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ABSTRACT
Expected utility theory has produced abundant analytical results in
continuous-time finance, butwith very little success for discrete-time
models. Assuming the underlying asset price follows a general affine
GARCH model which allows for non-Gaussian innovations, our work
produces an approximate closed-form recursive representation for
the optimal strategy under a constant relative risk aversion (CRRA)
utility function. We provide conditions for optimality and demon-
strate that the optimal wealth is also an affine GARCH. In particu-
lar, we fully develop the application to the IG-GARCH model hence
accommodating negatively skewed and leptokurtic asset returns.
Relying on two popular daily parametric estimations, our numeri-
cal analyses give a first window into the impact of the interaction
of heteroscedasticity, skewness and kurtosis on optimal portfolio
solutions. We find that losses arising from following Gaussian (sub-
optimal) strategies, or Merton’s static solution, can be up to 2.5%
and 5%, respectively, assuming low-risk aversion of the investor and
using a five-years time horizon.
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1. Introduction

In times of extremely low-interest rates, the problem of optimal resource allocation is more
relevant than ever. The idea of approaching this task in multiple discrete time steps via
an optimization of expected utility derived from terminal wealth was first published by
Mossin (1968) and subsequently extended by Samuelson (1969).While their approach was
fairly general in terms of admissible probability distributions for the asset return, these
returns were assumed to be i.i.d. and there was no recursive dynamics underlying. Mer-
ton (1969) transferred this approach to a continuous-time framework with a richer model,
a geometric Brownian motion (GBM), developing closed-form solutions for utility func-
tions of the CRRA type (constant relative risk aversion). His solution, due to its popularity,
will play a major role in our paper, serving as a benchmark for the performance of our new
strategy.

The simplicity of those models leads to the question of how to best describe the under-
lying price processes over time. After the hype on GBM in the seventies (Black and
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Scholes 1973; Merton 1973), more complex and realistic stochastic processes were intro-
duced, for instance the stochastic volatility model in Heston (1993). This model was solved
in the context of expected utility theory (EUT) in the early 2000s, e.g., Kraft (2005).
Nonetheless, the models still bear difficulties with respect to implementation and testing
originating from their continuous-time character. One possible answer consists of using
discrete-time GARCH models, first introduced by Engle (1982) and Bollerslev (1986).
Unfortunately, these usually do not yield closed-form solutions in the context of derivative
pricing and portfolio optimization.

The lack of closed-form expressions for derivative pricing was overcome in Heston
and Nandi (2000), introducing a GARCH model (referred to as the HN-GARCH) with
Gaussian innovations, where the moment generating function (m.g.f.) of the log price
process is available in exponentially affine form. This establishes a new class of so-called
affine GARCH models. Several years later, Christoffersen, Heston, and Jacobs (2006) and
Ornthanalai (2014) presented alternative affine GARCH models of non-Gaussian type,
using Inverse-Gaussian and Lévy innovations, respectively, extending the range of accom-
modated stylized facts of asset returns. More recently, Badescu, Cui, and Ortega (2019)
characterized the requirements for the above mentioned affine structure, demanding an
exponentially affine form of the conditional bivariate cumulant generating function of
the log asset price and its conditional variance. This guarantees a closed-form m.g.f. for
option pricing formulas. The worlds of EUT and HN-GARCH model have been recently
combined in Escobar-Anel, Gollart, and Zagst (2022); the authors relied on the log approx-
imation of returns proposed byCampbell andViceira (1999) to produce a first approximate
closed-form solution to GARCH type models in dynamic portfolio optimization. Our
paper extends their work by considering general affine GARCH processes as defined
by Badescu, Cui, and Ortega (2019), with a focus on studying the implications of an
IG-GARCH non-Gaussian setting.

Our contributions are the following:

• Assuming a CRRA utility function for the decision maker and the implied EUT setting
of Campbell and Viceira (1999), we demonstrate that the optimal portfolio strategy in
a general affine GARCH setting is available in recursive form, and the optimal wealth
process is again an affine GARCH process.

• We demonstrate that a slight relaxation of the conditions on general affine GARCH
models suffices to include the IG-GARCH model as a special case. This allows us
to investigate the impact of negative skewness and leptokurtosis of asset returns on
portfolio decisions.

• For two relevant parametric sets, we illustrate that the necessary adjustments on the
portfolio due to the self-financing condition (SFC) approximation, i.e., the approxima-
tion proposed by Campbell and Viceira (1999), are negligible over the entire investment
period.

• We expose, via the influence of the parameter η, that the more negative the skewness
(and the higher the excess kurtosis), the lower the risky portfolio allocation – which
could be of up to 50% less (low-risk aversion) than the allocation recommended by a
Gaussian (HN-GARCH) framework. Themarket price of risk can also notably influence
the optimal solution, the remaining parameters in the model have far less impact.
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• The popular solution in the HN-GARCH context and Merton’s static solution are used
as suboptimal strategies to evaluate wealth-equivalent losses (WEL) compared to the
optimal solution in our framework. The analysis reveals that the HN-GARCH strat-
egy consistently outperformsMerton’s solution for both parametric sets. Big changes in
the higher moments of log asset return innovations can lead to high wealth-equivalent
losses. For an investor with low-risk aversion, assuming a time horizon of five years, the
WEL could be up to 2.5% of the initial wealth – using Merton’s solution instead could
even increase this number to 5%. In general, the WEL decreases with the level of risk
aversion and it increases with the length of the time horizon.

The paper is organized as follows. In Section 2, the portfolio optimization problem
to be tackled is defined and an outline of our solution approach is given. Subsequently,
in Section 3, we present the optimal strategy in a general affine GARCH context as our
main theoretical result and add a subsection about quantifying losses from following
sub-optimal strategies. Section 4 applies the theoretical results to the IG-GARCH model,
which is also the foundation for the numerical analyses in Section 5. In the latter part,
we first investigate the feasibility of our solution, the impact of the used SFC approx-
imation, and subsequently show the sensitivity of the optimal strategy with respect to
the different IG-GARCH parameters. This is followed by an explicit comparison to the
HN-GARCH solution, before we analyse the wealth-equivalent losses from following the
Gaussian alternative or Merton’s static solution. We conclude in Section 6.

2. Outline of the Approach

This section presents the general optimization framework for our investment problem and
embeds general affine GARCH models in this context. We assume that the log price pro-
cess Xt = log St , the price at time t being St , follows an affine GARCH model (as defined
by Badescu, Cui, and Ortega 2019), where for simplicity of exposition we assume � = 1
for the length of the time step. Let θ be a vector of parameters and {εt}t=1,2,... a sequence
of Ft-measurable and Ft−1-conditional i.i.d. random variables with a finite moment gen-
erating function. Based on the associated filtered probability space (�,F , {Ft}t=0,1,...,P)
with physical measureP, the model dynamics is:

Yt := Xt − Xt−1 = f1 (ht , θ)+
√
htεt , (1a)

ht+1 = f2 (ht , θ)+ f3 (ht , εt , θ) , (1b)

where f1, f2 are affine in ht , while f3 is such that the following representation for the
conditional bivariate moment generating function holds:

ψ(Xt ,ht+1) (u, v|Ft−1) = E
[
exp {u · Xt + v · ht+1}

∣∣Ft−1
]

= exp{uXt−1 + A(u, v; t − 1, t)+ B(u, v; t − 1, t) · ht}. (2)

The conditional expectation w.r.t.Ft will also be denoted via the subindex t, e.g., withEt ,
in the sequel. Note that the moment generating function in (2) can also be formulated for
the log return instead of the log price as the first element, making the term uXt−1 in the
exponential function vanish. The choice of f1, f2 and f3 for a particular application shapes
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the coefficientsA and B in Equation (2) according to this requirement. The particular form
of said coefficients will play a major role also in our framework.

We consider a portfolio optimization problem with finite time horizon T in a set-
ting with one risky asset and the cash account Bt . For t ∈ {0, . . .T − 1}, let πt denote
the fraction of wealth invested in the risky asset, let Vt be the corresponding wealth and
w0 = log v0 the log of the initial wealth. Following the reasoning in Escobar-Anel, Gollart,
and Zagst (2022), we approximate returns in the self-financing condition by log prices.
That is, we approximate the equation

Vt

Vt−1
= πt−1

St
St−1

+ (1 − πt−1) er, (3)

with r being the continuously compounded riskless rate, via a second-order Taylor approx-
imation of the logarithm around 1, starting fromW0 = w0. This leads to an approximation
of the self-financing condition that reads:

Wt = Wt−1 + πt−1(Xt − Xt−1)+ 1
2
(
πt−1 − π2

t−1
)
ht + (1 − πt−1)r. (4)

This second-order approximation is well-studied – in particular, it corresponds to
Equation (16) in Campbell and Viceira (1999). Equation (4) exactly equals (3) in the limit
for� → 0, i.e., as the length of the trading interval approaches zero.We refer to Section 5.1
for an investigation of the quality of this approximation in our framework.

The goal is to maximize the expected utility from terminal wealth over the set of admis-
sible, self-financing, relative portfolio strategies {πt}T−1

t=0 . To this end, assume wealth is
assessed by the decision maker according to a power utility function of the form U(v) =
(1/γ )vγ for some parameter γ < 1, implying constant relative risk aversion (CRRA)
1 − γ . The stochastic control problem can be represented as follows:

max
{πt}T−1

t=0

E

[
exp {γWT}

γ

∣∣∣∣F0

]
=: φ0 (w0, h1) , (5)

where h denotes the conditional variance process of the log return of the underlying asset.
LetA be the set of admissible portfolios,H = (0,∞) andY = (0,∞) be the domains

of the conditional variance and the log return of the stock prices, respectively. LetW ⊂ R
be the set of possible values for the log wealth. Then, the transition function is given by
T : W × A × H × Y → W × H,

T (W, a, h,Y) :=
(
W + aY + 1

2
(
a − a2

)
h + (1 − a)r,

f2 (h, θ)+ f3
(
h,

Y − f1 (h, θ)√
h

, θ
))

. (6)

Now assume that there exists a subsetM of all integrable value functionsφ : W × H → R
such that φT(WT) = U(exp{WT}) ∈ M. With the operators L andU,

Lφ (W, a, h) := E [φ (T (W, a, h,Y))] ,

Uφ (W, h) := max
a∈A

Lφ (W, a, h) ,
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assumed to be well-defined for all φ ∈ M, we moreover require for any φ ∈ M the exis-
tence of some a : W × H → A with a(W, h)maximizing a �→ Lφ(W, a, h) onA for all
W ∈ W and h ∈ H, andU : M → M.

Applying themain theorem for finite-step stochastic controlmodels, we canmake use of
Bellman’s value iteration and maximize recursively step by step in order to obtain the opti-
mal solution {π∗

t }T−1
t=0 , defined asπ

∗
t (Wt , ht+1) := arg maxa∈ALφt+1(Wt , a, ht+1), and the

value iteration

φt (Wt , ht+1) = Uφt+1 (Wt , ht+1)

= max
a∈A

Et [φt+1 (T (Wt , a, ht+1,Yt))] , t ∈ {0, . . . ,T − 1} , (7)

with the obvious terminal condition φT(WT) = U(exp{WT}).

3. Solution to the Portfolio Optimization Problem

In this section, we present the solution to the portfolio optimization problem outlined
in Section 2. Section 3.1 contains the main theoretical results. Section 3.2 elaborates on
the theoretical foundations of evaluating suboptimal strategies and the comparison to the
optimal solution via the wealth-equivalent loss.

3.1. Main Results

The optimal solution to Equation (5) is provided in the next theorem, which is followed by
a corollary on the affine GARCH nature of the optimal wealth process.

Theorem 3.1 (Maximum expected utility representation): Assume γ < 0, and let the log
price of the risky asset follow an affine GARCH model, where for all t ∈ {0, . . . ,T − 1}, and
all admissible πt and v, the coefficients in (2) satisfy

∂2

∂u2
A(γ πt , v; t, t + 1) ≥ 0 and

∂2

∂u2
B(γ πt , v; t, t + 1) ≥ 0 (8)

Then at time t, the maximum expected utility from terminal wealth can be written as

φt (Wt , ht+1) = 1
γ
exp

{
γWt + Dt,T

(
π∗
t
) + Et,T

(
π∗
t
) · ht+1

}
, (9)

with Dt,T and Et,T given by the recursive representations

Dt,T(π
∗
t ) = Dt+1,T(π

∗
t+1)+ (

1 − π∗
t
)
γ r + A

(
γπ∗

t ,Et+1,T(π
∗
t+1); t, t + 1

)
, (10a)

Et,T(π∗
t ) = B

(
γπ∗

t ,Et+1,T(π
∗
t+1); t, t + 1

) + γ

2

(
π∗
t − (

π∗
t
)2) . (10b)

with ET,T = DT,T = 0.
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The optimal fraction of wealth invested in the risky asset at time t is given as a solution π∗
t

to the equations

∂

∂u
A(γ πt ,Et+1,T(π

∗
t+1); t, t + 1) = r, (11a)

∂

∂u
B(γ πt ,Et+1,T(π

∗
t+1); t, t + 1) = πt − 1

2
. (11b)

Moreover, a solution π∗
t satisfying (8), (11a), and (11b) is a maximum.

Note that an optimal solution is required to satisfy both equations in (11), which in gen-
eral might not be possible. However, in the special cases of HN-GARCH (c.f. Heston and
Nandi 2000) and IG-GARCHmodels (c.f. Christoffersen, Heston, and Jacobs 2006), (11a)
is trivially satisfied and there remains only (11b) to solve.

Proof of Theorem 3.1: As outlined above, we use Bellman’s value iteration in order to
maximize via backwards induction and use the optimal solution at time t+ 1 for our
approach at time t. In general, this results in the calculations below, where for the terminal
step at time t = T−1 we just work with

φT (WT , hT+1) := φT (WT) = U
(
exp {WT}) = 1

γ
exp {γWT} ,

resulting in DT,T = ET,T = 0. We obtain:

φt (Wt , ht+1) = max
πt

Et [φt+1 (Wt+1, ht+2)]

= max
πt

Et

[
1
γ
exp

{
Dt+1,T(π

∗
t+1)+ γWt+1 + Et+1,T(π

∗
t+1) · ht+2

}]
(12)

= max
πt

1
γ
exp

{
Dt+1,T(π

∗
t+1)

}

× Et

[
exp

{
γ ·

[
Wt + πt (Xt+1 − Xt)+ 1

2
(
πt − π2

t
)
ht+1

+ (1 − πt) r
]

+ Et+1,T(π
∗
t+1)ht+2

}]

= max
πt

1
γ
exp

{
Dt+1,T(π

∗
t+1)+ (1 − πt) γ r + γWt + γ

2
(
πt − π2

t
)
ht+1

}

× Et
[
exp

{
γπt (Xt+1 − Xt)+ Et+1,T(π

∗
t+1) · ht+2

}]

= max
πt

1
γ
exp

{
Dt+1,T(π

∗
t+1)+ (1 − πt) γ r + γWt + γ

2
(
πt − π2

t
)
ht+1

}

× ψ(Xt+1−Xt ,ht+2)

(
γπt ,Et+1,T(π

∗
t+1)

∣∣Ft
)

= max
πt

1
γ
exp

{
Dt,T(πt)+ γWt + Et,T(πt) · ht+1

}
, (13)
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where we used the availability of the generating function in the affine GARCH setting
according to (2) and define

Dt,T(πt) = Dt+1,T(π
∗
t+1)+ (1 − πt) γ r + A

(
γπt ,Et+1,T(π

∗
t+1); t, t + 1

)
(14a)

Et,T(πt) = B
(
γπt ,Et+1,T(π

∗
t+1); t, t + 1

) + γ

2
(
πt − π2

t
)
. (14b)

Note that γ < 0 together with the second-order conditions in (8) are sufficient for the
function in (13) to be concave in πt . The first-order conditions in (11a) thus characterize
the optimal solution to our portfolio problem. In particular, a solution satisfying (8), (11a),
and (11b) is a maximum. �

Corollary 3.2 (Affine GARCH process for optimal log wealth): The optimal log wealth
process {Wt}t follows an affine GARCH process. Furthermore, the optimal solution π∗

t does
not depend on the conditional variance or the wealth.

Proof: We start with the self-financing condition in Equation (4). The equation shows that
the conditional variance of Wt is given by π2

t−1ht . The affine GARCH representation for
the optimal log wealth process can now be deduced from the proof of Theorem 3.1. That is,
starting in line (12), disregarding the maximum operator and unnecessary factors, we can
proceed to line (13) to solve the expectation below for the conditional bivariate moment
generating function ofWt and ht+1. Adopting also the definitions in (14a) results in:

ψ(Wt ,ht+1) (u, v|Ft−1) = Et−1
[
exp {uWt + vht+1}

]
= exp

{
uWt−1 + (1 − πt−1) ur + A (uπt−1, v; t − 1, t)

+
(
B (uπt−1, v; t − 1, t)+ u

2
(
πt−1 − (πt−1)

2)) · ht
}
.

This satisfies the requirements for affine GARCH processes outlined in Equations (1a)
and (2). An investigation of the equations defining the optimal solution yields the second
statement of our corollary. �

It is not difficult to see that theHN-GARCHmodel (Heston andNandi 2000), which has
already been tackled in this context by Escobar-Anel, Gollart, and Zagst (2022), is a special
case of Theorem 3.1. In particular, we introduce the set of parameters θ = (λ,ω,β ,α, ρ)
and an i.i.d. sequence {zt}t of standard normal innovations. Then, choosing f1(ht , θ) =
r + λht , f2(ht , θ) = ω + βht and f3(ht , zt , θ) = α(zt − ρ

√
ht)2, we obtain the following

dynamics for the log return and its conditional variance process in theHN-GARCHmodel:

Xt − Xt−1 = r + λht +
√
htzt , (15a)

ht+1 = ω + βht + α
(
zt − ρ

√
ht

)2
. (15b)

3.2. Wealth-Equivalent Losses fromNon-Optimal Strategies

In this subsection we establish a framework to evaluate suboptimal strategies and the
loss that arises when following the associated wealth processes instead of the wealth from
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our optimal solution. The utility derived from terminal wealth achieved via a suboptimal
strategy {π s

t }t is obtained via the tower property:

φs0 (w0, h1) = E
[
U

(
Vs
T
)∣∣F0

]
= E

[
E

[
. . .E

[
E

[
U

(
Vs
T
)∣∣FT−1

]∣∣FT−2
] · · ·∣∣F1

]∣∣F0
]
, (16)

where Vs
T is the final wealth corresponding to strategy {π s

t }t and w0 = log v0. For the
sake of comparability, we assume the same transition law for suboptimal strategies as for
the optimal solution, i.e., we work with the proxy Wt of the log wealth process logVt ,
derived via the approximation of the self-financing condition (see Equations (4) and (6)).
We refer to Section 5.1 for an investigation concerning the impact of using this approach.
This yields the following equation for the expected utility from terminal wealth at time
t ∈ {0, . . . ,T − 1}:

φst (Wt , ht+1) = E
[
φst+1

(
T

(
Wt ,π s

t , ht+1,Yt+1
))∣∣Ft

]
, (17)

with Yt+1 = Xt+1 − Xt and the terminal condition φsT(WT) = U(exp{WT}). Referring
to Escobar, Ferrando, and Rubtsov (2015), we define the wealth-equivalent loss from
following the suboptimal strategy {π s

t }t instead of {π∗
t }t as the solution Lst to

φt
(
log

(
Vt · (

1 − Lst
))
, ht+1

) = φst
(
log (Vt) , ht+1

)
. (18)

This suggests the interpretation that an investor following the optimal investment strategy
needs a fraction of Ls0 less initial wealth to achieve the same expected utility as another
investor using the suboptimal portfolio process {π s

t }t . From Equations (9) and (18), we
directly deduce that

Lst = 1 − exp
{
1
γ

· (
Ds
t,T − D∗

t,T
) + (

Est,T − E∗
t,T

) · ht+1

γ

}
, (19)

with D∗
t,T = Dt+1,T(π

∗
t+1), E

∗
t,T = Et+1,T(π

∗
t+1), and the following recursive law for Ds

t,T
and Est,T :

Ds
t,T

(
π s
t+1

) = Ds
t+1,T

(
π s
t+1

) + (
1 − π s

t
)
γ r + A

(
γπ s

t ,E
s
t+1,T

(
π s
t+1

)
; t, t + 1

)
, (20a)

Est,T
(
π s
t+1

) = B
(
γπ s

t ,E
s
t+1,T

(
π s
t+1

)
; t, t + 1

) + γ

2

(
π s
t − (

π s
t
)2) , (20b)

with the usual terminal conditions Ds
T,T = EsT,T = 0.

4. Application to IG-GARCHModel

In this section, we present the inverse Gaussian GARCH (IG-GARCH) model (c.f.
Christoffersen, Heston, and Jacobs 2006) as a special case of our main result. Assume the
following dynamics for the log return Xt − Xt−1 = log St − log St−1 and its conditional
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variance process h = {ht}t=1,...,T :

Xt − Xt−1 = r + νht + ηyt , (21a)

ht+1 = w + bht + cyt + a
h2t
yt
, (21b)

with η < 0 and {yt}t a sequence of randomvariableswith inverseGaussian distribution and
single parameter δt = δ(t) = ht/η2. In particular, translating this single-parameter form
to the known representation of an inverse Gaussian distribution, we have yt ∼ IG(δt , δ2t )
andEt−1[yt] = Vart−1[yt] = δt .

Comparing Equations (21a) to (1a), we first note that scaling of the inverse Gaus-
sian random variable with some parameter α yields αyt ∼ IG(αδt ,αδ2t ). This implies
that, in order to obtain the form of (1a), we need to define ξt ∼ IG(−√

δt ,
√
δt
3
) =

IG(−√
ht/η,

√
ht

3
/η3), where, from the variance of a two-parameter inverse Gaussian

variable, we obtain Vart−1[ξt] = 1. The minus for the first parameter compensates for
η < 0 to meet the requirement of positive parameters in the IG distribution. Standard-
izing this random variable further w.r.t. the mean by subtracting −√

ht/η finally allows us
to present the embedding of the IG-GARCH model into the general setting by Badescu,
Cui, and Ortega (2019). With a set of parameters denoted by θ = (ν, η,w, b, c, a), we have

f1 (ht , θ) = r + ν · ht , f2 (ht , θ) = w + b · ht , f3
(
ht , yt , θ

) = cyt + a
h2t
yt
,

where {εt}t , εt = ξt + √
ht/η, are standardized inverse Gaussian random variables. How-

ever, we usually work with f̃1 = r + (ν + 1
η
)ht and use {ξt}t as innovations in (1a). From

this mean-standardized formulation, we derive the market price of risk as λ = ν + 1
η
.1

Remark 4.1 (Inverse Gaussian innovations): (i) Note that the shape of yt still depends
on ht , thus the IG-GARCH model only fulfils a relaxation of the condition on the
sequence of shocks in the general affine setting. In particular, instead of explicitly rely-
ing on the innovations {εt}t=1,...T (or {ξt}t=1,...T) in (1a) being i.i.d., we require that the
choice of distribution allows for the exponentially affine representation of the condi-
tional bivariate generating function in (2). This slight adjustment accommodates the
IG-GARCH model while preserving the necessary and important properties of our
framework.

(ii) Via sendingη → 0, the skewnessS and excess kurtosisK on the one-step distribution,
which are determined by (c.f. Christoffersen, Heston, and Jacobs 2006)

St [Xt+1 − Xt] = 3η (ht+1)
−1/2 , Kt [Xt+1 − Xt] = 15η2 (ht+1)

−1 , (22)

vanish and the standardized shock becomes standard normal in the limit. This can
be used to derive the continuous-time Heston model (Heston 1993) in the limit (cf.
Christoffersen, Heston, and Jacobs 2006, p. 258).2
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The first two conditional moments of the log return are provided next, where we use
the length of a time step being exactly one day, i.e.,� = 1.

Et [Xt+1 − Xt] = r +
(
ν + 1

η

)
· ht+1, (23)

Vart [Xt+1] = ht+1. (24)

The following corollary applies our main results to the IG-GARCH setting.

Corollary 4.2 (IG-GARCH model): Assuming existence, the optimal solution to the
stochastic control problem in (5), with the log price dynamics represented in the form of (21),
is given as a real solution to the equation

ν +
√(

1 − 2E∗
t+1,Taη4

)
η

√(
1 − 2ηγπt − 2E∗

t+1,Tc
) = πt − 1

2
, (25)

if the following two conditions are satisfied for all admissible values of πt and all t ∈
{0, . . . ,T − 1} :

1 − 2E∗
t+1,Taη

4 ≥ 0 and 1 − 2ηγπt − 2E∗
t+1,Tc > 0. (26)

The solutions of Equation (25) can be found via the roots of a cubic polynomial with real
coefficients, and there is exactly one real solution if the discriminant of this polynomial is
negative. A solution π∗

t satisfying (25) and (26) is a maximum.

Proof: As of Christoffersen, Heston, and Jacobs (2006), the coefficientsA and B of the con-
ditional bivariate moment generating function in (2) in the IG-GARCH model are given
by

A
(
γπt ,E∗

t+1,T ; t, t + 1
) = rγπt + E∗

t+1,Tw − 1
2
log

(
1 − 2E∗

t+1,Taη
4) ,

B
(
γπt ,E∗

t+1,T ; t, t + 1
) = E∗

t+1,Tb + νγπt + η−2

− η−2
√(

1 − 2E∗
t+1,Taη4

) (
1 − 2ηγπt − 2E∗

t+1,Tc
)
,

with E∗
t+1,T := Et+1,T(π

∗
t+1). Combining these formulas with Theorem 3.1, we obtain the

explicit representations for Dt,T and Et,T in terms of the parameters of the IG-GARCH
model:

Dt,T = Dt+1,T + γ r + E∗
t+1,Tw − 1

2
log

(
1 − 2E∗

t+1,Taη
4) , (27a)

Et,T (πt) = γ

2
(
πt − π2

t
) + E∗

t+1,Tb + νγπt

+ η−2
(
1 −

√(
1 − 2E∗

t+1,Taη4
) (
1 − 2ηγπt − 2E∗

t+1,Tc
))

. (27b)

Thus, the two Equations (11a) and (11b) reduce to (25), which needs to be solved for πt
in order to obtain the optimal fraction invested in the risky asset. With the second-order
conditions (26) fulfilled, we deduce that a solution must be a maximum.
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Working towards solving Equation (25), we first isolate the radicals, square the equation
and rearrange terms in order to obtain the following cubic equation:

1 − 2E∗
t+1,Taη

4

η2 · (
1 − 2ηγπt − 2E∗

t+1,Tc
)

= π2
t − (1 + 2ν) · πt +

(
ν + 1

2

)2

⇔ 1
η2

· (
1 − 2E∗

t+1,Taη
4) = −2ηγπ3

t + (
1 − 2E∗

t+1,Tc
)
π2
t

+ 2ηγ (1 + 2ν) · π2
t − (1 + 2ν)

(
1 − 2E∗

t+1,Tc
)
πt

− 2ηγ
(
ν + 1

2

)2
πt + (

1 − 2E∗
t+1,Tc

) (
ν + 1

2

)2

⇔ p3 · π3
t + p2 · π2

t + p1 · πt + p0 = 0, (28)

where the coefficients of the polynomial in (28) are given by

p3 = 2ηγ , (29a)

p2 = −2ηγ (2ν + 1)− (
1 − 2E∗

t+1,Tc
)
, (29b)

p1 = 2ηγ
(
ν + 1

2

)2
+ (2ν + 1) · (

1 − 2E∗
t+1,Tc

)
, (29c)

p0 = 1
η2

(
1 − 2E∗

t+1,Taη
4) −

(
ν + 1

2

)2
· (
1 − 2E∗

t+1,Tc
)
. (29d)

The polynomial in (28) has three roots, and the number of real solutions among these can
be deduced from the sign of the discriminant of the polynomial, which in the cubic case is
known to be

D = 18p3p2p1p0 + p22p
2
1 − 4p3p31 − 4p32p0 − 27p23p

2
0. �

The fact that the number of real solutions of a cubic polynomial can be deduced from the
sign of its discriminantmakes it worth pointing out that in Equation (29a), the arrangement
ensures that the signs of three coefficients can easily be derived. Here, we take into account
Condition (26) and use that both η and γ are assumed to be strictly negative, while –
according to the estimates by Christoffersen, Heston, and Jacobs (2006, Table 2) and, more
recently, by Babaoǧlu et al. (2018, Table 2) – ν is positive with order of magnitude 3. In
particular, we have p3 > 0 and p1 > 0, while p2 < 0 and no immediate decision can be
made for p0. However, from this position, the sign of D cannot be told immediately. We
thus refer to our numerical analyses in Section 5.1, which show that for relevant values of
γ , we have exactly one real solution to the optimality equation.

Note that we can make sure that Condition (8) is satisfied by assuming that the argu-
ments of both square roots in (25) are positive, i.e., both inequalities in (26) are fulfilled
with strict inequality. In fact, this implicitly imposes conditions on π∗

t , which need to be
checked in practice. However, due to the order ofmagnitude of the parameter η being 10−4
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Table 1. Values for the parameters used in the IG-GARCHportfolio optimization problem– consisting of
the ML estimates for all IG-GARCH parameters as of Christoffersen, Heston, and Jacobs (2006), called IG
Set 1, and Babaoǧlu et al. (2018), called IG Set 2, respectively, and of the default choices for the investment
parameters.

Panel A: IG-GARCH Parameters Panel B: Inv. Params.

Parameter IG Set 1 IG Set 2 Parameter Def. Val.

ν 1.625e3 1.747e3 T 252
η −6.162e−4 −5.729e−04 r 0.01/252
w 3.768e−10 −1.469E−06 v0 1.00
a 2.472e7 3.190e+7 γ −1
b −1.933e1 −2.182e1
c 4.142e−6 4.047e−6

(considering the estimates from Christoffersen, Heston, and Jacobs (2006) and Babaoǧlu
et al. (2018) again), the conditions can be expected to be satisfied at least by the optimal
terminal solution.

5. Numerical Analysis

This section is divided in three parts: Section 5.1 studies the number of real solutions of the
optimality Equation (25) and the quality of the second-order approximation of the SFC (4).
Section 5.2 evaluates the sensitivity of the optimal solution to the different parameters of
ourmodel, referring to IG-GARCHaswell as investment parameters.We also compare our
solution to the embedded case of an HN-GARCHmodel (presented in Escobar-Anel, Gol-
lart, and Zagst 2022) and show the impact of skewness and kurtosis on allocation and value
function. The last part in this section studies wealth-equivalent losses when the decision
maker uses sub-optimal strategies, in particular when using the HN-GARCH framework
or Merton’s solution instead of the IG-GARCH strategy presented in this paper.

The analyses in this section will be based on two different sets of maximum likelihood
estimates for the IG-GARCHmodel, taken fromChristoffersen, Heston, and Jacobs (2006,
Table 2) and Babaoǧlu et al. (2018, Table 2), which are presented together in Table 1,
Panel A. The former set of MLEs for the IG-GARCH parameters will be called IG Set 1,
the latter one IG Set 2. If not stated otherwise, a one-year time horizon (i.e., T = 252
days) is assumed, the risk-free rate is set to r = 0.01/252, the initial amount of wealth is
v0 = 1, while the risk aversion parameter is set at γ = −1. A summary of the investment
parameters can also be found in Panel B of Table 1.

5.1. Feasibility of Solution and Approximation

The number of real solutions to the optimality Equation (25) can be deduced from the
sign of the discriminant of the cubic polynomial in (28) with the coefficients from (29a).
Figure 1 takes the ML estimates from IG Set 1 and shows that, since we assume γ < 0, the
discriminant is negative for all relevant values of γ . The first plot evaluates the discrim-
inant for γ ∈ [−5, 1). In contrast to the purple dots, the red ones show that the value is
non-negative, which clearly is only the case for some γ -values strictly greater than zero.
The shape of the discriminant in the critical range can be observed from the second plot.
We note that when replacing the ML estimates from IG Set 1 by IG Set 2, this does not
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Figure 1. Discriminant of optimality polynomial, dependent on γ . Parameter estimates from IG Set 1.
The two plots show that the value of the discriminant is negative for the relevant area of γ below zero.
(a) Discriminant values for γ ∈ [−5, 1). (b) Discriminant values for γ ∈ [−0.2, 1).

significantly change the picture. Therefore, for the parameter settings relevant to us, we
obtain exactly one real solution from solving the optimality Equation (25), which hence-
forth will be called the optimal solution. Furthermore, note that the unique real solution is
a maximum, since the conditions stated in Corollary 4.2 are satisfied. In particular, while
Equation (25) represents the first-order condition, the choice γ < 0 together with the two
inequalities in (26) (evaluated at π∗

t ) ensure that the second derivative of the objective
function (13) with respect to πt is negative at the optimum.

As stated in Section 2, we use an approximation of the self-financing condition in our
model, which is developed via a second-order Taylor expansion. The wealth process, with
the exact self-financing condition, actually evolves according to Formula (3). In ourmodel,
we work with eWt ,Wt being the approximation of the log wealth (see (4)). Vt and eWt are
equal at any initial time, e.g., w0 = log v0, but they grow apart as time evolves.

To assess the difference between the two processes {Vt}t and {eWt }t , we perform two
analyses assuming IG Set 1 (see Table 1) withT = 5 · 252. For the first analysis, we simulate
100,000 paths over a trading period of five years and compute the distributions of VT and
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Figure 2. Comparison of the two wealth processes at time T = 5 · 252, with IG Set 1. The curve is bell-
shaped and the vast majority of values is between−0.4% and+0.4% of the initial wealth.

eWT . Figure 2 shows the difference between the terminal values of both processes relative to
the level of wealth. The difference appears to be centred around zero with the vast majority
of values gathered between −0.4% and +0.4% of the initial wealth at time t = 0.3

For the second analysis in this regard, we take into account the fact that our optimal
wealth process is not self-financing. This implies that a decision maker following the sug-
gested strategy needs to pay in or withdraw money in each iteration in order to set her
actual wealth Vt equal to eWt . The distribution of the amount of money necessary for the
adjustment, again obtained from 100,000 simulations over a time period of five years, is
shown in Figure 3. In the first plot, Figure 3(a), we observe that the distribution of the
adjustment values is right-skewed. This means that the decision maker is more likely to
withdraw small amounts of money for the adjustment, but in case of paying in, the amount
might be larger.4 The distribution of the accumulated amount of money to be added to or
withdrawn from the portfolio strategy, displayed in Figure 3(b), is centred around zero,
with 97.08% of values in the interval [−0.5%, 0.5%] of the initial wealth. The analysis fur-
thermore shows that putting an additional amount of 1% of the initial wealth aside at the
beginning suffices in almost a hundred percent of all cases in order to manage all adjust-
ments over a five-years investment horizon. The corresponding analysis using the second
set of parameter estimates produces even better results, see Appendix A.1.1.

5.2. Parameter Sensitivity

This subsection explores the sensitivity of the optimal strategy to the IG-GARCH and
investment parameters. Our investigation consists of three main parts: We first study the
dependence of the optimal solution on the time horizon T, and on the decision maker’s
level of risk aversion, which is determined by γ . Then, we focus on the key parameter cre-
ating the one-period non-Gaussian distribution: η. This parameter controls the skewness
and kurtosis of the asset returns, separating the IG-GARCH from theHN-GARCH. Studies
concerning the remaining IG-GARCH parameters follow.

Regarding the time horizon T, since π∗
0 is calculated via backwards iteration fromπ∗

T−1,
the optimal initial solution directly depends on the planning horizon. Figure 4 shows the
value of the optimal initial solution to our portfolio problem (using both introduced sets
of parameter estimates, see Table 1) for a time horizon ranging from one day to five years,
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Figure 3. Extra cash needed for setting Vt = eWt in each iteration, using IG Set 1. The plots indicate that
the accumulated amount of extra cash is very likely to be between−1% and+1%. In 97.08%of all cases,
the absolute value is below 0.5%. (a) Histogram of adjustments in all simulations, over the whole time
horizon. (b) Histogram of the accumulated amount of extra cash needed over the whole time horizon.

assuming 252 trading days per year. The two plots show similar behaviour of the solution,
both increasing in a short-range with a steep convergence, e.g., sensitive to changes of the
time horizon only for T less than one year.

On the other hand, the plots in Figure 5 show that π∗
0 has a significant dependence on

the investor’s level of risk aversion. The figure confirms that as we decrease γ , the level of
risk aversion increases, which is consistent with the decrease in the share of wealth invested
in the risky asset observed in both plots in Figure 5.

We turn our attention to η as the key source of non-Gaussianity and its impact on
portfolio decisions. In order to isolate the non-Gaussian behaviour, we study the impact
of changes in η while keeping the expected return and the variance unchanged, i.e., the
unconditional first and second-order moments. Thus, when changing η, we also adapt
the remaining parameters of the IG-GARCH model. These additional adjustments can
be expressed most easily using the parameters (λ,ω,β ,α, ρ) of an artificial HN-GARCH
model5, which exactly matches the first two moments of the prevailing IG-GARCH. This
possible calibration of the two models was already noted in Christoffersen, Heston, and
Jacobs (2006). In particular, for any η, we modify ν according to ν(η) = λ− η−1, while
w(η) = ω and (a, b, c) are adapted as follows:
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Figure 4. Dependence of the initial solution π∗
0 on the planning horizon T, displayed in years. The two

curves evolve nearly identical, showing a steep increase of around two percentage points in less than
one year and remaining stable at this level henceforth. (a) IG Set 1. (b) IG Set 2.

a(η) = α

η4
, b(η) = β + αρ2 − 2α

η2
+ 2αρ

η
, c(η) = α − 2ηαρ.

As a result, any IG-GARCH parametrization (η, ν(η),w(η), a(η), b(η), c(η)) calibrated
with the same set (λ,ω,β ,α, ρ) of HN-GARCH parameters yields the same first and
second moments.

In this context, the plots in Figure 6 exhibit decreasing fractions of wealth invested in
the risky asset with decreasing skewness and increasing (excess) kurtosis. This finding is
compatible with the intuition that an increase of excess kurtosis (more extreme events)
combined with negative skewness (negative events) means a higher probability of losses,
hence a reduction of risky investment. Note, however, that the plotted range for η yields
very extreme values for skewness and excess kurtosis at its lower end and is chosen for
illustrative purposes. Figure 6(a) shows how the optimal initial solution depends on η for
different levels of risk aversion, expressed via the parameter γ . The plot in Figure 6(b)
isolates the dependency of the optimal solution on skewness and kurtosis, here we fix γ =
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Figure 5. Dependence of the initial solution on the level of risk aversion in the different parameter set-
tings (see Table 1) with a one-year time horizon (T = 252). The range for γ is [−5,−0.01]. In both cases,
the fraction of wealth increases with γ . (a) IG Set 1. (b) IG Set 2.

−1. The IG-GARCH solution changes with respect to the parameter η, again showing a
less risky allocation as η decreases.

We now proceed to study the impact on the optimal allocation of the remaining param-
eters in the model, which are (a, b, c, ν)6. The impact of ν on our optimal solution is
investigated directly via the market price of risk λ = ν + η−1. For our analysis, we keep
η constant and move ν to evaluate the sensitivity. Figure 7 clearly shows that as the market
price of risk increases, the fraction of wealth invested in the risky asset also increases sig-
nificantly. The plot displays this analysis for IG Set 1, switching to the estimates in IG Set 2
yields identical results on a generally lower level in terms of π∗

t . The corresponding Figure
can be found in Appendix A.1.2.

We plot the impact of (a, b, c) in Figure 8. Recalling that the unconditional variance of
the log return in the IG-GARCH model is given by (w + aη4)/(1 − aη2 − b − c/η2), we
first note that in order to keep this term positive, neither a nor b and c can be increased
much without further adjustments. Since numerical examinations show that the above
mentioned condition is violated even for very little increases, we restrict our analysis to
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Figure 6. Dependence of π∗
0 on γ and η (Part 6(a)) and on η alone (Part 6(b)) for a one-year time hori-

zon. The prevailing IG-GARCH parameter estimates are from IG Set 1 (see Table 1), the analysis for the
alternative parameter setting can be found in Appendix A.1.2. (a) π∗

0 dependent on γ and η. The x-axis
scales the original estimate for η by a factor of at most 1 × 103, the range for γ is [−5,−0.5]. (b) π∗

0
dependent on η only, with γ = −1. Here, η is scaled by at most 1 × 102. The colour bar indicates the
corresponding values of skewness and kurtosis of the distribution of log asset return innovations.

decreases in these parameters. In all cases, decreasing the parameter value decreases the
fraction of wealth invested in the risky asset. Note the limit of π∗

0 when decreasing a, b, or
c corresponds with the value of the terminal solution π∗

T−1, which can be observed also in
the plot for the alternative parameter setting, shown in Appendix A.1.2. Hence, decreasing
these parameters seems to flatten the curve in Figure 4.

5.3. Wealth-equivalent Losses and Comparison to HN-GARCH

In this last part of the numerical analysis, we start by comparing the optimal strategies of
the two GARCH models, i.e., IG-GARCH and HN-GARCH (as of Escobar-Anel, Gollart,
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Figure 7. Dependence of π∗
0 on the market price of risk for a one-year time horizon, using IG Set 1. The

optimal initial solution increases significantly with λ.

Figure 8. Dependence of π∗
0 on a, b and c, respectively. The time horizon is T = 252, we use IG Set

1. For all three plots, decreasing the parameter from its original estimate decreases the initial solution
gradually towards the level of the terminal solution.

and Zagst 2022). Subsequently, we evaluate the performance of our solution against two
different benchmarks, first the solution of the Gaussian HN-GARCH model, and sec-
ond Merton’s popular static solution (c.f. Merton 1969). Concerning the parameters of
the IG-GARCH model, we base our analyses on the two sets in Table 1. For the HN-
GARCH model (15a), we use analogous maximum likelihood estimates from the same
sources (Christoffersen, Heston, and Jacobs 2006; Babaoǧlu et al. 2018), presented together
in Table 2. The latter two sets of estimates will be called HN Set 1 and HN Set 2, respec-
tively. In particular, IG Set 1 andHN Set 1 are obtained via fitting the correspondingmodel
to the same data set.7 That is, our analysis is based on the assumption that the investor
observes the market data and derives the MLEs for the model parameters for IG-GARCH,
HN-GARCH or a homoskedastic Gaussian model, where the latter forms the base for cal-
culating Merton’s static solution (Merton 1969). Based on these parameters, the optimal
solution in the threemodels are determined, and their performance is compared under the
premise that ‘real’ log asset returns follow an IG-GARCHmodel.
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Table 2. Maximum likelihood estimates for the parameters
of the HN-GARCH model, as of Christoffersen, Heston, and
Jacobs (2006) (HN Set 1) and Babaoǧlu et al. (2018) (HN Set 2),
respectively.

Parameter HN Set 1 HN Set 2

λ 2.772e 0 1.10e0
ω 3.038e−09 −1.396e−6
β 9.026e−01 9.00e−1
α 3.660e−06 3.761e−6
ρ 1.284e+2 1.457e2

Figure 9. Comparison of the optimal solutions in the IG-GARCH and the HN-GARCH framework over
a time horizon of one year, dependent on the level of risk aversion, represented via the parameter
γ ∈ [−5,−0.01]. In both cases, the difference increases with γ . For Set 1, the HN-GARCH yields a larger
value for the optimal solution, while for Set 2, this relation is reversed. The difference does not change
significantly with the time horizon T. (a) Set 1. (b) Set 2.

Figure 9 shows a comparison of optimal allocation in both GARCHmodels, i.e., IG and
HN, using the corresponding IG and HN estimates from Sets 1 and 2. Note that Christof-
fersen, Heston, and Jacobs (2006) and Babaoǧlu et al. (2018) provide estimates for the
HN-GARCH model alongside the MLEs used for the IG-GARCH, reported in Table 2.
Figure 9 uses these estimates in both cases. The behaviour of the two optimal strategies
with respect to time seems almost identical, with the Gaussian approach yielding larger
fractions of wealth invested in the risky asset in Figure 9(a) and the difference increasing
as γ → 0. It is very interesting to see that the relationship of the two solutions is reversed
by changing the parameter setting to Set 2, plotted in Figure 9(b), even though the differ-
ence now is significantly smaller. One potential explanation refers to the different values
for η directly affecting the skewness of the distribution of log asset return innovations. As
displayed in Table 1, |η2006| > |η2018|, implying more left-skewness and excess kurtosis in
the earlier parameter setting.8 This, in return, coincides with less money invested in the
risky asset in the plot in Figure 9 for the IG-GARCH solution, whereas the HN-GARCH
model is not designed for capturing changes of this kind.
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Table 3. Realized return moments for the three evaluated strategies, based on 1 × 104 simulation
runs with 1 × 103 paths each, and expected utility from terminal wealth, obtained via the closed-form
expressions.

Panel A Panel B

Solution Mean Std. dev. Skewness Kurtosis φ0(w0, h1)

IG-GARCH 0.1678 0.2047 −0.4379 0.3785 −0.8635
HN-GARCH 0.1772 0.2548 −0.4393 0.3799 −0.8659
Merton 0.1804 0.2759 −0.4390 0.3791 −0.8683

Notes: The time horizon is T = 252, the parameters for both the IG-GARCH and the HN-GARCH solution are taken from
Christoffersen, Heston, and Jacobs (2006).

The three strategies are now evaluated based on the values of the expected utility from
terminal wealth, which is available in closed form. For a one-year time horizon, the param-
eter estimates from Set 1 and our standard choices for the investment parameters γ , v0 and
r, Panel B in Table 3 reports the values ofφ0(w0, h1) for the three strategies. For these calcu-
lations, we set h1 tomatch the unconditional variance of the IG-GARCH in the estimation.
Note that fitting a homoskedastic Gaussian model to the underlying market data of Set 1
leads to a market price of risk of λM = 3.106, which is used in the formula of Merton’s
static solution, πM

t = πM = (λM + 1/2)/(1 − γ ).
Comparing the values, we can see that the highest expected utility is obtained with the

IG-GARCHsolution, as expected. It is to be expected that the second best choice among the
three strategies is the one corresponding to the Gaussian GARCH model, outperforming
the static solution.

We continue with an investigation of the return moments achieved by the three strate-
gies, based on 10000 simulation runs with 1000 paths each. The results are presented in
Panel A of Table 3. In this context, we note that for a five-years horizon and γ = −1, the
IG-GARCH solution yields the smallest fraction of wealth invested in the risky asset, with
π∗
0 ≈ 1.35. While an investor following the HN-GARCH would find πHN

0 ≈ 1.67, Mer-
ton’s static solution even suggests πM ≈ 1.80, which explains the higher mean return of
the HN-GARCH strategy and Merton’s solution, subject to higher volatility.9 These dif-
ferences are significant, i.e., standard errors are low for the first two moments. Obtaining
similarly exact values for higher moments would be time-consuming with a large amount
of simulations. The results for the alternative parameter estimates in IG and HN Set 2 are
reported in Appendix A.1.3.

For the secondpart of this subsection,we analyse the parameter sensitivity of thewealth-
equivalent loss, again based on a comparison of the optimal strategy to the HN-GARCH
solution and to Merton’s approach. Figure 10 describes WEL as a function of the level of
risk aversion, using the parameter estimates from Set 1. We observe that for low levels of
risk aversion, there is a difference of up to 2.5% of initial wealth between the HN-GARCH
model and our optimal solution, which even increases up to 5% forMerton’s static solution.
The losses for both suboptimal strategies are decreasing in risk aversion. Extending the
investment horizon can increase the losses dramatically, e.g., repeating the same analysis
as in Figure 10 for a 20-years period yields around 8% WEL for the HN-GARCH and
even up to 20% for Merton’s solution, assuming low-risk aversion for the investor. For the
alternative set of parameter estimates (Set 2), the performance of the Gaussian model is
improved, see Appendix A.1.3.
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Figure 10. Dependence of Ls0 on the level of risk aversion γ for the HN-GARCH model and Merton’s
solution. The time horizon is five years with 252 trading days per year, the plots show γ ∈ [−5,−0.01].
This plot uses IG Set 1 (see Table 1) and the corresponding estimates for the HN-GARCH (see Table 2).

Figure 11. Dependence of Ls0 on η (Figure 11(a)) and themarket price of risk (Figure 11(b)), respectively.
The time horizon is five years with 252 trading days per year. The plot in Figure 11(a) captures influence
of skewness and kurtosis of log asset returns with η ∈ [−6.162 × 10−2,−6.162 × 10−4]. Figure 11(b)
displays sensitivity w.r.t. to the market price of risk in the interval λ ∈ [0.5, 4.0]. We use IG and HN Set 1
in both plots. (a) WEL dependent on η. (b) WEL dependent on λ.

For the plot in Figure 11(a), we use again the combined approach from Section 5.2 for
the parameters of the IG-GARCH model in order to keep the first two moments constant
and only change skewness and excess kurtosis as wemove η. Note that the IG-GARCH and
the Gaussian model calibrated with the estimates from the sources (see Tables 1 and 2) do
not exactly match w.r.t. the first two moments. As stated above, Merton’s solution is calcu-
lated with the risk premium derived from fitting a homoskedastic Gaussian model to the
same market data. Figure 11(a) displays the impact of η onWEL for Set 1, i.e., the effect of
skewness and kurtosis of one-step log return innovations. Since the IG-GARCH is set to
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Figure 12. Dependence of Ls0 on w, a, b and c, respectively, plotted both for the HN-GARCH model and
Merton’s solution. The timehorizon is T = 5 · 252, the original parameter estimates are taken fromSet 1.

model left-skewed log returns, one can clearly detect increasing losses of the HN-GARCH
solution as the innovations become more negatively skewed for decreasing η. In this sit-
uation, with γ = −1, WEL could go up to 2.5% for the HN suboptimal choice, and even
up to more that 4% for a Merton allocation, moving to η = −0.06. For the corresponding
values of skewness and excess kurtosis of log asset returns in this context, see Figure 6(b).
Figure 11(b) investigates the impact of the market price of risk on WEL. As before, the
parameter settings for the HN-GARCH and the homoskedastic Gaussian model are not
adapted when moving in the underlying grid, yielding clear increases in WEL for changes
of λ in both directions. It is remarkable that for increases in the market price of risk, Mer-
ton’s solution outperforms the Gaussian GARCH model. Remember in this context, that
Merton’s solution suggested the highest fraction invested in the risky asset, and therefore
might cope better with higher risk premiums.

The analysis of the remaining parameters (w, a, b, c)with Set 1 is presented in Figure 12.
The top left plot shows the intersection of the confidence interval for the MLE for w and
[0,∞), in case of the other three parameters we only consider decreases from the original
estimate to make sure the convergence condition is still satisfied (see the argumentation
in Section 5.2). Increasing the parameter w yields the highest WEL, up to 30% for the
HN-GARCH and even up to 50% for Merton’s solution at the upper end of the confi-
dence interval. Taking this into account, the losses seem vanishingly small for w = 0.
For the parameters a, b and c, the plots in Figure 12 show a similar picture: A decrease
in the parameter value leads to a decrease in WEL. As expected, Merton’s solution is
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outperformed by the dynamic HN-GARCH in all four cases. The plots for Set 2 can be
found in Appendix A.1.3.

6. Conclusion

In this paper, we find an approximate closed-form representation to a portfolio optimiza-
tion problem with one risky asset, whose log return follows a general affine GARCH
process allowing for non-Gaussian innovations. The investor maximizes a CRRA utility
from terminal wealth.Using a second-order approximation for the self-financing condition
supported in the literature, we apply Bellman’s principle iteratively to obtain the optimal
strategy in recursive form. The optimal wealth process is shown to follow an affineGARCH
process as well.

We develop one special case of our main result, the IG-GARCH model, which con-
stitutes the first EUT closed-form solution available in the literature for a non-Gaussian
GARCH model. Our solution also is a generalization of a recent result on HN-GARCH
(a.k.a. Gaussian)models. One outstanding advantage of the newmodel is that asset returns
follow a leptokurtic, negatively skewed distribution, allowing us to explore the impact of
these non-Gaussian features on portfolio allocation.

Using two different sets of parameter estimates for the models, we investigate the per-
formance of our investment strategy numerically.We address the feasibility of the portfolio
problem, the quality of the SFC approximation, the sensitivity of the optimal solution
to IG-GARCH and investment parameters, and report on an explicit comparison to the
HN-GARCHmodel.

In particular, our analysis shows that for the prevailing sets of parameter estimates, we
have a unique real solution to the optimality equation,maximizing CRRAutility. The effect
of the second-order SFC approximation is negligible. Our special focus in the context of
parameter sensitivity of our solution is on the impact of changes in higher returnmoments
on the optimal strategies, where our results suggest that big shifts can change the optimal
strategy significantly, also dependent on the investor’s level of risk aversion. Calculations
concerning the wealth-equivalent loss from following suboptimal strategies, particularly
theHN-GARCH andMerton’s static solution, indicate that an investor following theGaus-
sian strategy instead could face a loss of up to 2.5% with low-risk aversion. The loss could
even increase up to 5% in case of choosing Merton’s static solution. These outcomes sug-
gest a significant impact of accommodating the fact that asset returns are negatively skewed
and leptokurtic in a non-GaussianGARCHmodelling approach as compared to the already
existing solutions.

It can be shown that a natural extension towards allowing for consumption using CRRA
power utility functions is not solvable via Bellman’s value iteration. Finding a setting where
the investor derives utility not only from terminal wealth, but also from consumption at
intermediate time points, thus remains an interesting open question.

Notes

1. It is possible to derive a set of HN-GARCH parameters matching the first two moments of
a given IG-GARCH parameter set (Christoffersen, Heston, and Jacobs 2006). For this pair of
models, the market price of risk in the IG-GARCH coincides with the parameter λ of the
HN-GARCHmodel in (15a).
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2. It is known (Escobar-Anel, Gollart, andZagst 2022) that the optimal strategy in theHN-GARCH
model converges to the continuous-time Heston solution as of Kraft (2005) for � → 0 under
certain conditions. Thus, imposing these requirements and taking the limit η → 0, our optimal
solution approaches the continuous-time Heston strategy.

3. The same conclusions are obtained with the ML estimates from IG Set 2.
4. Note that the conclusion for the alternative set of parameter estimates from IG Set 2 is different,

replicating the finding by Escobar-Anel, Gollart, and Zagst (2022) in the HN-GARCH frame-
work. In these settings, however, the fraction of wealth invested in the risky asset is significantly
smaller.

5. Note that the parameter λ of this artificial HN-GARCH calibration coincides with the market
price of risk λ = ν + η−1 of the IG-GARCH. The notation thus is consistent.

6. Neither Equation (25) nor the recursive formula for E∗
t,T depend on r or w.

7. The same if true for the relation of IG Set 2 and HN Set 2, of course.
8. The annualized volatility is even higher in the estimation in IG Set 2, suggesting that the

effect of η on the conditional skewness is really propagated via the formula St[Xt+1 − Xt] =
3η(ht+1)

−1/2.
9. Note that the opposite is true for the alternative parameter set (see Appendix A.1.3), where

the IG-GARCH suggests the largest fraction invested in the risky asset, followed by the HN-
GARCH. This also coincides with a reversed order concerning realized return moments.

10. In contrast to the setting before, the estimate for w is now negative. We note that this can lead
to negative values for the conditional variance in case the previous value is close enough to
zero. Referring to Christoffersen, Heston, and Jacobs (2013), we adjust our parameter setting by
imposing w = 0.

11. Indeed, w< 0 can be problematic w.r.t. the positivity of the conditional variance. We one more
refer to Christoffersen, Heston, and Jacobs (2013) and the adjustment w = 0.
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Appendix. Complementary Material

A.1 Alternative Parametric Choice

A.1.1 Feasibility of Solution and Approximation
Performing the above analysis concerning the quality of the approximation of the self-financing
condition using the more recent ML estimates from Babaoǧlu et al. (2018) (IG Set 2), we make the
adjustment of setting w = 0.10 In this adapted parameter setting, we obtain a very similar picture
(see Figure A1) to the one described for IG Set 1. As before, the probability of the difference between
VT and eWT relative to the level of wealthVT is centred around zero. The range is now slightly wider,
but very close to the one observed in Figure 2 – the probability of the absolute value of the difference
being less than 0.3% of the terminal wealth is close to one. Figure A2(a) shows a different picture
than the equivalent plot w.r.t. to IG Set 1, see Figure 3. Note that with IG Set 2, assuming the same
level of risk aversion, the fraction of wealth invested in the risky asset in significantly smaller – in
particular, the share is between 0 and 1. Figure A2 replicates the finding from the corresponding
analysis in the HN-GARCH environment, see Escobar-Anel, Gollart, and Zagst (2022). Concerning
the accumulated amount of extra cash needed to account for the fact that the optimal strategy is not
self-financing, Figure A2(b) suggests that putting aside 0.4% of the initial wealth in the beginning
should cover all extra cash flows over the five-years time horizon under investigation.

A.1.2 Parameter Sensitivity
Concerning parameter sensitivity under the alternative IG Set 2, we first investigate the non-
Gaussian behaviour, i.e., the impact of changes in η while keeping first and second order moments
constant (see Section 5.2). As for IG Set 1, the plots in Figure A3 show that the fraction of wealth
invested in the risky asset decreases as η decreases, i.e., as log asset returns become more skew and
have a higher excess kurtosis. Again, referring to the colour bar in Figure A3(b), we note that the
plotted range for η yields very extreme values for skewness and excess kurtosis at its lower end and is
chosen for illustrative purposes. Figure A3(a) shows how the optimal initial solution depends on η
for different levels of risk aversion, expressed via the parameter γ . The plot in Figure A3(b) isolates
the dependency of the optimal solution on skewness and kurtosis. The IG-GARCH solution changes
with respect to the parameter η, again showing a less risky allocation as η decreases.

An analysis of the impact of the market price of risk on the optimal strategy for the alternative
parameter setting basically yields the same findings as presented in Figure 7. Again, an increase in the
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Figure A1. Comparison of the two wealth processes at time T = 5 · 252, using IG Set 2 withw = 0.

Figure A2. Extra cash needed for setting Vt = eWt in each iteration over a five-years time horizon, using
IG Set 2. (a) Histogram of adjustments in all simulations, over the whole time horizon. (b) Histogram of
the accumulated amount of extra cash needed over the whole time horizon.

market price of risk leads to higher fractions of wealth invested in the risky asset, see Figure A4. Note
however, as seen in other plots as well, that the general level of π∗

t is lower for this set of estimates.
Finally, also the sensitivity of the optimal strategy with respect to the parameters a, b and c shows

a similar picture, as presented in Figure A5. We note that due to the larger standard errors for these
estimates, the plotted range for the parameters is relatively large. The plots only show decreases in
the parameters, starting from the original maximum likelihood estimate. Again, the limit of π∗

0 as
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Figure A3. Dependence of π∗
0 on γ and η (Part A3(a)) and on η alone (Part A3(b)) for a one-year time

horizon. The prevailing parameter estimates are from IG Set 2 (see Table 1). (a)π∗
0 dependent on γ andη.

The x-axis scales the original estimate for η by a factor of at most 1 × 103, the range for γ is [−5,−0.5].
(b)π∗

0 dependent on η only, with γ = −1. Here, η is scaled by at most 1 × 102. The colour bar indicates
the corresponding values of skewness and kurtosis of the distribution of log asset return innovations.

a, b or c decrease turns out to be the value of the terminal solution – suggesting once more that the
curve in Figure 4 is flattened. None of these parameters has any impact on the terminal solution.

A.1.3 Wealth-Equivalent Losses
Panel A of Table A1 shows the simulation results with respect to the return moments of the IG-
GARCH strategy and the two alternatives – the Gaussian HN-GARCH strategy and Merton’s static
solution – in case of IG Set 2. As described in Section 5.3, Merton’s solution is derived from a
homoskedastic Gaussian model fitted to the same data set as IG and HN Set 2. In particular, this
yields λM = 0.78 in this case. For this set of parameter estimates, the fraction of wealth invested in
the risky asset is the largest for the IG-GARCH and lowest for Merton’s strategy, which is remark-
able since it shows the reversed order observed with the other parameter set. The new order justifies
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Figure A4. Dependenceofπ∗
0 on themarket price of risk for a one-year timehorizon, original parameter

estimates from IG Set 2. The value of the optimal initial solution increases significantly with λ.

Figure A5. Dependence of π∗
0 on a, b and c, respectively. The time horizon is T = 252, the original

parameter estimates are taken from IG Set 2.

Table A1. Realized returnmoments for the three evaluated strategies, basedon1 × 104 simulation runs
with 1 × 103 paths each.

Panel A Panel B

Solution Mean Std. dev. Skewness Kurtosis φ0(w0, h1)

IG-GARCH 0.1424 0.1611 −0.6308 0.7064 −0.888227
HN-GARCH 0.1413 0.1551 −0.6306 0.7061 −0.888249
Merton 0.1347 0.1213 −0.6284 0.7024 −0.889204

Notes: The time horizon is T = 252, the parameters for both the IG-GARCH and theHN-GARCH solution are taken fromSet 2.

the results presented in Panel A, with the optimal strategy yielding the highest mean return, subject
to the largest volatility. As in Table 3, these differences w.r.t. the first two moments are significant.
In terms of expected utility from terminal wealth, obtained via the closed-form expressions and
reported in Panel B of Table A1, we note that the HN-GARCH solution keeps up with the optimal
strategy quite well, taking into account in this context also the relatively small difference in allocation
for the prevailing level of risk aversion.

Figure 10 again describes WEL as a function of the level of risk aversion, now for Set 2. The
shape of the displayed curve is very similar to Figure 10, losses increase as risk aversion decreases.
In general, due to the smaller difference between IG andHN allocation with the estimates from Set 2,
losses are on a lower level. Since the performance of Merton’s solution is inferior in this case, the
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Figure A6. Dependence of Ls0 on the level of risk aversion γ for the HN-GARCHmodel. The time horizon
is five years with 252 trading days per year, the plots show γ ∈ [−5,−0.01]. This plot uses IG Set 2 (see
Table 1) and the corresponding estimates for the HN-GARCH (HN Set 2, see Table 2).

Figure A7. Dependence of Ls0 on η (Figure A7(a)) and ν (Figure A7(b)), respectively. The time horizon is
five years with 252 trading days per year. The plot in Figure A7(a) refers to skewness and kurtosis of log
asset returns and shows η ∈ [−5.729 × 10−2,−5.729 × 10−4]. Figure A7(b) displays sensitivity w.r.t. to
the market price of risk in the interval λ ∈ [0, 2.5]. We use Set 2 in both plots. (a) WEL dependent on η.
(b) WEL dependent on ν.

corresponding curve would prevent a detailed comparison of the GARCHmodels and is not shown
in the plot.

For the remaining evaluation of the parameter sensitivity of the WEL under Set 2, we take a
slightly different approach than for Set 1 in Section 5.3. Figure 9(b) shows that in this case, when
working with the estimates for both GARCH models, the IG-GARCH yields a slightly higher frac-
tion of wealth invested in the risky asset. To make differences more visible, we thus replace the MLE
estimates for the HN-GARCHmodel from Babaoǧlu et al. (2018) by an artificial set, derived directly
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Figure A8. Dependence of Ls0 on w, a, b and c, respectively, plotted only for the HN-Model. In all cases,
losses decrease, as the parameter is decreased. The time horizon is T = 252, the original parameter
estimates are taken from Set 2.

from the IG-GARCHMLEs to match the first two moments. This approach implies an inferior per-
formance ofMerton’s static solution, hiding the exact evolution of the HN-GARCH curves if plotted
together. Therefore, this alternative is excluded from the following figures.

The plot in Figure A7(a), again created with the combined approach from Section 5.2 for the
parameters of the IG-GARCH model, shows the dependency of WEL on η. The shape of the curve
clearly suggests increasing losses of the HN-GARCHmodel as skewness increases and excess kurto-
sis decreases, respectively. Figure A7(b) investigates the impact of the market price of risk on WEL.
As before, the HN-parameter setting is not adapted when moving in the underlying grid, yielding
clear increases of WEL for changes of λ in both directions.

Figure A8 shows the plots of the wealth-equivalent loss for the remaining parametersw, a, b, and
c of themodel, in case of the alternative set of parameter estimates in Set 2. The top left plot shows the
entire confidence interval for the MLE for w, in case of the other three parameters we only consider
decreases from the original estimate to make sure the convergence condition is still satisfied. All
four plots only show the HN-GARCH solution – including the not equally well performing Merton
solution would prevent a detailed comparison of the two GARCH models. The plot for w suggests
that the performance of the IG-GARCH can be improved w.r.t. its Gaussian counterpart by increas-
ing the parameter. The curves for a, b and c are very similar to each other. As for Set 1 before (see
Figure 12), decreases in these parameters let the WEL decrease, where the drop seems to be slightly
slower for parameter c. In comparison to Figure 12, note that the confidence intervals for the MLEs
are much larger now, revealing a larger section of the curve than for Set 1.
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