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A B S T R A C T

Efficient Model Order Reduction Methods for the calculation of non-linear electromagnetic systems can be
realized using hyperreduction strategies that are known from structural dynamics. Precalculated full field
solution snapshots are used to build a reduction basis using a singular value decomposition. The non-linear
behavior is further reduced by a weighting function on selected elements. This paper presents the application
of the discrete empirical interpolation method (DEIM) and the energy-conserving sampling and weighting
(ECSW) method to magnetodynamic FEM problems. The magnetodynamic FEM formulation is based on
the modified vector-potential in combination with edge-elements. Applying the hyperreduction methods, a
significant reduction of online computational time was achieved while preserving very good accuracy of the
simulation.
1. Introduction

The simulation of electrodynamic problems is a common task that
is solved using different finite element formulations. Due to Eddy-
currents occurring especially in the neighborhood of the boundary of
ferro-magnetic domains, a high number of dofs is usually required. To
realize an efficient electromagnetic system, the material is often used
in its non-linear regime, which significantly increases the computa-
tional costs. Especially in the early development phase, Model Order
Reduction (MOR) comes in handy to speed up simulations in the design
optimization.

Commonly, MOR exploits Proper Orthogonal Decomposition (POD):
snapshots of the full order model are used to generate a suitable
basis on which the problem can be projected to reduce the number of
degrees of freedom. The concept is often used in mechanical systems
(see for e.g. [1]) and was shown to be useful also for quasi-static
magnetodynamic systems [2,3]. When applied to non-linear problems,
the sole projection of the system in a reduced space is not enough to
efficiently reduce the computational time since a significant part of
the computational cost is not in the solution of linearized problems,
but rather in the evaluation of the non-linear contribution of each
element to the energy of the problem. This issue has been the focus of
recent developments and was investigated for magnetodynamic systems
in [4–6] where the DEI-method [7] was applied.
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As novel approach of hyperreduction in magnetodynamic systems,
the ECSW-method is transferred from structural dynamics to electrody-
namic systems as it promises advantages in terms of stability and result
quality even for highly reduced models.

This contribution investigates the application and comparison of the
discrete empirical interpolation method (DEIM) [7] and the energy-
conserving sampling and weighting (ECSW) method [8] to magneto-
dynamic problems. The systems examined in the course of this work
have a few properties that are very specific to magnetodynamic FEM
problems and it is not clear how they interfere with hyperreduction
methods.

• The problem is strongly in-homogeneous: The solution domain
consists of at least two material domains, namely air and a ferro-
magnetic material. Their constitutive properties differ up to 3
orders of magnitudes. With that also the field energy distribution
is very in-homogeneous.

• The finite element model is built using so-called edge-elements
instead of nodal-elements as known from classical structural dy-
namics.

• Only parts of the system behave dynamically as eddy-currents
cannot occur in non-conducting domains as air.

After the theoretical introduction to the used physical equations,
the theory of DEIM and ECSW are discussed in a unified notation. A
simple 2D example is developed that incorporates all necessary physics
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to test and explain the principles of the two hyperreduction methods
(DEIM, ECSW) and make a comparison in terms of resulting quality and
practical aspects. At the end, a more advanced system in 3D is shown
where many more degrees of freedoms are used for the discretization.

2. Quasi stationary Maxwell equations

2.1. Maxwell equations

The fundamental equations to describe the physics of electrody-
namic systems are the Maxwell equations. Oliver Heaviside formulated
them in a vector form as

𝛁 × 𝑬 = − 𝜕𝑩
𝜕𝑡

Faraday’s law (1)

𝛁 ×𝑯 = 𝒋 + 𝜕𝑫
𝜕𝑡

Ampere’s law (2)

div𝑫 = 𝜌 (3)

div𝑩 = 0 (4)

𝑬: (V/m) Electric field
𝑫: (C/m2) Electric flux density

where: 𝑯 : (A/m) Magnetic field
𝑩: (kg/s2/A) Magnetic flux density
𝒋: (A) Current density
𝜌: (C/m3) Charge density

The response of a material to an external stimulation is described by
he constitutive equation. For the governing equations of electromag-
etism, there are two constitutive equations. The first is the relation
etween the electrical field 𝑬 and the electric flux density 𝑫. Here,

the constitutive equation for the electric field is assumed to be linear,
isotropic and frequency independent. 𝑬 and 𝑫 are thus related through
a constant electrical permittivity 𝜀.

The second constitutive equation relates the magnetic field 𝑯 and
the magnetic flux density 𝑩. This factor is named magnetic perme-
ability 𝜇 and is an isotropic, non-linear function of the magnetic field
magnitude 𝐵 = |𝑩|. Throughout this work, the magnetic permeability
is assumed to be frequency independent. The permeability of a physical
material is typically characterized by the relative permeability 𝜇𝑟 and
the permeability for vacuum 𝜇0 which is also called the permeability
of free space:

𝜇(𝐵) = 𝜇0𝜇𝑟(𝐵) (5)

𝑩 = 𝜇(𝐵)𝑯 (6)

The current density is expressed by the Ohmic law, which accounts
for the conductivity 𝜎 (isotropic and constant) of the material:

𝒋 = 𝜎𝑬 (7)

2.2. Magnetodynamic equations

For magnetodynamic problems, i.e. an approximation of electrody-
namic problems with relative low frequency content, the influence of
the changing electrical field ( 𝜕𝑬𝜕𝑡 ) on the magnetic field is neglected in
the following. Additionally, it is assumed that, in the whole domain
𝛺, no free charges are present (𝜌 = 0). Assuming that the material
does not exhibit any hysteresis, the so-called quasi-stationary Maxwell
equations are obtained, which include the effect of Eddy-currents. A
more sophisticated derivation can be found in [9]:

𝛁 × 𝑬 = − 𝜕𝑩
𝜕𝑡

(8)

𝛁 ×𝑯 = 𝒋 (9)

These partial differential equations, first order in space and time, are
valid in a Lipschitz domain 𝛺 ⊂ 𝑅2 or 𝛺 ⊂ 𝑅3. In Fig. 1, the domains
are visualized. In case of an unbounded problem, the domain 𝛺 should
2

Fig. 1. Domains of the magneto-dynamic equation.

be chosen large enough to properly approximate the propagation of the
fields to infinity. The boundary 𝛤 is set such that all field lines have
o be tangential to 𝛤 . Eddy-currents only can occur in the electrical

conductive domain 𝛺𝑐 ⊂ 𝛺 and the conductivity is given by

𝜎(𝒙) =

{

𝜎c ∀𝒙 ∈ 𝛺c

0 ∀𝒙 ∈ 𝛺 ⧵𝛺c
(10)

Because of Eq. (10) and Ohm’s law, the Eddy-currents vanish in the
domains around 𝛺𝑐 and Eq. (11) must be satisfied [10]:

𝒏c ⋅ 𝒋c = 0 on 𝛤c (11)

where 𝒏c is the normal to the interface 𝛤𝑐 and 𝒋𝑐 denotes the Eddy-
currents in 𝛺𝑐 . The excitation current 𝒋0 is located in domain 𝛺0, where
we assume that no Eddy-currents are present. Therefore, the conductive
domains are not overlapping: 𝛺0∩𝛺c = ∅. The full current is 𝒋 = 𝒋0+𝒋𝑐 .

2.3. Modified vector potential formulation

The formulation of the problem in terms of the modified vector
potential formulation to solve the magnetodynamic equations is gen-
erally well-known, although it can be presented in different manners.
A very short version is presented here: The vector potential 𝑨 (Vs/m)
is defined as

𝑩 = 𝛁 ×𝑨 (12)

Substituting Eq. (12) in Faraday’s Eq. (8) and Ampere’s law Eq. (9)
leads to the curl–curl formulation for 𝑨 (see Eq. (14)).

𝛁 × 𝑬 = −𝛁 × 𝜕𝑨
𝜕𝑡

(13)

× 1
𝜇(𝐵)

𝛁 ×𝑨 = 𝒋 (14)

The gradient of any arbitrary scalar field 𝑉 can be added to the vector
potential 𝑨 without changing the magnetic field density 𝑩. Also, a
gradient field 𝛁𝑉 can be added to the 𝐸-field. Therefore, considering
lso the Ohmic Law, Eq. (13) can be used to write the equation
xpressing the Eddy-current in terms of 𝑨 and 𝑉 :

𝒋𝑐 = 𝜎𝑬 = −𝜎 𝜕𝑨
𝜕𝑡

+ 𝜎𝛁𝑉 (15)

and Eq. (14) can now be written as the governing equation for 𝑨:

𝛁 × 1
𝜇
𝛁 ×𝑨 = 𝒋0 − 𝜎 𝜕𝑨

𝜕𝑡
+ 𝜎𝛁𝑉 (16)

To find a valid scalar field 𝑉 , an additional (naturally given) con-
dition for Eq. (16) is evaluated: The divergence of the right-hand-side
(rhs) of Eq. (16) has to be zero as 𝑯 in Eq. (9) can only generate a
solenoidal vector field. Additionally, the Coulomb gauging div(𝐴) = 0
is applied. With that, the divergence of the first two terms of the rhs
of Eq. (16) are zero by default and for the special case of spatially

constant conductivity 𝜎, the third term has to satisfy 𝜎 div(𝛁𝑉 ) = 0.
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One valid solution for that is 𝑉 = 0, which comes handy, as the degrees
f freedom for 𝑉 vanish completely [11]. With 𝜎 = 0 in 𝛺 ⧵ 𝛺𝑐 , the

formulation is identical to the magnetostatic formulation. As the vector
potential 𝑨 is non unique for the areas of 𝜎 = 0, a regularization term
is introduced for the system of equations after discretization.

2.4. FEM formulations

Using edge-elements, the problem expressed in terms of modified
vector potential can be discretized efficiently [12]. The solution space
𝐻curl

𝐴 for the vector potential is defined as

𝐻curl
𝐴 (𝛺) ∶= {𝑨 ∈ [𝐿2(𝛺)]3 , ∇ ×𝑨 ∈ [𝐿2(𝛺)]3} (17)

with 𝐿2 being the Hilbert space.
Due to the constant conductivity assumption in the domain 𝛺𝑐 and

the use of edge-element, the scalar potential 𝑉 does not have to be
solved explicitly. The entire problem is described solely by the modified
vector potential.

The formulation leads to a weak form: Find 𝑨 ∈ 𝐻curl
𝑨 , such that

∫𝛺
1
𝜇
(∇ ×𝑨′) ⋅ (∇ ×𝑨) d𝛺

+∫𝛺c

𝜎𝑨′ ⋅
𝜕𝑨
𝜕𝑡

d𝛺 = ∫𝛺0

𝑨′ ⋅ 𝒋0 d𝛺 (18)

or all 𝑨′ ∈ 𝐻curl
𝑨′ . A more detailed derivation can be found, e.g. in [13].

o ensure the uniqueness of the vector potential 𝑨 in the area where
he conductivity is null, a regularization term 𝜖 is introduced.

∫𝛺⧵𝛺c

1
𝜇
𝜖𝑨′ ⋅𝑨 d𝛺 (19)

Boundary conditions. The test-function is set to zero on 𝛤 , which is the
Dirichlet boundary for 𝑨. Due to Eq. (12), this means 𝒏⋅𝑩 = 0. With that
essential boundary, the boundary integral vanishes from the left hand
side of the weak form. After discretization, Eq. (20) can be written as

𝑴𝑨�̇�𝑨 + 𝒈𝑨(𝒖𝑨) = 𝒇𝑨 (20)

ereby 𝑴𝑨 is the so-called magnetic mass matrix, 𝒖𝑨 the unknown val-
es of the vector potential, 𝒇𝑨 the load vector, and 𝒈𝑨 the discretized
nternal current. The internal currents are the equivalent to the internal
orces known from structural dynamics.

.5. Mesh

In the area of the skin effect, large gradients for the magnetic field
nd therefore strong Eddy-current [14] are present. To capture these
ocal effects properly, a fine FE-mesh is required. The element size

in the area of the skin effect should be small enough to fulfill the
ondition [13]:
𝛿
ℎ

> 1 5 (21)

Here 𝛿 is determined by Eq. (22).

𝛿 = 1
√

𝜋𝑓𝜎𝜇
(22)

If the material properties (𝜇, 𝜎) and the frequency range (max frequency
𝑓 ) of the simulation are known in advance, Eq. (21) can be taken into
account in the mesh generation. Note that the required mesh fineness
does not depend on the characteristic size of the problem. This is the
driving reason for electro dynamic problems having many degrees of
freedom even for simple geometries.

2.6. Transient solver

For systems, operating in the saturated area of the material, the non-
linear problem needs to be considered and a simulation of the problem
in the time-domain is usually performed.
3

Backward Euler algorithm. The used time integration scheme is the
implicit Euler Algorithm (also known as backward Euler Algorithm).
It approximates the time derivative by the finite difference

�̇�𝑛+1 =
𝒖𝑛+1 − 𝒖𝑛

𝛥𝑡
(23)

where 𝒖𝑛 and 𝒖𝑛+1 are the solutions at two successive times 𝑡𝑛 and 𝑡𝑛+1,
𝛥𝑡 being the time step 𝑡𝑛+1 − 𝑡𝑛.

The problem Eq. (20) can thus be solved at 𝑡𝑛+1 as (dropping the
subscript 𝐴 for simplicity)

𝑴𝒖𝑛+1 + 𝛥𝑡𝒈(𝒖𝑛+1) = 𝑴𝒖𝑛 + 𝛥𝑡𝒇 𝑛+1 (24)

which is a non-linear algebraic problem for 𝒖𝑛+1.

Newton raphson algorithm. The non-linear time integration problem
Eq. (24) can be written in the residual form

𝒓(𝒖𝑛+1) = (𝑴𝒖𝑛 + 𝛥𝑡𝒇 𝑛+1) − (𝑴𝒖𝑛+1 + 𝛥𝑡𝒈(𝒖𝑛+1))
!
= 0 (25)

for which the solution can be found by successive linearization

▵ 𝒖𝑛+1 = −𝑲(𝒖𝑖𝑛+1)
−1𝒓(𝒖𝑖𝑛+1) (26)

𝒖𝑖+1𝑛+1 = 𝒖𝑖𝑛+1+ ▵ 𝒖𝑛+1 (27)

where 𝑲(𝒖𝑖𝑛+1) is the tangent stepping matrix of the linearized problem,
namely

𝑲(𝒖𝑖𝑛+1) =
𝑑𝒓
𝑑𝒖

|

|

|

|𝒖𝑖𝑛+1
= 𝑴 + 𝛥𝑡

𝑑𝒈
𝑑𝒖

|

|

|

|𝒖𝑖𝑛+1
(28)

As stopping condition, an energy-based criterion is chosen. To nor-
alize the criterion value, a reference energy is used. The stopping

riterion can therefore be written as:

𝑜𝑙 >
|

|

|

|

|

𝒓𝑇𝑲−1𝒓
𝒇𝑇𝑲−1𝒇

|

|

|

|

|

≈
|

|

|

|

|

|

▵ (𝒖𝑖𝑛+1)
𝑇 𝒓(𝒖𝑖𝑛+1)

(𝒖𝑖+1𝑛+1)
𝑇 𝒇

|

|

|

|

|

|

(29)

3. Model order reduction

The need for model order reduction becomes clear by considering
the mesh size needed to correctly represent the Eddy-current distri-
bution due to the skin effect. Reduction methods based on projection
of the problem in a subspace perform well only for linear problems
where the function 𝒈(𝒖) can be expressed as matrix–vector product that
an be projected cost-effectively in a subspace. The focus here is on
ethods that use a second reduction, the so-called hyperreduction, of

he non-linear internal forces (i.e. currents for electrodynamic systems)
o speed the calculation up. Two methods used in structural mechanics
re discussed here. The first approach is called the Discrete Empirical
nterpolation method (DEIM) and tries to approximate the full non-linear
nternal forces by expanding the force of selected dofs via a dedicated
asis, [7,15]. The second method is the Energy Conserving Sampling
nd Weighting Method (ECSW) that weights selected elements such that
he internal forces produce the same virtual work as the non-reduced
ystem, [8]. Both methods gain their time reduction from the idea
o reduce the number of elements called for the computation of the
on-linear internal force term. A short summary of the methods in the
ontext of structural dynamic systems is given in [16].

alerkin projection. The DEI-Method as well as the ECSW-Method are
combination of a Galerkin projection to a subspace of the solution

o reduce the degrees of freedom and a hyperreduction to reduce the
on-linear force term to a small evaluation set. To build an appropriate
eduction space for the Galerkin projection, the Proper Orthogonal
ecomposition (POD) method is often considered. The idea of the
OD goes back to the Karhunen–Loève theorem around 1950 [17,18],
ut its broad application grew in the last 20 years with the amount
f computational power. The method relies on the Singular Value
ecomposition (SVD) which is commonly used today in data science for
arious purposes to reduce big amounts of data to their characteristic
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features [1]. Here, in a pre-processing step, a solution of a represen-
tative full problem is computed, while applying an excitation similar
to the one applied in further simulations and a SVD of the solution
snapshots 𝑼 = [𝒖1,… , 𝒖𝑚] is performed. The reduction basis 𝑽 contains
he most important left singular vectors of that decomposition and the
olution is then approximated by

≈ 𝑽 𝒒 (30)

here 𝒒 are the generalized degrees of freedom in the reduced space.
he reduced problem is then obtained by projection of Eq. (20) on 𝑽 :
𝑇𝑴𝑽 �̇� + 𝑽 𝑇 𝒈(𝑽 𝒒) = 𝑽 𝑇 𝒇 (31)

. Discrete empirical interpolation method

The idea of Empirical Interpolation was first proposed in [19] and
urther developed for discrete problems (DEI-Method) in [7,15]. Its ap-
lication to structural dynamics problems was investigated in [20,21].
t was applied in combination with a POD to magnetostatic problems
n [4,6,22,23]. To preserve the generality of the method’s description,
he vector 𝒈(𝒖) will continue to be called internal force as a generic de-
omination independent of the underlying physics. For electrodynamic
ystems the vector describes internal currents.

.1. Method description

The key idea of DEIM is to find a subspace 𝑮 for the internal forces
nd approximate the full internal force vector 𝒈(𝒖) as linear combina-
ion of fewer amplitudes, written in 𝒄. The basis 𝑮 is a subspace of the
ull internal force space, and can thus be used to write the forces as

(𝒖) = 𝑮𝒄(𝒖) + 𝒓 (32)

here 𝒓 is a residuum resulting from the approximation in the subspace.

nternal force subspace. To build the subspace 𝑮 for the internal forces,
he internal forces obtained during the pre-processing (representative
ull simulation) are stored as internal force snapshots [𝒈(𝒖1),… , 𝒈(𝒖𝑛𝑠 )].

1

A representation subspace 𝑮 for the internal forces is then generated
by performing and truncating a POD on those internal force snapshots.

Collocation points. With a truncated 𝑮, equation Eq. (32) is overdeter-
mined. The minimization of 𝒓 can be achieved by selecting dofs where
Eq. (32) has to be fulfilled:

𝑷 𝑇 𝒈 = 𝑷 𝑇𝑮𝒄 (33)

The Boolean matrix 𝑷 selects the so-called collocation points that are
chosen using an empirical greedy algorithm that picks recursively the
dof with the biggest residuum of Eq. (32). The internal force can then be
approximated as follows, while the superscript + indicates the pseudo
inverse:

𝒈 ≈ 𝑮(𝑷 𝑇𝑮)+𝑷 𝑇 𝒈 (34)

In [21], it is shown that only few DEIM collocation points are
needed to represent the nonlinear force vector. Too many collocation
dofs could lead to overfitting of the internal force vector and there-
fore to instabilities in mechanical systems. This effect is not further
investigated in this contribution. Further information can be found
in [24].

Evaluated elements. For this contribution, the number of collocated dofs
is chosen to be 𝑛𝑠. The internal force values at the 𝑛𝑠 chosen collocated
dofs needed for the approximation of the full 𝒈 have to be evaluated

1 As the internal force snapshots are used to generate a basis for the internal
orces, it is also possible to use different solution vectors as those used for the
eneration of the Galerkin basis 𝑽 of the field solution.
4

Fig. 2. Generic example of selected DEIM edges and the neighboring elements.

during the solution process. As 𝒈 results from a FEM discretization, all
neighboring elements have to be evaluated to find the assembled force
value at the collocation point. In Fig. 2, the selected dofs in terms of
the edge-elements are marked in red. To find the assembled dof value
of the internal force, the neighboring elements have to be evaluated.

4.2. Hyperreduction

The whole procedure results in an evaluation of only a subset ̃
of elements  . This is where the time advantage is achieved. The
combination of projections can be precalculated to an auxiliary matrix
𝑯 :

𝑯 = 𝑽 𝑇𝑮(𝑷 𝑇𝑮)+ (35)

The hyperreduced internal force vector and tangential stiffness matrix
are then given as:

𝒈𝑟,𝐷𝐸𝐼𝑀 (𝒒) = 𝑯𝑷 𝑇
∑

𝑒∈̃
𝑳𝑇
𝑒 𝒈𝑒(𝑳𝑒𝑽 𝒒) (36)

𝑲𝑟,𝐷𝐸𝐼𝑀 (𝒒) = 𝑯𝑷 𝑇
∑

𝑒∈̃
𝑳𝑇
𝑒 𝑲𝑒(𝑳𝑒𝑽 𝒒)𝑳𝑒𝑽 (37)

here 𝑳𝑒 is the element localization matrix. Note that, due to the very
ormulation of DEIM, the reduced tangent matrices are non-symmetric
see Eq. (37)). This can be easily understood if we remember that
ifferent basis are chosen for the magnetic potential and the internal
orces.

.3. Different flavors of DEIM

Tiso et al. [20] proposed different variants of DEIM. One important
xtension is the unassembled DEIM (uDEIM). There, the unassembled
orce vector is calculated and approximated by the projection pro-
edure. The main advantage is the further reduction of evaluated
lements. Only one element per DEIM point needs to be processed. For
dge-Elements, this advantage is less significant since less elements are
onnected over an edge than over a node of an element. Another DEIM
xtension [25] proposes to generate different local subspaces depending
n the current state of the system. The concept is called localized DEIM
LDEIM). Using machine-learning techniques the different subspaces
re applied dynamically during the simulation which holds the com-
utational effort low by maintaining a high quality result through a
ide range of parameters.

. Energy conserving sampling and weighting method

The concept underlying the ECSW-Method originates from computer
raphics and was developed for non-linear finite element dynamic
odels in mechanical engineering in [8,26] around 2014. The goal is

o evaluate only a subset ̃ of elements  and weigh them with a factor
> 0.
𝑒
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Fig. 3. Generic example of selected ECSW elements and the associated dofs.

Fig. 4. 2D Geometry (dimensions in millimeter) of the EMPC example.

5.1. Method description

The sum over all virtual work contributions, produced in an ele-
ment by the internal forces, should be approximated as accurately as
possible. Therefore, considering the contribution of each element to the
reduced force, one can write

𝑽 𝑇 𝒈(𝑽 𝒒) =
∑

𝑒∈
𝑽 𝑇𝑳𝑇

𝑒 𝒈𝑒(𝑳𝑒𝑽 𝒒)

≈
∑

𝑒∈̃
𝜁𝑒𝑽 𝑇𝑳𝑇

𝑒 𝒈𝑒(𝑳𝑒𝑽 𝒒) = 𝒀 𝜻 (38)

where

𝒀 =
[

𝑽 𝑇𝑳𝑇
1 𝒈1(𝑳1𝑽 𝒒) … 𝑽 𝑇𝑳𝑇

 𝒈 (𝑳𝑽 𝒒)
]

and where 𝜻 is only non-zero for the selected set ̃ , a subset of the full
element set  .

Training sets and sNNLS. Considering the full solution vectors pre-
computed during pre-processing, one can compute the contribution
𝑽 𝑇𝑳𝑇

𝑒 𝒈𝑒(𝑳𝑒𝑽 𝒒𝑠) of each element to the reduced force 𝑽 𝑇 𝒈(𝑽 𝒒𝑠) at each
computed time step 𝑡𝑠. This information is then used to find a minimum
set of non-zero 𝜻𝑒 to approximate the reduced forces 𝑽 𝑇 𝒈(𝑽 𝒒𝑠) up
to a given tolerance 𝜏. Also, to guarantee the positive definiteness
of the associated energy, all weightings in 𝜻𝑒 must be positive. A
quasi-optimal set ̃ and its associated weights 𝜻 can be found by a
sparse Non-Negative Least Square (sNNLS) solver. More details on this
algorithm can be found in [26].

Evaluated elements. As the unassembled forces are used to calculate the
virtual work of each element, the weighting factors 𝜻 are also at the
level of unassembled elements. In Fig. 3 the active elements are marked
in blue and their associated dofs in red.
5

Fig. 5. Triangulated Mesh. The core is marked blue, the coil orange.

Fig. 6. Material behavior for different types of steel in comparison to the used generic,
analytical material law.

5.2. Hyperreduction

After finding the reduced set of elements and their associated
weighting vector 𝜻 , the hyperreduced internal force vector and tangen-
tial stiffness matrix are given as:

𝒈𝑟,𝐸𝐶𝑆𝑊 (𝒒) =
∑

𝑒∈̃
𝜁𝑒𝑽 𝑇𝑳𝑇

𝑒 𝒈𝑒(𝑳𝑒𝑽 𝒒) (39)

𝑲𝑟,𝐸𝐶𝑆𝑊 (𝒒) =
∑

𝑒∈̃
𝜁𝑒𝑽 𝑇𝑳𝑇

𝑒 𝑲𝑒(𝑳𝑒𝑽 𝒒)𝑳𝑒𝑽 (40)

Note here that by construction, the reduced tangent matrix is sym-
metric and positive definite. This not only reduces the cost in solving
the linear problem, but also guarantees stability [26].

5.3. Different variants of ECSW

The shown sNNLS is not the only algorithm to find the active
set. [27] compares two further mesh sampling algorithms which ac-
count for a positive 𝜁 , namely the polytope faces pursuit (PFP) solver
and the nonnegative variant of the least absolute shrinkage and se-
lection operator (LASSO) [28] which come from the statistics field. In
summary, [27] showed that in most of the cases the sNNLS turned out
to be the best choice.



Finite Elements in Analysis & Design 209 (2022) 103793J. Maierhofer and D.J. Rixen
Fig. 7. Reference result for a sine excitation shows strong non-linear behavior in the center of the core.
Fig. 8. Building the basis from the reference’s solution snapshots.
6. Example

To illustrate the methods and investigate their applicability, an
example denoted here as Electro Magnetic Computing Problem (EMCP)
is constructed (Fig. 4). It can be seen as a model for a generic elec-
tromagnetic actuator/sensor problem where a solenoid is present. The
model is first considered in 2D and will later be extended to 3D.

The system consists of two parts. A cylindrical core of (non-linear)
steel is surrounded by a thin layer of air and a concentric coil. The
system is embedded in a circular area of air with radius 50mm. The
exciting current density vector 𝒋 is considered to be in the transversal
cross section (plane perpendicular to the solenoid axis). Therefore, the
solution field vector 𝑨 will also be in the plane. To achieve a good FEM
approximation, edge elements should be taken. So, the finite element
discretization is performed in the HCurl-Space, first order with skipping
the gradient dofs [29].
6

Framework. All work done for this contribution is performed using the
framework NGSolve and Python. The open source package NGSolve is
an object oriented finite element core library, written in C++ with a
full Python API [30]. Closely connected to it is the automatic mesh
generator NETGEN, [31] which is capable of meshing 2D and 3D
geometries provided by a Constructive Solid Geometry (CSG).

6.1. Reference and training simulation

For the reference simulation, the geometry is meshed with 9502
triangular elements which results in 14 331 dofs (Fig. 5). The orange
part marks the coil area where the external load 𝒋 is applied in a
circular manner. The blue part shows the non-linear ferromagnetic
material. The rest is modeled as vacuum.

The results of this reference simulation are later used as training
data to generate the basis for the solution space and to search for the
evaluated elements in the hyperreduction process.
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Fig. 9. Relative singular value energy fraction and relative errors of two field quantities as a function of the numbers of basis vectors (2D problem).

Fig. 10. Relative Error as a function of the number of current modes, comparing the reduced and the hyperreduced solution.

Fig. 11. Number of elements and relative hyperreduction error in dependency of sNNLS tolerance 𝜏.
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Fig. 12. Selected ECSW elements marked red. Most elements are in the core, only very
few in the coil and the air.

Excitation signal. The excitation signal for the reference simulation is
a current-density (magnitude of 𝒋) that is applied as a sinus-curve with
0Hz and an amplitude of 2Amm−2, see Fig. 7. This excitation unveils

nicely the non-linear behavior, especially the inertia due to the eddy
currents and the saturation of the material.

Material. As non-linear material, a generic steel model is proposed.
The constitutive equation is formulated as a polynomial such that it
is comparable to real interpolated values from material data-sheets
(Fig. 6). The expression for the permeability of the material as function
of the magnetic flux is formulated as

𝜇𝑟(𝐵) =
2000

0.4 +
(

𝐵
T

)8
+ 1 (41)

where the magnetic flux density 𝐵 is given in Tesla (T).
The skin depth where Eddy-currents are dominant is estimated using

n averaged 𝜇𝑟 = 1000 and a conductivity of 𝜎 = 10 × 106 AV−1 m−1.
rom Eq. (21) with an excitation frequency 𝑓 = 10Hz, a depth of Eddy-
urrents of around 𝛿 ≈ 5mm results. The maximum element size is
herefore set to ℎ = 0.2mm in the core mesh.

valuation measures. The vector field 𝑨 is computed for the full prob-
em and, for the discussion, the magnitude of the 𝐵-field is evaluated
t the center of the ferro-magnetic material (see Fig. 7). In contrast to
his local measure, the magnetic energy Eq. (42) and the power loss
q. (43) of the system is computed as global measure. The magnetic
nergy 𝑊 and the power loss 𝑃 are defined as:

= ∫𝛺 ∫

𝐵

0
𝐻(�̃�) d�̃� d𝛺 (42)

𝑃 = ∫𝛺c

|𝑗𝑐 |2

𝜎
d𝛺 (43)

Timestep. The time-integration is performed with the backward Euler
with a time-step of 0.001 s. Different time-step sizes where tested to
verify that the solution is well converged.

Relative error. To evaluate the quality of different solutions, a relative
error (𝑅𝐸) is introduced [26]. This error compares the solution of the
reduced problem to the one of the full system over the entire time
history of the simulation:

𝑅𝐸 =
∑

𝑖

√

∑

𝑖(𝒖𝑟𝑒𝑓 (𝑡𝑖) − 𝒖(𝑡𝑖))𝑇 (𝒖𝑟𝑒𝑓 (𝑡𝑖) − 𝒖(𝑡𝑖))
√

∑

𝒖 (𝑡 )𝑇 𝒖 (𝑡 )
(44)
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𝑖 𝑟𝑒𝑓 𝑖 𝑟𝑒𝑓 𝑖 d
Discretization convergence. The convergence of this reference simula-
tion was checked with a second computation of the problem with a
mesh having 50% more elements (14 219). The relative error of the
valuation point over all time steps was 0.7%, and the relative error
f the power loss was 0.08%. With that, the reference simulation was

assumed to be accurate enough for investigating the effect of reduction.

Computational setup. The computations where performed on an Intel
Xeon CPU E3-1270 v5 @ 3.60 GHz with NGSolve v.6.2.2105 and
Python 3.8.12. As linear solver, the SuperLU 5.2.1 direct solver (sparse
LU factorization, shipped with Scipy 1.7.1 as spsolve) was used. In
comparison, also the PARDISO 5 solver via the NGSolve API was tested
and found to result in slightly less accuracy but a better performance.

When specifying the number of dofs, only the free dofs are counted,
i.e. the dofs that are not restricted by the dirichlet boundary. The
dirichlet boundary is applied to the outer boundary of the air volume
and set to zero.

Result. The reference solution (Fig. 7) exhibits a relatively large phase-
lag in the local B-field at the center of the core due to the damping
characteristics arising from the Eddy-currents. Also, the saturation of
the material can be seen as the amplitude of the B-field is limited and
does not follow the sinusoidal variation of the excitation. The power
loss is the highest when the rate of change of the load is high as then
most of the Eddy-currents are induced and converted to heat by the
Ohmic resistance. Notice that the system is at rest at the beginning of
the simulation. This results in a transient behavior until the system is
in a steady state condition. The effect can be seen in the power loss
graph.

6.2. Basis

To generate the reduction basis, a set of snapshots are decomposed
with the SVD algorithm. For this example, all solution vectors of one
sinus cycle of the reference problem are considered.

The singular values of the given snapshot matrix are shown in
Fig. 8(a) for a linear and the non-linear material. It is obvious that
the non-linear system needs more vectors to be approximated in an
accurate way. For a better visualization, the rotation of the left singular
vectors (dimension of vector potential 𝑨) of the SV decomposition is
taken to represent modes in a magnetic field like structure. Also, only
the core is shown in Fig. 8(b). To ensure a good quality of the basis, two
different relative errors are calculated with Eq. (44) for the training sets
filtered (𝒖𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑,𝑛 = 𝑽 (𝑽 𝑇 𝒖𝑟𝑒𝑓 ,𝑛)) with the basis 𝑉 constructed from a
rising number of POD vectors, shown in Fig. 9. The selected evaluation
measures are computed from the filtered solution snapshots. While the
error of the power loss in the system is a global measure, the magnitude
of the B-field at the center is a very local measure. This local error is
much harder to minimize. To show the difference to a linear system,
where very few modes are needed to fully describe the system, the
comparison is made for a constant, linear ferro-magnetic material law.

For the further use of the example, the basis is built using the first
8 left singular vectors. They represent 99.2% of the energy. It is a
compromise as the error of the local B-field point is under 10% but
it would not decrease much for many more modes.

6.3. DEIM - hyperreduction

The subspace for the assembled internal current vector is truncated
after the first 𝑛𝑆 left singular vectors. This results in the collocation to
𝑛𝑆 dofs (for the chosen strategy of equal current-modes and collocation
dofs), requiring slightly less than 2𝑛𝑆 evaluated elements (boundary

ofs do not require two elements).
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Fig. 13. Comparison of DEIM- and ECSW-model for the variation of excitation frequency with const. amplitude (2.0Amm−2).
Fig. 14. Comparison of DEIM- and ECSW-model for the variation of excitation amplitude with const. frequency (10Hz).
Variation of subspace truncation. Changing the truncation limit for the
current subspace leads to a change of the active elements. The relative
error of the vector potential originating from the hyperreduction then
decreases (Fig. 10). Interestingly, the decrease is not monotonic and not
steep. This can be understood by the fact that the collocation points in
DEIM are chosen in a greedy manner and do therefore not guarantee a
global optimum.

The relative error depicted in Fig. 10 is relative to the projected
solution with the chosen basis. This allows to see the additional error
that arises from the hyperreduction. The red marked area shows config-
urations of the hyperreduced model where the solution is unstable and
does not converge. This is definitely a major drawback of the DEIM.

Solver. The tangential stepping matrix for the DEIM-reduced model is
not symmetric anymore, but is fully populated. Therefore, the solver
from LAPACK 3.4 was used via Scipy with the pre-settings for general
matrices.
9

6.4. ECSW - hyperreduction

The 2D problem considered above and hyper-reduced with the
DEIM is now considered for hyperreduction with ECSW, using the same
reduction basis determined in Section 6.2.

Variation of 𝜏. To increase the precision of the hyperreduction, the 𝜏-
criterion of the sNNLS is set to a range from 1 × 10−1 to 1 × 10−5 and
plotted in Fig. 11. With decreasing 𝜏, the number of active elements
rises steadily. However, all the relative error measures of the hyper-
reduction first increase with decreasing 𝜏 (which is counter-intuitive),
then start falling reaching a plateau. All this in a very small bandwidth
of the error. At this place it could not be cleared why the error of the
B-field keeps at that plateau and does not improve any more. Obviously,
the ECSW Method is always stable and the results are meaningful even
for a very low number of evaluated and weighted elements.

The sNNLS with a tolerance of 𝜏 = 1 × 10−3 selected 49 elements
(Fig. 12) with weights in the range from 1.462 to 1991.
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Fig. 15. Comparison of DEIM- and ECSW-model for a training amplitude of 1.0Amm−2 for the variation of excitation amplitude with const. frequency (10Hz).
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Table 1
Computational effort values for full- and reduced order model (average values for one
time step)

Full MOR
DEIM ECSW rel

Elements 9502 115 110 ≈1%
Residual Evaluation 0.025 s 0.003 s 0.003 s ≈10%
Tangent Matrix 0.056 s 0.001 s 0.001 s ≈2%

Dofs 14175 8 ≈0.1%
LinSolve 46ms
" 0.45ms ≈1%
" 0.08ms ≈0.2%
Iterations 7 5 5

Solver. The reduced linear problem for the ECSW-Method is symmetric
and positive definite by nature. Therefore this property can be exploited
by the solver. In this case, the non-sparse (the matrix is fully popu-
lated), direct Cholesky solver from LAPACK is used via Scipy, due to
the additional information that the matrix is positive definite. Note
that the SuperLU factorization via Scipy was also tested, but it was
always significantly slower. But as seen later, the time for solving the
linear problem is only a small portion of the complete computational
wall-time.

6.5. Evaluation of computational effort

To investigate the computational effort and therefore the achieved
speedups for both hyper-reduced models, the solution process is split
into three main components. The first step is to apply the latest solution
to the non-linear current function to evaluate the residual Eq. (25).
Second, the tangential stiffness matrix is built. These two steps correlate
with the number of elements. The third step, solving of the linear
problem Eq. (26), scales with the number of dofs the projected system
results in. Table 1 shows the results, separated by a horizontal line for
the element number dependent sizes and the dof number dependent
ones. All steps are iterated until the convergence is reached. All com-
putational times are given for one simulation time-step, meaning that
the computational times for every iteration are summed up during the
convergence of one time step. As the number of iterations will vary
due to the actual load- and system state, all times are averaged over
the whole trajectory (i.e. all time steps) of the simulation. It should be
10

noted here that no outliers regarding the times could be identified.
There is a limit to the achievable time reduction due to some
overhead time for data-handling operations which becomes obvious
in the step of the residual evaluation. A slight drawback of the DEIM
hyperreduction can be seen in the fact that the reduced matrix is not
symmetric and therefore needs a more advanced solver which takes a
bit more time. In the further course of the paper, computational time
data are omitted, since they correlate mainly with the element number
as shown here whatever hyperreduction method is used.

For the next test, the number of current vectors in DEIM and the
tolerance 𝜏 for approximating (Eq. (38)) are tuned to keep roughly the
same number of elements. So we will compare the results in terms of
accuracy, the number of elements evaluated in the hyperreduction (and
thus the computational time) being similar.

6.6. Methods comparison — test trajectory

The obtained hyperreduction parameters (Basis 𝑽 , DEIM: active ele-
ments and current-basis 𝑮, ECSW: active elements and weighting vector
𝜁) are now frozen and stored for the next reduced computation. Both re-
duction methods are constructed such that they evaluate approximately
the same amount of elements ( Table 2). With that, the time savings are
roughly the same, but the quality of the results is examined. First, the
stored reduced models are excited with a different frequency applied.
As far as the mesh density is high enough to represent the correct eddy
currents (see Eq. (22)), the reduced models should be quite independent
on the frequency thus the reduced results are close to the reference.
The results in Fig. 13 are plotted over one period of four different
frequencies, where 10Hz was the training excitation. The ripples arise
from the low number of used modes in the Galerkin projection. Both
methods show a very similar behavior, except one point where the
DEIM-method has an unstable point in the power loss while the ECSW
always produces smooth results.

Second, the frequency is kept at the training frequency (10Hz) and
he amplitude of the excitation is varied. For a training amplitude of
Amm−2, Fig. 14 unveils the weak representation of low amplitude
ehavior for the local probe point. For the global measures the ECSW-
ethod outperforms the DEIM-method clearly as the results are much

moother and very close to the reference solution.
As seen in Fig. 14, the reduced models only behave well in the near

f the trained amplitudes. Performing the same experiment but with a
raining amplitude of 1.0Amm−2 leads to Fig. 15. This leads to a better
epresentation of the local measures and does not effect the high load
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Fig. 16. Reference result for an arbitrary test trajectory. Galerkin 𝑛 = 8, ECSW
𝜏 = 1 × 10−3, DEIM 𝑛𝑓 = 30.

performance too much. The advantage of the ECSW-method for global
measures becomes even more evident.

To further test and compare these stored reduced models, a new
current excitation consisting of two superimposed sinus Eq. (45) is
applied to the system.

𝑓 (𝑡) = 2 ⋅ sin (6 Hz ⋅ 𝑡) + 1 ⋅ sin (15 Hz ⋅ 𝑡) (45)

Simulations are then run for the full system, pure Galerkin projection
(reduction without hyperreduction), and DEIM and ECSW hyperreduc-
tion (training: 10Hz, 2.0Amm−2) methods (Fig. 16) with a timestep
0.001 s and 500 steps.

In Fig. 16, one observes that the hyperreduced solution is quali-
tatively accurate but adds additional errors of the order of the error
inherent to the projection of the reduction basis itself (i.e. the Galerkin
projection is done without hyperreduction). Qualitatively, the DEIM
shows spurious peaks in the power loss, for example at 𝑡 ≈ 0.25 s. This
could eventually be reduced by changing the number of collocation
points.

The relative errors are computed with the full simulation as refer-
11

ence and listed in Table 2. It must be highlighted that the global relative
Table 2
Comparison of DEIM and ECSW results using the relative error of the vector potential
field.

Reduction dofs elements 𝑅𝐸𝐴−𝑓𝑖𝑒𝑙𝑑 𝑅𝐸𝑀𝑎𝑔𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝐸𝐵(0,0)

Full 14175 9502 – – –
POD 8 9502 0.25% 0.5% 8.6%

POD + DEIM 8 56 3.1% 5.2% 14%

POD + ECSW 8 49 0.84% 1.85% 13%

Table 3
Training parameters for the 3D example study.
Parameter Value

Excitation sine, 10Hz
Amplitude 6Amm−2

▵ 𝑡 0.001 s
Timesteps 100

error measures are clearly better using the ECSW-Method even though
less elements evaluated.

Outcome. Both methods result in a similar behavior in the representa-
tion of the local field for load cases similar to the training sets, while the
result’s quality is quite independent of the load’s frequency. To improve
the overall local accuracy, a better basis would be needed.

From a global point of view, the ECSW-result can be considered
as better: although a few less elements than for the DEIM where
considered, all the relative error measures are smaller, as can be seen
from Table 2. Also qualitatively, the ECSW never introduced spurious
peaks and estimated the power loss very precisely. The ECSW method
seems to rather underestimate the magnetic energy in the system and
is overall closer to the full simulation. This is confirmed by the relative
error of the magnetic energy.

7. Advanced example

To further investigate the performance of the methods, an more
complex example is shown here. It is based on the same problem
shown before but now is in 3D. Also, a mobile target part is now
included and modeled as ferro-magnetic material (Fig. 17(a)). Again
the number of current-modes in DEIM and the criterion 𝜏 in ECSW are
chosen to roughly evaluate the same amount of elements. The problem
parameters are listed in Table 3.

The geometry is embedded in a sphere of air with 50mm radius.
Meshing results in a system with 33910 elements and 40159 total dofs.

7.1. Training simulation

To find the active elements for the hyperreduction, again the simple
sine trajectory is computed full order for one period as training simu-
lation and analyzed as shown before. It needs to be mentioned here
that the current density is not directly comparable between the two
examples. In the previous example, the cross section of the coil is in the
transverse plane, whereas in this example the cross section to calculate
the load is in the sagittal plane. With the knowledge of the previous
test, the training set should not cause a high saturation result to enable
a wide amplitude tolerance in the reduced model (see Figs. 18 and 19).

Because of the smoother training results with the less pronounced
non-linearity, the axis-symmetric system is very well described by 8
modes.

Evaluating the offline time that is needed to select the active el-
ements that have to be computed later, two things stand out from
Table 4. First, the selection via DEIM does rarely scale with the number
of chosen current modes. For small numbers this is rather malicious but
for higher number of elements this becomes a benefit. The sNNLS for
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Fig. 17. 3D Example system.
Fig. 18. Reference result in the core for two different radial positions: Center 𝑥 = 0,
near boundary 𝑥 = 4.0mm. The non-linearity is not very pronounced in the training
snapshots.

Fig. 19. Field lines of B-field.
12
Table 4
Number of chosen elements and wall-times for the offline calculations of the DEI- and
ECSW-Methods from the training snapshots for different strength of hyperreduction.

Parameter Duration Active Elements

DEI
𝑛𝑆 = 2 21 s 13
𝑛𝑆 = 5 21 s 28
𝑛𝑆 = 10 21 s 53

sNNLS
𝜏 = 1 × 10−2 1.7 s 9
𝜏 = 1 × 10−3 4.9 s 20
𝜏 = 1 × 10−4 19 s 52

Table 5
Computational wall-times in the solution process of the 3D training simulation.

Full MOR
Rel

Elements 33910 20 ≈0.05%
Residual Evaluation 0.33 s 0.015 s ≈5%
Tangent Matrix 0.84 s 0.002 s ≈0.2%

Dofs 39169 8 ≈0.02%
Iterations 3 3
LinSolve (SuperLU) 40 s 0.0002 s ≈5 × 10−4 %
LinSolve (PARDISO) 2 s 0.0002 s ≈0.01%

the ECSW-Method scales directly with the tightness of the tolerance
𝜏. For too strong demands, the algorithm will even fail and does not
converge. From that perspective, the DEIM is more robust.

Onboard validation — speedups. To discuss the gained speedup of the
hyperreduction methods, one exemplary ECSW simulation with the
same load trajectory (sine) as the training setup was chosen. The main
solution process parts are then evaluated as shown in the 2D section.
The computational time does not only scale directly with the number
of evaluated elements. That is because of some programming overhead
that keeps constant for every Newton-iteration. This can be further
improved, in which case the advantages of calculating only a fraction
the elements would become even more apparent. The bottleneck of
this computation is (see Table 5) obviously the evaluation of the
residuum which is performed in every Newton-Iteration. The savings
in the solution process itself seem very high. By using the PARDISO-
Solver which is much more optimized, this point is somewhat put into
perspective.
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Fig. 20. Low excitation result. The smallest DEI-model cannot represent the local field.
Fig. 21. Medium excitation result. Again the smallest DEI-model is not capable of reproducing the local B-field values.
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7.2. Result for test trajectory

To test the reduced model, again a unknown test trajectory is ap-
plied to the reduced model and validated against a full order reference
simulation. The results are shown in Table 6. The full order model
needs already wall times of around 20 h with the SuperLU-Solver or
1.25 h using the PARDISO-Solver.

Three different load cases are applied to the reduced models which
differ mainly in their amplitude (low ≈ 2Amm−2,medium ≈ 6Amm−2,
igh ≈ 8Amm−2). The reduced models differ in their number of
lements as seen in Table 4.

In Figs. 20, 21, 22, the reduced model results are plotted for the
sets of reduction parameters. The plots for the power loss and the
agnetic field energy are not shown here, as they do not differ in

ny method in a visible way. It is noticeable that the approximation
ith only 2 current modes is very wrong and cannot represent the
ynamics in any way. The result becomes much better when taking into
ccount 5 current modes. Interestingly, the curve seems to run away for
13
onger simulation time. This needs to be further evaluated. The ECSW-
ethod performs very predictable even when taking only 5 elements,

he result is close to the reference. By tightening of the tolerance 𝜏,
the quality of the result increases to nearly perfect representation of
the system’s dynamic. Also here, the ECSW-Method is more reliable as
it keeps the result bounded close to the true reference. The wall-time
for the reduced model is around 6min to 9min without further code
optimization. This represents a significant saving compared to the full
solution (1.25 h).

From Table 6, one can draw the preliminary conclusion that the
ECSW-Method performs superior DEIM in terms of result quality in
relation to the number of evaluated elements. It is clearly noticeable
that the ECSW-Method is more predictable as for more elements the
relative error steadily decreases. The DEIM in contrast shows weakness
for higher amplitudes as trained. Increasing the number of elements can
even worsen the result.
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Fig. 22. High excitation results. Even the higher order DEI-models cannot represent the local B-field values well and additionally show spurious peaks in the power loss.
𝑦
l
t

D

c
i

R

Table 6
Relative Errors of the global power loss of the 3D example for different parameters
and excitations for each of the two hyperreduction methods over all 500 timesteps.

Low Medium High
Reduction dofs elements 𝑅𝐸𝑃𝑙𝑜𝑠𝑠

𝑅𝐸𝑃𝑙𝑜𝑠𝑠
𝑅𝐸𝑃𝑙𝑜𝑠𝑠

Full 39169 33910 – – –
POD 8 33910 0.08% 0.42% 0.63%

POD + DEIM 8 13 2.51% 8.6% 16.56%
POD + DEIM 8 28 0.58% 3.55% 10.24%
POD + DEIM 8 53 0.34% 2.44% 27.65%

POD + ECSW 8 9 0.6% 5.28% 14.11%
POD + ECSW 8 20 0.16% 0.61% 2.73%
POD + ECSW 8 52 0.10% 0.33% 1.35%

8. Summary & conclusion

8.1. Methods comparison

Both, the DEI- and the ECSW-methods use information of the inter-
nal currents. For the DEIM, a basis is extracted which is then used for
a collocation based interpolation. ECSW uses them for the calibration
of weighting factors of a quadrature of the energy. For the shown
generic example of a solenoidal system, computational speed-ups of up
to one order of magnitude were achieved. Although care was taken
to implement all methods properly in the framework of NGSolve, a
further significant reduction of computational time could be achieved
by putting additional effort in code optimization. In these examples, the
resulting accuracy of the applied ECSW method is better than the DEIM
for a similar number of elements kept in the hyperreduction. Comparing
the 2D with the 3D example shows that, for bigger systems, it is easier
to gain a higher speed-up while still preserving a very high accuracy.
14
8.2. Closing

Concluding, both shown hyperreduction methods have potential to
reduce electro-dynamic systems drastically. Finding a good reduction
basis is identified as key to a successful reduction. The hyperreduction
part is found to be quite robust and does not degrade the result
markedly but is essential to significantly reduce the computational costs
of the reduced model. While the DEIM has the major disadvantage
that it can lead to unstable models, the ECSW-Method exhibits high
robustness and better results for less evaluated elements. The next
step to raise the full potential of the ECSW method is to introduce
a geometry parameter and solve the reduced system without new
reduction for neighboring configurations. For that purpose the target
body of the shown example will become a mobile target in 𝑧− and
−direction. Future work will include more advanced geometries with
ess symmetry. Also the generation of the projection basis using less
raining snapshots is part of the investigation.
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