases depending on the context. In Sec. 4.2, we use the
Babu-Leung basis for the discussion of effective neutrino masses, rare kaon decays, and fully
leptonic meson decays. In Sec. 4.3 we introduce the Lehman basis, which we then use for the
remaining chapters.

4.2. Low scale probes of LNV in the Babu-Leung basis

Various experimental searches have been used to study the phenomenology of LNV. In this
section, we go through three observables in detail and comment on the flavour aspect. We
use the Babu-Leung basis in order to match with the most relevant literature [1, 393, 394]. At
the end of this section we make a connection to the Lehman basis, which will be used from
Sec. 4.3 onwards.

A list of relevant dimension-5, -7 and -9 operators is given in Tab. 4.1 in the Babu-Leung
basis, where the naming convention follows Ref. [395]. These LNV operators are the ones
with dimension lower than D = 11 that trigger either rare kaon decays or fully leptonic LNV
meson decays. In the Babu-Leung basis, spinor contractions are not written explicitly. When
applying the operators to observables, we use the convention that each operator is defined as
having the spinor contractions relevant for the probe in question. Furthermore, a superscript
H2 indicates contraction with H̄η Hη , and a superscript yd contraction with Q̄η Hη d̄c.

In Sec. 4.2.1 we describe a method of estimating the neutrino mass contribution from each
operator in Tab. 4.1, and derive constraints on the scale of LNV assuming a neutrino Majorana
mass mν = 0.1 eV. In Secs. 4.2.2 and 4.2.3 we constrain LNV scales using experimental limits
on the branching ratio of rare kaon decays and fully leptonic LNV meson decays, respectively.
The analysis presented in these three sections led to the publication in Ref. [1].

4.2.1. Absolute neutrino mass
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i Oi

1 LαLβHρHσϵαρϵβσ

1yd LαLβHρHσQ̄η Hη d̄cϵαρϵβσ

3a LαLβQρdcHσϵαβϵρσ

3aH2
LαLβQρdcHσ H̄η Hηϵαβϵρσ

3b LαLβQρdcHσϵαρϵβσ

3bH2
LαLβQρdcHσ H̄η Hηϵαρϵβσ

4a LαLβQ̄αūcHρϵβρ

4aH2
LαLβQ̄αūcHρH̄σ Hσϵβρ

4b† LαLβQ̄ρūcHρϵαβ

4b†H2
LαLβQ̄ρūcHρH̄σ Hσϵαβ

5 LαLβQρdcHσ Hη H̄αϵβσϵρη

6 LαLβQ̄ρūcHσ HρH̄αϵβσ

7 LαQβ ēcQ̄ρHρHσ Hηϵασϵβη

8 Lα ēcūcdcHβϵαβ

i Oi

8H2
Lα ēcūcdcHβH̄ρHρϵαβ

10 LαLβLρecQσdcϵαβϵρσ

11a LαLβQρdcQσdcϵαβϵρσ

11b LαLβQρdcQσdcϵαρϵβσ

12a LαLβQ̄αūcQ̄βūc

12b∗ LαLβQ̄ρūcQ̄σūcϵαβϵρσ

13 LαLβQ̄αūcLρ ēcϵβρ

14a LαLβQ̄ρūcQρdcϵαβ

14b LαLβQ̄αūcQρdcϵβρ

16 LαLβecdc ēcūcϵαβ

19 LαQβdcdc ēcūcϵαβ

20 LαQ̄αdcūc ēcūc

66 LαLβHρHσQη H̄ηdcϵαρϵβσ

Table 4.1.: List of relevant dimension-5, 7 and 9 ∆L = 2 SMEFT operators in the Babu-Leung
basis [395] that we consider in our analysis. The superscript † indicates that O4b is
Fierz-related to O4a .

Neutrinos are by far the lightest known fundamental fermions. From direct measurements
of the tritium beta decay electron kinematic spectrum endpoint at the KATRIN experi-
ment [397, 398], the electron-flavoured row of the neutrino mass matrix m2

ν ≡ ∑i |Uei|2m2
i is

constrained to mν < 0.8 eV at 90% C.L [399, 400], where Uij are the PMNS matrix elements
(see Sec. 2.3.1). From neutrino oscillation data the largest squared mass difference between
any two neutrino mass eigenstates is ∆m2

31 = (2.510± 0.027)× 10−3 eV2 for normal ordering
(NO) and ∆m2

32 = −(2.490+0.026
−0.028) × 10−3 eV2 for inverted ordering1 (IO), where the error

ranges are given at 1σ significance [401]. Since the lightest neutrino may in principle be mass-
less, the maximum neutrino mass splitting sets a lower limit on the most massive neutrino
m3 ≳ 0.05 eV. Lastly, the Planck collaboration has set a cosmological bound on the sum of
neutrino masses ∑ mν < 0.12 eV at 95% CL [55].

Assuming a generic value for the neutrino mass that is allowed by experimental constraints,
e.g. mν = 0.1 eV, an estimated limit on the scale of LNV can be derived corresponding to
a given SMEFT operator. Adapting the formalism in Refs. [393, 394], we use the following
recipe to obtain the diagrams that generate a neutrino mass given a single ∆L = 2 SMEFT
operator in the Babu-Leung basis from Tab. 4.1:

1. Draw the operator with all its external legs.

1Note that, per definition, the largest mass splitting is between the first and third mass eigenstates in normal
ordering, but between the third and second in inverted ordering, therefore the largest squared mass splitting
is denoted as ∆m2

31 and ∆m2
32 in normal and inverted ordering, respectively.
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H

L

Q

L

dc

O3b ⇒
H

L L

Q

dc

O3b ⇒
L L

Q

dc

O3b

L L

Q

dc

O3bH2

L L

Q

dc

O3bH2

L L

Q

dc

O3bH2

Figure 4.1.: Top row: Process of estimating the neutrino mass given the ∆L = 2 SMEFT
operator O3b. First the quark legs are closed into a loop, after which the Higgs
field is substituted for a mass insertion.Bottom row: Different diagrams that
contribute to the neutrino mass via operator O3bH2 .

2. Pair up the external fermion legs in all possible ways that they can be closed into loops
via mass insertions, while leaving only two neutral components of lepton doublet fields
left unclosed. If such neutral components are not available, use charged components or
electron singlets instead.

3. For each unclosed lepton leg that is a right-handed singlet field ec, turn it into the
neutrino component of a lepton doublet field L by having it interact with the charged
component of a Higgs doublet ϕ± that comes either from the operator itself or from
one of the other external fields or loops.

4. For each unclosed lepton leg that is a charged component of the left-handed lepton
doublet, turn it into a neutrino by having it interact with a W boson that either comes
from the operator itself or from another external leg or loop.

5. Close any left-over vector boson or charged components of Higgs fields into loops.

6. For each neutral component of a Higgs field, allow for both possibilities of closing it
into a loop and having it give a mass insertion to the operator.

Now the appropriate diagrams should have been drawn. The following steps show how
these diagrams lead to an expression for the neutrino mass:
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7. Begin with the quantity 1
ΛD−4 where D is the dimension of the operator.

8. Multiply by vm where v is the SM Higgs vev and m is the number of mass insertions
from Higgs fields to the operator.

9. Multiply by vyi
f for each fermion loop closed with a mass insertion, where yi

f is the
Yukawa coupling corresponding to SM Dirac fermion f of generation i that goes in the
loop. For a flavour-specific Wilson coefficient, choose the corresponding specific index i,
while for a flavour-general Wilson coefficient sum over all indices i.

10. Multiply by 1
16π2 for each loop, including coupling constants g for each weak interaction

and y f
ij for each Yukawa interaction.

11. Multiply by Λ2x, where x is the number of loops in which the operator directly partic-
ipates. This leads to a factor f (Λ) =

(
2

16π2 +
v2

Λ2

)
for each self-contracted Higgs-anti-

Higgs pair H̄η Hη . Note that Λ2x here comes as a cut-off scale that regulates the loops
connected to the operator. This is not strictly allowed in a pure EFT formalism, rather
it is here assumed that there is some UV-complete theory underlying the operator for
which Λ is an appropriate scale [393, 394]. Therefore, the expression for the neutrino
mass that we obtain in the end does not come from pure EFT, but rather from a middle
ground between EFT and simplified models. In order to separate it from other methods
of estimating the neutrino mass, we still call the neutrino mass obtained using the steps
in this list as the EFT-based neutrino mass.

12. For each step where multiple choices were allowed, sum over all contributions, and
finally write the whole expression as equal to the neutrino mass mν.

An example of this procedure is illustrated for operator O3b in Fig. 4.1 (top row), and
the different diagrams that should be summed up for operator O3bH2 are shown in Fig. 4.1
(bottom row). Due to the smallness of the neutrino mass, the procedure outlined above
can put severe constraints on the scale of LNV corresponding to a given operator, for some
dimension-7 operators it can be as high as ΛLNV ≳ 107 GeV [1]. However, as is discussed
in Sec. 5.3, these constraints depend highly on the UV-completion of the operator. Only in
certain specific scenarios is this EFT mass limit applicable, and depending on the internal
mass hierarchy between different heavy degrees of freedom the actual limit on the scale of
LNV can be lower by several orders of magnitude [4].

The resulting LNV scales corresponding to mν = 0.1 eV are shown in Tab. 4.2 for dimension-
7 and -9 LNV operators in the Babu-Leung basis, using first generation Yukawa couplings. We
see that the LNV scales vary greatly depending on the operator, ranging from 7.4× 10−9 TeV
for O16 to 5.2× 104 TeV for O3b. Some of the scales in Tab. 4.2 would increase further if
second or third generation Yukawa couplings are considered, for e.g. operator O4a the scale
corresponding to a top-quark in the loop is given by yt

yu
× (2.4× 104) TeV = 1.9× 109 TeV. In

Secs. 4.2.2 and 4.2.3 we will compare these neutrino mass scales to LNV meson decay limits.
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O mν Λmν [TeV]

1yd yd
16π2

v4

Λ3 11.6

3a ydg2

(16π2)
2

v2

Λ 69

3aH2 ydg2

(16π2)
2

v2

Λ f (Λ) 0.4

3b yd
16π2

v2

Λ 5.2× 104

3bH2 yd
16π2

v2

Λ f (Λ) 330

4a yu
16π2

v2

Λ 2.4× 104

4aH2 yu
16π2

v2

Λ f (Λ) 150

4b† yug2

(16π2)
2

v2

Λ 33

4b†H2 yug2

(16π2)
3

v2

Λ 0.2

5 yd

(16π2)
2

v2

Λ 330

6 yu

(16π2)
2

v2

Λ 150

7 yeg2

(16π2)
2

v2

Λ f (Λ) 0.6

8 yeydyug2

(16π2)
2

v4

Λ3 4.3× 10−4

O mν Λmν [TeV]

8H2 yeydyug2

(16π2)
2

v4

Λ3 f (Λ) 7.9× 10−5

10 yeyd

(16π2)
2

v2

Λ 9.6× 10−4

11a y2
dg2

(16π2)
3

v2

Λ 1.2× 10−5

11b y2
d

(16π2)
2

v2

Λ 8.9× 10−3

12a y2
u

(16π2)
2

v2

Λ 1.9× 10−3

12b∗ y2
ug2

(16π2)
3

v2

Λ 2.6× 10−6

13 yeyu

(16π2)
2

v2

Λ 4.5× 10−4

14a yuydg2

(16π2)
3

v2

Λ 5.6× 10−6

14b ydyu

(16π2)
2

v2

Λ 4.1× 10−3

16 ydyug4

(16π2)
4

v2

Λ 7.4× 10−9

19 yeyuy2
dg2

(16π2)
3

v4

Λ3 2.4× 10−6

20 yey2
uydg2

(16π2)
3

v4

Λ3 1.8× 10−6

66 yd
16π2

v2

Λ f (Λ) 330

Table 4.2.: LNV scales Λmν that generate a neutrino mass mν = 0.1 eV for dimension-7 and
-9 operators in the Babu-Leung basis, calculated according to the expressions in
the second column of each respective table. First generation SM Yukawa couplings
were used, as well as a a diagonal CKM matrix. The function f (Λ) is given by
f (Λ) =

(
2

16π2 +
v2

Λ2

)
.
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O K → πνν ∑i ΛE949
iisd [TeV]

1yd v3

Λ5 2.4

3b v
Λ3 11.5

3bH2
f (Λ)

v
Λ3 5.7

5 1
16π2

v
Λ3 2.6

10 1
16π2

yev
Λ3 0.8

11b 1
16π2

ydv
Λ3 0.8

14b 1
16π2

yuv
Λ3 2.9

66 f (Λ)
v

Λ3 5.1

Table 4.3.: List of effective dimension-6 coefficients that contribute to the rare kaon decay
K → πνν and come from dimension-7 and -9 ∆L = 2 SMEFT operators in the
Babu-Leung basis. Here y f are the Yukawa couplings of the SM fermions and Λ
is the scale of NP corresponding to a single operator. The constraints in the last
column are calculated using the E949 limit in Eq. (4.10).

4.2.2. Rare kaon decay

As is also discussed in Ch. 6, rare kaon decays are processes in which a kaon decays into a
pion and a pair of neutrinos. This process can be LNV in case the two final state neutrinos
carry the same lepton number. At dimension-7 there is only one operator in the Babu-Leung
basis that can trigger this decay at short range, namely O3b. Here we focus mainly on this
operator, since the 9-dimensional ones are expected to give less stringent constraints.

Contracting the SU(2)L-indices of operator O3b in a way that is relevant for rare kaon
decays gives

O3b = Lα
i Lβ

j Qρ
adc

bHσϵαρϵβσ → h0dc
adLb νLi νLj . (4.4)

In this broken phase there are two possible spinor index contractions

Cijab
3 bh0dc

adLb νLi νLj → Cijab
1 h0 (dc

adLb)
(

νLi νLj

)
+ Cijab

2 h0 (dc
aνLi)

(
νLj dLb

)
, (4.5)

and these contractions can be related via Fierz transformations [402] (c.f. Appendix B)

Cijab
1 h0 (dc

adLb)
(

νLi νLj

)
+ Cijab

2 h0 (dc
aνLi)

(
νLj dLb

)
=(

Cijab
1 − Cijab

2
2

)
h0 (dc

adLb)
(

νLi νLj

)
− Cijab

2
2

h0 (dc
aσµνdLb)

(
νLj σµννLi

)
. (4.6)

The last term on the RHS of Eq. (4.7) contains a tensor interaction that vanishes for identical
neutrino flavours. For the rest of this section we consider identical neutrino flavours only, such
that this last term vanishes. Considering also the Hermitian conjugate of O3b while assuming
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c1,2 = c∗1,2 now lets us rewrite the expression in terms of the Dirac spinors d = (dL, d̄c)T and
ν = (νL, ν̄L)

T such that

Cijab
O3b

(
O3b +O†

3b

)
=

(
Cijab

1 − Cijab
2
2

)
h0 [(d̄adb

) (
ν̄iνj
)
+
(
d̄aγ5db

) (
ν̄iγ5νj

)]
, (4.7)

where only the first term contributes to the rare kaon decay due to conservation of angular
momentum. From here on we absorb the two Wilson coefficients into a single LNV scale such
that

Cijab
1 − Cijab

2
2
→ 1

Λ3
ijab

. (4.8)

As is discussed in Ch. 6, this LNV scale can be related to the branching ratio of rare kaon
decays, and experimental constraints on rare kaon decays can then be used to set limits on the
scale of LNV. Using the expression for the LNV rare kaon decay branching ratio from Ch. 6,
the expected total number of LNC and LNV rare kaon decay events can be expressed as

N(K → πνν) =
(

BR(K → πνν̄)SM ASM + BR(K → πνν)LNVALNV

)
NK , (4.9)

where NK is the number of kaons, and ASM and ALNV are the fraction of SM and LNV events
that are accepted in the experiment, respectively. Using ALNV/ASM = 0.41 [1], constraints on
the scale of LNV can be found from the expression [403]

BR(K → πνν̄)SM +

(
ALNV

ASM

)
×

3

∑
i≤j=1

BR(K → πνiνj)LNV < 3.35× 10−10 , (4.10)

where the experimental constraint comes from the E949 experiment [403], and where we
have used ∑3

i≤j=1 BR(K → πνiνj)LNV = 3× BR(K → πν1ν1)LNV, assuming identical neutrino
flavours as well as flavour universality. The constraints on LNV scales in dimension-7 and -9
operators coming from this expression can be found in Tab. 4.3. Here we see that the most
stringent constraint comes from the dimension-7 operator O3b. All other operators appearing
in Tab. 4.3 are 9-dimensional, and therefore we may expect their corresponding constraints
to be less stringent. In the second column we also show the general expression with which
the LNV scale enters into the rare kaon decay matrix element. These expressions may be
compared to the estimates of the scale of LNV coming from a neutrino mass of mν = 0.1 eV,
as given in Sec. 4.2.1. We see that for most operators, though not all, the neutrino mass
provides a more stringent constraint than rare kaon decays. Note however that the neutrino
mass constraint should only be taken as indicative, as the true value of the neutrino mass
depends on the details of the UV-completion of a given LNV operator.

The NA62 experiment provides a more stringent limit than the E949 experiment on
the branching ratio of rare kaon decays K+ → π+νν̄, given by BR(K+ → π+νν̄)NA62 <

1.78× 10−10 [404]. Furthermore, for the neutral mode KL → π0νν̄, the KOTO experiment
provides a limit BR(KL → π0νν̄)KOTO < 3.0× 10−9 [405]. However, for these experiments
there are no dedicated limits on the current that mediates the LNV mode, while such a limit
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does exits for the E949 experiment. As is discussed in Ch. 6, both the NA62 and KOTO
experiments have different relative acceptance rates for LNV and LNC currents, given by
ALNV/ASM = 0.23/0.15 for NA62 and ALNV/ASM = 0.64/0.30 for KOTO [1]. Using this
fact, we approximate the limit on the LNV scale for operator O3b as ∑i Λiisd > 17.2 TeV for
K+ → π+νν at the NA62 experiment, and ∑i Λiisd > 12.3 TeV for KL → π0νν at the KOTO
experiment.

In Sec. 4.8 we compare the constraint on the dimension-7 operator O3b with other probes
of LNV. This comparison is done in the Lehman basis, for which the O3b-constraint coming
from NA62 is translated into a constraint on the operator Od̄LQLH1 of

Λd̄LQLH1 > 21.8 TeV (4.11)

for the charged mode K+ → π+νν and

Λd̄LQLH1 > 21.6 TeV (4.12)

for the neutral mode KL → π0νν.

4.2.3. Fully leptonic kaon and pion decay

The fully leptonic decays π+ → µ+ν̄e and K+ → µ+ν̄e [406] could be triggered by a variety of
dimension-7 operators at short range. The hadronic matrix element in fully leptonic decays
of pseudoscalar mesons consists of a parity-odd current, since the initial meson is parity-odd
while the vacuum is parity even2 [407, 408]. The form factors for such decays can be obtained
from the vector and axial vector current form factors as

⟨0| q̄2γµq1 |M(p)⟩ = 0

⟨0| q̄2γµγ5q1 |M(p)⟩ = −i fM pµ , (4.13)

where M(p) is a meson with momentum p and decay constant fM, consisting of the quarks
q1 and q2. Using the equation of motion

i∂µ (q̄2γµγ5q1) = −
(
mq1 + mq2

)
q̄2γ5q1 , (4.14)

the scalar and pseudoscalar form factors are obtained as

⟨0| q̄2q1 |M(p)⟩ = 0 ,

⟨0| q̄2γ5q1 |M(p)⟩ = i
m2

M
mq1 + mq2

fM . (4.15)

Taking O3b as an example, the matrix element for the process M→ µ+ν̄e (M = K+, π+) can
be expressed as [1]

iM = i
v

Λ3
ijkl

(
m2

M −m2
µ

) m2
M

mqk + mqn

fM . (4.16)

2The hadronic part of fully leptonic meson decays consists of a meson decaying into vacuum, since the final
state leptons are not part of any hadron.
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O M+ → ℓ+i ν̄j Λeµus [TeV] Λeµud [TeV]

3a v
Λ3 2.2 1.7

3aH2
f (Λ)

v
Λ3 1.3 1.1

4a v
Λ3 2.2 1.7

4aH2
f (Λ)

v
Λ3 1.3 1.1

4b† v
Λ3 2.2 1.7

4b†H2
f (Λ)

v
Λ3 1.3 1.1

6 f (Λ)
v

Λ3 1.3 1.1

7 v3

Λ5 0.8 0.7

8 v
Λ3 2.2 1.7

8H2
f (Λ)

v
Λ3 1.3 1.1

11a 1
16π2

ydv
Λ3 0.2 0.1

12a 1
16π2

yuv
Λ3 0.6 0.5

12b∗ 1
16π2

yuv
Λ3 0.7 0.6

13 1
16π2

yev
Λ3 0.2 0.2

14a 1
16π2

(yu+yd)v
Λ3 0.6 0.5

16 1
16π2

yev
Λ3 0.1 0.1

19 1
16π2

ydv
Λ3 0.1 0.1

20 1
16π2

yuv
Λ3 0.5 0.4

Table 4.4.: List of the effective contributions to dimension-6 interactions mediating the fully
leptonic LNV charged pion and kaon decays for the relevant dimension-7 and -9
∆L = 2 operators in the Babu-Leung basis. Here y f are the Yukawa couplings of
the SM fermions, Λ is the scale scale of NP corresponding to a single operator, and
g is the weak coupling constant. Only operators that do not lead to the rare kaon
decay K → πνν are listed, since those limits are expected to be stronger.
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Using this matrix element to obtain the LNV decay width as a function of the LNV scale Λijkl ,
the corresponding branching ratios [1]

BR
(
K+ → µ+ν̄e

)
= 10−3

(
2.9 TeV
Λeµus

)6

,

BR
(
π+ → µ+ν̄e

)
= 10−3

(
2.0 TeV
Λeµud

)6

. (4.17)

can be compared to the 90% CL experimental constraints [406]

BR
(
K+ → µ+ν̄e

)
< 3.3× 10−3 ,

BR
(
π+ → µ+ν̄e

)
< 1.5× 10−3 (4.18)

to obtain limits on the scale of LNV, as shown in Tab. 4.4. Here we show limits both for fully
leptonic kaon (flavour content eµus) and pion (eµud) decays. These constraints are generally
lower than the constraint on O3b coming from rare kaon decays. Furthermore, similar to the
rare kaon decays, we see that the dimension-7 operators in Tab. 4.4 generally lead to more
stringent constraints than the dimension-9 operators. In the second column of Tab. 4.4 we
show the general form in which the LNV scale enters into the fully leptonic meson decay
matrix element, c.f. Eq. (4.16). We only show SMEFT operators that do not trigger the rare
kaon decays discussed in Sec. 4.2.2, since the constraints from those decays are more stringent.

Considering the neutrino mass constraints from Sec. 4.2.1, we see that for many operators
they are more stringent than the constraints put by fully leptonic LNV decays. However,
LNV scale constraints obtained from the absolute value of neutrino masses are not as strict
as direct experimental constraints, since the neutrino mass can depend on the details of the
UV-completion of the operator [4], as discussed in Sec. 4.2.1.

In the Lehman basis, fully leptonic LNV meson decays lead to constraints on operators
Od̄LQLH1, Od̄LQLH2, OQ̄uLLH, and Od̄LueH. The analysis of these constraints are subject for
future work and will not be discussed in the comparison of different LNV probes in Sec. 4.8.

4.3. Low scale probes of LNV in the Lehman basis

In this section we discuss the remaining LNV probes that are considered in this chapter,
including new limits from collider searches that are subject for future publication in Ref. [4].
From here on we work in the Lehman basis, for which the dimension-7 ∆L = 2 SMEFT
operators are given in Tab. 4.5. An advantage of this basis is that the spinor contractions are
well defined, such that the basis is not overcomplete. In Tab. 4.5 the spinor contractions are
written in terms of parentheses, such that e.g. (ψ1ψ2) = ψα

1 ψ2α. In Sec. 4.3.1 we discuss the
connection of this dimension-7 SMEFT basis to dimension-6 LEFT operators, after which we
discuss different low-scale LNV probes in Secs. 4.3.2 to 4.3.8 and high-scale LHC searches in
Sec. 4.4.
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Type O Operator

Ψ2H4 Opr
LH ϵijϵmn(Lc

p
iLm

r )H jHn(H†H)

Ψ2H3D Opr
LeHD ϵijϵmn(Lc

p
iγµer)H j(HmiDµHn)

Ψ2H2D2 Opr
LHD1 ϵijϵmn(Lc

p
iDµLj

r)(HmDµHn)

Opr
LHD2 ϵimϵjn(Lc

p
iDµLj

r)(HmDµHn)

Ψ2H2X
Opr

LHB gϵijϵmn(Lc
p

iσµνLm
r )H jHnBµν

Opr
LHW g′ϵij(ϵτ I)mn(Lc

p
iσµνLm

r )H jHnW Iµν

Ψ4D Oprst
d̄uLLD ϵij(dpγµur)(Lc

s
iiDµLj

t)

Ψ4H

Oprst
ēLLLH ϵijϵmn(epLi

r)(Lc
s

jLm
t )Hn

Oprst
d̄LueH ϵij(dpLi

r)(uc
set)H j

Oprst
d̄LQLH1 ϵijϵmn(dpLi

r)(Qc
s

jLm
t )Hn

Oprst
d̄LQLH2 ϵimϵjn(dpLi

r)(Qc
s

jLm
t )Hn

Oprst
Q̄uLLH ϵij(Qpur)(Lc

s Li
t)H j

Table 4.5.: List of all dimension 7 ∆L = 2 SMEFT operators in the Lehman basis [381, 382].

4.3.1. Connection to LEFT

Many of the LNV observables that are discussed in Sec. 4.2 involve momentum scales that
are lower than the scale of EWSB ΛEW ≈ 100 GeV. For these probes SMEFT is not a suitable
framework, since it involves fields which are only defined above ΛEW, and respects the full
SM gauge symmetry group unlike the physics at lower scales. Therefore it is appropriate to
introduce a basis of Low energy effective field theory (LEFT) operators that can be used at
low scales, and match the corresponding operators onto SMEFT at the electroweak scale in
order to compare high- and low-scale observables. In Tab. 4.6 we give the complete list of
dimension-6 ∆L = 2 LEFT operators, and show how they match with dimension-7 SMEFT
operators3.

4.3.2. Neutrinoless double beta decay

One of the most well-studied probes of LNV is neutrinoless double beta (0νββ) decay. As
opposed to ordinary beta decay, in which a neutron turns into a proton by emitting one

3Note that dimension-7 SMEFT operators can generally match onto LEFT operators with other mass dimensions
than 6. When going from SMEFT to LEFT, the Higgs doublet is no longer an external field and can instead be
written as a vev v, changing value of the Wilson coefficient and reducing the dimension of the operator by
one. We find that the operators obtained in this way are often the ones most constrained by LNV observables,
therefore we choose dimension-6 LEFT operators as our main focus for analysing low-scale experimental
constraints.
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O Operator Matching

OS,prst
eν1 =

OS,prst
eν;LL

(eRpeLr)(νc
s νt) CS,prst

eν1 = − v
4

(
2Cprst

ēLLLH + Cpsrt
ēLLLH + s↔ t

)
OS,prst

eν2 =
OS,prst

eν;RL
(eLpeRr)(νc

s νt) CS,prst
eν2 = −v

(
Csr

LeHDδtp + Ctr
LeHDδsp)

OT,prst
eν =

OT,prst
eν;LL

(eRpσµνeLr)(νc
s σµννt) CT,prst

eν = + v
16

(
Cpsrt

ēLLLH − Cptrs
ēLLLH

)
OS,prst

dν =

OS,prst
dν;LL

(dRpdLr)(νc
s νt) CS,prst

dν = − v
4 (C

psrt
d̄LQLH1 + Cptrs

d̄LQLH1)

OT,prst
dν =

OT,prst
dν;LL

(dRpσµνdLr)(νc
s σµννt) CT,prst

dν = − v
4 (C

psrt
d̄LQLH1 − Cptrs

d̄LQLH1)

OS,prst
uν =

OS,prst
uν;RL

(uLpuRr)(νc
s νt) CS,prst

uν = + v
2

(
Cprst

Q̄uLLH + Cprts
Q̄uLLH

)
OS,prst

duν e1 =

OS,prst
duνe;LL

(dRpuLr)(νc
s eLt) CS,prst

duνe1 = − v
2 (C

psrt
d̄LQLH1 − Cptrs

d̄LQLH1 − Cptrs
d̄LQLH2)

OS,prst
duν e2 =

OS,prst
duνe;RL

(dLpuRr)(νc
s eLt) CS,prst

duνe2 = +vV∗xpCxrts
Q̄uLLH

OT,prst
duν e =

OT,prst
duνe;LL

(dRpσµνuLr)(νc
s σµνeLt) CT,prst

duνe = − v
2 (C

psrt
d̄LQLH1 + Cptrs

d̄LQLH1 − Cptrs
d̄LQLH2)

OV,prst
duν e1 =

OV,prst
duνe;LR

(dLpγµuLr)(νc
s γµeRt) CV,prst

duνe1 = +vV∗rpCst
LeHD

OV,prst
duν e2 =

OV,prst
duνe;RR

(dRpγµuRr)(νc
s γµeRt) CV,prst

duνe2 = + v
2 Cpsrt

d̄LueH

OS,prst
dν;RL (dLpdRr)(νc

s νt)

OS,prst
uν;LL (uRpuLr)(νc

s νt) no matching at dim 7 in SMEFT

OT,prst
uν;LL (uRpσµνuLr)(νc

s σµννt)

Table 4.6.: List of the dimension-6 ∆L = 2 LEFT operators that match onto dimension-7 SMEFT
operators, along with the matching relations.
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Figure 4.2.: Examples of diagrams corresponding to 0νββ decay induced by a dimension-5
(left), dimension-7 (centre), and dimension-9 (right) operator, respectively.

electron and one electron-flavoured antineutrino, 0νββ decay is a process where two neutrons
beta-decay simultaneously without emitting any neutrinos or antineutrinos. The initial state
consists of two neutrons, and the final state of two protons and two electrons. Baryon number
is conserved, but the difference in initial and final lepton number ∆L = 2 is two units, and
the process is therefore LNV. Typically, a light neutrino exchange between the neutrons is
assumed to trigger the double decay, in which case the process would be suppressed by a
light Majorana neutrino mass insertion induced by the dimension-5 LNV operator, see Fig. 4.2
(left). However, 0νββ can also be induced by a variety of other BSM processes, such as higher
dimensional LNV operators [387, 393, 394, 409–419]. At dimension-7, such operators lead to
long-range contributions, meaning that the LNV process can be thought of as occurring in
one nucleus rather than in the propagation of the exchanged neutrino, as shown in Fig. 4.2
(centre). For dimension-9 operators, the interaction can instead be short-range, meaning that
quarks from both nuclei are present in the NP interaction, see Fig. 4.2 (right).

In the experimental search for 0νββ decay, the most stringent limits come from the Xenon
isotope 136

54Xe, leading to the constraint [420]

TXe
1/2 ≡ T1/2

(
136

54Xe→ 136
56Ba + e−e−

)
> 2.3× 1026 y (4.19)

on the decay half life T1/2. For 0νββ decay induced by the dimension-5 LNV opera-
tor, the decay rate can be estimated on dimensional grounds as Γ0νββ

mν
∼ m2

νG4
Fm2

FQ5
ββ ∼

(mν/0.1 eV)2(1026 y)−1. Here mF ≈ 100 MeV is the typical energy scale involved in
0νββ decay, GF is the Fermi constant, and the final state phase space that is available
to the two electrons is proportional to Q5

ββ, where for a typical double beta decay we have
Qββ = O(1 MeV). For a dimension-5 LNV operator the neutrino mass mν can be estimated

as mν ≈ v2/Λ(5)
LNV, where v is the SM Higgs vev, such that mν ≈ 0.1 eV leads to LNV scales

as high as Λ(5)
LNV ≈ 3× 1014 GeV. For dimension-7, the long-range rate can be estimated

as Γ0νββ
LR ∼ v2(Λ(7)

LNV)
−6G2

Fm4
FQ5

ββ ∼ (105 GeV/Λ(7)
LNV)

6(1026 y)−1. Finally, dimension-9 oper-

ators lead to the short-range rate Γ0νββ
SR ∼ (Λ(9)

LNV)
−8m4

FQ5
ββ ∼ (105 GeV/Λ(9)

LNV)
8(1026 y)−1.

Incidentally, dimension-7 and -9 operators probe similar LNV scales in 0νββ experiments.
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Following Ref. [387], we write the 0νββ decay Lagrangian coming from dimension-7 SMEFT
operators in the LEFT basis as

L(6)
∆L=2 =

2GF√
2

[
C(6)

VL

(
uLγµdL

) (
eRγµνc

L
)
+ C(6)

VR

(
uRγµdR

) (
eRγµνc

L
)

+C(6)
SL

(
uRdL

) (
eLνc

L
)
+ C(6)

SR

(
uLdR

) (
eLνc

L
)

+C(6)
T

(
uLσµνdR

) (
eLσµννc

L
)]

+ h.c.

(4.20)

for dimension-6 LEFT operators. For a single higher dimensional operator leading to the
0νββ matrix element M0ν, the inverse decay half life can be written as

T−1
1/2 = |ϵ|2G0ν|M0ν|2 , (4.21)

where G0ν is a phase space factor corresponding to the leptonic current and ϵ is a NP
effective coupling. By connecting the dimension-7 SMEFT operators from Tab. 4.5 to the LEFT
Lagrangians in Eqs. (4.20) and (??) according to the formalism in Sec. 4.3.1, the constraints on
the scale of dimension-7 LNV operators can be calculated using the formalism in Ref. [387].
Limits on the scales of the dimension-7 operators are given by [383]

ΛLeHD > 171 TeV , ΛLHD1 > 27.9 TeV ,
ΛLHW > 43.7 TeV , Λd̄uLLD > 19.6 TeV ,
Λd̄LQLH1 > 113 TeV , Λd̄LQLH2 > 149 TeV ,
Λd̄LueH > 23.6 TeV , ΛQ̄uLLH > 136 TeV.

(4.22)

4.3.3. Same-sign charged lepton kaon decay

As we saw in Sec. 2.1.4, kaons are mesons consisting of one strange and one first generation
quark, where one of the constituent fermions is an antiquark such that the kaon is colourless.
In the decay of kaons, there are several different LNV modes that are allowed kinematically,
such that they could be induced by LNV SMEFT operators. One such mode is K+ →
π−ℓ+ℓ+ [421–423], where ℓ ∈ {e, µ}. This decay cannot be mediated by dimension-7 operators
at short range, and therefore dimension-9 operators are often considered instead [396, 424].
Effective long-range contributions from dimension-7 SMEFT operators can however lead
to K+ → π−ℓ+ℓ+ decays [388]. Such operators can be matched onto dimension-9 LEFT
operators to derive constraints on the scale of LNV from experimental bounds. However, the
constraints obtained in this way are generally low, for Λ = 1 TeV the predicted LNV branching
ratios lie several orders of magnitude below experimental bounds [396]. We therefore do not
consider experimental constraints coming from K+ → π−ℓ+ℓ+ decays further.

4.3.4. Rare B-meson decay

Mesons containing one b-quark are appropriately called B-mesons. Similarly to kaons, B-
mesons can potentially decay via LNV modes if e.g. dimension-7 LNV operators are realised
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in nature. One well-studied scenario is the rare decay of B-mesons into an (excited) kaon and
two neutrinos, B→ K(∗)νν. This mode is LNV since there are two neutrinos in the final state,
rather than a neutrino and an antineutrino as in the SM decay B→ K(∗)νν̄, where this latter
mode is predicted by the SM but has never been observed4. Since the final state neutrinos in
such decays are not detected directly, the LNV nature can only be observed indirectly, via
an excess in the number of events as compared to the SM or in the distribution of the final
state kaon. In the LEFT basis, the Lagrangian corresponding to the LNC b→ sνν̄ transition is
given by [425, 426]

L = ∑
X=L,R

CV
dν;XLOV

dν;XL , (4.23)

while the Lagrangian corresponding to the LNV transition b→ sνν is given by [425, 426]

L = ∑
X=L,R

CS
dν;XLOS

dν;XL + CT
dν;LLOT

dν;LL + h.c. , (4.24)

where the different operators are defined in Sec. 4.3.1. For the SM mode b → sναν̄α, the
only Wilson coefficient that has a sizeable contribution is given by the left-chiral vector
interaction [427]

CV,sbαα,SM
dν;LL = −4GF√

2
α

2π
V∗tsVtb

(
X

sin2 θW

)
, (4.25)

where X = 6.402 sin2 θW comes from electroweak corrections [428], Vij are the CKM matrix
elements, α is the fine-structure constant, and θW is the weak mixing angle. The LEFT
operators most relevant for LNV rare B-meson decays that can be induced by dimension-7
SMEFT operators are OS

dν;LL and OT
dν;LL. Due to the small mass of B-mesons in comparison to

the SMEFT scale ΛEW, there can be a large difference in the values of the Wilson coefficients
between these scales. The RG running effects from QCD between the hadronic scale of the
B-meson ΛH = 4.8 GeV and the electroweak scale ΛEW can be numerically expressed as [429]

CS
dν;LL(4.8GeV) = 1.4 CS

dν;LL(ΛEW) , CT
dν;LL(4.8GeV) = 0.9 CT

dν;LL(ΛEW) . (4.26)

Experimental searches for rare B-meson decays have been performed at the BaBar [430] and
Belle [431, 432] experiments, both reaching sensitivities in the branching ratio a factor O(few)
above that predicted by the SM, while the future Belle II experiment is predicted to probe
values as low as 10% of the SM value [433]. The predicted SM values for different b→ sνν̄

decay branching ratios based on light-cone sum rules (LCSR) and lattice QCD [434, 435] are
given by [428, 429]

BR(B0 → K0νν̄) = (4.1± 0.5)× 10−6 BR(B+ → K+νν̄) = (4.4± 0.7)× 10−6

BR(B0 → K∗0νν̄) = (11.6± 1.1)× 10−6 BR(B+ → K∗+νν̄) = (12.4± 1.2)× 10−6 ,
(4.27)

4Decays with final state neutrino pairs νν̄ or νν generally have very small branching ratios, which is why we
denote them as rare.
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leading to the experimental constraints at 90% CL [430–432]

BR(B0 → K0νν̄) < 2.6× 10−5 BR(B+ → K+νν̄) < 1.6× 10−5

BR(B0 → K∗0νν̄) < 1.8× 10−5 BR(B+ → K∗+νν̄) < 4.0× 10−5 .
(4.28)

Assuming that a single LEFT operator dominates, these experimental limits lead to constraints
on the LNV scale given by

ΛOS
dν;LL

> 10 TeV, ΛOT
dν;LL

> 25 TeV . (4.29)

Using the matching relations in Tab. 4.6 this leads to a SMEFT constraint on the ∆L = 2
SMEFT operator Od̄LQLH1 given by

Λd̄LQLH1 > 1.9 TeV. (4.30)

4.3.5. Invisible kaon decay

Neutral mesons have the possibility to decay invisibly, meaning that the final state consists
only of neutrinos. For LNC modes one of the final state particles is a neutrino and the other is
an antineutrino, while decay modes triggered by dimension-7 LNV operators would consist of
two neutrinos or two antineutrinos in the final state. For invisible LNV kaon decays KL → νν

we can express the Lagrangian in terms of LEFT Wilson coefficients as [424]

LKL→νν =
iBF0

2

[
(CS,sdαβ

dν;LL + CS,dsαβ
dν;LL )(νC

α νβ)− (CS,dsαβ∗
dν;LL + CS,sdαβ∗

dν;LL )(νανC
β )
]
KL , (4.31)

and similarly for KS we have

LKS→νν =
iBF0

2

[
(CS,sdαβ

dν;LL − CS,dsαβ
dν;LL )(νC

α νβ)− (CS,dsαβ∗
dν;LL − CS,sdαβ∗

dν;LL )(νανC
β )
]
KS . (4.32)

Since kaons are pseudoscalar particles, a helicity-flip in one of the neutrinos is needed in
order to conserve angular momentum. This makes contributions to invisible kaon decays
from LNC operators suppressed by the smallness of the neutrino mass.

There is only one LEFT operator contributing to LNV invisible kaon decays that matches to
a dimension-7 SMEFT operator at tree-level, namely OS

dν1, which is triggered by the SMEFT
operator Od̄LQLH1. From QCD running the Wilson coefficient of this operator at the scale
of EWSB can be expressed in terms of its value at the chiral symmetry breaking scale Λχ

via [424]

CS
dν1(Λχ) = 1.656 CS

dν1(ΛEW) . (4.33)

The invisible kaon decay branching ratio can then be expressed as [424]

BR (KL → νν) = 0.014
mKL

ΓExp
KL

∣∣∣∣ BF0√
GF

Cd̄LQLH1

∣∣∣∣2 , (4.34)
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where B = −⟨q̄q⟩0/(3F2
0 ) ≃ 2.8 GeV [387] and F0 = 87 MeV [436] are parameters related to

the quark condensate. By summing up all the observed kaon branching ratios in the PDG [14]
we get a limit on BR (KL → visible), which in turn can be translated into a constraint on the
invisible mode as [437]

BR (KL → invisible) < 6.3× 10−4 (95% CL) . (4.35)

This constraint is less stringent than that of rare kaon decays, and the subsequent constraint
on the scale of LNV

Λd̄LQLH1 > 12.8 TeV (4.36)

is therefore not expected to be competitive.

4.3.6. τ decay

The only lepton that is massive enough to have hadronic decay modes is the τ. Semileptonic
LNV τ decays τ± → ℓ∓α P±i P±j with P±i,j = π±, K± can potentially lead to constraints on
the scale of dimension-7 SMEFT operators, with the unique feature that the constraints are
specifically put on the τ-flavoured part of the Wilson coefficient. Experimental sensitivities on
the branching ratios for LNV τ decays are however lower than for other observables. From
the Belle experiment we have the constraints [438]

BR(τ− → e+π−π−) < 2.0× 10−8 , BR(τ− → µ+π−π−) < 3.9× 10−8 ,

BR(τ− → e+K−K−) < 3.3× 10−8 , BR(τ− → µ+K−K−) < 4.7× 10−8 ,

BR(τ− → e+K−π−) < 3.2× 10−8 , BR(τ− → µ+K−π−) < 4.8× 10−8 .

(4.37)

These limits are expected to be improved by the Belle-II experiment, giving the future
limits [355, 439]

BR(τ− → e+π−π−) < 3× 10−10 , BR(τ− → µ+π−π−) < 7× 10−10 ,

BR(τ− → e+K−K−) < 6× 10−10 , BR(τ− → µ+K−K−) < 9× 10−10 ,

BR(τ− → e+K−π−) < 6× 10−10 , BR(τ− → µ+K−π−) < 9× 10−10 .

(4.38)

Even with these improvements, the future experimental limits are at least three orders of
magnitude away from probing dimension-7 LNV scales of O(ΛEW) [440]. Therefore, LNV τ

decays are not competitive probes of LNV5.

4.3.7. µ decay

The only SM fermions that muons can decay into are electrons and neutrinos6. Therefore,
tree-level LNV muon decays can only be induced by a single dimension-7 SMEFT operator at

5This picture could however change with the introduction of additional light sterile states [441–444].
6Note that muons are kinematically allowed to also decay into photons, as in e.g. µ → eγ. This mode can be

used to set very stringent constraints on violation of charged lepton flavour conservation, but it is not LNV.
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tree-level, namely OēLLLH. It is worth noting that this operator does not lead to 0νββ decay
at tree-level, and therefore LNV muon decays can potentially be the most sensitive probe of
its corresponding scale. Below EWSB, the Lagrangian for LNV muon decays can be written
as [387]

L = −4GF√
2

{
Cµe

S µ̄ReL νT
L, eCνL, µ + Ceµ

S ēRµL νT
L, eCνL, µ

+
1
4

Cµe
T µ̄RσµνeL νT

L, eCσµννL, µ +
1
4

Ceµ
T ēRσµνµL νT

L, eCσµννL, µ

}
+ h.c. , (4.39)

where Cµe
S, T (Cµe∗

S, T) mediates the LNV decay µ+ → e+ν̄eν̄µ (µ− → e−νeνµ). These Wilson
coefficients can be matched onto the SMEFT Wilson coefficient of OēLLLH via [4]

Cµe
S =

v3

4
√

2

(
Cµµ ee

ēLLLH + 2Cµe µe
ēLLLH + 3Cµe eµ

ēLLLH
)

, Cµe
T = − v3

4
√

2

(
Cµµ ee

ēLLLH − C
µe eµ
ēLLLH

)
,

Ceµ
S =

v3

4
√

2

(
Cee µµ

ēLLLH + 2Ceµ eµ
ēLLLH + 3Ceµ µe

ēLLLH
)

, Ceµ
T = − v3

4
√

2

(
Cee µµ

ēLLLH − C
eµ µe
ēLLLH

)
. (4.40)

The KARMEN experiment [445] has set constraints on LNV muon decay modes by searching
for ν̄e neutrinos via the capture process pν̄e → e+n. Since the muon-flavoured neutrino is
not detected, the ability of this experiment to set constraints on the LNV mode relies on the
assumption that there are no LNC flavour violating modes such as µ+ → e+ν̄eνµ. Provided
that this assumption holds, the branching ratio of LNV muon decays can be expressed in
terms of the Wilson coefficients as [387]

BR
(
µ+ → e+ν̄eν̄µ

)
=

Γ
(
µ+ → e+ν̄eν̄µ

)
Γ
(
µ+ → e+νeν̄µ

) =
1
4

∣∣Cµe
S

∣∣2 + 3
4

∣∣Cµe
T

∣∣2 , (4.41)

and the experimental limits on the branching ratio at 90% CL are then given by [445]

BR
(
µ+ → e+ν̄eν̄µ, ρ̃ = 0.75

)
< 0.9 · 10−3 , BR

(
µ+ → e+ν̄eν̄µ, ρ̃ = 0.25

)
< 1.3 · 10−3 ,

(4.42)
where ρ̃ is the Michel parameter [446], which determines how strongly the decay rate depends
on the energy of ν̄e. Relating the experimental limits to the Wilson coefficients leads to the
constraints |Cµe

S | < 0.06 and |Cµe
T | < 0.04 [387]. The corresponding constraint on the scale of

LNV is given by
ΛēLLLH > 0.64 TeV. (4.43)

4.3.8. µ− to e+ conversion

Experiments that search for charged lepton flavour violation in the conversion µ− → e−

in nuclei can potentially also be sensitive to the LNV µ− → e+ conversion [447, 448]. The
currently most stringent limit on the LNV mode comes from conversion in Ti nuclei at the
SINDRUM II experiment [449] given by

RTi
µ−e+ ≡

Γ(µ− + Ti→ e+ + Ca)
Γ(µ− + Ti→ νµ + Sc)

< 1.7× 10−12 ( 90% CL) . (4.44)
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Figure 4.3.: Keung-Senjanovic diagram leading to pp→ ℓ±ℓ± at colliders.

Near-future experiments such as Mu2e [447] and COMET [450] are expected to significantly
improve the constraints on the LNC mode, with the projected limits

Mu2e: RAl
µ−e− > 6.6× 10−17 (90% CL),

COMET Phase-I: RAl
µ−e− > 7.2× 10−15 (90% CL) .

Both of these experiments will be sensitive to the charge of the outgoing lepton, and therefore
they can also possibly set constraints on µ− to e+ conversion. This latter mode can be used to
set constraints on the scale of LNV in the context of ∆L = 2 SMEFT operators [451]. However,
both current and future experimental sensitivities in µ− to e+ conversion are not stringent
enough to probe dimension-7 LNV scales of O(ΛEW), and therefore these modes are not
competitive with other experimental searches7.

4.4. LHC

LNV can be studied at high-energy colliders via dijet plus same-sign dilepton final states
without missing energy. At the LHC, such a signal can be obtained from the process

pp→ ℓ±ℓ± jj + X , (4.45)

where ℓ ∈ {e, µ, τ}, and where X stands for possible hadronic or electromagnetic fields that
accompany the signal. Concretely, we use X ∈ {nothing, j, a}, where j is a jet and a is a
photon, and keep the kinematic cuts for these additional particles to their default values.
Other possible final state particles such as a physical Higgs boson h or a Z boson do not
contribute significantly to the cross section. A jet pair X = j j does contribute with a factor
O(few) less than a single jet X = j. However, an additional jet pair X = j j increases the
computation time significantly, and we therefore omit it in the following analysis. In models
with a SU(2)R × SU(2)L symmetry that contain massive Majorana fermion fields N and
heavy right-handed gauge bosons WR, the interaction in Eq. (4.45) can be transmitted via the
Keung-Senjanovic diagram [452] shown in Fig. 4.3, in which a WR boson is produced in a
collision between protons, after which it decays to two same-sign leptons and two jets via

7Note that µ− to e+ conversion can only occur at long range for dimension-7 operators. Similar to 0νββ decay,
short-range µ− to e+ conversion requires at least dimension-9 operators.
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an intermediate right-handed neutrino N and an additional WR. Similar topologies can also
arise in models that contain Majorana fermions as well as additional heavy scalar fields [453].
Collider signatures of UV-completions to the LNV dimension-7 operators OLH and OLeHD

are discussed in detail in Ref. [389] and Ref. [415], respectively. For other considerations of
LNV at the LHC see e.g. Refs. [454–456].

From a model-agnostic perspective, the scale of LNV in dimension-7 operators can be
constrained using the non-observation of same-sign dilepton signals at LHC searches. It
is also possible to put severe constraints on high-scale leptogenesis given a potential LNV
signal [457], since the process that mediates the LNV interaction at the LHC should also
contribute to effective washout at relatively low scales.

In Ref. [458], the collider signatures of the dimension-5 LNV operator ℓ±ℓ′±W∓W∓, which
can be matched to the dimension-7 SMEFT operator OLDH1, were discussed in the context of
neutrino masses. At the SMEFT level, possible muon-channel collider signatures of LNV vector
boson fusion processes using the dimension-5 Weinberg operator O(5)

LH = ϵijϵmn(LciLm)H jHn

were studied in Refs. [459, 460].
Collider limits on the scale of LNV in all dimension-7 ∆L = 2 SMEFT operators are

presented in this section, where the results are subject for publication in Ref. [4]. The
operators were implemented using FeynRules [461], where a corresponding model file
containing each dimension-7 operator we consider is given in Appendix F. The LO cross
sections calculated using MadGraph5_aMC@NLO [462] using the commands

generate p p > e+ e+ j j QED=2 QCD=0
add process p p > e- e- j j QED=2 QCD=0
add process p p > e+ e+ j j j QED=2 QCD=2
add process p p > e- e- j j j QED=2 QCD=2
add process p p > e+ e+ j j a QED=3 QCD=0
add process p p > e- e- j j a QED=3 QCD=0

for a final state same-sign electron pair, with the kinematic cuts shown in Tab. 4.7. For a
muon pair, the e is simply swapped for mu. These cuts are identical to the ones used by
the ATLAS collaboration in Ref. [463], which allows for effective data comparison based on
the non-observation of LNV events. For the PDFs the set NNPDF30 was used, which was
provided by LHAPDF6 [464], while hadronisation was handled by Pythia8 [465] and detector
simulation by Delphes3 [466].

With this set-up we get a similar but not identical result as Ref. [459] for a LHC vector-
boson-fusion cross section with the dimension-5 LNV SMEFT operator. Comparing the
benchmark scenario mN = 0.3 GeV and ΛLNV = 200 TeV, we obtain the LO cross-section
0.107 ab while in Ref. [459] the NLO cross section 0.361 ab is reported. This difference could
e.g. come from a different treatment of the additional final states represented by X, the fact
that their cross section is at NLO while we evaluate it at LO, or the different treatment of jet
clustering, where in Ref. [459] the authors use the package Fastjet [467], while we do not.

Similarly comparing the LNV vector boson fusion via a ℓ±ℓ±W∓W∓ operator, we obtain a
cross section 4.1 pb for ΛLNV = 1 TeV while in Ref. [458] a cross section of 4.5 pb is reported.
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Cuts for pp→ ℓ±ℓ± jj at
√

s = 13 TeV

pℓ
1(2)

T > 30 GeV pj1(2)
T > 100 GeV

HT > 400 GeV η j1(2) < 2.0

ηe1(2)
< 2.47 ηµ1(2)

< 2.5

mℓ1ℓ2 > 400 GeV mj1 j2 > 110 GeV

Changes for
√

s = 100 TeV

ηℓ1(2)
< 4.5 η j1(2) < 4.0

mℓ1ℓ2 > 700 GeV mj1 j2 > 200 GeV

Cuts for pp→ ℓ±ℓ±tb at
√

s = 13 TeV

pℓ
1(2)

T > 30 GeV pb
T > 100 GeV

ηb < 2.0 ηe1(2)
< 2.47

ηµ1(2)
< 2.5 mℓ1ℓ2 > 400 GeV

Changes for
√

s = 100 TeV

ηℓ1(2)
< 4.5 ηb < 4.0

mℓ1ℓ2 > 700 GeV

Table 4.7.: The cuts used in the evaluation of σ(pp→ jjℓ±ℓ±) (left) and σ(pp→ tbℓ±ℓ±) (right)
at collider experiments. Here the final state tb corresponds to t̄b for a positively
charged lepton pair ℓ+ℓ+ and tb̄ for a negatively charged pair ℓ−ℓ−. In the dijet
final state process the cuts are reproduced from Ref. [463] such that the LNV scale
can be constrained using the data therein. The cuts used in the tb final state process
are constructed to be as similar as possible to the cuts for the dijet final state process
for better comparison between the two. The scaling of the cuts for the FCC process
in rapidity and invariant mass account for the increased centre-of-mass energy.

This discrepancy could come from a difference in the implementation of the ℓ±ℓ±W∓W∓

operator. In order to have a consistency check with our subsequent implementation of
dimension-7 SMEFT operators, we started with the dimension-9 operator ℓc

RℓR
(
ϕ̃†Dµϕ

)2

and broke it to the SU(3)c ×U(1)em symmetric level, while in Ref. [458] the starting point
could have been the already broken phase. It is possible that partial cancellations occur from
different broken-phase operators corresponding to the dimension-9 SMEFT operator in our
case. Furthermore, it is not clear in Ref. [458] which PDF set is used, and a difference in the
PDFs could cause further discrepancies.

The cuts in Tab. 4.7 are given in terms of the pseudorapidity ηa ≡ − ln
(

tan θa

2

)
, where θa

is the angle between the momentum of particle a and the beam axis, transverse momentum

pa
T = | p⃗a · (ŷ + x̂) |, and invariant mass mab =

√
2pa

T pb
T [cosh(ηa − ηb)− cos (ϕa − ϕv)], where

ϕ is the azimuthal angle with respect to the beam. The quantity HT ≡ ∑i pji
T is the sum of the

transverse momenta of the final state jets.
In Tab. 4.8, the cross sections for the process pp → ℓ±ℓ′± jj + X corresponding to all 7-

dimensional ∆L = 2 LNV operators are presented for both the FCC-hh with
√

s = 100 TeV and
the LHC with

√
s = 13 TeV. These cross sections were calculated for two quark generations

under the assumption that C1/3/Λ = 1 TeV−1. The scaling of the cross sections with respect
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Figure 4.4.: Diagrams that correspond to same-sign dilepton plus dijet production at colliders
via ∆L = 2 dimension-7 operators that contain four fermions.

to Λ for all operators is found to follow the relation

σ(pp→ ℓ±ℓ± jj + X) = σ0 ×Λ−1/6 , (4.46)

as is shown in Fig. 4.6, where σ0 corresponds to the cross section found using C1/3/Λ =

1 TeV−1. Exclusion limits on the scale of LNV corresponding to the different operators can be
found using the asymptotic formula [468]

Z0 =

√
2
(

s− b ln
(

s + b
b

))
, (4.47)

where s = L× σ(pp→ ℓ±ℓ± jj + X) is the number of signal events that is expected for a given
luminosity L, b is the number of background events, and Z0 is the statistical significance. The
expected number of background events for an integrated luminosity of L0 = 36.1 fb−1 is
given by the ATLAS collaboration as b = 11.2. Following Ref. [469] we assume that b scales
linearly with the luminosity and therefore use b = 11.2×L/(36.1fb−1). By solving Eq. (4.47)
for Z0 = 1.96 we find the 95% CL limits on the scale ΛLNV for the different dimension-7
operators, as shown in Tab. 4.8. Assuming that a similar number of background events is
expected at FCC-hh [184] per integrated luminosity, projected future 95% CL limits assuming
a search for pp→ ℓ±ℓ± jj at FCC-hh are also shown in Tab. 4.8 with the modified 100 TeV-cuts
from Tab. 4.7, using an integrated luminosity of 30 ab−1.

The cross sections corresponding to the LNV process pp→ ℓ±ℓ±tb + X for the dimension-
7 operators are also shown in Tab. 4.8, where t and b represent top- and bottom-quarks,
respectively. The pair tb in the final state denotes t̄b for a positive lepton pair ℓ+ℓ+ and tb̄ for a
negative lepton pair ℓ−ℓ−. These processes containing third generation quarks are interesting
as a complementary search to the dijet final state due to the difference in topologies. In the
Feynman gauge we can have final state charged Goldstone bosons that decay into a pair of
quarks and antiquarks, where the decay width is greatest for third generation fermions. As is
shown in Fig. 4.5 (left), this kind of topology involves two charged leptons of the same sign
entering the dimension-7 operator directly. This effectively reduces the number of mediators

95



4. Phenomenology of LNV in SMEFT

p ℓ±

t

b

p ℓ±

g∓

p ℓ±

j

j

p ℓ±

W∓

Figure 4.5.: Left: Diagram corresponding to the production of same-sign dilepton plus a third
generation quark-antiquark pair at colliders for LNV dimension-7 operators that
contain four fermions. Right: Diagram corresponding to same-sign dilepton plus
dijet production for operator Od̄uLLD.

from two to one compared with the W boson-mediated diagrams (c.f. Fig. 4.4 left and right),
and removes the need of an additional mass insertion. For third generation final states, the
cross section of the Goldstone boson-mediated process is therefore greater than that of the W
boson-mediated one. However, no limits on the LNV scale can be drawn using this mode
since there have been no specifically dedicated searches for it (to the knowledge of the author).

As seen in Tab. 4.8, the operators of type Ψ4H all have similar cross sections for the same-
sign dilepton process. There are still minor differences between the different cross sections,
which come from a variety of effects.

For the given the SU(2)L structure of an operator, there are usually many different diagrams
corresponding to pp → jjℓ±ℓ± that can be drawn. As an example, we note that Od̄LQLH2
leads to a greater number of diagrams than Od̄LQLH1 since the structure of SU(2)L indices
features a contraction of the two lepton doublets with each other in the former, but the
quark- and Higgs doublets in the latter, leading to a factor two difference in the number of
possibilities to generate diagrams of the topology shown in Fig. 4.4 (left). For Od̄LQLH2 there
is an ambiguity in which lepton doublet should correspond to the neutrino and which to
the charged lepton, while for Od̄LQLH1 there is no such ambiguity. Note however that these
two SU(2)L contractions of Od̄LQLH2 come with a different sign, due to the structure of the
Levi-Civita tensor, which effectively leads to a reduction of the cross section in diagrams
where both leptons are in the final state, i.e. diagrams with the topology shown in Fig. 4.4
(right). Such diagrams are relatively more dominant at higher collision energies, which is
why the cross sections coming from Od̄LQLH1 and Od̄LQLH2 compare differently at the LHC
and FCC.

Another effect that changes the cross section in operators with four fermions comes from
the number of up-type quarks it can contain. In protons the prevalence of up-type quarks is
greater than that of down-type quarks, and therefore a greater number of up-type quarks in
an operator generally leads to higher cross sections. This is the reason that the cross section
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σ(pp→ ℓ±ℓ± jj + X) (pb) σ(pp→ ℓ±ℓ±tb + X) (pb)
Operator

LHC FCC LHC FCC
ΛLNV Λfuture

LNV

Od̄LueH 2.9× 10−5 0.12 1.8× 10−4 3.9 0.72 5.1

Od̄LQLH1 2.8× 10−5 0.081 2.3× 10−4 4.8 0.71 4.8

Od̄LQLH2 2.8× 10−5 0.030 7.6× 10−7 2.8× 10−3 0.71 4.1

OQ̄uLLH 8.2× 10−5 0.29 8.3× 10−4 22 0.85 6.0

OLDH1 8.7× 10−7 6.8× 10−3 1.8× 10−8 0.015 0.40 3.2

OLDH2 2.1× 10−8 2.1× 10−5 1.9× 10−8 2.4× 10−3 0.22 1.2

OLeHD 1.3× 10−9 1.1× 10−7 5.7× 10−9 3.1× 10−6 0.13 0.51

Od̄uLLD 0.023 2.9× 103 1.0× 10−4 390 2.2 28

OLH 1.3× 10−8 3.6× 10−6 6.2× 10−9 1.2× 10−6 0.20 0.91

Table 4.8.: Cross sections and constraints on the scale of LNV corresponding to same-sign
dilepton searches at both the LHC and FCC, using the cuts from Tab. 4.7. The
cross sections for the collider processes pp → ℓ±ℓ± jj + X and pp → ℓ±ℓ±tb + X
are given in the second to fifth columns, where X denotes additional hadronic or
electromagnetic contributions. All cross sections presented here are calculated under
the assumption that the scale of LNV is realised at 1 TeV such that C1/3/Λ = 1 TeV−1.
The limits on the scale of LNV shown in the last and second-to-last columns are
given at 95% CL in units of TeV. The exclusion limits ΛLNV are derived using the
non-observation of same-sign dilepton events at the ATLAS experiment [463], while
Λfuture

LNV is the scale which could potentially be excluded at 95% CL by searches at
FCC-hh [184] for an integrated luminosity of 30 ab−1. Both limits on the scale of
LNV correspond to same-sign dilepton plus dijet searches.
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Figure 4.6.: Cross sections corresponding to the process pp→ jjℓ±ℓ± at the LHC (solid lines)
and FCC-hh (dashed lines) as a function of the LNV scale, evaluated using the
cuts given in Tab. 4.7.

corresponding to OQ̄uLLH is higher than that of the other four-fermion operators.
One cross section that sticks out in Tab. 4.8 is the one that corresponds to Od̄uLLH. This

cross section is significantly higher than the others, and the reason for this is that Od̄uLLH
leads to a unique topology that involves a final state W boson, as shown in Fig. 4.5 (right).
For this diagram there is only a single external mediator, yet still there is no need to have a
Goldstone boson, such that the final state quarks may also be of the first or second generation.

Out of the twelve ∆L = 2 dimension-7 operators, three do not lead to the process pp →
ℓ±ℓ± jj at tree-level, namely OēLLLH, OLHB and OLHW . The operators OLHB and OLHW are
both antisymmetric in flavour indices. Searches involving these operators must therefore
include a differently flavoured same-sign lepton pair ℓ±ℓ′± in the final state, where ℓ ̸= ℓ′.
Additionally, operator OLHB involves only neutral gauge bosons, which means that the
electromagnetic charge must be compensated for by a charged Goldstone boson for each
charged lepton in the operator. This leads to a very strong suppression with respect to OLHW
for processes with a charged dilepton final state.

The operator OēLLLH leads to processes pp→ ℓ±ℓ±ℓ′±ℓ′′∓ jj + X at tree-level, where ℓ′, ℓ′′ ∈
{e, µ} with no constraint on identical flavour, while OLHB and OLHW both lead to pp →
ℓ±ℓ′± jj + X where ℓ ̸= ℓ′. The cross sections corresponding to these processes are shown
in Tab. 4.9, where the cuts from Tab. 4.7 have been used. For the pp → ℓ±ℓ±ℓ′±ℓ′′∓ jj + X
process, the lepton cuts apply to all leptons. We see that with four leptons in the final state
the cross section is very small, and it may therefore be doubtful whether or not OēLLLH can
possibly lead to LNV signals at the LHC. The cross sections with ℓ±ℓ′± in the final state,

98



4. Phenomenology of LNV in SMEFT

LHC FCC LHC FCC
Operator

σ(pp→ ℓ±ℓ±ℓ′±ℓ′′∓ jj + X) (pb) σ(pp→ ℓ±ℓ±ℓ′±ℓ′′∓tb + X) (pb)

OēLLLH 3.6× 10−16 7.9× 10−21 3.1× 10−23 1.1× 10−18

σ(pp→ ℓ±ℓ′± jj + X) (fb) σ(pp→ ℓ±ℓ′±tb + X) (fb)

OLHB 2.21× 10−10 3.6× 10−6 7.3× 10−12 9.6× 10−9

OLHW 1.382× 10−6 2.0× 10−4 2.0× 10−8 6.2× 10−6

Table 4.9.: Cross sections corresponding to same-sign dilepton processes pp →
ℓ±ℓ±ℓ′±ℓ′′∓(jj/tb) + X with ℓ, ℓ′, ℓ′′ ∈ {e, µ} for operator OēLLLH and the non-
flavour diagonal process pp → ℓ±ℓ′± jj + X with ℓ ̸= ℓ′ for operators OLHB and
OLHW , evaluated using the cuts in Tab. 4.7 under the assumption of a LNV scale at
1 TeV such that C1/3/Λ = 1 TeV−1.

corresponding to operators OLHB and OLHW , are comparable to the same-flavour dilepton
pair cross sections in Tab. 4.8. A dedicated collider search for pp → ℓ±ℓ′± jj may therefore
be of interest, as it could potentially lead to constraints on LNV scales of O(1 TeV). Such
searches have been made, c.f. e.g. Ref. [470], and the analysis of this mode with respect to
dimension-7 LNV is reserved for future work.

4.5. Limitations on the applicability of the EFT formalism

As discussed in Sec. 2.3.3, the momentum scales involved in a given process must be
sufficiently small for EFT to be an accurate description. The EFT expansion of a mediator that
contains a particle of mass Mmed is given by

1
Q2 −M2

med
= − 1

M2
med

(
1 +

Q2

M2
med

+O
(

Q4

M4
med

))
, (4.48)

where Q2 is the square of the momentum exchanged by the mediator. If Q2 is large compared
to the squared mediator mass M2

med, this expansion is invalid, and the EFT method becomes
a bad tool to describe the given process. A requirement in order for the EFT to be valid
is therefore that the condition M2

med > Q2 holds. For observables in which only small
momentum scales are involved, such as e.g. 0νββ decay, this condition poses no problem
since the NP scales being probed are presumably high enough to validate the expansion in
Eq. (4.48). For high-energy observables however, such as e.g. the LHC where Q2 can be quite
large, it is important to take the limitations of the EFT framework into account, such that it is
not used it beyond its validity [471–473].

Following Ref. [472], a lower limit on the mass Mmed can be found by taking the average of
the transferred momentum in proton-proton collisions at the parton level. Since there may be
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many different topologies that enter into the LHC processes, there is no way to calculate a
general averaged momentum transfer which is applicable to all diagrams directly. To obtain
a useful limit on Mmed we therefore take the most extreme topology where the transferred
momentum is expected to be the highest, in which the partons directly enter into the LNV
operator, as illustrated in Fig. 4.4 (right). Such diagrams lead to the most stringent constraints,
and the limits obtained therefrom should therefore be viewed as conservative.

In the collision of two partons q1 and q̄2, with parton distribution functions (PDFs) fq1 and
fq̄2 , respectively, the squared transferred momentum Q2 is given by

Q2 = (x1 + x2)
2 s

4
, (4.49)

where x1 and x2 are the momentum fractions8 carried by the two partons, respectively. As-
suming that protons contain four quark flavours9, the average ⟨Q2⟩ of the squared momentum
transfer for the topology shown in Fig. 4.4 (right) can then be estimated as

⟨Q2⟩ = ∑q1=u,c ∑q2=d,s
∫

dx1dx2
(

fq1(x1) fq̄2(x2) + fq1(x2) fq̄2(x1)
)

Θ(Q−Q0)Q2

∑q1=u,c ∑q2=d,s
∫

dx1dx2
(

fq1(x1) fq̄2(x2) + fq1(x2) fq̄2(x1)
)

Θ(Q−Q0)
. (4.50)

Here Θ is the Heaviside function and Q0 is the minimum transferred momentum, which
can be estimated as the sum of the lower limits on the invariant masses of the lepton and jet
pairs that are used in the cuts (c.f. Tab. 4.7) such that we have Q0 = 510 GeV. Using the PDF
set NNPDF30 [464] and setting Q0 to be the renormalisation scale for the PDFs, the average
momentum transfer ⟨Q2⟩1/2 ≈ 1200 GeV can be obtained using the centre-of-mass energy√

s = 13 TeV [4].
The mediator in Eq. (4.48) couples to two vertices in a given decay or scattering diagram,

and we choose to denote the corresponding coupling constants by λ1 and λ2. If we assume
that only a single mediator mass scale is involved in the different dimension-seven ∆L = 2
operators, this leads to a lower limit on the scale of LNV given by

ΛLNV = Mmed/(λ1λ2)
1/3 . (4.51)

For a constraint on the coupling we can take the perturbative limit10 λ1, λ2 < 4π, such
that the lower limit on the scale of LNV for a given mediator mass is given by ΛLNV >

(4π)−2/3Mmed ≈ 0.185× Mmed. Combining this with the constraint ⟨Q2⟩1/2 ≳ 1200 GeV
coming from the momentum transfer, the limit on LNV scales of dimension-7 operators that
can be probed at the LHC is given by ΛLNV ≳ 220 GeV. However, this lowest scale only applies
to coupling constants that are very close to the perturbative limit, if they are smaller the limit
on the scale of LNV should be higher, with a scaling behaviour described by Eq. (4.51) .

8These momentum fractions represent how much of the total momentum of the proton is carried by the partons
in question. Typically, in proton-proton collisions with a centre-of-mass energy

√
s = 13 TeV, a single proton

has an energy of 6.5 TeV, and a parton with x = 0.5 therefore has the energy of 3.25 TeV.
9Protons contain not just two up-type quarks and one down-type quark, but in fact a whole sea of quark-

antiquark pairs, as discussed in Sec. 2.1.4.
10Another way to limit the couplings is by using the unitarity of the S-matrix rather than the requirement that

the interaction is perturbative, see e.g. Ref. [474].
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Figure 4.7.: LHC constraints on the LNV scale corresponding to dimension-7 ∆L = 2 operators
as a function of the effective mediator mass Mmed and coupling

√
λ1λ2. The

red-shaded area in the low-Mmed side of the plot shows where the EFT approach
is invalid due to the fact that the average momentum scales involved are larger
than the effective mediator mass Mmed. The various other coloured regions
are excluded by LHC same-sign dilepton searches at 95% CL for the different
dimension-7 operators, and the black dashed line indicates the perturbative limit√

λ1λ2 = 4π.
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Figure 4.8.: Limits on the scale of LNV Λeff
LNV at 95% CL as a function of the effective mediator

mass Mmed for the operator OQ̄uLLH (solid), as well as a UV-completion described
by Eq. (4.52) where the mediator has a width Γmed = 1

2 Mmed (dashed) and Γmed =
1

4π Mmed (dotted).

Fig. 4.7 shows the constraints corresponding to different dimension-7 ∆L = 2 operators
as a function of the effective mediator mass Mmed and coupling

√
λ1λ2. We here make the

simplifying assumption that only a single mediator mass scale is involved in the process,
whereby we use Eq. (4.51) to relate Mmed to the LNV scale. This assumption can be regarded
as being valid for tree-level processes at the LHC that are realised by UV-completions of
dimension-7 operators where mixing occurs between the two heavy BSM fields. Such UV-
completions do exist for all dimension-7 ∆L = 2 operators that we consider here, as can be
seen in Ch. 5. For operators OLH , OLeHD, and OLDH2, no part of the excluded region overlaps
with the region where the underlying UV-completion can be perturbative. The other operators
do have such regions, ranging up to ∼ 12 TeV in the mediator mass Mmed for Od̄uLLD, which
is the most stringently constrained dimension-7 operator at the LHC.

In order to study the level of agreement between LNV EFT operators and simplified-model
extensions for same-sign dilepton searches at colliders, let us now take operator OQ̄uLLH as an
example and compare different effective limits on the scale of LNV using both the operator
itself as well as a generic UV-completion. In the mass basis, the simplified model example we
consider includes a scalar field χ with couplings to both quark- and lepton bilinears. The
Lagrangian is given by

L ⊃ λ1d̄LuRχ∗ + λ2ēc
LνLχ + h.c. , (4.52)

where the field χ can be realised as one component of the admixture of the fields φ ∈ (1, 2, 1
2 )
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and ∆ ∈ (1, 3, 1). Now relating the couplings and masses as

λ1λ2

M2
med

=
v

(Λeff
LNV)

3
, (4.53)

where Λeff
LNV is an effective LNV scale corresponding to the scenario where the heavy field

χ with mass Mmed is integrated out, we can compare the LHC constraints coming from the
simplified model and operator OQ̄uLLH , where the latter is given in Tab. 4.8. In Fig. 4.8 the 95%
CL constraints on the effective scale Λeff

LNV are shown for both approaches. The constraints
coming from the simplified model were obtained using MadGraph5_aMC@NLO [462] with
the same procedure and cuts as for the operator (c.f. Sec. 4.4). The red-shaded low-Mmed
region of the plot shows where the EFT formalism breaks down due to the average momentum
scales being greater than the mediator mass. The operator limit is shown in solid blue (c.f.
Tab. 4.8), and the blue dotted and dashed lines correspond to the model in Eq. (4.52) for the
mediator widths Γmed = 1

4π Mmed and Γmed = 1
2 Mmed, respectively. The former width is found

using λ1 = 1 while assuming large scales vM2
med ≪ (Λeff

LNV)
3, which leads to λ2 ≪ 1. The

latter, larger width allows for additional decay modes of the mediator, such that couplings of
χ can go beyond those given in Eq. (4.53).

A smaller width in Fig. 4.8 leads to an increase in Λeff
LNV for some mediator masses.

This increase comes from resonant enhancement in s-channel χ-mediators, which is greater
for smaller widths. This effect is not seen in the EFT approach, where all contributions
are assumed to be off-shell. For somewhat small mediator masses O(1) TeV ≲ Mmed ≲
O(10) TeV, the EFT approach therefore leads to an underestimation of the constraint on
ΛLNV. The simplified-model limits on Λeff

LNV are lower than the operator limit in the regions
of parameter space where the EFT-approach breaks down due to the fact that the kinematic
cuts remove a larger part of the phase space for small mediator masses, leading to an
overestimation of the limit on the LNV scale for Mmed ≲ O(1) TeV. In this region of parameter
space we do not consider the EFT-based limits to be meaningful. For large mediator masses
Mmed ≳ O(1) TeV, there is a high level of agreement between the EFT- and simplified-model
approaches, as expected. For such masses the simplified-model limits lie only slightly below
the ones coming from the operator, where the small difference is due to the fact that the
non-zero decay width modifies the s-channel mediators, which leads to a slight reduction in
the cross section.

In Sec. 5.4.2 we compare neutrino masses with different constraints on the scale of LNV
in the context of simplified-model UV-completions of the four-fermion dimension-7 ∆L = 2
operators. Due to the large number of parameters present, some simplifying assumptions are
made, one being our choice of setting all couplings to unity. With these couplings the LHC
constraints on the scale of LNV all approximately fall within the region of non-validity, and
therefore we neglect LHC constraints on the operator scales in Sec. 5.4.2.

This concludes our list of LNV observables. Other experimental methods that could
potentially lead to constraints include LNV CEνNS and neutrino oscillations. The analysis
of these probes is reserved for future work [4]. In Secs. 4.6 and 4.7 we cover two additional
aspects of LNV operators, before giving a combined overview of the different experimental
constraints in Sec. 4.8.
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4.6. Washout from SMEFT operators

Realisations of LNV operators in nature would not only have implications for Majorana
neutrino masses, but also for the mechanism behind the generation of the baryon asymmetry
of the Universe. In order to generate a baryon asymmetry, the three Sakharov conditions [216]
have to be fulfilled, as discussed in Ch. 3. However, the asymmetry can only survive to this
day in the absence of strong additional washout processes. If such washouts are there, a
pre-existing asymmetry could be removed, and even though it was initially generated, no
baryon asymmetry would be left to leave the imprint in BBN and the CMB that we observe.
The ∆L = 2 SMEFT operators that we have considered in this chapter could lead to such
washouts [394, 475, 476]. If these operators are indeed realised at a relatively low scale, any
asymmetry generated at a high scale would be effectively removed, due to the LNV operators
being active at a later time. Therefore, in case LNV is observed using one of the probes
in Secs. 4.2.1 to 4.2.3 or Secs. 4.3.2 to 4.3.8, and it is due to heavy NP, the corresponding heavy
scale ΛLNV can lead to an effective scale λ̂ where the washout stops being effective [394], as is
discussed below. First, we note that the Boltzmann equation (c.f. Sec. 3.4 and Appendix E)

HTnγ
dηL

dT
= −

(
nLni . . .

neq
L neq

i . . .
− njnk . . .

neq
j neq

k . . .

)
γeq (Li · · · → jk . . . ) + permutations. (4.54)

can lead to an effective equation relating the lepton asymmetry to the scale Λ of LNV
corresponding to a SMEFT operator, given by [1, 394]

dη∆L

dz
= −η∆L

z
c′D

ΛPl

Λ

(
T
Λ

)2D−9

, (4.55)

where c′D is a numerical coefficient that can be obtained using chemical potential relations
(c.f. Appendix D) and D is the dimension of the operator. The form given in Eq. (4.55) comes
from an approximation of the equilibrium reaction rate density γeq that is given towards the
end of Appendix E, which is useful for complicated phase spaces. Assuming a large initial
asymmetry η∆L ≈ 1 at some high temperature, the washout from the LNV operator is active
at a lower temperature T in the range

λ̂ ≲ T ≲ Λ . (4.56)

Here the upper limit Λ comes from the fact that our LNV operator is not defined above this
scale, and the lower limit λ̂ is given by [394]

λ̂ =

[
(2D− 9) ln

(
10−2

ηobs
B

)
λ2D−9 + v2D−9

]1/(2D−9)

. (4.57)

with λ = Λ(Λ/(c′DΛPl))
1/(2D−9). The precise form of Eq. (4.57) comes from considering the

dilution of baryon asymmetry between the high scale and the time of recombination (assuming
that the observed value of the baryon asymmetry ηobs

B is based on CMB measurements). The
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Figure 4.9.: Running of the dimension-7 ∆L = 2 operators that are relevant for 0νββ decay.
The EFT formalism is not valid in the red region under the assumption of unitary
couplings in the underlying UV-theory.

details of this calculation, as well as a specific example of how the chemical potential relations
can be applied to obtain the final form of the Boltzmann equation, are given in Sec. 8.2.
Effectively, any asymmetry generated above the scale λ̂ should be washed out completely.
This means that if LNV is experimentally observed, severe constraints can be put on high
scale baryogenesis/leptogenesis, since the baryon asymmetry of the Universe should then
have been generated below λ̂.

4.7. RG-running of dimension-7 SMEFT operators

The Wilson coefficients of the dimension-7 operators in Tab. 4.5 run with respect the the
energy scale µ at which they are evaluated. The running of the subset of Wilson coefficients
relevant for 0νββ decay is described in Ref. [383] for first generation quark- and lepton flavour
indices. Below we give the running relations for general indices:

d
dµ

Cpr†
LHD1 = − 1

4π

{
(α1 − 2α2 − 6αt)C

pr†
LHD1 +

1
2
(α1 − 7α2)C

rp†
LHD1

+
1
4
(7α1 + 11α2 + 8αλ)C

pr†
LHD2 + (α1 + 2α2)C

rp†
LHD2

}
(4.58)
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d
dµ

Cpr†
LHD2 = − 1

4π

{
7α2Cpr†

LHD1 + α2Crp†
LHD1 −

1
2
(5α1 − α2 + 8αλ + 12αt)C

pr†
LHD2

− 1
2
(3α1 + 7α2)C

rp†
LHD2

}
(4.59)

d
dµ

Cprst†
d̄uLLD = − 1

4π

{
− 1

6
(5α1 + 3α2 + 6αtδ

r3)Cprst†
d̄uLLD +

1
3
(α1 + 3α2)C

prts†
d̄uLLD

}
(4.60)

d
dµ

Cpr†
LeHD = − 1

4π

{
1
2
(3α1 − 12αλ − 18αt)C

pr†
LeHD

}
(4.61)

d
dµ

Cprst†
d̄LueH = − 1

4π

{
1
4
(23α1 + 9α2 − 12αt(1 + δs3))Cprst†

d̄LueH

}
(4.62)

d
dµ

Cprst†
Q̄uLLH = − 1

4π

{
− 1

12
(α1 − 45α2 − 96α3 + 6αt(6 + 5δp3 + 6δr3 + 12δp3δr3))Cprst†

Q̄uLLH

− 3α2Cprts†
Q̄uLLH −

√
αt

√
π

2
(4α1 − 3α2)δ

p3δr3(Cts†
LHD1 − Cst†

LHD1)

−√αt
√

π(α1 + 3α2)δ
p3δr3(Cts†

LHD2 − Cst†
LHD2)

}
(4.63)

d
dµ

Cprst†
d̄LQLH1 = − 1

4π

{
1

36
(41α1 + 63α2 + 96α3 − 18αt(6 + δs3))Cprst†

d̄LQLH1

− 1
9
(20α1 + 36α2 − 48α3)C

ptsr†
d̄LQLH1

− 4α2Cprst†
d̄LQLH2 − 2α2Cptsr†

d̄LQLH2

}
(4.64)

d
dµ

Cprst†
d̄LQLH2 = − 1

4π

{
1
9
(20α1 + 18α2 − 47α3)C

ptsr†
d̄LQLH1 − (2α2 + αtδ

s3)Cprst†
d̄LQLH1

+
1
36

(41α1 + 207α2 + 96α3 − 18αt(6 + 5δs3))Cprst†
d̄LQLH2

+
1
3
(10α1 − 9α2 − 24α3)C

ptsr†
d̄LQLH2

}
(4.65)
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d
dµ

Cpr†
LHW = − 1

4π

{
− 7

8
α2Cpr†

LHD1 +
1
4

α2Crp†
LHD1 +

1
16

(3α1 − 7α2)C
pr†
LHD2

− 1
4

α2Crp†
LHD2 − 3α1Cpr†

LHB −
17
4

α2Crp†
LHW

+
1
4
(8α1 − 9α2 − 16αλ − 24αt)C

pr†
LHW

}
(4.66)

d
dµ

Cpr†
LH = − 1

4π

{
1
2
(3α1 + 15α2 − 80αλ − 24αt)C

pr†
LH

+
3π

2
(2α2

2 − αλα2)(C
pr†
LHD1 + Crp†

LHD1)

+
3π

8

(
4α2

1 + 8α1α2 + 12α2
2 − αλα2

)
(Cpr†

LHD2 + Crp†
LHD2)

+ 6πα2
2(C

pr†
LHW + Crp†

LHW)

− 12
√

π(αλ
√

αt − α3/2
t )δs3δt3(Cstpr†

Q̄uLLH + Cstrp†
Q̄uLLH)

}
(4.67)

d
dµ

Cprst†
ēLLLH = − 1

4π

{
1
4
(9α1 + 7α2 − 12αt)C

prst†
ēLLLH − 2α2Cprts†

ēLLLH

+ 2α2Cpstr†
ēLLLH − 4α2Cptsr†

ēLLLH

}
(4.68)

d
dµ

Cpr†
LHB = − 1

4π

{
− 9

32
α2(C

pr†
LHD1 − Crp†

LHD1) +
6

128
(α1 − α2)(C

pr†
LHD2 − Crp†

LHD2)

+
1
2
(α1 + 10α2 − 8αλ − 12αt)C

pr†
LHB −

3
8

α2(C
pr†
LHW − Crp†

LHW)

}
, (4.69)

where αi, i ∈ {1, 2, 3, λ} is the coupling constant corresponding to the U(1)Y, SU(2)L, SU(3)c

gauge interactions and quartic Higgs interaction, respectively, and δij is the Dirac delta
function. As can be seen from the relations above, the operators mix in the running. In Fig. 4.9
the running is shown for a given initial value at µ = mW corresponding to the exclusion limits
from 0νββ experiments (c.f. Sec. 4.3.2), where mW is the mass of the W-boson. We see that the
running has a minor effect on the Wilson coefficients, and we therefore neglect RG-running
effects of dimension-7 ∆L = 2 SMEFT operators in subsequent chapters. Note however that
other forms of RG running, in particular due to QCD, can play an important role (c.f. e.g.
Sec. 8.1.2).
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Operator 0νββ Meson decays LHC µ+ decays

OLH - - 0.20 -
OLeHD 171 - 0.13 -
OLHD1 27.9 - 0.40 -
OLHD2 - - 0.22 -
OLHW 43.7 - - -
Od̄uLLD 19.6 - 2.2 -
OēLLLH - - - 0.64
Od̄LQLH1 113 21.8 0.71 -
Od̄LQLH2 149 - 0.71 -
Od̄LueH 23.6 - 0.72 -
OQ̄uLLH 136 - 0.86 -

Table 4.10.: Experimental constraints on the scale of LNV in 7-dimensional ∆L = 2 SMEFT
operators, in units of TeV.

4.8. Combined analysis of different observables at dimension-7

In Figs. 4.10 and 4.11 the different constraints arising from the LNV observables listed in
Sec. 4.2 are compiled, where the numerical values corresponding to the different bars are
presented in Tab. 4.10. We see in Fig. 4.10 that 0νββ decay is generally the most constraining
probe of LNV. However, as mentioned previously in this chapter, 0νββ only probes the
electron-flavour components of the different LNV operators. To constrain also other flavours,
a wider set of observables is needed. For the muon flavour, LHC is the most stringent
probe for the operators that lead to the pp → ℓ±ℓ± jj process. Operator OēLLLH does not
trigger this mode, and is instead constrained by LNV muon decays. Rare meson decays
constrain all flavours universally since the flavour-content is undetermined in the final state
neutrinos. However, only one operator triggers such decays, namely Od̄LQLH1. A comparison
of different LNV meson decay modes is shown in Fig. 4.11, where we see that the rare kaon
decay K+ → π+νν leads to the most stringent limits. Note that operator OLHB is absent from
Figs. 4.10, 4.11 and Tab. 4.10. This operator is in general poorly constrained by experimental
searches for LNV.

If a signal is seen in one of the LNV observables, a next step would be to find out what kind
of NP generates the process. To this end, it is interesting to see whether the different LNV
operators can be disentangled. Given a signal in one of the next-generation 0νββ experiments,
we can expect the scale of LNV to be sufficiently high such that it is out of reach of near-
future collider searches. However, as is seen in Ch. 5, the details of the UV-complete model
underlying the LNV operator could still lead to collider signatures. Rare kaon decays might
additionally offer insights in case the process favours µ- or τ-neutrinos, thereby enhancing
the expected signal for this observable. If signals are seen in both 0νββ decay and rare kaon
decays, we may suspect that the processes are mediated by operator Od̄LQLH1.

In this section we have not included neutrino masses as a probe of the scale of LNV in
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Figure 4.10.: Constraints on the scale of LNV corresponding to different dimension-7 operators.
Here the blue bars indicate the limits coming from 0νββ decay (electron flavour),
and the green bars correspond to constraints coming from LNV meson decays
(flavour universal). The red bars indicate limits on the muon-flavour Wilson
coefficients, where these limits come from the LHC in all cases except for operator
OēLLLH, where they come from LNV µ+ decays.

Figure 4.11.: Constraints on the scale of LNV in dimension-7 operator Od̄LQLH1. Here the
different meson decay observables are shown, where the rare kaon decay limits
constitute the most stringent constraints.
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dimension-7 operators. The reason for this is that such constraints depend highly on the
details of the UV-completion that realises the operator in question, a feature not in common
with the other probes of LNV. The conventional method of generating neutrino mass-based
constraints on LNV scales, described in Sec. 4.2.1, is ill-equipped to capture the influence of
such model-specific details. In Ch. 5 we describe a novel way of estimating the constraints on
LNV operators coming from neutrino masses.

Conclusion to Chapter 4

In this section we have discussed how different observables of LNV can be analysed in
effective field theories, in particular SMEFT. This connects the NP scenarios discussed in
Sec. 2.3 with the possible baryogenesis mechanisms from Ch. 3, and highlights the benefits of
model-independent experimental searches. We have reviewed the most constraining LNV
probes in terms of dimension-7 LNV operators, including 0νββ decay, different LNV meson
and lepton decays, and µ− to e+ conversion. New limits were derived for rare kaon decays
K+ → π+νν and fully leptonic meson decays K+/π+ → ℓ+ν̄, as well as the LHC. The
meson-decay results were published in Ref. [1], and the LHC results are subject for future
publication [4]. This analysis is useful for Ch. 5, where all tree-level UV-completions of
dimension-7 LNV operators are systematically analysed.

The EFT formalism is applicable to NP that is realised at high scales, which is a well
motivated in scenario terms of e.g. baryogenesis, gauge unification, and neutrino masses.
However, there are limitations to EFTs that make it worthwhile to also look for other tools.
We discussed one such limitation in an analysis subject for future publication [4] that was
presented in Sec. 4.5. There it was noted that the parameter space available to EFT studies
at the LHC was limited due to the breakdown of the underlying assumptions that validate
an EFT framework, namely the smallness of momentum scales with respect to the scale of
NP. Another limitation comes from the fact that there is only a single EFT scale involved in
a given operator. For NP scenarios that contain multiple scales, any effects coming from a
hierarchy in the internal degrees of freedom is missed by an EFT.

In Ch. 5 we continue the analysis presented in this chapter by considering tree-level UV-
completions of dimension-7 LNV operators in the context of neutrino masses and hierarchies
in the heavy scales.
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dimension-7

In Ch. 4 we discussed the SMEFT formalism with a particular focus on the dimension-7
∆L = 2 operators shown in Tab. 4.5. From a phenomenological perspective, these operators
were found to be constrained by a range of different experimental searches, including 0νββ

decay, rare kaon decays, LNV muon decays, and proton-proton collisions at the LHC. In this
chapter we continue our investigation of dimension-7 operators by systematically analysing
and categorising all tree-level UV-completions in a bottom-up approach1. In Sec. 5.1 we
review the covariant-derivative-expansion framework, which lays the foundation for our
categorisation of UV-completions in Sec. 5.2. We connect the UV-completions to neutrino
masses in Sec. 5.3. In Sec. 5.4 we derive constraints on the UV-completions in terms of
LNV searches and neutrino mass limits, and present a new analysis in terms of an internal
hierarchy in the degrees of freedom, that is subject for publication in Ref. [4].

One of our motivations to study LNV at dimension-7 is its relative simplicity. Only a single
scenario can be thought of as simpler, namely LNV realised by the dimension-5 operator,
which can be generated at tree-level in three different ways: the three seesaw types. However,
if neither of the seesaw fields are realised in nature at a heavy scale, it could be the case that
LNV is first generated at dimension-7.

Rather than a single operator leading to three possible UV-completions, at dimension-7 we
have 12 operators leading to 26 different NP fields that combine in 56 pairs. This sharp increase
in complexity highlights the rich phenomenology of higher dimensional operators [390, 391,
477–486], where e.g. neutrino Majorana mass generation could be connected to a wide range
of different models [487,488]. In this chapter, we systematically categorise each UV-completion
that is found at tree-level corresponding to the dimension-7 LNV operators, and compare
experimental constraints to neutrino mass realisations in the context of a varying internal
hierarchy in the heavy degrees of freedom. We call these UV-completions simplified models
to differentiate them from models that are constructed in order to solve a specific problem,
e.g. gauge coupling unification or generating a dark matter candidate. Simplified models
constitute extensions to the SM by O(few) heavy fields, and they could potentially fit into
the framework of a more complete model. However, in this chapter we are mostly concerned
with models given at the simplified level.

Note that we are here focusing on tree-level UV-completions. It is entirely possible that the
LNV operators we consider are instead realised at loop-level, in which case the analysis we
perform here must be modified. Loop-level UV-completions do not offer the same kind of
absoluteness in terms of classifying the different BSM fields that could participate: as soon as

1For a top-down approach see Ref. [391].
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there is a loop consisting of purely BSM fields the U(1)Y charges could in principle take on
any value. The same goes for any additional symmetry group U(1)X or Zi for i ∈ N that
could be imposed on the BSM fields. There is no handle on such charges since for loop-level
UV-completions they can be conserved internally, while at tree-level each BSM field has to
talk to the SM fields, even if indirectly2. We therefore choose to limit ourselves to tree-level
UV-completions.

5.1. Covariant derivative expansion

Following the method used in Ref. [489], the operators in Tab. 4.5 can be expanded to find
all NP field combinations that generate them at tree-level. To do this, we first systematically
integrate out heavy fields from a simplified-model Lagrangian to find all SM-invariant
operators (see also Refs. [490–495]). After this we identify the operators we obtain with those
from dimension-7 ∆L = 2 SMEFT, and compare with our simplified model starting point to
identify the quantum numbers of the UV-fields.

We start with a simplified generic extension to the SM

LS = ∑
ij

(
Lπi + Lint

Πj
+ Lkin

Πj

)
, (5.1)

where πi is a light field, Πj is a heavy field, and the whole Lagrangian LS corresponds
to one simplified model (S). We first write LS only in terms of light fields, by creating
non-renormalisable terms where heavy scalar, vector, or fermion fields are integrated out.
These non-renormalisable terms are then identified as EFT operators. The integrating-out
procedure can then be repeated until there are no more heavy fields in the Lagrangian. All
operators are then written only in terms of light fields. In the case of SMEFT, all light fields
belong to the SM, and after identifying the light fields as such we deconstruct the operators
to find all possible simplified model UV-completions. Below we first show how fields of
different Lorentz structures can be integrated out, after which we systematically deconstruct
the dimension-7 ∆L = 2 operators. The scalar- and fermion field deconstructions in Secs. 5.1.1
and 5.1.1, respectively, are given in Ref. [201], while the vector field deconstruction in Sec. 5.1.3
is given here for the first time (to the knowledge of the author). Many of the identities used
in this section are presented in Appendix B.

5.1.1. Scalar field

The first type of effective Lagrangian that we consider is the one we obtain by integrating out
a heavy scalar field Πj → Φ. Using covariant derivative expansion (CDE) [201], the terms

2As an example of this we may look at an extension of the type-i seesaw. For the regular diagram we know that
N has to be uncharged under U(1)Y in order to preserve this symmetry. However, if we now imagine that
one of the L-H vertices is a triangle loop, all the fields in the loop could carry a U(1)Y-charge of x ∈ R. The
symmetry would still be preserved, but we have no systematic way of identifying all particles classified in
terms of their hypercharge. This complicates the problem in comparison to tree-level UV-completions.
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that involve both light fields πi and a heavy complex scalar field Φ can be written as

LS ⊃ Lint
Φ + Lkin

Φ =

(
Φ

∂Lint
Φ

∂Φ
+ h.c.

)
+ Φ∗

(
−D2 −m2

Φ
)

Φ +O(Φ3) , (5.2)

where D is a covariant derivative. In Eq. (5.2) we have ignored quadratic terms in Φ, such
that

LS ̸⊃ Φ∗
∂2Lint

Φ
∂Φ∗∂Φ

Φ . (5.3)

Such terms do not lead to new fields in the explosion procedure that would not also have
been found from the terms in Eq. (5.1), since any quadratic vertex can also be drawn as two
trilinear vertices, with identical legs. Evaluating the equations of motion (EOM) for Φ we
have (

−D2 −m2
Φ
)

Φ = −∂Lint
Φ

∂Φ∗
+O(Φ2) . (5.4)

We can solve the linearised EOM using the classical field

Φcl =
1

D2 + m2
Φ

∂Lint
Φ

∂Φ∗
, (5.5)

which can be expanded in D2/m2
Φ as a power series, giving us

Φcl =
1

m2
Φ

(
1 +

D2

m2
π

)−1
∂Lint

Φ
∂Φ∗

=

(
1

m2
Φ
− D2

m4
Φ
+ . . .

)
∂Lint

Φ
∂Φ∗

. (5.6)

If we substitute the classical field into the simplified model Lagrangian in Eq. (5.2) we get a
series of interaction terms

Leff ⊃ LΦ
eff =

∂Lint
Φ

∂Φ

(
1

m2
Φ
− D2

m4
Φ
+ . . .

)
∂Lint

Φ
∂Φ∗

. (5.7)

Eq. (5.7) now contains an effective Lagrangian that does not feature the heavy scalar field Φ,
but that does depend on its interactions with other possible heavy fields as well as the light
fields πi. Such interactions are contained in the derivatives ∂Lint

Φ /∂Φ(∗). A general expression
of this type of derivative is given below, but first we apply a similar procedure as the one
outlined here to find an effective Lagrangian that encode the interactions of heavy fermion
and vector fields.

5.1.2. Fermion field

A heavy Dirac fermion field Ψ ≡
(

χα , η†α̇
)T leads to the simplified Lagrangian

LS ⊃ iΨ̄ /DΨ−mΨΨ̄Ψ +

(
Ψ

∂Lint
Ψ

∂Ψ
+ h.c.

)
= iχ†

α̇Dα̇βχβ + iηαDαβ̇η†β̇ +

(
χα

∂Lint
Ψ

∂χα
+ ηα ∂Lint

Ψ
∂ηα

−mΨηαχα + h.c.
)

,
(5.8)
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where we have used the relations

Dα̇β ≡ Dµσ̄
α̇β
µ , Dαβ̇ ≡ Dµσµαβ̇ . (5.9)

In Eq. (5.8), the second term can be written in the same form as the first term by using
integration by parts (IBP), assuming that the total derivative vanishes,

iηαDαβ̇η†β̇ = −i(Dµηα)σµαβ̇η†β̇ , (5.10)

after which we apply a Fierz transformation (see Appendix B)

−i(Dµηα)σµαβ̇η†β̇ = iη†
β̇
σ̄

β̇α
µ Dµηα = iη†

β̇
Dβ̇αηα , (5.11)

such that we can write the coupled EOM as

iDα̇βχβ −mΨη†α̇ +
∂Lint

Ψ

∂χ†
α̇

= 0 (5.12)

iDα̇βηβ −mΨχ†α̇ +
∂Lint

Ψ

∂η†
α̇

= 0 , (5.13)

where Eq. (5.12) can be solved for η†
β̇
,

η†
β̇
=

1
mΨ

ϵβ̇α̇

(
iDα̇βχβ +

∂Lint
Ψ

∂χ†
α̇

)
= i

1
mΨ

ϵβ̇α̇Dα̇βχβ +
1

mΨ

∂Lint
Ψ

∂χ†β̇
. (5.14)

Inserting this result into the complex conjugate of Eq. (5.13) now leads to

1
mΨ

Dβ̇αϵβ̇α̇Dα̇βχβ + i
1

mΨ
Dβ̇α ∂Lint

Ψ

∂χ†β̇
−mΨχα +

∂Lint
Ψ

∂ηα
= 0 . (5.15)

We can express the first term in Eq. (5.15) in terms of the field strength

Xα
β ≡ Xµνσναγ̇σ̄

γ̇β
µ = −i [Dµ, Dν] σναγ̇σ̄

γ̇β
µ (5.16)

by using the relation

Dβ̇αϵβ̇α̇Dα̇β = DµDνσ̄
α̇β
µ ϵβ̇α̇σ̄

β̇α
ν

= DµDνϵβγσµγβ̇σ̄
β̇α
ν

= DµDνϵβγ
(
ηµνδγ

α − 2i(σµν)γ
α
)

= D2ϵβα +
i
2

ϵβγXγ
α ,

(5.17)

where we have

(σµν)α
β ≡ i

4

(
σµαγ̇σ̄

γ̇β
ν − σναγ̇σ̄

γ̇β
µ

)
, (σ̄µν)

α̇
β̇ ≡

i
4

(
σ̄

α̇γ
µ σνγβ̇ − σ̄

α̇γ
ν σµγβ̇

)
. (5.18)
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This then leads to the relation

m2
Ψ

(
−D2ϵαδ − i

2 Xγ
αϵγδ

m2
Ψ

− ϵαδ

)
χδ + iDβ̇α ∂Lint

Ψ

∂χ†β̇
+ mΨ

∂Lint
Ψ

∂ηα
= 0 , (5.19)

which can solved by the classical fermion field

(χcl)δ =
1

m2
Ψ

(
−D2ϵαδ − i

2 Xγ
αϵγδ

m2
Ψ

− ϵαδ

)−1 (
iDβ̇α ∂Lint

Ψ

∂χ†β̇
+ mΨ

∂Lint
Ψ

∂ηα

)

=

(
ϵαδ

m2
Ψ
+

D2ϵαδ +
i
2 Xα

γϵγδ

m4
Ψ

+ . . .

)(
iDβ̇α ∂Lint

Ψ

∂χ†β̇
+ mΨ

∂Lint
Ψ

∂ηα

)
.

(5.20)

The corresponding classical field (ηcl)δ can be found in the same way. Now substituting the
fields in the effective Lagrangian in Eq. (5.8) we get a series of interaction terms

Leff ⊃ LΨ
eff =

∂Lint
Ψ

∂χδ

(
ϵαδ

m2
Ψ
+

D2ϵαδ +
i
2 Xα

γϵγδ

m4
Ψ

+ . . .

)(
iDβ̇α ∂Lint

Ψ

∂χ†β̇
+ mΨ

∂Lint
Ψ

∂ηα

)

+
∂Lint

Ψ
∂ηδ

(
ϵαδ

m2
Ψ
+

D2ϵαδ +
i
2 Xα

γϵγδ

m4
Ψ

+ . . .

)(
iDβ̇α ∂Lint

Ψ

∂η†β̇
+ mΨ

∂Lint
Ψ

∂χα

)
+ h.c.

=
∂Lint

Ψ
∂Ψ̄

(
1

m2
Ψ
+

D2 + 1
2 Xµνσµν

m4
Ψ

+ . . .

)
(i /D + mΨ)

∂Lint
Ψ

∂Ψ
,

(5.21)

where we have used the relation
σµν ≡ i

2
[γµ, γν] . (5.22)

Extending this formalism to Majorana fields can be done via the replacement ηα → χα and
mΨ → 1

2 mΨ .

5.1.3. Vector field

A massive vector field Vµ leads to the simplified Lagrangian

LS ⊃ −
1
4

(
DµV∗ν − DνV∗µ

)
(DµVν − DνVµ) +

1
2

m2
VV∗µVµ − ∂Lint

V
∂V∗µ

V∗µ , (5.23)

where we have the field strength Xµν = −i [Dµ, Dν]. From Eq. (5.23) we then obtain the EOM

D2Vµ − DνDµVν + m2
VVµ − ∂Lint

V
∂V∗µ

= 0 , (5.24)

which can be solved by the classical vector field

(Vcl)ρ =
(

D2ηµρ − DνDµηνρ + m2
Vηµρ

)−1 ∂Lint
V

∂V∗µ

=
1

m2
V

(
ηµρ +

D2ηµρ − DνDµηνρ

m2
V

+ . . .

)
∂Lint

V
∂V∗µ

.
(5.25)
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In the effective Lagrangian this then leads to a series of interaction terms

Leff ⊃ LV
eff =

∂Lint
V

∂Vν

(
ηµν

m2
V
+

D2ηµν − DνDµ

m4
V

+ . . .

)
∂Lint

V
∂V∗µ

=
1
4

∂Lint
V

∂Vαβ̇

(
2δα

δδβ̇
γ̇

m2
V

+
2D2δα

δδβ̇
γ̇ − Dαβ̇Dγ̇δ

m4
V

+ . . .

)
∂Lint

V
∂V∗γ̇δ

.

(5.26)

This concludes our analysis of the different Lorentz structures in CDE. In the next section we
apply this formalism to EFT operators to find their underlying UV-completions.

5.2. Operator expansion

The derivative of an interaction Lagrangian with respect to the heavy field Πj can be written
in terms of light scalar ϕi and fermion ψi fields, as well as heavy BSM fields Πi, such that we
have

∂Lint
Φ

∂Π†
j
= ∑

i,a,b,c

(
1 + cΠi

∂Lint
Φ

∂Π†
i

)(
cψψα

a ψbα + cψ† ψ†
aα̇ψ†α̇

b + cϕϕaϕbϕc + µϕϕaϕb

)
. (5.27)

Here ci are dimensionless coupling constants, and µi has mass dimension one. The derivative
∂Lint

Φ /∂Π†
i can subsequently be expanded again, and this procedure can be repeated until

only light fields remain. Note that we do not include light vector fields because we want
to match with the SM, where all vector bosons are gauge bosons that instead appear in the
covariant derivative. In a given UV-complete simplified model, there can exist multiple heavy
fields with different interactions terms and different Lorentz- and gauge structures. We
therefore write the total effective Lagrangian as

Leff = LSM + ∑
i

∑
a,b,...
LΠa,Πb,...

eff
(i) . (5.28)

Here the dimension of the light field bilinears that were obtained in the CDE is denoted
by the superscript (i), where the smallest possible mass dimension is 5. Furthermore, Πa

denotes a heavy vector, scalar, or fermion field that leads to the given light-field bilinear when
integrated out. We want to finally match with SMEFT, and therefore all terms in the effective
Lagrangian must only contain light fields that are part of the SM. However, since in the CDE
only one heavy field is integrated out at a time, the terms in the UV-complete simplified
model Lagrangian that contain several heavy BSM fields Πa, Πb, . . . must go through many
iterations of the CDE procedure, leaving only SM fields in the end.

Eq. (5.28) can be matched to an EFT Lagrangian written in terms of a series of NP operators
and Wilson coefficients,

Leff = LSM + ∑
i

∑
a

C(i)
a O(i)

a . (5.29)

For each mass dimension i, the effective Lagrangian in Eq. (5.29) can be written using a full
basis of SMEFT operators that contain SM fields, covariant derivatives, and field strengths.
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α̇α

α̇α

αα

αα

αα

α̇α̇

αα

α̇α̇

αα

αα

α̇α

α̇α

Figure 5.1.: Tree-level topologies that appear in UV-completions of dimension-7 ∆L = 2
operators of type Ψ4H. Here α is a spinor index and α̇ is an antispinor index.

αα α

α

Figure 5.2.: Tree-level topologies that appear in UV-completions of dimension-7 ∆L = 2
operators of type Ψ2H3D. Here α is a spinor index.

When matching this EFT Lagrangian to the expression in Eq. (5.28), the Wilson coefficients
are expressed in terms of the masses and coupling constants corresponding to the heavy
fields, and the SMEFT operators are obtained from derivatives of the heavy field interaction
Lagrangians. By performing the CDE in reverse for a given SMEFT operator and all its
Fierz transformed counterparts, in all ways that do not leave any free spinor- or Lorentz
indices and does not produce any term that is charged under the SM gauge symmetry
group SU(3)c × SU(2)L ×U(1)Y, we can obtain all possible combinations of heavy fields
that lead to tree-level UV completions of the operator in question. We call this procedure
exploding following Ref. [489], in which systematic decompositions of ∆L = 2 operators in the
Babu-Leung basis were made for scalar and fermionic UV-completions. We extend this work
here using the Lehman basis by considering also heavy vector fields and by analysing the
results in a novel way in terms of a hierarchy in the internal degrees of freedom.

In Tab. 4.5 we list all dimension-7 ∆L = 2 SMEFT operators. From this list, the ones that
will be the main focus in this chapter are those of type Ψ4H (OēLLLH, Od̄LQLH1, Od̄LQLH2,
Od̄LueH , and OQ̄uLLH), type Ψ2H3D (OLeHD), and type Ψ2H4 (OLH). Exploding these operators
results in the list of heavy BSM fields shown in Tab. 5.1. These are the only fields that can
UV-complete the dimension-7 ∆L = 2 SMEFT operators at tree-level. In the interaction basis,
at least two fields from Tab. 5.1 are used per UV-completion, and for operator OLH some
UV-completions involve three heavy fields. We denote these types of UV-completions as two-
and three-field combinations, respectively, where our main focus towards the end of this chapter
will be on two-field combinations.
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Figure 5.3.: Tree-level topologies that appear in UV-completions of dimension-7 ∆L = 2
operators of type ψ2H4. Here α is a spinor index.
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Field Rep Coupling to SM fields (+h.c.)

S S(1, 1, 0)(0) 1
2 κSSH†H + 1

2 λSSSH†H
Ξ S(1, 3, 0)(0) 1

2 κΞH†ΞaσaH + 1
2 λΞ (ΞΞ)

(
H†H

)
h S(1, 1, 1)(0) yhh† L̄iσ2Lc + κhh†H̃†H

∆ S(1, 3, 1)(0) 1
4 λ∆

(
∆†∆

) (
H†H

)
+ 1

4 λ′∆ fabc
(
∆a†∆b) (H†σcH

)
+y∆∆a† L̄σaiσ2Lc + κ∆∆a†(H̃†σaH

)
φ S(1, 2, 1/2)(0) λφ

(
φ†H

) (
H†H

)
+ ye

φ φ† ēL + yd
φ φ†d̄Q + yu

φ φ†iσ2Q̄Tu

Θ1 S(1, 4, 1/2)(0) λΘ1

(
H†σaH

)
CI

abH̃bϵI JΘ
J
1

Θ3 S(1, 4, 3/2)(0) λΘ3

(
H†σaH̃

)
CI

abH̃bϵI JΘ
J
3

S1 S(3̄, 1, 1/3)(−1) yql
S1

S1Q̄ciσ2L + yqq
S1

S1Q̄iσ2Qc + ydu
S1

S1d̄uc + yeu
S1

S1ēcu

R̃2 S(3, 2, 1/6)(1) yR̃2
R̃†

2iσ2 L̄Td

S3 S(3̄, 3, 1/3)(−1) yql
S3

Sa
3Q̄ciσ2σaL + yqq

S3
Sa

3Q̄σaiσ2Qc

N F(1, 1, 0)(0) λN N̄ϕ̃†L

Σ F(1, 3, 0)(0) 1
2 λΣΣ̄aϕ̃†σaL

Σ1 F(1, 3,−1)(0) 1
2 λΣ1 Σ̄a

1ϕ†σaL

∆1 F(1, 2,−1/2)(0) λ∆1 ∆̄1He

∆3 F(1, 2,−3/2)(0) λ∆3 ∆̄1H̃e

F4 F(1, 4, 1/2)(0) −
U F(3, 1, 2/3)(1) λUŪH̃†Q

Q5 F(3, 2,−5/6)(1) λQ5 Q̄5H̃d

Q7 F(3, 2, 7/6)(1) λQ7 Q̄7Hu

T1 F(3, 3,−1/3)(1) 1
2 λT1 T̄a

1 H†σaQb

T2 F(3, 3, 2/3)(1) 1
2 λT2 T̄a

2 H̃†σaQb

W ′1 V(1, 1, 1)(0) 1
2 gdu

W ′1
W ′1

µ†d̄γµu + gH
W ′1

W ′1
µ†iDµHTiσ2H

V3 V(1, 2, 3/2)(0) Vµ
3 ēcγµL

U1 V(3, 1, 2/3)(1) ged
U1

Uµ†
1 ēγµd + glq

U1
Uµ†

1 L̄γµQ

V̄2 V(3̄, 2,−1/6)(−1) gul
V̄2

V̄µ
2 ūcγµL + gµ

V̄2
d̄γµiσ2Qc

U3 V(3, 3, 2/3)(1) gU3Uaµ†
3 L̄γµσaQ

Table 5.1.: All heavy BSM fields that appear in the explosions of dimension-7 LNV operators,
shown in the representation that has a positive hypercharge, as well as their
allowed couplings to SM fields. The different naming conventions follow from
Refs. [480, 484, 496–498]. The representation in the second column corresponds to
the SM gauge group SU(3)c × SU(2)L ×U(1)Y, where the last parenthesis (3B)
shows the baryon number B multiplied by three, and the letter in front of the
representation indicates whether the field is a scalar (S), fermion (F), or vector (V).
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OLH OLeHD OēLLLH Od̄LueH Od̄LQLH1 Od̄LQLH2 OQ̄uLLH

S ∆, N, Σ

Ξ ∆, Σ

h φ, N, ∆†
3 φ,U, Q†

5

∆
S , Ξ, ∆, φ,
Θ1, Θ3, Σ

Σ, ∆†
1 φ, Σ, ∆†

3 φ, S3, Q†
5 φ, Q7, T†

1

φ ∆, N, Σ h, ∆, N, Σ ∆, N, Σ h, Σ ∆, N, Σ

Θ1 ∆, Σ

Θ3 ∆, Σ†
1

S1 R̃2, N, Q†
5 R̃2, N, Q†

5

R̃2 S1, ∆†
1, Q7

S1, S3, N,
Σ, T2

S3, Σ,U

S3 ∆, R̃2, Σ, Q†
5 R̃2, Σ, Q†

5 R̃2

N S , φ, ∆†
1 ∆†

1 h, φ S1,W ′1,U1 φ, S1, R̃2 φ,U1, V̄†
2

Σ
S , Ξ, ∆, φ,
Θ1, ∆†

1, F4
∆, ∆†

1 ∆, φ φ, R̃2, S3 φ, R̃2, S3 φ, V̄†
2 ,U3

Σ†
1 Θ3

Table 5.2.: Part 1 of a list showing the combinations of heavy BSM fields that generate tree-
level UV-completions of dimension-7 ∆L = 2 operators. Here the operators at the
top are generated by combining the fields in their respective columns with the
corresponding field to the left in each row. There is one row for each field, and
since we are considering two-field UV-completions, each UV-completion is listed
exactly twice. For the representations of the different fields under the SM symmetry
group, as well as their couplings to the SM fields, see Tab. 5.1.
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OLH OLeHD OēLLLH Od̄LueH Od̄LQLH1 Od̄LQLH2 OQ̄uLLH

∆†
1 N, Σ ∆, N, Σ R̃2,W ′1, V̄†

2

∆†
3 h, ∆

F4 Σ

U h, R̃2

Q†
5 S1, V3, V̄†

2 ∆, S1, S3 h, S3

Q7 R̃2, V3,U1 ∆,U1,U3

T†
1 ∆, V̄†

2

T2 R̃2

W ′1 N, ∆†
1, V3

V3 Q†
5, Q7,W ′1

U1 N, Q7, V̄†
2 N, Q7, V̄†

2

V̄†
2 ∆†

1, Q†
5,U1

N, Σ, T†
1 ,

U1,U3

U3 Σ, Q7, V̄†
2

Table 5.3.: Part 2 of a list showing the combinations of heavy BSM fields that generate tree-
level UV-completions of dimension-7 ∆L = 2 operators. Here the operators at the
top are generated by combining the fields in their respective columns with the
corresponding field to the left in each row. There is one row for each field, and
since we are considering two-field UV-completions, each UV-completion is listed
exactly twice. For the representations of the different fields under the SM symmetry
group, as well as their couplings to the SM fields, see Tab. 5.1.

121



5. Beyond SMEFT: LNV simplified models at dimension-7

In Fig. 5.1, 5.2, and 5.3 we show the different topologies corresponding to operators of
types Ψ4H, Ψ2H3D, and Ψ4H, respectively. Here scalar and vector bosons are drawn with
dashed and wavy lines, respectively, and fermions are drawn with solid lines, where spinor
indices are indicated by α and antispinor indices by α̇. In Fig. 5.1 we see that different Lorentz
structures appear in the contraction of fermions depending on whether they have spinor-
or antispinor indices. Diagrams where all fermions have spinor indices lead only to UV-
completions with scalar mediators, while if two fermions have antispinor indices also vector
mediators can be generated. In Fig. 5.3 we see that many topologies coming from operator
OLH have three heavy mediators. However, in some of these three-field UV-completions, two
out of the three fields are identical. In such cases, we classify the UV-completion as two-field.

In Tabs. 5.2 and 5.3, the specific two-field combinations of the fields that give rise to
different operators are shown. This list is exhaustive: there are no other tree-level UV-
completions of ∆L = 2 dimension-7 SMEFT operators. We see that only two operators feature
UV-completions with vector fields, namely OQ̄uLLH and Od̄LueH . These are the only operators
that contain fermions with spinor indices as well as fermions with antispinor indices, and
therefore they are the only ones that can generate a vector mediator. There are many heavy
fields that are unique to operator OLH , where three of these are SU(2)L quadruplets (Θ1, Θ3,
and F4). The heavy fields N and Σ both appear in six out of the seven operators, while ∆
and φ both appear in five out of seven. These are the most commonly occurring fields in
explosions of dimension-7 ∆L = 2 operators. As discussed in Sec. 2.3.2, the fields N, ∆, and Σ
are the ones that give rise to the three possible tree-level UV-completions of the dimension-5
operator. The field φ on the other hand has the same representation under the SM gauge
symmetry group as the Higgs fields, which means that it can couple to a large variety of
other SM fields.

As an example of how the explosion can be done, the method of obtaining the UV-
completions for operator OQ̄uLLH is outlined below.

5.2.1. Example: OQ̄uLLH

We now proceed to explode the operator OQ̄uLLH = ϵij(Qu)(LcLi)H j. Assuming that this
operator has been obtained in the CDE by repeatedly integrating out heavy fields, we can
reverse the process to find the underlying UV-completions. The goal of this explosion is to
identify all ways in which a CDE method could have led to OQ̄uLLH. We hope to find all
minimal renormalisable simplified-model Lagrangians containing only SM fields as well as
generic heavy vector-, fermion-, or scalar fields that could lead to some Fierz transformed
version of OQ̄uLLH. The first step is to disentangle the spinor contractions, such that we
consider all of them, and randomly select one SM field that couples to the other SM fields
one at a time,

OQ̄uLLH = ϵij(Qu)(LcLi)H j → ϵijQkuLkLi H j .

χ1

ψ1

ϕ1

ω1

(5.30)

The above equation should be read as follows: we consider the quark doublet Qk
to be part of
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a renormalisable term in the full simplified-model Lagrangian along with one of the other SM
fields from the operator, u, Lk, Li, or H j, as well as a new heavy field which we generically
denote as χ1, ψ1, ϕ1, or ω1. The Lorentz structures and SM gauge group representations of
the heavy fields can be read off from the combination of the SM fields it contracts with in the
full simplified Lagrangian, using the fact that the whole term has to be a Lorentz-invariant
SM singlet. We then repeat the procedure by coupling the remaining SM fields to the heavy
field, one at a time, such that we have

OQ̄uLLH → ϵijχ1
kLkLi H j

/
ϵijψ1

kuLi H j

/
ϵijϕ1

kuLk H j

/
ϵijω1

kuLkLi .

χ2

χ3

χ4

ψ2

ψ3

ψ4
ϕ2

ϕ3

ϕ4
ω2

ω3

ω4

(5.31)

Now all terms are renormalisable and the process comes to an end3. In our notation, the
field χ1 can be paired with χi, i ∈ {2, 3, 4} to realise a tree-level UV-completion of the the
operator OQ̄uLLH . Similarly, we can pair ψ1 with ψi, i ∈ {2, 3, 4}, and so on. There is however

one remaining caveat: our initial choice of selecting the quark doublet Qk
to contract with

the other fields was an arbitrary one. It is possible construct the operator OQ̄uLLH using

renormalizable terms for which, in addition to the SM terms, Qk
only couples to heavy

BSM fields. In this case there are no terms of the form given in Eq. (5.31), instead all terms
involving Qk

can be written as Qk
ζ1ζ2, where ζ1 and ζ2 are heavy fields. This leads to three

possibilities, namely
{ζ1, ζ2} = {χ2, ϕ4}, {χ3, ψ4}, {χ4, ψ3} . (5.32)

After this last consideration we have exhausted the possibilities to tree-level UV-complete the
operator OQ̄uLLH. The representations under the SM gauge group and Lorentz structures of
the new fields can be deduced from the combination of SM fields that they couple to in the
full Lagrangian. We then simply read off

χ1 ∼ S(1, 2, 1/2) ψ1 ∼ V(3, 1,−2/3) ϕ1 ∼ V(3, 3,−2/3) ω1 ∼ FL(3, 3, 1/3)
χ2 ∼ FR(1, 1, 0) ψ2 ∼ FR(1, 1, 0) ϕ2 ∼ FR(1, 3, 0) ω2 ∼ S(1, 3, 1)
χ3 ∼ FR(1, 3, 0) ψ3 ∼ FL(3, 2,−7/6) ϕ3 ∼ FL(3, 2,−7/6) ω3 ∼ V(3, 2,−1/6)
χ4 ∼ S(1, 3, 1) ψ4 ∼ V(3, 2,−1/6) ϕ4 ∼ V(3, 2,−1/6) ω4 ∼ V(3, 2,−1/6) .

(5.33)
Here S, V, FL, and FR denote scalar, vector, left-handed fermion, and right-handed fermion
fields, respectively. Note however that due to anomaly cancellation (c.f. Sec. 2.1.5) we generally
cannot introduce new heavy chiral fermions naively, and we therefore considerer all BSM
fermions to be vector-like FL, FR → F from here on. Many fields have identical representations
in Eq. (5.33), and this list is therefore overcomplete.

3Note that for some higher dimensional operators, e.g. dimension 9 or 11, as well as the dimension-7 operator
OLH , we would have had to continue the procedure by repeating the second step until only renormalizable
terms remain.
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να νβ να νβ

Figure 5.4.: Left: Topology I Right: Topology II.

This concludes our explosion of operator OQ̄uLLH. In the next section, we will discuss the
neutrino mass topologies that are generated by the different UV-completions underlying
dimension-7 ∆L = 2 operators.

5.3. Neutrino masses in UV-completions at dimension-7

In this section we will discuss the radiative neutrino mass topologies that can be generated
in the simplified models found by applying the explosion procedure from Sec. 5.2 onto the
dimension-7 ∆L = 2 operators.

From the twelve operators in Tab. 4.5, seven lead to tree-level UV-completions that do not
necessarily involve any of the seesaw fields. As can be seen in the CDE in Sec. 5.1, operators
of types Ψ2H2D2 and Ψ2H2X2 appear as higher order corrections to UV-completions of the
Weinberg operator at tree-level. Therefore, the underlying simplified model also induces
the dimension-5 operator at tree-level in addition to the higher order dimension-7 operator.
Furthermore, the operator of type Ψ4D cannot lead to a tree-level UV-completion according
to the CDE formalism, since the covariant derivative D should arise from a fermion mediator,
however the four fermion legs of the operator cannot be contracted with a fermion mediator
due to conservation of fermion number. The conclusion is then that this operator can only be
realised at loop-level.

5.3.1. Neutrino mass topologies

Out of the seven explosive operators, one is of the form ΨH4, one Ψ2H3D, and the rest Ψ4H.
In the following sections we construct all possible neutrino mass realisations beyond the three
seesaw types using the UV-completions of these seven dimension-7 operators.

Ψ4H

Operators of type Ψ4H contain two distinct subtypes: those where all fermions carry spinor
indices, and those where only two fermions have spinor indices while the other two have
antispinor indices. The first subtype gives rise to radiative neutrino mass diagrams mediated
via either scalar or vector bosons, while the second subtype only leads to scalar-mediated
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να νβ να νβ

Figure 5.5.: Left: Topology III Right: Topology IV.

να νβ να νβ

Figure 5.6.: Left: Topology V Right: Topology VI.

diagrams. There are two distinct topologies (which we denote as Topology I and Topology II)
for this radiative mass, and both of them are shown in Fig. 5.4, where the bosonic mediator is
either scalar or vector. For UV-completions that generate Topology II with a type-ii seesaw
mediator boson ∆ there is also an additional diagram where the seesaw field contracts directly
with the two neutrinos.

Ψ2H3D

For type Ψ2H3D there is only one dimension-7 ∆L = 2 operator, namely OLeHD. For this
operator there is only one tree-level UV-completion that does not also lead to a tree-level
UV-completion of the Weinberg operator: the combination of ∆ and ∆†

1. Rather than closing
two fermion legs, as is how neutrino mass diagrams of Topology I can be generated from
operators of type Ψ4H, for this specific UV-completion of OLeHD we can connect one of the
Higgs fields to the lepton singlet leg, thereby closing them in a loop. This leads to an external
L leg, as required in a neutrino mass diagram.

Ψ2H4

There is also only a single dimension-7 ∆L = 2 operator for type Ψ2H4, namely OLH. This
operator is of the same structure as the Weinberg operator, except that it has an additional
Higgs-anti-Higgs pair with self-contracting SU(2)L-indices. This simple modification to the
dimension-5 operator leads to a plethora of UV-completions with many possible neutrino
mass topologies, as shown in Figs. 5.5 to 5.7. However, for OLH there is only one tree-level
UV-completion that does not contain any of the seesaw fields. This UV-completion is realised
by the combination of Θ3 and Σ†

1, as can be seen in Tabs. 5.2 and 5.3. Due to the fact that OLH

contains six external legs rather than five, as is the case in Ψ4H- and Ψ2H3D-type operators,
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να νβ να νβ να νβ

Figure 5.7.: Left: Topology VII Centre: Topology VIII Right: Topology IX.

tree-level UV-completions of OLH can contain three different BSM fields rather than only
two4. All such combinations of three fields are shown in Tabs. 5.11 to 5.13, where two of the
fields are given in the row and column of each table, and the third is the seesaw field shown
in the respective top-left corners. All UV-completions of OLH with three fields contain at
least one of the three seesaw fields. Entries in the diagonal of Tabs. 5.11 to 5.13 show the
UV-completions that only require two heavy fields: the seesaw field in the top-left corner and
the field in the corresponding row and column. The tree-level neutrino mass diagrams that
appear for OLH can be thought of as extended seesaw diagrams, such that they constitute the
next-simplest neutrino Majorana mass diagrams at tree-level, where the three regular seesaw
diagrams are the simplest.

Figs. 5.5 to 5.7 do not represent an exhaustive list of extended seesaw diagrams. However,
the additional diagrams not shown there contain either the type-i or iii seesaw fields, which
would lead to a tree-level UV-completion of the dimension-5 operator, as is discussed in
Sec. 5.3.2. Note that extended seesaw diagrams with type-i or iii seesaw fields could still
provide the most dominant contribution to neutrino masses depending on the hierarchy
between Dirac and Majorana mass contributions (e.g. as in inverse seesaw [499–501]).

5.3.2. Simplified neutrino mass models

Here we summarise the results of the explosion procedure described in Sec. 5.2 applied to all
dimension-7 ∆L = 2 operators that lead to tree-level UV-completions, in the context of the
radiative neutrino Majorana mass diagrams discussed in Sec. 5.3. These results are presented
as tables corresponding to each individual operator that describe the specific neutrino mass
topology (c.f. Sec. 5.3.1) that is generated for each combination of heavy BSM fields. We are
mainly interested in radiative neutrino mass diagrams that do not contain couplings that
inevitably also lead to a tree-level UV-completion of the dimension-5 operator. The reason
for this is that the radiative diagram would be expected to be subdominant to the seesaw

4The maximum number of heavy NP mediators n needed to tree-level UV-complete a given operator that
contains m ≥ 3 external legs is n = m− 3. For operators with multiple boson legs this number can be smaller
since four bosons can couple to the same vertex.
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να νβ
∆0

e+Li ∆+
3

e+Rj

να νβ
∆+

e+Li

e+Rj

∆+
3

Figure 5.8.: Example of a scenario where a UV-completion leads to a neutrino mass diagram
containing ∆ in the absence of its coupling to the SM Higgs doublet, such that
L ��⊃ µHi H j∆∗ij. These diagrams can come from a UV-completion of operator
OēLLLH realised by ∆ and ∆†

3 (c.f. Tabs. 5.2 and 5.3).

diagram in such cases.
If a simplified model contains any one of the three heavy seesaw particles N, ∆, or Σ, it

could lead to a tree-level UV-completion of the Weinberg operator. For seesaw types i and
iii this occurs if there is a coupling between the heavy seesaw field, SM Higgs field, and
SM lepton doublet via terms of the form HαLαN or HαLβΣαβ. Unless there is a significant
hierarchy in the coupling constants of the seesaw fields, the Weinberg operator will most
likely dominate in the contribution to the neutrino mass over any additionally generated
dimension-7 operators. If the dimension-7 operator dominates over the dimension-5, there
could be a still greater contribution coming from a dimension-9 operator. The reason for
this can be seen by noting that any dimension-7 ∆L = 2 SMEFT operator containing at least
two lepton doublets L and a Higgs doublet H can be written in the form of LH × L(dim-3),
where (dim-3) denotes a dimension-3 object. As is shown in this section, operators with two
lepton doublets L and one Higgs doublet H can lead to one-loop radiative neutrino Majorana
masses [498,502,503]. If a given tree-level UV-completion contains a heavy type-i or iii seesaw
field F ∈ {N, Σ}, this field couples to the combination LH. The two parts of the dimension-7
operator, LH and L(dim-3), are then connected via the heavy seesaw fermion F. Should
the coupling LHF be stronger than the corresponding coupling FL(dim-3), two instances of
LHF can be used to construct the Weinberg operator LLHH, which should have a bigger
contribution than the dimension-7 operator to the neutrino mass. If instead the FL(dim-3)
coupling dominates, it can be used twice to form the dimension-9 operator LL(dim-3)(dim-3),
which should constitute the leading contribution. There is therefore never a scenario in which
the most dominant neutrino mass contribution comes from a dimension-7 ∆L = 2 operator of
this type5.

For type-ii seesaw, there are two couplings involved in the generation of the dimension-5
operator, namely HαHβ∆αβ and LαLβ∆αβ. Tree-level UV-completions of a given ∆L = 2
dimension-7 operator containing the field ∆ do not a priori induce the dimension-5 operator,
since it could be that only one of the two couplings are part of the simplified model6, see

5A similar argument can also be applied to operators containing a lepton singlet ec.
6Note also that if a given UV-completion contains two copies ∆1 and ∆2, where one interacts with HH and the
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OQ̄uLLH = ϵij(Qpur)(Lc
sLi

t)H j

∆ φ N Σ Q7 T†
1 U1 V̄†

2 U3
∆ I II II

φ # #

N # #

Σ # #

Q7 II II

T†
1 II

U1 I

V̄†
2 I

U3

Table 5.4.: All combinations of fields that UV-complete OQ̄uLLH at tree-level. Here each entry
indicates which neutrino mass topology (c.f. Fig. 5.4) is generated by combining
the fields to the top and left that share the same column and row as the given
entry, respectively. An empty entry indicates that no UV-completion is generated
by this combination of fields, and a circle indicates that the dimension-5 operator is
generated.

Fig. 5.8 for an example. This can be the case for operators of e.g. types Ψ2H3D, Ψ4H, and
Ψ2H4. For the latter type, many UV-completions contain ∆ along with a factor LHF, leading
to the generation of the Weinberg operator via F.

In Tabs. 5.4 to 5.8 all possible tree-level UV-completions are shown for all Ψ4H-type
dimension-7 ∆L = 2 operators, where each table corresponds to a single operator. In these
tables, the leftmost column and the top row indicate the heavy BSM fields that arise as a
result of the operator explosion procedure discussed in Sec. 5.2. Entries that contain a Roman
number (I to IX) indicates that the two fields that overlap, i.e. the corresponding fields to the
left and top in the same row and column as the entry, lead to a radiative neutrino Majorana
mass topology corresponding to the Roman number, as given in Figs. 5.4 to 5.7. Only the
top-right parts of each table is used, since otherwise each entry would be double counted. An
empty circle in a given entry indicates that this combination of fields inevitably generates a
tree-level UV-completion of the Weinberg operator, in which case the dominant contribution
to the neutrino Majorana mass generally either comes from the Weinberg operator itself or a
corresponding dimension-9 operator, as discussed in Sec. 5.3. A filled circle represents the
case where this combination of BSM fields indeed generate the operator in question, but
that this UV-completion does not lead to any tree- or one-loop-level neutrino Majorana mass
diagrams. The dominant contribution could instead come from a two-loop diagram, as e.g.
realised for Od̄LQLH2 via an additional W-loop or for Od̄LueH via an additional H-loop.

In Sec. 5.3.3 we give general expressions for the neutrino mass in Topologies I and II

other with LL, the Weinberg operator can be suppressed.
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Od̄LQLH1 = ϵijϵmn(dpLi
r)(Qc

s
jLm

t )Hn

∆ φ S1 R̃2 S3 N Σ Q†
5 T2

∆ I I II

φ # #

S1 I # II

R̃2 I # # II

S3 # II

N
Σ
Q†

5
T2

Table 5.5.: All combinations of fields that UV-complete Od̄LQLH1 at tree-level. Here each entry
indicates which neutrino mass topology (c.f. Fig. 5.4) is generated by combining
the fields to the top and left that share the same column and row as the given
entry, respectively. An empty entry indicates that no UV-completion is generated
by this combination of fields, and a circle indicates that the dimension-5 operator is
generated.

Od̄LQLH2 = ϵimϵjn(dpLi
r)(Qc

s
jLm

t )Hn

h φ R̃2 S3 Σ U Q†
5

h    

φ #

R̃2  #  

S3 #  

Σ
U
Q†

5

Table 5.6.: All combinations of fields that UV-complete Od̄LQLH2 at tree-level. Here each entry
indicates that a UV-completion is generated by combining the fields to the top and
left that share the same column and row as the given entry, respectively. An empty
entry indicates that no UV-completion is generated by this combination of fields,
a filled circle denotes that this combination of fields leads to a two-loop radiative
neutrino mass, and an empty circle indicates that the dimension-5 operator is
generated.
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OēLLLH = ϵijϵmn(epLi
r)(Lc

s
jLm

t )Hn

h ∆ φ N Σ ∆†
3

h I # II

∆ I # II

φ # #

N
Σ
∆†

3

Table 5.7.: All combinations of fields that UV-complete OēLLLH at tree-level. Here each entry
indicates which neutrino mass topology (c.f. Fig. 5.4) is generated by combining
the fields to the top and left that share the same column and row as the given
entry, respectively. An empty entry indicates that no UV-completion is generated
by this combination of fields, and a circle indicates that the dimension-5 operator is
generated.

Od̄LueH = ϵij(dpLi
r)(uc

set)H j

S1 R̃2 N ∆†
1 Q†

5 Q7 W ′1 V3 U1 V̄†
2

S1  #  

R̃2   

N # #

∆†
1   

Q†
5   

Q7   

W ′1  

V3
U1  

V̄†
2

Table 5.8.: All combinations of fields that UV-complete Od̄LueH at tree-level. Here each entry
indicates that a UV-completion is generated by combining the fields to the top and
left that share the same column and row as the given entry, respectively. An empty
entry indicates that no UV-completion is generated by this combination of fields,
a filled circle denotes that this combination of fields leads to a two-loop radiative
neutrino mass, and an empty circle indicates that the dimension-5 operator is
generated.
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OLeHD = ϵijϵmn(Lc
pγµer)H j(HmiDµHn)

∆ N Σ ∆†
1

∆ # I

N #

Σ #

∆†
1

Table 5.9.: All combinations of fields that UV-complete OLeHD at tree-level. Here each entry
indicates which neutrino mass topology (c.f. Fig. 5.4) is generated by combining
the fields to the top and left that share the same column and row as the given
entry, respectively. An empty entry indicates that no UV-completion is generated
by this combination of fields, and a circle indicates that the dimension-5 operator is
generated.

OLH = ϵijϵmn(Lc
p

iLm
r )H jHn(H†H)

Θ3 Σ†
1

Θ3 III

Σ†
1

Table 5.10.: All combinations of fields that UV-complete OLH at tree-level using only two fields.
Here each entry indicates which neutrino mass topology (c.f. Fig. 5.5) is generated
by combining the fields to the top and left that share the same column and row as
the given entry, respectively. An empty entry indicates that no UV-completion is
generated by this combination of fields, and a circle indicates that the dimension-5
operator is generated.
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OLH = ϵijϵmn(Lc
p

iLm
r )H jHn(H†H)

N S Ξ ∆ φ Σ Σ†
1 ∆†

1
S # # #

Ξ # # #

∆ # # #

φ #

Σ #

Σ†
1 #

∆†
1 #

Table 5.11.: All combinations of fields that UV-complete OLH at tree-level using three fields.
Here each entry indicates that a UV-completion is generated by combining the
fields to the top and left that share the same column and row as the given entry,
respectively, as well as the third field N. An empty entry indicates that no UV-
completion is generated by this combination of fields, and a circle indicates that
the dimension-5 operator is generated.

OLH = ϵijϵmn(Lc
p

iLm
r )H jHn(H†H)

∆ S Ξ ∆ φ Θ1 Θ3 Σ†
1 ∆†

1 F4
S VII IX V

Ξ VII IX IX V V

∆ #

φ VIII

Θ1 VIII

Θ3 VIII IV

Σ†
1 VI VI

∆†
1

F4

Table 5.12.: All combinations of fields that UV-complete OLH at tree-level using three fields.
Here each entry indicates which neutrino mass topology (c.f. Figs. 5.5 to 5.7) is
generated by combining the fields to the top and left that share the same column
and row as the given entry, respectively, together with the third field ∆. An empty
entry indicates that no UV-completion is generated by this combination of fields,
and a circle indicates that the dimension-5 operator is generated.
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OLH = ϵijϵmn(Lc
p

iLm
r )H jHn(H†H)

Σ S Ξ ∆ φ Θ1 Σ†
1 ∆†

1 F4
S # # #

Ξ # # # # #

∆ # # # # # #

φ #

Θ1 #

Σ†
1 # #

∆†
1 #

F4 #

Table 5.13.: All combinations of fields that UV-complete OLH at tree-level using three fields.
Here each entry indicates that a UV-completion is generated by combining the
fields to the top and left that share the same column and row as the given entry,
respectively, as well as the third field Σ. An empty entry indicates that no UV-
completion is generated by this combination of fields, and a circle indicates that
the dimension-5 operator is generated.

applicable to all simplified models, before comparing these expressions with a concrete model
example in Sec. 5.3.4.

5.3.3. Model-independent neutrino masses

In Sec. 5.3.2, we showed for each explosive ∆L = 2 dimension-7 operator which radiative
neutrino mass topologies it could generate (c.f. Sec. 5.3.1). In this section we derive simplified
expressions for the neutrino mass in these topologies, and in Sec. 5.3.4 we compare this
treatment to a specific simplified model featuring leptoquarks.

A simplified model containing the SM plus one heavy fermion Ψ and one heavy scalar Φ
can be described by the Lagrangian

L = LSM + Lkin
Ψ + Lkin

Φ − λ f f LΦ∗ − yΨ f Ψ̄H , (5.34)

where Lkin
Ψ and Lkin

Φ contain the kinetic terms of the heavy fermion and scalar, respectively,
and f is a SM fermion. Similarly, a simplified model with two heavy scalars Φ1 and Φ2 can
be described by the Lagrangian

L = LSM + Lkin
Φ1

+ Lkin
Φ2
− λΦ1 f LΦ∗1 − λΦ2 f LΦ∗2 − µΦ∗1Φ∗2 H . (5.35)

To calculate the value of the radiative neutrino mass generated in a generic UV-completion,
we use the following expression for Topology I (c.f. Fig. 5.4 right),

(mν)ij ≈
1

16π2
v

max(m2
Φ, m2

Ψ)

(
λ f M f yΨ MT

ΨλT
Ψ + λΨ MΨyT

Ψ MT
f λT

f

)
ij

. (5.36)
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S Ξ h ∆ φ Θ1 Θ3 S1 R̃2 S3 N Σ Σ†
1

S A A A

Ξ A A

h CF C

∆ WA * A A E †

φ * *F

Θ1 A

Θ3 A

S1 ED ED

R̃2 EF E EF

S3 EF

N W

Σ W

Σ†
1

Table 5.14.: Part 1 of a compilation of all one- and two-field UV-completions of dimension-7
operators. For each non-empty entry, the operator indicated by the corresponding
letter(s) is generated by the field in the top row and leftmost column that share
the same column and row as the given entry, respectively. The single-field UV-
completions are correspondingly given along the diagonal. Here the letters refer
to the operators as A = OLH , B = OLeHD, C = OēLLLH , D = Od̄LueH , E = Od̄LQLH1,
F = Od̄LQLH2, and G = OQ̄uLLH, where we use the shorthand notation * = ACEG
and † = ABC. Along the diagonal, a W indicates that the Weinberg operator is
generated by this field, and therefore the non-explosive dimension-7 operators
OLHD1, OLHD2, OLHB, and OLHW can be generated as well.
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∆†
1 ∆†

3 F4 U Q†
5 Q7 T†

1 T2 W ′1 V3 U1 V̄†
2 U3

S
Ξ
h C F F

∆ B C E G G

φ

Θ1

Θ3

S1 ED

R̃2 D F D E

S3 EF

N AB D DG G

Σ AB A G G

Σ†
1

∆†
1 D D

∆†
3

F4

U
Q†

5 D D

Q7 D DG G

T†
1 G

T2

W ′1 D

V3

U1 DG

V̄†
2 G

U3

Table 5.15.: Part 2 of a compilation of all one- and two-field UV-completions of dimension-7
operators. For each non-empty entry, the operator indicated by the corresponding
letter(s) is generated by the field in the top row and leftmost column that share
the same column and row as the given entry, respectively. The single-field UV-
completions are correspondingly given along the diagonal. Here the letters refer
to the operators as A = OLH , B = OLeHD, C = OēLLLH , D = Od̄LueH , E = Od̄LQLH1,
F = Od̄LQLH2, and G = OQ̄uLLH.
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O Operator EFT Neutrino mass Key

Opr
LH ϵijϵmn(Lc

p
iLm

r )H jHn(H†H)
( 1

16π2 +
v2

Λ2

) v2

Λ A

Opr
LeHD ϵijϵmn(Lc

p
iγµer)H j(HmiDµHn) yri

e
g′

(16π2)2
v2

Λ B

Oprst
ēLLLH ϵijϵmn(epLi

r)(Lc
s

jLm
t )Hn (ypr

e + yps
e + ypt

e ) 1
16π2

v2

Λ C

Oprst
d̄LueH ϵij(dpLi

r)(uc
set)H j ∑ij ysj

u yjp
d yti

e
1

(16π2)2
v2

Λ D

Oprst
d̄LQLH1 ϵijϵmn(dpLi

r)(Qc
s

jLm
t )Hn yps

d
1

16π2
v2

Λ E

Oprst
d̄LQLH2 ϵimϵjn(dpLi

r)(Qc
s

jLm
t )Hn yps

d
g2

(16π2)2
v2

Λ F

Oprst
Q̄uLLH ϵij(Qpur)(Lc

s Li
t)H j ypr

u
1

16π2
v2

Λ G

Table 5.16.: List of the seven dimension-7 ∆L = 2 SMEFT operators that lead to successful
explosions. The dimension-7 operators not listed here either only have tree-level
UV-completions that inevitably lead to the dimension-5 operator, or have no tree-
level UV-completions at all.

and the following for Topology II (c.f. Fig. 5.4 left),

(mν)ij ≈
1

16π2
vµ

max(m2
Φ1

, m2
Φ2
)

(
λΦ1 M f λT

Φ2
+ λΦ2 MT

f λT
Φ1

)
ij

. (5.37)

Here mΨ, mΦ, mΦ1 , and mΦ2 are the masses corresponding to Ψ, Φ, Φ1, and Φ2, respectively.
Furthermore, i and j are lepton flavour indices, and M f = diag(m f1 , m f2 , m f3) is a diagonal
3× 3 mass matrix containing three generations of the SM fermion f ∈ {e, u, d}. For simplicity
we consider the possibility for Φ, Φ1, and Φ2 to also be vector fields. In Eq. (5.36), MΨ is the
mass matrix of Ψ; λ f is the coupling matrix between the SM fermion f , an outer neutrino
and Φ; λΨ is the coupling matrix between Ψ, Φ and the other outer neutrino; and yΨ is the
Yukawa coupling matrix between f , Ψ and the SM Higgs. In Eq. (5.37), λΦ1 (λΦ2) is a coupling
matrix between the outer neutrinos, SM loop fermions and the heavy boson Φ1 (Φ2); and µ is
the dimensionful coupling between Φ1, Φ2 and the SM Higgs field.

For two-loop radiative neutrino mass diagrams, i.e. in the cases where an additional Higgs-
or W-boson loop is present, loop factors including Yukawa- or weak gauge-coupling constants
can be included in the expressions in Eqs. (5.36) and (5.37) according to Step 10 in Sec. 4.2.1.

Besides leading to radiative neutrino Majorana masses, the generic simplified models we
consider here give rise to dimension-7 ∆L = 2 operators via the Wilson coefficients

Cij

Λ3 =

(
λΨyΨλ f

)
ij

m2
ΦmΨ

(5.38)

for UV-completions with one fermion and one scalar (Topology I) and

Cij

Λ3 =
µ (λΦ1 λΦ2)ij

m2
Φ1

m2
Φ2

(5.39)
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for two-boson UV-completions (Topology II).
In Sec. 5.3.4, we take one concrete simplified-model example, and compare the one- and

two-loop Topology II radiative neutrino masses from a full Feynman-rules-based evaluation
with the approximate expressions from Eqs. (5.36) and (5.37) as well as the EFT-based estimate
from the corresponding dimension-7 operator in Tab. 5.16.

5.3.4. Model example: leptoquarks at one- and two-loop

In this section, which is based on work that led to the publication in Ref. [1], we use the
leptoquark model described in Ref. [504]. As an example of how the neutrino mass in a
simplified model compares to the general expression in Eqs. (5.36) and (5.37) and EFT-based
estimates in Tab. 5.16, we here consider a model in which the SM is extended by the two
leptoquarks S1 and R̃2, which constitute a possible UV-completion to the Ψ4H-type operators
Od̄LeuH and Od̄LQLH1 (c.f. Tab. 5.2). This model is of special interest since it leads to LNV rare
kaon decays [1] (c.f. Sec. 4.2.2 and Ch. 6). Rare kaon decay is a leading probe of LNV in
universal lepton flavours, as opposed to 0νββ which only probes first generation fermions.
It is therefore interesting to see how a non-trivial flavour structure in the leptoquark sector
could lead to observable rare kaon decays, as well as the appropriate neutrino mass, without
triggering 0νββ decay. In this section we will give an example of such a flavour structure in
a leptoquark-mediated two-loop radiative neutrino Majorana mass diagram. Furthermore,
S1 and R̃2 along with the leptoquark S3 ∈ (3̄, 3, 1/3), have been suggested as related to a
possible solution of the RK(∗) anomaly [504–508] (c.f. Sec. 2.3.1).

The representations of the leptoquarks S1 and R̃2 under the SM symmetry group are given
by [496]

R̃2 ∈ (3, 2, 1/6) ,

S1 ∈ (3̄, 1, 1/3) .
(5.40)

The Lagrangian for this model given by [504]

L = LSM − R̃†α
2 (□+ m2

R̃2
)R̃2α − S∗1(□+ m2

S1
)S1

+ µS1H†αR̃2α − gik
1 L̄iαiσαβ

2 R̃∗2βd
c
k − gjn

2 Qα
nLβ

j ϵαβS1

− gjn
3 ūc

nejS1 + h.c. ,

(5.41)

where □ = ηµν∂µ∂ν is the d’Alembert operator. Greek and Roman letters in Eq. (5.41)
correspond to SU(2)L- and flavour-indices, respectively, and σ2 is the second Pauli matrix.
Taking both S1 and R̃1 to carry lepton number7 L = −1, all terms on Eq. (5.41) conserve
lepton number except the first term on the second row: the interaction between the two
leptoquarks and the SM Higgs field. The Lagrangian in Eq. (5.41) can also lead to LNC
rare kaon decays via dimension-6 effective operators, which constitutes another probe of the
model.

7Which lepton number charge to assign to the leptoquarks is somewhat arbitrary since the Lagrangian we
consider here violates lepton number conservation, and it is therefore not a well-defined conserved charge.
Our choice of assignment leads to the dimensionful tri-scalar coupling being the LNV vertex, which can be
motivated as originating from a mass insertion by a B− L-breaking scalar field.
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dkR dnR

νiL νjL

R̃2
dkL dnL

νiL νjL

S1

Figure 5.9.: Diagrams showing leptoquark-mediated LNC meson decays at dimension 6. The
left diagram corresponds to the first term in Eq. (5.42) featuring R̃2, while the right
diagram corresponds to the second term featuring S1.

dnL dkR

νiL νjL

S1 R̃2

h0

dkR unR

νiL `jR

R̃2 S1

h0

Figure 5.10.: Diagrams showing leptoquark-mediated LNV meson decays at dimension 7 with
two-neutrino final state (left) corresponding to Od̄LQLH1 or neutrino + charged
lepton final states (right) corresponding to Od̄LueH.

Integrating out the heavy leptoquarks, we first arrive at a dimension-6 effective La-
grangian [504]

L6D = − gik
1 g∗jn

1

2m2
R̃2

(
d̄nγµdk

) (
L̄α

i γµLjα
)
+

gik
2 g∗jn

2

2m2
S1

ϵαβϵρσ(Q̄α
nγµQρ

k)(L̄β
i γµLσ

j )

+
gik

3 g∗jn
3

2m2
S1

(ūnγµuk)
(
ēiγµej

)
− gik

2 g∗jn
3

2m2
S1

ϵαβ (ūnQα
k )
(
ēiLjβ

)
+

gik
2 g∗jn

3

8m2
S1

ϵαβ(ūnσµνQα
k )(ēiσµνLβ

j ) ,

(5.42)

where σµν = i
2 [γ

µ, γν]. These LNC terms lead to the rare kaon decay diagrams shown in
Fig. 5.9. At dimension-7 we obtain [504]

L7D = − µgik
1 gjn

2

2m2
R̃2

m2
S1

(dc
kLν

i )(Q
µ
n Lα

j )Hβϵαβϵµν −
µgik

1 gjn
2

2m2
R̃2

m2
S1

(dc
kσµνLν

i )(Q
µ
nσµνLα

j )Hβϵαβϵµν

+
µgik

1 gjn
3

m2
R̃2

m2
S1

(dc
kLα

i )(u
c
nec

j )Hβϵαβ .

(5.43)
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νiL νjL
S1 R̃2

dkL dkR

h0

νiL νjL
R̃2

S1 e+j
R

dkL

unR

h0

W

Figure 5.11.: One- and two-loop level radiative neutrino mass diagrams generated via lep-
toquarks, corresponding to the LNV dimension-7 operators Od̄LQLH1 (left) and
Od̄LueH (right).

We can identify the first term in Eq. (5.43) with the ∆L = 2 dimension-7 operator Od̄LQLH1
and the second term with Od̄LueH. These operators lead to LNV rare kaon decays and fully
leptonic LNV kaon decays, respectively (c.f. Secs. 4.2.3 and 4.2.2). The corresponding decay
diagrams are shown in Fig. 5.10. Matching the model parameters to the flavour-specific LNV
Wilson coefficient Cijkn we find the relation

Cijkn
d̄LQLH1 (d̄LueH)

= −µgik
1 g2(− 1

2 gjn
3 )

2m2
R̃2

m2
S1

, (5.44)

where g2 corresponds to Od̄LQLH1 and − 1
2 g3 to Od̄LueH, respectively. Since rare kaon decays

are a more stringent probe of LNV than fully leptonic meson decays, we choose to focus
specifically on Od̄LQLH1. For this observable we would have the flavour indices k = s/d,
j = d/s, and i, n ∈ {e, µ, τ} in Eq. (5.44).

The couplings that generate the effective interactions in Eq. (5.43) also lead to corresponding
one- and two-loop neutrino mass diagrams, as shown in Fig. 5.11. As is discussed below, the
one-loop diagram is only the most dominant contributor to the neutrino mass under certain
flavour-structures of the coupling matrices. It could be possible that a two-loop diagram
dominates instead. The neutrino mass corresponding to the one-loop diagram in Fig. 5.11
(left) is given by [487]

(mν)i = ∑
jk

3 sin (2θ) yd
kkvg̃ik

1 g̃kj
2 Uji

32π2 log
m2

LQ1

m2
LQ2

, (5.45)

where we do not use Einstein summation, such that the mass eigenstate index i ∈ {1, 2, 3}
is not summed over. Here several things need clarification. First of all, yd

ij and v are the SM
down-type quark Yukawa coupling matrix and Higgs vev, respectively, which come from
closing the down-type quark loop with a mass insertion, as seen in Fig. 5.11. Secondly, we
note that the leptoquarks in Eq. (5.41) were written in the interaction basis, where their mass
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matrix is given by

M2 =

m2
R̃2

µv

µv m2
S1

 . (5.46)

To generate the neutrino mass diagram, the upper SU(2)L index α = 1 must be picked out in
the lepton doublet from the second term in the second row of Eq. (5.41), which means that
the lower index β = 2 is picked out from the leptoquark doublet

R̃2 =

ω1

ω2

 , (5.47)

where mω1 = mω2 ≡ mR̃2
. The field ω2 has the same U(1)Y hypercharge as S1, and the two of

them mix according to the matrix in Eq. (5.46), leading to the two mass eigenstates

LQ1 = cos θω2 + sin θS1

LQ2 = − sin θω2 + cos θS1 .
(5.48)

for which the squared masses are given by

m2
LQ1,2

=
1
2

(
m2

R̃2
+ m2

S1
±
√
(m2

R̃2
−m2

S1
)2 + µ2v2

)
. (5.49)

for the mixing angle θ given by [509–511]

tan(2θ) =
2µv

m2
R̃2
−m2

S1

. (5.50)

Lastly, the couplings g̃ are written in the mass basis, such that

g̃ik
1 = ∑

α

gαk
1 Uiα, g̃jn

2 = ∑
α

gjα
2 Vαn , (5.51)

where U is the PMNS matrix and V the CKM matrix.
The expression in Eq. (5.45) represents the lowest loop-order radiative neutrino mass

diagram that can be generated by the leptoquarks R̃2 and S1, however there is one remaining
caveat. Out of necessity by the flavour conservation of the SM Yukawa interaction, the same
quark-flavour index is picked out in the coupling constants g̃1 and g̃2. However, in rare kaon
decays a different set of couplings are present, since the initial state consists of a strange quark
while the final state consists of a down quark, c.f. the text below Eq. (5.44). It could then be
possible that the structure of the leptoquark coupling matrix specifically favours rare kaon
decays while suppressing the neutrino mass by having very small diagonal couplings. The
most dominant contribution to the neutrino mass could then instead come from a two-loop
diagram, where an additional W-boson loop is used to transform one flavour into the other.

Considering the scenario where the leptoquarks most favour the flavour structure present
in rare kaon decays, the two-loop diagram giving the most dominant contribution, shown in
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νiL νiLLQa ejL

dL

cL

W

Figure 5.12.: Two-loop radiative neutrino mass with the leptoquark LQa being a mass eigenstate
in the admixture of R̃2 and S1. Here the W-loop is needed in order to satisfy
the flavour constraints coming from the leptoquark coupling matrices in the
specific scenario where the most dominant couplings are those present in rare
kaon decays.

dkL dnR

νiL νjL

umR

dnL R̃2

νiL
W

W

Z

dkL dnL

νiL νjL

umR

dnL S1

νiL
W

W

Z

Figure 5.13.: Diagrams showing leptoquark-mediated two-loop LNC meson decays at dimen-
sion 6 in the specific scenario where the most dominant couplings are those
present in rare kaon decays. The left diagram corresponds to the first term in
Eq. (5.42) featuring R̃2, while the right diagram corresponds to the second term
featuring S1.

Fig. 5.12, leads to the neutrino mass [1]

(mν)i = ∑
j

3 sin(2θ)g2Vcd g̃id
1 g̃jc

2 Uji

512π4 md I(m2
LQ1

, m2
LQ2

, m2
W) . (5.52)

Considering the SM fermions to be massless, the loop function I(m2
LQ1

, m2
LQ2

, m2
W) is given

by [510]

I(m2
LQ1

, m2
LQ2

, m2
W) ≈

(
1−

m2
LQ1

m2
LQ2

)
×

[
1 +

π2

3
+

m2
LQ1

log
m2

LQ2
m2

W
−m2

LQ2
log

m2
LQ1

m2
W

m2
LQ2
−m2

LQ1

+

1
2

m2
LQ1

(
log

m2
LQ2

m2
W

)2

−m2
LQ2

(
log

m2
LQ1

m2
W

)2

m2
LQ2
−m2

LQ1

]
.

(5.53)
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The LNV rare kaon decay for this set-up is by construction unaffected by the constraints we
have put on the coupling constants between the leptoquarks and SM fermions. However,
the LNC rare kaon decay from dimension-6 effective operators is suppressed similar to the
neutrino mass, appearing first at two-loop order as seen in Fig. 5.13. Due to this suppression,
we expect the LNV mode to dominate over the BSM LNC mode for these couplings.

We now consider the difference between neutrino masses evaluated in the leptoquark
model, given by the one- and two-loop masses in from Eqs. (5.45) and (5.52), and the general
simplified model expression for a diagram of the same topology in Eq. (5.37), as well as the
EFT-based neutrino mass estimate given for Od̄LQLH1 (c.f. Sec. 4.2.1) by

(mν)ij =
yd

kn
16π2

v2(
Cijkn

d̄LQLH1

)−1/3 , (5.54)

with the LNV Wilson coefficient Cijkn
d̄LQLH1 related to the leptoquark masses via Eq. (5.44) using

g2.
In Fig. 5.14, we show how the trace of the neutrino mass matrix in the mass basis scales

with respect to the hierarchy parameter

ξ ≡ max (mΦ1 , mΦ1)

min (mΦ1 , mΦ1)
− 1 , (5.55)

when evaluated by the different one- and two-loop mass expressions. We here choose
mΦ1 = mR̃2

and mΦ2 = mS1 , with mR̃2
> mS1 , and keep a constant value of the product

mR̃2
×mS1 = (20 TeV)2. Furthermore, we use g̃1 = g̃2 = 1 in the one-loop case, and

g̃1 =

1 0 0

1 0 0

1 0 0

 , g̃2 =

0 1 0

0 1 0

0 1 0

 (5.56)

in the two-loop case, and set the dimensionful coupling to µ = 20 TeV. For the PMNS matrix
elements we use the central values of the normal ordering neutrino mixing angles

θ12 = 33.44◦, θ13 = 8.57◦, θ23 = 49.2◦, δCP = 197◦ , (5.57)

as provided by the NuFit collaboration [512]. A similar analysis could be performed for
inverse ordering as well, with very minor changes to the conclusion.

We see that for the one-loop mass, the three expressions agree well for small hierarchies
ξ ≲ 1. For large hierarchies ξ ≳ 1 the EFT-based estimate stays constant while the simplified-
and leptoquark model expressions go down to lower masses, staying about an order of
magnitude apart. We can conclude that the EFT-based expression does not capture the effect
of an internal hierarchy of scales, something our simplified-model expression from Eq. (5.37)
does quite well. This feature is important in Sec. 5.4.2 where we compare different constraints
in the plane spanned by the two heavy BSM field masses of general simplified models.
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Figure 5.14.: The trace of the neutrino mass matrix as a function of the hierarchy parameter ξ,
where a greater value of ξ corresponds to larger hierarchies. The neutrino mass
here comes from a one- (top) and two-loop (bottom) radiative diagram involving
two heavy leptoquarks and a down-type quark, where the mass is estimated
using an EFT-based approximation (green), full radiative diagram (blue), and an
approximate expression from a general simplified model (red).
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For the two-loop mass, both the simplified model expression and EFT-based estimates
underestimate the neutrino mass for small hierarchies ξ ≲ 10. The effect of an increasing
hierarchy is again well described by the simplified model expression, though it stays below
the leptoquark model by roughly two orders of magnitude. The dip at ξ ≈ 85 comes from the
last two terms in the second parenthesis of Eq. (5.53) cancelling the first two. For vanishing
hierarchies there is an enhancement of the two-loop mass that is not captured by either the
simplified model expression or the EFT estimate.

For the parameters chosen in Fig. 5.14 we would get ΛLNV = 20 TeV, which is excluded in
the electron-flavour by 0νββ experiments, and at the limit of exclusion for rare kaon decay
experiments.

5.4. Combined analysis of UV-completions at dimension-7

In Sec. 5.3.2 we discussed the different neutrino mass diagrams that appear in explosions of
dimension-7 ∆L = 2 operators. Neutrinos have a very small mass in comparison to the other
known particles, which can set severe constraints on the different UV-completions of LNV
dimension-7 operators. It could very well be possible that the generation of neutrino masses
occurs via some UV-completion of a dimension-7 operator, and for this reason it is interesting
to see if there are regions of parameter space that generate a plausible value for the neutrino
mass while still not being excluded by other experimental searches.

The method outlined in Sec. 4.2.1 has been commonly used in the literature to estimate
the size of neutrino masses being induced by EFT operators. However, as shown in the
previous section, this method misses entirely the effect of a hierarchy in the internal degrees
of freedom, something that can alter the neutrino mass by several orders of magnitude.

In Sec. 5.3.3 we proposed a new method to describe neutrino masses in higher-dimensional
operators. This method does capture the effect of an internal hierarchy, as is shown in the
model example in Sec. 5.3.4. In this section we investigate the parameter space of dimension-7
UV-completions in the context of neutrino masses calculated using the model-independent
formalism in Sec. 5.3.3.

5.4.1. Global fit constraints on the relevant BSM particles

The dimension-7 LNV operators in Tab. 4.5 can lead to tree-level UV-completions that contain
the fields listed in Tab. 5.1 via the assignment shown in Tabs. 5.2 and 5.3. Under the
assumption that all operators are generated at tree-level, LHC constraints on the fields in
Tab. 5.1 also lead to constraints the scale of the dimension-7 operators that they generate. If
the dimension-7 ∆L = 2 operators are generated at tree-level, the underlying UV-completions
could also lead to LNC dimension-6 operators. The validity of the tree-level assumption
can therefore be tested under different conditions, by comparing regions of parameter space
excluded by searches for dimension-6 operators with constraints on the dimension-7 operators
from LNV observables.

In Tab. 5.17 constraints on the mass of different heavy NP particles coming from global
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Field Rep Coupling Mass constraint 95% CL

S S(1, 1, 0)(0) κS = 1 TeV mS ≥ 7.5 TeV [513]

Ξ S(1, 3, 0)(0) κΞ = 1 TeV mΞ ≥ 3.0 TeV [513]

h S(1, 1, 1)(0) yh = 1 mh ≥ 0.84 TeV [513]

φ S(1, 2, 1/2)(0) Z6 cos β = 1 mφ ≥ 1.0 TeV [513]

S1 S(3̄, 1, 1/3)(−1) yeu
S1

= 1 mS1 ≥ 4.1 TeV [514]

R̃2 S(3, 2, 1/6)(1) yR̃2
= 1 mR̃2

≥ 3.9 TeV [514]

S3 S(3̄, 3, 1/3)(−1) yql
S3

= 1 mS3 ≥ 4.2 TeV [514]

N F(1, 1, 0)(0) λN = 1 mN ≥ 5.0 TeV [513]

Σ F(1, 3, 0)(0) λΣ = 1 mΣ ≥ 4.6 TeV [513]

Σ†
1 F(1, 3, 1)(0) λΣ1 = 1 mΣ1 ≥ 6.1 TeV [513]

∆†
1 F(1, 2, 1/2)(0) λ∆1 = 1 m∆1 ≥ 7.6 TeV [513]

∆†
3 F(1, 2, 3/2)(0) λ∆3 = 1 m∆3 ≥ 5.9 TeV [513]

U F(3, 1, 2/3)(1) λU = 1 mU ≥ 3.6 TeV [513]

Q†
5 F(3̄, 2, 5/6)(−1) λQ5 = 1 mQ5 ≥ 2.0 TeV [513]

Q7 F(3, 2, 7/6)(1) λQ7 = 1 mQ7 ≥ 2.6 TeV [513]

T†
1 F(3̄, 3, 1/3)(−1) λT1 = 1 mT1 ≥ 2.1 TeV [513]

T2 F(3, 3, 2/3)(1) λT2 = 1 mT2 ≥ 3.1 TeV [513]

W ′1 V(1, 1, 1)(0) gH
W ′1

= 1 mW ′1
≥ 11.7 TeV [513]

U1 V(3, 1, 2/3)(1) glq
U1

= 1 mU1 ≥ 5.6 TeV [514]

V̄†
2 V(3, 2, 1/6)(1) gul

Ṽ2
= 1 mṼ2

≥ 3.7 TeV [514]

U3 V(3, 3, 2/3)(1) gU3 = 1 mU3 ≥ 9.9 TeV [514]

Table 5.17.: BSM fields that appear in the explosions of dimension-7 ∆L = 2 operators, as well
as the constraints on the mass of the different fields (last column) coming from
Refs. [514] and [513], provided that one specific coupling to the SM is set to unity
(second column).
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fits of LNC dimension-6 operators [513, 514] are listed at 95% CL under the assumption that
one coupling per particle is set to unity, where this coupling is given in the third column (c.f.
Tabs. 5.2 and 5.3). For the constraints coming from Ref. [514] we have chosen for Tab. 5.17 to
show the most stringent limits in the cases where more than one constraint is given per field.
Note also that the limits given in Ref. [514] are applicable only to first generation leptoquarks.
We compare these limits to other mass constraints under the assumption that the relevant NP
couplings are all flavour-universal. Following Refs. [513, 515], we use the coupling product
Z6 cos β for φ rather than one of the couplings given in Tab. 5.1. This follows a notation that
is commonly used in Two-Higgs-doublet models, c.f. e.g. Ref. [516].

The couplings in Tab. 5.17 that are set to unity do not necessarily correspond to the
couplings that appear in the CDE leading to the different dimension-7 operators. The mass
limits from global fits should therefore not be directly compared to the LNV limits on the
operator in question, but should rather be taken as indicative.

Under the assumption that the dimension-7 ∆L = 2 operators that led to the fields in
Tab. 5.17 are realised at tree-level only, constraints on the individual masses of the fields
coming from global fits also constitute indirect constraints on the scale of LNV. Therefore, we
consider global-fit constraints along with different LNV probes in Sec. 5.4.2, and compare
them to neutrino masses coming from radiative diagrams containing the heavy BSM fields.

5.4.2. Comparison of neutrino masses with EFT constraints

The simplified-model based neutrino mass expressions in Eqs. (5.36) and (5.37) can be
compared to the EFT-based estimate of the neutrino mass found using the formalism in
Sec. 4.2.1 for the Wilson coefficients in Eqs. (5.38) and (5.39). In the third column of Tab. 5.16,
the concrete expressions corresponding to the EFT neutrino mass is shown for each explosive
dimension-7 operator under the assumption of a unitary dimensionless Wilson coefficient
Cij → 1. In this section, comparisons between the EFT- and simplified-model-based neutrino
mass expressions are made for generic UV-completions of all Ψ4H-type operators leading to
radiative Majorana neutrino mass Topologies I and II, including different constraints on the
scale of LNV from low-scale experiments as well as global-fit-constraints on the BSM fields.

To compare LNV constraints and the global-fit constraints from Refs. [513] and [514] with
the neutrino masses in general simplified models that correspond to the exploded dimension-7
∆L = 2 Ψ4H-type operators we go to the plane spanned by the masses of the two heavy BSM
fields. One reason for this choice of analysis is the dependence of the neutrino mass on the
hierarchy of scales between the two internal degrees of freedom, as discussed in the model
example in Sec. 5.3.4. Such a dependence can clearly be seen in a mass-mass plane, but is
not visible in e.g. mass-coupling or coupling-coupling planes. We look only at Ψ4H-type
operators as an example. Operator OLeHD only leads to a single UV-completion that does not
also generate the dimension-5 operator, and OLH leads to too many different topologies to
be studied systematically in a condensed manner. We therefore reserve the analysis of the
exploded operators OLeHD and OLH for future work.

In Figs. 5.15 to 5.17 we compare EFT constraints with neutrino masses for dimension-7
∆L = 2 operators OQ̄uLLH , Od̄LueH , Od̄LQLH1, Od̄LQLH2, and OēLLLH , respectively. Note that we
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Figure 5.15.: Constraints on the masses of two BSM fields that combine to UV-complete the
dimension-7 ∆L = 2 operator OQ̄uLLH (top row) and Od̄LueH (bottom row) with
the couplings λΨ = λ f = 1 and yΨ = 0.1 for Topology I (left column), and
λΦ1 = λΦ2 = 1 and µ = (vmΦ1 mΦ2)

1/3 for Topology II (right column). The
grey areas correspond to the regions excluded by global fit constraints from
Tab. 5.17, with the least (most) stringent limit being shown by a solid (dashed)
line. The green area is excluded by 0νββ experiments, and the yellow striped
area corresponds to the EFT-based estimate of the neutrino mass. The red striped
area corresponds to the simplified-model-based neutrino mass expression from
Eqs. (5.36) and (5.37) for Topologies I and II, respectively, where the filled red
area is excluded due to the neutrino mass being too large.
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Figure 5.16.: Constraints on the masses of two BSM fields that combine to UV-complete the
dimension-7 ∆L = 2 operator Od̄LQLH1 (top row) and Od̄LQLH2 (bottom row) with
the couplings λΨ = λ f = 1 and yΨ = 0.1 for Topology I (left column), and
λΦ1 = λΦ2 = 1 and µ = (vmΦ1 mΦ2)

1/3 for Topology II (right column). The grey
areas correspond to the regions excluded by global fit constraints from Tab. 5.17,
with the least (most) stringent limit being shown by a solid (dashed) line. The
green area is excluded by 0νββ experiments, and the blue area is excluded by
rare kaon decays. The red striped area corresponds to the simplified-model-based
neutrino mass expression from Eqs. (5.36) and (5.37) for Topologies I and II,
respectively, where the filled red area is excluded due to the neutrino mass being
too large. The yellow striped area corresponds to the EFT-based estimate of the
neutrino mass.
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Figure 5.17.: Constraints on the masses of two BSM fields that combine to UV-complete the
dimension-7 ∆L = 2 operator OēLLLH with the couplings λΨ = λ f = 1 and
yΨ = 0.1 for Topology I (left), and λΦ1 = λΦ2 = 1 and µ = (vmΦ1 mΦ2)

1/3 for
Topology II (right). The grey areas correspond to the regions excluded by global
fit constraints from Tab. 5.17, with the least (most) stringent limit being shown by
a solid (dashed) line. The purple area is excluded by LNV µ+ decays, and the
yellow striped area corresponds to the EFT-based estimate of the neutrino mass
from the third column of Tab. 5.16, with the LNV scale related to the BSM field
masses via Eqs. (5.38) and (5.39) for Topologies I and II, respectively. The red
striped area corresponds to the simplified-model-based neutrino mass expression
from Eqs. (5.36) and (5.37) for Topologies I and II, respectively, where the filled
red area is excluded due to the neutrino mass being too large.
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here extend the parameter space to masses below the EWSB scale ΛEW ≈ 100 GeV for better
visibility in the plots, even though SMEFT is not a suitable framework in this region. The
striped areas correspond to neutrino masses that fall within the region allowed by neutrino
oscillation experiments based on the central value of the normal-ordering mass splitting
∆m2

13 = 2.514× 10−3 eV2 coming from the NuFit collaboration [512], while simultaneously
falling below the largest allowed value of (mν)e = Uei(mν)i < 0.8 eV coming from the KATRIN
experiment [400]. The filled red areas lead to neutrino masses that are too large, and they
therefore constitute excluded regions. The yellow striped regions correspond to the allowed
neutrino mass range when evaluated using the EFT-based estimate from Sec. 4.2.1. This
means that the whole parameter space to the bottom-left of this region should be excluded
due to the neutrino mass being too large. However, as seen in the model example in Sec. 5.3.4,
this EFT-estimate is not accurate when considering the possibility of an internal hierarchy in
the degrees of freedom, and we therefore choose to not paint almost the whole figures yellow
to denote the regions excluded by this estimate. The dark- and light grey areas correspond to
regions that are excluded by global-fit constraints based on the least and most stringently
constrained BSM field that appears in the explosion of each given operator, respectively.
Lastly, the green, blue, and purple regions are respectively excluded by 0νββ decay, rare kaon
decay, and non-standard muon decay experiments. Note that we do not include constraints
from LHC searches, since the corresponding limits are too low for the values of the couplings
considered here to fall within the region in which the EFT formalism is valid (c.f. Sec. 4.5). A
simplified-model-based LHC analysis would probably lead to quite stringent limits in the
parameter space spanned by two heavy masses in a given model, e.g. the leptoquark model
from Sec. 5.3.4. Such an analysis is reserved for future work.

For all contour plots in Figs. 5.15 to 5.17, the simplified-model-based neutrino mass (red)
is lower than the EFT-based estimate of the neutrino mass (yellow), especially for large
hierarchies, as expected from the analysis in Sec. 5.3.4. In the absence of hierarchy (i.e. at the
tip of each red triangle), we see that the two neutrino mass expressions agree quite well. We
see therefore that the previously considered neutrino-mass constraints (yellow) only hold
under very specific conditions, namely the absence of a hierarchy in the internal degrees
of freedom of an LNV operator. As we show in this chapter, a more accurate description
involving general simplified models (red) reveals the fact that the neutrino mass depends
significantly on such a hierarchy. This conclusion constitutes the main result of this chapter.

Considering the possibility of an internal hierarchy in the LNV operators, regions of
parameter space that were previously considered to be excluded are opened up. For most
operators, the exclusion limits coming from global fits, low-scale observables, and neutrino
masses all overlap in roughly the same region of parameter space. This means that, should a
signal be seen either at any of the collider searches that enter into the global fits or any of
the low-scale LNV observables, Figs. 5.15 to 5.17 can be used along with Tabs. 5.4 to 5.8 to
determine where to look for new particles that could potentially generate Majorana neutrino
masses. If a new particle is discovered at collider experiments, Tabs. 5.4 to 5.8 show which
additional particles it could be matched with to generate a radiative neutrino mass, and
Figs. 5.15 to 5.17 show at which energy scale such additional particles are expected to be
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found. For example, if a new particle that is consistent with a leptoquark S3 with mass
mS3 = 10 TeV is discovered at the LHC, we know from Tabs. 5.5, 5.6 and 5.8 that it could
lead to a one-loop radiative neutrino mass if we also find R̃2, ∆ or Q†

5. In Figs. 5.15 and 5.16
we know that either mS3 = MΦ or mS3 = MΦ1 is equal to 10 TeV, depending on whether the
additional field is a fermion or scalar. If LNV is realised in operator Od̄LueH or Od̄LQLH2, we
see that the observed neutrino mass is generated for mR̃2

, m∆ ≈ 105 GeV or mQ5 ≈ 106 GeV, a
possibility that is excluded by 0νββ decay for Od̄LQLH2 but not for Od̄LueH. In this way these
two operators can be disentangled by combining high- and low-scale probes with neutrino
mass generation, but only if we consider the possibility of having a hierarchy in the internal
degrees of freedom. For Od̄LQLH1 we instead have mR̃2

, mδ ≈ 107 GeV or mQ5 ≈ 109 GeV.
The neutrino mass for OQ̄uLLH is the largest out of all the operators, due to the up-type

quark running in the loop having the largest Yukawa coupling out of the SM fermions. For
operators Od̄LQLH1 and Od̄LQLH2 there are constraints from both 0νββ decay and rare kaon
decays, where these two probes constrain different flavour aspects of the Wilson coefficients
(electron flavour for 0νββ decay, while the rare kaon decay constraints are flavour-universal,
see Sec. 4.8). For operators Od̄LQLH2 and Od̄LQLH1 the neutrino masses are comparatively
small, since the corresponding diagrams are given at two-loop rather than one-loop. The
four-lepton operator OēLLLH is unconstrained by 0νββ and we instead show the limit coming
from µ+ → e+ν̄eν̄µ decays.

Conclusion to Chapter 5

In this chapter we have discussed the UV-completions of all twelve dimension-7 ∆L = 2
SMEFT operators, based on an analysis that is subject for future publication [4]. Four out of
the twelve operators arise as higher-order corrections to the dimension-5 operator, and one is
not realised by any tree-level UV-completion. For the remaining seven dimension-7 operators,
we systematically list all possible tree-level UV-completions and classify them in terms of
the neutrino mass topology. Focusing on four-fermion operators, we compare the neutrino
masses in generic simplified models with LHC- and low-scale LNV constraints, and find that
a hierarchy in the internal degrees of freedom of an LNV operator could severely relax the
neutrino-mass constraints. This opens up regions of parameter space in which both LNV
probes and collider searches constrain models that could lead to the observed neutrino mass.

In case a signal is seen in one of the LNV probes, the results in Sec. 5.4.2 can guide the
collider search for BSM particles that lead to Majorana neutrino masses. Similarly, if a new
particle is found, the results in Secs. 5.3.2 and 5.4.2 show which other particles would be
needed in order to generate a Majorana neutrino mass, and at which scale they are expected
to be found.

In Secs. 4.2.2, 4.3.4 and 4.3.5 we saw that processes in which neutrinos are the only leptons
involved can be used to set limits on the scale of LNV. If an excess is seen experiments that
search for such modes, the additional contribution could be due to LNV. However, there
would be no a priori way of distinguishing it from a LNC contribution, since it is not known
whether the final state particles are neutrinos or antineutrinos. In Ch. 6, we show how such a
distinction can be made in rare kaon decays K → πνν based on the kinematics of the final
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state pion, and in Ch. 7 we show a similar distinction based on the distribution of final state
photons in radiative CEνNS events. These results were published in Ref. [1] and Ref. [3],
respectively.
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decays

Neutrinos are very elusive particles that are difficult to observe experimentally. This is
perhaps the main reason why the nature of neutrino masses remains unknown, despite
a long history of searches (see Sec. 4.2). Observing charged leptons on the other hand is
comparatively easy, since they interact electromagnetically. Searches for LNV therefore often
involve final states that consist of two leptons that have the same charge, in the absence of
any missing energy that could have been carried away by neutrinos. One feature of such
processes is the fact that they necessarily involve an exchange of two units of electromagnetic
charge, ∆Q = 2, between the lepton sector and another sector (e.g. the quark-sector). To
produce two units of charge difference, many external fields have to be involved. In an EFT
description this increases the dimension of the effective operator that mediates the process,
leading to a decrease in experimental sensitivity (see Sec. 2.3.3).

Another search strategy for LNV is to look for processes with neutrinos or antineutrinos
in the final state, and infer whether or not the interaction is LNV based on the kinematic
distribution of other final state particles. An advantage of such searches is that the constraints
are applicable for all flavour-indices of the Wilson coefficients, since the flavour states of the
final state neutrinos are undetermined.

In this chapter we discuss the details about the possibility to observe LNV in rare kaon
decays. We review the SM contributions in Secs. 6.1 and 6.2, after which we focus on the LNV
BSM decay in Sec. 6.3 in order to compare the two modes in Sec. 6.4. LNV contributions to
rare kaon decays were discussed in Ref. [424], and the potentially observable difference in
the kinematic distributions between a LNV contribution and the SM mode is discussed here,
based on work that led to the publication in Ref. [1]. This difference in distribution impacts
the sensitivity of different experiments, both past and ongoing, which can possibly lead to
more stringent constraints on the scale of LNV in the near future.

6.1. Rare kaon decay in the SM

The two golden modes of kaon decays, K+ → π+νν̄ and KL → π0νν̄, are the main focus of
this section. The former mode is also discussed in Sec. 4.2.2. They proceed via electroweak
penguin and box diagrams in the SM, as shown in Fig. 6.1. These modes have a very small
branching ratio (BR) due to Glashow–Iliopoulos–Maiani (GIM) suppression1 [517]. The

1GIM suppression states that flavour-changing neutral current (FCNC) loop diagrams are suppressed due to the
requirement of two mass insertions. If these mass insertions were not there, the corresponding diagram would
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up-type quark in each diagram is not directly involved in the decay process, but it is part of
the initial- and final state meson, and we therefore call it a spectator quark. If we replace the
spectator up quark by a down quark, we would instead have the decay K0 → π0νν̄. As seen
in Sec. 2.1.4, the kaons K0 and K̄0 mix to form KL, which is a mass eigenstate with a small
CP-violating component ϵ of O(10−3), such that [518]

|KL⟩ =
1√

2 + 2|ϵ|2
[
(1 + ϵ)|K0⟩+ (1− ϵ)|K̄0⟩

]
. (6.1)

The BRs of K+ → π+νν̄ and KL → π0νν̄ can be parametrised in the SM as [519, 520]

BR(K+ → π+νν̄) = κ̃+

[(
Im(V∗tsVtdXt)

λ5

)2

+

(
Re(V∗csVcd)

λ
Pc +

Re(V∗tsVtdXt)

λ5

)2
]

, (6.2)

BR(KL → π0νν̄) = κL

(
Im(V∗tsVtdXt)

λ5

)2

, (6.3)

where Xt = 1.48 and Pc = 0.404 are dimensionless parameters that correspond to loop
effects of top and charm quarks, respectively. Furthermore, λ ≈ 0.225 is the Wolfenstein
parameter and Vij are the CKM matrix elements. The parameters κ̃+ = 0.517× 10−10 and
κL = 2.23 × 10−10 are experimentally determined from the more common decay modes
K+ → π0e+ν and KL → π−e+ν, respectively [521, 522]. These quantities include hadronic
uncertainties in the decay, and the fact that they are measured to such a high accuracy leads
to very good theoretical predictions [523]

BR(K+ → π+νν̄)SM = (8.4± 1.0)× 10−11 , (6.4)

BR(KL → π0νν̄)SM = (3.4± 0.6)× 10−11 . (6.5)

The main uncertainty in these predictions comes from the experimental determination of the
CKM matrix elements. Because the rare kaon decays are so clean, meaning that their BRs can
be theoretically predicted to a very high accuracy, they serve as excellent probes of NP [524].

Note that in Eq. (6.5), the BR of KL → π0νν̄ is proportional only to the imaginary part of the
CKM matrix elements, which means that this mode can only proceed if there is CP-violation
in the SM. This is a consequence of flavour conservation in the lepton-sector weak interactions.
The two neutrinos form a CP-odd state that together with the pion form a CP-even state,
unlike the CP-odd KL [525, 526]. A CP-conserving contribution to the decay only appears at
two-loop level [527].

From Eqs. (6.4) and (6.5) we see that the BR of the KL decay is smaller than that of the K+

decay. This should hold true even if there are BSM contributions, as the branching ratios of
the two decay modes are related via the Grossman-Nir bound [525]

BR(KL → π0νν̄) < 4.4× BR(K+ → π+νν̄) . (6.6)

vanish due to the unitarity of the CKM matrix.
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Figure 6.1.: Diagrams corresponding to the process to K+ → π+νν̄ within the SM.

Experimentally, it is very difficult to probe this constraint since the outgoing neutrinos are
difficult to measure2. The Grossman-Nir bound could therefore be broken in the presence of
a modified final state, such as via ∆I = 3/2 operators [531, 532] or dark particles in the final
state [533–537].

6.2. Experimental searches for rare kaon decay

The most stringent experimental limits on the BRs of rare kaon decays come from the
NA62 experiment [404, 538] for K+ → π+νν̄ and from the KOTO experiment [528, 530] for
KL → π0νν̄. Still relevant is also the older E949 experiment [403], since they provide limits on
the branching ratio for different Lorentz structures, as opposed to the modern experiments
where the limit is only given for a vector current.

6.2.1. The E949 experiment

The E949 experiment was situated in Brookhaven National Laboratory, and searched for
K+ → π+ + Emiss using stopped kaons, where Emiss is missing energy3 [403]. With the vector
current interpretation of their result, the E949 experiment yields the BR

BR(K+ → π+νν̄)E949, vector =
(

1.73+1.15
−1.05

)
× 10−10 , (6.7)

2As mentioned in Sec. 2.3.1, in 2019 there was a preliminary result from the KOTO experiment [528] which
indicated a violation of the Grossman-Nir bound [106, 529, 530], but this anomaly later disappeared [107].

3Presumably the missing energy in such events consists of neutrinos.
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with an upper limit

BR(K+ → π+νν̄)E949, vector < 3.35× 10−10, at 90% CL . (6.8)

This result is in agreement with the SM predicted value in Eq. (6.4). If the result is instead
analysed in terms of a scalar current, the upper limit becomes

BR(K+ → π+νν̄)E949, scalar < 21× 10−10 , at 90% CL. (6.9)

The E949 experiment collected data in two signal regions (SRs), called πνν̄(1) and πνν̄(2),
which represent cuts in the momentum and kinetic energy of the final state pion. In the rest
of this chapter, these SRs are approximated as corresponding only to momentum cuts, such
that πνν̄(1) is defined as 211 MeV < pπ < 229 MeV and πνν̄(2) is defined as 140 MeV <

pπ < 199 MeV.

6.2.2. The NA62 experiment

The NA62 experiment at CERN is currently ongoing and is searching for K+ → π+ + Emiss

from kaons decaying in-flight [404,538]. Events are collected in SRs 1 and 2, which correspond
to cuts in the pion momentum pπ and squared missing energy s. Both SRs have the pion
momentum cut 15 GeV < pπ < 35 GeV, while in terms of the missing energy SR 1 is defined
as 0 < s < 0.01 GeV2 and SR 2 as 0.025 GeV2 < s < 0.068 GeV2. The NA62 experiment is
probing rare kaon decays at the SM sensitivity, and has found events in both signal regions,
leading to the result [539]

BR(K+ → π+νν̄)NA62 =
(

11.0+4.0
−3.5 ± 0.3

)
× 10−11 (3.5σ significance) . (6.10)

The upper limit from NA62 that we consider is given by

BR(K+ → π+νν̄)NA62 < 1.78× 10−10 , at 90 % CL, (6.11)

which is in agreement with both the SM and E949. An even more stringent limit [540]

BR(K+ → π+νν̄)NA62 =
(

10.6+4.0
−3.5 ± 0.3

)
× 10−11 , at 68 % CL, (6.12)

has recently been reported. However, for consistency with the analysis in Ref. [1], we consider
the limit given by Ref. [539] in this chapter. In the future, the NA62 experiment aims to reach
10% precision [541], which can be interpreted in terms of a BR as [1]

BR(K+ → π+νν̄)future
NA62 ≲ 1.11× 10−10 , at 90% CL. (6.13)

6.2.3. The KOTO experiment

The KOTO experiment at J-PARC is also ongoing and is searching for KL → π0 + Emiss [528].
Similar to NA62, the KOTO experiment utilises kaons decaying in-flight. Since KOTO searches
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for the neutral mode they have a π0 in the final state, which rapidly decays into two photons4.
Rather than measuring the final state pion, the KOTO experiment detects the two photons
into which the pion decays, and based on measurements of the photons, the transverse
momentum of the pion and decay location of the kaon are reconstructed. In the KOTO
experiment there is a single SR which is defined in terms of the pion transverse momentum
pT

π and the location Zvtx along the kaon beam at which the decay occurs. The upper limit
on the transverse momentum is pT

π < 130 MeV, while the lower limit depends on Zvtx. The
distribution of kaon momenta ranges from 0 GeV to 5 GeV, with a peak around 1.4 GeV [405].
The result from KOTO is an upper limit [528]

BR(KL → π0νν̄)KOTO < 3.0× 10−9 , at 90% CL, (6.14)

and a central value

BR(KL → π0νν̄)KOTO =
(

2.1+4.1
−1.7

)
× 10−9 , at 95% CL. (6.15)

Note that the central value of KOTO is in agreement with both the SM, c.f. Eq. (6.5), and the
Grossman-Nir bound, c.f. Eqs. (6.6) and (6.4).

All experimental limits given above, except for the one in Eq. (6.9), are given under the
assumption that the rare kaon decay proceeds via a vector current, i.e. the same Lorentz
structure as that of the SM decay. Due to the fact that cuts are made in the phase space to
define SRs in which signal events are accepted, the full phase space is not explored in any
experiment. The fraction of the total phase space that an experiment can explore depends on
the Lorentz structure of the interaction being studied. Since the three experiments mentioned
above were/are mainly concerned with finding the SM mode (which is mediated by a vector
current), their SRs are placed such that events from a vector current decay are mostly captured,
which leaves as an unintended consequence the fact that events from a scalar current are
less visible. In order to obtain proper limits on the scalar BR for NA62 and KOTO, statistical
analyses would have to be performed to this end, which has not yet been done in the literature.

6.3. LNV in rare kaon decay

If LNV is realised in rare kaon decays K → πνν, where the two final state neutrinos carry the
same lepton number charge, it can be described in SMEFT at dimension 7 by the operator
Od̄LQLH1 from Tab. 4.5 [1, 424]. The low-energy5 matrix element corresponding to the scalar-
current mediated decay K → πνiνj is given by

iM =
v

Λ3
ijsd

〈
πνiνj

∣∣ d̄sνiνj |K⟩ . (6.16)

4Decaying into two photons is by far the most dominant mode for neutral pions, with BR(π0 → γγ) =
98.823± 0.034% at 90% CL [14]. This decay is so rapid that it can be considered to occur inside the kaon beam
at the KOTO experiment.

5Here we mean low energy with respect to the EWSB scale, such that we may use the fields of the broken SM.
What is relevant in the frame of the kaon is the mass difference between kaons and pions, since this is the
energy available to the final state. This energy is very far from the EWSB scale.
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Here the fermions in the operator correspond to 4-component fields d = (dL, d̄c)T and
ν = (νL, ν̄L)

T, where we assume that the SM neutrino is Majorana. From operator Od̄LQLH1
there is also a tensor current contribution with non-identical neutrino flavours. We choose to
consider identical flavours only, and we therefore do not consider the tensor current further.
The matrix element in Eq. (6.16) corresponds to both the charged (K+) and neutral (KL) kaon
decays, and the indices i and j indicate different neutrino flavours. We approximate the
matrix element by separating the hadronic and leptonic parts,

iM =
v

Λ3
ijsd

〈
π(p′)

∣∣ d̄s |K(p)⟩ ν̄i(k)νj(k′) . (6.17)

We can now replace the hadronic part with a form factor [542, 543]〈
π(p′)

∣∣ d̄s |K(p)⟩ = m2
K −m2

π

ms −md
f K
0 (s) . (6.18)

Here the form factor f K
0 (s) is a function of s = (p− p′)2 = (k + k′)2, where p, p′, k, and k′

are the four-momenta of the kaon, pion, and neutrinos νi and νj, respectively. In solving
Eq. (6.18) we here use the quark masses ms = 95 MeV and md = 4.7 MeV, as well as the form
factor [522, 543]

f K
0 (s) = f K

+(0)
(

1 + λ0
s

m2
π

)
, (6.19)

where λ0 = 13.38× 10−3, and where f K
+(0) is given by

f K+

+ (0) = 0.9778, f KL
+ (0) = 0.9544 , (6.20)

for the charged and neutral kaon decay, respectively. We can then write the squared matrix
element as

|M|2 =
v2

Λ6
ijsd

(
m2

K −m2
π

ms −md
f K
0 (s)

)2

s . (6.21)

The scalar form factor in Eq. (6.19) can be obtained from the vector form factor using equations
of motion [544]. The pseudo-scalar part ⟨π| d̄γ5s |K⟩ = 0 of the matrix element vanishes since
the decay is parity conserving. This type of current would instead lead to decays into vector
mesons, which we do not consider here6. From Eq. (6.21) we can express a double differential
decay width in terms of the variables s and t = (k′ + p′)2 as

Γ
(
K → πνiνj

)
ds dt

=
1

1 + δij

1
(2π)3

1
32m3

K
|M|2 ,

=
1

1 + δij

1
(2π)3

1
32m3

K

v2

Λ6
ijsd

(
m2

K −m2
π

ms −md

)2

| f K
0 (s)|2s , (6.22)

6In fact, the lightest vector meson, ρ, is too massive to be produced in the decays of kaons, and we would instead
have had to consider B-meson decays such as B → ρνν. Rare decays of B-mesons into scalar mesons are
however generally more constrained than decays into vector mesons (compare BR(B+ → ρ+νν) < 3.0× 10−5

at 95% CL [14] to BR(B+ → π+νν) < 1.4× 10−5 at 95% CL [14]).
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where δij takes care of the extra factor 1/2 needed for identical final state neutrinos. The
integration regions for t and s are t ∈ [t−, t+] and s ∈ [0, (mK −mπ)2], respectively, where

t± = m2
π −

1
2

(
s−

(
m2

K −m2
π

)
∓
√

λ
(
s, m2

K, m2
π

))
, (6.23)

and where
λ (a, b, c) ≡ a2 + b2 + c2 − 2ab− 2ac− 2bc (6.24)

is the Källén function. Using the total widths Γtot
K+ = 5.32× 10−17 GeV and Γtot

KL
= 1.29×

10−17 GeV for K+ and KL [14], respectively, we can express the LNV branching ratios as

BRLNV(K+ → π+νiνj) = 10−10
(

19.2 TeV
Λijsd

)6

. (6.25)

for K+ and

BRLNV(KL → π0νiνj) = 10−10
(

24.9 TeV
Λijsd

)6

, (6.26)

for KL, where Λijsd is the re-parametrised flavour-specific NP scale Λ−3
ijsd = Cijsd/Λ3. We have

here assumed that the NP scale Λijsd is real. Neglecting the small CP-violating parameter ϵ

in neutral kaon mixing (c.f. Sec. 2.1.4), the matrix element of the rare KL decay via a scalar
current is proportional to the real part of the operator coefficient, as opposed to vector currents
where it is proportional to the imaginary part. We can see this by noting the properties of the
transformation between

∣∣K0〉 and
∣∣K̄0〉 for different currents,〈

π0∣∣ d̄ (1− γ5) s
∣∣K̄0〉 = 〈

π0∣∣ s̄ (1− γ5) d
∣∣K0〉 ,〈

π0∣∣ d̄γµ (1− γ5) s
∣∣K̄0〉 = − 〈π0∣∣ s̄γµ (1− γ5) d

∣∣K0〉 .
(6.27)

Constructing a |KL⟩ matrix element from the states
∣∣K0〉 and

∣∣K̄0〉 gives [545]

iM
(

KL → π0ν
(_)

ν
)
=

1√
2 + 2|ϵ|2

(
F(1 + ϵ)

〈
π0∣∣C

∣∣K0〉
+F∗(1− ϵ)

〈
π0∣∣C

∣∣K̄0〉 )νC
(_)

ν ,
(6.28)

where C is the current, which can take the form of V− A or S− P, where V, A, S, and P stand
for vector, axial-vector, scalar, and pseudo-scalar, respectively. The quantity F contains all the
underlying parameters such as coupling constants. Neglecting ϵ we see that the imaginary
part of F is picked out for a vector current, as in the SM, while the real part is picked out for
scalar currents, as in the LNV case.

The SM contribution to the BR of the rare kaon decay can be parametrised as a dimension-6
EFT operator,

LK→πνν̄
SM =

1
Λ2

SM

3

∑
i=1

(ν̄iγ
µ (1− γ5) νi)

(
d̄γµ (1− γ5) s

)
, (6.29)
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where we have a single flavour index i rather than two as in the LNV case due to flavour
conservation in the SM. The Lagrangian in Eq. (6.29) leads to the matrix element

iM =
〈
π(p′)νi(k)ν̄i(k′)

∣∣LK→πνν̄
SM |K(p)⟩ , (6.30)

which in turn yields the squared matrix element

|M|2 =
6

Λ4
SM

[
m2

K
(
t−m2

π

)
− t
(
s + t−m2

π

)]
f K
+(s)

2 . (6.31)

Here the vector current form factor is given by

f K
+(s) = f K

+(0)
(

1 + λ′+
s

m2
π

+ λ′′+
s2

m4
π

)
, (6.32)

where we have λ′+ = 24.82 × 10−3 and λ′′+ = 1.64 × 10−3 [522]. Constructing a double
differential decay width out of the SM matrix elements, we can integrate it over the phase
space and match the operator coefficients to readily available expressions coming from loop-
calculations. This yields the effective scales |ΛK+

SM| = 8.5 TeV and Im(ΛKL
SM) = 15.46 TeV. The

BR of K → πν
(_)

ν , where
(_)

ν indicates either ν or ν̄, can then be written as

BR(K → πν
(_)

ν ) = BRSM(K → πνν̄) +
3

∑
i≤j

BRLNV(K → πνiνj) . (6.33)

Any interference between the SM and LNV contributions is suppressed by the smallness of
the neutrino mass, and is therefore negligible.

6.4. Kinematic distributions in rare kaon decay

As discussed previously in this chapter, the SM rare kaon decay proceeds via a vector
current, while possible BSM LNV contributions occur via scalar currents. The difference in
current modifies the phase space distribution of final state particles, which is an experimental
observable. Once enough data has been collected this can be used to distinguish between
different types of BSM contributions to rare kaon decays, including those that are LNV, and
can help to identify whether a possible excess is truly due to NP, as the deviation from a pure
vector-current distribution would be a clear signal of BSM physics. An initial assumption
about the phase space distribution would have to be made in order to set limits on the
BR, as the different experiments only probe parts of the phase space. Any experimentally
obtained limit on the BR of rare kaon decays would therefore have to correspond to a specific
assumption about the current.

The double differential decay widths for both the SM and LNV contributions to rare kaon
decays K(p) → π(p′)ν(k)

(_)

ν (k′) were obtained in Sec. 6.3, in terms of the Lorentz invariant
variables s = (p− p′)2 and t = (k′ + p′)2. In Fig. 6.2 this double differential decay width is
shown for charged rare kaon decays at the NA62 experiment in terms of the squared missing
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6. Disentangling LNV and LNC in rare kaon decays

Figure 6.2.: Double differential decay width of the rare kaon decay process in terms of the
squared missing energy s and pion momentum pπ, shown for both the SM decay
K+ → π+νν̄ (left) and the LNV decay K+ → π+νν (right). The two signal regions
of the NA62 experiment are shown as shaded areas. This figure is taken from
Ref. [1].

energy s and the pion momentum pπ ≡
√

p′2 −m2
π. The variable t can be transformed

into a function of pπ and s using conservation of energy and momentum, given by the
relation p = p′ + k + k′. For both the SM (Fig. 6.2 left) and LNV (Fig. 6.2 right) modes,
this distribution is shown in the lab frame in which the kaon has the initial momentum
pK+ =

(
p2 −m2

K+

)1/2
= 75 GeV. The upper edge of the distribution corresponds to the case

where the direction of the pion is parallel to the initial direction of the kaon. Note that the
range in pion momenta in Fig. 6.2 goes up to 75 GeV, which is the initial momentum of the
kaon. The rightmost corners in the plots in this figure therefore corresponds to the case
where the pion takes all the momentum of the kaon, which is allowed since the neutrinos are
effectively massless. The lower limit on pπ in this frame is greater than zero since pions are
not massless, there is no way to conserve both energy and momentum for pπ = 0. The two
SRs of the NA62 experiment are also shown in Fig. 6.2 following their definition in Sec. 6.1.
They are placed in a way such that the background is minimised.

From Fig. 6.2 it is apparent how the distribution in s varies significantly between the SM
and LNV cases, while both distributions are constant in pπ when plotted with respect to7 s.

7Note that this non-dependence of the distribution with respect to pπ is a consequence of the maximum s being
a function of pπ , as can be seen by the fact that the location of the upper edge of the distribution in s varies
with respect to pπ . If we integrate over s and plot the differential width with respect to pπ , the distribution
will not be constant. The flat behaviour in Fig. 6.2 does therefore not lead to a non-dependence on pπ in terms
of the number of events seen experimentally.
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The SM distribution peaks at s = 0, and reaches its minimum at s = smax = (mK −mπ)2. For
the LNV case the opposite is true, the distribution peaks at smax while reaching its minimum
at s = 0.

Angular momentum has to be conserved in the process, and this quantity is initially zero
in the frame we are using. The missing energy s can be expressed in terms of the opening
angle θ between the neutrinos as

s = (k + k′)2 = k0k′0 − cos θ |⃗k||⃗k′| = k0k′0(1− cos θ) , (6.34)

where in the last step we considered the neutrinos to be massless. The pion is a pseudo-scalar
particle, and the only angular momentum-carrying particles in the final state are therefore
the neutrinos, since they have an intrinsic spin. The two neutrino spins have to cancel each
other in order for angular momentum to be conserved, and this cancellation depends on the
direction in which the neutrinos are going. Because both neutrinos in the final state of the
LNV mode are left-handed, they cannot travel in the same direction (i.e the cross section for
the limiting case θ → 0 should vanish). If they did there would be no way in which their
spins could point in opposite directions such that the angular momentum vanishes, due to
their common helicities. For increasing θ there is a larger phase space available in which the
neutrino spins point oppositely, reaching a maximum at θ = π (in which case there is no
possibility for the neutrino spins not to point oppositely). The spins of the two neutrinos
in the LNV mode exactly cancel each other if they are travelling back-to-back. For the SM
mode, we have one left-handed neutrino and one right-handed anti-neutrino in the final state.
Similar arguments then apply as in the LNV case. For LNC decays, the neutrino spins have
to again point in opposite directions in order to conserve angular momentum. However, for
the SM mode this means that there is a larger phase space available if the neutrinos travel in
the same direction. This is because one of them has positive helicity and the other negative,
such that if they travel in the same direction their spins exactly cancel. In the SM mode the
size of the available phase space is therefore maximum for θ = 0 and vanishes for θ = π.

In Fig. 6.3, the single differential decay width of K+ → π+ν
(_)

ν , normalised to the total
decay width, is shown in terms of s for the NA62 experiment8. The distribution is shown
for both the SM (blue) and LNV (red modes), as well as some of the main background
processes. The dotted blue and red lines correspond to the SM and LNV rare kaon decay
distributions, respectively, after integrating only over the pion momentum range of the SRs
(15 GeV < pπ < 35 GeV), as opposed to integrating over the whole momentum range. For
the LNV mode, the operator coefficient is set in such a way that the integrated branching
fraction matches that of the SM mode, and the areas under the blue and red curves in Fig. 6.3
are therefore equal9. Furthermore, the widths of both the SM and LNV rare kaon decays
have been multiplied by a factor 1010 for visibility, since their branching ratios are much
smaller than the main background processes. Even with the strategic placement of the SRs

8Note that integrating over all distributions in Fig. 6.3 and summing them up does not lead to unity. This is
because Γtot is evaluated in the rest frame of the kaon while dΓ/ds is evaluated in the lab frame. All curves
are therefore lowered by a factor 1/γ where γ = EK+/mK+ is the Lorentz factor.

9When naively comparing it however looks as if the area under the red curve is larger. This is simply a
consequence of the y-axis being in logarithmic scale.
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Figure 6.3.: Differential decay width of the rare kaon decay in terms of the squared missing
energy s. The solid lines in red and blue correspond to the LNV decay K+ → π+νν

and SM decay K+ → π+νν̄, respectively. The two rare kaon decay widths have
been multiplied by a factor 1010 for visibility. The dotted red and blue lines show
the rare kaon decay widths that correspond to the signal region constraint at NA62
in terms of the momentum of the pion. Differently coloured dashed lines show the
distributions of the most relevant background processes at the NA62 experiment,
and the two shaded blue areas correspond to the two signal regions. This figure is
taken from Ref. [1].
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Figure 6.4.: Left: Differential decay width of rare kaon decays at the E949 experiment with
respect to the kinetic energy of the pion in the centre of mass frame. Red and
blue solid lines show the LNV decay K+ → π+νν and SM decay K+ → π+νν̄,
respectively, while the dashed red and blue lines correspond to the decays after
performing the kinematic cuts according to the signal region at the E949 experiment.
The shaded areas indicate the signal regions. Right: Differential decay width of
rare kaon decays at the KOTO experiment with respect to the pion transverse
momentum. The shaded area indicates the signal region. This figure is taken from
Ref. [1].

to avoid the main backgrounds, there is still a significant contribution from K → e+π0νe

and K → µ+π0νµ. Therefore, further selection criteria via particle identification and photon
rejection have to be applied also inside the SRs [538].

Photon rejection is effective at eliminating backgrounds with a final state π0, which rapidly
decays into two photons. A final state µ+ or e+ could mimic a π+, but would then appear to
violate conservation of energy, since their masses are different, and π+ can in this way be
identified based on the final state kinematics.

Kinematic distributions of the pion are also shown for the E949 experiment in Fig. 6.4 (left),
and the KOTO experiment in Fig. 6.4 (right). The y-axis shows the differential decay width
normalised to the total decay width, and the x-axis shows the variable in which the SR is
defined (pion kinetic energy Eπ

kin for the E949 experiment and pion transverse momentum
pT

π for the KOTO experiment), where the blue shaded regions correspond to the SRs of the
experiment. From the placement of the SRs it can be seen that the sensitivity to the SM mode
is greater than that to the LNV mode in both the E949 and KOTO experiments.

In each rare kaon decay experiment it is the location of the SRs that determine the relative
sensitivity to different currents. In Tab. 6.1 the fraction of phase space that falls within the
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Experiment SM (vector) LNV (scalar)

NA62 SR 1 6% 0.3%

NA62 SR 2 17% 15%

E949 πνν(1) 29% 2%

E949 πνν(2) 45% 38%

KOTO 64% 30%

Table 6.1.: Differential partial rare kaon decay width percentages that fall within the signal
regions of the NA62, E949, and KOTO experiments, for vector and scalar currents.
This table is taken from Ref. [1].

different SRs are shown for the NA62, E949, and KOTO experiments [1]. These fractions
can be obtained by expressing the phase space in terms of the relevant kinematic variables,
integrating over the SR, and dividing by the width obtained by integrating over the whole
phase space. The percentages in Tab. 6.1 serve as an indication of how sensitive each
experiment is to the different currents. We see that the all experiments are more sensitive to
vector currents than to scalar currents. For the NA62 experiment, most events are expected in
SR 2, and the ratio of the percentage of available phase space between the SRs is SR 1 : SR 2
≈ 0.02, while for vector currents the same ratio is SR 1 : SR 2 ≈ 0.35.

Conclusion to Chapter 6

Rare kaon decays offer a unique way to probe LNV with universal lepton-flavour content.
Due to the difference in the kinematic distribution of the final state pion depending on the
chiralities of the associated neutrinos, it is in principle possible to discern whether or not
a potential excess in an experiment is due to a LNV interaction, if a significant number of
events is observed. This highlights an important feature about some of the observables that
involve final state neutrinos: even if the neutrinos themselves are not observed, their definite
helicity can affect the kinematics of other final state particles [1].

In this chapter, we have seen how the distribution of pions in rare kaon decays at the
NA62 experiment could lead to a distinction between LNC and LNV contributions. These
results were published in Ref. [1]. In Ch. 7, we show another example of how LNV could
potentially be probed using final state kinematics, namely via the electromagnetic interactions
of neutrinos.
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7. LNV in radiative CEνNS

Coherent elastic neutrino-nucleus scattering (CEνNS ) [546] is a SM process that was first
discovered by the COHERENT collaboration in 2017 [547]. Since its first observation, the goal
in CEνNS experiments has shifted from confirming the existence of this mode to using it as
a probe of SM parameters and to search for NP. In the future, CEνNS experiments will be
able to detect extremely small momentum transfers of O(eV), using very low nuclear recoil
thresholds [548, 549]. One possible NP scenario that could potentially be observed in such
experiments is the Primakoff upscattering of incoming neutrinos into heavy sterile neutrinos,
e.g. via a transition magnetic dipole coupling, as illustrated in Fig. 7.1 (left). Such a dipole
portal could simultaneously be a way to probe both the existence of sterile neutrinos as well
as the NP that generates the magnetic moment coupling [3].

In this chapter we focus on a specific process involving dipole couplings at CEνNS ex-
periments: the initial upscattering of a neutrino ν into a sterile neutrino N via a transition
magnetic moment µνN , and the subsequent decay of the sterile neutrino into a photon and an
active neutrino, as shown in Fig. 7.1 (right). We call this process radiative CEνNS. Searches
for it have been proposed for the DUNE [550], IceCube [551], Super-Kamiokande [552], and
NUCLEUS [3] experiments. The latter experiment is the main focus of a large part of this
chapter. First we discuss the details of neutrino transition magnetic moments (Sec. 7.1), how
they are connected to neutrino masses (Sec. 7.2), and how they can be searched for in CEνNS
experiments as well as how radiative CEνNS can be used to probe the possible existence of
LNV and the nature of neutrino masses (Secs. 7.3 and 7.4). The work presented in this section
led to the publication in Ref. [3].

7.1. Neutrino transition magnetic moments

To describe the transition magnetic moment coupling between an active neutrino ναL of
flavour α ∈ {e, µ, τ} and a sterile neutrino N we use the following Lagrangian:

L ⊃ µα
νN ν̄αLσµνPRNFµν + h.c. , (7.1)

where the electromagnetic field strength tensor is given by Fµν = ∂µ Aν − ∂ν Aµ, and where
µα

νN are the transition magnetic dipole couplings. Note that Eq. (7.1) is only valid below the
scale of EWSB since it is not invariant under the full SM gauge group. To obtain a Lagrangian
which is valid at higher energies, Eq. (7.1) would need to be matched onto expressions given
in terms of the SM doublets Lα and H as well as the U(1)Y and SU(2)L field strengths Bµν

and Wa
µν. The momentum scales involved in CEνNS are well below the scale of EWSB, and

therefore Eq. (7.1) remains a valid description of this process. In order to have coherence in
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Figure 7.1.: Left: Primakoff upscattering of a light active neutrino να into a heavy sterile
neutrino N via a transition magnetic dipole moment interaction with nucleus A.
Right: The same but with the additional decay of N into an active neutrino νβ and
a photon γ, i.e. the radiative CEνNS process.

the scattering, i.e. in order for the incoming neutrino to interact with the whole nucleus rather
than individual nucleons, the energy of the neutrino has to be less than the inverse diameter
of the nucleus, which for a nucleus of diameter 1 fm corresponds to an upper limit neutrino
energy of about 0.2 GeV.

Both the active and sterile neutrinos could be of either Dirac or Majorana type. The active
neutrinos ναL are left-handed Weyl spinors that can be part of a Dirac (να = ναL + ναR) or
Majorana (να = ναL + νc

αL) 4-component spinor. In the former case it is necessary to introduce
yet another sterile field, namely ναR. The heavy sterile field N can similarly be decomposed
into a left- and right-handed Weyl spinors according to whether it is a Dirac (N = NL + NR) or
Majorana (N = NR + Nc

R) field, where in the former case NL has been additionally introduced.
There are therefore four combinations of field types for the active and sterile neutrinos that can
realise Eq. (7.1). However, for light active neutrino masses well below the momentum scales
involved in the scattering mν ≪ Eν, the experimental resolution of the active neutrino mass
type is very limited, and the differential scattering rates are approximately equal for Dirac and
Majorana types. This is in agreement with the Dirac-Majorana confusion theorem [553, 554].
For the heavy sterile neutrino, the difference between Dirac or Majorana masses can be
significant if mN is close to Eν.

The Lagrangian term in Eq. (7.1) leads to the Primakoff upscattering interaction να A →
NA [555, 556] depicted in Fig. 7.1 (left), where A is a nucleus. If the incoming neutrinos are
relativistic, the distribution of the cross section in terms of the nuclear recoil energy ER is
identical for Dirac and Majorana N. Therefore, the current non-observation of any deviation
from the expected SM distribution can lead to constraints on the size of the dipole coupling
µα

νN as a function of the sterile neutrino mass mN , and these limits are then applicable to
both Dirac and Majorana N. Such flavour-dependent constraints have been set by a range of
different experiments [550].

Eq. (7.1) also leads to the radiative upscattering process να A → νβγA [3] depicted in
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Fig. 7.1 (right). The corresponding cross section is proportional to the factor |µα
νNµ

β
νN |2, which

contains four powers of the transition magnetic moment coupling µνN as opposed to the two
powers in ordinary Primakoff upscattering. This leads to a suppression of the rate of radiative
upscattering in experiments. However, the final state photon provides an additional signal
which can potentially be used to obtain more kinematical information about the process,
which in turn could potentially be used to discriminate between Dirac and Majorana N, as
can be seen below.

Note also that the final state neutrino νβ remains undetected in CEνNS experiments.
Therefore, additional decay channels of the sterile neutrino N that produces a photon could
potentially also provide a signal. Introducing another sterile neutrino N′ as an additional
light state, such that mN′ ≪ mN , leads to the Lagrangian

L ⊃ µα
νN ν̄αLσµνPRNFµν + µN′N N̄′σµνPRNFµν + h.c. . (7.2)

From Eq. (7.2) we have the radiative upscattering process να A→ Xi Aγ, where Xi ∈ {νβ, N′}
is a light fermion. The corresponding cross section is then proportional to |µα

νN ∑i µXi N |2,
which could lead to weaker experimental constraints as compared to the mode that only
utilises the coupling between N and ν.

7.2. Neutrino masses from transition dipole couplings

In this section we consider the connections between transition neutrino magnetic dipole
moments and active neutrino masses. If the radiative CEνNS interaction is realised in nature,
and should the heavy sterile neutrino N that mediates the process be Majorana, the light active
neutrinos must be Majorana as well. As illustrated in Fig. 7.2, the transition magnetic dipole
moment coupling in combination with a Majorana mass insertion for the sterile neutrino
inevitably leads to a one-loop radiative active neutrino Majorana mass diagram. While this
contribution to the neutrino mass may in some instances not be the dominant one in the
presence of a Dirac mass term with light right-handed sterile neutrinos νR, it does imply that
the active left-handed neutrinos have a Majorana nature, which in turn implies LNV. For
Dirac N, no direct conclusion about the nature of active neutrinos can be drawn.

A large neutrino transition magnetic dipole moment µνN in combination with small active
neutrino masses could hint towards some underlying symmetry, e.g. related to the Voloshin
mechanism [557] or inverse seesaw [499–501]. These mechanisms can be model-independently
described in modified versions of SMEFT for both Dirac and Majorana neutrinos. The
modification involves adding an additional light1 Dirac or Majorana sterile neutrino2 N. If the
Weyl spinor component NR couples to νL via an active-to-sterile transition magnetic moment,
mass terms of the form

L ⊃ mνN ν̄LNR + h.c. (7.3)

1Here we mean light with respect to the scale of EWSB. The light field in question, N, is often referred to as a
heavy field in the text since it is heavy with respect to the light active neutrino mass.

2Such an EFT is often called νSMEFT in the literature.
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ν N N ν

γ

Figure 7.2.: Active neutrino radiative neutrino mass diagram induced my by the transition
magnetic moment coupling µνN as well as a heavy sterile neutrino Majorana mass
insertion. This figure is taken from Ref. [3].

can be generated in an EFT description [558]. We can construct an EFT Lagrangian as

Leff = ∑
d,j

C(d)
j (µ)

Λd−4 O
(d)
j (µ) + h.c.. , (7.4)

where j enumerates the different operators O(d)
j and C(d)

j for a given dimension d ≥ 4.
Furthermore, Λ is the scale of NP, and µ is the renormalisation scale. In a SM invariant
EFT formalism an effective active-to-sterile neutrino transition magnetic dipole moment
involving Dirac sterile neutrinos can be generated at dimension d = 6 via operators that
include couplings to the SM gauge field strengths Wa

µν and Bµν. In the basis we consider here,
going from the scale of EWSB to higher scales, these operators mix in renormalisation group
running with another operator containing three copies of the Higgs field. The three operators
in question are given by [558]

O(6)
1 = g′ L̄H̃σµνNRBµν

O(6)
2 = gL̄τaH̃σµνNRWaµν (7.5)

O(6)
3 = L̄H̃NR

(
H†H

)
,

where τa = σa/2 are the generators of SU(2). The operator O(6)
3 induces a Dirac neutrino

mass term given in Eq. (7.3) after EWSB. Assuming that O(6)
3 vanishes at some high scale

Λ such that C(6)
3 (µ = Λ) = 0, non-zero values of C(6)

1 (µ = Λ) and C(6)
2 (µ = Λ) lead to a

non-vanishing contribution to O(6)
3 at the EWSB scale v via mixing, such that C(6)

3 (µ = v) ̸= 0.
In this way, Dirac active neutrino masses are generated from the magnetic moment operators
O(6)

1 and O(6)
2 . Below the scale of EWSB these two operators combine, giving the magnetic

moment coefficient

µνN

µB
= −16

√
2
(mev

Λ2

) [
C(6)

1 (v) + C(6)
2 (v)

]
, (7.6)
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where µB is the Bohr magneton, and C(6)
3 leads to the Dirac mass contribution

δmνN = −C(6)
3 (v)

v3

2
√

2Λ2
. (7.7)

Eliminating Λ yields the relation

δmνN =
v2

16me

C(6)
3 (v)

C(6)
1 (v) + C(6)

2 (v)

µνN

µB
. (7.8)

Assuming now that we have C(6)
3 (µ = Λ) = 0 at Λ = 1 TeV, and that the mass constraint on

light active neutrinos is mν ≲ 1 eV, the induced constraint on µνN is

|µνN |
µB

∼ 10−15
(

δmνN

1 eV

)
. (7.9)

However, in deriving Eq. (7.9) it was assumed that C(6)
1 and C(6)

2 have the same sign and
contribute equally to the neutrino magnetic moment. In case there are partial cancellations
between C(6)

1 and C(6)
2 the bound in Eq. (7.9) is no longer valid. Furthermore, there may be a

cancellation between a radiatively induced neutrino mass and a tree-level Dirac mass term
that is induced e.g. via a Yukawa coupling to some scalar with a non-zero vev. For the rest of
this section we consider these types of cancellations to be possible.

In case there is a large mixing between active and sterile neutrinos, a transition magnetic
moment can be induced via loop diagrams that involve charged leptons [559, 560]. This
contribution is given by [555]

|µνN |
µB

=
3mνNme

16π2
GF√

2
∼ 10−13

( mνN

1 MeV

)
. (7.10)

For Majorana N, the loop diagram in Fig. 7.2 is induced in the presence of a transition
magnetic moment. This contribution to the light active neutrino mass can be estimated as

mν ∼
(

µνN

µB

)2 α

16π

mNΛ2

m2
e

, (7.11)

where Λ is the scale of NP in the magnetic moment operator. For Λ = 1 TeV and mN = 1 MeV,
the mass constraint mν ≲ 1 eV leads to

|µνN |
µB

∼ 10−8
(

δmνN

1 eV

)
. (7.12)

Both Eqs. (7.10) and (7.11) depend on the Majorana mass of N, where the constraint on µνN

grows weaker for large mN due to reduced mixing, while the light active Majorana mass
mν increases with increasing mN . In e.g. the inverse seesaw mechanism [499–501], where
light active neutrinos get their Majorana mass from a combination of mNL and the Yukawa
couplings between νL, NR and NR, NL, both constraints can simultaneously be satisfied by a
set of parameters that keeps mνN small without having a large mN , and that arises without
fine-tuned cancellations.
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Figure 7.3.: Left: Primakoff upscattering of a light active neutrino να into a heavy sterile
neutrino N via a transition magnetic dipole moment interaction with a nucleus
A, using the kinematic variables s = (k2 + k1)

2 and t = (k1 + p1)
2. Right: The

same but with the additional decay of N into an active neutrino ν and a photon γ,
i.e. the radiative upscattering process, with the kinematic variables s = (k2 + k1)

2,
t = (k1 − p1)

2, s1 = (p2 + p3)2, s3 = (p1 + p2)2, and t2 = (k2 − p3)2. This figure is
taken from Ref. [3].

7.3. Calculation of the radiative CEνNS process

In this section we calculate the cross section for both the Primakoff upscattering and radiative
CEνNS processes given by the diagrams in Fig. 7.1 (left) and (right) respectively, and use the
results to calculate event rates at the NUCLEUS experiment. The treatment of the kinematics
in these calculations follow from Ref. [561].

7.3.1. Primakoff upscattering

First we consider the Primakoff upscattering of an incoming light active neutrino να into a
heavy sterile neutrino. In the flavour basis for να and mass basis for N, this process can be
described by the Lagrangian

L ⊃ µα
νN ν̄αLσµνPRNFµν + (µα

νN)
∗N̄σµνPLναLFµν . (7.13)

In case both να and N are Majorana, we can simplify Eq. (7.13) as

L ⊃ µα
νN ν̄α

[
σµνPR − C(σµνPL)

TC−1
]

NFµν = µα
νN ν̄ασµνNFµν , (7.14)

where we have used the relations (µα
νN)
∗ = −µα

νN , assuming CP-symmetry, and CPT
L C−1 = PL.

As shown in Fig. 7.3 (left), the momentum exchange between the neutrino and nucleus via
the photon is q = k1 − p1 = pN − k2. For both Dirac and Majorana N, the process να A→ NA
leads to the matrix element

iMD(M)
να A→NA = µα

νN
[
ūNσµρPLqρuνα

] (−igµσ)

q2 JA
σ , (7.15)
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while the process ν̄α A→ N̄A leads to

iMD(M)
ν̄α A→N̄A = µα

νN
[
v̄να σµρPRqρvN

] (−igµσ)

q2 JA
σ . (7.16)

where the hadronic current is denoted by JA
σ . We assume this current to take the form

JA
σ = −ieZ(ūAγσuA)F (q2), where F (q2) is a nuclear form factor. In the case of Dirac N, the

processes να A → N̄A and ν̄α A → NA are suppressed by a factor mν/k0
2. For Majorana N

these processes are not suppressed. Due to the relation N = N̄c their corresponding matrix
elements are again described by Eqs. (7.15) and (7.16), respectively. We work in the limit of
vanishing active neutrino masses, for which the matrix element of the Primakoff upscattering
process is same same for Dirac or Majorana N. In this limit there is also no such concept as
Dirac or Majorana να, since they are massless.

Using Eqs. (7.15) and (7.16) we can now find the differential cross section by taking the
absolute square, averaging over incoming spins, and summing over outgoing spins. This
differential cross section is given by [3]

d2σνα A→NA =
1

2(s−m2
A)

1
2 ∑

spins
|MD(M)

να A→NA|2dΦ2 , (7.17)

where mA is the mass of the nucleus A and dΦ2 is a two-body phase space of the outgoing N
and A (c.f. Appendix C), which is given by

dΦ2 =
1

(2π)2
d3p1

2Ep1

d3pN

2EpN

δ4(k1 + k2 − p1 − pN) . (7.18)

Integrating, we can eliminate the delta-function to obtain∫ 1
(2π)2

d3p1

2Ep1

d3pN

2EpN

δ4(k1 + k2 − p1 − pN) =
∫ dϕ

2π

dt
8π(s−m2

A)
. (7.19)

Here we have expressed the phase space in terms of the azimuthal angle ϕ describing rotations
in a plane perpendicular to the direction of the incoming neutrino, as well as the Mandelstam
variable t = q2. The integration limits for the phase space are given by the relation ∆3 < 0,
where the 3× 3 symmetric Gram determinant ∆3 is given by

∆3 = −1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 s m2
N 1

0 0 m2
A t 1

s m2
A 0 m2

A 1

m2
N t m2

A 0 1

1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (7.20)

The absolute squared matrix element summed over spins can be written as

1
2 ∑

spins
|Mνα A→NA|2 = (µα

νN)
2 e2Z2F 2(q2)

q4 LµνHµν , (7.21)
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where Z is the number of nucleons, and the leptonic and hadronic tensors Lµν and Hµν are
respectively given by

Lµν = Tr[(/p N + mN)σµρPL/k2σνλ] qρqλ , (7.22)

Hµν =
1
2

Tr[(/p 1 + mA)γ
µ(/k1 + mA)γ

ν] . (7.23)

There is no dependence on the azimuthal angle ϕ, and we can therefore integrate over it to
obtain the single-differential cross section

dσνα A→NA

dt
= (µα

νN)
2αZ2F 2(t)

F(s, m2
N , t, m2

A)

2t2(s−m2
A)

2
, (7.24)

where we have introduced

F(w, x, y, z) = 2y(w− z)2 + 2y2(w− z)− xy(2w + y) + x2(2z + y) . (7.25)

Converting Eq. (7.24) into an expression given in terms of variables that are defined in
the lab frame, we can use the relations k1 = (mA, 0), k2 = (Eν, k2), p1 = (mA + ER, p1)

and pN = (Eν − ER, pN), where Eν is the energy of the incoming neutrino and ER is the
nuclear recoil energy. The Mandelstam variables are now given by s = mA(mA + 2Eν) and
t = −2mAER. Using the Jacobian J (ER) =

∂t
∂ER

= −2mA gives us

dσνα A→NA

dER
= (µα

νN)
2αZ2F 2(ER)

[
1

ER
− 1

Eν
− m2

N
4ERE2

ν

(
1 +

2Eν − ER

mA

)
− m4

N
8mAE2

RE2
ν

(
1− ER

mA

) ]
. (7.26)

We are going to be interested in the case where the momentum exchanged by the photon is
much smaller than the mass of the nucleus, in which case we drop the terms in Eq. (7.26) that
are proportional to E−1

ν or m−1
ν .

7.3.2. Radiative upscattering

We now compute the squared matrix element and differential cross section that corresponds
to radiative upscattering να A → νβ Aγ [3]. This process can be thought of as a Primakoff
upscattering να A→ NA followed by a sterile neutrino decay N → νβγ that is induced by the
magnetic moment coupling. For Dirac N the matrix element for the decay N → νβγ is given
by

iMD
N→νβγ = µ

β
νN [ūνβ

σµνPRuN ]p
µ
3 ϵν∗ . (7.27)

Here pµ
3 and ϵν are the momentum and polarisation of the final state photon, respectively, and

PR = 1
2 (1 + γ5) is a right-handed projection operator. The matrix element for the conjugated

process N̄ → ν̄βγ can be obtained with the replacement [ūνβ
σµνPRuN ]→ [v̄NσµνPLvνβ

]. If N is
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Majorana, the matrix element for N decaying via the transition magnetic moment coupling is
given by the sum of the processes N → νβγ and N̄ → νβγ. The matrix element is then given
by

iMM
N→νβγ = µ

β
νN
[
ūνβ

[σµνPR − C(σµνPL)
TC−1]uN

]
pµ

3 ϵν∗

= µ
β
νN [ūνβ

σµν(PR + PL)uN ]p
µ
3 ϵν∗ = µ

β
νN [ūνβ

σµνuN ]p
µ
3 ϵν∗ . (7.28)

In order to obtain the differential decay width we must take the absolute squared of the
matrix element and sum over spins and polarisations,

d2ΓD(M)
N→νβ A =

1
2mN

∑
spins, pols

|MD(M)
N→νβγ|2dΦ2 . (7.29)

Here we do not average over the spin of N, since in subsequent steps we take it to be an
intermediate particle in the full radiative upscattering process. The squared and spin-summed
matrix element is given by

∑
spins, pols

|MM
N→νβγ|2 = 2 ∑

spins, pols
|MD

N→νβγ|2 = 4(µβ
νN)

2m4
N , (7.30)

where the factor two difference between Dirac and Majorana N comes from the additional
channel in the Majorana case. As seen in Appendix C, the two-body phase space can be
expressed in terms of the angles θ and ϕ as

dΦ2 =
1

8π

dϕ

2π

d cos θ

2
, (7.31)

and integrating then gives the decay width

ΓM
N→νβγ = 2ΓD

N→νβγ =
∫

d2ΓD(M)
N→νβ A =

(µ
β
νN)

2m3
N

4π
. (7.32)

The relative factor two between Dirac and Majorana N that is seen in Eq. (7.32) also appears
in vector neutral current decays [562, 563].

Now considering the full radiative upscattering process, we define the Lorentz invariant
Mandelstam variables s, t, s1, s3, and t2 as

s = (k1 + k2)
2 = mA(mA + 2Eν) , (7.33)

t1 = (k1 − p1)
2 = −2mAER , (7.34)

s1 = (p2 + p3)
2 = −2mAER − 2Eν(ER −

√
ER(2mA + ER) cos θR) , (7.35)

s3 = (p1 + p2)
2 = mA(mA + 2Eν − 2Eγ)− 2EνEγ(1− cos θγ) , (7.36)

t2 = (k2 − p3)
2 = −2EνEγ(1− cos θγ) , (7.37)

where θγ and θR are the angles between the directions of the incoming neutrino and outgoing
photon and nucleus, respectively, and Eγ is the photon energy. The Mandelstam variables
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from Eq. (7.33) are illustrated in Fig. 7.3 (right) in terms of the associated momenta. For Dirac
N we have the two possible processes να A → NA → νβ Aγ and ν̄α A → N̄A → ν̄β Aγ. The
matrix elements for there processes are

iMD
να A→νβ Aγ = µα

νNµ
β
νN

i
[
ūνβ

σλξ PR(/p N + mN)σµρPLuνα

]
ϵλ∗pξ

3qρ

p2
N −m2

N + imNΓN

(−igµσ)

q2 JA
σ , (7.38)

and

iMD
ν̄α A→ν̄β Aγ = µα

νNµ
β
νN

i
[
v̄να σµρPR(/p N + mN)σλξ PLvνβ

]
ϵλ∗pξ

3qρ

p2
N −m2

N + imNΓN

(−igµσ)

q2 JA
σ , (7.39)

respectively, where ΓN is the total width of N and pµ
N = (p2 + p3)µ. For Majorana N, the

additional processes να A→ ν̄β Aγ and ν̄α A→ νβ Aγ are allowed. The radiative upscattering
matrix element is then given by

iMM
να A→ν

(c)
β Aγ

= µα
νNµ

β
νN

i
[
ūνβ

σλξ(/p N + mN)σµρPLuνα

]
ϵλ∗pξ

3qρ

p2
N −m2

N + imNΓN

(−igµσ)

q2 JA
σ , (7.40)

where the difference from the Dirac case is the absence of the projection operator PR to
the left of the N mediator, since the sum PL + PR = 1 is used for the two contributions
in the Majorana case. Note that the final state neutrino ν

(c)
β may or may not be charge

conjugated, depending on whether the process has a νβ or ν̄β final state. This is strictly
applicable to the Majorana N case, where ν is also Majorana. Assuming instead an incoming
να of predominantly positive helicity (corresponding to ν̄α in the Dirac case) the replacement[
ūνβ

σλξ(/p N + mN)σµρPLuνα

]
→
[
v̄να σλξ PR(/p N + mN)σµρvνβ

]
should be made in Eq. (7.40).

The full differential cross section for the radiative CEνNS process can now be obtained by
squaring the matrix element, summing over final state spins and polarisations, and averaging
over the initial nucleus spin, [3]

d5σνα A→νβ Aγ =
1

2(s−m2
A)

1
2 ∑

spins
|MD(M)

να A→νβ Aγ|2dΦ3 . (7.41)

Here dΦ3 is the final state three-body phase space which is given by

dΦ3 =
1

(2π)5
d3p1

2Ep1

d3p2

2Ep2

d3p3

2Ep3

δ4(k1 + k2 − p1 − p2 − p3)

=
dϕ

2π

ds1dt1ds3dt2

256π4(s−m2
A)
√−∆4

. (7.42)

The physical phase space is defined as ∆4 < 0, where the 4× 4 symmetric Gram determinant
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∆4 is given by

∆4 = − 1
16

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 s3 t1 m2
A 1

0 0 0 t2 s1 1

s3 0 0 0 s 1

t1 t2 0 0 m2
A 1

m2
A s1 s m2

A 0 1

1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (7.43)

The absolute squared and spin-summed matrix element can be written as

1
2 ∑

spins, pols
|MD(M)

να A→νβ Aγ|2 = (µα
νNµ

β
νN)

2 e2Z2F 2(q2)

q4

Lγ, D(M)
µν Hµν

(p2
N −m2

N)
2 + m2

NΓ2
N

, (7.44)

where the hadronic tensor Hµν is the same as in in Eq. (7.23), and the leptonic tensors are
given by

Lγ, D
µν = Tr[/p 2σλξ/p Nσµρ/k2σνωPR/p Nσηζ ] gλη pξ

3 pζ
3qρqω , (7.45)

Lγ, M
µν = Tr[/p 2σλξ(/p N + mN)σµρ/k2σνωPR(/p N + mN)σηζ ] gλη pξ

3 pζ
3qρqω , (7.46)

for Dirac and Majorana N, respectively. Integrating over the azimuthal angle ϕ we then obtain
the Lorentz-invariant differential cross section

d4σ
D(M)
να A→νβ Aγ

ds1dt1ds3dt2
= (µα

νNµ
β
νN)

2 αZ2F 2(t1)

128π3

Lγ, D(M)
µν Hµν

t2
1(s−m2

A)
2
[
(s1 −m2

N)
2 + m2

NΓ2
N
]√−∆4

. (7.47)

7.3.3. Connection to experimental observables

Using the result in Eq. (7.47) we now connect the radiative CEνNS process to experimental
observables in order to draw conclusions on the model parameters based on experimental
results. In particular we are interested in the nuclear recoil energy ER as well as the energy
Eγ and outgoing angle θγ of the photon. In order to fully express Eq. (7.47) in terms of these
variables we also need to use the nuclear recoil angle θR. The relation between the observables
and the different Mandelstam variables can be found in Eq. (7.33). From these relations we
see that s3 and t2 are both independent of ER and θR. If we want to first express Eq. (7.47) in
terms of the nuclear energy and angle we can then integrate over s3 and t2 such that

d2σ
D(M)
να A→νβ Aγ

ds1dt1
=
∫ t+2

t−2
dt2

∫ s+3

s−3
ds3

d4σ
D(M)
να A→νβ Aγ

ds1dt1ds3dt2
. (7.48)

Here the integration limits are found by solving ∆4(s3, t2) = 0. Performing the integration for
Dirac N we have

d2σD
να A→νβ Aγ

ds1dt1
= (µα

νNµ
β
νN)

2 αZ2F 2(t1)

16π2
s2

1F(s, s1, t1, m2
A)

t2
1(s−m2

A)
2
[
(s1 −m2

N)
2 + m2

NΓ2
N
] , (7.49)
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and for Majorana N we have

d2σM
να A→νβ Aγ

ds1dt1
= (µα

νNµ
β
νN)

2 αZ2F 2(t1)

16π2
s1(s1 + m2

N)F(s, s1, t1, m2
A)

t2
1(s−m2

A)
2
[
(s1 −m2

N)
2 + m2

NΓ2
N
] . (7.50)

We see that these cross sections are quite similar. They vary by a factor s1/(s1 + m2
N), as can

be seen from the relation

d2σM
να A→νβ Aγ

ds1dt1

/d2σD
να A→νβ Aγ

ds1dt1
= 1 +

m2
N

s1
. (7.51)

The second term in Eq. (7.51) corresponds to the additional channel that is present for
Majorana N. To change variables into ER and θR we now multiply the double differential
cross sections with the Jacobian

J (ER, θR) =

∣∣∣∣ ∂(s1, t1)

∂(ER, θR)

∣∣∣∣ = −4EνmA

√
ER(2mA + ER) sin θR , (7.52)

such that

d2σ
D(M)
να A→νβ Aγ

dERdθR
= J (ER, θR)

d2σ
D(M)
να A→νβ Aγ

ds1dt1
. (7.53)

Single differential cross sections can then be obtained by integrating over either the nuclear
angle or the recoil energy, such that

dσ
D(M)
να A→νβ Aγ

dER
=
∫ θ+R

0
dθR

d2σ
D(M)
να A→νβ Aγ

dERdθR
, (7.54)

dσ
D(M)
να A→νβ Aγ

dθR
=
∫ E+

R

0
dER

d2σ
D(M)
να A→νβ Aγ

dERdθR
, (7.55)

where the integration limits are given by

cos θ+R =
ER(mA + Eν)

Eν

√
ER(2mA + ER)

, (7.56)

E+
R =

2mAE2
ν cos2 θR

mA(mA + 2Eν) + E2
ν(1− cos2 θR)

. (7.57)

In order to express the cross section in terms of the photon angle θγ and energy Eγ, we can
integrate the differential cross section over s1 and t1 instead of s3 and t2. We then have

d2σ
D(M)
να A→νβ Aγ

ds3dt2
=
∫ t+1

t−1
dt1

∫ s+1

s−1
ds1

d4σ
D(M)
να A→νβ Aγ

ds1dt1ds3dt2
, (7.58)

where the integration limits can again be found by solving ∆4(s1, t1) = 0. Both of the integrals
in Eq. (7.58) are non-trivial since there is a s1-dependence in the denominator of the squared
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matrix element, and t1 appears in the form factor F (t1). After integrating we can change
variables in the remaining double differential cross section into the photon angle and energy
by using the Jacobian

J (Eγ, θγ) =

∣∣∣∣ ∂(s3, t2)

∂(Eγ, θγ)

∣∣∣∣ = 4mAEνEγ sin θγ . (7.59)

The single differential cross sections can subsequently be obtained by integrating over the
remaining variable such that

dσ
D(M)
να A→νβ Aγ

dEγ
=
∫ π

0
dθγ

d2σ
D(M)
να A→νβ Aγ

dEγdθγ
, (7.60)

dσ
D(M)
να A→νβ Aγ

dθγ
=
∫ E+

γ

0
dEγ

d2σ
D(M)
να A→νβ Aγ

dEγdθγ
, (7.61)

where the integration limit on the photon energy is given by

E+
γ =

mAEν

mA + Eν(1− cos θγ)
. (7.62)

To solve the integral in Eq. (7.58) we use the Narrow Width Approximation (NWA). This is
implemented by making the replacement

1
(s1 −m2

N)
2 + m2

NΓ2
N
→ π

mNΓN
δ(s1 −m2

N) (7.63)

in the propagator. Now using the relation s1 = m2
N , which is given by the fact that N is

on-shell in the NWA, we can relate the nuclear recoil energy and angle via

cos θR =
m2

N + 2ER(mA + Eν)

2Eν

√
ER(2mA + ER)

. (7.64)

Solving for ER we instead have

E±R =
2mAE2

νc2
R −m2

N(mA + Eν)± EνcR

√
4m2

AE2
νc2

R − 4mAm2
N(mA + Eν) + m4

N

2mA(mA + 2Eν) + 2E2
ν(1− c2

R)
, (7.65)

where cR = cos θR. In the NWA formalism, the distance ℓ0 that N travels in the lab frame
before decaying is given by

l0 =
1

ΓN

√(
EN

mN

)2

− 1 =
1

ΓN

√(
Eν − ER

mN

)2

− 1 ≈ Eν

mN

1
ΓN

. (7.66)

Here Eq. (7.66) is found by applying a boost factor βγ =
√

γ2 − 1 to the time τN = 1
ΓN

in the
rest frame of N, where the assumption is made that N travels at (nearly) the speed of light.
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We also assume that the nuclear recoil energy ER is much smaller than the incoming neutrino
energy Eν. Using Eq. (7.66) we can then find the minimum decay width ΓN that corresponds
to a signal at an experiment of fixed length Ldet between the CEνNS target and the photon
detector.

The radiative upscattering cross section in the NWA is now given by [3]

dσ
D(M)
να A→νβ Aγ

dER

∣∣∣∣
NW

=
dσνα A→NA

dER

ΓD(M)
N→νβγ

ΓN
. (7.67)

From this cross section we can obtain the differential event rate for να A → X where X ∈
{NA, νβ Aγ} at a given experiment as

dRD(M)
να A→X

dER
=

1
A ·mp

∫ Emax
ν

Emin
ν (ER)

dEν
dϕνα

dEν

dσ
D(M)
να A→X

dER
, (7.68)

where

Emin
ν (ER) =

(
ER

2
+

m2
N

4mA

)(
1 +

√
1 +

2mA

ER

)
, (7.69)

is the minimum energy of an incoming neutrino that can induce a recoil with energy ER in
the nucleus, and dϕνα

dEν
is the incoming neutrino flux.

For radiative CEνNS cross sections that are differential in the photon energy Eγ and angle
θγ, there is no analogue to the factorisation strategy used in Eq. (7.67) that works similarly
well. Instead, we can write the double differential cross section as

d2σ
D(M)
να A→νβ Aγ

dEγdθγ

∣∣∣∣
NWA

= |µα
νNµ

β
νN |2

αZ2Eγ sin θγ

128π2mAEνmNΓN

∫ t+1

t−1
dt1

Lγ, D(M)
µν HµνF 2(t1)

t2
1
√−∆4

∣∣∣∣
s1=m2

N

, (7.70)

where t1 = q2 = −2mAER is the momentum exchanged via the photon. Due to the presence
of the nuclear form factor F (t1), Eq. (7.70) cannot be solved analytically.

The differential event rate with respect to Xγ ∈ {Eγ, θγ} can be written as

dRD(M)
να A→νβ Aγ

dXγ
=

1
A ·mp

∫ Emax
ν

Emin
ν (Xγ)

dEν
dϕνα

dEν

dσ
D(M)
να A→νβ Aγ

dXγ
, (7.71)

where A is the number of nucleons, and where the value of the minimum incoming neutrino
energy Emin

ν (Xγ) depends on whether the distribution should be given in terms of Eγ or θγ.
For Eγ we have

Emin
ν (Eγ) = Eγ +

mAm2
N

4mAEγ − 2m2
N

, (7.72)

while for θγ we have

Emin
ν (θγ) =

mN(2mA −mN)

2(mA −mN)
. (7.73)

179



7. LNV in radiative CEνNS

These relations come from conservation of energy and momentum. Eq. (7.72) describes the
minimum neutrino energy that can lead to the production of a photon with energy Eγ, and
Eq. (7.73) describes the required neutrino energy that leads to an on-shell N. The latter
relation follows from using Eγ = mN/2 in the first, as this is the energy that the photon
acquires from the decay of an on-shell N in its rest frame, assuming we have used the massless
active neutrino approximation.

Apart from considerations of the event rate distribution, a difference between Dirac and
Majorana N can potentially be seen in the polarisation of the final state photon [3]. For Dirac
N (N̄), the decay N → νβγ (N̄ → ν̄βγ) leads to a left-polarised γ− (right-polarised γ+) photon
in the final state. The other polarisation does not appear since such a process would violate
conservation of angular momentum. A Majorana N can decay equally into a neutrino plus γ+

or γ−, where the distribution of events with γ± in the final state in terms of the photon angle
θγ has the proportionality relation3 dRN→νβγ±/dθγ ∝ (1∓ cos θγ). The total distribution for
Majorana N is therefore isotropic in the rest frame of N while the same does not hold for
Dirac N (N̄), where small (large) angles θγ are preferred.

7.4. Experimental sensitivity to radiative CEνNS

In this section, we evaluate the potential experimental sensitivity to radiative CEνNS
processes. Special focus is put on the future NUCLEUS experiment [548, 549] located 100 m
from the Chooz nuclear reactor at a place called the Very Near Site (VNS), where it will
receive an antineutrino flux ϕν̄e ∼ 1012 ν̄e cm−2 s−1. This experiment is designed to detect
nuclear recoil energies as low as O(10) eV, making it an ideal environment to search for
radiative CEνNS processes, where a large part of the incoming neutrino energy goes to the
final state photon and neutrino rather than the nuclear recoil. In Phase I of the experiment a
10 g Al2O3/CaWO4 target of diameter Ldet ∼ 5 cm will be used. In the Phase II upgrade this
will potentially be exchanged for a 1 kg 73Ge target of diameter Ldet ∼ 25 cm. A cryogenic
outer veto that is used for background rejection in the NUCLEUS experiment could be
sensitive to outgoing photons in radiative CEνNS events. These photons could potentially
be detected in the energy range 1 keV to 10 MeV, where the high-energy end of this range
could feature a resolution of 50− 100 keV [564]. It may be possible that the coincident signal
of a nuclear recoil and a high-energy outgoing photon could lead to excellent background
rejection in radiative CEνNS experiments. Therefore, when we consider radiative CEνNS
events at NUCLEUS in this section, secondary background processes are neglected.

In Fig. 7.4 (left) the rate of both Primakoff upscattering events with mN = 1 MeV and
µe

νN = 10−10 µB, as well as ordinary CEνNS events, are shown for the NUCLEUS experiment,
where the rates are calculated using the formalism from Sec. 7.3.3. Three different nuclear
targets types are used: 73Ge, Al2O3, and CaWO4. The predicted nuclear recoil background
is indicated by a horizontal black dotted line, and the region in which the nuclear recoil
energy ER ≳ O(10) eV is large enough to be detected by the NUCLEUS experiment is
indicated in grey. In Fig. (7.4) (right), the event rate for the radiative CEνNS process is shown

3Note that this relation also holds for Dirac N (N̄).
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Figure 7.4.: Left: Differential event rates for Primakoff upscattering using three different
target materials 73Ge (grey), Al2O3 (blue) and CaWO4 (orange) at the NUCLEUS
experiment, with respect to the nuclear recoil energy ER, where the values mN =

1 MeV and µe
νN = 10−10 µB have been used. The SM CEνNS rates are shown in

dotted lines. Right: Differential event rates in terms of ER for the radiative CEνNS
process, using mN = 1 MeV and µe

νN = 3× 10−8 µB, for both Dirac (solid lines)
and Majorana (dashed) sterile neutrinos. This figure is taken from Ref. [3].

for the NUCLEUS experiment using the same three target materials for mN = 1 MeV and
µe

νN = 3× 10−8 µB, where the outgoing neutrino is assumed to be electron flavoured, for both
Dirac (solid) and Majorana (dashed) N.

In Fig. 7.5 the double differential cross section for the radiative CEνNS interaction using a
73Ge target, assuming F (t1) = 1 for simplicity, is shown in terms of Eγ and θγ for Dirac (left)
and Majorana (right) N using benchmark values Eν = 3 MeV, mN = 1 MeV, µα

νN = 3× 10−8 µB,
and ΓN = 10−11 MeV. The difference in the differential cross section between Dirac and
Majorana N is clearly visible in the respective bottom-right corners of the two figures, where
it can be seen that a significant rate of high-Eγ low-θγ events should be expected in a radiative
CEνNS experiment if N is Majorana, but very few such events would be there for Dirac N.

In Fig. 7.6 the differential event rates for the radiative CEνNS process, obtained from
Eq. (7.71), are shown for Dirac (solid lines) and Majorana (dashed lines) N, for the three
different target materials 73Ge, Al2O3, and CaWO4 at the NUCLEUS experiment. A difference
between Dirac and Majorana N can be seen in the distribution of events in terms of both Eγ

and θγ. In Fig. 7.6 (left), we see that the distribution of events in terms of Eγ is symmetric
around the peak at Eγ = mN/2 for Majorana N, while for Dirac N smaller values of Eγ are
preferred. Since we consider active neutrinos to be massless as well as using the NWA, the
relation Eγ = mN/2 holds in the rest frame of N. The distribution in Fig. 7.6 (left) appears
when boosting to the lab frame. In Fig. 7.6 (right) the radiative CEνNS event distribution is
shown in terms of the photon angle θγ. Here it can be seen that smaller angles are preferred
for Majorana N relative to Dirac N.

Using the neutrino flux from the Chooz reactor, radiative CEνNS events have the largest
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CaWO4 (orange) and for Dirac (solid) and Majorana (dashed) sterile neutrinos,
assuming a sterile neutrino mass mN = 1 MeV and transition magnetic moment
µe

νN = 3× 10−8 µB. This figure is taken from Ref. [3].

cross section for sterile neutrino masses in the range mN ∼ 1− 5 MeV. For a given value of
mN , the radiative CEνNS cross section increases for higher incoming neutrino energies.
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Figure 7.7.: Left: Flux of antineutrinos from the Chooz nuclear reactor at the VNS. Right:
Fraction of neutrinos that arrive at the VNS from Chooz that are in the electron
flavour, as a function of the neutrino energy, where i ∈ {e, µ, τ}.

In Fig. 7.7 (left) we see the flux of neutrinos at the VNS as a function of energy. Since
the flux decreases for increasing Eν, the total event rate will also fall off even though the
cross section increases. In Fig. 7.7 (right) the fraction of the flux at the VNS that consists of
electron flavoured antineutrinos is shown. This fraction deviates from unity due to neutrino
oscillations, where the oscillation rate is calculated using the formalism in Sec. 2.3.1. Since
this fraction is very high for most values of Eν, we use the approximation that the entire flux
consists of antineutrinos in the electron flavour.

In order to determine the experimental reach of the NUCLEUS experiment in probing
the neutrino transition magnetic dipole moment parameter space, we need to consider both
Primakoff upscattering as well as radiative CEνNS processes. Assuming that Nobs events are
seen during the runtime T, the chi-squared can be constructed as

χ2 = (Nobs − Nexp)
2/Nexp . (7.74)

Here Nexp = Nbkg + NνA + NNA is the total number of expected events, where Nbkg is
the expected number of background events, NνA is the expected number of SM CEνNS
events, and NNA the expected number of Primakoff upscattering events for a given set of
parameters. The rate of background events is estimated by the NUCLEUS collaboration to
be dRbkg/dER = 100 day−1 keV−1 kg−1 [549], where the unit kg−1 refers to the mass of the
detector. Assuming that there is no excess of events for a runtime T, i.e. that the observed
number of events Nexp = Nbkg + NνA has no departure from that expected in the SM, we have
χ2 = N2

NA/Nexp. Neglecting systematic errors for simplicity, we then obtain 90% CL bounds
on µe

nuN for a given mN by solving χ2 < 2.71.
For radiative CEνNS the coincident photon plus nuclear recoil signal could lead to efficient

background reduction. As a first approximation we therefore assume that background
processes are negligible and take the expected number of events to be equal to the theoretical
value Nγ

exp = NνAγ, where NνAγ can be found using the formalism in Sec. 7.3.3. If no radiative
CEνNS events are observed at NUCLEUS, the 90% CL bounds on µe

νN may be found by
solving χ2 < 2.30.
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7. LNV in radiative CEνNS

Figure 7.8.: Number of radiative decays that occur inside the detector with respect to ∆ΓN ≡
ΓN − ΓN→νγ, normalised to the total number of decays, using mN = 1 MeV,
l0 = 5 cm, Eν = 3 MeV, µνN = 10−7 µB.

In order for the experimental set up to be able to capture the final state photon, the radiative
decay of N must occur inside the detector, otherwise the signal mimics that of a Primakoff
upscattering. To capture this effect we multiply the radiative CEνNS cross section with the
probability factor

Pdet
N = 1− exp(−LdetΓN/βγ) , (7.75)

which describes the probability that N decays inside the detector. Fixing the decay width ΓN

to a specific value, e.g ΓN ∼ 10−11 MeV, does not lead to any limitations on the applicability
of the calculations to different values of µe

νN or mN . To see the effect of a changing value
of ΓN we consider the number of radiative decay events occurring inside the detector nrad,
normalised to the total number of decays, which is given by

nrad (∆ΓN)

nrad (∆ΓN = 0)
=

ΓN→νγ

ΓN

1− exp
(
− LdetΓN

βγ

)
1− exp

(
− LdetΓN→νγ

βγ

) . (7.76)

Here ∆ΓN ≡ ΓN − ΓN→νγ is the difference in decay width between the sum of all decay modes
and the radiative one. In Fig. 7.8 the fraction of radiative decay events that occur within
the detector is shown as a function of ∆ΓN . For smaller differences ∆ΓN , the probability
Pdet

N that a decay should occur inside the detector is decreased, even though the branching
ratio for N → νγ is greater. For larger differences ∆ΓN , the probability Pdet

N increases
while the branching ratio of N → νγ decreases, ending up in a reduction in the number
of radiative CEνNS events. This demonstrates that by choosing e.g. ΓN ∼ 10−11 MeV, there
is no commitment to one specific scenario. As shown in Fig. 7.8, a decay width difference
∆ΓN ≈ ΓN ∼ 10−11 MeV corresponds to the case where ∼ 60% of the N decays that occur
inside the detector proceed via the radiative mode. A smaller difference ∆ΓN would lead to
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Figure 7.9.: Constraints and future sensitivities in the plane of the electron-flavoured tran-
sition dipole coupling µe

νN and sterile neutrino mass mN , based on terrestrial
experiments [3,550–552,555,565–570] and astrophysical observations [551,555,565].
Filled regions correspond to existing constraints, and unfilled regions to future
projections. Solid red and black lines show the near- and far-future projected
sensitivities of the NUCLEUS experiment for Majorana N, respectively, using the
radiative CEνNS channel, where the dotted lines include additional invisible decay
channels for N with a width Γinv = βγ/Ldet (c.f. Appendix C). Dot-dashed red
and black lines show these projected sensitivities assuming an additional decay
channel into a light sterile neutrino, N → N′γ, via a coupling µN′N = 10−6 µB.
Dashed red and black lines correspond to constraints from Primakoff upscattering
processes at the NUCLEUS experiment. All future projections associated with
the NUCLEUS experiment are shown assuming a run time of 2 years, and all
projections are given at 90% CL unless otherwise is shown. This figure is taken
from Ref. [3].

185



7. LNV in radiative CEνNS

an increased number of signal events, and therefore also to a more stringent constraint on
µνN .

In Fig. 7.9 the current and future constraints on the electron flavoured neutrino transition
magnetic dipole moment coupling µe

νN is shown as a function of the sterile neutrino mass
mN . Here many different terrestrial and astrophysical observations are considered. The limits
from Primakoff upscattering processes at NUCLEUS are shown as blue and grey dashed lines
for Phase I and II, respectively. The solid blue and grey lines correspond to the potential
future NUCLEUS limits on the radiative CEνNS process for Phase I and II, respectively.
Finally, the dot-dashed blue and grey lines correspond to the radiative upscattering process
at NUCLEUS where an additional radiative decay channel N → N′γ is assumed, with the
coupling µN′N = 10−6 µB (c.f. Sec. 7.1). A run time of two years is assumed for all limits
derived from the NUCLEUS experiment.

In the radiative CEνNS mode, an experimental signal would consist of a coincident nuclear
recoil and outgoing photon. We have described a novel approach to search for such events,
which led to the publication in Ref. [3], where the final state photons are searched for in
a detector that is separated from the CEνNS target. Searching for Primakoff upscattering
events, the NUCLEUS experiment would improve on existing limits and probe an area of
parameter space for sterile neutrino masses mN ≲ 10 MeV that is either unconstrained or only
constrained by astrophysical observables. If Primakoff upscattering is observed at Phase I of
NUCLEUS, it would motivate the search for radiative CEνNS events in Phase II. Even without
such an observation, the experimental reach in the search for radiative CEνNS events could
be extended further if additional (light) sterile states, e.g. N′, are considered, such that the
radiative CEνNS cross section is proportional to |µe

νN ∑X µXN |2, where X ∈ {ν, N′, . . . }.
An advantage of using a reactor source is that the flux consists of only antineutrinos,

such that the total lepton number of the initial state particles is known. LNV could then be
deduced if the final state has a different total lepton number. If radiative CEνNS is observed
with a significant number of events, the Dirac/Majorana nature of sterile neutrinos could
be deduced based on the final state photon distribution, potentially providing an answer to
whether or not B− L is a conserved charge in nature. This would have implications for the
origin of neutrino masses as well as the generation of the baryon asymmetry of the Universe.

Conclusion to Chapter 7

The nature of neutrino masses remains one of the big open questions in particle physics.
Since neutrinos are massive, there must be some NP that generates the mass, and this NP
could also lead to other neutrino properties such as transition magnetic dipole moments.
In this chapter we have seen how CEνNS experiments can be used to search for transition
magnetic moments via upscattering from a light active neutrino into a heavy sterile neutrino.
We have also seen that, if the heavy neutrinos decay on detector lengthscales, an observation
of the final state photon distribution potentially also lead to a distinction between Dirac and
Majorana neutrinos. These results were published in Ref. [3].

In two examples, that of radiative CEνNS in this chapter, and rare kaon decays in Ch. 6, we
have seen how the kinematics of final state particles that participate in interactions involving
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neutrinos can vary depending on whether or not the process was LNV. Therefore, in case an
excess is seen in either CEνNS or rare kaon decays, a dedicated experimental search program
to determine the distribution of final state particles would be beneficial in the search for LNV.
If the distribution is determined to a reasonably high accuracy, it is possible that LNV could
be discovered.

In Chs. 4 to 7 we have discussed different aspects of ∆L = 2 interactions, including neutrino
mass generation and leptogenesis. Since B + L is violated in the SM via sphaleron transitions,
LNV inevitably leads to baryon number violation (BNV) in the early Universe, and vice versa.
In Ch. 8, we discuss ∆B = 2 interactions, and connect them to baryogenesis both in an EFT
description and in a simplified model. The results of Ch. 8 were published in Ref. [2].
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In Chs. 4 to 7 we discussed different theoretical and phenomenological aspects of ∆L = 2
processes, most prominently Majorana neutrino masses and the generation of a baryon
asymmetry via sphaleron transitions. However, both of these phenomena can also be realised
via baryon number violation (BNV). For successful baryogenesis it is enough to violate
conservation of baryon number B, an asymmetry can be generated without any ∆L = 2
interactions. Furthermore, in the presence of both ∆B = −∆L = 1 and ∆B = 2 processes, a
∆L = 2 process associated with a neutrino Majorana mass can be generated indirectly via the
∆B = −∆L = 3 sphaleron [571], as can be shown in the naïve arithmetic[

∆B = −∆L = 1
]
+
[
∆B = 2, ∆L = 0

]
−
[
∆B = −∆L = 3

]
=
[
∆B = 0, ∆L = 2

]
. (8.1)

However, in making this argument we have so far ignored the fact that sphalerons necessarily
involve all different fermion flavours, while the flavour content of the ∆B = −∆L = 1 and
∆B = 2 processes are undetermined. Furthermore, there may be any number of additional
BSM effects that need to be taken into account between the neutrino mass scale and the scale
at which the different ∆B = 2 and ∆B = −∆L = 1 processes in Eq. (8.1) are generated. It is
nevertheless interesting to note the intricate connection between BNV and LNV processes.

Due to the presence of sphaleron transitions we know that B and L are both violated
individually in the early Universe, while their difference B − L is conserved. Whether a
certain mechanism is ∆B = 2 or ∆L = 2 is therefore of little importance with respect to the
generation of a baryon asymmetry in the temperature range where sphalerons are active.

Processes that violate both baryon- and lepton number, e.g. dimension-6 ∆B = −∆L =

1 operators, can lead to proton decay modes such as p → e+π0. Experimental results
lead to very stringent constraints on the operator scales, in some instances as high as
O(1016) GeV [572]. These limits are not transferable to dimension-9 ∆B = 2 operators1, which
are less constrained as they do not directly lead to proton decay [573]. Unlike ∆B = −∆L = 1
operators, the ∆B = 2 operators violate B− L, similar to the ∆L = 2 operators. This means
that ∆B = 2 operators can affect the evolution of the total baryon number if they are present
in the early Universe, while the effects of ∆B = −∆L = 1 operators would be negated by the
sphalerons.

Observables that constrain ∆B = 2 operators include n-n̄ oscillations and dinucleon decay
e.g. via the mode nn→ π0π0. The main focus of this section is on the former mode, but we
also revisit the latter for a comparison. Recent progress in lattice-QCD calculations have led

1Note that the lowest dimension at which a ∆B = 2 SM invariant operator can be generated is dimension-9. This
is because the only SM fields that carry baryon number are the quarks, which have B = 1/3. To make an
operator violate B by two units, at least six quarks are needed, leading to dimension-9.
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to an improvement in the accuracy of QCD matrix elements related to n-n̄ oscillations [574],
which allows for a greater theoretical accuracy in connecting different BSM scenarios that
realise n-n̄ operators to experiments. On the observational side, several upcoming experiments
will put increasingly stringent constraints on the n-n̄ oscillation time. Experimental searches
can be divided into two categories: bound n-n̄ oscillation, where neutrons reside within nuclei,
and free n-n̄ oscillation, where the neutrons are unbounded. Currently, the most stringent
limit comes from bound n-n̄ oscillations, for which the Super-Kamiokande experiment [575]
provides a constraint τSK

n-n̄ ≥ 4.7× 108 s. For free oscillations the most stringent constraint
comes from the ILL experiment [576] τILL

n-n̄ ≥ 0.86× 108 s. For both bound and free oscillations
the sensitivity is expected to be increased in the next generation of experiments. The
bound oscillation limit is predicted to reach a sensitivity of τDUNE

n-n̄ ≥ 7× 108 s at the DUNE
experiment [577], and for free oscillations the NNBAR experiment [578] is expected to reach a
sensitivity of τNNBAR

n-n̄ ≥ 3× 109 s.
In this chapter we explore the connection between n-n̄ oscillation and baryogenesis, as well

as compare phenomenological realisations of n-n̄ oscillation to other low-scale observables
and collider searches. The work presented here led to the publication in Ref. [2]. We start with
an EFT description in Secs. 8.1 and 8.2, and follow up with a UV-completion with connections
to baryogenesis in Sec. 8.3. We discuss this UV-completion in terms of grand unification in
Sec. 8.4, and in Sec. 8.5 we connect it to different experimental probes. Lastly, in Sec. 8.6 we
explore the parameter space and identify regions that lead to successful baryogenesis.

8.1. Neutron-antineutron oscillation in effective field theory

Since n-n̄ oscillation violates baryon number, if it does occur it must be induced by some
NP beyond the SM. Such BSM physics can be model-independently described using an EFT,
where the effects of heavy NP degrees of freedom are encoded in dimension-9 operators.
Running down from a high scale to the scale relevant for n-n̄ oscillation, the Wilson coefficients
can be matched onto hadronic matrix elements obtained from lattice computations.

8.1.1. Operator basis

At the QCD scale, the 9-dimensional operators relevant for n-n̄ oscillation consist of six quark
fields that are described by the broken SM Lagrangian obeying a SU(3)c ×U(1)em symmetry.
A complete basis2 of these operators can be constructed as [579–583]:

O1
χ1χ2χ3

= (uT
i CPχ1 uj)(dT

k CPχ2 dl)(dT
mCPχ3 dn)TSSS

{ij}{kl}{mn} ,

O2
χ1χ2χ3

= (uT
i CPχ1 dj)(uT

k CPχ2 dl)(dT
mCPχ3 dn)TSSS

{ij}{kl}{mn} ,

O3
χ1χ2χ3

= (uT
i CPχ1 dj)(uT

k CPχ2 dl)(dT
mCPχ3 dn)TAAS

[ij][kl]{mn} ,

(8.2)

2Note that all operators in Eq. (8.2) are written with scalar currents. Performing Fierz transformations on a pair
of spinor contractions yields also operators with vector or tensor currents.
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where χ = {L, R} denotes chirality, PL,R = 1
2 (1∓ γ5) are projection operators, and C is the

charge conjugation operator. The colour tensors T are defined as

TSSS
{ij}{kl}{mn} = ε ikmε jln + ε jkmε iln + ε ilmε jkn + ε jlmε ikn ,

TAAS
[ij][kl]{mn} = ε ijmεkln + ε ijnεklm ,

(8.3)

where [ ] denotes index antisymmetrisation and { } symmetrisation. Each operator in
Eq. (8.2) leads to eight operators when the different chirality combinations are considered,
yielding 24 operators in total. However, using the antisymmetrisation relations

O1
χ1LR = O1

χ1RL , O2,3
LRχ3

= O2,3
RLχ3

, (8.4)

along with the identity
O2

χχχ′ −O1
χχχ′ = 3O3

χχχ′ , (8.5)

where χ, χ′ ∈ [L, R], leads to only 14 operators remaining. To match with the most recent
lattice-QCD calculations, it is convenient to express these operators in a basis that preserves
the chiral symmetry SU(2)L × SU(2)R [584]. A Lagrangian describing n-n̄ oscillation may
then be expressed as

Ln̄-n
eff = ∑

i=1,2,3,5

[
Ci(µ)Oi(µ) + CP

i (µ)OP
i (µ)

]
+ h.c. , (8.6)

where Ci are the Wilson coefficients corresponding to operators Oi, and a superscript P
denotes parity conjugation. In terms of the basis from Eq. (8.2), the operators in Eq. (8.6) can
be expressed as [574]

O1 = −4O3
RRR = (ψCPRiτ2ψ)(ψCPRiτ2ψ)(ψCPRiτ2τ+ψ)TAAS ,

O2 = −4O3
LRR = (ψCPLiτ2ψ)(ψCPRiτ2ψ)(ψCPRiτ2τ+ψ)TAAS ,

O3 = −4O3
LLR = (ψCPLiτ2ψ)(ψCPLiτ2ψ)(ψCPRiτ2τ+ψ)TAAS ,

O4 = −4
5
O1

RRR −
16
5
O2

RRR

=

[
(ψCPRiτ2τ3ψ)(ψCPRiτ2τ3ψ)− 1

5
(ψCPRiτ2τaψ)(ψCPRiτ2τaψ)

]
(ψCPRiτ2τ+ψ)TSSS ,

O5 = O1
RLL = (ψCPRiτ2τ−ψ)(ψCPLiτ2τ+ψ)(ψCPLiτ2τ+ψ)TSSS ,

O6 = −4O2
RLL = (ψCPRiτ2τ3ψ)(ψCPLiτ2τ3ψ)(ψCPLiτ2τ+ψ)TSSS ,

O7 = −4
3
O1

LLR −
8
3
O2

LLR

=

[
(ψCPLiτ2τ3ψ)(ψCPLiτ2τ3ψ)− 1

3
(ψCPLiτ2τaψ)(ψCPLiτ2τaψ)

]
(ψCPRiτ2τ+ψ)TSSS ,

(8.7)
where ψ = (u, d)T is an isospin doublet and τa are the Pauli matrices, with τ± = 1

2 (τ
1 ± iτ2).

Note that we have here suppressed colour indices for brevity. Together with their respective
parity transformations, the seven operators in Eq. (8.7) lead to the total 14 operators that
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remain after imposing the relations in Eqs. (8.4) and (8.5). In addition to the operators in
Eq. (8.7), some NP models also generate the operators [584]

Õ1 = −4/3(O2
RRR −O1

RRR) = (ψCPRiτ2τaψ)(ψCPRiτ2τaψ)(ψCPRiτ2τ+ψ)TSSS ,

Õ3 = −4/3(O2
LLR −O1

LLR) = (ψCPLiτ2τaψ)(ψCPLiτ2τaψ)(ψCPRiτ2τ+ψ)TSSS .
(8.8)

These operators are not independent from the basis in Eq. (8.7). In fact, in D = 4 spacetime
dimensions Õ1 and Õ3 are equal to O1 and O3, respectively. However, for arbitrary D, the
operators in Eq. (8.8) could be needed for a full description of the n-n̄ oscillation process.

In case isospin symmetry is imposed, the operators in Eq. (8.7) form an overcomplete basis,
and the number of operators can be further reduced. The matrix element corresponding to
O4 vanishes completely,

⟨n̄|O4|n⟩ = 0 , (8.9)

while those of O5, O6, and O7 are related via

⟨n̄|O5|n⟩ = ⟨n̄|O6|n⟩ = −
3
2
⟨n̄|O7|n⟩ . (8.10)

The n-n̄ oscillation time τn-n̄ can be described by

τ−1
n-n̄ = ⟨n̄|Ln̄-n

eff |n⟩ =
∣∣ ∑

i=1,2,3,5
(Ci(µ)Mi(µ) + CP

i (µ)MP
i (µ))

∣∣ , (8.11)

where Mi(µ) ≡ ⟨n̄|Oi|n⟩ is the n → n̄ transition matrix element corresponding to Oi, and
µ is the scale at which the matrix elements are defined. We take the matrix elements of
operators Õ1 and Õ3 to be equal to those of O1 and O3, respectively.

8.1.2. RG running effects

Numerical values corresponding to the matrix elementsMi(µ) from Eq. (8.11) are available
in the MS scheme at µ = 2 GeV from lattice-QCD calculations [574]. We are interested in
scales much higher than 2 GeV, and therefore it is appropriate to consider running effects. An
operator defined at µ = µ0 can run up to a higher scale µNP via the relation [584]

Oi(µNP) = U′i (µNP, µ0)Oi(µ0) ≡ U
N f =6
i (µNP, mt)U

N f =5
i (mt, mb)U

N f =4
i (mb, µ0)Oi(µ0) ,

(8.12)
where we have assumed the inequalities mc < µ0 < mb and µNP > mt to hold. Up to O(α2

s ),
the running factors U

N f
i (q1, q2) are given by

U
N f
i (q1, q2) =

(
αS(q2)

αS(q1)

)−γ0
i /8πβ0

[
1− δq2,µ0r(0)i

αS(µ0)

4π
+

(
β1γ

(0)
i 4π

2β2
0
− γ

(1)
i

2β0

)
αS(q2)− αS(q1)

16π2

]
,

(8.13)
where q1 and q2 are two energy scales obeying q1 > q2, and N f is the number of quark
generations with masses greater than q2. The one- and two-loop MS anomalous dimensions
γ
(0)
i and γ

(1)
i , as well as the one-loop Landau gauge Regularisation-Independent-Momentum

191



8. Beyond LNV: the case of ∆B = 2

O γ
(0)
i γ

(1)
i r(0)i M(2 GeV) [GeV6]

O1 4 335/3− 34N f /9 101/30 + 8/15 ln 2 −46(13)(2)× 10−5

O2 −4 91/3− 26N f /9 −31/6 + 88/15 ln 2 95(15)(7)× 10−5

O3 0 64− 10N f /3 −9/10 + 16/5 ln 2 −50(10)(6)× 10−5

O5 24 238− 14N f 49/10− 24/5 ln 2 −1.06(45)(15)× 10−5

Õ1 4 797/3− 118N f /9 −109/30 + 8/15 ln 2 -

Õ3 0 218− 38N f /3 −79/10 + 16/5 ln 2 -

Table 8.1.: Running factors γ
(0)
i and γ

(1)
i for one- and two-loop diagrams, respectively, as well

as the one-loop matching factor r(0)i , corresponding to operatorsOi for i ∈ {1, 2, 3, 5}
and Õi for i ∈ {1, 3} [574, 584].

matching factor r(0)i , are all given in Table 8.1. At four-loop order, the scale-dependent strong
coupling constant αS(q) is given by [585]

αS(q) =
1

β0L
− 1

β3
0L2

β1 ln L +
1

β3
0L3

[
β2

1

β2
0
(ln2 L− ln L− 1) +

β2

β0

]
+

1
β4

0L4

[
β3

1

β3
0

(
− ln3 L +

5
2

ln2 L + 2 ln L− 1
2

)
− 3

β1β2

β2
0

ln L− β3

2β0

]
,

(8.14)

where

L ≡ ln

(
q2e1/(β0αS(qα))

q2
α

)
, (8.15)

and where qα corresponds to a scale at which the value of αS is known. The β-functions in
Tab. 8.1 and Eq. (8.14) are given by

β0 =
33− 2N f

12π
,

β1 =
153− 19N f

24π2 ,

β2 =
77139− 15099N f + 325N2

f

3456π3 ,

β3 ≈
29243− 6946.3N f + 405.089N2

f + 1.49931N3
f

256π4 .

(8.16)

In Fig. 8.1 the running of the matrix elements relevant for n-n̄ oscillation is shown between the
low O(1 GeV) and high O(1015 GeV) scales. The n-n̄ oscillation time can now be expressed
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Figure 8.1.: Running of n-n̄ matrix elements with regards to the scale µNP. Filled areas
represent the errors, c.f. Tab. 8.1, and the dashed lines show the central values.

as

τ−1
n-n̄ = 1.52× 1018

∣∣∣∣∣ ∑
i=1,2,3,5

Mi(µ)

(GeV)6

[(
Ci(µ)

(TeV)−5

)
−
(

CP
i (µ)

(TeV)−5

)]∣∣∣∣∣
µ=µNP

× 10−9 s−1 (8.17)

= 1.52× 1018

∣∣∣∣∣ ∑
i=1,2,3,5

U′i (µ, 2 GeV)
Mi(2 GeV)

(GeV)6

[(
Ci(µ)

(TeV)−5

)
−
(

CP
i (µ)

(TeV)−5

)]∣∣∣∣∣
µ=µNP

× 10−9 s−1 ,

where the matrix elements at 2 GeV are given in Tab. 8.1. The Wilson coefficients can be
computed at the high scale by integrating out the relevant heavy degrees of freedom. As a
demonstrative example, we now consider O1 to generate n-n̄ oscillations, and for simplicity
write the Wilson coefficient as C1(µ = Λ1) = Λ−5

1 , where Λ1 is the scale of NP. Using the
most stringent limits from the Super-Kamiokande experiment τSK

n-n̄ ≥ 4.7× 108 s leads to a
limit on the scale of NP given by Λ1 ≥ 7.04× 105 GeV [2].

8.2. Model-independent n-n̄ oscillation and the baryon asymmetry

In this section we study the effects of a potential n-n̄ oscillation signal on baryogenesis. First
we develop a model-independent washout description based on the EFT formalism from
Sec. 8.1, after which, in the following section, a thorough analysis of one class of simplified
models is made.

A Boltzmann equation describing the time evolution of the number density of a particle X
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has the generic form (see e.g. Refs. [224, 586, 587] as well as Ch. 3 and Appendix E)

zHnγ
dηX

dz
= − ∑

a,i,j,···
[Xa · · · ↔ ij · · · ] , (8.18)

where z is a time-variable that is related to the temperature T and X-mass mX via z ≡ mX/T.
The square brackets denote a function of number densities and scattering rates given by

[Xa · · · ↔ ij · · · ] = nXna · · ·
neq

X neq
a · · ·

γeq(Xa · · · → ij · · · )− ninj · · ·
neq

i neq
j · · ·

γeq (ij · · · → Xa · · · ) , (8.19)

where γeq is the equilibrium scattering rate density and n(eq)
α is the (equilibrium) number

density of particle α. In the LHS of Eq. (8.18), the Hubble rate H is given by

H(T) =
1.66
√

g∗
mPl

T2 , (8.20)

with g∗ ∼ 107 being the effective number of degrees of freedom in the SM and mPl the Planck
mass. The photon density is given by

neq
γ = 2

ζ(3)
π2 T3 , (8.21)

where ζ(3) ≈ 1.20. To describe the evolution of baryon number density over time we can
make the replacement X → ∆B, where the baryon number density η∆B is given by [2]

η∆B = ∑
u,d

1
3
[(ηuL − ηūL) + (ηdL − ηd̄L

) + (ηūc − ηuc) + (ηd̄c − ηdc)] . (8.22)

Here the sum u, d goes over the quarks that are in thermal equilibrium, and the fields uL, dL,
uc, and dc are the SM quarks as defined in Sec. 2.1. For quarks in thermal equilibrium, the
number densities of particles and antiparticles are related via

nq − nq̄ =
gqµqT2

6
, (8.23)

where gq = 3 is the number of degrees of freedom and µq is the chemical potential of quark
q. If the sphaleron and SM Yukawa interactions are in chemical equilibrium, the chemical
potentials of the Higgs doublet and SM fermions can be related to that of uL via [588] (c.f.
Appendix D),

µH =
4
21

µ = −12
7

µuL , µūc =
5
63

µ = −5
7

µuL , µd̄c = −19
63

µ =
19
7

µuL , (8.24)

where µ ≡ ∑e,µ,τ µeL . Assuming these equilibrium relations to hold, we then rewrite Eq. (8.22)
as

η∆B = ∑
u,d

gqT2

6nγ
(µuL + µdL + µūc + µd̄c) =

π2

ζ(3)
µuL

T
. (8.25)
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Choosing O1 from Eq. (8.7) as an example, we now study the washout effects coming from
a n-n̄ oscillation operator. The Boltzmann equation for η∆B can be obtained by taking the
derivative of Eq. (8.22), such that

zHnγ
dη∆B

d z
=

1
3

zHnγ

[
d (ηd̄c − ηdc)

d z
+

d (ηūc − ηuc)

d z
+

d (ηuL − ηūL)

d z
+

d (ηdL − ηd̄L
)

d z

]
. (8.26)

Given the presence of O1, the baryon-number-violating interactions of quarks leads to
expressions describing the time evolution of the different quark number densities. Taking e.g.
dc we have [2]

zHnγ
d ηd̄c

d z
= −

[
ūcd̄cd̄c ↔ ucdcdc]+ (other possible permutations)

= −
(

nūc n2
d̄c

neq
ūc (n

eq
d̄c )2
− nuc n2

dc

neq
uc (n

eq
dc )2

)
γeq(ūcd̄cd̄c → ucdcdc) + · · ·

= −66 µuL

7 T
γeq(ūcd̄cd̄c → ucdcdc) + · · ·

= −66 ζ(3)
7π2 η∆Bγeq(ūcd̄cd̄c → ucdcdc) + · · · , (8.27)

where we assume three fermion generations. The dots in Eq. (8.27) denote other possible
3↔ 3 and 2↔ 4 processes that can be formed by permutations of the initial and final states,
all of which are still generated by O1.

Similar equations as Eq. (8.27) can be written down for d̄c, uc, and ūc. For the left handed
quarks however, the time evolution of the difference between particle and antiparticle may be
assumed to be negligible, since O1 only interacts directly with the right-handed fields. We
then write d

dz (ηuL − ηūL) ≃ 0 and d
dz (ηdL − ηd̄L

) ≃ 0, such that the total time evolution of η∆B
can be written as

zHnγ
d η∆B

d z
= −4

3
[
ūcd̄cd̄c ↔ ucdcdc]+ · · ·

= −88 ζ(3)
7π2 η∆Bγeq(ūcd̄cd̄c → ucdcdc) + · · · . (8.28)

Following Refs. [394, 476], we describe the washout of baryon asymmetry coming from the
operator O1 by the relation

zHnγ
d η∆B

d z
= −5

3
2200ζ(3) T14

7π11Λ10 η∆B ≡ −c
T14

Λ10 η∆B , (8.29)

where we have neglected 2 ↔ 4 scatterings due to severe phase space suppression. From
Eq. (8.29) we can infer the reaction rate

ΓO1
W =

c
nγ

T14

Λ10 , (8.30)

such that the interaction can be regarded as being in equilibrium if the condition

ΓO1
W
H
≡ c

nγH
T14

Λ10 = c′
ΛPl

Λ

(
T
Λ

)9

≳ 1 (8.31)

195



8. Beyond LNV: the case of ∆B = 2

103 104 105 106 107
10-20

10-10

1

1010

1020

103 104 105 106 107

102

103

104

105

106

Super-K
DUNE
NNBAR

Figure 8.2.: Left: Ratio between the interaction width ΓW corresponding to operator O1 and
the Hubble rate H with respect to temperature T. Shaded areas indicate where this
interaction is strong due to the ratio being greater than one. Right: Temperature
as a function of the EFT scale Λ, where the purple line shows the temperature at
which the ratio ΓW/H falls below one, and the green line shows the temperature T̂
from Eq. (8.33). Blue and orange shaded areas correspond to the regions excluded
by the LHC and different n-n̄ experiments, respectively. This figure is taken from
Ref. [2].

is satisfied, where c′ = π2c/(ζ(3) 3.3
√

g∗) ≈ 0.3 c. The temperature T that solves Eq. (8.31),

T = Λ
(

1
c′

Λ
ΛPl

) 1
9

, (8.32)

can be thought of as the limit where the washout stops. However, we find a more accurate
expression for this temperature T → T̂ via the relation [2, 394]

T̂ ≃
[

9T9 ln

(
drec

ηobs
B

)
+ v9

] 1
9

, (8.33)

where drec ≈ 1/27 is a dilution factor that accounts for the difference in entropy density
between the temperature during which all SM fields were relativistic and the temperature
of recombination T = T0. The baryon number densities at these temperatures are related
via η∆B(T0) = gs(T0)/gs(T∗) η∆B(T∗) ≃ 1/27 η∆B(T∗), where gs is the number of degrees of
freedom, which is related to the entropy density s via s = (2π2/45)gsT3.

In Fig. 8.2 (left) we see the washout parameter ΓW/H as a function of the temperature
T for different values of Λ. The point at which the lines cross ΓW/H = 1 is where the
washout effectively stops, such that the shaded areas to the right in the figure correspond to
temperatures where no baryon asymmetry can survive, provided that the EFT prescription is
accurate. In Fig. 8.2 (right) we see the temperature T as a function of the EFT scale Λ, where
the purple and green lines denote the temperatures at which washout stops, according to the
approximation methods in Eq. (8.32) and (8.33), respectively. The grey line shows T = Λ. The
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x1 x2 x3 x3

Topology − I

x1 x2 x4

x3

Topology − II

Figure 8.3.: The two possible tree-level n-n̄ oscillation topologies, which we denote Topology I
and Topology II in the text. This figure is taken from Ref. [2].

EFT breaks down above this line due to the momentum scales involved in the washout process
(related to T) being greater than the integrated-out heavy mass scale (related to Λ). Washout is
therefore effective between the grey and green lines. Furthermore, the orange shaded regions
correspond to exclusion limits coming from n-n̄ oscillation experiments [575,577,578], and the
blue shaded region shows the approximate reach of the LHC for discovering heavy particles
via resonant production with couplings of order unity. If n-n̄ oscillations are discovered at the
next-generation experiments (dotted orange line), and if the baryon asymmetry is generated
at a high scale, we should expect colliders to see some NP between the blue line and the point
at which the green line and dotted orange line overlap. This would motivate the search for NP
at the scale ∼ 100 TeV, precisely the centre-of-mass energy at the proposed FCC collider [589].

In this section we have described the washout effects of a n-n̄ oscillation operator, and
discussed connections to the scale of baryogenesis. Using an EFT prescription we have been
agnostic about the details of what NP generates the operator, and for this reason we have
been limited to studying washouts, rather than baryon-asymmetry generation. In the next
section, we study an example of a UV-completion of the n-n̄ oscillation operator, and show
how it can lead to baryogenesis.

8.3. A UV-complete baryogenesis model with n-n̄ oscillation

In the previous section we connected n-n̄ oscillation to baryogenesis via effective operators.
Advantages of this method include its simplicity and applicability to other phenomena [590–
592]. Drawbacks include missing the effects of e.g. 1) CP-violation (in the formalism we
used here) and 2) a hierarchy in the internal degrees of freedom. The first point leads to
the impossibility of describing baryon-asymmetry generation, since CP-violation is one of
the three Sakharov conditions (c.f. Sec. 3.2). The second point limits the parameter space in
which the description is valid. As we see towards the end of this chapter, covering the whole
parameter space is crucial in order to find testable baryogenesis scenarios.

There are two possible topologies that generate the n-n̄ oscillation operators at tree-level,
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d̄c dc

uc

d̄c dc

ūc
Xdd

Xud Xud

n n̄

Figure 8.4.: Diagram corresponding to n-n̄ oscillation using the model described by the La-
grangian in Eq. (8.34). This figure is taken from Ref. [2].

Field SU(3)c SU(2)L U(1)Y Q = T3L + Y B

Xdd 6 or 3 1 + 2
3 + 2

3 − 2
3

Xuu 6 or 3 1 − 4
3 − 4

3 − 2
3

Xud 6 or 3 1 − 1
3 − 1

3 − 2
3

Table 8.2.: Representations of the diquark fields from the Lagrangian in Eq. (8.34).

which we denote3 Topology I and II, as shown in Fig. 8.3. In Topology I (Fig. 8.3 left) there are
two heavy scalar/vector fields and one Majorana fermion mediator. This topology has been
studied extensively in the context of specific models [500, 593–610] as well as baryogenesis
from a more model-independent point of view in Ref. [611]. For Topology II (Fig. 8.3 right)
there are three new heavy scalar/vector bosons, with a dimensionful trilinear coupling
between them [612]. For this topology there is also an extensive list of specific models [356,
357, 573, 613–619], as well as possible scenarios leading to baryogenesis [2, 616, 617, 619].

In the rest of this chapter we consider in detail one specific scenario, in which provide a
full baryogenesis description of a simplified model corresponding to Topology II, including
detailed washout processes as well as different experimental constraints. This model serves as
an example of how ∆B = 2 processes at low scales can be related to baryogenesis mechanisms.

8.3.1. Diquark model

We consider the Lagrangian [2]

LI I = f dd
ij Xddd̄c

i d̄c
j + f uu

ij Xuuūc
i ūc

j +
f ud
ij√
2

Xud(ūc
i d̄c

j + ūc
j d̄

c
i )

+λξXddXudXud + λ̃ ξXuuXddXdd + h.c. , (8.34)

3Not to be confused with neutrino mass Topologies I and II from Sec. 5.3.2.
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where Xud, Xdd, and Xuu scalar diquark fields, with the charges under the SM gauge group
shown in Tab. 8.2. Furthermore, ξ is a complex scalar field whose real part acquires a vev
upon B− L-symmetry breaking such that we can replace it according to ξ → v′ + 1√

2
(S + iχ),

with v′ ≫ v. Here χ is a Goldstone boson that we assume is eaten by a gauge field similar to
the weak gauge bosons of the SM during EWSB. After B− L-symmetry breaking, the trilinear
terms in the second row of Eq. (8.34) no longer conserve baryon number B. In fact, these
terms now violate baryon number by two units, ∆B = 0, as required by n-n̄ oscillation. A
diagram depicting n-n̄ oscillation via Xdd and Xud is shown in Fig. 8.4.

Some details are now worth mentioning. First, we note that the flavour structure of the
couplings fij between diquarks and quarks is dependent on whether the diquarks are colour
sextets or triplets. For sextets, the coupling matrices must be symmetric in flavour space,
while for triplets they must be antisymmetric. Furthermore, in Eq. (8.34) the diquarks only
couple to singlet quarks, while they could in principle also couple to the SU(2)L doublets Q.
However, the presence of both left- and right-handed quark couplings for Xud can lead to
flavour-changing neutral current (FCNC) operators that induce large rates of meson oscillation
and flavour-changing quark decays (e.g b→ sγ), processes which are stringently excluded
by experiments. Therefore, as an example, we only consider the diquarks to have tree-level
couplings to the quark singlets. Lastly, the diquarks in Tab. 8.2 can also have leptoquark
couplings in case they are colour triplets. Without any symmetry forbidding such couplings,
there would be no motivation to omit them, and their presence could lead to very rapid proton
decay [620–622]. For the rest of this chapter, our main focus is on colour sextet diquarks.

Focusing on the diquarks Xud and Xdd, and assuming a mass hierarchy mXdd > mXud , we
can write an effective Lagrangian as

Leff =
f dd
ij λv′

m2
Xdd

X∗udX∗udd̄c
i d̄c

j +
f ud
ij√
2

Xud(ūc
i d̄c

j + ūc
j d̄

c
i ) . (8.35)

Further integrating-out also the heavy field Xdd, we obtain a Lagrangian that can be expressed
in terms of the ∆B = 2 operator O2

RRR from Eq. (8.2). Using different relations from Sec. 8.1.1
we then obtain [2]

Ln̄-n
eff =

( f ud
11 )

2 f dd
11 λv′

m2
Xdd

m4
Xud

O2
RRR =

( f ud
11 )

2 f dd
11 λv′

4m2
Xdd

m4
Xud

(
O4 +

3
5
Õ1

)

≈ 3 ( f ud
11 )

2 f dd
11 λv′

20 m2
Xdd

m4
Xud

Õ1 . (8.36)

In comparing Eq. (8.36) with the formalism in Sec. 8.1.1 we have a relation between the
simplified-model parameters (e.g. the masses and couplings of the diquarks) and Wilson
coefficient describing the rate of n-n̄ oscillation. In the next section, we derive a complete
set of Boltzmann equations based on the interactions of Xud and Xdd, in order to eventually
see how the model parameters affect both n-n̄ oscillation and the generation of a baryon
asymmetry.
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X∗
dd

Xud

Xud

X∗dd

Xud

Xud

X ′∗dd

dc

d̄c

Figure 8.5.: Diagrams corresponding to tree- and loop-level decays of Xdd. This figure is taken
from Ref. [2].

Figure 8.6.: Illustration comparing the branching ratios of the different Xdd decay modes. This
figure is taken from Ref. [2].

8.3.2. Boltzmann equations in the diquark model

Assuming that the mass constraint mXdd > 2mXud holds, we consider the scenario where Xdd
decays out-of-equilibrium into a pair of Xud or a pair of quarks, where the decay violates
conservation4 of CP. Similar to type-i seesaw leptogenesis (c.f. Sec. 3.5.1), CP-violation can be
realised in Xdd decays via the interference between tree- and loop-level decay diagrams, as
seen in Fig. 8.5, where the loop involves a second copy of Xdd which we denote X′dd, that has
interactions with the quarks and other diquarks according to the Lagrangian

LX′dd
= f ′dd

ij X′ddd̄c
i d̄c

j + λ′ξX′ddXudXud + h.c. . (8.37)

The CP-violation parameter ϵ is given by [617]

ϵ ≡ Γ(Xdd → X∗udX∗ud)− Γ(X∗dd → XudXud)

Γtot(Xdd)

=
1
π

Im

[
Tr
[
( f ′dd)† f dd] (λ′v′)∗(λv′)

|λv′|2

](
x

1− x

)
r ,

(8.38)

4Note that the simplified model described by the Lagrangian in Eq. (8.34) can also lead to another mechanism
for baryogenesis, namely the post-sphaleron decay of the real scalar S into six quarks S → ūc d̄cūc d̄c d̄c d̄c as
well as six antiquarks S→ ucdcucdcdcdc [356, 357, 615].
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D0
d S0

s

Xdd

dc

d̄c

d̄c

Xdd

ūc

Xud

dc

S0
ta S0

tb

uc

Xdd

Xud

dc

d̄c

X∗
ud

Xdd

uc

dc

d̄c

Figure 8.7.: Decay- and scattering diagrams involving the diquarks Xud and Xdd where baryon
number is conserved. Here the naming convention follows that of the Boltzmann
equation formalism in the text.

where x is defined as x ≡ m2
Xdd

/m2
X′dd

, and where r ≡ Γ(Xdd → X∗udX∗ud)/Γtot(Xdd) is the
branching ratio of Xdd into diquarks. Since the total width of Xdd must be equal to that of
its antiparticle X∗dd in order for the decay to not violate CPT, CP-violating decays imply a
difference between Xdd and X∗dd in the two branching ratios, such that one field decays into
quarks more often than the other. This effect is illustrated in Fig. 8.6.

Apart from the CP-violating decay of Xdd, the simplified model we consider also leads to a
number of washout processes via scattering, as well as baryon-number conserving processes
that modify the number density of Xdd. In Figs. 8.7 and 8.8 we collect all relevant diagrams
for a full Boltzmann equation-based description of baryogenesis, and we denote

|∆B| = 0 : D0
d = [Xdd ↔ dcdc]

S0
s = [Xddd̄c dc

←→
s

Xudūc] S0
ta
= [Xdduc dc

←→
t

dcXud] S0
tb
= [XddX∗ud

dc
←→

t
dcūc]

|∆B| = 2 : Dd = [Xdd ↔ X∗udX∗ud]

Xs = [X∗udX∗ud
Xdd←→

s
dcdc] Xt = [X∗udd̄c Xdd←→

t
Xuddc]

Ss = [XddXud
X∗ud←→

s
d̄cūc] Sta = [Xdduc X∗ud←→

t
X∗udd̄c] Stb = [Xdddc X∗ud←→

t
X∗udūc] ,

(8.39)

where the bracket-parentheses are defined in Eq. (8.19). The corresponding matrix elements
are given by

|MD0
d
|2 = 4 f ij2

dd

(
m2

Xdd
− (mdi + mdj)

2
)

(8.40)

|MDd |2 = λ2v′2 , (8.41)
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Dd Ss

Xdd

X∗
ud

X∗
ud

Xdd

Xud

ūc

dc

X∗
ud

Xs Xt

X∗
ud

X∗
ud

dc

d̄c

Xdd

X∗
ud

d̄c

Xud

dc

Xdd

Sta Stb

Xdd

uc

X∗
ud

d̄c

Xud

Xdd

dc

X∗
ud

ūc

Xud

Figure 8.8.: Decay- and scattering diagrams involving the diquarks Xud and Xdd where baryon
number is violated. Here the naming convention follows that of the Boltzmann
equation formalism in the text. This figure is taken from Ref. [2].

|MSs |2 =

2(λv′ f ij
ud)

2
(

s−
(

mui + mdj

)2
)

(
s−m2

Xud

)2
+ Γ2

Xud
m2

Xud

, (8.42)

|MSt |2 =

2(λv′ f ij
ud)

2
(

t−
(

mui + mdj

)2
)

(
t−m2

Xud

)2 , (8.43)

|MXs |2 =

2(λv′ f ij
dd)

2
(

s−
(

mdi + mdj

)2
)

(
s−m2

Xdd

)2
+ Γ2

Xdd
m2

Xdd

, (8.44)

|MXt |2 =

2(λv′ f ij
dd)

2
(

t−
(

mdi + mdj

)2
)

(
t−m2

Xdd

)2 . (8.45)

202



8. Beyond LNV: the case of ∆B = 2

|MS0
s
|2 =

( f ik
dd f kj

ud)
2(

s−m2
dk

)2

{
m2

Xdd

(
m2

Xud
−muj(muj + mdk)− s

)
+

m2
di

(
muj(muj + mdk)−m2

Xud

)
+

mdi mdk

(
−m2

Xud
+ m2

uj
+ 2muj mdk + s

)
+

s
(
−m2

Xud
+ muj mdk + s + t

) }
, (8.46)

|MS0
t
|2 =

( f ik
dd f kj

ud)
2(

t−m2
dk

)2

{
m2

Xdd

(
mdi(mdk −mdi) + m2

Xud

)
+

t
(

m2
di
−mdk(mdi + muj) + m2

uj
− s
)
+

muj

[
mdk

(
m2

Xud
−mdi(mdi + muj)

)
+

muj(mdi −mXud)(mdi + mXud) + 2mdi m
2
dk

]}
. (8.47)

Here mui and mdi are the up- and down-type quark masses of the ith generation, corresponding
to the quark that appears in a given diagram, and s and t are the Mandelstam variables.

Since the diquarks are coloured particles, they also interact with gluons. This means that we
could have production of Xdd via gluon fusion channels gg→ XddX∗dd in the early Universe.
As shown in Ref. [619] this production channel mainly dominates in early times, while around
the time at which Xdd decays out-of-equilibrium it is highly suppressed. Therefore, the
interactions between gluons and diquarks does not play a major role for baryogenesis5, and
we neglect them in the Boltzmann equations.

Using the interactions in Eq. (8.39), we can write the Boltzmann equation for X(∗)
dd ≡

1
2 (Xdd + X∗dd) as

2zH(z)nγ(z)
dη

X(∗)
dd

dz
= −D0

d − D0
d − Dd − Dd − S0

s − S0
s − Ss − Ss − S0

t − S0
t − St − St ,

(8.48)

where the factor two comes from the definition of X(∗). Using Eq. (8.19) to rewrite Eq. (8.48)
in terms of reaction rates we have

zH(z)nγ(z)
dη

X(∗)
dd

dz
= −

η
X(∗)

dd

η
eq

X(∗)
dd

− 1

(γ
X(∗)

dd
D + γS0

s
+ γSs + γS0

ta
+ γSta

+ γS0
tb
+ γStb

)
.

(8.49)

5Note that interactions between heavy scalars and gauge bosons can be important in some baryogenesis models,
e.g. in type-ii seesaw leptogenesis where WaWa → ∆∆∗ plays a crucial role [370].
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8. Beyond LNV: the case of ∆B = 2

Figure 8.9.: Timeline illustrating the baryogenesis process described in the text. First Xdd falls
out of equilibrium around T ∼ mXdd and a baryon asymmetry is generated via
its decays to Xud and dc. Later, this asymmetry is completely transferred to the
quark sector due to Xud falling out of equilibrium and decaying to quark pairs.
This figure is taken from Ref. [2].

If we assume that the number densities of Xdd and X∗dd are initially identical6, such that
ηXdd = ηX∗dd

= η
X(∗)

dd
, a difference between the number densities of Xdd and X∗dd can arise

through interactions of X(∗)
dd with e.g. Xud and X∗ud, provided that there is an asymmetry

between these latter fields. However, such a back-reaction is proportional to η∆B, which is
small compared to the number density of Xdd during the time of baryogenesis. We therefore
neglect effects coming from the difference in number density between Xdd and X∗dd.

To obtain an equation describing the evolution of the baryon asymmetry, we first seek
a consistent definition of the baryon-number number density in our framework. To this
end, we first note that there are no couplings between diquarks and left-handed quarks
in the simplified model we consider, and we therefore neglect any baryon number coming
from the left-handed quarks in the generation of the baryon asymmetry7 such that we have
d
dz (ηuL − ηūL) = 0 and d

dz (ηdL − ηd̄L
) = 0. Next, we also note that any asymmetry generated in

Xud and X∗ud will be translated into an asymmetry in the quark sector once this diquark finally
decays. These decays conserve baryon number, meaning that we may consider the asymmetry
shared between the diquark- and quark sectors to be equal to the baryon asymmetry at late
times. The timeline of this baryogenesis mechanism is illustrated in Fig. 8.9.

With all the considerations above, we define the baryon number density as

η∆B ≡
N

∑
u,d

1
3
[(ηūc − ηuc) + (ηd̄c − ηdc) + 2(ηX∗ud

− ηXud)] , (8.50)

where N is the number of fermion generations8. Differentiating Eq. (8.50) with respect to z

6Note that this is a valid assumption since the previously mentioned gg→ XddX∗dd interactions quickly bring
the diquarks into equilibrium before the onset of baryogenesis.

7Note however that the presence of left-handed quarks are accounted for in the chemical potential relations (c.f.
Appendix D), as their presence does change the total baryon number.

8In the full SM we have N = 3. Note that we keep N as a free parameter due to the different times at which
the different Yukawa interactions of the SM come into equilibrium [47, 623, 624]. This effectively reduces the
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8. Beyond LNV: the case of ∆B = 2

Process Branching ratio

Xdd → X∗udX∗ud r + ϵ
2

Xdd → dcdc 1− (r + ϵ
2 )

X∗dd → XudXud r− ϵ
2

X∗dd → d̄cd̄c 1− (r− ϵ
2 )

Table 8.3.: List of X(∗)
dd decay modes as well as their corresponding branching ratios.

and multiplying by zHnγ we subsequently obtain

zHnγ
dη∆B

d z
=

1
3

zHnγ

[
N

d (ηd̄c − ηdc)

d z
+ N

d (ηūc − ηuc)

d z
+ 2

d (ηX∗ud
− ηXud)

d z

]
. (8.51)

We now relate each term on the RHS of Eq. (8.51) to different interactions that the respective
fields participate in,

zH(z)nγ(z)
dηX∗ud

dz
= Dd − Xs − Xt − Ss + St + S0

s + S0
ta
− S0

tb
, (8.52)

zH(z)nγ(z)
dηXud

dz
= Dd − Xs + Xt − Ss + St + S0

s + S0
ta
− S0

tb
, (8.53)

zH(z)nγ(z)
dηd̄c

dz
= D0

d + Xs − Xt + Ss + Sta − Stb − S0
s + S0

t , (8.54)

zH(z)nγ(z)
dηdc

dz
= D0

d + Xs + Xt + Ss + Sta − Stb − S0
s + S0

t , (8.55)

zH(z)nγ(z)
dηūc

dz
= Ss − Sta + Stb + S0

s − S0
ta
+ S0

tb
, (8.56)

zH(z)nγ(z)
dηuc

dz
= Ss − Sta + Stb + S0

s − S0
ta
+ S0

tb
, (8.57)

where we have defined S0
t ≡ S0

ta
+ S0

tb
and St ≡ Sta + Stb . With the relations above we can

rewrite Eq. (8.51) as

3zHnγ
dη∆B

d z
= 2(Dd − Dd) + N(D0

d − D0
d)− (N + 2)

[
(Xs − Xs) + 2Xt

]
+2(N + 1)

[
(Ss − Ss) + (St − St)

]
− 2

[
(S0

s − S0
s ) + (S0

t − S0
t )
]

. (8.58)

Taking the CP-violating parameter ϵ into account, we can parametrise the branching ratios
of the different Xdd (X∗dd) decay modes as shown in Tab. 8.3, where again r is defined as
r ≡ Γ(Xdd → X∗udX∗ud)/Γtot(Xdd), which leads to the following expressions for the decay

number of generations that take part in certain interactions for some periods in the Universes history. To
account for such effects we must be able to choose different values for N.
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parameters:

Dd = γXdd
D

(r +
ϵ

2

)ηXdd

η
eq
Xdd

−
(

r− ϵ

2

)ηX∗ud
2

η
eq
Xud

2

 ,

D0
d = γXdd

D

[(
1− r− ϵ

2

)ηXdd

η
eq
Xdd

−
(

1− r +
ϵ

2

) ηdc 2

η
eq
dc

2

]
,

Dd = γ
X∗dd
D

(r− ϵ

2

)ηXdd

η
eq
Xdd

−
(

r +
ϵ

2

)ηXud
2

η
eq
Xud

2

 ,

D0
d = γ

X∗dd
D

(1− r +
ϵ

2

)ηXdd

η
eq
Xdd

−
(

1− r− ϵ

2

) ηd̄c
2

η
eq
d̄c

2

 . (8.59)

Now defining a total decay rate γtot
D ≡ 2γXdd

D = 2γ
X∗dd
D we can re-parametrise the relations in

Eq. (8.59) as

(Dd − Dd) =
γtot

D
2

ϵ + ϵ
ηXdd

η
eq
Xdd

− r

ηX∗ud
2

η
eq
Xud

2 −
ηXud

2

η
eq
Xud

2

 ,

(D0
d − D0

d) =
γtot

D
2

−ϵ− ϵ
ηXdd

η
eq
Xdd

− (1− r)

 ηd̄c
2

η
eq
d̄c

2 −
ηdc 2

η
eq
d̄c

2

 . (8.60)

Next we note that the s-channel scattering with a Xdd (X∗dd) mediator must be on-shell-
subtracted to avoid double-counting of the tree-level (inverse) Xdd decay. We therefore
have

Xs =

(
ηX∗ud
η

eq
Xud

)2 [
γX∗udX∗ud→dcdc − γon-shell

X∗udX∗ud→dcdc

]
−
(

ηdc

η
eq
dc

)2 [
γdcdc→X∗udX∗ud

− γon-shell
dcdc→X∗udX∗ud

]
,

Xs =

(
ηXud
η

eq
Xud

)2 [
γXudXud→d̄c d̄c − γon-shell

XudXud→d̄c d̄c

]
−
(

ηd̄c

η
eq
d̄c

)2 [
γd̄c d̄c→XudXud

− γon-shell
d̄c d̄c→XudXud

]
,(8.61)

with

γon-shell
X∗udX∗ud→dcdc = γX∗udX∗ud→Xdd BR(Xdd → dcdc) ≃

(
r− r2 − ϵ

2

) γtot
D
2

,

γon-shell
dcdc→X∗udX∗ud

= γdcdc→Xdd BR(Xdd → X∗udX∗ud) ≃
(

r− r2 +
ϵ

2

) γtot
D
2

,

γon-shell
XudXud→d̄c d̄c = γXudXud→X∗dd

BR(X∗dd → d̄cd̄c) ≃
(

r− r2 +
ϵ

2

) γtot
D
2

,

γon-shell
d̄c d̄c→XudXud

= γd̄c d̄c→X∗dd
BR(X∗dd → XudXud) ≃

(
r− r2 − ϵ

2

) γtot
D
2

, (8.62)
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where we have neglect terms of O(ϵ2). Using Eq. (8.62) we can take the difference between
the two relations in Eq. (8.61) to obtain

Xs − Xs = ϵγtot
D +

(
γXs − (r− r2)

γtot
D
2

)(ηX∗ud
2

η
eq
Xud

2 −
ηXud

2

η
eq
Xud

2

)
+

(
ηd̄c

2

η
eq
d̄c

2 −
ηdc 2

η
eq
d̄c

2

) . (8.63)

Similarly, for the t-channel mediated process we have

Xt = γXt

(
ηX∗ud

η
eq
Xud

ηd̄c

η
eq
d̄c

− ηXud

η
eq
Xud

ηdc

η
eq
d̄c

)
. (8.64)

The diquark-mediated processes with external X(∗)
dd field(s) lead to

(Ss − Ss) = γSs

[(
ηXdd

η
eq
Xdd

ηXud

η
eq
Xud

− ηd̄c

η
eq
d̄c

ηūc

η
eq
ūc

)
−
(

ηXdd

η
eq
Xdd

ηX∗ud

η
eq
Xud

− ηdc

η
eq
d̄c

ηuc

η
eq
ūc

)]
, (8.65)

(St − St) = (Sta − Sta) + (Stb − Stb)

= γSta

[(
ηXdd

η
eq
Xdd

ηuc

η
eq
ūc

−
ηX∗ud

η
eq
Xud

ηd̄c

η
eq
d̄c

)
−
(

ηXdd

η
eq
Xdd

ηūc

η
eq
ūc

− ηXud

η
eq
Xud

ηdc

η
eq
d̄c

)]

+ γStb

[(
ηXdd

η
eq
Xdd

ηdc

η
eq
d̄c

−
ηX∗ud

η
eq
Xud

ηūc

η
eq
ūc

)
−
(

ηXdd

η
eq
Xdd

ηd̄c

η
eq
d̄c

− ηXud

η
eq
Xud

ηuc

η
eq
ūc

)]
, (8.66)

and the quark-mediated scatterings to

(S0
s − S0

s ) = γS0
s

[(
ηXdd

η
eq
Xdd

ηd̄c

η
eq
d̄c

− ηXud

η
eq
Xud

ηūc

η
eq
ūc

)
−
(

ηXdd

η
eq
Xdd

ηdc

η
eq
d̄c

−
ηX∗ud

η
eq
Xud

ηuc

η
eq
ūc

)]
, (8.67)

(S0
t − S0

t ) = (S0
ta
− S0

ta
) + (S0

tb
− S0

tb
)

= γS0
ta

[
ηXdd

η
eq
Xdd

(
ηuc

η
eq
ūc

− ηūc

η
eq
ūc

)
+

(
ηX∗ud

η
eq
Xud

ηd̄c

η
eq
d̄c

− ηXud

η
eq
Xud

ηdc

η
eq
d̄c

)]

+ γS0
tb

[
ηXdd

η
eq
Xdd

(
ηX∗ud

η
eq
Xud

− ηXud

η
eq
Xud

)
+

(
ηd̄c

η
eq
d̄c

ηuc

η
eq
ūc

− ηdc

η
eq
d̄c

ηūc

η
eq
ūc

)]
. (8.68)

In order to derive a Boltzmann equation for η∆B, we need to relate the different number
densities appearing in its definition to each other such that we can eliminate them in favour of
only a single number density. Our strategy is based on the approximation ηa/η

eq
a ≈ eµa/T ≈

1 + µa
T where a is a particle species with chemical potential µa. This approximation is valid

when the chemical potential is small with respect to the temperature T. For any particle a we
can relate it to the number density of X∗ud via

µa = xaµX∗ud
, (8.69)

where xa can be found by relating different chemical potentials to each other, using the
fact that some interactions are in chemical equilibrium (see also Appendix D). In order to
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8. Beyond LNV: the case of ∆B = 2

obtain a simple form of the Boltzmann equation describing the evolution of η∆B, we make the
assumption that the reaction X∗ud ↔ ūc + d̄c is in equilibrium, leading to the relation

µX∗ud
= µūc + µd̄c . (8.70)

This assumption is well motivated in the scenario where Xud is light compared to Xdd such
that mXdd ≫ mXud , assuming the different couplings of the two diquarks are of similar strength.
The total charge Q of the Universe can then be expressed as (c.f. Appendix D)

Q = 2N (µQ + µūc)− N (µQ + µd̄c)− N (µL + µēc) + 2µH + 2
CX∗ud

3
µX∗ud

, (8.71)

where CX∗ud
is the colour-multiplicity of X∗ud, such that CX∗ud

= 3 for colour triplets and CX∗ud
= 6

for sextets. Using Eq. (8.71) as well as the weak gauge- and N-generation Yukawa interactions
from Appendix D we obtain the following relations for the chemical potentials of the quarks
singlets:

xūc =
3− 6N − 2CX∗ud

12N + 6
, xd̄c =

3 + 18N + 2CX∗ud

12N + 6
. (8.72)

This leads to the total baryon charge B being given by

B ≡ nb − n̄b =
T2

6

(
Nµd̄c + Nµūc + 2NµQ +

4
3

CXud∗µX∗ud

)
=

T3

6
6N + 4CX∗ud

3
µX∗ud

T
. (8.73)

Furthermore, we can write the equilibrium number density corresponding to nb as

neq
b ≡

2
3

CX∗ud
neq

X∗ud
+ Nneq

d̄c + Nneq
ūc + Nneq

uL + Nneq
dL

=
ζ(3)T3

π2

8CX∗ud
+ 36N

12
, (8.74)

where we have used the relations [2, 47, 53]

neq
i =

giT3

π2 ×

 ζ(3) + µi
T ζ(2) + ... (bosons)

3
4 ζ(3) + µi

T
ζ(2)

2 + ... (fermions) ,
(8.75)

where ζ(s) denotes the Riemann zeta function. The fraction between the number density of
baryons and their equilibrium density, being what appears in the Boltzmann equation for
η∆B, is then given by

nb − n̄b

neq
b

=
ηb − η̄b

η
eq
b

= CB
µX∗ud

T
, (8.76)

where the constant CB is defined as

CB ≡
π2

3 ζ(3)
6N + 4CX∗ud

18N + 4CX∗ud

. (8.77)

Now taking colour sextet diquarks, we focus on the two scenarios N = 1 and N = 3,

CB =
π2

3 ζ(3)
×

 5
7 (N = 1)
7

13 (N = 3) .
(8.78)
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The combination of decay terms that appear in the Boltzmann equation can then be expressed
as

2(Dd − Dd) + N(D0
d − D0

d) =
γtot

D
2

[
(N + 2)ϵ

(
ηXdd

η
eq
Xdd

+ 1

)
− 4

CB
{N(1− r)xd̄c + 2r} η∆B

η
eq
B

]
.(8.79)

Similarly, the different combination of scattering terms lead to

Xs − Xs = ϵγtot
D +

4
CB

(1 + xd̄c)

[
γXs − (r− r2)

γtot
D
2

]
η∆B

η
eq
B

, (8.80)

Xt =
2

CB
(1 + xd̄c)γXt

η∆B

η
eq
B

, (8.81)

(Ss − Ss) + (St − St) = − 2
CB

η∆B

η
eq
B

[
γ̃SB + γ̃SX

ηXdd

η
eq
Xdd

]
, (8.82)

(S0
s − S0

s ) + (S0
t − S0

t ) =
2

CB

η∆B

η
eq
B

[
γ̃S0

B
+ γ̃S0

X

ηXdd

η
eq
Xdd

]
, (8.83)

where we have defined the reduced scattering rates

γ̃SB = (xd̄c + xūc)γSs + (xd̄c + 1)γSta
+ (xūc + 1)γStb

, (8.84)

γ̃SX = γSs + xūc γSta
+ xd̄c γStb

, (8.85)

γ̃S0
B

= (−xūc + 1)γS0
s
+ (xd̄c + 1)γS0

ta
+ (xd̄c − xūc)γS0

tb
, (8.86)

γ̃S0
X

= xd̄c γS0
s
− xūc γS0

ta
+ γS0

tb
. (8.87)

Plugging the above results into Eq. (8.58) we obtain the final form

3zH(z)nγ(z)
dηB

dz
=

γtot
D
2

[
(N + 2)ϵ

(
ηXdd

η
eq
Xdd

− 1

)
− 4

CB
{N(1− r)xd̄c + 2r} η∆B

η
eq
B

]
− 4

CB

η∆B

η
eq
B

×
[
(N + 2)(1 + xd̄c)

γsub
X
2

+
{
(N + 1)γ̃SB + γ̃S0

B

}
+

ηXdd

η
eq
Xdd

{
(N + 1)γ̃SX + γ̃S0

X

}]
(8.88)

where

γsub
X ≡ 2γXs + 2γXt −

(
r− r2) γtot

D . (8.89)

Eqs. (8.49) and (8.88) now constitute a set of coupled Boltzmann equations that describe
the time-evolution of baryon asymmetry in our simplified model. In a complete treatment,
additional effects coming from the varying onset of different SM Yukawa interactions should
be taken into account [86, 625, 626]. However, the impact on the final baryon asymmetry
coming from these effects should be small, and we therefore neglect them.

Before we evaluate Eqs. (8.49) and (8.88) in Sec. 8.6 we complete our analysis of the
simplified model described by Eq. (8.34) by considering its connection to grand unification in
Sec. 8.4 and phenomenological constraints in Sec. 8.5.
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8. Beyond LNV: the case of ∆B = 2

GPS GLR GSM

(2, 1, 4)
(
3, 2, 1, 1

3

) (
3, 2, 1

6

)
(1, 2, 1,−1)

(
1, 2,− 1

2

)
(
2, 1, 4

) (
3, 1, 2,− 1

3

) (
3, 1, 1

3

)
⊕
(
3, 1,− 2

3

)
(1, 1, 2, 1) (1, 1, 1) ⊕ (1, 1, 0)

Table 8.4.: Decomposition of the SO(10) representation 16 under GPS ≡ SU(2)L × SU(2)R ×
SU(4)c, GLR ≡ SU(3)c × SU(2)L × SU(2)R × U(1)B−L and GSM ≡ SU(3)c ×
SU(2)L ×U(1)Y.

8.4. Grand unification

In this section we connect the diquark-model to grand unification in order to connect it
to a broader perspective. Diquarks naturally appear in many GUT gauge groups, e.g. in
the Pati-Salam [148] group GPS ≡ SU(2)L × SU(2)R × SU(4)c, E6 [154], or SO(10) [153]. In
this section we mainly focus on SO(10), which may break to the SM gauge group GSM =

SU(3)c × SU(2)L × U(1)Y in a number of ways. Below we consider scenarios in which
the breaking SO(10) → GSM goes via GPS or the left-right symmetric gauge group GLR ≡
SU(3)c × SU(2)L × SU(2)R ×U(1)B−L.

GPS GLR GSM

(1, 3, 1) (1, 1, 3, 0) (1, 1,+1) ⊕ (1, 1, 0) ⊕ (1, 1,−1)

(3, 1, 1) (1, 3, 1, 0) (1, 3, 0)

(2, 2, 6)
(
3, 2, 2,− 2

3

) (
3, 2,+ 1

6

)
⊕
(
3, 2,− 5

6

)
(
3, 2, 2,+ 2

3

) (
3, 2,+ 5

6

)
⊕
(
3, 2,− 1

6

)
(1, 1, 15) (1, 1, 1, 0) (1, 1, 0)(

3, 1, 1,+ 4
3

) (
3, 1,+ 2

3

)
(
3, 1, 1,− 4

3

) (
3, 1,− 2

3

)
(8, 1, 1, 0) (8, 1, 0)

Table 8.5.: Decomposition of the SO(10) representation 45 under GPS ≡ SU(2)L × SU(2)R ×
SU(4)c, GLR ≡ SU(3)c × SU(2)L × SU(2)R × U(1)B−L and GSM ≡ SU(3)c ×
SU(2)L ×U(1)Y.
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GPS GLR GSM

(1, 1, 1) (1, 1, 1, 0) (1, 1, 0)

(3, 3, 1) (1, 3, 3, 0) (1, 3,−1) ⊕ (1, 3, 0) ⊕ (1, 3,+1)

(2, 2, 6)
(
3, 2, 2,− 2

3

) (
3, 2,+ 1

6

)
⊕
(
3, 2,− 5

6

)
(
3, 2, 2,+ 2

3

) (
3, 2,+ 5

6

)
⊕
(
3, 2,− 1

6

)
(1, 1, 20)

(
6, 1, 1,+ 4

3

) (
6, 1,+ 2

3

)
(
6, 1, 1,− 4

3

) (
6, 1,− 2

3

)
(8, 1, 1, 0) (8, 1, 0)

Table 8.6.: Decomposition of the SO(10) representation 54 under GPS ≡ SU(2)L × SU(2)R ×
SU(4)c, GLR ≡ SU(3)c × SU(2)L × SU(2)R × U(1)B−L and GSM ≡ SU(3)c ×
SU(2)L ×U(1)Y.

We now consider a limited set of SO(10) multiplets, focusing on the ones that are relevant
for this section. Their decomposition under GPS is given by

10 = (2, 2, 1) + (1, 1, 6)

16 = (2, 1, 4) + (1, 2, 4)

45 = (3, 1, 1) + (1, 3, 1) + (1, 1, 15) + (2, 2, 6)

54 = (1, 1, 1) + (3, 3, 1) + (1, 1, 20) + (2, 2, 6)

120 = (2, 2, 1) + (1, 1, 10) + (1, 1, 10) + (3, 1, 6) + (1, 3, 6) + (2, 2, 15)

126 = (1, 1, 6) + (3, 1, 10) + (1, 3, 10) + (2, 2, 15)

210 = (1, 1, 1) + (1, 1, 15) + (3, 1, 15) + (1, 3, 15) + (2, 2, 6) + (2, 2, 10) + (2, 2, 10) .(8.90)

The subsequent decomposition of the 10, 45, 54, and 126 of SO(10) under GLR and GSM are
shown in Tabs. 8.4, 8.6, 8.7, and 8.5, respectively. We see in Tab. 8.4 that all SM fermions can
be accommodated in the 16 of SO(10), where an additional neutral singlet appears that can
be identified as a right-handed neutrino. Furthermore, the Higgs fields of the SM could come
from e.g. a complex 126 of SO(10) that couples to 16i16j, where the coupling is symmetric in
flavour indices9 i and j.

The breaking route from SO(10) to GSM is dictated by which SO(10) multiplet breaks the
symmetry. Using a real 210 or 54 along with the complex 126 that we identified with the SM
Higgs leads to the intermediate symmetry10 GPS.

9The SM Higgs field could also come from the 10 or 120 of SO(10). In the former case the flavour couplings
would again be symmetric, while in the latter they would be antisymmetric.

10If we use a real 54, the gauge couplings of the partial symmetries SU(2)L and SU(2)R in GPS are identical,
gL = gR [627], while if we use a 210 they are unequal, gL ̸= gR.
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GPS GLR GSM

(1, 1, 6)
(
3, 1, 1,+ 2

3

) (
3, 1,+ 1

3

)
(
3, 1, 1,− 2

3

) (
3, 1,− 1

3

)
(3, 1, 10) (1, 3, 1,−2) (1, 3,−1)(

3, 3, 1,− 2
3

) (
3, 3,− 1

3

)
(
6, 3, 1,+ 2

3

) (
6, 3,+ 1

3

)
(
1, 3, 10

)
(1, 1, 3,+2) (1, 1, 0) ⊕ (1, 1,+1) ⊕ (1, 1,+2)(
3, 1, 3,+ 2

3

) (
3, 1,− 2

3

)
⊕
(
3, 1,+ 1

3

)
⊕
(
3, 1,+ 4

3

)
(
6, 1, 3,− 2

3

) (
6, 1,− 4

3

)
⊕
(
6, 1,− 1

3

)
⊕
(
6, 1,+ 2

3

)
(2, 2, 15) (1, 2, 2, 0)

(
1, 2,− 1

2

)
⊕
(
1, 2,+ 1

2

)
(
3, 2, 2,− 4

3

) (
3, 2,− 7

6

)
⊕
(
3, 2,− 1

6

)
(
3, 2, 2,+ 4

3

) (
3, 2,+ 7

6

)
⊕
(
3, 2,+ 1

6

)
(8, 2, 2, 0)

(
8, 2,− 1

2

)
⊕
(
8, 2,+ 1

2

)
Table 8.7.: Decomposition of the SO(10) representation 126 under GPS ≡ SU(2)L × SU(2)R ×

SU(4)c, GLR ≡ SU(3)c × SU(2)L × SU(2)R × U(1)B−L and GSM ≡ SU(3)c ×
SU(2)L ×U(1)Y.

The symmetry groups SO(10), GPS, and GSM all explicitly conserve B− L, but GSM does
not. However, the field content of the SM does not lead to any B− L-breaking interactions,
such that this charge is accidentally conserved by the lack of any B− L-violating terms in the
SM Lagrangian. In the presence of new fields, such as the scalar diquarks Xuu ∈

(
6, 1,− 4

3

)
,

Xud ∈
(
6, 1,− 1

3

)
and Xdd ∈

(
6, 1,+ 2

3

)
from Sec. 8.3, B− L can be broken explicitly at low

scales. These diquarks do appear in the 126 of11 SO(10), as can be seen in the entry in
Tab. 8.7 that corresponds to the (1, 3, 10)-representation of GPS. In this entry there is also a
complete SM singlet scalar field with the representation (1, 1, 0), which we can identify as the
B− L-breaking scalar ξ from the simplified-model Lagrangian in Eq. (8.34).

In the running of gauge couplings we assume that any intermediate symmetries between
SO(10) and GSM are all broken around the GUT scale mSO(10). We therefore attempt unification
of the three SM gauge couplings at this scale by including additional fields coming from the

11Note that the field Xdd ∈
(

6, 1,+ 2
3

)
also appears in the 54 of SO(10). This second copy of a

(
6, 1,+ 2

3

)
-field

can mix with the one from the 126 to form the two states Xdd and X′dd needed for CP-violating decays as
described in Sec. 8.3.2.
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Figure 8.10.: Left: Running of SM gauge couplings α1, α2 and α3 in the presence of a TeV-scale
diquark Xud and two copies of ∆ ∈ (1, 3, 0), also at the TeV scale. Right: Running
of SM gauge couplings α1, α2 and α3 in the presence of a TeV-scale diquark Xud
and a SU(2)L-triplet fermion Σ ∈

(
6, 3, 1

3

)
, at an intermediate scale of 104 TeV.

This figure is taken from Ref. [2].

SO(10)-multiplets in the one-loop renormalisation group equations (RGEs) given by

µ
∂gi

∂µ
=

bi

16π2 g3
i , (8.91)

or, equivalently,
1

αi(µ2)
=

1
αi(µ1)

− bi

2π
ln
(

µ2

µ1

)
, (8.92)

for µ2 > µ1, where αi is given by αi = g2
i /4π, and where i denotes the SM gauge subgroups

SU(3)c, SU(2)L, and U(1)Y. The coefficients bi are given at one-loop by [628]

bi = −
11
3
C2(G) +

2
3 ∑

R f

T(R f )∏
j ̸=i

dj(R f ) +
1
3 ∑

Rs

T(Rs)∏
j ̸=i

dj(Rs) , (8.93)

where C2(G) is the quadratic Casimir operator in the adjoint representation, given by

C2(G) =

N if SU(N) ,

0 if U(1) .
(8.94)

Furthermore, d(R f ,s) is the dimension of the representation R f ,s, and T(R f ) (T(Rs)) is the
Dynkin index of a fermion (scalar12) field, which is given by

T(R f ,s) =


1
2 if R f ,s is fundamental ,

N if R f ,s is adjoint ,

0 if R f ,s is singlet .

(8.95)

12Note that an additional factor 1
2 should be included for T(Rs) in case s is a real scalar field.
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8. Beyond LNV: the case of ∆B = 2

We now consider the special case13 where Xud is found at low scales while Xuu and Xdd lie
at the GUT scale, such that mXud ∼ O(TeV) and mXuu , mXdd ∼ mSO(10). The presence of Xud
modifies the running of gauge couplings according to Eq. (8.93). However, no unification is
found with Xud alone. Instead, additional fields must be added in order for the three gauge
couplings to unify at mSO(10), as can be seen in the two examples below.

In the first example, we add two copies of the scalar field ∆ ∈ (1, 3, 0) around the same scale
as Xud, where ∆ may come from the 45 or 54 of SO(10) [617]. The running of gauge couplings
for this scenario can be seen in Fig. 8.10 (left), where mXud = m∆ = 3 TeV is used. Here we
see that unification is achieved around mSO(10) ≈ 1015 GeV. As a second example, we keep
mXud = 3 TeV and add a fermion field Σ ∈

(
6, 3, 1

3

)
at an intermediate scale mΣ = 104 TeV,

leading to unification at mSO(10) ≈ 1016 GeV as can be seen in Fig. 8.10 (right).

8.5. Phenomenological constraints

Scalar diquarks are subject to a wide range of different phenomenological constraints,
especially for masses below or around O(TeV). In this section, we cover the most relevant
ones14, to finally compare the different limits with n-n̄ oscillation searches and baryogenesis
in Sec. 8.6.

8.5.1. LHC

Scalar diquarks can lead to distinct signals at collider experiments such as the LHC [616,
630–644]. They may be e.g. singly produced in resonant s-channel quark-quark collisions,
or pair-produced in gluon-gluon fusion. For couplings greater than O(0.1) the former
mode dominates, while the latter dominates for smaller couplings [629, 638]. Experimental
results are only available up to masses of O(1 TeV) in gluon fusion [645], while for resonant
production the limits go up to O(10 TeV) [646]. For these reasons, we choose to focus on
resonant production here.

The different benchmark scenarios we consider in Sec. 8.6 all include Xuu masses at
very high scales, while Xud and Xdd may be at low scales. We therefore consider the LHC
phenomenology of the latter two particles only.

For Xud, the differential resonant production cross section with a top-quark in the final
state is given by [2]

dσ̂(uidj → Xud → tdk)

d cos θ∗
=
| f ud

ij |2| f ud
3k |2

8πŝ
(ŝ−m2

t )
2

(ŝ−m2
Xud

)2 + m2
Xud

Γ2
Xud

, (8.96)

where all quarks except the top are considered to be massless, θ∗ is the scattering angle, ΓXud

is the total decay width of Xud, and ŝ ≡ x1x2s is the squared centre-of-mass energy in the
13This scenario is of interest for the evaluation of the baryon asymmetry, which is discussed in Sec. 8.6.
14Apart from the constraints that are covered in this section, we also note that additional constraints on the

diquark couplings can come from the neutron electric dipole moment [629]. However, for the scenario we
consider in Sec. 8.3.1, these constraints are not very stringent due to the absence of simultaneous left- and
right-handed couplings as well as the presence of flavour-diagonal couplings [2].
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8. Beyond LNV: the case of ∆B = 2

parton system, for a proton-proton centre-of-mass energy
√

s and momentum fractions x1

and x2. Changing t→ u, c with dk ∈ {d, s} in Eq. (8.96) leads to a dijet final state. Note that
in Eq. (8.96) we also need to take spin- and colour multiplicities for the initial and final states
into account.

The different partial decay widths are given by

Γ(Xud → uidj)|ui ̸=t =
CXud

8π
| f ud

ij |2 mXud ,

Γ(Xud → tdj) =
CXud

8π
| f ud

3j |2 mXud

(
1− m2

t

m2
Xud

)2

, (8.97)

where ΓXud = Γ(Xud → uidj)|ui ̸=t + Γ(Xud → tdj), and where CXud is the colour multiplicity.
We can similarly express the differential cross section for resonant production of Xdd as [2]

dσ̂(didj → Xdd → dkdl)

d cos θ∗
=
| f dd

ij |2| f dd
kl |2

16π

ŝ
(ŝ−m2

Xdd
)2 + m2

Xdd
Γ2

Xdd

, (8.98)

where the width is given by

ΓXdd = Γ(Xdd → didj) =
CXud

16π
| f dd

ij |2 mXdd . (8.99)

The parton-level differential cross sections in Eqs. (8.96) and (8.98) can be related to the
measured hadronic cross section via

σ = ∑
ij

∫
dx1dx2 fi(x1, µ2

F) f j(x2, µ2
F)σ̂ij

(
αs(µ

2
R),

Q2

µ2
F

,
Q2

µ2
R

)
, (8.100)

where µF is the factorisation scale and Q is the characteristic energy scale of the interaction.
We can write Eq. (8.100) in a more convenient form by introducing the parton luminosity
factor [647]

dLij

dτ
=
∫ 1

0

∫ 1

0
dx1dx2 fi(x1) f j(x2)δ(x1x2 − τ) , (8.101)

where
τ = x1x2 =

ŝ
s

. (8.102)

Next, we note that the rapidity ȳ = 1/2 ln(x1/x2) is a better integration variable than x1 and
x2 for our purposes, since it allows us to take kinematic cuts into account. We therefore use
the identity dx1dx2 = ∂(τ,ȳ)

∂x1,x2
dτdȳ = dτdȳ to re-express Eq. (8.101) as

dLij(ȳmin, ȳmax)

dτ
=
∫ ȳmax

ȳmin

fi
(√

τeȳ) f j
(√

τe−ȳ) dȳ , (8.103)

leading to the total hadronic cross section

σhad = ∑
i,j

∫ dτ

τ

[
dLij

dŝ

] [
ŝ σ̂ij

]
. (8.104)
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For efficient evaluation of the partonic cross section σ̂ we use the Breit-Wigner form

σ̂(m) (a + b→ X → c + d) = 16π ×N × Γ(a + b→ X)× Γ(X → c + d)(
m2 −m2

X
)2

+ m2
XΓ2

X

, (8.105)

where X is the resonance, m ≃
√

ŝ =
√

τs is the energy in the interaction, and N accounts
for the different multiplicities such that

N ≡ NSX

NSa NSb

CX

CaCb
, (8.106)

where NSX (NSa,b ) and CX (Ca,b) is the spin and colour multiplicity of the resonance (initial
partons a and n), respectively. Note however that in Eq. (8.105) we have implicitly integrated
over the whole range of the scattering angle θ∗. In practice, only certain values of θ∗ are
allowed due to kinematic cuts, and to take this into account we can further re-express
Eq. (8.105) as

σ̂(m) =
16π ×N ×A× BRpar × Γ2

X(
m2 −m2

X
)2

+ m2
XΓ2

X

, (8.107)

where BRpar is the branching ratio of X with respect to the partonic subprocess, and A is the
experimental acceptance factor taking the limited range of θ∗ into account. Lastly, applying
also the NWA

1(
m2 −m2

X
)2

+ m2
XΓ2

X

≈ π

mXΓX
δ(m2 −m2

X) , (8.108)

we arrive at the final hadronic cross section

σtot
had(mX) = 16π2 ×N ×A×∑

ab
(1 + δab)BR(X → ab)

[
dLab(ȳmin, ȳmax)

dŝ

]
ŝ=m2

X

×∑
cd

BR(X → cd)× ΓX

mX
, (8.109)

where (a, b) and (c, d) denotes the different possible initial- and final state partons, respec-
tively.

To numerically evaluate the cross section we use the acceptance factorA = A∆Aη , following
Ref. [646], where A∆ = 0.57 and Aη ≃ 1 account for the rapidity cuts |∆η| < 1.3 and |η| < 2.5,
respectively. In Ref. [2], the hadronic cross sections were then calculated using the ManeParse

package [648] with the PDF set CTEQ6L1 [649].
In Fig. 8.11 we show different exclusion limits on the Xud (left column) and Xdd (right

column) resonant production cross sections as a function of the diquark mass for the LHC
(top and bottom rows) HE-LHC [589], and FCC-hh [651] (bottom row). Short dashed lines
in Fig. 8.11 correspond to dijet final states, while long-dashed lines correspond to third
generation quarks using top- and bottom tagging efficiencies ∼ 0.3 and ∼ 0.8, respectively,
following Ref. [650].

For the LHC-specific cross sections, three different coupling constants f = 1, 0.1, 0.01 are
used. Comparing with the CMS data shown in black, we see that Xud diquarks are excluded
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Figure 8.11.: Cross section for the diquark mediated s-channel scattering u + d → Xud →
dijet (t + jet) (left column) and d + d → Xdd → dijet (b + b) (right column) as a
function of the diquark mass, where experimental acceptance is accounted for
by the factor A. In the top row, the cross sections corresponding to searches
at the LHC are shown for three different diquark couplings f = 1.0, 0.1, and
0.01, corresponding to purple, blue, and pink lines, respectively. Short-dashed
lines correspond to dijet final states, while long-dashed lines correspond to third
generation fermion final states. Black and green lines show CMS data for an
integrated luminosity of 36 fb−1 [650] and the corresponding SM prediction for
dijet searches, respectively. Projected cross sections for f = 1 at LHC, HE-LHC
and FCC-hh are shown in the bottom row. This figure is taken from Ref. [2].

for fud = 0.1 up to mXud ∼ O(5 TeV), while Xdd is excluded for fdd = 0.1 up to O(3 TeV). For
couplings of order unity, f = 1, both diquarks are excluded up to m ∼ O(8 TeV). Comparing
with the plots in the bottom row, where all cross sections are shown for f = 1, we see that
future exclusions could in principle reach a lot higher in the diquark mass.

8.5.2. Meson oscillation

Neutral meson oscillations can severely constrain the masses and couplings of scalar di-
quarks [629]. Assuming Xuu to be very heavy15, we here focus on meson oscillations induced
by the diquarks Xud and Xdd.

15Note however that if Xuu is light it can lead to D0 − D0 oscillation [652].
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Figure 8.12.: Meson oscillation diagrams mediated by Xdd at tree-level (left) and Xud at loop-
level (right). This figure is taken from Ref. [2].

Mixing between the neutral mesons M and M can be described by the matrix element

MMM = ⟨M|Heff|M⟩ = ∑
j
(CSM

j + CNP
j )⟨M|Oj|M⟩ , (8.110)

where Oj are four-quark operators with associated SM and NP Wilson coefficients CSM
j and

CNP
j , respectively.
For B-meson oscillation Bq − Bq, the SM contribution comes from the operator

OVL = (q̄γµPLb)(q̄γµPLb) , (8.111)

where the Wilson coefficient is given by [653]

CSM
VL

=
G2

F
4π2 m2

W η̂BS0(xt)(VtbV∗td(s))
2 . (8.112)

Here η̂B = 0.8393 comes from QCD-corrections, and S0(xt) = 2.35 with xt = m2
t /m2

W is the
Inami-Lim function corresponding to the SM top-quark box diagram. For kaon oscillations
K− K, the SM operator and Wilson coefficients are given by [653]

OVL = (d̄γµPLs)(d̄γµPLs) , (8.113)

and

CSM
VL

=
G2

F
4π2 m2

W

(
ηttS0(xt)(VtsV∗td)

2 + ηccS0(xc)(VcsV∗cd)
2 + 2ηctS0(xc, xt)VtsV∗tdVcsV∗cd

)
, (8.114)

respectively, where ηtt = 0.5765, ηcc = 1.39 (1.29 GeV/mc)1.1, and ηct = 0.47 come from
QCD-corrections, and S0(xc) ≈ xc, S0(xc, xt) ≈ −xc log(xc) + 0.56xc with xc = m2

c /m2
W is the

Inami-Lim function including the charm-quark box diagram.
The NP contribution to neutral meson oscillation coming from the diquarks Xud or Xdd can

be described by the operator [357]

OVR = (d̄jγµPRdi)(d̄jγ
µPRdi) , (8.115)
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Observable Diagram Constraint

∆Bs tree-level
∣∣ f dd

22 ( f dd
33 )
∗∣∣ ≲ 3.1× 10−4 (mXdd /TeV)2 [656]

one-loop
∣∣∣∑k f̂ ud

k2 ( f̂ ud
k3 )
∗
∣∣∣ ≲ 0.36 (mXud /TeV) [656]

∆Bd tree-level
∣∣ f dd

11 ( f dd
33 )
∗∣∣ ≲ 1.5× 10−5 (mXdd /TeV)2 [656]

one-loop
∣∣∣∑k f̂ ud

k3 ( f̂ ud
k1 )
∗
∣∣∣ ≲ 0.08 (mXud /TeV) [656]

∆mK tree-level
∣∣ f dd

11 ( f dd
22 )
∗∣∣ ≲ 2.2× 10−6 (mXdd /TeV)2 [657]

one-loop
∣∣∣∑k f̂ ud

k2 ( f̂ ud
k1 )
∗
∣∣∣ ≲ 0.03 (mXud /TeV) [657]

Table 8.8.: Constraints at 95% CL on the mass and coupling of diquarks Xud and Xdd coming
from B0

s − B0
s , B0

d − B0
d, and K0 − K0.

where the quarks di and dj should be taken as (di, dj) = (s, b), (d, b), (d, s) for Bs, Bd, and K
oscillation, respectively. Diagrams corresponding to these oscillations are shown in Fig. 8.12,
where Xdd only gives rise to tree-level diagrams for flavour-diagonal couplings fdd, while
Xud only leads to loop-level diagrams due to its coupling to both up- and down-type quarks
rather than two quarks of the same type [654, 655]. For Xdd, this tree-level exchange leads to
the Wilson coefficient

CNP
VR

= −1
2

f dd
ii ( f dd

jj )
∗

m2
Xdd

, (8.116)

while the box-diagram involving Xud exchange, assuming a flavour-symmetric coupling
matrix fud, leads to [357]

CNP
VR

=
3

256π2
1

m2
Xud

[
f̂ ud
ki ( f̂ ud

kj )
∗
]2

, (8.117)

where f̂ ud
ij = (VR)ik f ud

kj , with VR being the matrix that diagonalises the right-handed quark
charged current.

Following Refs. [653,656–658] we now consider the ratio between the total and SM-mediated
meson oscillation contributions,

∆M =
⟨M|Heff|M⟩
⟨M|HSM

eff |M⟩
= 1 +

CNP

CSM , (8.118)

where the complex parameter ∆M is experimentally constrained at 95% CL to ∆Bs(d) = 1.11+0.96
−0.48

(1.05+1.0
−0.52) for B-mesons and Re(∆K) = 0.93+1.14

−0.43, Im(∆K) = 0.92+0.39
−0.26 for kaons [656, 657].

These constraints can be translated into limits on the masses and couplings of the diquarks,
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Figure 8.13.: A diagram showing the dinucleon decay nn → π0π0 at two-loop level with
third-generation diquark couplings. This figure is taken from Ref. [2].

as shown in Tab. 8.8. Here we see that kaon oscillations provide the most stringent limits,
especially on the mass and coupling of Xdd.

Apart from meson oscillations, diquarks can lead to other flavour-changing neutral cur-
rent (FCNC) processes such as non-leptonic rare meson decays [357, 629]. However, such
constraints are generally weaker than those coming from meson oscillations.

8.5.3. Dinucleon decay

A ∆B = 2 process that can be induced by scalar diquarks, apart from n-n̄ oscillations, is
dinucleon decay, e.g. nn→ π0π0. This decay mode involves couplings between diquarks and
first-generation quarks, effectively constraining the same parameters as n-n̄ oscillation. Due
to large uncertainties in the dinucleon decay matrix elements, n-n̄ oscillation leads to more
reliable constraints for these parameters. However, dinucleon decay could still be a leading
probe of ∆B = 2 interactions in the special case where the diquarks most dominantly couple
to third generation quarks. In such a scenario, the leading contribution to n-n̄ oscillation
would be found at 3-loop order, while two loops are sufficient to mediate nn→ π0π0 decays,
as illustrated in16 Fig. 8.13. This reduced number of loops could potentially lead to stronger
limits coming from dinucleon decay than n-n̄ oscillation.

16Note that the mass insertions in Fig. 8.13 are needed in order to flip the helicities of the quarks, since W-bosons
only interact with left-handed quarks while for the model we considered in Sec. 8.3.1 the diquarks only
interact with right-handed quarks. We ignore these mass insertions for the subsequent analysis of this section
in the interest of simplification. The resulting uncertainty in the final result coming from this simplification is
overshadowed by the uncertainty in the nuclear matrix elements corresponding to dinucleon decay.
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Figure 8.14.: Exclusion limits in the coupling-mass plane from different dinucleon decay
experiments, assuming the two-loop diquark-mediated dinucleon decay mode to
be the most dominant. Red lines correspond to equal couplings f dd = f ud, and
blue lines to a coupling hierarchy f ud = 10 f dd. This figure is taken from Ref. [2].

The two-loop dinucleon decay rate is given by [596]

Γ ≃ 9
32π

|CDN|2
m2

n
|⟨π0π0|O15

DN|nn⟩|2ρn , (8.119)

where mn is the mass of the neutron, and ρn ≃ 0.25 fm−3 is the nuclear density. The
nuclear matrix element |⟨π0π0|O15

DN|nn⟩| corresponding to a 15-dimensional operator has
mass dimension eleven, such that |⟨π0π0|O15

DN|nn⟩| ∼ Λ11. In the absence of accurate nuclear
matrix element calculations, we assume that Λ lies somewhere between ΛQCD and mn, and in
the interest of deriving conservative limits we chose Λ = mn in the subsequent analysis. Here
we omit some steps in the calculation of the dinucleon decay rate. The interested reader is
referred to Ref. [2].

The most stringent experimental limit on the nn → π0π0 decay mode of τ > 4.04 ×
1032 years comes from the Super-Kamiokande experiment [659], where τ is the partial
lifetime. This limit can be compared with an earlier limit τ > 3.4× 1030 years from the
Frejus experiment [660]. In the future, the Hyper-Kamiokande experiment is expected to set
constraints that improve over existing bounds by an order of magnitude [661].

In Fig. 8.14 we show the past, current, and future experimental limits in the diquark
mass-coupling plane, where the masses are related via mXdd = 3mXud , and the couplings are
related via fud = fud (red lines) and fud = 10 fud (blue lines).
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Figure 8.15.: Diagrams involving only the trilinear coupling µXddXudXud that give rise to
effective quartic interaction terms. This figure is taken from Ref. [2].

8.5.4. Colour-preserving vacuum

The trilinear diquark coupling L ⊃ µXddXudXud, where the dimensionful coupling µ = λv′

arises from the vev v′ of ξ (c.f. Sec. 8.3.1), can be constrained by the requirement that the
vacuum should preserve colour charge. As illustrated in Fig. 8.15, combining multiple
instances of this term can lead to effective quartic interactions according to the Lagrangian

−Leff = λeff(Xud)
2(X†

ud)
2 + λ′eff(Xdd)

2(X†
dd)

2 + λ′′eff(XudX†
ud)(XddX†

dd) , (8.120)

where the effective coupling constants are given by [662]

λeff ∼ − 1
2π2

µ4

(m2
Xdd
−m2

Xud
)2

[
m2

Xdd
+ m2

Xud

m2
Xdd
−m2

Xud

log

(
m2

Xdd

m2
Xud

)
− 2

]
, (8.121)

λ′eff ∼ − 1
4π2

µ4

6m4
Xud

, (8.122)

λ′′eff ∼ − 1
π2

µ4m2
Xdd

2(m2
Xdd
−m2

Xud
)3

[
m2

Xdd

m2
Xud

−
m2

Xud

m2
Xdd

− 2log

(
m2

Xdd

m2
Xud

)]
. (8.123)

For the case where the two masses are of the same scale, mXud ≈ mXdd , we have the relation [2]

2λeff ≈ λ′′eff ≈ 4λ′eff = − 1
π2

µ4

6m4
Xud

. (8.124)
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The fact that the couplings in Eq. (8.124) are negative leads to a colour non-preserving vacuum,
which is inconsistent with the SM. To account for this discrepancy, either additional positive
quartic couplings or new colour-charged scalar fields must be added to the model.

In order for the effective quartic couplings to lead to a perturbative theory, we have the
requirement λeff, λ′eff, λ′′eff < 4π, which leads to constraints on the dimensionful coupling µ

given by

µ <

 mXud × (24π3)1/4 for mXdd ∼ mXud ,

mXud × (96π3)1/4 for mXdd > mXud .
(8.125)

For the numerical study in Sec. 8.6, we choose µ = λv′ ≈ mXdd for the scenarios where there
is a small mass hierarchy between Xud and Xdd, in order to preserve perturbativity. For large
hierarchies, e.g. when mXdd is of O(mGUT) while Xud is of O(1 TeV), we can integrate out Xdd
from the effective quartic interactions to find the perturbativity constraint λeff < 4π satisfied
by the condition

µ ∼ O (mXdd) for mXdd ≫ T > mXud . (8.126)

Additionally considering the effects coming from Xuu with mXuu ∼ O(mGUT) can lead to λ′eff
and λ′′eff not exceeding the values of the corresponding tree-level terms [617].

8.6. Probing baryogenesis with neutron-antineutron oscillation

It this section, we wish to explore the parameter space of the model described in Sec. 8.3.1
including n-n̄ oscillation constraints, as well as the other probes described in Sec. 8.5. We are
particularly interested in the final baryon asymmetry generated via the mechanism described
in Sec. 8.3.2. Our central question is: can successful baryogenesis be achieved in the diquark
model using parameters that are not excluded, but that could potentially be probed in
upcoming experiments, in particular by next-generation n-n̄ oscillation searches?

Based on the different considerations outlined in Sec. 8.5, we identify two benchmark
scenarios that are of special interest, which we denote as the high- and low-scale scenarios:

High-scale scenario: In the high-scale scenario, we set the mass of Xdd, as well as the
trilinear coupling constant λv′, close to the GUT scale, while keeping Xud within experimental
reach of collider experiments. We then have mXdd ≈ λv′ ∼ O(1013 – 1014 GeV) and mXud ∼
O(103 – 104 GeV), for couplings fud, fdd ∼ 10−3 – 1.

Low-scale scenario: In the low-scale scenario, we keep a tight hierarchy between Xdd and
Xud, such that their masses are approximately the same while still satisfying the condition
mXdd > 2mXud needed for baryogenesis. Specifically we choose mXdd = 3mXud , and for
the trilinear coupling we further choose λv′ = 1.2mXdd . As in the high-scale scenario, the
quark-diquark couplings are kept in the range fud, fdd ∼ 10−3 – 1.
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8. Beyond LNV: the case of ∆B = 2

T(GeV) Process High-scale Low-scale

≫ 1013 Gauge interactions + t Yukawa ✓ ✓

> 1013 QCD sphaleron ✓ ✓

∼ 1013 EW sphaleron + b Yukawa ✓ ✓

∼ 1012 τ Yukawa ✓ ✓

∼ 1012 c Yukawa ✗ ✓

∼ 1010 µ, s Yukawa ✗ ✓

≪ 108 u, d, e Yukawa ✗ ✓

Table 8.9.: Temperatures at which various SM processes are expected to come into equilib-
rium [86]. Ticks indicate that the processes is assumed to be in equilibrium in the
corresponding benchmark scenario shown in the top row, and crosses indicate that
this assumption is not made.

Assuming that baryogenesis occurs via out-of-equilibrium decay of Xdd in the model
described in Sec. 8.3.2, we evaluate the Boltzmann equations from Sec. 8.3.2 to find the value
of the final baryon asymmetry. For both benchmark scenarios we define the CP-violation
parameter ϵ under the simplifying assumption that the couplings of Xdd and X′dd are related
via f ′dd = i fdd and λ′ = λ, where fdd ∈ R, such that

ϵ =
1
π

Tr
[
( fdd)

† fdd

] ( x
1− x

)
r . (8.127)

Here we have further defined x ≡ (mXdd /m′Xdd
)2 and use r = BR

(
Xdd → X∗udX∗ud

)
. The

maximum value of ϵ is ϵMax = 2r, which can be compared to the value obtained from
Eq. (8.127) in different benchmark scenarios. Below we denote these values for ϵ as the
maximum and loop-induced values, respectively. Unless otherwise stated, we use x = 0.2 as an
example case for the loop-induced ϵ.

For both the high- and low-scale scenarios we assume flavour-universal and flavour-
diagonal couplings, such that fdd, fud ∝ 1. However, in the high-scale scenario we only
consider the couplings to third generation quarks to affect the baryogenesis mechanism, due
to the late onset of the other Yukawa couplings with respect to the scale of Xdd.

In the early Universe, different SM process come into equilibrium at different times, as
discussed in Sec. 2.2.2. In Tab. 8.9, we show the approximate temperatures at which the gauge-
and Yukawa interactions, as well as the two sphaleron processes, reach chemical equilibrium.
In the last and second-to-last columns we denote which interactions are assumed to be in
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equilibrium for the two benchmark scenarios, respectively.
In the next two sections, we show the results in the high- and low-scale scenarios respec-

tively, by comparing the parameter space leading to successful baryogenesis with the regions
excluded by different experimental searches.

8.6.1. High-scale scenario

Apart from n-n̄ oscillation and baryogenesis, the high-scale scenario offers a connection to
both grand unification and collider searches. In Sec. 8.4 we saw that a O(1 TeV) scale Xud
can lead to gauge coupling unification at mXdd ≈ mGUT in the presence of minor additional
adjustments to the model. Furthermore, being at such low scales, the diquark Xud can
potentially be found in future collider searches at the LHC, HE-LHC, or FCC-hh, as was
discussed in Sec. 8.5.1.

In Fig. 8.16, we show the evolution of ηXdd and η∆B with respect to the time-variable
z = mXdd /T, as evaluated using Eqs. (8.49) and (8.49) from Sec. 8.3.2 in the high-scale scenario
with mXdd = 1014 GeV (left column) and mXdd = 1013 GeV (right column), where the rest of
the parameters are chosen as fud = fdd = 0.05, λv′ = 1.5mXdd , and mXud = 5 TeV. Here the
blue line shows the number density of Xdd, and the dashed green line is its equilibrium value.
The orange line corresponds to the baryon asymmetry η∆B for the maximum value of the
CP-violating parameter ϵ = ϵMax = 2r, while the red line shows η∆B for the loop-induced
ϵ ≈ 4× 10−4 as evaluated using Eq. (8.127) for x = 0.2.

In the top row of Fig. 8.16, the evaluation is performed assuming that Xdd is initially
in equilibrium, while for the bottom row the condition ηXdd(z → 0) = 0 is used17. The
fact that identical final asymmetries are found using both initial conditions motivates the
simplification of neglecting gg → XddX∗dd interactions in the derivation of Eq. (8.49). Such
production processes would rapidly bring Xdd into equilibrium at low z, however we see in
Fig. 8.16 that this has no effect on the final baryon asymmetry.

For the parameters used in Fig. 8.16, we see that the baryon asymmetry is about two orders
of magnitude too large as compared to the observed value for the loop-induced ϵ, and six
orders of magnitude too large for the maximum ϵ. Fig. 8.16 highlights the fact that large
asymmetries can be generated in the high-scale scenario, a lower final baryon asymmetry can
easily be accommodated using smaller couplings or a greater X′dd-mass.

In Fig. 8.17 we show the final baryon asymmetry in the mXud - fud-plane for fud = fdd
and λv′ = 1.5mXdd . The top row is evaluated for loop-induced ϵ, and in the bottom row
the maximum value is taken. For the left column we use mXdd = 1014 GeV and the right
mXdd = 1013 GeV. The yellower a region, the greater the final baryon asymmetry, with the
observed value ηobs

B = 6.2× 10−10 being represented by a red line. Stars show the benchmark
scenarios used in Fig. 8.16, and the black and (solid, dashed) blue lines show exclusion limits
from LHC- and (current, future) n-n̄ oscillation searches, respectively.

There is no dependence on the mass of Xud for the final baryon asymmetry, as can be

17Note that the dip in η∆B around z = 0.1 – 1 in Fig. 8.16 comes from the fact that η∆B flips sign as Xdd goes from
being under- to overabundant (i.e. when ηXdd /η

eq
Xdd

becomes greater than one).
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Figure 8.16.: Evolution of the baryon asymmetry η∆B and Xdd number density ηXdd with respect
to z = mXdd /T in the high-scale scenario, with mXdd = 1014 GeV (left column)
and mXdd = 1013 GeV (right column). Here the different parameters are given
by fud = fdd = 0.05, λv′ = 1.5mXdd , and mXud = 5 TeV. The baryon asymmetry
is evaluated for both maximum CP-violation (orange lines) and loop-induced
CP-violation (red lines), for Xdd being initially in equilibrium (top row) or having
a vanishing initial abundance (bottom row). This figure is taken from Ref. [2].
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Figure 8.17.: Final baryon asymmetry in the mXud - fud-plane for the high-scale scenario, with
mXdd = 1014 GeV (left column) and mXdd = 1013 GeV (right column), for both
loop-induced (top row) and maximum (bottom row) CP-violation, using the
couplings λv′ = 1.5mXdd and fdd = fud. Here the black and blue (solid, dashed)
lines correspond to exclusion limits from the LHC and (current, future) n-n̄
oscillation searches. This figure is taken from Ref. [2].
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Figure 8.18.: Evolution of the baryon asymmetry η∆B and Xdd number density ηXdd with
respect to z = mXdd /T in the low-scale scenario, with fud = fdd = 0.05 (left)
and fud=10 fdd = 0.05 (right). Here the different parameters are given by mXdd =

3× 108 GeV, mXud = 108 GeV, and λv′ = 1.2mXdd . The baryon asymmetry is
evaluated for both maximum CP-violation (orange lines) and loop-induced CP-
violation (red lines). This figure is taken from Ref. [2].

expected from the fact that baryogenesis occurs at very high scales T ∼ mXdd ≫ mXud , where
Xud is effectively massless. For large couplings fud the final asymmetry is smaller, due to
increased washout from Xdd-mediated scattering processes. For the loop-induced ϵ, a smaller
asymmetry is also found for lower values of fud, due to reduced CP-violation (c.f. Eq. (8.127)
keeping in mind that we here use fud = fdd).

We see in Fig. 8.17 that LHC constraints are competitive with n-n̄ oscillation searches for
large parts of the parameter space in the high-scale scenario. Interestingly, these regions are
also compatible with a large baryon asymmetry. We then conclude that the baryogenesis
mechanism described in Sec. 8.3.2 can lead to the observed baryon asymmetry for parameters
that could lead to signals in future n-n̄ oscillation experiments as well as collider searches.

8.6.2. Low-scale scenario

The low-scale scenario offers a good comparison of the diquark model with the EFT-
description of n-n̄ oscillation and baryogenesis described in Secs. 8.1 and 8.2. Due to a
small hierarchy in the internal degrees of freedom, many processes in the low-scale scenario
are well described by only a single heavy scale Λ ∼ mXdd ∼ mXud .

In Fig. 8.18 we show the evolution of the baryon asymmetry and Xdd number density
in the low-scale scenario, for both maximum (orange lines) and loop-induced (red lines)

228



8. Beyond LNV: the case of ∆B = 2

1

Figure 8.19.: Final baryon asymmetry in the mXud - fud-plane for the low-scale scenario, with
fud = fdd = 0.05 (top) and fud = 10 fdd = 0.05 (bottom), for maximum CP-
violation only, using the trilinear coupling λv′ = 1.2mXdd and mass hierarchy
mXdd = 3mXud . Here the orange (solid, dashed), green, black, and blue (solid,
dashed) lines correspond to exclusion limits from (current, future) dinucleon
decay searches, meson oscillations, the LHC, and (current, future) n-n̄ oscillation
searches.
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ϵ. We here use the parameters mXud = 1
3 mXdd = 108 GeV, λv′ = 1.2mXdd , and the couplings

fud = fdd = 0.05 (Fig. 8.18 left) and fud = 10 fdd = 0.05 (right).
The final baryon asymmetry for these parameters is significantly lower than our example

in the high-scale scenario (c.f. Fig. 8.16), due mainly to the difference in scale at which
baryogenesis occurs18. In Fig. 8.18 (left) there is a sudden drop in η∆B (red line) around
z ∼ 20 followed by a freeze-out around z ∼ 30. The drop comes from Xdd-mediated washout
starting to dominate due to the reduction in Xdd decay-rates, which reduces the asymmetry.
However, due to the small hierarchy between Xdd and Xud, the washout is only effective for
a short period of time until the temperature drops too low to generate an on-shell pair of
Xud, and the η∆B therefore freezes out. For a large coupling hierarchy fud = 10 fdd (Fig. 8.18
right) the final asymmetry generated using the maximum value of ϵ (orange line) is greater
than the corresponding value for a vanishing hierarchy fud = fdd (c.f. orange line in Fig. 8.18
left), due to reduced washout. However, for the loop-induced ϵ (red lines in Fig 8.18 left and
right), the final baryon asymmetry is smaller for fud = 10 fdd than for fud = fdd. The reason
for this is that a hierarchy fud = 10 fdd implies a smaller CP-violation parameter ϵ ≈ 4× 10−5

as compared to ϵ ≈ 4× 10−3 for fud = fdd, leading to a smaller asymmetry even though the
washout is reduced.

In Fig. 8.19 we see the final baryon asymmetry for the low-scale scenario in the mXud -
fud-plane, evaluated using the formalism in Sec. 8.3.2. Yellow shades indicate the value of
η∆B, where the red line shows the observed value ηobs

B = 6.2× 10−10 and the stars indicate
the benchmark scenarios in Fig. 8.18. Orange, green, black, and blue lines correspond to
experimental constraints coming from dinucleon decay, meson oscillation, LHC, and n-n̄
oscillation, respectively. For dinucleon decay and n-n̄ oscillation, solid lines correspond to
current constraints while dashed lines show future projections. We see that the regions of
parameter space that lead to successful baryogenesis lies far outside the reach of any current
or near-future experimental reach. This result mimics the EFT-based-baryogenesis analysis in
Sec. 8.2, where washout was found to be strong down to relatively low scales, leading to a
vanishing baryon asymmetry. Therefore, the low-scale scenario is of small phenomenological
impact as a mechanism for baryon-asymmetry generation, but still interesting with respect
to excluding various high-scale baryogenesis mechanisms in case of a n-n̄ signal in future
experiments [2].

In Fig. 8.20 we show how the different reaction rates compare in the high- and low-scale
scenarios for the two benchmarks shown in Figs. 8.16 (left column) and 8.18 (left), respectively.
In both cases, the most dominant washout comes from Xdd-mediated scatterings, shown in
green as the sum of γ

eq
Xs

and γ
eq
Xt

(c.f. Sec. 8.3.2).
In the high-scale scenario, the washout processes start to dominate over the decay rate γ

eq
D

around the same time as η∆B freezes out, leading to a very small washout. For higher values
of the coupling fud = fdd, the washout starts slightly earlier, which can effectively remove the
entire asymmetry (c.f. the top regions of each plot in Fig. 8.17).

18Higher baryogenesis scales generally lead to greater asymmetries since the Hubble rate H ∝ T2 is smaller at
higher temperatures, leading to smaller reaction rates Γ being needed to satisfy the condition Γ/H > 1, which
in turn determines whether Γ has an effect on the baryon asymmetry.
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Figure 8.20.: Equilibrium decay and scattering rates in the high- (left) and low- (right) scale
scenarios, with respect to z = mXdd /T, using the parameters described in the
figure texts in Figs. 8.16 and 8.18 for the high- and low-scale scenarios, respectively.
This figure is taken from Ref. [2].

In the low-scale scenario, a similar overlap of washout dominance and η∆B freeze out can
be seen. Similar to the high-scale scenario, larger couplings fud = fdd would lead to a greater
washout, as can be seen from the reduced asymmetry in the high- fud regions in Fig. 8.19.
The non-trivial mXud -scaling in Fig. 8.19 when compared to Fig. 8.17 comes mainly from the
mXud -dependence of mXdd in the low-scale scenario, where a change in mXud therefore also
changes the scale of baryogenesis, unlike in the high-scale scenario where mXdd is independent
of mXud .

Conclusion to Chapter 8

In this chapter we have seen how ∆B = 2 interactions that lead to n-n̄ oscillation can explain
the origin of the baryon asymmetry of the Universe. As an example scenario, we discussed
a UV-completion of the n-n̄ oscillation operator featuring scalar diquarks, and showed how
successful baryogenesis can be achieved in two benchmark scenarios. These results were
published in Ref. [2].

If a n-n̄ oscillation signal is seen in the next-generation experiments, the underlying
mechanism could be related to either the generation of a baryon asymmetry or its washout.
Since a non-zero baryon asymmetry is observed, the latter must mean that there is some other
NP at relatively low scales that would lead to baryogenesis. If the former is true, collider
searches can be used to distinguish between different scenarios, an example of which being
the diquark model discussed in this section.
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This chapter concludes the main body of the thesis. In Ch. 9 we summarise Chs. 2 to 8, and
discuss further directions into which the results presented here could lead.
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The origin of the baryon asymmetry is one of the big open questions in particle physics. It
holds one of the keys to discovering what lies beyond our current framework of understanding,
and it is intricately connected to various other open questions, such as the unification of
forces, the nature of dark matter, and the origin of neutrino masses. The different extensions
that can accommodate such an asymmetry share a few common features, such as the violation
of B− L. Another open question is the nature of neutrinos. If they are Majorana fermions,
neutrinos and antineutrinos constitute the same field, meaning that lepton number is violated
by two units, ∆L = 2. Whatever mechanism generates the neutrino mass could then be active
in the early Universe, possibly leading to baryogenesis. Constraining various models that
lead to B− L-violation is crucial for our understanding of what could lie beyond the SM.

In this thesis we have shown how probes of LNV and BNV can lead to constraints on both
neutrino masses and baryogenesis models. Using the full set of dimension-7 ∆L = 2 SMEFT
operators we have derived constraints on the scale of LNV using a wide range of different
observables. In a collider-based analysis we presented new limits on the muon-component
of many of the LNV Wilson coefficients, which represent the currently most stringent limits
for this flavour. The results show how collider searches can be used to constrain LNV
operators, and lays a foundation for future work regarding LNV at high-scale observables. By
systematically studying tree-level UV-completions of ∆L = 2 operators, we present a full list
of simplified models leading to dimension-7 LNV. These results are useful for model-building
purposes, as the possible Majorana neutrino mass topologies are shown explicitly for a wide
range of BSM fields. They are also useful as a tool for discriminating between different models
in case of a signal at collider experiments or in any of the LNV observables. Furthermore,
we show how the extensively used EFT-estimate of the neutrino mass contribution coming
from different LNV operators completely misses the effect of a hierarchy in the internal
degrees of freedom. This result leads to wide ranges of parameter space that was previously
considered excluded being opened up. We show how the internal hierarchy can be studied
model-independently, and demonstrate how simplified models can capture the effect of its
variation. This work lays a foundation for future studies of LNV and Majorana neutrino
masses in simplified models and EFT. We also present a novel search strategy for constraining
LNV interactions in neutrino-based observables. Rather than observing leptons directly, as is
the conventional method, we show how LNV can be indirectly inferred using the kinematics
of the other particles involved in the process. The results show that LNV may be differentiated
from LNC in rare kaon decays as well as radiative CEνNS based on the energy spectrum
of the final state particles. Finally, by deriving a new set of Boltzmann equations, we show
how successful baryogenesis can be achieved in a model leading to neutron-antineutron
oscillation. This work can be used to derive Boltzmann equations in other models, and
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the results demonstrate how LHC searches may complement low-scale observables such as
neutron-antineutron oscillation to possibly discover the mechanism behind baryogenesis.

In Chs. 4 and 5 we presented work that is subject for future publication in Ref. [4], in
which ∆L = 2 interactions were studied both at the effective level and in an exhaustive list
of simplified models. We compared a wide range of LNV observables, including new limits
derived from LHC searches. The results show that there are many different models leading
to ∆L = 2 interactions that could explain the origin of neutrino masses while also being
detectable in various experiments. In Chs. 6 and 7, we showed how kinematic distributions
in interactions that involve neutrinos could potentially reveal their Dirac/Majorana nature.
These chapters were based on work that led to the publications in Refs. [1] and [3], respectively.
In the former chapter, it was shown how the pion distribution in K → πνν decays can be used
to differentiate between a neutrino pair (νν) and a neutrino-antineutrino pair (νν̄) in the final
state, leading to a probe of B− L-violation. In the latter we presented a novel search mode in
which photons are searched for in CEνNS interactions, where the photon distribution again
leads to a differentiation between B− L-conserving and -violating processes. In Ch. 8 we
presented work that led to the publication in Ref. [2], in which baryogenesis was studied in the
context of ∆B = 2 interactions. New equations were derived that describe the time-evolution
of a baryon asymmetry within the framework of a UV-complete model. The results show
that successful baryogenesis can be achieved for model parameters that also lead to possible
signals in neutron-antineutron oscillation experiments as well as collider searches.

The work presented above has led to new conclusions being drawn with respect to B− L-
violation, neutrino masses, and baryogenesis, but also to new questions. With regards to the
∆L = 2 operators in Chs. 4 and 5, it would be interesting to see how the story changes if
another effective-field-theory framework is used, e.g. one containing light sterile neutrinos.
One might also ask how the collider limits on the scale of LNV changes for different mass
hierarchies in a simplified model, and whether this would have any consequence for neutrino
masses. Chs. 6 and 7 may lead to the question of whether there are other processes in which
particle distributions could be connected to B− L-violation. The analysis regarding K → πνν

decays could be extended to tensor currents, and the new CEνNS mode could be applied to
other experiments than the one presented here. For Ch. 8 other models could be studied in a
similar framework as the one derived, and it would be interesting to see whether there are
possible connections to proton decay.

Discovering the mechanism behind baryogenesis is an immense task. In this thesis we have
presented some new directions of investigation, but there could potentially be a long road
ahead before we know the answer to what the origin of matter in our Universe is. Until then,
all we can do is wait for signals indicative of a baryogenesis mechanism, and hope that they
come before long.
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A. Notation and Numerical values

Here we summarise the conventions used in this thesis, and explicitly give the numerical
values for tabulated constants and quantities that are used in the calculations.

Unless otherwise stated, we work in units where

h̄ = c = kB = 1. (A.1)

Here h̄ is the reduced Planck constant, c is the speed of light, and kB is the Boltzmann constant.
In these units, length and time have the dimensions of inverse energy, and energy in turn
has the same dimension as mass. Therefore, we often refer simply to the mass dimension of
an object. Furthermore, the relationship between the Planck mass mPl and the gravitational
constant G is given by mPl = G−1/2. We use the Mostly minus/West coast convention for the
metric:

ηµν = ηµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (A.2)

An arrow indicates a 3-vector,
p⃗a =

(
p1

a, p2
a, p3

a

)
, (A.3)

where pi
a here is the momentum of particle a in the direction i of a Cartesian coordinate

system, and the absence of an arrow will, if the object in question is understood to be a vector,
generally denote a four-vector

pa =
(

p0
a, p1

a, p2
a, p3

a

)
= (Ea, p⃗) , (A.4)

where p0
a = Ea =

√
m2

a + | p⃗a|2 is the energy of particle a, with ma being its mass. Indices of
three-vectors are denoted by Roman letters, and that of four-vectors by Greek letters. We use
Einstein summation convention such that

pa · pb = pµ
a pbµ = pµ

a pν
bηµν = p0

a p0
b − p⃗a · p⃗b = p0

a p0
b −∑

i
pi

a pi
b. (A.5)

Unless otherwise stated, multiple repeated indices are also always summed, such that e.g.

−1
4

WaµνWµν
a = −1

4 ∑
a

∑
µ

∑
ν

WaµνWµν
a (A.6)
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and
−yijQ̄idjϕ = −∑

i
∑

j
yijQ̄idjϕ. (A.7)

For spacetime derivatives, we use the short-hand notation

∂µ =
∂

∂xµ
=

(
∂

∂t
, ∇⃗
)

. (A.8)

Here we have used the spacetime four-vector

xµ = (t, x⃗) , (A.9)

where t is time and x⃗ denote space in Cartesian coordinates. A Lagrangian L is the difference
between kinetic and potential energy, and the Lagrangian density L, related to the Lagrangian
via

L =
∫

d3xL, (A.10)

is often referred to simply as the Lagrangian. A similar relation holds the Hermitian H (which
is the sum of kinetic and potential energy) and the Hermitian density H. In field theory, one
purpose of the Lagrangian is to describe the action S [φ] of a field φ via1

S [φ] =
∫

[L][φ, xµ, . . . ]d4x, (A.11)

where the dots represent derivatives of φ with respect to xµ. Equations of motion can be
derived from the action via δS[φ]

δφ , where δ is a small variation. A slashed object denotes
contraction with the gamma matrices such that

/a = γµaµ. (A.12)

A quantum field ψ is said to belong to a certain representation of a symmetry group

Gtot = G1 × G2 × · · · × GN (A.13)

by writing
ψ ∈ (R1, R2, . . . , RN) , (A.14)

where R1 is the representation of G1 in which ψ resides, etc. If no symmetry group is given,
and a field is written as belonging to a representation of a product of three groups, such that
N = 3 in Eq. (A.13), it is meant that the symmetry group in question is the Standard model
group2

GSM = SU(3)c × SU(2)L ×U(1)Y . (A.15)

1Note that the integral in Eq. (A.11) is the origin of the phrase integrate out in the EFT literature. If a field is
sufficiently heavy we can neglect its dependence on the integrand d4x, and move it to the left of the integral
sign.

2See Sec. 2.1.
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Scalar fields written with a tilde denote complex conjugation and contraction with a Levi-
Civita symbol, such that

η̃a = ϵabη∗b (A.16)

Field strengths written with a tilde denote multiplication by 1
2 and contraction with a Levi-

Civita symbol with four indices,

F̃µν =
1
2

ϵµνρσFρσ . (A.17)

An O written in calligraphy, O, is used to both denote an order of magnitude and an operator.
Which of the two uses is meant will be clear from the context in which the O is used. Unless
otherwise stated, a dot ẋ(t) represents a derivative with respect to time t, and a prime x′(t)
represents a derivative with respect to whatever quantity x is said to be a function of, such
that x′(t) = ∂x/∂t = ẋ(t), and x′(ϕ) = ∂x/∂ϕ ̸= ẋ(ϕ). We often mix between denoting
couplings as matrices and scalar numbers, such that even if e.g. the coupling fud is a matrix
in flavour space, we write relations such as fud = 0.3 and so on. What is meant then is that
the relevant entries in fud have the value 0.3.

In Tab. A.1 we tabulate the numerical values for constants and measured observables
taken from the Particle Data Group (PDG) booklet [14] that are used in the calculations in
subsequent chapters.
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Quantity Symbol Value

Higgs vacuum expectation value v 174 GeV

Fermi constant GF 1.66× 10−5 GeV−2

Bohr magneton µB 0.296 MeV−1

Elementary charge e 0.303

Gravitational constant G 6.71× 10−39 GeV−2

Strong coupling constant αs(mZ) 0.118

Electroweak coupling constant α 1/137

Weinberg angle sin2 θW(mZ) 0.231

Higgs boson mass mh 125 GeV

W± boson mass mW 80.4 GeV

Z boson mass mZ 91.2 GeV

Electron mass me 0.511 MeV

Muon mass mµ 106 MeV

τ mass mτ 1.78 GeV

u-quark mass mu 2.2 MeV

d-quark mass md 4.7 MeV

s-quark mass ms 95 MeV

c-quark mass mc 1.28 GeV

b-quark mass mb 4.18 GeV

t-quark mass mt 173 GeV

Table A.1.: The values of constants and measured quantities taken from Ref. [14] that are used
in this thesis. All coupling constants are given at the mass of the Z boson.
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B. Particle algebra

Here we give a few useful identities relating to two-component spinor manipulation, for more
information see Ref. [402].

Spinors ψ transform under hermitian conjugation according to

ψ†
α̇ ≡ (ψα)

†, ψ† α̇ ≡ (ψα)† , (B.1)

where α is a spinor index and α̇ is an antispinor index. These indices are lowered and raised
according to

ψα = ϵαβψβ , ψα = ϵαβψβ , ψ†
α̇ = ϵα̇β̇ψ†β̇ , ψ†α̇ = ϵα̇β̇ψ†

β̇
(B.2)

for spinors, and
Aγδ = ϵγαϵδβ Aαβ , Aγδ = ϵγαϵδβ Aαβ (B.3)

for objects with two spinor indices. They also obey the Shouten identities

ϵαβϵγδ + ϵαγϵδβ + ϵαδϵβγ = 0 , ϵα̇β̇ϵγ̇δ̇ + ϵα̇γ̇ϵδ̇β̇ + ϵα̇δ̇ϵβ̇γ̇ = 0 . (B.4)

Objects with a Lorentz index can be written with one spinor- and one antispinor index
such that

Vµ ≡ 1
2

σ̄µβ̇αVαβ̇ , Vαβ̇ = Vµσµαβ̇ , (B.5)

where σµ ≡ (1, σ1 , σ2 , σ3) and σ̄µ ≡ (1, −σ1 , −σ2 , −σ3) are four-vectors containing the
Pauli matrices. These two vectors are related via

σ
µ
αα̇ = ϵαβϵα̇β̇σ̄µ β̇β , σ̄µ α̇α = ϵαβϵα̇β̇σ

µ

ββ̇
. (B.6)

Spinor indices are often dropped for brevity in this thesis, in which case the following
definitions are used for spinors ξ and η:

ξη ≡ ξαηα, (B.7)

ξ†η† ≡ ξ†
α̇η†α̇, (B.8)

ξ†σ̄µη ≡ ξ†
α̇σ̄µα̇βηβ, (B.9)

ξσµη† ≡ ξασ
µ

αβ̇
η†β̇ (B.10)

ξσµνη ≡ ξα(σµν)α
βηβ , (B.11)

ξ†σ̄µνη† ≡ ξ†
α̇(σ̄

µν)α̇
β̇η†β̇ , (B.12)
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where we have used the tensors

(σµν)α
β ≡ i

4

(
σµ

αγ̇σ̄νγ̇β − σν
αγ̇σ̄µγ̇β

)
, (B.13)

(σ̄µν)α̇
β̇ ≡

i
4

(
σ̄µα̇γσν

γβ̇ − σ̄να̇γσµ
γβ̇

)
. (B.14)

The Hermitian conjugation relations are given by

(ξη)† = η†ξ† , (B.15)

(ξσµη†)† = ησµξ†, (B.16)

(ξσµνη)† = η†σ̄µνξ† , (B.17)

and for spinors zi the commutation relations are given by

z1z2 = −(−1)Az2z1 , (B.18)

z†
1z†

2 = −(−1)Az†
2z†

1 , (B.19)

z1σµz†
2 = (−1)Az†

2σ̄µz1 , (B.20)

z1σµνz2 = (−1)Az2σµνz1 , (B.21)

z†
1σ̄µνz†

2 = (−1)Az†
2σ̄µνz†

1 , (B.22)

where we have

A ≡


−1 , commuting spinors,

+1 , anticommuting spinors.

(B.23)

The Shouten identity in Eq. (B.4) leads to

(z1z2)(z3z4) = −(z1z3)(z4z2)− (z1z4)(z2z3) , (B.24)

(z†
1z†

2)(z
†
3z†

4) = −(z†
1z†

3)(z
†
4z†

2)− (z†
1z†

4)(z
†
2z†

3) . (B.25)

Using the relations above we have the Fierz identities

(z1σµz†
2)(z

†
3σ̄µz4) = −2(z1z4)(z†

2z†
3) , (B.26)

(z†
1σ̄µz2)(z†

3σ̄µz4) = −2(z†
1z†

3)(z4z2) , (B.27)

(z1σµz†
2)(z3σµz†

4) = −2(z1z3)(z†
4z†

2) , (B.28)

(z1σµνz2)(z3σµνz4) = −2(z1z4)(z2z3)− (z1z2)(z3z4) , (B.29)

(z†
1σ̄µνz†

2)(z
†
3σ̄µνz†

4) = −2(z†
1z†

4)(z
†
2z†

3)− (z†
1z†

2)(z
†
3z†

4) , (B.30)

(z1σµνz2)(z†
3σ̄µνz†

4) = 0 . (B.31)

For four-component spinors, the Fierz relations are given by Tab. B.1, where S, V, T, A,
and P denote scalar-, vector-, tensor-, axial vector-, and pseudoscalar currents, respectively.
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S V T A P

S× S 1/4 1/4 -1/4 -1/4 1/4

V ×V 1 -1/2 0 -1/2 -1

T × T -3/2 0 -1/2 0 -3/2

A× A -1 -1/2 0 -1/2 1

P× P 1/4 -1/4 -1/4 1/4 1/4

Table B.1.: Fierz transformations for four-component spinors.

The current structure in the leftmost column leads to a sum of currents given by the entries
in the table after swapping the second and fourth components in a bilinear, such that e.g.

(ψ1ψ2) (ψ3ψ4) =
1
4
(ψ1ψ4) (ψ3ψ2) +

1
4
(
ψ1γµψ4

)
(ψ3γµψ2)

− 1
4
(
ψ1σµνψ4

)
(ψ3σµνψ2) +

1
4
(
ψ1γ5γµψ4

)
(ψ3γ5γµψ2)

+
1
4
(ψ1γ5ψ4) (ψ3γ5ψ2) ,

(B.32)

as can be seen from the row containing S× S in Tab. B.1.
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Here we give some general relations that are useful when calculating particle scattering- and
decay rates.

C.1. Formulae

In the scattering of two particles into any number of particles, A + B → · · · , a measure of
the strength of the interaction is given by the cross section σ (a + b→ · · · ), which has the
dimension of mass squared, and is obtained by the formula [21]

dσ (a + b→ · · · ) = 1
4EAEB|vA − vB|

m

∏
f

d3 p⃗ f

2E f (2π)3

× |M (a + b→ · · · ) |2(2π)4δ(4)

(
pA + pB −∑

f
p f

)
.

(C.1)

Here vα is the velocity of particle α, and |M|2 is the squared matrix element, which is obtained
from the scattering via drawing the diagram and using the appropriate Feynman rules, and
then summing or averaging over all relevant quantum numbers. For a decay a → · · · , the
decay width Γ (A→ · · · ) is obtained from the formula [21]

dΓ (a→ · · · ) = 1
2ma

m

∏
f

d3 p⃗ f

2E f (2π)3 |M (a→ · · · ) |2(2π)4δ(4)

(
pA −∑

f
p f

)
(C.2)

Often, the four-momenta that are involved in particle interactions are parametrised in terms
of the Lorentz invariant Mandelstam variables s, t, and u, which in a scattering a + b→ i + j
are given by

s = (pa + pb)
2 = (pi + pj)

2,

t = (pa − pi)
2 = (pj − pb)

2,

u = (pa − pj)
2 = (pi − pb)

2 .

(C.3)

From the relativistic expression of the energy

E2
α = m2

α + | p⃗α|2 (C.4)

and from conservation of four-momentum

pa + pb = pi + pj , (C.5)
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we then have
s + t + u = m2

a + m2
b + m2

i + m2
j . (C.6)

Often the above relation is used to eliminate the u variable in a two-to-two scattering. In the
center-of-mass (CMS) frame, where p⃗a = − p⃗b and p⃗i = − p⃗j, the variable s can be expressed
in terms of only energies,

s = (Ea + Eb)
2 = (Ei + Ej)

2 . (C.7)

We can then find expressions for all energies and momenta in the CMS frame using only s
and the different masses,

Ea =
s + m2

a −m2
b

2
√

s
, Eb =

s + m2
b −m2

a

2
√

s
, | p⃗a| =

λ1/2(s, m2
a, m2

b)

2
√

s
, | p⃗b| = | p⃗a| (C.8)

where
λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc (C.9)

is the Källén function, and where the final state energies and momenta can be obtained by
exchanging a ↔ i and b ↔ j in Eq. (C.8). For a decay a → i + j in the CMS frame, we have
| p⃗a| = 0 and

√
s = ma. The formulae for the final state energies and momenta can then be

obtained by performing this substitution in Eq. (C.8) after exchanging the particles as in the
two-to-two scattering case.

The phase space element for m particles in the final state is given by

Rm ≡
∫ m

∏
f

d3 p⃗ f

2E f (2π)3 (2π)4δ(4)

(
P−

m

∑
f

p f

)
. (C.10)

Here P ≡ ∑n
i pi is the sum of the four-momenta of all n initial particles. Our goal in this

section and the following is to turn this expression into something connected to observable
variables, such as angles and energies, or Lorentz invariant variables, such as the Mandelstam
variables.

C.2. Two-body phase space

For two particles in the final state, the phase space element is explicitly given by

R2 =
∫ d3 p⃗i

2Ei(2π)3

d3 p⃗j

2Ej(2π)3 (2π)4δ(4)(P− pi − pj) . (C.11)

The integrand of the particle j can be expressed in terms of its four-momentum,∫ d3 p⃗j

2Ej(2π)3 =
∫ d4 pj

(2π)3 δ(p2
j −m2

j )Θ(Ej) (C.12)

where we have used

δ(g(x)) =
δ(x− x0)

|g′(x0)|
, (C.13)
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such that

δ(p2
j −m2

j ) =
δ(p0

j − Ej)

2Ej
, (C.14)

and where the Heaviside function Θ ensures that the energy is positive. Substituting Eq. (C.12)
in Eq. (C.11) and performing the d4 pj integral, we have

R2 =
∫ d3 p⃗i

2Ei(2π)3 (2π)δ((P− pi)
2 −m2

j ) . (C.15)

Changing to spherical coordinates, such that d3 p⃗i = | p⃗i|2d| p⃗i|d cos θdϕ, and further changing
variables from momentum to energy via | p⃗i|d| p⃗i| = EidEi, we have

R2 =
∫ | p⃗i|

2(2π)2 dEid cos θdϕδ((P− pi)
2 −m2

j ) . (C.16)

Finally, in the CMS frame we can express P =
√

s, such that the delta function in Eq. (C.16)
becomes

δ((P− pi)
2 −m2

j ) = δ(s− 2
√

sEi + m2
i −m2

j ) . (C.17)

Using δ(αx) = δ(x)/|α| for α a constant and performing the dEi integral, the two-body phase
space element is finally obtained as

R2 =
1

16π2

λ1/2(s, m2
i , m2

j )

2s

∫
d cos θdϕ . (C.18)

For a two-body decay a→ i + j, this result leads to the simplified formula

Γ (a→ i + j) =
1

16π

λ1/2(m2
a, m2

i , m2
j )

m2
a

|M (a→ i + j) |2 . (C.19)

For a scattering cross section, the matrix element may depend non-trivially on the angles
θ and ϕ. However, assuming that the matrix element does not depend on the angle ϕ, we
may express the phase space element of a two-to-two scattering a + b→ i + j in terms of the
Mandelstam variable t via

t = m2
a + m2

i −
(s + m2

a −m2
b)(s + m2

i −m2
j )

2s
+

λ1/2(s, m2
a, m2

b)λ
1/2(s, m2

i , m2
j )

2s
cos θ , (C.20)

such that we can perform the change of variables

d cos θ =
2s

λ1/2(s, m2
a, m2

b)λ
1/2(s, m2

i , m2
j )

dt . (C.21)

Rewriting the relative velocity

EaEb|va − vb| = |Eb pa − Ea pb| =
√
(pa · pb)2 −m2

am2
b =

1
2 λ1/2(s, m2

a, m2
b) , (C.22)

we obtain the two-to-two scattering cross section

σ (a + b→ i + j) =
1

16πλ1/2(s, m2
a, m2

b)

∫
dt|M (a + b→ i + j) | . (C.23)

The integration limits of t can be obtained by putting cos θ = ±1 in Eq. (C.20).
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Figure C.1.: Coordinate system used for the evaluation of the three-body phase space element
for a scattering a + b→ i + j + k. Note that pi and pj have components that point
in or out of the page, such that the angle ξ does not necessarily lie in the same
plane as the angle θ.

C.3. Three-body phase space

For three particles in the final state, the phase space element is

R3 =
∫ d3 p⃗i

2Ei(2π)3

d3 p⃗j

2Ej(2π)3
d3 p⃗k

2Ek(2π)3 (2π)4δ(4)(P− pi − pj − pk) . (C.24)

Often the coordinate system of a scattering is fixed by the initial particles1, and we are not
free to define a new coordinate system for the final state particles, such as fixing one of them
to go along a specific axis, without also relating it to the initial coordinate system. We define
the z-axis of our coordinate system2 to be the direction of momentum of the particle a, and
define the angle between p⃗i and p⃗k as ξ, as well as between p⃗k and the z-axis as θ, as can be
seen in Fig. C.1. The x-axis is defined such that p⃗k lies in the x-z-plane, while a third angle ϕ

rotates the final state momenta around the z-axis. A fourth angle is then needed to completely
describe the geometry of the final state, and we use the angle ψ between the x-y-plane and
the plane spanned by pi and pj, such that

cos ψ ≡ ( p⃗a × p⃗k) · ( p⃗k × p⃗i)

| p⃗a|| p⃗i|| p⃗k|2
. (C.25)

Our first step is to re-write the integrands in Eq. (C.24) in terms of the four-momenta, such
that

R3 =
∫ 1

(2π)5 d4 pid4 pjd4 pkδ(p2
i −m2

i )δ(p2
j −m2

j )δ(p2
k −m2

k)δ
(4)(P− pi − pj − pk) . (C.26)

1In scattering experiments the direction of incoming particles is often known, and defines a coordinate system to
which the final state phase space must be related.

2Note that this coordinate system can also be used for a three-body decay, and that our treatment of R3 is
completely general with respect to the initial state of the problem.
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We can subsequently get rid of the delta function δ(4)(P− pi − pj − pk) by integrating over
d4 pj, such that

R3 =
∫ 1

(2π)5 d4 pid4 pjd4 pkδ(p2
i −m2

i )δ(p2
k −m2

k)δ
(
(P− pi − pk)

2 −m2
j

)
. (C.27)

Next, we convert the integrand d4 pi into an integrand over energy and angle,∫
d4 pδ(p2

i −m2
i ) =

∫
| p⃗i|2d| p⃗i|dEidΩiδ(E2

i − | p⃗i|2 −m2
i ) =

1
2 | p⃗i|

∫
dEidΩi , (C.28)

where Ωi denotes the angle of p⃗i, and similarly for d4 pk, such that

R3 =
1
4
| p⃗i| p⃗k|
(2π)5

∫
dEidΩidEkdΩkδ

(
(P− pi − pk)

2 −m2
j

)
. (C.29)

We can now identify dΩi = d cos ξdψ and dΩk = d cos θdϕ.

C.4. Boosts

A boost in particle physics represents a change of reference frame from an initial frame F to a
final frame F′ with a non-zero velocity relative to F. We now assume that F′ is moving in the
z-direction relative to F with a velocity β given by

β =
| p⃗a|
Ea

, (C.30)

where p⃗a and Ea is the momentum and energy of a, respectively. The transformation relation
between the energy and momentum of a particle a in the two frames is then given byE′a

pa
z
′

 =

 γ −γβ

−γβ γ


Ea

pa
z

 , p⃗T
′ = p⃗T (C.31)

where pa
z is the z-component of the momentum, and p⃗T is the transverse component. Here

the Lorentz factor γ is given by

γ =
1√

1− β2
. (C.32)

Applying Eq. (C.31) we can then shift between any frames F and F′. This shift is often used
in order to e.g. change between rest- and lab frames in the analysis of a particle experiment.
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D. Chemical potentials

Here we will go through some of the details relating to chemical potentials in the early
Universe. When a particle a is thermal equilibrium but not chemical equilibrium, its chemical
potential µa vanishes. The number density of a in and out of chemical equilibrium are
therefore given by the expressions

neq
a =

∫ ∞

0

dp3
a

(2π)3
ga

eEa/T ± 1
, na =

∫ ∞

0

dp3
a

(2π)3
gα

e(Ea−µa)/T ± 1
, (D.1)

respectively, where a superscript eq denotes equilibrium. Here neq
a is the (equilibrium) number

density, pa the momentum, ga the degrees of freedom, and Ea the energy. Neglecting angular
dependencies we write the number density na in Eq. (D.1) as

nα =
1

2π2

∫ ∞

0
dEαEα

√
Eα −mα

gα

e(Eα−µα)/T ± 1
, (D.2)

which leads to [588]

Bosons: na − n̄a =
ga

3
µaT2, Fermions: na − n̄a =

ga

6
µaT2 . (D.3)

Ignoring relativistic effects and assuming a small chemical potential compared to the temper-
ature, we treat fermions and bosons the same, and write the fraction of number density to
equilibrium number density as

na

neq
a

= eµa/T ≈ 1 +
µa

T
, (D.4)

where the only difference between the number density na of particle a and the number density
n̄a of its antiparticle ā is a sign flip of the chemical potential, according to the relation

µa = −µa. (D.5)

If e.g. a reaction a + b ↔ c + d is in chemical equilibrium it leads to the relation µa + µb =

µc + µd.
Eq. (D.4) turns out to be very useful when evaluating Boltzmann equations. To see this

we first note that a number of reactions in the SM are in chemical equilibrium during the
early Universe. First we note that the interactions involving W±-bosons are all be chemical
equilibrium, leading to the relations

µW− − µϕ− − µϕ0 = 0 , (D.6)

µdL − µuL − µW− = 0 , (D.7)

µeLi − µνLi − µW− = 0 , (D.8)
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where we also have µW− = µW+ = 0 since the SU(2)L-symmetry is unbroken in the early
Universe. Using the above relations we now define µdLi = µuLi ≡ µqi , µeLi ≡ µℓi , and µH ≡ µϕ0 .
This subsequently leads to the following relations coming from Yukawa interactions, assuming
that the ith generation Yukawa interactions of the SM are all in full equilibrium,

µqi − µui + µH = 0 , (D.9)

µqi − µdi − µH = 0 , (D.10)

µℓi − µei − µH = 0 . (D.11)

Finally, we also have the EW sphaleron leading to
N

∑
i

(
3µqi + µℓi

)
= 0 , (D.12)

where N is the number of fermion generations1, as well as the QCD sphaleron leading to
N

∑
i

2µQi − µūc
i
− µd̄c

i
= 0 . (D.13)

Interestingly, the same constraint that is given by the QCD sphaleron is also fulfilled by the
Yukawa interactions if all SM quark generations are in equilibrium.

Often it is also assumed that the total hypercharge of the Universe vanishes, in which case
we would obtain the relation

N

∑
i

(
µqi + 2µui − µdi − µℓi − µei +

2
N f

µH

)
= 0 . (D.14)

This relation lets us express the lepton L and baryon B number charges of the Universe

B =
N

∑
i

(
2µqi + µui + µdi

)
, (D.15)

L =
N

∑
i

(
2µℓi + µei

)
, (D.16)

only in terms of the single chemical potential µℓ ≡ ∑N
i µℓi , such that

B = −4
3

Nµℓ,

L = −14N2 + 9N
6N + 3

µℓ .
(D.17)

Relating B and L to each other we then have

B = cs (B− L) , (D.18)

L = (cs − 1) (B− L) , (D.19)

where cs is given by

cs =
8N + 4

22N + 13
. (D.20)

1Note that N = 3 in the SM.
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E. Boltzmann Equations

In the early Universe, the abundances of any number of particle species i can be dynamically
described by a set of Boltzmann equations [224]. In this Appendix, which serves as a
complement to Sec. 3.4, we go through some of the detail regarding the Boltzmann equation
formalism.

E.1. The LHS of a general Boltzmann equation

For a general particle X, the Boltzmann equation reads

dnX

dt
+ 3nX H = − ∑

i,j,...
[X a · · · ↔ i j · · · ] . (E.1)

Here t is time, nα is the number density of particle α, and

H =
1
a

da
dt

=
1.66
√

g∗
mPl

T2 (E.2)

is the Hubble rate, where T is the temperature, a ∝ 1/T is the scale factor, g∗ is the number
of degrees of freedom1, and mPl = 1.2× 1012 GeV is the Planck mass. We can express the
number density as a phase space integral

nα =
∫ ∞

0

dp3
α

(2π)3
gα

e(Eα−µα)/T ± 1
, (E.3)

where a + is used for fermions and a − for bosons. Furthermore, pα is the momentum, Eα

the energy, gα the number of degrees of freedom, and µα the chemical potential of particle α.
Assuming eEα/T ≫ ±1, we can rewrite the number density for the case where α is in chemical
equilibrium,

neq
α =

gα

2π2

∫ ∞

0
dpα p2

αe−Eα/T =
gα

2π2 T3
∫ ∞

z
dxx

√
x2 − z2e−x , (E.4)

where x = Eα/T and z = mα/T for a mass mα and temperature T. We can further express
the RHS in terms of modified Bessel functions of the second kind [663]

Kν(z) =
√

π

(n− 1
2 )!

(
1
2

z
)ν ∫ ∞

1
dxe−zx(x2 − 1)ν− 1

2 (E.5)

1In the early Universe, the number of degrees of freedom decrease with time as more and more particles become
non-relativistic and go out of equilibrium.
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where, explicitly,

K2(z) =
1

3
√

z

∫ ∞

z
dx(x2 − z2)3/2e−x =

∫ ∞

z
dxz−2x(x2 − z2)1/2e−x . (E.6)

Here we used IBP in the last step assuming that the boundary term vanishes. We then arrive
at the following expression for the equilibrium number density of particle α,

neq
α =

gα

2π2 Tm2
XK2

(mα

T

)
. (E.7)

For massless bosons such as the photon, the number density is instead evaluated as

nγ =
gγ

2π2

∫ ∞

0
dpγ p2

γ

1
eEγ/T − 1

=
gγ

2π2 T3
∫ ∞

0
dxx2 1

ex − 1
=

gγ

π2 ζ(3)T3 , (E.8)

where ζ(3) = 1.202 . . . is the Riemann zeta function ζ(z) at z = 3. Here we have dropped
the superscript eq since photons are always in chemical equilibrium in the early Universe
due to photon number non-conserving processes such as e− ↔ e− + γ being in equilibrium.
When evaluating the Boltzmann equation, the number densities of particles will in general
either be treated as variables, or taken to be the equilibrium densities. This is a simplification,
a complete treatment of all particle number densities should include as many coupled
Boltzmann equations as there are particle species involved. However, solving coupled
differential equations over many orders of magnitude can be computationally challenging,
and by reducing the number of particle species being out of equilibrium to only a few, as is
most often done, it is possible to capture the relevant physics without making the problem
essentially unsolvable.

Using the results above, the LHS of Eq. (E.1) can be rewritten by normalising the particle
number density nX to the photon number density2 nγ,

dnX

dt
+ 3nX H = nγ

d
dt

ηX − n2
γηX

d
dt

1
nγ

+ 3nγηX H , (E.9)

where ηα ≡ nα/nγ. Assuming that the number of photons per co-moving volume is constant
d(nγR3)/dt = 0, where R = R0a and3 R0 ≡ n−1/3

γ a−1, the second term on the RHS of Eq. (E.9)
can be re-written as

n2
γηX

d
dt

1
nγ

= n2
γηX

d
dt

R3

a3nγ
= n2

γηX
d
dt

R3 = 3n2
γηXR2 d

dt
R = 3n2

γηXR3H = 3nγηX H . (E.10)

2Another convention is to normalise the particle number density to the entropy density

s(T) =
2g∗π2

45
T3.

3Here R0 has the dimension of length, and is constant under the assumption that the number of photons per
co-moving volume does not change. Its product with a corresponds to the length of one side of a cube
containing a single photon.
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We see that the second and third term in the LHS of Eq. (E.9) cancel. The first term in the
LHS of Eq. (E.9) can further be written in terms of z = mX/T ∝ a, where mX is the mass of X,
such that

nγ
d
dt

ηX = nγ
dz
dt

d
dz

ηX = zHnγ
d
dz

ηX (E.11)

The Boltzmann equation can then be re-written as

zHnγ
dηX

dz
= − ∑

i,j,...
[X · · · ↔ ij · · · ] . (E.12)

E.2. The RHS of a general Boltzmann equation

The square brackets on the RHS of Eq. (E.12) are given by

[X a · · · ↔ i j · · · ] = ηXηa · · ·
η

eq
X η

eq
a · · ·

γeq(X a · · · → i j · · · )− ηiηj · · ·
η

eq
i η

eq
j · · ·

γeq(i j · · · → X a · · · ) .

(E.13)
Here the dots · · · denote that any additional number of particles can be included, and the
sum over i, j, . . . in Eq. (E.12) goes over all4 combinations of initial and final particles that
are involved in interactions with X. Furthermore, η

eq
α is the thermal equilibrium number

density of particle α, normalised to the photon number density, and γeq(X a · · · → i j · · · ) is
the equilibrium reaction rate density of the process5 Xa · · · → ij · · · , which is given by

γeq (X a · · · → i j · · · ) =
∫ n

∏
i

d3 pi

2Ei(2π)3 e−Ei/T
m

∏
f

d3 p f

2E f (2π)3

× (2π)4δ(4)

(
n

∑
i

pi −
m

∑
f

p f

)
|M(X a · · · → i j · · · )|2 .

(E.14)

E.2.1. Reaction rates for two-body decays

For a two-body decay X → i j · · · we have [664]

γeq(X → i j · · · ) =
∫ d3 pX

2EX(2π)3 e−EX/T
2

∏
f

d3 p f

2E f (2π)3 (2π)4δ(4)

(
pX −

2

∑
f

p f

)
|M(X → i j)|2

=
1

2mX
nX

〈
1
γ

〉 ∫ d3 p f

2E f (2π)3 (2π)4δ(4)

(
pX −

2

∑
f

p f

)
|M(X → i j)|2

= neq
X

〈
1
γ

〉
Γ(X → i j) .

(E.15)
4The particles a and j do not both necessarily need to be included in Eq. (E.13). The minimum number of

particles in the reaction rate density is three, and the summation in Eq. (E.12) should accordingly include all
such processes as well.

5Note that, if CP-violating effects are absent, the equilibrium reaction rate γeq(X a · · · → i j · · · ) is identical to
that of the reverse process, γeq(ī j̄ · · · → X̄ ā · · · ).
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Here we substituted the integration over initial momenta with the equilibrium number
density of X, taking the average energy per degree of freedom to be the equal to the average
special-relativistic mass of X such that

⟨EX⟩/gX = ⟨γmX⟩ = mX⟨γ⟩ , (E.16)

where

γ =
1√

1− v2
X

=

√
1 +

p2
X

m2
X
=

mX

EX
(E.17)

is the Lorentz factor. The ensemble average of the inverse Lorentz factor can be expressed in
terms of integrals over phase space using z = mX/T and x = EX/T,

〈
1
γ

〉
=

∫ ∞
0

d3 pX
(2π)3

mX
EX

e−EX/T∫ ∞
0

d3 pX
(2π)3 e−EX/T

=

∫ ∞
0 dpX p2

X
mX
EX

e−EX/T∫ ∞
0 dpX p2

Xe−EX/T
=

∫ ∞
z dxz

√
x2 − z2e−x∫ ∞

z dxx
√

x2 − z2e−x
. (E.18)

Using the Bessel function

K1(z) =
∫ ∞

z
dxz−1(x2 − z2)1/2e−x , (E.19)

the reaction rate density is obtained as

γeq(X → i j · · · ) = γeq(ī j̄ · · · → X̄) = neq
X

K1(z)
K2(z)

Γ (X → i j · · · ) . (E.20)

Here Γ (X → i j · · · ) is the width of the decay X → ij · · · . For a two-body decay, the width is
given by

Γ (X → i j) =
1

1 + δij

m2
X −m2

i −m2
j

16πm3
X

|M (X → i j) |2 , (E.21)

where δij is the Kronecker delta, andM (X → i j) is the matrix element of the decay.

E.2.2. Reaction rates for two-to-two scatterings

For a two-to-two scattering Xa→ ij, the reaction rate can be obtained, following Ref. [224],
by multiplying Eq. (E.14) with 1 =

∫
d4Pδ4

(
P−∑2

α=1 pα

)
such that we have

γeq (X a→ i j) =
∫

d4P
2

∏
i

d3 pi

2Ei(2π)3 e−Ei/T
2

∏
f

d3 p f

2E f (2π)3 δ(4)

(
P−

2

∑
α=1

pi

)

× (2π)4δ(4)

(
2

∑
i

pi −
2

∑
f

p f

)
|M(X a→ i j)|2 .

(E.22)
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Now we can evaluate the integral over the initial state momenta,

∫ 2

∏
i

d3 p⃗i

2Ei(2π)3 e−Ei/Tδ4

(
P−

2

∑
i

pi

)

=
∫ d3 p⃗X

2EX(2π)3
d3 p⃗a

2Ea(2π)3 e−(EX+Ea)/Tδ(4)(P− pX − pa)

=
∫ d3 p⃗X

2EX(2π)3
d4 pa

2Ea(2π)3 δ(p0
a − Ea)e−(EX+Ea)/Tδ4(P− pX − pa) .

(E.23)

In the last step we rewrote the integrand d3 p⃗a → d4 pa by inserting an additional Dirac delta
function δ(p0

a − Ea). We can now use the relation

δ(p2
a −m2

a) =
δ(p0

a − Ea)

2Ea
(E.24)

to perform the integral over d4 pa, such that

1
(2π)3

∫ d3 p⃗X

2EX(2π)3 d4 paδ(p2
a −m2

a)e
−(EX+Ea)/Tδ(4)(P− pX − pa)

=
1

(2π)3

∫ d3 p⃗X

2EX(2π)3 δ((P− pX)
2 −m2

a)e
−P0/T .

(E.25)

Next we rewrite the Dirac delta function δ((P− pX)
2 −m2

X) in the centre-of-mass frame,

δ((P− paX)2 −m2
a) = δ(s− 2

√
sEX + m2

X −m2
a) , (E.26)

where we have identified s = P2. We can now integrate over EX by rewriting the integrand
d3 pX = | p⃗X|2d| p⃗X|dΩ = | p⃗X|EXdEXdΩ, such that

1
(2π)6

∫ | p⃗X|
2

dEXdΩδ(s− 2
√

sEX + m2
X −m2

a)e
−P0/T

=
1

(2π)5
| p⃗X|
2
√

s
e−P0/T ,

(E.27)

where we have assumed spherical symmetry. Further using
√

s = EX + Ea along with the
centre-of-mass frame relations

EX =
s + m2

X −m2
a

2
√

s
, Ea =

s + m2
a −m2

X
2
√

s
, (E.28)

we can rewrite the result in Eq. (E.27) as

1
(2π)5

| p⃗X|
2
√

s
e−P0/T =

1
(2π)5

λ1/2(s, m2
X, m2

a)

4s
e−P0/T , (E.29)
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where λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc is the Källén function. Inserting our result
back into Eq. (E.22) we have

γeq (X a→ i j) =
1

(2π)5

∫
d4P

2

∏
f

d3 p f

2E f (2π)3
λ1/2(s, m2

X, m2
a)

4s
e−P0/T

× (2π)4δ(4)

(
2

∑
i

pi −
2

∑
f

p f

)
|M(X a→ i j)|2 ,

(E.30)

where we can identify the cross section [21]

σ(X a→i j) =

1
2λ1/2(s, m2

X, m2
a)

∫ 2

∏
f

d3 p f

2E f (2π)3 (2π)4δ4

(
2

∑
i

pi −
2

∑
f

p f

)
|M(X a→ i j)|2 ,

(E.31)

such that

γeq (X a→ i j) =
1

8π

∫ d4P
(2π)4 e−P0/T σ̂(X a→ i j) . (E.32)

Here we have introduced the reduced cross section

σ̂(X a→ i j) =
2λ(s, m2

X, m2
a)

s
σ(X a→ i j) . (E.33)

Performing the same manipulation of the final state momenta as with the initial state momenta,
the cross section in Eq. (E.31) can be re-written as

σ(X a→ i j) =
1

16πs

λ1/2(s, m2
i , m2

j )

λ1/2(s, m2
X, m2

a)

∫
dΩ|M(X a→ i j)|2 . (E.34)

The angular integrand dΩ can, in the centre-of-mass frame, be written in terms of the
Mandelstam variable

t = (pX − pi)
2 = · · ·+ 1

2s
λ1/2(s, m2

X, m2
a)λ

1/2(s, m2
i , m2

j ) cos θ (E.35)

such that
dΩ = 2πd cos θ =

4πs
λ1/2(s, m2

X, m2
a)λ

1/2(s, m2
i , m2

j )
dt , (E.36)

which lets us re-write the reduced cross section from Eq. (E.33) as

σ̂(X a→ i j) =
1

8πs

∫ t-

t+

dt|M(X a→ i j)|2 , (E.37)

with the integration limits

t± =
(m2

X −m2
a −m2

i + m2
j )

2

4s

−
√ (s + m2

X −m2
a)

2

4s
−m2

X ±

√
(s + m2

i −m2
j )

2

4s
−m2

i

2

.

(E.38)
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Lastly, we can further re-write the scattering rate density from Eq. (E.32) in terms of the
modified Bessel function resulting in

γeq(X a→ i j) =
T

64π4

∫ ∞

smin

ds
√

sσ̂(X a→ i j)K1

(√
s

T

)
, (E.39)

where smin = max
(
(mX + ma)2, (mi + mj)

2) .

E.2.3. Reaction rates for EFT operators

For processes with n particles in the initial state and m in the final state, we again insert

1 =
∫

d4Pδ(4)

(
P−

n

∑
i=1

pi

)

=
∫

dsdP0dΩ
1
2

√
P2

0 − sδ(4)

(
P−

n

∑
i=1

pi

) (E.40)

in Eq. (E.14), where s = P2, to obtain [394]

γeq (X a · · · → i j · · · ) = 1
2

∫
dsdΩdP0e−P0/T

√
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|M(X a · · · → i j · · · )|2 .

(E.41)

Assuming that the matrix element does not depend on the distribution of initial or final
momenta, we can express the n-body phase space element in the limit

√
s≫ m1, m2, . . . , mn

as [665]

Rn =
1

2(4π)2n−3
sn−2

Γ(n)Γ(n− 1)
, (E.42)

where Rn is defined in Appendix C. We now rewrite the P0 integral in terms of a Bessel
function,

∫ ∞

√
s

dP0e−P0/T
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(E.43)
where we have used the lower limit Pmin

0 =
√

s which corresponds to |P⃗| = 0. Also performing
the dΩ integral assuming no angle-dependence, we arrive at the expression

γeq (X a · · · → i j · · · ) = 2T
(4π)2n+2m−3

∫
ds
√

sK1

(√
s

T

)
× sn+m−4

Γ(n)Γ(n− 1)Γ(m)Γ(m− 1)
|M(X a · · · → i j · · · )|2 .

(E.44)
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We now turn to the integral [663]∫ ∞

0
dxK1(ax)xµ = 2µ−1a−µ−1Γ

(
2 + µ

2

)
Γ
(µ

2

)
, (E.45)

which is applicable for x → √s in the massless limit that we have already employed, assuming
no dependence on s in the matrix element. We then obtain

γeq (X a · · · → i j · · · ) = 1
4

T2n+2m−4

(2π)2n+2m−3
Γ(n + m− 2)Γ(n + m− 3)
Γ(n)Γ(n− 1)Γ(m)Γ(m− 1)

|M(X a · · · → i j · · · )|2 .

(E.46)
This expression does not contain any integrals, but the s-dependence of the matrix element is
lost. For calculations where this approximation is not valid, Eq. (E.44) should be used instead.
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Below we give the code corresponding to a model file that includes all the dimension-7
∆L = 2 SMEFT operators used in Sec. 4.4.

(* ************************** *)
(* ***** Information ***** *)
(* ************************** *)
M$ModelName = "dimsevenLNV";

M$Information = {
Authors -> {"K. Fridell"},
Institutions -> {"Technical University of Munich"},
Emails -> {"kare.fridell@tum.de"}
};

FeynmanGauge = True;

M$InteractionOrderHierarchy = {
{QCD, 1},
{QED, 2},
{NP, 2}
};

(* ************************** *)
(* ***** Change log ***** *)
(* ************************** *)
(* v1.0: First build *)

(* ************************** *)
(* ***** Parameters ***** *)
(* ************************** *)
M$Parameters = {
(* External Parameters *)
CbLambda == {
ParameterType -> External,
BlockName -> NUPHYSICS,
OrderBlock -> 1,
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Value -> (1000000^2/1000^3),
InteractionOrder -> {NP,1},
ComplexParameter -> False,
TeX -> C/\[CapitalLambda]^3,
Description -> "EFT cutoff scale [GeV]"
},
CbLambdaR == {
ParameterType -> External,
BlockName -> NUPHYSICS,
OrderBlock -> 1,
Value -> (1/1000^3),
InteractionOrder -> {NP,1},
ComplexParameter -> False,
TeX -> C/\[CapitalLambda]^3,
Description -> "EFT cutoff scale [GeV]"
},
CbLambdaAS == {
ParameterType -> External,
Indices -> {Index[Generation], Index[Generation]},
BlockName -> NUPHYSICS,
Value -> {CbLambda[1,1] -> 0.0, CbLambda[1,2] -> (1/1000^3),
CbLambda[1,3] -> (1/1000^3), CbLambda[2,1] -> (-1/1000^3),
CbLambda[2,2] -> 0.0, CbLambda[2,3] -> (1/1000^3),
CbLambda[3,1] -> (-1/1000^3), CbLambda[3,2] -> (-1/1000^3),
CbLambda[3,3] -> 0.0},
InteractionOrder -> {NP,1},
ComplexParameter -> False,
TeX -> C/\[CapitalLambda]^3,
Description -> "EFT cutoff scale [GeV]"
}
};

(* ************************** *)
(* **** Particle classes **** *)
(* ************************** *)

M$ClassesDescription = {

(* Fake scalars *)

S[110] == {
ClassName -> SF1,
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SelfConjugate -> False,
Mass -> {MSF1,1000000},
Width -> {WSF1,0},
QuantumNumbers -> {Q -> 2/3},
Indices -> {Index[Colour]},
PropagatorLabel -> "SF1",
ParticleName -> "SF1",
AntiParticleName -> "SF1~",
FullName -> "Scalar Fake One"
},
S[111] == {
ClassName -> SF0,
SelfConjugate -> False,
Mass -> {MSF0,1000000},
Width -> {WSF0,0},
QuantumNumbers -> {Q -> -1/3},
Indices -> {Index[Colour]},
PropagatorLabel -> "SF0",
ParticleName -> "SF0",
AntiParticleName -> "SF0~",
FullName -> "Scalar Fake Zero"
},
S[112] == {
ClassName -> SF,
Unphysical -> True,
Indices -> {Index[SU2D], Index[Colour]},
FlavorIndex -> SU2D,
SelfConjugate -> False,
QuantumNumbers -> {Y -> 1/6},
Definitions -> { SF[1,cc_] -> SF1[cc], SF[2,cc_] -> SF0[cc] }
},
SE[110] == {
ClassName -> SEF1,
SelfConjugate -> False,
Mass -> {MSEF1,1000000},
Width -> {WSEF1,0},
QuantumNumbers -> {Q -> 1},
PropagatorLabel -> "SEF1",
ParticleName -> "SEF1",
AntiParticleName -> "SEF1~",
FullName -> "Scalar E Fake One"
},
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SE[111] == {
ClassName -> SEF0,
SelfConjugate -> False,
Mass -> {MSEF0,1000000},
Width -> {WSEF0,0},
PropagatorLabel -> "SEF0",
ParticleName -> "SEF0",
AntiParticleName -> "SEF0~",
FullName -> "Scalar E Fake Zero"
},
SE[112] == {
ClassName -> SEF,
Unphysical -> True,
Indices -> {Index[SU2D]},
FlavorIndex -> SU2D,
SelfConjugate -> False,
QuantumNumbers -> {Y -> 1/2},
Definitions -> { SEF[1] -> SEF1, SEF[2] -> SEF0 }
},

(* Fake vector *)

V[110] == {
ClassName -> VF,
SelfConjugate -> False,
Mass -> {MVF1,1000000},
Width -> {WVF1,0},
QuantumNumbers -> {Q -> -1},
PropagatorLabel -> "VF",
ParticleName -> "VF",
AntiParticleName -> "VF~",
FullName -> "Vector Fake"
}};

(* ************************** *)
(* ***** Lagrangian ***** *)
(* ************************** *)

LdLQLH1 :=
Block[{sp1,sp2,ii,jj,kk,ll,ff1,ff2,ff3,ff4,cc,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
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ExpandIndices[
(CbLambda)^(1/2) * Eps[ii,jj] dRbar[sp1,ff1,cc].LL[sp1,ii,ff2] SF[jj,cc]
+ (CbLambda)^(1/2) * Eps[kk,ll] SFbar[jj,cc]
CC[QLbar[sp2,jj,ff3,cc]].LL[sp2,kk,ff4] Phi[ll],
FlavorExpand -> SU2D]/.feynmangaugerules
];

LdLQLH2 :=
Block[{sp1,sp2,ii,jj,kk,ll,ff1,ff2,ff3,ff4,cc,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[
(CbLambda)^(1/2) * Eps[ii,kk] dRbar[sp1,ff1,cc].LL[sp1,ii,ff2] SF[kk,cc]
+ (CbLambda)^(1/2) * Eps[jj,ll] SFbar[kk,cc]
CC[QLbar[sp2,jj,ff3,cc]].LL[sp2,kk,ff4] Phi[ll],
FlavorExpand -> SU2D]/.feynmangaugerules
];

LdLueH :=
Block[{sp1,sp2,ii,jj,ff1,ff2,ff3,ff4,cc,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[
(CbLambda)^(1/2) * Eps[ii,jj] dRbar[sp1,ff1,cc].LL[sp1,ii,ff2] SF[jj,cc]
+ (CbLambda)^(1/2) * SFbar[jj,cc] CC[uRbar[sp2,ff3,cc]].lR[sp2,ff4]
Phi[jj], FlavorExpand -> SU2D]/.feynmangaugerules
];

LduLLH :=
Block[{sp1,sp2,sp3,ii,jj,ff1,ff2,ff3,ff4,cc,mu,lagu,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[
I * (CbLambda)^(1/2) * dRbar[sp1,ff1,cc].Ga[mu,sp1,sp2].uR[sp2,ff2,cc]
VF[mu] + I * (CbLambda)^(1/2) * Eps[ii,jj] VFbar[mu]
CC[LLbar[sp3,ii,ff3]].DC[LL[sp3,jj,ff4],mu],
FlavorExpand -> SU2D]/.feynmangaugerules
];

LLHB :=
Block[{sp1,ii,jj,kk,ll,ff1,ff2,mu,nu,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];
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ExpandIndices[
I/2 * CbLambdaAS[ff1,ff2] * g1 (Ga[mu,sp1,sp3] Ga[nu,sp3,sp2] -
Ga[nu,sp1,sp3] Ga[mu,sp3,sp2] )
Eps[jj,mm] Eps[ii,kk]
CC[LLbar[sp1,jj,ff1]].LL[sp2,ii,ff2]
Phi[mm] Phi[kk] FS[B,mu,nu],
FlavorExpand->SU2D]/.feynmangaugerules
];

LeLLLH :=
Block[{sp1,sp2,ii,jj,kk,ll,ff1,ff2,ff3,ff4,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[
(CbLambda)^(1/2) * lRbar[sp1,ff1].LL[sp1,ii,ff2] SEFbar[ii]
+ (CbLambda)^(1/2) * Eps[ii,jj] Eps[kk,ll] SEF[ii]
CC[LLbar[sp2,jj,ff3]].LL[sp2,kk,ff4] Phi[ll],
FlavorExpand -> SU2D]/.feynmangaugerules
];

LLeHD :=
Block[{sp1,sp2,ii,jj,kk,ll,ff1,ff2,mu,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[
CbLambdaR * I * Eps[ii,jj] Eps[kk,ll]
CC[LLbar[sp1,ii,ff1]].Ga[mu,sp1,sp2].lR[sp2,ff2]
Phi[jj] Phi[kk] DC[Phi[ll],mu],
FlavorExpand -> SU2D]/.feynmangaugerules
];

LLHD1 :=
Block[{sp1,ii,jj,kk,ll,ff1,ff2,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[
CbLambdaR * Eps[ii,jj] Eps[kk,ll]
CC[LLbar[sp1,ii,ff1]].DC[LL[sp1,jj,ff2],mu] Phi[kk]
DC[Phi[ll],mu], FlavorExpand -> SU2D]/.feynmangaugerules
];
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LLHD2 :=
Block[{sp1,ii,jj,kk,ll,mu,ff1,ff2,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[
CbLambdaR * Eps[ii,jj] Eps[kk,ll]
CC[LLbar[sp1,ii,ff1]].DC[LL[sp1,jj,ff2],mu]
Phi[kk] DC[Phi[ll],mu]
+ CbLambda * Eps[ii,ll] Eps[jj,kk]
CC[LLbar[sp1,ii,ff1]].DC[LL[sp1,jj,ff2],mu]
Phi[kk] DC[Phi[ll],mu],
FlavorExpand -> SU2D]/.feynmangaugerules
];

LLHW :=
Block[{sp1,sp2,ii,jj,ll,mm,nn,kk,A,ff1,ff2,mu,nu,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[
I/2 * CbLambdaAS[ff1,ff2] * gw * Eps[mm,ll] Eps[ii,jj]
2*Ta[A,ll,nn] FS[Wi,mu,nu,A] (Ga[mu,sp1,sp3] Ga[nu,sp3,sp2]
- Ga[nu,sp1,sp3] Ga[mu,sp3,sp2] )
CC[LLbar[sp1,ii,ff1]].LL[sp2,mm,ff2] Phi[nn] Phi[jj],
FlavorExpand -> {SU2D,SU2W}]/.feynmangaugerules
];

LQuLLH :=
Block[{sp1,sp2,ii,jj,kk,ll,ff1,ff2,ff3,ff4,cc,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[
(CbLambda)^(1/2) * Eps[ii,ll] QLbar[sp1,ii,ff1,cc].uR[sp1,ff2,cc]
SEFbar[ll] + (CbLambda)^(1/2) * Eps[ii,ll] SEF[ll]
Eps[kk, jj].CC[LLbar[sp2,ii,ff3]].LL[sp2,kk,ff4] Phi[jj],
FlavorExpand -> SU2D]/.feynmangaugerules
];

LLH :=
Block[{sp1,ii,jj,kk,ll,mm,ff1,ff2,feynmangaugerules},
feynmangaugerules = If[Not[FeynmanGauge], {G0|GP|GPbar ->0}, {}];

ExpandIndices[
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CbLambdaR * Eps[ii,jj] Eps[kk,ll]
CC[LLbar[sp1,ii,ff1]].LL[sp1,kk,ff2]
Phi[jj] Phi[ll] Phibar[mm] Phi[mm],
FlavorExpand -> SU2D]/.feynmangaugerules
];

(* Combine dimension-7 Lagrangian *)
LD7 := LdLQLH1 + HC[LdLQLH1] + LdLQLH2 + HC[LdLQLH2]
+ LdLueH + HC[LdLueH] + LduLLH + HC[LduLLH]
+ LeLLLH + HC[LeLLLH] + LLeHD + HC[LLeHD]
+ LLHB + HC[LLHB] + LLHD1 + HC[LLHD1]
+ LLHD2 + HC[LLHD2] + LLHW + HC[LLHW]
+ LQuLLH + HC[LQuLLH] + LLH + HC[LLH];

(* Combine full Lagrangian *)
LFull := LSM + LD7;
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