
Technische Universität München

TUM School of Computation, Information and Technology

Query Processing on Modern Hardware

Harald Lang

Technische Universität München

TUM School of Computation, Information and Technology

Query Processing on Modern Hardware

Harald Lang

Vollständiger Abdruck der von der TUM School of Computation, Information
and Technology der Technischen Universität München zur Erlangung eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Georg Carle

Prüfer der Dissertation: 1. Prof. Dr. Thomas Neumann

2. Prof. Alfons Kemper, Ph.D.

3. Prof. Dr. Jens Teubner
(Technische Universität Dortmund)

Die Dissertation wurde am 26.09.2022 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Tech-
nology am 27.02.2023 angenommen.

To my daughter Lisa, my son David, and my wife Maria.
I love you.

♥∞

List of Publications

This cumulative dissertation is based on the following peer-reviewed publica-
tions:

[A] Harald Lang, Thomas Neumann, Alfons Kemper, Peter Boncz, Per-
formance-Optimal Filtering: Bloom Overtakes Cuckoo at High Through-
put, In Proceedings of the VLDB Endowment, 12(5):502�515, Jan. 2019.
https://doi.org/10.14778/3303753.3303757

This work is licensed under the Creative Commons AttributionNon-
Commercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.
0/. For any use beyond those covered by this license, obtain permission
by emailing info@vldb.org. Copyright is held by the owner/author(s).
Publication rights licensed to the VLDB Endowment.

Permission to republish the work as part of this thesis was granted by
Prof. Dr. Volker Markl (on behalf of the VLDB Endowment) on Dec.
19, 2019.

[B] Harald Lang, Linnea Passing, Andreas Kipf, Peter Boncz, Thomas Neu-
mann, Alfons Kemper, Make the Most out of Your SIMD Investments:
Counter Control Flow Divergence in Compiled Query Pipelines, In The
VLDB Journal, 2019. https://doi.org/10.1007/s00778-019-00547-y

This article is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to
the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

[C] Harald Lang, Alexander Beischl, Viktor Leis, Peter Boncz, Thomas Neu-
mann, Alfons Kemper, Tree-Encoded Bitmaps, In Proceedings of the
ACM SIGMOD International Conference on Management of Data, 2020.
https://doi.org/10.1145/3318464.3380588

Reused in accordance with the ACM publication policies (https://authors.
acm.org/author-services/author-rights):

�Authors can include partial or complete papers of their own (and no fee
is expected) in a dissertation as long as citations and DOI pointers to
the Versions of Record in the ACM Digital Library are included.�

iii

https://doi.org/10.14778/3303753.3303757
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
info@vldb.org
https://doi.org/10.1007/s00778-019-00547-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3318464.3380588
https://authors.acm.org/author-services/author-rights
https://authors.acm.org/author-services/author-rights

Abstract

This thesis investigates how query processing in relational database sys-
tems could be further improved. In particular, we focus on three key aspects
of query processing. First we investigate which approximate �ltering data
structures are best suited and additionally we present two novel variants of
Bloom �lters that are optimized for modern hardware and high throughput.
We also present algorithms that help to optimally utilize the available com-
pute resources of modern SIMD processors and thereby reduce the runtime
of database queries. Last, we investigate compression techniques for bitmaps
that are primarily used in secondary indexes and we present a novel bitmap
compression format based on binary trees that can, with regard to memory
consumption and access latency, compete with the best-known compression
techniques in their respective category.

Zusammenfassung

Die vorliegende Arbeit untersucht inwiefern die Anfragebearbeitung in re-
lationalen Datenbanksystemen e�zienter gestaltet werden kann. Insbesondere
werden die Schwerpunkte auf drei Kernaspekte der Anfragebearbeitung gelegt.
Zunächst untersuchen wir welche Datenstrukturen für approximatives Filtern
am besten geeignet sind und präsentieren im gleichen Zuge zwei neuartige
Varianten des Bloom Filters welche für moderne Hardware und hohe Durch-
sätze optimiert sind. Des Weiteren präsentieren wir Algorithmen welche die
verfügbaren Rechenressourcen in modernen SIMD Prozessoren optimal aus-
lasten um somit die Verarbeitungsdauer von Datenbankanfragen zu reduzie-
ren. Abschlieÿend untersuchen wir Kompressionsverfahren für Bitmaps welche
hauptsächlich in Sekundärindexen zum Einsatz kommen und präsentieren ein
neuartiges Kompressionsverfahren, basierend auf Binärbäumen, welches hin-
sichtlich des Speicherbedarfs so wie hinsichtlich der Zugri�slatenzen mit den
besten bekannten Verfahren in der jeweiligen Kategorie konkurrieren kann.

Contents

List of Publications iii

Abstract v

1 Introduction 3

2 Approximate Membership Query Data Structures at High
Throughput 5
2.1 Applications . 6
2.2 Data Structures . 9
2.3 Performance Optimality . 17
2.4 Conclusions . 20

3 E�cient Control Flow Handling in Compiled Queries 21
3.1 Data Centric Query Compilation 21
3.2 Data-Parallel Pipelines . 22
3.3 Control-Flow Divergence . 23
3.4 Countering Underutilization . 24
3.5 Conclusions . 25

4 Space- and Time-E�cient Bitmap Indexing 27
4.1 Bitmap Index Design Space . 28
4.2 Bitmap Compression . 31
4.3 Tree-Encoded Bitmaps . 40
4.4 Future Work . 43

Publications 47

A Performance-Optimal Filtering: Bloom Overtakes Cuckoo
at High Throughput 47
A.1 Introduction . 50
A.2 Performance-Optimal Filtering 53
A.3 Bloom Filter Variants . 55
A.4 Cuckoo Filter . 61
A.5 Implementation Techniques . 64
A.6 Experimental Analysis . 67

ix

A.7 Related Work . 75
A.8 Conclusion . 78
A.9 Acknowledgements . 79

B Make the Most out of Your SIMD Investments: Counter
Control Flow Divergence in Compiled Query Pipelines 81
B.1 Introduction . 84
B.2 Background . 85
B.3 Vectorized Pipelines . 87
B.4 Re�ll Algorithms . 87
B.5 Re�ll Strategies . 96
B.6 Evaluation . 100
B.7 Summary and Discussion . 117
B.8 Conclusions . 118
B.9 Acknowledgements . 119

C Tree-Encoded Bitmaps 121
C.1 Introduction . 124
C.2 Tree-Encoded Bitmaps . 127
C.3 Operations . 134
C.4 Experimental Analysis . 141
C.5 Related Work . 149
C.6 Conclusion . 150

Bibliography 153

Appendix 173

1

1 Introduction

Database system architectures that keep all data in main memory have be-
come a huge success. These systems are orders of magnitude faster than
disk-based architectures and allow for interactive analytics over huge data
sets, which is crucial to many business and scienti�c applications. The per-
formance of these main-memory database systems is no longer bound by disk
I/O, since DRAM o�ers a signi�cantly higher bandwidth and faster random
access. Depending on the complexity of a query, the CPU can quickly be-
come the performance limiting factor [25]. This observation led researchers
to revisit existing database operators and algorithms. Many of the proposed
algorithms are hardware conscious and consider various properties of the un-
derlying hardware such as the memory hierarchy [152, 24], multi-core and
system topology [22, 100, 19, 18, 95, 11, 88, 114, 166, 150], as well as spe-
cialized CPU instruction sets [148, 141, 142, 140]. In the recent iterations of
hardware evolution, the single instruction multiple data (SIMD) capabilities
of modern CPUs have made signi�cant advances. In particular, the number of
registers increased to 32 and the register size increased to up to 512 bits with
the AVX-512 instruction set. Thus, more data can be kept in registers and
more data can be processed in data-parallel per issued instruction. Further,
we observe that newer CPUs have richer and more complex instructions, which
extends the applicability of SIMD to an even larger spectrum of algorithms,
thereby o�ering new potentials to accelerate main memory database systems
to analyze big data in near real-time.
In this work we investigate how query execution performance can be fur-

ther improved. We thereby revisit various aspects of query processing, which
includes (i) approximate key �ltering, (ii) data-centric query compilation and
(iii) secondary index structures.
Chapter 2 focuses on Approximate Membership Query (AMQ) data struc-

tures, which are widely used in data management systems to reduce query
response times. The various existing AMQ data structures have di�erent prop-
erties regarding their lookup performance and their space/precision trade-o�s
and therefore some data structures suit a speci�c workload or application bet-
ter than others. We investigate which type of data structure should be used
in which situation and how it should be parameterized to achieve optimal
performance. Further, we design two novel variants of Bloom �lters that are
optimized for high-throughput scenarios that occur in high-performance main-
memory database systems.
In Chapter 3, we address a problem that occurs when query execution plans

are compiled in a data-centric way. Existing query compilers [85, 93] that fol-

3

low the produce/consume compilation model, produce tight loops that process
a tuple at a time. When this model is extended to process small batches of
tuples to utilize SIMD capabilities of modern CPUs, the involved branching
logic needs to be adjusted as well. In particular, that means that any branch
needs to be taken if at least one tuple of the current batch satis�es the corre-
sponding branch condition. In this execution model, we cannot expect that the
exact same branches are taken for all tuples of a batch. Thus, in general, the
control �ow will diverge on a per tuple basis, which consequently leads to un-
derutilization of precious compute resources, because some tuples (or elements
thereof) are temporarily set inactive, while still remaining in CPU registers.
In the last chapter, Chapter 4, we revisit compression algorithms for bitmaps

(or bit-vectors), a topic that has been around in database research for more
than two decades but which has gained some momentum recently. Bitmap
compression is an essential part of bitmap indexes, which in turn are highly
e�ective in analytical database management systems, especially in evaluating
high-dimensional selection queries. Existing bitmap compression techniques,
however, either o�er good compression ratios or good performance, but typ-
ically not both. Further, to the best of our knowledge, only a single bitmap
compression format exists so far, that turned away from the commonly used
run-length encoding in favor of allowing for e�cient (logarithmic) random ac-
cess, which in turn signi�cantly improves bitmap operations like computing
a bitwise AND. Motivated by the observation that better performance comes
at the cost of an up to 3× higher memory consumption, we designed a novel
bitmap compression format that is e�cient in both dimensions, space and time.

4

2 Approximate Membership

Query Data Structures at High

Throughput

Approximate Membership Query (AMQ) data structures allow for space-e�-
ciently representing sets. These data structures, like the well-known Bloom
�lter [23], store approximations of sets to save space. Most AMQ data struc-
tures are designed to have a one-sided error, meaning that with a (small)
probability, the data structure erroneously reports that the queried element is
part of the set, which is known as a false positive result. On the other hand,
it is guaranteed that it never incorrectly reports an element not being part of
the set, which is known as a false negative result. Therefore, the two possible
outcomes of a membership query could either be (i) the element is likely part
of the set or (ii) the element is de�nitely not part of the set. The �rst is called
a positive query and the latter a negative query.
The space requirements of an AMQ data structure depend on the error prob-

ability, which is often referred to as false positive probability or false positive
rate, as we don't expect false negatives to occur. Typically, the false positive
rate can be adjusted to the application's need. A lower false positive rate
thereby incurs a higher space consumption, and vice versa.
In database systems, AMQ data structures have found many applications.

Such systems use AMQ data structures to reduce costly disk I/O [72, 38, 132,
151, 53, 54, 90], to speed up (distributed) semi-join operations [29, 167, 112,
120], estimate the size of a semi-join [121], accelerate hash table lookups during
join processing [158, 100], and more recently AMQ data structures have been
employed in approximate indexing techniques [15, 90]. AMQ data structures
have also found a lot of applications in networking [32, 165], e.g., in routing [50,
65, 73, 185, 83, 108, 107], network management and monitoring [158, 27, 186],
caching proxies [149, 64], as well as in browser/PKI security [97, 111] and
anti-virus software [62].
Over the last decades, several extensions and variants of the classic Bloom

�lter have been proposed and alternative data structures have been developed
to address the various di�erent needs of applications. For instance, the classic
Bloom �lter does not allow for element deletion without reconstructing the
entire �lter; an issue that has gained a lot of interest in research. Other research
directions have been motivated by (i) further reducing the space consumption
and/or (ii) reducing the query latencies.
The AMQ �lter structures have been well-studied with regard to their space-

5

precision trade-o�s, which means, that a space-e�cient �lter con�guration can
be determined to achieve a desired false-positive rate. Vice versa, a �lter con-
�guration can be determined that o�ers the highest possible precision (lowest
false positive rate) for a given memory constraint. Minimizing the memory
consumption of a �lter structure for a given desired false positive rate or vice
versa is however not a goal in itself, rather, the goal is to optimize the overall
performance of a particular workload. In fact, the desired false positive rate
is often not known in practice, which leads to systems that use a hardcoded
false positive rate or even to �lter implementations where most parameters
are �xed [93]. This modus operandi consequently leads to sub-optimal per-
formance improvements or, in worst-case scenarios, to degradations in end-
to-end performance. In particular with fast-paced workloads, where the �lter
structure is queried thousands or millions of times per second, an improperly
chosen �lter con�guration could have signi�cant impact on overall system per-
formance. System implementers who want to employ AMQ data structures
are interested in achieving the best possible system performance, but they are
facing questions like which data structure to use (if any) and how it should be
con�gured. And in fact, there are no general answers to these questions, since
it is unclear how individual system and workload characteristics map to the
�lter structure's con�guration parameters, such as the aforementioned desired
false-positive rate.
With this work, we provide the necessary tools and formalism to achieve

performance-optimality. In particular, we study the performance related as-
pects of �lter structures, investigate the raw throughput of �lters in terms of
queries per seconds, and we model the context in which the �lters are installed,
which allows for determining the performance-optimal �lter for a particular
workload. Further, we propose novel Bloom �lter variants that are optimized
for high query rates by leveraging modern hardware capabilities, such as the
data-parallelism of Single Instruction Multiple Data (SIMD) instructions.
The rest of this chapter is structured as follows. In Section 2.1, we discuss

two example applications for AMQ data structures. The purpose is to illustrate
the di�erent requirements on the �lter structure in use. In Section 2.2, we give
an overview of existing AMQ data structures and in Section 2.3, we present
our work on performance-optimal �ltering, including our novel Bloom �lter
variants and an experimental analysis. We draw our conclusions in Section 2.4.

2.1 Applications

In the following, we brie�y discuss two use case scenarios for Bloom �lters
(or AMQ data structures in general) in the context of data management sys-
tems. We discuss how Bloom �lters are used to improve lookup performance in
log-structured merge-trees (LSM trees) [132] and to accelerate relational join
processing. These are probably the most common applications in data man-
agement systems, and furthermore, they denote two extreme cases regarding

6

0

1

2

3

......

Main memory Disk
level

Buffer

Tree

Bloom filters

...

Point
lookup

Sorted runs

Figure 2.1: LSM trees maintain Bloom �lters in main memory to
avoid unnecessary disk I/O. 1

query rates and their expected accuracy.

LSM trees are write-optimized data structures that store key-value pairs in
a hierarchy of sorted runs. These sorted runs grow exponentially in size with
their depth within the tree. Newly inserted and updated entries are bu�ered in
memory (level 0) and are �ushed to persistent storage when the bu�er becomes
full. When this occurs, the bu�ered entries are merged with the sorted run of
the next level. The merge process cascades down the tree, possibly introducing
a new level when all existing levels are at maximum capacity. A key lookup in
a LSM tree starts at level 0 and continues at the next deeper level until either
the requested key has been found, or all sorted runs have been probed without
success. To speed up lookups, each persistent run has a corresponding Bloom
�lter in main memory that is consulted before the run is accessed. When the
outcome of the Bloom �lter query is negative, the corresponding run can safely
be skipped. Thus, the Bloom �lter helps to prevent unnecessary and costly
I/O operations, cf. Figure 2.1.
When most data is stored on secondary storage, the lookup performance of

an LSM tree is bound by I/O. Lookups can be served at a rate of thousands per
second with (rotating) hard disk drives or at a rate of tens of thousands with
NVMe SSDs. Thereby, it is important that the Bloom �lters are optimally
parameterized [53, 54], which could improve the lookup throughput by an
order of magnitude.
Accelerating selective (semi-) join operations in relational database systems

is another popular use case for Bloom �lters. In foreign-key joins between
a large fact table and a smaller dimension table with a �lter predicate that
selects a fraction of the dimension tuples, only a fraction of the tuples from the
fact table will �nd a match and contribute to the join result. It this case, it

1Illustration is inspired by Figure 2 in [53].

7

⋈

Γ

σp

Scan(R) Scan(S)

HJ
Bloom filter
construction

Bloom filter
probe

...
Pushdown

1

2

3

Work saved
for filtered
tuples

Figure 2.2: Bloom �lters with selective joins. Tuples without a join
partner are �ltered before entering the pipeline.

can be bene�cial to create a Bloom �lter that contains the selected dimension
keys, and for each fact tuple �rst query the �lter. If the �lter returns a negative
result, the tuple does not join and it is (thereafter) ignored in terms of further
work, such as a hash table or index lookup, or nested-loop scan. This �ltering
could be the �rst step in the join [100], but the �lter test can also be pushed
down all the way into the fact table scan, as illustrated in Figure 2.2, such that
the data volume coming out of the scan is reduced, making all intermediate
operations in between the scan and the join cheaper.

In contrast to the LSM tree use case, join �ltering (in a main-memory
database system) is either DRAM bandwidth bound or compute bound, de-
pending on the complexity of the query. Thus, in such an in-memory settings,
the Bloom �lter is probed a rate of millions per second (even billions per sec-
ond). Another important di�erence between those two use cases is that the
costs incurred by false-positive results di�ers signi�cantly. In the case of LSM
trees, a false positive causes an unnecessary disk I/O, which could waste sev-
eral milliseconds. Whereas in join processing, the cost of a false positive is
typically several orders of magnitude lower, e.g., an LLC miss, which accounts
for approximately 50 nanoseconds. We call this a high-throughput scenario. In
such scenarios, the employed �lter needs to be highly throughput optimized
as it may otherwise cause performance degradations. In scenarios with lower
throughput on the other hand, the �lter structure needs to be tuned for high
accuracy (low false-positive rates), since fetching a page from disk, or possibly
fetching a data block from cloud storage [51], notably increases the lookup
latency.

8

2.2 Data Structures

Since the Bloom �lter was introduced in 1970, several other AMQ data struc-
tures have been presented and applied in practice. Also, several extensions or
modi�cations to the classic Bloom �lter have been proposed. In the following,
we give an overview and brie�y discuss their properties. In particular, we fo-
cus on the performance-related aspects and survey several optimizations that
trade o� access speed, accuracy, and space e�ciency.

2.2.1 Bloom Filter

A Bloom �lter [23] consists of an array of bits (a bitmap) B and a set of hash
functions h0,h1, . . . ,hk−1 that map arbitrary elements to integers within the
range [0,m), where m denotes the number of bits in B. When an element x is
inserted, the element is hashed using the k hash functions and the correspond-
ing bits in B are set to 1: B[hi(x)] ← 1, with 0 ≤ i < k. To check whether
an element is (likely) part of the Bloom �lter, the element is hashed and the
corresponding bits are tested. I� all bits at the positions where the k hash
functions map to are 1's, then the element is likely part of the set the Bloom
�lter represents, otherwise the element is de�nitely not part of the set. The
lookup procedure can be aborted when a 0-bit is observed. In that case, the
�lter can immediately return a negative result without testing the remaining
bits. Hence, only positive lookups require that all k bits be tested.

The size m of the bit array is typically chosen based on the number of ele-
ments n that will be inserted and a desired false-positive rate f : m = 1.44kn,
whereas the number of hash functions is k = −log2(f). The resulting Bloom
�lter instance is considered as space-optimal�sometimes also called space-
optimized or simply optimal�Bloom �lter. The naming might imply that
the Bloom �lter's space consumption is optimal in the informational theoretic
sense, which, however, is not the case. It actually has a 44% space overhead
compared to the (asymptotic) lower bound given in [32], when k is chosen as
shown above, which implies that Bloom �lters still o�er compression poten-
tials [116]. The bitmap of a space-optimal Bloom �lter is 50% populated with
1-bits. Thus, negative lookups can be answered with 50% chance after testing
the �rst bit, assuming uniformity of the hash functions. Negative lookups can
be speed up when the Bloom �lter is sparsely populated; at the expense of
higher space consumption, i.e., the corresponding Bloom �lter instance would
then no longer be space optimal. In general, the false-positive rate can be
computed as follows:

f =

(
1 −

(
1 − 1

m

)kn)k
≈

(
1 − e−kn/m

)k
(2.1)

9

Type Scale

L1 read ≈ 0.5 cycles
L2 read ≈ 2 cycles
L3 read ≈ 10 cycles
DRAM read ≈ 50 ns (200 cycles @ 4GHz)

TLB L1 miss penalty ≈ 9 cycles
TLB L2 miss penalty ≈ 17 cycles

Branch misprediction penalty ≈ 17 cycles

AND/OR/XOR instruction latency ≈ 1 � 5 cycles
DIV instruction latency ≈ 23 � 88 cycles

Table 2.1: Latencies and penalties on a Skylake-X platform [1, 67].

Alternatively, we can compute the �lter size for given n, k and f :

m = − 1

kn
√
1 − k

√
f − 1

≈ −k n log−1/k(1 − f) (2.2)

Performance Optimization Techniques

Bloom �lters are commonly known for being easy to implement and for being
fast, as the time complexity of membership queries is constant. In practice,
however, implementations di�er quite often from the formal de�nition of the
classic Bloom �lter. Most of these modi�cations are motivated by improving
the lookup performance, in terms of reduced lookup latency and/or higher
lookup throughput, by avoiding common latencies and penalties caused by the
underlying hardware. Naturally, the memory hierarchy plays an important
role, but so do branch mispredictions as well as the di�erent latencies of var-
ious CPU instructions, cf. Table 2.1. In the following, we brie�y survey the
techniques used to improve the performance of Bloom �lters.

Avoid Modulo Operations. The probably most commonly applied optimization
is to avoid costly modulo instructions, and substitute them by bitwise-AND in-
structions, i.e., rather than testing the bit at position h(x)modm, the position
h(x)& mask is tested, with mask = (1 << log2(m)) − 1. The �rst involves an
integer division instruction (DIV) that is signi�cantly slower than a bitwise
operation, cf. Table 2.1. A consequence of this optimization is that the �lter
size m is restricted to powers of two and the optimal �lter size can no longer
be chosen, in general. In the worst case, the actual �lter size could therefore
be almost a factor of two larger than necessary. In other words, avoiding the
modulo operation trades improved computational e�ciency for higher space
consumption.

10

Blocking. Blocking, as proposed in [144], is a technique where the Bloom �lter's
bit array is split into smaller (cache-line sized) blocks. When an element is
inserted, only a single block is a�ected, i.e., all k bits are set within that block.
The target block is determined by an additional hash function hb that maps
the input element to the integer range [0,m/512), where 512 is the size of a
cache line (in bits) on x64 architectures; assuming m is an integral multiple
of 512. Vice versa, only a single block needs to be consulted during lookups.
Consequently, a lookup in a so called blocked Bloom �lter causes at most one
cache miss, irrespective of whether the lookup is positive or negative. Serving
lookups with at most a single cache miss is a distinctive feature of blocked
Bloom �lters, and also the most impactful when the �lter size exceeds L2 or
L3 cache size. Blocking also improves performance with smaller sized �lters. It
reduces the computational e�orts, as less hash bits need to be computed and
the modulo operation is executed only once, to determine the target block.
Within a block, the faster bitwise-AND is used, as the block size is a power of
two. Nevertheless, blocking negatively a�ect the �lter's space e�ciency, as 1-
bits are being clustered rather than being uniformly distributed over the entire
bit array.

Sectorization. Sectorization is a technique to further improve the CPU ef-
�ciency of blocked Bloom �lters. The key idea is to sub-divide blocks into
smaller partitions, which we call sectors. The number of sectors per block
thereby is equal to the number of hash functions k, and when an element is
inserted, a single bit is set per sector. The main advantage of this performance
optimization is that it turns the random access pattern within a block into a
sequential access pattern. In the implementation that is used in the Impala
database system [93], a sector corresponds to a 32-bit word, and the block
size to 32k bits, thus, once the target block has been determined, all sectors
(words) are processed sequentially and independently.

Branch Elimination. A Bloom �lter implementation may always test all k bits,
rather than branching out after the �rst 0-bit is observed. This technique aims
for (i) avoiding branch misprediction penalties and (ii) for exploiting out-of-
order execution, as all k bits can be tested independently, i.e., the CPU may
issue multiple concurrent memory loads to hide memory latencies. Neverthe-
less, this technique works best with blocked Bloom �lters, as it may not cause
additional (unnecessary) cache misses.

Exploit Data Parallelism at the Hardware Level. Finally, the simplicity of
Bloom �lters makes it easy to bene�t from SIMD instructions. In principle,
SIMD can be used to parallelize �lter lookups in two di�erent ways: (i) multiple
(batched) lookups are performed in parallel [142] or (ii) the k bits of an element
are tested in a data-parallel fashion [144, 93]. The �rst option might not be
applicable in certain situations, whereas the latter might put restrictions on the
possible �lter con�gurations, i.e., k should be equal to (or an integral multiple

11

of) the number of available SIMD lanes, otherwise, the hardware would not be
fully utilized.

Variants and Related Work

Besides the performance-related improvements, several other extensions and
variants have been proposed. The scalable Bloom �lter [13], for instance, allow
the �lter to grow dynamically in size if the number of elements in the set is
not known in advance. The scalable Bloom �lter thereby internally consists
of multiple standard Bloom �lters. When the existing �lter instance become
full, i.e., reaches the desired false-positive rate, a new Bloom �lter instance is
appended. The newly created instances have a lower false-positive rate than
the previous instances, so that the combined false-positive rate does not exceed
the pre-de�ned false-positive rate. Dynamically resizing the �lter comes at the
cost of more expensive membership tests, as multiple structures need to be
consulted. Thus, the more accurately the initial size of the �rst instance is
estimated, the fewer instances are created and the lower the lookup costs are.
Dynamically removing elements from a set is often required in network and

streaming applications. Bloom �lters have been extended to support deletions
by introducing counters [64] on a per-element basis. These counters keep track
of insertions and deletions by incrementing or decrementing the corresponding
counters. A counting Bloom �lter occupies a multiple of the space of a standard
Bloom �lter; typically each counter requires 4 bits [64], thus a counting Bloom
�lter is four times larger than a standard Bloom �lter.
Spectral Bloom �lter [47] generalize Bloom �lters to represent multisets

(bags), where membership queries return the multiplicity of an element. The
returned multiplicity thereby is never smaller than the actual multiplicity of
an element, but possible larger within some pre-de�ned error boundary.
Some Bloom �lter variants [60, 56] also allow for false negatives, for instance

to improve the false positive rate [60]. For more details, we refer to the com-
prehensive survey of Tarkoma et al. [165], in particular to Table II, which
summarizes the most important properties of 22 Bloom �lter variants.

2.2.2 Cuckoo Filter

The cuckoo �lter [63] is an AMQ data structure that stores small signatures
(aka �ngerprints) in a cuckoo hash table [136]. A signature of an element is
computed using a hash function that maps arbitrary elements to the integer
range [0, 2l), where l denotes the signature length in bits. Similar to cuckoo
hashing, each signature has two candidate buckets in the hash table where it
can be stored. When both buckets are occupied by other signatures, one of
these signatures is picked randomly and is then relocated to its alternative
bucket to make room for the newly inserted element. This procedure may
continue when the alternative bucket of the evicted signature is occupied as
well. To avoid in�nite loops during collision resolution, the maximum number

12

of relocations is limited to a certain threshold. When a collision cannot be
resolved within that threshold, the cuckoo �lter is considered fully occupied.
A major di�erence between a cuckoo hash table and a cuckoo �lter is that

the cuckoo �lter has to perform relocations based on the signatures rather than
on the original elements. Thus, a cuckoo hash table could use two independent
hash functions. For instance, to relocate the element x that is stored in the
hash table T in bucket i, the element is (re)hashed to determine the candidate
buckets i1 = h1(T [i]) and i2 = h2(T [i]), and is then moved either to i2 if i = i1
or to i1 if i = i2. This approach is, however, no longer applicable when the
hash table contains only signatures. Fan et al. therefore proposed a technique
were the alternative bucket index can be determined based on the element's
signature and the bucket index the signature is currently stored in. The authors
refer to this technique as partial-key cuckoo hashing, which works as follows:
The indexes of the two candidate buckets i1 and i2 of an element x are:

i1 = h1(x)
i2 = i1 ⊕ h2(x 's signature).

(2.3)

There are a few things to note here. First, the index i1 can also be determined
based on i2 and the element's signature without having the the original element
x in hand:

i1 = i2 ⊕ h2(x 's signature). (2.4)

Further, the hash function h2 is optional. The purpose of the second hash
function is to spread out the candidate buckets over the entire hash table.
If the second hash function were omitted, the distance between the buckets
would be at most 2l − 1, which would lead to clustering and consequently to a
higher collision probability.
Since the cuckoo �lter's internal data structure is a hash table rather than a

bitmap as in Bloom �lters, the cuckoo �lter could hold only a limited number
of elements. When the table is fully occupied, or the collision resolution fails,
no more elements can be inserted, naturally. In a cuckoo hash table, it is very
unlikely that the table gets fully occupied [136]. In fact, the probability that
the collision resolution fails increases with the number of inserted elements.
This worsens with the cuckoo �lter's partial-key cuckoo hashing, where the
alternative bucket index is a combination of the signature and the current
bucket index, rather than having two independent hash functions. The authors
empirically determined that the maximum table occupancy is only around 50%.
To address this issue, the authors propose to increase the bucket size, so that
multiple signatures can be stored in a single bucket. This, for instance, allows
for a maximum table occupancy of 84%, 95%, or 98%, using a bucket size b =
2, 4 or 8, respectively.
Increasing the number of signatures per bucket also negatively a�ects the

13

false-positive rate, which is:

fcuckoo = 1 −
(
1 − 1

2l

)2bα
, with: α =

l · n
m

(2.5)

where α refers to the load factor of the table. Nevertheless, setting b = 4
makes the cuckoo �lter competitive with the Bloom �lter in terms of its space-
/precision trade-o�s. I.e., when the cuckoo �lter is at maximum load, and the
false-positive rate is f < 0.004, the cuckoo �lter occupies less space than a
space-optimal Bloom �lter.
To ensure that a �lter achieves a desired false-positive rate, the optimal

signature size l needs to be determined:

l =
⌈
−log2

(
1 − (1 − f) 1

2bα

)⌉
(2.6)

Thereby, α is set to maximum capacity for the given bucket size b:

α =

0.5, b = 1

0.84, b = 2

0.955, b = 4

0.98, b = 8

(2.7)

Finally, based on Equation 2.5, the �lter size can be computed as follows:

m =
l · n
α

(2.8)

Vice versa, when memory is constrained, the optimal signature size is deter-
mined as follows:

l =
⌊
α
m

n

⌋
(2.9)

Choosing the proper bucket size b is less obvious, as α increases with b, but
f decreases with larger b's. However, as Figure 2.3 shows, a bucket size of
4 is a �good� choice in practice, where the bits per element ratio (C = m/n)
is typically within the range [8, 20]. b = 2 o�ers only a slightly lower false-
positive rate when 8 ≤ C < 13. But for C ≥ 13, setting the bucket size to
4, improves the accuracy of the �lter signi�cantly. The authors Fan et al.,
therefore use b = 4 as the default setting.
As mentioned earlier, the false-positive rate of a �lter needs to be less than

0.004 for a cuckoo �lter to be more space-e�cient than a Bloom �lter. This
cross-over point can be raised to f ≈ 0.025 by compressing the individual
buckets of the cuckoo �lter. The authors adopted the semi-sorting technique
from [28], which allows for saving 1 bit per stored element (signature).
From the performance perspective, semi-sorting adds signi�cant overhead.

For instance, a cuckoo �lter with l = 12 o�ers approximately twice the lookup

14

4 6 8 10 12 14 16 18 20

0.00001

0.0001

0.001

0.01

0.1

1

bits per element C =m/n

fa
ls
e-
p
os
it
iv
e
ra
te

f

b = 1
b = 2
b = 4
b = 8

Figure 2.3: False-positive rate of Cuckoo �lters for various bucket
sizes b.

throughput of a semi-sorted cuckoo �lter with l = 13, as shown in [71]. Semi-
sorting also roughly doubles the �lter construction time. Another performance-
related issue that cuckoo �lter implementations are facing are unaligned mem-
ory accesses. For space-e�ciency, the buckets are densely packed and depend-
ing on the chosen signature size, this circumstance results in unaligned loads.
Depending on the signature and the �lter size, a lookup can therefore become
twice as costly, compared to a lookup that only involves aligned loads. In
general, lookup performance can be improved by aligning the buckets (and
the signatures) to word boundaries, which does, however, require padding and
consequently lowers the overall space-e�ciency. In particular, when SIMD op-
timizations come into play, signatures need to be either 8, 16 or 32 bits in
size and aligned accordingly, as current SIMD instruction sets (i.e., AVX2 and
AVX-512) do not support unaligned memory gathers. Thus, in summary, the
performance highly depends on the chosen signature size, and only for a few
combinations of signature and bucket sizes are highly e�cient implementa-
tions feasible. For instance, a �lter that is con�gured with l = 8 and b = 4
is highly e�cient with AVX-512 SIMD, as buckets are 32-bit aligned and the
linear search within the buckets can be performed in a (16-way) data-parallel
fashion.
In terms of random memory accesses, the cuckoo �lter shows a di�erent

behavior than the Bloom �lter. A Bloom �lter could de�nitely answer a neg-
ative lookup when the �rst 0-bit is observed. Only in case of positive lookups
do all k bits need to be tested. Cuckoo �lters on the other hand need to in-
spect both candidate buckets of an element to answer negative lookups. Only
positive lookups can be answered with 50% change by inspecting only a sin-
gle bucket. However, as the event of a negative lookup is more likely than a
positive lookup in practice, cuckoo �lter implementations typically eliminate
conditional branches and always test both candidate buckets to improve per-

15

formance, as described in the earlier Section 2.2.1. Thus, a lookup causes at
most two cache misses, which however, is still twice as high as with blocked
Bloom �lters.

Variants and Related Work

While the cuckoo �lter is a compact variant of a cuckoo hash table, it shares
similarities with the (counting) quotient �lter [20, 137]. Both use open address-
ing hash tables in which signatures (or �ngerprints) are stored. A major di�er-
ence is that the quotient �lter relies on linear probing for resolving collisions,
rather than on cuckoo hashing. Linear probing is considered cache-friendly in
case of collisions as it preserves spatial locality. It is, however, also known that
it leads to clustering under high load, which makes lookups more costly as
the number of comparisons increase as well as the number of (potential) cache
misses. Thus, decoupling the lookup costs from the hash table's load factor is
one of the most notably achievements of the cuckoo �lter.
More recently, Breslow et al. proposed the morton �lter [30, 31], a cache-

friendly variant of the cuckoo �lter. The main motivation behind morton
�lters was to eliminate the second (random) memory access, which could sig-
ni�cantly improve performance when the �lter instance exceeds the last-level
cache in size. This is achieved by introducing a compressed block format
which o�ers better locality and hence reduces the number of relocation. In
consequence, more lookups can be served without consulting the alternative
candidate bucket. Probing a compressed block is computationally more intense
compared to an uncompressed bucket. However, the increased computational
costs are signi�cantly lower than an additional cache miss.
The vacuum �lter [172] is another variant of the cuckoo �lter, which also ad-

dresses the issue of always having two random memory accesses during lookups.
The authors propose to use a modi�ed function to determine the alternate
bucket, where the maximum distance between the current and the alternate
bucket is reduced to improve spatial locality. Spatial locality comes at the cost
of higher collision probability, which may result in poor space-e�ciency. To
compensate for this, vacuum �lters use multiple ranges (at least two) in which
the alternate bucket can be found. For instance, 75% of the elements use a
narrow range and 25% are spread out over the entire �lter. The actual range
to use is thereby determined by the least signi�cant bits of the signature.
Besides preserving spatial locality of signatures, the vacuum �lter's primary

goal was to increase the space-e�ciency of cuckoo �lters. The standard cuckoo
�lter requires the number of buckets in the hash table to be a power of two,
which results in space-ine�ciencies as up to 50% of the hash table might not
be populated. Vacuum �lters have overcome this limitation. However, this
issue has been successfully addressed before in [A] and [127], by replacing the
XOR operation in Equations 2.3 and 2.4 by di�erent involutory functions.
The vacuum �lter as well as the dynamic cuckoo �lter [43] extend the stan-

dard cuckoo �lter to support dynamic resizing. Both make internal use of mul-

16

tiple (linked) �lter instances, similarly to the scalable Bloom �lter [13]. The
approach naturally negatively a�ects lookup performance, as multiple �lter
instances need to be probed. Further, the approach also impairs the false-
positive rate, which is in contrast to the scalable Bloom �lter. The authors
of the vacuum �lter therefore propose to periodically reconstruct the �lter to
avoid these issues.
The Bloomier �lter [42, 39] is another signature-based AMQ data structure,

which is not only suitable for approximate membership queries but also for
approximating arbitrary functions. A variant of the Bloomier �lter [59] builds
the foundation of the xor �lter [71], which is the most recent data structure
mentioned in this thesis. Without going into details, the xor �lter is the most
space-e�cient AMQ data structure currently known. The space consumption
per element is 1.23 · log2(1/f) or even 1.0824 · log2(1/f) + 0.5125 when the
optional compression is enabled; the authors refer to the latter as xor+ �lter.
In terms of lookup performance, the xor �lter can compete with cache resident
cuckoo �lters, as it issues slightly less CPU instructions. When the �lter
exceeds the size of the last-level cache, xor �lters perform worse than cuckoo, as
they use three random memory accesses, whereas the cuckoo only requires two.
A noteworthy di�erence of the xor �lter is that it does not support dynamic
inserts, or any other manipulating operations. Instead, it is built holistically
for the entire input set. Thus, the xor �lter is a static data structure, and
can therefore not considered as a drop-in replacement for Bloom and cuckoo
�lters, it however �ts well in database applications, such as semi-join �ltering
and for LSM trees, cf., Section 2.1.

2.3 Performance Optimality

With our research on performance-optimal �ltering, we shed light on the ques-
tions, which �lter structure to use in certain situations and on how the �lter
structure should be parameterized to accelerate a given workload the most.
In contrast to prior (mostly theoretical) work, which mostly focused on mini-
mizing the space consumption of �lter structures, we aim for maximizing the
end-to-end performance.
To determine what is performance optimal, we take additional factors into

account: (i) the actual time spent in �lter lookups, denoted as tl , (ii) the work
time tw that is saved later on, when an element is �ltered out, and (iii) the
fraction of negative lookups 1 − σ . The question is how much lookup time (tl)
to invest and how much work time (tw) could be saved and how often this pays
o� (1 − σ). We formulate this problem as determining the �lter con�guration
with the least overhead, where the overhead consists of (i) the unnecessary
work the system has to perform when false positives occur, and (ii) the work
involved by querying the �lter data structure.
We formally de�ne the �ltering overhead denoted as ρ for a given �lter

17

con�guration F as:

ρ(F) = tl (F) + f (F) · tw . (2.10)

Here, tl (F) and f (F) denote the lookup time and the false positive rate of the
�lter con�guration F . The performance-optimal �lter con�guration F opt among
all possible con�gurations F is then:

F opt ∈ F : @F ∈ F : ρ(F) < ρ(F opt) (2.11)

Note, we thereby assume that all considered �lter structures are branch-free
(cf., Section 2.2.1), i.e., the costs for positive and negative lookups are the
same. This assumption allows for de�ning ρ independently from the param-
eter σ . However, even though the equation is simpli�ed, it is valid for high-
throughput situations. Our experimental analysis revealed that branch-free
implementations o�er the best performance, when �lters are queried at very
high rates (and tw is low). On the other hand, in situations with the query
rates are lower (typically in conjunction with high tw), tl becomes negligible
small compared to the work caused by false positives (f (F) · tw), such that
Equation 2.10 is still a good approximation, irrespective of whether the �lter
is branch-free or not. Nevertheless, parameter σ is still needed to determine
whether using a �lter is bene�cial at all. Namely, when the following holds:

ρ(F opt) < (1 − σ) · tw (2.12)

To determine F opt, we assume that the (context-)parameters n, and tw are
known, e.g., through selectivity estimations or runtime pro�ling. For the �lter
parameters, e.g., the �lter size m, the number of hash functions of a Bloom
�lter k, or the signature size of a Cuckoo �lter l , analytical models are available
to estimate (or approximate) the false positive rates. However, tl is a physical
cost metric, which is harder to model, as it depends on the underlying hardware
and on implementation details. We therefore propose to collect the actual �lter
lookup costs by performing microbenchmarks on the target platform as part
of a one-time calibration phase2.

2.3.1 Bloom Filter Variants for High Throughput

As our research focus on high-throughput scenarios, we developed two novel
Bloom �lter variants, which o�er signi�cantly faster lookups (lower tl) and are
highly optimized for modern hardware.

Register-Blocked Bloom Filter. Register-blocking is an extreme case of block-
ing [144], where the block size is reduced to the size of a CPU register, i.e.,

2More recently, the calibration approach has been extended and successfully applied in the
context of GPU-accelerated �ltering [75]. The source code is freely available on GitHub:
https://github.com/peterboncz/bloomfilter-bsd/tree/gpu/amsfilter

18

https://github.com/peterboncz/bloomfilter-bsd/tree/gpu/amsfilter

S0 S1 S2 S3 S4 S5 S6 S7

block

sector

Z0 Z1

insert / lookup

k/z bits k/z bits

k bits

group of sectors

Figure 2.4: Partitioning scheme of cache-sectorized Bloom �lters:
The bits are concentrated in z words spread over a cache
line. (Figure from [A])

32- or 64-bit. The approach signi�cantly reduce computational e�orts, as all
k bits can be tested in a single comparison and only a single processor word
needs to be loaded.

Cache-Sectorized Bloom Filter. Our second Bloom �lter variant combines
the advantages of cache-line blocking [144] and sectorization, and thereby re-
moves the aforementioned parameterization constraints of the latter (cf., Sec-
tion 2.2.1). With cache-sectorization, blocks are partitioned in word sized sec-
tors. Multiple sectors are then logically grouped together. When an element is
inserted, k/z bits are set in each group, where z denotes the number of groups
per block. Inside each group, the k/z bits are set within a single sector, as
illustrated in Figure 2.4. Since a sector corresponds to a processor word, mul-
tiple bits can be tested in a single comparison, similarly to register-blocking.
Across the groups, all operations remain independent and can be performed
in parallel. The main advantages over (plain) sectorization are (i) k can be
tuned more �exibly, as a integral multiple of z rather than as a multiple of
the number of sectors, (ii) the k bits are spread over the entire cache-line, and
therefore our approach can be considered being memory bandwidth e�cient.

2.3.2 Experimental Analysis

For our experimental analysis, we considered various hardware platforms, where
we measured the end-to-end �lter performance for varying n and tw . We evalu-
ated highly optimized blocked Bloom �lters and Cuckoo �lters and determined
which �lter type and which �lter parameterization performs best for each in-
dividual combination of 〈n, tw〉. We found that:

19

� on all platforms blocked Bloom �lters outperform Cuckoo �lters in high-
throughput scenarios (by up to 3×), due to their lower lookup costs.

� a false positive rate of 0.0001 to 0.01, as provided by blocked Bloom
�lters, is su�cient for fast moving workloads.

� in low-throughput scenarios, e.g., where �ltering is used to avoid disk
I/O, Cuckoo �lters perform better, due to their lower false positive rate.

� our register-blocked �lter extends the spectrum where key �ltering is
bene�cial. Since the average lookup time is reduced to ≈ 1 CPU cycle,
a register-blocked Bloom could be installed, even when tw is low, e.g., in
the order of a cache miss, or even lower.

� our cache-sectorized �lter dominates the classic blocked Bloom �lter in
high-throughput situations. In the other cases, it slightly falls behind,
as cache-sectorization negatively a�ects the �lter's accuracy.

� SIMD-optimizations improve the (average) lookup throughput by up to
10× for Bloom �lters and by up to 7× for Cuckoo �lters on AVX-512
platforms; or 6× and 4× on AVX2 platforms.

2.4 Conclusions

Our research has shown that carefully implemented �lters could improve the
lookup performance by several factors, and thereby signi�cantly extend the
spectrum (towards lower tws) in which �ltering is bene�cial. It also showed,
that the end-to-end performance can be improved by factors, when �lters are
con�gured properly for the given context. Our formal model considers the
�lter performance in a larger end-to-end context and combined with the pro-
posed one-time calibration approach (through micro-benchmarking) it forms a
general and practical framework for determining the performance optimal �lter
con�guration for arbitrary workloads. The only two parameters that need to
be provided are the number of elements in the �lter (n) and the amount of work
saved (tw) when an element is �ltered. We expect that both parameters can
be easily determined as they are closely related to the actual application. The
calibrated framework then maps to an actual �lter con�guration and thereby
removes the burden of �nding an answer to the question, what the desired
false-positive rate is.

20

3 E�cient Control Flow Handling

in Compiled Queries

In this chapter we investigate the performance and the CPU e�ciency of com-
piled queries. In particular, we focus on the case where multiple tuples are
processed in a data-parallel (SIMD) fashion. In such situations, where SIMD
vectorization is combined with data-centric query compilation, control �ow di-
vergence may result in sub-optimal utilization of the available vector-processing
units of modern CPUs. In particular query pipelines that involve many code
branches are highly a�ected and therefore o�er signi�cant potentials to im-
prove query performance.
Before we present our novel algorithms and strategies that address the neg-

ative performance impacts of control-�ow divergence, we quickly recap the
foundations of data centric query compilation and data-parallel pipelines.

3.1 Data Centric Query Compilation

Data centric query compilation, as proposed by Neumann [128], translates
sequences of relational algebra operators into highly e�cient low-level code,
which subsequently is compiled to native machine code using an optimizing
compiler framework such as LLVM [98]. The generated code thereby consists
of a tight loop that iterates over the input tuples. The loop is generated by
the operator at the pipeline source, e.g. a table scan. The loop body is popu-
lated by the other operators of the pipeline. Figure 3.1 depicts a simple query
plan and the corresponding generated code; for illustration purposes, the al-
gebraic operators emit simple pseudo code and the di�erent colors connect
the relational operator on the left-hand side with their generated code on the
right-hand side. When such code fragments are compiled and executed, the
currently processed tuple can be kept in CPU registers as long as necessary,
i.e., in the ideal case each individual tuple (or each component thereof) is
loaded and evicted only once. Thus, this data centric query execution model
eliminates costly memory materializations along the query pipeline. Concep-
tually, memory materializations happen only the end of the pipeline, i.e., at
the pipeline sink, which is in contrast to operator centric execution models, as
used for instance in MonetDB [6] and MonetDB/X100 [26, 192] (also known
as VectorWise and Actian Vector), where the individual operators transfer
tuples via memory. In the data centric model, the code of the operators is
fused together, which basically allows for transferring tuples across operator

21

for each tuple in R
⋈

...

L R

probe
pipeline

build
pipeline

σp

data centric
code generation

end

 if tuple satisfies p
 for each join partner in L

 end
 end
 ...

Figure 3.1: A simple example for data centric query compilation.

boundaries with zero overhead, i.e., no memory accesses nor (virtual) function
calls are involved. Another major di�erence between these two models is the
amount of tuples that are transferred between the operators at once. In the
data centric model, the unit of transfer (UoT, as de�ned in [57]) is a single
tuple, whereas VectorWise transfers a batch of tuples (or a vector) at once.
Thereby, the batch size is chosen large enough to amortize the interpretation
overhead (i.e., function calls) and small enough to �t in fast cache memory
to avoid costly round trips to DRAM. The tuple-at-a-time processing on the
other hand seems to be ine�cient at the �rst glance but in fact o�ers very high
throughput [86] as it results in much better code and data locality.

3.2 Data-Parallel Pipelines

A down side of data centric tuple-at-a-time processing is that it does not fully
utilize modern CPU capabilities. In particular, the instruction-level data-
parallelism o�ered by modern SIMD instruction sets is not utilized. Even
though most optimizing compilers support auto vectorization, the generated
loop bodies are however structurally too complex for compilers to analyze and
therefore the resulting native code consists of scalar (non-SIMD) instructions.
A solution to overcome this limitation is to make the code-generating relational
operators aware of the data-parallelism o�ered by the underlying hardware.
When the degree of parallelism is known to the operators, the operators can
increase the number of tuples that are processed at once accordingly. In other
words, the generated code is explicitly vectorized, rather than relying on the
(implicit) auto vectorization feature of the compiler. The degree of parallelism,
or the number of components in a vector, is thereby determined by the bitwidth
of corresponding attributes and the bitwidth of SIMD registers. For instance,
on AVX-512 platforms, eight 64-bit values are processed in parallel.

22

for each vector in R

end

 if at least one vector element satisfies p
 if at least one vector element has a join partner

 end
 end
 ...

Figure 3.2: The explicitly vectorized code of the query shown in Fig-
ure 3.1.

3.3 Control-Flow Divergence

With vectorized pipelines we can utilize the SIMD capabilities of modern
CPUs. Figure 3.2 shows the vectorized version of the query pipeline from
Figure 3.1. The most important di�erences to the scalar version are the ad-
justed branching conditions. For instance, the predicate p is evaluated against
an entire vector of attribute values rather than against a single scalar value.
Thus, there might be some elements in the vector that satisfy p, whereas other
elements don't. In this (likely) situation, the code of the subsequent oper-
ator(s) still needs to be executed as otherwise qualifying elements would be
discarded. This applies in general, if at least one element satis�es p. Only if
none of the elements qualify, the if-branch can be skipped. When the if-branch
is taken and non-qualifying elements are present, then the non-qualifying ele-
ments need to be excluded from further processing.
In general, when various elements of a vector would take di�erent branches,

a data parallel program has to execute all of these branches, whereas in each
branch only the corresponding SIMD lanes are set to active. This situation
is known as branch divergence or control-�ow divergence. The major problem
of control-�ow divergence is that non-qualifying elements consequently waste
precious compute resources as not all available SIMD lanes are utilized. In
the simple case of evaluating a selection predicate, all SIMD lanes containing
non-qualifying elements are set inactive within all subsequent operator(s).
Basically any conditional jump in a program may cause control-�ow diver-

gence. In the above example, elements are either discarded entirely (�ltered
out) or further processed. Thus, it is an extreme case of control-�ow diver-
gence. In more general cases, SIMD lanes may only be temporarily inactive,
which in particular happens during join processing. The probe side query
pipeline thereby involves traversing a pointer-based data structures, like a
hash table, to �nd join partners. A hash table lookup, for instance, might
require several comparisons and to follow multiple bucket pointers until a join
partner for the current tuple is found. In doing so, some SIMD lanes terminate
their search earlier than others. The corresponding lanes are then temporarily
set inactive, until all remaining search instances terminated. The resulting
underutilization of the SIMD processing units was the motivation for our re-

23

search, in which we investigate on the performance penalties of control-�ow
divergence and how this problem can be e�ciently solved in the context of
compiling query engines. Our approach is brie�y presented in the following
section. The full publication can be found in Section B.

3.4 Countering Underutilization

With our research on divergence handling in modern database systems we
contribute two novel algorithms for the AVX-512 architecture, which allow
for �ne-grained assignment of new tuples to idle SIMD lanes. We refer to
these algorithms as re�ll algorithms. Further, we present two strategies for
integrating the re�ll algorithms with compiled query pipelines. These re�ll
strategies determine (i) where the current utilization of the SIMD lanes takes
place and (ii) how new tuples are assigned to the idle lanes. In all cases,
re�lling does not incur costly memory materializations of the in-�ight attribute
values, i.e., all active values remain in SIMD registers. Thus, our approach is
considered non-pipeline breaking, even when the more restrictive de�nition of
a pipeline breaker of Neumann [128] is applied.
Re�lling is essentially about copying new attribute values to desired posi-

tions in a destination vector register, whereas the desired positions are typi-
cally the idle SIMD lanes. Thereby, the source values are either fetched from a
memory location or from another vector register. Further, we can distinguish
between the cases where the source values are stored consecutively or at ran-
dom positions. We provide e�cient AVX-512 algorithms for all combinations.1

We identi�ed two base strategies for integrating our re�ll algorithms with
compiled query pipelines. Our �rst strategy performs re�lls exclusively at the
pipeline source, e.g., as part of the table scan operator. The strategy intro-
duces branching code in the upper part of the pipeline, and when the lane
utilization falls below a certain threshold, the control-�ow is returned to (the
generated code of) the operator at the pipeline source. At the pipeline source,
the idle SIMD lanes are then assigned new values. When the control-�ow is
returned to the pipeline source, the active elements remain in vector register,
and therefore their corresponding lanes need to be protected from being modi-
�ed or overwritten. Lane protection requires just a bit of bookkeeping on a per
operator basis, and introduces very little overhead (a few bitwise operations).
Lane protection, however, inherently causes an underutilization of SIMD lanes
in the code path between the pipeline source and the operator that branched
out in the �rst place. Thus, the strategy should be only applied to operators
that are close to the pipeline source. Our second re�ll strategy makes use of
small bu�ers to counter underutilization. When an operator encounters an un-
derutilization, it either re�lls with values from this bu�er, or in case when the
bu�ers does not contain enough values, it evicts the remaining active values

1For details, we refer the reader to [B]. The source code is available at https://github.
com/harald-lang/simd_divergence.

24

https://github.com/harald-lang/simd_divergence
https://github.com/harald-lang/simd_divergence

from the pipeline to the bu�er and returns the control �ow, i.e., the operator
defers the processing of these values and uses them later on, when the lane
utilization falls below threshold. In contrast to our �rst strategy, all SIMD
lanes are empty when the control �ow returns. Therefore, the other opera-
tors are not a�ected. Our implementation uses additional vector registers as
tiny bu�ers and our re�ll algorithms are used in both directions, to re�ll the
pipeline as well as to �ush the active elements to the bu�er register.
We evaluated our approach in a main-memory setting with several database

operators that are subject to control-�ow divergence, and we compare to scalar
(non-vectorized) pipelines, to vectorized pipelines without divergence handling
as well as to the approach of Menon et al. [115], where the intermediate results
are densely materialized in memory at operator boundaries. We found that our
approach can reduce the end-to-end query runtime by more than 30%, com-
pared to a vectorized pipeline without divergence handling. In particular with
more involved query pipelines, which perform geospatial point-polygon joins,
our approach shows an up to 3× higher throughput than the materialization
approach. In contrast, the materialization approach shows better results with
simple query pipelines that are memory bound, rather than compute bound.
However, it's performance quickly degrades when divergence handling is per-
formed at multiple operator boundaries along the pipeline, or when the number
of attributes (of the processed tuples) increases. In both cases, our approach
scales signi�cantly better due to its lower overhead.

3.5 Conclusions

Our re�ll strategies and algorithms show that data-centric query pipelines
can still be e�cient even when they are vectorized via SIMD. In particular
queries that involve selective predicates or traversing irregular pointer based
data structures like hash tables or radix trees highly bene�t from our e�cient
re�ll algorithms because our approach allows for fully utilizing the available
vector processing units without the need for costly memory materializations.

25

4 Space- and Time-E�cient

Bitmap Indexing

In this chapter we present a novel method for compressing bitmaps. The
work is closely related to bitmap indexing. While bitmap indexes and bitmap
compression are in general orthogonal topics, the work on bitmap compression
is heavily motivated by reducing the space consumption and the query time
of bitmap indexes. In fact, compression became an essential part of bitmap
indexes and the term bitmap index mostly refers to a compressed bitmap index.
Bitmap indexes have been used in database systems since the late 80's [131]

and have been adopted by many commercial and open source database systems
[33, 134, 113, 34]. Especially in read-optimized systems that are designed for
data warehousing [41, 113, 161, 164, 183], bitmaps indexes have gained in
popularity as they can accelerate predicate evaluation [131, 133, 125], as well
as join [130] and aggregation queries [133, 34]. They have also been successfully
used in scienti�c applications to analyze large data sets [160, 176, 78, 138, 155,
178, 163, 187], e.g., from astronomy and high-energy physics. The great success
of bitmap indexes is based on their good performance with high-dimensionality
queries, even when the individual attributes are not selective.
One major issue with bitmap indexes is that the available bitmap compres-

sion methods either provide high compression ratios or high performance, but
not both. Performance-optimized state-of-the-art methods are up to two or-
ders of magnitude faster than their space-optimized counterparts. The higher
performance comes at the cost of an up to 3× higher space consumption.
In particular, when bitmaps are more densely populated, state-of-the-art ap-
proaches show weaknesses regarding compression ratios, which makes them less
suitable for indexing low cardinality attributes or for indexes that are designed
to answer range queries. To address these issues, we invented a novel compres-
sion method that is e�cient in both dimensions, space and time. Further, in
contrast to most existing bitmap compression methods, our approach is robust
regarding compression ratios within a wide spectrum of bitmap characteristics.
The rest of this chapter is structured as follows. In Section 4.1 we give an

overview of the design space of bitmap indexes and how the di�erent designs
a�ect the characteristics of the individual bitmaps. In Section 4.2 we give an
overview on existing bitmap compression methods, including discussions on
their strengths, weaknesses and similarities. In Section 4.3 we then present
our novel compression approach and we outline our next steps and possible
future research directions in Section 4.4.

27

Base data Bitmap Index

1 3 4 7
TID A TID B₀ B₁ B₂ B₃

0 1 0 1 0 0 0
1 3 1 0 1 0 0
2 3

⇨

2 0 1 0 0
3 7 3 0 0 0 1
4 4 4 0 0 1 0
5 7 5 0 0 0 1
6 4 6 0 0 1 0
7 1 7 1 0 0 0

Figure 4.1: A basic bitmap index.

4.1 Bitmap Index Design Space

In this section we discuss bitmap indexes in general. We give an overview of the
large design space and describe the individual aspects and methods involved
when constructing these index structures.
We start with the most common con�guration, which is also referred to

as basic bitmap index [162]. Figure 4.1 shows such an index, created on a
column A with four distinct values (|A| = 4). For each distinct attribute
value of the column an individual bitmap is created. The positions of the
set bits correspond to the tuple identi�ers (TID), thus the index allows for
answering selection queries of the kind A = c without further computations,
where c denotes a constant value. Conjunctive and disjunctive predicates can
be evaluated by combining bitmaps using the corresponding bitwise operations.
This example also shows that the space consumption of a basic bitmap

index is in O(C · n), where C refers to the attribute's cardinality and n to
the total number of indexed values (or tuples). On average, each of the C
bitmaps receive a payload of n

C 1-bits. Thus, the density decreases with an
increasing number of distinct values. Formally, the density d of a bitmap B
is de�ned as d(B) = |B |n , where |B | denotes the number of set bits, also know
as the population count. The lower the density, the more likely the bitmap
contains long runs of 0's, and vice versa. Having such long runs (multiple
consecutive identical bits) o�ers great compression potentials, which basically
all bitmap compression techniques try to exploit. Several e�ective bitmap
compression techniques have been proposed, which have been the enabler for
indexing columns with higher cardinalities. � We discuss bitmap compression
in detail in Section 4.2. � Besides the high space consumption, a basic bitmap
index as shown above is in general not e�cient in answering range queries, as
multiple bitmaps need to be unioned. In the worst case, half of the bitmaps
need to be accessed during query evaluation. To address these issues, several
techniques have been proposed to reduce the size of an index and to e�ciently
support arbitrary range queries. These techniques are categorized [162] into
decomposition, binning, encoding, and compression, which we brie�y discuss in

28

⇨ Decomposition ⇨ Binning ⇨ Encoding ⇨ Compression

Figure 4.2: The techniques involved during bitmap index construc-
tion.

{1,3} {4,7}
TID B₀ B₁
0 1 0
1 1 0
2 1 0
3 0 1
4 0 1
5 0 1
6 0 1
7 1 0

(a) binned

≤1 ≤3 ≤4 ≤7
B₀ B₁ B₂ B₃
1 1 1 1
0 1 1 1
0 1 1 1
0 0 0 1
0 0 1 1
0 0 0 1
0 0 1 1
1 1 1 1

(b) range-encoded

b100 b010 b001
B₀ B₁ B₂
0 0 1
0 1 1
0 1 1
1 1 1
1 0 0
1 1 1
1 0 0
0 0 1

(c) bit-sliced

Figure 4.3: Example bitmap index instances for the same base data
as in Figure 4.1.

the following:

� Binning [94] is a simple yet powerful technique for reducing the number
of bitmaps in an index. Instead of constructing a bitmap per distinct
value, multiple values are put together and share the same bitmap. The
resulting bitmap then represents a set of values, as illustrated in Fig-
ure 4.3a. Consequently, the index can no longer distinguish between the
individual elements of the corresponding set. Selection queries therefore
produce false positive results, and the raw data column needs to be con-
sulted to re�ne the results. � Note that with multi-dimensional queries,
the re�nement may happen after the intermediate results from each di-
mension have been combined, as it could reduce the amount of raw data
accesses during re�nement [163]. � Nevertheless, depending on how the
values are binned, the resulting index may still exactly represent a subset
of the indexed values [155]; for instance to avoid accessing the raw data
for frequently occurring selection predicates.

� Encoding de�nes how the contents of the bins are translated into a set
of bitmaps. In the simplest case, for each bin a separate bitmap is con-
structed, which results in a basic bitmap index as depicted in Figure 4.1.
Note that in that case, we conceptually have as many bins as there
are distinct values, i.e., a 1:1 mapping. As mentioned earlier, the basic
bitmap index is e�cient for evaluating equality predicates, therefore this
encoding scheme is also called equality encoding.

29

1 3 4 7 [1,3] [3,4] [4,7]
TID A B₀ B₁ B₂ B₃ I₀ I₁ I₂
0 1 1 0 0 0 1 0 0
1 3 0 1 0 0 1 1 0
2 3

⇨

0 1 0 0

⇨

1 1 0
3 7 0 0 0 1 0 0 1
4 4 0 0 1 0 0 1 1
5 7 0 0 0 1 0 0 1
6 4 0 0 1 0 0 1 1
7 1 1 0 0 0 1 0 0

I₀

I₁

I₂

Figure 4.4: An interval-encoded bitmap index.

Other popular encoding schemes are range encoding [36] and interval
encoding [37]. Both are applicable for ordinal attributes and require the
bins to be sorted. In a range-encoded bitmap index, a single bitmap
identi�es the values that is less than or equal to the value the current
bin maps to. Figure 4.3b illustrates a range-encoded index for the base
data from Figure 4.1. For instance, the bitmap B2 covers all tuples
where 1 ≤ A ≤ 4. This encoding allows arbitrary range queries and
equality queries to be evaluated by accessing at most two bitmaps, e.g.,
to search for tuples with 3 ≤ A ≤ 4, the bitmaps B0 and B2 need to be
XORed. Range encoding however, does not reduce the size of the index,
it actually introduces redundancies, which could negatively a�ect the
compressibility of the individual bitmaps.

The more involved interval encoding on the other hand almost halves the
number of bitmaps and introduces less redundant bits. The construction
of an interval-encoded index is illustrated in Figure 4.4. Given a basic
index with C bitmaps, the bitmaps are translated into k = bC2 c + 1 inter-
vals I0 to Ik−1. Each interval Ij spans the bitmaps (or bins)

[
Bj ,Bj+dC2 e

]
,

with 0 ≤ j ≤ k. Similarly to range encoding, range and equality queries
require at most two bitmaps to be accessed. For instance, the query
1 ≤ A ≤ 4 is rewritten as I0 ∨ I1 and A = 3 to I0 ∧ I1.

� Decomposition refers to decomposing the indexed values into multiple
components before they are assigned to the available bins. A single
value may therefore map to multiple bins, rather than just a single one.
For instance, values may be decomposed into their multiples of 42 (b v42c)
and the residuals (v mod 42). Optionally, the bins associated with the
individual components may be encoded di�erently.

An extreme case for such a multi component bitmap index is the bit-sliced
index [133, 147], in which the values are decomposed bit by bit and are

30

assigned to the bins based on their signi�cance. Figure 4.3c illustrates a
bit-sliced index for the example data set from Figure 4.1. The index con-
sists of three bitmaps, since the maximum value 7 could be represented
with 3 bits. Bit-slicing, and decomposition in general, can therefore sig-
ni�cantly reduce the overall index size to dlog2(C)e bitmaps (assuming
the values are densely packed). However, it typically requires all bitmaps
to be read during query evaluation, which harms performance.

The discussed techniques can be combined almost arbitrarily and optionally
be arranged as a hierarchy of bitmap indexes [177, 180, 181, 155], which o�ers
a more �ne-grained trade-o� between space requirements and query response
times [156, 181]. Binning, encoding, as well as decomposing the indexed values
have signi�cant impact on the characteristics of the individual bitmaps [180].
In particular, binning, range and interval encoding tend to generate denser
bitmaps, which are harder to compress [181].

4.2 Bitmap Compression

One of the earliest bitmap compression technique used and commercialized in a
database management system is the Byte-aligned Bitmap Code [14] (BBC). It
partitions the input bitmap in bytes and categorizes them either as �ll bytes
or literal bytes. A byte that either contains only 0-bits or 1-bits is thereby
considered a �ll byte. Bytes that contain both 0- and 1-bits are considered
literal bytes. Once the input bytes are categorized, BBC inspects sequences
of �ll and literal bytes and tries to compress these sequences, for instance
through merging multiple consecutive �ll bytes of the same kind (either 0-�lls
or 1-�lls), which is know as run-length encoding. More precisely, the BBC
algorithms distinguishes among four di�erent cases:

1) 0 to 3 �ll bytes followed by 0 to 15 literal bytes (aka tail) are encoded as a
header byte followed by the literal bytes. The header contains the �ll bit,
the length of the �ll in number of bytes, and the number of subsequent
literal bytes. The most signi�cant bit of the header byte is set to 1, which
is used to distinguish it from the other cases.

2) 0 to 3 �ll bytes followed by a literal byte that contains a single bit that
is di�erent from the �ll bit. BBC stores this case as a single header byte.
The header contains the �ll bit, the �ll length, as well as the position of
the odd (or dirty) bit within the last byte.

3,4) Cases 3 and 4 are similar to the �rst two cases, but they relax the length
restriction of the �lls. In the �rst two cases, the length was encoded in
the header byte, using two bits. Thus, the maximum �ll length was three
bytes. In cases 3 and 4, the �ll length is not encoded in the header byte.
Instead, the header byte is followed by a variable byte integer [49] that
allows for �lls of arbitrary lengths.

31

Due to the fact that BBC uses two di�erent run-length encodings (case 1 and
3), it is suitable for bitmaps that contain both, short and long runs. Further,
BBC is also optimized for the case where a single random dirty bit disrupts
a run (case 2 and 4). Instead of storing a literal byte with one bit set, the
position of that dirty bit is encoded in the header byte. This approach is often
called piggybacking.
The disadvantage of BBC is that decoding a compressed bitmap requires a

lot of branching, which harms performance. The later proposed PackBits [58]
(PAC) format addressed this issue by reducing the number of cases to distin-
guish. In contrast to BCC, PAC is a very simple run-length encoding scheme.
It partitions the input bitmap into bytes and distinguishes literal runs and �ll
runs. Each run is preceded by a header byte that encodes the length of the
run in the �rst seven bits and the type of the run in the most signi�cant bit.
Note that the header byte does not contain the �ll bit (as in BBC). In fact,
PAC uses a �ll-byte that is replicated during decoding. Further, odd bits are
not piggybacked in the header bytes, which impairs compression ratios. Thus,
PAC trades space for decompression performance.
Both BBC and PAC are byte-based compression schemes and are considered

not to fully utilize today's hardware capabilities, as modern processors operate
on 32 bit and/or 64 bit words, rather than on bytes. In 2006, Wu et al.
presented the Word-Aligned Hybrid [179] (WAH), which is one of the most
popular bitmap compression techniques nowadays. WAH addressed the issue
of slow decompression speeds of its predecessors. Driven by the observation
that byte-wise decoding does not fully utilize modern processors, the authors
proposed to align the encoded runs to either 32-bit or 64-bit word boundaries,
depending on the underlying hardware.
WAH partitions the input bitmap into groups of w−1 bits, where w is either

32 or 64, depending on the underlying hardware. A group that only consists
of 0's or 1's is called a �ll group. A group that contains both, 0 and 1 bits, is
called a literal group. Groups are then encoded either as �ll or literal words.
The most signi�cant bit is used to distinguish between both. Similarly to the
aforementioned compression schemes, WAH compresses only �lls, by merging
two or more consecutive �ll words into a single word. Thereby, all �ll words
need to carry the same �ll bit, which is stored in the second most signi�cant
bit position. The remaining w − 2 bits are used to store the run length as a
multiple of w − 1. A literal word contains w − 1 bits of the plain bitmap as is.
The most signi�cant bit is used to identify the word as a literal word.
While word alignment increases the CPU e�ciency during decompression

and bitwise operations, it also negatively a�ects the compression ratios [175].
Follow-up work proposed several extensions to WAH or variants thereof to
improve compression ratios:

� Compressed N Composable Integer Set [48] (CONCISE): The CONCISE
approach is motivated by the observation, that real-world bitmaps often
contain so called dirty bits or odd bits. These bits disrupt long runs and

32

force the WAH approach to encode the corresponding parts of the bitmap
using three words. For instance, a bitmap like `000 . . . 0001000 . . . 000'
would be encoded as a �ll word, a literal word, followed by another �ll
word. CONCISE therefore introduced mixed �ll groups which in essence
is a �ll word that additionally stores the position of a single dirty bit.
Given the bitmap from above, the CONCISE approach requires only two
words to encode it, rather than three words as with WAH.

� Position List WAH [55] (PLWAH): PLWAH and CONCISE are moti-
vated by the same observation and are therefore very similar. Both have
been developed independently and were published in 2010. We therefore
omit further details here.

� COMPressed Adaptive indeX format [68] (COMPAX): The COMPAX
format as well addresses the issue of random dirty bits, but in contrast to
CONCISE and PLWAH, COMPAX is able to deal with multiple (clus-
tered) dirty bits. With this approach, up to two dirty bytes can be
merged with a �ll word, i.e., a �ll word (F) that is preceded by a lit-
eral word (L) and also followed by another literal word, is merged into a
single LFL code-word.

� Variable Aligned Length WAH [76] (VAL-WAH): The authors of VAL-
WAH made the observation that in practice, many bits within a �ll words
remain unused. Within a �ll word w − 2 bits are reserved to store the
length of the run (in number of words), where w ∈ {32, 64} refers to
the bit-width of the an encoded word. Guzun et al. observed that with
real-world data sets, runs are signi�cantly shorter and therefore many
bits are wasted. The proposed solution is to decouple the segment size,
that is the unit of compression, from the size of an encoded word w
which is determined by the underlying hardware, i.e., a segment size
of b bits could be chosen and therefore up to 32/(b + 1) segments can
be encoded in a single 32-bit word. Note that one bit is still required
to distinguish between literal words and �ll word, thus b = 7 refers to
byte-alignment. VAL-WAH further allows for having multiple di�erent
alignments within a single bitmaps and thus improves compression ratios
also when bitmaps have inhomogeneous characteristics with respect to
the distribution of set bits.

� Super Byte-aligned Hybrid [89] (SBH): The SBH approach has more in
common with BBC than with WAH, as it operates on bytes rather than
on words. It however adopts the distinction between literal and �ll words,
which in this case are restricted to bytes. A literal byte represents 7 bits
of the input bitmap as is. A �ll byte either encodes a 0-run or a 1-run,
whereas the run lengths are integral multiples of 7. The maximum run
length that can be encoded using a single byte is 63×7 bits, which is

33

rather short and would make the approach ine�ective with highly clus-
tered or sparsely populated bitmaps. SBH therefore encodes longer runs
using two bytes, which increases the maximum run length to 4095×7 bits.

� Partitioned Word Aligned Hybrid [168] (PWAH): The partitioned WAH
sub-divides the 32- or 64-bit words of WAH into to smaller equally sized
partitions. Each partition either represents a literal part of the bitmap or
a run. As the partition size, and therefore the alignment, can be chosen
almost arbitrarily, PWAH can e�ciently store shorter 0- and 1-runs, sim-
ilarly to VAL-WAH. Additionally, PWAH introduces so called extended
�lls, where multiple �ll partitions are fused together to space-e�ciently
encode longer runs; similarly to the two byte encoding used in SBH.
The PWAH compression was a �side product� while developing a data
structure for answering reachability queries on graphs. The compression
technique gained very little visibility, and has not been further evaluated
in other contexts nor has it been compared to other bitmap compression
techniques, except for WAH.

� Byte Aligned Hybrid [106] (BAH): The more recently proposed Byte
Aligned Hybrid approach is probably the most complicated compres-
sion scheme for bitmaps. BAH compresses the bitmap in segments and
thereby it distinguishes between three di�erent segment types: sequences
of zero bytes (ZERO), sequences of literal bytes (LITERAL), and a fre-
quent bit-pattern of length 32 encoded in either one or two bytes (EN-
CODABLE). The latter requires an additional dictionary with frequently
occurring bit patterns. Unlike the compression schemes discussed so far,
a BAH compressed bitmap does not consist of a single sequence of en-
coded words, it instead consists of a main byte array and three auxiliary
arrays. Depending on the encoded byte read from the main array, the
other arrays are consulted to reconstruct/decompress the bitmap. The
decoder therefore has to distinguish among �ve di�erent cases, whereas
in three cases one of the other arrays need to be read. The BAH ap-
proach is clearly motivated by reducing space consumption rather than
improving query performance.

� Run-Length Hu�man [159] (RLH): The RLH compression approach was
published around one year after WAH was proposed. The approach sets
itself apart from the compression schemes discussed so far, since it (i)
gives up on word (or byte) alignment and (ii) it does not rely on a hybrid
encoding, namely storing runs and literal parts of the bitmap interleaved.
Instead, a RLH compressed bitmap is represented as a sequence of vari-
able length Hu�man codes [79]. The encoding works as follows: A given
bitmap is translated into a list of integers. Each integer represents a
1-bit of the bitmap. The value of the integer denotes the distance to
the next 1-bit. These integer values are the symbols that are assigned
Hu�man codes to. Frequent symbols (distance values in this case) are

34

EWAH

F L L L L L L F

WAH

Figure 4.5: EWAH encodes the number of literal words (L) that are
following a �ll word (F) as part of the preceding �ll word.
The additional information allows for fast seeks within
the literal part of the bitmap, whereas WAH needs to
read all words in between.

represented with shorter codes, and vice versa. The compressed bitmap
then consists of the encoded distances serialized into a bit string and a
Hu�man tree that is required for decoding.

The development of WAH was clearly motivated by the objective of achiev-
ing higher performance. In comparison to its predecessor BBC, it requires less
branching, as WAH has to distinguish only between two types of code words,
and since code words are 32- or 64-bit wide, it is more CPU e�cient. Naturally,
the design decisions made, compromised the compression capabilities. In gen-
eral, WAH compressed bitmaps occupy more space than bitmaps compressed
with BBC [175]. Follow up research identi�ed this as an issue and proposed the
aforementioned extensions to WAH or proposed new approached based on run-
length encoding. The compression techniques CONCISE, PLWAH, COMPAX,
VAL-WAH, SBH, PWAH, BAH, and RLH were primarily motivated by saving
space rather than improving access latencies. With regard to the space/time
trade-o�s, most of the research e�orts happened into the opposite direction
compared to WAH and PAC. To the best of our knowledge, there was only a
single extension to WAH that was aiming for even higher performance:

� Enhanced Word-Aligned Hybrid [103] (EWAH): The Enhanced WAH is
very similar to WAH as is also uses two di�erent word types to encode
a bitmap. The major di�erence is that EWAH additionally stores the
number of literal words that are following the current �ll word1, simi-
larly to the BBC case 1, as described on Page 31. This allows for faster
random access within the literal parts of the compressed bitmap or al-
lows for e�ciently skipping over it to the next �ll word, cf. Figure 4.5.
To store the additional information, EWAH slightly compromises com-
pression ratios. In particular, when runs are very long (larger than 215

words), plain WAH is more e�ective. EWAH can therefore be considered
a performance improved variant of WAH. Another advantage of EWAH

1 The authors of EWAH use the term marker word rather than �ll word. We however refer
to it a �ll word to emphasize the conceptual similarities among the di�erent compression
techniques we are discussing, and for the sake of better readability.

35

is that it occupies less space with poorly compressible bitmaps. A lit-
eral word in EWAH can carry a payload of w bits, where w denotes the
word size, which is in contrast to a literal word in WAH, where one bit
per word is required to distinguish literal words from �ll words; thus the
payload is w − 1 bits, which could increase the space of the bitmap by
3.125% with w = 32, or by 1.5625% with w = 64 respectively. EWAH on
the other hand adds at most a 0.1% overhead when the bitmap is not
compressible. It should be noted, that fast random accesses (and skips)
within the literal parts of a compressed bitmap were already possible
with the earlier BBC and PAC formats. This capability, however, got
lost with WAH when the header bytes got removed and replaced by the
indicator bits on a per-word basis.

All bitmap compression techniques discussed so far are based on run-length
encoding or at least employed run-length encoding alongside other techniques.
The major disadvantage of this approach is that random accesses have linear
time complexity. In particular, to test a random bit at position k, all preceding
bits within the range [0,k) need to be decoded (or decompressed) beforehand.
E�cient random access is crucial with respect to performance when two or

more bitmaps are intersected. In particular, when the bitmaps have di�er-
ent bit densities, we can avoid accessing all of the data of the denser (larger)
bitmap. It allows the accesses to the relevant positions to be restricted, i.e., the
positions where bits are set within the sparser (smaller) bitmap. In database
systems, this could signi�cantly accelerate the evaluation of conjunctive predi-
cates [35]. Chambi et al. identi�ed this opportunity and developed the Roaring
Bitmap format [35]. Further, Athanassoulis et al. proposed an extension to
WAH, called Fence Pointers [17], to overcome the linear access time. In the
following, we brie�y introduce and discuss these two approaches.

� Roaring Bitmaps [35, 102]: The Roaring Bitmap format sets itself apart
from all aforementioned bitmap compression techniques, as it does not
rely on run-length encoding. Instead, Roaring uses a di�erent approach
that relies on partitioning and using multiple representations on a per
partition basis. More precisely, the plain bitmap is partitioned into
chunks of 216 bits. Each chunk is physically stored in a separate con-
tainer. Roaring implements three di�erent container types, where each
container uses a di�erent representation for the bitmap. Depending on
the characteristics of the chunk, Roaring chooses the best suitable con-
tainer type, i.e. the one that results in the lowest memory consumption.
At the time of writing, Roaring supported the following container types:

� Array Container: Within an array container, the bitmap is repre-
sented as a list of integers. Each integer represents a single 1-bit.
The value of the integer refers to the index (position) of the set bit.
Since the partitions of the bitmaps are limited in size to 216 bits and
the integer values represent the position within the partition, rather

36

1, 3, 11, 37,... [3,7], [42,51],... 0000100011101001001...

Figure 4.6: Roaring partitions the bitmap and stores each parti-
tion using the container type that occupies the smallest
amount of memory. (Figure from [C])

than within the (typically larger) original bitmap, the integers are
stored as 16-bit values. Each set bit in a partition therefore occu-
pies 16 bits of memory. When the number of set bits exceeds 4096,
this representation would require more space than a plain bitmap
representation. To avoid this case, Roaring only makes use of an
array container i� the number of set bits is less than or equal to
4096.

� Bitmap Container: The bitmap container stores the partition of
plain bitmap as is. It serves as a fallback option when other con-
tainer types are not able to represent the bitmap space-e�ciently.
For instance, when the number of set bits in a partition exceeds
4096 bits, Roaring (most likely) stores the partition as a (verbatim)
bitmap container.

� Run Container: A run container [102] is employed when the input
bitmap partition contains long 1-runs. Inside the container, these
runs are stored as a list of integer pairs 〈b, e〉, where [b, e] is the
range spanned by the 1-run. Similarly to the array container, the
integers are stored as 16-bit values. Thus, up to 2048 runs can be
stored within the container without exceeding the size of the plain
bitmap partition.

Figure 4.6 illustrates how an example bitmap is represented with Roar-
ing. A Roaring bitmap can be seen as a two-level tree, whereas the �rst
level contains the pointers to the individual containers, and the contain-
ers represent the second tree level. One of the most important properties
of the Roaring bitmap format is that the bit positions stored in an array
container, the runs stored in a run container, as well as the containers
itself are sorted. Random accesses can therefore be performed in logarith-
mic time complexity. It takes at most two binary searches to determine
the value of a random bit; only in cases where the partition is stored as
a bitmap container, the second binary search is super�uous, since each
bit is directly addressable. It should be noted that the asymptotical
logarithmic time complexity is caused by the binary search within the
container list rather than the search within the container, since the con-

37

tainers are bound in size. Within the container list, empty partitions are
omitted and the pointers to the physically existing partitions are densely
packed, which is the reason why a direct access via the partition o�set
is not possible and a binary search is required instead.

� Fence Pointers [17]: The fence pointers approach extends WAH (or sim-
ilar formats) by an additional index structure. This index provides a
mapping from the words of the plain bitmap to the corresponding words
of the encoded bitmap. Naturally, indexing all words in the plain bitmap
would result in a signi�cant space-overhead. Therefore, fence pointers are
supposed to index the plain bitmap more coarse-grained; e.g., one index
entry per 103 to 105 words o�ered a good compromise between space
consumption and access latency with the workloads tested in [17]. The
indexing granularity in general o�ers a space/time trade-o� that needs
to be tuned within the application context. The space consumption of
a fence pointer index is linear in the size of the plain bitmap, more pre-
cisely: (dn/(w − 1)e/д) · s, where n denotes the number of bits in the
plain bitmap, w the word size, д the granularity, and s the size of a fence
pointer in bits. Even though fence pointers have a high space consump-
tion, they reduce the time complexity of random accesses. Independently
from how д is chosen, random accesses on the (run-length) compressed
bitmap can now be performed in constant time. In worst case д en-
coded words need to be read to test an arbitrary bit. To the best of our
knowledge, this is a unique feature among all currently existing bitmap
compression methods.

Both approaches provide e�cient random access, whereas the asymptotic
cost for the Fence Pointer approach is lower. It should, however, be noted that
both approaches could be either in constant or in logarithmic time complexity,
with some minor changes. In Roaring, the binary search in the container list
could be avoided if the pointers to the containers would not be densely packed
and therefore would be directly addressable by the partition o�set. I.e., when
accessing the kth bit, the pointer to the corresponding container would then
be stored at position k >> 16. On the other hand, the Fence Pointer approach
could index the compressed bitmap rather than the plain bitmap. The size of
the index would then be linear in the size of the compressed bitmap, rather
than in the size of the plain bitmap. It would however increase the access
latency, since a binary search would be required.
In any case, the Fence Pointer approach adds signi�cant space overhead

to WAH and even without this additional index structure, WAH has a sig-
ni�cantly higher space consumption compared to Roaring. For instance, the
experimental evaluation in [102] and [35] with real-world data sets showed that
Roaring requires up to 50% less space than WAH. Our experimental evalua-
tion with a large variety of bitmap characteristics in [C] has further shown,
that only in very rare cases, WAH is able to compress slightly better than
Roaring.

38

Even though, the linear access time of WAH has been overcome with Fence
Pointers, the high memory consumption makes this approach less attractive
for practical applications. It also has not been further evaluated and compared
to other bitmap compression techniques. In particular, it was not considered
in the experimental study of Wang et al. [171]2 Roaring, on the other hand,
gained enormous popularity since its initial release. At the time of writing,
Roaring was available in 11 programming languages and was widely adopted in
database systems, e.g., in Druid3, Hive4, Kylin5, and Procella [40]; in full-text
search engines like Solr6, and many other systems7.
The huge success of Roaring is credited to its high performance in database

and information retrieval workloads, which in most cases boils down to com-
pute the intersection of bitmaps [35, 102, 171]. Roaring can be up to two
orders of magnitude faster than WAH for computing intersections [102]. The
experimental study of Wang et al. [171] con�rmed the superiority of Roaring
over other bitmap compression techniques with regard to intersection perfor-
mance with several benchmarks, including the relevant queries from the Star
Schema Benchmark [135] (SSB) and TPC-H Decision Support Benchmark8.
With regard to space consumption, Roaring proves that it is possible to

compress bitmaps signi�cantly better than word-based compression schemes,
e.g., like WAH and Concise, while o�ering fast access times. The compression
ratios can however not compete with byte-based compression techniques, such
as BAH or BBC, as shown in the following.
To experimentally compare the compression capabilities we make use of a

benchmark setting that was de�ned in [35] and was used earlier to evaluate
Roaring bitmaps [35, 102]. The benchmark consists of bitmaps that where cre-
ated when indexing four di�erent real-world data sets, namely Census 1881,
Census Income, Weather, and WikiLeaks. For each data set 200 indi-
vidual bitmaps need to be compressed. Further, each data set comes in two
�avors: as is and sorted. In the latter case, the raw input data is sorted before
indexing, which is known to reduce the overall size of compressed bitmap in-
dexes [103]. The reduced size is due to indexing sorted data results in bitmaps
with longer 0- and 1-runs, as the 1-bits are more clustered. For the experi-
mental evaluation we chose two word-based compression schemes, WAH and
Concise, and two byte-based compression schemes, BAH and BBC. Thereby,
we use BBC as the baseline, since BBC o�ers the lowest space consumption
in almost all cases (expect for the unsorted WikiLeaks data). Figure 4.7
shows the space consumption of the compressed bitmaps relative to BBC. As
mentioned earlier, Roaring signi�cantly reduces the space consumption over

2Same applies for PAC, COMPAX, PWAH, BAH, and RLH.
3https://druid.apache.org/
4https://hive.apache.org/
5https://kylin.apache.org/
6https://lucene.apache.org/solr/
7We refer to the o�cial Roaring web site for more details: https://roaringbitmap.org/
8http://www.tpc.org/tpch/

39

https://druid.apache.org/
https://hive.apache.org/
https://kylin.apache.org/
https://lucene.apache.org/solr/
https://roaringbitmap.org/
http://www.tpc.org/tpch/

Census 1881 Census Income Weather WikiLeaks
0×

1×

2×

3×

Si
ze

re
la
ti
ve

to
B
B
C

WAH Concise
BAH BBC

Roaring TEB

(a) unsorted

Census 1881 Census Income Weather WikiLeaks
0×

1×

2×

3×

Si
ze

re
la
ti
ve

to
B
B
C

(b) sorted

Figure 4.7: Space consumption of compressed bitmaps relative to
BBC-compressed bitmaps. (Absolute values can be
found in Table 4.1)

WAH, and Concise in most cases, but on the other hand, bitmaps compressed
with Roaring consume up to 1.4× the space of BBC-compressed bitmaps on
unsorted data, and up to 2× on sorted data. This signi�cant di�erence in
compression ratios was the main motivation for our research, that aimed for a
technique that o�ers higher compression ratios, similarly to byte-based com-
pression schemes, without giving up on the e�cient random access property.
Our approach, which we call Tree-Encoded Bitmaps (TEB), is brie�y described
in the following section. The full publication is found in Section C.

4.3 Tree-Encoded Bitmaps

Tree-Encoded Bitmaps (TEB) are a novel approach to representing bitmaps
space-e�ciently. In contrast to the previously existing bitmap compression

40

WAH Concise BAH BBC Roaring TEB

Census 1881 34.39 25.56 12.58 11.95 15.08 12.59
Census 1881 (sorted) 3.04 2.49 1.52 1.32 2.12 1.46
Census Income 3.38 2.94 2.12 2.09 2.60 2.10
Census Income (sorted) 0.66 0.55 0.54 0.31 0.60 0.36
Weather 6.83 5.88 3.89 3.83 5.38 4.16
Weather (sorted) 0.55 0.43 0.45 0.23 0.34 0.26
WikiLeaks 11.12 10.27 5.11 5.94 5.93 5.41
WikiLeaks (sorted) 2.90 2.25 1.82 1.38 1.67 1.68

Table 4.1: Space usage in bits per attribute value.

Figure 4.8: Tree-based representation of a bitmap. (Figure adapted
from [C])

techniques, our approach does not rely on run-length encoding or integer arrays
to encode bitmaps. Instead, a TEB employs a full binary tree to represent the
content of a bitmap. Longer runs of 0's or 1's are thereby mapped to tree
nodes closer to the root, and vice versa. I.e., nodes at the deepest tree level
encode a single bit, nodes one level above span two bits of the bitmap, etc. An
introductory example is illustrated in Figure 4.8. For instance, the leftmost
leaf node of the binary tree represents a 1-run of length 2, starting at position
0 in the original bitmap, and the rightmost leaf node represents a 0-run of
length 4, starting at position 4.
The construction of the tree-based representation is a two-phase process. In

the �rst phase a perfect binary tree is established on top of the plain bitmap,
so that each leaf node of the tree is associated with a single bit. The associated
bit is the payload, or label, of the leaf node. In the second construction phase,
the tree is pruned bottom-up. Thereby, sibling leaf nodes with identical labels
are removed from the tree and the label is assigned to the parent node. Thus,
with every pruning step, two leaf nodes and one label are removed from the
tree structure. The important thing to note here, is that the pruning process
removes only redundancies from the tree structure, but the original bitmap
remains reconstructible. Further, consecutive identical bits, i.e., 0-runs and
1-runs, of the input bitmap are thereby merged together. The bottom-up

41

pruning can therefore be considered a lossless compression method.
A key component of TEB is the space-e�cient encoding of the tree struc-

ture, for which we employ the level-order binary marked representation [81],
which allows for representing the tree structure using one bit per tree node.
The (pruned) tree is encoded in breath-�rst left-to-right order (i.e., level-
order) as a sequence of bits. 1-bits thereby represent inner nodes and 0-bits
leaf nodes. The corresponding labels of the leaf nodes are stored in an ad-
ditional bit sequence. For instance, the tree from Figure 4.8 is encoded as
T = 1100100, L = 0101, where T denotes the tree structure and L the labels
of the leaf nodes. Beside the tree structure and the labels, a TEB contains
an auxiliary data structure, a rank dictionary [81]. The dictionary enables
e�cient navigational operations within the encoded tree, which are required
to support e�cient random access, and consequently to e�ciently compute
bitmap intersections. Similarly to Roaring, TEB o�ers random accesses in
logarithmic time complexity. It should further be noted, that some optimiza-
tions are performed during construction, which ensure that in worst case the
size of a TEB does not exceed the size of the uncompressed bitmap; except
for a small overhead caused by meta data. In worst case, the size of a TEB is
24 + 8 × dlog2(n)e + dn/8e bytes, where n denotes the length of the bitmap9.
In terms of space e�ciency, TEB o�ers signi�cantly higher compression ra-

tios than Roaring in a wide spectrum of bitmaps characteristics. Our exper-
imental analysis in [C] shows that TEB saves up to 50% space over Roaring
with synthetic data sets, and up to 35% with real-world data sets. The results
in Figure 4.7 further show, that (i) TEB can compete with advanced byte-
level compression schemes like BAH and BBC; and (ii) TEB is very robust
regarding di�erent bitmap characteristics, which is in contrast to BAH and
Roaring. Both are less e�ective on sorted data. In particular with the Cen-
sus Income data set, Roaring occupies even more space than the word-based
Concise method (cf., Figure 4.7b). Overall, Roaring consumes 1.22× the space
of BBC on unsorted data (geo. mean among all four data sets) and 1.54× on
sorted data, whereas TEB consumes only 1.01× the space of BBC-compressed
bitmaps on unsorted data and 1.15× on sorted data, respectively.
In summary, our TEB approach is very close the byte-based compression

schemes with regard to compression, without giving up on e�cient random
access. The tree structure, however, makes the implementation signi�cantly
more complex. In particular, to be competitive with the low access latencies
of Roaring, TEB requires the underlying hardware to provide (at least) a fast
population count (popcount) instruction, which most modern processors do.
Other TEB algorithms can heavily bene�t from instructions that are rather
new or only available on Intel processors. For instance, our implementation of
the tree-based compression algorithm makes use of the bit extract (pext) and
bit deposit (pdep) instructions10, and our performance-optimized decompres-

9Assuming n ≥ 64, otherwise the TEB size would be 32 bytes.
10We refer the reader to the Intel Intrinsics Guide for more details: https://software.

intel.com/sites/landingpage/IntrinsicsGuide/

42

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

sion algorithm employs Intel's AVX-512 SIMD instructions.

4.4 Future Work

Improvements in Compression. Motivated by the observation that the com-
pressed size of TEBs is in many cases still signi�cantly higher than the infor-
mation theoretic lower boundary, which by the way applies to all compression
methods discussed in this thesis, we plan to further investigate improving the
compression ratio. A promising research direction is motivated by the Byte
Aligned Hybrid (BAH) approach (cf., Section 4.2), which computes a dictio-
nary with frequently occurring bit patterns. We plan to investigate whether
something similar could be applied to TEB. The key idea thereby is to com-
pute a dictionary of frequently occurring (sub-)tree structures, and instead of
encoding the binary tree as a whole, parts of the tree are replaced by references
to dictionary entries. We expect tree-based patterns to have a much higher
impact on the overall compression ratios, since a tree pattern can be applied
anywhere in the tree structure, and depending on its depth (relative to the root
node) it can span a �exible number of bits in the original bitmap, ranging from
a few bits up to the entire bitmap. In other words, a tree pattern decouples
the span within the plain bitmap from its encoded size, which is in contrast
to BAH, where a 16-bit pattern always spans 16 bits of the plain bitmap.
There are two major open challenges and research questions regarding ex-

tending TEBs with patterns: The �rst is to identify the proper set of tree
patterns such that the overall TEB size is minimal. Second, since the tree gets
fragmented, a new space- and time-e�cient encoding needs to be found.

Lossy Compression. Another research direction, motivated by lightweight sec-
ondary indexing, is to integrate a lossy compression algorithm with TEBs.
Lightweight index structures are used as �lters and typically have a one-sided
error, such that non-qualifying tuples (with some probability) pass the �lter,
but qualifying tuples are never erroneously �ltered out. This, for example, can
be achieved with bitmap indexes when binning is applied (cf., Section 4.1).
An alternative orthogonal strategy would be to construct a bitmap index with
lossy compressed individual bitmaps. The idea is to sprinkle in some 1-bits
so that multiple shorter runs are merged into longer runs, and thereby reduce
the overall space usage of the compressed bitmap. The tree structure of TEB
easily allows to identify these odd 0-bits that interrupt longer 1-runs. When
odd bits are observed during bottom-up pruning, the pruning process could
then be continued even if two sibling leaf nodes have di�erent labels. The
inner node, that is collapsed into a leaf, is thereby assigned the label 1 and
therefore introduces false positive bits. Figure 4.9 shows an example where a
single false-positive bit allows for merging two adjacent 1-runs into single one
and thereby removing four tree node and two labels. In general, depending
on the labels l1 and l2 of two sibling nodes, denoted as 〈l1, l2〉, we distinguish

43

(a)

0

0

1

2

3

1
0 1 3 4 5 6 72

Level:

Index:

(b)

Figure 4.9: Pruning the leaf nodes at index 2 and 3 from Figure 4.8
causes a false positive bit at index 2 (shaded area). Af-
terwards, pruning can be continued at level 2 without
further information loss (b).

three possible cases:

� 〈0, 0〉 can be pruned without an information loss. The number
of false positives in this sub-tree is guaranteed to be zero.

� 〈1, 1〉 can be pruned without introducing false positives. But
earlier pruning operations may have already introduced false
positives.

� 〈0, 1〉 or 〈1, 0〉 introduces 2log2(n)−i false positives, where i de-
notes the tree level (depth) of the pruned nodes.

It is important to note that the proposed approach only causes false positives,
but no false negatives, since it introduces only 1-bits but no 0-bits. The intro-
duction of false-positive bits aims for reducing the size of TEBs, thus we refer
to TEBs that contains false positives as lossy compressed TEBs.
Lossy compression in general can either be applied to limit the space usage

of the index or to reduce the space usage limited by a (user-)speci�ed max-
imum error (or accuracy). In both cases however, further research is needed
on how to identify the odd bits with the highest space-saving potentials and
the lowest impact on accuracy. Furthermore, it needs to be investigated how
binning compares to lossy compression with regard to accuracy and space con-
sumption.

44

Publications

45

A Performance-Optimal Filtering:

Bloom Overtakes Cuckoo at

High Throughput

Harald Lang1, Thomas Neumann1, Alfons Kemper1, Peter Boncz2

1 Technical University of Munich
2 Centrum Wiskunde & Informatica

Appeared in Proceedings of the VLDB Endowment, 12(5):502�515, Jan. 2019.
https://doi.org/10.14778/3303753.3303757

The content of this section is identical to the original publication. Only the
format and the numbering have been adjusted.

In accordance with the TUM regulations for the award of doctoral degrees
(TUM Promotionsordnung, 2014), a summary of the publication is included
in the �rst part of this thesis. Please refer to Section 2.3. Furthermore, the
printed version is included in the Appendix on page 173 �.

The contributions of the thesis author to this publication are: the implemen-
tation, the evaluation, and authoring of substantial parts of the paper.

47

https://doi.org/10.14778/3303753.3303757

Abstract

We de�ne the concept of performance-optimal �ltering to indicate the Bloom
or Cuckoo �lter con�guration that best accelerates a particular task. While the
space-precision trade-o� of these �lters has been well studied, we show how
to pick a �lter that maximizes the performance for a given workload. This
choice might be �suboptimal� relative to traditional space-precision metrics,
but it will lead to better performance in practice. In this paper, we focus on
high-throughput �lter use cases, aimed at avoiding CPU work, e.g., a cache
miss, a network message, or a local disk I/O � events that can happen at rates
of millions to hundreds per second. Besides the false-positive rate and mem-
ory footprint of the �lter, performance optimality has to take into account the
absolute cost of the �lter lookup as well as the saved work per lookup that
�ltering avoids; while the actual rate of negative lookups in the workload deter-
mines whether using a �lter improves overall performance at all. In the course
of the paper, we introduce new �lter variants, namely the register-blocked and
cache-sectorized Bloom �lters. We present new implementation techniques and
perform an extensive evaluation on modern hardware platforms, including the
wide-SIMD Skylake-X and Knights Landing. This experimentation shows that
in high-throughput situations, the lower lookup cost of blocked Bloom �lters
allows them to overtake Cuckoo �lters.

A.1 Introduction

A Bloom �lter [23] represents a collection of n keys with an initially-zeroed
array of m bits, setting for each inserted key k bits to 1, using as many hash
functions to identify the positions [0,m) where the bits are set in the array. This
structure allows for fast true-negative tests, but it can produce false-positives
at some probability: the false-positive rate f . The more recently introduced
Cuckoo �lter [63] o�ers similar capabilities. It stores small signatures �
which approximate keys using a few bits � in buckets that can hold a few such
signatures. The data structure is a Cuckoo hash table of such buckets. A �lter
lookup checks all signatures in a maximum of two buckets. An advantage of
Cuckoo �lters over Bloom �lters is that they allow deletes as well as duplicates
in the key set (thus: bag). Importantly, Cuckoo �lters provide a lower false-
positive rate f than Bloom �lters, given the same size m. In other words, a
Bloom �lter needs a larger size to reach the same f , and this larger size may
increase its lookup cost.
A popular use case in database systems is selective join pushdown. In

foreign-key joins between a large (fact) table and a small (dimension) table
with a �lter predicate that selects a fraction of the dimension tuples, only
a fraction σ of the fact table tuples will �nd a match and contribute to the
join result. It can then be bene�cial to create a Bloom or Cuckoo �lter that
contains the n selected dimension keys, and for each fact tuple �rst test if all k
bits of the join key are set in it. If not, the tuple does not join and further work
can be eliminated for it, such as a hash table or index lookup, or nested-loop
scan. This �ltering could be the �rst step in the join, but the �lter test can
also be pushed down all the way into the fact table scan, such that the data
volume coming out of the scan is reduced, making any intermediate operations
in between the scan and the join cheaper. Additionally, column stores can skip
over data from the non-key columns if whole stretches of tuples test negatively,
avoiding (disk or network) I/O and decompression e�ort.
In selective equi-join pushdowns, Bloom �lters are known to signi�cantly

enhance query performance in real analytical workloads, as well as in synthetic
ones, such as TPC-H and TPC-DS [25]. However, using a Bloom or Cuckoo
�lter can potentially back�re if it does not eliminate (enough) join candidates,
certainly in cases where the selectivity σ=1.0 (no negative lookups), or values
of σ close to that. A way to deal with this is to use cardinality estimation to
gauge σ and n at query optimization time, in order to decide whether to create
a �lter at all, and if so, with which parameters. Alternatively, some database
systems monitor the join hit-rate σ of hash or index joins at run-time, and add
a �lter if σ is below a given threshold [192]. This has the advantage that by
then n is known (e.g., the hash table has already been built � in the case of a
hash join), allowing us to better choose the �lter size m, as well as parameters
such as the k for Bloom �lter and the signature and bucket size (l , b) for
Cuckoo �lters.
A Bloom �lter is a well-known data structure also used in many systems

50

outside of databases, notably including network routers and caches of all sorts.
Beyond our leading example of selective equi-join pushdown, other uses inside
database systems include key-value indexes based on multiple structures/runs
such as log-structured merge-trees [53] (in order to reduce the number of struc-
tures to search), cold storage structures (idem) [12], and distributed-semijoin
optimization for exchange operators in MPP systems, which �rst broadcast a
Bloom �lter across compute nodes to avoid exchanging unneeded join-probe
tuples over the network [93]. Our work applies to all �lter usage scenarios.
The common thinking is that if the n is known, space-optimal Bloom �lter

parameters can be calculated based on theory [117], given a desired false-
positive rate f , namely k = −log2 f and m = 1.44kn. However, our argument
is that a minimal size m given an f or vice versa is not a goal in itself, rather,
the goal is to optimize performance.
In de�ning performance-optimal �ltering, we introduce a model to opti-

mize this overall performance and answer the crucial question: what �ltering
data structure and parameters best accelerate a particular workload? To deter-
mine what is performance optimal, we have to take into account the additional
factors: (i) the actual time tl a �lter lookup takes, (ii) the work time tw per
tuple that a negative lookup identi�ed by the �lter saves later on, and (iii) the
mentioned fraction 1-σ of real negative lookups (regardless of false positives).
The issue is how much tl to invest (in lookup time) and how much tw (work
time) this pays o� and how often this pays o� (1-σ).
Systems that incorporate key �ltering need to decide on the above question,

and its answer is not clear, which is the reason why we performed this research.
Our work focuses on �ltering techniques that provide both low f but also have
low lookup time tl , and builds on the cache-e�cient and hash-e�cient blocked
Bloom �lter work of Putze et al. [144]. In doing so, we introduce two new
Bloom �lter variants, namely the cache-sectorized and register-blocked ones.
Further, we take fast implementation techniques into account. This in-

cludes SIMD GATHER instructions as well as the many-core Knights Landing
architecture with wide SIMD. Fast implementations only use m values that
are powers-of-two, such that modulo can be computed with bit-wise AND. This
means that theoretically optimal values of m typically cannot be chosen, lead-
ing to an m that in the worst case is a factor

√
2'1.44 o� (average case 1.22).

Instead, we provide fast SIMD implementation techniques that allow almost
any size m to be used. Our implementations scale from �lters that �t a small
cache to �lters that are GBs in size. We release all our code and experiments
in open-source for reproducibility and re-use.
Comparing the overall performance of two �lter con�gurations, a decrease in

false-positive rate (∆f) only pays o� if the extra work saved (∆f ∗ tw) exceeds
the increase in lookup cost (∆l), i.e. if ∆f ∗ tw > ∆l . We will show that in all
realistic selective join workloads, blocked Bloom �lters with worse false-positive
rate outperform Cuckoo �lters, due to their lower lookup cost.
Figure A.1 summarizes our key �ndings from our detailed experiments with

regard to which �lter type, Bloom or Cuckoo, performs best for a given problem

51

101 105 109

104

106

108

Work time tw per positive lookup [CPU cycles]

P
ro

b
le

m
 s

iz
e

[n
u
m

b
e
r

o
f

ke
y
s

n]

CPU
cache
miss

tuple over
network

(amortized)

NVMe
read

SSD
SATA
read

magnetic
disk
read

read
100MB S3

Parquet file

da
ta
ba

se
 p
ro
ce
ss
in
g

se
le
ct
iv
e
jo
in
 p
us
hd

ow
n

di
st
rib

ut
ed

se
m
i-j
oi
n

LSM tree
fil
te
r

 to
o
la
rg
e

&
ex

pe
ns
iv
e

object
caches

network
routing

cloud
data

access

better use
an exact filter

(hash map, tree)

Bloom CuckooBest performing filter type:
high throughput low throughput

Figure A.1: Performance-optimal �lter types for di�erent problem
sizes n and potential work savings tw . Example refer-
ence points for tw values are shown above the plot and
applications inside the plot.

size n and the potential savings tw . In high-throughput situations (left side, low
tw), Bloom �lters are to be preferred over Cuckoo �lters. Bloom �lters o�er
lower lookup costs but also a higher false-positive rate. In high-throughput
scenarios, the costs induced by a false-positive result is relatively low and the
fast lookups are the dominant factor. In contrast, low-throughput scenarios
(right side) require higher accuracy as the costs induced by a false positive
are signi�cantly higher than the actual �lter lookup. Database processing use
cases for �lter structures often involve high-throughput lookups where, e.g.,
�ltering just avoids a CPU cache miss caused by a hash lookup, but also
have use cases where �lters are used to avoid more expensive accesses (right
side: lower-throughput workloads), like magnetic disk seeks, e.g. into log-
structured merge-trees on hard disk. These higher tw use cases are the areas
where Cuckoo �lters dominate, due to their lower false-positive ratios. In those
cases, though, if the problem size is small (low n), then false positives can and
should be avoided entirely by using an exact data structure instead.

Our contributions are:

� a formal de�nition of performance-optimal �ltering;

� improved �lter variants: register-blocked Bloom �lters and
cache-sectorization of blocked Bloom �lters;

� consideration of advanced implementation techniques, allow-

52

⋈

Γ

σp

scan(L) scan(R)

post join

pre join

probe
pipeline

build
pipeline

HJ
Bloom filter
construction

Bloom filter
probe

work saved
for filtered
tuples...

pushdown

Figure A.2: Bloom �lters with selective joins. Tuples without a join
partner are �ltered before entering the pipeline.

ing us to use �lter sizes beyond just powers-of-two, and AVX2/AVX-
512 SIMD hardware optimizations for Bloom and Cuckoo �l-
ters;

� extensive experiments that allow us to establish that blocked
Bloom �lters overtake Cuckoo �lters when the work saved tw
by negative lookups is low or moderate: we call this the high-
throughput use cases;

� open-source implementations for all �lter structures1.

A.2 Performance-Optimal Filtering

Figure A.2 shows the selective join pushdown scenario. The query contains
a join between a fact table (probe pipeline) and a dimension table (build
pipeline), and may proceed above the join, e.g. with an aggregation.
The query cost c can be divided as c = cbuild + cwork + cpost: the cost to

build the hash table, the time to run the pre-join pipeline up until the join
lookup itself, and the time to run the rest of the query, including join result
generation. Note that cwork = |R |∗tw , that is, tw is the per-tuple execution time
of the probe pipeline.
Installing a Bloom �lter in the scan at the bottom of the probe pipeline

will reduce the data volume �owing through it to a factor σ+f . Overall, this
can accelerate the query maximally (if σ=f =0) by a factor c/(cbuild + cpost),
however we will ignore this in the rest of the paper, focusing on the �lter with
most performance impact � however high it is.

1Source code: https://github.com/peterboncz/bloom�lter-repro

53

In order for a query optimizer to decide on installing a (Bloom) �lter in a join,
it needs to estimate tl , tw , f , and σ . In order to estimate tl and f , it would need
to estimate the amount of build-side keys n, which can be done using logical
cost (cardinality) estimation. There are well-studied methods to do this, but
cardinality estimation can still be o�. Furthermore, tl and tw are physical (per
tuple) costs, which are much harder to estimate correctly [101] because they
estimate hardware behavior and may even be impacted by external factors
(such as concurrent workload or even temperature). The alternative strategy
of installing a �lter at runtime, after running the probe pipeline for a while,
has the advantage that tw , n and σ are known. The performance-optimal �lter
F , out of all possible �lter con�gurations F , is the one that minimizes the
per-tuple work using �ltering tw ′(F):

tw ′(F) = (1−σ ′)∗t−l (F) + σ ′∗(t+l (F)+tw) with: σ ′=σ+ f (F)

where we use f (F) to denote the false-positive rate f achieved by F . We split up
the lookup cost tl of F for the case of a lookup that �nds a hit and when it does
not t−

l
(F). This is needed for classic Bloom �lters, because they test the k bits

one-by-one and break o� search as soon as a bit is not set. In classic Bloom
�lters with a low load factor (i.e., it contains mostly zeros), most negative
queries will already test negatively on the �rst bit, therefore typically only one
hash function needs to be computed and only one cache line will be accessed.
For positive queries, however, classic Bloom �lters need to compute all k hash
functions and perform k memory accesses (t+

l
� t−

l
), making them expensive

if k is signi�cant, and more so if this happens often (largish σ).
Most other �lter algorithms that we study � including Cuckoo � are imple-

mented such that they do an equal amount of work for positive and negative
queries (t+

l
= t−

l
= tl) and only access one or two cache lines. Furthermore,

classic Bloom �lters are hard to SIMDize and are thus computationally more
expensive than SIMDizable variants (such as the register-block Bloom �lter).
A SIMD version of classic Bloom �lters was implemented [142], but in the
many experiments we performed, it was never performance optimal. As the
performance-optimal �ltering algorithms do exhibit equal performance for pos-
itive and negative queries, we can simplify the de�nition of the performance-
optimal �lter Fopt to the one with least overhead:

Fopt ∈ F : @F ∈ F : ρ(F) < ρ(Fopt)
with: ρ(F) = tl (F) + f (F) ∗ tw

(A.1)

Here ρ(F) is the overhead of all �ltering (i.e., �lter lookup and false-positive
work). Parameter σ is still needed, but only to decide if �ltering is bene�cial
at all, namely whether: ρ(Fopt) < (1 − σ) ∗ tw .
But how to determine Fopt , that is, to �nd the best combination of lookup

cost tl and f given a tw and n? For instance, in blocked Bloom �lters, the
con�guration parameters are k (the more hash functions, the higher tl but
typically the lower f) and m (the larger the size, the lower f becomes, but

54

Filter size
O

ve
rh

ea
d

 False-
positive
 rate

Memory
 costs

Figure A.3: Overhead ρ as a function in m for �xed con�guration F ,
n and tw .

due to more cache and TLB misses, tl may increase). Figure A.3 sketches the
overhead ρ as a function inm. If the �lter size is set too small, the bitvector of
a Bloom �lter gets �overly populated� and f increases. On the other hand, if
the size chosen is too large, cache miss probability increases, making lookups
more expensive.
For the in�uence of k, m and n on f , a numerical model is available [117]

using a Poisson approximation. However, tl is a physical cost metric and is
harder to predict, as it depends on the hardware. We therefore propose to
collect the actual �lter lookup costs by performing microbenchmarks on the
target platform as part of a one-time calibration phase.

A.3 Bloom Filter Variants

As the previous section suggests, there is a very large space of �lter variants
and possible con�gurations. To achieve performance optimality it is neces-
sary to understand the individual properties of the �lter instances and how
these properties a�ect performance for a given problem setting. To quantify
the performance-related aspects, we consider the precision given by the false-
positive rate f , the space e�ciency (i.e., the memory footprint) as well as
the computational e�ciency, which refers to the CPU work of lookups and the
memory bandwidth e�ciency. All four dimensions are correlated. For instance,
tuning for space e�ciency may come at the cost of additional computations
and reduced precision, but also with a better bandwidth e�ciency.
In the rest of this section, we explore the design space of Bloom �lters and

their respective positioning within the four dimensions.

A.3.1 Blocking

A blocked Bloom �lter as proposed in [144] is a Bloom �lter that is split into
equally sized blocks. Each block is a small Bloom �lter. The size of a block,
denoted as B, is proposed to be equal to the size of a cache line, which is
B = 512 bits on the x86 architecture. All k bits of an inserted key are set

55

within a single block and each insert or lookup results in one single cache miss
at most. Because a cache line is the unit of memory transfer and all bits are
spread across the entire cache line, it can be considered optimal with regard
to memory bandwidth e�ciency.
The second advantage of blocked Bloom �lters is that fewer hash bits are

required per key and they therefore have improved computational e�ciency as
compared to classic Bloom �lters. Blocking reduces the number of required
hash bits from k · log2(m) down to k · log2(B) plus log2(m/B) bits to address the
corresponding block. Listing A.1 shows the lookup function in pseudocode.
The improved bandwidth and computational e�ciency comes at the cost of

reduced accuracy (higher f). Every block acts as a classic bloom �lter of size
B, thus the false-positive rate is known to be

fstd(m,n,k) =
(
1 −

(
1 − 1

m

)kn)k
, (A.2)

where m is set to the block size B. The important thing to note here is, that
not all blocks contain the same amount of keys. In other words, the (block-
local) n varies among the di�erent blocks and a�ects the overall f of the �lter.
The load that the individual blocks receive is binomially distributed, and [144]
provides the following approximation for the false-positive probability:

fblocked(m,n,k,B) =
∞∑
i=0

Poisson
(
i,B

n

m

)
∗ fstd(B, i,k) (A.3)

where fstd denotes the false-positive rate of a classic Bloom �lter with the
arguments m, n and k (see Equation A.2).

Register Blocking: For high-throughput scenarios, we consider an extreme
case of blocking, where the block size is reduced to the size of native CPU regis-
ters, namely 64-bit or 32-bit. These register-blocked Bloom �lters signi�cantly
reduce computational e�orts, as all k bits can be tested in a single comparison
and only one processor word needs to be loaded (see Listing A.2). Thus, since
only one processor word is accessed per lookup, a register-blocked �lter can no
longer be considered as being memory bandwidth e�cient. E�ectively, only
1/8th or 1/16th of a cache line is accessed for 64-bit and 32-bit blocks, respec-
tively. Therefore, register blocking is a technique to trade memory bandwidth
e�ciency and precision for further increased computational e�ciency, which is
particularly important for CPU-cache resident �lters.

Impact of blocking: Figure A.4a illustrates how blocking a�ects the false-
positive rate f depending on the bits-per-key rate (m/n). We compare a space-
optimal classic Bloom �lter (blue line) with register-blocked Bloom �lters (red
and orange lines), and a cache line blocked �lter (green line). Figure A.4b
shows the corresponding values for k, which indicates the computational e�orts
caused by hashing.

56

// Block addressing
h = consume log2(m/B) hash bits
block_idx = h mod m/B
found = false
for each k do {

// Word addressing (W denotes the size of a word)
h = consume log2(B/W) hash bits
word = load word from block_idx + h
h = consume log2(W) hash bits // Bit addressing
found |= word & (1 � h) // Bit testing

}
return found

Listing A.1: Lookup function of blocked Bloom �lters.

// Block addressing
h = consume log2(m/B) hash bits
block = load word at position h mod (m/B)
search_mask = 0;
for each k do {

// Bit addressing
h = consume log2(B) hash bits
search_mask |= 1 � h

}
// Bit testing
return block & search_mask == search_mask

Listing A.2: Lookup function of register-blocked Bloom �lters.

57

5 10 15 20

10−4

10−2

100

Bits per key (m/n)

F
al
se
-p
os
it
iv
e
ra
te

Classic Bloom 32-bit blocked

64-bit blocked 512-bit blocked

(a)

5 10 15 20
0

5

10

15

Bits per key (m/n)

O
p
ti
m
al

k

(b)

Figure A.4: Impact of blocking on the false-positive-rate and the
hashing e�orts.

The smaller the block size, the higher f becomes. This increase in f can be
compensated to some degree by increasing the �lter sizem and the bits-per-key
rate, respectively. For instance, a classic Bloom �lter with f = 1% requires ≈
10 bits per key of memory, whereas a register-blocked Bloom �lter requires ≈
12 or 14 bits per key for block sizes of 64 and 32 bits. However, depending on
the desired f , the memory footprint of the �lter quickly becomes impractical.
For instance, with B = 32, a false-positive rate of 0.1% requires 32 bits per key,
which is signi�cant memory consumption, and an exact data structure, e.g., a
hash map might be a better choice.

A.3.2 Sectorization

With an increasing tw , the false-positive rate f of a �lter becomes increasingly
important and it therefore becomes necessary to increase the block size beyond
a single processor word. If the bits are distributed over multiple words, we can
no longer test multiple bits in one comparison instruction (compare Listing A.1
and A.2), which signi�cantly reduces CPU e�ciency. In this section, we present
sectorization of blocked Bloom �lters to address this ine�ciency. For clarity,
we �rst present the key idea of sectorization, followed by an extension which
we call cache-sectorization. The latter can compete with Cuckoo �lters even
for large �lters that exceed the CPU cache size.
To the best of our knowledge, sectorization (in a primitive form) was �rst

used in the SIMD Bloom �lter of the Impala database system [93]. The authors
actually combined a m/k-partitioning scheme [92] with blocking. However, this
technique has not been further investigated with regard to performance and
false-positive rate. In the following, we catch up on this by discussing the
upsides and downsides of sectorization and further provide a formula for the

58

false-positive rate.
Sectorization is a partitioning scheme that sub-divides blocks into equally

sized partitions, which we call sectors, and the k bits, set for each key, are
equally distributed among all sectors. This partitioning scheme has the fol-
lowing advantages:

1. It reduces the number of required hash bits and therefore reduces com-
putation e�orts caused by hashing.

2. It can change the random access within a block to a sequential access
pattern which greatly improves CPU e�ciency.

To exemplify sectorization, we set the block size to 512 bits and the sector
size to 64 bits. Furthermore, we assume that a native processor word has 64 bits
(as in x86_64) and is therefore equal to the size of a sector. Hence, a block is a
sequence of s=8 words which can be processed sequentially and independently
by setting the �rst k/8 bits in the �rst word, the next k/8 bits in the second
word, and so on. Each word has to be read exactly once and multiple bits can
be tested at once, similar to register blocking (see Listing A.2).
Formally, we let S denote the sector size and the (capitalized) K the number

of bits set per key per sector, where 1 ≤ S ≤ B. As sectorization aims for CPU
e�ciency in Bloom �lter implementations, we restrict the block size as well as
the sector size to be a power of two and k needs to be a multiple of the number
of sectors B/S.
Sectorization generalizes the (prior) de�nition of a blocked Bloom �lter. I.e.,

if we set S := B, then the individual blocks consist of exactly s=1 sector and
it implies that k = K . The �lter instance is therefore equivalent to a blocked
Bloom �lter as de�ned by Putze et al. in [144]. In contrast to m/k-partitioning
as proposed by Kirsch et al. [92], sectorization is applied at block level and
therefore preserves the locality of a blocked Bloom �lter. Further, our scheme
is more �exible because it allows us to set multiple bits per partition (sector),
which improves CPU e�ciency.
Figure A.5 shows a performance comparison of a blocked Bloom �lter with

and without sectorization with k = 16 (on a Xeon E5-2680v4 using 28 threads).
The leftmost data points refer to register blocking (where one block = one
word). We then double the block sizes until we reach the size of a cache line.
Immediately, when a block exceeds a single word, the lookup performance
drops signi�cantly by ≈ 60% for cache-resident �lters and by ≈ 50% for larger
�lters, because we have to use the �rst lookup algorithm from Listing A.1 (us-
ing a random access pattern). On the other hand, with sectorization enabled,
the performance degrades gracefully with increasing block sizes. The impor-
tant thing to note here is that the sector size is set to word size and it remains
constant. We only increase the number of sectors with the block size, which
is the enabler for using the more e�cient lookup algorithm from Listing A.2
within each sector (in a sequential order).

59

1 2 4 8 160

1000

2000

3000

4000

Words per block

L
o
ok
u
p
s
[M

/s
ec
]

Blocked (one sector)

Sectorized (# of sectors = # of words)

(a) Cache (16KiB �lter)

1 2 4 8 160

500

1000

Words per block

L
o
ok
u
p
s
[M

/s
ec
]

(b) DRAM (256MiB �lter)

Figure A.5: Performance impact of sectorization for varying block
sizes.

Technically, the sector size can be set to any power of two (as long as S ≤ B),
but it must be less than or equal to the word size in order to get a sequential
block access pattern. In most cases, setting the sector size to the word size
(either 32-bit or 64-bit) is the best option. In rare cases, splitting a word in
multiple sectors may improve the false-positive rate, which we describe later.
In the remainder of the paper, we set the sector size to the word size, unless
stated otherwise.
The downside of sectorization is that the number of ks needs to be a multiple

of the number of sectors. In other words, we need at least as many ks as we
have sectors. And with regard to CPU e�ciency, we would prefer to set/test
multiple bits per sector. Thus, it is desirable to have higher ks per sector.
For instance, if we use 32-bit words and a block size B = 512 bits, we need
at least 16 sectors and consequently at least k = 16, which is already a very
high value for k (not only for high-throughput scenarios). If we also want to
set/test multiple bits at once, we have to increase k to unreasonably high values
of 32, 48, etc. With these limitations, it is hardly possible to �nd the right
balance between low false-positive rates, high memory bandwidth e�ciency,
and high CPU e�ciency. The Impala implementation, for instance, uses the
(hard-coded) con�guration k = 8, S = 32, and B = 256 2, where only the �lter
size m can be adjusted. It therefore leaves room for optimizations.
To address these limitations, we propose an extension to sectorization that

o�ers more �exible parameterization and is therefore more tunable to a wide
variety of problem settings. We call our approach cache-sectorization. The
design goal is to distribute the bits over entire cache lines but also support
lower ks.

2The con�guration is ideal for AVX2 SIMD using 256-bit registers.

60

Cache-sectorization works as follows: Blocks are partitioned in word sized
sectors. Multiple sectors are then logically grouped together. When a key is
inserted, we set k/z bits in each group, where z is the number of groups per
block. Inside each group, the k/z bits are set in one sector, which is determined
by the key's hash value. Figure A.6 illustrates the cache-sectorization block
partitioning. Per key, z words are accessed, and all words belong to the same
cache line. Inside each group, we now have a dependent load which makes
the access pattern less optimal. However, this is amortized by accessing fewer
words per block. Further, across the groups, all operations remain independent
and can be performed in parallel. In contrast to sectorization, k can be chosen
more �exibly, as a multiple of z instead of s, where z < s.

False-positive rate: Cache-sectorization can improve the false-positive rates
as compared to sectorization. In Figure A.7, we compare both variants: The
blue line represents the sectorized variant that spreads the bits across 4 words,
resulting in 4 loads per lookup. The cache-sectorized version (red line), also
accesses 4 words per lookup but spreads the bits across an entire cache line,
which results in a signi�cantly lower false-positive rate. If we further reduce
the number of accessed words (orange line), we can improve the lookup perfor-
mance with f similar to the sectorized variant. For reference, the dashed lines
show the false-positive rates of (register-)blocked �lters without sectorization,
with B = 32 and B = 512, respectively.
We provide formulas for the false-positive rate for both sectorized variants:

fsector(m,n,k,B, S) =
∞∑
i=0

Poi
(
i,B

n

m

)
∗

(
fstd

(
S, i,

k

s

))s
(A.4)

fcache(m,n,k,B, S, z) =
∞∑
i=0

Poi
(
i,B

n

m

)
∗

(
i∑

j=1

Poi

(
j, S

i ∗ z
B

)
∗ fstd

(
S, j,

k

s

))z
(A.5)

Our experimental analysis discussed in Section A.6 shows that a Bloom �lter
with cache-sectorized blocks can compete with Cuckoo �lters and outperforms
standard (non-sectorized) blocked Bloom �lters.

A.4 Cuckoo Filter

With the Cuckoo �lter [63], Fan et al. presented an alternative to Bloom �lters
which claims to be �practically better� in terms of lookup performance and
space consumption. A Cuckoo �lter is a variation of a cuckoo hash table [136]
with two major di�erences:

1. It stores small signatures (aka �ngerprints) instead of the entire keys,
while every hash bucket can hold multiple of such signatures.

61

2. For collision resolution, the alternative bucket of an entry is determined
based on the key's signature and its current bucket index, instead of
using two independent hash functions.

The signature of a key is computed using a hash function. Typically, the
low-order bits of the hash value are used as the signature. Inside the cuckoo
hash table, each signature has two candidate buckets in which they can be
stored. The indexes of the two buckets i1 and i2 of a key x are calculated as
follows:

i1 = hash(x)
i2 = i1 ⊕ hash(x 's signature)

(A.6)

The noteworthy property is that the index i1 can also be computed using the
key's signature and the index i2:

i1 = i2 ⊕ hash(x 's signature) (A.7)

This property allows to determine the alternative bucket of a signature without
having access to the actual (unhashed) key value, which is not stored in the
cuckoo hash table. This technique, which the authors refer to as partial-key
cuckoo hashing, is necessary to relocate signatures inside the table in case
of collisions. Whenever a signature cannot be stored, due to fully occupied
buckets, a signature in one of the two target buckets is randomly chosen and
relocated to its alternative bucket. The fact that the alternative bucket index
is a combination of the signature and the �rst bucket index (and vice versa)
results in a lower table occupancy (∼50%) compared to a cuckoo hash table
that is using two independent hash functions. The authors address this issue
by storing multiple signatures per bucket. For instance, using a bucket size
b = 2, 4, or 8 increases the table occupancy to 84%, 95%, or 98%, respectively.
However, this approach also negatively a�ects the accuracy, as we describe in
the following paragraph. During a lookup, the key is hashed to compute the
signature and to determine both candidate buckets. Afterwards, both buckets
are searched for that signature.
The false-positive probability of a Cuckoo �lter is

fcuckoo(α , l ,b) = 1 −
(
1 − 1

2l

)2bα
, with: α =

l ∗ n
m

(A.8)

where l is the signature length in bits and α the load factor of the table. Thus,
the false-positive rate primarily depends on the signature size l . The longer the
signatures, the lower the false-positive rates. Typically, l is between 8 and 16
bits. Increasing the �lter's size (i.e., lowering the load factor α) only gradually
improves the false-positive rate, as shown in Figure A.8a. On the other hand,
reducing the numbers of signatures per bucket b signi�cantly improves the
false-positive rate (see Figure A.8b), while coincidentally impairing memory
e�ciency due to lower load factors.

62

S0 S1 S2 S3 S4 S5 S6 S7

block

sector

Z0 Z1

insert / lookup

k/z bits k/z bits

k bits

group of sectors

Figure A.6: Block partitioning scheme of cache-sectorized Bloom �l-
ters: hashing sets bits concentrated in z words spread
over a cache line.

10 15 20

10−3

10−2

Bits per key (m/n)

F
al
se
-p
os
it
iv
e
ra
te

(l
og

sc
al
e)

cache-sectorized, z=4

cache-sectorized, z=2

sectorized

register-blocked

blocked

Figure A.7: Comparison of the false-positive rate of sectorized and
cache-sectorized Bloom �lters, with k = 8.

63

10 15 20

10−4

10−3

10−2

Bits per key (m/n)

F
al
se
-p
os
it
iv
e
ra
te

(l
og

sc
al
e)

8 bit sig.

12 bit sig.

16 bit sig.

(a) Four sig. per bucket.

10 15 20

10−2

10−1.5

Bits per key (m/n)

2 sig. per bucket

4 sig. per bucket

8 sig. per bucket

(b) Sig. size �xed to 8 bits.

Figure A.8: The false-positive rate of Cuckoo �lters for di�erent sig-
nature lengths and bucket sizes.

A noteworthy property of a Cuckoo �lter is that an insertion may fail if the
target buckets are fully occupied and the signatures cannot be relocated. This
is in contrast to Bloom �lters, where insertions always succeed.

A.5 Implementation Techniques

For our evaluation we implemented a blocked Bloom �lter that is optimized
for high-throughput scenarios where lookups are performed in batches. Our
implementation is generic in the sense that it allows us to vary the block size,
sector size, and naturally the number of hash functions as well. Even though
our implementation is generic, the genericity does not induce any runtime
costs as it is mostly written in C++ template language. All parameters are
compile-time static except the size of the �lter m.
Further, we revised and extended the original Cuckoo �lter implementation

and uni�ed the interface of all �lters under test with regard to batched lookups.
I.e., the contains functions take an entire list of keys at once and produce a
position list (also called a selection vector) consisting of 32-bit integers. As
this work focuses on high-throughput scenarios, we use multiplicative hashing
for both, Bloom and Cuckoo �lters.

A.5.1 Data Parallelism

The performance-critical contains functions make extensive use of SIMD in-
structions (i.e., from the AVX2 and the AVX-512 instruction set). SIMD is
primarily used to execute multiple lookups in parallel which allows the aver-
age number of CPU cycles per lookup to be reduced to less then two cycles

64

(for low ks). Our actual C++ implementations of the Bloom �lter contains
functions are very similar to the scalar pseudocode in Listings A.1 and A.2.
This also applies for the SIMDized versions, as we used an abstraction layer
for the SIMD vector types and vector instructions. This allows us to perform
one lookup per SIMD lane, whereas each SIMD lane operates on 32-bit words.
It also allows us to easily scale to broader SIMD registers. For instance, the
C++ implementations for AVX2, which performs eight simultaneous lookups,
is the same as for AVX-512, which performs 16 lookups in parallel. Please note
that this technique relies on the gather instruction and we therefore do not
support pre-AVX2 architectures. It is also noteworthy that the SIMD abstrac-
tions do not incur any runtime costs. Each contains function (one per �lter
con�guration) is compiled into a branch-free instruction sequence.
Similarly, we optimized the Cuckoo �lter implementations to perform paral-

lel lookups. In contrast to the Bloom �lter, the Cuckoo �lter implementation
is less generic. It requires a separate code path for each signature length, and
not all signature lengths are �SIMD friendly�. Some may result in unaligned
memory accesses. � Please note that this also applies for non-SIMD implemen-
tations. � We therefore optimized only the (SIMD-friendly) instances with 8-,
16- and 32-bit signatures.
Modern processors di�er greatly in their SIMD capabilities and their out-

of-order execution capabilities [10, 80]. We observed signi�cant performance
di�erences across various platforms (Xeon, Knights Landing, Skylake-X and
Ryzen) with a single SIMD implementation. To address this issue, we instan-
tiate the �lter templates with multiple parameters with respect to the vector
lengths and unrolling factors and perform a short calibration phase at library
installation time which allows us to select the best performing instantiation
at runtime. The calibration is done only once per platform and in the worst
case, or if the underlying platform is of a pre-AVX2 generation, the scalar
(non-SIMD) code is used as a fallback.

A.5.2 Magic Modulo

A common optimization technique is to size data structures to powers of
two to avoid costly modulo operations and substitute them by bitwise ANDs
(this applies, for example, to the Impala Bloom �lter, the SIMD Bloom �lter
from [142], and to the reference implementation of the Cuckoo �lter). I.e.,
the operation hash(key) mod m, which involves an integer division, is several
times slower than using hash(key) & mask (with mask := (1�log2(m))-1).
However, our experimental analysis shows, that this approach is very in�exible
and leaves large potential for optimizations.
Especially for SIMD, there is no satisfactory solution to sizing data struc-

tures more �exibly. Even an ine�cient modulo operation is not possible, be-
cause modern SIMD instruction sets do not support integer division. Putze et
al. [144] therefore proposed to perform the division with �oating-point arith-
metic. Even though, the �oating-point division on Intel vector processing

65

units is still an expensive operation, i.e., 13 cycles on Haswell, the operation
is applied to eight elements in parallel. If we take the necessary type con-
versions into account, a division of eight elements takes 15 cycles, which is
an improvement of approximately 6× over scalar code. For our evaluation,
we implemented an approach known from the �eld of compiler construction,
which performs the same operation in approximately 10 cycles.
Modern compilers substitute the costly modulo operations (more precisely,

the involved integer division) with a cheaper instruction sequence consisting
of a multiply, a shift, and an addition. Based on the divisor, a compiler deter-
mines a magic number [84] to multiply with, a shift amount and a summand.
On most platforms, the multiply-shift-add sequence is faster than an integer
division. Naturally, the compiler can only optimize if the divisor is known
at compile time, which is not the case with dynamically-sized data structures
such as, in our case, the Bloom or Cuckoo �lters. We therefore re-implemented
this approach manually to support (almost) arbitrary �lter sizes. We further
optimized the magic number approach to substitute the integer division with
a multiply-shift instruction sequence, without the trailing addition, saving one
additional instruction. The enabler for this optimization is, that the magic
numbers for (unsigned) division can be categorized into two classes: (i) those
which require multiply-shift-add instructions and (ii) those which only require
a multiply and a shift. Which instruction sequence to use depends on the
divisor. In our context, we can (slightly) vary the size of the data structure.
This additional degree of freedom allows us to choose a divisor that belongs to
the second class and to save the trailing addition. We refer to this approach as
magic modulo. A modulo operation i = hash(key) mod C is thereby replaced
by

h = hash(key)
i = h − (mulhi_u32(h,magicNo) � shiftAmount) ∗ h, (A.9)

whereas the function mulhi_u32 multiplies two 32-bit integers, producing a
64-bit intermediate, and returns the upper 32 bits of the product.
Magic modulo is used to determine a block3 of the Bloom �lter and a bucket

in the Cuckoo �lter, respectively. The actual �lter size is therefore

mactual = x ∗ nextMagicNo
(⌈mdesired

x

⌉)
(A.10)

with x := B for Bloom �lters and x := l ∗ b for Cuckoo �lters. In our imple-
mentation, which supports up to 232 blocks, the actual number of blocks is
at most 0.0134% higher than the desired number of blocks or buckets, respec-
tively. Naturally, magic modulo is more expensive than a single bitwise AND

which is not in favor of Cuckoo �lters, because the indexes of two buckets need
to be computed. Further, the XOR operation of the partial-key cuckoo hashing

3The Bloom �lter block sizes are powers of two and therefore, inside a block, bitwise AND
instructions are used to determine the bit positions.

66

10 100
0

10

20

30

40

Filter size [MiB] (log scale)

Lo
ok
up

co
st
s
[c
yc
le
s] Magic

Pow24

2

3

1

Figure A.9: Lookup performance of a cache-sectorized Bloom �lter
for varying �lter sizes.

(see Equation A.6) needs to be replaced by a di�erent and slightly more ex-
pensive self-inverse function. In our implementation, the bucket indexes of a
key x are computed as follows:

i1 = hash(x) magicMod C

i2 = −(i1 + hash(x 's signature)) magicMod C
(A.11)

where C denotes the number of buckets.
Figure A.9 illustrates the bene�ts of magic modulo by using an example of

a cache-sectorized Bloom �lter (k = 8,B = 512, z = 2). Magic modulo allows
to vary the �lter size in very small steps (purple line) compared to the power-
of-two sizes (blue dots). At cache boundaries, there is a wide range where this
�exibility improves lookup performance 1 . The range, where the performance
degrades over power-of-two modulo is relatively small 2 , because magic modulo
has only a modest overhead 3 . With an increasing �lter size (e.g., a multiple
of the last-level cache size), magic modulo becomes less bene�cial with regard
to performance 4 , but still gives better control over the memory consumption.
The same applies for very small L1- or L2-resident �lters.

A.6 Experimental Analysis

In this section, we present the results of our experiments, conducted on four dif-
ferent hardware platforms (see Table B.1). We tested many di�erent problem
sizes (n) and ran experiments on the di�erent hardware platforms, varying all
relevant parameters for each �lter data structure. For Bloom �lters, we consid-
ered values for k in [1, 16], B in {4, 8, 16, 32, 64} bytes, S in {1, 2, 4, 8, 16, 32, 64}
bytes, W in {32, 64} bits and z in {2, 4, 8}. For Cuckoo �lters, we varied l in
{4, 8, 12, 16} bits, and b in {1, 2, 4}. As the data set we used random 32-bit
integers (uniformly distributed) generated with the Mersenne Twister engine
from the C++ Standard Template Library. To get stable results, we repeated
each measurement �ve times and report the average. This resulted in more

67

Intel Intel Intel AMD
Xeon Knights Skylake-X Ryzen

Landing

model E5-2680v4 Phi 7210 i9-7900X 1950X
cores (SMT) 14 (x2) 64 (x4) 10 (x2) 16 (x2)
SIMD instr. AVX2 AVX-5121 AVX-5122 AVX2
SIMD [bit] 2×256 2×512 2×512 256
freq. [GHz] 2.4 � 3.3 1.3 � 1.5 3.3 � 4.5 3.4 � 4.0
L1 cache 32 KiB 64 KiB 32 KiB 32 KiB
L2 cache 256 KiB 1 MiB 1 MiB 512 KiB
L3 cache 35 MiB - 14 MiB 32 MiB
launch Q1'16 Q4'16 Q2'17 Q3'17

1 AVX-512{F,CD,ER,PF}
2 AVX-512{F,DQ,CD,BW,VL}

Table A.1: Hardware platforms

than 15 million experiments that we performed on all these possible �lter con-
�gurations. Throughout all experiments we used the GCC compiler (version
5.4.0) with optimization level set to --O3.
Unless stated otherwise, we present multi-threaded results, using one thread

per core; except for KNL with 4-way hyper-threading, we ran two threads per
core. Even though, all experiments ran on a single processor, we had to take
NUMA e�ects into account. KNL and Ryzen are NUMA architectures, with
four and two nodes, respectively. On these platforms, we replicated the �lter
data to all NUMA nodes and let all threads query the NUMA-local �lter. The
probe data (256MiB), on the other hand, was distributed across all nodes in
a round-robin fashion.

Skylines. For each valid4 �lter con�guration F ∈ F we scaled the problem size
n from 210 to 228 keys. More precisely, we used the values ni,j = b2i+j∗0.0625c
with i in [10, 27] and j in [0, 15]. For each 〈F ,n〉 pair, we scaled the �lter
size m between 4n and 20n, thus limiting the bits-per-key rate to 20. The
values of m are also scaled exponentially, containing all powers of two and
nine intermediates in between. For each experimentally collected data point,
we compute the overhead ρ(F) for 28 di�erent tw values. For the tw values,
we use 2i with i in [4, 31]. From the resulting data set, we determined for
each 〈n, tw〉 point the performance-optimal �lter con�guration Fopt with the
smallest overhead. By doing this for all these points, we obtain a skyline of
performance-optimal �lter con�gurations.

Performance-optimal �lter type. Figure A.10 summarizes the results from
the four hardware platforms. For each 〈n, tw〉 point, we report whether the

4Please note that not all con�gurations are valid. For instance, setting B := 64 and S := 512
is illegal, as the sector size may not exceed the block size.

68

101 105 109

104

106

108

tw

n

(a) Xeon (14 threads)

101 105 109

104

106

108

tw

n

Blocked Bloom Cuckoo

(b) Ryzen (16 threads)

101 105 109

104

106

108

tw

n

(c) KNL (128 threads)

101 105 109

104

106

108

tw

n

(d) SKX (10 threads)

Figure A.10: Skyline of performance-optimal �lters for varying n and
tw .

101 105 109

104

106

108

1 2

tw

n

< 5% [1.05, 1.1)

[1.1, 1.25) [1.25, 1.5)

[1.5, 1.75) [1.75, 2)

[2, 3) [3, 4)

[4, 5)

(a) Speedups of the best �lter over its counterpart.

101 105 109

104

106

108

tw

n

[0.00001, 0.0001)

[0.0001, 0.001)

[0.001, 0.01)

[0.01, 0.1)

[0.1, 1)

(b) False-positive rates of the best performing �lters.

Figure A.11: Performance comparison of Bloom and Cuckoo �lters
(a) and the corresponding false-positive rates (b).

69

101 105 109

104

106

108

3

high

throughput
low

throughput

tw

n

Blocked Sectorized

Cache-sectorized Register-blocked

(a) Bloom �lter variants

101 105 109

104

106

108

4

tw

n

4 Bytes 8 Bytes 16 Bytes
32 Bytes 64 Bytes

(b) Block size

101 105 109

104

106

108

5

tw

n

1 2 4 8 16

(c) Sector count

101 105 109

104

106

108

6

tw

n

z = 1 z = 2 z = 8

(d) Cache-sectorization

101 105 109

104

106

108

9

8
7

tw

n

2 3 4 5 6 8 9 10 11

(e) Number of hash functions k

101 105 109

104

106

108

tw

n

Power of two Magic

(f) Modulo

101 105 109

104

106

108

10

tw

n

≤ L1 ≤ L2 ≤ L3
≤ 64MiB ≤ 128MiB ≤ 256MiB

(g) Filter size

Figure A.12: Skyline of con�gurations of the best performing
blocked Bloom �lters (on SKX).

70

101 105 109

104

106

108

low
throughput11

12

tw

n

4 Bits 8 Bits 16 Bits

(a) Signature length

101 105 109

104

106

108

tw

n

1 2 4

(b) Bucket size

101 105 109

104

106

108

13

tw

n

Power of two Magic

(c) Modulo

101 105 109

104

106

108

tw

n

≤ L1 ≤ L2 ≤ L3
≤ 64MiB ≤ 128MiB ≤ 256MiB

(d) Filter size

Figure A.13: Skyline of con�gurations of the best performing
Cuckoo �lters (on SKX).

71

10 100 1000 10000 100000

0

20

40

60

80

L1 L2 L3

�lter size [KiB]

cy
cl
es

p
er

lo
ok
u
p

Register-blocked Bloom (B = 32, k = 4)

Cache-sectorized Bloom (B = 512, k = 8, z = 2)

Cuckoo (b = 2, l = 16)

Figure A.14: Lookup time for varying �lter sizes (on SKX).

performance-optimal �lter is a Bloom �lter (green area) or a Cuckoo �lter
(blue area). On all platforms, the Bloom �lter is the �lter of choice for high-
throughput scenarios and Cuckoo for moderate and low-throughput scenarios.
On AVX-512 platforms (KNL and SKX), the more SIMD-friendly Bloom �lter
covers a larger space than on AVX2. Please note that the unit of time for tw
are CPU cycles.
On all platforms we observe a similar shape of the skylines. The left-hand

side is dominated by Bloom �lters due to their lower lookup costs, whereas the
right-hand side, Cuckoo �lters dominate due to their lower false-positive-rate.
But we also observe that the tw -range in which the Bloom �lters dominate
increases with the problem size. For instance, for large problem sizes, Bloom
�lters perform better than Cuckoo �lters for tws up to approximately 105 cycles.
Whereas for small n values, the Bloom �lter only performs best up to a tw of
∼ 103 cycles. This is caused by the higher cache miss probability of the Cuckoo
�lter which signi�cantly increases the lookup costs once the �lter spills to L3 or
DRAM. Figure A.14 shows a comparison of the lookup costs for three di�erent
�lter instances. The fact that Cuckoo �lters access two cache lines almost
doubles their lookup costs compared to Bloom �lters. Thus, in terms of �lter
overhead ρ, it takes �longer� for the Cuckoo �lter to compensate the higher
lookup costs with its lower false-positive rate.

Performance comparison. In Figure A.11a, we compare the performance
of Bloom and Cuckoo �lters on our default evaluation platform SKX. For each
〈n, tw〉 point, we show the performance improvement of the best performing
�lter, either a Bloom or a Cuckoo �lter, over its counterpart. Depending on
n and tw , we observe relative speedups of up to 3× for Bloom �lters in high-
throughput scenarios 1 . The Cuckoo �lter, on the other hand, outperforms
Bloom �lters in low-throughput scenarios by factors 2 . Naturally, for arbi-

72

trarily large tws, the speedup of Cuckoo �lters becomes arbitrarily large, as
the lower false-positive rate outweighs the higher lookup costs. However, in
practical scenarios (tw ≤ 109 cycles), we observe speedups of up to 5×.
False-positive rate. The lowest possible false-positive rate f in our experi-
mental setup is 0.0002 for Bloom (using k = 11, and B = S = 512) and 0.00005
for Cuckoo (using l = 16 and b = 2). Note that f for Cuckoo could theoretically
be even lower. For instance, with b set to 1, the false-positive probability would
be 0.000024. However, construction would most likely fail, as the load factor
of the cuckoo hash table would be signi�cantly higher than 50%. Further, if
an implementation that supports 19-bit signatures were be available, f could
be lowered to 0.000015. Nevertheless, the considered Cuckoo implementations
have false-positives rates that are up to an order of magnitude lower than the
Bloom �lter implementations. Figure A.11b shows the dominance of Cuckoo
�lters in terms of low f (green area). For faster moving workloads (left side),
the top performers are Bloom �lters with f in [0.0001, 0.01). Higher f s are
mostly observed in the area where �ltering is not bene�cial (top left corner).

Best performing Bloom �lter variants. In Figure A.12a, we only con-
sider Bloom �lters and show which variant performs best. We di�erentiate
between register-blocked, sectorized, cache-sectorized and blocked, whereas
the latter refers to blocked Bloom �lters without sectorization. The results
prove that, due to their low lookup costs, our newly developed Bloom �lter
variants, register-blocking and cache-sectorization, are well suited for a wide
range of problem sizes in high-throughput scenarios. We observed an up to
48% reduced overhead with cache-sectorization as compared to plain sector-
ization (15% on average). In very few scenarios, plain sectorization performs
slightly better (yellow outliers). We attribute this to the dependent load in
cache-sectorization (see Section A.3.2). However, the increase in overhead was
at most 0.5% throughout our experiments.
In low-throughput scenarios, higher precision is more important than CPU

e�ciency and refraining from using sectorization lowers the false-positive rate.
However, if we take the space dominated by Cuckoo into account, only a small
window of opportunity remains for (standard) blocked Bloom �lters 3 . Please
see Figure A.1 for example use cases.
So far, we have only distinguished between the �lter types and the di�erent

Bloom �lter variants. In the following, we examine the parameterization of
the individual �lters.

Bloom �lter con�gurations. In Figures A.12b-A.12g we resolve the param-
eters of the performance-optimal Bloom �lter con�gurations. We start with the
block sizes. Larger block sizes generally trade CPU e�ciency for improved ac-
curacy. However, our cache-sectorization approach allows for e�ciently spread-
ing the bits across an entire cache line, with just a minor impact on the lookup
costs. Thus, block sizes larger than 4 bytes (single word) and smaller than 64
bytes (cache line) play a minor role 4 . Nevertheless, register-blocked Bloom
�lters with a block size of 4 bytes still outperform cache-sectorization and are

73

therefore the best choice for very low tws.
Figure A.12c shows the number of sectors used in the performance-optimal

Bloom �lters. In almost all high-throughput cases, the number of sectors is
equal to the number of words per block. A rare exception is 5 , where the sector
size is smaller than the word size. In our implementation, the smallest possible
sector size is one byte. Which means, that even a register-blocked �lter can
be sectorized. This sectorization on the sub-word level has no impact on the
lookup performance, but it negatively a�ects the false-positive rate. However,
for very low ks, there is almost no di�erence in f , and the outlier can therefore
be considered noise. In that particular case, the second-best �lter instance,
which is not sectorized, has only a 0.2% higher overhead. We therefore conclude
that sub dividing words into multiple sectors is not bene�cial in practice.
On the right-hand side of the skyline, the low-throughput cases, the sector

count drops to one (standard blocked Bloom �lter), as non-sectorized �lters
o�er a lower f .
As mentioned earlier, cache-sectorization covers the largest space in high-

throughput scenarios (see Figure A.12d). However, the space where z = 8 6 is
dominated by the Cuckoo �lter. Therefore, the most interesting con�guration
is where two words of a cache line are accessed (z = 2).
With regard to the number of hash functions (k), which are shown in Fig-

ure A.12e, we found that in high-throughput scenarios, a k ≤ 8 is su�cient. In
particular k = 6 and k = 8 are the sweet spots for cache-sectorized �lters 7 .
For register blocking, ks between 3 and 5 o�er the best performance 8 . Filters
with a k less than 3 are not practical altogether, as they fall into the area where
�ltering is not bene�cial 9 . For low-throughput scenarios, we found that ks
larger than 11 are never performance optimal.
Figure A.12f shows that almost all top-performing Bloom �lters make use

of magic modulo to optimally utilize the available memory budget (20 bits per
key). Magic modulo also helps in cases, where it is better to reduce the k and
increase f instead of going to L3 or DRAM 10 , by adjusting the �lter size in
small steps.

Cuckoo �lter con�gurations. In Figure A.13, we shed light on the param-
eters of the best performing Cuckoo �lters.
Throughout our experiments, the Cuckoo �lter tends to use the largest pos-

sible signature length l for the given memory budget. � Note that the largest
signature length is 16 bit in this case. � Only in very high-throughput scenarios
do smaller signatures become bene�cial, due to a higher degree of SIMD par-
allelism. However, in that area, either Bloom �lter dominates 11 or �ltering
is not practical altogether 12 .
An interesting insight regarding the Cuckoo �lter is that a bucket size of

b = 2 is to be favored over b = 4, which was chosen for the evaluation in [63]
(and hard-coded in their implementation). Choosing a bucket size of 4 was
the key feature for Cuckoo �lters to achieve better space e�ciency than Bloom
�lters. The fact, that our experimental results show that two signatures per

74

bucket perform better in almost all cases (see Figure A.13b) substantiates our
general �nding, that optimal �lter space e�ciency does not equate to optimal
performance.
Similar to Bloom �lters, magic modulo is used to exploit memory constraints

as well as possible. However, in comparison to Bloom �lters, power-of-two
modulo covers a larger space (see Figure A.13c 13), which is due to the higher
costs involved with magic modulo, as described in Section A.5.2.
In general, we observed similar memory consumptions among the two �lters

under test. The claim that Cuckoo �lters have better space e�ciency [63] no
longer holds when performance optimality is the objective.

A.6.1 SIMD Optimizations

We present the performance impact of our SIMD optimizations. Figure A.15
shows the query performance and the speedup over the scalar (non-SIMD) im-
plementation of three representative �lters: a Cuckoo �lter, a register-blocked,
and a cache-sectorized Bloom �lter (L1 cache-resident �lters, 1 thread). The
blue bars represent the �lter instances using sizes of powers of two and the
purple bars represent the �lter instances using magic modulo.
SIMD optimizations o�er speedups of up to 10× and therefore make �ltering

applicable for a larger spectrum in high-throughput scenarios (small tws). On
AVX2 platforms, the (bare L1) performance of Cuckoo �lters is very similar to
register-blocked Bloom �lters. If the �lter size exceeds L2, blocked Bloom �l-
ters perform better with regard to CPU cycles per lookup due to better memory
bandwidth e�ciency (see Figure A.14). On AVX-512 platforms, Bloom per-
forms signi�cantly better than Cuckoo. In particular on the Knights Landing
(KNL) platform, the Cuckoo �lter su�ers from mixing AVX2 and AVX-512
instructions due to the missing AVX-512BW (ByteWord) instruction set. In
contrast to the Intel platforms, we barely observed any signi�cant speedups
on the AMD Ryzen platform (mostly less than 50% improvement over scalar),
which we attribute to the poorly performing gather instruction. Compared to
SKX, Ryzen is ≈ 2× to 5× slower in absolute numbers (wall clock time, per
thread).

A.7 Related Work

The survey [32] describes many of the application areas of Bloom �lters [23]:
databases, dictionaries, (P2P) networking and routing. In databases, log-
structured merge-trees (LSM) have become important in write-optimized (cloud
or cluster) storage, splitting up a structure into multiple layers that are gen-
erated sequentially and periodically merged. Queries need to check all layers,
and in that respect Bloom �lters help to avoid accessing layers that do not con-
tain a key. Monkey [53] observes that di�erent layers need di�erently tuned
Bloom �lters. That paper navigates correlated parameter spaces in a data

75

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

C
yc
le
s
p
er

lo
ok
u
p

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

S
p
ee
d
u
p

pow2 magic

(a) Cuckoo �lter (b = 2, l = 16)

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

C
yc
le
s
p
er

lo
ok
u
p

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

S
p
ee
d
u
p

(b) Register-blocked Bloom �lter (B = 32,k = 4)

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

C
yc
le
s
p
er

lo
ok
u
p

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

S
p
ee
d
u
p

(c) Cache-sectorized Bloom �lter (B = 512,k = 8, z = 2)

Figure A.15: Performance of our SIMD-optimized �lter implemen-
tations.

76

structure and identi�es an optimal tuning method. Our insights can be useful
for LSMs: we �nd that Cuckoo �lters are a better match than Bloom �lters
for workloads where �ltering avoids I/O.

There have been many extensions of the original Bloom �lter [23]. Scalable
Bloom �lters [13] allow the �lter to grow dynamically if n is not known in
advance, at the cost of more expensive membership tests (lookups into multiple
structures). Spectral Bloom �lters [47] and counting Bloom �lters [137, 28] can
represent bags (duplicate keys) rather than sets. The Bloomier �lter [42] can
associate a value (rather than a bit) with a key. Retouched Bloom �lters [60]
allow the suppression of certain selected false positives (that are particularly
harmful for the performance of an application).

Our adapted cache-sectorized and register-blocked Bloom �lters owe in spirit
much to the work by Putze et al. [144] in its search for more CPU-e�cient and
cache-e�cient �lters. That study introduced multi-blocked Bloom �lters and
described SIMD implementations for insert and test, and showed that reduc-
ing k and increasing m with regard to their information-theoretic optima can
signi�cantly improve performance. Our research into performance-optimal �l-
tering delves deeply into that realm of possibilities. Their SIMD approach
is di�erent, as it spreads the bits of a single key throughout the full SIMD
register, and the lookup instruction sequence tests just for one key. Rather
than setting k bits one-by-one, these bits are generated using pseudo-random,
pre-generated bit patterns stored in a table. How these bits are generated is
not described, and the Putze et al. source code was not available on request,
so a performance comparison was not possible. Our method looks up multi-
ple keys in parallel, one key per SIMD lane, pro�ting from ever-wider SIMD
widths in hardware. For instance, cache-sectorized lookup uses GATHER-AND-CMP
computation sequences that resolve 16 keys at once using AVX-512.

A SIMD implementation of classic Bloom �lters is described in [142]: at
every iteration, one bit for multiple tuples is tested (one key per GATHER lane).
Keys that have been resolved are retired and the SIMD lanes they leave empty
get re�lled with new tuple data. This approach still su�ers from the original
Bloom problem that a negative query needs k cache line accesses. In addition,
the re�ll mechanism requires signi�cant CPU work.

The Cuckoo �lter [63] achieves better precision than Bloom �lters, can repre-
sent bags, and allows deletions. However, the CPU and memory cost of Cuckoo
�lters make membership tests slower. Our work puts Bloom and Cuckoo �lters
in perspective, and our open-source software release provides highly e�cient
SIMD implementations for Cuckoo �lters, making them more performance
competitive. Another optimized Cuckoo �lter named the Morton �lter is pre-
sented in [30]. It reduces the number of accessed cache lines from two down to
one in most cases. This is achieved by introducing a new SIMD-friendly data
layout, an over�ow logic, and compression. We compared our implementation

77

with the reported numbers5 on similar hardware (Ryzen Threadripper 1950X),
showing that our implementation provides the same query performance with
large �lters (≈ 200MB); we expect it to outperform Morton �lters signi�cantly
with smaller (cache-resident) �lters, which is not the sweet spot of Morton
�lters.
A few alternative and approximate non-Cuckoo hash tables have been pro-

posed. Both the Quotient �lter [20] and TinySet [61] store signatures in a
mini-chained hash table. Their advantage over Cuckoo �lters is a single cache-
miss, as the entire chain �ts in a cache line. Their disadvantage is a more
CPU-intensive and SIMD-unfriendly lookup, since a loop is needed to walk
the chain and determine membership.
Space-e�cient index structures, in general, have attracted a lot of interest in

database research. Many lightweight data structures have been proposed to ac-
celerate table scans by (i) skipping blocks of tuples, e.g., Column Imprints [153]
or MinMax indexes using Small Materialized Aggregates (SMAs) [118], (ii)
skipping scan ranges within blocks, e.g., Positional SMAs [96] and Adap-
tive Range Filters [12], or (iii) by skipping (parts of) individual tuples, e.g.,
BitWeaving [110, 143] and ByteSlice [66]. The more recent Column Sketches [77]
are more heavy weight, as they store approximations of columns using lossy
compression, but are also applicable to a wide range of workloads (see Table 1
in [77]). However, it is an open question, whether Bloom �lter pushdowns can
be combined with Column Sketches (or with any of the aforementioned index
structures). A Bloom �lter could be populated with the compressed values
from the sketch column, but this would require the Column Sketches to have
a low false-positive rate and the compressed values need to be known at build
time.

A.8 Conclusion

While the space-precision trade-o�s of Bloom �lters are clearly understood,
choosing a performance-optimal con�guration is less obvious � in fact it was
already known that space-optimal Bloom �lters are typically not the most
e�ective con�gurations. The emergence of new �lter types, and speci�cally
the Cuckoo �lter, created yet another question for practitioners with regard
to what �lter type and con�guration to use for their problems. Our work
sheds light on the issue of which �lter structure to choose, and with which
parameters, by formally de�ning performance-optimal �ltering and measuring
it in our exhaustive experimentation. Our overall �nding is that the amount of
work saved (tw) primarily determines the choice between Bloom and Cuckoo:
high-throughput workloads (small tw) should use a (cache-sectorized) Bloom
�lter, whereas slower moving workloads (high tw), where precision is absolutely
essential, should use a (SIMD) Cuckoo �lter.
5At the time of writing, the source code of Morton �lters was not available for reproducibil-
ity.

78

A.9 Acknowledgements

This work was partially supported by the German Federal Ministry of Educa-
tion and Research (BMBF) grant 01IS12057 (FASTDATA and MIRIN), and
the DFG projects NE1677/1-2 and KE401/22. We would like to thank Abe
Wits for his suggestions regarding this research.

79

B Make the Most out of Your

SIMD Investments: Counter

Control Flow Divergence in

Compiled Query Pipelines

Harald Lang1, Linnea Passing1, Andreas Kipf1, Peter Boncz2, Thomas
Neumann1, Alfons Kemper1

1 Technical University of Munich
2 Centrum Wiskunde & Informatica

Appeared in The VLDB Journal, 2019. https://doi.org/10.1007/s00778-
019-00547-y

The content of this section is identical to the original publication. Only the
format and the numbering have been adjusted.

In accordance with the TUM regulations for the award of doctoral degrees
(TUM Promotionsordnung, 2014), a summary of the publication is included
in the �rst part of this thesis. Please refer to Section 3.4. Furthermore, the
printed version is included in the Appendix on page 187 �.

The contributions of the thesis author to this publication are: developing the
algorithms and strategies for countering control �ow divergence, the imple-
mentation, the evaluation, and authoring of substantial parts of the paper.

81

https://doi.org/10.1007/s00778-019-00547-y
https://doi.org/10.1007/s00778-019-00547-y

Abstract

Increasing single instruction multiple data (SIMD) capabilities in modern hard-
ware allows for the compilation of data-parallel query pipelines. This means
GPU-alike challenges arise: control �ow divergence causes the underutilization
of vector-processing units. In this paper, we present e�cient algorithms for
the AVX-512 architecture to address this issue. These algorithms allow for the
�ne-grained assignment of new tuples to idle SIMD lanes. Furthermore, we
present strategies for their integration with compiled query pipelines so that
tuples are never evicted from registers. We evaluate our approach with three
query types: (i) a table scan query based on TPC-H Query 1, that performs up
to 34% faster when addressing underutilization, (ii) a hashjoin query, where
we observe up to 25% higher performance, and (iii) an approximate geospatial
join query, which shows performance improvements of up to 30%.

B.1 Introduction

Integrating SIMD processing with database systems has been studied for more
than a decade [191]. Several operations, such as selection [96, 143], join [88, 18,
19, 166], partitioning [140], sorting [45], CSV parsing [119], regular expression
matching [157], and (de-)compression [189, 143, 105] have been accelerated
using the SIMD capabilities of the x86 architectures. In more recent iterations
of hardware evolution, SIMD instruction sets have become even more popular
in the �eld of database systems. Wider registers, higher degrees of data-
parallelism, and comprehensive support for integer data have increased the
interest in SIMD and led to the development of many novel algorithms.
SIMD is mostly used in interpreting database systems [86] that use the

column-at-a-time or vector-at-a-time execution model [26]. Compiling database
systems [86] like HyPer [85] barely use it due to their data-centric tuple-at-a-
time execution model [128]. In such systems, therefore, SIMD is primarily
used in scan operators [96] and in string processing [119].
With the increasing vector-processing capabilities for database workloads in

modern hardware, especially with the advent of the AVX-512 instruction set,
query compilers can now vectorize entire query execution pipelines and bene�t
from the high degree of data-parallelism [74]. With AVX-512, the width of
vector registers increased to 512 bit, allowing for the processing of an entire
cache line in a single instruction. Depending on the bit-width of the attribute
values, data elements from up to 64 tuples can be packed into a single register.
Vectorizing entire query pipelines raises new challenges. One such challenge

is keeping all SIMD lanes busy during query evaluation, as not all in-�ight
tuples follow the same control �ow. For instance, some might is disquali�ed
during predicate evaluation, while others may not �nd a join partner later
on and get discarded. Whenever a tuple gets disquali�ed, the corresponding
SIMD lane is a�ected. A scalar (non-vectorized) pipeline would take a branch
and thereby return the control �ow to a tuple producing operator to fetch
the next tuple. In a vectorized pipeline, this is only possible i� all in-�ight
tuples have been disquali�ed. If this is not the case, the query of the sub-
sequent operator still needs to be executed. Ignoring SIMD lanes containing
disquali�ed tuples is the easiest way to deal with this situation, as it does not
introduce branching logic and only requires a small amount of bookkeeping. A
small bitmap is su�cient to keep track of disquali�ed elements. The bitmap
is used at the pipeline sink, when the (intermediate) result is materialized,
making sure that disquali�ed elements are not written to the query result set.
The downside of this approach is, that within the pipeline, all instructions are
performed on all SIMD lanes regardless of whether the SIMD lane contains an
active or an inactive element. All operations that are performed on inactive
elements can be considered overhead, as they do not contribute to the result.
In other words, not all SIMD lanes perform useful work and if lanes contain
disquali�ed elements, the vector-processing units (VPUs) can be considered
underutilized. Therefore, e�cient algorithms are required to counter the un-

84

derutilization of vector-processing units. In [115], this issue was addressed by
introducing (memory) materialization points immediately after each vector-
ized operator. However, with respect to the more strict de�nition of pipeline
breakers given in [128], materialization points can be considered as pipeline
breakers because tuples are evicted from registers to slower (cache) memory.
In this work, we present alternative algorithms and strategies that do not break
pipelines. Further, our approach can be applied at the intra-operator level as
well as at operator boundaries.
The remainder of this paper is organized as follows. In Section B.2, we

brie�y describe the relevant AVX-512 instructions that we use in our algo-
rithms. The potential performance degradation caused by underutilization in
holistically vectorized pipelines is discussed in Section B.3. In Section B.4, we
introduce e�cient algorithms to counter underutilization, and in Section B.5,
we present strategies for integrating these algorithms with compiled query
pipelines. The experimental evaluation of the proposed algorithms using a ta-
ble scan query, a hashjoin query, and an approximate geospatial join query is
given in Section C.4. The experimental results are summarized and discussed
in Section B.7, followed by our conclusions in Section B.8.

B.2 Background

In this section, we brie�y describe the key features of the AVX-512 instruction
set that we use in our algorithms in Section B.4. In particular, we cover the
basics of vector predication as well as the permute and the compress/expand
instructions.

Mask instructions: Almost all AVX-512 instructions support predication.
These instructions allow to perform a vector operation only on those vector
components (or lanes) speci�ed by a given bitmask, where the ith bit in the
bitmask corresponds to the ith lane. For example, an add instruction in its
simplest form requires two (vector) operands and a destination register that
receives the result. In AVX-512, the instruction exists in two additional vari-
ants:

1. Merge masking: The instruction takes two additional arguments, a
mask and a source register, for example, dst = mask_add(src,mask,a,b).
The addition is performed on the vector components in a and b speci�ed
by the mask. The remaining elements, where the mask bits are 0, are
copied from src to dst at their corresponding positions.

2. Zero masking: The functionality is basically the same as that of merge
masking, but instead of specifying an additional source vector, all ele-
ments in dst are set to zero if the corresponding bit in the mask is not set.
Zero masking is therefore (logically) equivalent to merge masking with
src set to zero: maskz_add(mask,a,b) ≡ mask_add(0,mask,a,b). Thus, zero
masking is a special case of merge masking.

85

Masked instructions can be used to prevent individual vector components from
being altered, e.g., x = mask_add(x,mask,a,b).
Typically, masks are created using comparison instructions and stored in

special mask registers, which is a signi�cant improvement over earlier SIMD
instruction sets, in which these masks were stored in 256-bit vector registers.

Permute: The permute instruction shu�es elements within a vector register
according to a given index vector:

[d,a,d,b]︸ ︷︷ ︸
result vector

= permute([3,0,3,1]︸ ︷︷ ︸
index vector

, [a,b,c,d]︸ ︷︷ ︸
input vector

).

It is noteworthy, that the permute instruction has already been available in
earlier instruction sets. But due to the doubled register size, twice as many
elements can now be processed at once. Further, in our application, we achieve
a four times higher throughput compared to the earlier AVX2 instruction set.
The reason is, that assigning new elements to idle SIMD lanes is basically a
merge operation of the content of two vector registers. In combination with
merge masking, this operation can be performed using a single instruction,
whereas with AVX2, two instructions need to be issued, (i) a permute to move
the elements into their desired SIMD lanes and (ii) a blend to select the desired
lanes from two source registers and merge them into a destination register.

Compress / Expand: Typically, before a permute instruction can be issued,
an algorithm needs to determine the aforementioned index vector, which used
to be a tedious task that often induced signi�cant overheads, such as additional
accesses into prede�ned lookup tables [9, 96, 115, 142]. The key instructions
introduced with AVX-512 to e�ciently solve these types of problems, are called
compress and expand. Compress stores the active elements (indicated by a bit-
mask) contiguously into a target register, and expand stores the contiguous
elements of an input at certain positions (speci�ed by a write mask) in a tar-
get register:

[a, d, 0, 0] = compress(1001, [a, b, c, d])

[0, a, 0, b] = expand(0101, [a, b, c, d])

Both instructions come in two �avors: (i) read/write from/to memory and (ii)
directly operate on registers.
Our algorithms in general require both, permute and compress/expand in-

structions. There is only one special case, where a permute su�ces, which we
describe in the later Section B.4.

86

B.3 Vectorized Pipelines

As mentioned in the introduction, the major di�erence between a scalar (i.e.,
non-vectorized) pipeline, as pioneered by HyPer [85], and a vectorized pipeline
is that in the latter, multiple tuples are pushed through the pipeline at once.
This impacts the control �ow within the query pipeline. In a scalar pipeline,
whenever the control �ow reaches any operator, it is guaranteed that there is
exactly one tuple to process (tuple-at-a-time). By contrast, in a vectorized
pipeline, there are several tuples to process. However, because the control
�ow is not necessarily the same for all tuples, some SIMD lanes may become
inactive when a conditional branch is taken. Such a branch is only taken if at
least one element satis�es the branch condition. This implies that a vector of
length n may contain up to n − 1 inactive elements, as depicted in Figure B.1.
The �gure shows a simpli�ed control �ow graph (CFG) for an example query
pipeline that consists of a table scan, a selection, and a join operator. The
directed edges represent the branching logic. For instance, the no match edges
are taken if a tuple is disquali�ed in the selection or the join operator. The
index traversal (self-)edge is taken when an index lookup is performed. For
instance, a hash table or tree lookup might require one to follow multiple bucket
pointers until a join partner for the current tuples is found. The right-hand
side of Figure B.1 visualizes the SIMD lane utilization over time. Initially, in
the scan operator, all SIMD lanes are active (green color). Inside the select or
join operator, elements are disquali�ed (marked with a X), but the no match
branch is not taken, because some elements are still active. Lane 4 represents
a di�erent situation, where an SIMD lane becomes temporarily inactive.
In that example, the element in lane 4 �nds its join partner in the very �rst
iteration of the index lookup. However, lanes 1 and 6 need three iterations until
the index lookup terminates. During that time, lane 4 is idle and afterwards,
it becomes active again.
In general, all conditional branches within the query pipeline are poten-

tial sources of control �ow divergence and, therefore, a source of the under-
utilization of VPUs, whereas, disquali�ed elements cause underutilization in
all subsequent operators and lookups in index structures cause intra-operator
underutilization. The latter is an inherent problem when traversing irregu-
lar pointer-based data structures in an SIMD fashion [146]. To avoid under-
utilization through divergence, we need to dynamically assign new tuples to
idle SIMD lanes, possibly at multiple �points of divergence� within the query
pipeline. We refer to this process as pipeline re�ll.

B.4 Re�ll Algorithms

In this section, we present our re�ll algorithms for AVX-512, which we later
integrate into compiled query pipelines (cf., Section B.5). These algorithms
essentially copy new elements to desired positions in a destination register.

87

out

σ

scan

Index ⋈
index
traversal

no
match

0
1
2
3
4
5
6
7

t

Control flow graph: SIMD lane utilization:

sc
an

σ ⋈ ⋈ ⋈ o
u

t

sc
an

σ ⋈ ...

SI
M

D
 la

n
es

x x x x x x x
x x

x
x
x
xx

x
xx

x
x

xxx

x x x x x
xx

x x x

Figure B.1: During query processing, individual SIMD lanes may
(temporarily) become inactive due to di�erent con-
trol �ows. The resulting underutilization of vector-
processing units causes performance degradations. We
propose e�cient algorithms and strategies to �ll these
gaps.

In this context, these desired positions are the lanes that contain inactive
elements. The active lanes are identi�ed by a small bitmask (or simply mask),
where the ith bit corresponds to the ith SIMD lane. An SIMD lane is active if
the corresponding bit is set, and vice versa. Thus, the bitwise complement of
the given mask refers to the inactive lanes and, therefore, to the write positions
of new elements. We distinguish between two cases as follows: (i) where new
elements are copied from a source memory address and (ii) where elements are
already in vector registers.
In the following, we frequently use various constant values, which we write

in capital letters. For instance, ZERO and ALL refer to constant values where
all bits are zero or one, respectively. The vector constant SEQUENCE contains
an integer sequence starting at 0 and LANE_CNT refers to the number of SIMD
lanes.

B.4.1 Memory to Register

Re�lling from memory typically occurs in the table scan operator, where con-
tiguous elements are loaded from memory (assuming a columnar storage lay-
out). AVX-512 o�ers the convenient expand load instruction that loads contigu-
ous values from memory directly into the desired SIMD lanes (cf., Figure B.2).
One mask instruction (bitwise not) is required to determine the write mask
and one vector instruction (expand load) to execute the actual load. Overall,
the simple case of re�lling from memory is supported by AVX-512 directly out
of the box.
The table scan operator typically produces an additional output vector con-

88

active elements in destination

write mask

bitwise not
0 1 2 4 7

destination vector register
1 1 1 0 1 0 1 1

0 0 0 1 0 1 0 0

6 7 8 9

read position

......
data

8

expand load

memory

69
1

2

10 11 12 13

Figure B.2: Re�lling empty SIMD lanes from memory using the
AVX-512 expand load instruction.

write mask

0 1 2 4 6 7
TID vector register

0 0 0 1 0 1 0 0

8

0 1 2 4 5 7
SEQUENCE

3 6

8 8 8 8 8 88 8
read position vector

8
read position

broadcast

8 9

add

10 11 12 13 14 15

9

1

2

expand 3

Figure B.3: TIDs are derived from the current read position and
assigned to a TID vector register.

taining the tuple identi�ers (TIDs) of the newly loaded attribute values. The
TIDs are derived from the current read position and are used, for example, to
(lazily) load attribute values of a di�erent column later on or to reconstruct
the tuple order. Figure B.3 illustrates, how the content of the TID vector
register is updated, using the read position and write mask from Figure B.2.

B.4.2 Register to Register

Moving data between vector registers is more involved. In the most general
case, we have a source and a destination register that contain both active and
inactive elements at random positions. The goal is to move as many elements
as possible from the source to the destination. This can be achieved using
a single masked permute instruction. But before the permutation instruction

89

active elements in source

-1 -1 -1 -1 -1 -1

perm. indices

0

1 4

0 2 5
SEQUENCE

3 6

write mask
0 0 0 1 0 1 0 0

00101 0 1

1 4 7 -1

1 4 7

-1 -1 -1 -1

-1 -1 -1 -1 -1 -1

ALL

-1 -1

permutation mask
0 0 0 1 0 1 0 0

expand

compress

compare not equal

1

2

3

Figure B.4: Computation of the permutation indices and the permu-
tation mask based on positions of the active elements in
the source register and the inactive elements in the des-
tination register.

can be issued, the permutation indices need to be computed, based on the
positions of active elements in the source and the destination vector registers.
This is illustrated in Figure B.4, where, as in the previous examples, the write
mask refers to the inactive lanes in the destination register. In total, three
vector instructions are required to compute the permutation indices and an
additional permutation mask. The latter is required in case the number of
active elements in the source is smaller than the number of empty lanes in the
destination vector. In that case, the destination register still contains some
inactive lanes, and the corresponding bitmask must be updated accordingly.

Once the permutation indices are computed, elements can be moved be-
tween registers accordingly. Notably, the algorithm can be adapted to move
elements directly instead of computing the permutation indices �rst. However,
if elements need to be moved between more than one source/destination vector
pair, the additional cost of computing the permutation amortizes immediately
with the second pair. In practice, the permutation is typically applied multiple
times, for example, when multiple attributes are pushed through the pipeline
or to keep track of the TIDs.

In the general case, there are no guarantees about the number of (active)
elements nor their positions within the vector register. For example, the ele-
ments in the source may not be entirely consumed or the destination vector

90

permutation mask
0 0 0 1 0 1 0 0

ALL MASK
1 1 1 1 1 1 1 1

compressed mask
1 1 0 0 0 0 0 0

pext
-1 -1 -1 -1 -1

ALL

-1 -1-1

-1 0 0 0 00 0-1

active elements in source
0 00101 0 1

0 0 00 0

0 0 0
ZERO

0 0

remaining elements in source
0 00000 0 1

-1 0-1

0 0 0

expand

move (zero masking)

compare equal

1

2

3

4

Figure B.5: If not all elements could be moved from the source to
the destination register, the source mask needs to be
updated accordingly.

91

may still contain inactive elements. Thus, it is necessary to update source and
destination masks accordingly. Updating the destination mask is straightfor-
ward by using a bitwise or with the previously computed permutation mask.
Updating the source mask is less obvious as illustrated in Figure B.5. As
the �gure shows, updating the source mask is as expensive as preparing the
permutation. However, if it is guaranteed that all source elements �t into
the destination vector, this phase of the algorithm can be skipped altogether.
Listing B.1 shows the full algorithm formulated in C++.
In summary, a typical re�ll looks as follows:

[...]
// Prepare the refill.
fill_rr r(src_mask, dst_mask);
// Copy elements from src to dst.
r.apply(src_tid, dst_tid);
r.apply(src_attr_a, dst_attr_a);
r.apply(src_attr_b, dst_attr_b);
r.apply(..., ...);
// Update the destination mask,
r.update_dst_mask(dst_mask);
// and optionally the source mask.
r.update_src_mask(src_mask);
[...]

B.4.3 Variants

Depending on the position of the elements, cheaper algorithms can be used.
Especially when the vectors are in a compressed state, meaning that the active
elements are stored contiguously, it is considerably cheaper to prepare the
permutation (compare Listing B.1 and B.2). Compared to the �rst algorithm,
which can permute elements from/to random positions, the second algorithm
does not need any bit masks to refer to the active lanes. Instead, it is su�cient
to pass in the number of active elements. In Listing B.2, we refer to these
numbers as src_cnt and dst_cnt. Based on these, the permutation indices,
as well as the permutation mask, can be computed without any cross-lane
operations, such as compress/expand. A noteworthy property of the second
SIMD algorithm is that the source vector remains in a compressed state even
if not all elements �t into the destination vector.
These two foundational SIMD algorithms cover the extreme cases where

(i) active elements are stored at random positions and (ii) active elements
are stored contiguously. Based on these cases, the algorithms can easily be
adapted so that only one vector needs to be compressed, which is useful when
vector registers are used as tiny bu�ers because those should always be in a
compressed state to achieve the best performance. In total, there are four
di�erent algorithms. Each algorithm has two di�erent �avors: (i) where all

92

Listing B.1: Generic re�ll algorithm

struct fill_rr {

__mmask8 permutation_mask;
__m512i permutation_idxs;

// Prepare the permutation.
fill_rr(const __mmask8 src_mask,

const __mmask8 dst_mask) {
__m512i src_idxs = _mm512_mask_compress_epi64(

ALL, src_mask, SEQUENCE);
__mmask8 write_mask = _mm512_knot(dst_mask);
permutation_idxs = _mm512_mask_expand_epi64(

ALL, write_mask, src_idxs);
permutation_mask = _mm512_mask_cmpneq_epu64_mask(

write_mask, permutation_idxs, ALL);
}

// Move elements from 'src' to 'dst'.
void apply(const __m512i src, __m512i& dst) const{
dst = _mm512_mask_permutexvar_epi64(

dst, permutation_mask, permutation_idxs, src);
}

void update_src_mask(__mmask8& src_mask) const {
__mmask8 compressed_mask = _pext_u32(~0u, permutation_mask);
__m512i a = _mm512_maskz_mov_epi64(compressed_mask, ALL);
__m512i b = _mm512_maskz_expand_epi64(src_mask, a);
src_mask = _mm512_mask_cmpeq_epu64_mask(src_mask, b, ZERO);

}

void update_dst_mask(__mmask8& dst_mask) const {
dst_mask = _mm512_kor(dst_mask, permutation_mask);

}

};

93

Listing B.2: Re�ll algorithm for compressed vectors

struct fill_cc {

__mmask8 permutation_mask;
__m512i permutation_idxs;
uint32_t cnt;

// Prepare the permutation.
fill_cc(const uint32_t src_cnt,

const uint32_t dst_cnt) {
const auto src_empty_cnt = LANE_CNT - src_cnt;
const auto dst_empty_cnt = LANE_CNT - dst_cnt;
// Determine the number of elements to be moved.
cnt = std::min(src_cnt, dst_empty_cnt);
bool all_fit = (dst_empty_cnt >= src_cnt);
auto d = all_fit ? dst_cnt : src_empty_cnt;
const __m512i d_vec = _mm512_set1_epi64(d);
// Note: No compress/expand instructions required
permutation_idxs = _mm512_sub_epi64(SEQUENCE, d_vec);
permutation_mask = ((1u << cnt) - 1) << dst_cnt;

}

// Move elements from 'src' to 'dst'.
void apply(const __m512i src, __m512i& dst) const{
dst = _mm512_mask_permutexvar_epi64(

dst, permutation_mask, permutation_idxs, src);
}

void update_src_cnt(uint32_t& src_cnt) const {
src_cnt -= cnt;

}

void update_dst_cnt(uint32_t& dst_cnt) const {
dst_cnt += cnt;

}

};

94

0
1
2
3
4
5
6
7

Stage

L
an
es

t

(a) Divergent

0
1
2
3
4
5
6
7

Stage

L
an
es

t

(b) Bu�ered

0
1
2
3
4
5
6
7

Stage

L
an
es

t

(c) Partial

Figure B.6: SIMD lane utilization using di�erent strategies. � In
(a), no re�lling is performed to visualize the divergence.
� (b) uses the consume everything strategy, which per-
forms re�lls when the utilization falls below 75%. The
dashed purple lines indicate a write to bu�er regis-
ters, black lines a read. � (c) shows a partial consume
throughout the entire pipeline with the minimum re-
quired utilization set to 50%. Lanes colored in purple
are protected.

elements from the source register are guaranteed to �t into the destination
register or (ii) where not all elements can be moved and therefore elements
remain in the source register. We do not show all variants here, but have
released the C++ source code1 under the BSD license.

95

B.5 Re�ll Strategies

We discuss the integration of these re�ll algorithms in data-centric compiled
query pipelines. Such pipelines turn a query operator pipeline into a for-loop,
and the code generated by the various operators is nested bottom-up in the
body of such a loop [128]. Relational operators in this model generate code in
two methods, namely, consume() and produce(), which are called in a depth-
�rst traversal of the query tree: produce() code is generated before generating
the code for the children, and consume() afterwards.
The main idea of data-centric execution with SIMD is to insert checks for

each operator that control the number of tuples in play, i.e., if-statements
nesting the rest of the body. Such an if-statement ensures that its body only
gets executed if the SIMD registers are su�ciently full. Generally speaking,
operator code processes input SIMD data computed by the outer operator and
re�lls the registers it works with and the ones it outputs.
We identify two base strategies for applying this re�lling.

B.5.1 Consume Everything

The consume everything strategy allocates additional vector registers that are
used to bu�er tuples. In the case of underutilization, the operator defers the
processing of these tuples. This means the body will not be executed in this
iteration (if-condition not satis�ed) but instead (else) the active tuples will be
moved to these bu�er registers. It uses the re�ll algorithms from the previous
section both to move data to the bu�er and to emit bu�ered tuples into the
unused lanes in a subsequent iteration. Listing B.3 shows the code skeleton as
it would be generated by such a bu�ering operator. The THRESHOLD parameter
speci�es when a re�ll is triggered during query execution. Depending on the
situation, the costs for re�lling might not amortize if only a few lanes contain
inactive elements. But if the remaining pipeline is very expensive, setting
the threshold to the number of SIMD lanes could be the best option. The
important thing to note here is that all SIMD lanes are empty when the control
�ow returns to the previous operator, thus we call it consume everything.
Compared to a scalar pipeline, this strategy only requires a minor change to

the push model: handling a special case when the pipeline execution is about
to terminate, �ushing the bu�er(s). The essence is that bu�ering only takes
place in SIMD registers and it speci�cally does not cause extra in-memory
materialization.
Figures B.6a and B.6b illustrate the e�ects of applying a re�ll strategy to a

query pipeline by visualizing the SIMD lane utilization over time. The struc-
ture of the query is similar to the one shown in Figure B.1 and consists of a
scan, a selection, a join, and a sink to where the output is written. The stage
indicator on top of the plot refers to the node in the control �ow graph in Fig-
ure B.1. In Figure B.6a, the query is executed without divergence handling,

1Source code: https://github.com/harald-lang/simd_divergence

96

https://github.com/harald-lang/simd_divergence

Listing B.3: Code skeleton of a bu�ering operator.

[...]
auto active_lane_cnt = popcount(mask);
if (active_lane_cnt + buffer_cnt < THRESHOLD

&& !flush_pipeline) {
[...] // Buffer the input.

}
else {

const auto bail_out_threshold =
flush_pipeline ? 0

: THRESHOLD;
while (active_lane_cnt + buffer_cnt > bail_out_threshold) {
if (active_lane_cnt < THRESHOLD) {

[...] // Refill lanes with buffered elements.
}
//===---------------------------------===//
// The actual operator code and
// consume code of subsequent operators.
[...]
//===---------------------------------===//
active_lane_cnt = popcount(mask);

}
if (likely(active_lane_cnt != 0)) {
[...] // Buffer the remaining elements.

}
}
// All lanes empty (consume everything semantics).
mask = 0;
[...]

and the white areas refer to underutilization. Figure B.6b visualizes the same
workload with in-register bu�ering, following consume everything semantics.
The purple and black vertical lines indicate that tuples are written to the
bu�ers, or read from the bu�er, respectively. Compared to the divergent im-
plementation, the lane utilization has signi�cantly increased, and the overall
execution time has reduced. In this example, we require the utilization to be
at least 75% (six out of eight lanes need to be active). Underutilization is
observed only when the execution is about to �nish, which triggers a pipeline
�ush, where all (potentially) bu�ered tuples need to be processed regardless
of the minimum utilization threshold.

B.5.2 Partial Consume

As the name suggests, the second base strategy no longer expects the consume()
code to process the entire input. The consume code can decide to defer execu-
tion by returning the control �ow to the previous operator and leave the active

97

elements in the vector registers. New tuples are assigned only to inactive lanes
by one of the preceding operators, typically a table scan. Naturally, the active
lanes, that contain deferred tuples, must not be overwritten or modi�ed by
other operators. We refer to these elements (or to their corresponding lanes)
as being protected. Another way of looking at a protected lane is that the lane
is owned by a di�erent operator. When an owning operator completes the
processing of a tuple, it transfers the ownership to the subsequent operator.
Alternatively, if the tuple is disquali�ed, it gives up ownership to allow a tuple
producing operator to assign a new tuple to the corresponding lane.
Lane protection requires additional bookkeeping on a per operator basis.

Each operator must be able to distinguish between tuples that (i) have just
arrived, (ii) have been protected by the operator itself in an earlier iteration
and (iii) tuples that have already advanced to later stages in the pipeline. To
do so, an operator maintains two masks, one that identi�es the lanes that are
owned by the current operator and another one that identi�es lanes that are
owned by a later operator. Listing B.4 shows the structure of such an oper-
ator, where this_stage_mask and later_stage_mask are part of the operator's
state and mask is used to communicate which lanes contain active elements
(regardless of their stage).
Figure B.6c shows how the partial consume strategy a�ects the lane utiliza-

tion with the minimum lane utilization threshold set to 50%. The lanes colored
in purple are in a protected state. Compared to the divergent implementation,
the lane utilization has increased. However, if we take protected lanes into
account and consider them as idle, the overall utilization decreases. Thus, the
example workload, used in Figure B.6, reveals an important drawback. If the
lanes become protected in later stages of the pipeline, these lanes can cause
signi�cant underutilization in the preceding operators. We discuss this issue,
among other things, in the following section.

B.5.3 Discussion and Implications

The two strategies are not mutually exclusive. Within a single pipeline, both
strategies can be applied to individual operators as long as bu�ering operators
are aware of protected lanes (mixed strategy). Moreover, the query compiler
might decide to not apply any re�ll strategy to certain operators. Especially,
when a sequence of operators is quite cheap, divergence might be acceptable
as long as the costs for re�ll operations are not amortized. Naturally, this
is a physical query optimization problem that we will leave for future work.
Nevertheless, we brie�y discuss the advantages and disadvantages, as this is
the �rst work in which we present the basic principles of vector-processing in
compiled query pipelines.
As mentioned above, consume everything requires additional registers, which

increases the register pressure and may lead to spilling. partial consume al-
locates additional registers as well, but these are restricted to (smaller) mask
registers. Therefore, it is unlikely to be a�ected by (potential) performance

98

Listing B.4: Code skeleton of a partial consume operator.

[...]
auto active_lane_cnt = popcount(mask);
if (active_lane_cnt < THRESHOLD && !flush_pipeline){

// Take ownership of newly arrived elements.
this_stage_mask = mask ^ later_stage_mask;

}
else {

//===---------------------------------===//
// The actual operator code and
// consume code of subsequent operators.
[...]
// The later_stage_mask is set by the
// consumer.
//===---------------------------------===//

}
// Protect lanes in the preceding operator.
mask = this_stage_mask | later_stage_mask;
[...]

degradation due to spilling.

The second major di�erence lies in the cost of re�lling empty lanes. In
a pipeline that follows the partial consume strategy, the very �rst operator,
that is, the pipeline source, is responsible for re�lling empty lanes. If other
operators experience underutilization, they return the control �ow to the pre-
vious operator while retaining ownership of the active lanes. This cascades
downward until the source operator is reached, as shown in Figure B.6c. All
operators between the pipeline source and the operator that returned the con-
trol �ow may be subject to underutilization because all lanes in later stages are
protected. The costs of re�lling, therefore, depend on the length of the pipeline
and the costs of the preceding operators. In general, the costs increase in the
later stages. Nevertheless, partial consume can improve query performance if
it is applied only to the very �rst operators. By contrast, the re�lling costs of
bu�ering operators do not depend on the pipeline length. Instead, the crucial
factor governing these costs is the number of required bu�er registers. The
greater the number of bu�ers, the greater the number of permute instructions
that need to be executed, whereas the number of required bu�ers depends on
(i) the number of attributes passed along the pipeline and optionally on (ii)
the number of registers required to save the internal state of the operator (e.g.,
a pointer to the current tree node).

99

Intel Intel
Knights Landing Skylake-X

(KNL) (SKX)

model Phi 7210 i9-7900X
cores (SMT) 64 (×4) 10 (×2)
SIMD [bit] 2×512 2×512
max. clock rate [GHz] 1.5 4.5
L1 cache 64 KiB 32 KiB
L2 cache 1 MiB 1 MiB
L3 cache - 14 MiB

Table B.1: Hardware platforms

B.6 Evaluation

We evaluate our approach with two major sources of control �ow divergence, (i)
predicate evaluation as part of a table scan and (ii) a hash join. Additionally,
we experiment with a more complex operator, an approximate geospatial join.
The experiments were conducted on an Intel Skylake-X (SKX) and an Intel
Knights Landing (KNL) processor (cf., Table B.1). The experiments were
implemented in C++ and compiled with GCC 5.4.0 at optimization level three
(-O3) and the target architecture set to knl. If not stated otherwise, we ran
the experiments in parallel using two threads per core2. We dispatched the
work in batches to the individual threads using batch sizes between 216 and 220

tuples. On the KNL platform, we placed the data in high-bandwidth memory
(HBM), otherwise the experiments would have been dominated by memory
stalls. To measure the throughputs, we let each experiment run for at least
three seconds, possibly consuming the input data multiple times.

B.6.1 Table Scan

To evaluate the e�ects of divergence handling in table scans, we integrate our
re�ll algorithms into the AVX-512 implementation of TPC-H Query 1 of Gub-
ner et al. [74]. Additionally, we implemented and integrated thematerialization
approach as proposed by Menon et al. in [115].
From a high-level perspective, TPC-H Query 1 (or short Q1) is a structurally

simple query that operates on a single fact table (lineitem) with a single scan
predicate. It involves several �xed-point arithmetic operations in the aggre-
gation based on the group by clause. In total, �ve additional attributes are
accessed to compute eight aggregated values per group. Almost all tuples sur-

2Please note that throughout our (multi-threaded) experiments, we did not observe any
performance penalties through down clocking. Both processors KNL and SKX run stable
at 1.4GHz and 4.0GHz, respectively.

100

vive the selection (i.e., selectivity ≈ 0.98). Therefore, in its original form, Q1
does not su�er from control-�ow divergence. To simulate control-�ow diver-
gence and the resulting underutilization of SIMD lanes, we vary the selectivity
of the scan predicate on the shipdate attribute.
We evaluate and compare a scalar3 (non-SIMD) implementation with four

AVX-512 implementations:

Divergent: The divergent implementation refers to the implementa-
tion published by the authors of [74], with a minor modi�-
cation. In the original version, all tuples are pushed through
the query pipeline and disquali�ed elements are ignored in the
�nal aggregation by setting the lane bitmask accordingly. For
our experiments, we introduced a branch behind the predicate
evaluation code, which allows to return the control �ow to the
scan operator i� all SIMD lanes contain disquali�ed elements.
In the case of Q1, the predicate is evaluated on 16 elements in
parallel.

Partial / Bu�ered: The partial and bu�ered implementations make
use of our re�ll algorithms. A major di�erence to the divergent
implementation is that it can no longer make use of aligned
SIMD loads. Instead, it relies on the gather instruction to
load subsequent attribute values. The select operator there-
fore produces a tuple identi�er (TID) list that identi�es the
qualifying tuples. The subsequent operators use the TIDs
to compute the o�set from where to load the additional at-
tributes. � Both implementations are parameterized with the
minimum lane utilization threshold, which limits the degree of
underutilization.

Materialization: The materialization implementation makes use of
small (memory) bu�ers to consecutively store the output. Sim-
ilarly to our approach, the select operator produces a TID list.
The code of the subsequent operator(s) is executed when the
bu�er is (almost) full. The bu�ered TID list is then consumed
(scanned) similarly to a table scan in the subsequent opera-
tor. Notably, the output contains only TIDs that belong to
qualifying tuples, which is in contrast to our approach, where
SIMD lanes may contain non-qualifying tuples, depending on
the chosen threshold.

Figure B.7a shows the performance results for varying selectivities (between
0.00001 and 1.0) on SKX. In the extreme cases, all implementations perform

3Scalar refers to an implementation which does not use any SIMD instructions. We veri�ed,
that the compiler did not auto-vectorize the query pipelines.

101

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

0

5000

10000

15000

0.00001 0.0001 0.0010.001 0.01 0.1 1
selectivity (log scale)

th
ro

ug
hp

ut
 [M

tp
s]

●

scalar
divergent
partial
buffered
materialization

(a) SKX

●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

0

10000

20000

30000

40000

0.00001 0.0001 0.0010.001 0.01 0.1 1
selectivity (log scale)

th
ro

ug
hp

ut
 [M

tp
s]

●

scalar
divergent
partial
buffered
materialization

(b) KNL

Figure B.7: Performance of TPC-H Q1 with varying selectivities.

102

0

2500

5000

7500

64 512 4096
buffer size in number of tuples

th
ro

ug
hp

ut
 [M

tp
s]

materialization

(a) Varying bu�er sizes.

0

2500

5000

7500

4 8 12 16
lane utilization threshold

th
ro

ug
hp

ut
 [M

tp
s]

buffered
partial

(b) Varying thresholds.

Figure B.8: Performance of TPC-H Q1 performance on SKX when
varying algorithm parameters.

similarly. Interestingly, this includes the scalar implementation, which indi-
cates that the SKX processor performs extremely well with respect to IPC,
branch prediction, and out of order execution. With intermediate selectivi-
ties, divergence handling can make a signi�cant di�erence. For instance, with
sel = 0.01 the di�erence between the divergent and materialization implemen-
tation is 2.6 billion tuples per second (1.5 billion over scalar). The graph also
shows that the materialization dominates over almost the entire range. Our
approach (bu�ered) can compete, but is slightly slower in most cases. On
KNL (Figure B.7b), we observed similar e�ects. The most important di�er-
ence is that the divergent SIMD implementation is signi�cantly slower than
the scalar implementation with selectivities larger than 0.0001. Divergence
handling extends the range in which SIMD optimizations become bene�cial.
For this experiment, we varied the utilization threshold for partial and

bu�ered as well as the bu�er size for materialization and we reported only
the best performing variant. In the following, we investigate the impact of
these parameters. Figure B.8a shows the performance of the materialization
approach for varying bu�er sizes and a �xed selectivity (sel = 0.01). Peak
performance for Q1 is achieved with a memory bu�er of size 1024 elements or
larger.
In Figure B.8b, we vary the SIMD lane utilization threshold for our ap-

proaches. The performance of the bu�ered implementation increases with the
threshold. Peak performance is reached when only qualifying tuples pass the
select operator (threshold = 16). But the performance only gradually increases
for a threshold ≥ 6. The reason for this behavior is that non-qualifying tuples
only cause computational overhead in the remaining pipeline but no memory
accesses, which would be signi�cantly more expensive. On the other hand,
the partial consume strategy favors a threshold that is approximately half the
number of SIMD lanes. If the threshold is too low (left-hand side), many non-
qualifying tuples pass the �lter, and if it is set too high (right-hand side), the
control �ow is often returned to the scan code to fetch (a few) more values.

103

B.6.2 Hashjoin

Probing a hash table is a search operation in a pointer-based data structure
and therefore a prime source of control-�ow divergence. Here, we evaluate the
very common foreign-key join of two relations followed by (scalar) aggregations.
The primary key relation constitutes the build size in such a way that the join
is non-expanding, i.e., for a probe tuple, at most one join partner exists. The
two input relations each have two 8-byte integer attributes: a key and a value.
The relations are joined using the keys. Afterwards, three aggregations are
computed on the join result: the number of tuples, the sum of the values from
the left input relation, and the sum of the values from the right input relation.
Our hash table implementation stores the �rst key-value pair per hash bucket
in the hash table dictionary. In case of collisions, additional key-value pairs
are stored in a linked list per hash bucket.
We evaluate and compare a scalar (non-SIMD) implementation with four

AVX-512 implementations:

Divergent: This SIMD implementation handles eight tuples in paral-
lel. The lane bitmask is used to keep track of disquali�ed tu-
ples, such that they can be ignored at the end of the pipeline.
As in the table scan evaluation, we add a branch to allow for
an early return to the beginning of the pipeline i� all SIMD
lanes contain disquali�ed tuples. We introduce this branch
after the �rst hash table lookup, i.e., it is triggered when all
probe tuples fall into empty hash buckets.

Partial / Bu�ered: These implementations make use of our in-register
re�ll algorithms. In contrast to the table scan discussed in
B.6.1, the hash table example uses only few relation attributes.
Therefore, instead of loading the additional attributes using
gather, here all attributes (i.e., key and value) are passed
through the pipeline. If the number of active SIMD lanes
drops below the minimum lane utilization threshold, a re�ll is
performed.

Materialization: Menon et al. [115] propose operator fusion, which
introduces bu�ers between operators to compact the stream
of tuples �owing through a pipeline. Here, we introduce an
intra-operator bu�er to further densify the stream of tuples.
At the beginning of the pipeline, we load key-value pairs from
the probe side input, and compute the hash value and the
pointer to the hash table dictionary. We store these key-value
pairs and pointers in an input bu�er. From this bu�er, we
then lookup eight pointers in the hash table in parallel, and
determine if (i) we found a match, (ii) we need to follow a
chain (further), or (iii) there is no match. Un�nished tuples

104

●

●
●

●

●

●
● ●

●

●

●

0

1000

2000

3000

64 1024 16384
hash table size [KiB] (log scale)

th
ro

ug
hp

ut
 [M

tp
s]

●

scalar
divergent
partial
buffered
materialization

(a) SKX, 10 threads.

●

●

●
●

●

●
●

●

●

●

●

0

1000

2000

3000

64 1024 16384
hash table size [KiB] (log scale)

th
ro

ug
hp

ut
 [M

tp
s]

●

scalar
divergent
partial
buffered
materialization

(b) SKX, 20 threads.

Figure B.9: Hashjoin performance when varying build sizes. SKX.

(case (ii)) are written back into the input bu�er with an up-
dated pointer; matching tuples (case (i)) are directly pushed to
the subsequent aggregation operator without further bu�ering,
which is not in line with [115], where materialization happens
on operator boundaries. We also implemented a �fully� mate-
rialized version where the matches are �rst stored in an output
bu�er before the aggregation code is executed. However, our
experiments have shown that two memory materializations are
more expensive.

Figures B.9 and B.10 show the performance results for varying hash table
sizes (between 10 KiB and 45 MiB). The hash table size is chosen depending on
the build input size. We size the hash table dictionary so that it has the same
number of buckets as there are build tuples. Among all evaluated approaches,
as well as both platforms, the throughput shrinks with growing hash table

105

●

●

●

●

●

●

●

● ●
●

●

0

1000

2000

3000

4000

5000

64 1024 16384
hash table size [KiB] (log scale)

th
ro

ug
hp

ut
 [M

tp
s]

●

scalar
divergent
partial
buffered
materialization

Figure B.10: Hashjoin performance when varying build sizes. KNL,
128 threads.

sizes. The overall throughput on Knights Landing is about twice as high as
on Skylake-X, even though the performance of Skylake-X can be increased by
50% by using Hyper Threading. On Skylake-X (Figures B.9a and B.9b), as
expected, a sharp performance decrease happens when the hash table grows
beyond the size of the L2 cache at around 1 MiB, and at around 10 MiB
when it exceeds the L3 cache. For large hash tables, that do not �t into the
cache, all approaches converge. This has also been observed in earlier work,
for instance, by Polychroniou et al. [140] and by Kersten et al. [86]. In these
cases, partitioning the hash table might help (cf. the radix partitioning join
proposed by Kim et al. [88]), but this is out of scope for this paper.
When the hash table is small enough to �t into the L1 or L2 cache, all

SIMD approaches outperform the scalar baseline: Irrespective of the SIMD
divergence handling deployed by the individual approaches, they all reach a
higher throughput than the scalar approach. For larger hash tables, SIMD di-
vergence no longer dominates the performance, and thus the scalar approach
reaches similar throughput levels (using 10 threads) or even higher through-
put (using 20 threads) than some SIMD variants. For the whole evaluated
range of hash table sizes, the partial and bu�ered approaches that make use
of the introduced re�ll strategies outperform or are on par with the divergent
SIMD approach. Using 20 threads, the bu�ered approach achieves up to 32%
higher throughput than the divergent approach, while the partial approach
outperforms the divergent one by up to 19%.
When the hash table �ts into the L1 cache, the bu�ered approach defeats

the materialization approach by up to 8%. When the hash tables grows, the
materialization approach dominates all other approaches. Two contradicting
in�uences determine whether the materialization approach outperforms our
divergence-handling approaches: First, the materialization approach can hide
memory latencies better than the bu�ered and partial approaches because more
memory is accessed at the same time (i.e., multiple outstanding loads). This

106

0

1000

2000

2 4 6 8
lane utilization threshold

th
ro

ug
hp

ut
 [M

tp
s]

buffered
partial

(a) Varying thresholds. SKX, 10

threads.

0

1000

2000

2 4 6 8
lane utilization threshold

th
ro

ug
hp

ut
 [M

tp
s]

buffered
partial

(b) Varying thresholds. SKX, 20

threads.

0

1000

2000

32 256 2048
buffer size in number of tuples

th
ro

ug
hp

ut
 [M

tp
s]

materialization

(c) Varying bu�er sizes. SKX, 20 threads.

Figure B.11: Hashjoin performance when varying algorithm param-
eters.

is shown in Figure B.9a and more severely in Figure B.9b when the hash table
is large, because it then resides in slower memory. Second, the materialization
approach su�ers from the higher number of issued instructions, i.e., load and
store instructions. In particular, when the hash table �ts into L1, the num-
ber of instructions can become the limiting factor. On the Knights Landing
platform in particular, the materialization approach has a signi�cantly lower
throughput compared to the other SIMD variants (Figure B.10). In contrast to
the table scan, which we evaluated in Section B.6.1, the materialization bu�er
is read and written in the same loop multiple times�during index lookup,
which exceeds the limited out-of-order execution capabilities of KNL.
In Figures B.11a and B.11b, we vary the SIMD lane utilization threshold for

the partial and bu�ered approaches. Hyper Threading, i.e., using 20 threads in-
stead of 10, increases throughput by about 50%. In general, a higher threshold,
i.e., less inactive SIMD lanes and more re�lls, results in a higher throughput.
There is little change in throughput when setting the threshold to six, seven
or all eight tuples. This is because in most hash table lookups, only a few of
the eight tuples need to be kept for additional pointer lookups in the collision
chains. As a result, almost no re�lls are done di�erently when choosing six,
seven or eight as the threshold. The bu�ered approach is more sensitive to the

107

chosen threshold. For a low threshold, the partial approach reaches a higher
throughput, but that changes at threshold 3 (using 10 threads) or 5 (using
20 threads). As mentioned, only few tuples need to be kept for additional
lookups. Thus, only few tuples need to be bu�ered in the bu�ered approach,
while the partial approach su�ers from underutilization when frequently per-
forming re�lls in the table scan.
Figure B.11c focuses on the materialization approach, varying the bu�er

size between eight and 8192 tuples and a �xed build cardinality (hash table
size ≈ 128KiB). For the chosen con�guration, the scalar approach reaches a
throughput of 1747 Mtps. For small bu�ers, e.g., 8 tuples, the scalar approach
outperforms the materialization approach. The materialization approach with
an 8-tuple bu�er is conceptually similar to the bu�ered approach with a SIMD
line utilization threshold of 1. Both use a bu�er the size of one SIMD vector.
In the bu�ered approach, this bu�er lives in registers, while the materialization
approach stores it in memory. As a result, the bu�ered approach outperforms
the materialization approach with a throughput of 1964 Mtps (i.e., about 2
billion tuples per second). A bu�er size between 128 and 1024 results in the
best performance of the materialization approach. The throughput shrinks
gracefully when the bu�er size is further increased. This is an e�ect of the
chosen workload, especially the number of attributes beside the join attribute.
Two additional parameters a�ect throughput in the hashjoin evaluation:

First, the match probability describes how likely a tuple from the probe side
�nds a join partner in the hash table. We vary this probability between 0.01
and 1. A low match probability therefore results in more disquali�ed tuples,
which�depending on the approach�in turn leads to more ignored SIMD lanes,
more re�lls, or a worse VPU utilization. Figure B.12a shows that the bu�ered
approach, using the proposed re�ll strategies, outperforms both pre-existing
approaches, scalar and divergent, irrespective of the match probability. The
scalar approach is competitive with the SIMD approaches for low match prob-
abilities. With few matches, the scalar approach can often exit the pipeline
early, which leads to the high throughput rates we observed. The divergent
approach, on the other hand, su�ers from extreme under-utilization because
frequently only few SIMD lanes stay active due to the low match probability.
With a match probability of 50%, branches are mispredicted in the scalar ap-
proach, and its throughput subsequently tanks. When the match probability
approaches 100%, almost all probe tuples �nd a non-empty hash bucket that
then needs to be inspected further. Furthermore, the �nal aggregation be-
comes more expensive as more tuples make it into the join result. The scalar
approach therefore performs best for low match probabilities and worst for a
match probability of around 50%, and cannot fully recover its throughput even
for a match probability of 100%. When looking at the SIMD approaches, we
observe that the throughput di�erence between the divergent approach and our
novel re�ll approaches increases with the match probability. A higher match
probability comes along with more active SIMD lanes after the �rst lookup in
the hash dictionary. Then, more divergence happens because these tuples will

108

0

1000

2000

0.01 0.1 0.5 0.8 1
match probability

th
ro

ug
hp

ut
 [M

tp
s]

scalar
divergent
partial
buffered
materialization

(a)

0

1000

2000

3000

0.25 0.5 0.8 0.95 1 1.05 1.2 1.5 2 4
load factor

th
ro

ug
hp

ut
 [M

tp
s]

(b)

Figure B.12: Hashjoin performance for varying match probabilities
(a) and hash table load factors (b). SKX, 20 threads.

109

have to traverse collision chains of di�erent lengths. The divergence-handling
bu�ered and partial approaches can therefore outperform the divergent ap-
proach for high match probabilities.
Second, we de�ne the hash table's load factor as the number of buckets in the

hash table divided by the number of keys stored in the hash table. While the
load factor has been kept constant in all previous experiments (= 1.0), in real
scenarios, the hash table size is not only determined by the size of the build side
input, but also by the set load factor. With a low load factor, more collisions
in the hash table occur, resulting in longer chains. With longer chains, the
variance of the number of pointers that need to be followed to perform the
hash table probe increases. This variance directly translates to higher SIMD
divergence. A low load factor therefore leads to worse VPU utilization in the
divergent approach, which can then be mitigated by applying the proposed
in-register re�ll strategies. Figure B.12b shows how the load factor a�ects
the throughputs reached by the di�erent approaches. The hash table for load
factor 4 is 16 times as big as the hash table for load factor 0.25. Over all
approaches, the throughput of the bigger hash table is about three times as
high as for the smaller one. For high load factors, the scalar approach performs
well. This is because for high load factors, fewer and shorter collision chains
exist. When zero of the eight tuples in a vector need to follow a chain, there
is not SIMD divergence. Subsequently, for especially high load factors like 4,
there is little di�erence between all approaches.

B.6.3 Approximate Geospatial Join

In the following, we evaluate and compare our approach with a modern and
more complex operator, an approximate geospatial point-polygon join. Our
approximate geospatial join [91] uses a quadtree-based hierarchical grid to ap-
proximate polygons. Figure B.13 shows such an approximation for the neigh-
borhoods in New York City (NYC). The grid cells are encoded as 64-bit integers
and are stored in a specialized radix tree, where the cell size corresponds to
the level within the tree structure (larger cells are stored closer to the root
node and vice versa). During join processing, we perform (pre�x) lookups on
the radix tree. Each lookup is separated into two stages: First, we check for a
common pre�x of the query point and the indexed cells. The common pre�x
allows for the fast �ltering of query points. If the query point does not share
the common pre�x, there are no join partners. The actual tree traversal takes
place in the second stage. We traverse the tree starting from the root node
until we hit a leaf node (which contains a reference to the matching polygon).
An important property of our approximate geospatial join operator is that

it can be con�gured to guarantee a certain precision. In the experiments, we
used 60-, 15-, and 4-meter precision (as in [91]). The higher the precision
guarantee, the smaller are the cells at the polygon boundaries, which in turn
increases the total number of cells and, more importantly, the height of the
radix tree. In general, the probability of control �ow divergence during index

110

Figure B.13: Quad-tree based cell-approximation of neighborhood
polygons in NYC.

number avg. number
of polygons of vertices

boroughs 5 662.2
neighborhoods 289 29.6
census 39184 12.5

Table B.2: Polygon datasets

lookups increases with the tree height. Throughout our experiments, the tree
height is ≤ 6.
In our experiments, we join the boroughs, neighborhoods, and census blocks

polygons of NYC4 with randomly generated points, uniformly distributed
within the minimum bounding box of the corresponding polygonal dataset.
The datasets vary in terms of the total number of polygons and complexity
(with respect to the number of vertices).
Table B.2 summarizes the relevant metrics of the polygon datasets, and

Table B.3 summarizes the metrics of the corresponding radix tree, including the
probability distribution of the number of search steps during the tree traversal.

4The polygons of NYC are available at:

� https://data.cityofnewyork.us/City-Government/Borough-Boundaries/
tqmj-j8zm

� https://data.cityofnewyork.us/City-Government/Neighborhood-
Tabulation-Areas/cpf4-rkhq

� https://data.cityofnewyork.us/City-Government/2010-Census-
Blocks/v2h8-6mxf

111

https://data.cityofnewyork.us/City-Government/Borough-Boundaries/tqmj-j8zm
https://data.cityofnewyork.us/City-Government/Borough-Boundaries/tqmj-j8zm
https://data.cityofnewyork.us/City-Government/Neighborhood-Tabulation-Areas/cpf4-rkhq
https://data.cityofnewyork.us/City-Government/Neighborhood-Tabulation-Areas/cpf4-rkhq
https://data.cityofnewyork.us/City-Government/2010-Census-Blocks/v2h8-6mxf
https://data.cityofnewyork.us/City-Government/2010-Census-Blocks/v2h8-6mxf

polygons boroughs neighborhoods census
precision [meter] 60 15 4 60 15 4 60 15 4
of cells [M] 0.08 1.27 20.7 0.11 0.79 13.2 6.08 6.52 34.6
tree size [MiB] 1.39 168 168 25.3 139 139 1162 1205 1205

tree traversal
depth 012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level

Table B.3: Metrics of radix tree

Query Pipeline

The query pipeline of our experiments (point-polygon join) consists of four
stages:

(1) Scan point data (source)
(2) Pre�x check
(3) Tree traversal
(4) Output point-polygon pairs (sink)

Stages (2) and (3) are subject to control �ow divergence, with (3) being signif-
icantly costlier than (2). For simplicity, the produced output (point-polygon
pairs) is not further processed. We compile the pipeline in three di�erent
�avors:

Divergent: Refers to the baseline pipeline without divergence han-
dling, thus the pipeline follows consume everything semantics.
The code of subsequent operators is executed if at least one
lane is active.

Partial: The partial consume strategy is applied to stages (2) and (3),
which also a�ects the scan operator because it needs to be
aware of protected lanes.

Bu�ered: Follows consume everything semantics with register bu�ers
in stage (3). We check the lane utilization after each traversal
step. Divergence in stage (2) is not handled at all.

Materialization: The integration of memory materialization is similar
to the one used with the hash join operator (cf., Section B.6.2).

Results

Figure B.14 shows the performance results in million tuples per second on KNL
using 128 threads. We observe that re�lling from register bu�ers improves the
overall throughput by up to 20% (=870 mtps) when joining with the boroughs
or neighborhood polygons. The e�ect of divergence handling falls below 10%

112

boroughs neighborhoods census

0

2000

4000

60 15 5 60 15 5 60 15 5
precision [m]

th
ro

ug
hp

ut
 [M

tp
s]

scalar divergent partial buffered materialization

Figure B.14: Geospatial join performance for varying workloads and
precisions.

0

500

1000

1500

2000

2500

2 4 6 8
lane utilization threshold

th
ro

ug
hp

ut
 [M

tp
s]

buffered
partial

Figure B.15: Varying thresholds. KNL, 128 threads

with the census blocks polygons where the index structure is more than 1GiB
in size. In that case, the memory subsystem is the limiting factor.
As expected, the partial consume strategy exacerbates the divergence issue

in most cases (cf., Section B.5.3), resulting in a 53% performance degradation
in worst case.
The materialization approach performs poorly on KNL. The throughput is

similar to the scalar implementation, thus cancelling out all SIMD optimiza-
tions. As in previous benchmarks, we observed a signi�cantly better perfor-
mance on SKX. Here, the materialization approach is on par with the bu�ered
pipeline: in case of small index structures (boroughs) slightly worse, and with
large indexes (census) slightly better. In the latter case, the materialization
approach helps to hide memory latencies through out-of-order execution.
Unlike the previous experiments, the optimal lane utilization threshold for

the bu�ered approach is less than the number of SIMD lanes (cf., Figure B.15),
which is due to the higher re�lling costs involved in the geojoin operator.
During the radix tree traversal, re�lling a�ects �ve vector registers, whereas

113

●

●

●

●

●
●

● ● ● ●

0

2500

5000

7500

0.25 0.50 0.75 1.00
selectivity of stage 2

th
ro

ug
hp

ut
 [M

tp
s]

●

scalar
DD
DB
BB
PB
DM
MM

Figure B.16: 2-way divergence handling.

in the hash join experiment, re�lling a�ects three registers; and only one in
the table scan experiment. The optimal threshold for the partial approach is
1, indicating that a re�ll from the pipeline source is not e�cient.
In the experiment above, all points pass the pre�x check stage (2) and there-

fore cause an radix tree traversal. In the following, we also apply divergence
handling on the second stage of the pipeline and we changed the workload so
that a certain amount of points are disquali�ed in that stage. We compiled
the query pipeline with several combinations of the di�erent approaches. We
refer to it using the �rst letter of the approach (Divergent, Bu�ered, Partial,
and Materialization). For instance, PB refers to the pipeline that uses partial
consume in stage two and in-register bu�ering in the third stage, and BB uses
bu�ering in both stages. Figure B.16 shows the results for the neighborhood/4
meter precision workload with varying selectivities. We observe an 8% perfor-
mance decrease when the bu�ered approach is applied to stages 2 and 3, and
the selectivity remains at 1.0. In contrast, the materialization approach adds
a signi�cantly larger overhead (35% decrease). If materialization is applied
in both pipeline stages, the performance is worse compared to the pipeline,
where it is applied only in the tree traversal stage. Overall, the performance
di�erence for lower selectivities is relatively small with the partial and bu�ered
approaches: +5% with bu�ering applied in both stages, -7% when partial con-
sume is applied in stage 2 and bu�ering in stage 3. Compared to the divergent
pipeline, lane re�lling increases the throughput of the neighborhood workload
by up to 30% with lower selectivities.

B.6.4 Overhead

In our �nal experiment, we evaluate the overhead of divergence handling with
a varying number of attributes. To quantify the overhead, we use a very
simplistic query that consists of a simple selection and a scalar aggregation

114

(select sum(a1), sum(a2),..., sum(aN) from...). Divergence is handled im-
mediately after the selection and before the aggregation. In that scenario, we
expect the divergent pipeline to perform best, as the remainder of the pipeline
only consists of a single addition and thus the bene�ts of re�lling are close to
zero.
In the following, we consider two di�erent selectivities:

sel = 1: For in-register bu�ering, this situation is the one with the low-
est overhead, as the tuples are passed through to the subse-
quent operator and the bu�er registers are not used altogether
(cf. Listing B.3). Thus, the overhead is rather small, as it
e�ectively consists of a popcount to determine the number of
active lanes and a branch instruction. The same applies for
partial consume pipelines.

sel = 0.125 = 1/LANE_CNT: A selectivity of 1/LANE_CNT results in one
active lane per iteration (on average) and thus represents the
most write intensive case for in-register bu�ering. I.e., the re�ll
algorithm, which moves active elements to the bu�er registers,
is executed in almost every iteration. The partial consume
strategy, on the other hand, su�ers from lane underutilization
caused by lane protection, and thus, the lower part of the
pipeline is executed more frequently.

Throughout all experiments, the pipelines are 8-way data parallel and we
set the minimum lane utilization threshold to 6 for bu�ered and 4 for partial;
the size of memory bu�ers are �xed to 1024 elements (= 8KiB). The number
of attributes are varied within the range [1, 32].
Figure B.17 summarizes the results for both evaluation platforms. On KNL,

all approaches perform similarly with up to four attributes and the overhead,
i.e., the performance di�erence to the divergent pipeline, is barely measur-
able. The materialization approach degrades signi�cantly when the number
of attributes increases (2.5 CPU cycles per tuple per thread compared to 0.14
cycles for divergent). The throughput of the bu�ered approach degrades as
well, which is also attributed to memory materializations. The high regis-
ter �le pressure forces the compiler to evict values to memory. Even though
the bu�er registers are not used in the case of sel = 1, register allocation is
static and happens at query compilation time when the actual selectivity is
not known. Therefore, a performance degradation can be observed even if reg-
ister bu�ers are not used at query runtime. In contrast, the partial consume
pipelines are on par with the divergent pipelines.
On the SKX platform, the performance degrades more steeply with an in-

creasing number of attributes. In case of sel = 1, the throughput of the ma-
terialization approach decreases linearly with the number of attributes. Com-
pared to KNL, the number of attributes has a higher impact on the overall
performance on SKX. For instance, in-register bu�ering is 4× faster on KNL

115

sel=1 sel=0.125

● ● ● ● ● ●

● ● ● ●
●

●

● ● ● ● ● ●

● ● ● ●
●

●

0

1

2

0

1

2

K
N

L
S

K
X

2 8 32 2 8 32
number of attributes (log scale)

cy
cl

es
 p

er
 tu

pl
e

● divergent partial buffered materialization

Figure B.17: Overhead of divergence handling for varying number
of attributes.

116

with sel = 1 and 3.6× faster with sel = 0.125. For sel = 0.125 and a single
projected attribute, we measure an overhead of approximately 0.1 cycles per
tuple for bu�ered and 0.15 cycles per tuple for partial, which is signi�cantly
higher than with the materialization approach (0.02 cycles). However, the per
attribute overhead of bu�ered and partial decreases with more projected at-
tributes, whereas the materialization approach shows an increasing overhead
with an increasing number of attributes. The crossover point is reached with
8 projected attributes. Afterwards, our approaches are consistently faster.
In general, the partial consume approach shows no performance impact when

the number of projected attributes increases, which is an expected result, be-
cause the bookkeeping overhead about protected lanes is constant, irrespective
from the number of projected attributes. The actual overhead of the partial
consume strategy depends on the pipeline costs, more precisely on the pipeline
fragment before divergence handling (see Section B.5.3).

B.7 Summary and Discussion

The partial consume strategy shows performance improvements for relatively
simple workloads. With more complex workloads, like the geospatial join, we
observe severe performance degradations. The reason for that is two-fold. (i)
Protected lanes inherently cause the underutilization of VPUs (as described
in Section B.5) and (ii) they result in a suboptimal memory access pattern
at the pipeline source where the re�ll happens. In contrast to the consume
everything strategy, where in every iteration exact LANE_CNT elements are read
from memory, a partial consume scan reads at most LANE_CNT elements. This
circumstance reduces the degree of data parallelism (fewer elements are loaded
per instruction) and also leads to unaligned SIMD loads. Even though the
access pattern is still sequential, the alignment issues can reduce the load
throughput by up to 25% (on our evaluation platforms), which could severely
reduce the overall performance of scan-heavy workloads.
We found that the materialization approach is very sensitive to the underly-

ing hardware, in particular, on KNL, the approach performs poorly when the
bu�er is read and written within a tight loop (intra-operator), an e�ect that
could not be observed on SKX. On the other hand, if materialization is ap-
plied at operator boundaries and thus written and read only once, it performs
similarly or better than in-register bu�ering, as it bene�ts from out-of-order
execution, which allows the materialization approach to hide memory laten-
cies. Memory access latencies play an important role when the data that is
randomly accessed (like a hash table) does not �t into the L1/L2 cache. In
contrast, when the data �ts into cache or the workload is more compute-heavy,
the in-register bu�ering approach dominates because the bu�ers provide much
faster access.
The SIMD lane utilization threshold (re�ll more often vs. VPU underuti-

lization) has a big impact on the bu�ered approach and less impact on partial.

117

As bu�ered shows better performance in general, this parameter is important.
Choosing the highest possible threshold shows the best results in simple work-
loads, so going back down the pipeline to re�ll the vector is always better than
having inactive lanes, we found. So the idea of materialization, where only ac-
tive (or qualifying) elements are passed along the pipeline, was right in these
scenarios. The picture changes with more complex operators like the geojoin,
where re�lling a�ects �ve vector registers. In this case, re�lling doesn't pay
o� for a single idle SIMD lane. On average, the optimal utilization threshold
was 5 out of 8 among the geospatial related experiments.
It remains an open question how the optimal threshold can be predicted at

query compilation time, as it depends on hardware, re�lling costs, the costs
incurred by underutilized lanes, and the actual input data. A possible ap-
proach to address this issue is to adaptively adjust the threshold parameter
at runtime (per batch or per morsel [100]). Nevertheless, divergence handling
cannot fully be disabled once the pipeline has been compiled. One can set the
threshold to 1, which is equivalent to a divergent execution, but some overhead
remains in the compiled code, namely the the population count instruction and
the branching logic. For instance, in our geospatial experiments on KNL, we
observed an overhead of up to 6% over divergent with the boroughs workload
when the utilization threshold is set to one (neighborhoods 3.6%, census 0.6%).
Dynamically adjusting the threshold at query runtime provides some �exibil-
ity but due to the fact that divergence handling cannot be fully disabled, a
database system needs to decide at compilation time whether to enable or
disable divergence handling altogether.
Finally, we want to point out that our proposed re�ll algorithms and strate-

gies are generally applicable to any data processing system that uses AVX-512
SIMD instructions. A prominent open-source representative is Apache Ar-
row [2] (in combination with Gandiva) which shares many similarities with
state-of-the-art relational database systems (e.g., columnar storage, JIT com-
pilation, and operator fusion). Further, our approaches are also applicable if
the underlying database system uses compression in its storage layer. In par-
ticular, when compression is only used on secondary storage, it does not a�ect
query execution. However, recent systems [129, 96] tend to use light weight
compression techniques that allow for the processing of data without explic-
itly decompressing it. This implies that the degree of data-parallelism can be
increased, as more attributes can be packed into a single vector register. Cur-
rently, our bu�ered approach is limited to 16-way data-parallelism on the KNL
and SKX platforms, but it can be easily extended to 64-way data-parallelism
for upcoming processors with the AVX-512/VBMI2 instruction set.

B.8 Conclusions

In this work, we presented e�cient re�ll algorithms for vector registers by us-
ing the latest SIMD instruction set, AVX-512. Further, we identi�ed and pre-

118

sented two basic strategies for applying re�lling to compiled query pipelines for
preventing the underutilization of VPUs. Our experimental evaluation showed
that our strategies can e�ciently handle control �ow divergence. In particular,
query pipelines that involve traversing irregular pointer-based data structures,
like hash tables or radix trees, can signi�cantly bene�t from divergence han-
dling. Especially when the workload is compute-intense or �ts into fast caches,
our novel approach shows better performance than existing approaches that
rely on memory bu�ers.
Nevertheless, our research also showed that SIMD still cannot live up to

the high expectations set by the promising features of the latest hardware,
i.e., providing n-way data-parallelism. In practice, SIMD speedups are only a
fraction of the advertised degree of data-parallelism, for many reasons, includ-
ing underutilization. Our re�ll algorithms address this important reason, yet
merely achieve a 2× speedup over scalar code.

B.9 Acknowledgements

This work has been partially supported by the German Federal Ministry of
Education and Research (BMBF) grant 01IS12057 (FASTDATA and MIRIN)
and the DFG projects NE1677/1-2 and KE401/22. Furthermore, this work
is part of the TUM Living Lab Connected Mobility (TUM LLCM) project
and has been partially funded by the Bavarian Ministry of Economic A�airs,
Energy and Technology (StMWi) through the Center Digitisation.Bavaria, an
initiative of the Bavarian State Government.

119

C Tree-Encoded Bitmaps

Harald Lang1, Alexander Beischl1, Viktor Leis2, Peter Boncz3, Thomas
Neumann1, Alfons Kemper1

1 Technical University of Munich
2 Friedrich Schiller University Jena
3 Centrum Wiskunde & Informatica

Appeared in Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2020. https://doi.org/10.1145/3318464.3380588

The content of this section is identical to the original publication. Only the
format and the numbering have been adjusted.

In accordance with the TUM regulations for the award of doctoral degrees
(TUM Promotionsordnung, 2014), a summary of the publication is included
in the �rst part of this thesis. Please refer to Section 4.3. Furthermore, the
printed version is included in the Appendix on page 205 �.

The contributions of the thesis author to this publication are: inventing the
idea of tree-based bitmap compression, the implementation, the evaluation,
and authoring of substantial parts of the paper.

121

https://doi.org/10.1145/3318464.3380588

Abstract

We propose a novel method to represent compressed bitmaps. Similarly to
existing bitmap compression schemes, we exploit the compression potential of
bitmaps populated with consecutive identical bits, i.e., 0-runs and 1-runs. But
in contrast to prior work, our approach employs a binary tree structure to
represent runs of various lengths. Leaf nodes in the upper tree levels thereby
represent longer runs, and vice versa. The tree-based representation results
in high compression ratios and enables e�cient random access, which in turn
allows for the fast intersection of bitmaps. Our experimental analysis with
randomly generated bitmaps shows that our approach signi�cantly improves
over state-of-the-art compression techniques when bitmaps are dense and/or
only barely clustered. Further, we evaluate our approach with real-world data
sets, showing that our tree-encoded bitmaps can save up to one third of the
space over existing techniques.

C.1 Introduction

Bitmap indexes have a long history in database systems and information re-
trieval [131, 171, 36, 156, 134, 113, 33]. They have many applications, such as
e�ciently evaluating predicates [131, 133, 125] and have been used to acceler-
ate join [130] and aggregation [133, 34] queries. For medium or high cardinality
columns, bitmap indexes consist of many individual bitmaps that are sparsely
populated with 1-bits. Therefore, plain bitmaps consume large amounts of
space, and compression is essential.
Consider the case of a bitmap index on an attribute A consisting of A indi-

vidual bitmaps of length n, where A is the number of distinct values of A and
n the number of tuples in the corresponding relation. The total number of
1-bits in the index is also n, whereas each bitmap receives n

A 1-bits on average.
A high number of distinct values, or the presence of skew, results in bitmap
indexes with many sparsely populated bitmaps. Sparsity implies that these
bitmaps mostly consist of consecutive 0-bits, i.e., 0-runs. Having long runs
of identical bits o�ers great compression potential, which all existing bitmap
compression schemes try to exploit.
One simple, but fairly e�ective bitmap compression scheme is the Word-

Aligned Hybrid [179] (WAH) approach, whose compression is based on run-
length encoding (RLE). A WAH-compressed bitmap is a sequence of machine
words, typically 32 or 64 bits in size. Each word either encodes a run or repre-
sents a small part of the original bitmap as is. The �rst is called a �ll word and
the latter a literal word. While WAH o�ers signi�cantly better performance
than its predecessor the Byte-Aligned Bitmap Compression [14] (BBC), its
compression e�ectiveness su�ers from two major weaknesses: (i) runs need to
be rather long for the RLE-based compression to be e�ective and (ii) WAH has
linear space overhead (one bit per word) for distinguishing between �ll and lit-
eral words. In particular, the �rst weak point impairs compression when some
random bits (also called dirty bits or odd bits) disrupt long runs. Over the
years, several extensions to WAH have been proposed to solve this issue, i.e.,
PLWAH [55], Concise [48], VAL-WAH [76], EWAH [103], and SBH [89].
All the aforementioned compression techniques are based on RLE and there-

fore share another disadvantage, namely the linear time complexity of random
access. Supporting e�cient random access directly a�ects the e�ciency of log-
ical operations like bitwise AND, which are common operations in analytical
queries.
Chambi et al. identi�ed this problem and proposed the Roaring Bitmap for-

mat [35]. In contrast to the aforementioned compression techniques, Roaring
Bitmap does not rely on RLE. Instead it partitions the input bitmap into
equally sized chunks of length 216 bits, where each chunk is physically stored
in a separate container, as illustrated in Figure C.1. Roaring implements three
di�erent container types and each container type represents the correspond-
ing part of the bitmap di�erently. Depending on the number of bits set and
on the presence of 1-runs, Roaring chooses the container type that consumes

124

1, 3, 11, 37,... [3,7], [42,51],... 0000100011101001001...

Figure C.1: Roaring partitions the bitmap and stores each partition
using the best suitable container type.

the smallest amount of memory. More precisely, if the number of 1-bits is
less than or equal to 4096, an array container is used that stores a sorted list
of 16-bit integers, one for each set bit. The integer values correspond to the
positions of those bits within the current partition. If the number of set bits
exceeds 4096, Roaring either employs a plain bitmap container or a run con-
tainer [102]. A bitmap container stores the partition as is. A run container on
the other hand stores the 1-runs as a list of 16-bit integer pairs 〈a,b〉, where
[a,b] is the range spanned by the 1-run.
Overall, Roaring is a very lightweight approach in terms of compression,

as it only relies on integer arrays to represent bitmaps. Integer values are
thereby truncated to 16 bits as every container encodes 216 bits of the bitmap.
Nevertheless, it results in signi�cantly lower space consumption compared to
RLE-based techniques in most scenarios. Due to the fact that the bit positions,
the runs, and the containers themselves are sorted, a random access can be
performed in logarithmic time, which signi�cantly improves the performance
of bitwise operation and thus of analytical queries [34].
It is worth mentioning that in principle Roaring is an extendable format,

as it could employ any bitmap compression technique at the container level;
including the tree-encoded bitmaps, we present in this work.
At the time of writing, Roaring was available in 11 programming languages

and was widely used in Apache projects like Druid, Hive, Kylin, Lucence,
Spark, and other systems1. This shows that today's applications not only
demand high compression ratios but also e�cient logical operations on com-
pressed bitmaps. Further, we see a trend in database systems towards denser
bitmaps�in particular, when bitmap indexes use histogram-based binning or
are constructed to support range queries [36, 37]. In both cases, the resulting
bitmaps exhibit higher bit densities compared to simple bitmap indexes as
described at the beginning of this section2.
With this work, we contribute a novel method to compress bitmaps. The

compressed representation, which we call a tree-encoded bitmap, provides high
compression ratios paired with logarithmic access time. Its primary strengths
are the abilities (i) to compress both long and short runs and (ii) to sig-
ni�cantly improve the compression ratios with denser bitmaps over existing

1We refer the reader to the o�cial web site [7] for more details.
2 In Section C.5 we give a brief overview on the design space of bitmap indexes.

125

Figure C.2: The key idea is to represent bitmaps as full binary trees.
Longer runs are mapped to tree nodes closer to the root,
and vice versa.

techniques. The major conceptual di�erence compared to other compressed
bitmap formats is that our approach employs a binary tree to represent bit
runs of various lengths as illustrated in Figure C.2. Tree nodes in the upper
tree levels (closer to the root) thereby correspond to longer runs, and tree nodes
in the lower levels to shorter runs. The low space requirement is achieved by
using a succinct tree encoding and additional space optimizations that trun-
cate balanced parts of the tree structure from the compressed representation.
A key insight is that although our approach initially triples the size of a given
bitmap to establish the tree structure, it does not only amortize this overhead,
but also ultimately o�ers overall better compression ratios than RLE-based
compression methods or the state-of-the-art Roaring Bitmap in a wide spec-
trum of moderately populated and clustered bitmaps. Using a collection of
real-world data sets, we empirically found that tree-encoded bitmaps o�er the
best compression in 7 out of 8 cases, saving up to 1/3 space in comparison with
the second best solution.

Notation. Throughout the paper, we let n denote the length of a bitmap.
Further, since compression heavily depends on the data distribution, we use
the following two metrics to characterize individual bitmaps: (i) The bit density
denoted as d refers to the fraction of bits set to 1, where 0 ≤ d ≤ 1. The total
number of set bits in a bitmap is therefore d ·n. (ii) The clustering factor
denoted as f , with 1 ≤ f ≤ n, indicates the degree of clustering of the 1-bits
in a bitmap, i.e., how likely a 1-bit is followed by another 1-bit. Formally, it is
de�ned as the average length of the 1-runs in a bitmap [179]. For instance, the
bitmap 01110010 (with d = 0.5) contains two 1-runs, one of length 3 and one of
length 1. The clustering factor f therefore equals to 2. As both d and f refer
to the set bits, they are dependent and the following restrictions apply: The
clustering factor cannot exceed the total number of bits set (f ≤ d ·n). Further,
when the bit density exceeds 50%, the smallest possible value for f increases
as well. E.g., given the bitmap 01010101 with d = 0.5 and f = 1; when the
leftmost 0-bit is toggled (11010101), d increases to 0.625 and f to 1.25. In that
particular case, 1.25 is the smallest possible clustering for a bitmap of length

126

0 0 0 01 1 0 1

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

(a) initial state (b) after pruning

Figure C.3: A bitmap represented as a binary tree. Initially, each
leaf node is assigned a single bit (label). Sibling leaf
nodes with identical labels are then pruned and the la-
bel is assigned to their parent. After pruning, the prior
parent node becomes a leaf and represents multiple con-
secutive bits, a 0-run or a 1-run.

n = 8 and d = 0.625. In the general case, the smallest possible clustering
is max(1,d/(1−d)). Clustered bitmaps can be synthetically generated using a
two-state Markov process, which we describe in the evaluation section.

C.2 Tree-Encoded Bitmaps

In this section, we present our Tree-Encoded Bitmaps (TEB). The key idea
behind TEB is to represent bitmaps as binary trees, which enables e�cient
navigation and therefore fast random access. The data structure is best ex-
plained by describing the construction algorithm. We therefore �rst present
the tree-based compression algorithm. Later in this section, we describe how
the tree is encoded space e�ciently.

C.2.1 Compression

A TEB is constructed in two phases. In the �rst phase, a perfect binary tree
is established on top of a given bitmap, as shown in Figure C.3a. Each bit in
the bitmap is associated with a single leaf node of the binary tree. Only leaf
nodes carry a payload, which we refer to as labels. A label can either be a 0-bit
or a 1-bit.
In the second construction phase, the binary tree is pruned bottom-up.

Thereby, the algorithm removes all sibling leaf nodes with identical labels
l , and the label l is assigned to the parent node. The pruning process stops
when all pairs of sibling leaf nodes have di�erent labels. Figure C.3b depicts a
fully pruned tree. The important thing to note here is that the newly created
leaf nodes in the upper tree levels no longer represent individual bits of the
bitmap; instead they represent consecutive bits that form either a 0-run or

127

a 1-run. For instance, the leftmost node in Figure C.3b represents a 1-run
of length 2, starting at index 0 and the rightmost node represents a 0-run of
length 4, starting at index 4.

With every single pruning step, two nodes are eliminated from the tree
structure and one bit from the labels. Bottom-up pruning can therefore be
considered a lossless compression method. Compressing the tree structure is
a crucial part of TEB because the space overhead of the tree structure needs
to be amortized. The tree initially consists of 2n − 1 nodes, assuming n is a
power of two. When the tree structure is encoded using one bit per node, then
the space consumption of a TEB, including the labels, is initially, and in worst
case, 3n − 1 bits. Even though the worst case space consumption is relatively
high, we will show that our tree-based representation of bitmaps often achieves
signi�cantly lower space usage than other compression schemes.

C.2.2 Encoding

An important part of TEB is the space-e�cient way the tree structure is stored.
We employ a level-order binary marked representation [81], which requires one
bit per tree node. The encoded tree itself therefore is a sequence of bits (a
bitmap).

We have to di�erentiate between the tree data structure that is used during
compression and the encoded tree that is eventually stored in a TEB. For the
tree-based compression, we temporarily make use of an implicit data struc-
ture [174] that allows for fast modi�cations, but occupies a constant amount
of space � constant in the sense that its size does not change when nodes are
removed. The level-order binary marked representation, on the other hand, is
static but requires less space once the tree has been pruned. Thus, encoding
is the process with which we transform the pruned tree into a more compact
form.

To encode the pruned tree structure we traverse it in breadth-�rst left-to-
right order (or level-order) and for each visited node a single bit is emitted, a
1-bit for inner nodes and a 0-bit for leaf nodes. These bits are appended to
the bit sequence that represents the encoded tree, denoted as T . The labels
of the leaf nodes are stored as a separate bit sequence to which we refer as L.
When a leaf node is observed during traversal, its label bit is appended to L.
For instance, the tree in Figure C.3b is encoded as T = 1100100, L = 0101.

To support e�cient random access and bitwise operations, it is necessary
to traverse the tree. Internally, the most important primitive operation is
to determine the two child nodes of some given tree node, i.e., navigating
downwards the tree. Within the encoded tree, each tree node is identi�ed by
its position in the bit sequence T . The sequence starts with the root node at
position 0. For any given tree node i, the child nodes can then be determined

128

as follows [81]:

left-child(i) := right-child(i) − 1
right-child(i) := 2 · rank(i)

where rank(i) refers to the number of 1-bits (inner nodes) in T within the range
[0, i].
Computing the rank of a node is a linear-time operation, and navigating from

the root to any leaf node is therefore an O(n · logn) operation. However, the
rank operation can be turned into an O(1) operation at the cost of additional
space consumption [81]. TEB uses an implementation similar to the one used
in [188], which pre-computes the rank on 512-bit block granularity and stores
the values in an auxiliary integer array; which results in a 6.25% increased
memory footprint. The rank is then computed as

rank(i) := R[bi/512c] + popcount(T , bi/512c · 512, i)
where R refers to the array with the pre-computed values at block level and
popcount counts the 1-bits in the last block up to index i.
Using an additional integer array populated with pre-computed ranks (a

lookup table) is a common approach [70, 126, 69, 190] and changing the gran-
ularity of the lookup table o�ers a space/time trade-o�. The more coarse-
grained the lookup table is, the lower its space requirement and the higher the
costs for counting the 1-bits within the last block; and vice versa. For TEB,
we empirically determined that a granularity of 512 bits o�ers competitive
performance at a reasonable space overhead. On a reasonably modern 64-bit
hardware, a navigational operation in the tree therefore requires at most eight
population count instructions (four on average) and one array lookup.
Besides the downward navigation, the rank of a tree node is further required

to determine the node's label. If the node i is a leaf, then the position of the
label within L is equal to the number of 1-bits in T preceding node i, which
corresponds to the non-inclusive rank of i. However, because only leaf nodes
have labels, we can use the inclusive3 rank from above, because T [rank(i)] is
guaranteed to be a 0-bit. In summary, a label is accessed as follows:

label(i) := L[i − rank(i)]
Let us close by mentioning that the chosen encoding requires the tree struc-

ture to be a full binary tree, i.e., each node has either zero or two child nodes.
It is easy to show that this holds for the tree structure of a TEB: Since the
initial binary tree is perfect, and pruning always a�ects two sibling leaf nodes,
the resulting tree structure remains full binary.

C.2.3 Optimizations

The basic idea of TEB we have presented so far already shows promising results
with regard to compression ratios. For instance, Figure C.4 shows a space
3We chose the inclusive rank as it results in fewer arithmetic instructions.

129

0 0.2 0.4 0.6 0.8 1
0

50

100

150

bit density d

si
ze

[K
iB
]

Bitmap
Roaring

TEB (basic)
WAH

Figure C.4: Size comparison for varying bit densities and a �xed
clustering factor of 8.

1 0 1 01 0 1 0

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

Figure C.5: In worst case, the tree cannot be pruned (compressed)
and the resulting TEB consumes approximately three
times the space of the original bitmap.

comparison of the TEB approach with two state-of-the-art bitmap compression
techniques, Roaring and WAH. The compressed size (y-axis) depends on the
ratio of 1-bits in the original bitmap (x-axis). Sparsely populated bitmaps
o�er higher compression potentials than densely populated bitmaps. In that
particular case, if more than ∼25% of the bitmap is populated with 1-bits,
Roaring and WAH do not o�er any compression at all. Both fall back to an
uncompressed (literal) representation. TEB, on the other hand, is able to
compress bitmaps with a bit density of up to ∼45%.
The downside of the basic TEB approach is that in corner cases it can

signi�cantly exceed the size of the plain bitmap. In contrast to Roaring and
WAH, our approach does not support an alternative representation to which
it could fall back. In the following, we show that it is in fact not necessary to
switch between di�erent representations to address the high space consumption
of TEB in unfavorable cases. It just requires a few minor modi�cations to
the data structure and the compression algorithm, which we discuss in the
following.

130

Implicit Tree Nodes. We motivate our �rst space optimization by consid-
ering the worst-case scenario for TEB. Figure C.5 illustrates such a case. The
depicted alternating bit sequence does not o�er any compression potential. All
pairs of sibling leaf nodes have di�erent labels and therefore bottom-up prun-
ing cannot remove any tree nodes. The resulting TEB would consist of n − 1
1-bits for the inner nodes, followed by n 0-bits for the leaf nodes, and n label
bits. In this extreme case, the label bits in L are identical to the uncompressed
bitmap. Thus, storing the encoded tree structure is pure overhead.
Our �rst space optimization is to omit the leading 1-bits as well as the

trailing 0-bits of the encoded tree structure. Only the intermediate bits of the
tree structure are stored in the physical representation of a TEB. We refer to
the omitted nodes as implicit tree nodes, and to the remaining as explicit tree
nodes.
With regard to the worst case, this simple modi�cation allows for the elim-

ination of the entire tree encoding from the physical representation. Only the
n label bits remain:

T = 1111111︸ ︷︷ ︸
leading 1-bits

00000000︸ ︷︷ ︸
trailing 0-bits

, L = 10101010

As mentioned before, the labels in L are identical to the original bitmap, i.e.,
the TEB degraded into an uncompressed bitmap. Thus, the size of the TEB
is equal to the size of the plain bitmap, except for a small overhead that is
caused by metadata.
However, further optimizations are needed, as this minor modi�cation only

mitigates the high space consumption of TEBs when the plain bitmap is poorly
compressible. The TEB size may still signi�cantly exceed the size of the un-
compressed bitmap, i.e., the worst case has shifted. The modi�cation, however,
has two important implications:

(i) The encoded tree structure T is an optional part of the physical TEB
data structure, as the entire tree may be implicit.

(ii) The space minimal TEB instance does not necessarily contain a fully
pruned tree.

We give an example for (ii) in Figure C.6a. The depicted TEB consists
of three explicit tree nodes and four labels. Thus the space requirement is
3 · 1.0625+ 4 = 7.1875 bits, where the factor 1.0625 is to incorporate the space
consumption of the rank helper structure (cf. Section C.2.2). Figure C.6b
shows the TEB instance with the minimum size. The di�erence between the
two TEB instances is that in Figure C.6a the tree is fully pruned, whereas in
C.6b the two sibling leaves in the highlighted subtree have been preserved. The
second instance therefore comprises a larger tree, but even though the total
number of tree nodes and labels are higher, the second instance occupies less

131

 implicit node explicit node

00 11

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

T = 11

explicit︷︸︸︷[
001

]
00

L = 0101

(a) fully pruned

0 00 11

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

T = 111

explicit︷︸︸︷[
01

]
0000

L = 10001

(b) partially pruned

Figure C.6: Two di�erent tree representations of the bitmap
11010000. The fully pruned tree (a) occupies more space
than the partially pruned tree (b), as more tree nodes
need to be stored explicitly.

space (2·1.0625+5 = 7.125 bits), as fewer tree nodes need to be stored explicitly.
The circumstance that a fully pruned tree, in general, no longer corresponds to
the smallest TEB instance requires a modi�cation to the bottom-up pruning
algorithm: Instead of returning the fully pruned tree, the algorithm needs to
return the smallest tree instance observed during pruning, where the size is
computed based on the number of explicit nodes, rather than the total number
of nodes.

Implicit Labels. Our second modi�cation is to omit leading and trailing
0-labels in the physical TEB representation, similarly to implicit tree nodes.
Omitting the leading 0-labels reduces the space consumption in particular
with very sparse bitmaps. The tree representation of a sparse bitmap typically
consists of a few leaf nodes with 1-labels at the deepest tree level log2(n).
But most of the leaf nodes with 0-labels can be found in the tree levels 1
to log2(n) − 1. Due to the tree being encoded in level order, the label bit
sequence L tends to start with a long run of 0-labels, which we do not need to
store explicitly. Trailing 0-labels on the other hand can occur when the length
of the input bitmap is not a power of two. In that case, a TEB internally

rounds up to the next power of two and �lls the range
[
n, 2dlog2(n)e

)
with 0-

bits. Omitting these trailing 0-bits ensures that the number of stored labels
never exceeds the length of the original bitmap.
The presented modi�cations reduce the overall space usage, as shown in

Figure C.7. In particular, the worst-case space consumption reduced from 3n−1
to n bits, excluding the (small) metadata. We observe that in an optimized

132

0 0.2 0.4 0.6 0.8 1
0

50

100

150

bit density d

si
ze

[K
iB
]

Bitmap

TEB (basic)

TEB (space optimized)

Figure C.7: Size comparison of basic and space optimized TEBs us-
ing a clustering factor of 8.

TEB the fraction of space occupied by the tree, the rank helper structure, and
the labels is no longer �xed; compare Figures C.8a and C.8b. With sparse
bitmaps, the labels occupy signi�cantly less space. With denser bitmaps, on
the other hand, we see that the fraction of space occupied by the tree structure
decreases. Figure C.9 shows how the implicit tree nodes and the implicit labels
optimizations contribute to the space savings. The implicit labels optimization
is most e�ective with sparse bitmaps and the implicit tree node optimization,
on the other hand, favors denser bitmaps.
An important implication is that the space optimizations balance the upper

part of the tree structure, as the example in Figure C.6 has shown. The par-
tially pruned tree in Figure C.6b is perfectly balanced until level two, whereas
the fully pruned tree in Figure C.6a is only perfectly balanced until level one.
Thus in general, the tree can be split into an upper balanced and a lower
imbalanced part. This property allows for the reduction of the cost of naviga-
tional operations. We exploit the fact that within a perfect binary tree we can
directly address the individual tree nodes, i.e., without computing ranks. If
the number of the upper perfect levels is known, these levels of the tree can be
logically cut o�, and only the remaining sub-trees need to be considered. In
our case, we can directly compute the number of perfect levels u based on the
number of implicit inner nodes c that are already known when the space opti-
mizations have been applied: u := blog2(c+1)c+1. The corresponding node IDs
for the last perfect level are within the range [tbegin, tend), with tbegin := 2u−1−1
and tend := 2u − 1. Each of these nodes, or the sub-trees rooted at these nodes,
respectively, span a range of length 2log2(n)−u−1 in the original bitmap. Thus,
it can be considered as a uniform partitioning scheme, similar to the one used
in Roaring Bitmaps, but with the major di�erence that the partition size is
chosen adaptively.
The number of perfect tree levels is correlated with the e�ectiveness of the

tree-based compression. The less e�ective the compression, the larger the
number of perfect levels, and vice versa. In worst case, the entire tree is

133

0.
00
00
1

0.
00
01

0.
00
1

0.
01 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

0.5

1

bit density d

fr
ac
ti
on

of
sp
ac
e

Tree Rank Labels

(a) basic TEB

0.
00
00
1

0.
00
01

0.
00
1

0.
01 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

0.5

1

bit density d

fr
ac
ti
on

of
sp
ac
e

Tree Rank Labels

(b) optimized TEB

Figure C.8: The fraction of space occupied by the tree, the rank
helper structure, and the labels.

implicit and the number of perfect levels corresponds to the tree height. In
other words, TEBs gradually degrade into literal bitmaps, but unlike Roaring
and WAH, TEBs remain homogeneous and do not need to switch between
di�erent encodings or representations.

C.3 Operations

In this section, we describe the operations supported by TEB. Fundamen-
tally, a TEB supports two access methods: (i) a point lookup and (ii) a 1-run
iterator. High-level functionalities, like decompressing a bitmap or logical op-
erations are implemented on top of the 1-run iterator.

C.3.1 Point Lookup

A point lookup is a straightforward operation that navigates downward the tree
until a leaf node is reached. The index k of the bit to look up thereby speci�es
the path to take within the tree. For performance reasons, the downward
navigation starts at the last perfect tree level rather than at the root node.
The details are shown in Algorithm 1.

C.3.2 Run Iterator

The iterator interface allows for e�cient iteration over a TEB. Unlike the
iterators implemented in Roaring and WAH, the TEB iterator does not iterate
over the individual 1-bits, instead it iterates over the 1-runs of a bitmap.
A 1-run is thereby represented as two integer values 〈begin, end 〉, pointing
to the position of the �rst 1-bit and to the position one past the last 1-bit.
The iterator traverses the tree in depth-�rst left-to-right order. To navigate

134

0.
00
00
1

0.
00
01

0.
00
1

0.
01 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

0.5

1

bit density d

fr
ac
ti
on

Explicit Leading Trailing

(a) labels

0.
00
00
1

0.
00
01

0.
00
1

0.
01 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0

0.5

1

bit density d

fr
ac
ti
on

Explicit Leading Trailing

(b) tree nodes

Figure C.9: The fraction of explicitly stored labels (a) and tree nodes
(b).

Algorithm 1: Point lookup
Input : The bit index k to test
Returns: true if the kth bit is set, false otherwise

// Determine the tree node at the last perfect level.
to�set ← k >> (tree_height − perfect_levels − 1)
i ← tbegin + to�set
j ← tree_height − 1 − perfect_levels − 1
// Navigate downwards until a leaf node is observed.
while i is an inner node do

direction← extract jth bit from k
i ← left-child(i) + direction

j ← j − 1
end

return label(i)

down the tree, the functions left-child() and right-child() are used, as described
in Section C.2.2. To navigate upwards, the iterator makes use of a small
stack that is populated during downward navigation. Other data structures
like SuRF [188] implement upwards navigation using the select primitive, the
counterpart to rank. For TEB, we prefer a classic stack-based approach as it
is signi�cantly faster in practice and saves space.

During tree traversal, the iterator needs to keep track of its position (and
level) within the tree structure. This information is required to determine the
start index and length of a 1-run when the iterator reaches a leaf node with
label 1 and thus needs to produce an output. The iterator therefore maintains
a path variable that encodes the path from the root to the current node using
a single integer. The initial (and minimum) value of the path variable p is
1. During downwards navigation, a 0-bit is shifted in when navigating to

135

Algorithm 2: Forward the iterator to the next 1-run.
while t < tend do

while stack is not empty do
// Pop tree node i and its path p from the stack.
〈i,p〉 ← stack.pop()
while i is an inner node do

// Push right child on stack and go to left child.
i ← left-child(i)
p ← p << 1
stack.push(〈i + 1, p

end

// Reached a leaf node.
if label(i) = 0 then continue

// Found a 1-run. Update the iterator state.
level← sizeof(p) · 8 − 1− lzcount(p)
begin← (p ⊕ (1 << level)) << (tree_height − level)
end← begin + (n >> level)
return

end

t ← t + 1
p← (t − tbegin)

end

begin← end← n // Reached the end.
return

the left child p := (p << 1) and a 1-bit when navigating to the right child
p := (p << 1) | 1. The index of the most signi�cant 1-bit (the sentinel bit)
indicates the level of the corresponding tree node:

level(p) := sizeof(p) · 8 − 1 − lzcount(p)

where sizeof(p) refers to the size of the variable p in bytes and lzcount(p) to
the number of leading zeros in p. A tree node that is identi�ed by its path p
then represents a run that starts at position

pos(p) := (p ⊕ (1 << level(p))) << (tree_height − level(p))

with length

length(p) := n >> level(p) =∧ 2log2(n)−level(p).

Similarly to the point lookup access method, the upper perfect levels of
the tree are skipped. The iterator only considers the sub-trees rooted in
[tbegin, tend), as described in Section C.2.3. Algorithm 2 shows how the iterator
is forwarded to the next 1-run.

As mentioned earlier, a time-critical operation is to fast-forward the iterator
to a desired position, thereby skipping all set bits in between. Thanks to the

136

navigable tree structure, the operation can be performed in logarithmic time.
Nevertheless, to achieve competitive performance in practice, we optimize the
skip operation so that unnecessary navigation steps are avoided. The primary
decision that is to be made is whether to (i) navigate up the tree to the common
ancestor of the current and the destination node, and then downwards in the
right sub-tree to the desired position, or (ii) start at the root node (or at the
corresponding tree node in the last perfect level) and navigate only downwards
until the desired position has been reached. Depending on the source and
destination nodes, one option might be more e�cient than the other. The
two options may di�er in the number of required navigation steps. But we
also need to consider that navigating upwards is less costly in terms of issued
CPU instructions than navigating downwards. The asymmetrical costs are
mostly caused by the rank primitive, which is signi�cantly more costly than
accessing the stack. We experimentally determined that a downward step is
approximately 9× more expensive than an upward step (∼ 55 cycles vs. ∼ 6
cycles).
Our decision logic works as follows: We start with a fast test to determine

whether the destination position is outside of the current sub-tree:

pos >> (h − u − 1) != to_pos >> (h − u − 1)

where h refers to the tree height and u to the number of perfect levels. If the
expression evaluates to true, we can directly go to the corresponding node at
the last perfect level and navigate downwards until the desired position has
been reached. Otherwise, if the destination node is within the current sub-tree,
we (i) determine the common ancestor node (ii), estimate the navigational costs
for both options, and (iii) pick the cheaper path.
It is worth mentioning that an iterator with skip support is not the most

e�cient way to decompress (rather than intersect) a TEB. For these cases we
provide an alternative iterator to which we refer to as scan iterator. Unlike the
regular iterator, the scan iterator's seek function operates in O(n), but it o�ers
a signi�cantly higher read throughput, as it (i) decodes the tree in batches and
(ii) does not rely on the rank primitive to traverse the tree.

C.3.3 Tree Scan

In this section, we present a tree traversal algorithm that is optimized for
modern x86 hardware. The algorithm takes a level-order encoded binary tree
and iterates over all leaf nodes in left-to-right order. We refer to the algorithm
as tree scan. The tree scan is the basic building block for the TEB scan iterator.
Generally speaking, navigating from one leaf node to the next one is a 3-step

process: (i) navigate up the tree until a left child is observed, (ii) go to its right
sibling, and (iii) walk down the tree to the leftmost leaf node. The key idea
behind our solution is to have multiple lightweight bit iterators for the encoded
tree structure T , one iterator per tree level, and then scan the bit sequence T
in parallel. We denote the bit iterators in T as tl with 0 ≤ l < h. Initially, all

137

Algorithm 3: Tree scan

p // The current path. Initially points to the leftmost leaf.
do

// Produce an output, if the label of the current node is 1.
. . .

// Walk upwards until a left child is found.
up_steps← tzcount(∼p)
last← level(p) + 1
p ← p >> up_steps

p ← p
// Walk downwards to the leftmost leaf in that sub-tree.
down_steps← tzcount(∼(α >> level(p)))
p ← p << down_steps

while not done

iterators point to the �rst bit in T at their corresponding level l . We expose
the values each iterator points to as an integer value, denoted as α . The bits in
α := bh−1 . . .b1b0 are populated with bl = ∗tl , where ∗ denotes the dereference
operator. A path variable p identi�es the position and the level within the tree,
as described earlier. Initially, p points to the leftmost leaf node. Using the
two values α and p, we can e�ciently iterate over all leaf nodes in left-to-right
order, cf., Algorithm 3. Thereby, p determines the number of upward steps
and α determines the number of downward steps to perform in each iteration.
The bit iterators are implemented using the AVX-512 SIMD instruction set

as follows. We use a 512-bit SIMD register to bu�er the tree structure. The
register is interpreted as 32 × 16-bit integers, i.e., the register is split into 32
lanes. Thereby, each SIMD lane corresponds to a tree level. For each level we
load up to 16 bits from the encoded treeT . For instance, Figure C.10 illustrates
a bu�er that contains the tree from Figure C.6b. To consume the bu�ered
tree bit by bit, we use a second SIMD register to which we refer as read mask.
The read mask again consists of 32 lanes, and a single bit is set within each lane.
Initially, the least signi�cant bit is set to 1. The position of that bit represents
the current read position in the corresponding bu�er lane. Thus, the read mask
represents the state of all (up to) 32 lightweight bit iterators. The increment of
an iterator is then implemented as a left shift of the corresponding lane. The
implementation has the advantages that we can work with multiple iterators in
parallel and that the most important operations can be performed in a single
instruction. For instance, multiple iterators can be incremented using a single
masked shift instruction (_mm512_mask_slli_epi164) and all iterators can be
dereferenced in parallel to retrieve the aforementioned α value; cf., Figure C.10.
The presented algorithm is used in the TEB scan iterator that is supposed to

be used when e�cient skip support is not required, e.g., when decompressing

4We refer the reader to the Intel Intrinsics Guide for more details on the SIMD instruction
set architectures: https://software.intel.com/sites/landingpage/IntrinsicsGuide

138

https://software.intel.com/sites/landingpage/IntrinsicsGuide

α

Figure C.10: AVX-512 allows for the instantiation of up to 32
lightweight bit iterators (one for each tree level) using
only two SIMD registers: The �rst is used to bu�er the
encoded tree level by level and the second represents
the iterators' read positions.

an entire TEB. With regard to performance, the scan iterator bene�ts from
the predictable memory access pattern, as well as from the reduced number of
memory loads, due to bu�ering. However, a problem not mentioned above is
that we need to know the start o�set in T for each tree level. Unfortunately,
determining these o�sets is a linear time operation. Therefore, we store the
o�sets as part of the TEB metadata, which now is logarithmic in size. For
brevity we have omitted some of the implementation details, such as how
bu�ers are re�lled and how labels are bu�ered and accessed; which works
similarly to the bu�ering of the tree structure. We invite the interested reader
to examine the source code of TEB5.

C.3.4 Logical Operations

As mentioned earlier, high-level functionality is implemented on top of the
1-run iterator. Operations like a bitwise AND are themselves implemented as
iterators and can therefore be arbitrarily chained and combined to evaluate
complex expressions. Algorithm 4, for instance, shows how two bitmaps are
intersected using the iterator API. In contrast to the implementations in Roar-
ing and WAH, the iterator approach does not produce a compressed bitmap.
We think this is not a disadvantage because producing compressed interme-
diate results when evaluating complex compressions could harm performance.
For instance, when bitmap indexes are used to evaluate multi-dimensional se-
lection predicates, it is su�cient to identify the ranges (or pages) that contain
qualifying tuples; an intermediate bitmap would be discarded afterwards any-
how.

5TEB source code: https://db.in.tum.de/research/publications/#teb

139

https://db.in.tum.de/research/publications/#teb

Algorithm 4: Next function of the AND iterator.
Input: Run iterators a and b.
while !(a.begin != n b.begin != n) do

begin_max ← max(a.begin, b.begin)
end_min ← min(a.end, b.end)
overlap ← begin_max < end_min

if overlap then

if a.end ≤ b.end then a.next()
if b.end ≤ a.end then b.next()
begin ← begin_max // Update the iterator state.
end ← end_min

return
else

if a.end ≤ b.end then a.skip_to(b.begin)
else b.skip_to(a.begin)

end

end

begin← end← n // Reached the end.

C.3.5 Updates

Data structure design in general is a trade-o� between read, update, and mem-
ory overheads. The RUM conjecture [16] states that when optimizing (reduc-
ing) two of these overheads, it impairs the third one. TEBs are optimized for
e�cient read access and low memory consumption, and similarly to existing
RLE-based compression schemes, the static nature of TEBs does not allow for
in-place updates. In the following, we discuss various approaches that can be
combined with TEBs to achieve updatability.
The naïve and costly way to support random updates is to decompress the

bitmap, perform the update on the uncompressed representation, and (re-
)compress it again afterwards. Prior work [17] proposed to reduce the update
costs by staging updates in an auxiliary di�erential data structure and to
apply these pending updates in batches, rather than one-by-one. Thereby,
another compressed bitmap is used as a di�erential data structure. While this
approach greatly reduces the number of decompression/compression cycles, it
also causes redundancies (slightly higher memory consumption) and requires
the di�erential data structure to be consulted (XORed) during read access.
Roaring bitmap applies a di�erent strategy. Due to the �xed size partition-

ing, an update a�ects only a single container, rather than the entire bitmap.
Thus, in worst-case, 216 bits need to be re-compressed during updates. Up-
dates can therefore be performed in constant time6, even though the constant
is quite large. Nevertheless, the partition size has been chosen su�ciently small
to �t in an L1 cache to enable e�cient decompression/compression cycles.

6Assuming the corresponding containers reside in heap memory. Modi�cations to the
serialized format would still be in linear time.

140

WAH EWAH Concise Roaring TEB

Census Income 3.4 3.3 2.9 2.6 2.1
Census Income (sorted) 0.66 0.64 0.55 0.6 0.36
Census 1881 34.4 33.8 25.6 15.1 12.6
Census 1881 (sorted) 3.0 2.9 2.5 2.1 1.5
Weather 6.8 6.7 5.9 5.4 4.2
Weather (sorted) 0.55 0.54 0.43 0.34 0.26
WikiLeaks 11.1 10.9 10.2 5.9 5.4
WikiLeaks (sorted) 2.9 2.7 2.2 1.7 1.7

Table C.1: Space usage in bits per attribute value.

Both approaches can be used with TEBs. Partitioning could further be
combined with di�erential updates so that a separate di� is maintained per
partition. We will show in the later evaluation section that the combined
approach o�ers the highest throughput regarding updates, with minor com-
promises regarding reads.

C.4 Experimental Analysis

In the following, we evaluate our approach with regard to its compression ratio
and performance. We begin by using a number of real-world data sets before
performing a detailed evaluation using synthetic data.

C.4.1 Real-World Data

We evaluate TEBs with bitmaps from bitmap indexes constructed from four
real-world data sets that have been previously used in the experimental eval-
uation of Roaring Bitmaps [102]. The data sets, namely Census Income,
Census 1881, Weather, and WikiLeaks, come in two �avors: as is and
sorted. The latter relies on a-priori sorting of the raw input data, which leads
to signi�cantly better compression ratios [103, 139, 104]. Following the prior
work, we compress the individual bitmaps, 200 per data set, and report the
average number of bits per attribute value. We compare TEB with Concise,
EWAH, Roaring, and WAH. The results for Concise and EWAH are taken from
[102]. We reproduced the results for Roaring with very minor di�erences with
the sorted Census 1881 and WikiLeaks data. But we observed a higher
discrepancy for WAH. Among our experiments, we observed a slightly higher
space usage than reported earlier, except for Census 1881 where we observed
a signi�cantly better compression ratio (34.4 vs. 43.8 bits per element). We
attribute these discrepancies to the fact that we use a di�erent implementa-
tion [5] of WAH. Please note that EWAH and WAH use 32-bit words; we
omit the results for the 64-bit implementations, as those have a higher space
consumption among all tested workloads.

141

Rank LuT resolution [bits] no
64 128 256 512 2048 LuT

Census 1881 1.10 0.95 0.87 0.83 0.81 0.80
Census 1881 (sorted) 0.87 0.76 0.71 0.69 0.67 0.66
Census Inc. 0.93 0.86 0.82 0.81 0.79 0.79
Census Inc. (sorted) 0.76 0.66 0.62 0.60 0.58 0.58
Weather 0.93 0.84 0.80 0.77 0.76 0.75
Weather (sorted) 0.97 0.84 0.79 0.76 0.74 0.73
WikiLeaks 1.18 1.02 0.95 0.91 0.89 0.88
WikiLeaks (sorted) 1.25 1.11 1.04 1.01 0.98 0.98

Table C.2: Relative size of TEB compared to Roaring(
TEB size/Roaring size

)
for varying rank resolutions.

Table C.1 summarizes the experimental results. TEB o�ers the best com-
pression ratios, except for the sorted WikiLeaks data, where Roaring is
slightly better (1.667 vs. 1.677 bits per element). TEB saves up to 22% space
on unsorted data and up to 34.6% on sorted data compared to the second best
compression technique, which in most cases is Roaring.
The rank lookup table (LuT) thereby accounts for 2.2% to 4.4% of the TEB

size (3.7% geo. mean, among all real-world data sets). As mentioned earlier,
changing the resolution of the LuT o�ers a space/time trade-o�. A �ne-grained
LuT with one entry per 64 bit o�ers the best performance. We observe a
30% lower execution time for computing bitmap intersections. The memory
overhead of the LuT thereby increases signi�cantly to up to 27%, which almost
cancels out the improvements in compression. Decreasing the LuT resolution
to 2048 bits on the other hand reduces the TEB size by up to 2.8% but also
causes the intersection time to increase by up to 10%. Table C.2 shows how
the space consumption of TEBs changes for varying rank resolutions compared
to Roaring. Throughout our experiments, we found that a 512-bit resolution
o�ers a reasonable space/time trade-o�, which we use as our default setting
in the following. Nevertheless, it is noteworthy that the rank LuT could be
omitted when TEBs are written to persistent storage, and could be recomputed
on-the-�y when TEBs are loaded back into main memory, allowing one to save
additional disk space and I/O (cf., rightmost column in Table C.2).

C.4.2 Synthetic Data

For an in-depth analysis we generate random bitmaps, where the individual
1-bits are either uniformly distributed or clustered. Uniform random bitmaps
are random bitmaps where each bit is independently generated following an
identical probability distribution [179], i.e, each bit is set with probability d.
Clustered random bitmaps on the other hand are generated using a two-state
Markov process

142

01-p 1
p
q

1-q

with the transition probabilities p and q set to

p :=
d

(1 − d) · f , and q :=
1

f

with 0 < d < 1 and 1 ≤ f ≤ n. We make a minor change over the de�nition
given in [179]; which is that we choose the initial state randomly with a prob-
ability of 0.5, whereas in [179] the initial state is 1 , meaning that a randomly
generated bitmap would always start with a 1-run.
We generate bitmaps of length n = 220 and report the averaged results over

10 independent experiments. We compare TEB with WAH [179], which is
the most popular RLE-based bitmap compression scheme, and with Roaring
Bitmap [102], which is the state-of-the-art with regard to performance and
compression ratio. The thorough study of Wang et al. [171] found Roaring
to be superior over other bitmap compression techniques such as Concise [48],
WAH, EWAH [103], VALWAH [76], PLWAH [55], and SBH [89]. We therefore
limit our evaluation to Roaring and WAH.
For the experiments we use FastBit [5, 176] v2.0.3, which provides a C++

implementation of WAH, and CRoaring [8] v0.2.60 (unity build), the o�cial
C/C++ implementation of Roaring Bitmap. The dynamic_bitset from the
Boost C++ libraries [4] v1.67.0 is used for uncompressed bitmaps. We compile
with GCC v8.3.0 (-O3 -march=native) and execute on an Intel Core i9-7900X
CPU @ 4GHz.

Compression

Uniform Bitmaps. In the following, we examine the compression ratios with
uniform random bitmaps with varying bit densities. The results in Figure C.11
show that TEB and Roaring are on par in the case of sparse bitmaps (d <
0.005). With an increasing d, TEB shows the lowest space usage. When more
than 13% of the bitmap is populated, TEB is no longer able to compress;
Roaring and WAH already stop at 5%. With dense bitmaps (0.5 < d ≤ 1)
we observed symmetrical results for TEB and WAH, only Roaring requires a
density of more than 97% for the compression to work again (rather than 95%).
This is attributed to the di�erent containers being used in Roaring, and the
fact that Roaring encodes 0-runs and 1-runs di�erently, which is in contrast
to TEB and WAH.

Clustered Bitmaps. With our third experiment, we examine the compres-
sion ratios with clustered bitmaps, using varying bit densities d and clustering
factors f . We start with an exploration of the space spanned by d and f .
Thereby, we consider the ranges 0.0001 ≤ d < 1 and 1 ≤ f ≤ n. We make the
following observations:

143

0.001 0.01 0.1

0

50

100

150

bit density d (log scale)

si
ze

[K
iB
]

Bitmap
Roaring
TEB
WAH

Figure C.11: Size of uniform random bitmaps with varying bit densi-
ties. The dotted line refers to the information theoretic
minimum.

� When the input bitmaps are very sparsely populated or exhibit
a strong clustering, all bitmap compression techniques under test
perform well. In the dotted area () in Figure C.12, the compressed
bitmaps occupy less than 1% of the space of the uncompressed
bitmap, irrespective from the employed compression scheme.

� TEB o�ers better compression ratios than WAH throughout all
measurements; and only in some rare cases does WAH compress
slightly better than Roaring.

� When comparing TEB and Roaring, TEB does not always o�er the
best compression ratios. However, in these cases, the di�erences
in size are marginal. The largest di�erence in size we observed
throughout all experiments is 1.6% of the original bitmap size. In
the area marked with in Figure C.12, TEB and Roaring perform
similarly.

� TEB in contrast, shows signi�cantly higher compression ratios with
denser bitmaps and bitmaps with lower clustering, cf. the area
marked with in Figure C.12. In comparison to Roaring, we ob-
served a di�erence in size of up to 56% of the plain bitmap size, in
favor of TEB. Figure C.13 shows a qualitative side-by-side compar-
ison.

Figure C.14 gives a detailed view on how the size of the compressed bitmaps
change for varying d and �xed f . Figure C.14a shows that the TEB approach
is able to exploit short 1-runs in sparse bitmaps, resulting in up to ∼50% space
savings over Roaring. With a moderate clustering, as shown in Figure C.14b,
our approach is also able to compress dense bitmaps. Figure C.14c, on the
other hand, reveals that our approach has a slightly higher space usage than

144

0.001 0.01 0.1 1

1

10

100

1,000

10,000

bit density d (log scale)

cl
u
st
er
in
g
fa
ct
or

f
(l
og

sc
al
e)

highly compressed (less than 1% of the original size)

TEB and Roaring compress similarly (±2%)

TEB compresses best (up to 56% space savings over Roaring)

incompressible

Figure C.12: Summary of our �ndings when compressing clustered
bitmaps.

Roaring with strongly clustered bitmaps, which implies that Roaring can en-
code longer runs more space e�ciently.
Figure C.15 illustrates how f a�ects the compression ratios. Figures C.15a

and C.15b show that already a slight clustering can lead to signi�cant space
savings with TEB. Roaring requires a signi�cantly higher clustering to be
competitive. With sparser bitmaps, TEB falls slightly behind Roaring (see
Figure C.15c), whereas WAH cannot compete.

Performance

In the following, we evaluate the read and update performance of TEB, and
show how it compares to Roaring and WAH.

Read Access. We �rst investigate the read (or decompression) throughput.
We thereby iterate over all 1-runs of a bitmap and measure the duration in
wall-clock time. In our initial performance experiment, we again explore the
space spanned by d and f . Thereby we observe that an uncompressed bitmap
performs better than the compressed formats when 16 ≤ f ≤ 128 and 0.01 ≤
d < 1. It should be noted that the dynamic_bitset implementation, which we
use for uncompressed bitmaps, is very straightforward and does not include
any hardware speci�c optimizations. Thus, we expect a performance-optimized
implementation to dominate an even larger space. When we consider only the
performance of compressed bitmaps, we observe that the clustering mostly
determines the best performing compression technique: Roaring is dominant
when f ≤ 16, followed by WAH until f is approximately 128. TEB requires
an evenly higher clustering (f > 128) to outperform Roaring and WAH.

145

0.01
0.1

1

10

20

0

0.5

1

d
fsp

ac
e
sa
vi
n
gs

(a) TEB

0.01
0.1

1

10

20

0

0.5

1

d
fsp

ac
e
sa
vi
n
gs

(b) Roaring

0.01
0.1

1

10

20

0

0.5

1

d
fsp

ac
e
sa
vi
n
gs

(c) WAH

Figure C.13: Space savings
(
1 − compressed size

uncompressed size

)
for varying d and f .

In Figure C.16, we compare the performance for reasonable values of d and
f , which we expect to occur in practice. We �xed d to {0.25, 0.1, 0.01} and
varied f within the range [1, 20]. We observe that the time to read the bitmap
decreases with an increasing f , which is due to the smaller size of the input
and due to less branching; the higher f is, the lower the number of 1-runs
to iterate over. Figure C.16a, with d set to 0.25, shows that TEB o�ers a
similar performance as WAH, and that both are close to the performance of
Roaring. Still, a plain bitmap performs best in most cases. The outliers at
f = 1 and f = 2 are due to specialized code paths that are taken when the
bitmaps are not compressed (or just barely compressed). In the Figures C.16b
and C.16c, with bit densities reduced to 0.1 and 0.01, we observe that the
absolute time to read a bitmap decreases for all implementations under test
(note the di�erent y-axis scales), but also that TEB falls behind relative to
Roaring and WAH, indicating that the average cost per 1-run increases with
lower d. Naturally, this is an expected result, as lower bit densities result in
sparse and imbalanced trees, which in turn increases the number of tree levels
that need to be traversed (cf., Section C.2).

In our second experiment, we evaluate the e�ectiveness of e�cient tree navi-
gations within logical operations. We intersect (bitwise AND) two bitmaps with
di�erent characteristics. The density and the clustering in the �rst bitmap is
thereby �xed to d1 = 0.01 and f1 = 8. In Figure C.17a, we �x the clustering
in the second bitmap to f2 = 4 and vary the density d2. We observe that the
density of the second bitmap only has a minor impact on the overall intersec-
tion time, except for WAH. The intersection of uncompressed bitmaps, with
constant time random access, is fastest in this setting. Roaring takes ∼1.5×
the time of the plain bitmap intersection, and TEB ∼1.9× the time of Roaring.

146

0 0.5 1

0

50

100

150

bit density d

si
ze

[K
iB
]

(a) f = 4

0 0.5 1

0

50

100

150

bit density d

(b) f = 16

0 0.5 1

0

10

20

bit density d

Bitmap Roaring
TEB WAH

(c) f = 512

Figure C.14: Compressed bitmap size for varying bit densities and
�xed clustering factors.

0 10 20

0

50

100

150

clustering factor f

si
ze

[K
iB
]

(a) d = 0.25

0 10 20

0

50

100

150

clustering factor f

(b) d = 0.1

0 10 20

0

10

20

clustering factor f

(c) d = 0.01

Figure C.15: Compressed bitmap size for varying clustering factors
and �xed bit densities.

0 10 20
0

1,000

2,000

3,000

clustering factor f

ti
m
e
[µ
s]

(a) d = 0.25

0 10 20
0

500

1,000

1,500

2,000

clustering factor f

(b) d = 0.1

0 10 20
0

200

400

clustering factor f

(c) d = 0.01

Figure C.16: Read performance for varying clustering factors and
�xed bit densities.

147

0 0.2 0.4 0.6 0.8
0

1,000

2,000

3,000

bit density d2

ti
m
e
[µ
s]

(a) d1 = 0.01, f1 = 8, f2 = 4

0 10 20
0

1,000

2,000

3,000

clustering factor f2

ti
m
e
[µ
s]

(b) d1 = 0.01, f1 = 8,d2 = 0.25

Figure C.17: Intersection performance.

Compression avg. time per update [ns]
method non-partitioned partitioned

TEB 599 218
Roaring 480∗ / 574 121∗ / 216
WAH 17634 794
∗ using the in-memory layout (non serialized)

Table C.3: The average time to apply an update.

In Figure C.17b, we �x the density of the second bitmap to d2 = 0.25 and vary
f2. Again, only WAH is sensitive to the varying clustering factor and thus to
the size of the second bitmap. On average, Roaring needs ∼1.8× the time of
the plain bitmap intersection, and TEB ∼1.6× the time of Roaring.

Di�erential Updates. In our �nal experiments, we extend TEB and the
other bitmap compression techniques under test by a di�erential data struc-
ture and evaluate the update performance. Our experiments revealed that
WAH is not well suited as a di�erential data structure. We found that Roar-
ing signi�cantly outperforms WAH in that regard, because (i) the partitioned
in-memory layout of Roaring o�ers signi�cantly faster updates and (ii) the
better compression ratios of Roaring reduce the amount of memory occupied
by pending updates. We therefore use Roaring as a di�erential data structure
in the following and omit the results for WAH.

We measure the update throughput by applying 100k point updates to a
compressed bitmap (with n=220, d=0.1, f =8) and report the average execu-
tion time. The number of pending updates is limited to 20k; i.e., a merge
is triggered when this threshold is reached. Further, we examine how parti-
tioning a�ects the execution time of point updates. We partition the bitmap
into chunks of 216 bits, whereas each chunk has its own di�. The results in
Table C.3 show that TEB and Roaring are on par, whereas WAH is several
times slower. WAH su�ers from the linear time complexity of point lookups

148

that are involved with updates. Data partitioning helps to reduce the access
latency signi�cantly, but the average time of an update is still 3.6× higher.
The performance of Roaring on the other hand could be improved by using its
in-memory layout and its specialized XOR implementations for the individual
container combinations (cf., the results marked with * in Table C.3). The opti-
mization is enabled by the fact that both the value bitmap and the di�erential
bitmap are Roaring bitmaps. In a pure in-memory setting, Roaring therefore
outperforms TEB by up to 1.8× and WAH by more than 6× in terms of update
latency (in the partitioned case).

Pending updates naturally impair read latency. We observed a 30% penalty
for TEB and Roaring with 20k pending updates (20% with WAH), irrespective
of partitioning. For more general information on the trade-o�s involved with
di�erential updates, we refer the reader to UpBit [17].

C.5 Related Work

Throughout the paper, we already covered the related work regarding bitmap
compression techniques [14, 179, 48, 103, 76, 102, 89, 55, 17, 171], except for
the HICAMP bitmap [170] which is designed for a special kind of memory
system [44]. In the following, we discuss other related work.

Bitmap Indexes. Bitmap indexes and bitmap compression are orthogonal
topics, as bitmap indexes may also be constructed with verbatim bitmaps.
However, in practice, compression is commonly used to reduce space consump-
tion and to improve query performance. Thus, the term bitmap index often
refers to a compressed bitmap index. Compression, however, is just one aspect
of a bitmap index. Other techniques that are involved when a bitmap index
is constructed are (i) binning [94, 182, 183] which groups multiple attribute
values together and (ii) encoding [36, 37, 133] which translates the bins into a
set of bitmaps [180]. Thereby, an encoding scheme is chosen that best supports
the query workload. Common encodings are equality encoding, range encod-
ing and interval encoding, whereas the latter two allow for arbitrary range
queries by accessing at most two bitmaps. Optionally, an attribute value may
be decomposed into multiple components that are individually assigned to bins
afterwards. A single attribute value may therefore map to multiple bins. An
extreme case is the bit-sliced index [133, 147], where the attribute values are
decomposed bit-by-bit, and the number of bins (and bitmaps) is equal to the
bit-width of the attribute.

Binning, encoding, and decomposition in�uence the characteristics of the in-
dividual bitmaps [180] of an index. Consequently, they a�ect the overall index
size and eventually the query performance [82, 178]. A thorough evaluation of
TEBs within the large design space of bitmap indexes is therefore beyond the
scope of this work.

149

Succinct Data Structures. The space e�ciency of TEBs is founded on the
idea of mapping tree nodes to integer values [99] and the foundational work
on succinctly encoded binary trees [81] that e�ciently support the necessary
navigational operations using the rank and select primitives. Both primitives
require a helper structure to lower the time complexity of tree navigations
from linear to constant time. Several implementations have been been pro-
posed [70, 126, 69, 190, 169] to achieve the performance of pointer-based tree
structures. A key to success, in terms of performance, was the introduction of
the population count instruction, which unfortunately was quite late in wide-
spread x86 processors (AMD 2007, Intel 2008). Over the years, other succinct
tree encodings have been proposed [123, 122, 46, 145, 21, 52] that support a
richer set of operations or being updatable [124]; both, however, would incur
higher space consumption and/or lower performance with TEB.

Lightweight Indexing. Space-e�cient secondary index structures, in gen-
eral, have attracted a lot of interest in database research. Many lightweight
data structures have been proposed to accelerate table scans by skipping (i)
blocks of tuples [3, 184, 153, 154, 118, 12], (ii) scan ranges within blocks [96],
or (iii) (parts of) individual tuples [110, 143, 109, 66, 77]. Other index struc-
tures were designed to support speci�c kinds of queries, e.g., queries with a
LIMIT clause [87], or for speci�c kinds of data, e.g., observational data [173].
Most of these index structures rely on lightweight statistical data that is easy
to maintain and query. The more heavyweight approaches either store approx-
imations of the indexed columns [153, 77] or even require a di�erent storage
layout [110, 66].

C.6 Conclusion

The Tree-Encoded Bitmap (TEB) is a novel approach for compressing bitmaps.
Its tree-based compression algorithm maps 0- or 1-runs of various lengths to
binary tree nodes, where the depth of a node implicitly determines its run
length. The resulting tree structure is then encoded using a succinct physi-
cal data structure that supports logarithmic access time and therefore allows
for e�cient logical operations (such as intersections) on compressed data. We
experimentally showed that TEB saves considerable space compared to other
compressed bitmap formats�in particular at higher bit densities, i.e., those
cases where memory consumption would otherwise be fairly high. In terms of
access speed, TEB is quite fast for intersection operations: almost as fast as
the competing approach Roaring, and much faster than WAH. In the data dis-
tributions where TEB is strongest in saving space, its raw scan performance
is also close to Roaring. As such, TEB encoded chunks could also be used
as a worthwhile addition to the adaptive Roaring approach, signi�cantly im-
proving compression in the most di�cult data distributions, while preserving
performance.

150

Acknowledgements. This work was supported by the DFG project KE401/22.

151

Bibliography

[1] 7-Zip LZMA Benchmark website. https://www.7-cpu.com/. [Online;
accessed 07-Feb-2020].

[2] Apache Arrow. https://arrow.apache.org/.

[3] Block Range Index (BRIN) in PostgreSQL. https://www.postgresql.
org/docs/11/brin.html. [Online; accessed 01-Jul-2019].

[4] Boost C++ Libraries. https://www.boost.org/. [Online; accessed 04-
Jun-2019].

[5] FastBit: An E�cient Compressed Bitmap Index Technology. https:
//sdm.lbl.gov/fastbit/. [Online; accessed 27-May-2019].

[6] MonetDB GeoSpatial. https://www.monetdb.org/Documentation/
Extensions/GIS.

[7] O�cial Roaring Bitmap website. https://roaringbitmap.org. [Online;
accessed 27-May-2019].

[8] Roaring Bitmap. https://github.com/RoaringBitmap/RoaringBitmap.
[Online; accessed 27-May-2019].

[9] https://stackoverflow.com/questions/36932240/avx2-what-is-
the-most-efficient-way-to-pack-left-based-on-a-mask, 2016.

[10] Advanced Micro Devices, Inc. Software Optimization Guide for AMD
Family 17h Processors (rev. 3.00). 2017.

[11] M. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-merge
joins in main memory multi-core database systems. PVLDB, 5(10):1064�
1075, 2012.

[12] K. Alexiou, D. Kossmann, and P. Larson. Adaptive range �lters for cold
data: Avoiding trips to siberia. PVLDB, 6(14):1714�1725, 2013.

[13] P. S. Almeida, C. Baquero, N. M. Preguiça, and D. Hutchison. Scalable
bloom �lters. Inf. Process. Lett., 101(6):255�261, 2007.

[14] G. Antoshenkov. Byte-aligned bitmap compression. In Proceedings DCC
'95 Data Compression Conference, pages 476�, March 1995.

153

https://www.7-cpu.com/
https://arrow.apache.org/
https://www.postgresql.org/docs/11/brin.html
https://www.postgresql.org/docs/11/brin.html
https://www.boost.org/
https://sdm.lbl.gov/fastbit/
https://sdm.lbl.gov/fastbit/
https://www.monetdb.org/Documentation/Extensions/GIS
https://www.monetdb.org/Documentation/Extensions/GIS
https://roaringbitmap.org
https://github.com/RoaringBitmap/RoaringBitmap
https://stackoverflow.com/questions/36932240/avx2-what-is-the-most-efficient-way-to-pack-left-based-on-a-mask
https://stackoverflow.com/questions/36932240/avx2-what-is-the-most-efficient-way-to-pack-left-based-on-a-mask

[15] M. Athanassoulis and A. Ailamaki. Bf-tree: Approximate tree indexing.
PVLDB, 7(14):1881�1892, 2014.

[16] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos, A. Ail-
amaki, and M. Callaghan. Designing access methods: The RUM con-
jecture. In Proceedings of the 19th International Conference on Extend-
ing Database Technology, EDBT 2016, Bordeaux, France, March 15-16,
2016, Bordeaux, France, March 15-16, 2016., pages 461�466, 2016.

[17] M. Athanassoulis, Z. Yan, and S. Idreos. Upbit: Scalable in-memory
updatable bitmap indexing. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 1319�1332, 2016.

[18] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core, main-
memory joins: Sort vs. hash revisited. PVLDB, 7(1):85�96, 2013.

[19] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu. Main-memory
hash joins on multi-core cpus: Tuning to the underlying hardware. In
29th IEEE International Conference on Data Engineering, ICDE 2013,
Brisbane, Australia, April 8-12, 2013, pages 362�373, 2013.

[20] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kusz-
maul, D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok.
Don't thrash: How to cache your hash on �ash. PVLDB, 5(11):1627�
1637, 2012.

[21] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S.
Rao. Representing trees of higher degree. Algorithmica, 43(4):275�292,
2005.

[22] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory
hash join algorithms for multi-core cpus. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011, pages 37�48, 2011.

[23] B. H. Bloom. Space/time trade-o�s in hash coding with allowable errors.
Commun. ACM, 13(7):422�426, 1970.

[24] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture
optimized for the new bottleneck: Memory access. In VLDB'99, Pro-
ceedings of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, pages 54�65, 1999.

[25] P. A. Boncz, T. Neumann, and O. Erling. TPC-H analyzed: Hidden mes-
sages and lessons learned from an in�uential benchmark. In Performance
Characterization and Benchmarking - 5th TPC Technology Conference,
TPCTC 2013, Trento, Italy, August 26, 2013, Revised Selected Papers,
pages 61�76, 2013.

154

[26] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-
Pipelining Query Execution. In CIDR 2005, Second Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7,
2005, Online Proceedings, pages 225�237, 2005.

[27] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese.
Beyond bloom �lters: from approximate membership checks to approxi-
mate state machines. In Proceedings of the ACM SIGCOMM 2006 Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, Pisa, Italy, September 11-15, 2006, pages
315�326, 2006.

[28] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Vargh-
ese. An improved construction for counting bloom �lters. In Algorithms
- ESA 2006, 14th Annual European Symposium, Zurich, Switzerland,
September 11-13, 2006, Proceedings, pages 684�695, 2006.

[29] K. Bratbergsengen. Hashing methods and relational algebra operations.
In Tenth International Conference on Very Large Data Bases, August
27-31, 1984, Singapore, Proceedings, pages 323�333, 1984.

[30] A. Breslow and N. Jayasena. Morton �lters: Faster, space-e�cient
cuckoo �lters via biasing, compression, and decoupled logical sparsity.
PVLDB, 11(9):1041�1055, 2018.

[31] A. D. Breslow and N. Jayasena. Morton �lters: fast, compressed sparse
cuckoo �lters. VLDB J., 29(2-3):731�754, 2020.

[32] A. Z. Broder and M. Mitzenmacher. Network applications of bloom
�lters: A survey. Internet Mathematics, 1(4):485�509, 2003.

[33] M. Cain and K. Milligan. IBM DB2 for i indexing methods and strategies.
IBM White Paper, 2011.

[34] S. Chambi, D. Lemire, R. Godin, K. Boukhalfa, C. R. Allen, and F. Yang.
Optimizing druid with roaring bitmaps. In Proceedings of the 20th Inter-
national Database Engineering & Applications Symposium, IDEAS 2016,
Montreal, QC, Canada, July 11-13, 2016, pages 77�86, 2016.

[35] S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap perfor-
mance with roaring bitmaps. CoRR, abs/1402.6407, 2014.

[36] C. Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation. In
SIGMOD 1998, Proceedings ACM SIGMOD International Conference
on Management of Data, June 2-4, 1998, Seattle, Washington, USA.,
pages 355�366, 1998.

155

[37] C. Y. Chan and Y. E. Ioannidis. An e�cient bitmap encoding scheme for
selection queries. In SIGMOD 1999, Proceedings ACM SIGMOD Inter-
national Conference on Management of Data, June 1-3, 1999, Philadel-
phia, Pennsylvania, USA., pages 215�226, 1999.

[38] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributed
storage system for structured data (awarded best paper!). In 7th Sym-
posium on Operating Systems Design and Implementation (OSDI '06),
November 6-8, Seattle, WA, USA, pages 205�218, 2006.

[39] D. X. Charles and K. Chellapilla. Bloomier �lters: A second look. In
Algorithms - ESA 2008, 16th Annual European Symposium, Karlsruhe,
Germany, September 15-17, 2008. Proceedings, pages 259�270, 2008.

[40] B. Chattopadhyay, P. Dutta, W. Liu, O. Tinn, A. McCormick,
A. Mokashi, P. Harvey, H. Gonzalez, D. Lomax, S. Mittal, R. A. Eben-
stein, N. Mikhaylin, H. ching Lee, X. Zhao, G. Xu, L. A. Perez, F. Shah-
mohammadi, T. Bui, N. McKay, V. Lychagina, and B. Elliott. Procella:
Unifying serving and analytical data at youtube. PVLDB, 12(12):2022�
2034, 2019.

[41] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP
technology. SIGMOD Record, 26(1):65�74, 1997.

[42] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier �lter: an
e�cient data structure for static support lookup tables. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages
30�39, 2004.

[43] H. Chen, L. Liao, H. Jin, and J. Wu. The dynamic cuckoo �lter. In
25th IEEE International Conference on Network Protocols, ICNP 2017,
Toronto, ON, Canada, October 10-13, 2017, pages 1�10, 2017.

[44] D. R. Cheriton, A. Firoozshahian, A. Solomatnikov, J. P. Stevenson, and
O. Azizi. HICAMP: architectural support for e�cient concurrency-safe
shared structured data access. In Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2012, London, UK, March 3-7, 2012, pages
287�300, 2012.

[45] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y. Chen,
A. Baransi, S. Kumar, and P. Dubey. E�cient implementation of sorting
on multi-core SIMD CPU architecture. PVLDB, 1(2):1313�1324, 2008.

[46] D. R. Clark and J. I. Munro. E�cient Su�x Trees on Secondary Storage.
volume 96 of SODA '96, pages 383�391, USA, 1996. Society for Industrial
and Applied Mathematics.

156

[47] S. Cohen and Y. Matias. Spectral bloom �lters. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data,
San Diego, California, USA, June 9-12, 2003, pages 241�252, 2003.

[48] A. Colantonio and R. D. Pietro. Concise: Compressed 'n' composable
integer set. Inf. Process. Lett., 110(16):644�650, 2010.

[49] D. R. Cutting and J. O. Pedersen. Optimizations for dynamic inverted
index maintenance. In SIGIR'90, 13th International Conference on Re-
search and Development in Information Retrieval, Brussels, Belgium,
5-7 September 1990, Proceedings, pages 405�411, 1990.

[50] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz.
An architecture for a secure service discovery service. In MOBICOM
'99, The Fifth Annual ACM/IEEE International Conference on Mobile
Computing and Networking, Seattle, Washington, USA, August 15-19,
1999, pages 24�35, 1999.

[51] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock,
J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang, A. W. Lee, A. Mo-
tivala, A. Q. Munir, S. Pelley, P. Povinec, G. Rahn, S. Triantafyllis, and
P. Unterbrunner. The snow�ake elastic data warehouse. In Proceedings of
the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
pages 215�226, 2016.

[52] P. Davoodi, R. Raman, and S. R. Satti. On succinct representations of
binary trees. Mathematics in Computer Science, 11(2):177�189, 2017.

[53] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal navigable
key-value store. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, pages 79�94, 2017.

[54] N. Dayan, M. Athanassoulis, and S. Idreos. Optimal bloom �lters
and adaptive merging for LSM-Trees. ACM Trans. Database Syst.,
43(4):16:1�16:48, 2018.

[55] F. Deliège and T. B. Pedersen. Position list word aligned hybrid: optimiz-
ing space and performance for compressed bitmaps. In EDBT 2010, 13th
International Conference on Extending Database Technology, Lausanne,
Switzerland, March 22-26, 2010, Proceedings, pages 228�239, 2010.

[56] F. Deng and D. Ra�ei. Approximately detecting duplicates for streaming
data using stable bloom �lters. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Chicago, Illinois, USA,
June 27-29, 2006, pages 25�36, 2006.

157

[57] H. Deshmukh, B. Sundarmurthy, and J. M. Patel. To pipeline or not to
pipeline, that is the question. CoRR, abs/2002.00866, 2020.

[58] A. D. Desk. Ti� 6.0 speci�cation, 1992.

[59] M. Dietzfelbinger and R. Pagh. Succinct data structures for retrieval and
approximate membership (extended abstract). In Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reyk-
javik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms,
Automata, Complexity, and Games, pages 385�396, 2008.

[60] B. Donnet, B. Baynat, and T. Friedman. Retouched bloom �lters: al-
lowing networked applications to trade o� selected false positives against
false negatives. In Proceedings of the 2006 ACM Conference on Emerging
Network Experiment and Technology, CoNEXT 2006, Lisboa, Portugal,
December 4-7, 2006, page 13, 2006.

[61] G. Einziger and R. Friedman. TinySet - An access e�cient self adjusting
bloom �lter construction. IEEE/ACM Trans. Netw., 25(4):2295�2307,
2017.

[62] O. Erdogan and P. Cao. Hash-av: fast virus signature scanning by cache-
resident �lters. IJSN, 2(1/2):50�59, 2007.

[63] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher. Cuckoo
�lter: Practically better than bloom. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and
Technologies, CoNEXT '14, pages 75�88, New York, NY, USA, 2014.
ACM.

[64] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary cache:
a scalable wide-area web cache sharing protocol. IEEE/ACM Trans.
Netw., 8(3):281�293, 2000.

[65] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin. Stochastic fair blue:
A queue management algorithm for enforcing fairness. In Proceedings
IEEE INFOCOM 2001, The Conference on Computer Communications,
Twentieth Annual Joint Conference of the IEEE Computer and Com-
munications Societies, Twenty years into the communications odyssey,
Anchorage, Alaska, USA, April 22-26, 2001, pages 1520�1529, 2001.

[66] Z. Feng, E. Lo, B. Kao, and W. Xu. ByteSlice: Pushing the envelop of
main memory data processing with a new storage layout. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages
31�46, 2015.

[67] A. Fog. Software optimization resources: Instruction tables. https:
//www.agner.org/optimize/. [Online; accessed 12-Feb-2020].

158

https://www.agner.org/optimize/
https://www.agner.org/optimize/

[68] F. Fusco, M. P. Stoecklin, and M. Vlachos. Net-�i: On-the-�y com-
pression, archiving and indexing of streaming network tra�c. PVLDB,
3(2):1382�1393, 2010.

[69] S. Gog, T. Beller, A. Mo�at, and M. Petri. From theory to practice: Plug
and play with succinct data structures. In 13th International Symposium
on Experimental Algorithms, (SEA 2014), pages 326�337, 2014.

[70] R. González, S. Grabowski, V. Mäkinen, and G. Navarro. Practical
implementation of rank and select queries. In Poster Proc. Volume of
4th Workshop on E�cient and Experimental Algorithms (WEA), pages
27�38, 2005.

[71] T. M. Graf and D. Lemire. Xor �lters: Faster and smaller than bloom
and cuckoo �lters. CoRR, abs/1912.08258, 2019.

[72] L. L. Gremillion. Designing a bloom �lter for di�erential �le access.
Commun. ACM, 25(9):600�604, 1982.

[73] B. Grönvall. Scalable multicast forwarding. Computer Communication
Review, 32(1):68, 2002.

[74] T. Gubner and P. Boncz. Exploring Query Compilation Strategies for
JIT, Vectorization and SIMD. In Eighth International Workshop on
Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures, ADMS 2017, Munich, Germany,
September 1, 2017, 2017.

[75] T. Gubner, D. G. Tomé, H. Lang, and P. A. Boncz. Fluid co-processing:
GPU bloom-�lters for CPU joins. In Proceedings of the 15th Interna-
tional Workshop on Data Management on New Hardware, DaMoN 2019,
Amsterdam, The Netherlands, 1 July 2019, pages 9:1�9:10, 2019.

[76] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin. A tunable compression
framework for bitmap indices. In IEEE 30th International Conference
on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April
4, 2014, pages 484�495, 2014.

[77] B. Hentschel, M. S. Kester, and S. Idreos. Column Sketches: A scan
accelerator for rapid and robust predicate evaluation. In Proceedings of
the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 857�872,
2018.

[78] Y. Hu, S. Sundara, T. Chorma, and J. Srinivasan. Supporting r�d-based
item tracking applications in oracle DBMS using a bitmap datatype.
In Proceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, August 30 - September 2, 2005, pages 1140�
1151, 2005.

159

[79] D. A. Hu�man. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098�1101, Sep. 1952.

[80] Intel Corporation. Intel® 64 and IA-32 Architectures Optimization Ref-
erence Manual. 2018.

[81] G. Jacobson. Space-e�cient static trees and graphs. In 30th Annual Sym-
posium on Foundations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October - 1 November 1989, pages 549�554,
1989.

[82] T. Johnson. Performance measurements of compressed bitmap indices.
In VLDB'99, Proceedings of 25th International Conference on Very Large
Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 278�
289, 1999.

[83] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P. Nikander.
LIPSIN: line speed publish/subscribe inter-networking. In Proceedings
of the ACM SIGCOMM 2009 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Barcelona,
Spain, August 16-21, 2009, pages 195�206, 2009.

[84] H. S. W. Jr. Hacker's Delight, Second Edition. Pearson Education, 2013.

[85] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots. In Proceedings
of the 27th International Conference on Data Engineering, ICDE 2011,
April 11-16, 2011, Hannover, Germany, pages 195�206, 2011.

[86] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. A. Boncz.
Everything you always wanted to know about compiled and vectorized
queries but were afraid to ask. PVLDB, 11(13):2209�2222, 2018.

[87] A. Kim, L. Xu, T. Siddiqui, S. Huang, S. Madden, and A. G.
Parameswaran. Speedy browsing and sampling with needletail. CoRR,
abs/1611.04705, 2016.

[88] C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D. Nguyen, A. D. Blas,
V. W. Lee, N. Satish, and P. Dubey. Sort vs. hash revisited: Fast join
implementation on modern multi-core cpus. PVLDB, 2(2):1378�1389,
2009.

[89] S. Kim, J. Lee, S. R. Satti, and B. Moon. SBH: super byte-aligned hybrid
bitmap compression. Inf. Syst., 62:155�168, 2016.

[90] A. Kipf, D. Chromejko, A. Hall, P. Boncz, and D. G. Andersen. Cuckoo
index: A lightweight secondary index structure. 13(13):3559�3572, Sept.
2020.

160

[91] A. Kipf, H. Lang, V. Pandey, R. A. Persa, P. Boncz, T. Neumann, and
A. Kemper. Approximate geospatial joins with precision guarantees. In
34rd IEEE International Conference on Data Engineering, ICDE 2018,
Paris, France, April 16-19, 2018, 2018.

[92] A. Kirsch and M. Mitzenmacher. Less hashing, same performance: Build-
ing a better bloom �lter. Random Struct. Algorithms, 33(2):187�218,
2008.

[93] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,
J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Ku�, D. Kumar,
A. Leblang, N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder. Impala: A modern,
open-source SQL engine for hadoop. In CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 4-7, 2015, Online Proceedings, 2015.

[94] N. Koudas. Space e�cient bitmap indexing. In Proceedings of the 2000
ACM CIKM International Conference on Information and Knowledge
Management, McLean, VA, USA, November 6-11, 2000, pages 194�201,
2000.

[95] H. Lang, V. Leis, M. Albutiu, T. Neumann, and A. Kemper. Massively
parallel NUMA-aware hash joins. In Proceedings of the 1st International
Workshop on In Memory Data Management and Analytics, IMDM 2013,
Riva Del Garda, Italy, August 26, 2013, pages 1�12, 2013.

[96] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and
A. Kemper. Data Blocks: Hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In Proceedings of the
2016 International Conference on Management of Data, SIGMOD Con-
ference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages
311�326, 2016.

[97] J. Larisch, D. R. Cho�nes, D. Levin, B. M. Maggs, A. Mislove, and
C. Wilson. Crlite: A scalable system for pushing all TLS revocations
to all browsers. In 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017, pages 539�556, 2017.

[98] C. Lattner and V. S. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24
March 2004, San Jose, CA, USA, pages 75�88, 2004.

[99] C. C. Lee, D. T. Lee, and C. K. Wong. Generating binary trees of
bounded height. Acta Inf., 23(5):529�544, 1986.

161

[100] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann. Morsel-driven par-
allelism: a NUMA-aware query evaluation framework for the many-core
age. In International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014, pages 743�754, 2014.

[101] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T. Neu-
mann. How good are query optimizers, really? PVLDB, 9(3):204�215,
2015.

[102] D. Lemire, G. S. Y. Kai, and O. Kaser. Consistently faster and smaller
compressed bitmaps with roaring. Softw., Pract. Exper., 46(11):1547�
1569, 2016.

[103] D. Lemire, O. Kaser, and K. Aouiche. Sorting improves word-aligned
bitmap indexes. Data Knowl. Eng., 69(1):3�28, 2010.

[104] D. Lemire, O. Kaser, and E. Gutarra. Reordering rows for better com-
pression: Beyond the lexicographic order. ACM Trans. Database Syst.,
37(3):20:1�20:29, 2012.

[105] D. Lemire and C. Rupp. Upscaledb: E�cient integer-key compression
in a key-value store using SIMD instructions. Inf. Syst., 66:13�23, 2017.

[106] C. Li, Z. Chen, W. Zheng, Y. Wu, and J. Cao. BAH: A bitmap index
compression algorithm for fast data retrieval. In 41st IEEE Conference
on Local Computer Networks, LCN 2016, Dubai, United Arab Emirates,
November 7-10, 2016, pages 697�705, 2016.

[107] D. Li, H. Cui, Y. Hu, Y. Xia, and X. Wang. Scalable data center mul-
ticast using multi-class bloom �lter. In Proceedings of the 19th annual
IEEE International Conference on Network Protocols, ICNP 2011, Van-
couver, BC, Canada, October 17-20, 2011, pages 266�275, 2011.

[108] D. Li, Y. Li, J. Wu, S. Su, and J. Yu. ESM: e�cient and scalable data
center multicast routing. IEEE/ACM Trans. Netw., 20(3):944�955, 2012.

[109] Y. Li, C. Chasseur, and J. M. Patel. A padded encoding scheme to
accelerate scans by leveraging skew. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 1509�1524, 2015.

[110] Y. Li and J. M. Patel. BitWeaving: Fast scans for main memory data
processing. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2013, New York, NY, USA,
June 22-27, 2013, pages 289�300, 2013.

[111] Y. Liu, W. Tome, L. Zhang, D. R. Cho�nes, D. Levin, B. M. Maggs,
A. Mislove, A. Schulman, and C. Wilson. An end-to-end measurement of

162

certi�cate revocation in the web's PKI. In Proceedings of the 2015 ACM
Internet Measurement Conference, IMC 2015, Tokyo, Japan, October
28-30, 2015, pages 183�196, 2015.

[112] L. F. Mackert and G. M. Lohman. R* optimizer validation and per-
formance evaluation for distributed queries. In VLDB'86 Twelfth In-
ternational Conference on Very Large Data Bases, August 25-28, 1986,
Kyoto, Japan, Proceedings, pages 149�159, 1986.

[113] R. MacNicol and B. French. Sybase IQ multiplex - designed for analyt-
ics. In (e)Proceedings of the Thirtieth International Conference on Very
Large Data Bases, VLDB 2004, Toronto, Canada, August 31 - September
3 2004, pages 1227�1230, 2004.

[114] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing main-memory
join on modern hardware. IEEE Trans. Knowl. Data Eng., 14(4):709�
730, 2002.

[115] P. Menon, A. Pavlo, and T. C. Mowry. Relaxed operator fusion for in-
memory databases: Making compilation, vectorization, and prefetching
work together at last. PVLDB, 11(1):1�13, 2017.

[116] M. Mitzenmacher. Compressed bloom �lters. IEEE/ACM Trans. Netw.,
10(5):604�612, 2002.

[117] M. Mitzenmacher and E. Upfal. Probability and computing - randomized
algorithms and probabilistic analysis. Cambridge University Press, 2005.

[118] G. Moerkotte. Small Materialized Aggregates: A light weight index
structure for data warehousing. In VLDB'98, Proceedings of 24rd In-
ternational Conference on Very Large Data Bases, August 24-27, 1998,
New York City, New York, USA, pages 476�487, 1998.

[119] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser, A. Kemper, and
T. Neumann. Instant loading for main memory databases. PVLDB,
6(14):1702�1713, 2013.

[120] J. K. Mullin. Optimal semijoins for distributed database systems. IEEE
Trans. Software Eng., 16(5):558�560, 1990.

[121] J. K. Mullin. Estimating the size of a relational join. Inf. Syst.,
18(3):189�196, 1993.

[122] J. Munro and V. Raman. Succinct representation of balanced parentheses
and static trees. SIAM Journal on Computing, 31(3):762�776, 2001.

[123] J. I. Munro and V. Raman. Succinct representation of balanced paren-
theses, static trees and planar graphs. In 38th Annual Symposium on
Foundations of Computer Science, FOCS '97, Miami Beach, Florida,
USA, October 19-22, 1997, pages 118�126, 1997.

163

[124] J. I. Munro, V. Raman, and A. J. Storm. Representing dynamic binary
trees succinctly. In Proceedings of the Twelfth Annual Symposium on
Discrete Algorithms, January 7-9, 2001, Washington, DC, USA., pages
529�536, 2001.

[125] P. Nagarkar, K. S. Candan, and A. Bhat. Compressed spatial hierarchi-
cal bitmap (cshb) indexes for e�ciently processing spatial range query
workloads. PVLDB, 8(12):1382�1393, 2015.

[126] G. Navarro and E. Providel. Fast, small, simple rank/select on bitmaps.
In Experimental Algorithms - 11th International Symposium, SEA 2012,
Bordeaux, France, June 7-9, 2012. Proceedings, pages 295�306, 2012.

[127] T. Neumann. Cuckoo �lters with arbitrarily sized tables.
http://databasearchitects.blogspot.com/2019/07/cuckoo-
filters-with-arbitrarily-sized.html. [Online; accessed 27-
Feb-2020].

[128] T. Neumann. E�ciently compiling e�cient query plans for modern hard-
ware. PVLDB, 4(9):539�550, 2011.

[129] M. Nowakiewicz, E. Boutin, E. Hanson, R. Walzer, and A. Katipally.
Bipie: Fast selection and aggregation on encoded data using operator
specialization. In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD '18, pages 1447�1459, New York, NY,
USA, 2018. ACM.

[130] P. O'Neil and G. Graefe. Multi-table joins through bitmapped join in-
dices. SIGMOD Rec., 24(3):8�11, Sept. 1995.

[131] P. E. O'Neil. Model 204 architecture and performance. In High Per-
formance Transaction Systems, 2nd International Workshop, Asilomar
Conference Center, Paci�c Grove, California, USA, September 28-30,
1987, Proceedings, pages 40�59, 1987.

[132] P. E. O'Neil, E. Cheng, D. Gawlick, and E. J. O'Neil. The log-structured
merge-tree (lsm-tree). Acta Inf., 33(4):351�385, 1996.

[133] P. E. O'Neil and D. Quass. Improved query performance with variant
indexes. In SIGMOD 1997, Proceedings ACM SIGMOD International
Conference on Management of Data, May 13-15, 1997, Tucson, Arizona,
USA., pages 38�49, 1997.

[134] Oracle Corporation. Bitmap Index vs. B-tree Index: Which and
When? https://www.oracle.com/technetwork/articles/sharma-
indexes-093638.html, 2005. [Online; accessed 14-Jun-2019].

[135] P. E. O'Neil, E. J. O'Neil, and X. Chen. The star schema benchmark
(ssb). Pat, 200(0):50, 2007.

164

http://databasearchitects.blogspot.com/2019/07/cuckoo-filters-with-arbitrarily-sized.html
http://databasearchitects.blogspot.com/2019/07/cuckoo-filters-with-arbitrarily-sized.html
https://www.oracle.com/technetwork/articles/sharma-indexes-093638.html
https://www.oracle.com/technetwork/articles/sharma-indexes-093638.html

[136] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122�
144, 2004.

[137] P. Pandey, M. A. Bender, R. Johnson, and R. Patro. A general-purpose
counting �lter: Making every bit count. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, pages 775�787, 2017.

[138] T. B. Pedersen and C. S. Jensen. Research issues in clinical data ware-
housing. In 10th International Conference on Scienti�c and Statistical
Database Management, Proceedings, Capri, Italy, July 1-3, 1998, pages
43�52, 1998.

[139] A. Pinar, T. Tao, and H. Ferhatosmanoglu. Compressing bitmap indices
by data reorganization. In Proceedings of the 21st International Confer-
ence on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan,
pages 310�321, 2005.

[140] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking SIMD vec-
torization for in-memory databases. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 1493�1508, 2015.

[141] O. Polychroniou and K. A. Ross. High throughput heavy hitter aggrega-
tion for modern SIMD processors. In Proceedings of the Ninth Interna-
tional Workshop on Data Management on New Hardware, DaMoN 1013,
New York, NY, USA, June 24, 2013, page 6, 2013.

[142] O. Polychroniou and K. A. Ross. Vectorized bloom �lters for advanced
SIMD processors. In Tenth International Workshop on Data Manage-
ment on New Hardware, DaMoN 2014, Snowbird, UT, USA, June 23,
2014, pages 6:1�6:6, 2014.

[143] O. Polychroniou and K. A. Ross. E�cient lightweight compression along-
side fast scans. In Proceedings of the 11th International Workshop on
Data Management on New Hardware, DaMoN 2015, Melbourne, VIC,
Australia, May 31 - June 04, 2015, pages 9:1�9:6, 2015.

[144] F. Putze, P. Sanders, and J. Singler. Cache-, hash-, and space-e�cient
bloom �lters. J. Exp. Algorithmics, 14:4:4.4�4:4.18, Jan. 2010.

[145] R. Raman, V. Raman, and S. R. Satti. Succinct indexable dictionaries
with applications to encoding k -ary trees, pre�x sums and multisets.
ACM Trans. Algorithms, 3(4):43, 2007.

[146] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz, T. Poutanen, and
W. Schulte. SIMD parallelization of applications that traverse irregular
data structures. In Proceedings of the 2013 IEEE/ACM International

165

Symposium on Code Generation and Optimization, CGO 2013, Shen-
zhen, China, February 23-27, 2013, pages 20:1�20:10, 2013.

[147] D. Rinfret, P. E. O'Neil, and E. J. O'Neil. Bit-sliced index arithmetic.
In Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, Santa Barbara, CA, USA, May 21-24, 2001, pages
47�57, 2001.

[148] K. A. Ross. E�cient hash probes on modern processors. In Proceedings
of the 23rd International Conference on Data Engineering, ICDE 2007,
The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 1297�
1301, 2007.

[149] A. Rousskov and D. Wessels. Cache digests. Computer Networks, 30(22-
23):2155�2168, 1998.

[150] P. Roy, J. Teubner, and R. Gemulla. Low-latency handshake join. Proc.
VLDB Endow., 7(9):709�720, 2014.

[151] R. Sears and R. Ramakrishnan. bLSM: a general purpose log structured
merge tree. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA,
May 20-24, 2012, pages 217�228, 2012.

[152] A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious algorithms
for relational query processing. In VLDB'94, Proceedings of 20th Inter-
national Conference on Very Large Data Bases, September 12-15, 1994,
Santiago de Chile, Chile, pages 510�521, 1994.

[153] L. Sidirourgos and M. L. Kersten. Column imprints: A secondary index
structure. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-
27, 2013, pages 893�904, 2013.

[154] L. Sidirourgos and H. Mühleisen. Scaling column imprints using ad-
vanced vectorization. In Proceedings of the 13th International Workshop
on Data Management on New Hardware, DaMoN 2017, Chicago, IL,
USA, May 15, 2017, pages 4:1�4:8, 2017.

[155] R. R. Sinha, S. Mitra, and M. Winslett. Bitmap indexes for large sci-
enti�c data sets: a case study. In 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS 2006), Proceedings, 25-29 April
2006, Rhodes Island, Greece, 2006.

[156] R. R. Sinha and M. Winslett. Multi-resolution bitmap indexes for scien-
ti�c data. ACM Trans. Database Syst., 32(3):16, 2007.

166

[157] E. A. Sitaridi, O. Polychroniou, and K. A. Ross. Simd-accelerated regular
expression matching. In Proceedings of the 12th International Workshop
on Data Management on New Hardware, DaMoN 2016, San Francisco,
CA, USA, June 27, 2016, pages 8:1�8:7, 2016.

[158] H. Song, S. Dharmapurikar, J. S. Turner, and J. W. Lockwood. Fast hash
table lookup using extended bloom �lter: an aid to network processing.
In Proceedings of the ACM SIGCOMM 2005 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Commu-
nications, Philadelphia, Pennsylvania, USA, August 22-26, 2005, pages
181�192, 2005.

[159] M. Stabno and R. Wrembel. RLH: bitmap compression technique based
on run-length and hu�man encoding. In DOLAP 2007, ACM 10th Inter-
national Workshop on Data Warehousing and OLAP, Lisbon, Portugal,
November 9, 2007, Proceedings, pages 41�48, 2007.

[160] K. Stockinger. Design and implementation of bitmap indices for scienti�c
data. In International Database Engineering & Applications Symposium,
IDEAS '01, July 16-18, 2001, Grenoble, France, Proceedings, pages 47�
57, 2001.

[161] K. Stockinger. Bitmap indices for speeding up high-dimensional data
analysis. In Database and Expert Systems Applications, 13th Interna-
tional Conference, DEXA 2002, Aix-en-Provence, France, September 2-
6, 2002, Proceedings, pages 881�890, 2002.

[162] K. Stockinger and K. Wu. Bitmap indices for data warehouses. In Data
Warehouses and OLAP: Concepts, Architectures and Solutions, pages
157�178. IGI Global, 2007.

[163] K. Stockinger, K. Wu, and A. Shoshani. Evaluation strategies for bitmap
indices with binning. In Database and Expert Systems Applications,
15th International Conference, DEXA 2004 Zaragoza, Spain, August 30-
September 3, 2004, Proceedings, pages 120�129, 2004.

[164] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. J. O'Neil, P. E. O'Neil, A. Rasin,
N. Tran, and S. B. Zdonik. C-store: A column-oriented DBMS. In Pro-
ceedings of the 31st International Conference on Very Large Data Bases,
Trondheim, Norway, August 30 - September 2, 2005, pages 553�564,
2005.

[165] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory and practice
of bloom �lters for distributed systems. IEEE Communications Surveys
and Tutorials, 14(1):131�155, 2012.

167

[166] J. Teubner and R. Müller. How soccer players would do stream joins. In
T. K. Sellis, R. J. Miller, A. Kementsietsidis, and Y. Velegrakis, editors,
Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages
625�636. ACM, 2011.

[167] P. Valduriez and G. Gardarin. Join and semijoin algorithms for a multi-
processor database machine. ACM Trans. Database Syst., 9(1):133�161,
1984.

[168] S. J. van Schaik and O. de Moor. A memory e�cient reachability data
structure through bit vector compression. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2011, Athens, Greece, June 12-16, 2011, pages 913�924, 2011.

[169] S. Vigna. Broadword implementation of rank/select queries. In Exper-
imental Algorithms, 7th International Workshop, WEA 2008, Province-
town, MA, USA, May 30-June 1, 2008, Proceedings, pages 154�168,
2008.

[170] B. Wang, H. Litz, and D. R. Cheriton. HICAMP bitmap: space-e�cient
updatable bitmap index for in-memory databases. In Tenth International
Workshop on Data Management on New Hardware, DaMoN 2014, Snow-
bird, UT, USA, June 23, 2014, pages 7:1�7:7, 2014.

[171] J. Wang, C. Lin, Y. Papakonstantinou, and S. Swanson. An experimental
study of bitmap compression vs. inverted list compression. In Proceedings
of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages
993�1008, 2017.

[172] M. Wang, M. Zhou, S. Shi, and C. Qian. Vacuum �lters: More space-
e�cient and faster replacement for bloom and cuckoo �lters. PVLDB,
13(2):197�210, 2019.

[173] S. Wang, D. Maier, and B. C. Ooi. Lightweight indexing of observational
data in log-structured storage. PVLDB, 7(7):529�540, 2014.

[174] J. W. J. Williams. Algorithm 232: Heapsort. Communications of the
ACM, 7(6):347�348, 1964.

[175] K. Wu. Notes on design and implementation of compressed bit vectors.
2001.

[176] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-Michel,
C. Geddes, J. Gu, H. Hagen, B. Hamann, et al. FastBit: interactively
searching massive data. In Journal of Physics: Conference Series, vol-
ume 180, page 012053. IOP Publishing, 2009.

168

[177] K. Wu, E. Otoo, and A. Shoshani. Compressed bitmap indices for e�-
cient query processing. Rep. LBNL-47807 Lawrence Berkeley National
Laboratory Berkeley, CA, 2001.

[178] K. Wu, E. J. Otoo, and A. Shoshani. On the performance of bitmap
indices for high cardinality attributes. In (e)Proceedings of the Thirti-
eth International Conference on Very Large Data Bases, VLDB 2004,
Toronto, Canada, August 31 - September 3 2004, pages 24�35, 2004.

[179] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with
e�cient compression. ACM Trans. Database Syst., 31(1):1�38, 2006.

[180] K. Wu, A. Shoshani, and K. Stockinger. Analyses of multi-level and
multi-component compressed bitmap indexes. ACM Trans. Database
Syst., 35(1):2:1�2:52, 2010.

[181] K. Wu, K. Stockinger, and A. Shoshani. Performances of multi-level and
multi-component compressed bitmap indices. 2007.

[182] K. Wu and P. S. Yu. Range-based bitmap indexing for high cardinality
attributes with skew. In COMPSAC '98 - 22nd International Com-
puter Software and Applications Conference, August 19-21, 1998, Vi-
enna, Austria, pages 61�67, 1998.

[183] M. Wu and A. P. Buchmann. Encoded bitmap indexing for data ware-
houses. In Proceedings of the Fourteenth International Conference on
Data Engineering, Orlando, Florida, USA, February 23-27, 1998, pages
220�230, 1998.

[184] J. Yu and M. Sarwat. Two birds, one stone: A fast, yet lightweight,
indexing scheme for modern database systems. PVLDB, 10(4):385�396,
2016.

[185] M. Yu, A. Fabrikant, and J. Rexford. BUFFALO: bloom �lter for-
warding architecture for large organizations. In Proceedings of the 2009
ACM Conference on Emerging Networking Experiments and Technology,
CoNEXT 2009, Rome, Italy, December 1-4, 2009, pages 313�324, 2009.

[186] Y. Yu, C. Qian, and X. Li. Distributed and collaborative tra�c moni-
toring in software de�ned networks. In Proceedings of the third workshop
on Hot topics in software de�ned networking, HotSDN '14, Chicago, Illi-
nois, USA, August 22, 2014, pages 85�90, 2014.

[187] E. T. Zacharatou, F. Tauheed, T. Heinis, and A. Ailamaki. RUBIK: e�-
cient threshold queries on massive time series. In Proceedings of the 27th
International Conference on Scienti�c and Statistical Database Manage-
ment, SSDBM '15, La Jolla, CA, USA, June 29 - July 1, 2015, pages
18:1�18:12, 2015.

169

[188] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo. SuRF: Practical range query �ltering with Fast Succinct
Tries. In Proceedings of the 2018 International Conference on Manage-
ment of Data, SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, pages 323�336, 2018.

[189] W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J. Nie, H. Yan, and J. Wen.
A general simd-based approach to accelerating compression algorithms.
ACM Trans. Inf. Syst., 33(3):15:1�15:28, 2015.

[190] D. Zhou, D. G. Andersen, and M. Kaminsky. Space-e�cient, high-
performance rank and select structures on uncompressed bit sequences.
In Experimental Algorithms, 12th International Symposium, SEA 2013,
Rome, Italy, June 5-7, 2013. Proceedings, pages 151�163, 2013.

[191] J. Zhou and K. A. Ross. Implementing database operations using SIMD
instructions. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison, Wisconsin, June 3-6,
2002, pages 145�156, 2002.

[192] M. Zukowski, M. van de Wiel, and P. A. Boncz. Vectorwise: A vector-
ized analytical DBMS. In IEEE 28th International Conference on Data
Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia),
1-5 April, 2012, pages 1349�1350, 2012.

170

Appendix

171

Performance-Optimal Filtering:
Bloom Overtakes Cuckoo at High Throughput

Harald Lang Thomas Neumann Alfons Kemper Peter Boncz?
Technical University of Munich Centrum Wiskunde & Informatica?

firstname.lastname@in.tum.de boncz@cwi.nl

ABSTRACT
We define the concept of performance-optimal filtering to in-
dicate the Bloom or Cuckoo filter configuration that best ac-
celerates a particular task. While the space-precision trade-
off of these filters has been well studied, we show how to
pick a filter that maximizes the performance for a given
workload. This choice might be “suboptimal” relative to
traditional space-precision metrics, but it will lead to better
performance in practice. In this paper, we focus on high-
throughput filter use cases, aimed at avoiding CPU work,
e.g., a cache miss, a network message, or a local disk I/O
– events that can happen at rates of millions to hundreds
per second. Besides the false-positive rate and memory foot-
print of the filter, performance optimality has to take into
account the absolute cost of the filter lookup as well as the
saved work per lookup that filtering avoids; while the ac-
tual rate of negative lookups in the workload determines
whether using a filter improves overall performance at all.
In the course of the paper, we introduce new filter variants,
namely the register-blocked and cache-sectorized Bloom fil-
ters. We present new implementation techniques and per-
form an extensive evaluation on modern hardware platforms,
including the wide-SIMD Skylake-X and Knights Landing.
This experimentation shows that in high-throughput situa-
tions, the lower lookup cost of blocked Bloom filters allows
them to overtake Cuckoo filters.
PVLDB Reference Format:
H. Lang, T. Neumann, A. Kemper and P. Boncz. Performance-
Optimal Filtering: Bloom Overtakes Cuckoo at High Through-
put. PVLDB, 12(5): 502-515, 2019.
DOI: https://doi.org/10.14778/3303753.3303757

1. INTRODUCTION
A Bloom filter [5] represents a collection of n keys with

an initially-zeroed array of m bits, setting for each inserted
key k bits to 1, using as many hash functions to identify
the positions [0,m) where the bits are set in the array. This
structure allows for fast true-negative tests, but it can pro-
duce false-positives at some probability: the false-positive

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 5
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3303753.3303757

101 105 109

104

106

108

Work time tw per positive lookup [CPU cycles]

P
ro

b
le

m
 s

iz
e

[n
u
m

b
e
r

o
f

ke
y
s

n]

CPU
cache
miss

tuple over
network

(amortized)

NVMe
read

SSD
SATA
read

magnetic
disk
read

read
100MB S3

Parquet file

da
ta
ba

se
 p
ro
ce
ss
in
g

se
le
ct
iv
e
jo
in
 p
us
hd

ow
n

di
st
rib

ut
ed

se
m
i-j
oi
n

LSM tree
fil
te
r

 to
o
la
rg
e

&
ex

pe
ns
iv
e

object
caches

network
routing

cloud
data

access

better use
an exact filter

(hash map, tree)

Bloom CuckooBest performing filter type:
high throughput low throughput

Figure 1: Performance-optimal filter types for different
problem sizes n and potential work savings tw. Example
reference points for tw values are shown above the plot and
applications inside the plot.

rate f . The more recently introduced Cuckoo filter [15]
offers similar capabilities. It stores small signatures – which
approximate keys using a few bits – in buckets that can hold
a few such signatures. The data structure is a Cuckoo hash
table of such buckets. A filter lookup checks all signatures
in a maximum of two buckets. An advantage of Cuckoo fil-
ters over Bloom filters is that they allow deletes as well as
duplicates in the key set (thus: bag). Importantly, Cuckoo
filters provide a lower false-positive rate f than Bloom fil-
ters, given the same size m. In other words, a Bloom filter
needs a larger size to reach the same f , and this larger size
may increase its lookup cost.
A popular use case in database systems is selective join

pushdown. In foreign-key joins between a large (fact) ta-
ble and a small (dimension) table with a filter predicate that
selects a fraction of the dimension tuples, only a fraction σ
of the fact table tuples will find a match and contribute to
the join result. It can then be beneficial to create a Bloom
or Cuckoo filter that contains the n selected dimension keys,
and for each fact tuple first test if all k bits of the join key are
set in it. If not, the tuple does not join and further work can
be eliminated for it, such as a hash table or index lookup,
or nested-loop scan. This filtering could be the first step
in the join, but the filter test can also be pushed down all
the way into the fact table scan, such that the data volume
coming out of the scan is reduced, making any intermediate

502

173

operations in between the scan and the join cheaper. Addi-
tionally, column stores can skip over data from the non-key
columns if whole stretches of tuples test negatively, avoiding
(disk or network) I/O and decompression effort.
In selective equi-join pushdowns, Bloom filters are known

to significantly enhance query performance in real analytical
workloads, as well as in synthetic ones, such as TPC-H and
TPC-DS [6]. However, using a Bloom or Cuckoo filter can
potentially backfire if it does not eliminate (enough) join
candidates, certainly in cases where the selectivity σ=1.0
(no negative lookups), or values of σ close to that. A way to
deal with this is to use cardinality estimation to gauge σ and
n at query optimization time, in order to decide whether
to create a filter at all, and if so, with which parameters.
Alternatively, some database systems monitor the join hit-
rate σ of hash or index joins at run-time, and add a filter
if σ is below a given threshold [33]. This has the advantage
that by then n is known (e.g., the hash table has already
been built – in the case of a hash join), allowing us to better
choose the filter size m, as well as parameters such as the k
for Bloom filter and the signature and bucket size (l, b) for
Cuckoo filters.
A Bloom filter is a well-known data structure also used in

many systems outside of databases, notably including net-
work routers and caches of all sorts. Beyond our leading
example of selective equi-join pushdown, other uses inside
database systems include key-value indexes based on multi-
ple structures/runs such as log-structured merge-trees [12]
(in order to reduce the number of structures to search), cold
storage structures (idem) [2], and distributed-semijoin opti-
mization for exchange operators in MPP systems, which first
broadcast a Bloom filter across compute nodes to avoid ex-
changing unneeded join-probe tuples over the network [21].
Our work applies to all filter usage scenarios.
The common thinking is that if the n is known, space-

optimal Bloom filter parameters can be calculated based
on theory [25], given a desired false-positive rate f , namely
k = −log2f and m = 1.44kn. However, our argument is
that a minimal size m given an f or vice versa is not a goal
in itself, rather, the goal is to optimize performance.
In defining performance-optimal filtering, we introduce

a model to optimize this overall performance and answer the
crucial question: what filtering data structure and param-
eters best accelerate a particular workload? To determine
what is performance optimal, we have to take into account
the additional factors: (i) the actual time tl a filter lookup
takes, (ii) the work time tw per tuple that a negative lookup
identified by the filter saves later on, and (iii) the mentioned
fraction 1-σ of real negative lookups (regardless of false pos-
itives). The issue is how much tl to invest (in lookup time)
and how much tw (work time) this pays off and how often
this pays off (1-σ).
Systems that incorporate key filtering need to decide on

the above question, and its answer is not clear, which is the
reason why we performed this research. Our work focuses on
filtering techniques that provide both low f but also have
low lookup time tl, and builds on the cache-efficient and
hash-efficient blocked Bloom filter work of Putze et al. [31].
In doing so, we introduce two new Bloom filter variants,
namely the cache-sectorized and register-blocked ones.
Further, we take fast implementation techniques into

account. This includes SIMD GATHER instructions as well
as the many-core Knights Landing architecture with wide

SIMD. Fast implementations only use m values that are
powers-of-two, such that modulo can be computed with bit-
wise AND. This means that theoretically optimal values of m
typically cannot be chosen, leading to anm that in the worst
case is a factor

√
2'1.44 off (average case 1.22). Instead,

we provide fast SIMD implementation techniques that allow
almost any size m to be used. Our implementations scale
from filters that fit a small cache to filters that are GBs in
size. We release all our code and experiments in open-source
for reproducibility and re-use.
Comparing the overall performance of two filter configu-

rations, a decrease in false-positive rate (∆f) only pays off
if the extra work saved (∆f ∗ tw) exceeds the increase in
lookup cost (∆l), i.e. if ∆f ∗ tw > ∆l. We will show that
in all realistic selective join workloads, blocked Bloom filters
with worse false-positive rate outperform Cuckoo filters, due
to their lower lookup cost.
Figure 1 summarizes our key findings from our detailed ex-

periments with regard to which filter type, Bloom or Cuckoo,
performs best for a given problem size n and the potential
savings tw. In high-throughput situations (left side, low tw),
Bloom filters are to be preferred over Cuckoo filters. Bloom
filters offer lower lookup costs but also a higher false-positive
rate. In high-throughput scenarios, the costs induced by a
false-positive result is relatively low and the fast lookups are
the dominant factor. In contrast, low-throughput scenarios
(right side) require higher accuracy as the costs induced by
a false positive are significantly higher than the actual filter
lookup. Database processing use cases for filter structures
often involve high-throughput lookups where, e.g., filtering
just avoids a CPU cache miss caused by a hash lookup, but
also have use cases where filters are used to avoid more ex-
pensive accesses (right side: lower-throughput workloads),
like magnetic disk seeks, e.g. into log-structured merge-trees
on hard disk. These higher tw use cases are the areas where
Cuckoo filters dominate, due to their lower false-positive ra-
tios. In those cases, though, if the problem size is small (low
n), then false positives can and should be avoided entirely
by using an exact data structure instead.

Our contributions are:

• a formal definition of performance-optimal filtering;

• improved filter variants: register-blocked Bloom filters
and cache-sectorization of blocked Bloom filters;

• consideration of advanced implementation techniques,
allowing us to use filter sizes beyond just powers-of-
two, and AVX2/AVX-512 SIMD hardware optimiza-
tions for Bloom and Cuckoo filters;

• extensive experiments that allow us to establish that
blocked Bloom filters overtake Cuckoo filters when the
work saved tw by negative lookups is low or moderate:
we call this the high-throughput use cases;

• open-source implementations for all filter structures1.

2. PERFORMANCE-OPTIMAL FILTERING
Figure 2 shows the selective join pushdown scenario. The

query contains a join between a fact table (probe pipeline)
and a dimension table (build pipeline), and may proceed
above the join, e.g. with an aggregation.
1Source code: https://github.com/peterboncz/bloomfilter-repro

503

174

The query cost c can be divided as c = cbuild+cwork+cpost:
the cost to build the hash table, the time to run the pre-join
pipeline up until the join lookup itself, and the time to run
the rest of the query, including join result generation. Note
that cwork = |R|∗tw, that is, tw is the per-tuple execution
time of the probe pipeline.
Installing a Bloom filter in the scan at the bottom of the

probe pipeline will reduce the data volume flowing through
it to a factor σ+f . Overall, this can accelerate the query
maximally (if σ=f=0) by a factor c/(cbuild +cpost), however
we will ignore this in the rest of the paper, focusing on the
filter with most performance impact – however high it is.
In order for a query optimizer to decide on installing a

(Bloom) filter in a join, it needs to estimate tl, tw, f , and
σ. In order to estimate tl and f , it would need to esti-
mate the amount of build-side keys n, which can be done
using logical cost (cardinality) estimation. There are well-
studied methods to do this, but cardinality estimation can
still be off. Furthermore, tl and tw are physical (per tu-
ple) costs, which are much harder to estimate correctly [23]
because they estimate hardware behavior and may even be
impacted by external factors (such as concurrent workload
or even temperature). The alternative strategy of installing
a filter at runtime, after running the probe pipeline for a
while, has the advantage that tw, n and σ are known. The
performance-optimal filter F , out of all possible filter con-
figurations F , is the one that minimizes the per-tuple work
using filtering tw′(F):

tw′(F) = (1−σ′)∗t−l (F) + σ′∗(t+l (F)+tw) with: σ′=σ+f(F)

where we use f(F) to denote the false-positive rate f achieved
by F . We split up the lookup cost tl of F for the case of a
lookup that finds a hit and when it does not t−l (F). This is
needed for classic Bloom filters, because they test the k bits
one-by-one and break off search as soon as a bit is not set.
In classic Bloom filters with a low load factor (i.e., it con-
tains mostly zeros), most negative queries will already test
negatively on the first bit, therefore typically only one hash
function needs to be computed and only one cache line will
be accessed. For positive queries, however, classic Bloom
filters need to compute all k hash functions and perform k
memory accesses (t+l � t−l), making them expensive if k is
significant, and more so if this happens often (largish σ).
Most other filter algorithms that we study – including

Cuckoo – are implemented such that they do an equal amount
of work for positive and negative queries (t+l = t−l = tl) and
only access one or two cache lines. Furthermore, classic
Bloom filters are hard to SIMDize and are thus computa-
tionally more expensive than SIMDizable variants (such as
the register-block Bloom filter). A SIMD version of classic
Bloom filters was implemented [29], but in the many ex-
periments we performed, it was never performance optimal.
As the performance-optimal filtering algorithms do exhibit
equal performance for positive and negative queries, we can
simplify the definition of the performance-optimal filter F opt

to the one with least overhead:

F opt ∈ F : 6 ∃F ∈ F : ρ(F) < ρ(F opt)

with: ρ(F) = tl(F) + f(F) ∗ tw
(1)

Here ρ(F) is the overhead of all filtering (i.e., filter lookup
and false-positive work). Parameter σ is still needed, but
only to decide if filtering is beneficial at all, namely whether:
ρ(F opt) < (1− σ) ∗ tw.

⋈

Γ

σp

scan(L) scan(R)

post join

pre join

probe
pipeline

build
pipeline

HJ
Bloom filter
construction

Bloom filter
probe

work saved
for filtered
tuples...

pushdown

Figure 2: Bloom filters with selective joins. Tuples without
a join partner are filtered before entering the pipeline.

Filter size

O
ve

rh
ea

d

 False-
positive
 rate

Memory
 costs

Figure 3: Overhead ρ as a function in m for fixed configu-
ration F , n and tw.

But how to determine F opt, that is, to find the best com-
bination of lookup cost tl and f given a tw and n? For
instance, in blocked Bloom filters, the configuration param-
eters are k (the more hash functions, the higher tl but typ-
ically the lower f) and m (the larger the size, the lower f
becomes, but due to more cache and TLB misses, tl may
increase). Figure 3 sketches the overhead ρ as a function in
m. If the filter size is set too small, the bitvector of a Bloom
filter gets “overly populated” and f increases. On the other
hand, if the size chosen is too large, cache miss probability
increases, making lookups more expensive.
For the influence of k, m and n on f , a numerical model is

available [25] using a Poisson approximation. However, tl is
a physical cost metric and is harder to predict, as it depends
on the hardware. We therefore propose to collect the actual
filter lookup costs by performing microbenchmarks on the
target platform as part of a one-time calibration phase.

3. BLOOM FILTER VARIANTS
As the previous section suggests, there is a very large

space of filter variants and possible configurations. To achieve
performance optimality it is necessary to understand the
individual properties of the filter instances and how these
properties affect performance for a given problem setting.
To quantify the performance-related aspects, we consider
the precision given by the false-positive rate f , the space
efficiency (i.e., the memory footprint) as well as the compu-
tational efficiency, which refers to the CPU work of lookups
and the memory bandwidth efficiency. All four dimensions
are correlated. For instance, tuning for space efficiency may
come at the cost of additional computations and reduced
precision, but also with a better bandwidth efficiency.
In the rest of this section, we explore the design space

of Bloom filters and their respective positioning within the
four dimensions.

504

175

3.1 Blocking
A blocked Bloom filter as proposed in [31] is a Bloom filter

that is split into equally sized blocks. Each block is a small
Bloom filter. The size of a block, denoted as B, is proposed
to be equal to the size of a cache line, which is B = 512 bits
on the x86 architecture. All k bits of an inserted key are
set within a single block and each insert or lookup results in
one single cache miss at most. Because a cache line is the
unit of memory transfer and all bits are spread across the
entire cache line, it can be considered optimal with regard
to memory bandwidth efficiency.
The second advantage of blocked Bloom filters is that

fewer hash bits are required per key and they therefore have
improved computational efficiency as compared to classic
Bloom filters. Blocking reduces the number of required hash
bits from k · log2(m) down to k · log2(B) plus log2(m/B) bits
to address the corresponding block. Listing 1 shows the
lookup function in pseudocode.
The improved bandwidth and computational efficiency

comes at the cost of reduced accuracy (higher f). Every
block acts as a classic bloom filter of size B, thus the false-
positive rate is known to be

fstd(m,n, k) =

(
1−

(
1− 1

m

)kn)k
, (2)

where m is set to the block size B. The important thing to
note here is, that not all blocks contain the same amount
of keys. In other words, the (block-local) n varies among
the different blocks and affects the overall f of the filter.
The load that the individual blocks receive is binomially
distributed, and [31] provides the following approximation
for the false-positive probability:

fblocked(m,n, k,B) =

∞∑

i=0

Poisson
(
i, B

n

m

)
∗ fstd(B, i, k)

(3)
where fstd denotes the false-positive rate of a classic Bloom
filter with the arguments m, n and k (see Equation 2).

Register Blocking: For high-throughput scenarios, we
consider an extreme case of blocking, where the block size is
reduced to the size of native CPU registers, namely 64-bit
or 32-bit. These register-blocked Bloom filters significantly
reduce computational efforts, as all k bits can be tested in a
single comparison and only one processor word needs to be
loaded (see Listing 2). Thus, since only one processor word is
accessed per lookup, a register-blocked filter can no longer be
considered as being memory bandwidth efficient. Effectively,
only 1/8th or 1/16th of a cache line is accessed for 64-bit and
32-bit blocks, respectively. Therefore, register blocking is a
technique to trade memory bandwidth efficiency and preci-
sion for further increased computational efficiency, which is
particularly important for CPU-cache resident filters.

Impact of blocking: Figure 4a illustrates how blocking
affects the false-positive rate f depending on the bits-per-
key rate (m/n). We compare a space-optimal classic Bloom
filter (blue line) with register-blocked Bloom filters (red and
orange lines), and a cache line blocked filter (green line).
Figure 4b shows the corresponding values for k, which indi-
cates the computational efforts caused by hashing.
The smaller the block size, the higher f becomes. This in-

crease in f can be compensated to some degree by increasing

// Block addressing
h = consume log2(m/B) hash bits
block_idx = h mod m/B
found = false
for each k do {
// Word addressing (W denotes the size of a word)
h = consume log2(B/W) hash bits
word = load word from block_idx + h
h = consume log2(W) hash bits // Bit addressing
found |= word & (1 � h) // Bit testing

}
return found

Listing 1: Lookup function of blocked Bloom filters.

// Block addressing
h = consume log2(m/B) hash bits
block = load word at position h mod (m/B)
search_mask = 0;
for each k do {
// Bit addressing
h = consume log2(B) hash bits
search_mask |= 1 � h

}
return block & search_mask == search_mask // Bit testing

Listing 2: Lookup function of register-blocked Bloom
filters.

the filter size m and the bits-per-key rate, respectively. For
instance, a classic Bloom filter with f = 1% requires ≈ 10
bits per key of memory, whereas a register-blocked Bloom
filter requires ≈ 12 or 14 bits per key for block sizes of 64
and 32 bits. However, depending on the desired f , the mem-
ory footprint of the filter quickly becomes impractical. For
instance, with B = 32, a false-positive rate of 0.1% requires
32 bits per key, which is significant memory consumption,
and an exact data structure, e.g., a hash map might be a
better choice.

3.2 Sectorization
With an increasing tw, the false-positive rate f of a filter

becomes increasingly important and it therefore becomes
necessary to increase the block size beyond a single processor
word. If the bits are distributed over multiple words, we can
no longer test multiple bits in one comparison instruction
(compare Listing 1 and 2), which significantly reduces CPU
efficiency. In this section, we present sectorization of blocked
Bloom filters to address this inefficiency. For clarity, we
first present the key idea of sectorization, followed by an
extension which we call cache-sectorization. The latter can
compete with Cuckoo filters even for large filters that exceed
the CPU cache size.
To the best of our knowledge, sectorization (in a primi-

tive form) was first used in the SIMD Bloom filter of the
Impala database system [21]. The authors actually com-
bined a m/k-partitioning scheme [20] with blocking. How-
ever, this technique has not been further investigated with
regard to performance and false-positive rate. In the fol-
lowing, we catch up on this by discussing the upsides and
downsides of sectorization and further provide a formula for
the false-positive rate.
Sectorization is a partitioning scheme that sub-divides

blocks into equally sized partitions, which we call sectors,
and the k bits, set for each key, are equally distributed

505

176

5 10 15 20

10−4

10−2

100

Bits per key (m/n)

Fa
ls
e-
po

si
ti
ve

ra
te

Classic Bloom 32-bit blocked
64-bit blocked 512-bit blocked

(a)

5 10 15 20
0

5

10

15

Bits per key (m/n)

O
pt
im

al
k

(b)

Figure 4: Impact of blocking on the false-positive-rate and
the hashing efforts.

among all sectors. This partitioning scheme has the fol-
lowing advantages:

1. It reduces the number of required hash bits and there-
fore reduces computation efforts caused by hashing.

2. It can change the random access within a block to a
sequential access pattern which greatly improves CPU
efficiency.

To exemplify sectorization, we set the block size to 512
bits and the sector size to 64 bits. Furthermore, we assume
that a native processor word has 64 bits (as in x86_64) and
is therefore equal to the size of a sector. Hence, a block is a
sequence of s=8 words which can be processed sequentially
and independently by setting the first k/8 bits in the first
word, the next k/8 bits in the second word, and so on. Each
word has to be read exactly once and multiple bits can be
tested at once, similar to register blocking (see Listing 2).
Formally, we let S denote the sector size and the (capi-

talized) K the number of bits set per key per sector, where
1 ≤ S ≤ B. As sectorization aims for CPU efficiency in
Bloom filter implementations, we restrict the block size as
well as the sector size to be a power of two and k needs to
be a multiple of the number of sectors B/S.
Sectorization generalizes the (prior) definition of a blocked

Bloom filter. I.e., if we set S := B, then the individ-
ual blocks consist of exactly s=1 sector and it implies that
k = K. The filter instance is therefore equivalent to a
blocked Bloom filter as defined by Putze et al. in [31].
In contrast to m/k-partitioning as proposed by Kirsch et
al. [20], sectorization is applied at block level and therefore
preserves the locality of a blocked Bloom filter. Further, our
scheme is more flexible because it allows us to set multiple
bits per partition (sector), which improves CPU efficiency.
Figure 5 shows a performance comparison of a blocked

Bloom filter with and without sectorization with k = 16 (on
a Xeon E5-2680v4 using 28 threads). The leftmost data
points refer to register blocking (where one block = one
word). We then double the block sizes until we reach the
size of a cache line. Immediately, when a block exceeds a
single word, the lookup performance drops significantly by
≈ 60% for cache-resident filters and by ≈ 50% for larger fil-
ters, because we have to use the first lookup algorithm from
Listing 1 (using a random access pattern). On the other
hand, with sectorization enabled, the performance degrades
gracefully with increasing block sizes. The important thing
to note here is that the sector size is set to word size and it

1 4 16
0

1000

2000

3000

4000

Words per block

Lo
ok
up

s
[M

/s
ec
]

Blocked (one sector)
Sectorized (# of sectors = # of words)

(a) Cache (16KiB filter)

1 4 16
0

500

1000

Words per block

Lo
ok
up

s
[M

/s
ec
]

(b) DRAM (256MiB filter)

Figure 5: Performance impact of sectorization for varying
block sizes.

remains constant. We only increase the number of sectors
with the block size, which is the enabler for using the more
efficient lookup algorithm from Listing 2 within each sector
(in a sequential order).
Technically, the sector size can be set to any power of two

(as long as S ≤ B), but it must be less than or equal to the
word size in order to get a sequential block access pattern.
In most cases, setting the sector size to the word size (either
32-bit or 64-bit) is the best option. In rare cases, splitting a
word in multiple sectors may improve the false-positive rate,
which we describe later. In the remainder of the paper, we
set the sector size to the word size, unless stated otherwise.
The downside of sectorization is that the number of ks

needs to be a multiple of the number of sectors. In other
words, we need at least as many ks as we have sectors. And
with regard to CPU efficiency, we would prefer to set/test
multiple bits per sector. Thus, it is desirable to have higher
ks per sector. For instance, if we use 32-bit words and a
block size B = 512 bits, we need at least 16 sectors and con-
sequently at least k = 16, which is already a very high value
for k (not only for high-throughput scenarios). If we also
want to set/test multiple bits at once, we have to increase k
to unreasonably high values of 32, 48, etc. With these limita-
tions, it is hardly possible to find the right balance between
low false-positive rates, high memory bandwidth efficiency,
and high CPU efficiency. The Impala implementation, for
instance, uses the (hard-coded) configuration k = 8, S = 32,
and B = 256 2, where only the filter size m can be adjusted.
It therefore leaves room for optimizations.
To address these limitations, we propose an extension to

sectorization that offers more flexible parameterization and
is therefore more tunable to a wide variety of problem set-
tings. We call our approach cache-sectorization. The
design goal is to distribute the bits over entire cache lines
but also support lower ks.
Cache-sectorization works as follows: Blocks are parti-

tioned in word sized sectors. Multiple sectors are then logi-
cally grouped together. When a key is inserted, we set k/z
bits in each group, where z is the number of groups per
block. Inside each group, the k/z bits are set in one sec-
tor, which is determined by the key’s hash value. Figure 6
illustrates the cache-sectorization block partitioning. Per
key, z words are accessed, and all words belong to the same
cache line. Inside each group, we now have a dependent load

2The configuration is ideal for AVX2 SIMD using 256-bit
registers.

506

177

which makes the access pattern less optimal. However, this
is amortized by accessing fewer words per block. Further,
across the groups, all operations remain independent and
can be performed in parallel. In contrast to sectorization, k
can be chosen more flexibly, as a multiple of z instead of s,
where z < s.

False-positive rate: Cache-sectorization can improve the
false-positive rates as compared to sectorization. In Fig-
ure 7, we compare both variants: The blue line represents
the sectorized variant that spreads the bits across 4 words,
resulting in 4 loads per lookup. The cache-sectorized ver-
sion (red line), also accesses 4 words per lookup but spreads
the bits across an entire cache line, which results in a sig-
nificantly lower false-positive rate. If we further reduce the
number of accessed words (orange line), we can improve the
lookup performance with f similar to the sectorized vari-
ant. For reference, the dashed lines show the false-positive
rates of (register-)blocked filters without sectorization, with
B = 32 and B = 512, respectively.
We provide formulas for the false-positive rate for both

sectorized variants:

fsector(m,n, k,B, S) =

∞∑

i=0

Poi
(
i, B

n

m

)
∗
(
fstd

(
S, i,

k

s

))s

(4)

fcache(m,n, k,B, S, z) =

∞∑

i=0

Poi
(
i, B

n

m

)
∗
(

i∑

j=1

Poi
(
j, S

i ∗ z
B

)
∗ fstd

(
S, j,

k

s

))z

(5)

Our experimental analysis discussed in Section 6 shows
that a Bloom filter with cache-sectorized blocks can com-
pete with Cuckoo filters and outperforms standard (non-
sectorized) blocked Bloom filters.

4. CUCKOO FILTER
With the Cuckoo filter [15], Fan et al. presented an al-

ternative to Bloom filters which claims to be “practically
better” in terms of lookup performance and space consump-
tion. A Cuckoo filter is a variation of a cuckoo hash table [27]
with two major differences:

1. It stores small signatures (aka fingerprints) instead of
the entire keys, while every hash bucket can hold mul-
tiple of such signatures.

2. For collision resolution, the alternative bucket of an
entry is determined based on the key’s signature and
its current bucket index, instead of using two indepen-
dent hash functions.

The signature of a key is computed using a hash function.
Typically, the low-order bits of the hash value are used as
the signature. Inside the cuckoo hash table, each signature
has two candidate buckets in which they can be stored. The
indexes of the two buckets i1 and i2 of a key x are calculated
as follows:

i1 = hash(x)

i2 = i1 ⊕ hash(x’s signature)
(6)

S0 S1 S2 S3 S4 S5 S6 S7

block

sector

Z0 Z1

insert / lookup

k/z bits k/z bits

k bits

group of sectors

Figure 6: Block partitioning scheme of cache-sectorized
Bloom filters: hashing sets bits concentrated in z words
spread over a cache line.

10 15 20

10−3

10−2

10−1

Bits per key (m/n)

Fa
ls
e-
po

si
ti
ve

ra
te

(l
og

sc
al
e)

cache-sectorized, z=4
cache-sectorized, z=2
sectorized
register-blocked
blocked

Figure 7: Comparison of the false-positive rate of sector-
ized and cache-sectorized Bloom filters, with k = 8.

The noteworthy property is that the index i1 can also be
computed using the key’s signature and the index i2:

i1 = i2 ⊕ hash(x’s signature) (7)

This property allows to determine the alternative bucket of
a signature without having access to the actual (unhashed)
key value, which is not stored in the cuckoo hash table. This
technique, which the authors refer to as partial-key cuckoo
hashing, is necessary to relocate signatures inside the table
in case of collisions. Whenever a signature cannot be stored,
due to fully occupied buckets, a signature in one of the two
target buckets is randomly chosen and relocated to its al-
ternative bucket. The fact that the alternative bucket index
is a combination of the signature and the first bucket index
(and vice versa) results in a lower table occupancy (∼50%)
compared to a cuckoo hash table that is using two inde-
pendent hash functions. The authors address this issue by
storing multiple signatures per bucket. For instance, using
a bucket size b = 2, 4, or 8 increases the table occupancy
to 84%, 95%, or 98%, respectively. However, this approach
also negatively affects the accuracy, as we describe in the
following paragraph. During a lookup, the key is hashed
to compute the signature and to determine both candidate
buckets. Afterwards, both buckets are searched for that sig-
nature.
The false-positive probability of a Cuckoo filter is

fcuckoo(α, l, b) = 1−
(

1− 1

2l

)2bα

, with: α =
l ∗ n
m

(8)

where l is the signature length in bits and α the load factor
of the table. Thus, the false-positive rate primarily depends

507

178

10 15 20

10−4

10−3

10−2

Bits per key (m/n)

Fa
ls
e-
po

si
ti
ve

ra
te

(l
og

sc
al
e)

8 bit sig.
12 bit sig.
16 bit sig.

(a) Four sig. per bucket.

10 15 20

10−2

10−1.5

Bits per key (m/n)

2 sig. per bucket
4 sig. per bucket
8 sig. per bucket

(b) Sig. size fixed to 8 bits.

Figure 8: The false-positive rate of Cuckoo filters for dif-
ferent signature lengths and bucket sizes.

on the signature size l. The longer the signatures, the lower
the false-positive rates. Typically, l is between 8 and 16 bits.
Increasing the filter’s size (i.e., lowering the load factor α)
only gradually improves the false-positive rate, as shown
in Figure 8a. On the other hand, reducing the numbers
of signatures per bucket b significantly improves the false-
positive rate (see Figure 8b), while coincidentally impairing
memory efficiency due to lower load factors.
A noteworthy property of a Cuckoo filter is that an inser-

tion may fail if the target buckets are fully occupied and the
signatures cannot be relocated. This is in contrast to Bloom
filters, where insertions always succeed.

5. IMPLEMENTATION TECHNIQUES
For our evaluation we implemented a blocked Bloom fil-

ter that is optimized for high-throughput scenarios where
lookups are performed in batches. Our implementation is
generic in the sense that it allows us to vary the block size,
sector size, and naturally the number of hash functions as
well. Even though our implementation is generic, the gener-
icity does not induce any runtime costs as it is mostly writ-
ten in C++ template language. All parameters are compile-
time static except the size of the filter m.
Further, we revised and extended the original Cuckoo fil-

ter implementation and unified the interface of all filters
under test with regard to batched lookups. I.e., the contains
functions take an entire list of keys at once and produce a po-
sition list (also called a selection vector) consisting of 32-bit
integers. As this work focuses on high-throughput scenarios,
we use multiplicative hashing for both, Bloom and Cuckoo
filters.

5.1 Data Parallelism
The performance-critical contains functions make exten-

sive use of SIMD instructions (i.e., from the AVX2 and the
AVX-512 instruction set). SIMD is primarily used to exe-
cute multiple lookups in parallel which allows the average
number of CPU cycles per lookup to be reduced to less then
two cycles (for low ks). Our actual C++ implementations of
the Bloom filter contains functions are very similar to the
scalar pseudocode in Listings 1 and 2. This also applies
for the SIMDized versions, as we used an abstraction layer
for the SIMD vector types and vector instructions. This
allows us to perform one lookup per SIMD lane, whereas
each SIMD lane operates on 32-bit words. It also allows

us to easily scale to broader SIMD registers. For instance,
the C++ implementations for AVX2, which performs eight
simultaneous lookups, is the same as for AVX-512, which
performs 16 lookups in parallel. Please note that this tech-
nique relies on the gather instruction and we therefore do
not support pre-AVX2 architectures. It is also noteworthy
that the SIMD abstractions do not incur any runtime costs.
Each contains function (one per filter configuration) is com-
piled into a branch-free instruction sequence.
Similarly, we optimized the Cuckoo filter implementations

to perform parallel lookups. In contrast to the Bloom filter,
the Cuckoo filter implementation is less generic. It requires
a separate code path for each signature length, and not all
signature lengths are “SIMD friendly”. Some may result in
unaligned memory accesses. – Please note that this also
applies for non-SIMD implementations. – We therefore op-
timized only the (SIMD-friendly) instances with 8-, 16- and
32-bit signatures.
Modern processors differ greatly in their SIMD capabili-

ties and their out-of-order execution capabilities [1, 18]. We
observed significant performance differences across various
platforms (Xeon, Knights Landing, Skylake-X and Ryzen)
with a single SIMD implementation. To address this issue,
we instantiate the filter templates with multiple parameters
with respect to the vector lengths and unrolling factors and
perform a short calibration phase at library installation time
which allows us to select the best performing instantiation
at runtime. The calibration is done only once per platform
and in the worst case, or if the underlying platform is of a
pre-AVX2 generation, the scalar (non-SIMD) code is used
as a fallback.

5.2 Magic Modulo
A common optimization technique is to size data struc-

tures to powers of two to avoid costly modulo operations and
substitute them by bitwise ANDs (this applies, for example,
to the Impala Bloom filter, the SIMD Bloom filter from [29],
and to the reference implementation of the Cuckoo filter).
I.e., the operation hash(key) mod m, which involves an in-
teger division, is several times slower than using hash(key)
& mask (with mask := (1�log2(m))-1). However, our ex-
perimental analysis shows, that this approach is very inflex-
ible and leaves large potential for optimizations.
Especially for SIMD, there is no satisfactory solution to

sizing data structures more flexibly. Even an inefficient mod-
ulo operation is not possible, because modern SIMD instruc-
tion sets do not support integer division. Putze et al. [31]
therefore proposed to perform the division with floating-
point arithmetic. Even though, the floating-point division
on Intel vector processing units is still an expensive oper-
ation, i.e., 13 cycles on Haswell, the operation is applied
to eight elements in parallel. If we take the necessary type
conversions into account, a division of eight elements takes
15 cycles, which is an improvement of approximately 6×
over scalar code. For our evaluation, we implemented an ap-
proach known from the field of compiler construction, which
performs the same operation in approximately 10 cycles.
Modern compilers substitute the costly modulo operations

(more precisely, the involved integer division) with a cheaper
instruction sequence consisting of a multiply, a shift, and an
addition. Based on the divisor, a compiler determines a
magic number [19] to multiply with, a shift amount and a
summand. On most platforms, the multiply-shift-add se-

508

179

quence is faster than an integer division. Naturally, the
compiler can only optimize if the divisor is known at com-
pile time, which is not the case with dynamically-sized data
structures such as, in our case, the Bloom or Cuckoo fil-
ters. We therefore re-implemented this approach manually
to support (almost) arbitrary filter sizes. We further opti-
mized the magic number approach to substitute the integer
division with a multiply-shift instruction sequence, without
the trailing addition, saving one additional instruction. The
enabler for this optimization is, that the magic numbers for
(unsigned) division can be categorized into two classes: (i)
those which require multiply-shift-add instructions and (ii)
those which only require a multiply and a shift. Which in-
struction sequence to use depends on the divisor. In our
context, we can (slightly) vary the size of the data struc-
ture. This additional degree of freedom allows us to choose
a divisor that belongs to the second class and to save the
trailing addition. We refer to this approach as magic mod-
ulo. A modulo operation i = hash(key) mod C is thereby
replaced by

h = hash(key)

i = h− (mulhi_u32(h,magicNo)� shiftAmount) ∗ h, (9)

whereas the function mulhi_u32 multiplies two 32-bit inte-
gers, producing a 64-bit intermediate, and returns the upper
32 bits of the product.
Magic modulo is used to determine a block3 of the Bloom

filter and a bucket in the Cuckoo filter, respectively. The
actual filter size is therefore

mactual = x ∗ nextMagicNo
(⌈mdesired

x

⌉)
(10)

with x := B for Bloom filters and x := l∗b for Cuckoo filters.
In our implementation, which supports up to 232 blocks, the
actual number of blocks is at most 0.0134% higher than the
desired number of blocks or buckets, respectively. Naturally,
magic modulo is more expensive than a single bitwise AND

which is not in favor of Cuckoo filters, because the indexes
of two buckets need to be computed. Further, the XOR op-
eration of the partial-key cuckoo hashing (see Equation 6)
needs to be replaced by a different and slightly more expen-
sive self-inverse function. In our implementation, the bucket
indexes of a key x are computed as follows:

i1 = hash(x) magicMod C
i2 = −(i1 + hash(x’s signature)) magicMod C

(11)

where C denotes the number of buckets.
Figure 9 illustrates the benefits of magic modulo by using

an example of a cache-sectorized Bloom filter (k = 8, B =
512, z = 2). Magic modulo allows to vary the filter size in
very small steps (purple line) compared to the power-of-two
sizes (blue dots). At cache boundaries, there is a wide range
where this flexibility improves lookup performance 1 . The
range, where the performance degrades over power-of-two
modulo is relatively small 2 , because magic modulo has
only a modest overhead 3 . With an increasing filter size
(e.g., a multiple of the last-level cache size), magic modulo
becomes less beneficial with regard to performance 4 , but
still gives better control over the memory consumption. The
same applies for very small L1- or L2-resident filters.
3The Bloom filter block sizes are powers of two and there-
fore, inside a block, bitwise AND instructions are used to de-
termine the bit positions.

10 100
0

10

20

30

40

Filter size [MiB] (log scale)

Lo
ok
up

co
st
s
[c
yc
le
s] Magic

Pow24

2

3

1

Figure 9: Lookup performance of a cache-sectorized Bloom
filter for varying filter sizes.

Table 1: Hardware platforms
Intel Intel Intel AMD
Xeon Knights Skylake-X Ryzen

Landing

model E5-2680v4 Phi 7210 i9-7900X 1950X
cores (SMT) 14 (x2) 64 (x4) 10 (x2) 16 (x2)
SIMD instr. AVX2 AVX-5121 AVX-5122 AVX2
SIMD [bit] 2×256 2×512 2×512 256
freq. [GHz] 2.4 – 3.3 1.3 – 1.5 3.3 – 4.5 3.4 – 4.0
L1 cache 32 KiB 64 KiB 32 KiB 32 KiB
L2 cache 256 KiB 1 MiB 1 MiB 512 KiB
L3 cache 35 MiB - 14 MiB 32 MiB
launch Q1’16 Q4’16 Q2’17 Q3’17
1 AVX-512{F,CD,ER,PF}
2 AVX-512{F,DQ,CD,BW,VL}

6. EXPERIMENTAL ANALYSIS
In this section, we present the results of our experiments,

conducted on four different hardware platforms (see Ta-
ble 1). We tested many different problem sizes (n) and ran
experiments on the different hardware platforms, varying
all relevant parameters for each filter data structure. For
Bloom filters, we considered values for k in [1, 16], B in
{4, 8, 16, 32, 64} bytes, S in {1, 2, 4, 8, 16, 32, 64} bytes, W
in {32, 64} bits and z in {2, 4, 8}. For Cuckoo filters, we
varied l in {4, 8, 12, 16} bits, and b in {1, 2, 4}. As the data
set we used random 32-bit integers (uniformly distributed)
generated with the Mersenne Twister engine from the C++
Standard Template Library. To get stable results, we re-
peated each measurement five times and report the aver-
age. This resulted in more than 15 million experiments
that we performed on all these possible filter configurations.
Throughout all experiments we used the GCC compiler (ver-
sion 5.4.0) with optimization level set to -O3.
Unless stated otherwise, we present multi-threaded re-

sults, using one thread per core; except for KNL with 4-way
hyper-threading, we ran two threads per core. Even though,
all experiments ran on a single processor, we had to take
NUMA effects into account. KNL and Ryzen are NUMA
architectures, with four and two nodes, respectively. On
these platforms, we replicated the filter data to all NUMA
nodes and let all threads query the NUMA-local filter. The
probe data (256MiB), on the other hand, was distributed
across all nodes in a round-robin fashion.

Skylines. For each valid4 filter configuration F ∈ F we
scaled the problem size n from 210 to 228 keys. More pre-
cisely, we used the values ni,j = b2i+j∗0.0625c with i in

4Please note that not all configurations are valid. For in-
stance, setting B := 64 and S := 512 is illegal, as the sector
size may not exceed the block size.

509

180

[10, 27] and j in [0, 15]. For each 〈F, n〉 pair, we scaled the
filter size m between 4n and 20n, thus limiting the bits-
per-key rate to 20. The values of m are also scaled expo-
nentially, containing all powers of two and nine interme-
diates in between. For each experimentally collected data
point, we compute the overhead ρ(F) for 28 different tw val-
ues. For the tw values, we use 2i with i in [4, 31]. From
the resulting data set, we determined for each 〈n, tw〉 point
the performance-optimal filter configuration F opt with the
smallest overhead. By doing this for all these points, we ob-
tain a skyline of performance-optimal filter configurations.

Performance-optimal filter type. Figure 10 summarizes
the results from the four hardware platforms. For each
〈n, tw〉 point, we report whether the performance-optimal
filter is a Bloom filter (green area) or a Cuckoo filter (blue
area). On all platforms, the Bloom filter is the filter of
choice for high-throughput scenarios and Cuckoo for mod-
erate and low-throughput scenarios. On AVX-512 platforms
(KNL and SKX), the more SIMD-friendly Bloom filter cov-
ers a larger space than on AVX2. Please note that the unit
of time for tw are CPU cycles.
On all platforms we observe a similar shape of the sky-

lines. The left-hand side is dominated by Bloom filters due
to their lower lookup costs, whereas the right-hand side,
Cuckoo filters dominate due to their lower false-positive-
rate. But we also observe that the tw-range in which the
Bloom filters dominate increases with the problem size. For
instance, for large problem sizes, Bloom filters perform bet-
ter than Cuckoo filters for tws up to approximately 105

cycles. Whereas for small n values, the Bloom filter only
performs best up to a tw of ∼ 103 cycles. This is caused
by the higher cache miss probability of the Cuckoo filter
which significantly increases the lookup costs once the fil-
ter spills to L3 or DRAM. Figure 14 shows a comparison
of the lookup costs for three different filter instances. The
fact that Cuckoo filters access two cache lines almost dou-
bles their lookup costs compared to Bloom filters. Thus, in
terms of filter overhead ρ, it takes “longer” for the Cuckoo
filter to compensate the higher lookup costs with its lower
false-positive rate.

Performance comparison. In Figure 11a, we compare
the performance of Bloom and Cuckoo filters on our default
evaluation platform SKX. For each 〈n, tw〉 point, we show
the performance improvement of the best performing filter,
either a Bloom or a Cuckoo filter, over its counterpart. De-
pending on n and tw, we observe relative speedups of up to
3× for Bloom filters in high-throughput scenarios 1 . The
Cuckoo filter, on the other hand, outperforms Bloom filters
in low-throughput scenarios by factors 2 . Naturally, for ar-
bitrarily large tws, the speedup of Cuckoo filters becomes
arbitrarily large, as the lower false-positive rate outweighs
the higher lookup costs. However, in practical scenarios
(tw ≤ 109 cycles), we observe speedups of up to 5×.
False-positive rate. The lowest possible false-positive rate
f in our experimental setup is 0.0002 for Bloom (using k =
11, and B = S = 512) and 0.00005 for Cuckoo (using l = 16
and b = 2). Note that f for Cuckoo could theoretically be
even lower. For instance, with b set to 1, the false-positive
probability would be 0.000024. However, construction would
most likely fail, as the load factor of the cuckoo hash table
would be significantly higher than 50%. Further, if an imple-
mentation that supports 19-bit signatures were be available,

f could be lowered to 0.000015. Nevertheless, the considered
Cuckoo implementations have false-positives rates that are
up to an order of magnitude lower than the Bloom filter im-
plementations. Figure 11b shows the dominance of Cuckoo
filters in terms of low f (green area). For faster moving
workloads (left side), the top performers are Bloom filters
with f in [0.0001, 0.01). Higher fs are mostly observed in
the area where filtering is not beneficial (top left corner).

Best performing Bloom filter variants. In Figure 12a,
we only consider Bloom filters and show which variant per-
forms best. We differentiate between register-blocked, sec-
torized, cache-sectorized and blocked, whereas the latter
refers to blocked Bloom filters without sectorization. The
results prove that, due to their low lookup costs, our newly
developed Bloom filter variants, register-blocking and cache-
sectorization, are well suited for a wide range of problem
sizes in high-throughput scenarios. We observed an up to
48% reduced overhead with cache-sectorization as compared
to plain sectorization (15% on average). In very few sce-
narios, plain sectorization performs slightly better (yellow
outliers). We attribute this to the dependent load in cache-
sectorization (see Section 3.2). However, the increase in
overhead was at most 0.5% throughout our experiments.
In low-throughput scenarios, higher precision is more im-

portant than CPU efficiency and refraining from using sec-
torization lowers the false-positive rate. However, if we
take the space dominated by Cuckoo into account, only a
small window of opportunity remains for (standard) blocked
Bloom filters 3 . Please see Figure 1 for example use cases.
So far, we have only distinguished between the filter types

and the different Bloom filter variants. In the following, we
examine the parameterization of the individual filters.

Bloom filter configurations. In Figures 12b-12g we re-
solve the parameters of the performance-optimal Bloom fil-
ter configurations. We start with the block sizes. Larger
block sizes generally trade CPU efficiency for improved accu-
racy. However, our cache-sectorization approach allows for
efficiently spreading the bits across an entire cache line, with
just a minor impact on the lookup costs. Thus, block sizes
larger than 4 bytes (single word) and smaller than 64 bytes
(cache line) play a minor role 4 . Nevertheless, register-
blocked Bloom filters with a block size of 4 bytes still out-
perform cache-sectorization and are therefore the best choice
for very low tws.
Figure 12c shows the number of sectors used in the perfor-

mance-optimal Bloom filters. In almost all high-throughput
cases, the number of sectors is equal to the number of words
per block. A rare exception is 5 , where the sector size
is smaller than the word size. In our implementation, the
smallest possible sector size is one byte. Which means, that
even a register-blocked filter can be sectorized. This sector-
ization on the sub-word level has no impact on the lookup
performance, but it negatively affects the false-positive rate.
However, for very low ks, there is almost no difference in f ,
and the outlier can therefore be considered noise. In that
particular case, the second-best filter instance, which is not
sectorized, has only a 0.2% higher overhead. We therefore
conclude that sub dividing words into multiple sectors is not
beneficial in practice.
On the right-hand side of the skyline, the low-throughput

cases, the sector count drops to one (standard blocked Bloom
filter), as non-sectorized filters offer a lower f .

510

181

101 105 109

104

106

108

tw

n

(a) Xeon (14 threads)

101 105 109

104

106

108

tw
n

(b) KNL (128 threads)

101 105 109

104

106

108

tw

n

(c) SKX (10 threads)

101 105 109

104

106

108

tw

n

Blocked Bloom Cuckoo

(d) Ryzen (16 threads)

Figure 10: Skyline of performance-optimal filters for varying n and tw.

101 105 109

104

106

108

1 2

tw

n

< 5% [1.05, 1.1)
[1.1, 1.25) [1.25, 1.5)
[1.5, 1.75) [1.75, 2)
[2, 3) [3, 4)
[4, 5)

(a) Speedups of the best filter over its counterpart.

101 105 109

104

106

108

tw

n

[0.00001, 0.0001)
[0.0001, 0.001)
[0.001, 0.01)
[0.01, 0.1)
[0.1, 1)

(b) False-positive rates of the best performing filters.

Figure 11: Performance comparison of Bloom and Cuckoo filters (a) and the corresponding false-positive rates (b).

101 105 109

104

106

108

3

high
throughput

low
throughput

tw

n

Blocked Sectorized
Cache-sectorized Register-blocked

(a) Bloom filter variants

101 105 109

104

106

108

4

tw

n

4 Bytes 8 Bytes 16 Bytes
32 Bytes 64 Bytes

(b) Block size

101 105 109

104

106

108

5

tw

n

1 2 4 8 16

(c) Sector count

101 105 109

104

106

108

6

tw
n

z = 1 z = 2 z = 8

(d) Cache-sectorization

101 105 109

104

106

108

9

8 7

tw

n

2 3 4 5 6 8 9 10 11

(e)Number of hash functions k

101 105 109

104

106

108

tw

n

Power of two Magic

(f) Modulo

101 105 109

104

106

108

10

tw

n

≤ L1 ≤ L2 ≤ L3
≤ 64MiB ≤ 128MiB ≤ 256 MiB

(g) Filter size

Figure 12: Skyline of configurations of the best performing blocked Bloom filters (on SKX).

101 105 109

104

106

108

low
throughput11

12

tw

n

4 Bits 8 Bits 16 Bits

(a) Signature length

101 105 109

104

106

108

tw

n

1 2 4

(b) Bucket size

101 105 109

104

106

108

13

tw

n

Power of two Magic

(c) Modulo

101 105 109

104

106

108

tw

n

≤ L1 ≤ L2 ≤ L3
≤ 64MiB ≤ 128MiB ≤ 256 MiB

(d) Filter size

Figure 13: Skyline of configurations of the best performing Cuckoo filters (on SKX).

511

182

10 100 1,000 10,000 100,000

0

20

40

60

80

L1 L2 L3

filter size [KiB]

cy
cl
es

pe
r
lo
ok
up

Register-blocked Bloom (B = 32, k = 4)
Cache-sectorized Bloom (B = 512, k = 8, z = 2)
Cuckoo (b = 2, l = 16)

Figure 14: Lookup time for varying filter sizes (on SKX).

As mentioned earlier, cache-sectorization covers the largest
space in high-throughput scenarios (see Figure 12d). How-
ever, the space where z = 8 6 is dominated by the Cuckoo
filter. Therefore, the most interesting configuration is where
two words of a cache line are accessed (z = 2).
With regard to the number of hash functions (k), which

are shown in Figure 12e, we found that in high-throughput
scenarios, a k ≤ 8 is sufficient. In particular k = 6 and k = 8
are the sweet spots for cache-sectorized filters 7 . For regis-
ter blocking, ks between 3 and 5 offer the best performance
8 . Filters with a k less than 3 are not practical altogether,
as they fall into the area where filtering is not beneficial 9 .
For low-throughput scenarios, we found that ks larger than
11 are never performance optimal.
Figure 12f shows that almost all top-performing Bloom

filters make use of magic modulo to optimally utilize the
available memory budget (20 bits per key). Magic modulo
also helps in cases, where it is better to reduce the k and
increase f instead of going to L3 or DRAM 10 , by adjusting
the filter size in small steps.

Cuckoo filter configurations. In Figure 13, we shed light
on the parameters of the best performing Cuckoo filters.
Throughout our experiments, the Cuckoo filter tends to

use the largest possible signature length l for the given mem-
ory budget. – Note that the largest signature length is 16
bit in this case. – Only in very high-throughput scenarios do
smaller signatures become beneficial, due to a higher degree
of SIMD parallelism. However, in that area, either Bloom
filter dominates 11 or filtering is not practical altogether 12 .
An interesting insight regarding the Cuckoo filter is that

a bucket size of b = 2 is to be favored over b = 4, which was
chosen for the evaluation in [15] (and hard-coded in their
implementation). Choosing a bucket size of 4 was the key
feature for Cuckoo filters to achieve better space efficiency
than Bloom filters. The fact, that our experimental results
show that two signatures per bucket perform better in al-
most all cases (see Figure 13b) substantiates our general
finding, that optimal filter space efficiency does not equate
to optimal performance.
Similar to Bloom filters, magic modulo is used to exploit

memory constraints as well as possible. However, in compar-
ison to Bloom filters, power-of-two modulo covers a larger
space (see Figure 13c 13), which is due to the higher costs
involved with magic modulo, as described in Section 5.2.
In general, we observed similar memory consumptions

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

C
yc
le
s
pe
r
lo
ok
up

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

Sp
ee
du

p

pow2 magic

(a) Cuckoo filter (b = 2, l = 16)

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

C
yc
le
s
pe
r
lo
ok
up

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

Sp
ee
du

p

(b) Register-blocked Bloom filter (B = 32, k = 4)

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

C
yc
le
s
pe
r
lo
ok
up

XEON KNL SKX Ryzen
0

2

4

6

8

10

12

Sp
ee
du

p

(c) Cache-sectorized Bloom filter (B = 512, k = 8, z = 2)

Figure 15: Performance of our SIMD-optimized filter im-
plementations.

among the two filters under test. The claim that Cuckoo
filters have better space efficiency [15] no longer holds when
performance optimality is the objective.

6.1 SIMD Optimizations
We present the performance impact of our SIMD opti-

mizations. Figure 15 shows the query performance and the
speedup over the scalar (non-SIMD) implementation of three
representative filters: a Cuckoo filter, a register-blocked, and
a cache-sectorized Bloom filter (L1 cache-resident filters, 1
thread). The blue bars represent the filter instances using
sizes of powers of two and the purple bars represent the filter
instances using magic modulo.
SIMD optimizations offer speedups of up to 10× and

therefore make filtering applicable for a larger spectrum in
high-throughput scenarios (small tws). On AVX2 platforms,
the (bare L1) performance of Cuckoo filters is very similar
to register-blocked Bloom filters. If the filter size exceeds
L2, blocked Bloom filters perform better with regard to
CPU cycles per lookup due to better memory bandwidth
efficiency (see Figure 14). On AVX-512 platforms, Bloom
performs significantly better than Cuckoo. In particular on
the Knights Landing (KNL) platform, the Cuckoo filter suf-
fers from mixing AVX2 and AVX-512 instructions due to
the missing AVX-512BW (Byte Word) instruction set. In
contrast to the Intel platforms, we barely observed any sig-
nificant speedups on the AMD Ryzen platform (mostly less
than 50% improvement over scalar), which we attribute to
the poorly performing gather instruction. Compared to
SKX, Ryzen is ≈ 2× to 5× slower in absolute numbers
(wall clock time, per thread).

512

183

7. RELATED WORK
The survey [9] describes many of the application areas of

Bloom filters [5]: databases, dictionaries, (P2P) network-
ing and routing. In databases, log-structured merge-trees
(LSM) have become important in write-optimized (cloud or
cluster) storage, splitting up a structure into multiple lay-
ers that are generated sequentially and periodically merged.
Queries need to check all layers, and in that respect Bloom
filters help to avoid accessing layers that do not contain a
key. Monkey [12] observes that different layers need differ-
ently tuned Bloom filters. That paper navigates correlated
parameter spaces in a data structure and identifies an opti-
mal tuning method. Our insights can be useful for LSMs:
we find that Cuckoo filters are a better match than Bloom
filters for workloads where filtering avoids I/O.
There have been many extensions of the original Bloom

filter [5]. Scalable Bloom filters [3] allow the filter to grow
dynamically if n is not known in advance, at the cost of more
expensive membership tests (lookups into multiple struc-
tures). Spectral Bloom filters [11] and counting Bloom fil-
ters [28, 7] can represent bags (duplicate keys) rather than
sets. The Bloomier filter [10] can associate a value (rather
than a bit) with a key. Retouched Bloom filters [13] allow
the suppression of certain selected false positives (that are
particularly harmful for the performance of an application).
Our adapted cache-sectorized and register-blocked Bloom

filters owe in spirit much to the work by Putze et al. [31]
in its search for more CPU-efficient and cache-efficient fil-
ters. That study introduced multi-blocked Bloom filters
and described SIMD implementations for insert and test,
and showed that reducing k and increasing m with regard
to their information-theoretic optima can significantly im-
prove performance. Our research into performance-optimal
filtering delves deeply into that realm of possibilities. Their
SIMD approach is different, as it spreads the bits of a single
key throughout the full SIMD register, and the lookup in-
struction sequence tests just for one key. Rather than setting
k bits one-by-one, these bits are generated using pseudo-
random, pre-generated bit patterns stored in a table. How
these bits are generated is not described, and the Putze et
al. source code was not available on request, so a perfor-
mance comparison was not possible. Our method looks up
multiple keys in parallel, one key per SIMD lane, profiting
from ever-wider SIMD widths in hardware. For instance,
cache-sectorized lookup uses GATHER-AND-CMP computation se-
quences that resolve 16 keys at once using AVX-512.
A SIMD implementation of classic Bloom filters is de-

scribed in [29]: at every iteration, one bit for multiple tu-
ples is tested (one key per GATHER lane). Keys that have been
resolved are retired and the SIMD lanes they leave empty
get refilled with new tuple data. This approach still suf-
fers from the original Bloom problem that a negative query
needs k cache line accesses. In addition, the refill mechanism
requires significant CPU work.
The Cuckoo filter [15] achieves better precision than Bloom

filters, can represent bags, and allows deletions. However,
the CPU and memory cost of Cuckoo filters make member-
ship tests slower. Our work puts Bloom and Cuckoo filters in
perspective, and our open-source software release provides
highly efficient SIMD implementations for Cuckoo filters,
making them more performance competitive. Another op-
timized Cuckoo filter named the Morton filter is presented
in [8]. It reduces the number of accessed cache lines from

two down to one in most cases. This is achieved by intro-
ducing a new SIMD-friendly data layout, an overflow logic,
and compression. We compared our implementation with
the reported numbers5 on similar hardware (Ryzen Thread-
ripper 1950X), showing that our implementation provides
the same query performance with large filters (≈ 200MB);
we expect it to outperform Morton filters significantly with
smaller (cache-resident) filters, which is not the sweet spot
of Morton filters.
A few alternative and approximate non-Cuckoo hash ta-

bles have been proposed. Both the Quotient filter [4] and
TinySet [14] store signatures in a mini-chained hash table.
Their advantage over Cuckoo filters is a single cache-miss,
as the entire chain fits in a cache line. Their disadvantage is
a more CPU-intensive and SIMD-unfriendly lookup, since a
loop is needed to walk the chain and determine membership.
Space-efficient index structures, in general, have attracted

a lot of interest in database research. Many lightweight data
structures have been proposed to accelerate table scans by
(i) skipping blocks of tuples, e.g., Column Imprints [32]
or MinMax indexes using Small Materialized Aggregates
(SMAs) [26], (ii) skipping scan ranges within blocks, e.g.,
Positional SMAs [22] and Adaptive Range Filters [2], or
(iii) by skipping (parts of) individual tuples, e.g., BitWeav-
ing [24, 30] and ByteSlice [16]. The more recent Column
Sketches [17] are more heavy weight, as they store approx-
imations of columns using lossy compression, but are also
applicable to a wide range of workloads (see Table 1 in
[17]). However, it is an open question, whether Bloom filter
pushdowns can be combined with Column Sketches (or with
any of the aforementioned index structures). A Bloom fil-
ter could be populated with the compressed values from the
sketch column, but this would require the Column Sketches
to have a low false-positive rate and the compressed values
need to be known at build time.

8. CONCLUSION
While the space-precision trade-offs of Bloom filters are

clearly understood, choosing a performance-optimal config-
uration is less obvious – in fact it was already known that
space-optimal Bloom filters are typically not the most effec-
tive configurations. The emergence of new filter types, and
specifically the Cuckoo filter, created yet another question
for practitioners with regard to what filter type and config-
uration to use for their problems. Our work sheds light on
the issue of which filter structure to choose, and with which
parameters, by formally defining performance-optimal fil-
tering and measuring it in our exhaustive experimentation.
Our overall finding is that the amount of work saved (tw)
primarily determines the choice between Bloom and Cuckoo:
high-throughput workloads (small tw) should use a (cache-
sectorized) Bloom filter, whereas slower moving workloads
(high tw), where precision is absolutely essential, should use
a (SIMD) Cuckoo filter.

9. ACKNOWLEDGEMENTS
This work was partially supported by the German Fed-

eral Ministry of Education and Research (BMBF) grant
01IS12057 (FASTDATA andMIRIN), and the DFG projects
NE1677/1-2 and KE401/22. We would like to thank Abe
Wits for his suggestions regarding this research.

5At the time of writing, the source code of Morton filters
was not available for reproducibility.

513

184

10. REFERENCES
[1] Advanced Micro Devices, Inc. Software Optimization

Guide for AMD Family 17h Processors (rev. 3.00).
2017.

[2] K. Alexiou, D. Kossmann, and P. Larson. Adaptive
range filters for cold data: Avoiding trips to siberia.
PVLDB, 6(14):1714–1725, 2013.

[3] P. S. Almeida, C. Baquero, N. M. Preguiça, and
D. Hutchison. Scalable bloom filters. Inf. Process.
Lett., 101(6):255–261, 2007.

[4] M. A. Bender, M. Farach-Colton, R. Johnson,
R. Kraner, B. C. Kuszmaul, D. Medjedovic,
P. Montes, P. Shetty, R. P. Spillane, and E. Zadok.
Don’t thrash: How to cache your hash on flash.
PVLDB, 5(11):1627–1637, 2012.

[5] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[6] P. A. Boncz, T. Neumann, and O. Erling. TPC-H
analyzed: Hidden messages and lessons learned from
an influential benchmark. In Performance
Characterization and Benchmarking - 5th TPC
Technology Conference, TPCTC 2013, Trento, Italy,
August 26, 2013, Revised Selected Papers, pages
61–76, 2013.

[7] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh,
and G. Varghese. An improved construction for
counting bloom filters. In Algorithms - ESA 2006,
14th Annual European Symposium, Zurich,
Switzerland, September 11-13, 2006, Proceedings,
pages 684–695, 2006.

[8] A. Breslow and N. Jayasena. Morton filters: Faster,
space-efficient cuckoo filters via biasing, compression,
and decoupled logical sparsity. PVLDB,
11(9):1041–1055, 2018.

[9] A. Z. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. Internet
Mathematics, 1(4):485–509, 2003.

[10] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
bloomier filter: an efficient data structure for static
support lookup tables. In Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana,
USA, January 11-14, 2004, pages 30–39, 2004.

[11] S. Cohen and Y. Matias. Spectral bloom filters. In
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego,
California, USA, June 9-12, 2003, pages 241–252,
2003.

[12] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey:
Optimal navigable key-value store. In Proceedings of
the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 79–94,
2017.

[13] B. Donnet, B. Baynat, and T. Friedman. Retouched
bloom filters: allowing networked applications to trade
off selected false positives against false negatives. In
Proceedings of the 2006 ACM Conference on Emerging
Network Experiment and Technology, CoNEXT 2006,
Lisboa, Portugal, December 4-7, 2006, page 13, 2006.

[14] G. Einziger and R. Friedman. TinySet - An access
efficient self adjusting bloom filter construction.
IEEE/ACM Trans. Netw., 25(4):2295–2307, 2017.

[15] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher. Cuckoo filter: Practically better than
bloom. In Proceedings of the 10th ACM International
on Conference on Emerging Networking Experiments
and Technologies, CoNEXT ’14, pages 75–88, New
York, NY, USA, 2014. ACM.

[16] Z. Feng, E. Lo, B. Kao, and W. Xu. ByteSlice:
Pushing the envelop of main memory data processing
with a new storage layout. In Proceedings of the 2015
ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 31–46, 2015.

[17] B. Hentschel, M. S. Kester, and S. Idreos. Column
Sketches: A scan accelerator for rapid and robust
predicate evaluation. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, pages 857–872, 2018.

[18] Intel Corporation. Intel R© 64 and IA-32 Architectures
Optimization Reference Manual. 2018.

[19] H. S. W. Jr. Hacker’s Delight, Second Edition.
Pearson Education, 2013.

[20] A. Kirsch and M. Mitzenmacher. Less hashing, same
performance: Building a better bloom filter. Random
Struct. Algorithms, 33(2):187–218, 2008.

[21] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky,
C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht,
M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang,
N. Li, I. Pandis, H. Robinson, D. Rorke, S. Rus,
J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and
M. Yoder. Impala: A modern, open-source SQL engine
for hadoop. In CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 4-7, 2015, Online
Proceedings, 2015.

[22] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz,
T. Neumann, and A. Kemper. Data Blocks: Hybrid
OLTP and OLAP on compressed storage using both
vectorization and compilation. In Proceedings of the
2016 International Conference on Management of
Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 311–326, 2016.

[23] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204–215, 2015.

[24] Y. Li and J. M. Patel. BitWeaving: Fast scans for
main memory data processing. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, pages 289–300, 2013.

[25] M. Mitzenmacher and E. Upfal. Probability and
computing - randomized algorithms and probabilistic
analysis. Cambridge University Press, 2005.

[26] G. Moerkotte. Small Materialized Aggregates: A light
weight index structure for data warehousing. In
VLDB’98, Proceedings of 24rd International
Conference on Very Large Data Bases, August 24-27,
1998, New York City, New York, USA, pages 476–487,
1998.

514

185

[27] R. Pagh and F. F. Rodler. Cuckoo hashing. J.
Algorithms, 51(2):122–144, 2004.

[28] P. Pandey, M. A. Bender, R. Johnson, and R. Patro.
A general-purpose counting filter: Making every bit
count. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 775–787, 2017.

[29] O. Polychroniou and K. A. Ross. Vectorized bloom
filters for advanced SIMD processors. In Tenth
International Workshop on Data Management on New
Hardware, DaMoN 2014, Snowbird, UT, USA, June
23, 2014, pages 6:1–6:6, 2014.

[30] O. Polychroniou and K. A. Ross. Efficient lightweight
compression alongside fast scans. In Proceedings of the
11th International Workshop on Data Management on

New Hardware, DaMoN 2015, Melbourne, VIC,
Australia, May 31 - June 04, 2015, pages 9:1–9:6,
2015.

[31] F. Putze, P. Sanders, and J. Singler. Cache-, hash-,
and space-efficient bloom filters. J. Exp. Algorithmics,
14:4:4.4–4:4.18, Jan. 2010.

[32] L. Sidirourgos and M. L. Kersten. Column imprints:
A secondary index structure. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013, pages 893–904, 2013.

[33] M. Zukowski, M. van de Wiel, and P. A. Boncz.
Vectorwise: A vectorized analytical DBMS. In IEEE
28th International Conference on Data Engineering
(ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012, pages 1349–1350, 2012.

515

186

The VLDB Journal (2020) 29:757–774
https://doi.org/10.1007/s00778-019-00547-y

SPEC IAL ISSUE PAPER

Make the most out of your SIMD investments: counter control flow
divergence in compiled query pipelines

Harald Lang1 · Linnea Passing1 · Andreas Kipf1 · Peter Boncz2 · Thomas Neumann1 · Alfons Kemper1

Received: 14 December 2018 / Revised: 23 April 2019 / Accepted: 13 June 2019 / Published online: 16 July 2019
© The Author(s) 2019

Abstract
Increasing single instruction multiple data (SIMD) capabilities in modern hardware allows for the compilation of data-
parallel query pipelines. This means GPU-alike challenges arise: control flow divergence causes the underutilization of
vector-processing units. In this paper, we present efficient algorithms for the AVX-512 architecture to address this issue.
These algorithms allow for the fine-grained assignment of new tuples to idle SIMD lanes. Furthermore, we present strategies
for their integration with compiled query pipelines so that tuples are never evicted from registers. We evaluate our approach
with three query types: (i) a table scan query based on TPC-H Query 1, that performs up to 34% faster when addressing
underutilization, (ii) a hashjoin query, where we observe up to 25% higher performance, and (iii) an approximate geospatial
join query, which shows performance improvements of up to 30%.

Keywords Control flow divergence · Database systems · Query execution · Query compilation · SIMD · Vectorization ·
AVX-512

1 Introduction

Integrating SIMDprocessingwith database systems has been
studied for more than a decade [28]. Several operations, such
as selection [12,23], join [2,3,10,26], partitioning [20], sort-
ing [5], CSV parsing [17], regular expression matching [25],

An excerpt of this invited paper in the special issue “Best of DaMoN”
appeared in DaMoN 2018.

B Harald Lang
harald.lang@in.tum.de

Linnea Passing
linnea.passing@tum.de

Andreas Kipf
andreas.kipf@in.tum.de

Peter Boncz
boncz@cwi.nl

Thomas Neumann
thomas.neumann@in.tum.de

Alfons Kemper
alfons.kemper@in.tum.de

1 Technical University of Munich, Boltzmannstr. 3, 85748
Garching, Germany

2 Centrum Wiskunde & Informatica, Science Park 123, 1098
XG Amsterdam, The Netherlands

and (de-)compression [15,23,27] have been accelerated using
the SIMDcapabilities of the x86 architectures. Inmore recent
iterations of hardware evolution, SIMD instruction sets have
become even more popular in the field of database systems.
Wider registers, higher degrees of data-parallelism, and com-
prehensive support for integer data has increased the interest
in SIMD and led to the development of many novel algo-
rithms.

SIMD is mostly used in interpreting database systems [9]
that use the column-at-a-time or vector-at-a-time execution
model [4]. Compiling database systems [9] like HyPer [8]
barely use it due to their data-centric tuple-at-a-time exe-
cution model [18]. In such systems, therefore, SIMD is
primarily used in scan operators [12] and in string process-
ing [17].

With the increasing vector-processing capabilities for
database workloads in modern hardware, especially with the
advent of the AVX-512 instruction set, query compilers can
now vectorize entire query execution pipelines and benefit
from the high degree of data-parallelism [6]. With AVX-512,
the width of vector registers increased to 512 bit, allowing
for the processing of an entire cache line in a single instruc-
tion. Depending on the bit-width of the attribute values, data
elements from up to 64 tuples can be packed into a single
register.

123

187

758 H. Lang et al.

Vectorizing entire query pipelines raises new challenges.
One such challenge is keeping all SIMD lanes busy during
query evaluation, as not all in-flight tuples follow the same
control flow. For instance, some might is disqualified dur-
ing predicate evaluation, while others may not find a join
partner later on and get discarded.Whenever a tuple gets dis-
qualified, the corresponding SIMD lane is affected. A scalar
(non-vectorized) pipeline would take a branch and thereby
return the control flow to a tuple producing operator to fetch
the next tuple. In a vectorized pipeline, this is only possible
iff all in-flight tuples have been disqualified. If this is not
the case, the query of the subsequent operator still needs to be
executed. IgnoringSIMDlanes containingdisqualified tuples
is the easiest way to deal with this situation, as it does not
introduce branching logic and only requires a small amount
of bookkeeping. A small bitmap is sufficient to keep track
of disqualified elements. The bitmap is used at the pipeline
sink, when the (intermediate) result is materialized, making
sure that disqualified elements are not written to the query
result set. The downside of this approach is, that within the
pipeline, all instructions are performed on all SIMD lanes
regardless of whether the SIMD lane contains an active or
an inactive element. All operations that are performed on
inactive elements can be considered overhead, as they do
not contribute to the result. In other words, not all SIMD
lanes perform useful work and if lanes contain disqualified
elements, the vector-processing units (VPUs) can be con-
sidered underutilized. Therefore, efficient algorithms are
required to counter the underutilization of vector-processing
units. In [16], this issue was addressed by introducing (mem-
ory)materialization points immediately after each vectorized
operator. However, with respect to the more strict definition
of pipeline breakers given in [18], materialization points can
be considered as pipeline breakers because tuples are evicted
from registers to slower (cache) memory. In this work, we
present alternative algorithms and strategies that do not break
pipelines. Further, our approach can be applied at the intra-
operator level as well as at operator boundaries.

The remainder of this paper is organized as follows. In
Sect. 2,webrieflydescribe the relevantAVX-512 instructions
that we use in our algorithms. The potential performance
degradation caused by underutilization in holistically vec-
torized pipelines is discussed in Sect. 3. In Sect. 4, we
introduce efficient algorithms to counter underutilization,
and in Sect. 5, we present strategies for integrating these
algorithms with compiled query pipelines. The experimen-
tal evaluation of the proposed algorithms using a table scan
query, a hashjoin query, and an approximate geospatial join
query is given in Sect. 6. The experimental results are sum-
marized anddiscussed inSect. 7, followedbyour conclusions
in Sect. 8.

2 Background

In this section, we briefly describe the key features of the
AVX-512 instruction set that we use in our algorithms in
Sect. 4. In particular,we cover the basics of vector predication
as well as the permute and the compress/expand instructions.
Mask instructions: Almost all AVX-512 instructions sup-
port predication. These instructions allow to perform a vector
operation only on those vector components (or lanes) spec-
ified by a given bitmask, where the i th bit in the bitmask
corresponds to the i th lane. For example, an add instruction
in its simplest form requires two (vector) operands and a
destination register that receives the result. In AVX-512, the
instruction exists in two additional variants:

1. Merge masking: The instruction takes two additional
arguments, a mask and a source register, for example,
dst = mask_add(src,mask,a,b). The addition is per-
formed on the vector components in a and b specified by
the mask. The remaining elements, where the mask bits
are 0, are copied from src to dst at their corresponding
positions.

2. Zero masking: The functionality is basically the same
as that of merge masking, but instead of specifying an
additional source vector, all elements in dst are set to
zero if the corresponding bit in the mask is not set. Zero
masking is, therefore, (logically) equivalent to merge
masking with src set to zero: maskz_add(mask,a,b)
≡ mask_add(

#»
0 ,mask,a,b)). Thus, zero masking is a

special case of merge masking.

Masked instructions can be used to prevent individual vector
components from being altered, e.g., x = mask_add(x,

mask,a,b).
Typically, masks are created using comparison instruc-

tions and stored in special mask registers, which is a
significant improvement over earlier SIMD instruction sets,
in which these masks were stored in 256-bit vector registers.
Permute: The permute instruction shuffles elements within
a vector register according to a given index vector:

[d,a,d,b]
︸ ︷︷ ︸

result vector

= permute([3,0,3,1]
︸ ︷︷ ︸

index vector

, [a,b,c,d]
︸ ︷︷ ︸

input vector

).

It is noteworthy, that the permute instruction has already
been available in earlier instruction sets. But due to the
doubled register size, twice as many elements can now be
processed at once. Further, in our application, we achieve
four times higher throughput compared to the earlier AVX2
instruction set. The reason is, that assigning new elements to
idle SIMD lanes is basically amerge operation of the content
of two vector registers. In combination with merge masking,
this operation can be performed using a single instruction,

123

188

Make the most out of your SIMD investments: counter control flow divergence in compiled… 759

whereas with AVX2, two instructions need to be issued, (i) a
permute to move the elements into their desired SIMD lanes
and (ii) a blend to select the desired lanes from two source
registers and merge them into a destination register.
Compress/Expand: Typically, before a permute instruction
can be issued, an algorithm needs to determine the afore-
mentioned index vector, which used to be a tedious task
that often induced significant overheads, such as additional
accesses into predefined lookup tables [7,12,16,22]. The key
instructions introduced with AVX-512 to efficiently solve
these types of problems, are called compress and expand.
Compress stores the active elements (indicated by a bitmask)
contiguously into a target register, and expand stores the con-
tiguous elements of an input at certain positions (specified
by a write mask) in a target register:

[a,d,0,0] = compress(1001, [a,b,c,d])

[0,a,0,b] = expand(0101, [a,b,c,d])

Both instructions come in two flavors: (i) read/write from/to
memory and (ii) directly operate on registers.

Our algorithms in general require both, permute and
compress/expand instructions. There is only one special
case, where a permute suffices, which we describe in the
later Sect. 4.

3 Vectorized pipelines

As mentioned in the introduction, the major difference
between a scalar (i.e., non-vectorized) pipeline, as pioneered
by HyPer [8], and a vectorized pipeline is that in the latter,
multiple tuples are pushed through the pipeline at once. This
impacts the control flowwithin the query pipeline. In a scalar
pipeline, whenever the control flow reaches any operator, it
is guaranteed that there is exactly one tuple to process (tuple-
at-a-time). By contrast, in a vectorized pipeline, there are
several tuples to process. However, because the control flow
is not necessarily the same for all tuples, some SIMD lanes
may become inactive when a conditional branch is taken.
Such a branch is only taken if at least one element satisfies
the branch condition. This implies that a vector of length
n may contain up to n − 1 inactive elements, as depicted
in Fig. 1. The figure shows a simplified control flow graph
(CFG) for an example query pipeline that consists of a table
scan, a selection, and a join operator. The directed edges rep-
resent the branching logic. For instance, the no match edges
are taken if a tuple is disqualified in the selection or the join
operator. The index traversal (self-)edge is taken when an
index lookup is performed. For instance, a hash table or tree
lookup might require one to follow multiple bucket pointers

out

σ

scan

Index
index
traversal

no
match

0
1
2
3
4
5
6
7

t

Control flow graph: SIMD lane u�liza�on:

sc
an

σ ou
t

sc
an

σ ...

SI
M

D
la

ne
s

x x x x x x x
x x

x
x
x
xx

x
xx

x
x

xxx

x x x x x
xx

x x x

Fig. 1 During query processing, individual SIMD lanes may (tem-
porarily) become inactive due to different control flows. The resulting
underutilization of vector-processing units causes performance degra-
dations. We propose efficient algorithms and strategies to fill these gaps

until a join partner for the current tuples is found. The right-
hand side of Fig. 1 visualizes the SIMD lane utilization over
time. Initially, in the scan operator, all SIMD lanes are active
(green color). Inside the select or join operator, elements are
disqualified (marked with a X), but the no match branch is
not taken, because some elements are still active. Lane 4 rep-
resents a different situation, where an SIMD lane becomes
temporarily inactive. In that example, the element in lane
4 finds its join partner in the very first iteration of the index
lookup. However, lanes 1 and 6 need three iterations until the
index lookup terminates. During that time, lane 4 is idle and
afterward, it becomes active again.

In general, all conditional branches within the query
pipeline are potential sources of control flow divergence
and, therefore, a source of the underutilization of VPUs,
whereas, disqualified elements cause underutilization in all
subsequent operators and lookups in index structures cause
intra-operator underutilization. The latter is an inherent
problem when traversing irregular pointer-based data struc-
tures in an SIMD fashion [24]. To avoid underutilization
through divergence, we need to dynamically assign new
tuples to idle SIMD lanes, possibly at multiple “points of
divergence” within the query pipeline. We refer to this pro-
cess as pipeline refill.

4 Refill algorithms

In this section, we present our refill algorithms for AVX-512,
which we later integrate into compiled query pipelines (cf.,
Sect. 5). These algorithms essentially copy new elements to
desired positions in a destination register. In this context,
these desired positions are the lanes that contain inactive
elements. The active lanes are identified by a small bitmask
(or simply mask), where the i th bit corresponds to the i th
SIMD lane. An SIMD lane is active if the corresponding bit
is set, and vice versa. Thus, the bitwise complement of the
given mask refers to the inactive lanes and, therefore, to the

123

189

760 H. Lang et al.

ac�ve elements in des�na�on

write mask
bitwise not

0 1 2 4 7
des�na�on vector register

1 1 1 0 1 0 1 1

0 0 0 1 0 1 0 0

6 7 8 9

read posi�on

......
data

8

expand load

memory

69
1

2

10 11 12 13

Fig. 2 Refilling empty SIMD lanes from memory using the AVX-512
expand load instruction

write positions of new elements.We distinguish between two
cases as follows: (i) where new elements are copied from a
source memory address and (ii) where elements are already
in vector registers.

In the following, we frequently use various constant val-
ues, which we write in capital letters. For instance, ZERO and
ALL refer to constant values where all bits are zero or one,
respectively. The vector constant SEQUENCE contains an inte-
ger sequence starting at 0 and LANE_CNT refers to the number
of SIMD lanes.

4.1 Memory to register

Refilling from memory typically occurs in the table scan
operator, where contiguous elements are loaded from mem-
ory (assuming a columnar storage layout). AVX-512 offers
the convenient expand load instruction that loads contigu-
ous values from memory directly into the desired SIMD
lanes (cf., Fig. 2). One mask instruction (bitwise not) is
required to determine the write mask and one vector instruc-
tion (expand load) to execute the actual load. Overall, the
simple case of refilling from memory is supported by AVX-
512 directly out of the box.

The table scan operator typically produces an additional
output vector containing the tuple identifiers (TIDs) of the
newly loaded attribute values. The TIDs are derived from the
current read position and are used, for example, to (lazily)
load attribute values of a different column later on or to recon-
struct the tuple order. Figure 3 illustrates, how the content of
the TID vector register is updated, using the read position
and write mask from Fig. 2.

4.2 Register to register

Moving data between vector registers ismore involved. In the
most general case, we have a source and a destination regis-
ter that contain both active and inactive elements at random
positions. The goal is to move as many elements as possible
from the source to the destination. This can be achieved using
a single masked permute instruction. But before the permu-
tation instruction can be issued, the permutation indices need
to be computed, based on the positions of active elements in

write mask

0 1 2 4 6 7
TID vector register

0 0 0 1 0 1 0 0

8

0 1 2 4 5 7
SEQUENCE

3 6

8 8 8 8 8 88 8
read posi�on vector

8
read posi�on

broadcast

8 9

add

10 11 12 13 14 15

9

1

2

expand 3

Fig. 3 TIDs are derived from the current read position and assigned to
a TID vector register

ac�ve elements in source

-1 -1 -1 -1 -1 -1

perm. indices

0

1 4

0 2 5
SEQUENCE

3 6

write mask
0 0 0 1 0 1 0 0

00101 0 1

1 4 7 -1

1 4 7

-1 -1 -1 -1

-1 -1 -1 -1 -1 -1

ALL

-1 -1

permuta�on mask
0 0 0 1 0 1 0 0

expand

compress

compare not equal

1

2

3

Fig. 4 Computation of the permutation indices and the permutation
mask based on positions of the active elements in the source register
and the inactive elements in the destination register

the source and the destination vector registers. This is illus-
trated in Fig. 4, where, as in the previous examples, the write
mask refers to the inactive lanes in the destination register.
In total, three vector instructions are required to compute
the permutation indices and an additional permutation mask.
The latter is required in case the number of active elements
in the source is smaller than the number of empty lanes in the
destination vector. In that case, the destination register still
contains some inactive lanes, and the corresponding bitmask
must be updated accordingly.

Once the permutation indices are computed, elements can
be moved between registers accordingly. Notably, the algo-
rithm can be adapted to move elements directly instead of
computing the permutation indices first. However, if ele-
ments need to be moved between more than one source/des-
tination vector pair, the additional cost of computing the
permutation amortizes immediately with the second pair. In
practice, the permutation is typically applied multiple times,
for example, when multiple attributes are pushed through the
pipeline or to keep track of the TIDs.

123

190

Make the most out of your SIMD investments: counter control flow divergence in compiled… 761

permuta�on mask
0 0 0 1 0 1 0 0

ALL MASK
1 1 1 1 1 1 1 1

compressed mask
1 1 0 0 0 0 0 0

pext
-1 -1 -1 -1 -1

ALL

-1 -1-1

-1 0 0 0 00 0-1

ac�ve elements in source
0 00101 0 1

0 0 00 0

0 0 0
ZERO

0 0
remaining elements in source
0 00000 0 1

-1 0-1

0 0 0

expand

move (zero masking)

compare equal

1

2

3

4

Fig. 5 If not all elements could be moved from the source to the desti-
nation register, the source mask needs to be updated accordingly

In the general case, there are no guarantees about the num-
ber of (active) elements nor their positions within the vector
register. For example, the elements in the source may not be
entirely consumed or the destination vector may still con-
tain inactive elements. Thus, it is necessary to update source
and destination masks accordingly. Updating the destina-
tion mask is straightforward by using a bitwise or with
the previously computed permutation mask. Updating the
source mask is less obvious as illustrated in Fig. 5. As the
figure shows, updating the source mask is as expensive as
preparing the permutation. However, if it is guaranteed that
all source elements fit into the destination vector, this phase
of the algorithm can be skipped altogether. Listing 1 shows
the full algorithm formulated in C++.

In summary, a typical refill looks as follows:

[...]
//Prepare the refill.
fill_rr r(src_mask, dst_mask);
//Copy elements from src to dst.
r.apply(src_tid, dst_tid);
r.apply(src_attr_a, dst_attr_a);
r.apply(src_attr_b, dst_attr_b);
r.apply(..., ...);
//Update the destination mask,
r.update_dst_mask(dst_mask);
//and optionally the source mask.
r.update_src_mask(src_mask);
[...]

4.3 Variants

Depending on the position of the elements, cheaper algo-
rithms can be used. Especially when the vectors are in a
compressed state, meaning that the active elements are stored

contiguously, it is considerably cheaper to prepare the per-
mutation (compare Listing 1 and 2). Compared to the first
algorithm,which can permute elements from/to randomposi-
tions, the second algorithm does not need any bit masks to
refer to the active lanes. Instead, it is sufficient to pass in the
number of active elements. In Listing 2, we refer to these
numbers as src_cnt and dst_cnt. Based on these, the per-
mutation indices, as well as the permutation mask, can be
computed without any crosslane operations, such as com-
press/expand. A noteworthy property of the second SIMD
algorithm is that the source vector remains in a compressed
state even if not all elements fit into the destination vector.

Listing 1 Generic refill algorithm

struct fill_rr {
__mmask8 permutation_mask;
__m512i permutation_idxs;

//Prepare the permutation.
fill_rr(const __mmask8 src_mask,

const __mmask8 dst_mask) {
__m512i src_idxs = _mm512_mask_compress_epi64(

ALL, src_mask, SEQUENCE);
__mmask8 write_mask = _mm512_knot(dst_mask);
permutation_idxs = _mm512_mask_expand_epi64(

ALL, write_mask, src_idxs);
permutation_mask = _mm512_mask_cmpneq_epu64_mask(

write_mask, permutation_idxs, ALL);
}

//Move elements from ’src’ to ’dst’.
void apply(const __m512i src, __m512i& dst) const{
dst = _mm512_mask_permutexvar_epi64(
dst, permutation_mask, permutation_idxs, src);

}

void update_src_mask(__mmask8& src_mask) const {
__mmask8 compressed_mask =
_pext_u32(~0u, permutation_mask);

__m512i a =
_mm512_maskz_mov_epi64(compressed_mask, ALL);

__m512i b =
_mm512_maskz_expand_epi64(src_mask, a);

src_mask =
_mm512_mask_cmpeq_epu64_mask(src_mask, b, ZERO);

}

void update_dst_mask(__mmask8& dst_mask) const {
dst_mask =
_mm512_kor(dst_mask, permutation_mask);

}
};

These two foundational SIMD algorithms cover the
extreme cases where (i) active elements are stored at random
positions and (ii) active elements are stored contiguously.
Based on these cases, the algorithms can easily be adapted so
that only one vector needs to be compressed, which is useful
when vector registers are used as tiny buffers because those
should alwaysbe in a compressed state to achieve thebest per-
formance. In total, there are four different algorithms. Each
algorithm has two different flavors: (i) where all elements
from the source register are guaranteed to fit into the desti-
nation register or (ii) where not all elements can be moved
and therefore elements remain in the source register. We do

123

191

762 H. Lang et al.

not show all variants here, but have released the C++ source
code1 under the BSD license.

Listing 2 Refill algorithm for compressed vectors

struct fill_cc {
__mmask8 permutation_mask;
__m512i permutation_idxs;
uint32_t cnt;

//Prepare the permutation.
fill_cc(const uint32_t src_cnt,

const uint32_t dst_cnt) {
const auto src_empty_cnt = LANE_CNT - src_cnt;
const auto dst_empty_cnt = LANE_CNT - dst_cnt;
//Determine the number of elements to be moved.
cnt = std::min(src_cnt, dst_empty_cnt);
bool all_fit = (dst_empty_cnt >= src_cnt);
auto d = all_fit ? dst_cnt : src_empty_cnt;
const __m512i d_vec = _mm512_set1_epi64(d);
//Note: No compress/expand instructions required
permutation_idxs =
_mm512_sub_epi64(SEQUENCE, d_vec);

permutation_mask = ((1u << cnt) - 1) << dst_cnt;
}

//Move elements from ’src’ to ’dst’.
void apply(const __m512i src, __m512i& dst) const{
dst = _mm512_mask_permutexvar_epi64(
dst, permutation_mask, permutation_idxs, src);

}

void update_src_cnt(uint32_t& src_cnt) const {
src_cnt -= cnt;

}

void update_dst_cnt(uint32_t& dst_cnt) const {
dst_cnt += cnt;

}
};

5 Refill strategies

We discuss the integration of these refill algorithms in data-
centric compiled query pipelines. Such pipelines turn a query
operator pipeline into a for-loop, and the code generated by
the various operators is nested bottom-up in the body of
such a loop [18]. Relational operators in this model generate
code in two methods, namely, consume() and produce(),
which are called in a depth-first traversal of the query tree:
produce() code is generated before generating the code for
the children, and consume() afterward.

The main idea of data-centric execution with SIMD is to
insert checks for each operator that control the number of
tuples in play, i.e., if-statements nesting the rest of the body.
Such an if-statement ensures that its body only gets executed
if the SIMD registers are sufficiently full. Generally speak-
ing, operator code processes input SIMD data computed by
the outer operator and refills the registers it works with and
the ones it outputs.

We identify two base strategies for applying this refilling.

1 Source code: https://github.com/harald-lang/simd_divergence.

5.1 Consume everything

The consume everything strategy allocates additional vector
registers that are used to buffer tuples. In the case of under-
utilization, the operator defers the processing of these tuples.
This means the body will not be executed in this iteration
(if-condition not satisfied) but instead (else) the active tuples
will be moved to these buffer registers. It uses the refill algo-
rithms from the previous section both to move data to the
buffer and to emit buffered tuples into the unused lanes in
a subsequent iteration. Listing 3 shows the code skeleton
as it would be generated by such a buffering operator. The
THRESHOLD parameter specifies when a refill is triggered dur-
ing query execution. Depending on the situation, the costs for
refilling might not amortize if only a few lanes contain inac-
tive elements. But if the remaining pipeline is very expensive,
setting the threshold to the number of SIMD lanes could be
the best option. The important thing to note here is that all
SIMD lanes are empty when the control flow returns to the
previous operator, thus we call it consume everything.

Compared to a scalar pipeline, this strategy only requires
a minor change to the push model: handling a special case
when the pipeline execution is about to terminate, flushing
the buffer(s). The essence is that buffering only takes place
in SIMD registers and it specifically does not cause extra
in-memory materialization.

Figure 6a, b illustrates the effects of applying a refill
strategy to a query pipeline by visualizing the SIMD lane
utilization over time. The structure of the query is similar to
the one shown in Fig. 1 and consists of a scan, a selection, a
join, and a sink to where the output is written. The stage indi-
cator on top of the plot refers to the node in the control flow
graph in Fig. 1. In Fig. 6a, the query is executed without
divergence handling, and the white areas refer to under-
utilization. Figure 6b visualizes the same workload with
in-register buffering, following consume everything seman-
tics. The purple and black vertical lines indicate that tuples
arewritten to the buffers, or read from the buffer, respectively.
Compared to the divergent implementation, the lane utiliza-
tion has significantly increased, and the overall execution
time has reduced. In this example, we require the utilization
to be at least 75% (six out of eight lanes need to be active).
Underutilization is observed onlywhen the execution is about
to finish, which triggers a pipeline flush, where all (poten-
tially) buffered tuples need to be processed regardless of the
minimum utilization threshold.

5.2 Partial consume

As the name suggests, the second base strategy no longer
expects the consume() code to process the entire input. The
consume code can decide to defer execution by returning the
control flow to the previous operator and leave the active ele-

123

192

Make the most out of your SIMD investments: counter control flow divergence in compiled… 763

0

1

2

3

4

5

6

7

Stage

L
an

es

t

0

1

2

3

4

5

6

7

Stage

L
an

es

t

0

1

2

3

4

5

6

7

Stage

L
an

es

t
(a) Divergent (b) Buffered (c) Partial

Fig. 6 SIMD lane utilization using different strategies. In a, no refilling
is performed to visualize the divergence.bUses the consume everything
strategy, which performs refills when the utilization falls below 75%.
The dashed purple lines indicate a write to buffer registers, black lines

a read. c shows a partial consume throughout the entire pipeline with
the minimum required utilization set to 50%. Lanes colored in purple
are protected (color figure online)

Listing 3 Code skeleton of a buffering operator.

[...]
auto active_lane_cnt = popcount(mask);
if (active_lane_cnt + buffer_cnt < THRESHOLD

&& !flush_pipeline) {
[...]//Buffer the input.

}
else {

const auto bail_out_threshold =
flush_pipeline ? 0

: THRESHOLD;
while (active_lane_cnt + buffer_cnt >

bail_out_threshold) {
if (active_lane_cnt < THRESHOLD) {

[...]//Refill lanes with buffered elements.
}
//===---------------------------------===//
//The actual operator code and
//consume code of subsequent operators.
[...]
//===---------------------------------===//
active_lane_cnt = popcount(mask);

}
if (likely(active_lane_cnt != 0)) {

[...]//Buffer the remaining elements.
}

}
//All lanes empty (consume everything semantics).
mask = 0;
[...]

ments in the vector registers. New tuples are assigned only
to inactive lanes by one of the preceding operators, typi-
cally a table scan. Naturally, the active lanes, that contain
deferred tuples, must not be overwritten or modified by other
operators. We refer to these elements (or to their correspond-
ing lanes) as being protected. Another way of looking at a
protected lane is that the lane is owned by a different opera-
tor. When an owning operator completes the processing of a
tuple, it transfers the ownership to the subsequent operator.
Alternatively, if the tuple is disqualified, it gives up owner-
ship to allow a tuple producing operator to assign a new tuple
to the corresponding lane.

Lane protection requires additional bookkeeping on a
per operator basis. Each operator must be able to distin-

Listing 4 Code skeleton of a partial consume operator.

[...]
auto active_lane_cnt = popcount(mask);
if (active_lane_cnt < THRESHOLD && !flush_pipeline){
//Take ownership of newly arrived elements.
this_stage_mask = mask ^ later_stage_mask;

}
else {
//===---------------------------------===//
//The actual operator code and
//consume code of subsequent operators.
[...]
//The later_stage_mask is set by the
//consumer.
//===---------------------------------===//

}
//Protect lanes in the preceding operator.
mask = this_stage_mask | later_stage_mask;
[...]

guish between tuples that (i) have just arrived, (ii) have been
protected by the operator itself in an earlier iteration and
(iii) tuples that have already advanced to later stages in the
pipeline. To do so, an operator maintains two masks, one
that identifies the lanes that are owned by the current opera-
tor and another one that identifies lanes that are owned by a
later operator. Listing 4 shows the structure of such an oper-
ator, where this_stage_mask and later_stage_mask are
part of the operator’s state and mask is used to communi-
cate which lanes contain active elements (regardless of their
stage).

Figure 6c shows how the partial consume strategy affects
the lane utilization with the minimum lane utilization thresh-
old set to 50%. The lanes colored in purple are in a protected
state.Compared to the divergent implementation, the laneuti-
lization has increased. However, if we take protected lanes
into account and consider them as idle, the overall utiliza-
tion decreases. Thus, the example workload, used in Fig. 6,
reveals an important drawback. If the lanes become protected
in later stages of the pipeline, these lanes can cause signifi-

123

193

764 H. Lang et al.

cant underutilization in the preceding operators. We discuss
this issue, among other things, in the following section.

5.3 Discussion and implications

The two strategies are notmutually exclusive.Within a single
pipeline, both strategies can be applied to individual opera-
tors as long as buffering operators are aware of protected
lanes (mixed strategy). Moreover, the query compiler might
decide to not apply any refill strategy to certain operators.
Especially, when a sequence of operators is quite cheap,
divergence might be acceptable as long as the costs for refill
operations are not amortized. Naturally, this is a physical
query optimization problem that we will leave for future
work. Nevertheless, we briefly discuss the advantages and
disadvantages, as this is the first work in which we present
the basic principles of vector-processing in compiled query
pipelines.

As mentioned above, consume everything requires addi-
tional registers,which increases the register pressure andmay
lead to spilling. partial consume allocates additional registers
as well, but these are restricted to (smaller) mask registers.
Therefore, it is unlikely to be affected by (potential) perfor-
mance degradation due to spilling.

The second major difference lies in the cost of refilling
empty lanes. In a pipeline that follows the partial consume
strategy, the very first operator, that is, the pipeline source,
is responsible for refilling empty lanes. If other operators
experience underutilization, they return the control flow to
the previous operator while retaining ownership of the active
lanes. This cascades downward until the source operator is
reached, as shown in Fig. 6c. All operators between the
pipeline source and the operator that returned the control
flow may be subject to underutilization because all lanes in
later stages are protected. The costs of refilling, therefore,
depend on the length of the pipeline and the costs of the pre-
ceding operators. In general, the costs increase in the later
stages. Nevertheless, partial consume can improve query per-
formance if it is applied only to the very first operators.
By contrast, the refilling costs of buffering operators do not
depend on the pipeline length. Instead, the crucial factor gov-
erning these costs is the number of required buffer registers.
The greater the number of buffers, the greater the number
of permute instructions that need to be executed, whereas
the number of required buffers depends on (i) the number of
attributes passed along the pipeline and optionally on (ii) the
number of registers required to save the internal state of the
operator (e.g., a pointer to the current tree node).

6 Evaluation

We evaluate our approach with two major sources of con-
trol flow divergence, (i) predicate evaluation as part of a

Table 1 Hardware platforms

Intel Intel
Knights landing Skylake-X
(KNL) (SKX)

Model Phi 7210 i9-7900X

Cores (SMT) 64 (× 4) 10 (× 2)

SIMD [bit] 2 × 512 2 × 512

Max. clock rate [GHz] 1.5 4.5

L1 cache 64 KiB 32 KiB

L2 cache 1 MiB 1 MiB

L3 cache – 14 MiB

table scan and (ii) a hash join. Additionally, we experiment
with a more complex operator, an approximate geospatial
join. The experiments were conducted on an Intel Skylake-X
(SKX) and an Intel Knights Landing (KNL) processor (cf.,
Table 1). The experiments were implemented in C++ and
compiled with GCC 5.4.0 at optimization level three (-O3)
and the target architecture set to knl. If not stated other-
wise, we ran the experiments in parallel using two threads
per core.2 Wedispatched thework in batches to the individual
threads using batch sizes between 216 and 220 tuples. On the
KNL platform, we placed the data in high-bandwidth mem-
ory (HBM); otherwise, the experiments would have been
dominated by memory stalls. To measure the throughputs,
we let each experiment run for at least three seconds, possi-
bly consuming the input data multiple times.

6.1 Table scan

To evaluate the effects of divergence handling in table
scans, we integrate our refill algorithms into the AVX-512
implementation of TPC-HQuery 1 ofGubner et al. [6]. Addi-
tionally, we implemented and integrated the materialization
approach as proposed by Menon et al. in [16].

From a high-level perspective, TPC-H Query 1 (or short
Q1) is a structurally simple query that operates on a sin-
gle fact table (lineitem) with a single scan predicate.
It involves several fixed-point arithmetic operations in the
aggregation based on the group by clause. In total, five addi-
tional attributes are accessed to compute eight aggregated
values per group. Almost all tuples survive the selection (i.e.,
selectivity ≈0.98). Therefore, in its original form, Q1 does
not suffer from control flow divergence. To simulate control
flow divergence and the resulting underutilization of SIMD

2 Please note that throughout our (multi-threaded) experiments, we did
not observe any performance penalties through downclocking. Both
processors KNL and SKX run stable at 1.4GHz and 4.0GHz, respec-
tively.

123

194

Make the most out of your SIMD investments: counter control flow divergence in compiled… 765

0

5000

10000

15000

0.00001 0.0001 0.001 0.01 0.1 1

selectivity (log scale)

th
ro

ug
hp

ut
 [M

tp
s]

scalar
divergent
partial
buffered
materialization

0

10000

20000

30000

40000

0.00001 0.0001 0.001 0.01 0.1 1

selectivity (log scale)

th
ro

ug
hp

ut
 [M

tp
s]

scalar
divergent
partial
buffered
materialization

(a) SKX (b) KNL

Fig. 7 Performance of TPC-H Q1 with varying selectivities

lanes, we vary the selectivity of the scan predicate on the
shipdate attribute.

We evaluate and compare a scalar3 non-SIMD) implemen-
tation with four AVX-512 implementations:

Divergent: The divergent implementation refers to the
implementation published by the authors of [6], with a
minor modification. In the original version, all tuples are
pushed through the query pipeline and disqualified ele-
ments are ignored in the final aggregation by setting the
lane bitmask accordingly. For our experiments, we intro-
duced a branch behind the predicate evaluation code,
which allows to return the control flow to the scan oper-
ator iff all SIMD lanes contain disqualified elements. In
the case of Q1, the predicate is evaluated on 16 elements
in parallel.
Partial/Buffered: The partial and buffered implementa-
tionsmakeuse of our refill algorithms.Amajor difference
to the divergent implementation is that it can no longer
make use of aligned SIMD loads. Instead, it relies on the
gather instruction to load subsequent attribute values.
The select operator, therefore, produces a tuple identifier
(TID) list that identifies the qualifying tuples. The subse-
quent operators use the TIDs to compute the offset from
where to load the additional attributes. Both implementa-
tions are parameterizedwith theminimum lane utilization
threshold, which limits the degree of underutilization.
Materialization: The materialization implementation
makes use of small (memory) buffers to consecutively
store the output. Similarly to our approach, the select
operator produces a TID list. The code of the subsequent
operator(s) is executed when the buffer is (almost) full.

3 Scalar refers to an implementation which does not use any SIMD
instructions. We verified, that the compiler did not auto-vectorize the
query pipelines.

The buffered TID list is then consumed (scanned) simi-
larly to a table scan in the subsequent operator. Notably,
the output contains only TIDs that belong to qualifying
tuples, which is in contrast to our approach, where SIMD
lanes may contain non-qualifying tuples, depending on
the chosen threshold.

Figure 7a shows the performance results for varying selec-
tivities (between 0.00001 and 1.0) on SKX. In the extreme
cases, all implementations perform similarly. Interestingly,
this includes the scalar implementation, which indicates that
the SKX processor performs extremely well with respect to
IPC, branch prediction, and out of order execution. With
intermediate selectivities, divergence handling can make a
significant difference. For instance, with sel = 0.01 the
difference between the divergent and materialization imple-
mentation is 2.6 billion tuples per second (1.5 billion over
scalar). The graph also shows that the materialization domi-
nates over almost the entire range. Our approach (buffered)
can compete, but is slightly slower in most cases. On KNL
(Fig. 7b), we observed similar effects. The most impor-
tant difference is that the divergent SIMD implementation
is significantly slower than the scalar implementation with
selectivities larger than 0.0001. Divergence handling extends
the range in which SIMD optimizations become beneficial.

For this experiment, we varied the utilization threshold for
partial and buffered as well as the buffer size for materializa-
tion and we reported only the best performing variant. In the
following,we investigate the impact of these parameters. Fig-
ure 8a shows the performance of thematerialization approach
for varying buffer sizes and a fixed selectivity (sel = 0.01).
Peak performance for Q1 is achieved with a memory buffer
of size 1024 elements or larger.

In Fig. 8b, we vary the SIMD lane utilization threshold
for our approaches. The performance of the buffered imple-

123

195

766 H. Lang et al.

0

2500

5000

7500

64 512 4096

buffer size in number of tuples

th
ro

ug
hp

ut
 [M

tp
s]

materialization
0

2500

5000

7500

4 8 12 16

lane utilization threshold

th
ro

ug
hp

ut
 [M

tp
s]

buffered
partial

(a) Varying buffer sizes. (b) Varying thresholds.

Fig. 8 Performance of TPC-H Q1 performance on SKX when varying algorithm parameters

mentation increases with the threshold. Peak performance is
reached when only qualifying tuples pass the select opera-
tor (threshold = 16). But the performance only gradually
increases for a threshold ≥ 6. The reason for this behav-
ior is that non-qualifying tuples only cause computational
overhead in the remaining pipeline but no memory accesses,
which would be significantly more expensive. On the other
hand, the partial consume strategy favors a threshold that is
approximately half the number of SIMD lanes. If the thresh-
old is too low (left-hand side), many non-qualifying tuples
pass the filter, and if it is set too high (right-hand side), the
control flow is often returned to the scan code to fetch (a few)
more values.

6.2 Hashjoin

Probing a hash table is a search operation in a pointer-based
data structure and therefore a prime source of control flow
divergence. Here, we evaluate the very common foreign-key
join of two relations followed by (scalar) aggregations. The
primary key relation constitutes the build size in such a way
that the join is non-expanding, i.e., for a probe tuple, at most
one join partner exists. The two input relations each have two
8-byte integer attributes: a key and a value. The relations are
joined using the keys.Afterward, three aggregations are com-
puted on the join result: the number of tuples, the sum of the
values from the left input relation, and the sum of the values
from the right input relation. Our hash table implementation
stores the first key-value pair per hash bucket in the hash
table dictionary. In case of collisions, additional key-value
pairs are stored in a linked list per hash bucket.

We evaluate and compare a scalar (non-SIMD) implemen-
tation with four AVX-512 implementations:

Divergent: This SIMD implementation handles eight
tuples in parallel. The lane bitmask is used to keep track
of disqualified tuples, such that they can be ignored at the
end of the pipeline. As in the table scan evaluation, we
add a branch to allow for an early return to the beginning
of the pipeline iff all SIMD lanes contain disqualified

tuples. We introduce this branch after the first hash table
lookup, i.e., it is triggered when all probe tuples fall into
empty hash buckets.
Partial/Buffered: These implementationsmake use of our
in-register refill algorithms. In contrast to the table scan
discussed in 6.1, the hash table example uses only few
relation attributes. Therefore, instead of loading the addi-
tional attributes using gather, here all attributes (i.e.,
key and value) are passed through the pipeline. If the
number of active SIMD lanes drops below the minimum
lane utilization threshold, a refill is performed.
Materialization: Menon et al. [16] propose operator
fusion, which introduces buffers between operators to
compact the stream of tuples flowing through a pipeline.
Here, we introduce an intra-operator buffer to further
densify the stream of tuples. At the beginning of the
pipeline, we load key-value pairs from the probe side
input, and compute the hash value and the pointer to the
hash table dictionary. We store these key-value pairs and
pointers in an input buffer. From this buffer, we then
lookup eight pointers in the hash table in parallel, and
determine if (i) we found a match, (ii) we need to follow
a chain (further), or (iii) there is no match. Unfinished
tuples (case (ii)) arewritten back into the input bufferwith
an updated pointer; matching tuples (case (i)) are directly
pushed to the subsequent aggregation operator without
further buffering, which is not in line with [16], where
materialization happens on operator boundaries. We also
implemented a “fully” materialized version where the
matches are first stored in an output buffer before the
aggregation code is executed. However, our experiments
have shown that two memory materializations are more
expensive.

Figures 9 and 10 show the performance results for varying
hash table sizes (between 10KiBand45MiB). The hash table
size is chosen depending on the build input size. We size the
hash table dictionary so that it has the samenumber of buckets
as there are build tuples. Among all evaluated approaches, as

123

196

Make the most out of your SIMD investments: counter control flow divergence in compiled… 767

0

1000

2000

3000

64 1024 16384

hash table size [KiB] (log scale)

th
ro

ug
hp

ut
 [M

tp
s]

scalar
divergent
partial
buffered
materialization

0

1000

2000

3000

64 1024 16384

hash table size [KiB] (log scale)

th
ro

ug
hp

ut
 [M

tp
s]

scalar
divergent
partial
buffered
materialization

(a) SKX, 10 threads. (b) SKX, 20 threads.

Fig. 9 Hashjoin performance when varying build sizes. SKX

0

1000

2000

3000

4000

5000

64 1024 16384

hash table size [KiB] (log scale)

th
ro

ug
hp

ut
 [M

tp
s]

scalar
divergent
partial
buffered
materialization

Fig. 10 Hashjoin performance when varying build sizes. KNL, 128
threads

well as both platforms, the throughput shrinks with growing
hash table sizes. The overall throughput on Knights Landing
is about twice as high as on Skylake-X, even though the
performance of Skylake-X can be increased by 50% by using
Hyper-Threading. On Skylake-X (Fig. 9a, b), as expected,
a sharp performance decrease happens when the hash table
grows beyond the size of the L2 cache at around 1MiB, and at
around 10 MiB when it exceeds the L3 cache. For large hash
tables, that do not fit into the cache, all approaches converge.
This has also been observed in earlier work, for instance, by
Polychroniou et al. [21] and by Kersten et al. [9]. In these
cases, partitioning the hash table might help (cf. the radix
partitioning join proposed by Kim et al. [10]), but this is out
of scope for this paper.

When the hash table is small enough to fit into the L1 or
L2 cache, all SIMD approaches outperform the scalar base-
line: Irrespective of the SIMD divergence handling deployed
by the individual approaches, they all reach a higher through-

put than the scalar approach. For larger hash tables, SIMD
divergence no longer dominates the performance, and thus
the scalar approach reaches similar throughput levels (using
10 threads) or even higher throughput (using 20 threads) than
some SIMD variants. For the whole evaluated range of hash
table sizes, the partial and buffered approaches that make
use of the introduced refill strategies outperform or are on
par with the divergent SIMD approach. Using 20 threads,
the buffered approach achieves up to 32% higher through-
put than the divergent approach, while the partial approach
outperforms the divergent one by up to 19%.

When the hash table fits into the L1 cache, the buffered
approach defeats the materialization approach by up to 8%.
When the hash tables grow, the materialization approach
dominates all other approaches. Two contradicting influences
determine whether the materialization approach outperforms
our divergence-handling approaches: First, the materializa-
tion approach can hide memory latencies better than the
buffered and partial approaches because more memory is
accessed at the same time (i.e., multiple outstanding loads).
This is shown in Fig. 9a andmore severely in Fig. 9bwhen the
hash table is large, because it then resides in slower mem-
ory. Second, the materialization approach suffers from the
higher number of issued instructions, i.e., load and store
instructions. In particular, when the hash table fits into L1,
the number of instructions can become the limiting factor. On
the Knights Landing platform in particular, the materializa-
tion approach has a significantly lower throughput compared
to the other SIMD variants (Fig. 10). In contrast to the table
scan, which we evaluated in Sect. 6.1, the materialization
buffer is read and written in the same loop multiple times—
during index lookup, which exceeds the limited out-of-order
execution capabilities of KNL.

In Fig. 11a, b, we vary the SIMD lane utilization threshold
for the partial and buffered approaches. Hyper-Threading,

123

197

768 H. Lang et al.

0

1000

2000

2 4 6 8

lane utilization threshold

th
ro

ug
hp

ut
 [M

tp
s]

buffered
partial

0

1000

2000

2 4 6 8

lane utilization threshold

th
ro

ug
hp

ut
 [M

tp
s]

buffered
partial

0

1000

2000

32 256 2048

buffer size in number of tuples

th
ro

ug
hp

ut
 [M

tp
s]

materialization

(a) Varying thresholds. SKX, 10 threads. (b) Varying thresholds. SKX, 20 threads. (c) Varying buffersizes. SKX, 20 threads.

Fig. 11 Hashjoin performance when varying algorithm parameters

0

1000

2000

0.01 0.1 0.5 0.8 1

match probability

th
ro

ug
hp

ut
 [M

tp
s]

(a)

0

1000

2000

3000

0.25 0.5 0.8 0.95 1 1.05 1.2 1.5 2 4

load factor

th
ro

ug
hp

ut
 [M

tp
s]

scalar
divergent
partial
buffered
materialization

(b)

Fig. 12 Hashjoin performance for varying match probabilities (a), hash table load factors (b). SKX, 20 threads

i.e., using 20 threads instead of 10, increases throughput by
about 50%. In general, a higher threshold, i.e., less inactive
SIMD lanes and more refills, results in a higher throughput.
There is little change in throughput when setting the thresh-
old to six, seven or all eight tuples. This is because in most
hash table lookups, only a few of the eight tuples need to be
kept for additional pointer lookups in the collision chains. As
a result, almost no refills are done differently when choosing
six, seven or eight as the threshold. The buffered approach
is more sensitive to the chosen threshold. For a low thresh-
old, the partial approach reaches a higher throughput, but
that changes at threshold 3 (using 10 threads) or 5 (using 20
threads). As mentioned, only few tuples need to be kept for
additional lookups. Thus, only few tuples need to be buffered
in the buffered approach, while the partial approach suffers
from underutilization when frequently performing refills in
the table scan.

Figure 11c focuses on the materialization approach, vary-
ing the buffer size between eight and 8192 tuples and a
fixed build cardinality (hash table size ≈128KiB). For the
chosen configuration, the scalar approach reaches a through-
put of 1747 Mtps. For small buffers, e.g., 8 tuples, the
scalar approach outperforms the materialization approach.
The materialization approach with an 8-tuple buffer is con-
ceptually similar to the buffered approach with a SIMD line
utilization threshold of 1. Both use a buffer the size of one
SIMD vector. In the buffered approach, this buffer lives

in registers, while the materialization approach stores it in
memory. As a result, the buffered approach outperforms the
materialization approach with a throughput of 1964 Mtps
(i.e., about 2 billion tuples per second). A buffer size between
128 and 1024 results in the best performance of the materi-
alization approach. The throughput shrinks gracefully when
the buffer size is further increased. This is an effect of the
chosen workload, especially the number of attributes beside
the join attribute.

Two additional parameters affect throughput in the
hashjoin evaluation: First, the match probability describes
how likely a tuple from the probe side finds a join partner in
the hash table.We vary this probability between 0.01 and 1.A
low match probability, therefore, results in more disqualified
tuples, which—depending on the approach—in turn leads
to more ignored SIMD lanes, more refills, or a worse VPU
utilization. Figure 12a shows that the buffered approach,
using the proposed refill strategies, outperforms both pre-
existing approaches, scalar and divergent, irrespective of the
match probability. The scalar approach is competitive with
the SIMD approaches for low match probabilities. With few
matches, the scalar approach can often exit the pipeline early,
which leads to the high throughput rates we observed. The
divergent approach, on the other hand, suffers from extreme
underutilization because frequently only few SIMD lanes
stay active due to the low match probability. With a match
probability of 50%, branches are mispredicted in the scalar

123

198

Make the most out of your SIMD investments: counter control flow divergence in compiled… 769

approach, and its throughput subsequently tanks. When the
match probability approaches 100%, almost all probe tuples
find a non-empty hash bucket that then needs to be inspected
further. Furthermore, the final aggregation becomes more
expensive as more tuples make it into the join result. The
scalar approach, therefore, performs best for lowmatch prob-
abilities and worst for a match probability of around 50%,
and cannot fully recover its throughput even for amatch prob-
ability of 100%. When looking at the SIMD approaches, we
observe that the throughput difference between the diver-
gent approach and our novel refill approaches increases with
the match probability. A higher match probability comes
along with more active SIMD lanes after the first lookup
in the hash dictionary. Then, more divergence happens
because these tuples will have to traverse collision chains
of different lengths. The divergence-handling buffered and
partial approaches can, therefore, outperform the divergent
approach for high match probabilities.

Second, we define the hash table’s load factor as the num-
ber of buckets in the hash table divided by the number of keys
stored in the hash table. While the load factor has been kept
constant in all previous experiments (= 1.0), in real scenar-
ios, the hash table size is not only determined by the size
of the build side input, but also by the set load factor. With
a low load factor, more collisions in the hash table occur,
resulting in longer chains. With longer chains, the variance
of the number of pointers that need to be followed to per-
form the hash table probe increases. This variance directly
translates to higher SIMD divergence. A low load factor,
therefore, leads to worse VPU utilization in the divergent
approach, which can then be mitigated by applying the pro-
posed in-register refill strategies. Figure 12b shows how the
load factor affects the throughputs reached by the different
approaches. The hash table for load factor 4 is 16 times as big
as the hash table for load factor 0.25. Over all approaches,
the throughput of the bigger hash table is about three times as
high as for the smaller one. For high load factors, the scalar
approach performs well. This is because for high load fac-
tors, fewer and shorter collision chains exist. When zero of
the eight tuples in a vector need to follow a chain, there is
not SIMD divergence. Subsequently, for especially high load
factors like 4, there is little difference between all approaches.

6.3 Approximate geospatial join

In the following, we evaluate and compare our approach
with a modern and more complex operator, an approximate
geospatial point-polygon join. Our approximate geospatial
join [11] uses a quadtree-based hierarchical grid to approxi-
mate polygons. Figure 13 shows such an approximation for
the neighborhoods in New York City (NYC). The grid cells
are encoded as 64-bit integers and are stored in a specialized
radix tree, where the cell size corresponds to the level within

Fig. 13 Quadtree-based cell-approximation of neighborhood polygons
in NYC

the tree structure (larger cells are stored closer to the root
node and vice versa). During join processing, we perform
(prefix) lookups on the radix tree. Each lookup is separated
into two stages: First, we check for a common prefix of the
query point and the indexed cells. The common prefix allows
for the fast filtering of query points. If the query point does
not share the common prefix, there are no join partners. The
actual tree traversal takes place in the second stage. We tra-
verse the tree starting from the root node until we hit a leaf
node (which contains a reference to the matching polygon).

An important property of our approximate geospatial join
operator is that it can be configured to guarantee a certain
precision. In the experiments, we used 60-, 15-, and 4-meter
precision (as in [11]). The higher the precision guarantee, the
smaller are the cells at the polygon boundaries, which in turn
increases the total number of cells and, more importantly, the
height of the radix tree. In general, the probability of control
flow divergence during index lookups increases with the tree
height. Throughout our experiments, the tree height is ≤ 6.

In our experiments, we join the boroughs, neighborhoods,
and census blocks polygons of NYC4 with randomly gen-
erated points, uniformly distributed within the minimum
bounding box of the corresponding polygonal dataset. The
datasets vary in terms of the total number of polygons and
complexity (with respect to the number of vertices).

Table 2 summarizes the relevant metrics of the polygon
datasets, and Table 3 summarizes the metrics of the corre-
sponding radix tree, including the probability distribution of
the number of search steps during the tree traversal.

4 The polygons of NYC are available at:

– https://data.cityofnewyork.us/City-Government/Borough-
Boundaries/tqmj-j8zm

– https://data.cityofnewyork.us/City-Government/Neighborhood-
Tabulation-Areas/cpf4-rkhq

– https://data.cityofnewyork.us/City-Government/2010-Census-
Blocks/v2h8-6mxf.

123

199

770 H. Lang et al.

Table 2 Polygon datasets

Number of polygons Avg. number of vertices

Boroughs 5 662.2

Neighborhoods 289 29.6

Census 39,184 12.5

6.3.1 Query pipeline

The query pipeline of our experiments (point-polygon join)
consists of four stages:

(1) Scan point data (source)
(2) Prefix check
(3) Tree traversal
(4) Output point-polygon pairs (sink)

Stages (2) and (3) are subject to control flow divergence,
with (3) being significantly costlier than (2). For simplic-
ity, the produced output (point-polygon pairs) is not further
processed. We compile the pipeline in three different flavors:

Divergent: Refers to the baseline pipeline without diver-
gence handling, thus the pipeline follows consume every-
thing semantics. The code of subsequent operators is
executed if at least one lane is active.

Partial: The partial consume strategy is applied to stages
(2) and (3), which also affects the scan operator because
it needs to be aware of protected lanes.
Buffered: Follows consume everything semantics with
register buffers in stage (3). We check the lane utilization
after each traversal step. Divergence in stage (2) is not
handled at all.
Materialization: The integration of memory materializa-
tion is similar to the one used with the hash join operator
(cf., Sect. 6.2).

6.3.2 Results

Figure 14 shows the performance results inmillion tuples per
second on KNL using 128 threads. We observe that refilling
from register buffers improves the overall throughput by up to
20% (= 870mtps)when joining with the boroughs or neigh-
borhood polygons. The effect of divergence handling falls
below 10%with the census blocks polygons where the index
structure is more than 1GiB in size. In that case, the memory
subsystem is the limiting factor.

As expected, the partial consume strategy exacerbates the
divergence issue in most cases (cf., Sect. 5.3), resulting in a
53% performance degradation in the worst case.

The materialization approach performs poorly on KNL.
The throughput is similar to the scalar implementation, thus
canceling out all SIMD optimizations. As in previous bench-
marks, we observed a significantly better performance on
SKX. Here, the materialization approach is on par with
the buffered pipeline: in case of small index structures

Table 3 Metrics of radix tree

Polygons Boroughs Neighborhoods Census

Precision [m] 60 15 4 60 15 4 60 15 4

of cells [M] 0.08 1.27 20.7 0.11 0.79 13.2 6.08 6.52 34.6

Tree size [MiB] 1.39 168 168 25.3 139 139 1162 1205 1205

Tree traversal depth 012345
0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level
012345

0

1

tree level

boroughs neighborhoods census

0

2000

4000

60 15 5 60 15 5 60 15 5

precision [m]

th
ro

ug
hp

ut
 [M

tp
s]

scalar
divergent
partial
buffered
materialization

Fig. 14 Geospatial join performance for varying workloads and precisions

123

200

Make the most out of your SIMD investments: counter control flow divergence in compiled… 771

0

500

1000

1500

2000

2500

2 4 6 8

lane utilization threshold

th
ro

ug
hp

ut
 [M

tp
s]

buffered
partial

Fig. 15 Varying thresholds. KNL, 128 threads

(boroughs) slightly worse, and with large indexes (census)
slightly better. In the latter case, the materialization approach
helps to hide memory latencies through out-of-order execu-
tion.

Unlike the previous experiments, the optimal lane uti-
lization threshold for the buffered approach is less than
the number of SIMD lanes (cf., Fig. 15), which is due to
the higher refilling costs involved in the geojoin operator.
During the radix tree traversal, refilling affects five vec-
tor registers, whereas in the hash join experiment, refilling
affects three registers; and only one in the table scan exper-
iment. The optimal threshold for the partial approach is 1,
indicating that a refill from the pipeline source is not effi-
cient.

In the experiment above, all points pass the prefix check
stage (2) and therefore cause an radix tree traversal. In the
following, we also apply divergence handling on the sec-
ond stage of the pipeline and we changed the workload
so that a certain amount of points are disqualified in that
stage. We compiled the query pipeline with several com-
binations of the different approaches. We refer to it using
the first letter of the approach (Divergent, Buffered, Partial,
and Materialization). For instance, PB refers to the pipeline
that uses partial consume in stage two and in-register buffer-
ing in the third stage, and BB uses buffering in both stages.
Figure 16 shows the results for the neighborhood/4 meter
precision workload with varying selectivities. We observe
an 8% performance decrease when the buffered approach
is applied to stages 2 and 3, and the selectivity remains
at 1.0. In contrast, the materialization approach adds a
significantly larger overhead (35% decrease). If materializa-
tion is applied in both pipeline stages, the performance is
worse compared to the pipeline, where it is applied only
in the tree traversal stage. Overall, the performance dif-
ference for lower selectivities is relatively small with the
partial and buffered approaches:+5%with buffering applied
in both stages, −7% when partial consume is applied in
stage 2 and buffering in stage 3. Compared to the diver-
gent pipeline, lane refilling increases the throughput of the
neighborhood workload by up to 30% with lower selectivi-
ties.

0

2500

5000

7500

0.25 0.50 0.75 1.00

selectivity of stage 2

th
ro

ug
hp

ut
 [M

tp
s]

scalar
DD
DB
BB
PB
DM
MM

Fig. 16 2-Way divergence handling

6.4 Overhead

In our final experiment, we evaluate the overhead of diver-
gence handling with a varying number of attributes. To quan-
tify the overhead, we use a very simplistic query that consists
of a simple selection and a scalar aggregation (select sum

(a1), sum(a2),..., sum(aN) from...). Divergence is
handled immediately after the selection and before the aggre-
gation. In that scenario, we expect the divergent pipeline to
perform best, as the remainder of the pipeline only consists
of a single addition and thus the benefits of refilling are close
to zero.

In the following, we consider two different selectivities:

sel = 1: For in-register buffering, this situation is the
one with the lowest overhead, as the tuples are passed
through to the subsequent operator and the buffer reg-
isters are not used altogether (cf. Listing 3). Thus, the
overhead is rather small, as it effectively consists of a
popcount to determine the number of active lanes and a
branch instruction. The same applies for partial consume
pipelines.
sel = 0.125 = 1/LANE_CNT: A selectivity of
1/LANE_CNT results in one active lane per iteration
(on average) and thus represents the most write-intensive
case for in-register buffering. That is, the refill algorithm,
which moves active elements to the buffer registers, is
executed in almost every iteration. The partial consume
strategy, on the other hand, suffers from lane underuti-
lization caused by lane protection, and thus, the lower
part of the pipeline is executed more frequently.

Throughout all experiments, the pipelines are 8-way data-
parallel and we set the minimum lane utilization threshold to
6 for buffered and 4 for partial; the size ofmemory buffers are

123

201

772 H. Lang et al.

Fig. 17 Overhead of divergence
handling for varying number of
attributes

sel=1 sel=0.125

0

1

2

0

1

2

K
N

L
S

K
X

2 8 32 2 8 32

number of attributes (log scale)

cy
cl

es
 p

er
 tu

pl
e

divergent
partial
buffered
materialization

fixed to 1024 elements (=8KiB). The number of attributes
is varied within the range [1, 32].

Figure 17 summarizes the results for both evaluation plat-
forms. On KNL, all approaches perform similarly with up
to four attributes and the overhead, i.e., the performance dif-
ference to the divergent pipeline is barely measurable. The
materialization approach degrades significantly when the
number of attributes increases (2.5 CPU cycles per tuple per
thread compared to 0.14 cycles for divergent). The through-
put of the buffered approach degrades as well, which is
also attributed to memory materializations. The high register
file pressure forces the compiler to evict values to memory.
Even though the buffer registers are not used in the case of
sel = 1, register allocation is static and happens at query
compilation time when the actual selectivity is not known.
Therefore, a performance degradation can be observed even
if register buffers are not used at query runtime. In contrast,
the partial consume pipelines are on par with the divergent
pipelines.

On the SKX platform, the performance degrades more
steeply with an increasing number of attributes. In case of
sel = 1, the throughput of the materialization approach
decreases linearly with the number of attributes. Compared
to KNL, the number of attributes has a higher impact on the
overall performance on SKX. For instance, in-register buffer-
ing is 4× faster on KNL with sel = 1 and 3.6× faster with
sel = 0.125. For sel = 0.125 and a single projected attribute,
we measure an overhead of approximately 0.1 cycles per
tuple for buffered and 0.15 cycles per tuple for partial,
which is significantly higher than with the materialization
approach (0.02 cycles). However, the per attribute over-
head of buffered and partial decreases with more projected
attributes, whereas the materialization approach shows an
increasing overhead with an increasing number of attributes.
The crossover point is reached with 8 projected attributes.
Afterward, our approaches are consistently faster.

In general, the partial consume approach shows no per-
formance impact when the number of projected attributes
increases, which is an expected result, because the bookkeep-
ing overhead about protected lanes is constant, irrespective
from the number of projected attributes. The actual overhead
of the partial consume strategy depends on the pipeline costs,
more precisely on the pipeline fragment before divergence
handling (see Sect. 5.3).

7 Summary and discussion

The partial consume strategy shows performance improve-
ments for relatively simple workloads. With more complex
workloads, like the geospatial join, we observe severe per-
formance degradations. The reason for that is twofold. (i)
Protected lanes inherently cause the underutilization ofVPUs
(as described in Sect. 5) and (ii) they result in a subopti-
mal memory access pattern at the pipeline source where the
refill happens. In contrast to the consume everything strat-
egy, wherein every iteration exact LANE_CNT elements are
read from memory, a partial consume scan reads at most
LANE_CNT elements. This circumstance reduces the degree
of data-parallelism (fewer elements are loaded per instruc-
tion) and also leads to unaligned SIMD loads. Even though
the access pattern is still sequential, the alignment issues can
reduce the load throughput by up to 25% (on our evaluation
platforms), which could severely reduce the overall perfor-
mance of scan-heavy workloads.

We found that the materialization approach is very sensi-
tive to the underlying hardware, in particular, on KNL, the
approach performs poorly when the buffer is read and writ-
ten within a tight loop (intra-operator), an effect that could
not be observed on SKX. On the other hand, if materializa-
tion is applied at operator boundaries and thus written and
read only once, it performs similarly or better than in-register

123

202

Make the most out of your SIMD investments: counter control flow divergence in compiled… 773

buffering, as it benefits from out-of-order execution, which
allows the materialization approach to hide memory laten-
cies. Memory access latencies play an important role when
the data that is randomly accessed (like a hash table) does
not fit into the L1/L2 cache. In contrast, when the data fits
into cache or the workload is more compute-heavy, the in-
register buffering approach dominates because the buffers
provide much faster access.

The SIMD lane utilization threshold (refill more often
vs. VPU underutilization) has a big impact on the buffered
approach and less impact on partial. As buffered shows better
performance in general, this parameter is important. Choos-
ing the highest possible threshold shows the best results in
simple workloads, so going back down the pipeline to refill
the vector is always better than having inactive lanes, we
found. So the idea of materialization, where only active (or
qualifying) elements are passed along the pipeline, was right
in these scenarios. The picture changes with more complex
operators like the geojoin, where refilling affects five vector
registers. In this case, refilling doesn’t pay off for a single idle
SIMD lane. On average, the optimal utilization thresholdwas
5 out of 8 among the geospatial related experiments.

It remains an open question how the optimal threshold can
be predicted at query compilation time, as it depends on hard-
ware, refilling costs, the costs incurred byunderutilized lanes,
and the actual input data. A possible approach to address this
issue is to adaptively adjust the threshold parameter at run-
time (per batch or per morsel [14]). Nevertheless, divergence
handling cannot fully be disabled once the pipeline has been
compiled. One can set the threshold to 1, which is equiv-
alent to a divergent execution, but some overhead remains
in the compiled code, namely the population count instruc-
tion and the branching logic. For instance, in our geospatial
experiments on KNL, we observed an overhead of up to 6%
over divergent with the boroughs workload when the uti-
lization threshold is set to one (neighborhoods 3.6%, census
0.6%). Dynamically adjusting the threshold at query runtime
provides some flexibility but due to the fact that divergence
handling cannot be fully disabled, a database system needs
to decide at compilation time whether to enable or disable
divergence handling altogether.

Finally, we want to point out that our proposed refill
algorithms and strategies are generally applicable to any
data processing system that uses AVX-512 SIMD instruc-
tions. A prominent open-source representative is Apache
Arrow [1] (in combination with Gandiva) which shares
many similarities with state-of-the-art relational database
systems (e.g., columnar storage, JIT-compilation, and opera-
tor fusion). Further, our approaches are also applicable if the
underlying database system uses compression in its storage
layer. In particular, when compression is only used on sec-
ondary storage, it does not affect query execution. However,
recent systems [13,19] tend to use lightweight compression

techniques that allow for the processing of data without
explicitly decompressing it. This implies that the degree of
data-parallelism can be increased, as more attributes can be
packed into a single vector register. Currently, our buffered
approach is limited to 16-way data-parallelism on the KNL
and SKX platforms, but it can be easily extended to 64-way
data-parallelism for upcoming processors with the AVX-
512/VBMI2 instruction set.

8 Conclusions

In thiswork,wepresented efficient refill algorithms for vector
registers by using the latest SIMD instruction set, AVX-512.
Further, we identified and presented two basic strategies for
applying refilling to compiled query pipelines for preventing
the underutilization of VPUs. Our experimental evaluation
showed that our strategies can efficiently handle control flow
divergence. In particular, query pipelines that involve travers-
ing irregular pointer-based data structures, like hash tables
or radix trees, can significantly benefit from divergence han-
dling. Especially when the workload is compute-intense or
fits into fast caches, our novel approach shows better perfor-
mance than existing approaches that rely onmemory buffers.

Nevertheless, our research also showed that SIMD still
cannot live up to the high expectations set by the promising
features of the latest hardware, i.e., providing n-way data-
parallelism. In practice, SIMDspeedups are only a fraction of
the advertised degree of data-parallelism, for many reasons,
including underutilization. Our refill algorithms address this
important reason, yet merely achieve a 2× speedup over
scalar code.

Acknowledgements This work has been partially supported by the
German Federal Ministry of Education and Research (BMBF) Grant
01IS12057 (FASTDATA and MIRIN) and the DFG Projects
NE1677/1-2 and KE401/22. Furthermore, this work is part of
the TUM Living Lab Connected Mobility (TUM LLCM) Project and
has been partially funded by the Bavarian Ministry of Economic
Affairs, Energy and Technology (StMWi) through the Center Digiti-
sation.Bavaria, an initiative of the Bavarian State Government.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Apache Arrow. https://arrow.apache.org/
2. Balkesen, C., Alonso, G., Teubner, J., Özsu, M.T.: Multi-core,

main-memory joins: sort vs. hash revisited. PVLDB 7(1), 85–96
(2013)

123

203

774 H. Lang et al.

3. Balkesen, C., Teubner, J., Alonso, G., Özsu, M.T.: Main-memory
hash joins on multi-core CPUs: tuning to the underlying hardware.
In: 29th IEEE InternationalConference onDataEngineering, ICDE
2013, Brisbane, Australia, April 8–12, 2013, pp. 362–373 (2013).
https://doi.org/10.1109/ICDE.2013.6544839

4. Boncz, P.A., Zukowski, M., Nes, N.: MonetDB/X100: hyper-
pipelining query execution. In: CIDR 2005, 2nd Biennial Confer-
ence on Innovative Data Systems Research, Asilomar, CA, USA,
January 4–7, 2005,Online Proceedings, pp. 225–237 (2005). http://
cidrdb.org/cidr2005/papers/P19.pdf

5. Chhugani, J., Nguyen, A.D., Lee, V.W., Macy, W., Hagog, M.,
Chen, Y., Baransi, A., Kumar, S., Dubey, P.: Efficient implemen-
tation of sorting on multi-core SIMD CPU architecture. PVLDB
1(2), 1313–1324 (2008)

6. Gubner, T., Boncz, P.: Exploring query compilation strategies
for JIT, vectorization and SIMD. In: 8th International Work-
shop on Accelerating Analytics and Data Management Systems
Using Modern Processor and Storage Architectures, ADMS 2017,
Munich, Germany, September 1, 2017 (2017)

7. https://stackoverflow.com/questions/36932240/avx2-what-is-
the-most-efficient-way-to-pack-left-based-on-a-mask (2016)

8. Kemper, A., Neumann, T.: Hyper: a hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In:
Proceedings of the 27th International Conference on Data Engi-
neering, ICDE 2011, April 11–16, 2011, Hannover, Germany, pp.
195–206 (2011). https://doi.org/10.1109/ICDE.2011.5767867

9. Kersten, T., Leis, V., Kemper, A., Neumann, T., Pavlo, A., Boncz,
P.A.: Everything you always wanted to know about compiled and
vectorized queries but were afraid to ask. PVLDB 11(13), 2209–
2222 (2018). https://doi.org/10.14778/3275366.3275370

10. Kim, C., Sedlar, E., Chhugani, J., Kaldewey, T., Nguyen, A.D.,
Blas, A.D., Lee, V.W., Satish, N., Dubey, P.: Sort vs. hash revis-
ited: fast join implementation onmodernmulti-coreCPUs. PVLDB
2(2), 1378–1389 (2009)

11. Kipf, A., Lang,H., Pandey,V., Persa, R.A., Boncz, P., Neumann, T.,
Kemper, A.: Approximate geospatial joins with precision guaran-
tees. In: 34rd IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16–19, 2018 (2018)

12. Lang, H., Mühlbauer, T., Funke, F., Boncz, P.A., Neumann, T.,
Kemper, A.: Data blocks: hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In: Proceedings
of the 2016 International Conference onManagement ofData, SIG-
MOD Conference 2016, San Francisco, CA, USA, June 26–July
01, 2016, pp. 311–326 (2016). https://doi.org/10.1145/2882903.
2882925

13. Lang, H., Mühlbauer, T., Funke, F., Boncz, P.A., Neumann, T.,
Kemper, A.: Data blocks: hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In: Özcan, F.,
Koutrika, G., Madden, S., (eds.) Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26–July 01, 2016, pp.
311–326. ACM, San Francisco (2016). https://doi.org/10.1145/
2882903.2882925

14. Leis, V., Boncz, P.A., Kemper, A., Neumann, T.: Morsel-driven
parallelism: a NUMA-aware query evaluation framework for the
many-core age. In: Dyreson, C.E., Li, F., Özsu, M.T. (eds.) Inter-
national Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22–27, 2014, pp. 743–754. ACM, New
York (2014). https://doi.org/10.1145/2588555.2610507

15. Lemire,D.,Rupp,C.:Upscaledb: efficient integer-key compression
in a key-value store using SIMD instructions. Inf. Syst. 66, 13–23
(2017). https://doi.org/10.1016/j.is.2017.01.002

16. Menon, P., Pavlo, A., Mowry, T.C.: Relaxed operator fusion
for in-memory databases: making compilation, vectorization, and
prefetching work together at last. PVLDB 11(1), 1–13 (2017)

17. Mühlbauer, T., Rödiger, W., Seilbeck, R., Reiser, A., Kemper, A.,
Neumann, T.: Instant loading for main memory databases. PVLDB
6(14), 1702–1713 (2013)

18. Neumann, T.: Efficiently compiling efficient query plans for mod-
ern hardware. PVLDB 4(9), 539–550 (2011)

19. Nowakiewicz, M., Boutin, E., Hanson, E., Walzer, R., Katipally,
A.: BIPie: fast selection and aggregation on encoded data using
operator specialization. In: Proceedings of the 2018 International
Conference on Management of Data, SIGMOD’18, pp. 1447–
1459. ACM, New York (2018). https://doi.org/10.1145/3183713.
3190658

20. Polychroniou, O., Raghavan, A., Ross, K.A.: Rethinking SIMD
vectorization for in-memory databases. In: Proceedings of the 2015
ACMSIGMOD International Conference onManagement of Data,
Melbourne, Victoria, Australia, May 31–June 4, 2015, pp. 1493–
1508 (2015). https://doi.org/10.1145/2723372.2747645

21. Polychroniou, O., Raghavan, A., Ross, K.A.: Rethinking SIMD
vectorization for in-memory databases. In: Proceedings of SIG-
MOD, pp. 1493–1508 (2015). https://doi.org/10.1145/2723372.
2747645

22. Polychroniou, O., Ross, K.A.: Vectorized bloom filters for
advanced SIMD processors. In: 10th International Workshop on
Data Management on New Hardware, DaMoN 2014, Snowbird,
UT, USA, June 23, 2014, pp. 6:1–6:6 (2014). https://doi.org/10.
1145/2619228.2619234

23. Polychroniou, O., Ross, K.A.: Efficient lightweight compression
alongside fast scans. In: Proceedings of the 11th International
Workshop on DataManagement on NewHardware, DaMoN 2015,
Melbourne, VIC, Australia, May 31–June 04, 2015, pp. 9:1–9:6
(2015). https://doi.org/10.1145/2771937.2771943

24. Ren, B., Agrawal, G., Larus, J.R., Mytkowicz, T., Poutanen, T.,
Schulte, W.: SIMD parallelization of applications that traverse
irregular data structures. In: Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization,
CGO 2013, Shenzhen, China, February 23–27, 2013, pp. 20:1–
20:10 (2013). https://doi.org/10.1109/CGO.2013.6494989

25. Sitaridi, E.A., Polychroniou, O., Ross, K.A.: Simd-
acceleratedregular expression matching. In: Proceedings of
the 12th International Workshop on Data Management on New
Hardware, DaMoN2016, San Francisco, CA, USA, June 27, 2016,
pp. 8:1–8:7 (2016). https://doi.org/10.1145/2933349.2933357

26. Teubner, J., Müller, R.: How soccer players would do stream joins.
In: Proceedings of theACMSIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June 12–
16, 2011, pp. 625–636 (2011). https://doi.org/10.1145/1989323.
1989389

27. Zhao, W.X., Zhang, X., Lemire, D., Shan, D., Nie, J., Yan, H.,
Wen, J.: A general simd-based approach to accelerating compres-
sion algorithms. ACM Trans. Inf. Syst. 33(3), 15:1–15:28 (2015).
https://doi.org/10.1145/2735629

28. Zhou, J., Ross, K.A.: Implementing database operations using
SIMD instructions. In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, Madison, Wis-
consin, June 3–6, 2002, pp. 145–156 (2002)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

204

Tree-Encoded Bitmaps
Harald Lang

Technical University of Munich
harald.lang@tum.de

Alexander Beischl
Technical University of Munich

beischl@tum.de

Viktor Leis
Friedrich Schiller University Jena

viktor.leis@uni-jena.de

Peter Boncz
Centrum Wiskunde & Informatica

boncz@cwi.nl

Thomas Neumann
Technical University of Munich
thomas.neumann@in.tum.de

Alfons Kemper
Technical University of Munich

alfons.kemper@in.tum.de

ABSTRACT
We propose a novel method to represent compressed bitmaps.
Similarly to existing bitmap compression schemes, we exploit
the compression potential of bitmaps populated with con-
secutive identical bits, i.e., 0-runs and 1-runs. But in contrast
to prior work, our approach employs a binary tree structure
to represent runs of various lengths. Leaf nodes in the up-
per tree levels thereby represent longer runs, and vice versa.
The tree-based representation results in high compression
ratios and enables efficient random access, which in turn
allows for the fast intersection of bitmaps. Our experimental
analysis with randomly generated bitmaps shows that our
approach significantly improves over state-of-the-art com-
pression techniques when bitmaps are dense and/or only
barely clustered. Further, we evaluate our approach with
real-world data sets, showing that our tree-encoded bitmaps
can save up to one third of the space over existing techniques.

ACM Reference Format:
Harald Lang, Alexander Beischl, Viktor Leis, Peter Boncz, Thomas
Neumann, and Alfons Kemper. 2020. Tree-Encoded Bitmaps. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD’20), June 14ś19, 2020, Portland, OR,
USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3318464.3380588

1 INTRODUCTION
Bitmap indexes have a long history in database systems
and information retrieval [8, 11, 16, 37, 45, 53, 57]. They

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14ś19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380588

Figure 1: The key idea is to represent bitmaps as full
binary trees. Longer runs are mapped to tree nodes
closer to the root, and vice versa.

have many applications, such as efficiently evaluating predi-
cates [42, 45, 46] and have been used to accelerate join [44]
and aggregation [9, 46] queries. For medium or high cardi-
nality columns, bitmap indexes consist of many individual
bitmaps that are sparsely populated with 1-bits. Therefore,
plain bitmaps consume large amounts of space, and compres-
sion is essential.

Consider the case of a bitmap index on an attribute A con-
sisting of |A| individual bitmaps of length n, where |A| is the
number of distinct values of A and n the number of tuples in
the corresponding relation. The total number of 1-bits in the
index is also n, whereas each bitmap receives n

|A | 1-bits on
average. A high number of distinct values, or the presence
of skew, results in bitmap indexes with many sparsely pop-
ulated bitmaps. Sparsity implies that these bitmaps mostly
consist of consecutive 0-bits, i.e., 0-runs. Having long runs
of identical bits offers great compression potential, which all
existing bitmap compression schemes try to exploit.

One simple, but fairly effective bitmap compression scheme
is the Word-Aligned Hybrid [63] (WAH) approach, whose
compression is based on run-length encoding (RLE). AWAH-
compressed bitmap is a sequence of machine words, typically
32 or 64 bits in size. Each word either encodes a run or rep-
resents a small part of the original bitmap as is. The first is
called a fill word and the latter a literal word. While WAH
offers significantly better performance than its predecessor
the Byte-Aligned Bitmap Compression [2] (BBC), its com-
pression effectiveness suffers from two major weaknesses: (i)
runs need to be rather long for the RLE-based compression to
be effective and (ii) WAH has linear space overhead (one bit

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

937

205

per word) for distinguishing between fill and literal words.
In particular, the first weak point impairs compression when
some random bits (also called dirty bits or odd bits) disrupt
long runs. Over the years, several extensions to WAH have
been proposed to solve this issue, i.e., PLWAH [18], Con-
cise [15], VAL-WAH [22], EWAH [33], and SBH [27].

All the aforementioned compression techniques are based
on RLE and therefore share another disadvantage, namely
the linear time complexity of random access. Supporting ef-
ficient random access directly affects the efficiency of logical
operations like bitwise AND, which are common operations
in analytical queries.
Chambi et al. identified this problem and proposed the

Roaring Bitmap format [10]. In contrast to the aforemen-
tioned compression techniques, Roaring Bitmap does not rely
on RLE. Instead it partitions the input bitmap into equally
sized chunks of length 216 bits, where each chunk is phys-
ically stored in a separate container, as illustrated in Fig-
ure 2. Roaring implements three different container types
and each container type represents the corresponding part of
the bitmap differently. Depending on the number of bits set
and on the presence of 1-runs, Roaring chooses the container
type that consumes the smallest amount of memory. More
precisely, if the number of 1-bits is less than or equal to 4096,
an array container is used that stores a sorted list of 16-bit
integers, one for each set bit. The integer values correspond
to the positions of those bits within the current partition. If
the number of set bits exceeds 4096, Roaring either employs
a plain bitmap container or a run container [32]. A bitmap
container stores the partition as is. A run container on the
other hand stores the 1-runs as a list of 16-bit integer pairs
⟨a,b⟩, where [a,b] is the range spanned by the 1-run.
Overall, Roaring is a very lightweight approach in terms of

compression, as it only relies on integer arrays to represent
bitmaps. Integer values are thereby truncated to 16 bits as
every container encodes 216 bits of the bitmap. Nevertheless,
it results in significantly lower space consumption compared
to RLE-based techniques in most scenarios. Due to the fact
that the bit positions, the runs, and the containers themselves
are sorted, a random access can be performed in logarith-
mic time, which significantly improves the performance of
bitwise operation and thus of analytical queries [9].
It is worth mentioning that in principle Roaring is an ex-

tendable format, as it could employ any bitmap compression
technique at the container level; including the tree-encoded
bitmaps, we present in this work.
At the time of writing, Roaring was available in 11 pro-

gramming languages andwaswidely used in Apache projects
like Druid, Hive, Kylin, Lucence, Spark, and other systems1.
This shows that today’s applications not only demand high

1We refer the reader to the official web site [31] for more details.

1, 3, 11, 37,... [3,7], [42,51],... 0000100011101001001...

Figure 2: Roaring partitions the bitmap and stores
each partition using the best suitable container type.

compression ratios but also efficient logical operations on
compressed bitmaps. Further, we see a trend in database sys-
tems towards denser bitmapsÐin particular, when bitmap
indexes use histogram-based binning or are constructed to
support range queries [11, 12]. In both cases, the result-
ing bitmaps exhibit higher bit densities compared to simple
bitmap indexes as described at the beginning of this section2.

With this work, we contribute a novel method to compress
bitmaps. The compressed representation, which we call a
tree-encoded bitmap, provides high compression ratios paired
with logarithmic access time. Its primary strengths are the
abilities (i) to compress both long and short runs and (ii) to
significantly improve the compression ratios with denser
bitmaps over existing techniques. The major conceptual dif-
ference compared to other compressed bitmap formats is that
our approach employs a binary tree to represent bit runs of
various lengths as illustrated in Figure 1. Tree nodes in the
upper tree levels (closer to the root) thereby correspond to
longer runs, and tree nodes in the lower levels to shorter runs.
The low space requirement is achieved by using a succinct
tree encoding and additional space optimizations that trun-
cate balanced parts of the tree structure from the compressed
representation. A key insight is that although our approach
initially triples the size of a given bitmap to establish the
tree structure, it does not only amortize this overhead, but
also ultimately offers overall better compression ratios than
RLE-based compression methods or the state-of-the-art Roar-
ing Bitmap in a wide spectrum of moderately populated and
clustered bitmaps. Using a collection of real-world data sets,
we empirically found that tree-encoded bitmaps offer the
best compression in 7 out of 8 cases, saving up to 1/3 space
in comparison with the second best solution.
Notation. Throughout the paper, we let n denote the length
of a bitmap. Further, since compression heavily depends on
the data distribution, we use the following two metrics to
characterize individual bitmaps: (i) The bit density denoted as
d refers to the fraction of bits set to 1, where 0 ≤ d ≤ 1. The
total number of set bits in a bitmap is therefore d ·n. (ii) The
clustering factor denoted as f , with 1 ≤ f ≤ n, indicates the
degree of clustering of the 1-bits in a bitmap, i.e., how likely
a 1-bit is followed by another 1-bit. Formally, it is defined
as the average length of the 1-runs in a bitmap [63]. For

2 In Section 5 we give a brief overview on the design space of bitmap indexes.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

938

206

0 0 0 01 1 0 1

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

(a) initial state (b) after pruning

Figure 3: A bitmap represented as a binary tree. Ini-
tially, each leaf node is assigned a single bit (label). Sib-
ling leaf nodes with identical labels are then pruned
and the label is assigned to their parent. After prun-
ing, the prior parent node becomes a leaf and repre-
sents multiple consecutive bits, a 0-run or a 1-run.

instance, the bitmap 01110010 (with d = 0.5) contains two
1-runs, one of length 3 and one of length 1. The clustering
factor f therefore equals to 2. As both d and f refer to the set
bits, they are dependent and the following restrictions apply:
The clustering factor cannot exceed the total number of bits
set (f ≤ d ·n). Further, when the bit density exceeds 50%, the
smallest possible value for f increases as well. E.g., given the
bitmap 01010101 with d = 0.5 and f = 1; when the leftmost
0-bit is toggled (11010101), d increases to 0.625 and f to 1.25.
In that particular case, 1.25 is the smallest possible clustering
for a bitmap of lengthn = 8 andd = 0.625. In the general case,
the smallest possible clustering is max(1,d/(1−d)). Clustered
bitmaps can be synthetically generated using a two-state
Markov process, whichwe describe in the evaluation section.

2 TREE-ENCODED BITMAPS
In this section, we present our Tree-Encoded Bitmaps (TEB).
The key idea behind TEB is to represent bitmaps as binary
trees, which enables efficient navigation and therefore fast
random access. The data structure is best explained by de-
scribing the construction algorithm.We therefore first present
the tree-based compression algorithm. Later in this section,
we describe how the tree is encoded space efficiently.

2.1 Compression
A TEB is constructed in two phases. In the first phase, a
perfect binary tree is established on top of a given bitmap, as
shown in Figure 3a. Each bit in the bitmap is associated with
a single leaf node of the binary tree. Only leaf nodes carry a
payload, which we refer to as labels. A label can either be a
0-bit or a 1-bit.

In the second construction phase, the binary tree is pruned
bottom-up. Thereby, the algorithm removes all sibling leaf
nodes with identical labels l , and the label l is assigned to
the parent node. The pruning process stops when all pairs
of sibling leaf nodes have different labels. Figure 3b depicts
a fully pruned tree. The important thing to note here is that

the newly created leaf nodes in the upper tree levels no
longer represent individual bits of the bitmap; instead they
represent consecutive bits that form either a 0-run or a 1-run.
For instance, the leftmost node in Figure 3b represents a
1-run of length 2, starting at index 0 and the rightmost node
represents a 0-run of length 4, starting at index 4.

With every single pruning step, two nodes are eliminated
from the tree structure and one bit from the labels. Bottom-
up pruning can therefore be considered a lossless compression
method. Compressing the tree structure is a crucial part of
TEB because the space overhead of the tree structure needs
to be amortized. The tree initially consists of 2n − 1 nodes,
assuming n is a power of two. When the tree structure is
encoded using one bit per node, then the space consumption
of a TEB, including the labels, is initially, and in worst case,
3n − 1 bits. Even though the worst case space consumption
is relatively high, we will show that our tree-based represen-
tation of bitmaps often achieves significantly lower space
usage than other compression schemes.

2.2 Encoding
An important part of TEB is the space-efficient way the tree
structure is stored. We employ a level-order binary marked
representation [24], which requires one bit per tree node. The
encoded tree itself therefore is a sequence of bits (a bitmap).
We have to differentiate between the tree data structure

that is used during compression and the encoded tree that is
eventually stored in a TEB. For the tree-based compression,
we temporarily make use of an implicit data structure [59]
that allows for fast modifications, but occupies a constant
amount of space ś constant in the sense that its size does
not change when nodes are removed. The level-order bi-
nary marked representation, on the other hand, is static but
requires less space once the tree has been pruned. Thus, en-
coding is the process with which we transform the pruned
tree into a more compact form.
To encode the pruned tree structure we traverse it in

breadth-first left-to-right order (or level-order) and for each
visited node a single bit is emitted, a 1-bit for inner nodes
and a 0-bit for leaf nodes. These bits are appended to the bit
sequence that represents the encoded tree, denoted asT . The
labels of the leaf nodes are stored as a separate bit sequence
to which we refer as L. When a leaf node is observed during
traversal, its label bit is appended to L. For instance, the tree
in Figure 3b is encoded as T = 1100100, L = 0101.

To support efficient random access and bitwise operations,
it is necessary to traverse the tree. Internally, the most impor-
tant primitive operation is to determine the two child nodes
of some given tree node, i.e., navigating downwards the tree.
Within the encoded tree, each tree node is identified by its
position in the bit sequence T . The sequence starts with the

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

939

207

root node at position 0. For any given tree node i , the child
nodes can then be determined as follows [24]:

left-child(i) := right-child(i) − 1
right-child(i) := 2 · rank(i)

where rank(i) refers to the number of 1-bits (inner nodes) in
T within the range [0, i].

Computing the rank of a node is a linear-time operation,
and navigating from the root to any leaf node is therefore an
O(n · logn) operation. However, the rank operation can be
turned into an O(1) operation at the cost of additional space
consumption [24]. TEB uses an implementation similar to
the one used in [68], which pre-computes the rank on 512-
bit block granularity and stores the values in an auxiliary
integer array; which results in a 6.25% increased memory
footprint. The rank is then computed as

rank(i) := R[⌊i/512⌋] + popcount(T , ⌊i/512⌋ · 512, i)
where R refers to the array with the pre-computed values at
block level and popcount counts the 1-bits in the last block
up to index i .
Using an additional integer array populated with pre-

computed ranks (a lookup table) is a common approach [20,
21, 43, 69] and changing the granularity of the lookup ta-
ble offers a space/time trade-off. The more coarse-grained
the lookup table is, the lower its space requirement and the
higher the costs for counting the 1-bits within the last block;
and vice versa. For TEB, we empirically determined that a
granularity of 512 bits offers competitive performance at a
reasonable space overhead. On a reasonably modern 64-bit
hardware, a navigational operation in the tree therefore re-
quires at most eight population count instructions (four on
average) and one array lookup.

Besides the downward navigation, the rank of a tree node
is further required to determine the node’s label. If the node i
is a leaf, then the position of the label within L is equal to the
number of 1-bits in T preceding node i , which corresponds
to the non-inclusive rank of i . However, because only leaf
nodes have labels, we can use the inclusive3 rank from above,
because T [rank(i)] is guaranteed to be a 0-bit. In summary,
a label is accessed as follows:

label(i) := L[i − rank(i)]
Let us close by mentioning that the chosen encoding re-

quires the tree structure to be a full binary tree, i.e., each
node has either zero or two child nodes. It is easy to show
that this holds for the tree structure of a TEB: Since the initial
binary tree is perfect, and pruning always affects two sibling
leaf nodes, the resulting tree structure remains full binary.

3We chose the inclusive rank as it results in fewer arithmetic instructions.

0 0.5 1
0

50

100

150

bit density d

siz
e
[K
iB
]

Bitmap
Roaring
TEB (basic)
WAH

Figure 4: Size comparison for varying bit densities and
a fixed clustering factor of 8.

1 0 1 01 0 1 0

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

Figure 5: In worst case, the tree cannot be pruned
(compressed) and the resulting TEB consumes approx-
imately three times the space of the original bitmap.

2.3 Optimizations
The basic idea of TEBwe have presented so far already shows
promising results with regard to compression ratios. For
instance, Figure 4 shows a space comparison of the TEB
approach with two state-of-the-art bitmap compression tech-
niques, Roaring and WAH. The compressed size (y-axis) de-
pends on the ratio of 1-bits in the original bitmap (x-axis).
Sparsely populated bitmaps offer higher compression poten-
tials than densely populated bitmaps. In that particular case,
if more than ∼25% of the bitmap is populated with 1-bits,
Roaring and WAH do not offer any compression at all. Both
fall back to an uncompressed (literal) representation. TEB,
on the other hand, is able to compress bitmaps with a bit
density of up to ∼45%.

The downside of the basic TEB approach is that in corner
cases it can significantly exceed the size of the plain bitmap.
In contrast to Roaring and WAH, our approach does not
support an alternative representation to which it could fall
back. In the following, we show that it is in fact not necessary
to switch between different representations to address the
high space consumption of TEB in unfavorable cases. It just
requires a few minor modifications to the data structure
and the compression algorithm, which we discuss in the
following.
Implicit Tree Nodes.We motivate our first space optimiza-
tion by considering the worst-case scenario for TEB. Figure 5
illustrates such a case. The depicted alternating bit sequence
does not offer any compression potential. All pairs of sib-
ling leaf nodes have different labels and therefore bottom-up

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

940

208

pruning cannot remove any tree nodes. The resulting TEB
would consist ofn−1 1-bits for the inner nodes, followed byn
0-bits for the leaf nodes, and n label bits. In this extreme case,
the label bits in L are identical to the uncompressed bitmap.
Thus, storing the encoded tree structure is pure overhead.

Our first space optimization is to omit the leading 1-bits
as well as the trailing 0-bits of the encoded tree structure.
Only the intermediate bits of the tree structure are stored in
the physical representation of a TEB. We refer to the omitted
nodes as implicit tree nodes, and to the remaining as explicit
tree nodes.
With regard to the worst case, this simple modification

allows for the elimination of the entire tree encoding from
the physical representation. Only the n label bits remain:

T = 1111111︸ ︷︷ ︸
leading 1-bits

00000000︸ ︷︷ ︸
trailing 0-bits

, L = 10101010

As mentioned before, the labels in L are identical to the
original bitmap, i.e., the TEB degraded into an uncompressed
bitmap. Thus, the size of the TEB is equal to the size of the
plain bitmap, except for a small overhead that is caused by
metadata.
However, further optimizations are needed, as this mi-

nor modification only mitigates the high space consump-
tion of TEBs when the plain bitmap is poorly compressible.
The TEB size may still significantly exceed the size of the
uncompressed bitmap, i.e., the worst case has shifted. The
modification, however, has two important implications:

(i) The encoded tree structureT is an optional part of the
physical TEB data structure, as the entire tree may be
implicit.

(ii) The space minimal TEB instance does not necessarily
contain a fully pruned tree.

We give an example for (ii) in Figure 6a. The depicted TEB
consists of three explicit tree nodes and four labels. Thus the
space requirement is 3 · 1.0625 + 4 = 7.1875 bits, where the
factor 1.0625 is to incorporate the space consumption of the
rank helper structure (cf. Section 2.2). Figure 6b shows the
TEB instance with the minimum size. The difference between
the two TEB instances is that in Figure 6a the tree is fully
pruned, whereas in 6b the two sibling leaves in the high-
lighted subtree have been preserved. The second instance
therefore comprises a larger tree, but even though the total
number of tree nodes and labels are higher, the second in-
stance occupies less space (2·1.0625+5 = 7.125 bits), as fewer
tree nodes need to be stored explicitly. The circumstance that
a fully pruned tree, in general, no longer corresponds to the
smallest TEB instance requires a modification to the bottom-
up pruning algorithm: Instead of returning the fully pruned
tree, the algorithm needs to return the smallest tree instance
observed during pruning, where the size is computed based

 implicit node explicit node

00 11

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

T = 11

explicit︷︸︸︷[
001

]
00

L = 0101

(a) fully pruned

0 00 11

0

1

2

3

level:

0 1 2 3 4 5 6 7index:

T = 111

explicit︷︸︸︷[
01

]
0000

L = 10001

(b) partially pruned

Figure 6: Two different tree representations of the
bitmap 11010000. The fully pruned tree (a) occupies
more space than the partially pruned tree (b), as more
tree nodes need to be stored explicitly.

0 0.5 1
0

50

100

150

bit density d

siz
e
[K
iB
]

Bitmap
TEB (basic)
TEB (space optimized)

Figure 7: Size comparison of basic and space optimized
TEBs using a clustering factor of 8.

on the number of explicit nodes, rather than the total number
of nodes.
Implicit Labels. Our second modification is to omit leading
and trailing 0-labels in the physical TEB representation, sim-
ilarly to implicit tree nodes. Omitting the leading 0-labels
reduces the space consumption in particular with very sparse
bitmaps. The tree representation of a sparse bitmap typically
consists of a few leaf nodes with 1-labels at the deepest tree
level log2(n). But most of the leaf nodes with 0-labels can
be found in the tree levels 1 to log2(n) − 1. Due to the tree
being encoded in level order, the label bit sequence L tends
to start with a long run of 0-labels, which we do not need to
store explicitly. Trailing 0-labels on the other hand can occur
when the length of the input bitmap is not a power of two.
In that case, a TEB internally rounds up to the next power
of two and fills the range

[
n, 2 ⌈log2(n)⌉

)
with 0-bits. Omitting

these trailing 0-bits ensures that the number of stored labels
never exceeds the length of the original bitmap.
The presented modifications reduce the overall space us-

age, as shown in Figure 7. In particular, the worst-case space
consumption reduced from 3n−1 to n bits, excluding the

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

941

209

(small) metadata. We observe that in an optimized TEB the
fraction of space occupied by the tree, the rank helper struc-
ture, and the labels is no longer fixed; compare Figures 8a
and 8b. With sparse bitmaps, the labels occupy significantly
less space. With denser bitmaps, on the other hand, we see
that the fraction of space occupied by the tree structure de-
creases. Figure 9 shows how the implicit tree nodes and the
implicit labels optimizations contribute to the space savings.
The implicit labels optimization is most effective with sparse
bitmaps and the implicit tree node optimization, on the other
hand, favors denser bitmaps.
An important implication is that the space optimizations

balance the upper part of the tree structure, as the example in
Figure 6 has shown. The partially pruned tree in Figure 6b is
perfectly balanced until level two, whereas the fully pruned
tree in Figure 6a is only perfectly balanced until level one.
Thus in general, the tree can be split into an upper balanced
and a lower imbalanced part. This property allows for the
reduction of the cost of navigational operations. We exploit
the fact that within a perfect binary tree we can directly
address the individual tree nodes, i.e., without computing
ranks. If the number of the upper perfect levels is known,
these levels of the tree can be logically cut off, and only the
remaining sub-trees need to be considered. In our case, we
can directly compute the number of perfect levels u based
on the number of implicit inner nodes c that are already
known when the space optimizations have been applied:
u := ⌊log2(c+1)⌋+1. The corresponding node IDs for the last
perfect level are within the range [tbegin, tend), with tbegin :=
2u−1 − 1 and tend := 2u − 1. Each of these nodes, or the
sub-trees rooted at these nodes, respectively, span a range
of length 2log2(n)−u−1 in the original bitmap. Thus, it can be
considered as a uniform partitioning scheme, similar to the
one used in Roaring Bitmaps, but with the major difference
that the partition size is chosen adaptively.
The number of perfect tree levels is correlated with the

effectiveness of the tree-based compression. The less effective
the compression, the larger the number of perfect levels, and
vice versa. In worst case, the entire tree is implicit and the
number of perfect levels corresponds to the tree height. In
other words, TEBs gradually degrade into literal bitmaps,
but unlike Roaring and WAH, TEBs remain homogeneous
and do not need to switch between different encodings or
representations.

3 OPERATIONS
In this section, we describe the operations supported by TEB.
Fundamentally, a TEB supports two access methods: (i) a
point lookup and (ii) a 1-run iterator. High-level functionali-
ties, like decompressing a bitmap or logical operations are
implemented on top of the 1-run iterator.

0.0
00
01

0.0
00
1

0.0
01 0.0
1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

bit density d

fra
ct
io
n
of

sp
ac
e Tree Rank Labels

(a) basic TEB

0.0
00
01

0.0
00
1

0.0
01 0.0
1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

bit density d

fra
ct
io
n
of

sp
ac
e Tree Rank Labels

(b) optimized TEB
Figure 8: The fraction of space occupied by the tree,
the rank helper structure, and the labels.

0.0
00
01

0.0
00
1

0.0
01 0.0
1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

bit density d

fra
ct
io
n

Explicit Leading Trailing

(a) labels

0.0
00
01

0.0
00
1

0.0
01 0.0
1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

bit density d

fra
ct
io
n

Explicit Leading Trailing

(b) tree nodes
Figure 9: The fraction of explicitly stored labels (a) and
tree nodes (b).

Algorithm 1: Point lookup
Input :The bit index k to test
Returns :true if the kth bit is set, false otherwise
// Determine the tree node at the last perfect level.
toffset ← k >> (tree_height − perfect_levels − 1)
i ← tbegin + toffset
j ← tree_height − 1 − perfect_levels − 1
// Navigate downwards until a leaf node is observed.
while i is an inner node do

direction← extract jth bit from k
i ← left-child(i) + direction
j ← j − 1

end
return label(i)

3.1 Point Lookup
A point lookup is a straightforward operation that navigates
downward the tree until a leaf node is reached. The index k
of the bit to look up thereby specifies the path to take within
the tree. For performance reasons, the downward navigation
starts at the last perfect tree level rather than at the root
node. The details are shown in Algorithm 1.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

942

210

3.2 Run Iterator
The iterator interface allows for efficient iteration over a TEB.
Unlike the iterators implemented in Roaring and WAH, the
TEB iterator does not iterate over the individual 1-bits, in-
stead it iterates over the 1-runs of a bitmap. A 1-run is thereby
represented as two integer values ⟨begin, end ⟩, pointing to
the position of the first 1-bit and to the position one past
the last 1-bit. The iterator traverses the tree in depth-first
left-to-right order. To navigate down the tree, the functions
left-child() and right-child() are used, as described in Sec-
tion 2.2. To navigate upwards, the iterator makes use of a
small stack that is populated during downward navigation.
Other data structures like SuRF [68] implement upwards
navigation using the select primitive, the counterpart to rank.
For TEB, we prefer a classic stack-based approach as it is
significantly faster in practice and saves space.
During tree traversal, the iterator needs to keep track

of its position (and level) within the tree structure. This
information is required to determine the start index and
length of a 1-run when the iterator reaches a leaf node with
label 1 and thus needs to produce an output. The iterator
therefore maintains a path variable that encodes the path
from the root to the current node using a single integer.
The initial (and minimum) value of the path variable p is
1. During downwards navigation, a 0-bit is shifted in when
navigating to the left child p := (p << 1) and a 1-bit when
navigating to the right child p := (p << 1) | 1. The index of
the most significant 1-bit (the sentinel bit) indicates the level
of the corresponding tree node:

level(p) := sizeof(p) · 8 − 1 − lzcount(p)
where sizeof(p) refers to the size of the variable p in bytes
and lzcount(p) to the number of leading zeros in p. A tree
node that is identified by its path p then represents a run
that starts at position

pos(p) := (p ⊕ (1 << level(p))) << (tree_height − level(p))
with length

length(p) := n >> level(p) =∧ 2log2(n)−level(p).
Similarly to the point lookup access method, the upper

perfect levels of the tree are skipped. The iterator only con-
siders the sub-trees rooted in [tbegin, tend), as described in
Section 2.3. Algorithm 2 shows how the iterator is forwarded
to the next 1-run.

As mentioned earlier, a time-critical operation is to fast-
forward the iterator to a desired position, thereby skipping
all set bits in between. Thanks to the navigable tree structure,
the operation can be performed in logarithmic time. Nev-
ertheless, to achieve competitive performance in practice,

Algorithm 2: Forward the iterator to the next 1-run.
while t < tend do

while stack is not empty do
// Pop tree node i and its path p from the stack.
⟨i,p⟩ ← stack.pop()
while i is an inner node do

// Push right child on stack and go to left child.
i ← left-child(i)
p ← p << 1
stack.push(⟨i + 1, p | 1⟩)

end
// Reached a leaf node.
if label(i) = 0 then continue
// Found a 1-run. Update the iterator state.
level← sizeof(p) · 8 − 1− lzcount(p)
begin← (p ⊕ (1 << level)) << (tree_height − level)
end← begin + (n >> level)
return

end
t ← t + 1
p← (t − tbegin) | (1 << (perfect_levels − 1))
stack.push(⟨t , p⟩)

end
begin← end← n // Reached the end.
return

we optimize the skip operation so that unnecessary naviga-
tion steps are avoided. The primary decision that is to be
made is whether to (i) navigate up the tree to the common
ancestor of the current and the destination node, and then
downwards in the right sub-tree to the desired position, or
(ii) start at the root node (or at the corresponding tree node
in the last perfect level) and navigate only downwards until
the desired position has been reached. Depending on the
source and destination nodes, one option might be more
efficient than the other. The two options may differ in the
number of required navigation steps. But we also need to
consider that navigating upwards is less costly in terms of
issued CPU instructions than navigating downwards. The
asymmetrical costs are mostly caused by the rank primitive,
which is significantly more costly than accessing the stack.
We experimentally determined that a downward step is ap-
proximately 9× more expensive than an upward step (∼55
cycles vs. ∼6 cycles).
Our decision logic works as follows: We start with a fast

test to determine whether the destination position is outside
of the current sub-tree:

pos >> (h − u − 1) != to_pos >> (h − u − 1)
where h refers to the tree height and u to the number of
perfect levels. If the expression evaluates to true, we can
directly go to the corresponding node at the last perfect
level and navigate downwards until the desired position has
been reached. Otherwise, if the destination node is within

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

943

211

the current sub-tree, we (i) determine the common ancestor
node (ii), estimate the navigational costs for both options,
and (iii) pick the cheaper path.
It is worth mentioning that an iterator with skip support

is not the most efficient way to decompress (rather than
intersect) a TEB. For these cases we provide an alternative
iterator to which we refer to as scan iterator. Unlike the
regular iterator, the scan iterator’s seek function operates in
O(n), but it offers a significantly higher read throughput, as
it (i) decodes the tree in batches and (ii) does not rely on the
rank primitive to traverse the tree.

3.3 Tree Scan
In this section, we present a tree traversal algorithm that is
optimized for modern x86 hardware. The algorithm takes
a level-order encoded binary tree and iterates over all leaf
nodes in left-to-right order. We refer to the algorithm as tree
scan. The tree scan is the basic building block for the TEB
scan iterator.

Generally speaking, navigating from one leaf node to the
next one is a 3-step process: (i) navigate up the tree until a
left child is observed, (ii) go to its right sibling, and (iii) walk
down the tree to the leftmost leaf node. The key idea behind
our solution is to have multiple lightweight bit iterators for
the encoded tree structure T , one iterator per tree level, and
then scan the bit sequence T in parallel. We denote the bit
iterators in T as tl with 0 ≤ l < h. Initially, all iterators
point to the first bit in T at their corresponding level l . We
expose the values each iterator points to as an integer value,
denoted as α . The bits in α := bh−1 . . .b1b0 are populated
with bl = ∗tl , where ∗ denotes the dereference operator. A
path variablep identifies the position and the level within the
tree, as described earlier. Initially,p points to the leftmost leaf
node. Using the two values α and p, we can efficiently iterate
over all leaf nodes in left-to-right order, cf., Algorithm 3.
Thereby, p determines the number of upward steps and α
determines the number of downward steps to perform in
each iteration.

The bit iterators are implemented using the AVX-512 SIMD
instruction set as follows. We use a 512-bit SIMD register
to buffer the tree structure. The register is interpreted as
32 × 16-bit integers, i.e., the register is split into 32 lanes.
Thereby, each SIMD lane corresponds to a tree level. For
each level we load up to 16 bits from the encoded treeT . For
instance, Figure 10 illustrates a buffer that contains the tree
from Figure 6b. To consume the buffered tree bit by bit, we
use a second SIMD register to which we refer as read mask.
The read mask again consists of 32 lanes, and a single bit
is set within each lane. Initially, the least significant bit is
set to 1. The position of that bit represents the current read
position in the corresponding buffer lane. Thus, the read
mask represents the state of all (up to) 32 lightweight bit

Algorithm 3: Tree scan
p // The current path. Initially points to the leftmost leaf.
do

// Produce an output, if the label of the current node is 1.
. . .

// Walk upwards until a left child is found.
up_steps← tzcount(∼p)
last← level(p) + 1
p ← p >> up_steps
p ← p | 1 // Go to the right sibling.
first← level(p)
increment the iterators tfirst to tlast and update α
// Walk downwards to the leftmost leaf in that sub-tree.
down_steps← tzcount(∼(α >> level(p)))
p ← p << down_steps

while not done

α

Figure 10: AVX-512 allows for the instantiation of up
to 32 lightweight bit iterators (one for each tree level)
using only two SIMD registers: The first is used to
buffer the encoded tree level by level and the second
represents the iterators’ read positions.

iterators. The increment of an iterator is then implemented
as a left shift of the corresponding lane. The implementation
has the advantages that we can work with multiple itera-
tors in parallel and that the most important operations can
be performed in a single instruction. For instance, multiple
iterators can be incremented using a single masked shift in-
struction (_mm512_mask_slli_epi164) and all iterators can
be dereferenced in parallel to retrieve the aforementioned α
value; cf., Figure 10.

The presented algorithm is used in the TEB scan iterator
that is supposed to be used when efficient skip support is
not required, e.g., when decompressing an entire TEB. With
regard to performance, the scan iterator benefits from the
predictable memory access pattern, as well as from the re-
duced number of memory loads, due to buffering. However,
a problem not mentioned above is that we need to know the
start offset in T for each tree level. Unfortunately, determin-
ing these offsets is a linear time operation. Therefore, we
store the offsets as part of the TEB metadata, which now is
logarithmic in size. For brevity we have omitted some of the
4We refer the reader to the Intel Intrinsics Guide for more details on
the SIMD instruction set architectures: https://software.intel.com/sites/
landingpage/IntrinsicsGuide

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

944

212

Algorithm 4: Next function of the AND iterator.
Input :Run iterators a and b.
while !(a.begin != n | | b.begin != n) do

begin_max ← max(a.begin, b.begin)
end_min← min(a.end, b.end)
overlap← begin_max < end_min
if overlap then

if a.end ≤ b.end then a.next()
if b.end ≤ a.end then b.next()
begin← begin_max // Update the iterator state.
end ← end_min
return

else
if a.end ≤ b.end then a.skip_to(b.begin)
else b.skip_to(a.begin)

end
end
begin← end← n // Reached the end.

implementation details, such as how buffers are refilled and
how labels are buffered and accessed; which works similarly
to the buffering of the tree structure. We invite the interested
reader to examine the source code of TEB5.

3.4 Logical Operations
Asmentioned earlier, high-level functionality is implemented
on top of the 1-run iterator. Operations like a bitwise AND
are themselves implemented as iterators and can therefore
be arbitrarily chained and combined to evaluate complex ex-
pressions. Algorithm 4, for instance, shows how two bitmaps
are intersected using the iterator API. In contrast to the im-
plementations in Roaring and WAH, the iterator approach
does not produce a compressed bitmap. We think this is not
a disadvantage because producing compressed intermedi-
ate results when evaluating complex compressions could
harm performance. For instance, when bitmap indexes are
used to evaluate multi-dimensional selection predicates, it is
sufficient to identify the ranges (or pages) that contain qual-
ifying tuples; an intermediate bitmap would be discarded
afterwards anyhow.

3.5 Updates
Data structure design in general is a trade-off between read,
update, and memory overheads. The RUM conjecture [3]
states that when optimizing (reducing) two of these over-
heads, it impairs the third one. TEBs are optimized for effi-
cient read access and low memory consumption, and simi-
larly to existing RLE-based compression schemes, the static
nature of TEBs does not allow for in-place updates. In the fol-
lowing, we discuss various approaches that can be combined
with TEBs to achieve updatability.
5TEB source code: https://db.in.tum.de/research/publications/#teb

WAH EWAH Concise Roaring TEB

Census Income 3.4 3.3 2.9 2.6 2.1
Census Income (sorted) 0.66 0.64 0.55 0.6 0.36
Census 1881 34.4 33.8 25.6 15.1 12.6
Census 1881 (sorted) 3.0 2.9 2.5 2.1 1.5
Weather 6.8 6.7 5.9 5.4 4.2
Weather (sorted) 0.55 0.54 0.43 0.34 0.26
WikiLeaks 11.1 10.9 10.2 5.9 5.4
WikiLeaks (sorted) 2.9 2.7 2.2 1.7 1.7

Table 1: Space usage in bits per attribute value.

The naïve and costly way to support random updates is
to decompress the bitmap, perform the update on the un-
compressed representation, and (re-)compress it again after-
wards. Prior work [4] proposed to reduce the update costs
by staging updates in an auxiliary differential data structure
and to apply these pending updates in batches, rather than
one-by-one. Thereby, another compressed bitmap is used
as a differential data structure. While this approach greatly
reduces the number of decompression/compression cycles,
it also causes redundancies (slightly higher memory con-
sumption) and requires the differential data structure to be
consulted (XORed) during read access.
Roaring bitmap applies a different strategy. Due to the

fixed size partitioning, an update affects only a single con-
tainer, rather than the entire bitmap. Thus, in worst-case, 216
bits need to be re-compressed during updates. Updates can
therefore be performed in constant time6, even though the
constant is quite large. Nevertheless, the partition size has
been chosen sufficiently small to fit in an L1 cache to enable
efficient decompression/compression cycles.

Both approaches can be usedwith TEBs. Partitioning could
further be combined with differential updates so that a sep-
arate diff is maintained per partition. We will show in the
later evaluation section that the combined approach offers
the highest throughput regarding updates, with minor com-
promises regarding reads.

4 EXPERIMENTAL ANALYSIS
In the following, we evaluate our approach with regard to
its compression ratio and performance. We begin by using a
number of real-world data sets before performing a detailed
evaluation using synthetic data.

4.1 Real-World Data
We evaluate TEBs with bitmaps from bitmap indexes con-
structed from four real-world data sets that have been previ-
ously used in the experimental evaluation of Roaring Bitmaps
[32]. The data sets, namely Census Income, Census 1881,
6Assuming the corresponding containers reside in heap memory. Modifica-
tions to the serialized format would still be in linear time.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

945

213

Weather, and WikiLeaks, come in two flavors: as is and
sorted. The latter relies on a-priori sorting of the raw in-
put data, which leads to significantly better compression
ratios [33, 34, 47]. Following the prior work, we compress
the individual bitmaps, 200 per data set, and report the av-
erage number of bits per attribute value. We compare TEB
with Concise, EWAH, Roaring, and WAH. The results for
Concise and EWAH are taken from [32]. We reproduced the
results for Roaring with very minor differences with the
sorted Census 1881 andWikiLeaks data. But we observed a
higher discrepancy for WAH. Among our experiments, we
observed a slightly higher space usage than reported earlier,
except for Census 1881 where we observed a significantly
better compression ratio (34.4 vs. 43.8 bits per element). We
attribute these discrepancies to the fact that we use a differ-
ent implementation [60] of WAH. Please note that EWAH
and WAH use 32-bit words; we omit the results for the 64-bit
implementations, as those have a higher space consumption
among all tested workloads.
Table 1 summarizes the experimental results. TEB offers

the best compression ratios, except for the sortedWikiLeaks
data, where Roaring is slightly better (1.667 vs. 1.677 bits
per element). TEB saves up to 22% space on unsorted data
and up to 34.6% on sorted data compared to the second best
compression technique, which in most cases is Roaring.

The rank lookup table (LuT) thereby accounts for 2.2% to
4.4% of the TEB size (3.7% geo. mean, among all real-world
data sets). As mentioned earlier, changing the resolution of
the LuT offers a space/time trade-off. A fine-grained LuT
with one entry per 64 bit offers the best performance. We
observe a 30% lower execution time for computing bitmap
intersections. The memory overhead of the LuT thereby in-
creases significantly to up to 27%, which almost cancels out
the improvements in compression. Decreasing the LuT reso-
lution to 2048 bits on the other hand reduces the TEB size by
up to 2.8% but also causes the intersection time to increase
by up to 10%. Table 2 shows how the space consumption
of TEBs changes for varying rank resolutions compared to
Roaring. Throughout our experiments, we found that a 512-
bit resolution offers a reasonable space/time trade-off, which
we use as our default setting in the following. Neverthe-
less, it is noteworthy that the rank LuT could be omitted
when TEBs are written to persistent storage, and could be
recomputed on-the-fly when TEBs are loaded back into main
memory, allowing one to save additional disk space and I/O
(cf., rightmost column in Table 2).

4.2 Synthetic Data
For an in-depth analysis we generate random bitmaps, where
the individual 1-bits are either uniformly distributed or clus-
tered. Uniform random bitmaps are random bitmaps where
each bit is independently generated following an identical

Rank LuT resolution [bits] no
64 128 256 512 2048 LuT

Census 1881 1.10 0.95 0.87 0.83 0.81 0.80
Census 1881 (sorted) 0.87 0.76 0.71 0.69 0.67 0.66
Census Inc. 0.93 0.86 0.82 0.81 0.79 0.79
Census Inc. (sorted) 0.76 0.66 0.62 0.60 0.58 0.58
Weather 0.93 0.84 0.80 0.77 0.76 0.75
Weather (sorted) 0.97 0.84 0.79 0.76 0.74 0.73
WikiLeaks 1.18 1.02 0.95 0.91 0.89 0.88
WikiLeaks (sorted) 1.25 1.11 1.04 1.01 0.98 0.98

Table 2: Relative size of TEB compared to Roaring(
TEB size/Roaring size

)
for varying rank resolutions.

probability distribution [63], i.e, each bit is set with prob-
ability d . Clustered random bitmaps on the other hand are
generated using a two-state Markov process

01-p 1
p

q

1-q

with the transition probabilities p and q set to

p := d

(1 − d) · f , and q := 1
f

with 0 < d < 1 and 1 ≤ f ≤ n. We make a minor change
over the definition given in [63]; which is that we choose the
initial state randomly with a probability of 0.5, whereas in
[63] the initial state is 1 , meaning that a randomly generated
bitmap would always start with a 1-run.

We generate bitmaps of length n = 220 and report the aver-
aged results over 10 independent experiments. We compare
TEB with WAH [63], which is the most popular RLE-based
bitmap compression scheme, and with Roaring Bitmap [32],
which is the state-of-the-art with regard to performance and
compression ratio. The thorough study of Wang et al. [57]
found Roaring to be superior over other bitmap compression
techniques such as Concise [15], WAH, EWAH [33], VAL-
WAH [22], PLWAH [18], and SBH [27]. We therefore limit
our evaluation to Roaring and WAH.

For the experiments we use FastBit [60, 61] v2.0.3, which
provides a C++ implementation of WAH, and CRoaring [5]
v0.2.60 (unity build), the official C/C++ implementation of
Roaring Bitmap. The dynamic_bitset from the Boost C++
libraries [7] v1.67.0 is used for uncompressed bitmaps. We
compile with GCC v8.3.0 (-O3 -march=native) and execute
on an Intel Core i9-7900X CPU @ 4GHz.

4.2.1 Compression.

Uniform Bitmaps. In the following, we examine the com-
pression ratios with uniform random bitmaps with varying
bit densities. The results in Figure 11 show that TEB and
Roaring are on par in the case of sparse bitmaps (d < 0.005).
With an increasing d , TEB shows the lowest space usage.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

946

214

0.001 0.01 0.1
0

50

100

150

bit density d (log scale)

siz
e
[K
iB
]

Bitmap
Roaring
TEB
WAH

Figure 11: Size of uniform random bitmaps with vary-
ing bit densities. The dotted line refers to the informa-
tion theoretic minimum.

0.001 0.01 0.1 1
1

10

100

1,000

10,000

bit density d (log scale)

cl
us
te
rin

g
fa
ct
or

f
(lo

g
sc
al
e)

highly compressed (less than 1% of the original size)
TEB and Roaring compress similarly (±2%)
TEB compresses best (up to 56% space savings over Roaring)
incompressible

Figure 12: Summary of our findings when compress-
ing clustered bitmaps.

When more than 13% of the bitmap is populated, TEB is no
longer able to compress; Roaring and WAH already stop at
5%. With dense bitmaps (0.5 < d ≤ 1) we observed sym-
metrical results for TEB and WAH, only Roaring requires
a density of more than 97% for the compression to work
again (rather than 95%). This is attributed to the different
containers being used in Roaring, and the fact that Roaring
encodes 0-runs and 1-runs differently, which is in contrast
to TEB and WAH.
Clustered Bitmaps.With our third experiment, we exam-
ine the compression ratios with clustered bitmaps, using
varying bit densities d and clustering factors f . We start with
an exploration of the space spanned by d and f . Thereby,
we consider the ranges 0.0001 ≤ d < 1 and 1 ≤ f ≤ n. We
make the following observations:
• When the input bitmaps are very sparsely populated or
exhibit a strong clustering, all bitmap compression tech-
niques under test perform well. In the dotted area () in
Figure 12, the compressed bitmaps occupy less than 1% of

the space of the uncompressed bitmap, irrespective from
the employed compression scheme.
• TEB offers better compression ratios than WAH through-
out all measurements; and only in some rare cases does
WAH compress slightly better than Roaring.
• When comparing TEB and Roaring, TEB does not always
offer the best compression ratios. However, in these cases,
the differences in size are marginal. The largest difference
in size we observed throughout all experiments is 1.6%
of the original bitmap size. In the area marked with in
Figure 12, TEB and Roaring perform similarly.
• TEB in contrast, shows significantly higher compression
ratios with denser bitmaps and bitmaps with lower clus-
tering, cf. the area marked with in Figure 12. In com-
parison to Roaring, we observed a difference in size of up
to 56% of the plain bitmap size, in favor of TEB. Figure 13
shows a qualitative side-by-side comparison.

Figure 14 gives a detailed view on how the size of the com-
pressed bitmaps change for varying d and fixed f . Figure 14a
shows that the TEB approach is able to exploit short 1-runs
in sparse bitmaps, resulting in up to ∼50% space savings over
Roaring. With a moderate clustering, as shown in Figure 14b,
our approach is also able to compress dense bitmaps. Fig-
ure 14c, on the other hand, reveals that our approach has
a slightly higher space usage than Roaring with strongly
clustered bitmaps, which implies that Roaring can encode
longer runs more space efficiently.

Figure 15 illustrates how f affects the compression ratios.
Figures 15a and 15b show that already a slight clustering
can lead to significant space savings with TEB. Roaring re-
quires a significantly higher clustering to be competitive.
With sparser bitmaps, TEB falls slightly behind Roaring (see
Figure 15c), whereas WAH cannot compete.

4.2.2 Performance.

In the following, we evaluate the read and update perfor-
mance of TEB, and show how it compares to Roaring and
WAH.
Read Access. We first investigate the read (or decompres-
sion) throughput. We thereby iterate over all 1-runs of a
bitmap and measure the duration in wall-clock time. In
our initial performance experiment, we again explore the
space spanned by d and f . Thereby we observe that an un-
compressed bitmap performs better than the compressed
formats when 16 ≤ f ≤ 128 and 0.01 ≤ d < 1. It should
be noted that the dynamic_bitset implementation, which
we use for uncompressed bitmaps, is very straightforward
and does not include any hardware specific optimizations.
Thus, we expect a performance-optimized implementation
to dominate an even larger space. When we consider only
the performance of compressed bitmaps, we observe that the

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

947

215

0.01 0.1 1
10

20
0

0.5

1

d
fsp

ac
e
sa
vi
ng

s

(a) TEB

0.01 0.1 1
10

20
0

0.5

1

d
fsp

ac
e
sa
vi
ng

s
(b) Roaring

0.01 0.1 1
10

20
0

0.5

1

d
fsp

ac
e
sa
vi
ng

s

(c) WAH

Figure 13: Space savings
(
1 − compressed size

uncompressed size

)
for varying d and f .

0 0.5 1
0

50

100

150

bit density d

siz
e
[K
iB
]

(a) f = 4

0 0.5 1
0

50

100

150

bit density d

siz
e
[K
iB
]

(b) f = 16

0 0.5 1
0

10

20

bit density d

siz
e
[K
iB
]

Bitmap Roaring TEB WAH

(c) f = 512

Figure 14: Compressed bitmap size for varying bit densities and fixed clustering factors.

0 10 20
0

50

100

150

clustering factor f

siz
e
[K
iB
]

(a) d = 0.25

0 10 20
0

50

100

150

clustering factor f

siz
e
[K
iB
]

(b) d = 0.1

0 10 20
0

10

20

clustering factor f

siz
e
[K
iB
]

(c) d = 0.01

Figure 15: Compressed bitmap size for varying clustering factors and fixed bit densities.

clustering mostly determines the best performing compres-
sion technique: Roaring is dominant when f ≤ 16, followed
byWAHuntil f is approximately 128. TEB requires an evenly
higher clustering (f > 128) to outperform Roaring andWAH.

In Figure 16, we compare the performance for reasonable
values of d and f , which we expect to occur in practice.
We fixed d to {0.25, 0.1, 0.01} and varied f within the range
[1, 20]. We observe that the time to read the bitmap decreases
with an increasing f , which is due to the smaller size of the
input and due to less branching; the higher f is, the lower
the number of 1-runs to iterate over. Figure 16a, with d set to
0.25, shows that TEB offers a similar performance as WAH,
and that both are close to the performance of Roaring. Still,
a plain bitmap performs best in most cases. The outliers at

f = 1 and f = 2 are due to specialized code paths that are
taken when the bitmaps are not compressed (or just barely
compressed). In the Figures 16b and 16c, with bit densities
reduced to 0.1 and 0.01, we observe that the absolute time
to read a bitmap decreases for all implementations under
test (note the different y-axis scales), but also that TEB falls
behind relative to Roaring and WAH, indicating that the
average cost per 1-run increases with lower d . Naturally, this
is an expected result, as lower bit densities result in sparse
and imbalanced trees, which in turn increases the number
of tree levels that need to be traversed (cf., Section 2).

In our second experiment, we evaluate the effectiveness of
efficient tree navigations within logical operations. We inter-
sect (bitwise AND) two bitmaps with different characteristics.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

948

216

0 10 200

1,000

2,000

3,000

clustering factor f

tim
e
[µ
s]

(a) d = 0.25

0 10 200

500

1,000

1,500

2,000

clustering factor f
tim

e
[µ
s]

(b) d = 0.1

0 10 200

200

400

clustering factor f

tim
e
[µ
s]

Bitmap Roaring TEB WAH

(c) d = 0.01

Figure 16: Read performance for varying clustering factors and fixed bit densities.

0 0.2 0.4 0.6 0.80

1,000

2,000

3,000

bit density d2

tim
e
[µ
s]

(a) d1 = 0.01, f1 = 8, f2 = 4

0 10 200

1,000

2,000

3,000

clustering factor f2

tim
e
[µ
s]

(b) d1 = 0.01, f1 = 8,d2 = 0.25

Figure 17: Intersection performance.

The density and the clustering in the first bitmap is thereby
fixed to d1 = 0.01 and f1 = 8. In Figure 17a, we fix the clus-
tering in the second bitmap to f2 = 4 and vary the density
d2. We observe that the density of the second bitmap only
has a minor impact on the overall intersection time, except
for WAH. The intersection of uncompressed bitmaps, with
constant time random access, is fastest in this setting. Roar-
ing takes ∼1.5× the time of the plain bitmap intersection,
and TEB ∼1.9× the time of Roaring. In Figure 17b, we fix the
density of the second bitmap to d2 = 0.25 and vary f2. Again,
only WAH is sensitive to the varying clustering factor and
thus to the size of the second bitmap. On average, Roaring
needs ∼1.8× the time of the plain bitmap intersection, and
TEB ∼1.6× the time of Roaring.

Differential Updates. In our final experiments, we extend
TEB and the other bitmap compression techniques under
test by a differential data structure and evaluate the update
performance. Our experiments revealed that WAH is not
well suited as a differential data structure. We found that
Roaring significantly outperforms WAH in that regard, be-
cause (i) the partitioned in-memory layout of Roaring offers
significantly faster updates and (ii) the better compression
ratios of Roaring reduce the amount of memory occupied by

Compression avg. time per update [ns]
method non-partitioned partitioned

TEB 599 218
Roaring 480∗ / 574 121∗ / 216
WAH 17634 794
∗ using the in-memory layout (non serialized)

Table 3: The average time to apply an update.

pending updates. We therefore use Roaring as a differential
data structure in the following and omit the results for WAH.

Wemeasure the update throughput by applying 100k point
updates to a compressed bitmap (with n=220, d=0.1, f =8) and
report the average execution time. The number of pending
updates is limited to 20k; i.e., a merge is triggered when this
threshold is reached. Further, we examine how partitioning
affects the execution time of point updates. We partition the
bitmap into chunks of 216 bits, whereas each chunk has its
own diff. The results in Table 3 show that TEB and Roaring
are on par, whereas WAH is several times slower. WAH
suffers from the linear time complexity of point lookups that
are involved with updates. Data partitioning helps to reduce
the access latency significantly, but the average time of an
update is still 3.6× higher. The performance of Roaring on the

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

949

217

other hand could be improved by using its in-memory layout
and its specialized XOR implementations for the individual
container combinations (cf., the results marked with * in
Table 3). The optimization is enabled by the fact that both
the value bitmap and the differential bitmap are Roaring
bitmaps. In a pure in-memory setting, Roaring therefore
outperforms TEB by up to 1.8× and WAH by more than 6×
in terms of update latency (in the partitioned case).
Pending updates naturally impair read latency. We ob-

served a 30% penalty for TEB and Roaring with 20k pending
updates (20% with WAH), irrespective of partitioning. For
more general information on the trade-offs involved with
differential updates, we refer the reader to UpBit [4].

5 RELATEDWORK
Throughout the paper, we already covered the related work
regarding bitmap compression techniques [2, 4, 15, 18, 22,
27, 32, 33, 57, 63], except for the HICAMP bitmap [56] which
is designed for a special kind of memory system [13]. In the
following, we discuss other related work.

Bitmap Indexes. Bitmap indexes and bitmap compression
are orthogonal topics, as bitmap indexes may also be con-
structed with verbatim bitmaps. However, in practice, com-
pression is commonly used to reduce space consumption and
to improve query performance. Thus, the term bitmap index
often refers to a compressed bitmap index. Compression, how-
ever, is just one aspect of a bitmap index. Other techniques
that are involved when a bitmap index is constructed are (i)
binning [28, 65, 66] which groups multiple attribute values
together and (ii) encoding [11, 12, 46] which translates the
bins into a set of bitmaps [64]. Thereby, an encoding scheme
is chosen that best supports the query workload. Common
encodings are equality encoding, range encoding and in-
terval encoding, whereas the latter two allow for arbitrary
range queries by accessing at most two bitmaps. Optionally,
an attribute value may be decomposed into multiple compo-
nents that are individually assigned to bins afterwards. A
single attribute value may therefore map to multiple bins.
An extreme case is the bit-sliced index [46, 50], where the
attribute values are decomposed bit-by-bit, and the number
of bins (and bitmaps) is equal to the bit-width of the attribute.

Binning, encoding, and decomposition influence the char-
acteristics of the individual bitmaps [64] of an index. Conse-
quently, they affect the overall index size and eventually the
query performance [25, 62]. A thorough evaluation of TEBs
within the large design space of bitmap indexes is therefore
beyond the scope of this work.

Succinct Data Structures. The space efficiency of TEBs is
founded on the idea of mapping tree nodes to integer values
[30] and the foundational work on succinctly encoded binary

trees [24] that efficiently support the necessary navigational
operations using the rank and select primitives. Both primi-
tives require a helper structure to lower the time complexity
of tree navigations from linear to constant time. Several im-
plementations have been been proposed [20, 21, 43, 55, 69] to
achieve the performance of pointer-based tree structures. A
key to success, in terms of performance, was the introduction
of the population count instruction, which unfortunately was
quite late in wide-spread x86 processors (AMD 2007, Intel
2008). Over the years, other succinct tree encodings have
been proposed [6, 14, 17, 39, 40, 49] that support a richer set
of operations or being updatable [41]; both, however, would
incur higher space consumption and/or lower performance
with TEB.

Lightweight Indexing. Space-efficient secondary index
structures, in general, have attracted a lot of interest in data-
base research. Many lightweight data structures have been
proposed to accelerate table scans by skipping (i) blocks of tu-
ples [1, 38, 51, 52, 54, 67], (ii) scan ranges within blocks [29],
or (iii) (parts of) individual tuples [19, 23, 35, 36, 48]. Other
index structures were designed to support specific kinds of
queries, e.g., queries with a LIMIT clause [26], or for specific
kinds of data, e.g., observational data [58]. Most of these in-
dex structures rely on lightweight statistical data that is easy
to maintain and query. The more heavyweight approaches
either store approximations of the indexed columns [23, 51]
or even require a different storage layout [19, 36].

6 CONCLUSION
The Tree-Encoded Bitmap (TEB) is a novel approach for com-
pressing bitmaps. Its tree-based compression algorithmmaps
0- or 1-runs of various lengths to binary tree nodes, where
the depth of a node implicitly determines its run length. The
resulting tree structure is then encoded using a succinct phys-
ical data structure that supports logarithmic access time and
therefore allows for efficient logical operations (such as in-
tersections) on compressed data. We experimentally showed
that TEB saves considerable space compared to other com-
pressed bitmap formatsÐin particular at higher bit densities,
i.e., those cases where memory consumption would other-
wise be fairly high. In terms of access speed, TEB is quite
fast for intersection operations: almost as fast as the com-
peting approach Roaring, and much faster than WAH. In the
data distributions where TEB is strongest in saving space, its
raw scan performance is also close to Roaring. As such, TEB
encoded chunks could also be used as a worthwhile addition
to the adaptive Roaring approach, significantly improving
compression in the most difficult data distributions, while
preserving performance.
Acknowledgements. This work was supported by the DFG project KE401/22.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

950

218

REFERENCES
[1] Karolina Alexiou, Donald Kossmann, and Per-Åke Larson. 2013. Adap-

tive Range Filters for Cold Data: Avoiding Trips to Siberia. PVLDB
6, 14 (2013), 1714ś1725. http://www.vldb.org/pvldb/vol6/p1714-
kossmann.pdf

[2] G. Antoshenkov. 1995. Byte-aligned bitmap compression. In Proceed-
ings DCC ’95 Data Compression Conference. 476ś. https://doi.org/10.
1109/DCC.1995.515586

[3] Manos Athanassoulis, Michael S. Kester, Lukas M. Maas, Radu Sto-
ica, Stratos Idreos, Anastasia Ailamaki, and Mark Callaghan. 2016.
Designing Access Methods: The RUM Conjecture. In Proceedings of
the 19th International Conference on Extending Database Technology,
EDBT 2016, Bordeaux, France, March 15-16, 2016. 461ś466. https:
//doi.org/10.5441/002/edbt.2016.42

[4] Manos Athanassoulis, Zheng Yan, and Stratos Idreos. 2016. UpBit:
Scalable In-Memory Updatable Bitmap Indexing. In Proceedings of
the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016. 1319ś
1332. https://doi.org/10.1145/2882903.2915964

[5] The RoaringBitmap authors. [n.d.]. Roaring Bitmap. https://github.
com/RoaringBitmap/RoaringBitmap. [Online; accessed 27-May-2019].

[6] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh
Raman, and S. Srinivasa Rao. 2005. Representing Trees of Higher
Degree. Algorithmica 43, 4 (2005), 275ś292. https://doi.org/10.1007/
s00453-004-1146-6

[7] Boost.org. [n.d.]. Boost C++ Libraries. https://www.boost.org/. [On-
line; accessed 04-Jun-2019].

[8] Michael Cain and Kent Milligan. 2011. IBMDB2 for i indexing methods
and strategies. IBM White Paper.

[9] Samy Chambi, Daniel Lemire, Robert Godin, Kamel Boukhalfa,
Charles R. Allen, and Fangjin Yang. 2016. Optimizing Druid with
Roaring bitmaps. In Proceedings of the 20th International Database Engi-
neering & Applications Symposium, IDEAS 2016, Montreal, QC, Canada,
July 11-13, 2016. 77ś86. https://doi.org/10.1145/2938503.2938515

[10] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2014.
Better bitmap performance with Roaring bitmaps. CoRR abs/1402.6407
(2014). arXiv:1402.6407 http://arxiv.org/abs/1402.6407

[11] Chee Yong Chan and Yannis E. Ioannidis. 1998. Bitmap Index Design
and Evaluation. In SIGMOD 1998, Proceedings ACM SIGMOD Inter-
national Conference on Management of Data, June 2-4, 1998, Seattle,
Washington, USA. 355ś366. https://doi.org/10.1145/276304.276336

[12] Chee Yong Chan and Yannis E. Ioannidis. 1999. An Efficient Bitmap
Encoding Scheme for Selection Queries. In SIGMOD 1999, Proceedings
ACM SIGMOD International Conference on Management of Data, June
1-3, 1999, Philadelphia, Pennsylvania, USA. 215ś226. https://doi.org/
10.1145/304182.304201

[13] David R. Cheriton, Amin Firoozshahian, Alex Solomatnikov, John P.
Stevenson, and Omid Azizi. 2012. HICAMP: architectural support for
efficient concurrency-safe shared structured data access. In Proceed-
ings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2012, London,
UK, March 3-7, 2012. 287ś300. https://doi.org/10.1145/2150976.2151007

[14] David R. Clark and J. Ian Munro. 1996. Efficient Suffix Trees on Sec-
ondary Storage (SODA ’96), Vol. 96. Society for Industrial and Applied
Mathematics, USA, 383ś391.

[15] Alessandro Colantonio and Roberto Di Pietro. 2010. Concise: Com-
pressed ’n’ Composable Integer Set. Inf. Process. Lett. 110, 16 (2010),
644ś650. https://doi.org/10.1016/j.ipl.2010.05.018

[16] Oracle Corporation. 2005. Bitmap Index vs. B-tree Index: Which
and When? https://www.oracle.com/technetwork/articles/sharma-
indexes-093638.html. [Online; accessed 14-Jun-2019].

[17] Pooya Davoodi, Rajeev Raman, and Srinivasa Rao Satti. 2017. On
Succinct Representations of Binary Trees. Mathematics in Computer
Science 11, 2 (2017), 177ś189. https://doi.org/10.1007/s11786-017-0294-
4

[18] François Deliège and Torben Bach Pedersen. 2010. Position list word
aligned hybrid: optimizing space and performance for compressed
bitmaps. In EDBT 2010, 13th International Conference on Extending
Database Technology, Lausanne, Switzerland, March 22-26, 2010, Pro-
ceedings. 228ś239. https://doi.org/10.1145/1739041.1739071

[19] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. 2015. ByteSlice:
Pushing the Envelop of Main Memory Data Processing with a New
Storage Layout. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May
31 - June 4, 2015. 31ś46. https://doi.org/10.1145/2723372.2747642

[20] Simon Gog, Timo Beller, Alistair Moffat, andMatthias Petri. 2014. From
Theory to Practice: Plug and Play with Succinct Data Structures. In
13th International Symposium on Experimental Algorithms, (SEA 2014).
326ś337.

[21] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo
Navarro. 2005. Practical implementation of rank and select queries.
In Poster Proc. Volume of 4th Workshop on Efficient and Experimental
Algorithms (WEA). 27ś38.

[22] Gheorghi Guzun, Guadalupe Canahuate, David Chiu, and Jason Sawin.
2014. A tunable compression framework for bitmap indices. In IEEE
30th International Conference on Data Engineering, Chicago, ICDE 2014,
IL, USA, March 31 - April 4, 2014. 484ś495. https://doi.org/10.1109/
ICDE.2014.6816675

[23] Brian Hentschel, Michael S. Kester, and Stratos Idreos. 2018. Column
Sketches: A Scan Accelerator for Rapid and Robust Predicate Evalua-
tion. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.
857ś872. https://doi.org/10.1145/3183713.3196911

[24] Guy Jacobson. 1989. Space-efficient Static Trees and Graphs. In 30th
Annual Symposium on Foundations of Computer Science, Research Tri-
angle Park, North Carolina, USA, 30 October - 1 November 1989. 549ś554.
https://doi.org/10.1109/SFCS.1989.63533

[25] Theodore Johnson. 1999. Performance Measurements of Compressed
Bitmap Indices. InVLDB’99, Proceedings of 25th International Conference
on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland,
UK. 278ś289. http://www.vldb.org/conf/1999/P29.pdf

[26] Albert Kim, Liqi Xu, Tarique Siddiqui, Silu Huang, Samuel Madden,
and Aditya G. Parameswaran. 2016. Speedy Browsing and Sampling
with NeedleTail. CoRR abs/1611.04705 (2016). arXiv:1611.04705 http:
//arxiv.org/abs/1611.04705

[27] Sangchul Kim, Junhee Lee, Srinivasa Rao Satti, and Bongki Moon.
2016. SBH: Super byte-aligned hybrid bitmap compression. Inf. Syst.
62 (2016), 155ś168. https://doi.org/10.1016/j.is.2016.07.004

[28] Nick Koudas. 2000. Space Efficient Bitmap Indexing. In Proceedings
of the 2000 ACM CIKM International Conference on Information and
Knowledge Management, McLean, VA, USA, November 6-11, 2000. 194ś
201. https://doi.org/10.1145/354756.354819

[29] Harald Lang, TobiasMühlbauer, Florian Funke, Peter A. Boncz, Thomas
Neumann, and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and
OLAP on Compressed Storage using both Vectorization and Compila-
tion. In Proceedings of the 2016 International Conference on Management
of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016. 311ś326. https://doi.org/10.1145/2882903.2882925

[30] C. C. Lee, D. T. Lee, and C. K. Wong. 1986. Generating Binary Trees of
Bounded Height. Acta Inf. 23, 5 (1986), 529ś544. https://doi.org/10.
1007/BF00288468

[31] Daniel Lemire. [n.d.]. Official Roaring Bitmap website. https://
roaringbitmap.org. [Online; accessed 27-May-2019].

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

951

219

[32] Daniel Lemire, Gregory Ssi Yan Kai, and Owen Kaser. 2016. Consis-
tently faster and smaller compressed bitmaps with Roaring. Softw.,
Pract. Exper. 46, 11 (2016), 1547ś1569. https://doi.org/10.1002/spe.2402

[33] Daniel Lemire, Owen Kaser, and Kamel Aouiche. 2010. Sorting im-
proves word-aligned bitmap indexes. Data Knowl. Eng. 69, 1 (2010),
3ś28. https://doi.org/10.1016/j.datak.2009.08.006

[34] Daniel Lemire, Owen Kaser, and Eduardo Gutarra. 2012. Reordering
rows for better compression: Beyond the lexicographic order. ACM
Trans. Database Syst. 37, 3 (2012), 20:1ś20:29. https://doi.org/10.1145/
2338626.2338633

[35] Yinan Li, Craig Chasseur, and Jignesh M. Patel. 2015. A Padded Encod-
ing Scheme to Accelerate Scans by Leveraging Skew. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. 1509ś1524.
https://doi.org/10.1145/2723372.2737787

[36] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: fast scans for main
memory data processing. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013. 289ś300. https://doi.org/10.1145/2463676.
2465322

[37] Roger MacNicol and Blaine French. 2004. Sybase IQ Multiplex - De-
signed For Analytics. In (e)Proceedings of the Thirtieth International
Conference on Very Large Data Bases, VLDB 2004, Toronto, Canada, Au-
gust 31 - September 3 2004. 1227ś1230. https://doi.org/10.1016/B978-
012088469-8.50111-X

[38] GuidoMoerkotte. 1998. Small Materialized Aggregates: A LightWeight
Index Structure for Data Warehousing. In VLDB’98, Proceedings of 24rd
International Conference on Very Large Data Bases, August 24-27, 1998,
New York City, New York, USA. 476ś487. http://www.vldb.org/conf/
1998/p476.pdf

[39] J. Munro and V. Raman. 2001. Succinct Representation of
Balanced Parentheses and Static Trees. SIAM J. Comput. 31,
3 (2001), 762ś776. https://doi.org/10.1137/S0097539799364092
arXiv:https://doi.org/10.1137/S0097539799364092

[40] J. Ian Munro and Venkatesh Raman. 1997. Succinct Representation of
Balanced Parentheses, Static Trees and Planar Graphs. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, October 19-22, 1997. 118ś126. https://doi.org/10.1109/
SFCS.1997.646100

[41] J. IanMunro, Venkatesh Raman, and Adam J. Storm. 2001. Representing
dynamic binary trees succinctly. In Proceedings of the Twelfth Annual
Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC,
USA. 529ś536. http://dl.acm.org/citation.cfm?id=365411.365526

[42] Parth Nagarkar, K. Selçuk Candan, and Aneesha Bhat. 2015. Com-
pressed Spatial Hierarchical Bitmap (cSHB) Indexes for Efficiently
Processing Spatial Range Query Workloads. PVLDB 8, 12 (2015), 1382ś
1393. http://www.vldb.org/pvldb/vol8/p1382-nagarkar.pdf

[43] Gonzalo Navarro and Eliana Providel. 2012. Fast, Small, Simple
Rank/Select on Bitmaps. In Experimental Algorithms - 11th International
Symposium, SEA 2012, Bordeaux, France, June 7-9, 2012. Proceedings.
295ś306. https://doi.org/10.1007/978-3-642-30850-5_26

[44] Patrick O’Neil and Goetz Graefe. 1995. Multi-table Joins Through
Bitmapped Join Indices. SIGMOD Rec. 24, 3 (Sept. 1995), 8ś11. https:
//doi.org/10.1145/211990.212001

[45] Patrick E. O’Neil. 1987. Model 204 Architecture and Performance. In
High Performance Transaction Systems, 2nd International Workshop,
Asilomar Conference Center, Pacific Grove, California, USA, September
28-30, 1987, Proceedings. 40ś59. https://doi.org/10.1007/3-540-51085-
0_42

[46] Patrick E. O’Neil andDallanQuass. 1997. ImprovedQuery Performance
with Variant Indexes. In SIGMOD 1997, Proceedings ACM SIGMOD
International Conference on Management of Data, May 13-15, 1997,

Tucson, Arizona, USA. 38ś49. https://doi.org/10.1145/253260.253268
[47] Ali Pinar, Tao Tao, and Hakan Ferhatosmanoglu. 2005. Compressing

Bitmap Indices by Data Reorganization. In Proceedings of the 21st
International Conference on Data Engineering, ICDE 2005, 5-8 April 2005,
Tokyo, Japan. 310ś321. https://doi.org/10.1109/ICDE.2005.35

[48] Orestis Polychroniou and Kenneth A. Ross. 2015. Efficient Light-
weight Compression Alongside Fast Scans. In Proceedings of the 11th
International Workshop on Data Management on New Hardware, Da-
MoN 2015, Melbourne, VIC, Australia, May 31 - June 04, 2015. 9:1ś9:6.
https://doi.org/10.1145/2771937.2771943

[49] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. 2007. Suc-
cinct indexable dictionaries with applications to encoding k-ary trees,
prefix sums and multisets. ACM Trans. Algorithms 3, 4 (2007), 43.
https://doi.org/10.1145/1290672.1290680

[50] Denis Rinfret, Patrick E. O’Neil, and Elizabeth J. O’Neil. 2001. Bit-Sliced
Index Arithmetic. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, Santa Barbara, CA, USA, May 21-24,
2001. 47ś57. https://doi.org/10.1145/375663.375669

[51] Lefteris Sidirourgos and Martin L. Kersten. 2013. Column imprints: a
secondary index structure. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013. 893ś904. https://doi.org/10.1145/2463676.
2465306

[52] Lefteris Sidirourgos and Hannes Mühleisen. 2017. Scaling column
imprints using advanced vectorization. In Proceedings of the 13th In-
ternational Workshop on Data Management on New Hardware, DaMoN
2017, Chicago, IL, USA, May 15, 2017. 4:1ś4:8. https://doi.org/10.1145/
3076113.3076120

[53] Rishi Rakesh Sinha and Marianne Winslett. 2007. Multi-resolution
bitmap indexes for scientific data. ACM Trans. Database Syst. 32, 3
(2007), 16. https://doi.org/10.1145/1272743.1272746

[54] The PostgreSQL Global Development Group. [n.d.]. Block Range Index
(BRIN) in PostgreSQL. https://www.postgresql.org/docs/11/brin.html.
[Online; accessed 01-Jul-2019].

[55] Sebastiano Vigna. 2008. Broadword Implementation of Rank/Select
Queries. In Experimental Algorithms, 7th International Workshop, WEA
2008, Provincetown, MA, USA, May 30-June 1, 2008, Proceedings. 154ś168.
https://doi.org/10.1007/978-3-540-68552-4_12

[56] Bo Wang, Heiner Litz, and David R. Cheriton. 2014. HICAMP bitmap:
space-efficient updatable bitmap index for in-memory databases. In
Tenth International Workshop on Data Management on New Hardware,
DaMoN 2014, Snowbird, UT, USA, June 23, 2014. 7:1ś7:7. https://doi.
org/10.1145/2619228.2619235

[57] Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. 2017. An Experimental Study of Bitmap Compression vs.
Inverted List Compression. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD Conference 2017, Chicago,
IL, USA, May 14-19, 2017. 993ś1008. https://doi.org/10.1145/3035918.
3064007

[58] Sheng Wang, David Maier, and Beng Chin Ooi. 2014. Lightweight
Indexing of Observational Data in Log-Structured Storage. PVLDB 7,
7 (2014), 529ś540. http://www.vldb.org/pvldb/vol7/p529-wang.pdf

[59] J. W. J. Williams. 1964. Algorithm 232: Heapsort. Commun. ACM 7, 6
(1964), 347ś348.

[60] John Wu and Kurt Stockinger. [n.d.]. FastBit: An Efficient Compressed
Bitmap Index Technology. https://sdm.lbl.gov/fastbit/. [Online; ac-
cessed 27-May-2019].

[61] KeshengWu, Sean Ahern, EWes Bethel, Jacqueline Chen, Hank Childs,
Estelle Cormier-Michel, Cameron Geddes, Junmin Gu, Hans Hagen,
Bernd Hamann, et al. 2009. FastBit: interactively searching massive
data. In Journal of Physics: Conference Series, Vol. 180. IOP Publishing,
012053.

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

952

220

[62] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. 2004. On the
performance of bitmap indices for high cardinality attributes. In
(e)Proceedings of the Thirtieth International Conference on Very Large
Data Bases, VLDB 2004, Toronto, Canada, August 31 - September 3 2004.
24ś35. https://doi.org/10.1016/B978-012088469-8.50006-1

[63] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. 2006. Optimizing
bitmap indices with efficient compression. ACM Trans. Database Syst.
31, 1 (2006), 1ś38. https://doi.org/10.1145/1132863.1132864

[64] Kesheng Wu, Arie Shoshani, and Kurt Stockinger. 2010. Analyses of
multi-level and multi-component compressed bitmap indexes. ACM
Trans. Database Syst. 35, 1 (2010), 2:1ś2:52. https://doi.org/10.1145/
1670243.1670245

[65] Kun-Lung Wu and Philip S. Yu. 1998. Range-Based Bitmap Indexing
for High Cardinality Attributes with Skew. In COMPSAC ’98 - 22nd
International Computer Software and Applications Conference, August
19-21, 1998, Vienna, Austria. 61ś67. https://doi.org/10.1109/CMPSAC.
1998.716637

[66] Ming-Chuan Wu and Alejandro P. Buchmann. 1998. Encoded Bitmap
Indexing for Data Warehouses. In Proceedings of the Fourteenth Interna-
tional Conference on Data Engineering, Orlando, Florida, USA, February
23-27, 1998. 220ś230. https://doi.org/10.1109/ICDE.1998.655780

[67] Jia Yu and Mohamed Sarwat. 2016. Two Birds, One Stone: A Fast, yet
Lightweight, Indexing Scheme for Modern Database Systems. PVLDB
10, 4 (2016), 385ś396. http://www.vldb.org/pvldb/vol10/p385-yu.pdf

[68] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen,
Michael Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF:
Practical Range Query Filtering with Fast Succinct Tries. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018. 323ś336. https:
//doi.org/10.1145/3183713.3196931

[69] Dong Zhou, David G. Andersen, and Michael Kaminsky. 2013. Space-
Efficient, High-Performance Rank and Select Structures on Uncom-
pressed Bit Sequences. In Experimental Algorithms, 12th International
Symposium, SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings. 151ś163.
https://doi.org/10.1007/978-3-642-38527-8_15

Research 10: Storage and Indexing SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

953

221

	List of Publications
	Abstract
	Contents
	Introduction
	Approximate Membership Query Data Structures at High Throughput
	Applications
	Data Structures
	Performance Optimality
	Conclusions

	Efficient Control Flow Handling in Compiled Queries
	Data Centric Query Compilation
	Data-Parallel Pipelines
	Control-Flow Divergence
	Countering Underutilization
	Conclusions

	Space- and Time-Efficient Bitmap Indexing
	Bitmap Index Design Space
	Bitmap Compression
	Tree-Encoded Bitmaps
	Future Work

	Publications
	Performance-Optimal Filtering: Bloom Overtakes Cuckoo at High Throughput
	Introduction
	Performance-Optimal Filtering
	Bloom Filter Variants
	Cuckoo Filter
	Implementation Techniques
	Experimental Analysis
	Related Work
	Conclusion
	Acknowledgements

	Make the Most out of Your SIMD Investments: Counter Control Flow Divergence in Compiled Query Pipelines
	Introduction
	Background
	Vectorized Pipelines
	Refill Algorithms
	Refill Strategies
	Evaluation
	Summary and Discussion
	Conclusions
	Acknowledgements

	Tree-Encoded Bitmaps
	Introduction
	Tree-Encoded Bitmaps
	Operations
	Experimental Analysis
	Related Work
	Conclusion

	Bibliography
	Appendix

