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MOTIVATIONS

The Quantum Approximate Optimization Algorithm
(QAOA) [1] is a variational quantum algorithm used for
solving combinatorial optimization problems. Usually,
the solutions to such an optimization problem are pro-
vided as a binary string, therefore any computational
basis state can be considered as one solution to the
optimization problem. In the algorithm, the application
of a problem-specific cost Hamiltonian achieves phase
separation, in relation to the costs of each solution. The
algorithm also includes another Hamiltonian called the
mixer, defined as a Hermitian matrix that does not com-
mute with the cost Hamiltonian. The mixer Hamiltonian
tries to mix the probabilities of all possible solutions as
a way of exploring the whole solution space and avoid-
ing potential local minima.
In recent work, Hadfield [2] showed that the role
of mixer Hamiltonians can be expanded when there
are constraints involved in the optimization problem.
Preparing according to the hard constraints of a prob-
lem, the mixer is ensured, not only to explore the whole
solution space but to also restrict it according to the
corresponding constraints. However, preparing a mixer
can be cumbersome, since it requires distinct ansatz for
different problems and constraints. Here, we propose
an alternative based on an encoding scheme that
shrinks the search space into the subspace of fea-
sible solutions.
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RESULTS

We test our approach on the Travelling Salesman Prob-
lem. Due to computational constraints, the experiments
are run on a 3-vertex graph, with weights as shown on the
right-hand side. The states that refer to the most optimal
routes are encoded as: 010 100 001 and 010 001 100,
that refer to the routes 1 → 0 → 2 and 2 → 0 → 1 re-
spectively, which are the only possible routes that do not
include the edge that connects the nodes 1 and 2.
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The QAOA ansatz proposed in this work, which
uses encoders, is abbreviated in this section as
"QAOA-E", whereas the method proposed in [2]
is referred to as "QAOA-M". The final sample is
selected using the majority vote approach. Fig.
1 shows the accuracy of the solutions obtained
with QAOA-E on our toy-model problem.

Fig. 2 shows the expected circuit depth for a
single layer using both approaches.

As it can be seen on Fig. 3, in QAOA-E, the
parameters of the mixer unitaries are not deci-
sive factors in the expectation value of the cost
Hamiltonian. Instead, only the parameters of
the cost unitaries are critical in finding the op-
timal configuration. Because the projection of
the states onto the feasible subspace is done by
the non-variational encoder sub-circuit, the mix-
ers only have a limited role, that is creating an
exploration mechanism over the states that are
already in the feasible subspace.
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CONCLUSION

QAOA-E is a general-purpose method, which is shown to work efficiently on small-scale examples. When com-
pared to QAOA-M, our method shows a smoother optimization landscape. Furthermore, the circuit required for
QAOA-E is significantly shallower, which could avoid the problem of barren plateaus in the optimization, and makes
the circuit less vulnerable to noise.
However, one disadvantage of QAOA-E is that it utilizes ancillary qubits while forming the latent space representa-
tion. QAOA-M does not use any ancillary qubits, which is generally preferred due to the limitations of real quantum
hardware.
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